
A Study of the Radiation-Reaction 
on a Point Charge that Moves Along 
a Constant Applied Electric Field 
in an Electromagnetic 
.Bopp–Landé–.Thomas–.Podolsky Vacuum 

Holly K. Carley and Michael K.-H. Kiessling 

Abstract The relativistic problem of motion of a classical electrical point charge 
that has been placed between the plates of a charged capacitor and then released 
from rest is well-posed in Bopp–Landé–Thomas–Podolsky (BLTP) electrodynamics. 
That theory introduces a single new parameter, Bopp’s . κ, a reciprocal length. The 
present article concerns the small-. κ regime. Radiation-reaction effects on the motion 
are shown to appear at order .κ3. It is found that in the initial phase the motion is 
accurately accounted for by test particle theory, with the inertia determined by the 
bare mass of the particle. Subsequently, radiation-reaction effects cause substantial 
deviations from the test particle motion. 

1 Introduction 

In this tribute to Detlef Dürr we focus on a lesser known scientific passion of Detlef, 
i.e., “lesser known in comparison to Bohmian Mechanics,” and this is the classical 
electromagnetic radiation-reaction problem. Here is how Detlef once characterized 
the situation: 
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When people realized that there is a problem, quantum physics was invented. Then everyone 
began to work on quantum physics and eventually the problem was forgotten. But it still 
exists. (Detlef Dürr, private communication to the senior author, sometime in the mid 1980s.) 

The problem, in a nutshell, is this: The symbolic system of equations of Lorentz elec-
trodynamics with point charges is notoriously ill-defined. The energy and momentum 
densities of the electromagnetic Maxwell–Lorentz fields of a point charge source are 
not integrable over any neighborhood of the point charge, and also the Lorentz for-
mula for the electromagnetic “self”-force on such a point charge source is ill-defined. 
More recently [DeHa2016] it was noted that also the Lorentz formula for the elec-
tromagnetic force of one point charge source onto another becomes ill-defined after 
relatively short times. 

Undeterred by infinities [PPV2011], physicists have tried to extract the force 
of radiation-reaction on an accelerated point charge by analyzing the power emit-
ted by it towards  .|s| = ∞, per the retarded Liénard–Wiechert fields. Von Laue 
[Lau1909] obtained the expression.

2e2

3c3 P
⊥
u(τ ) · d2

dτ 2u(τ ) for the Minkowski force four-
vector due to the radiation (cf. [Jac1975]); here, . τ denotes proper time and . P⊥

u(τ )·
the four-projection onto the subspace that is four-orthogonal to the four-velocity 
.u(τ ) (.= d

dτ
q(τ )). Its third derivative of the particle’s spacetime location .q(τ ) has 

been the cause of consternation. In particular, it vanishes during intervals of constant 
four-acceleration when the Larmor formula predicts radiation. Moreover, when non-
zero, it changes the initial-value problem from second to third order, and almost all 
solutions then display unphysical behavior. It has been argued that a way out of this 
“third-order” dilemma is offered by the fact that the radiation-reaction on the particle 
should cause only a small correction term to the test particle type force. The co-variant 
version of the equations of test particle motion reads . d

2

dτ 2q(τ ) = e
mcF(q(τ )) · u(τ ), 

where .F(s) is the Faraday tensor of the applied fields at a spacetime point . s. Hence 
the expression . d

2

dτ 2u(τ ) in von Laue’s four vector should be interpreted as stand-in 
for the first-order proper time derivative of . e

mcF(q(τ )) · u(τ ), which will not have 
derivatives of .q(τ ) higher than second order. The so radiation-reaction-corrected 
equation of motion, sometimes called the Eliezer–Ford–O’Connell (EFC) equation 
of motion, reads 

.
d2

dτ 2
q(τ ) = e

mc
F(q(τ )) · u(τ ) + 2

3

e3

mc4
P⊥
u(τ ) · d

dτ

(
F(q(τ )) · u(τ )

)
. (1.1) 

Landau and Lifshitz approximated (1.1) further by replacing all first-order proper 
time derivatives of.u(τ )obtained from.

d
dτ

(
F(q(τ )) · u(τ )

)
by. e

mcF(q(τ )) · u(τ ). This  
approximation to (1.1) is known as the Landau–Lifshitz (LL) equation of motion. 

Equation (1.1), and also its Landau–Lifshitz approximation, enjoy some practical 
successes. Interestingly, this practical success story has a serious blemish. Namely, 
for a point charge that moves along a constant applied electrostatic field the LL 
equation of motion simply reproduces the test particle motion, for its radiation-
reaction force term vanishes in this situation; cf. [PMD2006]. One may hope to
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obtain the radiation-reaction effects on a point charge that moves along a constant 
electric field by pushing the expansion of the EFC equation further until a non-
vanishing radiation-reaction force term is obtained. However, all higher-order terms 
obtained from such an expansion vanish also. 

As an aside, we mention that the LL equation has been derived rigorously as an 
effective equation of motion in a spacetime adiabatic limit, not for a point charge 
but for an extended charge distribution’s geometric center, and with .m standing 
for .mb + mf, where .mb is a bare mass and .mf a field energy contribution; see 
[Spo2004]. Thus, if one works with extended charge distributions, as in the Abraham– 
Lorentz-type classical electron theory [Lor1904], and endows the particle with a 
non-vanishing .mb, then one may realistically hope to obtain higher-order radiation-
reaction corrections that do not vanish for motion along a constant electric field. 
The LL equation of motion was also obtained in an asymptotic expansion about a 
“vanishing particle limit,” which captures the motion of a particle with extended 
charge and mass distributions in the limit of vanishing size, mass, and charge, yet 
with nonzero charge-to-mass ratio, see [GHW2009]. However, higher-order terms 
in such expansions will eventually depend on largely arbitrary assumptions about 
the structure of the extended distributions. Moreover, the formulation of a properly 
Lorentz co-variant model with extended charged particles [ApKi2001] involves a  
non-trivial foliation of Minkowski spacetime and poses conceptual challenges for 
the initial value problem. 

In this paper we are interested in the classical theory of motion for a true point 
charge that interacts with the electromagnetic fields it generates. In [Kie2019] the  
first well-posedness result of the joint initial value problem for the evolution of the 
electromagnetic fields and the relativistic motion of.N point charges was announced, 
not for the ill-defined Lorentz electrodynamics with point charges, but for an elec-
trodynamic model that goes back to work by Bopp [Bop1940,Bop1943], Landé– 
Thomas [Lan1941,LaTh1941], and Podolsky [Pod1942] (BLTP). The BLTP model 
replaces Maxwell’s law of the electromagnetic vacuum (viz. .HHH = BBB and .EEE = DDD) 
with a linear differential relation. A well-defined equation of motion was supplied 
in [Kie2019]. The proof of well-posedness of the joint Cauchy problem will be pub-
lished in [KTZ2023]. Also the scattering problem for a single particle that encoun-
ters a localized potential is well-posed [Hetal2021]. These authors showed that in 
this problem the “self”-force formula of [Kie2019] can be converted into a formal 
Lorentz-type expression that involves integration over the whole past of the particle 
motion, first proposed in [LaTh1941] and further studied in [Zay2014,GPT2015]. 

In the following we demonstrate that BLTP electrodynamics captures the radiation-
reaction on a point charge that is released from rest in a constant applied electric field. 
We understand our work as part of a proof-of-concept. In principle our approach can 
handle also more realistic models than BLTP electrodynamics, see [Kie2019].
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2 BLTP Electrodynamics with a Single Point Charge 

The electromagnetic vacuum in BLTP electrodynamics is defined by the two equa-
tions 

.HHH(t, s) = (
1 + κ

−2⃞
)BBB(t, s) , (2.1) 

.DDD(t, s) = (
1 + κ

−2⃞
)EEE(t, s) ; (2.2) 

in (2.1) and (2.2), the parameter .κ−1 is the “Bopp length” [Bop1940,Bop1943], 
and .⃞ ≡ c−2∂2

t − ∆ is the d’Alembertian, with . c the vacuum speed of light. The 
evaluations.HHH(t, s),.BBB(t, s),.EEE(t, s), and.DDD(t, s) of the fields at the space point. s ∈ R

3

and instant of time .t ∈ R are defined in any convenient flat foliation of Minkowski 
spacetime into space & time. These fields satisfy the familiar system of pre-metric 
Maxwell field equations, which consist of two evolution equations 

.
∂
∂tBBB(t, s) = −c∇×EEE(t, s) , (2.3) 

.
∂
∂tDDD(t, s) = +c∇×HHH(t, s) − 4πeδq(t)(s)v(t) , (2.4) 

and two constraint equations 

.∇ ·BBB(t, s) = 0 , (2.5) 

.∇ ·DDD(t, s) = 4πeδq(t)(s) . (2.6) 

Here, .e(> 0) is the elementary electric charge, .q(t) ∈ R
3 its position and. v(t) ∈ R

3

its velocity at time . t . 
The particle’s velocity is defined as usual to be the time-derivative of its position 

vector, 

.
d

dt
q(t) =: v(t). (2.7) 

In the relativistic generalization of Newton’s point mechanics by Einstein, Lorentz, 
and Poincaré, the velocity .v(t), in turn, changes with time according to 

.
d

dt

v(t)
/
1 − 1

c2 |v(t)|2
= 1

mb
f (t); (2.8) 

here, .mb /= 0 is the bare inertial rest mass of the particle, and . f (t) is the total 
electromagnetic force acting on it. Following Poincaré (cf. [Mil1998]) we define it as 
(cf. [Kie2019]) 

. f (t) := eEEE hom − d

dt

∫

R3
∏field(t, s)d3 s, (2.9)
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where .EEE hom is a constant applied electric field (an idealization of the field between 
the plates of a capacitor), and .∏field(t, s) is the momentum vector-density of the 
Maxwell-BLTP fields 

.4πc∏field = DDD×BBB + EEE×HHH − EEE×BBB − κ
−2

(∇ · EEE)(∇×BBB − 1
c

∂
∂tEEE

)
. (2.10) 

3 The Initial Data 

As announced in [Kie2019] and  shown in [KTZ2023], BLTP electrodynamics is well-
posed as a joint initial value problem for the fields and the point charge, requiring 
initial data.BBB(0, s), .DDD(0, s), .EEE(0, s), .( ∂

∂tEEE)(0, s) for the fields, and.q(0) and.v(0) for 
the particle. The data for . BBB and .DDD are constrained by the divergence equations, and 
.v(0) by .|v(0)| < c. 

In the ensuing sections we discuss these BLTP-dynamical equations for a single 
point charge moving along the constant applied electric field.EEE hom, starting from rest, 
with the initial fields the sum of the external field and the electrostatic field of the 
point charge. Thus, for the particle we have 

.q(0) = 0 and v(0) = 0. (3.1) 

For the fields we have 
.DDD(0, s) ≡ EEE hom + e

s
|s|3 (3.2) 

and 

.EEE(0, s) ≡ EEE hom + e
1 − (1 + κ|s|)e−κ|s|

|s|2
s
|s| . (3.3) 

We also have .
(
∂tEEE

)
(0, s) ≡ 0, as well as . BBB(0, s) ≡ 0.

4 The Solution of the Field Equations 

For the initial data of our problem the electromagnetic fields outside the forward light 
cone of the initial location of the particle remain precisely the electrostatic fields, i.e., 
the magnetic field .HHH and the magnetic induction field . BBB vanish, while the electric 
displacement field .DDD(t, s) is given by (3.2) and the electric field .EEE(t, s) is given by 
(3.3), for all .t ≥ 0. 

Inside the forward light cone of the initial particle location, but away from 
the particle position at . t , the fields .DDD(t, s) and .HHH(t, s) are for all .t ≥ 0 given by 
.DDD = EEE hom +DDDret

lw & .HHH = HHHret
lw, with (the acceleration vector of the point charge is 

highlighted in red)
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. DDDret
lw(t, s) = e

c2 − |v|2
|s − q|2

cn(q, s) − v
(
c − n(q, s) · v

)3

I
III
ret

+ e
n(q, s)×[(

cn(q, s) − v
)×a

]

|s − q|(c − n(q, s) · v
)3

I
III
ret

,

(4.1) 

.HHHret
lw(t, s) = n(q, s)|ret×DDDret

lw(t, s) (4.2) 

the retarded Liénard–Wiechert fields. Here, .n(q, s) = s−q
|s−q| is a normalized vector 

from . q to . s, the notation “.|ret” means that .(q, v, a) = (q, v, a)(t ret) to the left of 
“.|ret,” with.t ret(t, s) being defined implicitly by.c(t − t ret) = |s − q(t ret)|; inside the 
initial forward light cone, .0 < t ret < t . The  terms.∝ a in (4.1) and (4.2) account for 
the radiation. 

Note that the electromagnetic Liénard–Wiechert fields.HHHret
lw and.DDDret

lw exhibit both 
a .∝ 1/r2 singularity and a .∝ 1/r singularity, where . r denotes .|s − q(t)|; they each 
have a directional singularity at the location of the point charge source, too. 

Similarly, inside — and on — the forward light cone of the initial particle location, 
but away from the particle position at. t , the MBLTP field solutions.BBB(t, s) and. EEE(t, s)
for .t ≥ 0 are given by .BBB = BBB0 +BBB1 and .EEE = EEE0 + EEE1, with .BBB0 ≡ 0 and .EEE0 ≡ EEE hom, 
and 

. EEE1(t, s) = eκ2
(1 − (1 + κ|s|)e−κ|s|

κ
2|s|2 − 1

2

) s
|s| + eκ2

∫ ct−|s|

0

J2
(
κ

√
c2(t−t ')2−|s|2

)

c2(t−t ')2−|s|2 sd(ct ')+

eκ2 1
2

n(q ,s)−v/c
1−n(q ,s)·v/c

III
ret

− (4.3) 

. eκ2
∫ t ret(t,s)

0

J2
(
κ

√
c2(t−t ')2−|s−q(t ')|2

)

c2(t−t ')2−|s−q(t ')|2
(
s − q (t ') − v(t ')(t − t ')

)
cdt ',

BBB1(t, s) = eκ2 1
2

v×n(q ,s)/c
1−n(q ,s)·v/c

III
ret

− (4.4) 

eκ2
∫ t ret (t,s) 

0 

J2
(
κ 
√

c2(t−t ')2−|s−q(t ')|2
)

c2(t−t ')2−|s−q(t ')|2 v (t ')× (
s − q (t ')

)
dt '. 

The fields.BBB(t, s) and.EEE(t, s) are globally bounded in. s for each. t , and away from the 
point charge they are Lipschitz-continuous in . s, including across the initial forward 
light cone. 

Similarly, 

. ∇ · EEE(t, s) = eκ2 e
−κ|s| − 1

|s| + eκ3
∫ ct−|s|

0

J1
(
κ

√
c2(t−t ')2−|s|2

)
√

c2(t−t ')2−|s|2 d(ct ')+

eκ2 1(
1−n(q,s)·v/c

) 1
|s−q|

III
ret

− (4.5) 

eκ3
∫ t ret(t,s) 

0 

J1
(
κ 
√

c2(t−t ')2−|s−q(t ')|2
)

√
c2(t−t ')2−|s−q(t ')|2 cdt ',
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and 

.
(∇×BBB − 1

c
∂
∂tEEE

)
(t, s) = eκ2 1(

1−n(q,s)·v/c
) 1

|s−q|
v
c

III
ret

− (4.6) 

e κ3
∫ t ret(t,s) 

0 

J1
(
κ 
√

c2(t−t ')2−|s−q(t ')|2
)

√
c2(t−t ')2−|s−q(t ')|2 v(t ')dt '. 

5 Evaluation of the Radiation-Reaction Force 

With the help of these solution formulas, the electromagnetic force of the MBLTP 
field on its point charge source can be computed as follows. Since each electromag-
netic field component is the sum of a vacuum field and a sourced field, the bilinear 
.∏field decomposes into a sum of three types of terms: the vacuum-vacuum terms, 
the source-source terms, and the mixed vacuum-source terms. In our problem the 
vacuum field is.EEE hom; it does not contribute to.∏field, but appears separately at rhs(2.9). 
As explained in [Kie2019], this term is not put in by hand but is a contribution to 
the momentum balance due to a surface integral at “.|s| = ∞.” Hence the only con-
tribution to rhs(2.9) from.∏field is the source-source contribution, a “self”-field force 
in BLTP electrodynamics. Thus, (2.9) is given by 

. f (t) = eEEE hom + f self[q, v; a](t), (5.1) 

where.eEEE hom is the Lorentz force evaluated with the vacuum field (i.e., a “test particle 
contribution” to the total force), and (after taking advantage of hyperbolicity; cf. 
[Kie2019]) 

. f self[q, v; a](t) ≡ − d

dt

∫

Bct (q0)

(
∏field

source(t, s) − ∏field
source(0, s − q0 − v0t)

)
d3s (5.2) 

. = − d

dt

∫

Bct (q0)
∏field

source(t, s)d
3s, (5.3) 

with.∏field
source given by (2.10) with.(BBB,DDD − EEE hom,EEE − EEE hom,HHH) in place of.(BBB,DDD,EEE,HHH). 

To go from (5.2) to (5.3) we made use of the initial data .q0 = 0 and .v0 = 0, and 
.∏field

source(0, s) ≡ 0. 
The “self”-field force can be evaluated using retarded spherical coordinates 

.(r,ϑ,ϕ) to carry out the .d3s integrations over the ball .Bct (q0), after which one 
can differentiate w.r.t. . t . For this very special problem of straight line motion of a 
charge starting from rest at the origin, this yields
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. f self[q, v; a](t) = e2

4π

[
− Z[2]

ξ (t, t) (5.4) 

− ∑

0≤k≤1 
c2−k (2 − k)

∫ t 

0 
Z[k] 

ξ

(
t, t r

)
(t − t r )1−k dt r 

− ∑

0≤k≤2 
c2−k

∫ t 

0 

∂ 
∂t Z

[k] 
ξ

(
t, t r

)
(t − t r )2−k dt r

]
. 

Here, .ξ(t) ≡ (q, v, a)(t) and .Z[2]
ξ (t, t) := limt r→t Z

[k]
ξ

(
t, t r

)
, where 

. Z[k]
ξ

(
t, t r

) =
∫ 2π

0

∫ π

0

(
1 − 1

c v(t r) cosϑ
)
π[k]

ξ

(
t, q(t r) + c(t − t r)n

)
sin ϑdϑdϕ ,

(5.5) 

with.v(t) defined by.v(t)|EEE hom| ≡ v(t) · EEE hom, and with. n = (sin ϑ cosϕ, sin ϑ sinϕ,

cosϑ) a normal vector to the retarded sphere of radius .r = c(t − t r), where we 
measure . ϑ from the .EEE hom direction and . ϕ from an arbitrary axis .⊥ EEE hom. 

Moreover, the .π[k]
ξ (t, s) with .k ∈ {0, 1, 2} and .s /= q are defined as follows. We 

set 

.Kξ(t
', t, s) := J1

(
κ

√
c2(t−t ')2−|s−q(t ')|2

)
√

c2(t−t ')2−|s−q(t ')|2 , (5.6) 

.Kξ(t
', t, s) := J2

(
κ

√
c2(t−t ')2−|s−q(t ')|2

)

c2(t−t ')2−|s−q(t ')|2
(
s − q(t ') − v(t ')(t − t ')

)
, (5.7) 

and note that 

.

∫ t retξ◦ (t,s)

0
Kξ◦(t ', t, s)cdt ' =

∫ ct−|s|

0

J2(κ
√	
c2(t − t ')2 − |s|2)

c2(t − t ')2 − |s|2 s d(ct '), (5.8) 

.

∫ t retξ◦ (t,s)

0
Kξ◦(t ', t, s)cdt ' =

∫ ct−|s|

0

J1(κ
√	
c2(t − t ')2 − |s|2)

√	
c2(t − t ')2 − |s|2 d(ct '). (5.9) 

We will use.
II
ret to mean that.q(t̃),.v(t̃),.a(t̃) are evaluated at.t̃ = t retξ (t, s), not .t retξ◦ (t, s). 

Then 

.π[0]
ξ (t, s) = − κ

4 1

4

[
(n(q,s)− 1

c v)×( 1
c v×n(q,s))(

1− 1
c v·n(q,s)

)2

]

ret

(5.10) 

+ κ4 1 

2

[
n(q,s)− 1 

c v 
1− 1 

c v·n(q,s)

]

ret 
×

∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '

− κ4 1 

2

[ 1 
c v×n(q,s) 

1− 1 
c v·n(q,s)

]

ret 
×

∫ t ret ξ (t,s) 

0 
cKξ(t

', t, s)dt '
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+ κ4 1 

2

[ 1 
c v×n(q,s) 

1− 1 
c v·n(q,s)

]

ret 
×

(
1−(1+κ|s|)e−κ |s| 

κ2|s|2 − 1 2
)

s 
|s| 

+ κ4 1 

2

[ 1 
c v×n(q,s) 

1− 1 
c v·n(q,s)

]

ret 
×

∫ t ret ξ◦ (t,s) 

0 
cKξ◦ (t ', t, s)dt '

− κ4
∫ t ret ξ (t,s) 

0 
cKξ(t

', t, s)dt '×
∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '

+ κ4
(
1−(1+κ|s|)e−κ|s| 

κ2|s|2 − 1 2
)

s 
|s|×

∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '

+ κ4
∫ t ret ξ◦ (t,s) 

0 
cKξ◦ (t ', t, s)dt '×

∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '

− κ4 c
∫ t ret ξ (t,s) 

0 
Kξ(t

', t, s)dt '
∫ t ret ξ (t,s) 

0 
Kξ(t

', t, s)v(t ')dt ' , 

− κ3 1−e−κ|s| 
|s|

∫ t ret ξ (t,s) 

0 
Kξ(t

', t, s)v(t ')dt ' , 

+ κ4
∫ t ret ξ◦ (t,s) 

0 
Kξ◦ (t ', t, s)cdt '

∫ t ret ξ (t,s) 

0 
Kξ(t

', t, s)v(t ')dt ' , 

and 

. π[1]
ξ (t, s) = − κ

2

[

n(q, s)
(n(q,s)×[n(q,s)×a])· 1c v

c2
(
1− 1

c v·n(q,s)
)4 + n(q, s)× n(q,s)×a

2c2
(
1− 1

c v·n(q,s)
)3

]

ret
(5.11) 

− κ2

[

n(q, s)× n(q,s)×a 

c2
(
1− 1 

c v·n(q,s)
)3

]

ret 

×
∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t ', t, s)dt '

+ κ2

[

n(q, s)×
[
n(q, s)× n(q,s) ×a 

c2
(
1− 1 

c v·n(q,s)
)3

]]

ret 

×
∫ t ret ξ (t,s) 

0 
cKξ(t ', t, s)dt '

− κ2

[

n(q, s)×
[
n(q, s)× n(q,s) ×a 

c2
(
1− 1 

c v·n(q,s)
)3

]]

ret 

×
(
1−(1+κ|s|)e−κ|s| 

κ2|s|2 − 1 2
)

s 
|s| 

− κ2

[

n(q, s)×
[
n(q, s)× n(q,s) ×a 

c2
(
1− 1 

c v·n(q,s)
)3

]]

ret 

×
∫ t ret 

ξ◦ (t,s) 

0 
cKξ◦ (t ', t, s)dt '

+ κ3
[

1 
1− 1 

c v·n(q,s)

]

ret

∫ t ret ξ (t,s) 

0 
Kξ(t ', t, s)

[
v(t ret ξ (t, s)) + v(t ')

]
dt ' , 

+ κ2
[

1 
1− 1 

c v·n(q,s)

]

ret 

1−e−κ|s| 
|s| 

1 
c v(t ret ξ (t, s)) 

− κ3
[

1 
1− 1 

c v·n(q,s)

]

ret

∫ t ret 
ξ◦ (t,s) 

0 
Kξ◦ (t ', t, s)cdt ' 1 c v(t ret ξ (t, s)), 

and
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. π[2]
ξ (t, s) = − κ

2

[
1(

1− 1
c v·n(q,s)

)2 1
c v−

[
1 − 1

c2

I
Iv

I
I2
]
(n(q,s)− 1

c v)×( 1
c v×n(q,s))(

1− 1
c v·n(q,s)

)4

]

ret
(5.12) 

+ κ2

[[
1 − 1 c2

IIv
II2
] 1 

c v×n(q,s)(
1− 1 

c v·n(q,s)
)3

]

ret 

×
∫ t ret ξ (t,s) 

0 
cKξ(t

', t, s)dt '

− κ2

[[
1 − 1 c2

I
Iv

I
I2
] 1 

c v×n(q,s)(
1− 1 

c v·n(q,s)
)3

]

ret 

×
(
1−(1+κ|s|)e−κ|s| 

κ2|s|2 − 1 2
)

s 
|s| 

− κ2

[
[
1 − 1 c2

I
Iv

I
I2
] 1 

c v×n(q,s)(
1− 1 

c v·n(q,s)
)3

]

ret 

×
∫ t ret ξ◦ (t,s) 

0 
cKξ◦ (t ', t, s)dt '

− κ2

[
[
1 − 1 c2

I
Iv

I
I2
]

n(q,s) − 1 
c v(

1− 1 
c v·n(q,s)

)3

]

ret 

×
∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '. 

Although this is an intimidating list of integrals, we can already extract an impor-
tant conclusion: The equation of motion for our point charge does not feature time-
derivatives of the particle position .q(t) higher than second order. This result holds 
also for BLTP electrodynamics in general [Kie2019]. Hence, BLTP electrodynamics 
with point charges does not suffer from the .

...
q (t) problem. 

5.1 The Small-. κ Regime 

To make further progress in the evaluation of the integrals we will concentrate our 
efforts on an asymptotic analysis of the small-. κ regime. We make a formal power 
series expansion about .κ = 0 given by . f self[q, v; a](t) = ∑∞

n=0 F
(n)
0 [q, v; a](t), 

where .F(n)
0 ∝ κ

n; the subscript . 0 at .F(n)
0 indicates that we are expanding about 

.κ = 0. It is manifest that the terms.O(κ0) and.O(κ1) vanish identically, so we need 
to discuss terms.O(κn) for.n ≥ 2. Several of the spherical integrations can been car-
ried out explicitly in terms of well-known functions. In particular, the contributions 
.F(2)

0 and .F(3)
0 can be computed explicitly. 

5.1.1 Radiation-Reaction at . O(κ2)

To arrive at the .O(κ2) contribution we divide the expressions for .π[k]
ξ by .κ2 and 

take.κ → 0. The only two terms that survive in the limit are those in the first line of 
rhs(5.11) and rhs(5.12), respectively (indicated below by a superscript . ,1; later, also 
superscripts. ,3, . ,4, . ,7 will appear). Carrying out the pertinent integrations in (5.5) one 
notes that the result only depends on . t r, not on . t , so that the third line of rhs(5.4) 
vanishes at .O(κ2). Thus,
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.
4π
e2 F

(2)
0 (t) = −Z[2],1

ξ (t, t) − c
∫ t

0
Z[1],1

ξ

(
t, t r

)
dt r. (5.13) 

Explicitly, (5.13) reads 

.F(2)
0 (t) = − 1

2
e2κ2 v(t)

v(t)

[

2
c

v(t)
− c2

v(t)2
ln

1 + 1
c v(t)

1 − 1
c v(t)

]

(5.14) 

+ e2 κ2
∫ t 

0 

c3 

v(t r )3

[
1 
c v(t r ) 

2 − v(t r)2 

c2 

1 − v(t r)2 

c2 

− ln 
1 + 1 c v(t r ) 
1 − 1 c v(t r )

]
1 
c a(t

r )dt r 

The term in the first line of rhs(5.14) is the contribution from the first line of rhs(5.12), 
the term in the second line of rhs(5.14) is the contribution from the first line of 
rhs(5.11). Since for straight-line motion.v(t) and.a(t) are collinear, and.a(t) = v̇(t), 
one can carry out the time integration in the second line of rhs(5.14) in terms of 
elementary functions of .v/c, and a few algebraic manipulations then give (see the 
erratum in [Kie2019]) 

.F(2)
0 (t) = 0. (5.15) 

In this problem of straight line motion in a constant external electric field, with 
the particle starting from rest, the BLTP radiation-reaction force vanishes exactly at 
.O(κ2). 

5.1.2 Radiation-Reaction at . O(κ3)

We next evaluate the.O(κ3) contribution to the radiation-reaction force for small . κ. 
To arrive at the.O(κ3) contribution, subtract the.O(κ2) terms from the expressions for 
.π[k]

ξ , divide the result by .κ
3 and take the limit .κ → 0. This yields the contributions 

from three .π[k]
ξ terms .∝ κ

3, namely .π[1],4
ξ , .π[1],7

ξ , and .π[2],3
ξ . They contribute the 

following force .∝ κ
3, 

.F(3)
0 (t) = − e2κ3q(t) (5.16) 

− e2 κ3 4 
3

∫ t 

0 

c2 

v(t r )2

{
1 + 1 2 

c 

v(t r ) 
ln 

1 − 1 c v(t r ) 
1 + 1 c v(t r )

}
(t − t r )a(t r )dt r 

−e2 κ3 2 
3

∫ t 

0

(
1 − 

v(t r )2 

c2

)
c 

v(t r )

{
1 + 1 2 

c 

v(t r ) 
ln 

1 − 1 c v(t r ) 
1 + 1 c v(t r )

}
cdt r EEE

hom 

|EEEhom| 

Integration by parts yields for the integral in the second line of rhs(5.16)
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.

∫ t

0

c2

v(t r)2

{
1 + 1

2

c

v(t r)
ln

1 − 1
c v(t r)

1 + 1
c v(t r)

}
(t − t r)a(t r)dt r = (5.17) 

.

∫ t

0
c
∫ v(t r)/c

0

1

x2

{
1 + 1

2

1

x
ln

1 − x

1 + x

}
dxdt r = (5.18) 

− 
1 

2

∫ t 

0 

c 

v(t r )

[

1 +
(
1 − 

v(t r )2 

c2

)
1 
2 

c 

v(t r ) 
ln 

1 − 1 c v(t r ) 
1 + 1 c v(t r )

]

cdt r 

Comparison with the third line of rhs(5.16) reveals cancellations, and we end up with 

.F(3)
0 (t) = −1

3
e2κ3q(t). (5.19) 

This is a very surprising result: the .O(κ3) term of the radiation-reaction force 
in our initial value problem is a harmonic oscillator force! This result relies on the 
particular setup of the initial data and the geometry of the problem, but not more. 

6 The Volterra Equation for the Acceleration 

The equation of motion can be recast as a Volterra integral equation for the acceler-
ation, 

.a(t) = W [v] · (
eEEE hom + f self[q, v; a]) (t). (6.1) 

Here, 

.W [v] := 1
mb

/
1 − |v|2

c2
[
I3×3 − 1

c2 v ⊗ v
]
, (6.2) 

which for motion along .EEE hom is the same as 

.W [v] := 1
mb

(
1 − |v|2

c2

)3/2
I3×3. (6.3) 

In [KTZ2023] we show that the Volterra equation can be uniquely solved to yield . a
as a nonlinear expression in. q and. v, posing a second-order initial value problem for 
.q(t). 

6.1 The Volterra Equation to .O(κ3) (Small . κ) 

With the radiation-reaction force evaluated to .O(κ3) we obtain the equation of 
motion 

.a(t) = 1
mb

(
1 − 1

c2 |v(t)|2)3/2 (
eEEE hom − 1

3e
2
κ

3q(t)
)
. (6.4)
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Fig. 1 The velocity of a point charge, starting from rest in a constant applied electrostatic field 
.EEEhom = 10eκ2, versus time, as per test particle theory (dashed curve), resp. BLTP electrodynamics 
with radiation-reaction included to.O(κ3) (continuous curve), when.κe2/mbc2 = 0.01. The period 
of the velocity of the BLTP motion is.κcT = 160. The test particle’s velocity asymptotes to. c

Equation (6.4) is equivalent to the problem of special-relativistic test particle motion 
in a harmonic oscillator potential, featuring time-periodic solutions with conserved 
particle energy 

.U =
/
m2

bc
4 + | p|2c2 − eEEE hom · q + 1

6e
2
κ

3|q|2. (6.5) 

It is not clear to us whether this means that the validity of the .O(κ3) approx-
imation is restricted to short times .κct << 1 (see Fig. 1, which looks reasonable) 
or whether such periodic motion over longer times is a genuine feature of BLTP 
electrodynamics as long as.κe2/mbc2 << 1. In the latter case BLTP electrodynamics 
would presumably be eliminated for good from the list of contenders for a realistic 
classical electrodynamics. 

7 Summary and Outlook 

We have shown that BLTP electrodynamics, as defined in [Kie2019], accounts for 
radiation-reaction effects on the point charge motion along a constant applied electric 
field, thereby passing a litmus test that other models (in particular, the Landau– 
Lifshitz and Eliezer–Ford–O’Connell equations of motion) fail. Our results are based 
on a small-.κ expansion of the BLTP force expression. This is acceptable for our 
“proof-of-concept” demonstration. However, BLTP electrodynamics is physically 
viable at most in the large .κ regime [CKP2019]—if at all. An assessment of the 
large-. κ regime we leave to some future work.
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