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Detlef Dürr (1951–2021) 
(Photo credit Dr. Tilo Moser 2008, reproduced with kind permission)



Preface 

This volume collects papers dedicated to the memory of Detlef Dürr (4 March 1951–3 
January 2021), our dear friend and colleague. His unexpected and untimely passing 
came as a great shock to us. He was a great inspiration to our research, to our way 
of thinking about the laws of physics, and to our idea of honest and serious scientific 
debate. With this book, we would like to honor his legacy by collecting scientific works 
that present research influenced by Detlef, as well as some essays describing personal 
recollections. 

Some of the chapters in this book are writeups of talks given at the Laws of Nature 
Conference Remembering Detlef Dürr, held on August 8–12, 2022, at Ludwig-
Maximilians University in Munich (Germany), where Detlef worked for more than 30 
years. The conference was organized by Angelo Bassi, Dirk-André Deckert, Dustin 
Lazarovici, Peter Pickl, Paula Reichert, and Ward Struyve. 

Other chapters were written independently of the conference, upon our invitation 
to contribute to this collection of essays commemorating Detlef. In content and style, 
some chapters are physical, others philosophical or mathematical. Some present 
novel results in a continuation of lines of research inspired or initiated by Detlef, 
some review particularly relevant results, and some provide personal recollections. 
Some were written by former students, and some by colleagues. 

The diversity of themes reflects Detlef’s many interests. We have collected 
31 chapters and grouped them by topic into five parts: recollections, foundations 
of quantum mechanics, relativistic quantum theory, mathematical physics, and 
philosophy of physics. 

Detlef was fond of the ancient Greek philosophers. Reinhard Lang, who unfor-
tunately could not contribute a chapter to this book, has sent us, as a memento of 
Detlef, an image of Pythagoras shown in Fig. 1 along with the following quotation 
from Whitehead’s lecture Science and the Modern World1 : 

The Platonic world of ideas is the refined, revised form of the Pythagorean doctrine that 
number lies at the base of the real world.

1 A. N. Whitehead: Science and the Modern World. Humana Mente 1(3): 380–385 (1925). 
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Fig. 1 Sculpture of 
Pythagoras on the west 
façade of the cathedral of 
Chartres, France (Photo 
credit Dr. Nick Thompson, 
University of Auckland, 
2009, reproduced with kind 
permission) 

We the editors would like to thank the authors who contributed to this volume, 
the referees who helped bring the chapters to their optimal form, and the staff at 
Springer for their careful and efficient work. 
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Some Things I Have Learned From 
Detlef Dürr 

Roderich Tumulka 

Abstract Detlef Dürr (1951–2021) was a theoretical and mathematical physicist 
who worked particularly on the foundations of quantum mechanics, electromag-
netism, and statistical mechanics. This piece is a rather personal look back at him 
and his science. 

1 Introduction 

Sadly, Detlef Dürr passed away after short and severe illness on January 3, 2021, 
at the age of 69. I had the privilege to be one of his Ph.D. students in 1998–2001, 
and we continued collaborating until his death. At first, he was my supervisor, then 
he became my colleague and dear friend. I still find his research achievements very 
impressive and inspiring, and I would like to try to convey here why. 

2 An Example 

Detlef’s research intertwined mathematics, physics, and philosophy. To illustrate 
this, I pick as an example a mathematical result Detlef published in 2004 jointly with 
his long-time collaborators Shelly Goldstein and Nino Zanghì [ 12]. I call it the main 
theorem about POVMs. (A POVM, or positive-operator-valued measure, is for our 
purposes a family of positive operators on a Hilbert space that add up to the identity 
operator.) Here is a (somewhat informal) statement of the theorem. 

Theorem Let . S be a quantum system with Hilbert space . H . For any conceivable 
experiment . E that can be conducted on . S when it has arbitrary wave function, there 

R. Tumulka (B) 
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4 R. Tumulka

is a POVM . E on the set . Z of possible outcomes of . E acting on .H such that for 
every .ψ ∈ H with .||ψ|| = 1, the probability distribution of the outcome . Z of . E is 

Pψ (Z = z) = <ψ |E(z)|ψ> for all z ∈ Z . 

The statement is mathematics as it can be formulated rigorously and given a 
proof, see [ 12] or [  20, Sect. 5.1]. It is physics as it concerns the physics question 
of which probability distributions occur in quantum experiments and how they can 
depend on the wave function . ψ . It also has a flavor of philosophy (although it is an 
indisputable scientific fact) because of its foundational character, or even more so 
because it is based on an analysis of the measurement process that is usually treated 
as un-analyzable, but most of all because of the status it confers to the observables: In 
almost every textbook on quantum mechanics, observables are self-adjoint operators 
that enter the theory through a postulate; but here, observables are given by POVMs, 
and they come in through a mathematical analysis of the measurement process. That 
is a kind of radical break with the attitude prevailing in quantum mechanics: analysis 
instead of postulate! 

This theorem opens up a new way of thinking about quantum observables. For 
me, it removes the mystery about quantum observables. Indeed, in textbook quantum 
mechanics the observables retained a mysterious air as they were thought of as 
physical quantities but do not actually have values, not to speak of the fact that they 
do not commute. Here, observables are something different: they are mathematical 
objects that encode how the probability distribution of the random outcome. Z of an 
experiment depends on. ψ . Since this dependence is quadratic, it is rather obvious that 
this mathematical object should be an operator.E(z). And operators do not commute 
in general. No mystery left. 

The above theorem has various applications. For example, it provides a clear 
justification of why superselection rules hold under suitable conditions, of various 
versions of the no-signaling theorem, of why two probability distributions over wave 
functions with equal density matrices are empirically indistinguishable, and of why 
an experiment on one of two entangled systems has outcomes with distribution 
determined by the reduced density matrix. 

3 Detlef’s Questions 

A key trait that makes Detlef’s research findings come alive to me is that they are 
about unveiling how the world works: what its fundamental physical laws are, and 
how to explain macroscopic phenomena like randomness or the arrow of time. In 
other words, it impresses me that Detlef’s research adds to our understanding of 
the world. That may almost seem impossible today. We are used to the idea that 
our understanding of the world is based on the works of Lavoisier and Copernicus 
and Einstein and other guys from previous centuries, but not on contributions from 
contemporary scientists. We are used to the idea that although present-day scientists
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do computations much more difficult than those of Lavoisier and Copernicus and 
Einstein, the present-day results are of lesser significance and concern details that 
only few specialists have ever heard of. But Detlef didn’t see it that way. He saw 
possibilities of progress in our days on rather fundamental questions of science. 

I have learned from him that when we study scientific issues, we need to get to 
their bottom, that is, to reach full understanding. For example, he wanted to get to 
the bottom of the second law of thermodynamics (the statement that the entropy of a 
closed system can only increase) and understand the origin of the arrow of time. He 
thought it was part of a scientist’s job to actually understand her or his field, and that 
the quality of a researcher’s results will depend on how well she or he understands 
which of the available theories or approaches work and why. In particular, Detlef 
thought it was part of his job to understand whether and how statistical mechanics 
explains entropy increase and the arrow of time. Since a lot of different approaches to 
this question have been proposed in the literature, for example some using the Gibbs 
entropy and some the Boltzmann entropy [ 18], he felt it was important to think 
through which of these approaches were valid, and he inspired me to do the same. I 
arrived at the same conclusion as he had, not because I would repeat what he said but 
because he had arguments that made sense (and that was ultimately because he had 
honestly and seriously thought about it). The conclusion was, put very briefly, that 
Boltzmann’s approach [ 6], based on typicality, provided the crucial elements. This 
understanding then formed the basis of Detlef’s technical, mathematical work about 
the origin of randomness from chaos and typicality, in particular work on deriving 
that the velocity of a tracer particle in a classical many-body system (such as a hard 
sphere gas) follows approximately a Wiener process [ 8]. 

4 Quantum Mechanics 

Physics today is really in a crisis; it is a quantum crisis. In future centuries, physicists 
will say they cannot figure out how mainstream physicists in the 20th and 21st cen-
turies thought quantum mechanics works because what they wrote does not actually 
make sense. Detlef saw this crisis clearly, and instead of shrugging his shoulders, he 
tried to get to the bottom of quantum mechanics. He insisted that physical theories 
have to make sense. I have learned from him that it is important to openly criticize 
orthodox views where they deserve criticism. 

In fact, Detlef was frank with criticism. He criticized my work and ideas a lot. But 
it was the kind of criticism that belongs in a fair debate. Debates have the purpose of 
finding the truth, not the purpose of defending a particular person. The debates with 
Detlef often led to agreement, or at least partial agreement; all people involved had 
learned something. 

Detlef had known and collaborated with Shelly since the late 1970s and with Nino 
since the mid 1980s. The shared goal to get to the bottom of quantum mechanics 
led to their intensified joint collaboration on that subject in the late 1980s and to
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a series of Dürr-Goldstein-Zanghì (DGZ) papers since about 1990, most of them 
collected later in Ref. [ 13]. They jointly arrived at the conclusion that, for quantum 
mechanics, Bohm’s approach [ 5, 16] provided the crucial elements. They clarified 
Bohm’s theory, defined it in a more coherent way than Bohm himself, and derived 
and motivated it in a more direct way; one could say they put it upside up. Detlef 
coined the name “Bohmian mechanics” in analogy to Newtonian mechanics. By 
combining the approaches of Bohm and Boltzmann, DGZ clarified the status of the 
Born rule in Bohmian mechanics as based on typicality [ 11], thereby removing the 
need for an approach to equilibrium through mixing. 

Bohmian mechanics is not just a counter-example to some orthodox claims, it 
is the most serious theory of quantum mechanics that we have. By using a clear 
theory like this, we can clear up many confusing issues such as contextuality or the 
status of observables; we can see more clearly which general statements or proofs are 
relevant (such as the main theorem about POVMs); we can see more clearly what the 
problems are with various fields of quantum physics (such as quantum field theory) 
and take concrete steps to make progress on these problems. For example, quantum 
field theory involves the creation and annihilation of particles, which leads to the 
question of how to incorporate particle creation in Bohmian mechanics. I had the 
privilege to work with DGZ on the development of such extensions. 

I also think it was important that DGZ took seriously the possibility that our rela-
tivistic space-time might have a preferred foliation (slicing) into spacelike hypersur-
faces, even though this might at first seem against the spirit of relativity. Equations 
for an adaptation of Bohmian mechanics using a preferred foliation were worked 
out in 1999 [ 10] (actually, in a general-relativistic setting, although the published 
paper limits its discussion to the special-relativistic case). Since Bell’s theorem [ 3] 
shows that nonlocality is inevitable, the nonlocality of Bohmian mechanics is good, 
not bad. 

At the same time, Detlef was not at all dogmatic about Bohmian mechanics. For 
example, he supported (and contributed himself [ 1, 15] to) research about a com-
petitor to Bohmian mechanics, the Ghirardi-Rimini-Weber theory of wave function 
collapse. It wasn’t that he was dissatisfied with Bohmian mechanics and searched for 
alternatives. Rather, he felt that theories of quantum mechanics that actually make 
sense, that describe a coherent picture of reality, should be explored. 

5 Mathematics 

Some mathematicians tend to exaggerate the importance of proofs; they have a low 
opinion of the person who came up with a conjecture and a high opinion of the person 
who proved it, even if the proof did not introduce any particularly new ideas but arose 
mainly from persistence and diligence. Detlef was not like that. Although he was a 
mathematician and belonged to a math department, he had a deep appreciation for 
non-rigorous considerations. But that doesn’t mean that he was imprecise or didn’t
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do proofs. On the contrary, he encouraged me and other students to provide rigorous 
studies of the physical concepts we considered, in part because that forces us to be 
careful and precise. 

Correspondingly, he himself collaborated in a large number of such studies: for 
example, apart from the theorem mentioned initially [ 12], he contributed to math-
ematical proofs of global existence of Bohmian trajectories [ 4], that Bohmian tra-
jectories become straight lines in the scattering limit [ 19], that the probability flux 
(and thus the Bohmian arrival places) agree with the scattering matrix [ 9], and to 
constructing the unitary time evolution of the quantized Dirac field in an external 
electromagnetic field [ 7]. He taught through his example how careful mathematical 
study should complement physical theory, and conversely how physics and other 
real-world applications give us orientation in a sea of mathematical possibilities. I 
believe that if you feed students with unmotivated mathematics, then it reduces their 
ability to think about mathematics. 

Here is another thing that, although it is kind of obvious, I had never realized 
until Detlef pointed it out to me: classical electrodynamics is inconsistent. After all, 
the Lorentz force law requires that we evaluate the electromagnetic field .Fμν at the 
location of the charged particle, but exactly there it diverges as a consequence of the 
Maxwell equation. Textbooks on classical electrodynamics had never mentioned this 
basic fact. Going further, for solving the ultraviolet divergence problem of quantum 
electrodynamics, it might be a good start to try to solve it for classical electrody-
namics. This has inspired Detlef’s interest in Wheeler-Feynman electrodynamics [ 2] 
and in shape dynamics [ 14], two approaches that might offer ways out and that he 
published mathematical studies of. 

6 Directions 

Let me come back to Detlef’s choice of research problems. It was motivated by the 
goal of understanding nature. It was not motivated by seeking applause, or trying 
to win (explicit or implicit) competitions against other scientists. People who see 
science as a competition between the smartest minds and wish to score highly have a 
tendency to choose problems that are popular (that many others have already worked 
on) and whose answer will be uncontroversial; they invest their time and energy in 
improving known results (providing, say, more accurate approximations and tighter 
bounds) and hope for recognition. Competition tends to remove the sense of intrinsic 
value: people who believe that the main reason for practicing the violin, or math, 
or swimming is to be better than others will also believe that nobody would play 
the violin, or think about math, or swim just for the joy of it. Competitions are 
usually competitions in doing something useless. Detlef’s style was different. It was 
not that he didn’t enjoy recognition, or that he didn’t care what other people said. 
But on matters on which he could judge for himself, he did judge for himself, and 
didn’t follow widespread opinion when he knew it was flawed. I think that research 
problems that will win competition and applause today but have little intrinsic value
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will be of little interest to future generations of scientists. As I am writing this, I have 
to think of a quotation of Albert Einstein [ 17]: 

“Try not to become a man of success, but rather try to become a man of value.” 

This fits with what I described if the “man of success” is the scientist who primarily 
wants to gain applause for his work regardless of its actual value while the “man of 
value” primarily wants to do work of lasting scientific value regardless of how much 
applause it may win or not. I think that Detlef was a man of value. 
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Detlef Dürr’s Path from Mechanics of the 
Brownian Motion to the Mechanics of the 
Quantum World: a Personal Point of 
View 

Sergio Albeverio 

Dedicated to the memory of a wonderful friend, an outstanding 
scientist and natural philosopher. 

Abstract Some elements of the early work of Detlef Dürr are exposed. They involve 
a mathematical treatment of a mechanical model of the physical Brownian motion and 
other stochastic processes, as well as topics of statistical mechanics and stochastic 
analysis. Some comments are given on further developments, especially connected 
with Detlef’s fundamental work on Bohmian mechanics and quantum mechanics. 

1 Introduction 

As a small tribute to Detlef Dürr I shall first present the early stage of his scientific 
development, perhaps as a complement to the presentation in this book by specialists 
and Detlef’s coworkers, who were directly involved in the beautiful joint venture to 
develop Bohmian mechanics as a full alternative of standard quantum mechanics (in 
its “Copenhagen interpretation”). 

Detlef attended one of my earliest courses in Dirichlet forms and mathematical 
physics at the University of Bielefeld around 1977–1978. He would come by train 
from Münster, where he was working on his Ph.D thesis in physics. He impressed 
me right away for his strong motivations, asking sharp questions ranging from math-
ematics to physics. What stroke me particularly was his strong realistic view of the 
physical phenomena, his passion to understand how things are really made and work. 
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And he was ready to learn and use all kind of mathematical methods necessary for 
this understanding. 
Soon a strong friendship between us developed and this also extended to our respec-
tive wives, Veronika and Solvejg. I remember well how we were sitting a summer 
day in the mini-garden adjoining the small apartment (full of different types of gui-
tars) Veronika and Detlef were renting in Münster. We were discussing about almost 
everything, from Detlef’s growing up at the sea side in the northern part of Ger-
many, about his family, especially his brother (with whom he shared his passion for 
music)—about politics (in particular sharing our concerns how the “Berufsverbot” 
was spreading like a cold wind at that time in West Germany) and about philosophy 
(e.g. the presocratics, that Detlef liked particularly—I will come back to this theme 
later on). And of course we were talking about music (we both loved true folk singers 
like, e.g., Woody Guthrie)—Detlef was a very good guitar player and had a vision 
from insight. In fact, he had been actively playing with his life-long friend Peter 
Finger (who later became an excellent professional guitar player) and actively par-
ticipating with him at that time in various folk song meetings (Detlef told me that for 
some time he was strongly split between physics and music—and as we know all life 
long he wholeheartedly and passionately maintained both activities). Detlef gave us 
as a present the beautiful instrumental record he had just produced with Peter. After 
our meeting in Münster I felt that something very special had happened, a kind of 
rare strong resonance between us that would last all life long. 

Detlef’s Ph.D thesis in Münster (in 1978) consisted in a study of the Onsager-
Machlup function to determine the most probable paths of diffusion processes 
[BDS77] on which I will comment further in Sect. 2. After the thesis, Detlef started 
realizing his strong wish to go deeper in the comprehension of basic physical phe-
nomena described by classical mechanics, kinetic theory and statistical mechanics, 
using all possible mathematical methods, that he was eager to learn and deepen. 

The impression I had of Detlef already at that time was of a “natural philosopher”, 
with a strong physical sense—this impression was confirmed over the years. I admired 
this attitude of him—in this he reminded me strongly of my own teachers at the ETHZ, 
Markus Fierz and Res Jost. I was happy that Detlef would find some stimulation for 
his research through the course he attended in Bielefeld and we remained in strong 
contact. And when I officially moved to the Ruhr-University in Bochum in 1979 he 
joined me as an assistant. For some years we would also commute together regularly 
between Bielefeld and Bochum, to attend BiBoS 1-Seminars. He was very active in 
participating and often leading those seminars. Moreover he was interacting with 
several scientists visiting Bielefeld or Bochum, often initiating collaborations with 
them. Let me already mention some names in this connection like Paola Calderoni 
(Rome/Bremen), Rodolfo Figari (Naples), Shigeo Kusuoka (Kyoto/Tokyo), Danilo

1 BiBoS stood first for Bielefeld-Bochum-Stochastics and was a Research Center founded by 
Philippe Blanchard, Ludwig Streit and myself, located in Bielefeld and Bochum with special fund-
ing through the Volkswagenstiftung. When I moved from Bochum to Bonn in 1997 “Bo” came to 
stand for Bonn.
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Merlini (EPFL/Bochum/Locarno), Alessandro Teta (L’Aquila/Roma). I will come 
back to these collaborations in Sect. 2. 

Starting already in 1979 Detlef was also staying at the Department of Physics of 
Rutgers University in the group of the coworkers of Joel Lebowitz. The collaboration 
of Detlef with Joel and his coworkers, in particular Sheldon Goldstein, also formed 
the basis for his Habilitation thesis in mathematics at the Ruhr-University in Bochum 
in 1983. I will come to say something on this in the next section. 

After that, I will resume my personal account on the further evolution of Detlef’s 
life and scientific production, before and after his nomination to a professorship in 
Mathematics at the Ludwig-Maximilian University of Munich in 1989. 

2 Detlef’s Work on Mechanical Models of Brownian 
Motion and Stochastic Processes 

In  the work [BDS77] done at the “Institute for Theoretical Physics I” of the Uni-
versity of Münster, the meaning of the Onsager-Machlup (OM) function associated 
with a diffusion process, introduced in physical terms by L. Onsager and S. Machlup 
in 1953, is investigated from a foundational point of view. In fact the paper provides 
a pioneering mathematical derivation of a probability functional related to the OM 
function. It also shows how the OM-functional permits to express interesting func-
tionals of diffusion processes. The problem and method are deepened in [BD78a] 
where other original mathematical results are proven. 

The OM method is namely characterized as a mean to find via a Lagrangian the 
most probable tube around a differentiable function of a diffusion process. Its relation 
with the Girsanov formula is stressed and in the case of a diffusion with constant 
diffusion coefficient, the OM-functional is made explicit. Moreover a variational 
principle is formulated and a critical assessment of previous discussions for the case 
of non-constant coefficients is presented. A further paper in this direction is [BD78a] 
and relates the potential part of the OM-functional to the entropy production density 
of a “most probable path”, pointing out the relation between probability and entropy. 
A further paper [BD78b] discusses the equivalence between different methods of 
modelling diffusion processes that received a lot of attention at that time especially 
in the physical literature. The authors here relate the discussion to an important 
mathematical result by Wong and Zakai [WZ65]. The discussion was concluded 
and deepened in [BD78c]. In [DB79] an extension of the explicit formula for the 
OM-functional to non-linear drifts is proven. In the case of an anharmonic oscillator 
(quartic potential), the equation of motion for the “most probable path” is exhibited 
and the special case of a laser equation is analysed in detail. Let us stress that 
although much of this work has become nowadays a kind of implicit knowledge
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in the probabilistic community, the influence of Detlef’s work is acknowledged in 
most influential works, see for a sample e.g. [TW81,FK82,DZ91,Zei89,Aya+21]. 2

The strong will and determination of Detlef to understand more of the physi-
cal world, in particular the connection between classical and statistical mechanics 
methods, lead him in 1979 to go to the Rutgers University to take up a postdoctoral 
position in the group of Joel Lebowitz. 3 There indeed Detlef worked on the very 
important paper [DGL81], in collaboration with Shelly Goldstein and Joel Lebowitz. 
This opened a new line of research that also later lead to his Habilitationsschrift at 
Bochum University presented in 1983. 

Let me describe first the content of this Habilitationsschrift and then briefly discuss 
the scientific work on which it was based. The “Habilitationsschrift” of Detlef is 
entitled “Dynamische Modelle für Brown’sche Bewegungen”. It starts out with an 
introductory part (that I call here part I) consisting of the following sections: 0. 
Einführung, 1. Historisches, 2. Dynamische Modelle und die heutige Situation, 3. 
Ausblick. This part I consists of 25 densely written pages, that by themselves would 
deserve a separate publication. 4 It introduces the subject, its history and meaning, 
and discusses colloquially but very clearly the main results, and presents a beautiful 
outlook to further developments. 

Section 0 recalls in compact but clear terms Brownian motion as a physical phe-
nomenon and its mathematical correlate, namely Norbert Wiener (stochastic) pro-
cess. Section 1 shortly presents the history of the observation of Brownian motion as 
a physical phenomenon, its relation with the heat equation established by A. Einstein 
(1905) and M. Smoluchowski (1906), and with the introduction in 1930 by Ornstein 
and Uhlenbeck of the physical stochastic process in space and velocity, in the style 
of P. Langevin stochastic equations proposal of 1911. Detlef refers to the “beautiful 
book” [Nel67] for this part, but also presents an original point of his on how to derive 
mathematically Einstein-Smoluchowski results starting from classical mechanical 
dynamical models. This is actually the program implemented by in the paper on 
which the Schrift is based. This is deepened in Sect. 2, where main results of the

2 The methods discussed by Detlef and coworkers involve critical points of Lagrangians and have 
also influenced work in other areas, e.g. [Alb+09,AM11,AMB17,DFT04]. 
3 I have found a moving and at the same time funny and optimistic letter from Detlef and Veronika 
sent to me on July 1st, 1979 from New Bunswick, containing in Detlef’s typical terms a half-serious, 
half-critical but smiling tone a sort of report on their first month in the USA (of course accompanied 
by “Pauli”, their small dog). From the letter is already visible that despite a certain difficulty to adopt 
to a new country and style of discussion, Detlef is already “taking foot” in the new surrounding, 
in which soon he would start a strong, intensive collaboration. Then he remarks that after having 
been already twice in New York, he found out that guitars are at least half price cheaper there than 
in Europe. “So kann unser USA-Aufenthalt gar nicht sinnlos sein.” Then he also speaks about his 
wish of learning more, after having discussed with Joel, with whom he would hope very much to 
be able to work with, and for this he wants to get more familiarity with statistical mechanics and 
ergodic theory. And indeed he did become very familiar also with those areas, as documented by 
his successive brilliant work in these domains. 
4 The Habilitationsschrift—following the rules of the German university system—is deposited at 
the central library of Bochum University. As such is not easily accessible outside the German library 
system. 
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Schrift (and the papers in part II of the thesis) are presented. Beyond this Detlef also 
gives very useful insight about work by other authors e.g. [Spi69,Hol71]. In Sect. 3 
he also gives important comments relating the various limit models obtained by the 
suitable scaling procedures, starting from mechanical models. 

Let me now describe in some detail some of the papers in part II of the Habilita-
tionsschrift. In the first paper [DGL81] Detlef and his coworkers consider a system 
consisting of one large heavy spherical particle of mass .M and an infinite number 
of light particles of mass .0 < m << M , all moving in .R

3. Initially the light particles 
form a Poisson point process (ideal gas) with density .m−1/2, with initial velocities 
that are independent and have a distribution with density . fm(v) = m3/2 f1(m1/2v), 
. f1 being any probability density on .R

3 having finite moments up to order 4 and sat-
isfying the symmetry condition.

∫ ||v||v f1(v)dv = 0. The dynamics by assumption is 
provided by the elastic collisions between the point particles and the heavy particle. 
The authors obtained the beautiful result that in the limit.M/m → ∞ the joint distri-
butions of position and velocity of the heavy particle converge weakly to those of the 
Ornstein-Uhlenbeck position and velocity process, with parameters determined by 
.M, v and the first three moments of. f1. In this sense this constitutes a truly mechani-
cal model for the physical (and mathematical) Brownian motion process. This is the 
first extension to 3 (or arbitrary many) dimensions of the pioneering work by Holley 
[Hol71] that was limited, by the very method it used, to the one-dimensional case. 
The difficulty of this extension is due to several factors, first of all the necessity of 
mastering the possibility of recollisions, depending on the geometric shape of the 
heavy particle. 

The other papers in part II of Detlef’s Habilitationsschrift are [DGL83a,DGL83b, 
Dür82]. In [DGL83b] a mechanical model for the Brownian motion of a convex body 
is discussed and the results of [DGL81] are extended in a natural (but by no means 
immediate) way to the case where the geometric shape of the heavy particle is that 
of a convex body. The extension is by no means immediate, because one has to take 
care of rotations of the body and complicated collisions with gas particles in absence 
of spherical symmetry of the body. 

In [Dür82,DGL83a] the problem of recollisions is discussed in a general setting, 
together with related literature, including the one-dimensional equal masses case, e.g. 
[Har65,Spi69], and the case of a 2-dimensional periodic Lorentz gas [BS81]. Refer-
ences are also given to work in preparation by Detlef and coworkers, concerning rela-
tions with the central limit theorem in the case of dependent variables [Dür85,DG86]. 
Another topic discussed in [DGL85,DGL83a,DNZ87,DGL87], where the Landau 
model with Poisson distributed “soft-scatterer” with finite range isotropic smooth 
potentials is investigated and weak convergence under suitable scaling is obtained 
in the 2-dimensional case (the case of dimension.d ≥ 3 discussed by [KP80] is also  
mentioned). Finally the semi infinite case published in [CDK89] is also described. 
Many useful estimation infinite illustrations of methods and suggestions about treat-
ing other cases are provided in these very rich and clear papers and in the schrift. 

The series of works collected in the beautiful Habilitation of Detlef in Bochum 
’83 stimulated much further work also by other authors. To just quote an example,
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[DGL81] has 114 quotations on Semantic Scholar. For these let me just mention a 
few that in one way or the other I could follow personally, since they were connected 
with Detlef working in BiBoS and connecting there with other coworkers of mine 
e.g. Paola Calderoni 5 and Shigeo Kusuoka, who were visiting me from Rome and 
resp. Kyoto/Tokyo, worked with Detlef in [CDK89], extending the mechanical model 
of Brownian motion described in [DGL81] to a half-space. Shigeo Kusuoka had a 
PhD student, Song Liang, with whom he worked further on mechanical models of 
stochastic processes [KL08] and for models of different types of particles [KL10, 
KL12]. Song Liang also wrote on her own several important extensions of [DGL81], 
e.g. [Lia14a] (also related to the convex body case treated by Detlef in [DGL83b]). 
Even more recently we have the further important work by Song Liang [KL10,KL12, 
Lia13a,Lia13b,Lia14b,Lia18]. 6

3 Detlef’s Work on the Mathematical and Physical 
Foundations of Bohmian Mechanics, and Some Closing 
Remarks 

In ’85, when Detlef was working in Bielefeld in the framework of the BiBoS Center, a 
young Italian postdoctoral student, Nino Zanghì, came along. In discussing with him 
I learned that he had been working on various problems of quantum mechanics and 
had developed a strong interest in looking for other approaches to the quantum world 
than the orthodox formulation of quantum mechanics (in particular he was reading 
work by authors like Norbert Wiener, Giacomo della Riccia and Takeyuki Hida, on 
the relation between classical phase space, Brownian motion and quantum theory). 
Myself, together with Raphael Høegh-Krohn, had been looking with interest into Ed 
Nelson’s development of stochastic mechanics as an alternative vision to orthodox 
quantum mechanics and in fact at that time much activity, involving also Philippe 
Blanchard and Ludwig Streit in Bielefeld was developed inspired by this direction 
of investigations. 

This was also enhanced by a group of enthusiastic friends from Ticino and more 
generally Insubria—the biologist Gabriele Losa, the physicists Uberto Cattaneo, 
Danilo Merlini and Giulio Casati (see also [ACM85,Alb+90,ACM95]) (who orga-
nized seminars and conferences in Ascona/Locarno with the participation of Ed, 
Detlef and Nino, see footnote 6 below). In this sense it was more than natural that 
I would strongly suggest to both Detlef and Nino that they should meet and discuss

5 Paola Calderoni was an excellent young postdoctoral student visiting BiBoS from Rome. Detlef 
and Paola became close friends and collaborated in two papers with Detlef [CDK89,CD89]. When 
she died tragically in a car accident in Rome, Detlef was terribly shocked—he attended the funeral 
and stood for a while in Rome to be close to her family. This is one of his spontaneous manifestations 
of generosity that was characteristic of him as a wonderful person. 
6 Also roughly at the time of the Habilitationsschrift Detlef worked on several other problems of 
classical and statistical mechanics, let me mention [DP82], on the vortex flow, and [ADM83], on 
the independence of free energy from crystalline boundary conditions in plasma model. 
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together their points of view on quantum mechanics, since they had such common 
interests and orientations. In fact I was very happy to see how from their conversations 
(that sometimes seemed as debates—so energetic both of them were in defending 
their evolving points of view—)a strong life-long collaboration was developing. 

The present book testifies how the cooperation between Detlef, Nino, Shelly Gold-
stein (with whom Detlef was already cooperating since his stay in Rutgers University) 
and coworkers of them growing over the years led to a full-fledged, coherent theory, 
both from the physical and mathematical points of view, of “Bohmian mechanics”, 
as an alternative to orthodox, non-relativistic quantum mechanics. 7 I refer to other 
contributions in this book for systematic expositions and references to Detlef’s fun-
damental contributions in the construction and elaboration of this theory. I will limit 
myself here to shortly explain my position. I consider that the theory initiated by 
Bohm (having inspired roots in work by De Broglie) in the beautiful mathematical 
and physical presentation and interpretation given by Detlef and coworkers, relat-
ing also to the physical inspiration from A. Einstein and E. Schrödinger, should be 
considered as a true alternative of other expositions of the essential context of quan-
tum mechanics and its physical and epistemological interpretation (let me refer to 
Detlef’s book and references therein). 8

This said, the reader might ask the question about why I did not participate more 
directly in these developments. The main answer I can provide is that I was concen-
trating on mathematical problems arising from quantum mechanics itself—especially 
from its relativistic counterpart, namely quantum field theory, and I was postpon-
ing foundational and interpretational issues, taking a sort of agnostic position. But 
whenever we would meet with Detlef we would discuss intensively and plan future 
collaborations. Among other things, let me mention Detlef’s interest in the work on 
mathematical Feynman path integrals, that we thought of applying e.g. around ideas 
of Feynman–Wheeler absorber theory, or of making direct use of them (in physical 
real time) as a constructive tool. Also I was following closely and with great interest 
the work of Detlef and coworkers towards relativistic quantum physics and quan-
tum field theory. I also worked in these areas but whereas Detlef was concentrated 
primarily on a physical and foundational issue, I was mainly absorbed by develop-
ing mathematical methods that could in principle help to cope with the problem of 
divergence in the case of fields. 

Let me also mention that when in 1989 Detlef was nominated to a permanent 
position at the Ludwig Maximilian University of Munich, he invited me to give a 
Doctorate Course on the theory of Dirichlet forms in infinite dimensions and its

7 Detlef and Nino gave joint lectures in particular at the 3 Ascona/Locarno Conferences [ACM85, 
Alb+90,ACM95]. 
8 In fact Bohmian mechanics also furnished motivations and momentum to raising and studying 
certain questions that had not been asked before in orthodox quantum mechanics. Let me mention 
e.g. “the scattering into cones” (see the work [Dau+97] and its Nelson’s mechanical correlate in 
[Car85,PU04] and references therein); also let me quote developments connected with Schrödinger’s 
analogy between quantum mechanics and Euclidean mechanics, in the sense of J.C. Zambrini (see, 
e.g [Zam87]); see also for further developments and connections with variational principles in 
quantum mechanics e.g. [AVU17,AVU23]. 
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applications in quantum field theory. I accepted with great pleasure, we discussed 
a lot and at that time planned several collaborations in this direction, particularly 
on looking at canonical quantum mechanical objects both for particles and fields, 
and as such potentially fitting into the Bohmian view that Detlef and coworkers 
were actively and very successfully developing. Although our plans did not really 
materialize in direct collaborations, the mutual interest in each-other’s progress of 
our insights was again and again renewed whenever we met. 

The investigation in a similar spirit of the deeper structure lying below effective 
theories, that includes the problem of mastering the divergences in quantum field the-
ory, has now to be left to the former students and scientists inspired by Detlef’s work. 
Detlef’s heritage is indeed very strong and we can expect for relativistic Bohmian 
mechanics and quantum field corresponding beautiful developments as we expe-
rienced with non-relativistic Bohmian mechanics. Elements of this are already in 
[Dür+04],  see also e.g. [TT21] and references therein. I cannot close without men-
tioning another side of Detlef’s strong personality and his search for truth, the strong 
wish to share with others this search. It is connected with his being in my eyes a 
“natural philosopher”. 9

The Weihnachtsvorlesungen [Dür05,Dür06,Dür07,Dür11,Dür12,Dür13,Dür15] 
that he was giving every year from 2006 to his retirement in 2016, which I unfor-
tunately did not manage to attend, but read online with great interest, are for me 
impressive expressions of the reflections of a fully engaged true master in “philoso-
phy of nature”. In these conferences Detlef presents his reflections on the thoughts 
of the Presocratics-especially Parmenides and Heraclitus-confronting them with the 
evolution of our thinking about Nature. He also forcefully supports Schiller’s view 
of what University should mean, criticizing then aspects of the way in which our 
present day’s society is evolving. These lectures constitute nowadays rare examples 
of a genre with a noble tradition. 

Let me close by stating that I always considered Detlef as a wise, close, dear, gener-
ous friend, a person of independent thinking, free and consequent in his expressions, 
with a critical view but also with a very empathic smile. We all miss him, but he will 
live further by his work and the strong inspiration he gave to all he would meet, in 
person or by the written word. 

Acknowledgements I heartedly thank the organizers of the Conference in Memory of Detlef. Due 
to a sickness I caught at that time I was unfortunately unable to attend, but I am very grateful to the 
editors, and in particular to Roderich Tumulka, that they allowed me to get enough time to write 
this contribution. I also thank very warmly Elgi Orozi, who has been helping so much in setting 
up the text for publication. At the moment of handling in the final version of the text I was lying 
seriously ill at the Hospital, and it is only thanks to the generous help of Mielikki (my daughter) 
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9 I hope some time to be able to write more on these aspects of Detlef’s production, to give them 
visibility to a larger audience. 
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Detlef the Adventurer 

Tim Maudlin 

Abstract Detlef Dürr was a remarkable figure in many different ways. I recall some 
adventures we had with him in Abu Dhabi. 

A volume of remembrance like this is largely devoted to scientific pieces on Detlef’s 
work or on the topics he devoted himself to. It is altogether fitting and proper that we 
should do this. But it is also essential to memorialize Detlef’s unique spirit. Those 
who knew him personally will never forget being with him, and for those who never 
had the fortune to spend time with him it is important to try to convey who he was 
as a human being. 

Perhaps some of the stories—such as the rescue of Bertha the chicken, at substan-
tial investment of care and expense (for a chicken), resulting in a devoted friend-
ship—are fairly well known. Certainly, Detlef’s role as Doktorvater to generations 
of students at the LMU will have a permanent impact on foundations of physics that 
goes beyond the lasting effect of his publications. His ability to guide and encourage 
and inspire dozens of students in an otherwise hostile academic environment is, to 
my knowledge, unparalleled in the field. He is irreplaceable. 

Those stories—of his unstinting devotion to his students—are for them to tell. I 
never had the privilege of studying under him. Even the tale of Bertha I could only 
pass on second-hand, as told to me by Detlef himself. But there is an episode I can 
relate first-hand, which is not widely known and may perhaps give a small sense of 
Detlef the person to those who later pick up this volume. 

In the fall of 2012, I spent half a semester teaching at NYU’s campus in Abu Dhabi. 
This was not long after Abu Dhabi had opened as a gateway campus—to which 
students would directly apply for admission—in NYU’s Global Network University 
scheme. The dedicated Abu Dhabi campus was just being designed, and so we were 
housed in a large apartment building downtown, with temporary classrooms set up 
a little way off. Relatively few of the Abu Dhabi permanent faculty had been hired,
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and teaching needs were met by visiting faculty from the Washington Square campus 
in New York. 

Part of the arrangement for visiting faculty, in order to promote academic activity 
at the new institution, was the possibility of inviting a colleague to spend a week 
in Abu Dhabi. So I was presented with the question of who would be best to have 
around to spend time with, talking to and arguing with, and who would also create 
connections with other departments and generally light up both NYU Abu Dhabi 
and our own lives. And also, who would just be really excited and enthusiastic about 
the chance to come to such an exotic location. The obvious answer was: Detlef. 

The visit was far more successful than I ever could have anticipated. At a purely 
academic level, Detlef was invited to talk to a mathematical physics class and was 
such a hit that long after I left—and with no impetus from me—he was invited back 
to speak and interact with the faculty there. Detlef just immediately won over, in the 
course of a few days, people in mathematical physics who previously didn’t know 
him at all. There is not much I could say to convey how that happened that would 
add to the clarity and humor and passion that one finds in his published work and 
recorded lectures. But there is another aspect to Detlef’s visit that would never be 
generally known except that I recount some of it here. That is the purely personal 
part, and I record bits of it for those who knew him but not this particular episode, 
and for those who never knew him but want to understand who we was, and mostly 
for myself just for the sheer pleasure of recalling it. 

Detlef came with his daughter Anna, and as I mentioned they stayed for about a 
week. Detlef’s attitude to the visit was already evident the day after they arrived. I 
had, myself, been somewhat concerned about going to Abu Dhabi: when I signed 
up for it I had never been anywhere in the region and really had no clear idea what 
to expect. It was terra incognita for me and my wife Vishnya and our son Maxwell, 
who had been taken from school in Princeton and was trying to keep up with classes 
remotely. From our NYU encampment in downtown Abu Dhabi we had ventured 
out to the Corniche and the huge malls and a few other places. But already just 12 h 
after having arrived, Detlef and Anna had been to places we hadn’t seen. He loved 
the beach, and sought out the older areas to explore. Whereas I approached being in 
Abu Dhabi with a certain amount of trepidation, Detlef just threw himself into his 
visit from the first moment as an adventure. 

As far as I can reconstruct, Detlef and Anna arrived on November 12. On the 14th 
he was presenting Bohmian mechanics to the undergraduates, opening their minds 
to physical possibilities that they would almost certainly never have been introduced 
to in any other place. Here he is in pedagogical mode:
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Detlef Explaining 

That, of course, is a picture similar to hundreds of others at thousands of other 
similar occasions. 

But a couple of days later we decided to go to the desert to get a taste of the local 
customs and history. And from that experience there are some pictures which I hope 
will convey more of who Detlef was.
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First, of course, he loved the sheer physical beauty of the place: 

Detlef, Anna, Maxwell and me 

Later, there was a belly dancer who would pick people out of the audience to 
dance with. Can it be entirely a mere co-incidence that of all the people in audience 
her eye settled on….Detlef? She just knew how he would rise to the occasion:
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Detlef the Terpsichorist
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Nor would Detlef (or Anna) miss a chance to try the hookah in the desert: 

Detlef the Experimentalist 

But most memorably, Detlef positively relished the chance to really immerse 
himself in the experience of being in the Empty Quarter. The hallmark of his approach 
to foundational questions in physics is asking “What it would be like if…..?”. And 
there was no end of other contexts in which he would immerse himself in such 
questions…..
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Vishnya, Detlef and Anna 

The sense of playfulness—of joy in the variety and richness and perhaps absurdity 
of life—lies at the center of who Detlef was. That, and his boundless love and affection 
for his family, his friends, his colleagues and his students. 

A picture, they say, is worth a thousand words. I hope that this little account, and 
moreso the pictures, are able to get across at least a small sense of who Detlef was 
for those who did not know him, and recall him more vividly to mind for those who 
did. A few more:
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In the Desert
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Detlef with his Thoughts
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The Detlef Dürr Room, John Bell Institute, Hvar, Croatia



Foundations of Quantum Mechanics



Why Bohm and Only Bohm? 

Jean Bricmont 

Particles move (Detlef’s answer to a famous mathematical 
physicist with no interest in foundations of QM who was asking 
him what Bohm’s theory was all about “in two words”.) 

Abstract It is often claimed that there are three “realist” versions of quantum 
mechanics: the de Broglie–Bohm theory or Bohmian mechanics, the spontaneous 
collapse theories and the many worlds interpretation. We will explain why the two 
latter proposals suffer from serious defects coming from their ontology (or lack 
thereof) and that the many worlds interpretation is unable to account for the statistics 
encoded in the Born rule. The de Broglie–Bohm theory, on the other hand, has no 
problem of ontology and accounts naturally for the Born rule. 

1 A Misleading Problem: The Measurement One 

The measurement problem is well known: at the end of an experiment where one 
measures the property of a particle that can take two values, the wave function (or 
quantum state) of the measuring device, or of the cat if we couple the device to the 
cat through a poison capsule, is (leaving aside normalization factors): 

. ψcat alive + ψcat dead.

And that cannot be a complete description of the cat, which is obviously either 
alive or dead but not both! 

The way out of this problem from the point of view of ordinary quantum mechanics 
is to introduce the collapse postulate: when one looks at the cat, one sees whether 
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she is alive or dead and, depending on what one sees, one reduces the wave function 
of the cat (and of the particle that was measured and is thus coupled to the state of 
the cat) to either .ψcat alive or .ψcat dead. 

Since this is a deus ex machina from the point of view of the linear Schrödinger 
evolution, justifying it is often viewed as the main problem in foundations of quantum 
mechanics. 

However there is a deeper problem: neither.ψcat alive nor.ψcat dead are cats: they 
are functions defined on a high dimensional space.R

3N while cats are located in .R
3. 

And it is not clear what it means to say that.ψcat alive or.ψcat dead are descriptions 
of cats, let alone “complete descriptions” of them. 1

What most people do is to mentally identify cats and wave functions of cats, which 
is illegitimate. So, the real problem is the meaning or the ontology one: what does 
the wave function mean outside of laboratories, and what does it say about what the 
world is made of? 

2 An Intuitive Solution That Does Not Work 

A simple and a priori attractive solution to this problem is the naïve statistical inter-
pretation of quantum mechanics (and that is probably what is in the back of the 
minds of most of the “no worry about quantum mechanics” physicists): particles do 
have properties such as position, velocity, spin etc., but we cannot know or control 
them-we have only access to their wave function. 

That object gives the statistical distribution of the values of those quantities 
(through the Born rule) over sets of particles having the same wave function. And, 
when we perform a measurement of a property of a given particle, we learn what 
that value is for that particle. 

In that interpretation, the reduction of the wave function is no problem; we simply 
adjust our probabilities when we learn something new about the system. 

And, if that worked, there would indeed be no reason to worry about the meaning 
of the wave function and we would have a decent meaning of that function outside of 
measurements. However, it cannot work, because of well-established theorems due 
to Bell [ 5] and to Kochen and Specker [ 25], but that unfortunately are not widely 
known among physicists. 

Those theorems show that, if we assume that there exists a map . v that assigns 
a value to each observable .A corresponding to various properties that are simulta-
neously measurable according to ordinary quantum mechanics and that agrees with 
minimal quantum mechanical predictions concerning such observables, then one can 
deduce a contradiction. 2

These theorems are called the “no hidden variables theorems”.

1 This idea is emphasized by Tumulka [ 34, Sect. 5.1].  
2 See Mermin [ 28] for pedagogical proofs and [ 11, 12] for more details. 
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Obviously, there cannot be a statistical distribution of maps that do not exist. In 
other words, what we call the statistical interpretation (individual quantum systems 
do have definite properties but we are only able to know their statistical distributions) 
does not work. 

Note in passing that the ideas behind these no hidden variables theorems can be 
used to rule out the “decoherent histories” approach of Gell-Mann, Hartle, Griffiths 
and Omnès [ 17, 24, 31]. 

Indeed, as noticed by Goldstein [ 21] and Bassi and Ghirardi [ 4], this approach 
amounts to assigning simultaneous values to pairs of commuting observables; but if 
a series of such pairs is suitably chosen, a contradiction follows. 

So, let us look for non obvious solutions. 

3 Spontaneous Collapse Theories 

These theories are modified versions of quantum mechanics, the first of which was 
introduced by Ghirardi, Rimini, and Weber [ 18] in which wave functions sponta-
neously collapse. 3

To be precise, in that model, the wave function evolves according to the 
Schrödinger equation most of the time, but there is a set of spacetime points . (yi , ti )
chosen at random, such that the wave function .ψ(x1, . . . , xN , t) for a system of . N
particles is multiplied at the chosen times. ti by a Gaussian function in the variable. xk
(. k chosen uniformly among.1, . . . , N ), centered in space at the chosen space points 
. yi . 

The probability distribution of these random points is determined by the wave 
function of the system under consideration at the times when they occur, and is given 
by the familiar.|ψ|2 distribution. This ensures that the predictions of the GRW theory 
will (almost) coincide with the usual ones. 

The above-mentioned multiplication factors localize the wave function in space, 
and, for a system of many particles in a superposed state, effectively collapse the 
wave function onto one of the terms. Now, the trick is to choose the parameters of 
the theory so that spontaneous collapses are rare enough for a single or for a few 
particles in order to ensure that they do not lead to detectable deviations from the 
quantum predictions, but are frequent enough to ensure that a system composed of a 
large number of particles, say.N = 1023, will not stay in a superposed wave function 
for more than a split second. 

Spontaneous collapse theories are not the same as ordinary quantum mechanics, 
since they lead to predictions that differ from the usual ones, even for systems made 
of a small number of particles. But the parameters of the theory are simply adjusted 
so as to avoid being refuted by present experiments, which is not exactly an appealing 
move.

3 For reviews and further discussions of those theories, see Ghirardi [ 20], Ghirardi et al. [ 19], Allori 
et al. [ 2], Goldstein et al. [ 22]. 
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Moreover there is the problem of making sense of a pure wave function ontology 
(even when the latter collapses, since the collapsed wave function is still just a 
function defined on a high-dimensional space). 

Two solutions have been proposed to give a meaning to the GRW theory beyond 
the pure wave function ontology: the matter density ontology often denoted GRWm 
[ 2, 19], and the flash ontology denoted GRWf [ 6]. 

The matter density ontology associates a continuous matter density to the wave 
function of a system of .N particles. For each .x ∈ R

3, and .t ∈ R, one defines: 

.m(x, t) =
N∑

i=1

mi

∫

R3N
δ(x − xi )|ψ(x1, . . . , xN , t)|2dx1 . . . dxN , (1) 

where.ψ(x1, . . . , xN , t) is the usual wave function of the system at time. t . This equa-
tion makes a connection between the wave function defined on the high-dimensional 
configuration space and an object, the matter density, existing in our familiar space 
.R

3. 
In our three-dimensional world, there is just a continuous density of mass: no 

structure, no atoms, no molecules, etc., just an amount of “stuff”, with high density 
in some places and low density elsewhere. 

In the flash ontology, one has a world made only of spacetime points at the center 
of the Gaussian multipliers of the wave function that collapse it. No particles, no 
fields, nothing at all, except a “galaxy” of spacetime points, called “flashes”. 

Let us note that, if the God of the physicists was trying not to be malicious and 
if either the matter density or the flash ontologies are true, then He failed badly: 
indeed, it means that we were wrong all along when we “discovered” atoms, nuclei, 
electrons, etc., and that we are lying to schoolchildren when we tell them that matter 
is mostly void with a few pieces of matter (the atoms) here and there. Indeed, in the 
matter density ontology, matter is continuous after all, with higher and lower density 
in some places, and we have simply been fooled by this modified version of quantum 
mechanics into thinking that it is not. 

On the other hand, if the flash ontology is true, then we have been fooled into 
thinking that there exists something most of the time (like atoms): if we take the 
visible universe since the Big Bang, it has contained only finitely many flashes. 
Since the flashes are all there is in that ontology, this means that, most of the time, 
the universe is just empty. 

Of course, even if those ontologies are weird, we might be forced to accept one of 
them (after all the existence of atoms in empty space is also counterintuitive), if there 
were independent reasons for doing so, like a greater explanatory power or greater 
empirical adequacy. 

But, and this is the most important point, empirical adequacy of any spontaneous 
collapse theory would mean that ordinary quantum mechanics is empirically wrong, 
since the predictions of both theories differ, at least in principle. So, if one found that 
a prediction of a spontaneous collapse theory is right, when it differs from ordinary 
quantum mechanics, it would be a major revolution in physics and we might be forced
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Fig. 1 Einstein’s boxes. Reproduced with permission from Norsen [ 29]. Copyright 2005 American 
Association of Physics Teachers 

to worry about those weird ontologies. But this hasn’t happened yet and I would 
suggest not to worry about what to do after the revolution before that revolution has 
occurred. 

To illustrate how odd the continuous matter and the flash ontologies are, compared 
to the particle ontology of the de Broglie–Bohm theory (to be discussed in Sect. 5), 
consider what happens, in those ontologies, with the thought experiment of Einstein’s 
boxes: imagine a box containing just one particle that is cut in two parts; one part is 
sent to New York, the other to Tokyo [ 29], [ 26, Chap. 10]. 

The wave function of the particle is a superposition of a wave function located 
in box .B1 .+ a wave function located in box .B2. In ordinary quantum mechanics, 
when Alice in New York opens her half-box and sees the particle, the wave function 
collapses on the part of the wave function located in New York and, if she doesn’t 
see it, the wave function collapses on the part located in Tokyo (Fig. 1). 

In the de Broglie–Bohm theory, nothing surprising happens: the particle is in one 
of the half-boxes all along and is found where it is. 

But in the GRWm theory, there is one-half of the matter density of a single particle 
in each half-box. When Alice couples her half-box with a detector of particles, the 
evolution of the wave function of the particle is coupled with a macroscopic object 
and many collapses occur quite rapidly, so that the matter density suddenly jumps 
from being one-half of the matter density of a single particle in each half-box to 
being the full matter density of a particle in that half-box and nothing in the other. 

There is a nonlocal transfer of matter in the GRWm theory, while there is no such 
thing in the de Broglie–Bohm theory, and not even anything nonlocal when one deals 
with only one particle. 

In the GRWf theory, there is simply nothing in either half-box, just a wave function 
traveling so to speak with the half-boxes. When Alice couples her half-box with
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a detector of particles, the wave function of the particle becomes coupled with a 
macroscopic object, and there is suddenly a “galaxy of flashes” appearing (randomly) 
in that detector, either detecting the particle or not; we interpret the first possibility 
as meaning that the particle is in that half-box and the second one as meaning that 
the particle is in the other half-box. 

Putting aside the weirdness of the ontologies, the spontaneous collapse theories are 
more nonlocal than the EPR-Bell result implies, since the latter concerns nonlocality 
for systems with at least two particles. 

Here we have nonlocal effects or actions at a distance (Alice affects the physical 
situation in Tokyo by acting in New York) even for one particle! 

In summary: 

• Spontaneous collapse theories have unnatural ontologies. 
• They are very ad hoc: parameters are chosen so as to avoid refutation and not on 
the basis of any evidence. 4

• They can only be true if quantum mechanics itself is false. 
• They are more nonlocal than they have to be. 

4 The Many-Worlds Interpretation 

This interpretation postulates that, when the proverbial cat (or any other macroscopic 
device) finds itself in a superposed state, then, instead of undergoing a collapse by 
fiat as in ordinary quantum mechanics, both terms simply continue to exist. But how 
can that be possible? We always see the cat alive or dead but not both! The short 
answer is that they both exist, but in different “worlds”. 

Hence, whenever an experiment leads to a macroscopic superposition, the world 
splits into two or more worlds, depending on the number of distinct macroscopic 
states produced by that experiment, one for each possible result. 

Why do I always perceive only one of the results? It is simple: I, meaning my 
body, my brain (and thus also my consciousness) becomes entangled with the states 
of the cat, so there are two or more copies of me also, one seeing the dead cat in 
one world, another seeing the live cat in another world. And that, of course, is also 
true for everything else: every molecule in the entire world becomes copied twice 
(maybe not instantaneously, but that is another question). 

In his original paper [ 16], Everett stressed that “all elements of a superposition 
are ‘actual’, none any more ‘real’ than the rest.” Everett felt obliged to write this 
because “some correspondents” had written to him saying that, since we experience 
only one element of a superposition, we have only to assume the existence of that

4 Moreover, recent results seem to provide evidence refuting spontaneous collapse the-
ories: https://www.quantamagazine.org/physics-experiments-spell-doom-for-quantum-collapse-
theory-20221020/. 
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unique element. This shows that some early readers of Everett were already baffled 
by the radical nature of the “many-worlds” proposal. 

Putting aside the weirdness of this multiplication of “worlds”, one should ask 
whether the many worlds scheme is coherent. Consider the Born rule. Suppose that 
the probabilities of having the cat alive or dead, as a result of an experiment, are 
.( 12 ,

1
2 ). And suppose that I decide to repeat the same experiment successively many 

times, with different particles (and cats) but all having the same initial wave function. 
After one experiment, there are two worlds, one with a dead cat and a copy of me 

seeing a dead cat and one with a live cat and a copy of me seeing a live cat. Since 
both copies of me are in the same state of mind as I was before the first experiment 
(after all, both copies are just copies of me!), each of them repeats that experiment. 

Then, we have four worlds, one with two consecutive dead cats, one with two 
consecutive live cats and two with one dead cat and one live cat. “I” (by that I mean 
each copy of me in each of those four worlds) repeat the experiment again: we have 
now eight worlds, with one “history” of worlds with three dead cats, one history of 
worlds with three live cats, three histories of worlds with one live cats and two dead 
ones, three histories of worlds with one dead cat and two live ones. 

Now, continue repeating that experiment: for every possible sequence of out-
comes, there will be some of my “descendants” (i.e. copies of me, that exist in all the 
future worlds) that will see it. There will be a sequence of worlds in which the cats 
are always alive and another sequence where they are always dead. There are also 
many sequences of worlds where the cats are alive one quarter of the time and dead 
three quarters of the time, and that is true for any other statistics different from.( 12 ,

1
2 ). 

So that we can be certain that many of our descendants will not observe Born’s rule 
in their worlds. 

But one could argue, on the basis of the law of large numbers, that, at least in the 
vast majority of worlds, the Born rule will be obeyed, since, in the vast majority of 
worlds, the frequencies of dead and live cats will be close to .( 12 ,

1
2 ). 

But what happens if, instead of being.( 12 ,
1
2 ), the probabilities predicted by quan-

tum mechanics are, say, .( 34 ,
1
4 )? We will still have two worlds coming out of each 

experiment, because these experiments have two possible outcomes. So, the structure 
of the multiplication of worlds is exactly the same as when the predicted probabilities 
were .( 12 ,

1
2 ). 

But now, if one applies the law of large numbers as above, one arrives at the 
conclusion that, in the vast majority of worlds, the quantum predictions will not be 
observed, since our descendants will still see the cats alive in approximately. 

1
2 of the 

worlds, and the cats dead also in approximately. 
1
2 of the worlds, instead of the. ( 34 ,

1
4 )

frequencies predicted by the Born rule. 
This is a serious problem for the many-worlds interpretation. There have been 

many proposals to solve this problem and it would be too long and too technical to 
discuss all of them here. 

Some authors have argued that one should count the worlds differently, by weight-
ing them with the coefficients that appear in the Born rule [ 13, 16]. 

However, this does not answer the objection above.
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Another “solution” is to give to low probability worlds (according to Born’s rule) 
a lower degree of existence or of reality, but it is unclear what it means to live in a 
low reality world since we cannot compare that life with one in a world with a high 
degree of existence: indeed, different worlds don’t interact with each other. 

And this “solution” is quite contrary to Everett’s original idea that “all elements 
of a superposition are ‘actual’, none any more ‘real’ than the rest”. 

Moreover, one also has the problem of ontology: what proliferates are wave func-
tions, but the latter are mathematical objects not “worlds” in space-time. 

One solution is to associate to the wave function the continuous matter density 
(1), as in the spontaneous collapse theories, see [ 3]. 

However, this does not solve the problem of the probabilities discussed above. 
Coming back to our example with two possible outcomes, one having probability . 

3
4

and the other . 14 , the density of matter will be different in the world where one sees 
the outcome having probability . 

3
4 from the one where one sees the outcome having 

probability . 
1
4 . 

But what difference does it make? In which way does having a smaller or larger 
matter density affect my states of mind ? And if it does not, we are back to the problem 
that, if one repeats many times the experiment whose outcomes have probabilities 
.( 34 ,

1
4 ), most of my descendants (some of course having a small matter density) will 

see massive violations of the Born rule. 

5 The de Broglie–Bohm Theory 

Nature and Nature’s Laws lay hid in Copenhagen: God said, “Let de Broglie–Bohm 
be!” and all was light. 5

In the de Broglie–Bohm theory, the complete state of a system with .N variables 
at time. t is specified by.

(
ψ(t),X(t)

)
, where.ψ(t) is the usual wave function,. ψ(t) =

ψ(x1, . . . , xN , t) and .X(t) = (
X1(t), . . . ,XN (t)

) ∈ R
3N are the actual positions of 

the particles. 6

The theory assumes that the particles have positions at all times, and therefore 
trajectories, independently of whether one measures them or not. 

The evolution of the state (.ψ,X) is given by two laws: 

1. .ψ obeys the usual Schrödinger equation at all times. The wave function of an 
isolated system never collapses. 

2. The evolution of the positions of the particles is guided by the wave function at 
time . t .

5 Adapted from Alexander Pope’s epitaph about Newton. 
6 Our presentation of the de Broglie–Bohm theory follows the one of Bell [ 7] and of Dürr, Goldstein 
and Zanghì [ 14] rather than the one of Bohm [ 8]. Many expositions of the de Broglie–Bohm theory 
are available, see, e.g., Albert [ 1] or Tumulka [ 33] for elementary introductions and, e.g. Bohm and 
Hiley [ 9], Bricmont ([ 10], Dürr and Teufel [ 15], Goldstein [ 23], Maudlin [ 27], Norsen [ 30] and  
Towler [ 32] for more advanced ones. 
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Fig. 2 An idealized spin measurement 

Moreover, since the system is deterministic, one has to make statistical assump-
tions on the initial conditions of the system (as one does in chaos theory) in order to 
obtain statistical predictions. 

These are the fairly natural “quantum equilibrium” ones: .ρ = |ψ |2. 
Let me list the main qualities of this theory: 

• Under the quantum equilibrium assumptions on initial conditions, one recovers 
the usual predictions of quantum mechanics. 

• The ontology of the theory is the same as in classical physics and is thus unproblem-
atic, unlike the ontologies of the spontaneous collapse and many worlds theories. 7

It can be summarized by Detlef’s quote mentioned at the beginning of this article: 
“particles move”. And while in classical physics, that motion is guided by gravi-
tational or electromagnetic fields, here it is guided by the wave function, a more 
abstract notion but a perfectly well-defined one. 

• The de Broglie–Bohm theory gives a clear physical meaning to the wave function, 
which is no longer simply a “probability wave” (whatever that means exactly) but 
a physical quantity determining the motion of particles, similar in some ways to 
classical Hamiltonians. 

• This theory explains the “contextuality” of measurements. 
Consider an idealized spin measurement: if the wave function has a symmetry 
along the . z axis and if the particle starts above the line of symmetry .z = 0, it will 
be deflected upwards, meaning that its spin is “up”, see Fig. 2.

7 One might replace particle’s positions by field configurations in quantum field theories, but that 
goes beyond the scope of this article. 
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But if we reverse the orientation of the gradient of the magnetic field and do the 
same “measurement” with the same initial wave function and the same initial 
position of the particle, the particle will still be deflected upwards, but that means 
now that its spin is “down”, see Fig. 3. 
So, “measurements” don’t measure intrinsic properties of the system (except for 
position measurements). 
Measurements are interactions between an apparatus and a system. 
This was stated intuitively by Bohr, but here it follows from the equations of the 
theory. 

• The de Broglie–Bohm theory is a statistical theory, but, unlike the naïve one men-
tioned in the Sect. 2, it is consistent and is not refuted by the no hidden variables 
theorems of Bell and Kochen and Specker, because it does not introduce the “hid-
den variables” that are forbidden by these theorems, like spin values preexisting 
to their “measurement”. 
A subtle but crucial point: the de Broglie–Bohm theory is a hidden variable theory 
that is not refuted by the no hidden variables theorems. 
Often missed (to put it mildly)! 

• One can use this contextuality of measurements to illustrate how nonlocality works 
in the de Broglie–Bohm theory. 
If the result of a “measurement” on one side of an EPR-Bell experiment with an 
entangled pair of particles depends on how the orientation of the gradient of the 
field is oriented on that side, then changing that orientation will affect the behavior 
of the particle on the other side: since the spins of both particles have to be anti-
correlated, if changing that orientation on one side changes the “value” of the spin 

Fig. 3 An idealized spin measurement with the orientation of the gradient of the magnetic field 
reversed with respect to the one in Fig. 2
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on that side from up to down, then the spin on the other side must go from down 
to up. But that means that the trajectory followed by the particle on the other side 
must also change. 
This makes nonlocality explicit in the de Broglie–Bohm theory, which is a (big) 
quality rather than a defect since Bell has shown that nonlocality is a property of 
the world and not only of the quantum theory. 

6 Conclusions 

While we have left out certain questions such as quantum field theory and relativity 
(that can be dealt with within de Broglie–Bohm theory but it would be too long to 
discuss that), we want to stress certain aspects of that theory: 

The de Broglie–Bohm theory is not a different theory from ordinary quantum 
mechanics. It is the rational completion of ordinary quantum mechanics. The latter is 
just the algorithm allowing us to predict “results of measurements” and that algorithm 
can be derived from the de Broglie–Bohm theory. 

Most physicists either don’t care about the meaning of their most fundamental 
theory (“shut up and calculate”) or adhere (in the back of their mind) to the naïve 
statistical interpretation. 

Most physicists won’t be persuaded by spontaneous collapse theories (too ad hoc) 
unless some future experiments contradict ordinary quantum predictions. 

If that happens, they are likely to look for an entirely different theory (nonlinear?) 
An important minority of physicists “like” the Many-Worlds interpretation. 
But I believe that this is because they haven’t thought it through. 
Apart from its fantastic nature, one has to provide it with an ontology and solve 

the problem of the statistical predictions (unsolved since 1957). 
So, that leaves us with the de Broglie–Bohm theory as the only option. I believe it 

is gaining popularity, due in part to the work of Detlef Dürr, although it is still very 
marginal. 

For it to become more popular, one needs: 

• That physicists start to worry about the meaning of their most fundamental theory. 
• That they be better aware of the nature of the problem: not the measurement one, 
but the meaning or ontology. And that they also become aware of the no hidden 
variable theorems that refute their naïve statistical interpretation. 

But that is a long way to go! 

Acknowledgements I thank Sheldon Goldstein and Tim Maudlin for many discussions on 
Bohmian mechanics and the many-worlds theories.
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The Prodigy That Time Forgot: The 
Incredible and Untold Story of John von 
Newton 

Craig Callender 

Abstract By developing an absurd counterfactual history, I show that many objec-
tions launched against Bohmian mechanics could also have been made against New-
tonian mechanics. This paper introduces readers to Koopman–von Neumann dynam-
ics, an operator-based Hilbert space representation of classical statistical mechanics. 
Lessons for quantum foundations are drawn by replaying the battles between advo-
cates of standard quantum theory and Bohmian mechanics in a fictional classical 
history. 

Born in the year 1603 in a small hamlet in the Kingdom of Hungary, John von Newton 
was an extraordinary polymath. It was said that when he was only six years old that he 
could divide two nine digit numbers in his head while conversing fluently in Ancient 
Greek. Widely acclaimed as the last mathematician who was equally at home in 
pure algebra and applied alchemy, his contributions in the Wallachian Project of the 
Thirty Years War led to the development of the cannon known as the Orban II. While 
some may know him for his development of mechanical automata, “it’s-not-a-game” 
theory, and numerical astrology, his unparalleled advances in physics were what made 
him famous amongst contemporaries. However, these advances were controversial 
and quickly forgotten. This essay is a recounting of the astonishing breakthroughs 
made by John von Newton and their equally extraordinary reception. 

Due to the plague in 1620, von Newton (Fig. 1) was sent home and had to study 
remotely. Because lessons were wrapped in straw, it was called learning by Broom. 
While many students suffered greatly from Broom courses and the resulting social 
and intellectual isolation, the circumstances had the opposite effect on a prodigy 
like von Newton. Finally separated from teachers and students of inferior talent, he 
embarked on what can only be described as the most remarkable set of intellectual 
leaps to ever occur in world history. In short, in six months von Newton discovered an 
empirically adequate (then) new physics, a theory equivalent to classical statistical 
mechanics, and all of the mathematical innovations necessary to express this theory 
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Fig. 1 John von Newton 

(e.g., calculus, analysis). A month later he represented this theory with an operator 
formalism in a state space we now call Hilbert space. 

This achievement was completed in 1620, yet by the time he died in 1699 this 
massive feat was forgotten. (It is speculated that the tumor that killed him may have 
been due to his work with toxic alchemical materials while developing Orban II.) It 
took until the late 19th and early 20th centuries for science to rediscover what von 
Newton already learned. In what follows I will summarize what he accomplished 
and his fate. 

1 The Classical Schrödinger Equation 

Contemporary writers said that von Newton would often go to bed troubled by a 
problem and wake up with the solution. That is why he kept a quill pen and parchment 
by his bedside. We don’t know what problem he had in mind on the night of Feb 3, 
1620, but the sepia-colored notepad from Feb 4 survives (Fig. 2). On it one can make 
out the faded remains of an equation that takes the following form 

.i
∂Ψ

∂t
= ˆLΨ (1) 

when put in modern terminology. Here .Ψ (ϕ) is a classical wavefunction that is a 
ray in a complex Hilbert space. Unlike in quantum mechanics, its domain is phase 
space.ϕ = (q, p), not configuration space. The generator. L̂ is the Hermitian Louiville 
operator and it evolves the ray through Hilbert space with time. 

Equation (1) wasn’t (re)discovered until the 1930s by Koopman (1931) and a year 
later by von Neumann (1932). Working in the context of ergodic theory, Koopman 
showed that unitary transformations are central to classicla physics. In so doing
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Fig. 2 Some of von Newton’s calculation 

he proved that if a wavefunction .Ψ (ϕ) satisfies (1) then the probability density 
.ρ(ϕ) = |Ψ (ϕ)|2 satisfies the classical Liouville equation .∂tρ = {H, ρ}, where . H
is the classical Hamiltonian of the system. Although this result should be widely 
known, apparently it is not as it has been rediscovered many times, often by very 
prominent physicists, e.g., Berry, Wiener, ’t Hooft. 1

von Newton’s equation obviously bears a great similarity to its more famous 
cousin, the Schrödinger equation of quantum mechanics: .i ∂Ψ

∂t = ĤΨ . Working 
through von Newton’s notebooks, we were astonished to see how “quantum mechan-
ical” his formalism was. He began with four postulates: 

1. The state of the system is represented by a vector.|Ψ > in a complex Hilbert space. 
2. The state space of a composite system is the tensor product of the subsystems’ 

state spaces. 
3. For any observable . A, there is an associated Hermitian operator . Â and eigen-

value problem . Â |A> = a |A>. The eigenvalue . a is understood as representing a 
particular outcome measured in a lab. 

4. The probability of measuring . a is given by .P(a) = |<A| Ψ (t)>|2. von Newton 
called this “Bodor’s Law” . 

von Newton called postulate 4 “Bodor’s Law” in honor of a friend who sold the 
best goat milk in the hamlet. However, the name probably stuck because Bodor was 
renowned for his gambling prowess. von Newton interpreted Bodor’s Law as arising 
due to an instantaneous collapse of the state .|Ψ > into the eigenstate .|A> associated 
with the measured eigenvalue a.

1 See Berry (1992), Chirikov, Izrailev and Shepelyanskii (1988), Della Riccia and Wiene (1966), 
and ’t Hooft (1997). The “classical Schrödinger equation” (1) should not be confused with another 
“classical Schrödinger equation” derived in the 1960’s by Schiller (1962) and  Rosen (1964). This 
later equation defines the wavefunction on configuration space .Ψ (q) whereas (1) applies to a 
wavefunction over phase space. 
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Because there is no uncertainty relation in classical physics, position and momen-
tum have a common set of eigenstates in von Newton’s Hilbert space. As men-
tioned, the eigenkets therefore live in phase space, not configuration space, i.e., 
.|A> = |q, p> = |q> ⊗ |p>. The vectors.|q, p> form a basis of the space. By assuming 
what we would call a “classical commutator”.

[
q̂, p̂

] = 0 rule, von Newton was able 
to derive Eq. (1) from these four postulates (Bondar et al. 2021). Without modern 
mathematical physics at his disposal, unfortunately it took von Newton 250 pages of 
calculation to get this result. Helping ourselves to modern results such as the Ehren-
fest Theorems and Stone’s Theorem, today we can derive (1) very quickly (Wilczek 
2023). Interestingly, recently (Bondar et al. 2012) show that replacing the classical 
commutator with the quantum commutation relations but otherwise retaining the 
same postulates .1 − 4 as above leads to standard quantum mechanics. In 1620 von 
Newton was only one tiny adjustment from discovering quantum theory! 

In any case, the resulting theory is an operator-based probabilistic theory that 
makes predictions about the values of measurements. The generator of motion 
evolves the state in a complex Hilbert space between measurements via (1) just  
as the Hamiltonian does in the Schrödinger equation. The norm.<Ψ (t)|Ψ (t)> is con-
served by the time evolution, which helps justify Bodor’s Rule. And one can calculate 
expectation values of observables and even easily switch vector bases as one does 
in quantum mechanics. See Gozzi and Mauro (2004), Jordan and Sudarshan (1961), 
Mauro (2002), and Bondar et al. (2012) for the state of the art on Koopman–von 
Neumann dynamics. 

As much as it looks like quantum mechanics, however, von Newton’s theory was 
purely classical. The wavefunction lives in phase space, not configuration space. And 
the probabilities are the ones predicted by classical statistical mechanics, not quantum 
mechanics. The probabilities predicted by Bodor’s Rule correspond precisely to 
solutions of classical statistical mechanics, i.e., the probability densities given by 
the classical Liouville equation. In a two slit experiment (see Mauro 2002 for a 
clear analysis) the phases of the classical waves cancel out and the total probability 
distribution on the screen is the sum of the probability distributions for each slit, 
reproducing what we expect classically. The theory was empirically adequate to 
then known empirical phenomena, which at this time consisted mostly of cannon 
ball trajectories. 

2 Reception 

When the plague ended, von Newton promoted his theory at various august academic 
bodies throughout Europe. With such a breathtaking set of advances, he expected to 
be lauded as having produced a great triumph of reason. “If I have seen further,” he 
said, “it is because I stand as a giant.” Instead the response was somewhat chilly. 
Scientists were impressed, but they felt uneasy about von Newton’s product. His peers 
wanted to understand the nature of physical reality. Rene Descartes had posited a 
world consisting of corpuscles organized in complicated vortexes, but what was von
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Newton offering? A kind of operationalist “black box” quality pervaded his theory, 
as his operator formalism provided only predictions for various observables. 

At the University of Zurich he met a physicist named Albert Mechanstein, who 
would prove to be a real thorn in von Newton’s side. Mechanstein was a disciple 
of the philosophy of Descartes. He said to von Newton that it’s all well and good 
that you’ve accurately predicted the probability distribution of a bunch of cannon 
balls hitting a castle wall and of arrows entering sniper windows, but you don’t say 
anything about what constitutes these balls, arrows, and walls, nor the reason why 
they behave the way they do. von Newton replied, 

Since a good theory must be based on directly observable magnitudes, I thought it more 
fitting to restrict myself to these.  

As von Newton later recounted, Mechanstein was stunned: 

But you don’t seriously believe that none but observable magnitudes must go into a physical 
theory?...It is the theory which decides what we can observe. 

von Newton was equally upset, reporting that he was “completely taken aback by 
[Mechanstein]’s attitude.” 2 He felt that it is “wrong to think that the task of physics 
is to find out how nature is”; rather, he thought, “Physics concerns what we can say 
about nature.” 3

As he travelled von Newton heard more objections. Pressure was put on the rela-
tionship between Bodor’s Law and Eq. (1). von Newton held that we have “two 
fundamentally different types of interventions which can occur in a system; when an 
object is undisturbed, Eq. (1) “describes how the system changes continuously and 
causally in the course of time” but once measurement happens something “discon-
tinuous, non-causal, and instantaneous” occurs, i.e., the collapse via Bodor’s Law to 
an eigenstate. 4 The dynamics is deterministic when no measurement is happening, 
but indeterministic when it is. 

This response, however, only focused attention on the role of measurement in 
von Newton’s theory. Like standard quantum theory, von Newton’s theory has a 
measurement problem. 5 Equation (1) is linear and allows superpositions of macro-
scopic outcomes; measurement collapses these superpositions to an eigenstate of 

2 Heisenberg recounting his discussions with Einstein, quoted in Becker (2018), 29. 
3 Bohr on physics after the Solvay conference, quoted in Becker (2018), 49. 
4 von Neumann describing his two dynamics, quoted in Becker (2018), 67. 
5 The two measurement problems are slightly different and interesting to consider. As Mauro 
(2002) emphasizes, the fundamental difference to consider. As Mauro (2002) emphasizes, the 
fundamental difference between Koopman–von Neumann theory and ordinary quantum theory is 
that in the former but not the latter the phase interacts with the modulus. Contrast a Madelung 
decomposition of Eq. (1) with the Schrödinger equation. Write the quantum wavefunction as 
.ψ(x) = A(x)exp[i/ℏS(x)]and substitute it into the Schrödinger equation and then separate real 
and imaginary parts. Then as is well known one obtains 

. 
∂S

∂t
+ 1

2m

(
∂S

∂x

)2

+ V = ℏ
2

2mA

∂2A

∂x2

.m
∂A

∂t
+ ∂A

∂x

∂S

∂x
+ A

2

∂2S

∂x2
= 0
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the relevant observable. What interaction qualifies as a measurement, Mechanstein 
asked? 

von Newton’s acolytes differed on this question. Some said that a measurement 
only occurs when an outcome has been registered by a divine soul. That raised 
the question of who had souls. The Synod of Mâcon had long ago clarified that 
women had souls and Descartes compellingly argued that animals do not. But what 
about pagans and serfs? They certainly looked and acted like they could apply von 
Newton’s theory as well as anyone, but did they have divine souls? And what types 
of souls were necessary? Was having only a vegetative soul sufficient to collapse a 
wavefunction? 

Other acolytes did not use souls but understood measurement as an interaction 
between systems described in different ways. Bohr taught us that measuring devices 
are inherently classical, that the interaction between the classical and the quantum is 
central to explaining measurement. It’s amazing to learn that there was a counterpart 
to this Bohrian position back in von Newton’s day. One of his followers held that 
measuring devices are essentially medieval. What triggers a measurement is the 
interaction of a classical system with a medieval one, e.g., catapult, plough, water 
mill. Opponents felt that “medieval” was too vague to be a fundamental category in 
a physical theory. 

A common theme emerged: scientists of the day didn’t like the fundamental split 
between measurer and measured. Shouldn’t the measurer—be they a stone mason, a 
nobleman, or a scythe—be itself describable in the language of physics? Why must 
there always be this shifty subject/object split in physics? von Newton’s protestations 
that “for all practical purposes” it didn’t matter found few sympathetic ears. 

where one can see that the phase . S is coupled to the modulus . A. Do the same for the classical 
wavefunction.ψ(x) = F(q, p)exp[i/ℏG(q, p)] when inserted into (1). Then we get 

. i
∂F

∂t
= ĤF

. i
∂G

∂t
= ĤG

and no coupling between .F and . G. (Why then introduce phases at all? They become necessary 
if one wants the freedom of basis one gets in Hilbert space; see Mauro 2002.) As a result of this 
decoupling, wavefunctions without phases cannot generate them in their time evolution. Hence the 
measurement problem is a bit different than quantum mechanically. In the language of foundations 
of physics, the classical measurement problem associated with Koopman–von Neumann is like the 
quantum one if decoherence worked perfectly, driving the off-diagnol terms to exactly zero. That 
still leaves a measurement problem, the so-called “and” to “or” problem of Bell (1990) (see also 
Maudlin 1995). On the classical measurement problem, see Chen (2022) (section 5.4), Katagiri 
(2020), and McCoy (2020).
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3 Classical Mechanics Without Obs’rv’rs 

What really put pressure on von Newton’s theory was the remarkable development 
of a mechanistic theory by someone with essentially the same name, Isaac Newton. 
In 1687 Newton published the Philosophiæ Naturalis Principia Mathematica. The  
Principia posited an ontology of corpuscles who always evolve according to the 
same dynamical equation. Cannon balls, cannon ball parts, cannon ball operators, 
and cannon ball victims could all be described at once by Newton’s famous second 
law. There was no subject/object split, no fine discussions of what types of souls 
or medieval devices collapse wavefunctions, or any of that. Positing one basic law 
rather than two, Newton offered what he called a “mechanics without obs’rv’rs.” 

In our age, Newton is famous for offering a physics that unified celestial and 
terrestrial spheres, the heavens and the earth. Back then he was also known for having 
provided a deeper unification of von Newton’s process 1 dynamics (the deterministic 
Eq. 1) with von Newton’s process 2 dynamics (Bodor’s law). He unified the spheres 
.and the two types of dynamics. 

More than that, Newton offered the physical “nut-and-bolt” explanations that 
people didn’t find in von Newton’s physics. In a siege of a castle, one might shoot 
a cannon aimed at a wall many times. Cannon operators noticed a kind of normal 
statistical pattern developing on the wall. Again and again, attack after attack, similar 
probability distributions appeared on castle walls. Why? von Newton’s physics would 
predict these distributions, but they couldn’t answer why they might appear like this. 
It would be a very hard calculation to do, but Newton’s physics at least offered one 
understanding of what must be going on. Small changes in the initial positions and 
velocities of the cannon balls, plus tiny fluctuations in their mass, are to be expected. 
Patterns in these differences are then responsible for why the cannon balls form these 
distributions. 

More generally, going back to Mechanstein’s complaint, the theory “decides” 
what is observable. That is, we can explain what is observable in terms of the posited 
ontology—corpuscles—and laws. We do not begin with observations as primitive, 
but offer explanations for why we observe what we do. These explanations were 
possible because Newton offered an ontology and clear laws, something that von 
Newton rejected. 

When Newtonians ultimately derived von Newton’s theory from their own, that 
was the death knell of the latter’s influence. Suppose we have a swarm of Newtonian 
corpuscles sweeping out continuous trajectories through time. We can think of this 
as a kind of fluid described by a density .ρ(x, p, t). If we insist that its value is non-
negative and real, it can be interpreted as the probability of a particle being at point 
. x at time . t with momentum . p (using measure .

∫
dxdp). It follows from Newtonian 

mechanics that the flow of this fluid is incompressible, which implies that 

.
∂p

∂t
= −ẋ

∂ρ

∂x
− ṗ

∂ρ

∂p
(2)
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holds, which provides a dynamics for . ρ. Equation (1) can be derived from (2) by  
defining a wavefunction .ρ ≡ |Ψ (x, p)|2 and multiplying both sides by . i (Wilczek 
2023). So with Newton one could get all of von Newton’s predictions but also explain 
why we were observing what we do. We could open the black box and see what’s 
going on. 

4 Criticism of Newton 

von Newton and his advocates did not take these provocations lightly. They viciously 
attacked Newton and his physics. One giant defender of von Newton did not deign to 
comment on Newton’s physics directly, but through intermediaries said it was “very 
foolish.” 6 Another very distinguished physicist called it “artificial metaphysics.” 7

Some took an extremely bold position (bold because manifestly false) and held that 
that there was no alternative to von Newton and his interpretation, that von Newton’s 
physics “eminently possesses this character of uniqueness” in it. 8 Mostly inspired 
by an extreme empircist or even positivistic philosophy, these objections fell on deaf 
ears among the Cartesians and Newtonians of the day. 

von Newton even made a political case against Newton. Like Leibniz, he wrote to 
Princess Caroline of Ansbach complaining about Newton’s theory. Leibniz accused 
Newton of positing occult qualities through his non-local gravitational force and 
of requiring God to act as a clockmaker, fixing his product from time to time. von 
Newton picked up on this and also complained that Newton’s clockwork universe 
deprived us of free will whereas his indeterministic theory made room for it. Newton 
was summoned before Parliament’s House for Unpious Activities Committee as a 
result, but he answered the charges so well that no stain was left on his reputation 
and he was ultimately made Master of the Royal Mint. 9

Finding fewer and fewer supporters, von Newton could only find an employment 
with a few of his followers at the University of Copenhagen. There he toiled in 
obscurity until the minstrels only sang of Newton and never the great von Newton. 
In some sense he had the last laugh, however, as his papers left in the gorgeous library 
at the University of Copenhagen were found by a young physicist named Niels Bohr.

6 Bohr on Bohm, cited in Becker (2018), 107. 
7 Pauli on Bohm, cited in Becker (2018), 107. 
8 Rosenfeld (1957), 4–42. 
9 See Cushing (1994) for many objections to Bohm along these lines, especially by Pauli. Cushing 
also details the political attacks on Bohm. 
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5 Lessons from the Rise and Fall of von Newton 

It’s an honor for me to write in a volume dedicated to Detlef Dürr. He filled a room 
with both his warmth and knowledge. It would be impossible for me to quantify how 
much I learned from him and his group. One article that made a special impression 
is “Naive Realism about Operators”, which inspired this paper. “Naive Realism...” 
shows in detail how the entire Hilbert space operator formalism mechanics can be 
derived from natural assumptions and moves from Bohmian mechanics. It argues that 
one should not confuse mathematical operators with physical properties of systems. 
Doing so leads to a fetishization of the quantum operator algebra that becomes an 
even bigger problem than the measurement problem. 

In my absurd counterfactual history, I mimic this situation classically. I imagine 
that a measurement operator formalism arose first and then Newton came along 
with a dynamics for classical “beables” (an always determinate ontology). From this 
dynamics and ontology, one can then derive in detail how the entire Koopman–von 
Neumann Hilbert space operator formalism might arise. In the actual world, we 
had Newton first and Koopman–von Neumann second; and later, standard quantum 
theory first, Bohmian mechanics second (by only two years in the form of de Broglie). 
Should the temporal order of these appearances matter? I don’t think so. Yet it seems 
almost unconscionable to launch the counterparts of the objections directed at Bohm 
in the actual world to Newton. Newtonian mechanics is rightly celebrated as one 
of the great achievements of science. While there are of course differences between 
the cases of Bohm and Newton, many common objections do not rely on these 
differences. 

Since we can deduce the operator formalism of Koopman–von Neumann from 
Newtonian dynamics and had the latter first, we were never tempted to be “naive 
realists” about classical operators. But had things worked out differently, we might 
have been. We’re often better at seeing mistakes in the past than the present, so I 
invented a counterfactual past and transported mistakes across times and worlds. 10

Another lesson of the Koopman–von Neumann theory is that it is important to 
tease apart features of a particular mathematical representation of a theory from the 
theory itself. Features of a representation have a pernicious way of sneaking into 
our interpretation of the theory and how we evaluate it and alternatives. Jennings 
and Leifer (2016) ask “what phenomena of quantum theory are intrinsically non-
classical?” To answer this question they apply a criterion: 

If a phenomenon of quantum physics also occurs within a classical statistical physics setting, 
perhaps with minor additional assumptions that don’t violently clash with our everyday con-
ceptions, then it should not be viewed as an intrinsically quantum mechanical phenomenon. 

They conclude that many “commonly touted phenomena” such as randomness, com-
plementarity, collapse of the wavepacket, the use of wavefunctions and Hilbert space, 
and more, cannot be marks of intrinsically quantum phenomena. I wholeheartedly 
agree. By placing classical statistical mechanics in an operator-based formalism in

10 See Nikolić (2008) for a less incredible counterfactual history toward the same point. 
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Hilbert space, Koopman and von Neumann demonstrably show that many of these 
representational features are not inherently quantum mechanical. Not only is classi-
cal physics expressible in a similar formalism, but it can also employ collapses of 
the wavefunction, Born’s Rule, a fundamental subject/object split, and two types of 
dynamics. The operator measurement formalism seems to almost invite an interpre-
tation with an instrumentalist flavor. 

If one is a naive realist about classical observables, Koopman–von Neumann even 
has a measurement problem. But that is the result of a choice, a bad choice. Classical 
statistical mechanics does not have a measurement problem. Neither does quantum 
mechanics if one adopts a decent interpretation, e.g., the Bohmian mechanics that 
Detlef prized. The measurement problem in Koopman–von Neumann makes this 
point plain. There it results not from the peculiarities of the classical world but from 
the peculiarities of “quantum philosophy” applied to the classical world. As Detlef 
saw much better than most, the same is true in quantum physics. That is the ultimate 
lesson of the tragedy of the great and forgotten John von Newton, the naive realist 
about classical observables. 

Acknowledgements Thanks to Jacob Barandes, Eddy Chen, Casey McCoy, the audience at the 
University of Lisbon’s Open Problems in Philosophy of Physics conference, and the UC San Diego 
philosophy of physics reading group for helpful comments. Details of von Newton’s life were drawn 
from von Neumann’s biography. Figures 1 and 2 were generated with the assistance of DALL. ·E 2.  
Figure 1 is a blend of the faces of John von Neumann and Isaac Newton. 
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Bohmian Collapse 

Isaac Wilhelm 

Abstract I present and explain the Bohmian account of collapse in quantum 
mechanics. 

1 Introduction 

This paper is an explication of an idea due to Detlef Dürr and collaborators. The 
idea is striking: Bohmian mechanics has the formal and physical resources to fully 
account for the phenomenon of quantum collapse. This account is perhaps not as 
well understood, in philosophical circles at least, as it deserves to be. So my goal, in 
what follows, is to present a simple yet rigorous version of this account; hopefully, 
thereby, increasing its audience of appreciators. 

But before doing so, it is worth making a brief remark about the passing of Detlef 
Dürr. There is joy, and also pain, in reading through this volume. The joy comes from 
seeing how many lives Detlef touched, and the community which formed around him. 
The pain comes from the reminder of his loss. 

There is some comfort to be had, however, in Detlef’s own research. For Bohmian 
mechanics suggests that when someone dies, their particles disperse according to 
a determined, coordinated dance, one in which—by virtue of nonlocality—we all 
participate. Just as clouds, gently floating across the sky, are carried towards the 
distant horizon by their particulate motions, so we are carried along by our composite 
particles, making tracks towards a horizon where everything familiar vanishes; a 
vanishing point through which Detlef has already passed, and through which all else 
passes too, and lucky for us that on the way there, our trajectories briefly crossed his. 
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2 Basics  

In this section, I present the basics of Bohmian mechanics. 1 Roughly put, according 
to the version of Bohmian mechanics on which I focus here, the universe consists of 
some particles and a universal wave function. The resources used to describe all this, 
it turns out, can also be used to describe subsystems of the universe: in particular, 
those resources can be used to define the wave functions that subsystems have. 

To start, let .N be the number of particles in the universe. For each . i from. 1 to . N , 
let .qi be a variable which ranges over the candidate positions of the . i th particle. Let 
.q = (q1, . . . ,qN ) be a variable which ranges over the candidate configurations of all 
particles in the universe. For each time. t , let .ψt (q) be the universal wave function at 
that time. In addition, for each . i , let .Qi (t) be the actual position of particle . i at time 
. t . Let  .Q(t) = (

Q1(t), . . . ,QN (t)
)
denote the actual configuration, at time . t , of the  

particles in the universe. 
There is an important difference between the symbols ‘. q’ and ‘.Q(t)’. The former 

is a generic variable which ranges over all candidate configurations of the universe’s 
particles. The latter is, for any given time . t , a constant which denotes a single con-
figuration of the particles in the universe: the configuration which the particles, at 
. t , actually have. So in Bohmian mechanics, . q acts as a generic symbol which can 
be used to specify the domain of all possible particle configurations to which the 
universal wave function .ψt assigns a complex number. .Q(t), however, specifies a 
specific particle configuration: the actual one at time . t . 

Bohmian mechanics posits two equations: one describes the evolution of the 
universal wave function.ψ(t, q) = ψt (q), while the other describes the evolution of 
particle configurations. The evolution of the universal wave function is given by the 
Schrödinger equation. 

.iℏ
∂ψ

∂t
= Hψ (1) 

The evolution of particle configurations is given by the guidance equation. 

.
dQi

dt
= ℏ

mi
Im

ψ∗∇iψ

ψ∗ψ
(Q1, . . . ,Qn) i = 1, . . . , N (2) 

In (2), each .mi represents the mass of particle . i . Together, (1) and (2) describe how 
the entire universe evolves. 

In addition to describing the behavior of the universe as a whole, Bohmian mechan-
ics also provides the resources needed to describe subsystems. A ‘subsystem’ is 
simply a collection of particles. The ‘environment’ of a subsystem consists of all 
particles in the universe which are not in that subsystem. 

Subsystems and their environments can be represented by variables and constants, 
in the following way. Take any subsystem of .M particles, where .M < N . Index all

1 For an early formulation of Bohmian mechanics, see (Bohm 1952a, b). 
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the particles in the universe so that particle . 1, particle . 2, .. . . , and particle . M , are  
all and only the particles in this subsystem. For each . i from . 1 to . M , let  .xi = qi : 
so each .xi is a variable which ranges over the candidate positions of particle . i in 
the subsystem. Let .x = (x1, . . . , xM) be a variable which ranges over the candidate 
configurations of the subsystem’s particles. Similarly, for each . i from .M + 1 to . N , 
let .yi = qi . So each .yi is a variable which ranges over the candidate positions of 
particle . i in the environment. Let .y = (yM+1, . . . , yN ) be a variable which ranges 
over the candidate configurations of the environment’s particles. In addition, for 
each time. t and each. i from. 1 to. M , let .Xi (t) = Qi (t): so for each time. t , each. Xi (t)
is a constant which denotes the actual position of particle . i in the subsystem. For 
each time . t , let  .X (t) = (

X1(t), . . . ,XM(t)
)
be a constant which denotes the actual 

configuration, at . t , of the subsystem as a whole. Finally, for each time . t and each . i
from.M + 1 to. N , let.Yi (t) = Qi (t): so for each time. t , each.Yi (t) is a constant which 
denotes the actual position of particle . i in the environment. And for each time . t , let  
.Y (t) = (

YM+1(t), . . . ,YN (t)
)
be a constant which denotes the actual configuration, 

at . t , of the environment as a whole. 
Some more notation will be helpful. For any subsystem of.M particles as described 

above, the variable. q—which ranges over candidate configurations of the universe— 
may be rewritten as .q = (x, y). This equation conveniently represents the split 
between (i) the candidate configurations of the subsystem, and (ii) the candidate 
configurations of the environment. Similarly, for each time . t , the constant .Q(t)— 
which represents the actual configuration of the universe—may be rewritten as 
.Q(t) = (

X (t), Y (t)
)
. This equation conveniently represents the split between (i) 

the actual configuration of the subsystem, and (ii) the actual configuration of the 
environment. 

These resources can be used to define a particular sort of wave function—called 
the ‘conditional wave function’—for any given subsystem (Dürr et al. 1992, p. 864). 2

To see how, take the subsystem of .M particles described above. Let . x , . Y , . t , and . ψt

be as defined earlier. Then for any given time. t , the conditional wave function of this 
subsystem is the function .ψt (x) defined as follows. 

.ψt (x) = ψt
(
x,Y (t)

)
(3) 

In other words, the wave function 3 of a given subsystem at a fixed time is obtained 
by (i) taking the actual positions of the particles in the subsystem’s environment, and 
(ii) plugging those positions into the universal wave function. 4

This feature of Bohmian mechanics—that it contains the resources required to 
formulate equation (3)—is striking. In more orthodox interpretations of the quantum

2 For a more accessible account of wave function collapse, see (Goldstein 2010). For more discussion 
of different ways to interpret wave functions like these, and different ways to understand the physical 
significance of universal wave functions too, see (Goldstein and Zanghì 2013). 
3 Note that (3) is not normalized. This does not matter, however. All wave functions related by a 
constant non-vanishing multiple may be regarded as physically equivalent. 
4 For more on conditional wave functions, see (Dürr et al. 2004, pp. 966–968). 



66 I. Wilhelm

mechanical formalism, certain functions are simply stipulated to be the wave func-
tions of subsystems. Subsystems’ wave functions are not defined in terms of anything 
else. Similarly, in fact, for other interpretations of quantum mechanics, such as ver-
sions of the Everett interpretation. Bohmian mechanics, in contrast, can be used to 
define the wave functions of subsystems in terms of a few basic posits: the existence 
of a universal wave function, and the actual positions of the physically real particles 
which comprise the environment. So altogether, whereas Bohmian mechanics has 
the formal and physical resources to account for how certain wave functions are asso-
ciated with certain subsystems, many other interpretations of quantum mechanics do 
not. And that is a significant point in favor of Bohmian mechanics. 

3 Collapse 

In this section, I discuss the Bohmian account of how the wave functions of 
subsystems—that is, conditional wave functions—collapse. 5 Then I briefly present 
the conditions under which conditional wave functions conform to a version of 
Schrödinger’s equation. Finally, I explain why this version of Schrödinger’s equation 
does not always describe how conditional wave functions evolve. 

To start, here is the account of how conditional wave functions evolve in accord 
with the collapse postulate of quantum mechanics. Let . t1 be a time shortly before a 
measurement occurs. Suppose that at time. t1, the subsystem’s conditional wave func-
tion.ψt1(x) is in a superposition of the eigenstates.ψt1,α1(x),.ψt1,α2(x),…,.ψt1,αn (x) of 
the observable being measured. So for some constants.cα1 ,.cα2 , …,.cαn , the following 
holds. 

.ψt1(x) =
αnΣ

α=α0

cαψt1,α(x) (4) 

In addition, suppose that before measurement of the observable, the subsystem and 
the environment do not interact with one another. Moreover, let us assume that at time 
. t1, there is a function .φt1(y) such that the universal wave function is .ψt1(x)φt1(y). 

6

So (4) implies that at time . t1, the universal wave function is as follows. 

.ψt1(x, y) = ψt1(x)φt1(y) =
αnΣ

α=α0

cαψt1,α(x)φt1(y) (5)

5 This discussion is based on the theory developed in Dürr et al. (1992), Dürr and Teufel (2009), 
and Goldstein (2010). 
6 This assumption is unrealistic: the universal wave function generally does not factorize into a 
product state of functions .ψt1 (x) and .φt1 (y). But as it turns out, this assumption is not really 
necessary, even approximately. It is sufficient that the universal wave function satisfies. ψt (x, y) =
ψt1 (x)φt1 (y) + ψ⊥

t1 (x, y), where  .φt1 (y) and .ψ⊥
t1 (x, y) have macroscopically disjoint .y-supports 

(Dürr et al. 1992 pp. 861–864). 
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In other words, before measurement, the universal wave function is in a superposition 
of the wave functions.ψt1,α(x)φt1(y), where each.ψt1,α(x)φt1(y) represents a universal 
wave function in which the subsystem’s state is .ψt1,α(x) and the environment’s state 
is .φt1(y). 

Now to describe some post-measurement wave functions which will be relevant 
in what follows. Let. t2 be a time right after the measurement occurs. Take any. α from 
.α0, . . . , αn . Then from . t1 to . t2, the wave function .ψt1,α(x)φt1(y) evolves to a new 
wave function .ψt2,α(x)φt2,α(y), where .ψt2,α(x) and .φt2,α(y) have several important 
properties. First,.ψt1,α(x) = ψt2,α(x): this corresponds to the fact that measurements 
of a given observables’ eigenstates do not alter those eigenstates. Second, . φt2,α(y)
is the wave function associated with the environment recording the fact that the 
subsystem is in state .ψt2,α(x): that is just part of what it is for the event in question 
to count as a measurement of the observable in question. 7 Third, for all .α' such 
that .α /= α', the support of .φt2,α(y) is macroscopically disjoint from the support of 
.φt2,α'(y): 8 basically, this too is just part of what it is for the event in question to count 
as a measurement. 9 So each term .ψt1,α(x)φt1(y), in  (5), evolves to a wave function 
.ψt2,α(x)φt2,α(y) such that (i) .ψt1,α(x) is .ψt2,α(x), (ii) .φt2,α(y) says that the system is 
in state .ψt2,α , and (iii) the .φt2,α(y) have macroscopically disjoint supports. 

With all that as background, here is the Bohmian account of collapse. Since each 
.ψt1,α(x)φt1(y) evolves to .ψt2,α(x)φt2,α(y), the linearity of the Schrödinger equation 
implies that the universal wave function in (5) evolves to the universal wave function 
below. 

.ψt2(x, y) =
αnΣ

α=α0

cαψt2,α(x)φt2,α(y) (6) 

By the definition of conditional wave functions from (3), the conditional wave func-
tion of the subsystem at time. t2 is obtained by substituting.Y (t2)—the actual config-
uration of the environment particles at . t2—for . y in (6). The following results. 

.ψt2(x) = ψt2

(
x,Y (t2)

)

=
αnΣ

α=α0

cαψt2,α(x)φt2,α
(
Y (t2)

)

7 For more discussion of why the state.ψt2,α must record the state of the subsystem—which is based 
on considerations of what it is to conduct a measurement—see (Albert 1992, pp. 74–79). 
8 In other words, if .φt2,α(y) is non-zero for some configuration . y, then  .φt2,α' (y) is zero for all 
configurations . y from which that former configuration is macroscopically indistinguishable. And 
if.φt2,α' (y) is non-zero for some configuration. y, then.φt2,α(y) is zero for all configurations. y from 
which that former configuration is macroscopically indistinguishable. Put in intuitive terms, this 
all amounts to the following: the configurations of the environment, which record the outcome of 
the measurement, are macroscopically distinct from one another. In other words, the measurement 
device never enters a state in which it is somehow recording two distinct experimental outcomes. 
9 For more details, see (Dürr et al. 1992, pp. 863–866). 
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Since the functions .φt2,α(y) all have macroscopically disjoint supports, at most one 
of the quantities .φt2,α

(
Y (t2)

)
is non-zero. Since each of the wave functions . ψt1,α(x)

are eigenstates of the original conditional wave function .ψt1(x), at least one of the 
quantities .φt2,α

(
Y (t2)

)
is non-zero. Therefore, for some . α j , the above sum reduces 

to.cα j ψt2,α j (x)φt2,α j

(
Y (t2)

)
where.φt2,α j

(
Y (t2)

) /= 0. Dropping the unnecessary con-
stant . φt2,α j

(
Y (t2)

)
10—and using the fact, mentioned earlier, that .ψt1,α j = ψt2,α j—it 

follows that at time. t2, the conditional wave function of the subsystem is as follows. 

.ψt2(x) = ψt1,α j (x) (7) 

In other words, the conditional wave function of the subsystem after measurement 
is one of the eigenstates of the conditional wave function of the subsystem before 
measurement. The subsystem’s conditional wave function has collapsed. 

Basically, according to the Bohmian account, collapse results from two different 
features of subsystems, environments, and the universe as a whole. First, the wave 
function associated with any given subsystem is determined by (i) the wave function 
of the universe, and (ii) the actual positions of the environment particles. In other 
words, the wave function of any given subsystem is the conditional wave function 
given by (3). Second, after measurement, the universal wave function has the follow-
ing property: when the post-measurement positions of the environment particles are 
plugged into the universal wave function, the resulting function is an eigenstate of 
the conditional wave function of the subsystem just before measurement. In slogan 
form: what it is to be a subsystem’s wave function is to, among other things, exhibit 
collapse-like behavior. 

Note that according to this account, collapse is real: the wave functions of sub-
systems really do, that is, undergo collapse. For when measurement occurs, a sub-
system’s wave function really does become an eigenstate of the wave function which 
the subsystem had before the measurement event. The subsystem starts out with one 
conditional wave function before measurement; after measurement, the subsystem’s 
conditional wave function is an eigenstate of the conditional wave function from ear-
lier. So collapse is a real, actual part of the physical world, according to the Bohmian 
account. 

It is worth briefly explaining why conditional wave functions sometimes conform 
to a version of Schrödinger’s equation. For conditional wave functions do not always 
collapse: they often exhibit Schrödinger evolution. Basically, that happens when-
ever the subsystem—corresponding to the conditional wave function in question—is 
suitably isolated from its environment. 

For example, take the subsystem of .M particles once more. Suppose that the 
universal wave function factorizes such that for all times . t , there is a function . Φt

such that.ψt (x, y) = ψt (x)Φt (y); or at least, suppose that the universal wave function

10 Recall that as mentioned in Footnote 3, wave functions related by a constant non-vanishing 
multiple are physically equivalent. 
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approximately obeys an equation of this form. 11 In addition, suppose that there is 
negligible interaction between the subsystem and the environment; so the universal 
Hamitonian .H may be written as .H = Hx + Hy . 12 Finally, let .ψ be defined by 
.ψ(t, x) = ψt (x). Then it can be shown that the following holds. 13

.iℏ
∂ψ

∂t
= Hxψ (8) 

The conditional wave functions of subsystems for which the corresponding universal 
wave functions are approximately in product states, in other words, conform to a 
version of Schrödinger’s equation. 

Before concluding, it is worth discussing two reasons why the Bohmian account 
of collapse is preferable to the account of collapse that orthodox quantum mechanics 
endorses. First, that other account—call it the ‘orthodox account’—simply stipulates 
that collapse occurs. The phenomenon of collapse, in other words, is a primitive posit 
of the orthodox account. The Bohmian account, however, does not merely posit a 
collapse principle. Instead, the Bohmian account shows how collapse derives from 
other, more basic posits: namely, posits about actual configurations and universal 
wave functions. 

Second, and relatedly, the orthodox account does not offer a clear method for 
associating wave functions with subsystems in the first place. 14 To illustrate, con-
sider the following question: for any given subsystem of the universe, at any given 
time . t , what wave function should be associated with that subsystem? The answer 
to this question, that Bohmian mechanics supports, is clear: given that (i) the wave 
function of the universe at . t is .ψt , (ii) the subsystem in question is defined as the 
collection of particles with actual positions .X1(t), . . . ,XM(t), so that the environ-
ment particles have actual positions.YM+1(t), . . . ,YN (t), and (iii) a condition about 
macroscopically disjoint supports of the sort mentioned earlier obtains, it follows that 
(iv) the wave function which should be associated with this subsystem is the condi-
tional wave function.ψt (x) = ψt

(
x,Y (t)

) = ψt
(
x1, . . . , xM ,YM+1(t), . . . ,YN (t)

)
. 

Orthodox quantum mechanics does not support an analogously clear answer to this 
question. For orthodox quantum mechanics does not provide clear, precise princi-
ples which, for any given subsystem, define the wave function associated with that 
subsystem in terms of anything as well-defined as actual configurations and univer-
sal wave functions. And so whereas Bohmian mechanics can be used to provide a 
satisfying answer to this question, orthodox quantum mechanics cannot.

11 For the reasons mentioned in Footnote 6, this assumption is unrealistic, but not necessary. It is 
made here merely in order to simplify the discussion. 
12.Hx is the contribution to.H arising from terms involving only degrees of freedom from particles 
in the subsystem, while .Hy is the contribution to .H arising from terms involving only degrees of 
freedom from particles in the environment. 
13 See (Dürr et al. 1992, pp. 861–862). 
14 As mentioned earlier, this is arguably true for other accounts too, like accounts of collapse 
suggested by some versions of the Everett interpretation. 
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This is, in my view, one of the most attractive features of Bohmian mechanics. It 
provides precisely the resources needed to clearly define the wave functions which 
should be associated with subsystems: those resources consist of a few simple posits 
about particles and a universal wave function. And in so doing, it supports an account 
of how collapse occurs. 

In short, by helping itself to physically real particles, Bohmian mechanics clarifies 
decades of confusion surrounding quantum collapse. The orthodox account exacer-
bates that confusion, since it resists positing an actual configuration for any given 
subsystem’s environment: so given the orthodox account, there is nothing to plug into 
a universal wave function, to obtain the wave functions associated with subsystems— 
that is, according to the Bohmian account, the conditional wave functions—which 
undergo collapse. Bohmian mechanics does posit an actual configuration for each 
subsystem’s environment, however. And as a result, Bohmian mechanics supports 
an illuminating account of how, and why, collapse occurs. 

4 Conclusion 

Bohmian mechanics can be used to provide an attractive, elegant, and simple account 
of collapse. The account says, basically, that collapse is a consequence of how condi-
tional wave functions evolve over time. Their evolution generates the phenomenon of 
collapse because of how the environment particles, and the universal wave function, 
evolve. 

Acknowledgements Thanks to Laura Ruetsche, and especially Shelly Goldstein, for much helpful 
feedback and discussion. 
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Generic Contextuality 

Travis Norsen 

Abstract This paper reviews and develops the concept of “contextuality” whose 
profound significance—or lack thereof—was clarified especially by Detlef Dürr and 
his collaborators. In particular, we explore, in the context of a simple toy model 
of a measurement procedure described using Bohmian mechanics, the dependence 
of measurement outcomes on the (continuously variable) strength of the coupling 
between the system and measuring apparatus. This provides a revealing illustration 
of the fact that the outcomes of experiments may, and in general do, depend on 
details of the experiment other than simply the Hermitian operator which (as it is 
often misleadingly said) is “measured” in the experiment. 

1 Context 

Unlike many of the contributors to this volume, I was never (formally) a student 
of Detlef’s, I did not collaborate with him on many projects across the years and 
decades, and I never even managed to visit him in Munich. Nevertheless, I learned a 
tremendous amount from his books and papers over the years, I was lucky enough to 
work with him on one brief project a few years ago, and I had the enormous pleasure 
of getting to know him via email discussions and, especially, in person, at a number 
of conferences and summer schools over the years. I considered him a friend and a 
mentor and I will never forget his kindness, his clarity, and especially his charming 
smile and glorious sense of humor. 

I have included, at random points in the following paper and without any further 
explanation, what I think of as “Detlefisms”—short quotes (taken from his book on 
Bohmian Mechanics [ 1]) whose simultaneously sarcastic and reassuring rhetorical 
style is unmistakably Detlef’s. When I read these, I cannot help but hear them in 
his voice while picturing his smiling face and twinkling eyes. I hope their inclusion 
here will trigger the same experience in others and thus help us all remember and 
appreciate Detlef’s unique spirit. 
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2 Contextuality 

In the orthodox interpretation of quantum mechanics, quantum systems are claimed 
to be completely described in terms of wave functions. In ordinary circumstances, 
these wave functions evolve in time in accordance with Schrödinger’s equation. But 
when a quantum system is measured, different rules apply: the system’s wave func-
tion is postulated to “collapse” (a non-unitary change that is incompatible with the 
usual Schrödinger evolution) to one of the eigenfunctions of the Hermitian operator 
corresponding to the property of the system which is being measured, and the out-
come of the measurement (corresponding to the particular eigenstate that is collapsed 
to) is said to be irreducibly random. This randomness is of course the locus in the 
orthodox theory of the idea, which many commentators regard as one of the central 
metaphysical innovations of the theory, that quantum physics refutes determinism. 

But that is not a very intelligent thing to say. 

Critics of the orthodox interpretation [ 2, 3]—motivated both by the implausi-
bility of having incompatible fundamental laws for “ordinary” and “measurement” 
situations, and also by the apparent non-locality that accompanied the measurement-
induced wave function collapse for systems of spatially-separated but entangled 
particles—hypothesized the existence of so-called (and misleadingly named) “hid-
den variables” (HVs). HVs are simply properties that quantum systems are postulated 
to possess in addition to the wave function. Typically (though not necessarily) the 
HVs were assumed to determine the outcomes of measurements. From this point 
of view, the stochasticity of the orthodox interpretation was simply a result of its 
utilization of incomplete descriptions of the states of systems. 

Various defenders of the orthodox viewpoint (most notably von Neumann [ 4] 
and then Kochen and Specker [ 5]) attempted to prove mathematically that deter-
ministic HV theories could not reproduce the (apparently correct) empirical pre-
dictions of quantum mechanics. But as pointed out especially by Bell [ 6], the no-
hidden-variables proofs invariably imposed arbitrary and unwarranted—and often 
unacknowledged—assumptions. The most interesting and important such assump-
tion was that the hidden variables be “non-contextual”. A non-contextual HV theory 
is one in which a definite value, to be revealed upon measurement, is assigned for 
the Hermitian operators which correspond to properties of the system which might 
be measured. 

The basis for the terminology here is the idea that a given measurement, say of 
the property corresponding to Hermitian operator . Â, may happen in several distinct 
ways. For example, if . Â and. B̂ commute, .[ Â, B̂] = 0, (the properties corresponding 
to). Â and. B̂ can in principle be measured simultaneously; doing so would constitute 
one possible way of measuring (the property corresponding to). Â. Alternatively, (the 
property corresponding to) . Â could be measured by measuring . Â and .Ĉ simulta-
neously (again assuming .[ Â, Ĉ] = 0). A non-contextual hidden variable theory is 
then one in which the value assigned to . Â – the value that will be the outcome of an 
experiment measuring (the property corresponding to). Â – is the same, regardless of
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the so-called “context” of the measurement, i.e., whether. B̂ or. Ĉ (or neither or some 
other thing) is measured in conjunction with . Â. (Note, by the way, that here .B̂ and 
.Ĉ need not commute, so that the experiments of measuring . Â in conjunction with 
. B̂, and of measuring . Â in conjunction with . Ĉ , are incompatible.) 

In a “contextual” hidden-variable theory, by contrast, definite values—to be 
revealed by the appropriate experiment—are not assigned to Hermitian operators 
per se, but instead to the more detailed and varied experiments by which (the proper-
ties corresponding to) a given Hermitian operator might be measured. For example, a 
contextual hidden-variable theory might have “the value of . Â” (meaning, of course, 
the outcome of an experiment to measure the property corresponding to . Â) when . Â
is measured in conjunction with . B̂, being different from “the value of . Â” when. Â is 
measured in conjunction with . Ĉ . “The value of . Â”, in short, can depend on the full 
context of the specific way in which . Â is measured. 

Is there anything deep in all this? Well, no, there is not. 

The assumption that HV theories should be non-contextual may seem innocuous; 
evidently it appeared so innocent to the authors of the no-hidden-variables theo-
rems that many of them barely even acknowledged the assumption, and the idea of 
contextual hidden variables is still looked upon as somehow suspicious by many 
commentators [ 7]. 

But the supposed weirdness and implausibility of contextuality is belied by the nat-
uralness and simplicity with which this feature arises in the context of the one extant 
hidden variable theory, the pilot-wave theory of de Broglie and Bohm. The most well-
known example is probably the way in which the pilot-wave theory accounts for the 
familiar correlations from the EPR-Bell setup. To connect with the above discussion, 
if . Â here is (the operator corresponding to) the component of the spin of particle 1 
along some direction, and. B̂ and. Ĉ are respectively two different components of the 
spin of (the entangled but spatially separated) particle 2, the pilot-wave theory just 
straightforwardly predicts (on the basis of its postulated dynamics) that the outcome 
of measuring. Â in conjunction with. B̂ can, in appropriate circumstances, be different 
from the outcome of measuring. Â in conjunction with. Ĉ (even when the initial state 
of the measured system is exactly the same). This example was discussed already 
by Bell in his analysis of what had gone wrong with the no-hidden-variables proofs 
[ 6]; for a more recent pedagogical discussion see Ref. [ 8]. 

Another concrete example of the utter straightforwardness with which the pilot-
wave theory exhibits contextuality was pointed out by Albert [ 9]: the outcome of a 
measurement of a generic component of the spin of a particle can depend on which 
of two equally valid Stern-Gerlach devices for measuring that spin component are 
used. Concretely, for certain appropriate initial conditions of the incoming particle, 
a Stern-Gerlach device with its magnetic field oriented in a certain direction will 
deflect the particle upward and hence reveal the particle to be “spin up” along that 
direction. But for precisely the same initial conditions, a Stern-Gerlach device with 
its magnetic field oriented in the opposite direction will also deflect the particle 
upward and hence (due to the opposite calibration of the device associated with the
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oppositely-directed field) reveal the particle to be instead “spin down” along that 
same axis. (See again [ 8] for a more detailed discussion.) 

Albert’s example is particularly nice for a number of reasons. First, unlike the 
EPR example mentioned above (in which the relevant “context” is the setting of a 
distant apparatus such that the contextuality is also an example of the theory’s well-
known non-locality), here we have a concrete example of pure contextuality without 
the interesting, but also somewhat distracting, feature of non-locality. Second, and 
relatedly, Albert’s example involves only a single measurement. It thus shows clearly 
that the context-dependence of experimental outcomes need not involve additional 
measurements that are made in conjunction with the one for the property in question. 
Instead we simply have distinct measurement outcomes for distinct, but fully and 
equally valid, realizations of experiments to measure (the property associated with) 
the same one operator. So the example, in this sense as well, illustrates the heart 
of what contextuality means (as opposed to merely illustrating the particular sort of 
contextuality that had been formally excluded in the no-HV theorems). 

Some other types of examples—not involving spin—of the pilot-wave theory’s 
contextuality have also been given (see, e.g., Sect. 7.5 of Ref. [ 10]), but these are 
slightly less dramatic than the above and tend to less clearly convey the appropriate 
lesson, which has been put very clearly and forcefully by Detlef et al. as follows: 

In foundations of quantum mechanics circles this situation is referred to as contextuality, 
but we believe that this terminology, while quite appropriate, somehow fails to convey with 
sufficient force the rather definitive character of what it entails: Properties that are merely 
contextual are not properties at all; they do not exist, and their failure to do so is in the 
strongest sense possible! We thus believe that contextuality reflects little more than the 
rather obvious observation that the result of an experiment should depend upon how it is 
performed! [ 11] 

The experiments we have previously spoken of as “measuring” properties that turn out 
to be contextual, therefore, should really instead not be thought of as “measurements” 
at all, if that word means an experimental intervention which reveals the pre-existing 
value of some property. They don’t. But as revealed so clearly when we examine 
such experiments as described by the pilot-wave theory, there is nothing the least bit 
mysterious about this. 

The price to pay is that we need to be careful 
not to treat things which are not the same 
as being the same. 

Our goal in the remainder of this paper is to explore a novel manifestation of 
so-called contextuality, for the pilot-wave theory, which we think helps reinforce 
and broaden this important lesson. Compared to Albert’s example involving spin, the 
manifestation of contextuality that we will discuss has the virtues of being continuous 
as opposed to discrete (that is, instead of two distinct outcomes for two different 
experimental realizations, we see a range of distinct measurement outcomes as a 
continuously variable parameter is adjusted) and also of being straightforwardly 
generalizable to virtually any experiment of the sort that is traditionally, but we now 
know misleadingly, described as a measurement of some property of the system.
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All of this will be discussed in more depth in Sect. 5, after first, in Sect. 3 laying 
out a concrete toy model and, in Sect. 4, displaying the results of some numerical 
simulations of it. 

3 Toy Model of an Energy “Measurement” 

One of the fundamentally important features of the pilot-wave theory is that it solves 
the measurement problem—that is, it allows us to view the processes we describe as 
“measurements” as examples of (rather than exceptions to) the standard dynamical 
principles of the theory. We can, in the pilot-wave theory, analyze measurements. 

So if contextuality means that the outcome of a “measurement” (of, say, the 
property corresponding to some operator . Â) can depend on details of the specific 
experimental realization of that “measurement” (rather than just on the operator . Â
which is “measured”), it stands to reason that we could find a wealth of examples of 
contextuality by simply analyzing generic measurements from the point of view of 
the pilot-wave theory. 

Here is a way to see that we can indeed do this. 
Let us take, as our quantum system, a one-dimensional, length-. L “particle in a 

box” (PIB) with Hamiltonian .Ĥx = p̂2x
2m + V (x) with . p̂x = −iℏ ∂

∂x and 

.V (x) =
{

0 for 0 < x < L
∞ otherwise

. (1) 

The normalized energy eigenstates are given by.ψn(x) =
/

2
L sin(nπx/L) with cor-

responding energy eigenvalues .En = ℏ
2π2n2

2mL2 . 
Now consider a measurement of the PIB’s energy, as depicted schematically in 

Fig. 1. Following von Neumann, we treat the apparatus pointer (whose final position 
indicates the outcome of the energy measurement) as an explicit degree of freedom 
which couples to the PIB via the interaction Hamiltonian 

.Hint = λĤx p̂y (2) 

with . p̂y = −iℏ
∂

∂y
. The  . λ here is simply a (real) constant which parameterizes the 

strength of the PIB-apparatus coupling. 
For simplicity we take the apparatus pointer to be infinitely heavy so that the 

Hamiltonian for the entire setup, the PIB and the measuring apparatus, is 

.Ĥ = Ĥx + Ĥint . (3)
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Fig. 1 Schematic depiction of the measurement setup we use here to illustrate the idea of generic 
contextuality. On the left is a one-dimensional “particle in a box” with degree of freedom. x , whose 
energy is measured by the apparatus, shown on the right, whose pointer has coordinate. y

The Schrödinger equation,.iℏ ∂Ψ
∂t = ĤΨ for the joint system-apparatus wave function 

.Ψ = Ψ(x, y, t) thus reads 

.
∂Ψ

∂t
= iℏ

2m

∂2

∂x2
Ψ + λ

ℏ
2

2m

∂2

∂x2
∂

∂y
Ψ. (4) 

If the initial wave function .Ψ(x, y, 0) is a product of the energy eigenstate . ψn(x)
for the PIB and a (say, width-. σ Gaussian) wave packet .φ(y) centered at the “ready” 
position of the apparatus pointer, it is easy to see that, at time . t , the wave function 
will be 

.Ψ(x, y, t) = ψn(x) e
−i En t/ℏ φ(y − λEnt). (5) 

Upon completion of the measurement at .t = T , the support of the wave func-
tion, in the apparatus pointer degree of freedom, will be centered around the value 
.yn = λT En . During the measurement, the pointer thus moves, to the right, a dis-
tance proportional to.En and is thereby registering, in its final position, the expected 
outcome of the energy measurement. 

And since the Schrödinger equation is linear and homogeneous, a general ini-

tial state .Ψ(x, y, 0) =
(∑

j c jψ j (x)
)

φ(y) (in which the PIB is in some arbitrary 

superposition of energy eigenstates) will time-evolve into 

.Ψ(x, y, t) =
∑
j

c jψ j (x) e
−i E j t/ℏ φ(y − λE j t) (6) 

which is an entangled superposition. 
Of course, in the pilot-wave theory, the wave function alone does not provide a 

complete description of the state of the system. There are, in addition, the actual 
particles (corresponding to the PIB and apparatus pointer) with positions .X (t) and 
.Y (t) which evolve in time according to
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.
dX

dt
= jx

|Ψ|2
IIII
x=X (t),y=Y (t)

(7) 

and 

.
dY

dt
= jy

|Ψ|2
IIII
x=X (t),y=Y (t)

(8) 

where . jx and . jy are the components of the standard quantum probability current 
satisfying the continuity equation, 

∂ 
∂t 

|Ψ|2 = −
(

∂ 
∂x 

jx + 
∂ 
∂ y 

jy

)
. (9) 

The somewhat unfamiliar structure of the interaction Hamiltonian .Ĥint gives the 
probability current a somewhat unusual form, but it is easy enough to verify that 

. jx = ℏ

2mi

(
Ψ∗ ∂Ψ

∂x
− Ψ

∂Ψ∗

∂x

)
− λℏ

2

2m

(
Ψ∗ ∂

∂x

∂

∂y
Ψ + Ψ

∂

∂x

∂

∂y
Ψ∗

)
(10) 

and 

. jy = λℏ
2

2m

∂Ψ∗

∂x

∂Ψ

∂x
(11) 

indeed satisfy the above continuity equation when.Ψ evolves according to Equation 
(4). 1

During the measurement interaction, the wave function .Ψ branches into a num-
ber of (for an appropriately large . T , approximately) non-overlapping packets. The 
particle configuration .(X,Y ) will end up in the support of one of these packets, and 
the outcome of the measurement will be indicated in particular by the final position 
of the apparatus pointer: if .Y (T ) is near . yn , we will declare the outcome of the 
experiment (to “measure” the energy of the PIB) to be .En . See Fig. 2 for a cartoon 
representation. 

The dynamics here is completely deterministic, so the final state—comprising 
.X (T ),.Y (T ), and.Ψ(x, y, T ), and so in particular the outcome of the measurement— 
depends, for a given value of . λ, on the initial state and in particular (since the initial 
wave function is presumed fixed) on the initial particle configuration. (X (0),Y (0)) =
(X0, Y0). The theory reproduces the quantum statistics—for example, that the out-
come of the energy measurement should be .En with relative frequency .|cn|2—by 
treating the initial particle configuration as random with distribution .|Ψ|2.

1 As usual, the probability current is not unique. Any divergenceless term could be added and the 
result would still satisfy the continuity equation. Here and in subsequent discussions we simply 
take the simplest possibility. There are contexts in which it is quite reasonable to consider other 
possibilities—see, e.g., Ref. [ 12]—but here we do not expect our central qualitative conclusions to 
be affected by this issue. 
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Fig. 2 The dark grey blob on the left shows the region of the two-dimensional configuration 
space where the initial wave function .Ψ(x, y, 0) has support, with the black dot representing a 
possible initial particle configuration, .(X (0), Y (0)). The time-evolution splits the wave function 
into several approximately non-overlapping islands or branches, as shown on the right, with the 
particle configuration ending up in one of the branches. In the case shown, with the final pointer 
position.Y (T ) being approximately equal to. y2, we would say that the outcome of the measurement 
of the PIB’s energy was. E2

The interesting feature that we wish to explore here pertains to how the mapping 
from .(X0,Y0) onto the measurement outcome, indicated by .Y (T ), varies with . λ. It  
should be clear that, for any nonzero value of . λ, the system described constitutes 
(what is ordinarily called) a measurement of.Ĥx , the energy of the PIB. Each different 
value of the continuously-variable parameter . λ, however, corresponds to a distinct 
way for the measurement to be instantiated. 

In the following section we will show, via numerical solution of the equations of 
motion, that the outcome—the measured energy of the PIB—can vary with the PIB-
apparatus interaction strength. λ even as the detailed initial state of the PIB-apparatus 
system remains fixed. Before turning to that, however, it is worth thinking about 
the large-. λ limit. For large . λ, the terms not involving . λ on the right hand sides of 
Equations (4) and (10) can be neglected. In the resulting equations of motion, only 
the product .λt appears, which means that varying . λ will not change the character 
of the solutions and, in particular, will not change the measurement outcome that 
results from a given detailed initial condition—it will only change the speed with 
which the experiment proceeds toward completion. 2

2 Note that this contradicts the implication of Project 7.9 of Ref. [ 10], which turns out to have been 
based on a coding error. The author regrets the earlier mistake and thanks Tim Maudlin, private 
communication, for expressing skepticism about the earlier claim. It is hoped that the present paper 
clarifies precisely the situations under which this.λ-dependence type of contextuality does and does 
not arise.
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The novel generic sort of contextuality we will demonstrate, then—that is, the 
dependence of the measurement outcome on the strength of the system-apparatus 
coupling—arises only for “non-impulsive” measurements with finite. λ, i.e., measure-
ments which have the realistic feature of taking a finite time to proceed to completion. 

4 Numerical Illustration 

Working in units where.ℏ = m = L = σ = 1, we solve Equations (7) and (8) numer-
ically with the wave function given by Equation (6) with .c1 = 1.0, .c2 = −0.8, 
.c3 = 0.7i , and .c j = 0 for . j > 3. (These particular values were chosen solely on 
the grounds that they led to pretty pictures; the phenomenon we explore is obviously 
general.) For a given value of . λ, we solve from.t = 0 to .t = T where .T = 0.5/λ so 
that the separation of the wave packets in configuration space at the final time (and 
hence the correspondence between .Y (T ) and measurement outcomes) is identical 
even as . λ is varied. 

There are thus three possible outcomes of the energy measurement:.E1 (indicated 
by.Y (T ) ≈ 2.5),.E2 (indicated by.Y (T ) ≈ 9.9), and.E3 (indicated by.Y (T ) ≈ 22.2). 

For a particular value of . λ, we solve the equations of motion to find .Y (T ) on a 
rectangular grid of initial particle configuration points .(X0,Y0) within the support 
of.Ψ(x, y, 0). We then display the results by coloring the points.(X0,Y0) which lead 
to measurement outcome .E1 (i.e., .Y (T ) ≈ 2.5) blue, .E2 yellow, and .E3 red. An 
example plot, for .λ = 1.0, is shown in Fig. 3. 

Figure 4 shows similar maps for several values of .λ > 1. Note that while 
the images are not all identical, they are clearly converging in the large-. λ limit. 
This illustrates the point, mentioned at the end of the previous section, that the 

Fig. 3 In this image, each point in the configuration space of PIB-apparatus initial conditions, 
.(X0, Y0), is color-coded to represent the outcome of the energy measurement that will result, with 
.λ = 1.0, from those particlar initial positions for the PIB and the apparatus pointer. Initial particle 
positions that yield the outcome.E1 (meaning that.Y (T ) ≈ y1) are colored blue, yellow is.E2, and  
red is.E3
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(a) λ = 10.0 

(b) λ = 30.0 

(c) λ = 100.0 

(d) λ = 300.0 

Fig. 4 Maps of the measurement outcomes for several larger values of . λ. Note that, as expected, 
in the large-. λ limit the results are visually identical—i.e., the .λ-dependence, the contextuality, 
disappears
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measurement outcome for a given initial configuration is not sensitive to . λ if . λ is so 
large that .Ĥint swamps all other terms in the overall Hamiltonian. 

The novel type of contextuality that it is our main goal here to highlight is thus 
best seen for smaller values of . λ. 

The reader is encouraged to examine Fig. 5, which shows outcome maps for (a) 
.λ = 0.3, (b) .λ = 0.1, (c) .λ = 0.03, and (d) .λ = 0.01. 

The contextuality we wish to highlight is manifest simply in the fact that the 
images in Fig. 5 are different from one another. This means that, for generic initial 
conditions of the PIB-apparatus system, the outcome of the measurement of the PIB’s 
energy is different depending on details of the specific experiment (in particular, the 
strength of the PIB-apparatus coupling, . λ) even though all of these experiments are 
equally good, equally valid measurements of the property corresponding to the same 
operator, here .Ĥx . 

So it is a nice concrete illustration of the phenomenon of contextuality, i.e., of the 
fact that “the result of an experiment should depend upon how it is performed!” [ 11]. 

5 Discussion 

We have shown that, in the pilot-wave theory, the outcome of a (realistic, non-
impulsive) “measurement” of the energy of a simple system can vary depending on 
the precise value of the coupling constant that controls the strength of the system-
apparatus interaction. 

This already has the interesting implication that, according to the pilot-wave the-
ory, energy—just like the various components of particles’ spins—“do[es] not exist” 
[ 11]. 

This will not be surprising to those familiar with the pilot-wave theory and 
in particular the idea that, for this theory, every property other than position is 
“contextual”—i.e., not really a property at all, not (therefore) something that can 
be “measured” (if we accept the usual connotations of that word). And even from 
the point of view of orthodox quantum theory, it is not terribly surprising that a sys-
tem which is in a superposition of energy eigenstates with several different energies, 
should fail to possess any particular amount of energy. 

Nevertheless, the commonly-used language—that an experiment of the sort we 
have been analyzing can be thought of as a “measurement of the energy”—tends to 
almost irresistably suggest that, although we might not have known and/or couldn’t 
formally define the amount of energy possessed by the system prior to our experimen-
tal intervention, when we “measure the energy” of the system we are, surely, finding 
out how much energy it in fact had. And beyond arguably-misleading terminology, 
the idea that conservation of energy is a foundational bedrock principle of physics 
also contributes to the feeling that, while maybe it is tolerable for spin components to 
be contextual and hence unreal, we must, surely, take energy much more seriously.
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(a) λ = 0.3 

(b) λ = 0.1 

(c) λ = 0.03 

(d) λ = 0.01 

Fig. 5 Maps of the measurement outcomes for several smaller values of . λ. The essential point 
is simply that the pictures are different: for many possible initial conditions of the PIB-apparatus 
system, distinct (non-large) values of. λ produce distinct measurement outcomes
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Witness, for example, the struggle to make sense of the conservation of energy (in a 
not-too-dissimilar setup) exhibited recently in Ref. [ 13]. 

Trivial it is, but food for mysticism nevertheless. 

But we can and should resist the misleading connotations of the word “measure-
ment” [ 14]. If several different but equally valid ways of “measuring the energy” 
of a system yield different outcomes, then none of them are actually measuring the 
energy of that system and indeed there is no reason to believe there is any such 
property as the energy of that system. 

Indeed, note that the worry about exactly how to define and understand the con-
servation of energy in QM [ 13] is simply dissolved by facing the fact that, like spin, 
energy is contextual, i.e., unreal, at least according to the pilot-wave theory. 

But this is no world-shattering discovery, 
for there is absolutely no reason why it should be the case. 

And it is not just energy. It should be clear not only that our analysis could have 
used virtually any example quantum system in virtually any state, but that we could 
have replaced .Ĥint with .λ Â p̂y—i.e., we could have analyzed a “measurement” of 
many other “properties”, with similar results. There is nothing particularly special 
here about energy. We could seemingly demonstrate this same sort of contextuality, 
in an appropriate setup, for other operators. 

And, interestingly, this is true even for position! 
Consider, for example, a system with degree of freedom . x and Hamiltonian . Ĥx

which couples to a measuring apparatus whose pointer has coordinate . y via the 
interaction Hamiltonian .Hint = λx̂ p̂y . (As before, for simplicity, we assume the 
pointer is infinitely massive so .Ĥy = 0.) According to the pilot-wave theory, the 
.x-system particle will evolve in the usual way, e.g., 

.
dX (t)

dt
= ℏ

m
Im

[
∂Ψ

∂x
/Ψ

]
x=X (t), y=Y (t)

(12) 

if .Ĥx = p̂2x
2m + V (x). That is, for .Ĥint = λx̂ p̂y there is no term in . jx proportional 

to . λ. 
What is interesting is that the position of the pointer evolves according to 

.
dY (t)

dt
= λX (t). (13) 

For an impulsive measurement in which the coupling strength . λ is large and the 
required duration of the interaction .T ∼ 1/λ is therefore small, the pointer will 
simply move a distance .ΔY proportional to the actual position .X of the system 
particle at the “moment” of the interaction. That is, in the large-. λ limit, the final 
pointer position does indeed register the actual position of the particle whose position 
is being measured.
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But in general—for realistic “position measurements” with finite . λ—.X (t) will 
vary during the course of the experiment and the displacement of the pointer (i.e., the 
outcome of the measurement) will be proportional to the system particle’s average 
position during the course of the interaction: 

.ΔY = λ T <X> (14) 

where .<X> = 1
T

∫	 T
0 X (t)dt . To be sure, this is as sensible an outcome as one might 

hope for. But, strictly speaking, it does show that, in the pilot-wave theory, even 
(realistic, non-impulsive) position measurements are contextual—i.e., they do not 
simply reveal the pre-measurement value of the position of the particle; different 
experiments to “measure the position” (here, the different experiments parameter-
ized by different values of . λ) will yield different outcomes even for identical initial 
conditions. 

And in this way, many irrelevant questions arise. 

Does this mean that (like we have said about spin components and energy and by 
implication generic other properties) particle positions don’t really exist according 
to the pilot-wave theory? 

Of course not. The theory postulates that they exist, so according to the theory 
they exist! 

It’s just that, in general, realistic “position measurements” (just like all other 
experiments) involve a definite, finite interaction between the system and the mea-
suring apparatus. They stretch across a finite time period during which, so to speak, 
the system sloshes around a bit. And the outcome of the experiment depends, in 
general, at least a bit on the details and extent of this sloshing. That the outcome 
fails to somehow magically reveal the exact position of the system particle, say, just 
prior to the initiation of the system-apparatus interaction, is as problematic as it is 
shocking... namely: not at all! 

Still, it is interesting that when we analyze the kinds of experiments we too 
often call “measurements”, in detail, using the pilot-wave theory, we find this novel 
interaction-strength-dependent sort of contextuality virtually everywhere, even in so-
called position measurements. Contextuality, in this sense, is a truly generic feature 
of measurements in the pilot-wave picture. 

Disaster? Of course not. 
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The Wentaculus: Density Matrix Realism 
Meets the Arrow of Time 

Eddy Keming Chen 

Dedicated to the memory of Detlef Dürr. 

Abstract In this paper, I characterize and elaborate on the “Wentaculus” theory, a 
new approach to time’s arrow in a quantum universe that offers a unified solution 
to the problems of what gives rise to the arrow of time and what the ontology of 
quantum mechanics is. 

1 Introduction 

Two of the most difficult problems in the foundations of physics are (1) what gives 
rise to the arrow of time and (2) what the ontology of quantum mechanics is. They are 
difficult because the fundamental dynamical laws of physics do not privilege an arrow 
of time, and the quantum-mechanical wave function describes a high-dimensional 
reality that is radically different from our ordinary experiences. 

In this paper, I characterize and elaborate on the “Wentaculus” theory, a new 
approach to time’s arrow in a quantum universe that offers a unified solution to both 
problems. Central to the Wentaculus are (i) Density Matrix Realism, the idea that 
the quantum state of the universe is objective but can be impure, and (ii) the Initial 
Projection Hypothesis, a new law of nature that selects a unique initial quantum state. 
On the Wentaculus, the quantum state of the universe is sufficiently simple to be a law, 
and the arrow of time can be traced back to an exact boundary condition. It removes 
the intrinsic vagueness of the Past Hypothesis, eliminates the Statistical Postulate, 
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provides a higher degree of theoretical unity, and contains a natural realization of 
“strong determinism.” I end by responding to four recent objections. In a companion 
paper, I elaborate on Density Matrix Realism. 

2 Conceptual Foundations 

I start by reviewing the conceptual foundations of Density Matrix Realism and the 
arrow of time that are necessary to formulate the Wentaculus in Sect. 3. 

2.1 Density Matrix Realism 

To understand Density Matrix Realism, let us start with a more familiar thesis—Wave 
Function Realism. When we consider realist solutions to the quantum measurement 
problem, such as Bohmian mechanics, objective collapse theories, and Everettian 
quantum mechanics, it is natural to consider the quantum state of the universe as an 
objective feature of reality. Moreover, it is widely believed that it has to be a pure 
state, represented by a wave function. Let us formulate the thesis as follows: 

Wave Function Realism The quantum state of the universe is objective; it has to be 
pure. 

This characterization of Wave Function Realism is broader than that of Albert (1996), 
Ney (2021). For them, Wave Function Realism carries a specific commitment to 
understanding the universal wave function as a physical field that lives on a vastly 
high dimensional “configuration” space, from which the ordinary 3-dimensional 
space is emergent. This is, however, not the only way to be a realist about the wave 
function. For example, the multi-field interpretation, spacetime state realism, and the 
nomological interpretation also count as versions of Wave Function Realism (Chen 
2019b). 

We often assume that the quantum state of the universe, if objective, must be pure. 
In quantum mechanics, mixed states are often used to represent reduced or statistical 
states, as expressions of entanglement with other systems or of our ignorance of the 
actual pure state. However, there is no compelling argument why the universe cannot 
be in a fundamental mixed state, one that does not arise from entanglement or lack 
of knowledge. In fact, it is easy to formulate Bohmian mechanics, collapse theories, 
and Everettian quantum mechanics with a fundamental density matrix (Allori et al. 
2013; Dürr et al. 2005; Maroney 2005; Wallace 2012). Let us consider an alternative 
to Wave Function Realism, called Density Matrix Realism: 

Density Matrix Realism The quantum state of the universe is objective; it can be 
pure or impure.
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This thesis allows more choices of the quantum state of the universe; it can be pure 
or impure (a “mixed state”). The freedom to use impure states is crucial to the 
Wentaculus, which I discuss in Sect. 3. 

Let us clarify some key terms in both theses. 

(i) “The”: it implies uniqueness. Both theses differ from the account considered 
by Wallace (2016) that the universe has two physical states at the same time: a 
fundamental pure state and a fundamental mixed state. 

(ii) “Quantum state of the universe”: both theses are about the quantum state of 
the universe. It does not logically entail that subsystem quantum states must be 
objective or that they must be pure (or impure). 

(iii) “Objective”: it means that the universal quantum state corresponds to an objec-
tive feature of reality, is not merely epistemic (encoding lack of knowledge), 
or pragmatic (merely a useful instrument for calculations). The meaning of 
objectivity is left open-ended, making room for different ways to be a realist 
(Chen 2019b). 

(iv) “Must be pure” versus “Can be pure or impure”: this is the only difference 
between the two theses. “Must” and “can” are modal concepts. Wave Function 
Realism restricts universal quantum states to only pure ones, while Density 
Matrix Realism allows both pure and impure universal quantum states. How-
ever, the latter is compatible with additional laws of physics (such as the Initial 
Projection Hypothesis) that make it physically impossible for the universe to 
be in a pure state. 

Are there modifications of Bohmian mechanics, collapse theories, and Everettian 
quantum mechanics for which Density Matrix Realism is a natural framework? Yes, 
there are. They have been discussed, but not necessarily endorsed, by several authors 
in the foundational literature. For example, Dürr et al. (2005), Allori et al. (2013) 
have considered density-matrix realist versions of Bohmian mechanics, GRW the-
ory, and Everettian quantum mechanics. See also Maroney (2005), Wallace (2012). 
For example, in the Bohmian framework, we can evolve the fundamental universal 
density matrix .W by the Von Neumann Equation: 

.iℏ
∂Ŵ

∂t
= [Ĥ , Ŵ ] (1) 

particle configuration by a new guidance equation (Dürr et al. 2005): 

.
d Qi

dt
= ℏ

mi
Im

∇qi W (q, q ', t)

W (q, q ', t)
(q = q ' = Q) (2) 

and distribute the initial particle configuration by: 

.P(Q(t0) ∈ dq) = W (q, q, t0)dq (3)
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This version of Bohmian mechanics satisfies equivariance just as the wave-function 
version does (Dürr et al. 2005; Dürr, et al. 1992). In the Everettian framework, we 
can unitarily evolve the fundamental universal density matrix .W by the same von 
Neumann equation (1), understand the emergent branching structure via decoherence, 
and apply decision theory or self-locating probability to recover the Born rule (Chua 
and Chen 2023). We also have the option to add a separable fundamental ontology 
in spacetime by defining a mass-density field (Allori et al. 2013): 

.m(x, t) = tr(M(x)W (t)), (4) 

with.M(x) = Σ
i miδ(Qi − x), and.Qiψ(q1, q2, ...qn) = qiψ(q1, q2, ...qn).Finally, 

in the GRW framework, we can interrupt the unitary evolution of the fundamental 
universal density matrix.W with spontaneous collapses that occur at rate.Nλ (where 
.N is the number of “particles” in the universe): 

.WT + = ΛIk (X)1/2WT −ΛIk (X)1/2

tr(WT −ΛIk (X))
(5) 

with.WT + the post-collapse density matrix,.WT − the pre-collapse density matrix, and 
.X distributed by the probability density .ρ(x) = tr(WT −ΛIk (x)), where the collapse 

rate operator is defined as .ΛIk (x) = 1
(2πσ 2)3/2

e− (Qk −x)2

2σ2 . Similar to the wave-function 
versions of GRW, we can define density-matrix versions of GRW with local beables 
such as a mass-density field .m(x, t) or flashes .F (Allori et al. 2013). 

Each of the preceding theories posits a fundamental universal density matrix with 
precise laws of nature. The three theories are called W-BM, W-EQM, and W-GRW. 
Given appropriate choices of the universal quantum state, each density-matrix theory 
is empirically equivalent to its wave-function counterpart, so that they cannot be 
distinguished even in principle by experiment or observation (Chen 2019a). I return 
to this issue in Sect. 5.1. 

2.2 The Arrow of Time 

To appreciate the Initial Projection Hypothesis in the Wentaculus, we need to review 
a standard account about the arrow of time. Given the reversibility of the fundamental 
dynamical laws, we must locate the origin of macroscopic irreversibility somewhere 
else. A proposal that has been influential in foundational literature posits a low-
entropy boundary condition called the Past Hypothesis. 1 Roughly speaking, if our 
universe started in the Past-Hypothesis region of the global state space, it will (with

1 See Albert (2000), Goldstein (2001), Callender (2004), Callender (2011), Lebowitz (2008), North 
(2011), Wallace (2023), Loewer (2020), Goldstein et al. (2020), and Chen (2023). For some criti-
cisms, see Earman (2006); Winsberg (2004). 
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overwhelming probability) wander into states of higher entropy and eventually arrive 
at the thermodynamic equilibrium. 

For concreteness, I focus on the Mentaculus theory of (Albert, 2000, 2015) and 
(Loewer, 2007, 2012), a particular version of the neo-Boltzmannian approach to the 
foundation of statistical mechanics. It contains two assumptions in addition to the 
fundamental dynamical laws. Following Albert and Loewer, let us call this package 
the Mentaculus: 

1. Fundamental Dynamical Laws (FDL): the classical microstate of the universe 
is represented by a point in phase space (encoding the positions and momenta of 
all particles in the universe) that obeys .F = ma, where .F encodes the classical 
interactions. 

2. The Past Hypothesis (PH): at a temporal boundary of the universe, the microstate 
of the universe lies inside .M0, a low-entropy macrostate that corresponds to a 
small-volume set of points on phase space that are macroscopically similar. 

3. The Statistical Postulate (SP): given the macrostate.M0, we postulate a uniform 
probability distribution with respect to the natural measure over the microstates 
compatible with .M0. 

Some comments: 
(i) Loewer borrowed the name “Mentaculus” from the Coen Brothers movie A 

Serious Man (2009). It means the “probability map of the universe.” The Classical 
Mentaculus provides a probability assignment for every proposition formulable in the 
language of the classical phase space. If correct, it may account for all the temporally 
asymmetric phenomena and underly the objective probability in deterministic physics 
and the special sciences (Loewer 2020). 

(ii) There is a certain degree of vagueness in the partition of state space into 
macrostates, and hence in PH and SP. A macroscopic description of the initial state 
does not correspond to any exact region in phase space. Any choice of an exact region 
risks a certain kind of objectionable arbitrariness (Chen 2022b). 

(iii) The probability distribution in SP can be regarded as an objective notion 
of “most” with which we can ignore the anti-thermodynamic initial microstates in 
the PH region of the state space. This can be interpreted as a kind of deterministic 
objective probability (Loewer 2001) or typicality measure (Goldstein 2012). In the 
quantum case, it is distinct from and in addition to the Born rule postulate. 

How should we implement the Mentaculus in quantum theory? On Wave Function 
Realism, the natural strategy is to replace the classical state with a quantum pure state. 
This is a standard picture of Boltzmannian quantum statistical mechanics (Goldstein 
et al. 2010). We posit the quantum state of the universe as represented by a unitarily 
evolving wave function (obeying the Schrödinger equation) that started out in a 
low-entropy region in the Hilbert space, represented by a low-dimensional Past-
Hypothesis subspace that corresponds to low quantum Boltzmann entropy. We further 
postulate a uniform probability distribution over all wave functions compatible with 
the PH subspace, with respect to the natural surface area measure on the unit sphere 
of the subspace. Call this the Wave-Function Mentaculus.
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What about on Density Matrix Realism? A similar strategy is to replace the uni-
versal wave function with a universal density matrix that can be pure or impure. We 
postulate a unitarily evolving density matrix (obeying the von Neumann equation) 
that started out in the PH subspace. We further postulate a uniform probability dis-
tribution over all density matrices compatible with the PH subspace, with respect to 
the natural measure on the space of all such density matrices (Chen and Tumulka 
2022). Call this the Density-Matrix Mentaculus. 

An interesting feature of Density Matrix Realism is that there is another and 
perhaps more compelling way to implement the key idea. It satisfactorily removes 
the inherent vagueness of PH and eliminates the SP. That is the Wentaculus. 

3 The Wentaculus 

3.1 The Initial Projection Hypothesis 

Can we do better than the preceding quantum versions of Mentaculus, in the sense 
of obtaining a unique initial quantum state? I suggest that we can. Recall that for any 
finite-dimensional Hilbert space .H there is a natural density matrix in that Hilbert 
space—its normalized projection operator. I

dimH ,where. I is the identity / projection 
operator on .H and .dimH is the dimension of .H . Moreover, in general . I

dimH is 
the simplest object one can associate with .H , containing no more information than 
is contained by .H itself. Hence, if .H is simple to characterize, then .

I
dimH is also 

simple to characterize. 
As a special case, consider the particular Past-Hypothesis subspace.HP H (which, 

among other things, has very low dimension and thus very low quantum Boltzmann 
entropy .SB(H ) = kBdimH ). There is a natural density matrix in .HP H , namely 
.

IP H
dimH P H

, with .IP H the identity / projection operator on .HP H and .dimHP H the 
dimension of .HP H . It is as simple to characterize as the Past-Hypothesis subspace 
itself (modulo a normalization constant). Therefore, if the PH is sufficiently simple 
to be considered a law, then the natural density matrix .

IP H
dimH P H

is too. 
I propose (Chen 2018) the following posit about the initial density matrix of the 

universe, called the Initial Projection Hypothesis (IPH): 

.ŴI P H (t0) = IP H

dimHP H
, (6) 

All the arguments that the PH should be nomological apply to IPH. I think the best 
understanding of this posit is a fundamental law of nature. After all, it is no more 
complicated and no less informative than usual versions of the PH (Chen 2023). 

The posit can be generalized to other types of initial constraints. Here is a recipe: 
starting from the full Hilbert space (energy shell) .H , we can use simple principles 
(if there are any) to determine an initial subspace .H0 ⊂ H , choose the natural
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quantum state in that subspace—the normalized projection .Ŵ0(t0) = I0
dimH 0

. The  
natural choice will be simple and unique. 

3.2 Three Versions of the Wentaculus 

When we add the IPH to Density Matrix Realism, we arrive at the 
Wentaculus 2: 

1. Fundamental Dynamical Laws (FDL): the quantum state of the universe is 
represented by a density matrix.Ŵ (t) that obeys the von Neumann equation (1). 3

2. The Initial Projection Hypothesis (IPH): at a temporal boundary of the universe, 
the density matrix is the normalized projection onto .HP H , a low-dimensional 
subspace of the total Hilbert space. (That is, the initial quantum state of the 
universe is .ŴI P H (t0) as described in equation (6).) 

The Wentaculus implements the key idea of the Mentaculus for quantum theory. How-
ever, unlike the the Wave-Function Mentaculus, it requires Density Matrix Realism; 
moreover, unlike the Density-Matrix Mentaculus, its boundary condition law nar-
rows down the choices of the initial density matrix to a unique one. It contains one 
fewer fundamental postulate than each of the preceding versions of the Mentaculus. 
The Statistical Postulate becomes redundant, because there is exactly one nomolog-
ically possible initial density matrix. In earlier versions of the Mentaculus, there are 
infinitely many nomologically possible initial states compatible with the PH. When 
we replace PH with IPH, we have only one initial state left. 

The Wentaculus is compatible with realist solutions to the quantum measurement 
problem. For the Bohmian Wentaculus, we postulate that the state of the universe is 
described by particle configuration and the universal density matrix, and we add the 
IPH to the list of fundamental laws, described by Eqs. (1), (2), and (3). Given the IPH, 
the initial quantum state of the universe is nomologically necessary. Hence, there is 
only one nomologically possible velocity field for the particle configuration. This 
differs from the Bohmian Mentaculus or standard versions of Bohmian mechanics, 
where there is nomological contingency about the initial quantum state. 

For the Everettian Wentaculus, we postulate that the state of the universe is 
described by the universal density matrix, and we add the IPH to the determinis-
tic dynamical law, described by Eq. (1). Given the IPH, the initial quantum state of 
the universe is nomologically necessary, rendering the theory strongly deterministic 
(Chen 2022c). Given the fundamental laws, there is only one possible history of 
the universal density matrix, and hence only one possible history of the Everettian 
multiverse. I return to this issue in Sect. 4.3.

2 The Wentaculus is so named because (1) it is inspired by the Mentaculus, and (2) “W” is sometimes 
used to denote the fundamental density matrix. 
3 For GRW-type theories, the density matrix obeys the stochastic modification of the von Neumann 
equation described in footnote #22. 
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For the GRW Wentaculus, we add the IPH to the stochastic dynamical law, 
described by Eq. (5). Given the IPH, the initial quantum state of the universe is 
nomologically necessary, but because of the stochastic dynamics, the theory is not 
strongly deterministic. There are many nomologically possible histories of the uni-
versal quantum state, corresponding to different collapse histories permitted by the 
theory. 

Each Wentaculus theory is empirically equivalent to its Mentaculus counterpart, 
but they have physically inequivalent sets of models. For example, in the Bohmian 
case, the two theories will yield different particle trajectories. In the Everettian case, 
the two theories will yield different multiverses with different branches and different 
local descriptions. 

3.3 Realist Interpretations of the Density Matrix 

The Wentaculus is compatible with realist interpretations of quantum mechanics and 
of the quantum state. 

We have four ontological interpretations of the universal density matrix. First, 
we can understand .W (q, q ', t) as representing a physical field evolving in a .6N -
dimensional fundamental space represented by .R6N . The field assigns properties 
to every point on that space. Second, we can understand it as representing a low-
dimensional multi-field. The fundamental space is a.3-dimensional space represented 
by .R

3, and .W (q, q ', t) assigns properties (represented by complex numbers or vec-
tors) to every .2N -tuple of points on that space. Third, we can understand it as rep-
resenting properties of spacetime regions. We can obtain, from the universal density 
matrix, reduced density matrices that correspond to physical properties of regions 
in a .4-dimensional manifold. Such properties are in general non-separable due to 
quantum entanglement. Finally, we can understand it as representing a geometric 
object in Hilbert space. The Wentaculus is also compatible with the nomological 
interpretations of the quantum state. Moreover, as I explain in Sect. 4.1, it solves the 
problem of complexity. While a generic universal quantum state of both quantum 
versions of Mentaculus is enormously complicated, the initial density matrix postu-
lated by the Wentaculus is sufficiently simple to be a law. For more details on these 
realist interpretative options, see Chen (2019b). 

Of course, we need not be realists to accept the Wentaculus. There are non-
realist quantum interpretations according to which the quantum state represents our 
knowledge (or the lack thereof) or practical guidance for how we should act. QBists 
and quantum pragmatists can regard the Wentaculus as giving them the best epistemic 
or practical guidance for what to believe and what to act. In fact, they may be more 
comfortable with mixed states than some realists are.
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4 Implications 

The Wentaculus has implications for several debates in foundations of physics. 

4.1 The Nature of the Quantum State 

On the Wentaculus, we have the option to regard the quantum state as ontological. 
However, we also have an improved option for the nomological interpretation of the 
quantum state. As already mentioned, if PH is sufficiently simple to be a law, then 
the normalized projection onto the PH subspace is sufficiently simple. 

What does it mean to say the quantum state is nomological? As an analogy, 
consider the standard suggestion that the Hamiltonian function in classical mechanics 
is nomological. In Hamilton’s equations: 

.
dqi

dt
= ∂ H

∂pi
,

dpi

dt
= −∂ H

∂qi
, (7) 

the .qi and .pi obviously represent something in the ontology. They have the “marks 
of the ontic.” They take on complicated values, and their values are not completely 
fixed by the theory and thus nomologically contingent. In contrast, the Hamiltonian 
function.H is very different:.H generates motion;.H is simple; and.H is fixed by the 
theory (and nomologically necessary). According to the standard interpretation, H is 
not ontological but nomological. It does not represent things like particles or fields 
but a law that tells particles and fields how to move. 

Consider the guidance equation in Bohmian Wentaculus, with the right hand side 
expanded with a fixed initial density matrix .W0: 

.
d Qi

dt
= ℏ

mi
Im

∇qi <q|e−i Ĥ t/ℏŴI P H (t0)ei Ĥ t/ℏ|q '>
<q|e−i Ĥ t/ℏŴI P H (t0)ei Ĥ t/ℏ|q '> (q = q ' = Q) (8) 

.W0 has a similar character as the Hamiltonian function in Hamilton’s equations: 

.W0 generates motion; .W0 is simple; and .W0 is fixed by the theory (nomologically 
necessary). .W0 has the marks of the nomic and can be given a nomological inter-
pretation. This is to be contrasted with the Bohmian Mentaculus: its initial quantum 
state (either pure or mixed) is not guaranteed to be simple by the PH. Implement-
ing the nomological interpretation would require a different argument, perhaps by 
appealing to considerations about quantum gravity (Dürr, et al. 1996; Goldstein and 
Teufel 2001). 

The nomological interpretation can also apply to certain versions of the Everettian 
Wentaculus with a mass-density ontology. We can understand that the mass density 
is constrained by a law:
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.m(x, t) = tr(M(x)e−i Ĥ t/ℏŴI P H (t0)e
i Ĥ t/ℏ) (9) 

Here .W0 does not generate motion in the sense of giving a velocity field, but it still 
generates the exact shape of the mass-density field in ordinary spacetime. Since.W0 is 
simple, we can take this equation as the fundamental law in the Everettian theory with 
a mass-density ontology, and .W0 is again nomological. What exists in the material 
ontology is just a separable field on spacetime constrained by a simple law. 

What about the GRW Wentaculus? This is a more delicate issue, because of 
interpretational questions about the nature of stochastic laws. However, if we think 
of GRW as giving us guidance about which histories are typical, then the initial 
density matrix together with stochastic dynamics will fix a class of the histories that 
are typical according to the laws, and any local probabilities can be obtained by 
conditionalizing the universal history on available records. 

The nomological interpretation is much more attractive on the Wentaculus than on 
the Mentaculus, because the universal density matrix is guaranteed to be as simple as 
the PH. The nomological interpretation of the initial density matrix is compatible with 
both Humeanism and non-Humeanism. In particular, it demonstrates that quantum 
entanglement need not be a threat to Humean supervenience (Chen 2022). 

4.2 Statistical Mechanical Probabilities 

Another advantage of the Wentaculus is that there is only one kind of probability 
left—quantum mechanical probability. The Statistical Postulate (understood either 
as a probability or typicality measure) in the Mentaculus becomes redundant, because 
the Wentaculus allows only one nomologically possible initial quantum state. 

For example, on the Bohmian Wentaculus, the only probability law we need 
is the distribution postulate of the initial particle configuration. On the Everettian 
Wentaculus, the only probability corresponds to the weights of the actual branches, 
which are interpreted decision-theoretically or using self-locating uncertainty. On the 
GRW Wentaculus, the only probability corresponds to the collapse chances. Hence, 
the probability map of the universe is entirely based on quantum probabilities (Chen 
2020). This way of reducing the sources of probability is more conservative than the 
proposals of Albert (1994) and of Wallace (2023). For the Everettians, this has an 
additional bonus, to which I turn now. 

4.3 Strong Determinism 

The elimination of statistical mechanical probability and the postulate of a maxi-
mal constraint on the initial density matrix leads to an interesting consequence for 
Everettians. The Everettian Wentaculus becomes strongly deterministic, in the sense
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that there is only one nomologically possible history given the fundamental laws. 
In a sense, we have eliminated all sources of arbitrariness in the theory, including 
that of the initial microstate. The theory would have explained everything at the 
fundamental level, leaving nothing nomologically contingent (Chen 2022c). 

The Everettian Wentaculus, I believe, is a realistic and simple example of strong 
determinism. This has implications for thinking about the relevance of strong deter-
minism to our world. Even if one regards Everettian quantum mechanics as the wrong 
solution to the measurement problem, it would be dogmatic to regard it as impossi-
ble, because it may be empirically equivalent to the other quantum theories. Hence, 
strong determinism may be closer to the actual world than we have imagined. 

For non-Everettian versions of the Wentaculus where the quantum state obeys 
unitary dynamics, such as the Bohmian Wentaculus, we have strong determinism 
with respect to the quantum state history. Given the fundamental laws, the history of 
the quantum state could not have been different. The only nomological contingency 
resides in the initial particle configuration. 

4.4 Nomic Vagueness 

Standard versions of the PH, such as those found in all three versions of the Mentac-
ulus, are best understood as fundamental yet vague laws. Removing their vagueness 
by picking an exact set of microstates leads to an objectionable kind of arbitrariness, 
that I call untraceability (Chen 2022b). The reason is that the PH is a macrostate law 
that does not directly enter into the micro-dynamical laws. 

We can regard the Initial Projection Hypothesis as an exact law without com-
mitting to such arbitrariness in nature. The initial density matrix simultaneously 
plays the role of the macrostate and the role of the microstate. It spans the entire 
macrospace—.HP H and yet it also appears in the micro-dynamical laws. Its exact 
values will make a difference to what there is in spacetime or how it evolves. For 
example, in versions where the initial density matrix is ontic, it is automatically 
traceable. In versions where it is nomic, it is still traceable just like a constant of 
nature. Any slight change in its values will in general affect how things evolve, for 
example, by making a difference in the Bohmian velocity field or in the mass-density 
field. 

This has implications for the mathematical expressibility of fundamental laws. 
The untraceable arbitrariness is a cost for eliminating fundamental nomic vagueness 
by fiat, but the Wentaculus takes that cost away. Hence, the Wentaculus saves the 
exactness of fundamental laws without any cost.
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4.5 Theoretical Unity 

With Density-Matrix Mentaculus, the Wentaculus offers more theoretical unity than 
Wave-Function Mentaculus. In Everettian and GRW cases, there is more kinematical 
unity. Even if the universe is in a pure state, most quasi-isolated subsystems do not 
have pure states. 

The Wentaculus (as well as Density-Matrix Mentaculus) provides additional 
dynamical unity in the Bohmian case. Suppose the universe is partitioned into a 
system .S1 and its environment . S2. Since there are no actual spins to plug into the 
spin indices of the wave function, we cannot always define conditional wave functions 
in an analogous way. Still, we can follow Dürr et al. (2005) to define a conditional 
density matrix for . S1, by plugging in the actual configuration of .S2 and tracing over 
the spin components in the wave function associated with. S2. The conditional density 
matrix for .S1 is defined as: 

.Wcond
s1
s '
1
(q1, q '

1) = 1

N

Σ

s2

Ψs1s2(q1, Q2)Ψ
∗
s1s2(q

'
1, Q2), (10) 

with the normalizing factor:.N = ∫
Q1

dq1
Σ

s1s2
Ψs1s2(q1, Q2)Ψ

∗
s1s2(q

'
1, Q2). Even if 

the universe is in a pure state, the configurations of most subsystems are guided by 
mixed states according to W-BM. 

5 Objections and Replies 

5.1 Reliability of Records 

Albert (2022) raises two worries about the Wentaculus. Here I address his worry 
about the reliability of records on the Bohmian Wentaculus. In Sect. 5.2, I address 
his worry about time-translation invariance. 

Objection: Suppose we have two momentum eigenstates, one with momentum 
.+1 (moving uniformly to the right) and the other.−1 (moving uniformly to the left). 
On the Bohmian Mentaculus, one of them is the actual quantum state guiding the 
particle. The particle will be either moving to the left or to the right. However, on 
the Bohmian Wentaculus, if we regard the equal mixture of the two as the funda-
mental density matrix, the particle guided by this density matrix will be “entirely, 
and permanently, and with certainty, at rest.” 4 Nevertheless, when we measure the 
particle, the record may indicate that the particle is moving. Hence, that is a trou-

4 Albert’s thought experiment relies on certain idealizations about momentum eigenstates. We usu-
ally require the particle configuration to be guided by square-integrable wave functions or density 
matrices with finite traces, which do not include momentum eigenstates. However, as Sheldon Gold-
stein points out to me, the example can be fixed by considering momentum eigenstates defined on 
a closed circle instead of on an infinite line. 
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bling mismatch between the experimental outcome and the state of the particle on 
the Bohmian Wentaculus: the particle is not moving but the record says it is. The 
mismatch undermines our confidence in the reliability of records in a way analogous 
to the worry about Bell’s Everett (?) theory (1981). 

Reply: In a single-particle universe, there are no macroscopic records or human 
experiences. In a many-particle universe, things become more realistic and interest-
ingly different. To analyze measurements and records, we need to consider the full 
physical setup of the subsystem and the environment. 

Does the particle move when we include the environment? The answer is yes. 
Before measurement, the conditional density matrix of the particle, obtained by 
plugging the environmental configuration (where the recording device is in a ready 
state) into the universal density matrix, is an equal mixture of the “+1” momentum 
eigenstate and the “–1” momentum eigenstate. After measurement, the particle is 
measured and suppose the record indicates that it is moving to the left. Plugging 
the new environmental configuration into the universal density matrix, the condi-
tional density matrix of the particle is approximately the “–1” momentum eigenstate, 
because the two parts of the universal density matrix have become macroscopically 
disjoint and decohered, with the configuration sitting in the “–1” part. Hence, the 
particle is uniformly moving to the left. There is no mismatch between the record 
and the state of the particle. The reply here is similar to Bohm’s reply (1953) to  
Einstein (1953). 5 We should have no less confidence in the reliability of records on 
the Bohmian Wentaculus than on the Bohmian Mentaculus. 

5.2 Time-Translation Invariance 

Albert’s second worry targets the nomological interpretation of the quantum state 
on the Wentaculus. The reason for postulating an initial universal quantum state, on 
the nomological interpretation, is to constrain how material objects move in space-
time. Hence, the universal quantum state is not some material object with its own 
independent dynamics. The only things that move and change should be particles 
(or fields) in physical spacetime, with (8) being the only fundamental dynamical 
law on the Bohmian Wentaculus and (9) on the Everettian Wentaculus. Since the 
right hand sides of (8) and (9) change their functional forms over time, they are not 
time-translation invariant. 

Objection: The Wentaculus on the nomological interpretation of the quantum 
state is fundamentally non-time-translation-invariant, but the world described by such 
a theory is phenomenologically time-translation-invariant. The theory is “divided 
against itself” Albert (2022, p. 28).

5 In response to Einstein’s worry about the particle in a box of length . L with a real-valued wave 
function.ψ(x) = Asin 2πnx

L , Bohm points out that ordinary Bohmian mechanics does not “contra-
dict any known experimental facts,” because when we carry out a “momentum measurement,” the 
wave function (of a stationary state) is transformed and the particle starts to move, even though its 
original momentum is exactly zero. 
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Reply: First, it is hard to see why this is a bug from Albert’s own perspective. For 
example, Bohmian mechanics is not Lorentz invariant, but the phenomenological 
world described by such a theory is. Albert’s high-dimensional ontological inter-
pretation of the wave function tells us the world is fundamentally .3N -dimensional 
(with .N ≈ 1080), while the phenomenological world described by such a theory is 
.3-dimensional. Fundamental reality may not be an exact image of our phenomeno-
logical world. Sometimes theoretical reasons take us to surprising conclusions about 
fundamental reality. As long as there is a natural and simple explanation of the 
phenomena from the fundamental, the theory is not self-undermined. 

Second, there is a formal and technical sense in which we can recover a set 
of non-fundamental laws of the motion that are time-translation invariant. One can 
define a universal quantum state.Wt from the fundamental laws (the Initial Projection 
Hypothesis and the von Neumann equation). With respect to this derivative object.Wt , 
the particle motion will be time-translation invariant. This explains why there exists 
a predictive recipe that is time-translation invariant; the violation at the fundamental 
level makes no practical difference. 

Third, I regard invariances and symmetries as only defeasible indicators for sim-
plicity, and the lack thereof as defeasible indicators for complexity. Overall simplicity 
is something we should strive for. Does the violation of time-translation invariance 
render the Wentaculus more complicated than the Mentaculus? No; in fact the theory 
becomes simpler because of it. The defeasible indicators can be ignored in this case, 
because we already know we have a simple theory. 

Finally, the non-invariance may be regarded not as a cost but an advantage of 
the theory, as manifestation of a deeper unity. In the Mentaculus, the theory is not 
fundamentally time-translation-invariant, because PH applies only at a particular 
time. However, we can still understand a sense in which the Mentaculus is time-
translation-invariant. We can separate the dynamics from the boundary condition 
constraint; the dynamics is invariant even though the boundary condition is not. 
But in the Wentaculus, on the nomological interpretation, there is no such clean 
separation. The two are genuinely intertwined and unified into a single law. 

5.3 Ontological Redundancy 

The objection from ontological redundancy has come up in conversations. (Wallace 
(2012, p. 399) mentions but does not necessarily endorse an objection like this.) 

Objection: The Wentaculus requires us to accept density matrix realism, which 
leads to “a major expansion of our ontology, from admitting only pure states, to 
admitting also mixed states.” And this seems problematic and unjustified. 

Reply: Density Matrix Realism does not have a larger ontology (about what 
actually exists) than Wave Function Realism. In fact, both frameworks postulate 
that there is exactly one actual quantum state of the universe. Their difference is a 
modal one, having to do with which states are possible. However, the possibility here 
is stronger than metaphysical possibility but potentially weaker than nomological
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possibility. They impose substantive constraints on what kind of states the universe 
can have. There can be additional fundamental laws of nature, such as the Initial 
Projection Hypothesis, that further limit such possibilities. 

Perhaps what is behind this worry is the following parsimony principle: 

Parsimony of Nomological Possibilities All else being equal, we should prefer 
theories with smaller sets of nomological possibilities. 

Ironically, this principle works against the objection, because it supports the Wen-
taculus over the Mentaculus. The Wentaculus is compatible with exactly one nomo-
logically possible initial quantum state, while the Mentaculus is compatible with 
infinitely many. Hence, by Parsimony of Nomological Possibilities, all else being 
equal, we should prefer the Wentaculus to the Mentaculus. From the perspective of 
the Wentaculus, it is the Mentaculus that leads to a major expansion of our nomo-
logical possibilities. 

5.4 The Classical Analogue 

The final worry is hard to articulate but important to address, because many philoso-
phers of physics have raised this objection in conversations. 

Objection: The same “trick” can be played in the classical context. This means 
that all the advantages of the Wentaculus are too easy to achieve and therefore trivial. 
On first glance, the suggested maneuver is to take the “probability distribution” (. ρ) 
as “ontic” or “nomic.” The same thing can presumably be done in the classical 
context (see McCoy (2020) for an example), where the probability distribution on 
phase space can be given a similarly ontic or nomic interpretation, thus avoiding the 
problems in the classical domain as well. If that is possible, it seems to show that 
either we have proven too much, or that it does not depend on the details of quantum 
theory. 

Reply: It is much less natural to give an ontic or nomic interpretation of the 
probability distribution in classical statistical mechanics. If we use the same idea in 
the classical domain, we will get a many-worlds version of classical mechanics or lose 
determinism. The classical probability distribution. ρ plays no dynamical role (unlike 
the density matrix in the W-quantum theories). Since . ρ follows the Hamiltonian 
dynamics, it will in general be supported on many macroscopically distinct regions 
on phase space. If we reify . ρ as ontic and do not modify the dynamics, we arrive 
at a many-worlds theory for classical mechanics. If we modify the dynamics to 
introduce objective “collapses” of . ρ that take it to some “branch” of . ρ, it will look 
much more artificial and complex than the original deterministic classical theory. In 
contrast, on each of the three interpretations of QM, the artificial effects do not arise 
on the Wentaculus. The Bohmian version remains deterministic (and single-world), 
the GRW version remains stochastic (and single-world), while the Everettian/many-
worlds version is still deterministic. On the other hand, even if a classical extension
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of our maneuver is possible, it is unclear how it makes the quantum case trivial, since 
presumably both require different choices of the ontology and the dynamics. 

6 Conclusion 

The Wentaculus is an attractive picture of quantum mechanics in a time-asymmetric 
universe. It is a coherent theory, with arguably a better package of theoretical virtues 
than the standard picture. It illuminates the differences between Density Matrix 
Realism and Wave Function Realism, and displays the advantages of permitting 
fundamental mixed states. It has implications for our discussions about laws, chance, 
randomness, symmetries, vagueness, determinism, and the quantum reality. If the 
Wentaculus is correct, then solutions to the puzzles of time’s arrow and quantum 
ontology are deeply related. Nature is so unified that we can solve both problems 
with one key. 
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Bohmian Mechanics as a Practical Tool 
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and Xavier Oriols 

Abstract In this chapter, we will take a trip around several hot-spots where Bohmian 
mechanics and its capacity to describe the microscopic reality, even in the absence 
of measurements, can be harnessed as computational tools, in order to help in the 
prediction of phenomenologically accessible information (also useful for the follow-
ers of the Copenhagen theory). As a first example, we will see how a Stochastic 
Schrödinger Equation, when used to compute the reduced density matrix of a non-
Markovian open quantum system, necessarily seems to employ the Bohmian concept 
of a conditional wavefunction. We will see that by dressing these conditional wave-
functions with an interpretation, the Bohmian theory can prove to be a useful tool 
to build general quantum simulation frameworks, such as a high-frequency electron 
transport model. As a second example, we will explain how a Copenhagen “observ-
able operator” can be related to numerical properties of the Bohmian trajectories, 
which within Bohmian mechanics, are well-defined even for an “unmeasured” sys-
tem. Most importantly in practice, even if these numbers are given no ontological 
meaning, not only we will be able to simulate (thus, predict and talk about) them, 
but we will see that they can be operationally determined in a weak value experi-
ment. Therefore, they will be practical numbers to characterize a quantum system 
irrespective of the followed quantum theory. 
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1 Introduction 

Questioning whether “there are” electrons inside our mobile phones sounds like an 
absurd reflection, and yet the standard (also called Copenhagen or orthodox) quan-
tum theory is not able to affirm it [ 1, 2]. Under this theory, a quantum object has a 
well-defined property (like the position) only when its wavefunction is an eigenstate 
of the associated operator. We know that this happens when the property is “strongly 
measured”. But in general, the wavefunction is in a superposition of eigenstates for 
the operator of that observable, meaning nothing can be said about it: the prop-
erty becomes “unspeakable” until measured. Consequently, the Copenhagen theory 
affirms that it is meaningless to talk about, say, the positions of the electrons inside 
the active regions of nanoscale devices, because while in operation, their position 
is never (strongly) measured. Thus, there is no chance for an affirmative answer to 
our initial question. And yet, consciously or not, no engineer or applied physicist 
can seriously accept there is no electron in an operating nano-device like a transistor 
[ 1, 2]. Fortunately, alternatives to the Copenhagen interpretation of quantum mechan-
ics exist, by which electrons have a defined position irrespective of their measurement 
and the state of superposition of their wavefunction, e.g., the well-known Bohmian 
interpretation [ 3– 6]. 

What might be more relevant from a practical point of view, however, is that even 
if one turns a blind eye to these “picky unspeakabilities” of the Copenhagen theory, 
their implications also limit the employable modelling tool-set, making some scenar-
ios look (unnecessarily) pathological. For example, the explained undefined position 
of electrons comes into conflict with a well-defined dwell time for the electrons in the 
active region of a nano-scale transistor, which is an essential parameter to predict the 
performance of next generation computers. Similar practical issues can be found in 
the search of measurement operators (like the multi-electron displacement current [ 7, 
8]) in scenarios where their mathematical shape is far from obvious (e.g. in nano-scale 
devices operating at THz frequencies [ 9]), or when looking for pure state “unravel-
lings” in non-Markovian open quantum systems. As we will see in this chapter, such 
problems happen to be unambiguously solvable under the Bohmian quantum theory. 
Interestingly, it turns out that the ones who came up with the mathematical tools that 
allow the prediction of the phenomenological manifestations of these “pathologi-
cal” scenarios, were many times non-Bohmian physicists, who, maybe accidentally, 
reached concepts natural to Bohmian mechanics, like position post-selected weak 
values [ 10] or the conditional wavefunction [ 11, 12]. We will see in this chapter 
that, giving to these frameworks their (natural) Bohmian narrative, makes them even 
more capable computational tools (even useful for the followers of the Copenhagen 
theory).
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1.1 A Suggestive Review 

We can arrive at these conclusions through the inherently Bohmian concepts of a 
conditional wavefunction (CWF) and an effective wavefunction (EWF), introduced 
by Dürr et al. [ 13], together with the understanding of the measurement dilemma they 
illuminate [ 14]. But before going into the details, we note that only non-relativistic 
quantum phenomena will be discussed in this chapter. The spirit is to show that, 
for this kind of phenomena and their formulation, the Bohmian theory provides a 
most convenient narrative. 

Given an isolated quantum system of .N degrees of freedom described by the 
real coordinate vector .→q = (q1, . . . , qN ) ∈ RN , its evolution in time . t is given 
by two entities: a complex wavefunction .Ψ(→q, t), which in polar form . Ψ(→q, t) =
ρ1/2(→q, t)eiS(→q,t)/ℏ encodes the real fields . S and . ρ, and a trajectory . →q ξ(t) ≡ →q (→ξ, t)
for the degrees of freedom, the initial condition of which, .→q ξ(t = 0) = →ξ ∈ RN , 
labels the actual trajectory among the possible ones. This trajectory is piloted by the 
wavefunction, which provides the velocity field .vk for the .k-th degree of freedom 
as .vk(→q, t) := 1

mk

∂S(→q,t)
∂xk

[ 3– 6]. Meanwhile, the wavefunction itself is guided by the 
Schrödinger Equation 

.iℏ
∂Ψ(→q, t)

∂t
=

[ N∑
k=1

−ℏ
2

2mk

∂2

∂q2
k

+U (→q)
]
Ψ(→q, t), (1) 

where .mk is the mass associated with the .k-th degree of freedom and .U denotes the 
potential energy field describing the interaction between the degrees of freedom. 

The most general isolated system we can consider is the entire Universe, where 
. →q would reflect its possible configurations. Then, if we partition it into a subsystem 
of interest S, of .n < N degrees of freedom .→x = (x1, . . . , xn), and its (big) environ-
ment, of degrees of freedom .→y = (yn+1, . . . , yN ), such that .→q ≡ (→x, →y), Bohmian 
mechanics allows us to associate to the system and the environment their own wave-
functions, labelled by the initial joint configuration . →ξ, as . ψξ(→x, t) := Ψ(→x, →y ξ(t), t)
and .ϕξ(→y, t) := Ψ(→x ξ(t), →y, t). These are particular cases of the so called condi-
tional wavefunctions. In general, a CWF is a “slice” of a wavefunction, obtained 
by evaluating some of its degrees of freedom along a (Bohmian) trajectory, while 
leaving the rest of them un-evaluated [ 6, 13]. Now, a priori, the actual trajectories 
.→x ξ(t) and.→y ξ(t) are unknown, but by the Quantum Equilibrium principle [ 13], if the 
trajectory of the whole Universe had a “typical” initial condition . →ξ, the probability 
density of the position . →x at time . t (resp. . →y), will be given by the CWF as . |ψξ(→x, t)|2
(resp. .|ϕξ(→y, t)|2). 

As proved in [ 15], the full Schrödinger Equation (1) can be rewritten exactly into 
a coupled pair of dynamical equations ruling the motion of the two CWFs. Assuming 
we can write .U (→x, →y ) = Ux (→x ) +Uxy(→x, →y ), for the system S we have 1

1 For the environment the equation will be the same but changing the CWF and the index ranges in 
(2) and  (3).
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. iℏ
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+Ux (→x ) +Uxy(→x, →y ξ(t)) + W(→x, →y ξ(t), t)

]
ψξ(→x, t), (2) 

where .W is the so-called quantum correlation potential 

.

W(→x, →y ξ(t), t) :=
N∑

j=n+1

[
− ℏ
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2m jρ1/2

(
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2
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−i ℏ
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∂v j (→x,→y,t)

∂y j

] II→y = →yξ(t)

(3) 

where we recognize as its real part .Re{W} the difference between the Bohmian 
quantum potential [ 5, 6] and the kinetic energy of the environment degrees of freedom 
. y j ; and as the imaginary part.Im{W}, the spatial variation in the environment axes. y j
of their associated Bohmian velocity. The evaluation of both parts involves, at each 
. →x , a derivative of the phase. S or of the magnitude. ρ of the full wavefunction.Ψ along 
the environment coordinates. →y, centered at the trajectory position.→y ξ(t). This means 
.W requires information about the wavefunction over nearby possible trajectories 
.→y ξ'

(t) = →y ξ(t) + ∆	→y, with .|∆	→y | small. That is, the evolution of the CWF . ψξ(→x, t)
depends on other adjacent CWFs or slices of the full wavefunction (with different 
. →ξ). This feature is known as “quantum wholeness” [ 6]. 

Now, we might ask when the subsystem CWF .ψξ(→x, t) behaves as if it was an 
independent closed quantum system wavefunction, ruled by a unitary Schrödinger 
Equation like Eq. (1).  We  see in Eq.  (2) that this happens for instance when . W =
f (t) (adding only a global phase) and .Uxy(→x, →y ξ(t)) ≃ V (→x, t) with a same shape 
irrespective of the trajectory . →ξ. 2 Whenever this is the case, we can say that the 
CWF of the system is its effective wavefunction. The question is then: when do 
these two conditions happen? One of the most important cases is just after a “strong 
measurement” of the subsystem. 

This is well-known in the Bohmian literature about measurement [ 5, 13, 14], but 
let us review it qualitatively, because it will be key to understand Markovianity. Given 
an initially closed quantum system S with EWF .|ψ(0)>S = ∫

ψξ(→x, t = 0)dnx , fol-
lowing the standard von Neumann protocol [ 16], as part of the environment of S, 
let us consider the degree of freedom of the pointer of a macroscopic measuring 
apparatus M,.z ≡ yn+1. Initially this pointer will be around its repose position, inde-
pendently of the rest of the environment, meaning it should have a localized EWF 
.|ϕ(0)>M . Then, S and M are made to interact until .t = T , through the von Neumann 
coupling Hamiltonian.ĤMS := μ̄(t) p̂M ⊗ B̂S , where. p̂M is the pointer’s momentum

2 If only .Im{W} vanished, the CWF would already seem to be ruled by a unitary Schrödinger 
Equation of a closed system, with a real potential energy field defined as. V (→x, t) := U (→x, →y ξ(t)) +
Re{W(→x, →y ξ(t), t)}. Computationally though, in order to evaluate.Re{W} and the trajectory.→yξ(t), 
a quantum description of the environment would still be required, making the CWF of S not 
independent of the environment’s evolution and thus, not an EWF. 
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operator, .B̂S = ∑
k bk |bk> <bk | with .bk ∈ R is the diagonalized self-adjoint operator 

related to the property. B of the system we wish to “measure” and.μ := ∫ T
0 μ̄(t)dt is 

the interaction strength. This Hamiltonian entangles the position of the pointer. z with 
the eigenstates .|bk>S of .B̂S such that, the system-pointer wavefunction will separate 
the eigenstates.|bk>S along the configuration space axis. z, by enveloping each with a 
differently displaced version of the localized.|ϕ(0)>M , scaled by.Pk := | <bk |S |ψ>S|2. 
For a reproducible measurement [ 14] and the pointer to show us macroscopically 
distinguishable results . bk , the interaction . μ, proportional to the separation of the 
envelopes, must be strong enough to leave them macroscopically disjoint in. z. Then, 
the pointer will show a position .zξ(T ) around one of these envelopes, which will 
“slice” a CWF for S equal to the eigenstate .|b j >S , modulated by that envelope. This 
will happen with probability .Pj (area of the envelope) given by the Quantum Equi-
librium principle [ 13]. The CWFs linked to the rest of possible envelopes, are called 
“empty waves”. At this point, the Copenhagen theory postulates a so-called “wave-
function collapse”, that transforms the entangled wavefunction into a product of a 
single eigenstate.|b j >S and its corresponding envelope [ 16]. In Bohmian mechanics, 
there is no need to postulate any physical “collapse”, instead the orthodox collpase 
is seen just as an apparent process. Because the different CWF “groupings” in. z have 
a macroscopically disjoint support, and because for .t > T , the coupling potential 
vanishes, .μ̄(t) = 0, the correlation potential .W for S “vanishes”. In consequence, 
the CWF for S selected by the Bohmian position of the pointer, will evolve for. t > T
as if it were again an independent closed quantum system wavefunction: it will be 
an EWF. Since the EWF is enough for the complete future description of S, we can 
consider an “effective collapse” .|ψ>S → |b j >S . 

Notice that either the assumption that, for time .t > T , M does not interact any-
more with S, or that its entanglement with S is lost by some sort of thermalisation 
(by which the empty waves get macroscopically dispersed in configuration space 
[ 13]), mean that the information of S “leaked” to the environment M, the “empty 
waves” do not interact back with the EWF of S. These assumptions thus imply that 
the environment effectively “forgets” the entanglement achieved with S. This is an 
environment behaviour we could call memory-less or Markovian. 

Using this effective collapse idea, we can extract more general information about 
the subsystem. If part of the environment, let us call it the “ancilla” A, gets entangled 
with S and this ancilla then suffers an effective collapse as in the measurement we 
just described, S will also suffer an effective “collapse”, but now into non-necessarily 
orthogonal, nor linearly independent states. If say, .|θ0>A and .|ψ>S are the EWFs of 
A and S before their interaction, then a general unitary evolution coupling them will 
yield.ÛAS|θ0>A ⊗ |ψ>S = ∑

m |θm>A ⊗ M̂m |ψ>S , with.{|θm>A}m an orthonormal basis 
of A’s Hilbert space and.{M̂m}m a family of bounded linear operators on S, such that 
.
∑

m M̂†
m M̂m equals the identity. By measuring the observable of A with eigenstates 

.{|θm>A}m , the composite will collapse into the (unnormalized) EWFs.|θm> ⊗ M̂m |ψ>S , 
with probabilities.Pm := <ψ|S M̂†

m M̂m |ψ>S , where the corresponding CWF of S would 
be .|φm>S := M̂m |ψ>S . If A and S stop interacting, .|φm>S will be EWFs of S, called
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“conditional states” (which are a particular types of CWFs), 3 and this process is 
called a generalized measurement of S [ 14, 17]. 

Within the described scenario, consider the interpretation of density matrices in 
Bohmian mechanics, as useful tools for statistical predictions about stochastic ensem-
bles of wavefunctions (even if they provide an incomplete microscopic description) 
[ 14, 18]. Then, the partial trace of A in the state .ÛAS|θ0>A ⊗ |ψ>S will yield the 
unconditional (meaning we keep track of all possible measurement outcomes) post-
measurement density matrix .ρ̂S = ∑

m |φm>S <φm |S . In general, this suggests, and 
turns out to be the case, that the partial trace of an ancilla partition A of a composite 
AS state, called, the reduced density matrix of S, can always be interpreted as how an 
ensemble of identical subsystems S, each coupled to an identical ancilla A, would be 
left if an strong measurement was performed on each ancilla A [ 17]. By the unique-
ness of the partial trace, this “fictitious measurement” of A could be for an arbitrary 
observable. In consequence, since we could choose the position operator of A, the 
reduced density matrix can always be computed by the ensemble average over possi-
ble CWF-s of S. But importantly, if the traced partition A is not really measured at . t
and the entanglement between A and S is not “thermalised” and their interaction does 
not cease indeterminately, then the reduced density matrix of S will just be a “fiction” 
if interpreted as describing independent possible quantum states. Each conditional 
state of S, each.|φm>S will still interact through the environment’s degrees of freedom 
with each other, namely, they will not be (unnormalized) EWFs. Therefore, even if 
the reduced density matrix is enough to predict measurement statistics on S in typical 
(non-Markovian) scenarios it will not convey enough information to predict its time 
evolution. The traced out environment’s entanglement with the subsystem will need 
to be tracked for that. This could then be called an environment with memory, or 
non-Markovian environment. For example, the microscopic information about the 
spatial distribution of the CWFs along the environment’s axes would be required for 
that, which is encapsulated in the correlation potential (3) (or in the so-called “mem-
ory time superoperator” [ 19] of the standard quantum theory). To know this without 
explicit simulation of the environment is the challenge of open quantum systems. 

2 How Markovian and Non-markovian Stochastic 
Schrödinger Equations Tacitly Employ Conditional 
Wavefunctions 

There are scenarios where the “fiction” we indicated above does provide a reasonable 
description of an open quantum system. Let us consider a scenario where every . ∆	t
time units, a different portion of the environment (a different ancilla) got coupled with 
S and was then (the ancilla) strongly measured. If these ancillas never again inter-

3 If the measurement was for the position operator of A, .|φm>S would be the CWFs of the system 
for the state of .ÛAS |θ0>A ⊗ |ψ>S as it was before the strong measurement of A, otherwise, they 
will only be CWFs of the collapsed.|θm>A ⊗ M̂m |ψ>S . 
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acted with S (or their entanglement was somehow “thermalised” before their next 
interaction with S), the result would be equivalent to a generalized measurement of 
S every.∆	t . Then, following our previous comments, we could call such a system S, 
a Markovian open quantum system [ 20], satisfying, among others, the “Past-Future 
Independence” characterization of Ref. [ 21]. It turns out, as shown by Ref. [ 22], 
that if .∆	t → 0, such a continuous measurement of ancillas that sequentially get 
coupled to the subsystem S, can be used to derive the dynamical equation for the 
reduced density matrix of S (also known as the master equation) of several Marko-
vian environments. Moreover, it is proven that for any Markovian master equation 
a (perhaps fictitious) environment and a set of observables for it exist, such that the 
equation is interpretable as due to their simultaneous and continuous measurements 
[ 21, 22]. 

As a consequence, for a Markovian environment, instead of directly solving the 
master equation for S, we could do the following. First, find (fictitious or not) envi-
ronmental ancillas and observables . W , such that if the ancillas got entangled with S 
one after the other, and their properties .W were sequentially measured, they would 
cause the same (unconditional) evolution of the reduced density matrix of S, as the 
one described by the master equation (which in principle is possible for all Markovian 
master equations). Then, if a pure state-vector of S was evolved, by choosing for each 
projective measurement of the bath ancillas, one of the possible post-measurement 
conditional states, this would generate pure states .|ψw(t)(t)>S , associated with a cer-
tain chain of measurement results (an unravelling) for the bath ancillas: .w(t). 4 This 
pure state .|ψw(t)(t)>S is called the quantum trajectory, linked to the “noise real-
ization” .w(t) for its environment [ 17, 20, 21]. As we saw previously, the reduced 
density matrix of S defines how S would be left if an unconditional measurement 
was performed on its environment. Since in Markovian systems, this can actually be 
assumed to be happening, the reduced density matrix for S is obtainable by averaging 
the quantum trajectories for the ensemble of possible bath measurement chains. w(t)
[ 20, 21] 

.ρ̂S(t) := trE [ρ̂ES(t)] = Ew(t)

[
|ψw(t)(t)>S

<
ψw(t)(t)

II
S

]
. (4) 

Computationally, this means that if for a given master equation, we obtain the stochas-
tic equation ruling the time evolution of such state-vectors .|ψw(t)>S , we would be  
able to parallelize the computation of the reduced density matrix by solving several 
independent “vector equations”, instead of a single big “matrix equation” [ 20, 21]. 
Equations of this kind are the so-called Stochastic Schrödinger Equations (SSEs) 
[ 17, 22]. Note that such a quantum trajectory.|ψw(t)>S for a Markovian environment, 
can always be physically interpreted in the Copenhagen explanation as a so-called 
pure unravelling [ 21] (where one would invoke the collapse of the subsystem wave-
function at each.∆	t). In the Bohmian view on the other hand, such a quantum trajec-

4 At each time a different generalized measurement is performed on S, meaning the stochastic 
trajectory .w(t) reflects the Bohmian positions of different measurement pointers at each .∆	t . Its  
non-differentiability is thus unproblematic. 
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tory is just a normalized CWF of the subsystem S which is converted into an EWF 
(thus the normalization), after every significant .∆	t . 

However, what if we had an environment that got entangled with S, but which never 
really allowed us to consider an effective collapse? What if the different CWFs of the 
subsystem S were allowed to interact in any future time, instead of being converted 
into EWF every.∆	t? That is, what if the “quantum trajectories”.|ψw(t)>S for different 
.w(t) could interact between them in future times, making their time evolutions not 
independent (and not parallelizable unless approximations are made)? This would 
mean that “the information leaked” into the environment from S, the Bohmian “empty 
waves”, would be able to affect the evolution of the system at any time. Such an 
environment with “memory” of the entanglement achieved with S could be called a 
non-Markovian environment [ 21]. 

It turns out that Bohmian mechanics still allows a “pure state” description for 
S, since, given the position of the environment ancillas interacting with S, 5 S has 
always a CWF, wether the conditioning variables are measured or not [ 11, 12]. In 
the Copenhagen view, a CWF, does not have a physical interpretation, unless it is an 
EWF, e.g., unless the conditioning variable is strongly measured. As a consequence, 
under the Copenhagen view, if a SSE is found for a non-Markovian master equation, 
the pure state.|ψw(t)>S at time. t , can only be understood as the state in which S would 
be left in if the environment ancillas were strongly measured to give .w(t). But,  
since this would produce a very different subsequent evolution of .|ψw(t)>S , such a 
measurement can only be seen as “a fiction”. Of course, non-Markovian SSEs under 
the Copenhagen view are still useful as pragmatic computational tools to obtain the 
reduced density matrix of S. However, dynamical information inherent to each pure 
state (each CWF), like two-time correlations, should be avoided, unless one accepts 
some sort of ontological reality (independent of measurement) for the conditioning 
property of the environment, such as the one provided by the Bohmian theory [ 11, 
12]. 

This narrative in terms of Bohmian CWFs for non-Markovian open quantum 
systems is not only theoretically insightful, but also a practical tool to look for 
reasonable SSEs as we will exemplify now. In the first section, we arrived at an exact 
system of equations, Eq. (2), that described the general time evolution of CWFs 
in arbitrary settings. In principle, in those equations the CWF of the subsystem S 
and its environment E are coupled at all times, not only between them, but also 
with the rest of possible CWFs (signature of the non-Markovianity). However, for 
specific scenarios, we can make educated guesses for the correlation term.W of Eq. 
(3), and the classical potential . U , to generate a SSE for CWFs of the subsystem 
S (which  need to be independently evolvable to be a valid SSE). Thus, Eq.(2) is a  
general framework to look for position SSEs. In fact, this equation system is also 
a detector of non-Markovian behaviour. As long as the CWFs of the subsystem S,

5 To allow non-Markovian SSEs “unravelled” through non-position variables, consider the positions 
of environment “pointers” coupled with non-position observables of the ancillas around the system. 
Else, consider the associated unmeasured system information.Bψ presented in Sect. 3, or the modal 
theory corresponding to the unravelled observable. 
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Fig. 1 (a) Schematic representation of the graphene-based FET, with a channel composed of a 
single-crystal mono-layer graphene. (b) The fluctuating lines are the instantaneous currents (time-
averaged at a window of.0.03 ps) as a function of time. The straight lines are due to a wider averaging 
window of 4 ps, where we can clearly assert the binary response. We can conclude that, 4 ps is a 
reasonable operating time for the transistor 

.ψξ(→x, t) := Ψ(→x, →y ξ(t), t), are described by a .U or .W that depend explicitly on 

.→y ξ(t), the system will be notably non-Markovian. As an example application of this 
method, we developed the BITLLES simulator [ 9, 23, 24]. In this simulator, we 
consider a two-terminal nano-scale electronic device operating at high frequencies 
(in the order of THz), where both the relevant dynamics of the active region electrons 
and the current measurement times on the reservoirs are in the sub-picosecond range. 
We consider the active region to be a non-Markovian open quantum system within 
the language of Eq. (2) [  9]. The simulator computes the potential .U as a solution 
of the Poisson equation [ 24], while .W is modelled by proper boundary conditions 
[ 24, 25] including the correlations between the active region of the device and the 
reservoirs. Even electron-phonon and electron-photon decoherence effects can be 
included [ 26, 27]. 

In Fig. 1 the ability of the present method is demonstrated [ 9, 28] by predicting for a 
field-effect transistor (FET) with a graphene channel, the time needed to acknowledge 
a stable reaction of the drain and source currents when the gate voltage is changed. 
The Klein tunneling suffered by the electrons while traversing the channel (partition 
noise) and the random energies of the electrons when injected into the system (thermal 
noise), cause a fluctuation in the instantaneous current that can be diminished in the 
laboratory by window averaging. The required window size for providing error-
free current (averaged) values for digital applications (binary messages) defines the 
operating frequency of the transistor.



114 X. Oianguren-Asua et al.

3 Speakable and Operational Information About 
an Unmeasured System? 

Returning to the discussion at the beginning of the chapter, under the Copenhagen 
eigenstate-eigenvalue link, we can only say that a quantum system has a defined 
property when its wavefunction is an eigenstate of the operator related to that property. 
Since a strong measurement, as we have seen, always forces the system to adopt 
an eigenstate, while the unitary evolution in the meantime, will typically cause a 
superposition, it seems we are only allowed to speak about properties of measured 
quantum systems. This makes the predictions about what measurement apparatus 
pointers show, privileged in front of the rest of the information computable using 
the state of the pre-measurement quantum system. It is true that a quantum theory 
that correctly predicts what the measurement apparatus pointer will show, is by 
construction enough for phenomenological predictions. This is why it is argued (even 
by some Bohmian physicists) that if these predictions are obtainable with empirical 
agreement, dealing with the rest of the information concealed in the system’s state 
(before its interaction with the measurement apparatus), is just adding unnecessary 
controversy. However, there are scenarios where the characterization of a quantum 
system, without the effect of a “collapse backaction” by some measurement pointer, 
would solve serious practical difficulties. 

As a paradigmatic example, in order to obtain the maximum working frequency of 
nano-scale transistors (to test the performance of modern computers) [ 29], the time 
spent by electrons in the active region of the transistors, their dwell time, must be  
measured. The eigenstate-eigenvalue link would force us to place position detectors in 
the two ends of the active region. However, the quantum measurement, no matter how 
weak it is, introduces an effective collapse backaction in the system that disrupts its 
future evolution. Thus, the number given by these detectors would be meaningless to 
benchmark “unmeasured” transistors: no computer has position detectors at the ends 
of its transistors [ 30, 31]. Most two-time characterization attempts of “unmeasured” 
quantum systems face this same problem. For example, in thermodynamics: because 
work is by definition a dynamical property implying knowledge of the system (at 
least) at two different times, it seems there is no possible measurement-context-free 
definition for a quantum work operator [ 32– 34]. More generally, two-time corre-
lations of non-commuting observables, say .F and . B, cannot be defined within the 
Copenhagen school without including an explicit disturbance by a particular mea-
surement scheme. For example, correlating the result of a strong measurement of 
.F at time . t1 and a strong measurement of .B at time . t2, clearly conveys the disturb-
ing backaction of the measuring device, which collapses the state at . t1. 6 Thus, are 
we fundamentally forbidden to access dynamical information about the “unmeasured

6 An alternative definition could be the real part of the (complex) expectation .<B̂(t2)F̂(t1)> in the 
Heisenberg formalism, which turns out to be the correlation of a weak measurement [ 10] of .F at 
time. t1 and a strong measurement of. B at time. t2. Yet, as shown  in  Ref.  [  35], even an ideally weak 
measurement is in fact contextual (in the sense of footnote 8). 
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system” 7? Or is there a way to consistently define non-contextual 8 properties (without 
contradicting the Bell-Kochen-Specker (BKS) theorem [ 36])? Bohmian mechanics, 
with its ontology of reality being persistent even when no measurement is taking 
place, appears to be the escape route. But is it? 

Three impasses need to be clarified here. First: is there a (Bohmian) way to mean-
ingfully talk about “unmeasured system” features, and even still be in accordance 
with phenomenology? Second: are these “unmeasured system” features experimen-
tally accessible? If so, how can they be in agreement with the BKS theorem against 
non-contextual hidden variables? And third: can these features be employed to oper-
ationally compute practical information, or are they mere “philosophical reliefs”? 

3.1 Breaking Impasse 1: Speakable Information 
of the “Unmeasured” System 

Let us first clarify whether the information we obtain by measuring a quantum system 
is about the pre-measurement/“unmeasured” system or the post-measurement sys-
tem. Consider an observable .B of related operator .B̂ = ∑

b b|b> <b|, with .{|b>}b an 
orthonormal basis and.|ψ> the wavefunction of the pre-measurement system. We have 
seen that (strongly) measuring. B will lead the system to the post-measurement state 
.|b> linked with the measured (eigen)value . b, which will happen with a probability 
.| <b| ψ|2 due to the pre-measurement state. Thus, a single measurement tells us barely 
nothing about the pre-measurement system. But if a “measurement”, as Bell pointed 
out [ 37], has the connotation of revealing information about the (pre-measurement) 
system, it seems that it would be more proper to name this process an “experiment” 
rather than a “measurement”. We can try to recover the name “measurement” with an 
ensemble of these “experiments” over identically prepared pre-measurement states 
.|ψ>. With them, we could estimate the (squared) magnitudes of the pre-measurement 
projection-coefficients to each eigenstate .| <b| ψ|2 (e.g. using relative frequencies). 
Then, one could compute the expectation .<ψ| B̂|ψ> = ∑

b b| <b| ψ|2, which is also a 
number dependent on the pre-measurement state .|ψ>. However, from a Copenhagen 
point of view, this number (say, the average energy or position of an electron) can 
only be interpreted as a property of the post-measurement system, because by the 
eigenstate-eigenvalue link, only the post-measurement system can be attributed the 
observable . b. When it comes to Bohmian mechanics, if .B̂ commutes with position 
. x̂ , because the position . x is “speakable” at all times, the number .<ψ| B̂|ψ> is the 
average property .B of the pre-measurement system (as the simplest example, if 
.B̂ = x̂ , it is the average Bohmian position of the unmeasured system). Yet, if. B̂ does 
not commute with . x̂ (e.g., for the momentum or the Hamiltonian operators), it is

7 A system that is not being measured, e.g. a closed system evolving without quantum interaction 
with its environment. 
8 Contextual means it depends and implies the particular environment used to convey the information 
to the observer. 



116 X. Oianguren-Asua et al.

unclear if the expectation .<ψ| B̂|ψ> computed with the measured . b, is a property of 
the pre-measurement system. In trying to clarify this, by linking the observable . B
to the position . x of the Bohmian trajectories, which are “speakable”, we can find a 
solution to the first impasse. 

Given an arbitrary (Hermitian) operator . B̂, describing the observable .B for the 
subsystem S, with normalized EWF .|ψ(t)>, let us define the position function 
.Cψ(→x, t) := <→x | B̂|ψ(t)>/<→x | ψ(t). If we write the expected value for .B̂ as a func-
tion of .Cψ(→x, t), we get that 

.<B̂>(t) = <ψ(t)| B̂|ψ(t)> =
∫

<ψ(t)| →x <→x | B̂|ψ(t)>dx =
∫

|ψ(→x, t)|2Cψ(→x, t)dx . (5) 

This means that the spatial average of the (possibly complex) .Cψ(→x, t) yields, at all 
times, the same expected value for the observable. B as that given by the Copenhagen 
theory. Now, let us define a real function .Bψ(→x, t) := Re{Cψ(→x, t)}. Because .B̂ is 
an observable, its expected value will be a real number, such that .<B̂> = Re{<B̂>}. 
Thus, taking the real part of equation (5), we get that 

.<B̂>(t) =
∫

|ψ(→x, t)|2Bψ(→x, t)dx . (6) 

We can link this with the set of Bohmian trajectories .{→x ξ(t)}ξ∈∑ sampled in inde-
pendent repetitions of the experiment, to get that . <B̂>(t) = lim|∑|→∞ 1

|∑|
∑

ξ∈∑ Bψ

(→x ξ(t), t), by using the Quantum Equilibrium principle [ 13]. This means that the 
real number .Bψ(→x ξ(t), t), related to the .→ξ-th Bohmian trajectory of the “unmea-
sured” system, when averaged over the ensemble of possible trajectories, gives the 
same value as the operator’s expectation value. That is, irrespective of whether or 
not we give the observable .B an ontological status, we can understand .Bψ(→x, t) as 
a mathematical feature related to .B and linked to the Bohmian trajectory passing 
from. →x at time . t (in the “unmeasured” system). This is why Holland gave the name 
local expectation value to position functions like .Bψ [ 4]. However, we will just call 
them the “information linked to .B and the Bohmian trajectory at .(→x, t)” or shortly 
“information .Bψ”, to stress that we (still) mean nothing about their ontological or 
operational status. 

For now, .Bψ appears to be just an ad-hoc function of the trajectories for the 
operator expected value to be recovered from trajectories. Let us see though, that it 
can be more than this. What would this number be for each trajectory if the system 
state, .|ψ>, was an eigenstate of . B̂ of eigenvalue . b? 

.Bψ(→x) = Re

{ <→x | B̂ψ

<→x | ψ
}

= Re

{ <→x | ψb
<→x | ψ

}
= b ∀→x (7) 

This means that a condition for .|ψ> to be an eigenstate of .B̂ is that it is a state for 
which every Bohmian trajectory has the same value of the information .Bψ. On the
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one hand, this tells us that the. b indicated by the pointer of a projective measurement, 
can always be considered to be information linked to the Bohmian trajectory, even 
when its operator does not commute with position. On the other hand, in practice, 
it can be a tool to construct the operator .B̂ itself. One could define .B̂ in terms of 
.Bψ, as the collection of states .|b> in which all Bohmian trajectories have the same 
value . b for the information .Bψ (and some condition to make the imaginary part of 
.Cψ negligible). 

If the explicit shape of .Bψ had nothing to do with Bohmian mechanics, this 
reverse definition of .B̂ would be a pointless definition. However, it turns out that 
if we set .B̂ to be the momentum operator . p̂k of the .k-th degree of freedom, the 
trajectory information .Bψ(→x, t) is exactly equal to the Bohmian momentum of the 
trajectory crossing. →x : .mkvk(→x, t) [ 38]. If we set. B̂ to be the Hamiltonian operator. Ĥ , 
the information.Bψ(→x, t) turns out to be exactly equal to the Bohmian energy (kinetic 
plus classical and quantum potentials [ 6]) of the trajectory crossing . →x . One can see 
that the list of these “fortunate” matches for position functions that appeared to be 
designed only to satisfy the expectation values, goes on and on [ 4]. This suggests 
that we can employ Bohmian mechanics to derive the expression for .Bψ, thanks to 
its similarity with classical mechanics, and then define the related operator in those 
terms. Whether the information .Bψ has an ontological status or not, whether it is 
operational or not, this is already (numerically) useful, because there are observables, 
like the total (particle plus displacement) current in a nano-device (plotted in Fig. 1b), 
for which there is no clear operator, but there is a clear Bohmian observable associated 
with it, as will be explained in detail later [ 7, 8]. 

In a nutshell, since we placed no restriction on . B̂, we are mathematically safe to 
assume that at all times, each Bohmian trajectory. →ξ, has a simultaneously determined 
value.Bψ(→x ξ(t), t) linked to every observable operator . B̂. Whether the information 
.Bψ(→x ξ(t), t) reflects an ontic property (a property that the theory postulates to be 
part of the ontology) or not, is given by the quantum theory at hand. For example, we 
found that when.Bψ is linked to the momentum operator. p̂k , it is equal to the Bohmian 
particle’s momentum, which is an ontic property in Bohmian mechanics, but not in the 
Copenhagen theory. The key is that when.Bψ is equal to an ontic property, since the 
Bohmian trajectory exists in the absence of observation,. B becomes “speakable” with 
a well-defined value at all times. Importantly though, we saw that the information. Bψ

is an equally well-defined number linked to each Bohmian trajectory, independently 
of the ontic character of . B. 9 Then, the fact (we will show now) that the .Bψ can

9 The information.Bψ will evolve continuously as long as the wavefunction evolves unitarily (which 
in Bohmian mechanics always does, as we saw). Then, if the system evolves from an eigenstate. |b1>
to another .|b2> with eigenvalues .b1 /= b2, .Bψ will take all the intermediate values not necessarily 
among the eigenvalues of. B̂. This suggests an interpretation in which the “quantization” of quantum 
mechanics is an apparent property, due to the fact that for a “proper” measurement, we require that 
a pointer saying. b is compatible with a wavefunction.|b> that yields for a strong measurement the 
result. b with probability 1. That is, a wavefunction which has all its Bohmian trajectories with value 
. b for .Bψ . Then, we would call it “quantum” because this delicate orchestration can only happen 
for a certain “quantized number” of wavefunctions (the eigenstates). 
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be operationally obtained in a laboratory, will make the information .Bψ practically 
useful across the “unspeakables” and independently on the followed theory. 

3.2 Breaking Impasse 2: Is This “Unmeasured” System 
Information Operational? 

If we could only obtain the information .Bψ in a laboratory when we used a strong 
von Neumann interaction, forcing it to become an eigenvalue of . B̂, all this would 
limit us in practice in the same manner as the eigenstate-eigenvalue link, even if 
we could now speak about these numbers in the absence of measurement. If so, 
we could not strictly say that the information .Bψ is an operational property 10 of 
the unmeasured system. However, it turns out that the “unmeasured” .Bψ is actually 
experimentally determinable even for a non-eigenstate pre-measurement system. 
The “how”, explains the “cumbersome” definition.Bψ(→x, t) = Re{<→x | B̂|ψ>/ <→x | ψ}. 
It turns out to be the protocol that naive classical experimentalists [ 39] would follow 
if they thought the system had a defined position, initially uncertain to them, and 
the only quantum knowledge they had was that measurement interactions spoil the 
system’s natural subsequent evolution. In order to know the property .B of such a 
subsystem S (say, an electron) when it crosses. →x , they would first couple an ancilla A 
to the subsystem S of EWF.|ψ>, through the measurement Hamiltonian. μ̄(t) p̂A ⊗ B̂
but let the interaction strength . μ be very small, such that the system state is only 
slightly perturbed. They would strongly measure the slightly entangled ancilla’s 
position .zB with a certain probability density .P(zB), getting a weak measurement 
about the property .B of S. Before the slightly perturbed system S further evolved, 
they would couple the system to another ancilla and strongly measure its position. zx , 
with a certain conditional probability density.P(zx |zB). Finally, they would average 
the weak measurements of .B for which the system S (the electron) was found at . →x , 
in order to erase the noise introduced by the weakness of the coupling with A. If 
the averaged ensemble is large enough, the resulting conditional expectation will be 
equal to .

∫
zB P(zB |zx)dzB , which as proven in [ 35], turns out to be roughly equal 

to .Bψ(→x, t) (under feasible experimental conditions). This is called a position post-
selected weak value [ 10]. 

A naive experimentalist would not be surprised at all by such a “coincidence”. 
One can consider all this was juggling with results of several observations. But, when 
the information.Bψ is an ontic property of the theory, one can legitimately say (under 
that theory), that the average weak measurements of . B, for experiments in which 
the system (the electron) was at . →x , gave  .Bψ(→x, t), because whenever the Bohmian 
trajectory (the electron) was at . →x , it had indeed the property .Bψ(→x, t). Be that as it

10 A number that can be obtained in a laboratory with a well-defined protocol. 
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may, because we can follow this protocol in a lab for most observables. B, irrespective 
of their ontic state, .Bψ(→x, t) is (almost always 11) an operational property [ 35, 38]. 

Let us clarify the non-contextuality of the information.Bψ . Because the Bohmian 
position and EWF of a subsystem immediately determine .Bψ for any observable 
. B, this apparently violates the BKS theorem [ 36], by which there can be no pre-
existing variables that non-contextually determine the measurement outcomes for 
all observables (not even only for commuting groups of them). This does not preclude 
the weak values of the above protocol from being non-contextually pre-determined, 
because they deal with a different notion of “measurement”: the hypotheses of the 
theorem refer to the Copenhagen quantum measurement (of Sect. 1), while the above 
weak value protocol “measuring” non-contextual information .Bψ , is an ensemble 
average of several Copenhagen quantum measurements, each of which is indeed con-
textual, since the Bohmian description of the measurement apparatus is necessary to 
determine their individual outcomes [ 14]. Moreover, as we saw (in footnote 9), the 
value of .Bψ for a certain trajectory alone does not determine a von Neumann mea-
surement outcome, since it is the coupling Hamiltonian (contextual) that forces the 
pre-measurement .Bψ (a priori not even “quantized”) to evolve to different (“quan-
tized”) eigenvalues of the operator . B̂. And even still, the weak value protocol, does 
produce a non-contextual .Bψ value (through many contextual experiments). This is 
the reason why one might prefer to regard the post-selected averaging as an uncon-
textualization protocol. The clarification would be unnecessary, however, if history 
had preserved the original meaning of the word “measurement” as a protocol that 
unveils features of a system, existent before the interaction with the external probes. 
Unfortunately, according to standard quantum mechanics, as stated by Mermin [ 36], 
“the outcome of a measurement is brought into being by the act of measurement 
itself”. 

3.3 Breaking Impasse 3: Is This Information Useful 
for a Non-Bohmian? 

Regardless of the followed quantum theory and whether one is ready to accept an 
ontological status for a certain information .Bψ, its relation with expected values

11 There is a (quite important) exception. Identical particles are always ontologically distin-
guishable by their trajectories in Bohmian mechanics. In the laboratory however, there are no 
means to tag each individual particle under many-body wavefunctions with exchange symme-
try. In consequence, if we follow our weak value protocol to “measure” the information . Bψ

(k) :=
Re{<→x1, . . . , →xM | ˆI d(1) · · · ˆI d(k−1) B̂(k) ˆI d(k+1) · · · ˆI d(M)|ψ>/ <→x1, . . . , →xM | ψ} related to the observ-
able. B of the.k-th electron, in a system of.M electrons of positions.→xk with many-body wavefunction 
.|ψ>, what we will get instead is the average: .∑M

k=1
1
MB

ψ
(k)(→x1, . . . , →xM ). Thus, the average . Bψ

(k)
for a multi-particle Bohmian trajectory is operational (say, the sum of the current contributions of 
the active region electrons, as discussed in the next paragraph), but the individual indistinguishable 
particle.BΨ

(k) (like the individual electron current contributions) are not, even if they might be ontic 
properties within Bohmian mechanics. 
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and the definition of the observable operator .B̂ is mathematically true. This has an 
important practical application that is also useful for a non-Bohmian. The informa-
tion .Bψ can be used to numerically predict the expected value of observables with 
no explicit definition of their formal operators. For this, one can express the observ-
able .B in the language of Bohmian mechanics to derive the shape of .Bψ(x, t), 
and then get the expected value of the operator .B̂ (if there is any) by computing 
the trajectory ensemble average of .Bψ. For example, this is how we predict the 
expected total electrical current (including the displacement current) crossing the 
active region of a two-terminal nano-device operating at high frequencies (THz) in 
the BITLLES simulator [ 7, 8]. We can define the contribution to the total current 
through a surface. σ, due to the Bohmian trajectory of a.k-th electron.→x ξ

k (t) of charge 

. e, as.I (ξ)
k (t) = ∫

σ
→J (ξ)(→r , t) · d→s + ∫

σ ε(→r , t) ∂ →E (ξ)(→r ,t)
∂t · d→s, where.ε(→r , t) is the dielec-

tric permittivity, . →J (ξ)(→r , t) = e d→x ξ
k (t)
dt δ(→r − →x ξ

k (t)) is the particle current density, and 

. →E (ξ)(→r , t) is the electric field generated by the electron, as a solution to Gauss’ equa-
tion. The sum of these contributions,.I (ξ)(t) = ∑

k I
(ξ)
k (t), will be the total Bohmian 

current at the surface . σ for the .ξ-th experiment in the ensemble .{→x ξ(t)}ξ∈∑ . The  
phenomenological expectation of a total current operator . Î can then be estimated as 
the ensemble average of these currents, since by the Quantum Equilibrium principle, 
.lim|∑|→∞ 1

|∑|
∑

ξ∈∑ I (ξ)(t) = < Î >(t), if such an operator exists. 
In addition, it is also true that the information .Bψ is a (typically) experimentally 

obtainable number that, no matter the followed interpretation of quantum mechanics, 
characterizes the theoretical pre-measurement wavefunction .|ψ>. This means it can 
be pragmatically employed to characterize an unmeasured quantum system, just like 
a tomography or momentum-postselected weak values are useful to obtain the pre-
measurement wavefunction [ 40], no matter the ontological status or speakability of 
such a wavefunction. Following this, the .Bψ that happen to be operational offer a 
natural solution to the puzzling search of non-contextuality for the metrics involving 
two different times [ 38]. 

For example, they provide a well-defined non-contextual two-time correlation 
function for general observables. Consider a big enough set of trajectories. {→x ξ(t)}ξ∈∑

sampled from the pre-measurement wavefunction .|ψ(t)>. Given the observables 
.B, F , the  .ξ-th trajectory has associated informations . Bψ(→xξ(t), t) := Re

{ <→x ξ(t)|B̂|ψ(t)>
<→x ξ(t)|ψ(t)

} and .Fψ(→xξ(t), t) := Re{ <→x ξ(t)|F̂ |ψ(t)>
<→x ξ(t)|ψ(t)

}, which are well-defined even 
if the associated operators .B̂, F̂ do not commute. This gives a natural correlation 
function defined as 

.<B(t2)F(t1)> := lim|∑|→∞
1

|∑|
∑
ξ∈∑

Bψ(→x ξ(t2), t2)Fψ(→x ξ(t1), t1). (8) 

In a similar way, we can solve the problems concerning a quantum work definition, 
just as done by Refs. [ 41, 42]. First note that given a general system Hamiltonian 
.Ĥ = ∑

k
−ℏ

2

2mk

∂2

∂x2k
+ V (→x, t), we get
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. Hψ(→x ξ(t), t) := Re

[ <→x ξ(t)
II Ĥ |ψ(t)><→x ξ(t)

II ψ(t)

]
=

n∑
k=1

1

2
mkvk(→x ξ(t), t)2 + V (→x ξ(t), t) + Q(→x ξ(t), t),

(9) 
with.Q the well-known Bohmian quantum potential [ 4– 6]. This proves. Hψ(→x ξ(t), t)
is, as anticipated, the total Bohmian energy of the .→ξ-th trajectory at time . t . We  
can compute its associated Bohmian work with . W (ξ)(t1, t2) = ∫ t2

t1
dHψ(→x ξ(t),t)

dt dt =
Hψ(→x ξ(t2), t2) − Hψ(→x ξ(t1), t1). As a result, a well-defined non-contextual defini-
tion of the quantum work could be the ensemble average of the trajectory works,

<W (t1, t2)> =  lim|∑|→∞ 

1 

|∑|
∑
ξ∈∑

(
Hψ (→x ξ (t2), t2) − Hψ (→x ξ (t1), t1)

)
. (10) 

Finally, we could give a reasonable Bohmian answer to the pathological search of an 
“unmeasured” dwell time, as the expected time spent by the Bohmian trajectory of 
the electron within the active region .Γ ⊂ R3. Mathematically, the dwell time . τ for 
the .→ξ-th trajectory of the .k-th electron with EWF.ψξ(→xk, t) is by definition given by 
the integral:.τ (ξ) = ∫ ∞

0 dt
∫
Γ

δ(→r − →x ξ
k (t))d→r . This makes the expected time.<τ > to be 

given by the Quantum Equilibrium principle as an integral that is already employed 
to predict the dwell time, 

.<τ > = lim|∑|→∞
1

|∑|
∑
ξ∈∑

τ (ξ) =
∫ ∞

0
dt

∫

Γ

|ψξ(→r , t)|2d→r . (11) 

It is worth noting that the Bohmian perspective allows to exclude in (11) the contri-
bution of reflected trajecories, providing a more suitable metric for cutoff frequency 
estimates in electronic devices, since only the transmitted particles have a net con-
tribution to the average electrical current. To conclude the section and link it with 
the discussion on non-Markovian SSEs, notice that, because in the non-Markovian 
case, the trajectory for the “unravelled” environment observable (what we denoted by 
.w(t)), can no longer be interpreted as the result of a continuous measurement of the 
environment, it represents an unmeasured observable of the environment. Thus, this 
is readily a, perhaps unintended, application of .Bψ-like properties, which happen 
to be central to simulate the most general quantum systems that interact with many 
environmental degrees of freedom. 

4 Conclusions 

In this chapter, we have seen that inherently Bohmian concepts like the CWF or 
position post-selected weak values are indeed usable pragmatically as practical tools 
in the computation of phenomenologically accessible elements, such as the reduced 
density matrix, expectation values or time correlations. Therefore, with this chapter, 
we refute the main criticism to the Bohmian theory, by which the trajectories are
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“unnecessary embellishments” of the orthodox theory, with no practical use. But 
then, if we can use Bohmian concepts as a tool, why not include them in the standard 
vocabulary? Not only for their problem-solving utility, but also because they can 
provide us ontological relief in front of the purely phenomenological Copenhagen 
view. As we said, this renewed appeal of the Bohmian theory is clearly motivated by 
a time when no engineer is really capable of accepting the “unspeakable” quantum 
reality [ 1, 2]. However, it must be noted that not even great parents of the quantum 
theory were ready to restrict themselves to the Copenhagen doctrine. For example, 
regarding the first section, von Neumann in his seminal book [ 16] explains that the 
collapse law is to be understood as an effective process that should be possible to be 
considered at an arbitrary point between the subsystem and the macroscopic device, 
instead of considering it to be a physical phenomenon [ 43]. Bohr himself assigned 
the collapse to the contextuality of experimental protocols in terms of macroscopic 
devices [ 44]. As we have reviewed, Bohmian mechanics satisfies the claims of both 
scientists. When it comes to the second section, it was J. M. Gambetta and H. M. 
Wiseman who pointed out that SSEs for non-Markovian systems tacitly implied 
the usage of CWFs from modal theories like Bohmian mechanics [ 11, 12] and who 
suggested the first formal position SSEs for such open quantum systems [ 19]. Finally, 
regarding the discussion on the unspeakables of the third section, Dirac himself was 
an exemplary physicist that employed “unspeakable unmeasured” system properties 
in the formulation of his major contributions to physics, leaving questioned the 
“observability doctrine” of the Copenhagen interpretation [ 44]. 

With all this, we might be wondering when will the mainstream decide to break 
the limiting walls around (non-relativistic) quantum mechanics, as taught to new 
generations of scientists every day. There is a pedagogical narrative (the Bohmian 
one) to explain it all while avoiding disjunctives with classical intuitions, a narra-
tive that actually proves to be practically useful by offering additional tools to the 
Copenhagen theory. Will we someday include it in the standard program of quantum 
mechanics taught in our universities? Only time will tell. 
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Eigenstates in the Many Interacting 
Worlds Approach: Focus on 2D Ground 
States 

Hannes Herrmann, Michael J. W. Hall, Howard M. Wiseman, 
and Dirk-André Deckert 

Abstract The Many-Interacting-Worlds (MIW) approach to a quantum theory with-
out wave functions proposed in [ 8] leads naturally to numerical integrators of the 
Schrödinger equation on comoving grids. As yet, little is known about concrete MIW 
models for more than one spatial dimension and/or more than one particle. In honour 
of Detlef Dürr, we report on a further development of the MIW approach to treat 
arbitrary degrees of freedom and provide a numerical proof of concept for ground 
states in 2d. The latter is part of a systematic numerical study [ 22] that includes also 
1d ground and excited states. With this step towards the treatment of higher degrees 
of freedom we hope to stimulate their further study. 

1 Introduction 

The quantum dynamics of an.N -particle system in. d spatial dimensions is ruled by the 
Schrödinger equation. The latter defines the evolution of a field. Ψ on the configuration 
space .R

Nd . A common method to represent such an object numerically is to sample 
it on a fixed grid. The grid dimensions scale as.GNd , with. G being the number of grid 
points along one degree of freedom. This exponential scaling makes numerics beyond 
.N = 3 and .d = 3 memory-wise infeasible even on modern computer architectures. 
Exceptional cases aside, the main two successful general approaches to deal with 
this quantum complexity problem are as follows. (1) For special initial values and 
in certain regimes (e.g., near product states and on certain density scales) one can 
find approximate solutions by solving non-linear one-particle equations such as the 
Hatree-Fock and Gross-Pitajevski equations; see, e.g., Ref. [ 1]. (2) One may employ 
a comoving grid that samples the wave functions with high resolution only where it 
has physically interesting features, while other regions are only covered with very 
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few grid points; see, e.g., Refs. [ 2, 3]. The approach discussed in this paper belongs 
to class (2) and two central questions are how to find convenient locations for the 
grid-points and how to update them in parallel with the evolution of the wave function 
.Ψ given by the Schrödinger equation: 

.i∂tΨt (X) = ĤΨt (X), Ĥ = −1

2
∆ + V (X̂), (1) 

for.t ∈ R and.X ∈ R
Nd , where. ∆denotes the Laplace operator with respect to the con-

figuration. X ,. V is a classical potential, and we use units.t I→ tℏ and. X I→ (ℏ/m1/2)X
(for simplicity all particles are taken to have the same mass . m). 

One method is to distribute, say . M , grid-points .Q(i)
t=0 ∈ R

Nd , .i = 1, . . . , M , at  
initial time .t = 0 according to the .|Ψt=0|2-distribution. Thus, regions with larger 
contributions to the.L2-norm are sampled with higher resolution, while regions with 
smaller contributions are covered only by a few grid points. In order to ensure that the 
grid points follow the.|Ψt |2-distribution (a feature usually referred to as equivariance 
in the context of Bohmian mechanics [ 5]) one must transport them along the flux 
lines of the quantum probability current [ 4], i.e., along Bohmian trajectories .Q(i)

t , 
which obey the Bohmian law of motion [ 5] 

.
dQ(i)

t

dt
= ℑΨ∗

t (X) · ∇Ψt (X)

Ψ∗
t (X) · Ψt (X)

I
I
I
I
X=Q(i)

t

. (2) 

Hence, Bohm’s velocity law (2) needs to be integrated simultaneously with the 
Schrödinger equation (1) on comoving coordinates .Q(i)

t , .i = 1, . . . , M . Using  the  
decomposition .Ψt = √

Ptei St , the corresponding coupled set of equations (1)-(2) in  
comoving coordinates takes the form [ 2]: 

. 
d

dt
Pt (Q

(i)
t ) = −Pt (Q

(i)
t )∆St (Q

(i)
t ),

d

dt
St (Q

(i)
t ) = 1

2

(
d

dt
Q(i)

t

)2

− V (Q(i)
t ) −Ut (Q

(i)
t ),

(3) 

.
d2

dt2
Q(i)

t = −∇V (Q(i)
t ) − ∇Ut (Q

(i)
t ) (4) 

with the initial velocity condition and the quantum potential .Ut being, respectively 

.
d

dt
Q(i)

t |t=0 = ∇St (Q
(i)
t )|t=0, (5) 

.Ut (X) = −1

2

∆Pt (X)1/2

Pt (X)1/2
. (6) 

Note that constraint (5) together with (4) is equivalent to (2) while, thanks to (6), (3) 
are equivalent to (1), in the sense of the respective initial value problem. Numerical 
analysis of quantum systems with the help of trajectories has been studied in great 
depth and we refer the reader to the literature, e.g., [ 2, 3, 6, 7].
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While mainly working on the mathematical foundations of physics, Detlef had an 
early interest in such practical applications of Bohmian Mechanics to the numerics 
of the Schrödinger equation and maintained contact with many colleagues in the 
quantum chemistry community working on trajectory-based approaches. It was this 
interest that led to the discussion between D.-A.D., M.J.W.H., and H.M.W., during 
a visit of D.-A.D. to Brisbane, from which Refs. [ 8, 9] and this work arose. H.M.W. 
noted that a further simplification might be obtainable when not only the grid points 
are distributed randomly according to .|Ψ|2 but when the .|Ψ|2-distribution itself can 
be approximately retrieved from the empirical distribution of the grid point locations 
.Q(i)

t , via some map .P(X; Q(1)
t , . . . , Q(M)

t ) such that for all .t, X the approximation 

.Pt (X) ≈ P(X;Qt ), Qt := (Q(1)
t , . . . , Q(M)

t ) (7) 

holds in a suitable sense as.M → ∞. In view of the weak law of large numbers, one 
may think of .P(X;Qt ) as a smooth version of the empirical distribution 

.P(X;Qt ) ≈ 1

M

M
∑

i=1

δNd(X − Q(i)
t ), (8) 

as the .Q(i)
t , .1 = 1, . . . , M , stay approximately .|Ψt |2 distributed thanks to equiv-

ariance. Once a good candidate for .P(X;Qt ) and its derivatives is identified, Eqs. 
(3)–(6) can be replaced by a closed system of equations for the trajectories.Q(i)

t , such 
as 

.
d2

dt2
Q(i)

t = −∇ [V (X) +U (X;Qt ), ]
I
I
X=Q(i)

t
(9) 

under the initial constraint (5), where now the density.Pt (X) in the quantum potential 
(6) is replaced by .P(X;Qt ) so that the approximate quantum potential reads 

.U (X;Qt ) = −1

2

∆P(X;Qt )
1/2

P(X;Qt )1/2
. (10) 

Quantum expectation values of observable . f (X̂) can be recovered from the trajec-
tories .Q(i)

t by 

. <Ψt , f (X̂)Ψt > =
∫

dNd X Pt (X) f (X) ≈
∫

dNd X P(X;Qt ) f (X) ≈ M−1
M

∑

i=1

f (Q(i)
t ).

(11) 

Due the possible interpretation of .Q(i)
t , .i = 1, . . . , M , as .M coexisting “worlds” we 

follow Refs. [ 8, 9] in terming this the Many-Interacting-Worlds (MIW) approach.
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Continuous versions of this general idea [10– 13] predate our discrete MIW approach; 
see Refs. [ 14– 17] for continuing interest. 

The MIW approach stands or falls according to the possibility of finding a good 
candidate .P(X;Qt ) and the ability to maintain the quality of the approximation (7) 
over time for .M not too large. In Ref. [ 8] we have presented a surprisingly simple 
toy model for .N = 1 particle in .d = 1 dimension with the ansatz 

.P(Q(i);Qt ) := 1

2

(
1

N (Q(i) − Q(i−1))
+ 1

N (Q(i+1) − Q(i))

)

(12) 

for .i = 1, . . . , M , with the ordering .Q(i)
0 < Q(i+1)

0 (setting . Q(0)
t = −∞, Q(M+1)

t =
+∞). The above ordering is preserved over time because the system (1) and (4) has 
a well-defined initial value problem [ 18], and hence, configuration space trajecto-
ries cannot cross. However, instead of approximating.Ut (X) directly via a smoothed 
.P(X;Qt ), as in Eq.  (10), the method in Ref. [ 8] approximates its average (propor-
tional to the Fisher information of .Pt (X)), via 

. Ut =
∫

dNddX Pt (X)Ut (X) = 1

8

∫

Pt (X)

I
I
I
I

∇Pt (X)

Pt (X)

I
I
I
I

2
≈ 1

8

M
∑

i=1

I
I
I
I
I

∇P(Q(i);Qt )

P(Q(i);Qt )

I
I
I
I
I

2

.

(13) 

Using Eq. (12) and the corresponding discrete approximation of .∇Pt (X) for 
.N = d = 1, this leads to the replacement of Eq. (9) by the very similar form 

.
d2

dt2
Q(i)

t = −∇Q(i)
t

[

V (Q(i)
t ) +UMIW(Qt )

]

, (14) 

.UMIW(Qt ) = 1

8

M
∑

i=1

(
1

Q(i+1) − Q(i)
− 1

Q(i) − Q(i−1)

)2

. (15) 

The model defined by Eqs. (14) and (15) has the nice property of conserving total 
energy [ 8] 

.E =
M

∑

i=1

⎡

⎣
1

2

(

dQ(i)
t

dt

)2

+ V (Q(i)
t )

⎤

⎦ +UMIW(Qt ), (16) 

and will be referred to as the 1d MIW model throughout this work. In Ref. [ 8], the 
1d MIW model was shown to exhibit typical quantum behaviour such as superpo-
sition and tunnelling. In particular, numerical implementations of the model, with a 
very modest number of worlds, gave good qualitative agreement in the case of the 
time-evolution of two superposed Gaussians (representing double-slit interference). 
In addition, numerical testing showed good quantitative agreement for the compu-



Eigenstates in the Many Interacting Worlds Approach: Focus on 2D Ground States 129

tation of ground states, and convergence in the limit .M → ∞ has been proven for a 
harmonic potential [ 19]. 

The goal of this paper is to develop the MIW approach further, by explicitly treat-
ing more than one degree of freedom. Section 2 provides a general model for any 
finite number of degrees of freedom, i.e., finite particle numbers and spatial dimen-
sions. In the spirit of this general approach we then present numerical algorithms for 
finding energy eigenstates. In [ 22], we benchmarked this general approach against 
the original 1d MIW model, using the harmonic and the Pöschl-Teller potentials, and 
furthermore presented an implementation capable of finding 1d eigenstates. Here, 
in a shortened version of that article, we focus on finding ground states to . d = 2
dimensions in Sect. 3, in particular for the harmonic and Pöschl-Teller potentials. 
In comparison to the former, the latter is only weakly confining, which makes the 
lack of information at spatial infinity much more prominent in numerical simula-
tions. We discuss how this problem can be addressed in our approach. The numerical 
methods and simulations reported here are based on results in [ 20]. Independent 
calculations by Sturniolo [ 23], for the ground states of higher dimensional systems 
in the framework of the MIW approach, will be commented on briefly in Sect. 4. 

2 Generalization to Arbitrarily Many Degrees of Freedom 

A formal extension of the 1d MIW model, to a system of .N particles moving in 
. d spatial dimensions, is given by retaining the equations of motion, Eq. (14), but 
generalizing Eq. (15) to  

.UMIW(Qt ) = 1

8

M
∑

i=1

I
I
I
I
I

∇P(Q(i)
t ;Qt )

P(Q(i);Qt )

I
I
I
I
I

2

, (17) 

for suitable approximations .P(Q(i)
t ;Qt ) and .∇P(Q(i)

t ;Qt ), of  .Pt (Q
(i)
t ) and its 

derivative, respectively [ 8]. Here, we construct these approximations, based on two 
related approaches. 

Triangulation method. The worlds or trajectories .Q(i)
t lie in the .D-dimensional 

configuration space.R
Nd with.D := Nd. This configuration space can be partitioned 

into a network of .D-tetrahedra having the worlds as vertices, together with a single 
exterior region. For .D = 2 such a triangulation is depicted in the left hand panel 
of Fig. 1 (purple lines), corresponding to a Delaunay triangulation [ 28]. Efficient 
algorithms are known for establishing such triangulations [ 28]. For a given triangu-
lation, let.{Ti, j } denote the set of.D-tetrahedra (‘triangles’) sharing.Q(i) as a common 
vertex, at a given time . t . Here we have dropped the explicit time label on .Q(i) for 
convenience. Now, for a sufficiently smooth function . f (X) on configuration space 
one can, similarly to Eq. (11), approximate its average via
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Fig. 1 The left hand panel shows a Delaunay triangulation of configuration space for a set of worlds 
(blue circles) at a given time. Each triangle (orange edges) is chosen in such a way that no worlds lie 
inside the circum-sphere of any triangle. The middle panel shows its dual graph, corresponding to 
partitioning configuration space into Voronoi cells (see definition (25) below). The corresponding 
cell boundaries are formed by hyperplanes (black lines) which bisect the triangulation lines. The 
right panel illustrates the duality of these graphs 

. 
1

M

M
∑

i=1

f (Q(i)) ≈
∫

dX P(X) f (X) =
∑

i, j

∫

Ti, j
d X P(X) f (X)

D + 1

≈
∑

i, j |Ti, j | P(Q(i)) f (Q(i))

D + 1
,

where .|Ti, j | denotes the volume of the tetradron .Ti, j , and the factor of .D + 1 arises 
because every tetrahedron is counted once for each of its .D + 1 vertices. Hence, 
equating these expressions for arbitrary. f (X), a suitable approximation for the prob-
ability density at .Q(i) is given by 

.Ptri(Q
(i);Q) = D + 1

M
∑

j |Ti, j |
. (18) 

This reduces to Eq. (12) for the 1d MIW model when .D = Nd = 1. 

Cell method. An alternative to placing worlds at the vertices of a triangulation 
is to instead place each world within an individual cell, where the cells partition 
the configuration space. For example, for a Delaunay triangulation such cells can 
be chosen as the dual graph, corresponding to Voronoi cells [ 28]. An example is 
depicted in the right panel of Fig. 1. Note that some cells, corresponding to worlds 
at the edges, are infinite in extent. Such a partitioning leads to 

.Pcell(Q
(i);Q) = 1

M |Celli | (19) 

an an alternative approximation for the probability density at .Q(i), where . |Celli |
denotes the configuration space volume of the cell containing trajectory .Q(i).



Eigenstates in the Many Interacting Worlds Approach: Focus on 2D Ground States 131

Approximating the derivative of the probability density Eq. (17) further requires 
finding a suitable approximation for the derivative .∇P(Q(i)) at each time (where 
again we suppress the explicit dependence on time for convenience). This derivative 
has .D = Nd independent components, and hence we need to consider, for each 
trajectory.Q(i) at that time, the change in probability in at least.D different directions. 
These directions could be chosen, e.g., to be those which join .Q(i) to its .D closest 
neighbours, independently of the method used to estimate the density itself (e.g., via 
triangulation or cells). An alternative choice is to use the directions corresponding to 
all (or some) edges of a given triangulation which have.Q(i) as a vertex. Yet another 
choice is to use the directions corresponding to all (or some) worlds that share a cell 
boundary with .Q(i). Here we will remain general, and only suppose that . Ci ≥ D
neighbouring configurations or worlds are used to estimate .∇P(Q(i)), selected by 
any of the means above. Letting .{Q(i,s)} denote these .Ci configurations, we define 
the corresponding set of vectors .v(i,s) := Q(i,s) − Q(i). By construction, these form 
a (typically overcomplete) basis set in configuration space. Now, writing . v(i,s) =
∑D

k=1 Askek relative to some orthonormal basis set.{ek}, one has a corresponding set of 
dual basis vectors.ṽ(i,s) := ∑

k Ãskek , with. Ã := A(ATA)−1. This dual basis satisfies 
the completeness property .

∑

s ṽ(i,s) (v(i,s))T = ID , where .T denotes the transpose 
and.ID is the.D × D identity matrix. Using.P(Q(i,s)) − P(Q(i)) ≈ v(i,s) · ∇P(Q(i)), 
it follows immediately that one has 

.∇P(Q(i)) =
∑

s

ṽ(i,s) (v(i,s))T ∇P(Q(i)) ≈
∑

s

[

P(Q(i,s)) − P(Q(i))
]

ṽ(i,s). (20) 

For any suitable approximation of.P(Q(i); Q), such as in Eqs. (18) or (19), one then 
has the corresponding approximation 

.∇P(Q(i);Q) =
∑

s

[

P(Q(i,s);Q) − P(Q(i);Q)
]

ṽ(i,s) (21) 

of the derivative. This may now be inserted into Eq. (17) to obtain the corresponding 
MIW potential function .UMIW(Qt ) at any given time . t . 

3 A Numerical Implementation for Ground States 

While the approach given in Sect. 2 may be precise and general, we encountered sev-
eral problems in its direct numerical implementation. For example, the construction 
of the dual basis set.{ṽ(i,s)} appearing in Eq. (21) requires computation of the inverse of 
the.Ci × Ci matrix.(ATA)−1 for each of the.M worlds. Recalling that.Ci ≥ D = Nd, 
this alone requires .O(MN 3d3) calculations at each time step. Moreover, unlike the 
1d case, the set of neighbouring configurations or worlds used to define triangula-
tions, partitionings, derivatives, etc., can change over time, and thus requires constant 
updating. The selection of finitely many nearest neighbours inevitably provokes dis-
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continuous changes throughout the dynamics. Though for very large .M one may 
expect that these sudden jumps may have only little impact on the overall dynamics 
of worlds, for lower values of .M these small discontinuities may cause oscillations 
in the world configurations .Q(i)

t which, if not damped, propagate through the whole 
system until the numerical simulation breaks down. This forced us to replace this 
discrete notion of nearest neighbours, in computing the approximate .Pt (X) and its 
derivatives, by something more smooth. Enforcing some sort of smoothness may also 
come as no surprise: Even if the grid points may sample well regions in which.Pt (X), 
i.e., .|Ψt |2, is large, and thus, potentially increase the precision in the .L2-norm sense 
without the need of too many samples, the required precision in the pointwise sense 
in (9), i.e., (2) cannot be guaranteed, unless some prior knowledge on the smoothness 
is available. 

It turns out that finding a smooth distribution that approximates the empirical dis-
tribution is an old problem, discussed thoroughly in the classical literature; see [ 24– 
27] for an overview. One general and, for many settings, very robust technique is 
so-called smooth kernel density estimation, which we introduce first. The density 
estimator for a given distribution of worlds.Q = (Q(1), . . . , Q(M)) is given by a sum 
of the form 

.Ph(X;Q) := 1
∼M

∼M
∑

i=1

1

hi
K

(
X − ∼Q(i)

hi

)

. (22) 

Here .{∼Q(i)} is a set of .M̃ points in configuration space determined by . Q; the  . hi
are width parameters (usually referred to as bandwidths) similarly determined by 
. Q; and .K is a smooth kernel function that fulfils .

∫

dNd X K (X) = 1. Note that 
.Ph(X;Q) is automatically normalized. In this work we will focus on the Gaussian 
kernel.K (X) = (2π)−Nd/2 exp(− 1

2 X
TX), for  which.∼Q(i) takes the role of a mean and 

.h2i INd defines a corresponding covariance matrix. Considering that the Schrödinger 
propagator is given by a Gaussian [ 5], this seems like a canonical choice. 

The idea behind ansatz (22) is to allow for varying widths . hi , well-adapted to 
regions of high and low empirical density in the vicinity of suitably chosen locations 
.∼Q(i). If the empirical density is low in the neighbourhood of .∼Q(i), one chooses a 
large values of .hi (broad kernel function), and if the density is high, one chooses a 
small value (narrow kernel function). We will come back to the question of choosing 
optimal .∼Q(i) and .hi later, in Sect. 3.1. First we discuss how density estimation may 
be used in an algorithm for calculating ground state properties. 

Gaussian kernel algorithm. Once the choice for the .∼Q(i) and.hi is settled, an algo-
rithm for finding ground states can be given in terms of the following iteration: 

1. Start with any initial distribution of.M worlds.Q0 = {Q(1)
0 , . . . , Q(M)

0 } and choose 
a suitably small time step .∆t > 0. 

2. From.Q0, compute the approximate potential (10) in which the approximate den-
sity .P(X;Qt ) is replaced by .Ph(X;Q0) given in (22).
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3. Integrate the second order equation of motion (9) up to time .∆t with zero initial 
velocities .Q̇(i)

0 = 0, to obtain a new empirical distribution .Q∆t . 
4. Replace .Q0 by .Q∆t and go back to step 2 until a predefined stopping condition 

is met (e.g. given by an appropriate measure of convergence). 

We shall refer to this algorithm as the Gaussian kernel algorithm. The numerical 
implementation used in this work is provided in [ 21]. 

A similar algorithm was discussed for the 1d MIW model in Ref. [ 8]. The reason 
why convergence can be expected is that in every integration step of (9) the initial 
velocities are set to zero. This introduces a loss of energy, as after each integration 
step 3 above the total energy 

. Ekin(∆t) + Epot(∆t) =
M

∑

i=1

[
1

2

(

Q̇(i)
∆t

)2 −
∫ ∆t

0
ds Q̇(i)

s · ∇[V (X) +U (X;Qs)]X=Q(i)
s

]

(23) 

is reduced by the positive kinetic energy .Ekin. Hence, during the iteration of the 
algorithm the configuration of worlds .Q will arrange itself to find a local minimum 
of .Epot(∆t). Providing that the potential .V (X) is confining, e.g., as in the case of 
a harmonic potential, it will work to focus the worlds, while the potential . U (X;Q)

will work against clustering of worlds (cf. Ref. [ 8]). Since the integration time step 
.∆t is small, and near a local minimum the velocities .Q̇(i)

s in Eq. (23) can also be 
expected to be small, a local minimum of .Epot should then fulfil 

.∇[V (X) +U (X;Q)]X=Q(i) ≈ 0, (24) 

which according to the Bohmian equation of motion corresponds to a stationary 
state [ 5]. If.V (X) has only one local minimum one can therefore expect the algorithm 
to converge to a configuration of worlds. Q that is distributed according to.|Ψ|2, where 
.Ψ is the ground state wave function of the system with Hamiltonian .Ĥ as per (1). 

The main difference between the above algorithm, employing Gaussian kernels, 
and the MIW algorithm given in Ref. [ 8], is that the latter does not use a density 
estimator but instead computes forces as per (14), using the MIW potential (15), 
where the latter is conservative as per Eq. (16). One of the advantages of the Gaussian 
kernel model introduced here is that its form readily generalizes to any number of 
degrees of freedom.Nd without sacrificing smoothness. In contrast, the form of (15) 
and its generalization via Eq. (17) depend on the use discrete derivatives, defined 
via finitely many neighbouring worlds, which leads to continuity issues as discussed 
at the beginning of this section.
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3.1 Application to 2d Ground States 

The Gaussian kernel algorithm defined in Sect. 3 is applicable to any number of 
degrees of freedom.Nd but relies on good choices for the subdivisioning, .∼Q(i), and 
. hi . Any of the general methods in Sect. 2 is convenient in this regard, and we will 
follow the cell method based on Eq. (19). In order to use (19) we need to specify 
a subdivision of the configuration space into cells, and we shall use the Voronoi 
subdivision method [ 28] in our numerical implementation. For the configuration 
space .RNd and a configuration of worlds .Q(i) ∈ R

Nd , the Voronoi cell containing 
the world .Q(i) is defined by 

. Celli :=
{

X ∈ R
Nd : ||X − Q(i)|| < ||X − Q( j)|| ∀ j /= i

}

(25) 

We will call .Celli an inner cell if it is bounded and an outer cell if it is unbounded. 
By definition the Voronoi cells form a subdivision of configuration space .RNd : 
.
U

i Celli = R
Nd and .Celli ∩Cell j = ∅ for . j /= i . The Voronoi subdivision is well 

adapted to our problem of finding an a priori  density such as (19) from an empiri-
cal distribution defined by .Q as it naturally incorporates a measure of proximity in 
configuration space. We shall use 

.∼Q(i) = Q(i) for i = 1, . . . , ∼M = M, (26) 

and in accordance with (19), enforce the corresponding a priori  density constraint 

.Ph(∼Q(i);Q)
!= 1

M

1

|Celli | =: pi (27) 

to find the widths .hi by means of the recurrence relation 

.hi ← hi Ph(∼Q(i);Q)/pi . (28) 

As a proof of concept, we tested this generalized Gaussian kernel algorithm for 
.N = 1 particles and .d = 2 spatial dimensions, in two cases: 1) A harmonic poten-
tial .V (X) = 1

2ℏ
2ω2XTX and 2) a Pöschl-Teller type potential. Note that, unlike the 

harmonic potential, the Pöschl-Teller potential has many more or less natural gen-
eralizations in more than one spatial dimension. For our proof of concept study we 
took the simple choice with .X = (x1, x2): 

.V (X) = V1(x1) + V1(x2), with V1(x) = α2

2

λ(λ + 1)

cosh 2(αx)
(29)
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Fig. 2 Convergence of the Gaussian kernel algorithm for .M = 25 worlds, .N = 1 particle, and 
.d = 2 spatial dimensions, in a harmonic potential .V (X) = 1

2ℏ
2ω2XTX . The plot on the upper 

right shows the evolution of the configuration of worlds .Q during the iteration of the algorithm. 
The integration time step was chosen to be .∆t = 5 · 10−2 for .2 · 104 integration steps. The three 
plots on the left are configuration space snapshots for the respective times . t shown in the lower 
left corner, respectively. The circles denote the worlds and the black lines illustrate their respective 
Voronoi cells. The plot in the lower right displays the convergence of the energy, again in units of 
.ℏω, as well as the relative error. The latter is computed as ratio of the difference of the difference 
w.r.t. the exact ground state energy (dashed line) and the difference of the exact energies of the first 
excited and the ground state. Note that in 2d the excited and ground state energies are given by 
.E1 = 2ℏω, and. E0 = ℏω

The results of the corresponding numerical simulations, for .M = 25 worlds, are 
reported in Figs. 2 and 3, respectively, showing fairly good convergence to corre-
sponding ground state configurations, and likewise, to the expected ground state 
energy. 

As discussed in [ 22], for .Nd = 1, there is a more convenient choice for (26) that 
helps to avoid crossings of world trajectories that are forbidden by their uniqueness 
according the Bohmian velocity law (2). This non-crossing property of worlds is, of 
course, far less of an issue for .Nd > 1. However, one has to consider a potentially
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Fig. 3 Convergence of the Gaussian kernel algorithm for .M = 25 worlds, .N = 1 particle, and 
.d = 2 spatial dimensions, in a Pöschl-Teller type potential defined as per Eq. (29) with.λ = 5. The  
plot on the upper right shows the evolution of the configuration of worlds .Q during the iteration 
of the algorithm. The integration time step was chosen to be .∆t = 2 · 10−2 for .104 integration 
steps. The three plots on the left are configuration space snapshots for the respective times. t shown 
in the lower left corner, respectively. The circles denote the worlds and the black lines illustrate 
their respective Voronoi cells. Note the boundary worlds which, as discussed in the text, have been 
fixed to lie on a circle of sufficiently large radius to stabilize the iteration. The plot in the lower 
right displays the convergence of the energy, again in units of .α2

ℏ
2/m, as well as the relative  

error. The latter is computed as ratio of the difference of the difference w.r.t. the exact ground state 
energy (dashed line) and the difference of the exact energies of the first excited and the ground 
state. Note that in 2d the excited and ground state energies are given by .E1 = −20.5 · α2

ℏ
2/m, 

and .E0 = −25 · α2
ℏ
2/m. The computed energy lies systematically below the exact ground state 

energy. As discussed, this systematic error is caused by the artificially fixed boundary worlds 

more serious problem concerning the boundary worlds in the outer cells, for which 
the a priori  distribution in Eq.  (27) reduces to an uninformative value of .pi = 0, 
independently of the actual positions of the boundary worlds. In the case . Nd = 1
there are only two boundary worlds .Q(1) and .Q(M) whereas, e.g., in our setup for 
the harmonic potential, with .Nd = 2 and .M = 25, we have 16 boundary worlds as 
depicted in Fig. 2.
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In the case of the harmonic potential the boundary worlds were not found to be 
problematic, essentially because while their motion is not moderated by other worlds, 
the strongly-confining nature of the potential does not allow any of the worlds to 
escape to spatial infinity. In contrast, the Pöschl-Teller potential is asymptotically 
constant, and hence does not confine the boundary worlds. Due to that fact the 
corresponding numerical simulation easily becomes unstable. However, a straight-
forward solution to circumvent this problem is to introduce additional artificial worlds 
at fixed positions surrounding the actual worlds. Q; see the straight trajectories plotted 
in Fig. 3. 

These artificial boundary worlds act to damp any unwanted oscillations of the 
outer worlds of .Q but on the other hand encode a kind of boundary condition on 
the Hamiltonian at hand. Hence, these boundary worlds must be placed at sensible 
locations, having a sufficient distance to the actual worlds. Q, so that the accuracy of 
the world distribution is only changed in regions of configuration space where the 
density should in any case be very low. One may therefore expect that the accuracy of 
the numerically inferred moments of observables are not significantly affected. We 
have not tried to optimize the location of the boundary worlds in our first trial in Fig. 3, 
which is why the numerically determined value of the ground state is systematically 
smaller that the exact one. 

All these troubles seem to be connected to the discrepancy between the two 
required approximation modes, i.e., in the.L2-norm sense, required for the statistics, 
and the one in the point-wise sense, required to obtain the world trajectories. Our 
choices made above in terms of subdivisioning methods, approximation kernels and 
their corresponding parameters, can be seen as forms of relieving this discrepancy 
through specification of a priori knowledge about the smoothness. These phenomena 
would of course have to be studied in more detail, however, our analysis already 
indicates that also in more than one spatial dimension one may expect our proposed 
approach to be applicable to ground and excited states for various potentials. 

4 Conclusions 

In this paper, we have generalized the original MIW algorithm [ 8] to treat a configu-
ration space of more than one dimension, by using smooth kernel density estimation 
to approximate the empirical probability distribution. Our numerical implementation 
shows that this general algorithm performs well for calculating ground state energies 
and configurations for the harmonic and Pöschl-Teller potentials in two dimensions. 
Its application to both ground states and excited states of one-dimensional systems 
has been explored elsewhere [ 20, 22]. 

Kernel density estimators have also been recently applied by Sturniolo within 
the framework of the MIW approach [ 23], using a different method to construct the 
estimator, with numerical calculations yielding promising results for ground states 
of harmonic and Lennard-Jones potentials in two and three dimensions. Sturniolo 
further suggests that exponential kernels may perform better than Gaussian kernels
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for finding ground state energies, but worse for finding ground state configurations, 
and that it may be possible to simulate temperature-dependent tunnelling effects in 
the MIW approach [ 23]. 

The original motivation in using the MIW approach in numerical computations 
was the hope of a generally-applicable method that reduced computational resources 
as compared to fixed-grid methods. At first sight, however, the provided numerical 
implementation still seems to be computationally expensive: even when neglecting 
the iteration that determines the bandwidths.hi in each integration step as per Eq. (28), 
the computational effort scales at least quadratically in the number of worlds . M , 
since.M contributions to the potential must be calculated for each world via Eq. (22). 
Fortunately there are many possible tricks to reduce this scaling, and indeed it has 
been claimed for general kernel density estimation approaches that this scaling can 
be reduced to one linear in .M [ 27]. In our context the underlying idea for this 
claim corresponds to the fact that, due to the choice of bandwiths . hi , the Gaussian 
kernel functions are usually highly peaked in regions where many worlds cluster, so 
that the corresponding kernel functions fall off rapidly and the sum in the density 
estimator (22) can be truncated. Computational effort can be further reduced via a 
fixed lookup table for the kernel function, that is interpolated according to the scaling 
introduced by . hi . Finally, while the iteration to determine the .hi in Eq. (28) usually 
converges with very few iterations (since the configurations of the worlds .Q change 
only slightly between the integration steps), it may also be possible to determine 
the .hi dynamically from the world configurations at each time step. This has been 
explored for kernel estimation with dynamics ruled by the heat equation [ 29], and 
similar techniques may apply to dynamics ruled by the Schrödinger equation. 

In conclusion, therefore, development of the approach in this paper may lead to a 
more general and efficient numerical tool for ground state and other calculations, that 
tempers the exponential scaling of fixed-grid methods while maintaining the same 
numerical accuracy. 
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Are There Observational Differences 
Between Bohmian Mechanics and Other 
Interpretations? 

Lev Vaidman 

Abstract While there is a consensus that leading interpretations of quantum mechan-
ics cannot be distinguished with today’s technology, it is unclear if a gedanken exper-
iment which relies on unlimited technological power cannot do so. Another gedanken 
approach is considering sentient beings which have brains different from ours. Such 
gedanken situations will be analyzed with emphasis on a possible difference between 
Bohmian mechanics and the many-worlds interpretation. 

1 Introduction 

I can see a parallel between Detlef Dürr’s and my own work on the interpretations 
of quantum mechanics. For both of us this was a central part of our research and we 
both believed that there is a single interpretation which is much better than others. 
However, while Detlef had no doubt about the superiority of Bohmian mechanics 
(BM) [ 1, 2], I am certain that the many-worlds interpretation (MWI) [ 3] is by far  
the best. The term “interpretation” might not be precise: different interpretations of 
quantum theory are sometimes actually different theories. In this paper, I want to shed 
light on possible observational differences between different interpretations and, in 
particular, between BM and MWI, although it is not clear that such differences exist. 

We make our observations using our senses which provide our experiences, and the 
next section defines the connection between ontology and experience. In Sect. 3 I start  
the analysis by gedanken attributing conscious experience to a microscopic particle, 
a neutron. The advantage is that we can consider experiments which are performed in 
laboratories. Section 4 is devoted to similar experiments with macroscopic sentient 
beings. Here, the gedanken story is the possibility of performing such experiments. 
The next level of gedanken consideration in Sect. 5 is to consider macroscopic sentient 
beings with brains operating using spin states. 
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2 Experience Supervenience Postulates 

In my view, a theory (interpretation) consists of two ingredients: an ontology 
described in mathematical terms and a rule which provides correspondence between 
the mathematical formalism and our experience. I do not presuppose any compli-
cated/refined meaning of the “experience” beyond a basic physicalist notion, where 
there is no conceptual difference between my experience and the experience of a 
robot equipped with various sensors. 

For some theories, the rule connecting ontology and experience seems trivial and 
is rarely explicitly mentioned. For example, Newtonian mechanics supervenience 
postulate: 

The experience of a sentient being supervenes on the position and velocity of the particles 
it consists of. 

Standard textbook quantum mechanics (which includes collapse of the wave func-
tion at every quantum measurement) supervenience postulate: 

The experience of a sentient being supervenes on the wavefunction of its degrees of freedom. 

For BM and especially for MWI, the supervenience rule is an essential part of the 
interpretation. 

The ontology of the MWI is the universal wave function, period. The same uni-
versal wave function is also part of the ontology of BM (although Bohmians often 
attach to it a lower status [ 1]). The BM supervenience postulate is necessary to avoid 
multiple worlds in BM. 

The MWI supervenience postulate: 

The experience of a sentient being supervenes on the wavefunction of its degrees of freedom 
within the world branch of the wave function of the universe. 

It is the same postulate as in the textbook quantum mechanics, in which there is 
only one branch of the universal wave function. 

For BM I suggest considering two possible postulates. The BM supervenience 
postulate I: 

The experience of a sentient being supervenes on the Bohmian positions of the particles the 
sentient being is made of. 

The BM supervenience postulate II: 

The experience of a sentient being supervenes on the Bohmian collapsed wavefunction of 
its degrees of freedom. 

Another possible proposal is supervenience on both Bohmian position and the 
Bohmian collapsed wave function. However, I feel that every one of the ingredi-
ents, Bohmian positions or Bohmian collapse wave function is enough to explain 
our experience, so this proposal seems to be unreasonably complicated.
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3 Experiences of a Neutron 

I want to start by analyzing a neutron Mach-Zehnder interferometer (MZI), a device 
that already four decades ago was used as a test bed for the strange behavior of 
quantum systems [ 4], see Fig. 1. In the past I analyzed such an interferometer attach-
ing “consiousness” to the neutrons and arguing that we need the MWI to avoid 
schizophrenic experiences of neutrons in the interferometer [ 5]. Quantum physics 
attributes two paths for neutrons inside the interferometer, which are necessary for 
explaining the interference. The equations of quantum mechanics tell us that when 
a neutron reaches a beam splitter, its quantum wave splits into two parts. This is 
observed in numerous experiments. An experimentalist can tune the interferometer 
described in Fig. 1a such that no neutrons reach the detector .D2. Moreover, one of 
the ways to tune the neutron interferometer is to put a line of charges between the 
arms. This is the Aharonov-Casher effect [ 6, 7] the topological character of which 
leaves no other choice but to accept that the neutron must be in two arms and “experi-
ence” different forces in these two arms. To avoid schizophrenic neutrons, the MWI 
postulates that within a world neutrons cannot have distinct experiences, i.e., that 
from the moment a neutron enters the interferometer and until leaving it, there are 
two worlds for the neutron: in one world it takes arm. A and in another, arm. B. 

Bohmian mechanics avoids schizophrenia of the neutron without multiple worlds 
by adopting one of the experience postulates. In the MWI framework, in the neutron 
MZI experiment there are two “neutron worlds”, while in the BM there is only one 
neutron world. However, we cannot state that there is an observational difference. 
The experiences of the neutron in the BM are identical to those of the neutron 
in one of the MWI worlds. In the framework of the MWI we do not have direct 
observational evidence for the existence of multiple worlds, and both worlds of the 
MWI are possible Bohmian worlds. So there is no neutron passing an MZI, which 
has evidence for one interpretation and not the other. 

Bell [ 8] was the first to recognize a strange behavior of the Bohmian trajectories in 
MZI without the second beamsplitter, see Fig. 1c. When the Bohmian particle moving 
in one arm of the MZI reaches the place .O where the second beamsplitter has been, 
it is “caught” by the empty wave moving in the other arm and changes its velocity 
without any physical fields in this place. In this experiment, the history of experiences 
of the neutron in BM is different from any of the histories of experiences in the two 
neutron worlds of the MWI. The difference is in the BM jump from one MWI world 
to another. However, the jump and the history of experiences are not “written” in 
the memory of the neutron, so there is no moment of time in which the neutron 
can distinguish between the BM and the MWI. Indeed, although it is suggestive to 
assume that the neutron has different experiences when it accelerates, bouncing off 
a mirror or jumping from one wave packet to another at point . O , the physicalism 
requires that the experience of a sentient being is given by a model of her brain (or the 
central processing unit). If the neutron does not have an internal structure, it cannot 
have experiences, while adding an internal structure of the neutron complicates the 
experiments. Indeed, a neutron, having memories of different experiences in arms
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Fig. 1 Schematic picture of neutron Mach-Zehnder interferometer. (In laboratory implemen-
tations beamsplitters and mirrors are just parts of a symmetrically cut perfect crystal.) a) Neutron  
interferometer tuned to destructive interference toward detector .D2. b) Aharonov-Casher effect. 
The phase of the neutron interferometer is tuned by changing the charge density of the line of 
charges passing through the interferometer. c) Bohmian trajectory (continuous black line) in the 
interferometer without second beam splitter 

.A and . B, will not interfere in the output ports of the MZI and we will not see the 
Aharonov-Casher effect. However, the interference was important when we argued 
for the necessity of the MWI but not for the question of observational differences 
between the MWI and the BM. 

Consider a natural model of the neutron experience, its spin. (In BM this model 
requires accepting supervenience postulate II, i.e. that experience supervenes on the 
Bohmian collapsed spin wave function.) Let us put a magnetic field on path. B which 
flips the spin of the neutron, and thus the spin will provide a memory of the experience 
in different arms. Adding interacting spin spoils the interference of the MZI, but does
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not change the behavior of Bohmian particles as described in Fig. 1c. The Bohmian 
particle still jumps to the empty wave accelerating in a place without fields. The MWI 
world and the BM worlds have different histories, but again, there is no moment of 
time when the neutron, within a world, has evidence of the difference between BM 
and the MWI. 

In order to consider the BM supervenience postulate I, we can replace the neu-
tron by an atom and consider the experience at different paths recorded in different 
Bohmian positions of the particles the atom consists of. But if the internal quantum 
states of wavepackets moving on path. A and path. B differ, the jump of the Bohmian 
positions to the empty wave packet will not happen, and so the experience in the 
possible BM worlds will be identical to the experiences in the atom’s world of the 
MWI. If using a supertechnological device we erase the memory in the wave packets 
of the neutron just before they reach the meeting point . O , the histories in the BM 
world and the worlds of the MWI will be different, but the neutron will not have the 
memory to verify this. In all cases we do not have any observational difference. 

In fact, for analyzing the MWI, even a sentient neutron or atom is a very prob-
lematic example because they are not macroscopic. Experience of a sentient being is 
defined only within a world, since in different worlds sentient beings have different 
experiences. According to my definition [ 3]: 

A world is the totality of macroscopic objects: stars, cities, people, grains of sand, etc. in a 
definite classically described state. 

Important aspects of the problem cannot be considered with microscopic objects. 
Adding a microscopic object to the description of a world leads to a very different 
behavior [ 9, 10]. 

4 Wigner’s Cat 

Although there are (few) claims to the contrary, I am not aware of any realistic exper-
iments which can distinguish between different interpretations of quantum mechan-
ics (apart from constraining parameters of some physical collapse theories [ 11]). I, 
however, think that it is important to consider the possibility of having observational 
differences in gedanken experiments requiring technology that is not present today 
and might not even be present in any foreseeable future. 

A gedanken experiment that has attracted renewed attention is the Wigner friend 
[ 12, 13]. Despite the alleged experimental demonstrations [ 14] I do not expect that 
the experiment will be performed in a real laboratory. Wigner was supposed to 
measure his macroscopic friend in superposition of macroscopically different states. 
In [ 14] the “friend” is a photon, so such an experiment is not better than the neutron 
interference experiment discussed above. 

Let us consider Wigner’s friend to be his cat. The cat is macroscopic enough and 
sentient enough, especially since Wigner trained his cat to be an observer in a spin 
experiment. The cat stands up if the detector corresponding to outcome “up” clicks
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and lays down if detector “down” clicks. At time.t = 0 the Stern-Gerlach experiment 
measuring spin in the . z direction of a particle with initial state .|↑x > is performed. 
The cat observes the result and acts according to her training. 

Consider the following set of Wigner measurements. First, immediately after 
the procedure, he measures the observable of the lab with the cat which has two 
eigenstates: .|+> and .|−>, where 

.|±> ≡ 1√
2
(|cat stands up>|↑z> ± |cat lays down>|↓z>. (1) 

Then, Wigner keeps the lab isolated and repeats the same measurement (with appro-
priate changes due to time evolution) every minute. 

If the correct theory describing the universe is quantum mechanics with collapses 
when macroscopic objects are in superposition of macroscopically different states, 
then the possible results of Wigner are .+,+,−,+,−, ... This is because states 
.|+> and .|−> are superpositions of the cat standing up and laying down, so during 
the sixty seconds between Wigner’s measurements they will collapse either to state 
.|cat stands up> or to state.|cat lays down> after which there is an equal probability 
for results “. +” and “. −” of Wigner’s measurements. 

If the correct theory describing the universe is the MWI or BM, then, Wigner’s 
results are deterministic: .+,+,+,+,+, ... At time .t = 0 the state .|+> is prepared 
and evolves unitarily to its version at later times. So Wigner (given that he has 
supertechnology) can distinguish between collapse and non-collapse theories (see 
also Sect. 5 of [ 3]). He cannot distinguish between the BM and the MWI. 

The cat can also be considered as an observer. In the framework of the MWI, at 
every moment there is a cat experiencing standing up and a cat experiencing laying 
down. In the framework of the BM one of these cats is an empty wave which has no 
Bohmian positions and does not have any experience. Depending on the way Wigner 
performs his measurements, in the BM we might have only one type of experience 
for the cat (say, standing up), or it might change due to the process of Wigner’s 
measurement. (The latter can happen if Wigner performs an interference experiment 
after bringing the two wave packets of the cat to the same location.) However, Wigner, 
in order to perform his measurements, has to erase the memory of the cat, so there is 
no moment in time at which the cat has evidence about what is the right theory, the 
BM or the MWI. 

5 Sentient Being with a Spin Brain 

In Sect. 3 we already considered a sentient neutron with a spin brain, but a proper 
analysis requires macroscopic objects. Indeed, in BM one can talk about worlds that 
differ due to microscopic differences of the Bohmian positions of particles, but in 
the MWI the concept of a world requires macroscopic differences of macroscopic 
objects.
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Fig. 2 Surrealistic trajectories of the neutron observed by sentient robots with spin brains. 
Analysis of the experience of robots according to the BM supervenience postulate II. a) The neutron 
enters the MZI interferometer without the second beamsplitter, and sentient spin-brain robots are 
ready to observe its trajectory. b) The neutron is inside the interferometer close to the point. O . The  
robots on the path. A detected the passing neutron (their spin-brain states flipped), while the robots 
on the path. B remained in the ready state. c) The neutron passed the point.O and was detected by a 
standard detector.D1. At the moment that the neutron passed the point. O , the spin brain memories 
of the robots on the path .A were erased and returned to “ready” while the spin brain states of the 
robots on the path. B changed to incorrect records of the neutron passing there 

Current brain studies do not suggest that our brain works with spin states, but 
we can imagine a sentient macroscopic robot with brain based on the macroscopic 
number of spin states. A particularly surprising situation will occur if this robot is 
placed in one arm of the MZI without the second beam splitter to observe the passing 
neutron there, as in Fig. 1c. Let us consider a world in which the neutron is detected 
on the detector .D1. Although the robot is macroscopic, if the observation of the 
neutron changes only its spin states, say flip them from “down” to “up”, then from 
the Bohmian perspective no position measurement has been performed in the arms 
of the interferometer and, therefore, when the full and empty wave packets of the 
neutron meet at location. O , the Bohmian particle has to jump from one wave packet 
to another. Therefore, the neutron (detected by .D1) had a Bohmian trajectory along
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the path. A. We get records of the robot telling us that the neutron took the lower path 
B, while the Bohmian trajectory of the neutron is the upper path . A. This situation is 
called a surrealistic trajectory [ 15]. 

In fact, in this setup we can place more robots with spin brains, see Fig. 2 which 
will all agree after the click of the detector .D1, that the neutron passed through arm 
. B. This does not fit the BM supervenience postulate I, according to which experience 
supervene solely on Bohmian positions, while here it is the spin states of the brains 
which “know” the result. We should say that the robots have no experience of seeing 
a neutron. If we accept the BM supervenience postulate II, we should say that the 
robots have experience of seeing the neutron in arm . B, but they are all mistaken, 
because the Bohmian trajectory of the neutron was in path . A, see Fig. 2c. This is 
also where the BM collapsed wave of the neutron was in the past. Indeed, when 
the neutron was inside the interferometer, the collapsed wave functions of the robot 
brains were different, they corresponded to the neutron passing through. A, see Fig. 2b. 
The records of the brains changed to a neutron passing through. B when the neutron 
passed point . O , see Fig. 2c. 

In my view, the change of brain records is a weakness of the interpretation, but 
it is not something that has observable consequences. At every moment in time the 
spin-brain records in BM corresponded to the records in one of the worlds of the 
MWI, so at no moment in time had the robot evidence for one interpretation against 
the other. 

6 Summary 

If we accept the starting point of BM that in the end of the day all quantum measure-
ments are measurements of position of the pointers of the measuring devices (this 
approach leads to experience postulate I), then the theorem of BM about the robust-
ness of the Born distribution of Bohmian positions under unitary evolution tells us 
that there cannot be an observational evidence distinguishing BM from the MWI. 
Ingenious proposals leading to surrealistic trajectories of the type described above can 
also be constructed without spins. Surrealistic trajectories appear when local inter-
action leads to a change in the quantum state (such as acquiring momentum) without 
an immediate significant change in Bohmian positions [ 16]. The general statement 
is that slow measuring devices, which show the results after the empty and full wave 
packets pass the intersection point, provide incorrect records of Bohmian positions 
of the particles. It might be slightly disturbing that only Bohmians would claim that 
such devices are not good measuring devices of position (in all other interpretations, 
which have no surrealistic trajectories, the measuring devices show correct histories), 
but no observational differences appear, only different interpretations. 

Supertechnology, a la Wigner, cannot help. The basic supertechnology experi-
ment, which allows distinguishing collapse and non-collapse interpretations involves 
interference between different worlds of the MWI, e.g. an interferometric device like 
an MZI, but with macroscopic objects (sentient observers) instead of particles, does
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not distinguish between BM and the MWI. The MZI without a second beam splitter 
(the basis of surrealistic trajectories experiments) is simpler than a MZI. It is con-
ceptually different from the interference experiment since there is no interference 
between the. A and. B branches. However, when the branches involve macroscopically 
different sentient beings, the technology for obtaining surrealistic trajectories is not 
simpler. Wigner needs to make the two branches identical in the spatial configuration 
space and then bring them back to their different macroscopic states. All these com-
plicated manipulations will lead to histories in Bohmian mechanics different from 
those of the MWI, but these scenarios must involve memory erasure of the histories, 
so at no moment of time will Wigner, or any sentient being he makes the experiment 
with, have any evidence distinguishing one interpretation from the other. 

The existence of sentient beings with spin brains does not change the conclusions. 
The BM supervenience postulate I does not allow such sentient beings. So, they will 
know, if they actually exist, that BM with postulate I is incorrect. They will have 
the option to accept BM with postulate II or MWI. If they will observe particles in 
experiment like in Fig. 2 (which, in fact, does not require supertechnology, the only 
gedanken part here is the existence of sentient being with spin brains) the histories 
of their experiences in the BM framework will be different from those of the MWI, 
but at no time will there be any evidence for a sentient being about the difference 
between BM with postulate II and the MWI. 

I favor the MWI not because, but in spite of the plurality of worlds, so my moti-
vation for BM is that it singles out one of the worlds of the MWI. I find the BM 
experience postulate I simple and natural and (in spite of featuring action at a dis-
tance) I find that the BM with postulate I is an attractive proposal. However, such a 
theory has to include at least implicitly a statement of nonexistence of sentient beings 
with spin brains or any other nonspatial degrees-of-freedom brains. 

The alternative, BM with supervenience postulate II, seems less attractive. If 
experience supervenes on the wave function (the BM collapsed wave function), why 
not consider the MWI with essentially identical supervenience postulate? One might 
consider it as an advantage of BM that the BM collapsed wave function is better 
defined than the MWI branch wave function, but the MWI proponent can say that 
experience is not something that has to be precisely defined mathematically. Note 
also that even the BM collapsed wave function is rigorously defined only when the 
wave function is a superposition of spatially separated wave packets. 

The research program of Detlef Dürr was not finished. We do not have a consensus 
about the interpretation of quantum mechanics. I believe that in my contribution I 
succeeded to shed some light on similarities and differences of BM and MWI and 
pointed to the direction which might lead to a progress: understanding better the 
connection between the formalism of quantum mechanics and our experience. 
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A Tentative Completion of Quantum 
Mechanics 

Jürg Fröhlich, Zhou Gang, and Alessandro Pizzo 

Abstract We review a proposal of how to complete non-relativistic Quantum 
Mechanics to a physically meaningful, mathematically precise and logically coherent 
theory. This proposal has been dubbed ETH-Approach to Quantum Mechanics, “. E” 
standing for “Events,” “. T” for “Trees,” and “. H” for “Histories.” The.ETH -Approach 
supplies the last one of three pillars Quantum Mechanics can be constructed upon 
in such a way that its foundations are solid and stable. Two of these pillars are well 
known. The third one has been proposed quite recently; it implies a general non-linear 
stochastic law for the time-evolution of states of individual physical systems. 

1 What Is Missing in Text-Book Quantum Mechanics? 

“It seems clear that the present quantum mechanics is not in its final form.” (Paul 
Adrien Maurice Dirac) 

In this paper we review some results on the foundations of quantum mechanics 
(.QM ). These results have appeared in papers already published. Various applications 
to concrete phenomena, such as radioactive decay of nuclei or fluorescence of atoms 
coupled to the quantized electromagnetic field, have been or will be presented else-
where. Our main aim in this paper is to make a modest contribution towards removing 
some of the enormous jumble befuddling many people who attempt to work on the 
foundations of .QM . We sadly miss the clear insights and useful comments our col-
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league and friend Detlef Dürr would have contributed to the endeavor pursued in this 
paper. He thought about fundamental problems of quantum mechanics more deeply 
than most people and over many years [ 1]. 1

We start our review by explaining some of the shortcomings of text-book . QM
and the “Copenhagen interpretation”, with the purpose to highlight the need for a 
completion of the theory—as Dirac had anticipated. Text-book .QM is a theory— 
alas, incomplete—of (ensemble averages over many identical) physical systems and 
of the time evolution of ensemble-averaged states based on the following two pillars: 

(i) A physical system, . S, is characterized by a list 

. OS = {
∧Xι = ∧X ∗

ι

IIι ∈ IS
}

of abstract bounded self-adjoint operators, where .IS is a continuous index set. 
Every operator .∧X ∈ OS represents a (bounded function of a) physical quantity 
characteristic of . S, such as the electromagnetic field in a bounded region of 
space-time, or the total momentum, energy or spin of all particles (e.g., atoms) 
in. S localized in some bounded domain and interacting with the electromagnetic 
field. Different operators in.OS do in general not commute with one another. One 
assumes that if .∧X ∈ OS and. F is a real-valued, bounded continuous function on 
. R then.F(∧X ) ∈ OS , too. In general .OS does not have any additional structure (it 
is usually not a real linear space, let alone an algebra). 
At every time. t, there is a representation of.OS by bounded self-adjoint operators 
acting on a separable Hilbert space . H: 

.OS ∋ ∧X I→ X (t) = X (t)∗ ∈ B(H) , (1) 

where .B(H) is the algebra of all bounded operators on . H. 
Heisenberg picture time evolution: If  . S is an isolated system, i.e., one whose 
interactions with the rest of the Universe are negligibly weak, then the operators 
.X (t) and .X (t') representing a physical quantity .∧X ∈ OS at two times, . t and . t', 
are unitarily conjugated to one another. In an autonomous system, 

.X (t') = ei(t'−t)HS/ℏ X (t) e−i(t'−t)HS/ℏ , (2) 

where .HS is the Hamiltonian of . S, which, for an autonomous system, is time-
independent. For simplicity, we will henceforth assume that . S is autonomous. 

(ii) “States,” . ω, of  . S are assumed to be given by density matrices, . Ω, i.e., by non-
negative trace-class operators on.H of trace one. The expectation at time. t of an 
operator .∧X ∈ OS in the “state” . ω of . S is given by 

.ω
(
X (t)

) := Tr
(
Ω X (t)

)
.

1 We suspect, though, that our views of how to complete.QM are likely to differ from what we think 
were his. 
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The state . ω given by the density matrix .Ω is pure iff .Ω is a rank-1 projection 
.P = P∗ = P2; otherwise it is a mixed state. 

1.1 The Shortcomings of Text-Book Quantum Mechanics 

In text-book .QM , it is usually assumed, following Schrödinger, that, in the 
Heisenberg picture, “states” of an isolated physical system. S are independent of time 
. t, and, hence, that the Heisenberg picture is equivalent to the Schrödinger picture; 
namely 

. ω(X (t)) = Tr
(
Ω X (t)

) = Tr
(
Ω(t) X

)
, X := X (t0), Ω := Ω(t0),

where .t0 is an (arbitrarily chosen) initial time. In the Schrödinger picture, the 
Schrödinger (-von Neumann) equation 

.Ω̇(t) = − i

ℏ

[
HS ,Ω(t)

]
, t ∈ R. (3) 

describes the time evolution of states of . S, while physical quantities of . S are repre-
sented by time-independent bounded operators .X on . H. 

More generally, the time-dependence of “states” of a system . S interacting with 
some environment is described by linear, deterministic, trace-preserving, completely-
positive maps, .

{
Γ(t, t')

IIt ≥ t'
}
, 

.Ω(t) = Γ(t, t')
[
Ω(t')

]
, ∀t ≥ t' , (4) 

where the operators .Γ(t, t') are defined on the linear space of trace-class operators 
on . H, and .Γ(t, t') = Γ(t, t'') · Γ(t'', t'), t ≥ t'' ≥ t', with .Γ(t, t) = 1; see  [  2, 3]. 

Thus, in text-book .QM , the  time evolution of states in the Schrödinger picture 
(see Eqs. (3), (4)) is linear and deterministic. Of course, this cannot be the full story! 
As already recognized by Einstein in 1916 in his paper on spontaneous and induced 
emission and absorption of light by atoms, which he described in probabilistic terms 
(introducing his .A- and.B-coefficients), .QM is a fundamentally probabilistic theory. 
To anticipate an important fact about .QM , we claim that the linear deterministic 
evolution equations (3) and (4) only describe the evolution of ensemble averages 
of very many identical systems; but that the time evolution of an individual system 
is non-linear and stochastic. 

Thus, the fundamental problem arises to introduce an appropriate notion of 
states of individual systems and the correct general law determining the non-linear, 
stochastic evolution of these states. In other words, our task is to find the right “ontol-
ogy” underlying .QM . 

According to the Copenhagen interpretation of .QM , the deterministic evolution 
of the “state” of an individual system identical to . S is “interrupted” at all times .t
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when an “event” happens, such as the emission or absorption of a photon by an atom, 
or when a measurement of the value of a physical quantity .∧X ∈ OS is carried out. 
In this latter case, the “state” of . S is claimed to make a “quantum jump” to some 
“state” in the range of the spectral projection of.X (t) corresponding to the value of. ∧X
measured at time. t, i.e., corresponding to the eigenvalue of .X (t) associated with the 
measured value of . ∧X . .QM is claimed to predict the probabilities or frequencies of 
“quantum jumps” to eigenstates corresponding to different possible values of. ∧X when 
measurements of the value of .∧X are repeated many times for identical, identically 
prepared systems. These frequencies are supposed to be given by the Born Rule 
applied to the state of . S at the time when the measurement of . ∧X begins.—This is, in 
words, the contents of Lüders’ measurement postulate [ 4]. 

Critique of Text-Book QM 

1. The notion of a “measurement” or “observation” appearing in the Copenhagen 
interpretation of.QM is extremely vague. What is the difference between a period 
in the evolution of the state of a system without “measurement” and a period of 
evolution when a “measurement” is carried out? 
If the machinery used to measure the value of some physical quantity. ∧X is included 
in what constitutes the total system . S, now assumed to be isolated, one might 
expect—erroneously—that every event corresponding to a measurement of the 
value of . ∧X could be viewed as the result of the Schrödinger evolution of the state 
of the total system. This would imply that .QM is a deterministic theory—which 
it obviously isn’t, as already noticed by Einstein; (see [ 5, 6] for more recent 
observations in this direction). So, what is going on? 

2. If one takes Lüders’ measurement postulate literally one is tempted to conclude 
that .QM only makes useful predictions if it is known beforehand what measure-
ments are planned by “observers” to be carried out, as well as what the times of 
their interventions are. One might then be misled to believe that the free will of 
“observers” plays a central role in .QM . 

3. The hypotheses implicit in the “Copenhagen interpretation” that one can freely 
choose the time when a measurement begins and that there are measurements that 
only take an arbitrarily small amount of time (which would actually imply that 
there are infinitely strong energy fluctuations associated with such measurements) 
strike us as totally absurd. 

4. There are quantum phenomena, such as the radioactive decays of certain nuclei, as 
well as the precise decay times, or the fluorescence of atoms, that are intrinsically 
random and involve “quantum jumps.” They are to be described by appropriate 
stochastic processes. But there are no “observers” involved to trigger them. So, 
where does the randomness of such phenomena originate from? 

“Fake Cures” of Text-Book QM 

• We think it is a mistake to imagine that the problems and paradoxes of text-book 
.QM can be cured by some sort of “interpretation” of .QM , such as “Relational 
QM,” “QBism,” “Consistent Histories,” “Many-Worlds Interpretation” [ 7], “Infor-
mation ontologies,” etc.; see [ 8] and references given there.
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As David Mermin put it: New interpretations appear every year. None ever disap-
pear. 

• We expect it to be equally unlikely that these problems and paradoxes can be 
eliminated by supplementing text-book .QM with some “ad-hoc mechanisms,” 
such as ones based on decoherence [ 9, 10], spontaneous wave-function collapse 
[ 11] (which may remind one of electromagnetic or mechanical mechanisms used to 
explain Lorentz contraction before the advent of the theory of special relativity), 
or by attempting to reproduce the predictions of quantum mechanics by using 
cellular automata [ 12], etc. 

Remark: Bohmian mechanics 2 is a logically coherent completion of (non-relativistic) 
quantum mechanics [ 1]. But it reminds one of “completing” classical electrodynam-
ics by introducing a mechanical medium, the ether, thought to be the carrier of 
electromagnetic waves. The Bohmian particles are as “unobservable” as the ether, 
the most likely reason being that they are point-particles without any physical prop-
erties, such as electric charge or spin.—We do not expect that Dirac would have 
accepted it as a completion of .QM . 

In the following we attempt to convince the reader that the fundamental problem to 
solve in order to “complete”.QM is to find a universal quantum-mechanical law that 
determines the non-linear stochastic time evolution of states of individual systems, 
with the properties that it correctly describes what is seen in experiments and that 
it reproduces the linear deterministic Schrödinger-von Neumann evolution of states 
averaged over an ensemble of very many identical isolated systems. 

2 An Analogous Problem in the Theory of Diffusion 
Processes 

An analogous problem in classical physics that may guide our thought process 
towards the right law is found in the theory of diffusion and Brownian motion. Con-
sider a system consisting of a drop, . E, of ink (e.g., eosin) in water. The “state” of 
. E at time . t is given by its density . ρt , which is a non-negative function on physical 
space .E

3. We normalize it such that .
∫

E3 d3xρt(x) = 1. The time dependence of .ρt is 
governed by the diffusion equation, viz. by a  deterministic linear law of evolution. 

.ρ̇t(x) = D (∆ρt)(x), D : diffusion constant. (5) 

The well known solution of this equation is given by 

.ρt(x) =
∫

E3
d3x' Γt−t'(x − x')ρt'(x

'), Γt(x) := (2πDt)−
3
2 e− |x|2

2Dt ,

2 We have added a remark on Bohmian mechanics on request of one of the editors. 
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and the heat kernels .Γt satisfy the Chapman-Kolmogorov equation. We will see that 
it is this property that distinguishes this classical model of a physical system from 
all quantum-mechanical models of physical systems. 

According to the atomistic view of matter, . E really consists of very many eosin 
molecules, which, in an idealized description, can be viewed as point-like particles 
(far separated from one another, so that interactions among these particles can be 
neglected). The state of an individual particle is its position in physical space. The 
“state” of. E, given by its density. ρ, should then be interpreted as an ensemble average 
over the states of the particles constituting the ensemble . E. An  individual system in 
this ensemble consists of a single particle. According to Einstein and Smoluchowski 
(1905), the particles in . E exhibit Brownian motion arising from random collisions 
with lumps of water molecules. (From this they derived, for example, a formula for 
the diffusion constant, namely .D = kBT

6πηr .) We have learned from Einstein, Smolu-
chowski and Wiener that Brownian motion “unravels” the diffusion equation, with 
the following ontology. 

(i) At every time . t, a particle is located in some point .xξ(t) ∈ E
3. 

(ii) Its trajectory .ξ := {
xξ(t)

}
t≥t0

is a random continuous curve—a Brownian 

path—in physical space .E3; but the velocity of the particle is ill-defined at 
all times. 

(iii) As shown by Wiener, there exists a probability measure,.d Wx0(ξ), on the space, 
. Ξ, of particle trajectories,.ξ := {

xξ(t) ∈ E
3
II t ≥ t0, xξ(t0) = x0

}
, starting from 

.x0 at time. t0; this measure is supported on trajectories. ξ that are Hölder contin-
uous of index . 

1
2 , etc.  

(iv) An “event” at time . t is the manifestation of the position, .xξ(t), of a particle. 
The trajectory . ξ can thus be viewed as a “history of events,” a random object, 
and .Ξ is the “space of histories.” 

Wiener measure .d Wx0(ξ) allows us to predict probabilities of measurable sets of 
histories; for example, 

.

prob
{
ξ ∈ Ξ

IIxξ(ti) ∈Oi, i = 1, 2, . . . , n, t0 < t1 < · · · < tn
}

=
∫

Ξ

d Wx0(ξ)

n∏

i=1

χ{xξ(ti)∈Oi}
(
ξ
)
,

(6) 

where .χ∆ is the characteristic function of the set .∆ ⊂ Ξ. 
The Chapman-Kolmogorov equation satisfied by the heat kernels implies that if 

regions.O(α)
i , .α = 1, . . . , N , for  some. N , are chosen such that.

UN
α=1 O(α)

i = E
3 then 

. 

N∑

α=1

prob
{
ξ
IIxξ(t1) ∈ O1, . . . , xξ(ti) ∈ O(α)

i , . . . , xξ(tn) ∈ On
}

= prob
{
ξ
II xξ(t1) ∈ O1, . . . , xξ(ti−1) ∈ Oi−1, xξ(ti+1) ∈ Oi+1, . . . , xξ(tn) ∈ On

}
.

(7)
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This property implies that if the position of a particle were measured at some inter-
mediate time. ti and then a sum over all possible outcomes of this measurement were 
taken one would obtain the same predictions for the outcomes of measurements of 
the particle positions at times earlier than . ti and at times later than . ti as if no mea-
surement had been made at time. ti. This means that the retrieval of information about 
the position of a particle does not affect its evolution. .QM yields a totally different 
picture of reality (actually a more accurate one): A measurement always affects pre-
dictions on the evolution of a system even if a sum over all possible outcomes of the 
measurement were taken. 

Using Wiener measure to take an average over the ensemble .E of very many 
identical particles, one recovers the deterministic law in Eq. (5) for the evolution of 
the “state” . ρt , 

.

∫

O
d3x ρt(x) =

∫

O
d3x

∫
d3x0 Γt−t0(x − x0)ρt0(x0)

=
∫

d3x0 ρt0(x0)
∫

Ξ

d Wx0(ξ)χ{xξ(t)∈O}
(
ξ
)
,

(8) 

for an arbitrary open subset .O ⊂ E
3. We note that the Chapman-Kolmogorov equa-

tion for the heat kernels implies the Markov property for the Wiener measure .d Wx0 , 
i.e., that a measurement of the particle position at some time . t wipes out all mem-
ory of its trajectory at times earlier than . t. In contrast, in quantum mechanics there 
usually are memory effects. 

One might say that the Wiener measure “unravels” the diffusion equation (5). In 
the next section, we describe an “unraveling” of the linear, deterministic Schrödinger-
von Neumann evolution of ensemble-averages of states of identical systems by a 
non-linear, stochastic evolution of states of individual systems inspired by the obser-
vations concerning diffusion and Brownian motion just sketched. This will yield a 
completion of .QM and equip it with a plausible “ontology.” 

3 “Unraveling” the Schrödinger-Von Neumann Equation 

The atoms or elementary particles themselves are not “real;” they form a world of 
potentialities or possibilities rather than one of things or facts. (Werner Heisenberg) 

In this section we describe the third pillar to be added to the two conventional 
pillars of text-book quantum mechanics described in Sect. 1, in order to arrive at 
a complete theory. The ontology of our completion of .QM will be found in “ran-
dom histories of events,” defined appropriately; in analogy to histories of positions 
(Brownian paths) occupied by a point-like particle exhibiting Brownian motion. In 
.QM one would like to equip the (non-commutative) space of histories of events with 
a “quantum probability measure”; in analogy with the Wiener measure of Brown-
ian motion. Our task is to find this probability measure, or, more precisely, to find
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an appropriate notion of states of physical systems in quantum mechanics and to 
describe their non-linear stochastic time evolution. 

The ETH-Approach to QM, developed during the past decade (see [ 13– 16]), 
accomplishes this task. Since this completion of .QM may not be very widely 
known and appreciated, yet, we have to briefly sketch it again (in this paper for 
non-relativistic .QM ; but there also exists a relativistic version [ 17]). We follow the 
presentation in [ 18]. 3

3.1 Fundamental Ingredients of the ETH-Approach 
to Quantum Mechanics 

In this section, we make use of the Heisenberg picture; and we consider isolated 
systems, i.e., systems, . S, that have negligibly weak interactions with the rest of the 
Universe. For, only for isolated systems, the time-evolution of operators represent-
ing physical quantities of . S has a conceptually clear description in the form of the 
Heisenberg equations of motion. The main ingredients of the .ETH -Approach to the 
quantum theory of isolated systems are the following ones. 

I. We define .E≥t to be the (weakly closed) algebra 4 generated by all the operators 

.
{

X (t')
II t' ≥ t, ∧X ∈ OS

}
, (9) 

Evidently, 
. E≥t' 	⊆ E≥t, for t' > t .

For an autonomous system one has that 

.E≥t' = ei(t'−t)HS/ℏ E≥t e−i(t'−t)HS/ℏ, for t, t' in R . (10) 

II. An isolated open physical system,. S, (i.e., an isolated system releasing “events”) 
is described by a “co-filtration,” .

{E≥t | t ∈ R
}
, of von Neumann algebras (con-

tained in the algebra, .B(H), of all bounded operators on . H) that satisfy the 
following 

Principle of Diminishing Potentialities (.PDP): In an isolated open system S 
featuring events the following strict inclusions hold 

. E≥t ⊋ E≥t' , for arbitrary t' > t . (11)

3 It really does not make much sense to present this approach to.QM in a new way each time it has 
to be recalled, because people have chosen not to take notice of it. 
4 i.e., a von Neumann algebra. 
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People tend to be perplexed when hearing about .PDP, because they find it 
hard to believe that.PDP is compatible with the unitary Heisenberg dynamics of 
operators described in Eqs. (2) and (10). However, in a relativistic local quantum 
(field) theory over an even-dimensional, flat space-time containing a massless 
“radiation field,” such as quantum electrodynamics, and for an appropriate choice 
of the algebras .E≥t, t ∈ R, .PDP can be shown to be a consequence of Huygens’ 
Principle, as formulated and proven in [ 21] in the context of algebraic quantum 
field theory. In [ 16], some concrete models, including models arising when the 
velocity of light tends to .∞, are shown to satisfy .PDP. 

III. The notion of “events” 5 plays a central role in the .ETH -Approach: A potential 
event in . S setting in at time . t is described by a partition of unity, 

.P := {
πξ

II ξ ∈ X
} ⊂ E≥t, (12) 

by orthogonal, mutually disjoint projections, . πξ , with the properties that 

.πξ = π∗
ξ , πξ · πη = δξηπξ, ∀ ξ, η ∈ X,

∑

ξ∈X
πξ = 1 , (13) 

where . X is a finite or countably infinite set of labels called the spectrum of the 
potential event .P and denoted by .X = spec(P). 

IV. A state of an isolated system . S at time . t is given by a quantum probability 
measure on the lattice of orthogonal projections in .E≥t , i.e., by a functional, . ωt , 
with the properties that 

(i) .ωt assigns to every orthogonal projection .π ∈ E≥t a non-negative number 
.ωt(π) ∈ [0, 1], with .ωt(0) = 0, and .ωt(1) = 1; and 

(ii) .ωt is additive, i.e., 

.

∑

π∈P
ωt(π) = 1, ∀ potential events P ⊂ E≥t . (14) 

A generalization ofGleason’s theorem due to Maeda [ 20] implies that states, 
. ωt , of  . S at time . t, as defined above, are positive, normal, normalized lin-
ear functionals on .E≥t , i.e., states on .E≥t in the usual sense of this notion 
employed in the mathematical literature. (Ignoring some mathematical sub-
tleties) we henceforth identify .ωt with a density matrix on .H denoted by 
.Ωt .

5 in the sense the late Rudolf Haag used this terminology; see [ 19]. 
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3.2 Consequences of the Principle of Diminishing 
Potentialities 

The Principle of Diminishing Potentialities, when combined with the phenomenon 
of entanglement, implies that even if the state .ωt of . S at time . t were a “pure” state 
on the algebra .E≥t its restriction to the algebra .E≥t' must be expected to be “mixed” 
if .t' > t. This observation opens the possibility to introduce the notion of “events 
actualizing at some time.” 

In accordance with the “Copenhagen interpretation” of .QM , one might expect 
that a potential event .P = {

πξ

II ξ ∈ spec(P)
} ⊂ E≥t , becomes actual (manifest) at 

some time .≥ t iff 

.tr(Ωt A) =
∑

ξ∈X
tr(πξ Ωt πξ A), ∀A ∈ E≥t . (15) 

where .Ωt is the density matrix representing the state .ωt of . S at time . t. Notice that 
off-diagonal elements do not appear on the right side of (15), which thus describes an 
incoherent superposition of states in the images of disjoint orthogonal projections, 
i.e., a “mixture.” 

This expectation is made precise as follows. Given a state .ωt on .E≥t , we define 
.C(ωt) to be the subalgebra of.E≥t generated by all projections belonging to all poten-
tial events .P ⊂ E≥t for which Eq. (15) holds. Further, .P(ωt) is the finest potential 
event contained in .C(ωt) with the property that all its elements commute with all 
operators in .C(ωt). 6 We then say that the potential event .P(ωt) actualizes at some 
time .≥ t iff .P(ωt) contains at least two non-zero orthogonal projections, .π(1),π(2), 
which are disjoint, i.e., .π(1) · π(2) = 0, and have non-vanishing Born probabilities, 
i.e., 

. 0 < ωt(π
(i)) = tr

(
Ωt π

(i)
)

< 1 , for i = 1, 2 .

Equation (15) then holds true for .P = P(ωt), and the sum on the right side of (15) 
contains at least two distinct non-vanishing terms. 

3.3 The State-Reduction Postulate and the Stochastic 
Evolution of States 

The law describing the non-linear stochastic time evolution of states of an individual 
isolated open system . S unraveling the linear deterministic evolution of ensemble 
averages of states is derived from a state-reduction postulate described next. This 
postulate makes precise mathematical sense as long as time is discrete.

6 In more technical jargon,.P(ωt) generates the center of the centralizer.C(ωt) of. ωt . 
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Let.ωt be the state of. S at time. t. Let.dt denote a time step; (.dt is strictly positive if 
time is discrete; otherwise one attempts to let .dt tend to 0 at the end of the following 
constructions). We define a state .ωt+dt on the algebra .E≥t+dt (⊊ E≥t) by restriction 
of .ωt to the algebra .E≥t+dt , 

ωt+dt := ωt

II
E≥t+dt 

. 

As a manifestation of .PDP and entanglement, the algebra .C(ωt+dt) can be expected 
to be non-trivial (i.e., ./= C · 1) in general. This does, of course, not imply that the 
potential event .P(ωt+dt) actualizing at some time .≥ t + dt is non-trivial, too, i.e., 
./= 1. But it is plausible that it will in general be non-trivial. (This is shown to be the 
case in a family of models studied in [ 16].) 

Axiom CP: Let 
. P(ωt+dt) = {

πξ | ξ ∈ spec
(
P(ωt+dt)

)}

be the potential event actualizing at some time .≥ t + dt, given the state .ωt+dt on 
.E≥t+dt . Then ‘Nature’ replaces the state .ωt+dt on .E≥t+dt by a state . ωt+dt ≡ ωt+dt,π

represented by the density matrix 

.Ωt+dt,π := tr(Ωt+dt π)−1 · π Ωt+dt π , for some π ∈ P(ωt+dt), (16) 

with .tr(Ωt+dt π) /= 0. The probability, .probt+dt(π), for the state . ωt+dt,π,

π ∈ P(ωt+dt), to be selected by ‘Nature’ as the state of . S at time .t + dt is given 
by Born’s Rule 

. probt+dt(π) = tr(Ωt+dt π) . ⃞
(17) 

The projection .π(t + dt) := π ∈ P(ωt+dt) appearing in (16) and (17) is called 
actual event, or  “actuality,” at time .t + dt. 

The analogue of the initial position, . x0, of a Brownian path at time. t0 is the initial 
state.ω0 on.E≥t0 ; the analogue of the Brownian trajectory.ξ = {

xξ(t)
II t ≥ t0

}
is given 

by a history, .h := {
π(t0 + dt),π(t0 + 2dt), . . . ,π(t)

}
, of  actual events originating 

from the initial state .ω0 of . S at time . t0. With a history . h we associate a “history 
operator” defined by 

. Hh(t0, t) :=
∏

t'∈Zdt , t0<t'≤t

π(t') .

In quantum mechanics, the role of the Wiener measure, .d Wx0 , of Brownian motion 
is played by the probabilities 

. probω0

[
h ={

π(t0 + dt),π(t0 + 2dt), . . . ,π(t)
}] :=

= ω0
(
Hh(t0, t) · Hh(t0, t)∗

) = tr
[
Hh(t0, t)∗ · Ω0 · Hh(t0, t)

]
(18)
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of histories of events, where.Ωo is the density matrix representing the initial state. ω0

on the algebra .E≥t0 . 
It follows from our discussion that the time-evolution of the state of an individual 

physical system . S is described by a stochastic branching process, called “quan-
tum Poisson process”, whose “state space” is referred to as the non-commutative 
spectrum, .ZS , of  . S and is defined as follows. By Eq. (10), all the algebras .E≥t are 
isomorphic to one specific (universal) von Neumann algebra, which we denote by 
.M. The non-commutative spectrum, .ZS , of . S is defined by 

.ZS :=
∐

ω

(
ω ,P(ω)

)
, (19) 

where the union over . ω is a disjoint union, and . ω ranges over all states on .M of 
physical interest. (“States of physical interest” are normal states on .M a concrete 
system can actually be prepared in.) The branching rules of a quantum Poisson 
process on .ZS are uniquely determined by Axiom CP. 
Comments. 

• One may expect—and this can be verified in concrete models (see [ 16] for further 
details)—that, most of the time, the actual event, .π ∈ P(ωt+dt), which, according 
to the Born Rule, has the largest probability to happen, and hence is most likely 
to be chosen by ‘Nature’ (see (16)), has the property that 

.ωt+dt ≡ ωt+dt,π ≈ ωt+dt = ωt

II
E≥t+dt

. (20) 

This would imply that, most of the time, the evolution of the state is close to being 
trivial (as assumed in text-book.QM in the absence of “measurements”). But, every 
once in a while, the state of the system makes a “quantum jump” corresponding 
to an actual event . π in (16) that is very unlikely to materialize. Such “quantum 
jumps” happen for purely entropic reasons at random times. 

• One may check that the non-linear stochastic evolution of states outlined above 
has the desirable feature that it reproduces the usual Schrödinger-von Neumann 
evolution when an ensemble-average over all possible histories of very many 
identical systems is taken. 

• Our construction of the non-linear stochastic time evolution of individual systems 
is meaningful, mathematically, as long as .dt > 0; but, for the time being, the 
limiting theory, as .dt ↘ 0, is only understood precisely in examples. 

4 Concluding Remarks 

1. The ETH-Approach to Quantum Mechanics represents a completion of QM that 
provides a logically coherent description of the stochastic time evolution of states 
of individual systems in .QM (unraveling Schrödinger-von Neumann evolution)
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and of events and their recordings (see [ 14, 15, 17]). It has resemblences (albeit 
rather vague ones) with Everett’s “Many Worlds” formalism [ 7] and spontaneous 
collapse models à la “GRW” [ 11]. But it supersedes these ad-hoc formalisms by a 
precise and more natural one. And it describes only One World: hopefully ours! 
Of course, it will have to stand the test of experiments. 

2. As Pauli has put it: If speculative ideas cannot be tested, they’re not science; 
they don’t even rise to the level of being wrong. – We thus should ask whether 
the Principle of Diminishing Potentialities (.PDP), which is a corner stone of the 
.ETH -Approach to .QM , is more than a speculative idea and whether it can be 
tested. It is clear that this principle can only be established in quantum theories 
of systems with infinitely many degrees of freedom. It has the status of a theorem 
in local relativistic quantum theory with massless particles on even-dimensional 
space-times; e.g., in 4D quantum electrodynamics (QED) [ 21], and in simple 
models of QED regularized at high energies by discretizing time [ 16]. It also 
holds in models emerging in the limit of the velocity of light tending to .∞ (see 
[ 16]). However, in this limit, the Hamiltonian is not bounded from below; i.e., the 
spectrum condition (. ∄ negative-energy states) is violated. 
We thus have strong reasons to expect that a completion of .QM satisfying the 
spectrum condition and solving the “measurement problem” will succeed only in 
the guise of local relativistic quantum theory on even-dimensional space-times 
featuring massless bosons, photons and gravitons; (so that “Huygens Principle” 
[ 21] holds). The .ETH -Approach to quantum mechanics sketched above does 
have an extension to local relativistic quantum theory; (see [  17] for a preliminary 
account). 
Applications of the .ETH -Approach to concrete models (e.g., models of the fluo-
rescence of atoms, etc.) have been discussed [ 16] and will be presented elsewhere. 

3. A quantum-mechanical analogue of the magic formula (6) for Brownian motion 
(see Sect. 1.2) has been proposed by Lüders, Schwinger and Wigner (see [ 22]). 
However, when applied to time-ordered series of measurements, their formula 
fails to satisfy an analogue of Eq. (7), because the non-commutativity of differ-
ent potential events actualizing at different times leads to interference effects. 
Not surprisingly, this has been noticed by many people, who thought of various 
ways to rescue their formula. One formalism seemingly enabling one to come 
up with meaningful predictions that has become quite popular is known under 
the name of “consistent histories” [ 9, 10]. However, in our modest opinion, this 
formalism does not represent an acceptable completion of .QM , because it talks 
about unpredictable and instantaneous interventions by “observers,” a feature that 
extinguishes much of the predictive power of .QM . 

4. The.ETH -Approach to.QM , in particular.PDP, introduces a fundamental “arrow 
of time,” i.e., a distinction between past and future into the theory: The past 
consists of facts, namely histories of “actualities”, while the future consists of 
“potentialities” (much in the sense in which Aristotle originally conceived these 
notions).
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Some Notes on the Localization Problem in 
Relativistic Quantum Theory 

Christian Beck 

Abstract This work aims to shed some light on the meaning of the positive energy 
assumption in relativistic quantum theory and its relation to questions of localization 
of quantum systems. It is shown that the positive energy property of solutions of 
relativistic wave equations (such as the Dirac equation) is very fragile with respect to 
state transformations beyond free time evolution. Paying attention to the connection 
between negative energy Dirac wave functions and pair creation processes in second 
quantization, this analysis leads to a better understanding of a class of problems 
known as the localization problem of relativistic quantum theory (associated for 
instance with famous results of Newton & Wigner, Reeh & Schlieder, Hegerfeldt 
or Malament). Finally, this analysis is reflected from the perspective of a Bohmian 
quantum field theory. 

1 A Basic Theorem 

We start with a result that follows from complex analysis of several complex variables: 

Theorem 1 Let . λ be a complex measure 1 on .R4 with support in the closure of the 
forward light cone .V+ = {

p ∈ R4 | pμ pμ = p20 − p2 ≥ 0, p0 ≥ 0
}
of the origin. 

Consider the function . f : R4 → C given by 

. f (x) =
	∫

eipx d4λ(p) (1) 

1A complex measure can be always understood as a collection of four ordinary measures, it has a 
real and an imaginary part which are signed measures. These in turn can each be decomposed into 
two normal finite measures using a Hahn-Jordan decomposition. The important thing here about a 
complex measure is that it is always finite (e.g. a finite ordinary measure is also a complex measure). 
That. λ has support in.V+ means that all integrals with respect to. λ over subsets of.R4 disjoint from 
.V+ vanish, in particular.

	∫
R4 d4λ(p) = 	∫

V+ d4λ(p) ∈ C. 
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where .px = pμxμ is the Minkowski scalar product. If . f vanishes on an open con-
nected subset .O ⊂ R4 it follows that . f ≡ 0 on all of .R4. 

The proof can be found in [ 2] (see Corollary 4.6). It is based on the fact that. f can 
be continued analytically to a region of .C4 which has .R4 as a part of its boundary. 
Thus, . f in (1) can be regarded as the boundary value of an analytic function and 
the conclusion of Theorem 1 then follows with the help of generalizations of the 
Schwartz reflection principle and the identity theorem to functions of several complex 
variables. 

Theorem 1 has a number of strong physical consequences for (relativistic) quan-
tum mechanics, all of which are related in some sense and some of which will be 
discussed in this work. Physically . x corresponds to a spacetime vector and . p to the 
energy momentum four-vector. The condition.p ∈ V+ is the so-called spectrum con-
dition. It is adapted to relativistic considerations and says that the relativistic energy 
.p0 is positive in every Lorentz frame. 

2 Implications for Wave Functions 

In this section we think of . f as (a component of) a relativistic wave function of 
positive energy, e.g., a positive energy solution of the free Klein-Gordon equation 
or a spinor component of a positive energy solution of the free Dirac equation. Such 
functions can be written in the form (see, e.g., [ 33, 34]) 

.ψ(x, t) =
	∫

ei(p0t− p·x) δ
(
p20 − ( p2 + m2)

)
θ(p0) ψ̂(p) d4 p (2) 

which is of the form (1) with the complex measure 2 . 

.d4λ(p) = δ(p2 − m2) θ(p0) ψ̂(p) d4 p (3) 

(. θ denotes the Heaviside step function). We shall switch in the following between 
the notations .ψ(x, t) = ψt (x) = ψ(x) (with .x ∈ R4), depending on which is most 
appropriate for the current purpose. 

2.1 Causally Propagating Positive Energy Wave Functions 
Cannot Vanish in a Region 

Now suppose.ψt (x) vanishes at some time.t = t0 on an open, connected spatial subset 
(region) .∆ ⊂ R3, i.e., .ψt0(x) = 0 for all .x ∈ ∆. If .ψ propagates causally (which is

2 To be precise, .
	∫

δ(p2 − m2) θ(p0) ψ̂(p) dp0 must be in .L1(R3, d3 p) to define a complex mea-
sure. 
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the case for solutions of relativistic wave equations because of their hyperbolic form 
[ 24, 37]), for later (and earlier). t the support of.ψt can spread at most with the speed 
of light as. t evolves. Therefore, there must be an.ε > 0 such that for each.s ∈ (−ε, ε), 
.ψt0+s(x) = 0 on an open spatial set .∆s ⊂ R3. This way.ψ(x) = 0 for all . x = (t, x)

in an open subset .O ⊂ R4 (see Fig. 1, where the sets .∆s are not depicted, but the 
dashed line at .t0 + s indicates the complement of .∆s). Theorem 1 thus entails that 
.ψt (x) = 0 for all. x and. t which contradicts the assumption that. ψ is a wave function. 

The conclusion is that a causally propagating wave function of the form (2) has 
at each time the property 

. supp(ψ) = R3 (4) 

This implies in particular the often quoted statement that relativistic wave functions 
of positive energy cannot have compact support but have always infinite tails. 

It is interesting to note that an analogous statement can also be made for non-
relativistic Schrödinger wave functions. Theorem 1 has been formulated in a way 
that is well suited for relativistic analysis. However, a result analogous to Theorem 1 
can be proved [ 4], which instead of the spectrum condition (that the relativistic energy 
is positive in each Lorentz frame) only needs the condition that the Hamiltonian (the 
generator of time translations), whose eigenvalues correspond to the allowed values 
of .p0 in (2), is bounded from below. This is true in particular for the Schrödinger 
Hamiltonian of non-relativistic quantum mechanics. Since Schrödinger wave func-
tions can be zero on open connected sets (as Dirac wave functions can if contri-
butions from negative energy eigenstates are allowed), this shows that Schrödinger 
wave functions spread instantaneously (with infinite propagation velocity) under the 
free time evolution. 

In a sense, these interrelations can be seen as the core of Hegerfeldt’s theorem 3

[ 20– 22] .

3 Hegerfeldt’s theorem proves, roughly said, instantaneous spreading of any ‘localization prob-
abilities’ in quantum theory (with Hilbert space . H) with positive energy, if there is a bounded 
spatial region.∆ ⊂ R3 and.ψ ∈ H, such that .Pψ (∆) = 1 (perfect localization). The probabilities 
are assumed to be given by the quantum formalism, i.e., for any spatial region .∆ ⊂ R3 there is a 
positive bounded operator .D∆, such that .Pψ (∆) = <ψ | D∆ ψ>. The connection to our discussion 
above becomes apparent when we choose the PVM of the standard position operator (indicator 
functions in position representation) .D∆ = χ∆ and observe that . 1 = ||ψ||2 = 	∫

R3 |ψ(x)|2d3x =	∫
∆

|ψ(x)|2d3x = <ψ | χ∆ ψ> implies that .ψ(x) = 0 almost everywhere in the complement of 
. ∆. For this choice, Hegerfeldt’s theorem thus states that a compactly supported positive energy 
wave function cannot propagate causally. Hegerfeldt’s theorem can be proven by application of 
Theorem 1 with the choice. f (x) = <ψ | U (x) ψ>, where.U (x) is a unitary representation of space-
time translations (see [ 2]). 
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Fig. 1 Causal propagation of the support of a relativistic wave function: if the support of .ψt can 
propagate at most at the speed of light and .ψt0 (x) = 0 for all . x in a connected open spatial set 
.∆ ⊂ R3, then  .ψt (x) also vanishes for .(t, x) in a connected open space-time set .O ⊂ R4 (the 
interior of the diamond in the middle). The diagonal dotted lines depict (the essential parts of) the 
forward and backward light cones of the edges of the support of. ψt0

2.2 A Causally Propagating Positive Energy Wave Function 
is Completely Determined by Its Values in Any Region 

Consider two wave functions .ψ and.ψ ' of the form (2) and suppose that at a certain 
time. t0 there exists an (arbitrarily small) open connected spatial set.∆ ⊂ R3 on which 
the wave functions coincide: 

.ψ(x, t0) = ψ '(x, t0) for all x ∈ ∆ (5) 

Together with .ψ and .ψ ', the wave function 

.ϕ(x, t) := ψ(x, t0) − ψ '(x, t0) (6) 

is also of the form (2). However, at time . t0, .ϕ obviously vanishes on .∆ so that 
Theorem 1 together with our discussion in Sect. 2.1 proves that. ϕ (and thereby either 
.ψ or .ψ ' or both) cannot propagate causally. The other way around, this entails that 
two positive energy solutions of relativistic wave equations–which always propagate 
causally–cannot coincide on any open connected spatial set.
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2.3 Transformations of Causally Propagating Positive 
Energy Wave Functions are Very Special 
(e.g. Necessarily Nonlocal) 

Consider a solution .ψ of a relativistic wave equation which is exposed to a local 
potential . φ for some time, resulting in a transformed state .Uφ ψ , where .Uφ is the 
unitary time evolution with potential . φ. Let  .U be the free time evolution without 
potential corresponding to the same period of time as .Uφ . Since the local potential 
can only locally perturb the wave function and since solutions of relativistic wave 
equations propagate causally, .U ψ and .Uφ ψ can also differ only locally, i.e. . ϕ =
U ψ −Uφ ψ has compact support and thus cannot be a positive energy solution. 
Consequently, if.U ψ is a positive energy solution (which is the case if. ψ has positive 
energy since the free time evolution leaves the positive energy property invariant), 
.Uφ ψ must have contributions from the negative energy spectrum. 

We can also formally set.U = 1 to see that any local transformation of a relativistic 
positive energy state destroys its positive energy property. In other words, if we wiggle 
such a wave function just a little bit in the neighborhood of some point, immediately 
the whole function must change in a non-trivial way, if the resulting wave function 
shall continue to have positive energy. So a relativistic time evolution cannot be 
of this kind, it must either act on the wave function on the whole space (including 
the tails) in a very special way (as free time evolution does) or violate the positive 
energy property. Note the emphasis on ‘very special’: since the whole function is 
completely determined by its values in an arbitrarily small neighborhood, its global 
transformation must be perfectly concerted across all regions if it shall preserve the 
positive energy property! 

2.4 Discussion 

Tails: The infinite tails of positive energy wave functions do not contradict the fact 
that positive energy wave functions usually are, for all practical purposes, perfectly 
localized in bounded spatial regions. Various localization schemes for positive energy 
wave functions have been developed (most famously that of Newton and Wigner 4

[ 29], but see also e.g. [ 5, 6, 30] and the discussion of these schemes in [ 2]) which

4 The Newton-Wigner (NW) scheme was originally developed in order to have a position operator 
in relativistic quantum theory, which leaves the positive energy property of a positive energy wave 
functions invariant. However, the price to pay turns out to be unacceptable: It leads to a deviation 
from Born’s rule, a probability density which does not satisfy a continuity equation with respect 
to some probability current, the successful minimal coupling to an electromagnetic field does not 
work in the NW-representation and it violates Lorentz invariance in the sense that a NW-localized 
state in some Lorentz frame is not NW-localized in any other frame (see [ 2] and references therein). 
Nonetheless, the eigenstates of the NW-Operator are (in ordinary position representation) extremely 
localized Bessel-type functions of positive energy, which, beyond the characteristic length scale of 
the particle under consideration, virtually look like delta functions. 
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illustrate very nicely that such wave functions can be virtually zero already a few 
Compton wavelengths or even less away from their center. Moreover, it is straightfor-
ward to argue that an electron, for instance, which has interacted with an apparatus 
or, more generally, with its environment will have an extremely well localized wave 
function. Such localization processes are well understood in the context of decoher-
ence theory (see, e.g., [ 23] and references therein). 

Since wave functions in quantum theory are the amplitudes of a probability mea-
sure, this means that tails can be neglected for all practical purposes. Just as we 
disregard predictions of negligible probability in thermodynamics (such as rocks 
suddenly flying up instead of down due to a fluctuation in the thermal velocities of 
their molecules), we must of course do the same in quantum mechanics, so that we 
can safely assume wave functions to be compactly supported when making empirical 
predictions. 

But it is good to be aware of the fact that in textbook quantum mechanics the 
probability interpretation of wave functions is a postulate and there is no statistical 
analysis (such as Boltzmann’s statistical analysis of classical mechanics) to justify it. 
In Bohmian mechanics, on the other hand, a theory that describes matter as composed 
of literal particles that always have a position and whose motion is guided by their 
quantum mechanical wave function, such a statistical analysis can be performed [ 14– 
16]. That way, by analyzing the Bohmian equations of motion for measurement-like 
situations, the quantum probabilities can be derived as predictions for associated 
(typical) empirical relative frequencies by proving a law of large numbers. And the 
crucial assumption that goes into a proof of the law of large numbers (and thus, 
from the Bohmian point of view, establishes the quantum probabilities that are so 
successful for predictions) is that incredibly improbable events will not happen with 
empirical certainty (sometimes called Cournot’s principle). 

When the meaning and status of probabilities is less clear, the issue of infinite 
tails may be more problematic. This becomes particularly obvious in the Many-
Worlds interpretation (MWI), where even the smallest probability events will (at 
least in a measurement context) actually be realized in some world. However one 
may interpret the quantum probabilities in MWI and however one may define its 
ontological content, one probably cannot avoid the fact that there are real worlds in 
which the infinite tails of positive energy wave functions are empirically relevant 
(see [ 26] for details and a remarkable example). 

Transformations: The nonlocal nature of relativistic positive energy wave functions 
seems to be physically more interesting than infinite tails. Local transformations of 
relativistic positive energy wave functions necessarily lead to contributions of neg-
ative energy states in the resulting state. Moreover, even nonlocal transformations 
must be extremely special in order to rescue the positive energy property since the 
values of a relativistic positive energy wave function in any neighborhood already 
determines the whole function. And so it can be assumed that at the level of descrip-
tion of one-particle (or N-particle) wave function, transitions between negative and 
positive spectrum necessarily occur in physical processes (free time evolution as
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well as trivial time evolution with a moderate stationary potential are perhaps the 
only non-trivial and obvious transformations that are special enough to leave spectral 
subspaces invariant). 

Let us now commit ourselves to the special choice of the Dirac equation, which 
is the basis for the description of fermions and thus for the description of matter 
(electrons, quarks, etc.). However, the level on which the theory of fermions is not 
only empirically adequate but impressively successful in its predictions (antimatter, 
pair creation, Lamb shift etc.) is not that of one-particle or N-particle solutions 
of the Dirac equation but that of the associated quantum field theory (QFT), in 
case of the Dirac equation (external field) quantum electrodynamics (QED). This 
theory can be developed starting from the Dirac equation by second quantization (or 
more picturesquely from the Dirac sea picture) by allowing roughly speaking for a 
variable number of particles and interpreting negative energy wave functions by the 
operation of charge conjugation as positive energy wave functions of antiparticles. 
Transitions between negative and positive energies on the level of solutions of the 
Dirac equation thereby correspond to particle creation and annihilation processes 
with certain probabilities when lifted to the level of QED (see, e.g., [ 17, 18, 31, 37]). 

Thus, the fragility of positive energy wave functions with respect to nontriv-
ial (e.g., local) transformations, discussed above, suggests that interaction (causing 
such transformations) is intrinsically associated with particle creation and annihi-
lation processes. Of course, it is to be expected that for everyday processes the 
corresponding probabilities are again negligibly small, only when high energies are 
involved this is no longer the case. 

3 An Operational Implication 

Now we come to an operational implication of Theorem 1. It shall be exemplified 
by a very general framework for describing a spatial detector experiment. The latter 
may be taken as only a representative of any local measurement (if any measurement 
device is triggered by a quantum system, the system was detected in the spatial region 
of the device). 

3.1 Covariant Detector Formalism 

Quantum Formalism: First, we assume that the probability that a detector covering 
a given spatial region is triggered by a quantum system at a given time (in the lab 
frame) can be expressed and calculated by the quantum formalism. This means that 
the click probability in the lab frame is given by an expression of the form
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.P
ψ

(
D(0,∆)

) = <ψ | D(0,∆) ψ
>

(7) 

Here, .D(0,∆) represents the event that a detector covering detector region . ∆ ⊂ R3

is triggered at lab-time .t = 0, the ‘probability operator’ .D(0,∆) (sometimes called 
‘effect’) has the property .0 ≤ D(0,∆) ≤ 1 and shall be an operator in the Heisenberg 
picture which acts on the Hilbert space of the measured system .H and .ψ ∈ H is 
the initial (pure 5) state. For instance, in the standard ideal measurement scheme of 
textbooks .D(0,∆) would be a projection but more generally and more adequate for 
realistic measurements it is an element of a (not necessarily projective) POVM. 

Space-Time Translations: There is a unitary representation of space-time transla-
tions acting on .H which has spectral representation 6

.U (x) = ei
∧Px =

	∫
eipxd4E(p) (9) 

Here .∧Px = ∧Pμxμ and .px = pμxμ are the Minkowski scalar products, and .E is 
a PVM  on  .R4 acting on . H, the PVM of the energy-momentum operator . ∧Pμ =	∫
pμ d4E(p) which can be identified as the infinitesimal generator of space-time 

translations. 

Space-Time Translation Covariance: We assume that space-time translations act 
naturally on the operators .D(0,∆): If .x = (s, a) ∈ R4, the probability that a detector 
covering .∆ + a is triggered at time .t = s in the laboratory frame is given by 

.P
ψ

(
D(s,∆+a)

) = <ψ | D(0,∆)+x ψ
>

(10) 

where .D(0,∆)+x = U (x)D(0,∆)U−1(x) ≡ D(s,∆+a). 

3.1.1 Additional Assumptions 

To obtain the desired operational result (Theorem 2 below), the covariant detector 
formalism must satisfy some additional assumptions: 

5 We might also work with the more general expression 

.P
ρ

(
D(0,∆)

) = TrH
[
D(0,∆) ρ

]
(8) 

where . ρ is the initial density matrix, which need not be a pure state. However, since mixed states 
can always be expressed by (convex) linear combinations of pure states, we can build the following 
analysis on expression (7) without loss of generality.
6 The fact that .U (x) can be written in this form is of course well known for concrete models 
of (relativistic) quantum theory and is ensured more generally by an immediate generalization 
of Stone’s theorem from unitary strongly continuous representations of one parameter groups to 
unitary strongly continuous representations of general locally compact abelian groups, which is 
sometimes called the SNAG-theorem (according to Stone, Naimark, Ambrose and Godement) [ 27]. 
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Spectrum Condition: We assume that the generator .Pμ of space time translations 
(the energy-momentum operator) has its spectrum in the closed forward light cone: 
.σ(Pμ) ⊂ V+ = {p ∈ R4 | pμ pμ ≥ 0, p0 ≥ 0} (see Sect. 1). 

Additivity: Now comes a very special assumption. We assume that for . ∆ ∩ ∆' = ∅
and all .ψ ∈ H there is a joint distribution of the events .D(t,∆) and .D(t,∆') such that 

.P
ψ

(
D(t,∆) ∨ D(t,∆')

) = P
ψ

(
D(t,∆)

) + P
ψ

(
D(t,∆')

)
(11) 

This assumption is not justified for general quantum systems; rather, it corresponds 
to a selection of very special quantum systems for which it appears to be a reasonable 
assumption. Indeed, the existence of a joint distribution alone only implies (see [ 2]) 

.P
ψ

(
D(t,∆) ∨ D(t,∆')

) = P
ψ

(
D(t,∆)

) + P
ψ

(
D(t,∆')

) − P
ψ

(
D(t,∆) ∧ D(t,∆')

)
(12) 

Therefore, Eq. (11) is equivalent to the requirement 

.P
ψ

(
D(t,∆) ∧ D(t,∆')

) = 0 (13) 

i.e., it expresses the requirement that distant detectors cannot be triggered at the same 
time, given .ψ is the initial state. Making this assumption for all .ψ ∈ H seems to be 
justified if.H is a Hilbert space of one particle wave functions, which might be taken 
to be also a subspace of a larger Hilbert space like the one particle sector of Fock 
space. If we set now 

. D(t,∆)∪(t,∆') := D(t,∆) + D(t,∆') (14) 

we thus obtain .P
ψ

(
D(t,∆) ∨ D(t,∆')

) = <ψ | D(t,∆)∪(t,∆') ψ
>
. 

Additivity is actually not an independent assumption but rather a motivation for 
its relativistic generalization, causal additivity, which includes additivity as a special 
case: 

Causal Additivity: In a relativistic theory, the natural generalization of additivity is 
the following: whenever .(t,∆) and .(t ',∆') are spacelike separated 

.P
ψ

(
D(t,∆) ∨ D(t ',∆')

) = P
ψ

(
D(t,∆)

) + P
ψ

(
D(t ',∆')

)
(15) 

This condition is equivalent to the exclusion of joint detector clicks of two distant 
detectors at spacelike separation, i.e., 

.P
ψ

(
D(t,∆) ∧ D(t ',∆')

) = 0 (16) 

By setting .D(t,∆)∪(t ',∆') ≡ D(t,∆) + D(t ',∆') we thus obtain . Pψ
(
D(t,∆) ∨ D(t ',∆')

) =
<ψ | D(t,∆)∪(t ',∆') ψ

>
. This condition can be appropriately called causal additivity [ 2].
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Local Commutativity: The last (relativity inspired) condition we need is the well 
known condition of local commutativity: whenever .(t,∆) and.(t ',∆') are spacelike 
separated 

.
[
D(t,∆), D(t ',∆')

] = 0 (17) 

This condition is usually demanded to exclude the possibility to use quantum non-
locality in order to send signals faster than light (Lüders theorem). For a detailed 
discussion of this condition and further physical motivations see Chap. 3 of [ 2]. 

3.2 A No-Go Theorem 

Theorem 1 now implies the following result. 7

Theorem 2 A (non trivial) covariant detector formalism which satisfies the spectrum 
condition, local commutativity and causal additivity does not exist. 

The proof can be found in [ 2] (Theorem 4.25). Roughly speaking, it applies 
space-time translations to various detector arrangements 8 and thus shows that all 
click probabilities have an upper bound which can be made inductively arbitrarily 
small (in this sense, ‘non-trivial’ in Theorem 2 means ‘with non-vanishing click 
probabilities’). The crucial step uses Theorem 1 by applying it to functions . f of the 
form. f (x) = <ϕ| U (x) ψ>. 

3.3 Discussion 

Since there are detectors in the world which can be triggered by quantum systems, 9

Theorem 2 requires an explanation. One might question any of its assumptions, 
but of course the assumption of causal additivity is most questionable. Moreover, 
the discussion of the fragility of the positive energy property of relativistic wave 
functions with respect to nontrivial transformations together with the observation 
that spectral transitions of Dirac wave functions correspond to particle creation and

7 Theorem 2 goes back to a theorem proved in its first version by Schlieder [ 32] and then grad-
ually refined by Jankewitz [ 25], Malament [ 28] and Halvorson and Clifton [ 19], often known as 
Malament’s Theorem. 
8 To be precise, the proof uses the obvious generalization of the causal additivity condition to 
arrangements with more than two detectors, but we skip that here for simplicity. 
9 As mentioned above, detector experiments are in this analysis only a representative of practically 
any quantum measurement (the measured system is detected in the laboratory). One might even 
argue somewhat drastically that our perception of matter is of this kind in the first place (given the 
measurement problem has been solved): When I see the table in front of me, I detect the position 
of a quantum system, given by a huge cluster of atoms, which together form a table. 
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annihilation processes in QED in Sect. 2.4 motivates also a closer look at the spectrum 
condition. 

Thus, we shall not question here the assumption that the statistics of detector clicks 
can be predicted by a covariant detector formalism and that local commutativity is 
true. So according to Theorem 2, either the spectrum condition or causal additivity 
must be violated. Fortunately, these two options naturally complement each other. 
According to quantum theory, each measurement is associated with a state transfor-
mation 10 (also one with a negative outcome, like a switched on detector which was 
not (yet) triggered). And as argued in Sect. 2.4, most state transformations (in par-
ticularly if caused by a localized measuring device) cause spectral transitions on the 
one- or N-particle level of description, which in turn correspond for fermions to pair 
creation processes with certain probabilities in the associated QFT. This suggests to 
expect, for the quantum mechanical description of detector experiments, a violation 
of the spectrum condition at the level of Dirac wave functions and, when these pro-
cesses have been lifted to the level of QED, corresponding transitions between the 
particle number sectors of the fermionic Fock space (while the spectrum condition 
is rescued in QED by charge conjugation of negative energy states). And the lat-
ter immediately destroys any basis for expecting causal additivity to hold in certain 
situations (one-particle initial states). 

To see this, recall that causal additivity corresponds to the assumption that two dis-
tant detectors cannot be triggered at spacelike separation and its violation is therefore 
equivalent to the condition 

.P
ψ

(
D(t,∆) ∧ D(t ',∆')

)
> 0 (18) 

for spacelike separated .(t,∆) and .(t ',∆'). For initial states .ψ in the one-particle 
sector of Fock space 11 this appears to be against the spirit of relativity (a particle 
moving faster than light to trigger two detectors at spacelike separation). However, 
if the state transformations associated with such measurements do not leave the 
one particle sector of Fock space invariant, this violation appears quite natural. For 
instance, the state transformation caused by the potential of a switched on detector 
can create a particle by which this detector is being triggered. Since the state trans-
formation associated with a probability operator .D is encoded in a linear operator

10 For instance, the probability operator .D associated with a triggered detector (for simplicity we 
suppress the subscript .(t,∆) here) can be associated with a state transformation operator .R so 
that an initial state.ψ transforms according to.ψ I→ Rψ

||Rψ|| and.D = R†R (for ideal measurements 
of textbooks, .D and .R would be one and the same projection operator, which corresponds to the 
projection postulate). For more general measurements which cannot be described on the level of 
pure states, the state transformation is associated with a set .{Rk} of linear operators, so that an 

initial density matrix. ρ transforms according to.ρ I→
∑	

k R†
k ρ Rk

Tr
∑	

k R†
k ρ Rk

(Kraus representation). See [ 2] 

for a detailed development of the general measurement formalism. 
11 Theorem 2 can be generalized to an analogous assertion corresponding to any.N−particle sector 
of Fock space: initial states for which it can be perfectly excluded that more than.N detectors (for 
any.N ∈ N) are triggered at spacelike separation do not exist under the assumptions (see Corollary 
4.27 in [ 2]). 
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.R so that.Pψ (·) = <ψ | D ψ> = ||Rψ||2 (see Footnote 10), the state transformation, 
in a sense, enters into the probabilities: even if .ψ was a state of a single particle, 
the predicted statistics can be statistics of many-particles if .R does not leave the 
one-particle sector of Fock space invariant. Such operators are also well known in 
connection with observable quantities; the PVM of the local charge density operator 
in QED, for example, has this property [ 38]. 

This fits very well with a well-known result from the more abstract framework 
of axiomatic or algebraic quantum field theory (AQFT), the Reeh-Schlieder theorem 
(see, e.g., [ 39] for a comprehensive discussion), which can be also derived from a 
generalization of Theorem 1 (see [ 2]). The Reeh-Schlieder theorem implies (under 
the assumptions of AQFT) that the click probability of a local detector cannot be 
(exactly) zero even if the initial state is the vacuum state. 

To conclude this discussion, note that the fact that causal additivity must be vio-
lated says nothing about the magnitude of this violation. The probabilities in (18) 
expressing this violation can be negligibly small, though not precisely zero. If no 
high energies are involved, negligibly small probabilities (18) are of course to be 
expected for one particle initial states . ψ . 

4 Towards a Spatial Distribution 

The way the probability operators.D(t,∆) were defined above, they belong in the first 
place to a two element POVM.

{
D(t,∆) , 1H − D(t,∆)

}
associated with two possible 

outcomes (say ‘click .≡ 1’ and ‘no click .≡ 0’), which is the minimal structure to 
describe a detector experiment. However, one has in mind a more general structure, 
namely a general spatial distribution of a quantum system, which agrees with the 
click-probabilities given by this POVM for the detector regions. 

Theorem 2 now also proofs the non-existence of a relativistically satisfying more 
general spatial POVM on physical space .R3 (instead of .{0 , 1}) under its assump-
tions (spectrum condition etc.). To see this, one can simply replace the mean-
ing of the detector regions .∆ ⊂ R3, with arbitrary Borel sets .∆ ⊂ R3 of physi-
cal space. So consider now a spatial POVM in the Heisenberg picture acting on 
the considered Hilbert space, formed (at a fixed lab-time . t) by positive operators 
.D(t,∆) with .∆ varying in the (measurable) subsets of .R3. As a POVM, it must  
be additive, i.e., .D(t,∆)∪(t,∆') = D(t,∆) + D(t,∆') for all .∆ ∩ ∆' = ∅ and normal-
ized, i.e., .

	∫
R3 D(t,d3x) = 1H is the identity operator (normalization does not play 

any role for the present considerations). The additivity of such a POVM directly 
corresponds to the additivity condition (14) above and expressing it in terms of 
probabilities (i.e., .Pψ

(
D(t,∆)

) = <ψ | D(t,∆) ψ
>
etc.) yields . Pψ

(
D(t,∆) ∨ D(t,∆')

) =
P

ψ
(
D(t,∆)

) + P
ψ

(
D(t,∆')

)
and thus again .P

ψ
(
D(t,∆) ∧ D(t,∆')

) = 0 now for all dis-
joint spatial Borel sets .∆ ∩ ∆' = ∅. Calling the event .D(t,∆) sloppily ‘the system is 
localized in . ∆’ we can thus phrase the additivity condition by ‘the system cannot 
be localized in two disjoint regions at the same time’ (a condition which is clearly 
false for, say, a two particle system). Causal additivity in this sense means that ‘the
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system cannot be localized in two spacelike separated regions’, a condition which is 
the natural relativistic generalization of additivity. 

Theorem 2, reformulated with respect to a spatial POVM, then says that such a 
POVM does not exist under the assumptions and thereby a corresponding probability 
distribution on physical space .R3 does not exist. But what about the 
.|ψ(x)|2−distribution, which lays the foundation for the predictive success of quan-
tum theory? If we want to express this distribution by a POVM, say for a positive 
energy solution .ψ of the Dirac equation, there are two options at hand: One can use 
the indicator functions .χ∆(x) of (measurable) spatial subsets .∆ ⊂ R3 (the PVM of 
the standard position operator) or their projection 12 .P+ χ∆(x) P+ onto the positive 
energy subspace of the associated Hilbert space .H = L2(R3, d3x) ⊗ C

4 (both of 
which form a POVM on .R3), since for .ψ ∈ H+ = P+H we have the .|ψ |2−weight 
of . ∆

.P
ψ (∆) =

	∫

∆

|ψ(x)|2d3x = <ψ | χ∆(x) ψ> = <ψ | P+ χ∆(x) P+ ψ> (19) 

However, both of these POVMs violate assumptions of Theorem 2: multiplication 
of a positive energy wave function by the indicator functions obviously violates the 
spectrum condition by radically cutting off everything from the wave function outside 
of .∆ which yields massive contributions from negative energy eigenstates (observe 
that an infinite potential well, i.e. an infinite amount of energy would be necessary 
to realize this operation physically) while their projection onto the positive energy 
subspace violates local commutativity. For the latter fact, Theorem 2 can be taken as 
a proof, but one may also prove it by direct calculation. 

Nonetheless, the probability distribution given by .Pψ (∆) = 	∫
∆

|ψ(x)|2 d3x is 
well defined for positive energy states . ψ , as long as we do not consider state trans-
formations. A state transformation does not occur if a particle ‘is there’ (say in 
Bohmian mechanics) but occurs upon measurement. 13

5 Particle Ontology 

In view of the previous discussion it is clear, in principle, that the mentioned results 
do not pose a problem for a quantum theory with a particle ontology, provided it

12 The projection operator .P+ onto the positive energy subspace of the Hilbert space of solutions 

of the Dirac equation can be written as .P+ = 1
2

(
1H + α· p+βm√

p2+m2

)
, with the usual meaning of the 

symbols, see, e.g., [ 37]. 
13 In particular, if .D is an element of a POVM, the state transformation upon the associated mea-
surement result is of the form .ψ I→ Rψ = U

√
Dψ (or a generalization of this formula, if the 

measurement transforms pure states to mixed states), where.U is a partial isometry. If.U = 1H and 
.
√
D = D = D2 is a projection, we recover the projection postulate for ideal measurements. See 

[ 2] for details, see also Footnote 10. 
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is able to describe particle creation and annihilation (which, of course, it should be 
for other reasons as well, if it is to reproduce the results of empirically successful 
relativistic quantum field theories). 

There are several proposals for generalizing non-relativistic Bohmian mechanics 
to relativistic 14 QFT [ 3, 7, 8, 11– 13, 35, 36]. The most elaborated of of these 
approaches is the so called Bell type QFT [ 11– 13], which can be described in a 
very simplified way as follows: The configuration space is the collection of the 
configuration spaces (sectors) for each possible particle number 15 (and antiparticle 
number) and each sector is associated with a wave function (non-normalized and 
possibly zero) from the .N−particle sector of the corresponding Fock space. The 
actual Bohmian configuration lives in a definite sector (.N particles) at each instant 
and its distribution there is a.|ψN |2−distribution,.ψN being the respective sector wave 
function. In the absence of jumps to other sectors (see below) the actual configuration 
is deterministically guided by the corresponding sector wave function through a 
Bohmian guiding equation (for the guiding equation of Dirac theory, see, e.g., [ 13]). 
An additional stochastic jump law provides us with probabilities for where and 
when particles may be created and/or annihilated (the jump process is driven by 
the interaction part of the second quantized Hamiltonian). For a given QFT (like 
regularized QED), these laws define a Markov process on the configuration space 
consisting of deterministic motion in an actual sector interrupted by stochastic jumps 
between the sectors, from which the empirical predictions (like cross sections, Lamb 
shift etc.) of this theory can be derived. 

So the crucial question is how the .|ψ |2−distribution of Bohmian configurations 
fits with the absence of such a distribution for position measurements. In the non-
relativistic case, the Bohmian positions of course agree with the results of (good) 
position measurements, at least to a good degree of accuracy. 16 In a relativistic 
Bohmian QED, this should be the case as well. However, there is a notable difference: 
the state transformation of a position measurement now not only localizes the wave 
function of a measured system (or suppresses it in regions where the measurement 
result is negative) in its actual particle sector, but also generates transitions in the 
particle number of the measured system with certain probabilities. The presence 
of a measuring apparatus can thus change the configuration of a measured system 
by changing the (actual sector of) configuration space. This in turn changes the

14 In this context, relativistic QFT refers to QFT with particle creation and annihilation, based on a 
relativistic wave equation. The question of full Lorentz invariance is another question which is not 
treated in this work. Both regularization of the OFT and a description of.N particles with nonlocal 
dynamics pose challenges for a fully Lorenzt invariant description; for treatment of the second 
point, cf. [ 1, 9, 10]. 
15 Details of treatment of identical particles, different particle species etc. are skipped here. 
16 Empirical distributions of real world measurements must always minimally deviate from this 
prediction because measurements are never perfect but are always subject to certain errors with 
certain probabilities (such errors arise even at the fundamental level due to the quantum mechanical 
nature of measuring devices [ 2]). Implementing these uncertainties into the measurement scheme 
leads to an approximate measurement POVM, where the indicator functions of the standard position 
PVM are convoluted with an additional error distribution, cf. [ 2]. 
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probabilities of outcomes of the measurement (even if this change will be negligible, 
if no too large energies are involved). 

Therefore, one should expect that the POVM describing a Bohmian position mea-
surement deviates to some degree from the POVM describing the actual distribu-
tion of Bohmain positions. While an electron’s Bohmian position, for instance, is 
.|ψ |2−distributed, where .ψ is a one particle wave function of positive energy, we 
should not expect the statistics of its position measurement to be given (precisely) 
by the corresponding POVM.{P+ χ∆(x) P+} (possibly lifted to Fock space), which 
does not commute locally, 17 but by an operator which includes possible transitions 
in the particle number due to the intervention of the measuring device. A generic 
option for an operator describing position measurements 18 for fermions would be 
the PVM of the local charge density operator [ 38], which commutes locally but does 
not leave the one particle sector of Fock space invariant and hence violates causal 
additivity. When looking at a concrete position measurement, the question of the 
associated POVM of course depends on the theoretical modeling of the details of the 
measurement interaction (detector model). 

It is interesting to note that another Bohmian dynamics corresponding directly 
to the statistics given by the PVM of the local charge density operator can also be 
defined quite naturally for fermionic Bell type QFT as shown in [ 38]. This theory is 
empirically equivalent to the fermionic Bell type QFT sketched above (as both are 
empirically equivalent to regularized QED of textbooks), but they are not equivalent 
on the ontological level. While in the absence of interaction in the latter case there 
is no particle creation and annihilation, in the former case configurations can jump 
between the sectors even under the free time evolution. 
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18 One might suggest to use the standard position PVM given by the indicator functions .χ∆(x). 
However, its violation of the spectrum condition is too strong so that any attempt to directly lift 
it to Fock space by second quantization will fail, because, roughly speaking, its action on Fock 
space would create infinitely many pairs, as can be estimated, e.g., from its Foldy-Wouthuysen 
representation (cf. [ 37]). 
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Detection Time of Dirac Particles in One 
Space Dimension 

A. Shadi Tahvildar-Zadeh and Stephanie Zhou 

Abstract We consider particles emanating from a source point inside an interval 
in one-dimensional space and passing through detectors situated at the endpoints of 
the interval that register their arrival time. Unambiguous measurements of arrival 
or detection time are problematic in the orthodox narratives of quantum mechanics, 
since time is not a self-adjoint operator. By contrast, the arrival time at the boundary of 
a particle whose motion is being guided by a wave function through the deBroglie-
Bohm guiding law is well-defined and unambiguous, and can be computationally 
feasible provided the presence of detectors can be modeled in an effective way that 
does not depend on the details of their makeup. We use an absorbing boundary 
condition for Dirac’s equation (ABCD) proposed by Tumulka, which is meant to 
simulate the interaction of a particle initially inside a domain with the detectors 
situated on the boundary of the domain. By finding an explicit solution, we prove 
that the initial-boundary value problem for Dirac’s equation satisfied by the wave 
function is globally well-posed, the solution inherits the regularity of the initial data, 
and depends continuously on it. We then consider the case of a pair of particles 
emanating from the source inside the interval, and derive explicit formulas for the 
distribution of first arrival times at each detector, which we hope can be used to study 
issues related to non-locality in this setup. 

1 Introduction 

In orthodox quantum mechanics, speaking of arrival/detection time of quantum par-
ticles is fraught with problems, since time does not lend itself to the self-adjoint 
operator formalism required for that approach. 1 Nevertheless, the arrival/detection 

1It is possible to define time more generally as a positive operator-valued measure [ 13], but there 
is no unique way of doing that [ 18]. 
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time of a particle is something that is routinely measured in time-of-flight (TOF) 
experiments performed in labs [ 8, 9, 11]. There are numerous competing recipes in 
the literature for what the distribution of arrival/detection times should be (see [ 2– 5] 
for a critique of some of these approaches, and the possibility of using experiments to 
distinguish them.) Many of these approaches ignore the presence of detection devices 
and consider the wave function of the particle to evolve unitarily, either under the 
free evolution or in presence of an external potential. As a result, they are prone to the 
“backflow” problem, which can cause their proposed candidates for the arrival time 
probability density to become negative at points close to the source. An alternative 
approach was taken by Tumulka [ 14– 16], based on an idea of Werner [ 19], in which 
the presence of the detector is modeled through the imposition of an absorbing bound-
ary condition on the Schrödinger flow (in the non-relativistic case) or the Dirac flow 
(in the relativistic case) of the wave function of the particle. Such a boundary con-
dition ensures that particle velocities at the boundary are always outward. Tumulka 
showed that under such a boundary condition, his candidate for the probability den-
sity of the particle’s arrival time is always non-negative. Subsequently, Teufel and 
Tumulka succeeded in showing [ 12] that the corresponding boundary value problem 
for the wave function has a unique square-integrable solution, in both the relativistic 
and the non-relativistic cases. Their existence proof uses techniques from functional 
analysis, and does not yield an explicit formula for the solution in either case. 

In this note we show that in one space dimension, the initial-boundary-value prob-
lem for the Dirac equation satisfied by the wave function of a single spin-half parti-
cle, with absorbing boundary conditions corresponding to a pair of ideal detectors 2

placed at the two endpoints of an interval containing the particle source, is exactly 
solvable, and that the solution inherits the regularity of the initial data. Applying 
Bohmian Mechanics rules then makes it possible for actual particle trajectories to be 
computed for any particle whose initial position is distributed randomly according to 
any given initial wave function, thereby setting the stage for comparisons to be made 
with other proposals for arrival time distribution, and the possibility of experimental 
testing of this theory. 

It is of interest to study how successful the ABCD method is in simulating actual 
detection, i.e. the interaction of the particle with the (presumably macroscopic) 
detecting apparatus that results in the device registering the presence of the par-
ticle at a particular time. In order to avoid faster-than-light signaling, it must be the 
case that shifting one of the detectors by a small amount does not alter the distri-
bution of arrival times at the other detector, or at least not before any possible light 
signal from the shifted detector has time to reach the other one. (Recall that in Bell-
type experiments, changing the direction of the magnets affects only the correlations 
between the distributions, not the distributions themselves.) For a single particle, this 
is easily verified. 

We then derive explicit formulas for the distribution of arrival times at each 
detector, which in forthcoming work we plan to use to show that such superluminal

2 See [ 15] for the definition of ideal versus non-ideal detectors. 



Detection Time of Dirac Particles in One Space Dimension 189

signaling does not exist even when the initial wavefunction corresponds to a maxi-
mally entangled two-particle state. 

2 Absorbing Boundary Conditions for the Dirac Equation 

Using the proposed equations in [ 15], we let .Ω = (−L , L) be an open interval 

in .R and let .ψ =
(

ψ+
ψ−

)
: [0,∞) × Ω → C

2 be the unique solution of the initial-

boundary value problem (IBVP) 

.

⎧⎪⎨
⎪⎩

icℏγ μ∂μψ = mc2ψ

ψ(0, s) = ψ̊(s); s ∈ Ω, ψ̊ ∈ Ck
c (Ω), k ≥ 0

n(s) · α ψ(t, s) = ψ(t, s); t ≥ 0, s ∈ ∂Ω.

(1) 

Here.{γ 0, γ 1} are Dirac gamma matrices, .m is the rest mass of the spin-1/2 particle, 
. c is the speed of light in vacuum, . ℏ is Planck’s constant, . n is the normal to .∂Ω, and 
.α = α1 := γ 0γ 1. 

The initial data .ψ̊ is assumed to be .Ck , for a fixed integer .k ≥ 0, and compactly 
supported inside the interval . Ω. The data can therefore be extended outside .Ω to be 
identically zero. In the following, when speaking of. ψ̊ we always have this extension 
in mind. 

The boundary of the spacetime domain for. ψ is the set of points.{(t,−L), (t, L)}. 
So we have .n = 1 at .(t, L), .n = −1 at .(t,−L). Choosing .γ 0 =

(
0 1
1 0

)
, . γ 1 =(

0 −1
1 0

)
, we have .α =

(
1 0
0 −1

)
. 

Plugging these into the boundary condition in (1), which we call an Absorb-
ing Boundary Condition for the Dirac equation (ABCD), we get . ψ+(t, L) = 0
and .ψ−(t,−L) = 0 for all .t ≥ 0. Now plugging these two boundary conditions 
into the Dirac equation, we get the additional boundary condition . mψ∓(t,±L) =
∓i∂sψ±(t,±L). This gives us an equivalent IBVP for the Klein-Gordon equation 
obtained by iterating the Dirac operator in (1): 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2
t ψ± − ∂2

s ψ± + m2ψ± = 0

ψ±(0, s) = ψ̊±(s) ∈ Ck
c (Ω), k ≥ 0

∂tψ±(0, s) = −imψ̊∓(s) ± ∂sψ̊±(s)

ψ±(t,±L) = 0

mψ∓(t,±L) ± i∂sψ±(t,±L) = 0

(2) 

(We have set .c = ℏ = 1.) 
The following theorem shows that (2) has an explicit solution by splitting the IBVP
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into its initial and boundary value problem parts and finding the solutions to each. 
Although this solution is in the form of an infinite series, we shall see that at any fixed 
time there are only finitely many nonzero terms in it, so that there are no convergence 
issues. 

Theorem 1 The IBVP in (2) has a unique solution that is as regular as its initial 
data and depends continuously on it. 

Proof In order to solve these equations we set .ψ± = Φ± + χ±, where .Φ±, defined 
on .[0,∞) × (−∞, ∞), are the solutions to 

.

⎧⎪⎨
⎪⎩

∂2
t Φ± − ∂2

s Φ± + m2Φ± = 0

Φ±(0, s) = ψ̊±(s)

∂tΦ±(0, s) = −imψ̊∓(s) ± ∂sψ̊±(s),

(3) 

and where.χ± are functions defined on.[0,∞) × (−∞, L), resp.. [0,∞) × (−L ,∞)

that satisfy 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2
t χ± − ∂2

s χ± + m2χ± = 0

χ±(0, s) = 0

∂tχ±(0, s) = 0

χ±(t,±L) = f±(t)

mχ∓(t,±L) ± i∂sχ±(t,±L) = i∂t f±(t),

(4) 

where . f±(t) := −Φ±(t,±L). 
(3) is the Cauchy problem for the one-dimensional Klein-Gordon equation, in older 
literature called the (lossless) telegraph equation (e.g. [ 1], p.544), whose solution is 
well-known (see e.g. [ 17]): 

.

Φ±(t, s) = 1

2
[ψ̊±(s − t) + ψ̊±(s + t)] − tm

2

{ s+t

s−t

J1(m
√
t2 − (s − σ)2)√

t2 − (s − σ)2
ψ̊±(σ )dσ

− 1

2

{ s+t

s−t
J0(m

√
t2 − (s − σ)2)(imψ̊∓(σ ) ∓ ∂σ ψ̊±(σ ))dσ,

(5) 

where.Jn is the Bessel function of order . n. Using integration by parts, the above can 
be rewritten as follows: 

. Φ±(t, s) = ψ̊±(s ± t) − m

2

{ s+t

s−t
Z1(t, ±(s − σ))ψ̊±(σ )dσ − im

2

{ s+t

s−t
Z0(t, s − σ)ψ̊∓(σ )dσ,

(6) 
where we define, for .ν ≥ 0, 

.Zν(t, s) := Jν(m
√
t2 − s2)

(
t − s

t + s

)ν/2

. (7)
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On the other hand, we can solve (4) using Laplace transform methods, as follows: 
We first find the general solution to the first three equations of (4): 

.
χ̃+(p, s) = c1(p)eks + c2(p)e−ks

χ̃−(p, s) = c3(p)eks + c4(p)e−ks,
(8) 

where 
.k :=

√
p2 + m2, Re(p) > 0, (9) 

and tilde denotes the Laplace transform, i.e. . f̃ (p) = ∫ ∞
0 f (t)e−ptdt . Applying this 

to the boundary conditions in (4), we obtain 

.

f̃+(p) = c1(p)ekL + c2(p)e−kL

f̃−(p) = c3(p)e−kL + c4(p)ekL

ip f̃+(p) = m(c3(p)ekL + c4(p)e−kL) + i(kc1(p)ekL − kc2(p)e−kL)

i p f̃−(p) = m(c1(p)e−kL + c2(p)ekL) + i(−kc3(p)e−kL + kc4(p)ekL).

(10) 

After solving the system (10) for  .c1, c2, c3, c4 and plugging back into (8), we 
arrive at 

. χ̃+(p, s) = f̃+(m2e6kL + 2k2e2kL − m2e2kL + 2kpe2kL ) + i f̃−(kme4kL − mpe4kL + km + mp)

D
ek(L+s)

+ f̃+(2k2e4kL − 2kpe4kL − m2e4kL + m2) + i f̃−(mpe6kL − kme6kL − mpe2kL − kme2kL )

D
ek(L−s)

χ̃−(p, s) = i f̃+(mpe6kL − kme6kL − mpe2kL − kme2kL ) + f̃−(2k2e4kL − 2kpe4kL − m2e4kL + m2)

D
ek(L+s)

+ i f̃+(kme4kL − mpe4kL + km + mp) + f̃−(m2e6kL + 2k2e2kL − m2e2kL + 2kpe2kL )

D
ek(L−s),

where .D := m2(e2kL + i k+p
m )(e2kL − i k+p

m )(e2kL + i k−p
m )(e2kL − i k−p

m ). 
After doing a partial fraction decomposition, the above can be rewritten as 

. χ̃±(p, s) = 1

2

[
e−k(L∓s)

(
± f̃+(p) − f̃−(p)

1 + i k−p
m e−2kL

+ f̃+(p) + f̃−(p)

1 − i k−p
m e−2kL

)

+i
k − p

m
e−k(L±s)

(
± f̃+(p) − f̃−(p)

1 + i k−p
m e−2kL

− f̃+(p) + f̃−(p)

1 − i k−p
m e−2kL

)]
. (11) 

Noting that .
IIIi k−p

m e−2kL
III < 1, we can view (11) as the sum of four convergent 

geometric series, so that 

. 

χ̃±(p, s) = 1

2

[
±

∞∑
n=0

(
− i

k − p

m

)n
e−k[(2n+1)L∓s]( f̃+(p) − f̃−(p)) +

∞∑
n=0

(
i
k − p

m

)n
e−k[(2n+1)L∓s]( f̃+(p) + f̃−(p))

∓
∞∑
n=0

(
− i

k − p

m

)n+1
e−k[(2n+1)L±s]( f̃+(p) − f̃−(p)) −

∞∑
n=0

(
i
k − p

m

)n+1
e−k[(2n+1)L±s]( f̃+(p) + f̃−(p))

]

(12)
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From a table of inverse Laplace transforms (e.g. [ 10], formula 14.52) we find 

. L−1[( (k − p)ν

k
)e−kx ](τ, x) = mν(

τ − x

τ + x
)
1
2 ν Jν(m

√
τ2 − x2)H(τ − x) = mν Zν(τ, x)H(τ − x)

where .H is the Heaviside function .H(t) = 1 for .t > 0 and . 0 otherwise. 
We therefore have the following explicit solution for .χ±: 

. 

χ±(t, s) = 1

2

∞∑
n=0

in
[
H(t − (2n + 1)L ± s)

(
(−1)n

d

ds

{ t

(2n+1)L∓s
dξ F−(t − ξ)Zn (ξ,±((2n + 1)L − s))

± d

ds

{ t

(2n+1)L∓s
dξ F+(t − ξ)Zn(ξ, ±((2n + 1)L − s))

)

+ i H(t − (2n + 1)L ∓ s)

(
(−1)n+1 d

ds

{ t

(2n+1)L±s
dξ F−(t − ξ)Zn+1(ξ,±((2n + 1)L − s))

± d

ds

{ t

(2n+1)L±s
dξ F+(t − ξ)Zn+1(ξ,±((2n + 1)L − s))

)]
,

(13) 
where 

. F± := f+ ± f−.

Carrying out the differentiations in (13), we have 

.

χσ (t, s) = H(t − L + σ s) fσ (t − L + σ s)

+
∞∑
n=0

in
(
H(t − (2n + 1)L + σ s)

{ t

(2n+1)L−σ s
f(−1)nσ (t − ξ)Rn(ξ, (2n + 1)L − σ s)dξ

− i H(t − (2n + 1)L − σ s)
{ t

(2n+1)L+σ s
f
(−1)n+1σ

(t − ξ)Rn+1(ξ, (2n + 1)L + σ s)dξ

)
,

(14) 

where .σ ∈ {+,−}, and for .k ≥ 0, 

. Rk(ξ, η) := −mη(ξ − η)k
Jk+1(m

√
ξ 2 − η2)

(ξ 2 − η2)
k+1
2

+ k(ξ − η)k−1 Jk(m
√

ξ 2 − η2)

(ξ 2 − η2)
k
2

.

Adding .χ± to .Φ±, we arrive at the solution for .ψ±. This solution can clearly be put 
in terms of the initial data, as shown for example by the.n = 0 term of.χσ , which we 
denote by .χσ 0: 

. 

χσ 0(t, s) = −H(t − L + σ s)

[
Φσ (t − L + σ s, σ L) +

{ t

L−σ s
R0(ξ, L − σ s)

(
ψ̊σ (σ (L + t − ξ))

− m

2

{ σ L+t−ξ

σ L−t+ξ

Z1(t − ξ, σ L − ς)ψ̊σ (ς)dς − im

2

{ σ L+t−ξ

σ L−t+ξ

Z0(t − ξ, σ L − ς)ψ̊−σ (ς)dς

)
dξ

]

+ i H(t − L − σ s)
{ t

L+σ s
R1(ξ, L + σ s)

(
ψ̊−σ (−σ(L + t − ξ))

− m

2

{ −σ L+t−ξ

−σ L−t+ξ

Z1(t − ξ, −σ L − ς)ψ̊−σ (ς)dς − im

2

{ −σ L+t−ξ

−σ L−t+ξ

Z0(t − ξ, σ L + ς)ψ̊σ (ς)dς

)
dξ

(15) 

Furthermore, the Heaviside functions appearing in (14) show that .χn , the  .n-th 
term in the summation, is supported in .

Un
k=0 Rk , with regions .Rk shown in Fig.  1.
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Fig. 1 Support of. χn

s 
L L  

t = 2L 

t = 4L 

t = 6L 

R0 

R1 

R2 

This shows that for any fixed .t > 0 there are only finitely many non-zero terms in 
(14), so convergence is never an issue. 

Finally, the behavior of Bessel functions for small values of their argument, 
.Jn(x) = O(xn) as .x → 0, imply that, despite appearances, the solution kernels . Zk

and.Rk are smooth and bounded on compact domains, which ensures that the solution 
is as regular as the data and depends continuously on it. . ⊓⊔

3 Arrival Time of Bohmian Trajectories 

Let.ψ =
(

ψ+
ψ−

)
be the wave function of a spin-1/2 particle in.R

1,1. The  Dirac current 

. jμ := ψγ μψ, ψ := ψ†γ 0 (16) 

is the simplest Lorentz vector that can be constructed from the Dirac bispinor . ψ . 
When .ψ satisfies the Dirac equation .−iγ μ∂μψ + mψ = 0, it follows that the vec-
torfield . j is divergence free, i.e. 

.∂μ jμ = 0. (17) 

Setting .℮(t, s) := j0 = ψ†ψ and.J (t, s) := j1 = ψ†α1ψ , the above can be written 
as .∂t℮ + ∂s J = 0, which has the form of an equation of continuity for a density . ℮. 
The quantity.v(t, s) = J/℮ is thus naturally a velocity field defined on the 1-particle 
configuration space.
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Let .Q(t) denote the actual position of the particle at time . t . According to the 
principles of Bohmian Mechanics (e.g. [ 6], Chap. 9) the guiding equation for the 
motion of the particle is 

.
dQ(t)

dt
= J (t, Q(t))

℮(t, Q(t))
. (18) 

The above ODE can be uniquely solved given initial data .Q0 = Q(0) ∈ R which is 
assumed to be distributed randomly according to the initial density.℮0 := ψ̊†ψ̊ . The  
arrival time of the trajectory .s = Q(t) at the boundary .∂Ω of the domain is simply 

.T = inf{t > 0 | Q(t) ∈ ∂Ω} (19) 

(Recall that the infimum of the empty set is by definition .+∞.) 
Let. jμ be as in (16). Let.Z = (T,X)where. X is the location on.∂Ωwhere a particle 

gets first detected at time . T , meaning there is a trajectory .Q(t) with .Q(0) ∈ Ω that 
at time .t = T reaches the boundary for the first time, and .Q(T ) = X. (If  .T = ∞, 
we write .Z = ∞.) .Z is a random variable defined on . Ω, and according to [ 15] the  
distribution . μ of . Z satisfies 

. μ(t1 ≤ T < t2, X ∈ ∂Ω) =
{ t2

t1
dt

{
∂Ω

n(x) · jψt (x)dσ =
{ t2

t1

(
j1(t, L) − j1(t,−L)

)
dt.

(20) 
It was shown in [ 15] that when the absorbing boundary conditions are satisfied, the 
integrand in (20) is a probability density function on.R

+. Moreover, since in this case 
the boundary is made up of just two points, call them .A for Alice and .B for Bob, 
the distribution density of arrival times at Alice’s detector on the left and for Bob’s 
detector on the right are 

.℮A(t) = − j1(t,−L) = |ψ+(t,−L)|2, ℮B(t) = j1(t, L) = |ψ−(t, L)|2. (21) 

Remark 1 We note that these are not normalized probability density functions, 
since, as was shown in [ 15], a simple application of the Divergence Theorem implies 
that 

.

{ L

−L
|ψ̊(s)|2ds −

{ L

−L
|ψ(t, s)|2ds =

{ t

0

(
j1(T, L) − j1(T,−L)

)
dT =

{ t

0
℮B (T ) + ℮A(T ) dT . (22) 

Moreover, since .ψ̊ is assumed to be compactly supported in .[−L , L], by the  Born  
Rule the left hand side of (22) is  

. 1 − Prob(T = t, X ∈ Ω).

Therefore, letting.t → ∞ we can only conclude that the sum of the total integrals of 
.℮A and .℮B is at most equal to one.
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4 Two-Body  Problem  

Let us now imagine that the particle source in the middle of the interval emits pairs of 
particles. The two body multi-time wave function .ψ = (ψ−−, ψ−+, ψ+−, ψ++) for 
this problem has four components, each one of which is a function of two time and 
two space variables:.ψσ1σ2 = ψσ1σ2(x1, x2)with.x0i = ti , x1i = si ,.i = 1, 2. It satisfies 
the multi-time system of Dirac equations 

.iγ μ

j ∂xμ

j
ψ = mψ j = 1, 2 (23) 

where .γ μ
1 := γ μ ⊗ 1 and .γ μ

2 := 1 ⊗ γ μ. The above equations are amended by the 
boundary conditions 

. ψ±σ2 (t, ±L , t, s) = 0, ψσ1±(t, s, t, ±L) = 0, ∀σ1, σ2 ∈ {+,−},∀t ≥ 0, ∀s ∈ [−L , L]
(24) 

The two-body tensor current . j is defined as . jμν = ψ(γ μ ⊗ γ ν)ψ where . ψ :=
ψ†γ 0 ⊗ γ 0. It follows that 

.. j00 = |ψ−−|2 + |ψ−+|2 + |ψ+−|2 + |ψ++|2 (25) 

. j01 = |ψ−−|2 − |ψ−+|2 + |ψ+−|2 − |ψ++|2 (26) 

. j10 = |ψ−−|2 + |ψ−+|2 − |ψ+−|2 − |ψ++|2 (27) 

When .ψ satisfies the multi-time Dirac system (23) the tensor current . jμν satisfies a 
pair of conservation laws: 

.∂t1 j
00 + ∂s1 j

10 = 0, ∂t2 j
00 + ∂s2 j

01 = 0. (28) 

Suppose that there is a particle detector at each endpoint of the interval. Ω. The detec-
tor at left endpoint is controlled by Alice, and the detector at the right endpoint is 
controlled by Bob. Alice and Bob can change the position of their detectors inde-
pendently of one another. Let .(xμ) = (t, s) denote a coordinate frame on physical 
spacetime with respect to which Alice and Bob are both stationary, and let .Σt be the 
foliation of spacetime by constant .t-slices. According to the Hypersurface Bohm-
Dirac theory [ 7], with respect to.Σt the guiding equation for each of the two particles 
is 

.
dQ1

dt
= j10

j00
(t, Q1(t), t, Q2(t)),

dQ2

dt
= j01

j00
(t, Q1(t), t, Q2(t)). (29) 

Suppose the source emits a pair of particles at .t = 0. Given a trajectory of the two-
body system .(Q1(t), Q2(t)), its first arrival time chez Alice is the earliest time that 
either of the two particles reaches Alice’s detector, and similarly for Bob. In other 
words
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. TA := min
k=1,2

inf{t > 0 | Qk(t) ≤ −L}, TB := min
k=1,2

inf{t > 0 | Qk(t) ≥ L}.
(30) 

.TA and.TB are random variables on. Ω (due to their dependence on the initial positions 
of the trajectories) describing the first of the two arrival times at Alice’s detector, 
resp. Bob’s. Let .μA and.μB denote their corresponding (un-normalized) probability 
densities. We have 

Proposition 1 

. μA(t) =
{ L

−L

(∑
σ2

|ψ+ σ2(t,−L , t, s ')|2 +
∑
σ1

|ψσ1 +(t, s ', t,−L)|2
)

ds '

+
{ t

0
dt '

(|ψ−+(t ', L , t,−L)|2 + |ψ+−(t,−L , t ', L)|2) (31) 

. μB(t) =
{ L

−L

(∑
σ2

|ψ− σ2(t, L , t, s ')|2 +
∑
σ1

|ψσ1 −(t, s ', t, L)|2
)

ds '

+
{ t

0
dt '

(|ψ−+(t, L , t ',−L)|2 + |ψ+−(t ',−L , t, L)|2) . (32) 

Proof Let .T f be the first time (according to .Σt foliation) at which a particle is 
registered by any of the detectors at the boundary, let .Z f = (T f , S f ) with . S f ∈
{L ,−L} be the corresponding detection event, and let.I f ∈ {1, 2} be the label of the 
registered particle. The proposed rule in [ 15], specialized to this particularly simple 
case, asserts that the joint probability distribution of .I f and .Z f is 

.Prob
(
I f = 1, (t < T f < t + dt, S f = ±L)

)
= ds dt δ(s ∓ L)

{ L

−L
± j10(t, s, t, s2)ds2 (33) 

.Prob
(
I f = 2, (t < T f < t + dt, S f = ±L)

)
= ds dt δ(s ∓ L)

{ L

−L
± j01(t, s1, t, s)ds1. (34) 

Since these events are disjoint, it follows that the probability density for the arrival 
time of either particle at Alice before the other one arrives at Bob is 

.μ
f
A(t) =

{ L

−L
− j10(t,−L , t, s ') − j01(t, s ', t,−L) ds, (35) 

and similarly for Bob. We note that when the boundary conditions (24) are satisfied, 
the above becomes 

.μ
f
A(t) =

{ L

−L

∑
σ2

|ψ+ σ2(t,−L , t, s ')|2 +
∑
σ1

|ψσ1 +(t, s ', t,−L)|2 ds ' ≥ 0. (36) 

To account for all the particle arrivals at a given detector, we need to include the 
possibility of the particle arriving at that detector being the second one to arrive at 
any detector, e.g. one of the particles arrives at Bob’s detector at a time.t ' < t before
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the other one arrives at Alice’s at time . t . In such a case, the Absorbing Boundary 
Rule proposed in [ 15, 16] stipulates that the detection of the particle by Bob causes 
the two-body wave function to undergo collapse, and the evolution of the remaining 
particles will henceforth be governed by the collapsed (i.e. the conditional) wave  
function. Let .φ j B(t ', ·) denote the conditional wave function that results from Bob 
detecting particle labeled . j ∈ {1, 2} at time . t '. Then 

.φ1Bσ2
(t ', s2) = ψ− σ2 (t ', L , t ', s2)/∫ L−L ds' ∑σ2

|ψ− σ2 (t ', L , t ', s')|2
, φ2Bσ1

(t ', s1) = ψσ1 −(t ', s1, t ', L)/∫ L−L ds' ∑σ1
|ψσ1 −(t ', s1, t ', L)|2

. (37) 

(Note that the leftover spin components corresponding to the absorbed particle are 
zero thanks to the boundary conditions (24).) 

Let .T j
A be the time of arrival of particle labeled . j at Alice’s detector, and let 

. ĵ denote the label of the other particle, i.e. .1̂ = 2 and .2̂ = 1. By the formula for 
conditional probabilities, we have 

. Prob(t < TA < t + dt) =
2∑
j=1

(
Prob(t < T j

A < t + dt, I f = j) + Prob(t < T j
A < t + dt, I f = ĵ)

)

= μ
f
A(t) +

2∑
j=1

{ t

0
dt 'Density(t ' < T ĵ

B < t ' + dt ', I f = ĵ)Prob(t < T j
A < t + dt | T ĵ

B = t ', I f = ĵ).

To calculate the conditional probability that shows up on the last line, we need to use 
the conditional wave function, viz. for . j = 2, 

. Prob(t < T 2
A < t + dt | T 1

B = t ', I f = 1) =
2∑
j=1

|φ1B− (t,−L)|2 + |φ1B+ (t,−L)|2 = |ψ−+(t ', L , t, −L)|2∑
σ2

∫ L
−L ds' |ψ− σ2 (t

', L , t ', s')|2
,

and similarly for . j = 1, while 

.Density(t ' < T 1
B < t ' + dt ', I f = 1) =

∑
σ2

{ L

−L
ds '|ψ− σ2(t

', L , t ', s ')|2, (38) 

which cancels the denominator in the above, establishing the claim. . ⊓⊔

5 Detection Versus Arrival Time 

How well does the ABCD method capture the detection phenomena, that is to say, 
the interaction of the particles emitted by the source inside the domain with the 
(presumably macroscopic) detectors places on the boundary of the domain? If we 
imagine that the detector at the left endpoint of the interval. Ω is controlled by Alice, 
and the one on the right by Bob, it should for example be the case that the distribution 
of arrival times at Alice is not immediately affected if Bob decides to move his 
detector by an appreciable amount, or if he simply switches his detector off (meaning
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the boundary condition is not imposed on Bob’s side.) For a single particle, this is 
easily obtained (see below) but for two particles it is not at all obvious, since moving 
one of the detectors or switching it off changes the two-body wave function, and 
therefore the individual trajectories of an entangled pair of particles change as soon as 
one of them enters the domain of influence of Bob’s boundary point (since the velocity 
of each particle depends on the actual positions of both particles). Nevertheless, one 
expects the distribution of arrival times not to change faster than what is allowed by 
relativity. 

Proposition 2 For a single particle, and for all .ε ∈ (0, L/2), the distribution of 
arrival times at .s = −L is unaffected for .t < 2L − ε when the detector at .s = L is 
shifted to .s = L + ε. 

Proof By (20), the density of arrival times at the boundary point.s = −L is. ℮A(t) =
− j1(t,−L) = |ψ+(t,−L)|2. We next note that due to the translation invariance of 
the equations, the situation with Bob’s detector shifted to .L + ε while keeping the 
particle source and Alice’s detector fixed, is equivalent to shifting Bob’s detector 
.ε/2 units to the right while shifting both the source and Alice’s detector .ε/2 units 
to the left. This observation allows us to use the solution formulas developed in the 
above for .Ω that was symmetric with respect to the origin, also to the case where 
that symmetry is broken due to the shift in Bob’s detector. 

After such a shift, therefore, the interval is.Ω' = [−L ', L '], where.L ' = L + ε/2, 
and the initial data is .ψ̊ '±(s) = ψ̊±(s + ε

2 ). If we denote by .ψ ' and .Φ' the solutions 
to (2) and (3) after the shift, from (15) we would then have that 

.ψ '
+(t, s) = Φ'

+(t, s) − H(t − L ' + s)X (t, s) + i H(t − L ' − s)Y (t, s), (39) 

where. X and. Y are certain integral operators acting on the initial data.ψ̊ '. In particular, 

. Y (t, s) =
∑

σ∈{+,−}

{ t

L '+s
dξ

{ −L '+t−ξ

−L '−t+ξ

dζ Kσ (t, ξ, L ' + s, L ' + ζ )ψ̊ '
σ (ζ )

for certain explicit Kernels .K±. Assuming.0 < t < 2L , upon evaluating at . s = −L '
the first Heaviside function in (39) is zero, therefore we are left with . ψ '+(t,−L ') =
Φ'+(t,−L ') + iY (t,−L '), and we can check that changing the inner variable of 
integration to .ζ ' = ζ + ε

2 we obtain 

. Y (t,−L ') =
∑
σ

{ t

0
dξ

{ −L'+t−ξ

−L'−t+ξ
dζKσ (t, ξ, 0, L ' + ζ )ψ̊ '

σ (ζ ) =
∑
σ

{ t

0
dξ

{ −L+t−ξ

−L−t+ξ
dζ 'Kσ (t, ξ, 0, L + ζ ')ψ̊σ (ζ ')

which is manifestly independent of . ε. From the formula (6) one can similarly con-
clude that.Φ'+(t,−L ') is independent of. ε (or alternatively, one can use the domain of 
dependence property that holds for solutions to (3).) It thus follows that . ψ '+(t,−L ')
is independent of . ε, and therefore so is .℮A(t). . ⊓⊔
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As a simple corollary of the above, we note that if for the 2-body problem we start 
with a pure product initial state .ψ̊1 ⊗ ψ̊2, the solution would remain a pure product 
as well (the equations (23) are for the non-interacting case), and therefore the same 
reasoning as above applies to show that the distribution of first arrival times at Alice 
will not be affected by a change in the position of Bob’s detector. 

Next we can try to answer the same question for two particles whose wavefunction 
is in a maximally entangled state, i.e., the solution .ψ to the two-body problem (23) 
with boundary conditions (24) whose initial data is 

.ψ(0, s1, 0, s2) = 1√
2

(
ψ̊1 ⊗ ψ̊2 + ψ̊3 ⊗ ψ̊4

)
, (40) 

where.ψ̊ i ∈ C0
c (Ω) for.i = 1, . . . , 4 are four normalized mutually orthogonal 1-body 

wavefunctions. Without much loss of generality, we can take these to be 

. 

{
ψ̊1− ≡ 0

ψ̊1+(s) = fμ,α(s),

{
ψ̊2−(s) = fμ,α(s)

ψ̊2+ ≡ 0,

{
ψ̊3− ≡ 0

ψ̊3+(s) = gμ,α(s),

{
ψ̊4−(s) = gμ,α(s)

ψ̊4+ ≡ 0.
(41) 

where . fμ,α and .gμ,α are continuous functions compactly supported in . (μ − α,μ +
α), with the property that.

∫
f 2ds = ∫

g2ds = 1 and.
∫

f gds = 0, and we can assume 

. fμ,α(s) = f0,α(s − μ), gμ,α(s) = g0,α(s − μ).

For.i = 1, . . . , 4, let.ψ i be the solution to the one-body problem (1) with initial data 
.ψ̊ i . Clearly, the solution to the 2-body system (23–24) is  . ψ = 1√

2(
ψ1 ⊗ ψ2 + ψ3 ⊗ ψ4

)
. 

Recall that for .t < 2L the only non-zero term in the series (4) is the one with 
.n = 0. Noticing that .ψ i (t,−L) = 0 due to the boundary condition, from (31) the  
distribution of first arrival times at Alice when Bob’s detector is shifted to the right 
by the amount . ε, with .α << ε < L/2 and letting .L ' := L + ε

2 , becomes 

. με
A(t) := 1

2

{ L '

−L '
ds

(IIIψ1+(t,−L ')ψ2−(t, s) + ψ3+(t,−L ')ψ4−(t, s)
III2 +

IIIψ1+(t,−L ')ψ2+(t, s) + ψ3+(t,−L ')ψ4+(t, s)
III2

+
IIIψ1+(t, s)ψ2+(t,−L ') + ψ3+(t, s)ψ4+(t,−L ')

III2 + IIψ1−(t, s)ψ2+(t,−L ') + ψ3−(t, s)ψ4+(t,−L ')
II2 )

(42) 

+1 

2

{ t 

0 
dt '

(IIIψ1−(t ', L ')ψ2+(t, −L ') + ψ3−(t ', L ')ψ4+(t, −L ')
III2 + IIIψ1+(t, −L ')ψ2−(t ', L ') + ψ3+(t, −L ')ψ4−(t ', L ')

III2
)

. 

In the above, .ψ j
± are computed using initial data profiles . f−ε/2,α and .g−ε/2,α . The  

goal would be to show that for.t < 2L − ε the above expression does not depend on 
. ε. 

It is fairly easy to verify this when both particles are massless, i.e. if we set.m = 0. 
This is because in that case the initial data is just transported along characteristics, 
so that the boundary condition has no effect, and the integrals in (42) are easily seen 
to be independent of . ε.



200 A. S. Tahvildar-Zadeh and S. Zhou

For massive particles, though, a more detailed analysis of the terms in (42) 
becomes necessary. We plan to carry this out in future work. 

6 Summary and Outlook 

In this paper we have demonstrated that there exists an explicit, unique solution 
to the initial-boundary-value problem for the 1-body Dirac equation in an interval 
in one-dimensional space, with absorbing boundary conditions as proposed in [ 15] 
modeling the presence of a detector at each endpoint, and that the solution inherits 
the regularity of the initial data and depends continuously on it. 

We then studied the two-body problem corresponding to a pair of particles emanat-
ing from a source inside the interval, and obtained explicit formulas for the probability 
density of first arrival times at detectors situated at each end point of the interval. 
We posed the question whether it is possible to affect the distribution of arrival times 
at one detector by shifting the other detector, and to do so faster than allowed by 
relativity. We showed that this is not possible if the initial data is a pure product 
state, or if the particles are massless. In future work we plan to show that even for 
an entangled pair of massive particles this is still not possible, so that superluminal 
signaling is generally ruled out in this model. 
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The Bohmian Solution to the Problem 
of Time 

Ward Struyve 

Abstract In canonical quantum gravity the wave function of the universe is static, 
leading to the so-called problem of time. We summarize here how Bohmian mechan-
ics solves this problem. 

1 Introduction 

Canonical quantum gravity is an approach to quantum gravity which is obtained by 
applying the usual quantization techniques to the classical theory of gravity, general 
relativity [ 1]. These techniques have been successfully applied before to classical 
Yang-Mills theories to construct quantum theories describing the fundamental inter-
actions other than gravity, leading to the Standard Model of elementary particle 
physics, and the hope is that they lead to similar success in the case of gravity. 
As usual, the quantization proceeds by bringing general relativity into Hamiltonian 
form and by replacing classical variables by operators acting on wave functions. This 
results in a set of wave equations for the wave function, one of which is known as the 
Wheeler-DeWitt equation. There is a host of problems with these wave equations, 
of both technical and conceptual nature. On the technical level, the main problem 
is that the wave equations are merely defined formally. Since the theory is non-
renormalizable (unlike Yang-Mills theories), this problem cannot be bypassed by 
the usual perturbation methods. On the conceptual level, there is the measurement 
problem, which carries over from ordinary quantum theory, and which is especially 
severe in this context since the aim is to apply the theory to the whole universe, so 
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that there are no outside observers performing measurements. Another immediate 
problem is the problem of time. The wave equations entail a static wave function, 
which hence seems unable to describe our changing universe. Various ideas have 
been proposed on how to overcome this problem [ 1– 4], without any consensus about 
the right approach. A recurring issue with many of these proposals is the lack of 
ontological clarity. What is the ontology in quantum gravity? What is the role of 
the wave function? Is it part of the ontology? Or merely a statistical representa-
tion of some sort? Does space-time itself exists? Or is it emergent? What are the 
objects in space-time? 1 A proper resolution of this problem requires clarity about 
these questions. 

In Bohmian mechanics the ontology is clear. Non-relativistic Bohmian mechanics 
is about point-particles in Galilean space-time moving with a velocity that depends on 
the wave function which satisfies the usual Schrödinger equation [ 5– 7]. In Bohmian 
quantum gravity [ 8– 10], space-time itself is dynamical, like in general relativity. As 
in the classical Hamiltonian formulation, it can be written as a geometrodynamics, 
i.e., as a dynamics of a spatial 3-metric, whose time evolution determines a space-
time metric. This time evolution, together with that of the matter degrees of freedom 
(particles or fields), is determined by the wave function which satisfies the wave 
equations of canonical quantum gravity. Even though the wave function is static, the 
spatial 3-metric and the matter degrees of freedom generically change over time. As 
such, the problem of time is immediately solved. 

Before turning to Bohmian quantum gravity, it is instructive to consider the quan-
tization of the non-relativistic particle. By putting the dynamics in parameterized 
form, it shares many features with the gravitational case, see e.g. [ 11– 13]. We will 
give some details of the classical Hamiltonian formulation and how quantization 
leads to a stationary wave function. This also allows us to illustrate that classically 
there is no problem of time, contrary to what is sometimes claimed, see e.g. [ 14] and 
rebuttals [ 15, 16]. 

2 Non-relativistic Particle 

Consider a single particle in Galilean space-time, whose possible trajectories . x(t)
satisfy the Newtonian equation 

.mẍ(t) = −∇V (x(t)), (1) 

with.V (x) a potential. The dynamics can be expressed in other ways, for example in 
the form of an action principle, with action .S = 	∫

dt L and Lagrangian 

.L = m

2
ẋ2 − V (x). (2)

1 The wave function itself is not an object in space-time, but in some Hilbert space. 
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Extrema of the action satisfy (1). From the Lagrangian, also the Hamilton formulation 
can be obtained. With momentum.p = ∂L/∂ ẋ = mẋ, the Hamiltonian is 

.H = 1

2m
p2 + V (3) 

and Hamilton’s equations read 

.ẋ = p
m

, ṗ = −∇V . (4) 

Of course, by casting the dynamics this way, the ontology has not changed. The 
theory is still about a particle moving in space-time. It is not about, say, a point 
moving in phase space. 

Another way to formulate the dynamics is by considering a different parameter-
ization of the trajectory. Rather than parameterizing it by the time . t , a parameter . s
can be introduced so that the trajectories are represented by .(t (s), x(s)). Denoting 
the derivatives with respect to . s by primes, the dynamics reads 

.m
1

t '(s)

(
1

t '(s)
x'(s)

)'
= −∇V (x(s)). (5) 

This dynamics has a reparameterization symmetry. Namely, for any solution 
.(t (s), x(s)), also.(t (s̃(s)), x(s̃(s)))will be a solution, for any different parameteriza-
tion.s̃(s). But any two such solutions represent the same physical situation. Namely, 
they represent the same curve in space-time. The parameterization is just a part of 
the mathematical representation, without any physical significance. It is an instance 
of a gauge symmetry. 

This symmetry is connected with indeterminism. Specifying .x(t) and .ẋ(t) at a 
particular time determines a unique solution to (1). On the other hand, specifying 
.(t (s), x(s)) at a certain value for . s does not yield a unique solution to (5), which is 
an immediate consequence of the reparameterization symmetry. For a Lagrangian 
theory, indeterminism is often seen as the defining characteristic of gauge [ 17, 18]. 

Also the parameterized dynamics can be formulated in Hamiltonian form. Starting 
from the Lagrangian 

.L̄ = t '
(

m

2

x'2

t '2 − V (x)
)

, (6) 

the conjugate momenta are 

.p = ∂ L̄

∂x' = m
x'

t ' , pt = ∂ L̄

∂t ' = −m

2

x'2

t '2 − V (x). (7)
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These momenta imply the constraint 

.C = pt + 1

2m
p2 + V = 0, (8) 

which implies that the relations (7) cannot be inverted to yield the velocities in 
terms of the momenta. This means we have to resort to the formalism of constrained 
Hamiltonian dynamics [ 17, 18]. The canonical Hamiltonian vanishes, 

.H̄ = pt t
' + px' − L̄ = 0, (9) 

but Hamilton’s equations are derived from the total Hamiltonian 

.HT = H̄ + NC = NC, (10) 

where .N is an arbitrary (non-zero) function of the phase space variables. Together 
with the constraint .C = 0, Hamilton’s equation are 

.t ' = N , p'
t = 0, x' = N

p
m

, p' = −N∇V . (11) 

Because of the arbitrariness of . N , the parameterization invariance has become 
explicit. Again, the dynamics was recast in a different way, without affecting the 
possible trajectories in space-time. 

Another formulation of interest is the one in terms of the reduced phase-space [ 17, 
18]. The reduced phase-space is obtained by eliminating the gauge variables. The 
gauge variables are identified as those variables that evolve completely freely. They 
are contrasted with what are sometimes called the observables [ 18] or  true degrees 
of freedom [ 17], which evolve deterministically. In the present case, this means that 
the latter have zero Poisson brackets with the constraint and hence also that these 
variables must be static. Does this mean there is no change, as some have argued? 
This will depend on the ontological significance one attaches to those variables. Let 
us first make this formulation concrete. In general, the reduced phase space is hard to 
find, but in the case of .V = 0, it is obtained by performing the following canonical 
transformation 

.x̃ = x − 1

m
pt, t̃ = t, p̃ = p, p̃t̃ = pt + 1

2m
p2. (12) 

Along a trajectory.(t (s), x(s)), . x̃ and. p̃ correspond to the position and momentum at 
.t = 0. In terms of the new variables, the constraint reads. p̃t̃ = 0 and the Hamiltonian 
is 

.H̃ = N p̃t̃ . (13)



The Bohmian Solution to the Problem of Time 207

The equations of motion are 

.t̃ ' = N , p̃t̃ = 0, x̃' = 0, p̃' = 0. (14) 

So the dynamics of . x̃ and . p̃ decouples from that of . t̃ and . p̃t̃ . Moreover, because of 
the arbitrariness of . N , the dynamics of . t̃ is completely free and is identified as the 
gauge degree of freedom. By dropping the variables. t̃ and. p̃t̃ from the description, the 
reduced phase space is obtained, which is parameterized by. x̃ and. p̃. These variables 
. x̃ and . p̃ are just static. (After all, they correspond to the initial state.) 

What does all this buy us? The reduced phase space formulation is another way of 
formulating the dynamics of the Newtonian particle, where the unphysical parameter-
ization has indeed been eliminated. But, as with the other formulations, the ontology 
has not changed by doing so. What is physically real is the particle whose position 
is changing over time according to .x(t) = p̃t/m + x̃. The path can indeed be fully 
specified by the initial state .(x̃, p̃). But that is not to say that the ontology should 
comprise just that initial state. One could entertain the latter possibility, but then 
indeed it becomes problematic to account for a changing world. 2

To finish this section, a word about clock variables. Consider . n non-relativistic 
particles. Then a collection of particles may serve as a clock whenever its configura-
tion is non-stationary. As a concrete example, suppose there is a particle for which 
one of the coordinates .z(t) is monotonically increasing with time. 3 The motion of  
the other particles might then be expressed with respect to the clock variable . z, by  
inverting the relation, i.e., .t (z), and substituting that in the positions of the other 
particles: .x1(t (z)), . . . , xn(t (z)). Other variables could act as clock variables, but it 
is always the dynamics of the variables that determines whether they can serve as 
clock variables or not, and how one can switch between clock variables. 

3 Non-relativistic Bohmian Mechanics 

Canonical quantization is a recipe for getting a quantum theory from a classical 
theory, starting from the Hamiltonian formulation. In the previous section, we have 
seen three different Hamiltonian formulations. Let us now apply the quantization 
rules. Starting from the Hamiltonian (3) this results in the familiar Schrödinger 
equation 4

2 An ontology based on the reduced phase space is not always problematic. In other cases, it makes 
sense to consider such an ontology. For example, in the case of the free electromagnetic field, the 
reduced phase space can be parameterized by the transverse part of the field potential, together with 
its conjugate momentum, and one could entertain an ontology based on this field. 
3 Rather than considering the positions as functions of time. t , we could equally well have done this 
discussion in terms of an arbitrary parameterization. s. That there is an external time plays no role 
here, as long as there is change with respect to. s. 
4 Throughout we assume units such that.ℏ = c = 1.
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.i∂tψ(x, t) = − 1

2m
∇2ψ(x, t) + V ψ(x, t) (15) 

for .ψ(x, t). Starting from the Hamiltonian (10) yields 

.i∂sψ(x, t, s) = 0, −i∂tψ(x, t, s) − 1

2m
∇2ψ(x, t, s) + V ψ(x, t, s) = 0, (16) 

for the wave function .ψ(x, t, s). (The second equation arises here as the operator 
equivalent of the constraint .C = 0.) Here we see the appearance of a static wave 
function, i.e., static with respect to the parameterization . s. As a wave equation, this 
is just the Schrödinger equation again. 5 Starting from the reduced phase space, we 
get 

.i∂sψ(x̃) = 0, (17) 

for .ψ(x̃). This wave equation is also equivalent with (15), provided.ψ(x̃) is taken as 
the initial wave function .ψ(x, 0) [ 12]. 

In the Bohmian theory, in addition to the wave function which satisfies the 
Schrödinger Eq. (15), there is an actual point-particle with position. x whose velocity 
is given by 

.ẋ = vψ(x, t), (18) 

where 

.vψ(x, t) = 1

m
Im

∇ψ(x, t)

ψ(x, t)
. (19) 

The velocity field is of the form .vψ = jψ/|ψ |2, where .jψ is the usual current, satis-
fying the continuity equation 

.∂t |ψ |2 + ∇ · jψ = 0. (20) 

This form of the velocity field can be used to formulate a Bohmian dynamics in other 
contexts [ 19]. For example, in the formulation (16), we can consider trajectories in 
parameterized form .x(s) = (t (s), x(s)), with a velocity determined by the current 
. jψ = (|ψ |2, jψ). Since the parameterization of the curve is arbitrary, the dynamics 
can be written as 

.x ' ∼ jψ, (21) 

which geometrically expresses that the tangent vector to the curve in space-time is 
always proportional to . jψ . We can explicitly introduce an arbitrary (non-vanishing) 
factor .N (x, s) and write the dynamics as

5 To show the equivalence as quantum theories, more work is needed, by also considering the 
associated Hilbert spaces. 
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.x ' = N

|ψ |2 jψ (22) 

or 
.t ' = N , x' = Nvψ(x, t). (23) 

It is clear that this is the dynamics (18) written in parameterized form. In addition, 
even though the wave function is static with respect to . s, the actual configuration 
. x generically is not. (The fact that .ψ still depends on . t does not matter, see further 
below.) Applying the same recipe to the wave equation arising from reduced phase 
space quantization, suggest a Bohmian dynamics.x̃' = 0. This would only make sense 
if . x̃ is taken as the initial position with trajectories again given by (18). 

Before turning to gravity, we want to further illustrate some aspects of the non-
relativistic Bohmian dynamics that will be relevant in dealing with the problem of 
time in quantum gravity. 

Consider an.n-particle system, with particle positions. xk ,.k = 1, . . . , n, satisfying 
the guidance equations 

.ẋk = vψ

k = 1

mk
Im

∇kψ

ψ
, (24) 

with .ψ(x1, . . . , xn, t) now satisfying the many particle Schrödinger equation 

.i∂tψ = − 1

2mk

∑

k

∇2
k ψ + V ψ. (25) 

The first observation is that for a stationary state .ψ = e−iEtφ(x1, . . . , xn), the time 
dependence of the wave function is trival. For such a wave function, the velocity field 
.vψ

k is time-independent, but still the trajectories could be highly non-trivial (see e.g. 
the simulations in [ 20]). 

Second, even if the wave function of the total system is stationary, the wave 
function of a subsystem will typically be non-stationary [ 7, 8, 21]. To see this, 
we first need to define the subsystem wave function. Consider the wave function 
.ψ(x1, . . . , xn, y1, . . . , ym, t), where the .x-coordinates describe the subsystem and 
the.y-coordinates its environment. The wave function of the subsystem — called the 
conditional wave function — can then be defined as 

.ψs(x1, . . . , xn, t) = ψ(x1, . . . , xn, y1(t), . . . , ym(t), t), (26) 

which is the total wave function evaluated for the actual particle positions 
.y1(t), . . . , ym(t). One of the reasons this definition is natural is that the velocities of 
the particles of the subsystem can be written either in terms of .ψ or .ψs , i.e., 

.ẋk = 1

mk
Im

∇kψ

ψ
= 1

mk
Im

∇kψs

ψs
. (27)
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The conditional wave function .ψs will generically evolve in time and under certain 
conditions it will satisfy an effective Schrödinger equation. 

4 Quantum Gravity 

General relativity describes how space-time, described by a manifold .M and met-
ric field .gμν(x), interacts with matter. The equations of motion are given by the 
Einstein field equations, together with equations for the matter (say particles or a 
field). The theory exhibits a gauge invariance, namely the invariance under coordi-
nate transformations, i.e., space-time diffeomorphisms. Two metrics connected by a 
diffeomorphism are considered physically equivalent and they are said to determine 
the same 4-geometry. 

When a space-time is globally hyperbolic, it admits a foliation of .M in terms 
of spatial hypersurfaces, because .M then topologically equals .R × Σ, with .Σ a 3-
surface. This allows a splitting of space-time into space and time, which is required 
for the Hamiltonian formulation. 6 Coordinates .xμ = (t, x) can be chosen such that 
the coordinate. t labels time and. x are coordinates on. Σ. In terms of these coordinates, 
the space-time metric can be written as 

.gμν =
(

N 2 − Ni N i −Ni

−Ni −hi j

)

, (28) 

where .N > 0 is the lapse function, .Ni = hi j N j are the shift functions, and .hi j is 
the induced Riemannian metric on the leaves of the foliation. In the Hamiltonian 
formulation, only the evolution of the 3-metric.hi j is non-trivial; the evolution of the 
lapse and shift functions is completely undetermined. This dynamics is referred to 
as geometrodynamics. 

Canonical quantization of the theory leads to the following wave equation for the 
wave functional .Ψ(hi j , φ), where .hi j is again the 3-metric and . φ is a scalar field. 
(Rather than having a scalar field describing the matter, there are of course other 
possibilities.) The wave functional satisfies the functional Schrödinger equation 7

.i∂tΨ =
	∫

d3x
(
N ∧H + N i ∧Hi

)
Ψ, (29) 

where

6 Just like in special relativity, this splitting is not unique. 
7 We used the same operator ordering as in [ 22]. 
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. ∧H = −κ
√

h
δ

δhi j

(
1√
h

Gi jkl
δ

δhkl

)

− 1

2

1√
h

δ2

δφ2
+ V(h, φ), (30) 

. ∧Hi = −2hik D j
δ

δh jk
+ 1

2

(

∂iφ
δ

δφ
+ δ

δφ
∂iφ

)

, (31) 

with .κ = 16πG, .G the gravitational constant, .Gi jkl the DeWitt metric (which 
depends on the 3-metric), . h the determinant of .hi j , and .V is a potential. In addi-
tion, the wave functional satisfies the constraints: 

. ∧H(x)Ψ = 0, ∧Hi (x)Ψ = 0, i = 1, 2, 3, (32) 

the first of which is the Wheeler-DeWitt equation. These constraints immediately 
imply that 

.∂tΨ = 0, (33) 

so that .Ψ must be time-independent. This is the source of the problem of time. 
In Bohmian quantum gravity, there is an actual 3-metric.hi j and a field. φ, evolving 

according to 

.ḣi j = 2κ N Gi jkl
δS

δhkl
+ Di N j + D j Ni , (34) 

.φ̇ = N√
h

δS

δφ
+ N i∂iφ, (35) 

with .Ψ = |Ψ|eiS and .Di the 3-dimensional covariant derivative. Given a lapse and 
a shift function, a solution for the 3-metric defines a 4-metric using (28). There is 
an important difference with classical geometrodynamics, however. Whereas classi-
cally, any choice of lapse or shift defines the same 4-geometry, this is no longer the 
case for Bohmian geometrodynamics: different choices for the lapse function will 
lead to different 4-geometries (unless the difference is just a.t-dependent factor). Dif-
ferent shift functions do not affect the 4-geometry. This implies that the theory is not 
invariant under general diffeomorphisms, but only under spatial diffeomorphisms. 
This is akin to the situation in special relativity, where the simplest Bohmian formu-
lations employ a preferred reference frame (or more generally a preferred space-time 
foliation), which breaks the Lorentz symmetry (although not on the observational 
level). The reason is that the non-locality which is inherent to quantum theory (due 
to Bell’s theorem) is hard to marry with Lorentz invariance, or with diffeomorphism 
invariance in the case of Bohmian quantum gravity. For some suggestions of how to 
formulate Lorentz invariant Bohmian theories, see [ 23]. 

There is no problem of time in Bohmian quantum gravity [ 8, 10, 24]. While the 
wave function is static, the 3-metric and the scalar field generically evolve in time. 
(For real wave functions, i.e. .S = 0, such as the Hartle-Hawking wave function, 
there is no motion, and hence from the Bohmian point of view this wave function is 
inadequate to describe our universe [ 25, 26].) Unlike the wave function of the uni-
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verse, the wave function of a subsystem is generically time dependent and in certain 
cases it (approximately) satisfies a Schrödinger equation. For example, in the study 
of cosmological perturbations (see [ 10] and references therein), relevant in for exam-
ple cosmological inflation theory, one can consider a decomposition of the metric 
and the scalar field in terms of a homogeneous and isotropic background component 
and fluctuations: .h = h0 + h1, .φ = φ0 + φ1. If the wave function is approximately 
of the form .Ψ(h, φ) = Ψ0(h0, φ0)Φ(h0, φ0, h1, φ1), where .Ψ0 yields the dominant 
contribution to the velocity field for .h0 and . φ0, the conditional wave function for 
the perturbations .h1 and .φ1 might satisfy (given again some approximations) some 
effective Schrödinger equation with a Hamiltonian depending on the actual Bohmian 
configuration .(h0(t), φ0(t)) (which is usually taken to be classical). 

There is an approach to the problem of time that is very close to the Bohmian one 
[ 8, 24, 27]. In that approach, there is no time at the fundamental level, but it is said to 
emerge in a semi-classical approximation (see [ 1] for details and the history of this 
approach, see also [ 2, 28] for critical assessments). The starting point is to consider 
an approximation 

.Ψ(hi j , φ) ≈ Ψ0(hi j )Φ(hi j , φ), (36) 

where .Ψ0 is approximately a “classical state”, i.e., it can be approximated by the 
dominating contribution in its WKB expansion. Next, a classical trajectory .hi j (t) is 
considered, determined by (34), where the phase is that of .Ψ0. (That the trajectory 
is indeed classical stems from the assumptions about .Ψ0.) Then the wave function 

.ψ(φ, t) = Φ(hi j (t), φ) (37) 

is defined and shown to approximately satisfy the time-dependent Schrödinger equa-
tion 

.i∂tψ =
	∫

d3x
(
N ∧HM + N i ∧HMi

)
ψ, (38) 

where . ∧HM and . ∧HMi are the matter part of respectively (30) and (31), evaluated for 
.hi j (t). This is the Schrödinger equation for a matter field in the external classical 
metric.hi j (t). Granting the approximations, the introduction of the classical trajectory 
and of the wave function .ψ is rather ad hoc and has no ontological basis. However, 
what is outlined here can be perfectly justified from the Bohmian point of view. The 
wave function. ψ in (37) then basically amounts to the conditional wave function and 
in the case the Bohmian field .hi j evolves approximately classical, with a velocity 
field approximately determined solely by .Ψ0, the conditional wave function for the 
matter field will approximately satisfy (38). Unlike the postulation of (37) above, 
there is nothing ad hoc about the conditional wave function in Bohmian mechanics. 
It is the wave function that can be used to write the velocity field of the scalar field. So 
given that the approximations are justified (and the Bohmian theory makes precise 
the conditions under which they are), the wave function .ψ can be used to write the 
velocity and hence the dynamics of the actual field .φ(t).
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Actually, as was noted before by Padmanabhan [ 29] and Greensite [ 30, 31], the 
assumption of classicality of .Ψ0 played no crucial role in the above analysis. That 
is, the analysis can be generalized to other wave functions . Ψ, by considering a 
trajectory.(hi j (t), φ(t)) satisfying (34) and (35), instead of a classical trajectory, and 
by replacing (37) by the wave function.Ψ evaluated for one of the degrees of freedom 
of the metric.hi j (t). Clearly, this amounts to just assuming the Bohmian dynamics and 
employing the conditional wave function to get a time-dependent wave equation. 8 In 
any case, this generalization allows for a much larger class of approximations than 
merely the one obtained by assuming classicality of .Ψ0 (see Sects. 7 and 9 of [ 10] 
and references therein). 

There are also approaches to the problem of time that proceed by just postulating 
clock variables, see e.g. [ 32]. However, by merely postulating them rather than deriv-
ing them from the ontology, one tends to commit redundancy and risk inconsistency 
[ 33]. At the end of Sect. 2, it was discussed how clock variables can be defined in 
the context of classical mechanics. In Bohmian mechanics they are defined exactly 
the same way and as such this could provide an underpinning of these clock-based 
approaches to the problem of time. 

We have only discussed canonical quantum gravity. Loop quantum gravity [ 13, 
34], which is also obtained by quantizing general relativity, but based on a different 
representation than canonical quantum gravity, also suffers the problem of time. Here 
too, a Bohmian version could solve the problem. See [ 35] for the treatment of mini-
superspace models (which are simplified models of quantum gravity, potentially 
applicable in cosmology). 
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Some Often Loosely Used Concepts with 
Potentially Problematic Implications 

Daniel Sudarsky 

Abstract We point out some concepts that appear rather frequently in physics dis-
cussions, which, despite a seemingly innocent initial appearance, turn out to have 
important implicit implications that put into question the very assumption of their 
meaningfulness. The message of this essay is that, in order to avoid the ensuing 
confusions, their usage should be accompanied with clarifications that make them 
meaningful, and then to confront the often uncomfortable underlying assumptions 
required to do so. In particular, we will visit the notions of novel physics occurring 
at a certain energy scale, or at certain distance from a black hole’s event horizon, and 
the various meanings of the word “fluctuations”. 

1 Introduction 

Physicists, as any other group devoted to a certain activity, are creatures of habits. 
We learn to employ certain concept within a certain realm and then, sometimes 
inadvertently, we push its usage into novel or extended realms, where such concept 
might lose its meaning or, alternatively, extra structure or additional characterization 
of the situation at hand would be required in order for it to retain it. As our discussions 
become more abstract and the intended context becomes larger, such attitude might 
lead to either serious confusion, or to outright erroneous conclusions. 

Below we will discuss some of the most prevailing examples that arise in discus-
sions concerning what I would refer to as “fundamental physics”, in contrast with, 
say, applied physics, where the rather direct connection of the discussions with the 
concreteness of specific situations that occupy the latter disciplines, often prevent 
the occurrence of the kind of problems I will be pointing out. 

We will discuss some of the illustrative examples in all detail for the benefit of those 
readers who are not very familiar with the corresponding mathematical notions and 
manipulations, and want to see the conceptual discussion illustrated in very explicit 
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and precise terms. The present work, in fact, relies on some notes prepared for usage 
in summer schools that took place in the context of the activities of the John Bell 
Institute for the Foundations of Physics, on whose board Prof. Detlef sat, for the last 
couple of years of his life. 

2 Novel Physics Occurring at a Certain Scale 

This is one of the most commonly used notions and one that reflects, in a sense, a 
rather widespread intuition shared among most physicists working in fundamental 
aspects of high energy physics, gravitation, in general, and cosmology, in particular, 
namely the claim that our theories can be expected to work only up to certain scale, 
that new physics will be required to deal with situations involving higher energy and 
smaller length scales. The problem is, of course, that, according to one of the most 
cherished aspects of our understanding of physics, the very notions of energy and 
length are themselves relative, and thus the very statement, taken to have absolute 
validity, about the energy or length scales at which our theories might break down 
does not seem to be sensible at all. 

The point is that the physical condition involving an arbitrary system cannot, 
in general, be characterized in a meaningful way by assigning to it, in a canonical 
manner, a characteristic energy or length. Such notions do not even make sense in 
the limited context of “special relativity”, and much less in that of general relativity. 
Thus, in order to make things meaningful, we must either be more explicit regarding 
the notion of energy or length scale we are employing, indicating how is it to be 
extracted from the kind of situation under consideration, or, if that is the case, to 
make it clear that we are introducing additional structure into the discussion in order 
to make such statements meaningful. For instance, one could declare that in one’s 
proposal there is a preferential frame, and that the energy one is referring to is, say, 
the maximal of the energies of the particles involved as “seen” in such preferential 
frame. 

An illustrative example is provided by the statement, which arises in quantum 
field theory, that certain coupling constants, or other parameters of the theory “run” 
with energy. At first sight, this sounds as indicating a violation of Lorentz Invariance, 
which in fact, is not, as we will see. 

It is often the case that something like the intrinsic effective strength of an interac-
tion in a 2 particle scattering experiment (for instance electron-proton) depends, in a 
nontrivial manner, on the parameters characterizing the specific scattering situation. 
Such dependence can be separated into a part that is purely kinematical and tied to 
the frame in which it is being described, and a part that is frame independent, and 
which is considered as more fundamental. We might instead consider referring to the 
center of mass energy, but then, of course, we will have to face the fact that the value 
for a cup of coffee, not to say the Earth itself is much larger than the GUT (Grand 
Unified Theory) or Planck scales.
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Consider the scattering of two particles (to be specific think of an electron and a 
muon) with “incoming” 4 momenta.Pa

1 &.Pa
2 and “outgoing” 4 momenta.Pa

3 and.Pa
4 . 

We have certain simple relations say,.P2
1 = P2

3 = M2
μ (for the muon ) and. P2

2 = P2
4 =

M2
e (for the electron) which are just constants of nature, while overall conservation 

dictates.Pa
1 + Pa

2 = Pa
3 + Pa

4 . One might define the 4 momentum exchange as. Qa =
Pa
3 − Pa

1 , and compute the invariant .Q2. 1

It is then not strange that the “actual intensity” of the interaction (a quantity that is 
reflected in the scattering probability) would depend on something like.Q2. Actually, 
one of the effects of quantum field theory and the perturbative treatment is that the 
so called radiative corrections induce such behavior. It is also the case that such 
dependence (i.e., the part that is frame independent) can be described by reabsorbing 
the effect in the value of a constant which is used in describing the strength of 
the interaction. This dependence is then described as “running of the constant with 
energy”. 

For instance, in QED the effective coupling constant .α ≡ e2

4π “runs with energy” 
(as long as . α remains small enough) according to: 

.α(Q2) = α0

1 − (α0/3π)ln(Q2/μ2)
, α0 = α(μ

2) (1) 

i.e. the value of the quantity.α0 is defined in a scattering experiment with momentum 
exchange of magnitude .Q2 = μ2 . For .Q ∼ me/10 we have .α ∼ 1/137. 

It is often precisely, in the sense discussed above, that high energy physicists talk 
about the possibility of physics beyond the standard model appearing, say, at the 
“GUT” energy scale. The problem is that without being explicit about the situation, 
to the point where the 4 momentum exchange can be identified, and a correspond-
ing invariant magnitude be given a clear meaning, any such talk about the running 
with energy can become rather “obscure”. The “actual” energy of a particle always 
depends on the reference frame, while the magnitude of its 4-momentum is a constant 
of nature (.m2), so one can not make sense of something like a constant of nature 
running with energy unless it is in the kind of specific sense we described above 
(or something very similar), or, alternatively by declaring that one is considering a 
proposal in which there is a preferential frame, and, thus, one is contemplating giving 
up a basic postulate of special relativity. 

Nonetheless, it is rather common to hear such talk in contexts where no appropriate 
notions can, or have, been introduced. For the sake of clarity, one should demand to 
know what specific energy are we supposed to be talking about when we are told that 
according to a certain proposal, at certain energy scale, some novel aspect of physics 
is expected to arise. It is also, in the sense discussed above, that one can meaningfully 
adopt the assumption that something dramatic would occur at, say the Planck scale. 
That is, if one does not want to renounce the basic postulates of special relativity, 
or even the underlying foundational principles behind general relativity, one might

1 There are various other invariant characterizations of the scattering of two particles, but as a result 
of overall four momentum conservation they are not independent. 
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consider the possibility that, when the scale of some invariant quantity reaches a 
certain fraction of the Planck scale, some novel aspect of physics, that was otherwise 
negligible, becomes important. One might instead adopt the posture that those basic 
principles are, in fact, not valid at all in a strict sense, and that something like a 
preferred reference frame plays a fundamental role in physics. There is, of course, 
nothing wrong with contemplating such possibilities, in which case one should aim 
to be as specific as possible about what is being contemplated. 

One relatively natural option is to make use of some contingent aspect of our world, 
as provided, for instance, by cosmology, or by the region of the universe that we 
happen to inhabit. Those could provide additional structure that might give meaning 
to some of the otherwise problematic concepts. The idea would be to postulate that 
such contingent facts define a preferential global (or relatively local) frame that 
plays a fundamental role in the micro physics one is considering and, thus, gives an 
invariant meaning to the notion of a particle’s energy. For instance, one can take the 
frame defined by cosmology, more specifically a local frame defined in the following 
way: consider at any event .P the set of four velocities of a possible observer .{ua/ is 
future directed and.uaua = −1, } and single out the.ua that minimizes the anisotropy 
such observer would associate to the CMB. 2 Let us denote the corresponding, dipole 
minimizing .ua by .W a . That is, in fact, how we determine the so called peculiar 
velocity of our galaxy, 3 (with the Earth’s peculiar velocity being, of course, affected 
by the Earth’s rotation around the Sun, an effect that can be eliminated by appropriate 
year long averaging, and similar corrections to deal with the solar system’s motion 
around the galactic center). 

Such idea was, actually, being considered (and continues to be contemplated in 
other guises) a few years ago, when an avenue of research known as “Quantum Grav-
ity Phenomenology” became extremely popular [ 1]. The basic idea was that Quantum 
Gravity effects would lead to certain kind of fundamental granularity of space-time, 
which would affect the behavior of particles, in a way that depended strongly on their 
energy. E . If at that point one demanded to know which energy was being assigned to 
the particle in such discussions, the response would have been precisely ‘that associ-
ated with the CMB” frame. The effect was supposed to be encoded in the expression 
for the modified dispersion relations (i.e., the relation between energy and momen-
tum), namely .E2 = P2 + m2 + ξ E3/MP (with the Planck mass .MP indicating the 
quantum gravitational nature of the effect, and . ξ an unknown parameter). That was 
clearly not Lorentz invariant and, thus, if the Lorentz transformation law between 
frames was preserved 4 it could only be valid in one frame at most. That frame was

2 More precisely compute the dipole moment of.δT (θ, ϕ)/T̄ ( where.δT (θ, ϕ) = T (θ, ϕ) − T̄ , with 
.T (θ, ϕ) the CMB temperature observed in the direction specified by suitable angular coordinates 
on the sky, and .T̄ the sky average of such quantity), and define the preferred local frame at . P
selected by cosmology, by the condition that the dipole moment (as evaluated by an observer with 
four velocity.ua) vanishes, and where the CMB anisotropies are non rotating. 
3 Which is currently estimated to be about 600 km/sec. 
4 Some people working in the field have attempted to rely on what I see as a rather desperate 
move, involving a nonlinear modification of the Lorentz transformations, preserving the equivalence 
between all frames but where there is, nevertheless, a minimal length characterizing space-time, 
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taken to correspond to the four velocity.W a , so the modified dispersion relation could 
be expressed as .Pa Pa + m2 + (ξ/MP)(Pa Wa)

3 = 0. Once expressed in this form, 
and after realizing that the Earth’s four velocity is unlikely to coincide with .W a (at 
least not all the time), it becomes evident that in the Earth’s frame that spacial four 
vector would have a spatial component.W, and that, as a result of the Earth’s rotation, 
that vector would rotate in the laboratory with a 24 hr. period. That makes those kinds 
of proposals susceptible to confrontation with experiments. In particular, with the so 
called Hughes-Drever experiments. In [ 2] such analysis was performed, setting what 
was at the time one of the most stringent bounds on. ξ . The point is that the demand to 
be clear and explicit, in the sense we have been discussing, seems essential in order 
to be led to such kind of developments. 

The idea of an essential granularity of spactime defining a globally preferential 
frame, as discussed above, was further explored in [ 3] focusing attention on radiative 
corrections which nominally involve “virtual particles” of arbitrarily “high ener-
gies”. Such statements are commonplace in the context of quantum field theory in 
flat space-times, but even then, the notions are not precise and needless is to say the 
theory is particularly obscure concerning its ontology. Nevertheless, the theory is 
extremely successful as attested by a large number of empirically confirmed results, 
among which we can point, for example, to the calculation of the numerical value 
of the electron’s anomalous magnetic moment which matches experiments up to the 
fifteen or so digits available both experimentally and theoretically. The underlying 
theoretical framework behind the type of calculation involved can, perhaps, be best 
described in terms of the path integral approach in which the recipe for computing 
the probability for a transition involving specific initial and final states requires sum-
ming over all possible intermediate paths taking one state to the other. The point of 
the work we are discussing is that, if a granularity of space-time exists at any level, 
then the summation over all those intermediate paths ought to be restricted accord-
ingly. One can expect such restriction to be associated with a preferred frame due to 
the following argument. At the particle energy levels (as defined in our laboratory’s 
frame) that we have empirical access, there is a connection between momentum and 
wavelength (as per standard quantum mechanics, but reflected, also in other less 
obscure alternatives such as bohmian mechanics, spontaneous collapse theories or 
the so called many world type versions of the theory. 5) Those wavelengths are, in the 
context of quantum field theory, associated with the various modes of the quantum 
field characterizing the basic degrees of freedom that are present in the theory. Let 
us be quite open about the possibility that all those notions would break down as we 
increase the lab. energies of the particles involved in our experiments. It seems natural 

that is not subject to a Lorentz contraction. I call this move desperate, because it is accompanied 
by rather problematic consequences, including the fact that, in such proposals, the total energy of 
a pair of particles depend on the ordering we assign them, no object can have mass higher than a 
few grams, and a particle on the other side of the universe has profound effects on the dynamics of 
a collision occurring, for example, here on Earth. Those interested can look up the approach that 
goes by the name “Double Special Relativity”.
5 The basic set of paths in which the measurement problem seems to be at least viably addressable 
[ 4]. 
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to expect such break down to occur in a relative smooth manner, as those energies are 
increased. It can be expected to be accompanied by some novel behaviors that deviate 
from the prediction of the current theories. Let us imagine reaching the point where 
some quantitative measure of such deviation reaches the level of, say, .1% but where 
our current theory can be said to remain approximately valid. Now we can do the 
following: Perform tests about the energy (as measured in the laboratory) at which 
the anomalous level of.1% occurs for particles we prepare along different directions. 
If the resulting energy is the same for all directions, then our lab’s reference frame 
coincides with the preferential reference frame selected by the new theory. If not, 
we can determine the velocity of the preferential frame with respect to the lab, by 
using the Lorentz transformations which presumably remain approximately valid at 
the relative low energies where the novel effects have been kept at the .1% level or 
lower. It is, of course, conceivable that when such experiments are carried out, the 
energies in question would turn out depend on direction in a manner that can not be 
corrected for by any Lorentz transformation. The theory will thus break even more 
symmetries than expected namely, the isotropy of physics in the preferred frame. 
However, a preferred frame can still be identified (as in the cosmological setting) 
looking for that frame in that the anisotropies are minimized (i.e. the frame in which 
the corresponding dipole term vanishes). 

Now, having shown that in principle such preferred frame can be identified (and 
forgetting for the moment the complication implied by the possible breakdown of 
isotropy in that frame), it seems clear that we ought to consider the implications of 
the breakdown of our current theories for modes that are associated with energies 
(as defined in that frame) higher than a certain value . Λ. That means that we should 
impose a frame dependent cut off on the modes which we include in the radiative 
corrections. Naturally, we do not know at this point what to do with modes that would 
have, according to the current theory, even higher energies. Perhaps no such modes 
exist. Perhaps something completely unexpected and indescribable in terms of our 
current theories takes place beyond such bounds. 

However, we can estimate the effect of simply placing the above mentioned cut 
off. This analysis has been carried out in [ 3] with the surprising result that such move 
would result in Lorentz violating effects that are not suppressed by the scale at which 
the cut-off is placed. That is a truly surprising result that has had a substantial impact in 
the whole Quantum Gravity Phenomenology program. Intuitively, it can be regarded 
as the momentum-space version of the argument behind Olber’s paradox, namely, 
that there is a fundamental difference, with strong empirical consequences, between 
an infinite (but static) universe and a finite one. For the result we have discussed, 
this corresponds to the fundamental difference between the result of integrating over 
the mode’s 3-momentum on an unbounded 3-D euclidean space, and the result of 
restricting such integral to a bounded 3 sphere. In the latter case the main effect of 
the presence of a boundary does not change with the magnitude .Λ ( in momentum 
space) at which the boundary is located because, while the contribution of each area 
element of the boundary decreases as.1/Λ2 (as reflected in the functional form of the 
Feynman propagator), the total area of the boundary increases as.Λ2. This part of the 
argument pertains naturally only to the region in which the current theory is taken
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as being approximately valid. Thus, in order to avoid such problem, the contribution 
arising from the novel elements of the new theory has to precisely compensate this 
effect. It is not clear how can such exact compensation come about without some 
substantial fine tuning, but, of course, that possibility has not been ruled out. In any 
event, it seems that proponents of such ideas do face a nontrivial challenge in this 
respect. 

3 Novel Physics Occurring at a Certain Distance 
from a Black Hole Horizon 

The discovery by Hawking that, according to quantum field theory in curved space-
times, black holes ought to emit thermal radiation reflects a surprising connection 
between general relativity, quantum theory and thermodynamics. This result has 
taken a central place in discussions about the nature of the interface between quan-
tum theory and gravitation, drawing the attention of many researchers working in 
various approaches towards Quantum Gravity. The main object of such discussions is 
connected with the natural expectation that, as a result of the emitted radiation, black 
holes can be expected to evaporate, leading to the so called black hole information 
paradox (better described as the black hole information puzzle, as a true paradox 
only appears if one makes some important additional assumptions, as discussed, for 
instance, in [ 5]). There are many works connected with this issue where one reads 
that something strange is supposed to happen at small distances (usually. l p) from the 
event horizon. We want to consider what, in the relativistic context, could possibly 
be the meaning of such statements. 

Distance from a point to a null hypersurface in Minkowski space-time: 
Let us study things explicitly in 2-D Minkowski space-time, where the metric is 
.ds2 = −dT 2 + d X2. Consider the null hypersurface .Σ given by .T = X + A, and 
consider the distance to a point. P with coordinates.(0, 0). The geodesics connecting 
. P to a point.Q on.Σ are of the form.T = λ, X = mλwith a fixed. m. The coordinates 
of .Q are then .TQ = A/(1 − m), X Q = m A/(1 − m), and the interval between . P
and .Q is: 

.Δ2
(m) = A2(1 + m)/(m − 1). (1) 

That can take any value, such as.A2 ( for.m → ±∞) to.−A2 (for.m = 0), In particular, 
it tends to .−∞ as .m → 1− and to .+∞ as .m → 1+ . 

That is, the interval takes all values and can not be used to define an invariant 
separation. Of course, the value corresponding to .−A2 tied to a time interval of 
duration . A, and that corresponding to the value .A2 tied to a space like interval of 
length. A are associated with the particular frame associated coordinates.X, T . Thus, 
in this case, there is no covariant notion of the separation of an event to a null 
hypersurface.
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In 4-D Minkowski space-time with metric .ds2 = −dT 2 + d X2 + dY 2 + d Z2, 
the range of the values for the interval between the hypersurface .Σ given by . T =
X + A (and arbitrary values of .Y, Z ) is the same as before. No covariant notion of 
the separation of a point to a null hypersurface is available in this case either. 

What happens with the related notions for space-like or time-like hypersurfaces? 
The proper time from a point . P to a spatial hypersuface. Σ: This can be defined in 
SR ( and often in GR) as the maximum among the proper-times measured along causal 
geodesics connecting the two. We will not get into the details here, but considerations 
analogous to those we will use in the analysis of the next example can be easily applied 
to that case. 

The Proper Distance from a point. P to a time-like hypersuface. Σ: This can be 
defined in SR as a mini-max problem. 

Consider all flat spatial hypersurfaces .{ΣT } containing .P (corresponding to pos-
sible notions of an instant of time, according to some inertial observer, where .P is 
part of the “present”) and in each one of those .ΣT let’s find the shortest geodesic 
connecting .P and .Σ ∩ ΣT , and denote its length by .DT . Now select the supremum 
among all those.DT , and identify that value with the proper distance between.P and 
. Σ. One can show that, in this case, the supremum is actually a maximum. There are, 
in fact, a multiplicity of.ΣT ’s corresponding to that value, and they all intersect along 
the corresponding geodesic. 

Here, we offer a detailed Proof: Let us choose Minkowskian coordinates such 
that. P corresponds to.(0, 0, 0, 0) and.Σ to.(t, x, y, z = D). The collection of spatial 
hypersurfaces .{ΣT } passing through . p can be labeled by the time-like unit normal 
.na

T so that the points .X ( with coordinates .(t, x, y, z) are on .ΣT iff the “vector” 
.Ra = Xa − pa = (t, x, y, z) − (0, 0, 0, 0) satisfies.ηab Ranb

T = 0. The general form 
of the unit normal is 

.na = γ (1, V Cos(θ), V Sin(θ)Cos(φ), V Sin(θ)Sin(φ)) (2) 

with .V < 1 and .γ = (1 − V 2)−1/2. So the hypersurface .ΣT consists of points with 
coordinates such that .t = V (xCos(θ) + ySin(θ)Cos(φ) + zSin(θ)Sin(φ)). 

A geodesic on .ΣT (parametrized by . λ) and starting at . p, has the form . t (λ) =
dλ, x(λ) = aλ, y(λ) = bλ, z(λ) = cλ, with . d = V (aCos(θ) + bSin(θ)Cos(φ) +
cSin(θ)Sin(φ)). The intersection of such geodesic with .Σ occurs when .cλ = D or 
.λ = D/c. The length of such geodesic is 

. L =
∫

(−ηabT aT b)1/2dλ

. = D[−V 2(a/cCos(θ) + b/cSin(θ)Cos(φ) + Sin(θ)Sin(φ))2 + (a/c)2 + (b/c)2 + 12]1/2
(3) 

Minimization of geodesic length coincides with minimization with respect to 
.(a/c, b/c), and the corresponding value of .DT is:
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.DT = D[1 − V 2(Sin(θ)Sin(φ))2

1 − V 2[Cos2(θ) + Sin2(θ)Cos2(φ)] ]
1/2 (4) 

This quantity is maximal when .V Sin(θ)Sin(φ), the  . z component of . na , vanishes, 
and the result of the mini-max procedure gives .Lmin−max = D, which defines an 
invariant notion of canonical distance between .P and . Σ. 

Let us get back to the distance between a null hypersurface and a point, but now 
in curved space-times. It seems quite natural to expect that, if certain notions can not 
be defined, even in the simple case of Minkowski space-time, it should be impossible 
to do so in the more general context involving curved space-times. For the most part, 
our intuition about the matter is correct. However, surprisingly sometimes one can 
define certain notions in a natural way, due to the presence of particular symmetries in 
some specific situations. Those might serve, for instance, to single out certain “special 
coordinates” adapted to such symmetries, and those, in turn, might be used to define 
the desired notions. Often we would be able to define the notions in purely geometric 
terms, making use of the symmetries, without relying on those specific coordinates. 
Alternatively, the coordinates might be constructed using the symmetries at hand and 
then be used in making the desired definitions. A noteworthy case: when there is a 
unique notion of staticity, i.e., a time-like Killing field (Kf) .ξ a that is hypersurface 
orthogonal. We might then define the distance between a point .P and a specific null 
hypersurface .Σ as the length of the shortest (space-like) geodesic connecting .P to 
. Σ, and lying on the space-like hyper-surface normal to .ξ a passing through . P . 

That sounds reasonable. Let us consider then the distance of a point. P with coordi-
nates.(0, Rp, 0, 0) (without loss of generality) on the exterior of Schwarzschild space-
time, to the BH horizon. The metric is . ds2 = −(1 − 2m/r)dt2 + (1 − 2m/r)−1

dr2 + r2(dθ2 + Sin2(θ)dϕ2. The Kf has components .(1, 0, 0, 0). The hypersur-
face orthogonal to it containing .P is the set of events with .t = 0 and its metric 
is .dσ 2=(1 − 2m/r)−1dr2 + r2(dθ2 + Sin2(θ)dϕ2. The geodesic in question has 
coordinates .(0, r, 0, 0) with .r ∈ (2m, RP). Its length is then . L = ∫ RP

2m
1√

(1−2m/r)
dr

(which is finite). 
However, note that for any .P the geodesic in question intersects the Horizon at 

the bifurcation surface, which only exists for an eternal black hole. For a realistic 
black holes, formed by, say, the gravitational collapse of a star, all hypersurfaces 
“heading” to what would have corresponded to the bifurcation surface, actually 
intersect the collapsing star. That is, they enter the region where the space-time is no 
longer stationary, there is no time-like Kf, and thus our recipe is no longer applicable. 
Again, using this approach the quantity of interest is simply ill defined for realistic 
black holes. 

Let us consider alternatives. In the case at hand, we have other special features, 
namely spherical symmetry. Here, we might consider to use the 2 dimensional sur-
faces .Sr invariant under rotations, i.e., the spheres of constant . r on hypersurfaces 
of staticity. In our case the one containing .P has surface .ARp = 4π R2

p while the 
horizon has surface .AH = 4π(2m)2, so we might define the required distance . “. D” 
.= √

(ARp − AH )/(4π) = Rp − 2m. This seems to do what we want. However, let
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us note that this is not really any “distance” at all. Furthermore it is a quantity con-
structed out of global notions, which are available only in situations of very high 
symmetry. 

Another proposal put forward by a colleague during a discussion was the follow-
ing: Consider the value of some relevant curvature scalar at the event horizon, for 
instance, the Kretschmann scalar .K = Wabcd W abcd where .Wabcd is the Weyl tensor 
(which in this case coincides with the Riemann tensor, as the setting under consid-
eration is vacuum general relativity, so the Ricci tensor and Ricci scalar vanish). We 
might consider then those points for which the value of the quantity .K −4 (which 
has dimensions of length) differs from that at the horizon by, for example .l p or less. 
However, the strategy has some problems: (i) Except for very symmetric situations, 
.K is not constant over the horizon. So we might have to rely on suitable averages. It 
is rather unclear how to find a suitable definition of those “averages” in general, in 
part because there the .3 − volume element of a null hypersurface is just zero. One 
might chose spatial sections and their area-elements, but except for static cases it is 
unclear how to proceed. (ii) The regions of space-time that have nothing to do with 
the black hole (and which we normally would not define as being close to it, say, 
some points over the surface of Earth) would, according to our scheme have to be 
declared to be closer to the horizon than. l p. The point is that no local characterization 
of the event horizon in terms of curvature or other local geometrical measure exists. 
Thus, it seems that no “deformation” of such idea can be used to yield the desired 
notion of “proximity to the horizon”, either. In short, no clear suitable candidate for 
the general notion of the points that are closer to the horizon than .l p (or any other 
specific length) seems to be available. 

If the notion can not even be defined in general situations we must conclude 
that it can play no role in characterizing novel physics, unless we accept that our 
fundamental theories profoundly violate enshrined principles of Special and General 
Relativity. This is conceivable, of course, but then, in order to talk meaningfully 
about such theories (or even prospective theories involving that kind of features), we 
must clarify what principles of GR and SR we are giving up, and how should we 
look at GR or SR in such novel contexts, etc. It seems to me that this is essential 
if we seek clarity and avoidance of confusion, because it is quite likely that, while 
giving up some of those basic principles, the discussion of the novel proposals would 
nevertheless be carried out using notions and arguments that rely on those very 
theories we are supposedly discarding. In doing so, we should then seek to be careful 
in specifying which aspects are being discarded, and which are being preserved, 
hopefully examining the consistency of such choices. 

Once again, going beyond the limited context of the discussion above, one might 
decide to rely on additional structure, like that provided by asymptotic infinity when 
making an idealization of an isolated black hole, and using it to identify an asymptotic 
rest frame of the black hole. But, of course, such strategy would become rather 
complicated if one wants to contemplate situations involving more than one black 
hole, or a black hole together with something else. One might again rely on structure 
provided by the cosmological context. In any event, one should seek to be clear about
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which approach one is using, what additional structure one is relying on, and how 
exactly do those fit in the overall discussion. 
The effects of quantum fluctuations: 
Another notion that appears quite frequently in physics discussions, and that is prone 
to generate confusion, is that of “fluctuations”: We should distinguish at least 3 uses 
of the word: 

(i) Variations through space-time of well defined attributes of an “extended” entity 
(e.g. the water level on the ocean). 

(ii) Variations of well defined quantities within an ensemble of systems (e.g. the 
energy of a classical canonical ensemble of similar gas filled boxes). 

(iii) Quantum indeterminacies or uncertainties in a single system (fluctuations in 
the position of a harmonic oscillator in its ground state). 

The use of those notions interchangeably, and apparently encouraged by the unfor-
tunate fact that the same word is reserved for such different things, is the source of 
several instances in which confusion overtakes the discussion of fundamental issues. 

These notions are, of course, closely related but they are not really the same. For 
instance, within the context of classical statistical mechanics, the energy, at a certain 
time, of a single specific element of a canonical ensemble does not fluctuate. It can 
fluctuate in time due to its interaction with the thermal reservoir. If we focus on a 
given time, the energy can fluctuate as we move from one element of the ensemble to 
another. According to the “standard” interpretation of quantum theory, the position 
of an electron in the ground state of an hydrogen atom does not change in time, 
and thinking about its quantum fluctuations as reflecting such type of change is 
fundamentally wrong. According to the theory, the electron, in the ground state, 
simply does not have a well defined position. If one is not careful and misinterprets 
the situation, one can be easily led to conclude, for instance, that as the electron 
is jumping around it ought to be emitting photons, which is, of course, the wrong 
conclusion (and concerns precisely one of the fundamental issues that quantum theory 
was designed to address: the stability of matter). Nonetheless, it is quite common for 
such interpretational mistake to be made, as noted in the introduction, specially in 
discussions about the early universe, black hole physics etc. 

As an extremely widespread example, we should point out to the usual accounts 
of the emergence of the primordial seeds of cosmic structure in the inflationary 
universe. In such discussions, which are quite generally claimed to be taking place 
within the context of standard quantum theory, one hears that the relevant fields of 
the problem are in the vacuum state (having been driven to such state by the diluting 
effect of the highly accelerated expansion associated with inflation). Specifically, 
the state in question is the so called Bunch Davies vacuum (which is the notion of 
vacuum associated with the stationary condition that would have prevailed in very 
early stages of inflation, more precisely, in the limit in which inflation was eternal 
into the past). The point, however, is that such state can be written explicitly, and can 
be easily shown to be 100% homogeneous and isotropic. If one adopts the posture 
that the complete description of the system in question is provided by the quantum 
state (i.e., one does no rely on any kind of hidden variables) and accepts that there
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are no observers or measuring apparatuses that could be said to reduce the state “a 
la” Copenhaguen (or any similar posture), a point already emphasized in [ 7], one can 
not but conclude that the situation will remain forever homogeneous and isotropic, 
and thus that one has no real account for the emergence of any structure whatsoever 
(see [ 6] for critical appraisals of some of the most communly used arguments that 
attempt to evade such conclusions). Some people would go to extremes and argue 
that the Minkowski vaccum state of a simple scalar field, is also subject to quantum 
fluctuations, and thus not really homogeneous and isotropic, something that can be 
readily dismissed as in full contradiction with basic textbook constructions, and even 
axiomatic formulations of the theory [ 8]. 

Of course, there is room to modify that conclusion, but only if one adopts some 
alternative to the so called standard or text book version of quantum theory. The 
options available seem to be the Bohmian path, the spontaneous collapse theories 
path, and perhaps even some Everett-like scheme (see however [ 9] for discussion of 
problems with one such approach, and [ 11] for discussion of the issues and proposals 
to address those arising in the more popular so called Many Worlds Interpretations). 

A recent attempt to account for the cosmological constant [12] was based precisely 
on that kind of confusion, which in turn, led to rather severe problems in the analysis 
[ 13]. 

One often hears claims that the black hole horizon is subject to quantum fluctu-
ations and where the discussion then moves from one interpretation of the word to 
another. In my opinion, one can, of course, contemplate any idea along such lines, 
but should aim to do so while being clear about what exactly one is proposing, what 
notion of fluctuation one is using, and, more generally, what version of quantum 
theory one is adopting. 

4 Conclusions 

I should stress that I do not see a problem in contemplating giving up some princi-
ples of our “well established theories” (that is often how progress is made). But it 
seems, at least, careless, to give them up, and then keep pretending we are upholding 
considerations that rely on those very ideas, and using the discarded theory in our 
reasoning, as if no violence has been done to it. 

The usage of notions (that might be well defined and sensible in a certain context), 
in rather different contexts, specially those where it is known that such notions lose 
their absolute meaning, is, surprisingly, one of the most frequent sources of confusion, 
among physicists. 

I think it is fair to say that most of us have heard talks or read manuscripts in 
which it is argued that is natural to expect certain things to take place at certain 
energy scales, or at a certain distance from a black hole. That quantum fluctuations 
ought to be responsible for certain peculiar effects, and other similar expressions, 
which at first sight might seem to be very sensible. In this work, we point out why it 
is often the case that accepting at face value such claims, without asking for further
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clarification, is a path towards utter confusion. It is not that proposals based on such 
ideas cannot be made in a sensible manner, but that in order to do so one should be 
quite specific about the context in which the ideas are supposed to make sense. That 
often would involve defining in a precise manner what energy one is referring to, 
what notion of distance one is employing, or what version of quantum theory (often 
referred to, as the interpretation) one is talking about, which, in fact, requires being 
quite specific about the ontology of the theory one is adopting. Failure to address, 
and to fully specify such aspects of the analysis can result in serious errors or misuses 
of the notions at hand, or in the oversight of some serious problems in the proposals. 

In my view, the vagueness of usage of language in those cases is as problematic 
as, if not more than, some well known common language examples. For example: 
“Nothing is better than God, a sandwich is better than nothing, thus a sandwich is 
better than God”. 6 If that kind of nonsense can arise in such a simple context, we 
should indeed be very worried about the level of confusion that can occur in much 
more abstract discussions. 

This manuscript does not really contain anything novel, and is merely an attempt to 
call attention to various types of confusions that are often found in current discussions 
about fundamental aspects of physics, particularly so, in contexts involving novel 
proposals and ideas. Hopefully, this will contribute to clarify the occurrence and 
usage of the notions involved. Prof. Deltef Dürr was passionate about the quest for 
clarity and the endeavors to clean up confusion. He was also a truly devoted educator. 
Although I only had the privilege of interacting directly with him a few times, before 
his untimely departure, that much was very clear to me. I would thus like to think 
that he would look benevolently on this manuscript. In any event, any shortcomings 
present in this humble attempt to honor those particular virtues, among the many he 
had as a scientist and as a human being, are solely mine. 

Acknowledgements We acknowledge partial financial support from CONACyT (México) project 
140630. 
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Probability Conservation for Multi-time 
Integral Equations 

Matthias Lienert 

This paper is dedicated to the memory of Detlef Dürr, 

a wonderful person, scientist and mentor. 

Abstract In relativistic quantum theory, one sometimes considers integral equations 
for a wave function.ψ(x1, x2) depending on two space-time points for two particles. 
A serious issue with such equations is that, typically, the spatial integral over.|ψ |2 is 
not conserved in time–which conflicts with the basic probabilistic interpretation of 
quantum theory. However, here it is shown that for a special class of integral equations 
with retarded interactions along light cones, the global probability integral is, indeed, 
conserved on all Cauchy surfaces. For another class of integral equations with more 
general interaction kernels, asymptotic probability conservation from .t = −∞ to 
.t = +∞ is shown to hold true. Moreover, a certain local conservation law is deduced 
from the first result. 

1 Introduction 

1.1 Motivation 

An elegant but little-known approach to relativistic quantum theory involves wave 
functions .ψ(x1, ..., xN ) depending on many space-time variables .xk ∈ R

4 for many 
particles .k = 1, 2, ..., N . In addition to other applications, such as by Detlef Dürr 
and coauthors [ 1, 2] in the foundations of relativistic quantum theory, these multi-
time wave functions (see [ 3] for an introduction) make it possible write down closed 
integral equations which describe a fixed number of relativistic, interacting particles 
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in a manifestly covariant way. The best-known example is the Bethe-Salpeter (BS) 
equation [ 4] which has been used to describe bound states in quantum field theory 
(QFT). At the time of its discovery, it was hoped that the BS equation represented a 
fully relativistic–and interacting–generalization of the Schrödinger equation, at least 
for processes where fermion creation and annihilation are not relevant (such as bound 
state problems). 

The formulation of a completely relativistic wave equation for two-body systems has, in 
a certain sense, solved a long-standing problem of quantum mechanics. The natural and 
simple way in which relativistic invariance is achieved is, of course, very real progress, 
which may lead one to hope that the main features of the equation are more permanent than 
the solidity of its present field theoretic foundation might suggest. Furthermore, it is hardly 
necessary to recall that the usefulness of the equation has been amply demonstrated in several 
high-precision calculations of energy levels. –Wick, 1954 [ 5] 

However, there is a serious issue with such integral equations. Due to their non-
locality in configuration space (in the sense of PDEs), they typically do not imply 
(local) continuity equations, nor do they conserve the (global) probability integral. 
In the context of the Bethe-Salpeter equation, it has been said: 

[...] The absence of a positive-definite norm for the wave function and of any orthogonality 
theorem.–Wick, 1954, listing problems of the BS equation [ 5] 

Nakanishi (1965) explicitly calculated the normalization integrals in some special cases 
of the equal-mass Wick-Cutkosky model, and discovered that certain B-S amplitudes have 
negative or zero norm. – Nakanishi, 1969 [ 6] 

Of course, these quotes mean nothing else than that the quantities proposed as 
a norm do not actually constitute one. They cannot have the physical meaning of 
a probability integral. Considering that quantum physics is based on the notion of 
probability, this seems rather problematic for the physical justification of the Bethe-
Salpeter equation. 

The motivation for integral equations for a multi-time wave function can also be 
approached from a second angle–one that was dear to Detlef Dürr: the quantization 
of Wheeler-Feynman (WF) electrodynamics [ 7– 11]; see [ 12– 14] for some of Detlef 
Dürr’s works on the topic. This theory pursues the idea that the ultraviolet divergence 
problem of classical Maxwell-Lorenz electrodynamics can be avoided by “integrat-
ing out” the fields. The result is a dynamics where interactions between particles 
occur directly and exactly when particle world-lines are light-like separated. 

The discussions with Detlef Dürr about finding a suitable quantum version of 
that theory sparked my personal curiosity about the subject. After studying previous 
proposals for quantizations of WF electrodynamics [ 15– 18], [ 19, chap. 8], which 
all encounter their own difficulties, it seemed to me that integral equations for a 
multi-time wave function might be a more promising way forward. In [ 20], I laid 
out how these types of integral equations make it possible to transfer the principle 
of direct interactions along light cones, that forms the core of WF electrodynamics, 
to the quantum level. This was done in a way that retains the Dirac-Schrödinger 
equation with a spin-dependent Coulomb potential as the non-relativistic limit, thus
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staying close to empirically successful models. In a series of papers [ 21– 24], my 
co-authors and I were able to prove that multi-time integral equations provide a 
fully relativistic and interacting quantum dynamics which does not suffer from the 
ultraviolet divergence problem, even for singular light-cone interactions [ 24]. 

However, the question of probability conservation was left open and, as we have 
seen for the BS equation, there is reason for concern. Equations with interaction terms 
which are non-local in the configuration space of quantum mechanics do typically 
not imply local conservation laws. It is then at best unclear whether global probability 
conservation holds true. Historically, Feynman himself saw the problem of probabil-
ity conservation as one of the central obstacles to quantizing WF electrodynamics, 
as he reports in his Nobel lecture: 

I found that if one generalized the action from the nice Lagrangian forms [...] to these forms 
[...] then the quantities which I defined as energy, and so on, would be complex. The energy 
values of stationary states wouldn’t be real and probabilities of events wouldn’t add up to 
100%. –Feynman, 1965 [ 25] 

I don’t think we have a completely satisfactory relativistic quantum-mechanical model, 
even one that doesn’t agree with nature, but, at least, agrees with the logic that the sum of 
probability of all alternatives has to be 100%. –Feynman, 1965 [ 25] 

In view of these difficulties, if one is not ready to dismiss multi-time integral 
equations altogether, one may conclude that the equations are not exactly the right 
ones and that some modification is in order. From the point of view that the interaction 
term in the BS equation which quantum electrodynamics suggests (an infinite series 
of Feynman diagrams in need of renormalization) is not the most simple and natural, 
such a modification seems easy to accept. In addition, the argument that non-local 
interaction terms usually preclude local conservation laws does not apply to global 
conservation laws, leaving room for logical possibilities which may not have been 
sufficiently explored. I am going to adopt these positions here. This makes it possible 
to prove that for certain classes of integral equations the global probability integral 
is, in fact, conserved. 

2 The Integral Equation 

For simplicity, we focus on the case of .N = 2 Dirac particles. Moreover, we set 
.c = 1 = ℏ. Then the class of integral equations we shall study reads: 

.. ψ(x1, x2) = ψ free(x1, x2) + i
∫

d4x '
1 d4x '

2 G1(x1 − x '
1)G2(x2 − x '

2)K (x '
1, x '

2)ψ(x '
1, x '

2).

(1) 
Here.ψ : R

4 × R
4 → C

4 ⊗ C
4 is a multi-time wave function with 16 complex com-

ponents for two particles. 1 .ψ free(x1, x2) is a solution of the free Dirac equation in 
.x1, x2, i.e.:

1 One can also study (1) on a sub-domain of.R4 × R
4, e.g., on the set.S of space-like configurations. 
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..(−iγ μ

k ∂xμ

k
+ mk)ψ

free(x1, x2) = 0, k = 1, 2. (2) 

The space-time integral in (1) extends over.R4 × R
4, the entire configuration space-

time. .G1 and .G2 are Green’s functions of the Dirac equations of particles 1 and 2. 
We use the convention of [ 26, Appendix E]: 

..(−iγ μ

k ∂xμ

k
+ mk)Gk(xk − x '

k) = δ(4)(xk − x '
k). (3) 

Here and in the following, particle indices in .γ -matrices, Green’s functions and 
propagators indicate on which spin index their matrix structure acts. 

.K (x1, x2) is the so-called interaction kernel, a covariant, matrix-valued distribu-
tion. We require the following symmetry condition with respect to its matrix structure: 

..K †(x1, x2) = γ 0
1 γ 0

2 K (x1, x2)γ
0
1 γ 0

2 . (4) 

As explained in [ 20], direct interactions along light cones in the spirit of Wheeler-
Feynman electromagnetism can be expressed by the interaction kernel 

..K sym(x1, x2) = λ γ
μ
1 γ2,μ δ((x1 − x2)

2) (5) 

where .λ ∈ R is a coupling constant and . (x1 − x2)2 = (x0
1 − x0

2 )
2 − |x1 − x2|2

denotes the Minkowski square. Note that (5) contains both retarded and advanced 
interaction terms, as can be seen by decomposing the delta distribution. The retarded 
part is given by: 

..K ret(x1, x2) = λ γ
μ
1 γ2,μ

1

2|x1 − x2|δ(x0
1 − x0

2 − |x1 − x2|). (6) 

With these conventions, the factor . i in the interaction term in (1) is required to 
obtain the correct non-retarded limit, i.e., a Schrödinger equation with spin-dependent 
Coulomb potential [ 20]. 

Relation to the Bethe-Salpeter equation. The BS equation is contained in the class 
of Eq. (1) for the case that .Gk are Feynman propagators .SF

k for the two particles 
.k = 1, 2, and for the case that .K (x1, x2) is given by an infinite series of Feynman 
diagrams. In the so-called ladder-approximation of the BS equation, only a certain 
sub-class of these Feynman diagrams (consisting of those exchanging only one virtual 
photon at a time) is considered. Then .K simplifies to 

..KBSL(x1, x2) = λ γ
μ
1 γ ν

2 DF
μν(x1, x2) (7) 

where .DF
μν is the Feynman propagator of a photon (see [ 27, p. 331]). In Lorenz 

gauge: 
..DF

μν(x1, x2) = ημν DF (x1, x2) (8)
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where.DF is the Feynman propagator of the wave eq. and.ημν the Minkowski metric. 
As both .DF and . 1

4π δ((x1 − x2)2) are Green’s functions of the wave equation, (7) 
resembles (5). However, a crucial difference is that only (5) is supported on the light 
cone; (7) also has support outside. 

Role of the dynamics. As discussed in [ 23], one can best understand the dynamics 
defined by (1) in the case of .Gk = Sret

k , the retarded Green’s function of the Dirac 
equation for particle. k. Then, for each incoming free wave function.ψ free, the integral 
equation defines a unique interacting solution. ψ which agrees with.ψ free in the infinite 
past. Thus Eq. (1) can be viewed as a machinery which takes an incoming free solution 
and computes an interacting correction to it. 

Notes on retarded Green’s functions. We now collect useful properties of retarded 
Green’s functions which are rooted in their simple relation to the propagator of the 
Dirac equation. These will play a crucial role in the upcoming arguments. Namely, 
we have: 

..Sret(x − x ') = θ(x0 − x '0)S(x − x ') (9) 

where . θ is the Heaviside function and. S the propagator of the Dirac equation. . S can 
be used to time-evolve every free solution of the Dirac equation from one Cauchy 
surface .∑ to another: 

..ψ free(x) = −i
∫

∑

dσμ(x ') S(x − x ')γ μψ free(x '). (10) 

Confusingly, both .Sret and .SF are called propagators, even though they do not have 
the property (10) for all wave functions and all Cauchy surfaces. From (10), one can 
deduce the composition property 

..

∫
∑

dσμ(x ') S(x − x ')γ μS(x ' − x '') = i S(x − x ''). (11) 

Moreover, we have.[S(x − x ')]† = −γ 0S(x ' − x)γ 0. This allows us to compute the 
adjoint of the integral equation (1), denoting .ψ(x1, x2) = ψ†(x1, x2)γ 0

1 γ 0
2 : 

. ψ(x1, x2) = ψ
free

(x1, x2) − i
∫

d4x '
1 d4x '

2 ψ(x '
1, x '

2)K (x '
2, x '

1)S1(x '
1 − x1)S2(x '

2 − x2)

× θ(x01 − x '
1
0
)θ(x02 − x '

2
0
). (12) 

3 Relativistic Probability Conservation 

For Dirac particles, local probability conservation is expressed by the continuity 
equation .∂xμ jμ(x) = 0 where . jμ = ψ(x)γ μψ(x) denotes the probability current 
and.ψ(x) = ψ†(x)γ 0. Global probability conservation means that . 

∫
∑

dσμ(x) jμ(x)

does not depend on the choice of Cauchy surface .∑ ⊂ R
4.
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For a multi-time wave function for .N Dirac particles, these notions can be gen-
eralized as follows. Local probability conservation can be expressed by a set of . N
continuity equations, 

..∂xμ

k
jμ1...μN (x1, ..., xN ) = 0, k = 1, 2, ..., N (13) 

where . jμ1...μN = ψγ
μ1
1 · · · γ μN

N ψ denotes the Dirac tensor current. 
Equations (13) make it possible formulate a generalized version of the Born rule 

for all Cauchy surfaces. Let . n be the future-directed unit normal vector field at . ∑. 
Then 

..ρ(x1, ..., xN ) = ψ(x1, ..., xN )γ
μ1
1 · · · γ μN

N ψ(x1, ..., xN )nμ1(x1) · · · nμN (xN ) (14) 

defines the probability density for.N particles.k = 1, ..., N to cross. ∑ at the locations 
.x1, ..., xN ∈ ∑. In fact, for theories with local interactions and finite propagation 
speed, it is possible to prove this rule using the usual Born rule in a distinguished 
frame [ 28]. 

The continuity Eq. (13) imply global probability conservation in the sense that 

.. P(ψ,∑) =
∫

∑N

dσμ1(x1) · · · dσμN (xN ) ψ(x1, ..., xN )γ
μ1
1 · · · γ μN

N ψ(x1, ..., xN )

(15) 
does not depend on the choice of Cauchy surface . ∑. In fact, this requires (13) 
only on the set of space-like configurations .S ⊂ R

4N , not necessarily on the entire 
configuration-spacetime .R4N . However, in the case that (13) hold true on .R

4N , one 
finds that the generalized probability integral 

.. P(ψ, ∑1, ..., ∑N ) =
∫

∑1×···×∑N

dσμ1 (x1) · · · dσμN (xN ) ψ(x1, ..., xN )γ
μ1
1 · · · γ μN

N ψ(x1, ..., xN )

(16) 
is independent of the choice of.N (potentially different) Cauchy surfaces.∑1, ..., ∑N . 

While .P(ψ,∑) seems like the physically appropriate choice 2 for the probability 
integral, we shall consider .P(ψ,∑1, ..., ∑N ) as the more general notion in the fol-
lowing. This simplifies to investigate which local conservation laws follow from the 
global ones (see Sect. 4.3).

2 The reason for this is that space-like configurations are the natural generalization of equal-time 
configurations. Non-space-like configurations can arise from multiple points on a single time-like 
(or light-like) world line. Thus, there is no physical reason to expect probability conservation on 
such configurations. 
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4 Results 

4.1 Probability Conservation on All Cauchy Surfaces 
for Retarded Green’s Functions and Retarded Interaction 
Kernels 

As (1) is an integral equation with a non-local interaction term on configuration space, 
we do not expect it to imply local conservation laws. This means that a method to 
prove global probability conservation without first establishing local probability con-
servation is required. Conveniently, the propagator . S of the Dirac equation provides 
such a method. 

To see this, let .ψ free(x) be a solution of the Dirac eq. and.∑,∑' Cauchy surfaces. 
Then: 

. P(ψ free, ∑) =
∫

∑

dσμ(x) ψ
free

(x)γ μψ free(x)

(10)= −i
∫

∑

dσμ(x) ψ
free

(x)γ μ

∫
∑'

dσν(x ')S(x − x ')γ νψ free(x ')

=
∫

∑'
dσν(x ')

(
−i

∫
∑

dσμ(x) ψ
free

(x)γ μS(x − x ')
)

γ νψ free(x ')

(10)=
∫

∑'
dσν(x ') ψ

free
(x ')γ νψ free(x ') = P(ψ free, ∑'). (17) 

Using the relation of retarded Green’s functions to the propagator. S, we now prove 
our result. 

Proposition 1 Consider the integral Eq. (1) with retarded Green’s functions, . Gk =
Sret

k , k = 1, 2 (9), and retarded interaction kernel (6). Then for every solution . ψ of 
(1) on .R

4 × R
4, the probability integral .P(ψ,∑1, ∑2) (16) does not depend on the 

choice of Cauchy surfaces .∑1, ∑2 ⊂ R
4. 

Proof Let.ψ free a solution of the free multi-time Dirac equations (2) and. ψ a solution 
of the integral Eq. (1). Our strategy is to decompose .P(ψ,∑1, ∑2) as 

..P(ψ,∑1, ∑2) = P(ψ free, ∑1, ∑2) + P1(ψ,∑1, ∑2) (18) 

and to show that.P1 vanishes for the retarded interaction kernel (6) and all Cauchy sur-
faces.∑1, ∑2. We already know that the free Dirac equations (2) imply the continuity 
equations (13). Thus: 

..P(ψ free, ∑1, ∑2) = P(ψ free, ∑3, ∑4) (19) 

for all Cauchy surfaces .∑1, ∑2, ∑3, ∑4. This allows us to deduce 

..P(ψ,∑1, ∑2) = P(ψ free, ∑1, ∑2) = P(ψ free, ∑3, ∑4) = P(ψ,∑3, ∑4) (20)
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which is the claim. The main work is to prove that.P1(ψ,∑1, ∑2) vanishes. Plugging 
the right hand side of Eq. (1) (for . ψ) and its adjoint (12) (for . ψ) into.P(ψ,∑1, ∑2), 
we find, considering (4): 

. P1(ψ, ∑1, ∑2) = P(ψ, ∑1, ∑2) − P(ψ free, ∑1, ∑2) =
2℥

∫
∑1×∑2

dσμ(x1) dσν(x2)
∫

d4x '
1 d4x '

2 ψ(x '
1, x '

2)K (x '
1, x '

2)S1(x '
1 − x1)S2(x '

2 − x2)

× θ(x01 − x '
1
0
)θ(x02 − x '

2
0
)γ

μ
1 γ ν

2 ψ free(x1, x2)

+
∫
∑1×∑2

dσμ(x1) dσν(x2)
∫

d4x '
1 d4x '

2 ψ(x '
1, x '

2)K (x '
1, x '

2)S1(x '
1 − x1)S2(x '

2 − x2)

× θ(x01 − x '
1
0
)θ(x02 − x '

2
0
)γ

μ
1 γ ν

2

∫
d4x ''

1 d4x ''
2 S1(x1 − x ''

1 )S2(x2 − x ''
2 )

× θ(x01 − x ''
1
0
)θ(x02 − x ''

2
0
)K (x ''

1 , x ''
2 )ψ(x ''

1 , x ''
2 )

=: P1,1(ψ,∑1, ∑2) + P1,2(ψ, ∑1, ∑2) (21) 

with .P1,1 and .P1,2 defined as the two summands of the equation in the order of 
appearance. 

It is crucial that due to the simple relation (9) of  .Sret with the propagator . S, the  
propagators .S1 and .S2 appear in the equation which, together with the hypersurface 
integrals .

∫
∑1×∑2

dσμ(x1) dσν(x2), can be used to evolve .ψ free. In the first term.P1,1, 
we would like to use (10) in both .x1 and . x2. On first glance, this does not seem 
possible because .θ(x0

1 − x '
1
0
)θ(x0

2 − x '
2
0
) depends on the time variables .x0

1 and . x0
2

of the Cauchy surfaces .∑1 and.∑2, respectively. However, since the propagator . S of 
the Dirac equation has only support inside of and on the light cone, we can write: 

.. S(x ' − x)θ(x0 − x '0) = S(x ' − x)θ∑(x ') and S(x − x ')θ(x0 − x '0) = S(x − x ')θ∑(x ')
(22) 

where .∑ is a Cauchy surface that contains . x and 

..θ∑(x ') =
{
1 if x ' ∈ past(∑)

0 else.
(23) 

Here,.past(∑) = U
x∈∑ past(x) denotes the part of space-time “below. ∑”. An impor-

tant point is that .θ∑(x ') does not depend of . x (as long as .x ∈ ∑). Using (22), we 
obtain: 

. P1,1(ψ,∑1, ∑2) = 2℥
∫

∑1×∑2

dσμ(x1) dσν(x2)
∫

d4x '
1 d4x '

2 ψ(x '
1, x '

2)K (x '
1, x '

2)

× S1(x '
1 − x1)S2(x '

2 − x2)θ∑1(x '
1)θ∑2(x '

2)γ
μ
1 γ ν

2 ψ free(x1, x2).
(24)
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It is now possible to exchange the integrals, yielding 

. P1,1(ψ,∑1, ∑2) = 2℥
∫

d4x '
1 d4x '

2 ψ(x '
1, x '

2)K (x '
1, x '

2)θ∑1(x '
1)θ∑2(x '

2)

×
∫

∑1×∑2

dσμ(x1) dσν(x2) S1(x '
1 − x1)S2(x '

2 − x2)γ
μ
1 γ ν

2 ψ free(x1, x2). (25) 

This allows us to employ the propagation identity (10) twice to deduce: 

.. P1,1(ψ, ∑1, ∑2) = −2℥
∫

d4x '
1 d4x '

2 ψ(x '
1, x '

2)K (x '
1, x '

2)θ∑1(x '
1)θ∑2 (x '

2)ψ
free(x '

1, x '
2).

(26) 
Now we use the integral equation (1) “backwards” to express .ψ free in terms of . ψ : 

. P1,1(ψ,∑1, ∑2) = −2℥
∫

d4x '
1 d4x '

2 ψ(x '
1, x '

2)K (x '
1, x '

2)θ∑1(x '
1)θ∑2(x '

2)ψ(x '
1, x '

2)

+ 2℥ i
∫

d4x '
1 d4x '

2

∫
d4x ''

1 d4x ''
2 ψ(x '

1, x '
2)K (x '

1, x '
2)θ∑1(x '

1)θ∑2(x '
2)

× θ(x '
1
0 − x ''

1
0
)θ(x '

2
0 − x ''

2
0
)S1(x '

1 − x ''
1 )S2(x '

2 − x ''
2 )K (x ''

1 , x ''
2 )ψ(x ''

1 , x ''
2 )

= 0 + 2ℜ
∫

d4x '
1 d4x '

2

∫
d4x ''

1 d4x ''
2 ψ(x '

1, x '
2)K (x '

1, x '
2)θ∑1(x '

1)θ∑2(x '
2)

× θ(x '
1
0 − x ''

1
0
)θ(x '

2
0 − x ''

2
0
)S1(x '

1 − x ''
1 )S2(x '

2 − x ''
2 )K (x ''

1 , x ''
2 )ψ(x ''

1 , x ''
2 ). (27) 

In order to conclude that the first term vanishes, we have used the symmetry of . K
(4). Now we employ the identity .2ℜz = z + z∗: 

. P1,1(ψ, ∑1, ∑2) =∫
d4x '

1 d4x '
2 d4x ''

1 d4x ''
2 ψ(x '

1, x '
2)K (x '

1, x '
2)S1(x '

1 − x ''
1 )S2(x '

2 − x ''
2 )K (x ''

1 , x ''
2 )ψ(x ''

1 , x ''
2 )

×
[
θ∑1 (x '

1)θ∑2 (x '
2)θ(x '

1
0 − x ''

1
0
)θ(x '

2
0 − x ''

2
0
) + θ∑1 (x ''

1 )θ∑2 (x ''
2 )θ(x ''

1
0 − x '

1
0
)θ(x ''

2
0 − x '

2
0
)
]

(28) 

We compare this term to .P1,2(ψ,∑1, ∑2). Using  (22) and exchanging the order of 
the integrals, we obtain: 

. P1,2(ψ,∑1, ∑2) =
∫

d4x '
1 d4x '

2 d4x ''
1 d4x ''

2 ψ(x '
1, x '

2)K (x '
1, x '

2)

×
∫

∑1×∑2

dσμ(x1) dσν(x2)S1(x '
1 − x1)S2(x '

2 − x2)γ
μ
1 γ ν

2 S1(x1 − x ''
1 )S2(x2 − x ''

2 )

× θ∑1(x '
1)θ∑2(x '

2)θ∑1(x ''
1 )θ∑2(x ''

2 )K (x ''
1 , x ''

2 )ψ(x ''
1 , x ''

2 ). (29)
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This allows us to utilize the composition property (11) for the propagators twice, 
yielding 

. P1,2(ψ, ∑1, ∑2) = −
∫

d4x '
1 d4x '

2 d4x ''
1 d4x ''

2 ψ(x '
1, x '

2)K (x '
1, x '

2)S1(x '
1 − x ''

1 )S2(x '
2 − x ''

2 )

× K (x ''
1 , x ''

2 )ψ(x ''
1 , x ''

2 )θ∑1 (x '
1)θ∑2 (x '

2)θ∑1 (x ''
1 )θ∑2 (x ''

2 ). (30) 

Comparing (28) and (30), we find that .P1,1 and .P1,2 cancel if: 

. θ∑1 (x '
1)θ∑2 (x '

2)θ∑1 (x ''
1 )θ∑2 (x ''

2 )
!=

θ∑1 (x '
1)θ∑2 (x '

2)θ(x '
1
0 − x ''

1
0
)θ(x '

2
0 − x ''

2
0
) + θ∑1 (x ''

1 )θ∑2 (x ''
2 )θ(x ''

1
0 − x '

1
0
)θ(x ''

2
0 − x '

2
0
).

(31) 

To make further progress, note that 

..θ∑k (x '
k)θ(x '

k
0 − x ''

k
0
) = θ∑k (x '

k)θ∑k (x ''
k )θ(x '

k
0 − x ''

k
0
) (32) 

as .x ''
k ∈ past(x '

k) and .x
'
k ∈ past(∑k) together imply that .x ''

k ∈ past(∑k). Thus, every  
term in (31) contains the factor .θ∑1(x '

1)θ∑2(x '
2)θ∑1(x ''

1 )θ∑2(x ''
2 ) and (31) reduces to: 

..1
!= θ(x '

1
0 − x ''

1
0
)θ(x '

2
0 − x ''

2
0
) + θ(x ''

1
0 − x '

1
0
)θ(x ''

2
0 − x '

2
0
). (33) 

In general, this condition does not hold. However, we have not used the special 
structure of the retarded interaction kernel.K ret (6) yet. Instead of (33), we will show 
that 

. K ret(x '
1, x '

2)S1(x '
1 − x ''

1 )S2(x '
2 − x ''

2 )K ret(x ''
1 , x ''

2 )

×
[
1 − θ(x '

1
0 − x ''

1
0
)θ(x '

2
0 − x ''

2
0
) − θ(x ''

1
0 − x '

1
0
)θ(x ''

2
0 − x '

2
0
)
]

= 0. (34) 

In fact, including the first line adds several geometric conditions on those tuples 
.(x '

1, x '
2, x ''

1 , x ''
2 )which may actually contribute to.P1,1(ψ,∑1, ∑2) + P1,2(ψ,∑1, ∑2). 

(i) .x '
2
0 = x '

1
0 − |x'

1 − x'
2| (because of .K ret(x '

1, x '
2)), 

(ii) .x ''
2
0 = x ''

1
0 − |x''

1 − x''
2 | (because of .K ret(x ''

1 , x ''
2 )), 

(iii) .|x '
1
0 − x ''

1
0| ≥ |x'

1 − x''
1 | (because of the support of . S1), 

(iv) .|x '
2
0 − x ''

2
0| ≥ |x'

2 − x''
2 | (because of the support of . S2). 

We now show that the above conditions only allow for the following two cases: 

1. .x '
k
0

> x ''
k
0 for .k = 1, 2 or 2. .x ''

k
0

> x '
k
0 for .k = 1, 2. 

The logic behind this claim is that if true, . K ret(x '
1, x '

2)S1(x '
1 − x ''

1 )S2(x '
2 − x ''

2 )

K ret(x ''
1 , x ''

2 ) /= 0 implies . θ(x '
1
0 − x ''

1
0
)θ(x '

2
0 − x ''

2
0
) + θ(x ''

1
0 − x '

1
0
)θ(x ''

2
0 − x '

2
0
) =

1. This, in turn, means that the square bracket in (34) vanishes. Hence, (34) is always
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Fig. 1 Illustration of the proof of (34). Begin with . x '
1. By (i), .x '

2 has to lie on the past light cone 

of . x '
1. Next, consider.x

''
1 . Assume that .x '

1
0

> x ''
1
0. By (iii), .x ''

1 has to be in the past of . x '
1. The  final  

point .x ''
2 has to lie on the past light cone of .x ''

1 by (ii). Moreover, by (iv), .x ''
2 has to be light-like or 

time-like to . x '
2. As one can see, there is no other option for .x

''
2 than to lie in the past of . x '

2, which  

implies. x '
2
0

> x ''
2
0

satisfied, implying .P1(ψ,∑1, ∑2) = P1,1(ψ,∑1, ∑2) + P1,2(ψ,∑1, ∑2) = 0, and 
thus probability conservation. 

We begin with the first case and demonstrate that .x '
1
0

> x ''
1
0 implies . x '

2
0

> x ''
2
0

(see Fig. 1 for geometrical intuition). Consider the difference.x '
2
0 − x ''

2
0. Combining 

(i) and (ii) yields: 

..x '
2
0 − x ''

2
0 = x '

1
0 − x ''

1
0 − |x'

1 − x'
2| + |x''

1 − x''
2 |. (35) 

Now, because of (iii) and .x '
1
0

> x ''
1
0, this implies: 

..x '
2
0 − x ''

2
0 ≥ |x'

1 − x''
1 | − |x'

1 − x'
2| + |x''

1 − x''
2 |. (36) 

Next, we use the triangle inequality twice to obtain: 

..|x'
1 − x'

2| ≥ |x'
1 − x''

1 | + |x''
1 − x'

2| ≥ |x'
1 − x''

1 | + |x''
1 − x''

2 | + |x''
2 − x'

2|. (37) 

Together with the previous inequality, this gives us: 

..x '
2
0 − x ''

2
0 ≥ − |x'

2 − x''
2 | ⇔ x ''

2
0 − x '

2
0 ≤ |x'

2 − x''
2 |. (38) 

Note that relation (iv) implies that there are only two cases: 

(a) .x '
2
0 − x ''

2
0 ≥ |x'

2 − x''
2 | or (b) .x ''

2
0 − x '

2
0 ≥ |x'

2 − x''
2 |. 

The crucial point now is that (38) contradicts (b) while being compatible with (a). 
As (a) and (b) are mutually exclusive, this implies (a) which in particular establishes 
.x '
2
0 ≥ x ''

2
0. 

The fact that .x '
2
0

> x ''
2
0 implies .x '

1
0

> x ''
1
0 follows from the same consideration 

and the fact that .x ''
1
0

> x '
1
0 is equivalent to .x ''

2
0

> x '
2
0 by exchanging .x '

k with .x ''
k for 

.k = 1, 2. ⃞
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Remark. In special cases, the Feynman propagator .SF can also be used to propa-
gate .ψ free (see [ 27, chap. 6.1]), e.g., for propagating positive energy wave functions 
towards the future. However, it does not vanish outside of the light cone. Since this 
property of .Sret is an integral part of the proof, the latter cannot be extended to the 
case of .Gk = SF

k . This suggests that probability conservation does not hold for the 
Bethe-Salpeter equation, in agreement with the literature. 

4.2 Asymptotic Probability Conservation for Symmetric 
Green’s Fns 

One may wonder if probability conservation can be established for different classes 
of interaction kernels besides retarded ones. We now prove such a result, albeit a 
weaker one, for the case of symmetric Green’s functions .Gk = Ssym

k with 

..Ssym(x − x ') = 1

2
ε(x0 − x '0)S(x − x ') (39) 

where .ε(y) = +1 if .y ≥ 0 and .ε(y) = −1 else. 

Proposition 2 Consider the integral Eq. (1) with symmetric Green’s functions,. Gk =
Ssym

k , k = 1, 2 (39), and interaction kernels with the matrix symmetry property (4). 
Let . ∑t be an equal-time surface in any given Lorentz frame. Then for every solution 
. ψ of (1) on .R

4 × R
4, the following statement (asymptotic probability conservation) 

holds true: 
.. lim
t→−∞ P(ψ,∑t ) = lim

t→+∞ P(ψ,∑t ). (40) 

Proof We proceed similarly to the retarded case. The main difference is that the 
Heaviside functions . θ get replaced by . 12ε. As we focus on equal-time surfaces .∑t , 
the propagation identities (10) and (11) can be used directly. One obtains: 

.P(ψ, ∑t ) = P(ψ free, ∑t ) + P1(ψ, ∑t ), with (41) 

. P1(ψ,∑t ) = 1

16

∫
d4x '

1 d4x '
2 d4x ''

1 d4x ''
2 ψ(x '

1, x '
2)K (x '

1, x '
2)S1(x '

1 − x ''
1 )S2(x '

2 − x ''
2 )

× K (x ''
1 , x ''

2 )ψ(x ''
1 , x ''

2 )
[
−ε(t − x '

1
0
)ε(t − x '

2
0
)ε(t − x ''

1
0
)ε(t − x ''

2
0
)

+
(
ε(t − x '

1
0
)ε(t − x '

2
0
) + ε(t − x ''

1
0
)ε(t − x ''

2
0
)
)

ε(x '
1
0 − x ''

1
0
)ε(x '

2
0 − x ''

2
0
)
]

(42) 

Only the square bracket depends on. t–and is not constant in. t , as can be seen by case 
differentiation. However, taking .t → ±∞ both leads to the same result 

. lim
t→±∞[...] = −1 + 2ε(x '

1
0 − x ''

1
0
)ε(x '

2
0 − x ''

2
0
). (43) 

.Thus, we find: lim
t→−∞ P1(ψ,∑t ) = lim

t→+∞ P1(ψ,∑t ). (44)
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Interestingly, the term .P1 is non-zero here, in contrast to the retarded case. 3 Never-
theless, together with probability conservation for .ψ free, (44) allows us to deduce: 

. lim
t→−∞ P(ψ,∑t ) =P(ψ free,−∞) + P1(ψ,−∞)

=P(ψ free,+∞) + P1(ψ,+∞)

= lim
t→+∞ P(ψ,∑t )P(ψ,∑t ). (45)

⃞

4.3 Implications for Local Conservation Laws 

It is a well-known fact that in the single-particle case global probability conservation 
on all Cauchy surfaces,.

∫
∑

dσμ(x) jμ(x) = ∫
∑' dσμ(x) jμ(x) ∀∑,∑', implies local 

probability conservation. This can be shown by constructing a small volume. V around 
a space-time point . x which is enclosed between two otherwise overlapping Cauchy 
surfaces .∑,∑' (see Fig. 2) and then using the divergence theorem. As the enclosing 
volume .V can be made arbitrarily small, it follows that .∂xμ jμ(x) = 0. 

Proposition 1 establishes global probability conservation on all Cartesian products 
.∑1 × ∑2 of Cauchy surfaces, enabling a similar reasoning. Applying the argument 
to .xk and .∑k yields 

..

∫
∑3−k

dσμ3−k (x3−k) ∂x
μk
k

[
ψ(x1, x2)γ

μ1
1 γ

μ2
2 ψ(x1, x2)

] = 0 ∀∑3−k, k = 1, 2. (46) 

Now, we apply the argument another time for .x3−k and .∑3−k and obtain the result: 

Proposition 3 Let . ψ be a solution of the integral Eq. (1) with . Gk = Gret
k , k = 1, 2

and .K = K ret (6). Then (46) is satisfied. In addition, we have: 

..∂xμ
1
∂xν

2
ψ(x1, x2)γ

μ
1 γ ν

2 ψ(x1, x2) = 0. (47) 

Fig. 2 Geometric construction for proving that global probability conservation on all Cauchy 
surfaces implies local probability conservation in the single-particle case

3 In the symmetric case .ψ free does not need to agree with .ψ in the infinite past nor in the infinite 
future [ 22]. 
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Remarks. 

1. Eq. (46) for  .k = 1, 2 implies global probability conservation on all space-like 
Cauchy surfaces (as can be seen using the divergence theorem), i.e., both notions 
are equivalent. Equation (47), however, is weaker. Its physical meaning is not 
clear. 

2. (46) for  .k = 1, 2 does not imply local probability conservation. The reason is 
that even though (46) holds for all .∑2, one cannot conclude that the integrand 
vanishes, as it might take negative values. This leads to the conclusion that global 
probability conservation on all Cartesian products.∑ × ∑ is not equivalent to 
local probability conservation. 

3. To make it even clearer that local probability conservation does not hold, we 
calculate the four-divergence of the tensor current with respect to . x1: 

. ∂xμ
1

[
ψγ

μ
1 γ ν

2 ψ
]
(x1, x2) = −2ℜ

[
ψ(x1, x2)γ

ν
2

∫
d4x '

2 Sret
2 (x2 − x '

2)K ret(x1, x '
2)ψ(x1, x '

2)
]
.

(48) 

Despite the spatio-temporal restrictions which .Sret
2 and .K ret

2 imply and the fact 
that it might be sufficient to restrict the derivation to space-like configurations 
.(x1, x2) ∈ S , the right hand side of (48) does not vanish in general. 

4. Concerning the physical meaning of Eqs. (46) for.k = 1, 2, one can rewrite them 
as: 

.∂k,μ jμ

k (xk, ∑) = 0 ∀∑, k = 1, 2 (49) 

.where jμ

k (xk, ∑) =
∫

∑

dσν(x3−k) ψ(x1, x2)γ
μ
1 γ ν

2 ψ(x1, x2), k = 1, 2 (50) 

One could try to use these currents to naively calculate the probability for the 
position of one particle, disregarding the position of the other. Viz, one might 
guess that the probability for particle . k to be found in a small volume . dσ(xk)

around .xk ∈ ∑ is given by 

..P(xk ∈ dσ(xk)) = jμ

k (xk, ∑)nμ(xk)dσ(xk). (51) 

where .nμ(x) is the future-directed unit normal vector field at .x ∈ ∑. 

5 Conclusion 

Here it was shown that global probability conservation on all Cauchy surfaces 
holds for certain classes of multi-time integral equations. To make progress, it 
was necessary to deviate from the conventional wisdom about relativistic quantum-
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mechanical integral equations given by the theory about the Bethe-Salpeter equation. 
The strongest result was obtained for retarded Green’s functions. Gk = Sret

k , k = 1, 2
and retarded interaction kernels .K = K ret (6). While retarded interactions are com-
mon in classical electrodynamics, a word of caution seems in order here. Using 
.K ret(x1, x2) implies that.x0

1 > x0
2 has to hold for a configuration.(x1, x2) to contribute 

to the interaction term. This seems unnatural as it breaks the symmetry between 
the particle labels. Related to this, for .Sret

k , .K ret and on space-like configurations 
.(x1, x2) ∈ S one has 

. (−iγ ν
2 ∂xν

2
+ m2)ψ(x1, x2) = i

∫
d4x '

1 Sret
1 (x1 − x '

1)K ret(x '
1, x2)ψ(x '

1, x2) = 0

(52) 

and therefore .∂xν
2
ψ(x1, x2)γ

μ
1 γ ν

2 ψ(x1, x2) = 0 ∀ (x1, x2) ∈ S . Equation (52) can 
be shown as follows. Consider the conditions for a term .ψ(x '

1, x2) to contribute to 
the integral. On the one hand, .K ret(x '

1, x2) /= 0 implies that .x2 lies on the past light 
cone of . x '

1. On the other hand, .S
ret
2 (x1 − x '

1) /= 0 implies that .x1 lies in the future of 
. x '
1. This is, however, incompatible with .(x1, x2) ∈ S . 
Thus, on .S , one can take (52) to express that particle 2 is moving freely (while 

particle 1 is not) and interpret the interaction term in (1) as a single-sided action of 
particle 2 on particle 1. 4 This strengthens the concern that this type of interaction 
is physically not natural. In my opinion, the resulting dynamics represents a toy 
example and a first step towards a more natural result in the future, e.g., for . K sym

(5). 
In view of this situation, the second result, asymptotic probability conservation for 

the integral equation with symmetric Green’s functions,.Gk = Ssym
k , k = 1, 2 seems 

particularly important. While weaker than probability conservation on all Cauchy 
surfaces, it holds for arbitrary interaction kernels respecting the basic symmetry 
property (4). 

Moreover, it was shown that global probability conservation on all Cartesian prod-
ucts.∑1 × ∑2 of Cauchy surfaces is equivalent to the semi-local property (46). Local 
probability conservation, however, does seem not hold. 5 While perfectly logical, this 
fact may seem surprising since in the single-particle case global probability conser-
vation on all Cauchy surfaces. ∑ is equivalent to local probability conservation. Thus, 
we found that, in the .N -particle case, local probability conservation is stronger than 
global probability conservation on all (Cartesian products of) . N Cauchy surfaces. 

In the future, it would be interesting to investigate if physical meaning can be 
given to the semi-local conservation law (46). For example, one may wonder if these 
properties are helpful to construct relativistic Bohmian laws of motion along the lines

4 On configurations.(R4 × R
4) \ S , however, which the probability integral on.∑1 × ∑2 for. ∑1 /=

∑2 uses, one in general has.(−iγ ν
2 ∂xν

2
+ m2)ψ(x1, x2) /= 0. 

5 Equation (52) implies  .∂xν
2
ψ(x1, x2)γ

μ
1 γ ν

2 ψ(x1, x2) = 0 only on space-like configurations 

.(x1, x2) ∈ S while.∂xμ
1
ψ(x1, x2)γ

μ
1 γ ν

2 ψ(x1, x2) /= 0 in general on.R4 × R
4. 
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of [ 2] or [  29], or to any other theory in the foundations of quantum mechanics which 
avoids the measurement problem. That would be in Detlef Dürr’s spirit. 

During the time when he was my PhD adviser, Detlef Dürr expressed that he 
thought further progress in the foundations of relativistic quantum theory required a 
clear and simple, mathematically solid underlying equation (free of the divergences 
that plague quantum field theory), be it only for a toy example. Once found, one 
could hope that such an equation would provide further guidelines for constructing 
a relativistic law of motion for Bohmian particles, as the Schrödinger and Dirac 
equations do in non-relativistic QM and relativistic single-particle QM, respectively. 
Perhaps, the integral equation discussed here can provide a starting point for such a 
consideration. 

Overall, what has been achieved? I would say, a new way of constructing an 
interacting, relativistic equation which is now demonstrably compatible with global 
probability conservation. Do the examples provided constitute a full theory of 
relativistic quantum physics? Certainly not. Alas, one may conclude with a twist 
on the words of Feynman from the introduction: 

We now have a satisfactory relativistic quantum-mechanical model, one that doesn’t agree 
with nature, but, at least, agrees with the logic that the sum of probability of all alternatives 
has to be 100%. 

Disclaimer. This article reflects my personal work and does not represent scientific standpoints of 

my employer (Marvel Fusion GmbH). 
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Vacuum Polarisation Without Infinities 

Dirk-André Deckert, Franz Merkl, and Markus Nöth 

Abstract In honour of Detlef Dürr, we report on a mathematical rigorous computa-
tion of the electric vacuum polarisation current and extract the well-known expres-
sion for the second order perturbation. Intermediate steps in the presented calculation 
demonstrate, to the knowledge of the authors for the first time, mathematical rigor-
ous versions of the combined dimensional and Pauli-Villars regularisation schemes. 
These are employed as computational tools to infer convenient integral representa-
tions during the computation. The said second order expression is determined up to 
a remaining degree of freedom of a real number–without ill-defined terms from start 
to end. 

1 Introduction 

The definition and the original computations of the electric vacuum polarisation 
current in quantum electrodynamics (QED), based on the pioneering works of Dirac, 
Heisenberg, and others, go way back to Schwinger, Feynman, and Dyson, and, in its 
original form, may still be best accessible from Dyson’s manuscript [ 9]. Today, these 
are contained in various nuances in almost every textbook on advanced quantum 
mechanics. It might therefore appear that this topic has long been settled. Given that 
QED is such an important theory for the human understanding of nature and a century 
has passed, it better should have. But, at least mathematically, it has not. All of these 
computations start with an ill-defined equation of motion for the electric quantum 
vacuum, or worse, an ill-defined and far fetched scattering matrix coefficient, derive 
a similarly ill-defined expression for the electric current which is then massaged by 
means of several informal manipulations, such as “subtracting” an ill-defined zero-
field electric current, “dropping” ill-defined expressions that do not appear gauge 
invariant, “introducing” diverging counter terms to absorb remaining infinities into 
the bare electric charge constant, etc. For everyone who has had the opportunity to 
get to know Detlef, it probably goes without saying that he was very unsatisfied 
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with this state of affairs. At the same time, of course, he could not have cared less 
whether the consensus opinion of the scientific community was otherwise. In fact, 
beside his renown work in the foundations of quantum mechanics, he dedicated a 
substantial part of his scientific work to the understanding of classical and quantum 
electrodynamics. In 2006, Detlef, Martin Schottenloher, D.-A.D. and F.M. started 
a seminar series on the mathematics of QED based on the books [ 9, 33, 35, 42], 
articles [ 8, 10, 34, 36, 39, 43], among others, entirely in the spirit of Dirac’s quote 
[ 23, p. 184]: 

I must say that I am very dissatisfied with the situation, because this so-called good theory 
does involve neglecting infinities which appear in its equations, neglecting them in an arbi-
trary way. This is just not sensible mathematics. Sensible mathematics involves neglecting 
a quantity when it is small—not neglecting it just because it is infinitely great and you do 
not want it! – Dirac, 1975 

which initiated the works [ 4– 7]. Many years later, we are now under the impres-
sion of having a mathematical rigorous as well as non-perturbative understanding of 
this computation as well as the definition of the corresponding time evolution and 
scattering matrix for QED in an external, classical electrodynamic field, which will 
be published in a series of forthcoming articles. This first article shall provide an 
introduction by treating only the second order of perturbation of the electric vacuum 
polarisation current in our approach. A slightly different but also rigorous computa-
tion of the second order of perturbation was already done by Scharf [ 35] while the 
non-perturbative computation in [ 37] seems incomplete. 

Along the way we have learned about many other series of works on various 
aspects of the mathematical rigorous description of the quantum vacuum, three of 
which we would like to mention here: First, the works of Mickelsson and collabora-
tors [ 24, 26– 28] developing a bundle theoretic, conceptual geometric theory of the 
phases in quantum field theory. Second, the works [ 29] and [ 31, 32] on adiabatic 
electron-positron pair-creation in an external field. Third, the long series of articles 
by Gravejat, Hainzl, Lewin, Séré, and Solovej which mainly studies the stationary 
solutions of a non-linear model of the quantum vacuum, among them [ 17, 18, 20– 22] 
and, in particular, the overview in [ 25]. Those models are not only able to describe 
the polarisation of the quantum vacuum by an external field but also the back reaction 
of its quantum expectation and make contact to effective dynamics in terms of the 
Heisenberg-Euler Lagrangian [ 19]. Third, an entirely different approach was devel-
oped by Finster and his group which constructs the interacting fermionic projectors 
by means of a variational principle [ 11– 16] and from which it was shown that many 
aspects of quantum field theory, also beyond QED, can be derived rigorously. Lastly, 
viewing QED in external fields from the perspective of algebraic quantum field the-
ory in curved space-time [ 1, 2], the study of Hadamard states, see, e.g., [ 38], can be 
seen as a bridge between the algebraic formulation, causal fermion systems, and the 
approach followed here.
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2 Bogoliubov’s Electric Current Formula 

Before choosing a second-quantised expression of the electric charge current, for 
whatever that entails physically, it is illustrative to discuss corresponding expres-
sions in the one-particle quantum theory. For this purpose, we regard a one-particle 
Schrödinger evolution of the form 

..i∂tψ(t) = HA(t)ψ(t) (1) 

for times .t ∈ R, wave functions .t I→ ψ(t) with values in a Hilbert space . H, and 
an external, classical, time-dependent four-vector potential . A = (Aμ)μ=0,1,2,3 =
(A0,−A) ∈ C∞

c (R4, R
4). In the whole paper, we impose natural units . 1 = ℏ = c =

μ0 = ∊0 which imply that charges are dimensionless, masses, momenta, energies 
and four-vector potentials have the dimension .1/length while the Fourier trans-
formed four-vector potentials carry dimension .(length)3. Furthermore, . (HA(t))t∈R

shall denote a family of Hamiltonians, i.e., possibly unbounded, self-adjoint opera-
tors with domain .D(HA(t)) ⊆ H. In the physically relevant cases regarded below, 
the latter domain will be independent of time and coincide with the domain of the 
time-independent free Hamiltonian.H0 = HA|A=0. Suppose, (1) generates a strongly 
continuous unitary time-evolution.UA = (UA(t1, t0))t0,t1∈R on. H, such that for a given 
initial value.ψ(t0) in a suitable domain at time. t0, the corresponding unique solution 
to (1) is given by the map.t I→ ψ(t) := UA(t, t0)ψ , one may introduce the scattering 
operator 

..SA = U0(0, t1)UA(t1, t0)U0(t0, 0) , (2) 

where.t0 << 0 and.t1 >> 0 are taken so small and large, respectively, that the temporal 
support of .A is contained in the interval .(t0, t1), and .U0 = UA|A=0 is short for the 
corresponding free time-evolution. 

Using the notation .∂F g(F) = d
d∊

g(∊F)|∊=0 and viewing the charge current as 
being generated in response to a perturbation of the four-vector potential . A, one 
may define the evaluation of the electric current at a test function . F = (F0,−F) ∈
C∞

c (R4, R
4) as the operator expression 

..JA(F) := ieS−1
A ∂F SA+F , (3) 

which we refer to as Bogoliubov’s formula of the electric current. On a suitable 
domain, this derivative can be evaluated by employing the comparison of the dynam-
ics of .A + F and . A, i.e., 

..∂FUA+F (t1, t0) = −i
	∫ t1

t0

ds UA(t1, s)∂F HA+F (s)UA(s, t0) , (4)
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for times.t0, t1 ∈ R, and for which the appearance of the unbounded operators on the 
right-hand side will turn out unproblematically in the physical relevant cases regarded 
below. Provided the family of Hamiltonians.(HA(t))t∈R are sufficiently regular in. A, 
formulas in (3) and (4) imply  for .t << 0 earlier than the temporal support of . A

..JA(F) =
+∞	∫

−∞
ds U0(0, t)UA(t, s)∂F HA+F (s)UA(s, t)U0(t, 0) . (5) 

Below we state the well-known evaluations of (5) for a minimally-coupled, non-
relativistic, charged spin-0 Schrödinger particle and a relativistic Dirac particle both 
of electric charge .−e < 0 and in an external four-vector potential . A: 

1. Schrödinger case, i.e., for .HA(t) = H S
A(t) := 1

2m (−i∇ + eA(t))2 − eA0(t): 

.. jA(F) := <ψ, JA(F)ψ> =
	∫

R×R3

dt dx [ρ(t, x)F0(t, x) − j(t, x) · F(t, x)] ,

ρ(t, x) = −e|ψ(t, x)|2, and j(t, x) = − e

m
Imψ(t, x)∗(∇ + ieA(t, x))ψ(t, x) .

(6) 

2. Dirac case, i.e., for .HA(t) = H D
A (t) := α · (−i∇ + eA(t)) − eA0(t) + βm: 

.. jA(F) := <ψ, JA(F)ψ> =
	∫

R4

jμ(x)Fμ(x)d4x, jμ(x) = −eψ(x)γ μψ(x) .

(7) 

In conclusion, the electric currents of respective one-particle theories can be recov-
ered from Bogoliubov’s single current formula (3). By virtue of its generality, we 
will employ it as starting point to infer a second-quantised version. 

3 Electric Current of a Dirac Sea in an External Field 

In what follows, .U shall denote a unitary operator on one-particle Hilbert space . H. 
Assuming some familiarity of the reader with the well-known second-quantisation 
formalism of the Dirac field, e.g. [ 42], we avoid a lengthy introduction and only car-
icature the respective Fock space vacuum expectation values. Let.P+, P− denote the 
orthogonal projections of the one-particle Hilbert space onto the positive and nega-
tive spectral subspaces.H+,.H− of the free Dirac Hamiltonian.H D

0 , respectively. The 
corresponding splitting of .H is denoted by .H = L2(R3, C

4) = H+ ⊕ H− and the 
vacuum vector. Ω in standard Fock space is taken to represent the Dirac sea of.H−. As  
a first guess, one might try to define the second-quantised vacuum expectation value
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.<Ω, ∼UΩ> of a second-quantised version.∼U of.U by means of an infinite-dimensional 

Slater determinant, i.e.,.<Ω, ∼UΩ> ?= detU−
II
H−→H− for.U− := P−U P−. Interpreting 

the determinant as a Fredholm determinant and using the notation .I1(H) and . I2(H)

to denote the trace class and Hilbert-Schmidt ideals, respectively, this would require 
having.U− ∈ id− +I1(H−). But this does not hold in general, hence, the overset ‘?’. 
A way to fix this is to utilise another unitary operator .RU on .H−, in our notation 
.RU ∈ U (H−), interpreted as a base change in the vacuum, to define 

..
<
Ω, ∼UΩ

> := detU− RU

II
H−→H− . (8) 

This can indeed be shown to be the vacuum expectation value of some unitary lift 
.∼U of the unitary one-particle operator .U on .H to some Fock space; cf. [ 4]. In the 
special case of 

.. U+− := P+U P−, U−+ := P−U P+ ∈ I2(H), || id−U|| < 1 ⇒ U∗− ∈ GL(H−) ,

(9) 

it is possible to construct such an . R along the following lines. First, we observe that 

..U−U ∗− = (UU ∗)− − U−+U ∗+− = id− −|U−+|2 ∈ id− +I1(H−) (10) 

since the product of two Hilbert-Schmidt operators is in the trace class. Furthermore, 
the expression (10) is positive definite thanks to (9). However, .U ∗− is in general not 
unitary. Therefore, we employ a polar decomposition .U ∗− = RU |U ∗−| with radial 
part .|U ∗−| = √

U−U ∗− ∈ id− +I1(H−) having a positive Fredholm determinant. 
Exploiting the invertibility of .U ∗−, 

..RU = U ∗−|U ∗−|−1 ∈ U (H−) (11) 

renders the right-hand side of (8) well-defined. Furthermore, since .RU ∈ U (H−), 
it turns out that the corresponding lift will also be unitary on the underlying Fock 
space; cf. [ 4]. 

The lift .∼U of .U is known to be unique up to a phase .eiϕ ∈ U (1); cf.  [  4, 39]. 
Hence, given .U ∈ U (H) that fulfils (9), the pair .(U, RU ) characterises the equiva-
lence class of lifts .[U, RU ] = {(U, RU Q) | Q ∈ U (H−) ∩ (

idH− +I1(H−)
)} while 

two pairs .(U, RU Q) and .(U, RU Q') correspond to the same lift if and only if 
.det Q−1Q' = 1. The lift of .U characterised by .(U, RU ), i.e., .Q = idH− , shall be  
denoted by . U . This implies .

<
Ω, U ,Ω

>
> 0 for (8). For two .U, U ' ∈ U (H) so close 

to.idH such that all three operators. U ,.U ' and.UU ' fulfil (9), and two pairs.(U, R) and 
.(U ', R'), characterising lifts .∼U and.∼U ', respectively, .(UU ', R' R) characterises a lift 
of.UU ' since.(UU ')− R' R = U−U '− R' R + U−+U '+− R' R ∈ idH− +I1(H−). Note the 
reversed order in the second component .R' R. Moreover, .(U−1, R−1) characterises 
the lift.∼U−1 of.U−1. We refer the interested reader to [ 4] and also to [ 33] for the under-
lying mathematical theory. We fix a reference vector potential.Aref ∈ C∞

c (R4, R
4) for
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the rest of the article. We shall only regard vector potentials .A ∈ C∞
c (R4, R

4) such 
that the corresponding one-particle scattering operators fulfil .||S−1

Aref
SA − idH || < 1, 

as a global construction will not be needed here. Moreover, it is well-known, e.g., 
[ 4, 34], that.SA+−, SA−+ ∈ I2(H) hold true for any.A ∈ C∞

c (R4, R
4). In view of  (9), 

this ensures well-definedness of the lift 

..∼S A
A+F = S−1

Aref
SA

−1
S−1

Aref
SA+F (12) 

and allows a first attempt in defining a vacuum expectation of the current in the spirit 
of (3): 

..∼jA(F) = <
Ω, ∼JA(F)Ω

> = i∂F
<
Ω,∼S A

A+FΩ
> = Rei∂F

<
Ω,∼S A

A+FΩ
>
. (13) 

We note that since.∼S A
A+F is a unitary lift on the underlying Fock space which depends 

smoothly on .F in the relevant norm; cf. [ 4], the expression in the centre of (13) is  
real-valued. 

However, taking different lifts.eiϕA S−1
Aref

SA, for an arbitrary,.A-dependent.ϕA ∈ R, 
gives 

. ∧S A
A+F =

(
eiϕA S−1

Aref
SA

)−1 (
eiϕA+F S−1

Aref
SA+F

)

and yet another corresponding current 

..∧jA(F) = i∂F
<
Ω,∧S A

A+FΩ
> = ∼jA(F) − dϕA(F) . (14) 

It is therefore the task to select physically relevant candidates for the physical current 
. j among those. ∧j for the various phases. ϕ. Morally, this non-uniqueness in the choice 
of the current reflects the ill-definedness of the current in the traditional formulation 
of QED. 

In order to characterise this degree of freedom geometrically, we observe that the 
exterior derivative .c := d∧j does not dependent on the choice of the phase . ϕ, i.e., 

.. d∧jA(G, F) =: cA(G, F) = d∧jA(G, F) = ∂G∧jA+G(F) − ∂F∧jA+F (G) = d∼jA(G, F)

(15) 

because .ddϕ = 0. By Poincaré’s lemma and the fact that the space of permissible 
vector potentials . A is star-shaped, the two-form. c contains precisely the same infor-
mation as the class of all. ∧j with varying. ϕ. By construction, the two-form. c is closed, 
i.e.,.dc = dd∧j = 0. This will play a crucial role in the non-perturbative construction 
addressed in forthcoming papers. 

The physically relevant. j should now be selected with conditions C0–C4 in mind: 

C0 Exterior derivative: Given  (15), we require .d j = c; 
C1 Causality: For .F, G ∈ C∞

c (R4, R
4) such that the support of .G does not overlap 

the closed causal past of the support of . F , we require .∂G jA+G(F) = 0;
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C2 Relativistic invariance: For any proper, orthochronous Lorentz-transformation 
.Λ and any translation displacement .a ∈ R

4, we require . jΛA(ΛF) = jA(F) =
jA(·−a)(F(· − a)); 

C3 Gauge invariance: For .Γ ∈ C∞
c (R4, R), we require . jA+∂Γ(F) = jA(F) =

jA(F + ∂Γ); 
C4 Reference current: Should .Aref be sufficiently close to zero to allow for .A = 0, 

then we require the vacuum expectation of the current to vanish in this case, i.e., 
. j0(F) = 0. 

In order to derive an explicit expression for. c for C0, cf.  (15), we start by computing 
.∼jA(F) in (13). By (8), (11), and (12) we find 

.. ∼jA(F) = Rei∂F det
[
(S−1

A SA+F )−(S−1
A+F SAref)−((S−1

A SAref)−)−1
]

× det |(S−1
A+F SAref)−|−1 det |(S−1

A SAref)−|
= Rei∂F det

[
(S−1

A SA+F )−(S−1
A+F SAref)−(SAref

−1SA)−
]

× det |(S−1
A+F SAref)−|−1 det |(S−1

A SAref)−|−1 , (16) 

where we have used .|U−|(U−)−1 = |U−|−1(U−1)− for .U = S−1
A SAref and have per-

formed a cyclic permutation under the determinant by a corollary of Lidskii’s the-
orem [ 40]. For .F = 0 the product of the three determinants equals one because 
.det(S−1

A SA)−(S−1
A SAref)−(SAref

−1SA)− equals .det |(SAref
−1SA)−|2. This allows to 

recast the above expression as .∼jA(F) = i∂F logΓSA+F SAref SA , using the notation 
.ΓXY Z := arg det[(Z−1X)−(X−1Y )−(Y −1Z)−]. These terms .ΓXY Z have convenient 
properties summarised in the appendix in Lemma A.1. Exploiting those and the chain 
rule, the exterior derivative .c = d∼j , cf.  (15), can be expressed as follows, using the 
notations .SX

Y := S−1
X SY = (SY

X )−1 and .arg z:=z/|z| for .z ∈ C \ {0}: 

.. cA(G, F) = i∂G∂F logΓSA+F+G SAref SA+G − i∂F∂G logΓSA+F+G SAref SA+F

= 2i∂F∂G logΓSA+F SAref SA+G by Lem. A.1, prop. 2.

= 2i∂F∂G logΓSA+F SA SA+G by Lem. A.1, prop. 4.

= 2i∂F∂G log arg det[ (S A+G
A+F )−((S A+F

A+G )− − (S A+F
A )−+(S A

A+G)+−) ]
= 2i∂F∂G log arg det[id− −|(S A+G

A+F )+−|2 − (S A+G
A+F )−(S A+F

A )−+(S A
A+G)+− ]

= −2∂F∂G Im Tr[(S A
A+F )−+(S A

A+G)+−] (17) 

Recalling (15), in order to get our hands on a physically relevant candidate current 
. j in the sense of above, we need to split . c as follows 

..cA(G, F) = ∂G jA+G(F) − ∂F jA+F (G) . (18) 

Note that the left-hand side is given as the non-perturbative expression (17). For 
the purpose of the splitting, we make the following ansatz. Suppose the vacuum
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expectation value of the current .A I→ jA is real analytic and has a power expansion 
of the form 

.. jA(F) =
∞∑

n=2

j (n)(F; A, . . . , A( )( )
n−1 many

) , (19) 

where the.n-th summand on the right-hand side is assumed to be linear in all . n argu-
ments and symmetric in the last.n − 1 arguments. The same summand corresponds to 
the.(n − 1)-st Taylor order in. A. In view of condition C4 there is no.n = 1 summand. 
This implies the expansion 

..cA(G, F) =
∞∑

n=2

c(n)(G, F; A, . . . , A( )( )
n−2 many

) , for (20) 

. c(n)(G, F; A, . . . , A) = (n − 1)
(

j (n)(F; G, A, . . . , A) − j (n)(G; F, A, . . . , A)
)
.

(21) 

In forthcoming works, we will justify the ansatz, i.e., the analyticity assumption, 
provide a non-perturbative form for the current and, on its basis, construct the corre-
sponding scattering matrix and time-evolution. In this article, we will only demon-
strate how to perform the splitting (18) for the lowest order term .n = 2, in order to 
fulfil C0, and check the remaining C1–C4. 

4 Second Order Perturbation Without Infinities 

In view of C0, cf.  (18) for the lowest order.n = 2, we need to find an expression. j (2)

fulfilling 

..c(2)(G, F) = j (2)(F; G) − j (2)(G; F) (22) 

together with conditions C1–C4. Not surprisingly, it will coincide with the well-
known expression for the second order perturbation of the current of QED; e.g. [ 9]. 
However, in text-books, the latter is extracted from a mathematically non-rigorous 
computation involving infinities that are removed by hand. In what follows, we give 
this computation a mathematical sense. 

We obtain the following finite Lebesgue integral for .c(2)(G, F) = c0(G, F), 
cf. (17), after employing (4) in order to compute the linearisation of .S A

A+F , and 
furthermore, a suitable partial integration in time to allow for the application of 
Fubini’s theorem:
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.. c(2)(G, F) = i ∂G∂F Tr
(

P−S A
A+F P+S A

A+G P− − P−S A
A+G P+S A

A+F P−
)

=
	∫

R3×R3

d3 p d3q c(2)(G, F;q,p)

with c(2)(G, F;q,p) :=
∑

τ=±1

τ · (2π i)2Resp0=−τ E(p),

q0=τ E(q)

ω(G, F; q, p) , E(p) :=
/

m2 + p2,

ω(G, F; q, p) := ie2

(2π)4
tr[(/p − m)−1 /F(p − q)(/q − m)−1 /G(q − p)] = ω(F, G; p, q) . (23) 

By abuse of notation, we denote the Fourier transform of .x I→ Fμ(x) by the 
same symbol .k I→ Fμ(k) = (2π)−4/2

	∫
d4x eikν xν

Fμ(x). Furthermore, . Resq0=·,p0=·
denotes the iterated residue operator. 

In order to identify the current term . j (2) in (22), we first regard the expression 
.ω(q0, p0) for fixed .q,p ∈ R

3. In a first step, we add zero, written as a difference of 
two equal residues, i.e., 

.. c(2)(G, F; q, p) =
∑

σ=±1

(2π i)2

⎛
⎝Resp0=−E(p),

q0=σ E(q)

− Resp0=σ E(p),

q0=−E(q)

⎞
⎠ω(G, F; q, p)

= (2π i)

( 	∫

[R−iδ]−[R+iδ]
dq0 Resp0=−E(p) −

	∫

[R−iδ]−[R+iδ]
dp0 Resq0=−E(q)

)
ω(G, F; q, p)

= c(2)
+ (G; F; q, p) − c(2)

+ (F; G; p, q) (24) 

for any fixed number .δ > 0 and 

.. c(2)
+ (F; G;p, q) := −2π i

( 	∫

[R+iδ]
dq0 Resp0=−E(p) +

	∫

[R−iδ]
dp0 Resq0=−E(q)

)
ω(F, G; p, q) .

(25) 

The bracket notation.[R ± iδ] denotes the standard parametrisation. R ∋ t I→ t ± iδ
and their differences are understood as .

	∫
[A]−[B] = 	∫

[A] −
	∫
[B]. We remark that . c(2)

+
has temporally causal support in the sense that, for.F, G ∈ C∞

c (R4, R
4) such that the 

support of. F is temporally earlier than the support of. G, we have. c(2)
+ (F; G;p,q) =

0. This can be seen by inserting the Fourier transformations of .F and .G in the time 
variable, observing that C \ R ∋ p0 I→ (/p − m)−1 is holomorphic, and applying 
Cauchy’s integral theorem in the limit .δ → +∞. Furthermore, it is convenient to 
introduce the substitution .k = (k0,k) := p − q, i.e., 

.. c(2)
+ (F; G; p,q) = −2π i

	∫

[R−iδ]
dk0

(
Resp0=−E(p) + Resp0=k0−E(p−k)

)
ω(F, G; p, p − k)

(26)
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Here, the contour.CWick(k) denotes any closed curve having winding number.+1 around.p0 = −E(p) and 
.p0 = k0 − E(p − k), but winding number zero around.p0 = +E(p) and.p0 = k0 + E(p − k). We remark 
that the inner integral of (26), for fixed.p, k and taken as function of. k0, is holomorphic on 

..k0 ∈ D := C \ ((−∞, −2m] ∪ [2m, ∞)). (27) 

In particular, for .k ∈ C
4 sufficiently close to zero, .ωμν(p, k) is well-defined for all .p ∈ iR × R

3. In this  
region the contour .CWick(k) can be replaced by.iR oriented in positive imaginary direction, exploiting the 
.|p0|−2 decay of.ωμν(p, k) for.|p0| → ∞. 

Considering (22), if .c(2)
+ (F; G;p, q) was integrable in .(p, q) ∈ R

3 × R
3, its integral would have been 

a natural candidate for. j (2)(F; G) due to the support properties discussed above. But this is in general not 
the case. To nevertheless find a suitable candidate by leveraging the knowledge of.c(2)

+ , we take a different  

approach: It will turn out that second derivative .∂2
m2c(2)

+ (F; G; ·, ·) belongs to .L1, and therefore, with a 
function.Πμν to be found, we shall search instead for a candidate of the form 

.. j (2)(F; G) = − ie2

(2π)4

	∫

[R−iδ]×R3

d4k Fμ(k)Gν(−k)Πμν(k) , (28) 

. fulfilling ∂2m2 j (2)(F; G) =
	∫

R3×R3

d3 p d3q ∂2m2c(2)
+ (F; G; p,q) .

(29) 

Throughout the article, we have suppressed the.m dependence in the notation. In the end, we shall integrate 
twice with respect to .m2; taking the second derivative with respect to .m2 rather than.m is only a technical 
convenience. This can be seen as a variant of the Pauli-Villars regularisation scheme [ 30] with differences 
replaced by integrals of derivatives. The expression for.Πμν will finally be identified as (42). 

5 The Explicit Expression for the Second Order 

Having in mind the goal (29) with.c(2)
+ as given in (26) we observe that even for. k close to zero,. ωμν(p, k)

in (??) is not Lebesgue-integrable in.p ∈ iR × R
3. However, we have the Lebesgue integrals 

..

	∫

CWick(k)×R3

d4 p ∂2m2ω
μν(p, k)

fork=
close to0

	∫

iR×R3

d4 p ∂2m2ω
μν(p, k) . (30) 

Note that by dominated convergence, the right-hand side in (30) is a real-analytic function of.k ∈ R
3 and a 

holomorphic function of.k0 ∈ D; cf.  (27). 
In order to avoid the explicit computation of the second derivative, we introduce an artificial scaling 

parameter. ∊ on which the integral shall depend meromorphically. The original integral (30) is then recovered 
for.∊ → 0. However, by virtue of the identity theorem for analytic functions, the value at.∊ = 0 is determined 
by values for . ∊ in any non-empty, open interval . I of reals, which need not be in the vicinity of zero. 
It will turn out that . I can be chosen so that the differential operator .∂2

m2 can be interchanged with the 
integral by dominated convergence without losing Lebesgue-integrability for .∊ ∈ I . A scaling exponent . ∊
can be introduced conveniently after recasting the integral by means of Feynman’s parametrisation. This 
computation procedure can be seen as a mathematically rigorous version of the method of dimensional 
regularisation employed in physics [ 3, 41]. We interpret the attribute “dimensional” as a scaling exponent 
. ∊, which may be any real or even complex number, but not as the number of elements in a basis of a vector
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space, which would be a natural number. Next, we shall demonstrate this procedure for the second order 
term, which can be seen as a rigorous version of the computation in [ 9, p. 70ff: Polarization of the Vacuum]. 

In order to arrive at an explicit expression for the second perturbation order of the current, we employ 
the Feynman parametrisation.(ab)−1 = 	∫ 1

0 ((1 − z)a + zb)−2 dz, which holds for all.a, b ∈ C such that the 
straight line from. a to. b does not contain. 0. For.k ∈ C

4 sufficiently close to zero,.p ∈ iR × R
3 we may take 

.a = p2 − m2 and.b = (p − k)2 − m2 and recast (30) into  

. 

	∫

iR×R3

d4 p ∂2
m2

tr[γ ν (/p + m)γ μ(/p − /k + m)]
(p2 − m2)((p − k)2 − m2)

=
	∫

iR×R3

d4 p ∂2
m2

1	∫

0

dz
tr[γ ν (/p + m)γ μ(/p − /k + m)][

(1−z)(p2 − m2) + z((p − k)2 − m2)
]2

=
1	∫

0

dz
	∫

iR×R3

d4 p ∂2
m2

tr[γ ν (/p + m)γ μ(/p − /k + m)][
(1−z)(p2 − m2) + z((p − k)2 − m2)

]2 , (31) 

where in the last step we have used dominated convergence to interchange.∂2
m2 and.

	∫
dz and the Lebesgue-

integrability to interchange the integrals. For the sake of the computation, we may restrict ourselves to 
.k ∈ iR × R

3; the rest of the computation does not even require. k to be close to zero. Next, employing the 
substitution.q = p − kz, which  is.m-independent, to find 

.(31) =
1	∫

0

dz
	∫

iR×R3

d4q ∂2m2

tr[γ ν(/q + z/k + m)γ μ(/q + (z−1)/k + m)]
[m2 − (z−z2)k2 − q2]2 , (32) 

and evaluating the trace, using.tr γ νγ μ = 4gμν ,.tr γ νγ μγ σ = 0, and. tr γ νγ σ γ μγ τ = 4(gμσ gντ − gμν gστ +
gμτ gσν), as done, e.g., in [ 9, Equations (377)–(379)], and dropping terms of the form.

	∫
d4q qμkμ f (q2) = 0, 

results in 

..(31) =
1	∫

0

dz
	∫

iR×R3

d4q ∂2m2 f μν
k,m(q, z) (33) 

.with f μν
k,m(q, z) := 4

2qμqν − 2kμkν(z−z2) + gμν(m2 + k2(z−z2) − q2)

[m2 − (z−z2)k2 − q2]2 . (34) 

Due to the Minkowski inner-product, we have .−k2 ≥ 0, .−q2 ≥ 0. Note further that . f μν
q,k,z,m behaves as 

.O|q|→∞(|q|−2) and.O|q|→0(1) uniformly for.z ∈ [0, 1], . k in a compact domain in.iR × R
3, and  also.m in 

a compact domain in.R+. 
As announced above, we will now introduce an artificial scaling .(−q2/u)∊ with a complex exponent 

. ∊ and another parameter . u carrying the unit of .m2; recall that .ℏ = 1 = c. The original term (30) shall be 
retrieved in the limit.∊ → 0. 

..(31) = lim
∊→0

1	∫

0

dz
	∫

iR×R3

d4q
(−q2

u

)∊
∂2m2 f μν

k,m(q, z) (35) 

Note that the integrand is an Lebesgue-integrable, holomorphic function of . ∊ for .−2 < Re ∊ < +1 which 
allows to interchange the limit as.∊ → 0 with the integral by dominated convergence. Even when dropping 
the.∂2

m2 operator, it remains so for the smaller domain.−2 < Re ∊ < −1, which does, however, not contain 
zero any more. First, we will ignore this complication in the computations and work with smaller domain 
but, in the end, recover a domain that contains.∊ = 0 by analytic continuation. On the smaller domain, using 
dominated convergence once again, we find
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..

1	∫

0

dz
	∫

iR×R3

d4q
(−q2

u

)∊
∂2m2 f μν

k,m(q, z) =
1	∫

0

dz ∂2m2

	∫

iR×R3

d4q
(−q2

u

)∊
f μν
k,m(q, z) . (36) 

We will now evaluate the inner integral for.−2 < Re∊ < −1. The following integral 

.. I (ζ, η) := u−η

	∫

iR×R3

d4q
(−q2)η

(ζu − q2)2
=

	∫

iR×R3

d4q

u2

(−q2

u

)η

(ζ − q2/u)2
, for ζ > 0,Reη ∈ (−2, 0) ,

(37) 

will play an important role in these calculations. The decoration by factors of powers of . u renders the 
expression (37) dimensionless. By euclidean symmetry of the complexified Minkowski inner-product on 
.iR × R

3 and for.ζ > 0, we have  

.. 

	∫

iR×R3

d4q
(−q2

u

)∊ qμqν

[ζu − q2]2 =
	∫

iR×R3

d4q
(−q2

u

)∊ 1
4 gμνq2

[ζu − q2]2 = −u

4
gμν I (ζ, 1 + ∊) ,

(38) 

Using (36), (37), and.ζ := (m2 − (z − z2)k2)/u, we recast the inner integral of (35) into  

.. Fμν
k,m(z, ∊) :=

	∫

iR×R3

d4q
(−q2

u

)∊
f μν
k,m(q, z)

= 2 gμνuI (ζ, 1 + ∊) + 4[(gμνk2 − 2kμkν)(z−z2) + gμνm2]I (ζ, ∊) . (39) 

Next, we evaluate the integral.I (ζ, η) for.ζ > 0 and.−2 < Re η < 0, i.e., 

.. I (ζ, η) = 2iπ2u−η

∞	∫

0

r3+2η

(ζu + r2)2
dr = iπ2ζη B(η + 2, −η) = iπ2ζηΓ(2 + η)Γ(−η)

= iπ2ζη(1 + η)Γ(1 + η)Γ(−η) = iπ2ζη π(1 + η)

sin(π(1 + η))
, (40) 

where . B denotes the beta function and, in the last step, Euler’s reflection formula was used. For all given 
.ζ > 0, the right-hand side of (40) implies that the function.(−2, −1) + iR ∋ η I→ I (ζ, η)has a meromorphic 
extension on the whole complex plane with poles of first order at most on.Z \ {−1}. We denote it by the same 
symbol . I . Hence, .Fμν

k,m(z, ∊) in (39) also has a holomorphic extension for .∊ ∈ C \ Z which will again be 
denoted by the same symbol. It is important to note that this extends the originally much smaller domain of. ∊ ∈
(−2, −1) + iR, which did not even include a neighbourhood of.∊ = 0. Given.ζ = (m2 − (z−z2)k2)/u > 0, 
this extension now allows to expand for.∊ → 0 as follows:
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. I (ζ, 1 + ∊) = 2iπ2ζ

(
1

∊
+ log ζ + 1

2
+ Oζ

∊→0(∊)

)
, I (ζ, ∊) = −iπ2

(
1

∊
+ log ζ + 1 + Oζ

∊→0(∊)

)
,

Fμν
k,m (z, ∊) = 4iπ2[gμνm2 − gμνk2(z−z2)]

(
1

∊
+ log ζ + 1

2

)

− 4iπ2[gμνm2 + (gμνk2 − 2kμkν)(z−z2)]
(
1

∊
+ log ζ + 1

)
+ Oz,k,m

∊→0 (∊)

= 8iπ2(kμkν − gμνk2)(z−z2)

(
1

∊
+ log ζ

)
+ 2iπ2[4kμkν − gμν(m2 + 3k2)](z−z2) + Oz,k,m

∊→0 (∊) .

We emphasise that the remainder.Oz,k,m
∊→0 (∊) is uniform in the parameters. ζ and.k, m, z, respectively, as long 

as they are restricted to compact domains. Moreover, it is smooth in .m with .∂n
m2 Oz,k,m

∊→0 (∊) = Oz,k,m
∊→0 (∊), 

.n ∈ N. Hence, the expressions in (39) and, exploiting uniformity and smoothness of the remainder term, 
also the expression in (36), taken on the smaller domain.−2 < Re ∊ < −1, has a holomorphic extension for 
.∊ ∈ C \ Z given by 

..

1	∫

0

dz ∂2m2 Fμν
k,m(z, ∊) = ∂2m2Π

μν(k) + Ok,m
∊→0(∊) with (41) 

. Πμν(k) := 8iπ2(kμkν − gμνk2)

1	∫

0

dz (z−z2)

[
log

(
1 − (z−z2)

k2

m2

)
+ log

m2

u

]
.

(42) 

The last expression shows that the isolated singularity at.∊ = 0 is removable. Applying the identity theorem 
for holomorphic functions guarantees that the left-hand side of (36) is given by the expression on the left-
hand side in (41) for.−2 < ∊ < +1, which is a neighbourhood of.∊ = 0. Note that thanks to the derivative 
.∂2

m2 , the term is independent of . u, as it must be. Furthermore, the .1/∊-singularity has dropped out thanks 
to the same derivative, which is consistent with the fact that the left-hand side of (36) is holomorphic near 
.∊ = 0. Evaluating the holomorphic extension at.∊ = 0, we have verified that the quantity.Πμν(k) defined in 
(42) fulfils  

..∂2m2Π
μν(k) =

	∫

CWick(k)×R3

d4 p ∂2m2ω
μν(p, k) (43) 

for.k ∈ iR × R
3. Interpreting the logarithm in (42) as its principal value.log : C \ R

−
0 → C, the function. Πμν

on.iR × R
3 has a holomorphic extension to.{k ∈ C

4| k2 /∈ R or k2 < 4m2}which contains a neighbourhood 
of .0 ∈ C

4 as well as the sets .D × R
3 and .R4 + iCausal, where  .Causal = {p ∈ R

4 : p2 ≥ 0} denotes the 
set of time-like or light-like four vectors. This implies (43) also for  .k ∈ D × R

3 by virtue of the identity 
theorem for analytic functions. Note further that.Πμν(k) is of the order.Om,u

|k|→∞(|k|2 log |k|) and thus allows 
the integral on the right-hand side of (28) to be well-defined and independent of.δ > 0. 

It is left to show (22). For this purpose, we claim 

..∂2m2

(
j (2)(F; G) − j (2)(G; F) − c(2)(G, F)

)
= 0 . (44) 

To see this, we recall (28) and regard
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.. ∂2m2 j (2)(F; G)
(44)= −

	∫

[R−iδ]×R3

d4k Fμ(k)Gν(−k)

	∫

CWick(k)×R3

d4 p ∂2m2ω
μν(p, k)

= −
	∫

R3×R3

d3kd3 p ∂2m2

	∫

[R−iδ]
dk0 Fμ(k)Gν(−k)

	∫

CWick(k)

dp0 ωμν(p, k) =
	∫

R3×R3

d3 p d3q ∂2m2c(2)
+ (F; G;p, q) ,

(45) 

where the employed commutation of the integrals and differential operators is justified by the integrability of 
the integrand, locally uniform in. m. Inserting equation (24) proves the claim (44). Furthermore, (44) implies 

.. j (2)(F; G) − j (2)(G; F) − c(2)(G, F) = am2 + b, (46) 

with two constants.a, b that depend on.F, G but are independent of. m. Note that. j (2)(F; G) − j (2)(G; F) →
0 for .m → ∞ because the scaling term.log(m2/u) cancels in the difference; see (42). Moreover, we have 
.c(2)(G, F) → 0 for .m → ∞, which can be seen from (23), the estimate . |p − q| ≥ |p0 − q0| = E(p) +
E(q) ≥ 2−1/2(|p| + |q| + 2m) for.p0 = −τ E(p),.q0 = τ E(q), and.τ = ±1, implied by Cauchy-Schwarz’ 
inequality, and noting the fact that .F, G decay super-algebraically fast in energy-momentum space. This 
guarantees.a = 0 = b, i.e., (22). 

Conclusion. Up to second order in perturbation, we have retrieved a physically relevant family of currents 
by (28) and  (42), depending on an integration constant.C ∈ R, i.e., 

.. j (2)(F; A) = e2

2π2

	∫

[R−iδ]×R3

d4k Fμ(k)Aν(−k)(kμkν − gμνk2)

1	∫

0

dz (z−z2)

[
log

(
1 − (z−z2)

k2

m2

)
+ C

]
,

(47) 

because it fulfils the physical relevant conditions C1–C4 in second order of perturbation: 

C2 Relativistic invariance: The Lorentz covariance is apparent from the Lorentz covariance of formula (42). 
Translation invariance follows from the fact that the test functions.F, G appear in energy-momentum 
space only in the form.k I→ Fμ(k)Gν(−k). 

C1 Causality: Temporal causality follows from the discussed temporal causality of .c(2)
+ ; see  (25). Fully 

relativistic causality follows from the temporal causality and relativistic invariance. 
C3 Gauge invariance: Gauge invariance is apparent from formula (42) noting.kμ(kμkν − gμνk2) = 0 and 

the symmetry in. μ and. ν. 
C4 Reference current: The vanishing reference current. jA=0 = 0 is already build into the ansatz, see (19), 

because there is no summand corresponding to.n = 1. 

The family of currents (47) describes the second order term of the vacuum expectation of the electric current 
in a prescribed external four-vector potential.G = A. Concerning the interpretation of the remaining constant 
. C , it is helpful to regard the external current . jμext(k) = (kμkν − gμνk2)Aext

ν (k), associated with the exter-
nal field.G = Aext by Maxwell’s equations. Changing the integration constant. C , thus, changes the vacuum 
polarisation current. j (2) in second order of perturbation by an additional current proportional to. jext. In a self-
consistently coupled theory, this mechanism can be interpreted as to leave the bare electric charge undefined. 

Be that as it may. Finally and most importantly, we would like to express our gratitude to Detlef for 
being our teacher, dear colleague and friend. We miss him dearly.
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A Tetrahedron Rule 

Let.A, B, C, D be unitary operators on.H fulfilling (9) for  all .U = X−1Y , .X, Y ∈ {A, B, C, D}. For  such  
operators we define:. ΓABC := arg det(A−1B)−(B−1C)−(C−1 A)− ∈ U (1)

Lemma A.1 For such operators .A, B, C, D we have: 1. .ΓABC is well-defined; 2. .Γ−1
ABC = ΓC B A; 3. 

.ΓAAB = 1; 4. .ΓABC = ΓBC DΓDC AΓAB D. 

Proof 1: We observe that each pair of operators such as .(A−1B)− is invertible because of 
.|| id− −(A−1B)−|| < 1. Hence, the Fredholm determinant is well-defined and non-zero because of 
. (A−1B)−(B−1C)−(C−1 A)− = (

(A−1C)− − (A−1B)−+(B−1C)+−
)
(C−1 A)−

.∈ (A−1C)−(C−1 A)− + I1(H−) = idH− −(A−1C)−+(C−1 A)+− + I1(H−) = id− +I1(H−). 
2: This can be seen by noting.Γ−1

ABC = ΓABC and.det X = det X∗ for.X ∈ id+I1. 
3:.ΓAAB = arg det(A−1B)−(B−1 A)− = arg det |(A−1B)−|2 = 1. 
4: Applying Lidskii’s theorem of cyclic permutation under the Fredholm determinant we find 

. ΓBC DΓDC AΓAB D = arg det(D−1B)−(B−1C)−(C−1D)− arg det(D−1C)−(C−1 A)−(A−1D)−
× arg det(D−1A)−(A−1B)−(B−1D)− = arg det |(D−1B)−|2 (B−1C)− |(D−1C)−|2
◦ (C−1 A)− |(D−1 A)−|2 (A−1B)− = arg det(B−1C)− (C−1 A)− (A−1B)− = ΓABC

because the operators under the square modulus, like.(B−1D)−(D−1B)− = |(D−1B)−|2 are positive defi-
nite operators in.id− +I1(H−). ⃞
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The Arrow of Time 

Peter Pickl and Aaron Schaal 

Abstract Since Boltzmann’s works, there is the question of explaining the arrow of 
time in statistical physics: While many microscopic physical theories do not know 
a preferred direction of time, one experiences an arrow of time in the macroscopic 
world. Glass shatters when it falls on the ground whereas we never see the reverse 
process. The usual explanations for that are based on a very special initial condition, 
a state of very high order which under the dynamics evolves in a natural way into a 
state of higher disorder. Here one can see (order .→ disorder) the asymmetry in the 
propagation in time. This explanation, however, shifts the problem to the question 
of where the initial state of high order came from. In the following we will discuss 
different possible explanations for the emergence of a macroscopic arrow of time, in 
particular we will discuss an idea going back to V. A. Antonov who found that the 
growth in disorder can be explained without assuming a special initial condition. 

1 Introduction 

“Thou turn thy mind the more unto these bodies 
Which here are witnessed tumbling in the light: 
Namely, because such tumblings are a sign 
That motions also of the primal stuff 
Secret and viewless lurk beneath, behind. 
For thou wilt mark here many a speck, impelled 
By viewless blows, to change its little course, 
And beaten backwards to return again, 
Hither and thither in all directions round. 
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Lo, all their shifting movement is of old, 
From the primeval atoms; for the same 
Primordial seeds of things first move of self, 
And then those bodies built of unions small 
And nearest, as it were, unto the powers 
Of the primeval atoms, are stirred up 
By impulse of those atoms’ unseen blows, 
And these thereafter goad the next in size; 
Thus motion ascends from the primevals on, 
And stage by stage emerges to our sense, 
Until those objects also move which we 
Can mark in sunbeams, though it not appears 
What blows do urge them. 
Herein wonder not 
How’it is that, while the seeds of things are all 
Moving forever, the sum yet seems to stand 
Supremely still, except in cases where 
A thing shows motion of its frame as whole. [ 24] 

Around the beginning of the twentieth century, three groundbreaking ideas man-
ifestly changed the physical world view: relativity, quantum mechanics and kinetic 
gas theory. While relativity and quantum mechanics changed the fundamental laws 
of physics, kinetic gas theory is rather a unification than a modification of theories 
that were present before. It is based on the idea, respectively the re-discovery of the 
ancient idea of atomism (see the quote of Lucretius taken from the English trans-
lation of his famous poem “De rerum natura” . ∼50 B.C. above), that the laws of 
macroscopic objects can be derived from the microscopic motion of atoms. Using 
the laws of Newtonian dynamics, it is in fact possible to derive the laws describing 
gases, for example the laws of Boyle-Mariotte or Gay-Lussac. Therefore, the ideas 
of kinetic gas theories provide a unification of kinematics and thermodynamics. 

Ever since, the derivation of effective descriptions of macroscopic equations or 
effects from microscopic principles has been an active area of research. Next to the 
classical gas laws mentioned above, there is a large number of examples for which it 
is well understood how the collective behavior of atoms give rise to physical effects 
one experiences on the macroscopic level. 

What makes kinetic gas theory special is the generality of its ideas. Kinetic gas 
theory is less a particular model describing our physical world with more accuracy, 
but a principle that allows for connecting the microscopic and macroscopic world. 
One is not limited to consider Newtonian motion for the dynamics of the “atoms”. For 
example the macroscopic effect of Bose-Einstein condensation which is a collective 
effect of quantum mechanical particles is rather well understood. The ideas are not 
limited to physics, also biological and sociological systems of many individuals can 
be considered to connect the behavior of individuals to the collective behavior on the 
macroscopic level.
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Despite their beauty and clarity, the ideas of atomism were subject to criticism, 
in particular in the early years after their formulation. The break-through of the 
kinetic theory of gases came with Einstein’s explanation of Brownian motion [ 18]. 
Nevertheless there have been lasting objections against the theory until today. 

The main reason for the confusion about Boltzmann’s explanation is the fact that 
the macroscopic world has irreversible processes – an empirical fact one can not argue 
against – while the microscopic descriptions used by Boltzmann are reversible. In 
this paper we will discuss several attempts that give a possible explanation of this 
break in symmetry. By “possible” we mean that we are not going to discuss modern 
cosmological models and find the most plausible explanation for our universe, but 
rather provide an overview of the basic ideas. 

2 Objections Against Kinetic Gas Theory 

Despite their success, the ideas of Boltzmann and Maxwell [ 5, 27] – to mention the 
two most important founding fathers of kinetic gas theory – were, in the beginning, 
subject to criticism from contemporary physicists. Among the most prominent oppo-
nents was Ernst Mach, who thought that “The mechanical conception of the second 
law of thermodynamics, by distinguishing between orderly and disorderly motions 
and equating increase of entropy with increase of disorderly motions at the expense 
of orderly ones, seems a very artificial expedient” [ 26]. The positions of Mach and 
others were attacked by Einstein: “The antipathy of these scholars towards atomic 
theory can indubitably be traced back to their positivistic philosophical attitude. This 
is an interesting example of the fact that even scholars of audacious spirit and fine 
instinct can be obstructed in the interpretation of facts by philosophical prejudices. 
The prejudice – which has by no means died out in the meantime – consists in the 
faith that facts by themselves can and should yield scientific knowledge without free 
conceptual construction. Such a misconception is possible only because one does not 
easily become aware of the free choice of such concepts, which, through verification 
and long usage, appear to be immediately connected with the empirical material” 
[ 17]. Einstein addresses an important issue. His criticism also applies to other areas 
of science (see [ 7, 14]). 

Next to Mach’s repudiation, there were more substantial objections against the 
kinetic theory of gases: Loshmidt’s “Umkehreinwand” (also called Loschmidt’s para-
doxon) formulated by Josef Loschmidt in 1876 [ 23] and Zermelo’s “Wiederkehrein-
wand” (recurrence objection) phrased by Ernst Zemelo in 1896 [ 31]. The arguments 
of theses objections are as follows.
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2.1 Umkehreinwand 

The objection formulated by Loschmidt [ 23] aims to show a contradiction between 
atomism and the second law of thermodynamics, in particular a contradiction between 
Boltzmann’s formula for the entropy and the fact that entropy is an non-decreasing 
function. Following Boltzmann, the entropy of a gas with phase-space density . ρ is 
given by the integral .SB = k B

∫
ρ(x, v) ln ρ(x, v)d3xd3v. 

Loschmidt’s argument goes as follows: Think of a system which is at time . t = 0
in a macro-state of low entropy.S(0) and which, after some time. t has passed, evolves 
into a macro-state of larger entropy .S(t) > S(0). Assuming the correctness of the 
ideas of the kinetic theory of gases this behavior can be explained by the ballistic 
motion of a large number – let us say .N – of atoms. In other words there has to 
be a point .X0 in the respective .6N -dimensional phase space which evolves by the 
Newtonian laws of motions into a point .Xt such that the Boltzmann entropy of the 
respective points in phase space increases (.SB(X0) < SB(Xt )). 

Now consider the state .X (t1) and reverse the velocities of all particles. Recall 
that Newtonian mechanics is invariant under the simultaneous reversal of time and 
velocities. Therefore, after time. t has passed, that state will evolve into a state which is 
identical to.X0 with all velocities reversed. Since Boltzmann’s entropy formula does 
not care about the flips of all velocities, it follows that one has found a microscopic 
state with the property that the entropy has now changed from the large value. SB(Xt )

to the smaller value .SB(X0). This contradicts the second law of thermodynamics. 
It seems that the only assumption we made that is not based on strong empirical 

evidence is the validity of the ideas of kinetic gas theory, so this argument seems to 
disprove the validity of these ideas. 

2.2 Wiederkehreinwand 

The objection raised by Zermelo in 1896 has some similarities to Loschmidt’s para-
dox. It also considers a micro-state.X0 as above that evolves into a state .Xt of larger 
entropy. Now, Poincaré’s recurrence theorem states that for any distance. d, no matter 
how small it might be, there will be a time .s > t such that .| X0 − Xs |< d. 1 Now 
choose. d such that the Boltzmann entropy of all states. Y with.| X0 − Y |< d satisfies 
.SB(Y ) < 1

2

(
SB(X0) + SB(Xt )

)
< SB(Xt ). Note that the the Boltzmann entropy is 

proportional to the logarithm of the phase-space volume occupied by the macro-
state. This phase-space volume is continuous in the respective phase-space density 
of the macro-state and thus is continuous in the region .Ud(X0). Hence, due to the 
intermediate value theorem, such a choice for . Y is is always possible. It follows that 
we found a time .s > t with .SB(Xs) < S(Xt ) which again, contradicts the second 
law.

1 In fact there is an infinite number of such times. s. This, however, is irrelevant for the argument. 
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3 Refutation of These Objections 

Unifying different physical theories respectively explaining the physics of a theory 
from another which is considered more fundamental, is the central goal of (the-
oretical) physics. The beauty of Boltzmann’s works where he derives the laws of 
thermodynamics in very simple terms from the classical motion of particles is truly 
stunning. Given this, it is very surprising, that the kinetic theory of gases was subject 
to objections based on philosophical arguments, as Einstein put it. 

Concerning the objections of Loschmidt and Zermelo, the answer of Boltzmann 
came rather prompt [ 4– 6]. 
Umkehreinwand Boltzmann explains that the physical behavior of the system is 
not only determined by the laws of motion of the particles, but also by the initial 
condition. To argue for the growth of entropy of a given system, it is relevant to 
consider a typical initial micro-state of the system in its initial macro-state. The 
argument given by Loschmidt is based on a micro-state related to the macro-state at 
time . t . Reversing all velocities one gets a very special state among all micro-states 
belonging to that macro-state, not a generic one ([ 5]). 

In his reply to Loschmidt, Boltzmann moreover emphasizes that the second law 
of thermodynamics – in contrast to the first one – makes a statement that only holds 
with high probability: “Nevertheless Loschmidt’s theorem seems to me to be of the 
greatest importance, since it shows how intimately connected are the second law and 
probability theory, whereas the first law is independent of it” [ 5]. 

Wiederkehreinwand Boltzmann agrees that there will be recurrence to the initial 
state up to arbitrary precision and that, following the trajectory, there will be a time 
interval where the entropy decreases. However the time scale of the recurrence is 
for the systems under consideration exorbitantly higher than the life time of the 
universe. Thus we will never experience such a decrease in entropy. Since the second 
law of thermodynamics is based on empirical considerations, it has to be formulated 
accordingly. Boltzmann roughly estimated the recurrence time of a system and wrote 
in reply to Zermelo: “Though this calculation makes no pretense to accuracy, it still 
shows that it cannot be proved from Poincaré’s theorem that the theoretical existence 
of a recurrence time involves any contradiction with experience, since the length of 
this time makes any attempt to observe it ridiculous” [ 4]. 

3.1 Final Breakthrough 

It was Einstein’s work on Brownian motion that lead to a break-through of the 
kinetic theory of gases. Brownian motion was described in the first half of the . 19th

century by Robert Brown who found that the organelles of pollen are subject to an 
erratic movement when exposed to water. “After bursting, contained similar sub-
cylindrieal par-tides, in reduced numbers however, and mixed with other particles, 
at least as numerous, of much smaller size, apparently spherical, and in rapid oscil-
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latory motion” [ 8]. He found the same type of motion in other materials: “in a word, 
every mineral which I could reduce to a powder, sufficiently fine to be temporarily 
suspended in water, I found these molecules more or less copiously”. 

The first theoretic explanation of this effect goes back to Gouy [ 20], who argues 
that Brownian motion is a natural consequence of the kinetic theory of gases resp. 
atomism. In 1905 Einstein came up with a similar idea in [ 18] and calculates the drift 
of a Brownian particle of diameter.1μm at room temperature during one minute. Five 
years later Perrin tested Einstein’s predictions experimentally [ 29]. It was this very 
accurate derivation of an formerly unexplained effect that lead to the break-through 
of the kinetic theory of gases (see also [ 15]). 

3.2 The Second Law 

Boltzmann gave a clear explanation on how the growth in entropy, i.e., the second 
law, can be argued for coming from a kinetic theory of gases. He defines entropy 
to be a constant times the logarithm of the number of micro-states associated to 
a certain macro state, respectively – for the non-discrete situation – as a constant 
times the Lebesgue-measure of the subset in phase-space that includes all micro-
states that belong to a certain macro state. Boltzmann supports his argument by 
proving the famous .H -theorem where he shows that all solutions of the Boltzmann 
equation have a non-decreasing entropy. Further, it is easily possible to find examples 
of solutions where the entropy in fact grows at least for some instance of time. 
Now, since Boltzmann’s equation has been derived with mathematical rigor from 
the dynamics of many interacting, Newtonian particles (at least for short times; see 
[ 21]), the validity of Boltzmann’s argument does not leave any room for doubts. 

What is striking on the principal explanation is the generality with which it holds. 
Understanding Boltzmann’s reasoning one sees that the validity of the second law is 
independent from the dynamics under consideration: Assume that there is a normal-
izable measure which is invariant under the dynamics of the system. Further assume 
some weak form of ergodicity, that is, assume that the trajectory moves eventually 
through the whole support of the measure. If the latter assumption does not hold, for 
example, if the system lives on a certain energy shell, reduce the underlying space 
accordingly. Then, starting in a macro-state of low measure (i.e. low entropy) the 
system will most likely propagate into a macro-state that occupies a larger measure 
(entropy) and finally arrive the macro-state of maximal measure, the so-called equi-
librium state (see Fig. 1). The reverse process will not be seen for a typical trajectory. 
Starting at equilibrium one will stay in equilibrium practically forever and most 
likely not propagate into the tiny areas that stand for macro-states of lower entropy 
in reasonable times.
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Fig. 1 This figure illustrates the growth of entropy of entropy under time evolution. Each point 
inside of the box stands for a micro-state of the system. The limitation of the box is made to illustrate 
that the static measure is normalizable. The different areas marked in the box stand for different 
macro-states. We assume that the system starts in a macro-state of low entropy, in the illustration this 
is the macro-state denoted by 1, the initial micro-state is marked with a cross. The propagation of 
the state goes along the dotted line. The trajectory thus goes through the macro-state number 2 and 
eventually reaches equilibrium, thus from boxes of smaller size to large ones. Since the Boltzmann 
entropy is defined as the logarithm of these sizes, one readily sees the growth in entropy, i.e. the 
second law. Note, that the sizes of the different boxes are drawn in a way to make them visible. 
For most practical situations one should think of the area occupied by macro-state number 2 a 
zillion times smaller than equilibrium, the area of macro-state 1 a zillion times smaller than that of 
macro-state 2. We wish to emphasize the simplicity and stability of the argument: Think of some 
trajectory starting in one of the regions of small size in this picture. It will practically always show 
an increase of entropy of the macro-states it visits 

4 Emergence of Irreversibility 

Since Boltzmann’s, Clausius’ and Maxwell’s findings that the physics of the macro-
scopic world, in particular of gases, can be explained by the motion of atoms, there has 
been a vivid discussion about the emergence of irreversibility: While the dynamics 
of the atoms is generally assumed to be time-reversal invariant (observing Newton 
laws), the dynamics of macroscopic objects show in general a preferred direction 
of time. This seeming discrepancy has been coined the problem of irreversibility 
respectively of the thermodynamic arrow of time. 

There have been several attempts to explain the emergence of the arrow of time. In 
the following we will mention the most important ones. Please note again, that we will 
in the following focus on in-principle possibilities of how a microscopic reversible 
system can lead to an irreversible behavior of the corresponding macroscopic world 
and not aim to explain the source of irreversibility in our universe. 

4.1 Microscopic Irreversibility 

One possibility is the trivial one: assuming an irreversible model for the microscopic 
system. This would not only lead to the trivial fact that there will be a preferred 
direction of time on the macroscopic level, it is also possible to argue for the less
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obvious fact that the quality of irreversible systems is very much the way as we 
experience. The second law of thermodynamics says much more, not only that there 
is a preferred direction of time on the macroscopic level. 

4.2 Fluctuation Hypothesis 

“One has the choice of two kinds of pictures. One can assume that the entire universe 
finds itself at present in a very improbable state. However, one may suppose that the 
eons during which this improbable state lasts, and the distance from here to Sirius, 
are minute compared to the age and size of the universe. There must then be in the 
universe, which is in thermal equilibrium as a whole and therefore dead, here and 
there relatively small regions of the size of our galaxy (which we call worlds), which 
during the relatively short time of eons deviate significantly from thermal equilibrium. 
Among these worlds the state probability increases as often as it decreases. For the 
universe as a whole the two directions of time are indistinguishable, just as in space 
there is no up or down. However, just as at a certain place on the earth’s surface we 
can call “down” the direction toward the center of the earth, so a living being that 
finds itself in such a world at a certain period of time can define the time direction 
as going from less probable to more probable states (the former will be the “past” 
and the latter the “future”) and by virtue of this definition he will find that this small 
region, isolated from the rest of the universe, is “initially” always in an improbable 
state. This viewpoint seems to me to be the only way in which one can understand 
the validity of the second law and the heat death of each individual world without 
invoking an unidirectional change of the entire universe from a definite initial state 
to a final state”. [ 6]. 

If there is a thing in Boltzmann’s work which has not been carefully thought 
to the end, it is the idea he presents in this quote. Before being too harsh with the 
criticism one has to note that Boltzmann was not so much interested in explaining 
mechanisms on a global scale, but deriving the laws of thermodynamics from the 
kinetic theory of gases for situations that are empirically accessible. He was very 
skeptical with the idea of extrapolating his thoughts to a larger scale: “If perhaps this 
reduction of the second law to the realm of probability makes its application to the 
entire universe appear dubious, yet the laws of probability theory are confirmed by all 
experiments carried out in the laboratory” [ 5]. It is, of course, true that, for a system 
of Newtonian particles in a box, arbitrary large fluctuations in the entropy will occur 
if one just waits long enough. This fact is combined with an anthropic principle, 
i.e., the idea that a living being needs a large deviation from equilibrium to exist. 
Under the condition that living beings exist one arrives at states of very low entropy. 
The idea that this explains the arrow of time in our universe is called “fluctuation 
hypothesis”. The hypothesis has been refuted by Eddington [ 16]: Assume that we 
are in a fluctuation which allows for the existence of living beings, for example a 
certain number of persons attending a conference. Still one should expect to have 
chaotic behavior outside of the venue of this conference, which is in contradiction
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to what we in fact see in our world. In other words: conditioning on the existence 
of one person who thinks about nature, the existence of another being requires even 
more order and is thus very unlikely. Using random fluctuations as an argument and 
the anthropic principle, one should thus expect the existence of a single being, or 
even a single brain [ 10] without a body to exist in this completely chaotic world. 

4.3 Past Hypothesis 

One possible option is to use Boltzmann’s argument that explain the second law from 
kinetic gas theory on the global scale. The idea, which is nowadays often referred to 
as “past hypothesis” in the literature [ 2], goes back to Boltzmann [ 6] “The second 
law of thermodynamics can be proved from the mechanical theory if one assumes 
that the present state of the universe, or at least that part which surrounds us, started to 
evolve from an improbable state and is still in a relatively improbable state. Hence.... 
the system will initially be in an improbable state, and ... will always precood to 
more probable states.” 

Boltzmann’s idea was that one just has to assume that initially the system was in 
a macro-state of low entropy. He explains later, that there might be micro-states that 
in fact – as Zermelo explains – propagate into macro-states of even smaller entropy, 
however, these micro-state are extremely rare and can thus be excluded. To explain 
the assumption in more detail we give a slightly modified version proposed by Chen 
[ 13]: 

“We can introduce this as an explicitly time-asymmetric postulate in the theory, 
by using the Past Hypothesis: 

Past Hypothesis (PH) At the initial time of the universe, the micro-state of the 
universe is in a low-entropy macro-state. 

Given that some micro-states are anti-entropic, it is standard to introduce a proba-
bility distribution over the micro-states compatible with the low-entropy macro-state: 

Statistical Postulate (SP) The probability distribution of the initial micro-state of 
the universe is given by the uniform one (according to the natural measure) that is 
supported on the macro-state of the universe. 

However, a detailed probability distribution may be unnecessary. In the typicality 
framework, we just need to be committed to a typicality measure: 

Typicality Postulate (TP) The initial micro-state of the universe is typical inside the 
macro-state of the universe.” 

The “natural measure” the author refers to is of course the static measure, i.e., the 
measure that is invariant under the dynamics of the system. 

The past Hypothesis thus lifts the assumptions Boltzmann made for laboratory 
systems to the global scale.
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4.4 Non-normalizable Invariant Measure 

In this manuscript we will focus on yet another possible explanation of the emergence 
of an arrow of time, namely an universe without any equilibrium state at all. The 
central idea of our investigation goes back to the works of Antonov ([ 3]), Lynden-
Bell ([ 25]), Padmanabhan ([ 28]) and Carroll and Chen ([ 1, 9, 11]). It goes as follows: 
assume that for any macro-state which can be accessed by the system, there is another 
macro-state which can be also accessed by the system and covers a larger number of 
micro-states. No matter the macro-state of the system, there is always a macro-state 
of larger disorder which can be accessed as time evolves. Consequently, for most 
initial micro-states from any macro-state of the system, there will be propagation to 
a macro-state of higher entropy (see Fig. 2). Of course, all this is only possible under 
the assumption that the invariant measure for the system can not be normalized and 
in particular under the absence of an equilibrium state. 

Note, that the goal of this paper is not to find a possible explanation for our 
universe but to explain the in-principle idea on how a time reversal system can give 
irreversibility on the macroscopic level. Therefore, we will define a model universe 
where the growth of entropy can be shown for typical initial conditions. To prove 
this with mathematical rigor for a suitable model is a work in progress, in the present 
manuscript we will summarize the ideas that lead to a suitable model and give some 
heuristic ideas to argue for its properties. We will restrict ourselves to classical 
Newtonian gravity, neither considering quantum cases nor general relativity. 

There are already results in that direction. Our findings are in perfect agreement 
with [ 19] where a simple toy model – a non-interacting gas in .R3 – is discussed. 
Considering the time dependence of the momentum of inertia . I , the authors argue 
that, for any initial state, . I has a parabolic form. Note that the number of micro-

Fig. 2 This figure should be understood in the same way as Fig. 1 with the difference that there 
is no normalizable measure and thus no equilibrium state. Thus one has to think of an unbounded 
situation. We assume that there are ever growing regions depicting the different macro-states. No 
matter where we start with the time evolution, there will always be macro-states of larger volume 
and one might expect that a general trajectory will typically propagate from macro-states of ever 
growing volume. In contrast to 1 one needs not assume that the trajectory starts in a very special 
state, namely a state of low entropy. For practically any initial state one expects a growth in entropy
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Fig. 3 This figure illustrates the importance of considering all relevant macro-variables when 
calculating the change in entropy of a system. Consider a system is described by the macro-variables 
.A and . B. Assume that the sets of all micro-states corresponding to different values of .A behave 
like drawn in Fig. 2, that is that the number of micro-states changes for the different values of . A
and one might expect a growth in entropy while the value of the macro-variable changes from one 
to two and goes on to three. However, it might be, that considering the macro-variables .A and . B
together, the respective number of micro-states stays constant. In the situation illustrated the values 
for . A and.B together changes from.(1, a) to .(2, b). The respective regions have identical volume. 
As long as the full description of the macro-state (up to irrelevant features) is not considered one 
can not judge whether the entropy is in fact growing or not 

states grows with . I . On a first view this seems to indicate that the entropy of the 
system also has a parabolic shape. However, one has to be careful. While this toy 
model is handy to explain the main features, it does in fact not result in a growth 
of entropy as the authors explain in a footnote of [ 19] “If we adopted the choice of 
macro-variables from the kinetic theory of gases ... then entropy would never change 
in the toy model”. 

The argument for this can found in the master thesis of Paula Reichert [ 30]: 
Not only the macro-variable . I changes as time evolves, also the local temperature 
.T (defined as the variance of the momenta) of the system does. Considering both 
macro-variables, i.e., taking the intersection of all micro-states with the right value 
of . I and all micro-states with the right local temperature one finds that the volume 
of this set is in fact conserved under time evolution (Fig. 3). 

4.4.1 Macro-Variables and Entropy 

The toy model discussed above shows that defining the entropy by counting the 
number of micro-states for given values of macro-variables is dangerous. One has 
to be sure, that the macro-variables one considers give a complete description of the 
macro-state of the system. Assume that the macro-states a system is in during its 
time evolution are described by the macro-variables .A, B, C . Considering a sub-set 
of those three and counting all micro-states related to this sub-set of macro-variables 
and taking the logarithm will not give the Boltzmann entropy. In the toy model 
example above, taking . I or .T alone this procedure would once give a value which
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increases once a value that decreases. None of them can be seriously identified with 
entropy, which remains in fact constant for the system at hand. 

But how can we be sure that . I and .T give a full description of the system? Or 
in general, that for the model under consideration a certain set of macro-variables 
suffices to uniquely describe the macroscopic state? This is hard to answer and it is 
not surprising that Boltzmann’s entropy formula does not use macro-variables but 
rather the density on phase space to describe the macro-state of a gas instead: The 
entropy is given by the logarithm of the number of micro-states which approximate 
a certain phase-space density. 

For the simple toy model, i.e. gas evolving freely, particles will stay independent. 
By Liouville’s theorem it follows that the density of the gas will remain unchanged 
up to phase-space-volume-conserving transformations of the support of the function. 
It follows that the number of micro-states that describe this density will be a constant 
of motion, thus the entropy will not change. Thus to get a model which shows the 
behavior described in [ 11] one has to modify the toy-model. 

In [ 22] Lazarovici and Reichert claim that for a many particle system evolving in 
.R

3 and subject to Newtonian gravity one will get an increase in entropy for practically 
all initial states of the system (up to a Lebesgue-zero set). To support their argument 
they calculate the number of micro-states for a given set of variables. However, they 
overlook that for very long times also such a system will cool down: It is known that 
any gravitating system which contains more than two particles will be unstable. So in 
the very long run one should not expect clusters, but only singles and pairs of particles. 
Their centers of masses will – on the very long time scale – move freely. Thus in 
the long run the system will behave exactly like the simple toy model discussed in 
[ 19, 30] and above. 

This shows that temperature is in fact an important macro-variable of the system 
and not a simple function of the kinetic energy. 2

4.4.2 Confined Universe 

As explained above, a.N -particle system with Newtonian gravity that is not confined 
will asymptotically approach the behavior of a free gas as time goes to infinity, 
hence the entropy of the system will stay bounded under its propagation. This might 
still result in an growth of the entropy for not too large times for a large class of 
initial states, however, the entropy increase will eventually slow down and entropy 
will remain bounded as times goes to infinity. Since we are in a situation of a non-
normalizable static measure, typicality arguments are quite tricky. Thus the quality 
of the macro-states – in particular their probability – that show a growth in entropy is

2 Note that temperature is a form of kinetic energy, but not kinetic energy per se. A stone falling 
in a gravitational field in the absence of friction will increase the total kinetic energy of the system 
while the temperature of the stone remains unchanged. While temperature is proportional to the 
variance in the momentum-direction and thus directly related to disorder of the system and thus 
entropy, kinetic energy is not. That is why temperature should be used as a macro-variable, not 
kinetic energy. 
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unclear. If the number of micro-states which belong to the macro-states with entropy 
close to the maximum is the vast majority, why should it be natural to expect that 
the initial state belonged to a macro-state whose entropy would grow under time-
evolution? 

This is a tricky problem and we suggest another modification of the models dis-
cussed so far. The keyword for this modification is mixing: High kinetic energy of the 
system will result in a high temperature if we manage to introduce a spatial mixing 
of the particles. This can be achieved by putting the system on a torus (or some other 
bounded region, preferably with periodic boundary conditions). 

Therefore, the phase space of the system we wish to investigate is given by 

.P = S
×3N
1 × R

3N (1) 

where.S1 denotes the one-dimensional sphere. The dynamics of the system is given 
by the Newtonian equations of motion with attractive Coulomb interaction, i.e., for 
.X = (Q, P) ∈ P we have 

. Q̇ =P
(
Ṗ

)
j =

∑

k /= j

qk − q j

|qk − q j |3

where for any vector .A ∈ R
3N the .(A) j stands for the coordinates of the . j th three-

vector component of . A, i.e. .(A) j = a j ∈ R
3 for .A = (a1, a2, . . . , aN ) ∈ R

3N . 
Antonov ([ 3]) expected that for a similar system the entropy grows unboundedly. 

The heuristic argument for that is the following: 
Since the potential energy of the system is unbounded from below due to the 

Coulomb singularity, the kinetic energy will exceed any limit. Due to the mixing of 
the particles’ positions – caused by the evolution on the torus – the particles will not 
be ordered according to their velocity. Thus a growth in the kinetic energy results in 
an increase in temperature. Hence, the system will heat up more and more and the 
respective phase space volume will thus grow further and further. 

To make the heuristic argument clearer, think of two particles which are very close 
to each other and, due to attractive Coulomb interaction and since the other particles 
are relatively far away, form a rather stable system. Like a double star these two 
particles will rotate around their center of mass. Forces (analogous to tidal forces) 
coming from these two particles will act on all other particles in the system and heat 
them up, while the two particles will get closer and closer. In the general setting, i.e., 
all the particles interacting with each other via Coulomb interactions, we expect that 
such clusters will form and the same argument as before applies. 

To get a model in which the entropy can grow infinitely, it is crucial that the 
momenta of the particles are not bounded and hence the phase-space of the system 
has infinite volume. Otherwise, the invariant measure – which for this model is the 
Lebesgue measure on phase space – would be normalizable and entropy would be 
bounded from above (cf. [ 12]).
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Note that the relevance of the fact that we consider a system on a torus (or some 
other region of finite volume) is twofold: First, it results in a mixing of the positions as 
described above and thus guarantees that an increase in the kinetic energy is translated 
in an increase in temperature. Second, on .R

6N , one shall not expect a growth of the 
kinetic energy above any threshold in the first place. As time evolves, the particles 
will increase their distances further and further and the transfer of potential energy 
into kinetic energy will eventually come to an end. This is different on the torus, 
where the gravitational interaction will be relevant on all time-scales. 

There are no cosmological observations that indicate that our universe may not be 
finite in space. Hence, the proposed model might indeed give an explanation which 
is in principle valid for our universe. 
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The Ergodic Hypothesis: A Typicality 
Statement 

Paula Reichert 

Abstract This paper analyzes the ergodic hypothesis in the context of Boltzmann’s 
late work in statistical mechanics, where Boltzmann lays the foundations for what 
is today known as the typicality account. I argue that, based on the concepts of 
stationarity (of the measure) and typicality (of the equilibrium state), the ergodic 
hypothesis, as an idealization, is a consequence rather than an assumption of Boltz-
mann’s account. More precisely, it can be shown that every system with a stationary 
measure and an equilibrium state (be it a typical state with respect to the phase space 
or the time average) behaves essentially as if it were ergodic. I claim that Boltzmann 
was aware of this fact as it grounds both his notion of equilibrium, relating it to the 
thermodynamic notion of equilibrium, and his estimate of the fluctuation rates. 

1 Introduction 

The ergodic hypothesis has been formulated by [ 1, 2] and has famously been dis-
cussed by [ 3] in their influential encyclopedia article on statistical mechanics, where 
they provide an overview of and comment on Boltzmann’s work in statistical physics. 

Ever since, the ergodic hypothesis has been debated controversially. This refers 
not only to the status of the ergodic hypothesis within Boltzmann’s work (see, e.g., 
[ 4]), but more generally to its applicability with respect to realistic systems (see, e.g., 
[ 5, 6]) and its relevance for physics as such (see, e.g., [ 7– 9]). 

Despite its debatable status, the concept of ergodicity has attracted a lot of atten-
tion. Today there even exists a proper branch of mathematics, so-called ergodic 
theory, with a plentitude of rigorous mathematical results (most notably, the results 
of [ 10– 12]; see [ 13] for an overview). 
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Interestingly enough, though, Boltzmann himself never highlighted the ergodic 
hypothesis. Although he introduces it in his early work, he mentions it not even once 
in his two volumes on gas theory, which constitute his opus magnum on statistical 
mechanics (cf. [ 14]). Still, he seems to rely on ergodicity, at least as an idealization, 
also in his later work like, for instance, when he estimates the rate of fluctuations in 
the letter to Zermelo (cf. [ 15]). 

This said, has ergodicity been a fundamental assumption of Boltzmann as the 
Ehrenfests suggest? If so, why didn’t he make this more explicit? This seems the 
more surprising as he does emphasize the explanatory value of other concepts. For 
instance, he stresses the fact that equilibrium is a typical state, i.e., a state which 
is realized by an overwhelming number of micro configurations, at several points 
throughout his work (see, e.g., [ 14– 16]). 

In this paper, I argue that ergodicity, as an idealization, or essential ergodicity, 
in the strict sense (as defined in Sect. 3.3 below), is a consequence rather than an 
assumption of Boltzmann’s approach. Based on this, I claim that the ergodic hypoth-
esis should be read as a typicality statement, in a way analogous to how Boltzmann 
taught us to read the H-theorem (see [ 15, 16]). That is, just as a dynamical system 
of many particles doesn’t approach equilibrium for all, but for typical initial condi-
tions (given a low-entropy initial macrostate) and stays there not for all, but for most 
times, in the case of ergodicity, not all, but typical systems behave not strictly, but 
essentially, that is qualitatively, as if they were ergodic. 

To make this point precise, what can be shown is the following: On typical trajec-
tories, the time and phase space averages of physical macrostates coincide in good 
approximation. This property of the dynamics, which I call ‘essential ergodicity’, 
follows from the stationarity of the measure and the typicality of the equilibrium 
state alone. 

2 The Ergodic Hypothesis 

To discuss the ergodic hypothesis, we need to introduce the realm of Boltzmann’s 
statistical mechanics: the theory of measure-preserving dynamical systems. 

2.1 Measure-Preserving Dynamical Systems 

Let (.Γ,B(Γ), T, μ) denote a Hamiltonian system. For.N particles,.Γ ∼= R
6N is called 

phase space. It is the space of all possible microstates .X of the system, where a 
point .X = (q, p) in .Γ represents the positions and momenta of all the particles: 
.(q, p) = (q1, ..., q3N , p1, ..., p3N ).
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The Hamiltonian flow .T is a one-parameter flow .T t (q, p) = (q, p)(t) on . Γ
with . t representing time. It is connected to the Hamiltonian vector field .vH as fol-
lows: .vH (T t (q, p)) = dT t (q, p)/dt . In other words, the flow lines are the inte-
gral curves along the Hamiltonian vector field, where the latter is specified by 
.vH = (∂ H/∂p,−∂ H/∂q). This is the physical vector field of the system, gener-
ated by the Hamiltonian . H , and the flow lines represent the possible trajectories of 
the system. Finally, . μ refers to the Liouville measure, 

dμ = 
3NΠ

i=1 

dqi dpi , (1) 

or to any other stationary measure derived thereof. 
Note that we call a measure . μ stationary (with respect to . T ) if and only if the 

flow .T is measure-preserving (with respect to . μ). Given a Hamiltonian system, it 
follows from Liouville’s theorem that the Liouville measure is conserved under the 
Hamiltonian phase flow. That is, for every .A ∈ B(Γ), 

.μ(T −t A) = μ(A). (2) 

Since the Liouville measure is just the.6N -dimensional Lebesgue measure, this says 
that phase space volume is conserved under time evolution. 

If we introduce the notion of the time-evolved measure, .μt (A) := μ(T −t A), we  
can reformulate the condition of stationarity as follows. A measure . μ is stationary 
if and only if, for every .A ∈ B(Γ), 

.μt (A) = μ(A). (3) 

According to this equation, the measure itself is invariant under time translation, 
which is the main reason for physicists to accept it as the measure grounding a 
statistical analysis in physics (see, e.g., [ 3, 17, 18]). In practice, we are not concerned 
with the Liouville measure per se, but with appropriate stationary measures derived 
thereof. 1

1 Consider, for instance, an isolated system. Within that system, total energy. E is conserved. Hence, 
trajectories are restricted to the constant-energy hypersurface .ΓE = {(q, p) ∈ Γ|H(q, p) = E}, 
from which it follows that the microcanonical measure 

. dμE =
3NΠ

i=1

dqi dpi δ(H(q, p) − E)

is the appropriate stationary measure of the dynamics in that case.



288 P. Reichert

2.2 Variants of the Ergodic Hypothesis 

Within the framework of Hamiltonian systems or, more generally, measure-preserving 
dynamical systems, we can analyze Boltzmann’s ergodic hypothesis. 

Let again .(Γ,B(Γ), T, μ) be a measure-preserving dynamical system and . A ∈
B(Γ). Let, in what follows, .μ(Γ) = 1. 2 We call 

.μ(A) =
∫

Γ

χA(x)dμ(x) (4) 

the ‘phase space average’ of . A with .χA being the characteristic function which is 1 
if .x ∈ A and 0 otherwise. Further we call 

. Â(x) = lim
T →∞

1

T
∫ T

0
χA(T t x)dt (5) 

the ‘time average’ of .A for some .x ∈ Γ. Here it has been proven by [ 10] that the 
infinite-time limit exists pointwise almost everywhere on . Γ and the limit function 
. Â(x) is integrable. 

A dynamical system is called ergodic if and only if, for all .A ∈ B(Γ) and almost 
all .x ∈ Γ (i.e. for all . x except a measure-zero set), the time and phase averages 
coincide: 

.μ(A) = Â(x). (6) 

In other words, a system is called ergodic if and only if, for almost all solutions, the 
fraction of time the system spends in a certain region in phase space (in the limit 
.t → ∞!) is precisely equal to the phase space average of that region. 

Historically, the ergodic hypothesis has been formulated differently. In its original 
version due to [ 1] (cited by [ 3]), it refers to the assertion that a trajectory literally 
has to go through every point in phase space (more precisely, in the constant-energy 
hypersurface). But this would imply that there is only one solution with all possible 
microstates belonging to one and the same solution. This has been proven impossible 
by [ 21, 22]. 

In a weaker formulation, the so-called ‘quasi-ergodic hypothesis’ demands that a 
trajectory has to come arbitrarily close to every point in phase space (see [ 3]). Later, 
the results of [ 10, 11] established the precise conditions under which equality of the 
time and phase space average is obtained. 3

2 Throughout this paper, we deal with systems where . Γ is finite and, hence, . μ is normalizable. In 
that case, we can set .μ(Γ) = 1 without loss of generality. The hard case of infinite phase spaces 
has to be discussed elsewhere (see [ 19, 20] for a first discussion). 
3 Reference [ 10] gives a definition of ergodicity in terms of invariant sets (where a set.A ∈ B(Γ) is 
called invariant if and only if .T −1 A = A). If, for all sets.A ∈ B(Γ) with.T −1 A = A, 

.μ(A) = 0 or μ(A) = 1,
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For realistic physical systems, this equality of the time and phase space average— 
that is, ergodicity—turned out to be extremely hard to prove, if it can be proven at 
all (it took almost 50 years to extend the proof of [ 23] which held for the model of 
one billiard ball on a 2-dimensional table to the full model of .N ≥ 2 hard spheres in 
a container with periodic boundary conditions, i.e. a torus, of dimension .d ≥ 2; see  
[ 24]). 

At this point, the question arises: What if we were not interested in the exact 
coincidence of the time and phase space average in the first place? What if all we 
need is an approximate equality of the time and phase space average on typical 
trajectories? The point I want to make is the following: Boltzmann, being concerned 
with the analysis of realistic physical systems, need not be and presumably was 
not interested in ergodicity in the strict sense. According to [ 3], Boltzmann used 
ergodicity to estimate the fraction of time a system spends in a certain macrostate. 
To obtain such an estimate, however, it suffices to establish a result qualitatively 
comparable to ergodicity: an almost equality of the time and phase space average 
of physical macrostates on typical trajectories. This is precisely where the notion of 
essential ergodicity comes into play. 

3 Essential Ergodicity 

We need one last ingredient to grasp the notion of essential ergodicity and that is the 
notion of typicality of macro- and microstates. We will then find that, given a station-
ary measure and a typical macrostate, that is, an equilibrium state in Boltzmann’s 
sense, a typical system behaves essentially as if it were ergodic. 

3.1 Typicality and Boltzmann’s Notion of Equilibrium 

Given a measure on the space of possible states of the system—like a volume measure 
on phase space—this is naturally a measure of probability or typicality. 4 Let again 
. μ denote the volume measure on . Γ. We call a measurable set .A ⊂ Γ ‘typical’ (with 
respect to . Γ) if and only if 

.μ(A) = 1 − ε (7) 

then the system is called ‘ergodic’. Thus a system is called ‘ergodic’ if and only if all invariant sets 
are of full or zero measure. In other words, there exist no two (or more) disjoint invariant sets of 
non-zero measure. The two definitions of ergodicity relate to one another via Birkhoff’s theorem.
4 There is a little caveat to this statement. While it is definitely true whenever phase space is finite and 
the measure is normalizable, one has to be careful with infinite phase spaces and non-normalizable 
measures. For problems related to the latter, see [ 25] or [  19]. The distinction between the notions 
of probability and typicality has been drawn and discussed elsewhere (see, e.g., [ 26, 27] or [  28]). 
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for.0 < ε << 1. This definition of ‘typical sets’ directly entails a definition of ‘typical 
points’ (cf. [ 28]). We say that a point . x is ‘typical’ (with respect to . Γ) if and only if 
.x ∈ A and . A is typical with respect to . Γ. 

In Boltzmann’s statistical mechanics, we are concerned with ‘points’ (microstates) 
and ‘sets’ (macro-regions). Macro-regions are regions of phase space corresponding 
to physical macrostates of the system. More precisely, every microstate . X , repre-
sented by a point.(q, p) on. Γ, belongs to respectively determines a certain macrostate 
.M(X), represented by an entire region .ΓM ⊂ Γ—the set of all microstates realiz-
ing that particular macrostate. While a microstate comprises the exact positions and 
velocities of all the particles, .X = (q1, ..., qN , p1, ..., pN ), a macrostate .M(X) is 
specified by the macroscopic, thermodynamic variables of the system, like volume 
. V , temperature . T , and so on. By definition, any two macrostates .Mi and .M j are 
macroscopically distinct, hence there are only finitely many macrostates.Mi , and all 
macrostates together provide a partition of phase space into disjoint ‘macro regions’ 
.ΓMi with .Γ = Un

i=1 ΓMi . Here it is a consequence of the large number of particles 
that every macrostate .M(X) is realized by a huge number of microstates .X and, 
hence, the precise way of partitioning doesn’t matter. 

In this set-up, Boltzmann defined ‘equilibrium’ precisely as the typical macrostate 
of the system. 

Definition 1 (Boltzmann equilibrium) Let .(Γ,B(Γ), T, μ) be a dynamical system. 
Let. Γ be partitioned into finitely many disjoint, measurable subsets. ΓMi , i = 1, . . . , n
by some (set of) physical macrovariable(s).Mi , i.e.,.Γ = Un

i=1 ΓMi . Then a set. ΓEq ∈
{ΓM1 , ..., ΓMn } with phase space average 

.μ(ΓEq) = 1 − ε (8) 

where.ε ∈ R,.0 < ε << 1, is called the ‘equilibrium set’ or ‘equilibrium region’. The 
corresponding macrostate.MEq is called the ‘Boltzmann equilibrium’ of the system. 

Be aware that this definition is grounded on a particular, physical macro partition 
of phase space. In other words, it is not an arbitrary value of . ε which, when given, 
determines an equilibrium state—such a definition would be meaningless from the 
point of physics. Instead, it is a partition determined by the physical macrovariables 
of the theory, which is given, and it is with respect to that partition that a region 
of overwhelming phase space measure, if it exists, defines an equilibrium state in 
Boltzmann’s sense (and by the way determines the value of . ε). 

At this point, it has been Boltzmann’s crucial insight that, for a realistic physical 
system of.N ≈ 1024 particles (where, for a medium-sized object, we take Avogadro’s 
constant) and a partition into macroscopically distinct states, there always exists a 
region of overwhelming phase space measure (see, e.g., [ 15]). 5 This follows essen-
tially from the vast gap between micro and macro description of the system and the

5 [ 29] proves the existence of a region of overwhelming phase space measure for a large class of 
realistic physical systems. 
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fact that, for a large number of particles, small differences at the macroscopic level 
translate into huge differences in the corresponding phase space volumes. 

To obtain an idea of the numbers, consider a gas in a medium-sized box. For 
that model, [ 30, 31] estimates the volume of all non-equilibrium regions together as 
compared to the equilibrium region to be: 

.
μ(

Un
i=1 ΓMi \ ΓEq)

μ(ΓEq)
= μ(Ω \ ΓEq)

μ(ΓEq)
≈ 1 : 10N (9) 

with .N ≈ 1024. This implies, with .μ(ΓEq) ≈ μ(Ω), that . ε is of the order . 1 : 10N ≈
1 : 101024 = 1

101000000000000000000000000 .

Both Boltzmann’s realization that equilibrium is a typical state and his under-
standing that any two distinct macrostates relate to macro-regions that differ vastly 
in size provided the grounds for his explanation of irreversible behaviour (cf. [ 14, 
15]; see [ 9, 32– 34]) for further elaboration of this point). In the following, however, 
we are only concerned with ergodicity and, related to that, a system’s long-time 
behaviour. 

3.2 Precise Bounds on the Time and Phase Space Average 
of the Equilibrium State 

In what follows, we give precise bounds on the time average of the equilibrium 
state. Therefore, consider a dynamical system with a stationary measure . μ and an 
equilibrium state .Γeq in the sense of Boltzmann. That is, .μ(ΓEq) = 1 − ε. 

To be able to formulate the bound on the time average and, later, the notion of 
‘essential ergodicity’, we have to distinguish between a ‘good’ set G and a ‘bad’ set 
B of points .x ∈ Γ. Let, in what follows, .B be the ‘bad’ set of points for which the 
time average of equilibrium .Γ̂Eq(x) is smaller than .1 − kε (with .1 ≤ k ≤ 1/ε). All 
points in this set determine trajectories which spend a fraction of less than . 1 − kε

of their time in equilibrium. Let further .G be the ‘good’ set of points with a time 
average .Γ̂Eq(x) of at least .1 − kε. All points in this set determine trajectories that 
spend a fraction of at least .1 − kε of their time in equilibrium. To be precise, 

.B := {x ∈ Γ|Γ̂Eq(x) < 1 − kε}, G := {x ∈ Γ|Γ̂Eq(x) ≥ 1 − kε}. (10) 

While, for a realistic physical system, ergodicity is hard to prove – if it can be 
proven at all –, essential ergodicity is not. In fact, it follows almost directly from the 
stationarity of the measure and the typicality of the equilibrium state. To be precise, 
with respect to the two sets . B and.G the following can been shown. For all . ε, k ∈ R

with .0 < ε << 1 and .1 ≤ k ≤ 1/ε: 

.μ(B) < 1/k, μ(G) > 1 − 1/k. (11)
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The proof can be found in [ 35]. An essential ingredient entering the proof is the 
pointwise existence and integrability of the time average (cf. [ 10]). Hence, in the case 
of non-ergodic systems, the time average of equilibrium need not attain a fix value 
on (almost all of) . Γ—in fact, it may have different values on different trajectories 
–, but still it exists (pointwise almost everywhere) and this suffices to estimate the 
size of the set of trajectories with a time average smaller (or larger) than a particular 
value. 

To grasp the full meaning of Eq. 11, consider a physically relevant value of . k. 
Recall that, for a medium-sized macroscopic object, . ε is tiny: .ε ≈ 10−N with . N ≈
1024. In that case, one can choose . k within the given bounds (.1 ≤ k ≤ 1/ε) large 
enough for .μ(B) to be close to zero and .μ(G) to be close to one. Consider, for 
example, 

.k = 1/
√

ε. (12) 

In that case, we distinguish between the ‘good’ set .G of trajectories which spend at 
least .1 − √

ε of their time in equilibrium and the ‘bad’ set .B of trajectories which 
spend less than .1 − √

ε of their time in equilibrium. And we obtain: 

.μ(B) <
√

ε, μ(G) > 1 − √
ε. (13) 

Given the  value of . ε from above, .ε ≈ 10−1024 , it follows  that .
√

ε ≈ 10−1023 . Conse-
quently, the equilibrium region is of measure.μ(ΓEq) ≈ 1 − 10−1024 and the measures 
of the sets . B and .G are 

.μ(B) < 10−1023 , μ(G) > 1 − 10−1023 . (14) 

Note that. B is now the set of trajectories which spend less than.1 − 10−1023 and. G the 
set of trajectories which spend at least .1 − 10−1023 (!) of their time in equilibrium. 
We thus find that trajectories which spend almost all of their time in equilibrium 
are typical whereas trajectories which spend less than almost all of their time in 
equilibrium are atypical! 

The converse statement has be proven as well ([ 36, 37]; see [ 35] for a different 
proof). It says that if there exists a region.ΓEq ' ⊂ Γ in which by far most trajectories 
spend by far most of their time, then this region has very large phase space measure. 
To be precise, if there exists a region .G ' with .μ(G ') = 1 − δ such that .∀x ∈ G ': 
.Γ̂Eq '(x) ≥ 1 − ε', then the following holds: 

.μ(ΓEq ') ≥ (1 − ε')(1 − δ). (15) 

Here we are again interested in those cases where. δ and. ε' are very small,. 0 < δ << 1
and .0 < ε' << 1 (while the result holds for other values of . δ and . ε' as well). 

This converse result tells us that, if there exists a state in which a typical trajectory 
spends by far most of its time, then this state is of overwhelming phase space measure.
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Why is this converse statement interesting? It doesn’t start from Boltzmann’s 
notion of equilibrium. Instead, it starts from a thermodynamic or thermodynamic-
like notion of equilibrium. 

According to a standard thermodynamics textbook (like, e.g., [ 38] or [  39]), a 
thermodynamic equilibrium is a state in which a system, once it is in that state, 
stays for all times. In what follows, we give a definition which relaxes that standard 
definition a little bit in that it allows for rare fluctuations out of equilibrium and for 
some atypical trajectories (all .x /∈ G ') that don’t behave thermodynamic-like. 6

Definition 2 (Thermodynamic equilibrium) Let.(Γ,B(Γ), T, μ)be a dynamical sys-
tem. Let .Γ be partitioned into finitely many disjoint, measurable subsets . ΓMi (i =
1, ..., n) by some (set of) physical macrovariable(s) .Mi , i.e., .Γ = Un

i=1 ΓMi . Let  
.G ' ⊂ Γ with .μ(G ') = 1 − δ and .0 < δ << 1. Let  .0 < ε' << 1. A set  . ΓEq ' ∈
{ΓM1 , ..., ΓMn } (connected to a macrostate .MEq ') with time average 

.Γ̂Eq '(x) ≥ 1 − ε' (16) 

for all .x ∈ G ' is called a ‘thermodynamic equilibrium’. 

To summarize, we obtain that, for every dynamical system with a stationary mea-
sure and a state of overwhelming phase space measure, almost all trajectories spend 
almost all of their time in that state, and the other way round, given a state in which 
almost all trajectories spend almost all of their time, that state is of overwhelming 
phase space measure. Hence, an equilibrium state in Boltzmann’s sense is a thermo-
dynamic equilibrium and the other way round! 7

The only two assumptions which enter the proofs in [ 35] are:  

(a) that the measure is stationary (resp. the dynamics is measure-preserving), i.e., 
.μt (A) = μ(A) for all .A ∈ B(Γ) and 

(b) that there is a macrostate of overwhelming phase space measure, i.e., a Boltzmann 
equilibrium.ΓEq with .μ(ΓEq) = 1 − ε, or, for the reverse direction, a) and 

(c) that there is a state in which typical trajectories spend by far most of their time, 
i.e., a thermodynamic equilibrium.ΓEq ' with .Γ̂Eq ' ≥ 1 − ε'. 

Ergodicity doesn’t enter the proofs, nor do we get ergodicity out of it. However, we 
get something similar to ergodicity, what we call ‘essential ergodicity’.

6 References [ 40, 41] would call this a ‘thermodynamic-like equilibrium’ to draw the distinction 
between this notion and the standard textbook definition. 
7 Based on the apparently missing connection between the time and the phase space average of 
equilibrium, Frigg and Werndl assert that Boltzmann’s account of thermodynamic behaviour, which 
has later become known as the ‘typicality account’, is simply ‘mysterious’ [ 42, p. 918]. In follow-up 
papers (cf. [ 36, 37]) they even claim that the typicality account doesn’t relate to thermodynamics 
at all because it doesn’t draw the connection between Boltzmann’s definition of equilibrium (in 
terms of the phase space average) and the thermodynamic definition of equilibrium (in terms of the 
time average). Here essential ergodicity counters the critique and closes the explanatory gap as it 
connects the time and phase space averages of the equilibrium state in a mathematically precise 
way. 
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3.3 Essential Ergodicity 

While, for an ergodic system, the time and phase space averages exactly coincide for 
all but a measure-zero set of solutions, for an essentially ergodic system, the time 
and phase space averages approximately coincide on typical solutions. To be precise, 
the following definition applies. 

Definition 3 (Essential ergodicity) Let.(Γ,B(Γ), T, μ) be a dynamical system. Let 
. Γ be partitioned into finitely many disjoint, measurable subsets.ΓMi (i = 1, ..., n) by 
some (set of) physical macrovariable(s).Mi , i.e., .Γ = Un

i=1 ΓMi . Let.0 < ε << 1. A  
system is called ‘essentially ergodic’ if and only if 

.|Γ̂Mi (x) − μ(ΓMi )| ≤ ε (17) 

.∀i = 1, ..., n and .∀x ∈ G with .μ(G) ≥ 1 − δ, .0 < δ << 1. 

For a measure-preserving system with an equilibrium state (a Boltzmann or ther-
modynamic equilibrium), the Eq. 17 follows in a straightforward way from the two 
definitions of equilibrium given in Eqs. 8 and 16 and the corresponding results on 
the time and phase space average, Eqs. 14 and 15, respectively. 8

Theorem 1 (FAPP ergodic hypothesis) Let.(Γ,B(Γ), T, μ)be a measure-preserving 
dynamical system. Let there be an equilibrium state .MEq (a Boltzmann or thermo-
dynamic equilibrium) with corresponding equilibrium region .ΓEq ⊂ Γ. 

Then the system is essentially ergodic. In particular, there exists an .ε ∈ R with 
.0 < ε << 1 such that 

.|Γ̂Eq(x) − μ(ΓEq)| ≤ ε (18) 

.∀x ∈ G with .μ(G) ≥ 1 − δ, .0 < δ << 1. 

Proof We only prove Eq. 18. From that, the Eq. 17 follow directly. Let . 0 < δ', ε',
ε'' << 1. For the first direction of proof, consider a thermodynamic equilibrium, 
i.e., .Γ̂Eq(x) ≥ 1 − ε' for all.x ∈ G ' with.μ(G ') = 1 − δ'. It follows  from Eq.  15 that 
.μ(ΓEq) ≥ (1 − ε')(1 − δ') and, hence, 

. |Γ̂Eq(x) − μ(ΓEq)| ≤ ε' + δ' − ε'δ'.

Now set .G = G ', .δ = δ' and .ε = ε' + δ' − ε'δ'.

8 Note that the hard part of the proof of essential ergodicity is the proof of Eq. 14, which  is  the  
estimate on the time average of the Boltzmann equilibrium. This proof can be found in [ 35]. 
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For the other direction, consider a Boltzmann equilibrium, i.e., . μ(ΓEq) = 1 −
ε''. It follows from Eq. 11 that .μ(G '') > 1 − √

ε'' with . G '' = {x ∈ Γ|Γ̂Eq(x) ≥ 1 −√
ε''}. Hence, for all .x ∈ G '', 

. |Γ̂Eq(x) − μ(ΓEq)| ≤ ε''.

Now set .G = G '', .δ = √
ε'' and .ε = ε''. 

3.4 Scope and Limits of (Essential) Ergodicity 

Although the notion of essential ergodicity is weaker than the notion of ergodicity, 
it predicts qualitatively the same long-time behaviour. In particular, it tells us that a 
typical trajectory spends by far most of its time in equilibrium, where equilibrium is 
defined in Boltzmann’s way in terms of the phase space average, and it makes this 
notion of ‘by far most’ mathematically precise. 9 This justifies, in a rigorous way, 
Boltzmann’s assumption of ergodicity as an idealization or FAPP truth in analyzing 
the system’s long-time behaviour (as done, e.g., in his estimate of the fluctuation 
rate [ 15]). In other words, based on Boltzmann’s account, the ergodic hypothesis 
is well-justified. It is a good working hypothesis for those time scales on which it 
begins to matter that trajectories wind around all of phase space. 

Let us, at this point, use the above result on essential ergodicity to estimate the rate 
of fluctuations out of equilibrium. Recall that, according to Eq. 14, typical trajectories 
spend at least.1 − 10−1023 of their time in equilibrium, when equilibrium is of measure 
.μ(ΓEq) = 1 − 10−1024 (which is a reasonable value for a medium-sized object). In 
other words, they spend a fraction of less than.10−1023 of their time out of equilibrium, 
that is, in a fluctuation. If we assume that fluctuations happen randomly, in accordance 
with a trajectory wandering around phase space erratically, we obtain the following 
estimate for typical trajectories: a fluctuation of . 1 second occurs about every . 1010

23

seconds. But this means that a typical medium-sized system spends trillions of years 
in equilibrium as compared to one second in non-equilibrium, a time larger than the 
age of the universe! 10

So far we argued that essential ergodicity substantiates Boltzmanns assertions 
about the long-time behaviour of macroscopic systems. What about the short-time 
behaviour? In physics and philosophy, several attempts have been made to use ergod-
icity in some way or the other to explain a system’s evolution from non-equilibrium 
to equilibrium (see [ 43] or [  44, 45]; for earlier attempts as well as a thorough critique, 
see [ 9] and the references therein).

9 Goldstein makes a similar point when he asserts that, even without ergodicity, the value of any 
thermodynamic variable is constant ‘to all intents and purposes’ [ 34, p. 46]. 
10 This agrees with the time estimate Boltzmann presents in his letter to Zermelo [ 15, p. 577]. 
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In this paper, I argue that ergodicity—just like epsilon-ergodicity, essential ergod-
icity, or any other notion involving an infinite-time limit—does not and cannot tell 
us anything about the approach to equilibrium, which is a behaviour within short 
times. This is simply due to the fact that the notion of ergodicity (or any notion akin 
to that) involves an infinite-time limit. Because of that limit, ergodicity can, at best, 
tell us something about the system’s long-time behaviour where ‘long-time’ refers 
to time scales comparable to the recurrence times, where it begins to matter that the 
system’s trajectory winds around all of phase space. For those short time scales on 
which the system evolves from non-equilibrium to equilibrium, ergodicity (or any 
notion akin to that) doesn’t play any role. In fact, for a realistic gas, the equilibration 
time scale (i.e. the time scale of a system’s approach to equilibrium) is fractions of 
a second as compared to trillions of years for the recurrence time! 

Boltzmann’s explanation of the irreversible approach to equilibrium is a genuine 
typicality result (see the discussion and references at the end of Sect. 3.1)—ergodicity 
doesn’t add to nor take anything from that. 

At this point, a quote of the mathematician Schwartz fits well. 11 Schwartz writes 
with respect to Birkhoff’s ergodic theorem and the widely-spread conception that 
ergodicity might help to explain thermodynamic behaviour [ 8, pp. 23–24]: 

The intellectual attractiveness of a mathematical argument, as well as the considerable mental 
labor involved in following it, makes mathematics a powerful tool of intellectual prestidigi-
tation – a glittering deception in which some are entrapped, and some, alas, entrappers. Thus, 
for instance, the delicious ingenuity of the Birkhoff ergodic theorem has created the general 
impression that it must play a central role in the foundations of statistical mechanics. [...] 
The Birkhoff theorem in fact does us the service of establishing its own inability to be more 
than a questionably relevant superstructure upon [the] hypothesis [of typicality]. 

4 Conclusion 

Based on typicality and stationarity as the two basic concepts of Boltzmann’s 
approach, it follows that ergodicity, as an idealization, or essential ergodicity, in 
the strict sense, is a consequence rather than an assumption of Boltzmann’s account. 

I believe that Boltzmann was aware of this fact. In my opinion, he simply didn’t 
highlight the precise mathematical connection between the concepts of typicality, 
stationarity, and essential ergodicity because it was absolutely clear to him that, 
given a state of overwhelming phase space volume and a stationary measure, by far 
most trajectories would stay in that state by far most of their time—just like by far 
most trajectories starting from non-equilibrium would move into equilibrium very 
quickly. He didn’t need a mathematical theorem to make this more precise.

11 This quote was one of the first quotes (and essays) that were given to me by Detlef Dürr, to whom 
this memorial volume is dedicated. It is the style of writing that Detlef liked and that he himself 
employed on similar occasions. 
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Let me now end this paper with a variation of the both picturesque and paradig-
matic example of Tim Maudlin, about typicality incidents occurring in the Sahara 
desert. 12 In what follows, I will adapt this example to the case of essential ergodicity. 

A person wandering through the Sahara is typically surrounded by sand by far 
most of her time. In other words, she is typically hardly ever in an oasis. This fact 
is independent of the exact form of her ‘wandering about’, if she changes direction 
often, or not, if she moves fast, or not, and so on. Even if she doesn’t move at all, 
she is typically surrounded by sand (in that case, for all times). In other words, 
independent of the dynamics, the long-time average of ‘being surrounded by sand’ 
is close to one on typical trajectories. This follows solely from the fact that all oases 
together constitute a vanishing small part of the Sahara desert and remain to do so 
throughout all times. 
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A Simple Mathematical Framework 
for Learning and Teaching Probability 
Theory 

Günter Hinrichs 

Abstract Random variables with arbitrary distributions as well as large classes of 
stochastic processes can be constructed on.(0, 1)d with uniform distribution. Treating 
topics such as the law of large numbers or the central limit theorem entirely within 
this probability space, one can avoid to expose students to an unsound amount of 
general measure theory without giving up any mathematical rigor. In the light of an 
understanding of probability theory as a theory of typical physical behaviour, such 
as taught by Detlef Dürr, I argue that such a procedure entails no loss of generality. 
Observing the limitations of this procedure, one is led to general measure theory as 
a tool to overcome them. 

1 Introduction 

Among the usual topics taught to undergraduate students of mathematics, probability 
theory is certainly one with particularly striking differences from teacher to teacher. 
There seems to be little agreement about the appropriate degree of abstraction and 
generality. Formally, the decision someone makes here will usually manifest itself 
in the role and amount of measure theory. 

On the one hand, already a quick look on the historical development (e.g. [ 2] 
contains a nice survey) shows that central topics for introductory courses like explicit 
calculations with standard distributions, law of large numbers, central limit theorem 
and statistical inference have developed even beyond a stage accessible to beginners 
without the measure-theoretical framework that emerged in the late 19th and 20th 
century. (Hilbert formulated in 1906 his 6th problem that probability theory is now 
so well understood that it should be axiomatized...) Therefore it should clearly be 
possible also nowadays to understand and teach them without the latter. On the other 
hand, one might wish that introductory courses also prepare for dealing with more 
advanced “20th and 21st century topics” with a more intrinsic role of measure theory. 
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If one wants to include measure theory for the latter reason, one should find a 
compromise concerning its amount, otherwise time might be over before one comes 
to anything else... A common strategy that one can guess behind many such compro-
mises is something like the following: “Imagine an introduction that starts with the 
Kolmogorov (or other) axioms and then builds everything up step by step a formally 
perfect way. Accept this as the plan according to which one would have to proceed 
if one wanted the best possible theoretical understanding. Make the necessary (very 
large) omissions and changes in order to get by with the time and to get room for 
pedagogical parts, applications to real-world problems etc. The result can be used as 
a concept for a good lecture.” 

Such an approach is likely to keep parts of measure theory as a “black box” and to 
treat it in an ambiguous way, conveying that it is on the one hand very essential to use 
it, but on the other hand too unimportant and boring to explain it properly. As part of a 
possible way out of this unsatisfactory situation, I would like to recall that quite a large 
part of probability theory can be formulated on the particularly simple probability 
space .(0, 1)d with uniform distribution. I will explain how this approach relates to 
the view of probability theory as a theory of typical physical happenings. Moreover, 
I will emphasize that, up to some point, this approach requires no advanced measure 
theory on this space, but only basic analysis skills, and serves as propaedeutics for 
what follows beyond this point. 

2 Typical Physical Behaviour 

I am going to build on the following view of probability theory, which is to a very 
large extent influenced by Detlef Dürr’s view as elaborated e.g. in [ 1]: 

The empirical law of large numbers tells us what it means that a coin shows head 
with probability . 12 . This law is also sufficient to deduce the usual rules to calculate 
with that sort of probabilities, how to incorporate independence into a formula etc. 
One will presumably not get a deduction that counts as mathematically rigorous 
nowadays—who cares? 1—, but a deduction in the sense that one understands things 
that are further away from everyday knowledge and not so clear by logical reasoning 
on the basis of things that are clearer and closer to everyday knowledge. 

However, one can ask for different things apart from rules for practical calcula-
tions, e.g. whether this probability . 

1
2 , somehow a physical property of the coin, and 

the resulting regular behaviour can itself be reduced to something more elementary. 
Then, of course, the everyday understanding of probabilities via the empirical law 
of large numbers is no longer a suitable starting point, and a similarly inappropriate 
one would be axioms for probabilities which are informally motivated by this law. 
A starting point that leads to a noncircular argumentation is to count in how many 
among all possible results of a long coin tossing series the relative frequency of

1 An unforgettable quote by Detlef Dürr—he used it frequently, but not in this context. 
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heads is as close to . 12 as one usually observes it in practice. One finds out that this 
is so in “almost all” results and has thus reduced the regular behaviour of the rela-
tive frequencies to its simpler and thus maybe more fundamental property of being 
“typical”. 

In order that simple counting is appropriate, all outcomes have to be in some 
sense on equal footing. At first sight this seems to be a restrictive requirement, but 
at second sight, one can recognize many experiments with nonequal outcomes as 
coarse-grainings of happenings that, on a finer scale, have equal outcomes. Ulti-
mately, this refers to all experiments that can be reasonably well understood within 
classical mechanics, thus all such experiments admit a typicality analysis: The set of 
equal outcomes is the microscopic physical phase space—some subset of.R6n which 
contains the possible initial positions and velocities of the . n involved microscopic 
particles—and the volume or Lebesgue measure, by the Liouville theorem about 
its stationarity under the phase flow, qualifies as “continuous counting” of possible 
cases. Many different microscopic states lead to the same macroscopic state (e.g. 
a coin showing head or tails) observed in the experiment, i.e. there is a mapping 
(“random variable”) from phase space to a much lower-dimensional space which 
attributes to each microscopic state how it looks macroscopically. 

Of course, one can give no explicit complete microscopic description of any 
real experiment starting from initial conditions and phases flow, but at least one 
“knows” from this picture that, e.g., an unfair coin should be described as a random 
variable with values 0 and 1, say, defined on a subset of some.R

d equipped with the 
uniform distribution. One can also “derive” from the physical picture that the chaotic 
dependence of the coin tossing result on the microscopic initial conditions leads to 
independence of results of repeated experiments, i.e. such results can be described as 
a sequence of random variables on the same space which have identical distributions 
and satisfy the equations defining independence. Now one can do the following: Try 
to model every “random” experiment (single or repeated) in a mathematically simple 
and convenient way as a random variable .X or a family of (independent) random 
variables .X1, . . . defined on some subset .Ω of some .Rd as sample space equipped 
with the uniform distribution. Then the details of the random variables have no 
physical meaning, but one has incorporated the principal situation. Therefore, if one 
mathematically proves a law of large numbers on this space which says that for a 
large share of elements .ω of the sample space the relative frequency with which 
.X1(ω), . . . are one stays close to its probability, then one can still, to some extent, 
attribute the meaning to this proof that one has tried to describe the unfair coin in 
terms of its equal microscopic states and, by counting, has found out, that the law of 
large numbers is a typical phenomenon. 

The situation is in apparent contrast to the usual mathematical approach, in which 
one defines the random variables on an arbitrary abstract “probability space”, not 
necessarily with uniform distribution, and can only prove that the regular relative 
frequencies appear “with high probability”—with respect to this abstract “probability 
space”, whatever that means...
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3 Working on .(0, 1)d with Uniform Distribution 

What is a simple way to model random experiments as random variables .Xi on a 
subset .Ω of .Rd with uniform distribution? Building on the previous considerations 
rather than prior knowledge about stochastics, one might come up with the following 
solution: For an experiment with one number as outcome, take a one-dimensional 
sample space, e.g. .Ω = (0, 1). If the details of the mapping .X from “microscopic” 
.ω ∈ Ω to macroscopic values are not physical anyway and it should be simple, then 
order its values, i.e. admit only monotonically increasing .X : Ω → R. By varying 
the slope or skipping values, one should be able to realize all conceivable ratios of 
different values (i.e. one could take the set of all image measures of monotonically 
increasing.X as a definition of all possible probability distributions on. R). Similarly, 
for an arbitrary experiment with.d ∈ N steps one might suggest.(0, 1)d (with. P denot-
ing the .d-dimensional volume) and random variables .(X1, . . . , Xd) : Ω → R

d with 
“ordered values”, which means in this case that each .Xi should increase monoton-
ically in every coordinate .ω j . . d independent repetitions of the “same” experiment, 
one of which would be described by.X : (0, 1) → R, can be conveniently integrated 
into this scheme by setting .Xi (ω) := X (ωi ). 

As it is well-known, this scheme comprises everything that one usually defines 
as “probability distribution on the Borel sigma algebra of . R” because a ran-
dom variable with any such distribution can be realized as the quantile function 
.X := F−1 of its cumulative distribution function. A little more thought shows 
that also the .d-dimensional scheme covers all probability distributions (in the 
usual sense) on the Borel sigma algebra of .Rd : Let  .Q be any such distribu-
tion and .P1, . . . , Pd : Rd → R the coordinate projections. In order to construct 
random variables .(X1, . . . , Xd) on .(0, 1)d which have the distribution .Q and 
are monotonically increasing in every coordinate, start with .X1 := F−1

P1
. Accord-

ing to general measure theory, .Q(Pi ∈ · | P1 = p1, . . . , Pi−1 = pi−1) has a regu-
lar version and therefore in particular a conditional distribution function . Q(Pi ≤
pi | P1 = p1, . . . , Pi−1 = pi−1) = Fi (p1, . . . , pi−1, pi ). Set recursively . Xi (ω) :=
F−1
i (X1(ω), . . . , Xi−1(ω), ωi ) (where the quantile function is formed w.r.t. . ωi , the  

other variables being fixed), this will do the job. 
So, as long as one deals only with distributions on.R

d , one loses no generality by 
using the suggested framework. It has the big advantage that events e.g. of the form 
.{Xi ∈ (a, b]} are always Jordan measurable, i.e. their volume is the “laymen volume” 
computed by approximating from inside and outside with finite unions of cubes, and 
expectation value and moments of .Xi , if existent, can be computed via the (possibly 
improper) Riemann integral. The same holds true for .X1 + . . . + XN because this 
random variable is also monotone in every coordinate. Therefore, questions which 
are “not too complicated” can be treated without advanced measure and integration 
theory, even without the concept of sigma-additivity. This comprises in particular 
central results for sums of independent random variables like the weak law of large 
numbers and the central limit theorem.
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(The strong law of large numbers in the form. P

(
limN→∞ 1

N

ΣN
i=1 Xi = EX

)
= 1

can not be treated in this way. However, in the usual framework, it is equivalent to the 

statement . ∀ε > 0 : limN→∞ supM :M≥N P

(
max j∈{N ,...,M}

III 1j
Σ j

i=1 Xi − EX
III > ε

)

= 0. The latter works because the event inside . P is a subset of .(0, 1)M constructed 
by finitely many operations. I prefer this formulation anyway because, in contrast to 
the usual one which emphasizes that the strong law uses a mathematically stronger 
version of convergence, this one gives a more practical distinction between weak and 
strong law, namely: According to the weak law, for sufficiently large .N it is typical 
that . 1N

ΣN
i=1 and .EX are close together. According to the strong law, it is typical 

that they are not only closed together for one fixed large. N , but that they also remain 
close together if .N is increased further arbitrarily.) 

To the experienced reader it will be more or less clear that things can be proved 
as stated. This text is intended as a sketch for such readers. If someone wants to see 
all details worked out, I ask him to wait for [ 3] to appear... 

4 Proceeding to a More General Framework 

The described framework allows to design introductory courses in which all cen-
tral results are proved completely, transparently, elementarily and without “black 
boxes”. On the introductory level, one will hardly encounter serious limitations of 
this approach. Of course, one might wish to consider . f (Xi ) with nonmonotonic . f , 
but for practical purposes, piecewise monotonic . f are sufficient and it is clear that 
then, all arguments only need slight modifications. Products.X1 · · · XN of monotonic 
random variables are another example of a construct that might be of interest and, in 
general, is only piecewise monotonic. 

A topic that advanced learners will encounter and that brings more serious compli-
cations are time-continuous stochastic processes (e.g. Wiener or Poisson process). 
Here infinite families of random variables are intrinsically important (in contrast 
to the situation in limit theorems for .N random variables with .N → ∞ like the 
law of large numbers). As long as the paths are at least continuous from one side, 
it suffices to consider rational times. How can a process .(Yt )t∈Q with prescribed 
joint distribution of the .Yt be constructed on .Ω = (0, 1)d in order to keep touch to 
physics and typicality analysis? Suppose you have already succeded to construct 
a sequence .(Zn)n∈N of independent random variables with uniform distribution on 
.(0, 1), then it goes as follows: Enumerate .Q as .{t1, t2, . . .}. Construct iteratively 
.(Xt1 , . . . , Xtd ) on .(0, 1)

d with the desired joint distribution as described in Sect. 3. 
Then set .Ytd := Xtd (Z1, . . . , Zd). (For the Wiener process, this strategy actually 
yields the Lévy construction if the enumeration is appropriate.) 

So the only missing part to construct arbitrary such processes are the .Zn . They  
cannot be constructed as monotonic functions on.(0, 1) order.(0, 1)d . A different way 
to construct them on.(0, 1) is: For.ω ∈ (0, 1), let .dn(ω) be the. nth dyadic digit (after 
the comma). Then the .dn are independent and uniformly distributed on .{0, 1} and
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.Z(ω) := Σ
n 2

−ndn(ω) is the identity and thus uniformly distributed on .(0, 1). The  
distribution of . Z will not change if one replaces the .dn by an other i. i. d. sequence 
with the same distribution, e.g. a subsequence .(din ). Grouping the .dn into countably 
many subsequences and forming “Z’s” out of each one, one arrives at the desired.Zn . 

Now sets like .{Zn ∈ (a, b]} or, even worse, .{Xt ∈ (a, b]} are quite complicated 
and need no more be accessible to the simple Jordan measure because of the infinite 
construction procedure. Still, by construction, the first set should, in some sense, 
be as simple as .{Z ∈ (a, b]} = (a, b]. In other words: Now one has arrived at a 
point where one would like to have a more refined measure theory on .(0, 1) and 
a theory of integration which depends only on the “frequency”, not on the “order” 
of function values. And since the subsets of .(0, 1) are so complicated and have no 
practical relevance, one would prefer that the results are, as far as possible, formulated 
directly in terms of the image space without permanent need to track things back to 
.(0, 1). In this way, one arrives at rather general probability spaces—but only as soon 
as one needs them and without depreciating by their introduction anything that one 
has done without the general theory... 

5 Kommst du mit zum Bahnhof? 

When I was one of Detlef’s doctoral students in Munich, it was a particular pleasure 
to walk from time to time from the mathematical institute to the train station with 
him. We did not mainly talk about mathematics and physics then, and if we did, we 
used the atmosphere that was unlike in the institute to talk about different topics than 
there. 

For my contribution to this memorial volume, I tried to choose a mathematical 
(physical? metaphysical? philosophical?) topic that I might have brought up and we 
might have started to discuss on the way to the train station if we had the opportunity 
to continue this tradition... 
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1 Introduction 

Bose gases have been studied from many different perspectives since the discovery of 
Bose–Einstein condensation (BEC), which, after the theoretical prediction in 1924 
by Bose [ 8] and Einstein [ 17, 18], was first experimentally realized in 1995 by 
the groups of Cornell/Wieman [ 5] and Ketterle [ 16]. In a typical experiment, the 
bosons are initially caught in an external trap, where they are cooled down to a 
superposition of low-energy eigenstates; subsequently, they are released and their 
behavior is observed. If the number of particles in the gas is large, neither an analytical 
nor a numerical analysis of the system is feasible, which makes the use of appropriate 
approximations indispensable. 

The resulting evolution equations are sometimes broadly called effective equa-
tions. The study of their emergence from a microscopic theory of interacting particles 
is a typical question in mathematical and statistical physics. In a different context, 
namely that of conductivity, and also of Brownian motion, this field is where Detlef 
started his career as a mathematical physicist. We therefore like to think that he would 
have enjoyed the kind of results we are presenting here, and we dedicate this article 
to him. 

Over the last two decades in particular, there have been many contributions in the 
mathematical physics community devoted to a rigorous derivation of suitable effec-
tive equations for different models of BEC. In this review, we restrict ourselves to the 
weakly interacting Bose gas, also known as the mean-field or Hartree regime, which 
describes trapped bosons with weak and long-range interactions. The corresponding 
Hamiltonian for the .N -body system is given by 

.HN =
N∑

j=1

(−∆	 j + V trap(x j )
) + 1

N − 1

∑

1≤i< j≤N

v(xi − x j ) , (1) 

acting on the Hilbert space.L2
sym((Rd)N ) of square integrable, permutation symmetric 

functions on .(Rd)N . We assume the two-body interaction potential .v : R
d → R to 

be bounded, symmetric and—for our spectral results—of positive type, i.e., to have a 
non-negative Fourier transform. The confining potential .V trap : R

d → R is assumed 
to be measurable, locally bounded, non-negative, and such that .V trap(x) tends to 
infinity as .|x | → ∞. Instead of using an external potential in .R

d , one often restricts 
the particles to the.d-dimensional unit torus.Td , which usually simplifies the analysis 
since the resulting system is homogeneous. 

The spectral and dynamical properties of the model (1) have been subject to 
extensive research; for more recent results, see, e.g., [ 27– 29, 34– 36, 38, 39, 41, 51], 
respectively. Let us also refer to [ 37] for a more general review of BEC. 

In this article, we start in Sect. 2 by reviewing results related to the spectrum and 
eigenfunctions based on [ 14]. In Sect. 3, we review the Edgeworth expansion from 
[ 12] and the binding energy expansion from [ 10]. Finally, in Sect. 4, we review the  
dynamical results from [ 13, 21].
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In the following Sects. 2 and 3, we consider the ground state .ΨN of .HN and the 
ground state energy .EN , i.e., 

.EN = inf spec(HN ) , HN ΨN = EN ΨN . (2) 

Under appropriate conditions on . v and .V trap, it is well known that .ΨN is unique 
and exhibits complete asymptotic BEC in the minimizer .ϕ ∈ L2(Rd) of the Hartree 
energy functional, which is given by 

.EH[φ] :=
∫	

Rd

(|∇φ(x)|2 + V trap(x)|φ(x)|2) dx + 1
2

∫	

R2d

v(x − y)|φ(x)|2|φ(y)|2 dx dy . (3) 

We denote its minimum under the constraint .||φ|| = 1 by .eH := EH[ϕ]. Complete 
asymptotic BEC in the state . ϕ means that .ΨN is determined by . ϕ in the sense of 
reduced densities, i.e., 

. lim
N→∞Tr

IIIγ(1)
N − |ϕ><ϕ|

III = 0 , (4) 

where .γ(1)
N := Tr2...N |ΨN ><ΨN | denotes the one-particle reduced density matrix of 

.ΨN . Heuristically, this implies that .N − o(N ) particles occupy the condensate state 

. ϕ. Consequently, the leading order of .EN is given by the condensate energy .NeH. 

2 Asymptotic Expansion of the Ground State 

2.1 Main Result 

The first result we review in these notes is an expansion of the .N -body ground state 
.ΨN and of the ground state energy .EN in powers of .N−1/2, which is proven in [ 14]. 

Theorem 1 Let .a ∈ N0 and let . N be sufficiently large. Then there exists a constant 
.C(a) such that 

.

IIIIIIΨN −
a∑

ℓ=0

N− ℓ
2 ψN ,ℓ

IIIIII
L2((Rd )N )

≤ C(a)N− a+1
2 (5) 

and 

.

IIIIIEN − NeH −
a∑

ℓ=0

N−ℓEℓ

IIIII ≤ C(a)N−(a+1) . (6) 

The coefficients .ψN ,ℓ ∈ L2
sym((Rd)N ) and .Eℓ ∈ R are computed in [ 14] in full gen-

erality. As an example, .ψN ,1 and . E1 are given in (16) and (18).
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To leading order (.a = 0), this was proven in [ 27, 36, 38, 51]. The higher orders 
.(a > 0) were rigorously derived in [ 14], and related results were obtained in 
[ 45– 47]. 

The coefficients .eH and .Eℓ are independent of . N . The  .N -body wave functions 
.ψN ,ℓ are of the structure .ψN ,ℓ = ∑N

k=0 ϕ(N−k) ⊗s χ(k)
ℓ , where .χ(k)

ℓ are .k-body wave 
functions which are independent of . N . Hence, the .N -dependence of .ψN ,ℓ is trivial, 
and the computational effort to obtain physical quantities such as expectation values 
with respect to the .N -body state, does not scale with . N . 

The constants.C(a) grow rapidly in. a, which means that (5) and (6) are  asymptotic 
expansions (and not converging series): given any order. a of the approximation, one 
can choose .N sufficiently large that the estimates are meaningful. 

Theorem 1 extends to the low-energy excitation spectrum of .HN and to a certain 
class of unbounded interaction potentials. v, including the repulsive three-dimensional 
Coulomb potential (see [ 14] for the full statement). Moreover, it implies an asymp-
totic expansion of the corresponding one-body reduced density matrices [ 9]. 

2.2 Idea of Proof 

The contributions to the ground state energy beyond the leading order are caused by 
particles which are excited from the condensate due to the interactions. To describe 
these excitations, one decomposes .ΨN as 

. ΨN =
N∑

k=0

ϕ⊗(N−k) ⊗s χ(k) , χ(k) ∈
k	⊗

sym
{ϕ}⊥ , χ := (

χ(k)
)N
k=0 ∈ F≤N

⊥ϕ ⊂ F⊥ϕ

(7) 
with .⊗s the symmetric tensor product and where .{ϕ}⊥ denotes the orthogonal com-
plement of .ϕ in .L2(Rd) [ 36]. The excitations form a vector in the (truncated) 
excitation Fock space over .{ϕ}⊥, which is denoted by .F⊥ϕ (resp. .F≤N

⊥ϕ ). The cre-
ation/annihilation operators. a∗/. a and the number operator.N⊥ϕ on this Fock space are 
defined in the usual way. The relation between.ΨN and the corresponding excitation 
vector . χ is given by the unitary map 

.UN ,ϕ : L2((Rd)N ) → F≤N
⊥ϕ , ΨN I→ UN ,ϕΨN = χ . (8) 

Conjugating .HN with .UN ,ϕ and subtracting the condensate energy .NeH yields the 
operator 

.H := UN ,ϕ (HN − NeH) U ∗
N ,ϕ (9) 

on .F≤N
⊥ϕ , whose ground state is denoted by . χ. Hence, the ground state energy .E of 

. H, 
.E = <χ, Hχ>F≤N

⊥ϕ
= EN − NeH , (10)
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gives us precisely the corrections to the condensate energy.NeH in (6). After extend-
ing. H trivially to the full excitation Fock space.F⊥ϕ, computing (9) as in [  36, Propo-
sition 4.2] yields an expansion of .H in powers of .N−1/2, 

.H = H0 +
a∑

j=1

N− j
2 H j + N− a+1

2 Ra (11) 

for any .a ∈ N0. The coefficients .H j and the remainders .Ra in this expansion are 
unbounded operators on.F⊥ϕ which depend on. v, .V trap and. ϕ. The operators .H j are 
independent of . N . 

The leading order term .H0 in (11) is the well-known Bogoliubov Hamiltonian, 
which is a very useful approximation of .H because it is quadratic in the number of 
creation/annihilation operators. Under the given assumptions on . v, it can therefore 
be diagonalized by a Bogoliubov transformation .U0, in the sense that . U0H0U

∗
0 =

E0 + ∫
dx a∗

x D(x, y)ay for some positive one-body operator . D. The unique ground 
state of .H0 is thus given by 

.χ0 = U
∗
0|Ω> , (12) 

where .|Ω> is the vacuum state, and its ground state energy is .E0. It is well known 
[ 27, 36, 38, 51] that 

. lim
N→∞ E = lim

N→∞(NeH − EN ) = E0 , lim
N→∞||χ − χ0||F⊥ϕ

= 0 , (13) 

where we trivially extended . χ to a vector in .F⊥ϕ. Consequently, .E0 gives the lead-
ing order (.a = 0) correction to .EN − NeH in (6); analogously, the leading order 
contribution in (5) is given  by .ψN ,0 = U ∗

N ,ϕ χ0|F≤N
⊥ϕ
. 

Assuming that. χ and. E have expansions in.N−1/2, an expansion of the eigenvalue 
equation yields 

.(H0 − E0)χ1 + (H1 − E1/2)χ0 = 0, (14) 

where.E1/2 is the coefficient of.N−1/2 in the expansion of. E . Projecting this equation 
on .χ0 with the projector .P0 := |χ0><χ0| and then using .H0χ0 = E0χ0, we find 

.E1/2 = <χ0, H1χ0> = 0, (15) 

where the last equality follows since.H1 is cubic in the number of creation and anni-
hilation operators and.U0 is a Bogoliubov transformation, i.e., it maps linear combi-
nations of .a∗/a into linear combinations of .a∗/a. (Alternatively, one can argue that 
.χ0 is quasi-free, and thus the left-hand side of (15) vanishes due to Wick’s rule.) 
Therefore, no.N−1/2 order appears in the energy expansion (6); in fact, similar argu-
ments can be used to show that every half-integer power of.N−1 vanishes. Projecting 
Equation (14) on the orthogonal complement using .Q0 = 1 − P0, we find
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.

χ1 = Q0

E0 − H0
H1χ0 = U

∗
0

(
U0

Q0

E0 − H0
U

∗
0

)
U0H1U

∗
0|Ω>

= U
∗
0

(∫	

Rd

dx Θ1(x)a∗
x |Ω> +

∫	

R3d

dx (3)Θ3(x (3))a∗
x1a

∗
x2a

∗
x3 |Ω>

)
,

(16) 

where we abbreviate.x (3) = (x1, x2, x3). Note that the last equality follows again from 
the facts that.H1 is cubic in.a∗/a and that.U0 is a Bogoliubov transformation, as well 
as using that .U0

Q0
E0−H0

U
∗
0 is particle-number conserving; the functions. Θ1 ∈ L2(Rd)

and .Θ3 ∈ L2((Rd)3) can then be explicitly computed. Finally, the coefficients . ψN ,ℓ

in the expansion (5) of the  .N -body ground state .ΨN (Theorem 1) are constructed 
from (16) by (7). The functions .ψN ,ℓ depend on .N by construction. However, this 
.N -dependence is trivial, since it comes only from the splitting into condensate. ϕ and 
excitations. χ. The coefficients.χℓ in the expansion of. χ are completely independent 
of . N . 

To prove Theorem 1, we follow a different route than using the eigenvalue equa-
tion: we expand .P := |χ><χ| around .P0 in a (Rayleigh-Schrödinger) perturbation 
series. By (13), the projectors . P and .P0 can be expressed as 

.P0 = 1

2πi

∮

γ

1

z − H0
dz , P = 1

2πi

∮

γ

1

z − H
dz , (17) 

for any .O(1)-contour . γ whose interior contains both .E and .E0 but no other point 
from the spectra of .H and .H0; this is possible by (13) and since .H and .H0 have a 
spectral gap of .O(1). Now, one uses the expansion (11) of  .H to expand . (z − H)−1

around .(z − H0)
−1. Since . P is a rank-one projector, this immediately implies an 

expansion of the corresponding vector . χ. After some lengthy computations using 
(11), the identity (12), the fact that .H j for . j odd (even) is odd (even) in the number 
of creation and annihilation operators, and that .U0 is a Bogoliubov transformation 
diagonalizing .H0, one obtains the expansion (16) and the higher orders by using 
Cauchy’s integral formula. 

The main work in the proof of Theorem 1 is to estimate the error terms in the 
expansions above. For example, to control the error for.a = 1, we bound.H1,.R0 and 
.R1 by powers of.(N⊥ϕ + 1), prove a uniform bound on finite moments of the number 
operator with respect to . χ, and provide suitable estimates for the commutators of 
powers of .N⊥ϕ with resolvents of .H0. The expansion of the ground state energy . EN

is then another consequence of the expansion of . P. For example, the next order term 
after the Bogoliubov energy is given by 

.E1 = <
χ0, H2χ0

> +
<
χ0, H1

Q0

E0 − H0
H1χ0

>
. (18)
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3 Applications 

3.1 Edgeworth Expansion 

Let the Bose gas be in its ground state.ΨN and consider the statistics of experiments 
described by self-adjoint one-body operators on .L2((Rd)N ), i.e., operators of the 
form 

.B j = 11 ⊗ ... ⊗ 11╰ ╮	╭ ╯
j−1

⊗B ⊗ 11 ⊗ ... ⊗ 11╰ ╮	╭ ╯
N− j

. (19) 

By the Born rule and since.ΨN is permutation symmetric, the family.{B j }N
j=1 defines 

a family of identically distributed random variables: the probability that the random 
variable .B j takes values in .A ⊂ R is given by 

.PΨN (B j ∈ A) = <
ΨN , 11A(B j )ΨN

>
, (20) 

where .11A denotes the characteristic function of the set . A. Since we consider . N
indistinguishable bosons, we are interested in describing the statistics of experiments 
described by symmetrized operators .

∑N
j=1 B j . Centering and rescaling leads us to 

consider operators 

.BN := 1√
N

N∑

j=1

(B j − EΨN [B]) , (21) 

where .EΨN [B] = <ΨN , B1ΨN >. From Theorem 1 we know that .ΨN is not a product 
state, which implies that the random variables.B j are not independent. However, their 
dependency is weak, and on the level of the excitation Fock space, the correlations 
are described to leading order by a quasi-free state, i.e., a Bogoliubov transformation 
acting on the vacuum as in (12). Quasi-free states satisfy a Wick rule in analogy 
to Gaussian random variables, hence to leading order the statistics of (21) can be 
expected to be Gaussian. We need to make the additional assumption that the variance 
of that Gaussian does not vanish, which is equivalent to assuming that the Hartree 
minimizer. ϕ is not an eigenstate of. B. Indeed, it is shown in [ 12] that the fluctuations 
satisfy a weak Edgeworth expansion. 

Theorem 2 Let .a ∈ N0 and .g ∈ L1(R) such that its Fourier transform . ∧g ∈ L1

(R, (1 + |k|3a+4)). Then, for any self-adjoint bounded operator . B on .L2(Rd) which 
does not have the Hartree minimizer . ϕ as an eigenstate, there exists . CB(a, g) > 0
such that 

. 

IIIIII
EΨN [g(BN )] −

a∑

j=0

N− j
2

∫	

Rd

dx g(x)p j (x)
1√
2πσ2

e− x2

2σ2

IIIIII
≤ CB(a, g)N− a+1

2 .

(22)
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The functions .p j are .N-independent real polynomials of degree .3 j which are 
even/odd for . j even/odd. In particular, 

.p0(x) = 1 , (23a) 

.p1(x) = α

6σ3
H3

( x

σ

)
, (23b) 

where.H3(x) = x3 − 3x is the third Hermite polynomial. The.N-independent param-
eters .σ,α ∈ R are given in (25) and in [ 12]. 

The leading order (.a = 0) of the expansion is a central limit theorem, which 
was proven in [ 48] (see also [  7] for the related dynamical result). Analogously to 
Theorem 1, the constant.CB(g, a) in Theorem 2 grows in. a, hence (22) is an asymp-
totic expansion. It constitutes a weak Edgeworth expansion in the sense of [ 22], 
which, in particular, does not imply an asymptotic expansion of the probability 
.PΨN (BN ∈ A) for .A ⊂ R. Also note that Edgeworth expansions give us a detailed 
picture of the probability distribution near the expectation value. A more detailed 
description of the tails are large deviation results, see, e.g., [ 31, 49]. 

Theorem 2 extends to a class of low-energy excited states of .HN . In this case, 
one does not obtain a Gaussian central limit theorem, because these excited states 
are not quasi-free. However, they are still given by some polynomial of creation 
operators acting on a quasi-free state, hence the limiting distribution is a Gaussian 
multiplied with a polynomial. This leads to a generalized Edgeworth-type expansion 
with different polynomials of higher degree (see [ 12] for the details). 

To prove Theorem 2, we show an expansion of the characteristic function of 
the random variable .BN . Making use of the expansion .χ = χ0 + O(N−1/2) from 
Theorem 1, we obtain 

. 
<
ΨN , eikBN ΨN

> = <
χ, eikUN ,ϕBN U ∗

N ,ϕχ
> = <

Ω, eikU0(a∗(q Bϕ)+a(q Bϕ))U∗
0Ω

> + O(N− 1
2 )

= e− 1
2 σ2k2 + O(N− 1

2 ) (24) 

with .q := 1 − |ϕ><ϕ| and where 

.σ := ||ν|| , ν := U0q Bϕ + V0q Bϕ . (25) 

for certain bounded operators .U0, V0 on .{ϕ}⊥ ⊂ L2(Rd), Here, we used that 

.U0
(
a∗(q Bϕ) + a(q Bϕ)

)
U

∗
0 = a∗(ν) + a(ν) (26) 

since .U0 from (12) is a Bogoliubov transformation. By Fourier transformation, this 
yields (22) for .a = 0. The higher orders in (22) are computed along the same lines, 
making use of higher orders in Theorem 1. 

Finally, let us compare Theorem 2 (which concerns the fluctuations.BN of depen-
dent random variables distributed according to .ΨN ) with the corresponding result 
for the fluctuations .Biid

N of i.i.d. random variables distributed according to the prod-
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uct state .ϕ⊗N . Standard probability theory (e.g. [ 43]) yields for .Biid
N an Edgeworth 

expansion which is of the same structure as (22), i.e., a Gaussian multiplied with 
polynomials of degree .3 j with the same even/odd structure. However, there are 
important differences: First, the variance of the Gaussian in the i.i.d. case is given 
by .σ2

iid = ||q Bϕ||2 = <
ϕ, B2ϕ

> − <ϕ, Bϕ>2 /= σ2, which can be seen analogously to 
(24) noting that .UN ,ϕϕ⊗N = |Ω>. Moreover, the first polynomial .piid

1 is of the same 
functional form as .p1, but  .αiid /= α. In the higher orders, also the functional form 
of the polynomials .piid

j is different from .p j ; for example, .piid
2 contains the Hermite 

polynomials.H4 and.H6 while.p2 has an additional contribution from.H2. This can be 
understood as follows: an Edgeworth expansion is an expansion in terms of the cumu-
lants .κℓ of the distribution. In the i.i.d. situation, the cumulants satisfy the scaling 
relation .κℓ[Biid

N ] = N 1− l
2 κℓ[∼B] for .∼B = B − <ϕ, Bϕ>. In contrast, in the interact-

ing case, each cumulant has a full series expansion, which leads to the additional 
contributions (see [ 12] for a detailed discussion). 

3.2 Binding Energy 

Another application of Theorem 1 concerns the binding energy, i.e., the energy it 
takes to remove one particle from the Bose gas in its ground state. Let us introduce 
the unscaled Hamiltonian 

.H(N , v) =
N∑

j=1

(−∆	 j + V trap(x j )
) +

∑

1≤i< j≤N

v(xi − x j ). (27) 

We now consider this Hamiltonian for .N particles and for .N − 1 particles, both 
with the same weak interaction .(N − 1)−1v =: λN v, i.e., we consider the .N -body 
Hamiltonian 

.H(N ,λN v) =
N∑

j=1

(−∆	 j + V trap(x j )
) + λN

∑

1≤i< j≤N

v(xi − x j ), (28) 

which is the Hamiltonian from (1), and the .(N − 1)-body Hamiltonian 

.H(N − 1,λN v) =
N−1∑

j=1

(−∆	 j + V trap(x j )
) + λN

∑

1≤i< j≤N−1

v(xi − x j ). (29) 

If we denote the corresponding ground state energies by .E(N ) and .∼E(N − 1), the  
binding energy is defined as 

.∆	E(N ) := E(N ) − ∼E(N − 1). (30)



316 L. Boßmann et al.

Theorem 1 gives us an expansion of .E(N ). But note that in our expansion we have 
not separated the contributions in .N coming from the number of particles and those 
from the coupling constant.λN = (N − 1)−1. Hence, in order to obtain an expansion 
of.∼E(N − 1), we need to replace in.EN first the.N by.N − 1 and then. v by.

N−2
N−1v. The  

resulting series for .∼E(N − 1) then needs to be rewritten as a power series in .N−1, 
just as in Theorem 1. The result is a power series expansion of .∆	E(N ) in powers of 
.N−1. 

Theorem 3 Under the assumptions of Theorem 1, the binding energy .∆	E(N ) can 
be expanded as 

.∆	E(N ) =
a∑

ℓ=0

N−ℓEbinding
ℓ + O(N−(a+1)) (31) 

for any .a ∈ N. The coefficients .Ebinding
ℓ are stated explicitly in [ 10]. 

We know from [ 27] (or from Theorem 1 for .a = 0) that the leading order contri-
bution is given by 

. Ebinding
0 = NeH(v) − (N − 1)eH

(
(N − 2)(N − 1)−1v

) = eH + 1

2
<ϕ,

(
v ∗ |ϕ|2)ϕ>,

(32) 
where .eH(v) is the Hartree energy with potential . v. The next order .Ebinding

1 was 
derived in [ 40] for the Bose gas on the torus. Note that [ 40] discusses the extension 
to the inhomogeneous case as a conjecture, which we address here with Theorem 3 
for .a = 1. For  .a = 2 we compute the coefficient .Ebinding

2 explicitly on the torus in 
[ 10]. 

4 Dynamics 

4.1 Two-Body Interaction 

Let us assume that the Bose gas has initially been prepared in the ground state . ΨN

of .HN . Now we switch off the trap and let the gas propagate. Hence, the .N -body 
wave function .ΨN (t) at time .t > 0 is given by the solution of the time-dependent 
Schrödinger equation, generated by .HN with .V trap ≡ 0. It is well known (see, e.g., 
[ 2– 4, 6, 15, 19, 23– 26, 30, 32, 44, 50, 52]) that the property of BEC is preserved 
by the time evolution, and that the time evolved condensate wave function .ϕ(t) is a 
solution of the Hartree equation, 

.i∂tϕ(t) = (−∆	 + v ∗ |ϕ(t)|2 − μϕ(t)
)
ϕ(t) , (33) 

for some conveniently chosen phase.μϕ(t) ∈ R. The main result of [ 13] is an asymp-
totic expansion of the resulting dynamics.
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Theorem 4 Let .a ∈ N0 and .t ∈ R. Then there exists .C(a) > 0 such that 

.

IIIIIIΨN (t) −
a∑

ℓ=0

N− ℓ
2 ψN ,ℓ(t)

IIIIII
L2((Rd )N )

≤ eC(a)t N− a+1
2 . (34) 

The coefficients .ψN ,ℓ(t) ∈ L2
sym((Rd)N ) are given in [ 13] in full generality. 

The leading order (.a = 0) of  (34) was proven in [ 35, 39]. Related results for the 
higher orders (.a > 0) were obtained in [ 11, 25, 26, 42]. Theorem 4 extends to a 
more general class of initial data. Besides, it implies an expansion of the reduced 
densities as well as a generalized Wick rule for the correlation functions (see [ 13] 
for the full statement). 

Analogously to (7), the .N -body wave functions .ΨN ,ℓ(t) are constructed by com-
bining the time-evolved condensate .ϕ(t) with orthogonal excitations . χ(t) ∈ F⊥ϕ(t)

and deriving a series expansion 

.

IIIIIIχ(t) −
a∑

ℓ=0

N− ℓ
2 χℓ(t)

IIIIII
F⊥ϕ(t)

≤ eC(a)t N− a+1
2 (35) 

for the time-evolved excitations. The leading order .χ0(t) is given by the solution of 
the Bogoliubov equation, i.e., the time-dependent Schrödinger equation generated 
by the time-dependent analogue .H0(t) of the leading operator in (11). This is a 
very useful approximation because the time evolution . U0(t, t0) : F⊥ϕ(t0) → F⊥ϕ(t)

generated by.H0(t) acts as a Bogoliubov transformation. As a consequence, solving 
the Bogoliubov equation essentially reduces to the problem of solving a.2 × 2matrix 
differential equation, which is a huge simplification in complexity compared to the 
full .N -body problem. Given the solution of the Bogoliubov equation, the first order 
correction is 

.

χ1(t) =
∑

j∈{−1,1}

∫	

Rd

dx C
( j)
1 (t; x)a

# j
x χ0(t)

+
∑

( j1, j2, j3)∈{−1,1}3

∫	

R3d

dx (3) C
( j1, j2, j2)
3 (t; x (3))a

# j1
x1 a

# j2
x2 a

# j3
x3 χ0(t) ,

(36) 

where we denoted .a#1 := a∗ and .a#−1 := a. The .N -independent functions . C
( j)
1 (t) ∈

L2(Rd) and .C
( j1, j2, j3)
3 (t) ∈ L2((R3)d) are explicitly given in terms of the initial data 

and the solution of the.2 × 2 matrix differential equation mentioned above (see, e.g., 
[ 9, Equations (3.22)]).
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4.2 Regularized Nelson Model 

The techniques from the previous subsection can also be applied to non-relativistic 
quantum field models such as the regularized Nelson model in a many-particle mean-
field limit. This model describes .N bosons that are linearly coupled to a quantized 
scalar (Klein–Gordon) field. The wave function.ΨN (t) ∈ L2

sym((R3)N ) ⊗ F evolves 
according to the Schrödinger equation with Hamiltonian 

.HNelson
N =

N∑

j=1

(−∆	 j + N−1/2∧Φ(x j )
) +

∫	

R3
dk ω(k)a∗

k ak . (37) 

Here, .ω(k) = √
k2 + m2, with mass .m ≥ 0, is the dispersion relation of the field 

bosons, .a∗
k /ak are the bosonic pointwise creation/annihilation operators, and 

.∧Φ(x) =
∫	

R3
dk

g(k)√
2ω(k)

e−2πikx
(
a∗

k + a−k
)

(38) 

denotes the field operator with even cutoff function.g : R
3 → R such that.g/

√
ω and 

.g/ω are square integrable. If the particle-field state is initially prepared as a Bose– 
Einstein condensate of .N particles with condensate wave function . ϕ0 ∈ L2(R3)

and a coherent state of field bosons with classical field .
√

Nα0 ∈ L2(R3), then the 
condensation/coherent state structure is preserved under the time evolution generated 
by (37), see [ 1, 20, 33]. The corresponding mean-field equations describe the coupled 
evolution of the condensate wave function.ϕ(t) and the classical field.α(t). They are  
known as Schrödinger–Klein–Gordon equations and given by 

.

⎧
⎪⎪⎨

⎪⎪⎩

i∂tϕ(t) =
(

− ∆	 + Φ(t) − 1
2 <ϕ(t),Φ(t)ϕ(t)>

)
ϕ(t)

i∂tα(t) = ωα(t) + g√
2ω

	∧|ϕ(t)|2
Φ(t, x) = ∫

R3 dk g(k)√
2ω(k)

e−2πikx
(
α(t, k) + α(t,−k)

) (39) 

with initial datum.(ϕ0,α0), where. 	∧|ϕ(t)|2 is the Fourier transform of.|ϕ(t)|2. In [  21] it  
was shown that (for suitably chosen initial states) the time evolution of the regularized 
Nelson model satisfies an asymptotic expansion in the spirit of Theorem 4. The  main  
difference to the previous subsection, where.N bosons interact via pair potentials, is 
that the system consists now of two types of particles. In order to study the fluctuations 
around the mean-field dynamics it is therefore necessary to factor out the Bose– 
Einstein condensate as well as the coherent state of the field bosons, which can be done 
in a similar manner as in (7). The resulting orthogonal excitations.χ(t) are elements 
of the double Fock space .F⊥ϕ(t) ⊗ F and the corresponding quadratic Bogoliubov 
Hamiltonian .H0(t) (and its higher-order corrections) are operators on this space. 
The Bogoliubov dynamics captures not only correlations among the particles and 
the field excitations themselves but also between the particles and field excitations.
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A Study of the Radiation-Reaction 
on a Point Charge that Moves Along 
a Constant Applied Electric Field 
in an Electromagnetic 
.Bopp–Landé–.Thomas–.Podolsky Vacuum 

Holly K. Carley and Michael K.-H. Kiessling 

Abstract The relativistic problem of motion of a classical electrical point charge 
that has been placed between the plates of a charged capacitor and then released 
from rest is well-posed in Bopp–Landé–Thomas–Podolsky (BLTP) electrodynamics. 
That theory introduces a single new parameter, Bopp’s . κ, a reciprocal length. The 
present article concerns the small-. κ regime. Radiation-reaction effects on the motion 
are shown to appear at order .κ3. It is found that in the initial phase the motion is 
accurately accounted for by test particle theory, with the inertia determined by the 
bare mass of the particle. Subsequently, radiation-reaction effects cause substantial 
deviations from the test particle motion. 

1 Introduction 

In this tribute to Detlef Dürr we focus on a lesser known scientific passion of Detlef, 
i.e., “lesser known in comparison to Bohmian Mechanics,” and this is the classical 
electromagnetic radiation-reaction problem. Here is how Detlef once characterized 
the situation: 
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When people realized that there is a problem, quantum physics was invented. Then everyone 
began to work on quantum physics and eventually the problem was forgotten. But it still 
exists. (Detlef Dürr, private communication to the senior author, sometime in the mid 1980s.) 

The problem, in a nutshell, is this: The symbolic system of equations of Lorentz elec-
trodynamics with point charges is notoriously ill-defined. The energy and momentum 
densities of the electromagnetic Maxwell–Lorentz fields of a point charge source are 
not integrable over any neighborhood of the point charge, and also the Lorentz for-
mula for the electromagnetic “self”-force on such a point charge source is ill-defined. 
More recently [DeHa2016] it was noted that also the Lorentz formula for the elec-
tromagnetic force of one point charge source onto another becomes ill-defined after 
relatively short times. 

Undeterred by infinities [PPV2011], physicists have tried to extract the force 
of radiation-reaction on an accelerated point charge by analyzing the power emit-
ted by it towards  .|s| = ∞, per the retarded Liénard–Wiechert fields. Von Laue 
[Lau1909] obtained the expression.

2e2

3c3 P
⊥
u(τ ) · d2

dτ 2u(τ ) for the Minkowski force four-
vector due to the radiation (cf. [Jac1975]); here, . τ denotes proper time and . P⊥

u(τ )·
the four-projection onto the subspace that is four-orthogonal to the four-velocity 
.u(τ ) (.= d

dτ
q(τ )). Its third derivative of the particle’s spacetime location .q(τ ) has 

been the cause of consternation. In particular, it vanishes during intervals of constant 
four-acceleration when the Larmor formula predicts radiation. Moreover, when non-
zero, it changes the initial-value problem from second to third order, and almost all 
solutions then display unphysical behavior. It has been argued that a way out of this 
“third-order” dilemma is offered by the fact that the radiation-reaction on the particle 
should cause only a small correction term to the test particle type force. The co-variant 
version of the equations of test particle motion reads . d

2

dτ 2q(τ ) = e
mcF(q(τ )) · u(τ ), 

where .F(s) is the Faraday tensor of the applied fields at a spacetime point . s. Hence 
the expression . d

2

dτ 2u(τ ) in von Laue’s four vector should be interpreted as stand-in 
for the first-order proper time derivative of . e

mcF(q(τ )) · u(τ ), which will not have 
derivatives of .q(τ ) higher than second order. The so radiation-reaction-corrected 
equation of motion, sometimes called the Eliezer–Ford–O’Connell (EFC) equation 
of motion, reads 

.
d2

dτ 2
q(τ ) = e

mc
F(q(τ )) · u(τ ) + 2

3

e3

mc4
P⊥
u(τ ) · d

dτ

(
F(q(τ )) · u(τ )

)
. (1.1) 

Landau and Lifshitz approximated (1.1) further by replacing all first-order proper 
time derivatives of.u(τ )obtained from.

d
dτ

(
F(q(τ )) · u(τ )

)
by. e

mcF(q(τ )) · u(τ ). This  
approximation to (1.1) is known as the Landau–Lifshitz (LL) equation of motion. 

Equation (1.1), and also its Landau–Lifshitz approximation, enjoy some practical 
successes. Interestingly, this practical success story has a serious blemish. Namely, 
for a point charge that moves along a constant applied electrostatic field the LL 
equation of motion simply reproduces the test particle motion, for its radiation-
reaction force term vanishes in this situation; cf. [PMD2006]. One may hope to
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obtain the radiation-reaction effects on a point charge that moves along a constant 
electric field by pushing the expansion of the EFC equation further until a non-
vanishing radiation-reaction force term is obtained. However, all higher-order terms 
obtained from such an expansion vanish also. 

As an aside, we mention that the LL equation has been derived rigorously as an 
effective equation of motion in a spacetime adiabatic limit, not for a point charge 
but for an extended charge distribution’s geometric center, and with .m standing 
for .mb + mf, where .mb is a bare mass and .mf a field energy contribution; see 
[Spo2004]. Thus, if one works with extended charge distributions, as in the Abraham– 
Lorentz-type classical electron theory [Lor1904], and endows the particle with a 
non-vanishing .mb, then one may realistically hope to obtain higher-order radiation-
reaction corrections that do not vanish for motion along a constant electric field. 
The LL equation of motion was also obtained in an asymptotic expansion about a 
“vanishing particle limit,” which captures the motion of a particle with extended 
charge and mass distributions in the limit of vanishing size, mass, and charge, yet 
with nonzero charge-to-mass ratio, see [GHW2009]. However, higher-order terms 
in such expansions will eventually depend on largely arbitrary assumptions about 
the structure of the extended distributions. Moreover, the formulation of a properly 
Lorentz co-variant model with extended charged particles [ApKi2001] involves a  
non-trivial foliation of Minkowski spacetime and poses conceptual challenges for 
the initial value problem. 

In this paper we are interested in the classical theory of motion for a true point 
charge that interacts with the electromagnetic fields it generates. In [Kie2019] the  
first well-posedness result of the joint initial value problem for the evolution of the 
electromagnetic fields and the relativistic motion of.N point charges was announced, 
not for the ill-defined Lorentz electrodynamics with point charges, but for an elec-
trodynamic model that goes back to work by Bopp [Bop1940,Bop1943], Landé– 
Thomas [Lan1941,LaTh1941], and Podolsky [Pod1942] (BLTP). The BLTP model 
replaces Maxwell’s law of the electromagnetic vacuum (viz. .HHH = BBB and .EEE = DDD) 
with a linear differential relation. A well-defined equation of motion was supplied 
in [Kie2019]. The proof of well-posedness of the joint Cauchy problem will be pub-
lished in [KTZ2023]. Also the scattering problem for a single particle that encoun-
ters a localized potential is well-posed [Hetal2021]. These authors showed that in 
this problem the “self”-force formula of [Kie2019] can be converted into a formal 
Lorentz-type expression that involves integration over the whole past of the particle 
motion, first proposed in [LaTh1941] and further studied in [Zay2014,GPT2015]. 

In the following we demonstrate that BLTP electrodynamics captures the radiation-
reaction on a point charge that is released from rest in a constant applied electric field. 
We understand our work as part of a proof-of-concept. In principle our approach can 
handle also more realistic models than BLTP electrodynamics, see [Kie2019].
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2 BLTP Electrodynamics with a Single Point Charge 

The electromagnetic vacuum in BLTP electrodynamics is defined by the two equa-
tions 

.HHH(t, s) = (
1 + κ

−2⃞
)BBB(t, s) , (2.1) 

.DDD(t, s) = (
1 + κ

−2⃞
)EEE(t, s) ; (2.2) 

in (2.1) and (2.2), the parameter .κ−1 is the “Bopp length” [Bop1940,Bop1943], 
and .⃞ ≡ c−2∂2

t − ∆ is the d’Alembertian, with . c the vacuum speed of light. The 
evaluations.HHH(t, s),.BBB(t, s),.EEE(t, s), and.DDD(t, s) of the fields at the space point. s ∈ R

3

and instant of time .t ∈ R are defined in any convenient flat foliation of Minkowski 
spacetime into space & time. These fields satisfy the familiar system of pre-metric 
Maxwell field equations, which consist of two evolution equations 

.
∂
∂tBBB(t, s) = −c∇×EEE(t, s) , (2.3) 

.
∂
∂tDDD(t, s) = +c∇×HHH(t, s) − 4πeδq(t)(s)v(t) , (2.4) 

and two constraint equations 

.∇ ·BBB(t, s) = 0 , (2.5) 

.∇ ·DDD(t, s) = 4πeδq(t)(s) . (2.6) 

Here, .e(> 0) is the elementary electric charge, .q(t) ∈ R
3 its position and. v(t) ∈ R

3

its velocity at time . t . 
The particle’s velocity is defined as usual to be the time-derivative of its position 

vector, 

.
d

dt
q(t) =: v(t). (2.7) 

In the relativistic generalization of Newton’s point mechanics by Einstein, Lorentz, 
and Poincaré, the velocity .v(t), in turn, changes with time according to 

.
d

dt

v(t)
/
1 − 1

c2 |v(t)|2
= 1

mb
f (t); (2.8) 

here, .mb /= 0 is the bare inertial rest mass of the particle, and . f (t) is the total 
electromagnetic force acting on it. Following Poincaré (cf. [Mil1998]) we define it as 
(cf. [Kie2019]) 

. f (t) := eEEE hom − d

dt

∫

R3
∏field(t, s)d3 s, (2.9)
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where .EEE hom is a constant applied electric field (an idealization of the field between 
the plates of a capacitor), and .∏field(t, s) is the momentum vector-density of the 
Maxwell-BLTP fields 

.4πc∏field = DDD×BBB + EEE×HHH − EEE×BBB − κ
−2

(∇ · EEE)(∇×BBB − 1
c

∂
∂tEEE

)
. (2.10) 

3 The Initial Data 

As announced in [Kie2019] and  shown in [KTZ2023], BLTP electrodynamics is well-
posed as a joint initial value problem for the fields and the point charge, requiring 
initial data.BBB(0, s), .DDD(0, s), .EEE(0, s), .( ∂

∂tEEE)(0, s) for the fields, and.q(0) and.v(0) for 
the particle. The data for . BBB and .DDD are constrained by the divergence equations, and 
.v(0) by .|v(0)| < c. 

In the ensuing sections we discuss these BLTP-dynamical equations for a single 
point charge moving along the constant applied electric field.EEE hom, starting from rest, 
with the initial fields the sum of the external field and the electrostatic field of the 
point charge. Thus, for the particle we have 

.q(0) = 0 and v(0) = 0. (3.1) 

For the fields we have 
.DDD(0, s) ≡ EEE hom + e

s
|s|3 (3.2) 

and 

.EEE(0, s) ≡ EEE hom + e
1 − (1 + κ|s|)e−κ|s|

|s|2
s
|s| . (3.3) 

We also have .
(
∂tEEE

)
(0, s) ≡ 0, as well as . BBB(0, s) ≡ 0.

4 The Solution of the Field Equations 

For the initial data of our problem the electromagnetic fields outside the forward light 
cone of the initial location of the particle remain precisely the electrostatic fields, i.e., 
the magnetic field .HHH and the magnetic induction field . BBB vanish, while the electric 
displacement field .DDD(t, s) is given by (3.2) and the electric field .EEE(t, s) is given by 
(3.3), for all .t ≥ 0. 

Inside the forward light cone of the initial particle location, but away from 
the particle position at . t , the fields .DDD(t, s) and .HHH(t, s) are for all .t ≥ 0 given by 
.DDD = EEE hom +DDDret

lw & .HHH = HHHret
lw, with (the acceleration vector of the point charge is 

highlighted in red)
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. DDDret
lw(t, s) = e

c2 − |v|2
|s − q|2

cn(q, s) − v
(
c − n(q, s) · v

)3

I
III
ret

+ e
n(q, s)×[(

cn(q, s) − v
)×a

]

|s − q|(c − n(q, s) · v
)3

I
III
ret

,

(4.1) 

.HHHret
lw(t, s) = n(q, s)|ret×DDDret

lw(t, s) (4.2) 

the retarded Liénard–Wiechert fields. Here, .n(q, s) = s−q
|s−q| is a normalized vector 

from . q to . s, the notation “.|ret” means that .(q, v, a) = (q, v, a)(t ret) to the left of 
“.|ret,” with.t ret(t, s) being defined implicitly by.c(t − t ret) = |s − q(t ret)|; inside the 
initial forward light cone, .0 < t ret < t . The  terms.∝ a in (4.1) and (4.2) account for 
the radiation. 

Note that the electromagnetic Liénard–Wiechert fields.HHHret
lw and.DDDret

lw exhibit both 
a .∝ 1/r2 singularity and a .∝ 1/r singularity, where . r denotes .|s − q(t)|; they each 
have a directional singularity at the location of the point charge source, too. 

Similarly, inside — and on — the forward light cone of the initial particle location, 
but away from the particle position at. t , the MBLTP field solutions.BBB(t, s) and. EEE(t, s)
for .t ≥ 0 are given by .BBB = BBB0 +BBB1 and .EEE = EEE0 + EEE1, with .BBB0 ≡ 0 and .EEE0 ≡ EEE hom, 
and 

. EEE1(t, s) = eκ2
(1 − (1 + κ|s|)e−κ|s|

κ
2|s|2 − 1

2

) s
|s| + eκ2

∫ ct−|s|

0

J2
(
κ

√
c2(t−t ')2−|s|2

)

c2(t−t ')2−|s|2 sd(ct ')+

eκ2 1
2

n(q ,s)−v/c
1−n(q ,s)·v/c

III
ret

− (4.3) 

. eκ2
∫ t ret(t,s)

0

J2
(
κ

√
c2(t−t ')2−|s−q(t ')|2

)

c2(t−t ')2−|s−q(t ')|2
(
s − q (t ') − v(t ')(t − t ')

)
cdt ',

BBB1(t, s) = eκ2 1
2

v×n(q ,s)/c
1−n(q ,s)·v/c

III
ret

− (4.4) 

eκ2
∫ t ret (t,s) 

0 

J2
(
κ 
√

c2(t−t ')2−|s−q(t ')|2
)

c2(t−t ')2−|s−q(t ')|2 v (t ')× (
s − q (t ')

)
dt '. 

The fields.BBB(t, s) and.EEE(t, s) are globally bounded in. s for each. t , and away from the 
point charge they are Lipschitz-continuous in . s, including across the initial forward 
light cone. 

Similarly, 

. ∇ · EEE(t, s) = eκ2 e
−κ|s| − 1

|s| + eκ3
∫ ct−|s|

0

J1
(
κ

√
c2(t−t ')2−|s|2

)
√

c2(t−t ')2−|s|2 d(ct ')+

eκ2 1(
1−n(q,s)·v/c

) 1
|s−q|

III
ret

− (4.5) 

eκ3
∫ t ret(t,s) 

0 

J1
(
κ 
√

c2(t−t ')2−|s−q(t ')|2
)

√
c2(t−t ')2−|s−q(t ')|2 cdt ',
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and 

.
(∇×BBB − 1

c
∂
∂tEEE

)
(t, s) = eκ2 1(

1−n(q,s)·v/c
) 1

|s−q|
v
c

III
ret

− (4.6) 

e κ3
∫ t ret(t,s) 

0 

J1
(
κ 
√

c2(t−t ')2−|s−q(t ')|2
)

√
c2(t−t ')2−|s−q(t ')|2 v(t ')dt '. 

5 Evaluation of the Radiation-Reaction Force 

With the help of these solution formulas, the electromagnetic force of the MBLTP 
field on its point charge source can be computed as follows. Since each electromag-
netic field component is the sum of a vacuum field and a sourced field, the bilinear 
.∏field decomposes into a sum of three types of terms: the vacuum-vacuum terms, 
the source-source terms, and the mixed vacuum-source terms. In our problem the 
vacuum field is.EEE hom; it does not contribute to.∏field, but appears separately at rhs(2.9). 
As explained in [Kie2019], this term is not put in by hand but is a contribution to 
the momentum balance due to a surface integral at “.|s| = ∞.” Hence the only con-
tribution to rhs(2.9) from.∏field is the source-source contribution, a “self”-field force 
in BLTP electrodynamics. Thus, (2.9) is given by 

. f (t) = eEEE hom + f self[q, v; a](t), (5.1) 

where.eEEE hom is the Lorentz force evaluated with the vacuum field (i.e., a “test particle 
contribution” to the total force), and (after taking advantage of hyperbolicity; cf. 
[Kie2019]) 

. f self[q, v; a](t) ≡ − d

dt

∫

Bct (q0)

(
∏field

source(t, s) − ∏field
source(0, s − q0 − v0t)

)
d3s (5.2) 

. = − d

dt

∫

Bct (q0)
∏field

source(t, s)d
3s, (5.3) 

with.∏field
source given by (2.10) with.(BBB,DDD − EEE hom,EEE − EEE hom,HHH) in place of.(BBB,DDD,EEE,HHH). 

To go from (5.2) to (5.3) we made use of the initial data .q0 = 0 and .v0 = 0, and 
.∏field

source(0, s) ≡ 0. 
The “self”-field force can be evaluated using retarded spherical coordinates 

.(r,ϑ,ϕ) to carry out the .d3s integrations over the ball .Bct (q0), after which one 
can differentiate w.r.t. . t . For this very special problem of straight line motion of a 
charge starting from rest at the origin, this yields
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. f self[q, v; a](t) = e2

4π

[
− Z[2]

ξ (t, t) (5.4) 

− ∑

0≤k≤1 
c2−k (2 − k)

∫ t 

0 
Z[k] 

ξ

(
t, t r

)
(t − t r )1−k dt r 

− ∑

0≤k≤2 
c2−k

∫ t 

0 

∂ 
∂t Z

[k] 
ξ

(
t, t r

)
(t − t r )2−k dt r

]
. 

Here, .ξ(t) ≡ (q, v, a)(t) and .Z[2]
ξ (t, t) := limt r→t Z

[k]
ξ

(
t, t r

)
, where 

. Z[k]
ξ

(
t, t r

) =
∫ 2π

0

∫ π

0

(
1 − 1

c v(t r) cosϑ
)
π[k]

ξ

(
t, q(t r) + c(t − t r)n

)
sin ϑdϑdϕ ,

(5.5) 

with.v(t) defined by.v(t)|EEE hom| ≡ v(t) · EEE hom, and with. n = (sin ϑ cosϕ, sin ϑ sinϕ,

cosϑ) a normal vector to the retarded sphere of radius .r = c(t − t r), where we 
measure . ϑ from the .EEE hom direction and . ϕ from an arbitrary axis .⊥ EEE hom. 

Moreover, the .π[k]
ξ (t, s) with .k ∈ {0, 1, 2} and .s /= q are defined as follows. We 

set 

.Kξ(t
', t, s) := J1

(
κ

√
c2(t−t ')2−|s−q(t ')|2

)
√

c2(t−t ')2−|s−q(t ')|2 , (5.6) 

.Kξ(t
', t, s) := J2

(
κ

√
c2(t−t ')2−|s−q(t ')|2

)

c2(t−t ')2−|s−q(t ')|2
(
s − q(t ') − v(t ')(t − t ')

)
, (5.7) 

and note that 

.

∫ t retξ◦ (t,s)

0
Kξ◦(t ', t, s)cdt ' =

∫ ct−|s|

0

J2(κ
√	
c2(t − t ')2 − |s|2)

c2(t − t ')2 − |s|2 s d(ct '), (5.8) 

.

∫ t retξ◦ (t,s)

0
Kξ◦(t ', t, s)cdt ' =

∫ ct−|s|

0

J1(κ
√	
c2(t − t ')2 − |s|2)

√	
c2(t − t ')2 − |s|2 d(ct '). (5.9) 

We will use.
II
ret to mean that.q(t̃),.v(t̃),.a(t̃) are evaluated at.t̃ = t retξ (t, s), not .t retξ◦ (t, s). 

Then 

.π[0]
ξ (t, s) = − κ

4 1

4

[
(n(q,s)− 1

c v)×( 1
c v×n(q,s))(

1− 1
c v·n(q,s)

)2

]

ret

(5.10) 

+ κ4 1 

2

[
n(q,s)− 1 

c v 
1− 1 

c v·n(q,s)

]

ret 
×

∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '

− κ4 1 

2

[ 1 
c v×n(q,s) 

1− 1 
c v·n(q,s)

]

ret 
×

∫ t ret ξ (t,s) 

0 
cKξ(t

', t, s)dt '
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+ κ4 1 

2

[ 1 
c v×n(q,s) 

1− 1 
c v·n(q,s)

]

ret 
×

(
1−(1+κ|s|)e−κ |s| 

κ2|s|2 − 1 2
)

s 
|s| 

+ κ4 1 

2

[ 1 
c v×n(q,s) 

1− 1 
c v·n(q,s)

]

ret 
×

∫ t ret ξ◦ (t,s) 

0 
cKξ◦ (t ', t, s)dt '

− κ4
∫ t ret ξ (t,s) 

0 
cKξ(t

', t, s)dt '×
∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '

+ κ4
(
1−(1+κ|s|)e−κ|s| 

κ2|s|2 − 1 2
)

s 
|s|×

∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '

+ κ4
∫ t ret ξ◦ (t,s) 

0 
cKξ◦ (t ', t, s)dt '×

∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '

− κ4 c
∫ t ret ξ (t,s) 

0 
Kξ(t

', t, s)dt '
∫ t ret ξ (t,s) 

0 
Kξ(t

', t, s)v(t ')dt ' , 

− κ3 1−e−κ|s| 
|s|

∫ t ret ξ (t,s) 

0 
Kξ(t

', t, s)v(t ')dt ' , 

+ κ4
∫ t ret ξ◦ (t,s) 

0 
Kξ◦ (t ', t, s)cdt '

∫ t ret ξ (t,s) 

0 
Kξ(t

', t, s)v(t ')dt ' , 

and 

. π[1]
ξ (t, s) = − κ

2

[

n(q, s)
(n(q,s)×[n(q,s)×a])· 1c v

c2
(
1− 1

c v·n(q,s)
)4 + n(q, s)× n(q,s)×a

2c2
(
1− 1

c v·n(q,s)
)3

]

ret
(5.11) 

− κ2

[

n(q, s)× n(q,s)×a 

c2
(
1− 1 

c v·n(q,s)
)3

]

ret 

×
∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t ', t, s)dt '

+ κ2

[

n(q, s)×
[
n(q, s)× n(q,s) ×a 

c2
(
1− 1 

c v·n(q,s)
)3

]]

ret 

×
∫ t ret ξ (t,s) 

0 
cKξ(t ', t, s)dt '

− κ2

[

n(q, s)×
[
n(q, s)× n(q,s) ×a 

c2
(
1− 1 

c v·n(q,s)
)3

]]

ret 

×
(
1−(1+κ|s|)e−κ|s| 

κ2|s|2 − 1 2
)

s 
|s| 

− κ2

[

n(q, s)×
[
n(q, s)× n(q,s) ×a 

c2
(
1− 1 

c v·n(q,s)
)3

]]

ret 

×
∫ t ret 

ξ◦ (t,s) 

0 
cKξ◦ (t ', t, s)dt '

+ κ3
[

1 
1− 1 

c v·n(q,s)

]

ret

∫ t ret ξ (t,s) 

0 
Kξ(t ', t, s)

[
v(t ret ξ (t, s)) + v(t ')

]
dt ' , 

+ κ2
[

1 
1− 1 

c v·n(q,s)

]

ret 

1−e−κ|s| 
|s| 

1 
c v(t ret ξ (t, s)) 

− κ3
[

1 
1− 1 

c v·n(q,s)

]

ret

∫ t ret 
ξ◦ (t,s) 

0 
Kξ◦ (t ', t, s)cdt ' 1 c v(t ret ξ (t, s)), 

and
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. π[2]
ξ (t, s) = − κ

2

[
1(

1− 1
c v·n(q,s)

)2 1
c v−

[
1 − 1

c2

I
Iv

I
I2
]
(n(q,s)− 1

c v)×( 1
c v×n(q,s))(

1− 1
c v·n(q,s)

)4

]

ret
(5.12) 

+ κ2

[[
1 − 1 c2

IIv
II2
] 1 

c v×n(q,s)(
1− 1 

c v·n(q,s)
)3

]

ret 

×
∫ t ret ξ (t,s) 

0 
cKξ(t

', t, s)dt '

− κ2

[[
1 − 1 c2

I
Iv

I
I2
] 1 

c v×n(q,s)(
1− 1 

c v·n(q,s)
)3

]

ret 

×
(
1−(1+κ|s|)e−κ|s| 

κ2|s|2 − 1 2
)

s 
|s| 

− κ2

[
[
1 − 1 c2

I
Iv

I
I2
] 1 

c v×n(q,s)(
1− 1 

c v·n(q,s)
)3

]

ret 

×
∫ t ret ξ◦ (t,s) 

0 
cKξ◦ (t ', t, s)dt '

− κ2

[
[
1 − 1 c2

I
Iv

I
I2
]

n(q,s) − 1 
c v(

1− 1 
c v·n(q,s)

)3

]

ret 

×
∫ t ret ξ (t,s) 

0 
v(t ')×Kξ(t

', t, s)dt '. 

Although this is an intimidating list of integrals, we can already extract an impor-
tant conclusion: The equation of motion for our point charge does not feature time-
derivatives of the particle position .q(t) higher than second order. This result holds 
also for BLTP electrodynamics in general [Kie2019]. Hence, BLTP electrodynamics 
with point charges does not suffer from the .

...
q (t) problem. 

5.1 The Small-. κ Regime 

To make further progress in the evaluation of the integrals we will concentrate our 
efforts on an asymptotic analysis of the small-. κ regime. We make a formal power 
series expansion about .κ = 0 given by . f self[q, v; a](t) = ∑∞

n=0 F
(n)
0 [q, v; a](t), 

where .F(n)
0 ∝ κ

n; the subscript . 0 at .F(n)
0 indicates that we are expanding about 

.κ = 0. It is manifest that the terms.O(κ0) and.O(κ1) vanish identically, so we need 
to discuss terms.O(κn) for.n ≥ 2. Several of the spherical integrations can been car-
ried out explicitly in terms of well-known functions. In particular, the contributions 
.F(2)

0 and .F(3)
0 can be computed explicitly. 

5.1.1 Radiation-Reaction at . O(κ2)

To arrive at the .O(κ2) contribution we divide the expressions for .π[k]
ξ by .κ2 and 

take.κ → 0. The only two terms that survive in the limit are those in the first line of 
rhs(5.11) and rhs(5.12), respectively (indicated below by a superscript . ,1; later, also 
superscripts. ,3, . ,4, . ,7 will appear). Carrying out the pertinent integrations in (5.5) one 
notes that the result only depends on . t r, not on . t , so that the third line of rhs(5.4) 
vanishes at .O(κ2). Thus,
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.
4π
e2 F

(2)
0 (t) = −Z[2],1

ξ (t, t) − c
∫ t

0
Z[1],1

ξ

(
t, t r

)
dt r. (5.13) 

Explicitly, (5.13) reads 

.F(2)
0 (t) = − 1

2
e2κ2 v(t)

v(t)

[

2
c

v(t)
− c2

v(t)2
ln

1 + 1
c v(t)

1 − 1
c v(t)

]

(5.14) 

+ e2 κ2
∫ t 

0 

c3 

v(t r )3

[
1 
c v(t r ) 

2 − v(t r)2 

c2 

1 − v(t r)2 

c2 

− ln 
1 + 1 c v(t r ) 
1 − 1 c v(t r )

]
1 
c a(t

r )dt r 

The term in the first line of rhs(5.14) is the contribution from the first line of rhs(5.12), 
the term in the second line of rhs(5.14) is the contribution from the first line of 
rhs(5.11). Since for straight-line motion.v(t) and.a(t) are collinear, and.a(t) = v̇(t), 
one can carry out the time integration in the second line of rhs(5.14) in terms of 
elementary functions of .v/c, and a few algebraic manipulations then give (see the 
erratum in [Kie2019]) 

.F(2)
0 (t) = 0. (5.15) 

In this problem of straight line motion in a constant external electric field, with 
the particle starting from rest, the BLTP radiation-reaction force vanishes exactly at 
.O(κ2). 

5.1.2 Radiation-Reaction at . O(κ3)

We next evaluate the.O(κ3) contribution to the radiation-reaction force for small . κ. 
To arrive at the.O(κ3) contribution, subtract the.O(κ2) terms from the expressions for 
.π[k]

ξ , divide the result by .κ
3 and take the limit .κ → 0. This yields the contributions 

from three .π[k]
ξ terms .∝ κ

3, namely .π[1],4
ξ , .π[1],7

ξ , and .π[2],3
ξ . They contribute the 

following force .∝ κ
3, 

.F(3)
0 (t) = − e2κ3q(t) (5.16) 

− e2 κ3 4 
3

∫ t 

0 

c2 

v(t r )2

{
1 + 1 2 

c 

v(t r ) 
ln 

1 − 1 c v(t r ) 
1 + 1 c v(t r )

}
(t − t r )a(t r )dt r 

−e2 κ3 2 
3

∫ t 

0

(
1 − 

v(t r )2 

c2

)
c 

v(t r )

{
1 + 1 2 

c 

v(t r ) 
ln 

1 − 1 c v(t r ) 
1 + 1 c v(t r )

}
cdt r EEE

hom 

|EEEhom| 

Integration by parts yields for the integral in the second line of rhs(5.16)
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.

∫ t

0

c2

v(t r)2

{
1 + 1

2

c

v(t r)
ln

1 − 1
c v(t r)

1 + 1
c v(t r)

}
(t − t r)a(t r)dt r = (5.17) 

.

∫ t

0
c
∫ v(t r)/c

0

1

x2

{
1 + 1

2

1

x
ln

1 − x

1 + x

}
dxdt r = (5.18) 

− 
1 

2

∫ t 

0 

c 

v(t r )

[

1 +
(
1 − 

v(t r )2 

c2

)
1 
2 

c 

v(t r ) 
ln 

1 − 1 c v(t r ) 
1 + 1 c v(t r )

]

cdt r 

Comparison with the third line of rhs(5.16) reveals cancellations, and we end up with 

.F(3)
0 (t) = −1

3
e2κ3q(t). (5.19) 

This is a very surprising result: the .O(κ3) term of the radiation-reaction force 
in our initial value problem is a harmonic oscillator force! This result relies on the 
particular setup of the initial data and the geometry of the problem, but not more. 

6 The Volterra Equation for the Acceleration 

The equation of motion can be recast as a Volterra integral equation for the acceler-
ation, 

.a(t) = W [v] · (
eEEE hom + f self[q, v; a]) (t). (6.1) 

Here, 

.W [v] := 1
mb

/
1 − |v|2

c2
[
I3×3 − 1

c2 v ⊗ v
]
, (6.2) 

which for motion along .EEE hom is the same as 

.W [v] := 1
mb

(
1 − |v|2

c2

)3/2
I3×3. (6.3) 

In [KTZ2023] we show that the Volterra equation can be uniquely solved to yield . a
as a nonlinear expression in. q and. v, posing a second-order initial value problem for 
.q(t). 

6.1 The Volterra Equation to .O(κ3) (Small . κ) 

With the radiation-reaction force evaluated to .O(κ3) we obtain the equation of 
motion 

.a(t) = 1
mb

(
1 − 1

c2 |v(t)|2)3/2 (
eEEE hom − 1

3e
2
κ

3q(t)
)
. (6.4)
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Fig. 1 The velocity of a point charge, starting from rest in a constant applied electrostatic field 
.EEEhom = 10eκ2, versus time, as per test particle theory (dashed curve), resp. BLTP electrodynamics 
with radiation-reaction included to.O(κ3) (continuous curve), when.κe2/mbc2 = 0.01. The period 
of the velocity of the BLTP motion is.κcT = 160. The test particle’s velocity asymptotes to. c

Equation (6.4) is equivalent to the problem of special-relativistic test particle motion 
in a harmonic oscillator potential, featuring time-periodic solutions with conserved 
particle energy 

.U =
/
m2

bc
4 + | p|2c2 − eEEE hom · q + 1

6e
2
κ

3|q|2. (6.5) 

It is not clear to us whether this means that the validity of the .O(κ3) approx-
imation is restricted to short times .κct << 1 (see Fig. 1, which looks reasonable) 
or whether such periodic motion over longer times is a genuine feature of BLTP 
electrodynamics as long as.κe2/mbc2 << 1. In the latter case BLTP electrodynamics 
would presumably be eliminated for good from the list of contenders for a realistic 
classical electrodynamics. 

7 Summary and Outlook 

We have shown that BLTP electrodynamics, as defined in [Kie2019], accounts for 
radiation-reaction effects on the point charge motion along a constant applied electric 
field, thereby passing a litmus test that other models (in particular, the Landau– 
Lifshitz and Eliezer–Ford–O’Connell equations of motion) fail. Our results are based 
on a small-.κ expansion of the BLTP force expression. This is acceptable for our 
“proof-of-concept” demonstration. However, BLTP electrodynamics is physically 
viable at most in the large .κ regime [CKP2019]—if at all. An assessment of the 
large-. κ regime we leave to some future work.
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Revisiting Quantum Mechanical 
Zero-Range Potentials 

Rodolfo Figari and Alessandro Teta 

Abstract In this contribution we make a brief overview of history and recent results 
in the theory of many quantum particles interacting via zero-range forces. We recall 
the regularisation mechanism suggested by several authors in the past in order to avoid 
the “fall to the center” problem in three-body systems. Following those suggestions a 
family of three-body point interaction Hamiltonians bounded from below were made 
available recently. We conclude showing that a similar kind of ultraviolet problem is 
already present in the theory of point interaction Hamiltonians in one-body Quantum 
Mechanics. A careful look to the entire family of many center point interaction 
Hamiltonians shows that the great majority of them do not become either singular 
or trivial when the positions of two or more scattering centers tend to coincide. In 
this sense, those Hamiltonians appear to be renormalised by default as opposed to 
the “local” point interaction Hamiltonians usually considered in the literature since 
the early days of Quantum Mechanics. The renormalization mechanism turns out to 
be very similar to the one used in the three-body problem. 

1 Introduction 

Both authors of this contribution had the privilege and the pleasure of having had 
Detlef for many years as a friend. Becoming friends with Detlef has always been 
simple and engaging because he has been a joyful, smiling and generous person. He 
always loved Italy where every year he came on holiday with family and dog. He has 
also collaborated with many Italian researchers in Rome, L’Aquila, Naples, Genoa 
etc. 

At the turn of the century, in connection with his interest on the foundations 
of Quantum Mechanics, he began to analize the decoherence effects induced on a 
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quantum system by interaction with its environment. In particular, Herbert Spohn and 
Detlef analized the coupling to the radiation field of a charged particle as a source of 
decoherence [ 8]. In the same book [ 8] and in the two editions of [ 14] many theoretical 
and experimental physicists presented their ideas and results about the emergence of 
“classicality” triggered by interaction in open quantum systems. A few years later 
the group led by M. Arndt and A. Zeilinger performed experiments of matter wave 
quantum interference using different kind of fullerenes, giant macromolecules made 
of many thousands of atoms. Outputs of one of these experiments and their theoretical 
interpretation were published in [ 15] where the authors analized the observed loss 
of spatial coherence in the particle wave function due to collisions with background 
gases present between the slits and the particle detector. In their words “From the 
gradual suppression of quantum interference with increasing gas pressure we are 
able to support quantitatively both the predictions of decoherence theory and our 
picture of the interaction process. We thus explore the practical limits of matter wave 
interferometry at finite gas pressures and estimate the required experimental vacuum 
conditions for interferometry with even larger objects”. The theoretical techniques 
they made use of were a mixture of quantum and classical approaches. In particular, 
they used a classical time of flight picture between scattering processes in order to 
avoid the difficulties of a many-body quantum treatment. The single collision process 
was analized quantum mechanically using the Joos and Zeh formula for the scattering 
matrix in a two particle system one of which is much lighter than the other. 

Together with Detlef we decided to perform a more rigorous investigation of the 
dynamics of the collisional decoherence process using zero-range forces as interac-
tion model. In fact, Spohn himself suggested the idea to consider models of environ-
ment simpler than the radiation field to give a detailed quantitative estimate of the 
decoherence effect. 

The first step was to compute the loss of visibility of the interference fringes in a 
single scattering process or, which is the same, to give a more rigorous derivation of 
the Joos and Zeh formula. 

The second step turned out to be much more difficult to do. In order to investigate 
the loss of spatial coherence due to an increasing number of scattering processes one 
needs a detailed description of the dynamics of a heavy particle travelling in a “gas” 
of light particles in three dimensions which is a project of considerable difficulty with 
any choice of short range interactions between the heavy particle and the light ones. 
In particular, there was a long lasting problem connected to zero-range interactions: 
all the proposed Hamiltonians for a system of three quantum particles interacting 
via zero-range forces were unbounded from below, a severe sign of instability of the 
physical system under investigation. 

In the next section we will summarize the history of the successes and failures 
in the theory of many quantum particles interacting via zero-range forces, the con-
jectures which were formulated in order to solve the ultraviolet problem and recent 
results in the field. 

In the last two sections we will show that the short distance singularities in the 
many-particle systems are already observed at the level of one quantum particle in 
a many-center array of the so-called local zero-range scatterers. We will clarify that
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there is a large family of point interaction Hamiltonians (the so-called non local ones) 
that do not show any ultraviolet pathology and can be considered effective models of 
well behaved short range interactions. As a relevant application we detail their use 
in the Born-Oppenheimer approximation of a three-body system made of one light 
and two heavy particles. 

2 Zero-Range Interactions in Many-Particle Systems 

Here we recall the difficulties arising in the construction of Hamiltonians for many-
particle systems with zero-range interactions in dimension three and describe some 
recent attempts to obtain a physically reasonable version of such Hamiltonians. 

In order to explain the problem we first consider a system composed of three iden-
tical spinless bosons of mass.1/2. Let us fix the center of mass reference frame so that 
. x1, .x2 and .x3 = −x1 − x2 represent the Cartesian coordinates of the three particles. 
We also introduce the Jacobi coordinates.x = x2 − x3 and.y = x1 − 1

2 (x2 + x3) and 
the Hilbert space of the system 

. L2
sym(R6) := {ψ ∈ L2(R6)

II ψ(x, y) = ψ(−x, y) = ψ
(
1
2 x + y, 3

4 x − 1
2 y
)}

.

(2.1) 
Indeed, notice that the symmetry conditions in (2.1) corresponds to the exchange 
of particles .2, 3 and .1, 2 that implies also the condition . ψ(x, y) =
ψ
(
1
2 x − y,− 3

4 x − 1
2 y
)
, associated with the exchange of particles.3, 1. If the bosons 

interact via zero-range forces, then the system is described, at least formally, by the 
Hamiltonian 

.Ĥ3b = H3b
0 + ν δ(x) + ν δ( 12 x + y) + ν δ( 12 x − y) (2.2) 

where .ν ∈R is a (formal) coupling constant and .H3b
0 is the free Hamiltonian of the 

system, i.e. 
.H3b

0 = −∆x − 3
4 ∆y . (2.3) 

Here and in the following we set .ℏ = 1. In order to define a rigorous counterpart 
of .Ĥ3b, one needs to build a perturbation of the free Hamiltonian supported on the 
coincidence hyperplanes 

. π1 :=
{
(x, y)∈ R

6 II x = 0
}
, π2 :=

{
(x, y)∈ R

6 II y = − 1
2 x
}
, π3 :=

{
(x, y)∈ R

6 II y = 1
2 x
}
.

(2.4) 
In other words, we look for a self-adjoint and bounded from below extension in 
.L2

sym(R6) of the following symmetric and densely defined operator 

.Ḣ3b
0 := H3b

0

II
D (Ḣ3b

0 )
, D(Ḣ3b

0 ) := H 2
0 (R6 \ ∪3

i=1πi ) . (2.5)
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Roughly speaking, any such extension acts as the free Hamiltonian in . R6 \ ∪3
i=1πi

and is characterized by a (singular) boundary condition on each hyperplane . πi . The  
choice of a physical reasonable extension, or equivalently of the boundary condition, 
is not easy due to the fact that the defect spaces associated to the operator (2.5) are  
infinite dimensional. A possible approach is to proceed by analogy with the case of 
a point interaction in the one-body case ([ 1]). Following such analogy one is led to 
the boundary condition on . π1

.ψ(x, y) = ξ(y)

|x | − 1

a
ξ(y) + o(1), |x | → 0, (2.6) 

where . a is the two-body scattering length and .ξ(y) = lim|x |→0 (|x |ψ(x, y)). Notice 
that, due to the symmetry constraint, (2.6) implies the analogous boundary conditions 
on .π2,π3. Unfortunately, as a matter of fact the extension defined via the boundary 
condition (2.6) is symmetric but not self-adjoint and its self-adjoint extensions are 
all unbounded from below. This instability phenomenon is known as Thomas effect 
and it has been rigorously proved in [ 17, 18]. Therefore the natural problem arises 
of figuring out if and how one can modify the boundary condition (2.6) to obtain a 
bounded from below Hamiltonian. In a comment on this point, at the end of the paper 
[ 17] Minlos and Faddeev claim that it is possible to find a self-adjoint and bounded 
from below Hamiltonian by replacing 

. − 1

a
ξ(y) → −1

a
ξ(y) + (K ξ)(y) (2.7) 

in the boundary condition (2.6), where .K is a convolution operator in the Fourier 
space with a kernel .K (p − p') satisfying 

.K (p) ∼ γ

|p|2 , for |p| → ∞ (2.8) 

with the positive constant . γ sufficiently large. The authors do not explain the reason 
of their assertion neither they clarify the physical meaning of the boundary condition 
(2.7). They only conclude: “A detailed development of this point of view is not 
presented here because of lack of space” and, strangely enough, their idea has never 
been developed in the literature. 

Almost twenty years later Albeverio, Høegh-Krohn and Wu ([ 2]) have proposed 
the same kind of recipe formulated in position space, i.e. 

. − 1

a
ξ(y) → −1

a
ξ(y) + γ

|y|ξ(y) .

Also in this case the proof has been postponed to a forthcoming paper which has 
never been published. In recent years the proposal of Minlos and Faddeev has been 
reconsidered ([ 3, 9, 10, 12], see also [ 16] for a different approach) and it has been 
proved that a self-adjoint and bounded from below Hamiltonian can actually be
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constructed. More precisely, one considers the extensions characterized by the bound-
ary condition 

.ψ(x, y) = ξ(y)

|x | + α(y)ξ(y) + o(1), |x| → 0, (2.9) 

where . α is a position dependent parameter given by 

.α : y I−→ −1

a
+ γ

|y| θ(|y|) (2.10) 

with . γ a positive parameter representing the strength of the regularization and 

.θ ∈ L∞(R+), |θ(r) − 1| 	≤ c r for some c > 0. (2.11) 

Simple choices for the function . θ are 

.θ(r) = 1 , θ(r) =
{
1 r 	≤ b

0 r > b
, θ(r) = e−r/b , b > 0 . (2.12) 

We stress that, due to the symmetry constraints of .L2
sym(R6), the boundary condi-

tion (2.9) implies the analogous boundary conditions for.y → − 1
2 x and for.y → 1

2 x . 
Taking the formal operator characterized by the boundary condition (2.9) as a  

starting point, one can construct a quadratic form defined on a suitable domain and 
one can prove that for . γ larger than a threshold value .γ3b

c > 0 the quadratic form 
is closed and bounded from below. Therefore it uniquely defines a self-adjoint and 
bounded from below operator which, by definition, represents the Hamiltonian for 
the three boson system with regularized contact interactions (see [ 3] for details). 

Let us comment on the physical meaning of the regularization introduced with 
the boundary condition (2.9). Comparing (2.6) and (2.9), we can interpret . −α(y)−1

as an effective, position dependent scattering length 

. aeff(|y|) := − 1

α(y)
= a|y|

|y| − a γ θ(|y|)
associated to the zero-range interaction between the particles.2, 3 taking place when 
.x2 = x3, i.e., for.x = 0. On the other hand the coordinate.|y| is the distance between 
the third particle . 1 and the common position of particles .2, 3. Then we have 

. lim|y|→0
aeff(|y|) = 0 , lim|y|→∞ aeff(|y|) = a ,

i.e., the effective scattering length associated to the interaction of particles .2, 3 con-
verges to zero if the third particle . 1 is close to the common position of particles . 2, 3
while it converges to . a if the third particle . 1 is sufficiently far away. In other words,
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we have introduced a three-body interaction which reduces to zero the two-body 
interaction when the third particle approaches the common position of the first two. 
On the other hand, the usual two-body interaction is restored if the third particle is 
at large distance from the first two. This is precisely the mechanism that prevents in 
our model the fall to the center phenomenon, i.e., the Thomas effect. 

The approach outlined for the Hamiltonian of the three boson system can be 
generalized to the case of the Hamiltonian for .N identical bosons interacting with a 
test particle via zero-range forces. It is worth to stress that such a model is particularly 
interesting for a rigorous analysis of the decoherence effect induced on the test particle 
by multiple collisions with the light particles of the Bose gas. 

In the rest of this section we give a sketch of the construction of such Hamil-
tonian (for all the technical details we refer to [ 9]). Let us consider a system in 
dimension three made of .N identical bosons with mass .m0 interacting via zero-
range forces with a test particle with mass . m. The Hilbert space of the system is 
.L2(R3) ⊗ L2

sym(R3N ), N 	≥ 2, and, at a formal level, the Hamiltonian reads 

.Ĥ = H0 + ν

N	∑

i=1

δ(x − xi ), (2.13) 

where .H0 is the free Hamiltonian, given by 

.H0 := 1

2m
∆x − 1

2m0

N	∑

i=1

∆xi (2.14) 

Proceeding as in the three bosons case, we define the rigorous counterpart of (2.13) 
as a self-adjoint and bounded from below extension of 

.Ḣ0 := H0|D (Ḣ0)
, D(Ḣ0) := H 2

0 (R3(N+1) \ π) (2.15) 

where 

.π :=
N∐

i=1

πi , πi := {(x, x1, . . . , xN ) ∈ R
3(N+1)

II x = xi
}

(2.16) 

and in particular we consider the extension characterized by the following boundary 
condition on . πi

. ψ(x, x1, . . . , xN ) =
ξ(

x+ηxi
1+η , x1, . . . , x̌i , . . . , xN )

|x − xi | + αi (x1, . . . , xN )ξ(xi , . . . , x̌i , . . . , xN ) + o(1)

(2.17) 
for .|x − xi | → 0, where 

.η = m

m0
, (2.18)
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the symbol .x̌i indicates that the variable .xi is omitted and 

.αi (x1, . . . , xN ) = −1

a
+ γ

N	∑

j=1, j /=i

θ(|xi − x j |)
|xi − x j | . (2.19) 

Recall that . a is the two-body scattering length, .γ > 0 and . θ satisfies (2.11). We 
also stress that, due to the bosonic symmetry, the function . ξ is invariant under the 
exchange of the last .N − 1 arguments. 

Using a quadratic form method one can show that for .γ > γc, with 

.γc = 2(1 + η)

π
sin−1

(
1

1 + η

)
− 2

√
η(η + 2)

π(N − 1)(1 + η)
, (2.20) 

the formal extension of (2.15) characterized by the boundary condition (2.17) can 
be actually constructed as a self-adjoint and bounded from below Hamiltonian in 
.L2(R3) ⊗ L2

sym(R3N ). 
Here we only give the final result of the construction, i.e., the rigorous definition of 

such Hamiltonian. Let us introduce the “potential” produced by the “charge density” 
. ξ distributed on . πi

. 
∧Gλ

i ξ(k, p1, . . . , pN ) =
/

2

π
(1 + η)

ξ̂(k + pi , p1, . . . p̌i , . . . pN )

k2 + η
∑N

j=1 p
2
i + 2mλ

, λ > 0

(2.21) 
and the corresponding total potential 

.Gλξ =
N	∑

i=1

Gλ
i ξ . (2.22) 

Then the Hamiltonian is given by 

.D(H) = {
ψ | ψ = wλ + Gλξ, wλ ∈ H2(R3(N+1)), ξ ∈ H1(R3N ), (Oλξ)i = wλ|πi , ∀i}, (2.23) 

.Hψ = H0w
λ − λGλξ (2.24) 

where 

. (Oλξ)i (x1, . . . , xN ) = αi (x1, . . . , xN )ξ(xi , . . . , x̌i , . . . , xN )

+ 1
(2π)3N/2

	∫
dp1 . . . dpN ei

∑N
j=1 x j ·p j

[
[II√	 η

(1+η)2
p2i + η

1+η

N	∑

j=1, j /=i

p2j + 2mλ
1+η ξ̂(pi , p1, . . . p̌i , . . . pN )

− 1+η
2π2

N	∑

j=1, j /=i

	∫
dk

ξ̂(k + p j , pi − k, . . . , p̌i , . . . , p̌ j , . . . , pN )

(1 + η)k2 − 2η pi · k + η
∑N

l=1 p2l + 2mλ

]
. (2.25)
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We stress that the last equality in (2.23) plays the role of a boundary condition on 
the hyperplane .πi and it is not hard to see that it is an equivalent formulation of the 
boundary condition (2.17). 

We conclude this section describing at formal level the limit of the Hamiltonian 
for .η → 0, i.e., when the bosons are infinitely heavy and then become fixed centers 
at the positions .x1, . . . , xN . To simplify the notation with consider the case .N = 2, 
with .2m = 1. We will see that in the limit one obtains the one-particle Hamiltonian 
with non local point interactions placed at .x1, x2. 

Let us introduce the notation 

. R = |x1 − x2|, q1 = 4πξ(x1, x2), q2 = 4πξ(x2, x1), α̂(R) = 4π

(
− 1

a
+ γ

θ(R)

R

)
.

(2.26) 

Then, from (2.21), (2.22), we find for . η → 0

. Gλξ(x, x1, x2) → 1
(2π)9/2

	∫
dkdp1dp2 eix ·k+i x1·p1+i x2·p2

/
2
π

ξ̂(k + p1, p2) + ξ̂(k + p2, p1)

k2 + λ

=
/

2
π ξ(x1, x2)

1
(2π)3/2

	∫
dk

ei(x−x1)·k
k2 + λ

+
/

2
π ξ(x2, x1)

1
(2π)3/2

	∫
dk

ei(x−x2)·k
k2 + λ

=
2	∑

i=1

e−
√

λ|x−xi |
4π|x − xi | qi . (2.27) 

Moreover, from (2.25) we have for . η → 0

. (Oλξ)1(x1, x2) →
(
α̂(R) +

√
λ

4π

)
q1 − 1

(2π)3

	∫
dp1dp2 eix1·p1+i x2·p2 1

2π2

	∫
dk

ξ̂(k + p2, p1 − k)

k2 + λ

=
(
α̂(R) +

√
λ

4π

)
q1 − ξ(x2, x1)

1
2π2

	∫
dk

ei(x1−x2)·k
k2 + λ

=
(
α̂(R) +

√
λ

4π

)
q1 − e−

√
λR

4πR
q2 (2.28) 

and .(Oλξ)2(x1, x2) →
(
α̂(R) +

√
λ

4π

)
q2 − e−√

λR

4πR q1. Let us also observe that from 

(2.20) we have.γc → 1 for .η → 0. In conclusion we find that .H reduces in the limit 
.η → 0 to the following one-particle Hamiltonian in . L2(R3)

.D (Hα̂(R)) = {
u | u = φλ +

2	∑

i=1

e−√
λ|·−xi |

4π| · −xi | qi , φλ ∈ H2(R3), qi ∈ C,

2	∑

j=1

∑λ
i j q j = φλ(xi )

}
, (2.29) 

.Hα̂(R)u=−∆φλ − λ

2	∑

i=1

e−√
λ|·−xi |

4π| · −xi | qi (2.30)
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where 

.∑λ =
⎛

⎜
⎝

α̂(R) +
√

λ
4π − e−√

λR

4πR

− e−√
λR

4πR α̂(R) +
√

λ
4π

⎞

⎟
⎠ . (2.31) 

Notice that the behavior of .u ∈ D(Hα̂(R)) near .xi is given by 

.u(x ∼ xi ) = qi
4π|x − xi | + α̂(R)qi + o(1) . (2.32) 

It is immediate to realize that we have obtained the Hamiltonian of a particle sub-
ject to non local point interactions placed at the centers .x1 and .x2 with a strength 
.α̂(R) depending on the distance between the centers according to the last formula in 
(2.26). We shall see in the next section that, in contrast with the standard local point 
interactions, such Hamiltonian exhibits a regular behaviour for .R → 0, i.e., when 
the two centers approach each other. 

3 Point Potentials in One-Body Quantum Mechanics in . R3

A many-center point interaction Hamiltonian in one-body quantum theory is defined 
to be one of the self-adjoint extensions of the symmetric operator . Ḣ0 = −∆ ↾
C∞
0 (Rd \ {y1, . . . , yn}) where.{y1, . . . , yn} are the positions in.R

d of the point inter-
action centers. As is well known, there are non trivial self-adjoint extensions of . Ḣ0

in dimension . d equal one, two and three, whereas in dimensions higher or equal to 
four .Ḣ0 is already essentially self-adjoint and its closure is the free Laplacian. 
In [ 5] L. Dabrowskj and H. Grosse classified via the von Neumann construction all 
the self-adjoint extensions of .Ḣ0 in .d = 1, 2, 3. In order to distinguish them from 
the point interaction Hamiltonians since long extensively used in various fields of 
applied and mathematical physics (see [ 1]) they used for them the name non-local in 
spite of the fact that the family of extensions they found should also include all the 
previously defined Hamiltonians. 
Below we summarize their results and the subsequent computations made by us for 
the case .d = 3 and .n = 2 in order to simplify the comparison with the three-body 
problem that we examined in the previous section. Furthermore, we are going to 
consider Hamiltonian operators having in their domains only functions which are 
symmetric in the exchange of the positions of the interaction centers. 
The defect spaces .Ni and .N−i of the symmetric operator . Ḣ0 = −∆ ↾ C∞

0 (Rd \
{y1, y2}) are two dimensional and are respectively the linear span of the solutions of 
fundamental equation .(−∆ ∓ i)G j

±i = δy j j = 1, 2 which are the only eigenfunc-
tions of the adjoint of .Ḣ0 relative to the eigenvalues .±i . Explicitly
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. G j
±i = ei

√∓i |x−y j |

4π|x − y j | , j = 1, 2

with.Re
√∓i > 0. Due to the assumption of symmetry with respect to the exchange 

of the positions .y1 and .y2 the only admissible states in the .. i th defect space are 
complex multiples of the sum .G1

±i + G2
±i . The dimensions of the defect spaces are 

then reduced to one. As a consequence, according with the von Neumann construction 
any extension .HU of .Ḣ0 will have domain and action given by 

.

D(HU ) =
⎧
⎨

⎩
f ∈ L2(R3)| f = f0 + C

2	∑

k=1

Gk
i + C

2	∑

k, j=1

UkjG
j
−i

⎫
⎬

⎭

HU f = −∆ f0 + i C
2	∑

k=1

Gk
i − i C

2	∑

k, j=1

UkjG
j
−i

(3.1) 

where .C ∈ C , . f0 ∈ H 2(R3) is symmetric under the exchange of the interaction 
centers positions and the .2 × 2 matrix .U must have the form 

.U =
(
eiθ 0
0 eiθ

)
where 0 	≤ θ < 2π . (3.2) 

We will collect the main results concerning the properties of the entire family of 
self-adjoint extensions of .Ḣ0 in the following proposition. 

Proposition 3.1 Each .HU , with .U of the form (3.2), has the following properties. 
(i) The resolvent of .HU is 

. (HU − z)−1 = Gz +
2	∑

m,n=1

[ΓU (z)]−1
mn

(
Gz(· − ym) , ·

)
Gz(· − yn) (3.3) 

with 

.ΓU (z) = 2i

(
s S
S s

)⎛

⎝
e−iθ/2

2 cos θ
2

0

0 e−iθ/2

2 cos θ
2

⎞

⎠+
(
cz Cz

Cz cz

)
(3.4) 

where, 

. s = 1

4
√
2π

S = 1

4πR
e−R/

√
2 sin (R/

√
2) cz =

√−z − √
i

4π
Cz = − e−√−zR − e−√

i R

4πR
(3.5) 

and .R = |y1 − y2|. Notice that for .θ = π the matrix .ΓU (z) becomes infinite and the 
resolvent of .HU converges for .θ → π to the resolvent of the free Laplacian. 

(ii) Every function .Ψ ∈ D(HU ) has the following behaviour around each inter-
action center
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.Ψ(x ∼ yi ) = q

4π|x − yi | + α(R) q + o(1) (3.6) 

where 

.α(R) = −1 − tθ

4
√
2π

+ 1

4πR
e−R/

√
2 cos (R/

√
2) + tθ

4πR
e−R/

√
2 sin(R/

√
2) (3.7) 

and 

.tθ = tan
θ

2
. (3.8) 

(iii) The essential spectrum of .HU is 

.σess(HU ) = σac(HU ) = [0,∞) (3.9) 

and it is absolutely continuous. The discrete spectrum of .HU consists of at most one 
eigenvalue in .(−∞, 0). More precisely, .−λ for .λ > 0 is an eigenvalue of .HU if and 
only if 

.4πα(R)
R√
2

= −√
λR + e−√

λR (3.10) 

(iv) The functions 

.Ψα(R),Y (k, x) = eik·x +
2	∑

k,l=1

[ΓU (k2)]−1
mn e

ik·yn ei |k||x−ym |

4π |x − ym | , k ∈ R
3 (3.11) 

make up the set of all the generalized eigenfunctions of .HU. 
(v) The scattering length of .HU is 

. aU = − 1

4π

2	∑

m,n=1

[ΓU (0)]−1
mn = 2R

R√
2
(1 − tθ) − e

− R√
2 (tθ sin

R√
2

+ cos R√
2
) + 1

= −2

(
4πα(R) − 1

R

)−1

.

(3.12) 
The scattering length for .R = 0 becomes .aU =

√
2

1−tθ
while for .R → ∞ one has 

.aU → 2
√
2

1−tθ
. 

Below, we make few remarks in order to highlight the main consequences of the 
proposition stated above. 

Remark 3.2 For each fixed. θ the function.α(R) appearing in the “boundary condi-
tion” around each interaction point becomes singular when.R → 0. In fact,.α(R) has 
exactly the same form of the renormalisation term introduced in the previous section 
to obtain a point interaction Hamiltonian bounded from below in the three-body 
problem.



348 R. Figari and A. Teta

Remark 3.3 Inverting the relation between .α(R) and . tθ one obtains 

.tθ(R) =
4πRα − e−R/

√
2 cos R/

√
2 + R√

2
R√
2

+ e−R/
√
2 sin R/

√
2

. (3.13) 

Equation (3.13) shows that for each fixed.α ∈ R and distance.R > 0 there is a. tθ (and 
in turn a self-adjoint extension) but it also shows that .tθ → −∞ when the distance 
of the two interaction centers approaches zero implying that the Hamiltonian tends 
to the free one. We recall that the self-adjoint extensions characterized by a constant 
. α have been historically referred to as the “local” ones and always considered the 
only acceptable models of point interaction Hamiltonians in Quantum Mechanics. 
As is evident from what has been presented above the multi-center local self-adjoint 
extensions of.Ḣ0 are not additive as opposed to what happens for the sum of two short 
range potential functions which is always well defined regardless of how much their 
supports overlap (in particular, they do not disappear when the interaction centers 
tend to coincide). 
In contrast, all the extensions relative to a fixed . tθ do not become trivial when the 
distance between the interaction points approaches zero. In fact, they converge to a 
one center point interaction Hamiltonian with scattering length different from zero 
and depending on the extension parameter . tθ. 

Remark 3.4 From (3.12) we deduce that the scattering length of .HU increases to 
infinity when the distance of the interaction centers approaches zero if. U corresponds 
to the parameter.tθ = 1. This implies that.tθ = 1 characterizes the self-adjoint exten-
sion showing scale invariance when the two scattering centers tend to coincide. 

Remark 3.5 The resolvent of the two centers Hamiltonian .HU for . y2 → y1 ≡ y
tends to the operator 

. Gz + 1
tθ−1
4π

√
2

+
√−z
4π

(
Gz(· − y), ·

)
Gz(· − y)

which is the resolvent of a single point interaction Hamiltonian with “strength” 

.
tθ − 1

4π
√
2

. 

The eigenvalue problem for .HU amounts to solve Eq. (3.10). Denoted by .W0 the 
Lambert function (see e.g. [ 4]), the eigenvalue .E(R) is given by 

.E(R) = −λ , with
√

λ = 1

R
(W0(e

u) − u) (3.14) 

where 

.u = 4πα(R)R =
(

−(1 − tθ)
R√
2

+ e−R/
√
2(tθ sin R/

√
2 + cos R/

√
2)

)
. (3.15)
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For .tθ = 1 it easy to check that the energy eigenvalue for .R → 0 and .R → ∞ have 
the following behaviour 

• For . R → 0

.E(R) ∼ − R2

16
(3.16) 

• For . R → ∞
.E(R) ∼ −W0(1)

2

R2
∼ −0.32

R2
. (3.17) 

For .0 < tθ < 1, the function .E(R) remains bounded away from zero and 

. lim
R→0

E(R) = lim
R→∞ E(R) = − (1 − tθ)2

2
(3.18) 

and .E(R) ∼ − (1−tθ)2

2 −
√
2(1−tθ) e−(1−tθ )R/

√
2

R − e−2(1−tθ )R/
√
2

R2 for .R → ∞. 

4 Two Heavy and One Light Particle—The Born 
Oppenheimer Approximation 

Following the suggestions given at the end of Sect. 2 we want to further investigate 
the dynamics of a three-body system in the limit in which it is possible to separate 
the slow dynamics of two heavy non interacting bosons and the fast dynamics of a 
light particle interacting with the two bosons via zero-range forces. 

The Hamiltonian in the Jacobi coordinates formally reads (see e.g. [ 13]) 

. H = − 1

μ
Δ 	→R − 1

ν
Δ	→r + δ(	→r + 	→R/2) + δ(	→r − 	→R/2)

where 

.	→r = 	→r3 − 1

2
(	→r1 + 	→r2), 	→R = 	→r1 − 	→r2, ν = 2M

2M + m
, μ = M

2m
.
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For this purpose, we are going to use a bottom up strategy based on the Born-
Oppenheimer approximation using only what we learnt about point interaction 
Hamiltonians. 

In fact, formula (2.31) suggests that the fast dynamics of the light particle is 
generated by a two center point interaction Hamiltonian of the type we analized in 
the previous section. 

The mutual interaction between the two bosons acquired as a consequence of their 
common interaction with the light one is examined through the Born-Oppenheimer 
approximation. In this approximation the analysis of the eigenvalue problem for the 
three body system is performed assuming eigenfunctions of the form 

. Ψ(	→r , 	→R) = ψ(	→r; 	→R)Φ( 	→R)

where .ψ(	→r; 	→R) is the solution of the time independent Schrödinger equation for the 
light particle depending parametrically on . 	→R

.

[
−1

ν
∆	→r + δ(	→r + 	→R/2) + δ(	→r − 	→R/2)

]
ψ(	→r; 	→R) = E(R)ψ(	→r; 	→R) (4.1) 

and 

.

[
− 1

μ
∆ 	→R + E(R)

]
Φ( 	→R) = EΦ( 	→R) (4.2) 

where .R = | 	→R| and . E is the approximate eigenvalue of the three-body system. 

Remark 4.1 If the function .E(R) is computed for .α = 0 (see Eq. (3.10)) one finds 
that .E(R) ∼ −W0(1)2/νR2 both for . R near zero and for . R tending to infinity. This 
turns out to imply that the system of the two bosons is unstable for the presence 
of energy eigenvalues going to .−∞. In fact all the self-adjoint realizations of a 
Schrödinger operators with potential .−γ/R2, .γ > 1/4, share this pathology. It is 
difficult not to notice the similarities with the instability problems discussed in Sect. 2 
relative to boundary conditions with fixed scattering length. 

Using the two-center point interaction Hamiltonian described in the previous section 
with.tθ = 1 the effective potential.E(R) turns out to be regular, bounded everywhere 
and decaying as .−W0(1)2/νR2 at infinity. In the case .W0(1)2/ν > 1/4 the energy 
eigenvalues are bounded from below and there are infinitely many low energy eigen-
states with eigenvalues accumulating at zero energy. They can be shown to satisfy the 
“Efimov scale”. All the results relative to problem (4.2) are stated in the following 
theorem, whose proof will be given in a forthcoming paper ([ 11]). 

Theorem 4.2 Let .tθ = 1. There exists an infinite sequence of negative eigenvalues 
.En with .En → 0 for .n → ∞. Moreover, 

.En = −C e
2
β (tan

−1(2β)+φβ−nπ)(1 + ζn
)
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where.C > 0,. ζn → 0 , for n → ∞and.β = √	μW (1)2/ν − 1/4. The Efimov geo-
metrical law holds 

. lim
n

Ei
n

Ei
n+1

= e
2π
β .

Let .tθ < 1. The number of eigenvalues is finite. 

Dedication. Like all those in this volume our contribution is dedicated to the memory 
of Detlef. He would probably appreciate it but he certainly wouldn’t refrain from 
joking with us with “aren’t you tired of being involved in this point interaction 
business?” Sure Detlef, sometimes we are a little bit tired but we can’t miss your 
sweet and irrepressible smile when you play with us. Thanks Detlef for having been 
our friend. 
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Philosophy of Physics



Situated Observation and the Quantum 
Measurement Problem 

Jeffrey Barrett 

The merit of Bohmian mechanics is not determinism, but the 
refutation of all claims that quantum mechanics cannot be 
reconciled with a realistic description of reality. In physics, one 
needs to know what is going on. Bohmian mechanics tells us 
what is going on and it does so in the most straightforward way 
imaginable. 

Teufel and Dürr (2009, 9–10) 

Abstract A situated observer is an observer as modeled within the world charac-
terized by one’s physical theory. A physical theory arguably only makes empirical 
predictions if it makes predictions for the records of a situated observer. In this spirit, 
one has a satisfactory solution to the measurement problem only if one has a formula-
tion of quantum mechanics that makes the right empirical predictions for the records 
of a situated observer. Bohmian mechanics addresses the measurement problem by 
explaining what measurement records are, how a situated observer might produce 
them, and why a situated observer should expect the standard quantum predictions. 
The notion of an effective wave function is crucial in understanding how the theory 
makes empirical predictions. 

1 The Measurement Problem 

Our best physical theories should describe both us and the world we inhabit. After all, 
we are physical systems like any other, and the outcomes of our measurements are 
physical records. As John Bell put the point, “For me it is absolutely unquestioned 
in my analysis of things that the real world is out there, and that I am an incident in 
it” (Bell 1989). 
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In order to be consistently applicable to all systems, a physical theory must be able 
to explain how the process of observation leads to determinate physical records. And 
for it to be empirically adequate, it must accurately predict our records. A physical 
theory is empirically adequate in this sense only if it accurately predicts the physical 
records of situated observers, observers as modeled within the world characterized 
by the theory. 1

If a physical theory exhibits this strong sort of empirical adequacy, it explains 
why the world looks the way it does to the observers who inhabit it. We shall say 
that such a theory is strongly adequate. 2 A strongly adequate theory successfully 
predicts and explains our physical records. 

There are clear virtues to having a strongly adequate theory. Unfortunately, the 
standard von Neumann formulation of quantum mechanics is not strongly adequate. 
The quantum measurement problem arises from trying to describe the process of 
measurement for a physically situated observer in the theory. 

Hugh Everett III presented the measurement problem in the form of a “hypotheti-
cal drama” in his Ph.D. thesis (1956, 73–5). He argued that the standard formulation 
of quantum mechanics is “untenable” because it does not allow for a consistent 
account of how a physically situated observer produces the physical records that 
represent the outcomes of her measurements (1956, 75). Eugene Wigner (1961) later 
retold Everett’s story. 

Consider an object system . S that begins in the superposition of .x-spin states 
represented by 

. α|↑x >S + β|↓x >S
and suppose that an observer .F and her measuring device .M begin ready to make 
an .x-spin measurement of . S as in Fig. 1. The composite system, then, begins in the 
state: 

. |“r”>F |“r”>M(α|↑x >S + β|↓x >S).

To keep things simple, suppose that .M is a perfect measurement device and . F
a perfect observer. That is, suppose that . M’s pointer reading becomes perfectly 
correlated with the.x-spin of. S so that.|“r”>M |↑x >S would evolve to.|“↑x”>M |↑x >S and 
.|“r”>M |↓x >S would evolve to .|“↓x”>M |↓x >S when .M interacts with . S. And suppose 
that . F’s measurement record becomes perfectly correlated with . M’s pointer so that 
.|“r”>F |“↑x”>M |↑x >S would evolve to.|“↑x”>F |“↑x”>M |↑x >S and. |“r”>F |“↓x”>M |↓x >S
would evolve to .|“↓x”>F |“↓x”>M |↓x >S when .F interacts with . M . 

Assuming such perfect correlating interactions, if we consider the situated 
observer .F to be a physical system like any other, the resultant state of the

1 The idea of a situated observer is, as we shall see, one that has played an important role in the 
conceptual foundations of quantum mechanics for at least the last seventy years. Jenann Ismael ( 2007
and 2016) provides examples of how one might appeal to the notion for philosophical purposes. 
2 See Barrett (2020) and  (2021) for a characterization of various sorts of empirical adequacy one 
might want a formulation of quantum mechanics to exhibit. 
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W 

r 

F M S  

x-spin 

r 

A 

+1 -1 

|“r”>F |“r”>M α|↑x>S + β|↓x>S 

Fig. 1 Everett’s hypothetical drama 

composite system on the standard linear (unitary) dynamics after she looks at the 
pointer will be: 

. α|“↑x”>F |“↑x”>M |↑x >S + β|“↓x”>F |“↓x”>M |↓x >S. (♦)

The state (. ♦) describes an entangled superposition of two record states, one where 
. F has the physical record.“↑x” and one where she has the physical record.“↓x”. The  
problem is that this state does not characterize her as having any determinate record at 
all on the standard interpretation of states. And if there is no record, the theory clearly 
fails to predict her measurement result with the standard quantum probabilities. So if 
. F is treated as a situated observer subject to the linear dynamics, then on the standard 
interpretation of states, one fails to get the right empirical predictions for the simple 
reason that .F fails to have any determinate physical record. 

The standard formulation of quantum mechanics seeks to address the prob-
lem by stipulating that either . M’s interaction with .S or . F’s interaction with 
.M + S causes a collapse of the composite system so that the final state is either 
.|“↑x”>F |“↑x”>M |↑x >S with probability .|α|2, a state where .F has the determinate 
record.“↑x”, or .|“↓x”>F |“↓x”>M |↓x >S with probability .|β|2, a state where.F has the 
determinate record.“↓x”. Each of these states is logically inconsistent with state (. ♦), 
the state that would obtain if .F is a physically situated observer, but the problem 
is yet worse. While von Neumann thought that he had shown that it did not matter 
empirically whether it was . M’s interaction with . S or . F’s interaction with . M + S
that caused the collapse, as Wigner emphasized in his retelling of the story, precisely 
when the collapse occurs has empirical consequences. 

Suppose that the external observer.W measures an observable. A of the composite 
system.F + M + S that has state (. ♦) as a eigenstate with eigenvalue .+1 and a state 
orthogonal to (. ♦) and in the subspace spanned by the same two determinate record 
states as an eigenstate with eigenvalue .−1. If the situated observer .F and other 
systems in the box obey the standard linear dynamics, then the composite system 
.F + M + S will end up in state (. ♦), and the result of. W ’s.A-measurement will be. +1
with probability 1. But if there is a collapse of the state, resulting in one of the two
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possible determinate record states .|“↑x”>F |“↑x”>M |↑x >S or .|“↓x”>F |“↓x”>M |↓x >S , 
then the result of . W ’s .A-measurement will have a positive probability of resulting 
in .−1. 

Wigner took this to mean that one might, at least in principle, perform an exper-
iment that determines what interactions cause collapses. He conjectured that one 
would find that a collapse of the physical state occurs when a conscious observer, 
an observer associated with a non-physical mind, apprehends the state of a physical 
system. With this, Wigner gave up on treating .F as a physically situated observer. 

In contrast, Everett held that observers are physical systems like any other and that 
all physical systems are subject to the standard linear dynamics. He believed that a 
formulation of quantum mechanics is satisfactory only if it makes the right empirical 
predictions for the records of situated observers. He modeled such observers as 
“automata” capable of correlating the states of their records with the properties of 
the physical systems they observe (1956, 118–9 and 1957, 183–5). In the context 
of his hypothetical drama, Everett believed that .F recorded both .“↑x” and . “↓x”
as relative records. And he was committed to . W ’s .A-measurement of . F + M + S
resulting in.+1with probability 1. More generally, he sought to show that the physical 
records of a typical relative observer will exhibit the standard quantum statistics in 
his formulation of pure wave mechanics. While there is much to say about the sense 
in which pure wave mechanics explains the records of situated observers, we are 
concerned here with another approach to situated observation. 3

Everett knew that David Bohm had already described a no-collapse formulation 
of quantum mechanics that made predictions for the records of situated observers. 
He discussed Bohmian mechanics in two places in the long version of his dissertation 
(1956, 75, 153–5). Everett’s complaint was that Bohm’s theory was “more cumber-
some than the conceptually simpler theory based on pure wave mechanics.” That 
said, he took Bohmian mechanics to be of “great theoretical importance” because 
it “showed that ‘hidden variable’ theories are indeed possible” contrary to received 
wisdom. Concerning hidden-variable theories like Bohm’s, Everett further acknowl-
edged that “[i]t cannot be disputed that these theories are often appealing and might 
conceivably become important should future discoveries indicate serious inadequa-
cies in the present scheme [pure wave mechanics] (i.e. they might be more easily 
modified to encompass new experience)” (1956, 155). While Everett thought that 
he could adequately explain (or better, explain away) quantum probabilities, given 
the subsequent difficulty in understanding forward-looking quantum probabilities 
in pure wave mechanics, that Bohmian mechanics treats quantum probability in an 
entirely straightforward way is a manifest virtue, one that makes the approach of 
central importance to the foundations of quantum mechanics. 

The measurement problem is a problem in providing a consistent account of situ-
ated observation, something to which Bohmian mechanics is particularly well suited. 
Supposing that . F , . M , and . S are all subject to the linear dynamics is incompatible

3 See Saunders, Barrett, Kent, and Wallace (2010) and Barrett (2020) for discussions of the chal-
lenges Everett’s approach faces and how they might be addressed. Wallace’s (2012) representation-
theorem is the best worked-out proposal. 
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with supposing that .F ends up with one or the other determinate physical record on 
the standard interpretation of states. Hence, in order to understand. F as a physically 
situated observer either (i) the linearly dynamics at least sometimes fails to describe 
how the state of a physical system evolves (collapse theories like GRW opt for this 4), 
(ii) there is more than one situated observer described by state (. ♦) (Everett opts for 
this in his relative-state formulation of pure wave mechanics 5), or (iii) state (. ♦) is  
incomplete inasmuch as it fails to specify the value of . F’s record. 6 On Bohmian 
mechanics, state (. ♦) provides an incomplete description of. F . In order to specify the 
value of . F’s record, one must also give the determinate particle configuration. 7 As 
a result, the theory explains why.F has a perfectly determinate measurement record 
and how she got it, and it predicts that . W ’s .A-measurement will result in .+1 with 
probability 1. 

Being able to tell Everett’s hypothetical drama consistently provides a litmus test 
for whether one’s formulation of quantum mechanics provides a coherent account of 
situated observation. The thought is that a theory is a serious contender for resolv-
ing the measurement problem only if it can do so. Bohmian mechanics addresses 
the measurement problem by explaining what measurement records are, how a sit-
uated observer might produce them, and why a situated observer should expect the 
standard quantum predictions. The notion of an effective wave function is crucial to 
understanding how each step works. 

2 Bohmian Mechanics 

Bohmian mechanics can be characterized as follows 8: 

1. representation of states: The complete physical state of a system . S at time . t
is given by the wave function .ψ(q, t) over configuration space and a point in 
configuration space .Q(t). 

2. interpretation of states: The position of every particle is always determinate and 
is given by the current configuration .Q(t). 

3I. linear dynamics: The wave function evolves in the standard unitary way. In the 
simplest case 

.iℏ
∂ψ(q, t)

∂t
= Ĥψ(q, t)

4 See Ghirardi, Rimini, and Weber (1986). 
5 See Everett (1956) and  (1957). 
6 See Everett (1956) and Albert (1992) for similar classifications of options. 
7 See Bohm (1952). 
8 This is Bell’s (1987) formulation of the theory. Bell also showed how to make local field properties 
determinate instead of particle positions. See Vink (1993) for a description of how one might 
similarly make any physical observable determinate and Barrett (2005) for a discussion. 
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3II. particle dynamics: Particles move according to 

. 
dQk(t)

dt
= 1

mk

Im ψ∗(q, t)∇kψ(q, t)

ψ∗(q, t)ψ(q, t)

I
I
I
Q(t)

where .mk is the mass of particle . k and .Q(t) is the current configuration. 
4. distribution postulate: The probability density of the configuration .Q(t0) is 

.|ψ(q, t0)|2 at an initial time . t0. 

One gets empirical predictions for a situated observer by supposing that an 
observer’s experience supervenes on her measurement records as characterized by 
the effective wave function. The notion of the effective wave function of a system 
was introduced by Dürr, Goldstein, and Zanghì (DGZ) (1992). 9 We will consider 
how this notion helps to explicate the process of situated observation in the theory. 

In Bohmian mechanics, both the wave function .ψ(q, t) and the particle configu-
ration.Q(t) evolve in.3N -dimensional configuration space, where.N is the number of 
particles in the system one wishes to describe. The.3N -coordinates of the configura-
tion.Q(t) give the position of each particle at time. t . One can think of the probability 
density .|ψ(q, t)|2 as describing the density of a compressible fluid in configuration 
space. The wave function evolves deterministically according to the linear dynamics 
(rule 3I), and as the compressible fluid flows about in configuration space, it carries 
the point representing the particle configuration.Q(t) along as described by the par-
ticle dynamics (rule 3II). The configuration moves as if it were a massless particle 
carried by the probability current. 

While the theory characterizes the dynamics for the entire universe, one can often 
assign a wave function to a proper subsystem. We will say that a physical system 
has an effective wave function at a time if its configuration can be understood as 
moving in accord with a wave function describing just that system. If so, one can 
give the dynamics for both the wave function and the system’s configuration in a 
subspace of the full configuration space. Dürr, Goldstein, and Zanghì (1992, Sect. 5) 
specify sufficient conditions for a physical system having a well-defined effective 
wave function in terms of the properties of that system and its complement. In the case 
of real physical systems, satisfying such conditions is typically a matter of degree. 
Importantly, one can expect the DGZ conditions to hold well for a post-measurement 
object system if different measurement outcomes correspond to macroscopically 
distinct pointer positions. That the object system has a well-defined effective wave 
function in this case explains why it behaves as if a collapse had occurred. 

We will consider in some detail situations where different measurement outcomes 
correspond to sharply individuated regions of wave function support in configuration 
space. In such cases, the configuration will select the component of the wave function 
associated with one of these regions as the effective wave function characterizing

9 DGZ also wanted to explain why the distribution postulate (rule 4) is satisfied. Here we shall simply 
assume that it is satisfied as a boundary condition stipulated by the theory. This way of specifying 
the theory has, I believe, the virtues clarity, precision, and simplicity. Of course, it remains open for 
one to argue for the plausibility of the rule on dynamical grounds. 



Situated Observation and the Quantum Measurement Problem 361

both the effective state of the observer’s object system and her measurement record. 
Under physical conditions where her measurement record is stable, she will be able 
to make reliable inferences regarding the subsequent behavior of the object system 
from the value of her record. 

Quantum probabilities in Bohmian mechanics are purely epistemic. They result 
from one not knowing the initial particle configuration. The dynamics has the prop-
erty that if the epistemic probability density for the particle configuration is ever 
given by the standard epistemic quantum probabilities .|ψ(q, t)|2, then it will con-
tinue to be until one makes a measurement. After a measurement, it will be given 
by the effective wave function characterizing one’s object system and measurement 
record. The distribution postulate (rule 4) stipulates that the epistemic probability 
density for the particle configuration at time . t0 is .|ψ(q, t0)|2. For our purposes, we 
will take the justification for this constraint to be empirical. If one sets one’s priors in 
accord with the distribution postulate, then the theory predicts the standard quantum 
probabilities for particle configurations. But if one fails to set one’s priors in this way, 
the posterior probabilities one gets by conditioning on one’s measurement records 
yield demonstrably wrong expectations. 

If the distribution postulate is satisfied, particle positions will in fact be distributed 
relative to the effective wave function precisely as quantum mechanics predicts with 
probability 1. But a physically situated observer never has epistemic access to these 
precise positions. If she did, she would be able to use the theory’s deterministic 
dynamics to predict the results of her future observations more precisely than allowed 
by the standard quantum probabilities. 

An observer’s records are determined by the effective wave function, the wave 
function selected by the particle configuration, not by particle positions themselves. 
The theory is empirically adequate because it predicts the right effective wave func-
tions and hence the right records for situated observers. A simple example will 
illustrate how the theory predicts a situated observer’s measurement records. 

3 Measurement Records in Bohmian Mechanics 

Suppose that an observer wants to measure the .x-spin of an electron . e that is ini-
tially in an eigenstate of .z-spin up. To this end, she sends the electron through an 
appropriately-oriented inhomogeneous magnetic field then correlates the position of 
a recording particle . p with the direction . e was deflected. The interaction between . e
and . p is arranged so that the recording particle . p shifts from position . a to position 
. b if and only if the electron. e travels path. B as in Fig. 2. One might think of the state 
of recording particle . p as representing the situated observer’s physical record, but 
precisely how this works is subtle. 

To say how the state of the system evolves, we need to say how the wave func-
tion evolves in configuration space and how the particles move in response to the 
resulting probability current. We shall consider what this looks like in both ordinary 
.3-dimensional space and in configuration space.
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Given the specified interaction between . e and . p, the two-particle wave function 
evolves as follows as the particles interact: 

. |↑z>e|0>e|a>p =
1√
2
|↑x >e|0>e|a>p + 1√

2
|↓x >e|0>e|a>p

↓
1√
2
|↑x >e|A>e|a>p + 1√

2
|↓x >e|B>e|a>p

↓
1√
2
|↑x >e|A>e|a>p + 1√

2
|↓x >e|B>e|b>p

↓
1√
2
|↑x >e|0'>e|a>p + 1√

2
|↓x >e|0'>e|b>p

The wave function evolves in .3N -dimensional configuration space (since .N = 2, 
this is a 6-dimensional space). As it does, the resulting probability current pushes 
the single point representing the two-particle configuration. 

If the initial wave function is symmetric about the line from . 0 to . 0', then the 
distribution postulate entails that . e is equally likely to be in the top-half and the 
bottom-half of the wave function. It is this feature of the theory that leads to the right 
quantum probabilities. 

If the electron begins in the top half of the initial wave packet, then the two-
particle system evolves as indicated in Fig. 2 in ordinary three-dimensional space. 
This is because the single point representing the positions of each of the two particles 
is pushed along by probability currents in configuration space as indicated in Fig. 3. 
The resultant particle configuration selects the .|↑x >e wave packet as the effective 
wave function. This means that . e is now effectively .x-spin up. 

While the two.x-spin wave packets overlap in ordinary.3-space, they do not overlap 
in configuration space. Since the motion of the particles depends on the probability 
current in configuration space, the two-particle configuration will remain associated 
with the.x-spin-up wave packet as long as there is no splitting of that wave packet or 
interference with other components of the state in configuration space. As a result, 
. e will move precisely as that packet moves and hence behave as if it now has the 
property of being determinately .x-spin up. 

If the electron begins in the bottom half of the initial wave packet, then the two-
particle system evolves as indicated in Fig. 4 in ordinary three-dimensional space. 
And the single point representing the positions of each of the particles is pushed along 
by probability currents as indicated in Fig. 5. Here the resultant particle configuration 
selects the .|↓x >e wave packet as the effective wave function.
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Fig. 2 Situated observation of position in three-dimensional space producing an.x-spin up (path. A) 
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Fig. 3 Situated observation of position in configuration space producing an .x-spin up (path  . A) 
record 

|↓x>e 

|↑x>e 

|↑z>e 

x-spin 

0− 

A 

B 

0'

a 

b 

|↑x>e 

|↓x>e 

Fig. 4 Situated observation of position in three-dimensional space producing an .x-spin down 
(path. B) record



364 J. Barrett

x
-p
os
it
io
n 
of
 e

 

x-position of p 

A 

B 

0 

a b  

x
-p
os
it
io
n 
of
 e

 

x-position of p 

A 

B 

0 

a b  

|↑z>e 

|↑x>e 

|↓x>e |↓x>e 

|↑x>e 

Fig. 5 Situated observation of position in configuration space producing an.x-spin down (path. B) 
record 

Again, while the two .x-spin wave packets end up in the same region of three-
dimensional space, they do not overlap in configuration space. In this case, the 
configuration remains associated with the .x-spin-down flavored wave packet which 
now serves as the effective wave function. 

In each case, the two-particle configuration selects an effective wave function 
that reliably records the path taken by the electron. In the first case, . e ends up 
effectively .x-spin up, and it ends up effectively .x-spin down in the second. It is 
because of the displacement generated by the position correlation between . e and . p
that the two.x-spin wave packets do not overlap in configuration space. The situated 
observer’s record ensures that . e will exhibit the same effective .x-spin if one repeats 
the measurement. The presence of a reliable record causes . e to behave as if it had 
an intrinsic, fully-determinate .x-spin. The more degrees of freedom involved in the 
record, the harder it will be to get interference between wave packets corresponding 
to different .x-spins in configuration space, and the more stable the effective wave 
function governing the motion of . e will be. 10

Seeing how a situated observer might record the .x-spin of . e allows us to specify 
bounds on the empirical content of her record. The observer’s record reliably tells 
her which path. e traveled. It also tells her. e’s effective.x-spin. But her record does not 
tell her what . e’s effective .x-spin was before the measurement as it had no effective 
.x-spin. If the measuring apparatus had split the initial .z-spin up wave packet in such 
a way as to capture the two-particle configuration in the .x-spin-down wave packet 
in the first experiment, . e’s effective .x-spin would have be .x-spin down instead of 
.x-spin up. What the observer can infer from her record is that . e was in the top half 
of the initial .z-spin up wave packet. 

While the situated observer’s record tells her that . e was in the top half of the 
initial wave packet before the measurement and is now associated with the .x-spin

10 See Barrett (2000), (2020, 208–214), and (2021) for more detailed discussions this sort of two-
path experiment and surreal trajectories in Bohmian mechanics. 
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up wave packet, it does not tell her where . e is in the new .x-spin up wave packet. If 
it did, she would be able to predict the results of future experiments more precisely 
than allowed by the standard quantum probabilities. So the observer’s record does 
not provide epistemic access to the precise position of . e. And while the apparatus is 
designed to record the position of . e in the position of . p, her record does not provide 
epistemic access to the precise position of . p either. If it did, she would again be 
able to predict the results of future experiments more precisely than allowed by the 
standard quantum probabilities. 

One might be tempted to say that the empirical content of the situated observer’s 
record is the approximate positions of. e and. p, but the theory allows her to infer more 
than this from her record. Knowing that the two-particle configuration is associated 
with the .x-spin up wave packet means that the observer can, among other things, 
predict what would happen on a subsequent .x-spin measurement, something that is 
not entailed by even the precise positions of the particles. She also knows something 
about the probabilistic distribution of the particles’ positions relative to the wave 
function. Namely, if the distribution postulate is satisfied, she can infer that they are 
distributed with an epistemic probability density given by the norm squared of the 
effective wave function. 11

One might put the point differently by considering what the situated observer most 
directly sees. She does not see the electron. e, nor can she infer precisely where it is. 
And she does not see the particle. p or precisely where it is either, even when. p is the 
physical system she most directly counts on to record her result. Rather, there is an 
important sense in which what she most directly sees is the effective wave function 
selected by the two-particle configuration. Specifically, her experience supervenes 
on the value of her physical record, and the value of her physical record supervenes 
on the effective wave function selected by the post-measurement configuration. That 
is, the observer’s experience might be different only if the value of her record were 
different, and the value of her record might be different only if the effective wave 
function were different. In this regard, note that a different particle configuration 
might only change the value of her record, and hence experience, if it no longer 
selected the same effective wave function. 

The role of the determinate particle configuration, then, is not to give the situated 
observer particles to see. Rather, it is to provide an effective wave function on which 
her records might supervene. The effective wave function places an upper bound 
on what she can infer from her records regarding the properties of the systems 
she has observed. Importantly, it is a consequence of the theory’s dynamics that if 
the initial configuration satisfies the standard quantum statistics, then the physical 
records determined by the effective wave function will as well. Bohmian mechanics 
is strongly adequate because it predicts that such records will exhibit the standard 
quantum probabilities. 

We have assumed idealized wave functions and measurement interactions that 
yield perfect correlations. Telling the story in this way allows one to see the basic

11 See Sect. 5 of Dürr, Goldstein, and Zanghì’s (1992) for the setup and a detailed discussion of this 
point. 
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structure of the theory. We also supposed that the situated observer knows the initial 
effective wave function of the system she is measuring. A situated observer is able 
to infer correspondingly less from her records as these conditions are weakened. 

4 Discussion 

Bohmian mechanics makes the standard quantum predictions for a situated observer’s 
records as characterized by the effective wave function. And it does so even in the 
context of Everett’s hypothetical drama. 

Observer .F might obtain an .x-spin measurement record for . S by means of a 
measuring device that works like the apparatus described above. The measurement 
both creates a determinate effective.x-spin for. S and produces a record of its effective 
.x-spin. The full content of the record is given by the effective wave function. If the 
distribution postulate is satisfied, such records will exhibit the standard quantum 
statistics. The theory explains why. S will behave as if it had a .x-spin corresponding 
to the record until an incompatible measurement is made. Indeed, it is the presence of 
the record that makes the effective spin of . S stable. If . F’s experience supervenes on 
her physical measurement records as characterized by the effective wave function, 
the theory accounts for her seeing determinate outcomes in accord with the standard 
quantum probabilities. 

Regarding nested measurement, the theory also predicts that. W ’s.A-measurement 
will result in.+1 with probability. 1. Since the composite system.F + M + S ends up 
in state (. ♦) after . F’s .x-spin measurement of . S, and since (. ♦) is an eigenstate of the 
observable. Awith eigenvalue.+1, when. W ’s measuring device correlates the position 
of its pointer with the value of . A, all of the probability will move from the region 
in configuration space representing the pointer being in position “. r” to the region 
representing the pointer being in position “.+1”. As a result, if the configuration 
begins in a region of positive wave function support, the probability current is sure to 
push it to the region where the pointer records “.+1”. So if. W ’s experience supervenes 
on his measurement records as characterized by the effective wave function, he will 
see the pointer pointing at “.+1”. 

Inasmuch as Bohmian mechanics provides a consistent account of how a situated 
observer’s measurements produce physical records that exhibit the standard quan-
tum probabilities, it is strongly adequate. As such, Bohmian mechanics provides a 
compelling resolution to the measurement problem. 12

12 I would like to thank Roderich Tumulka, Shelly Goldstein, and an anonymous reviewer for helpful 
comments. This paper is in honor of Detlef Dürr, one of the kindest people I have known.
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Why the Book of Nature is Written in the 
Language of Mathematics 

Dustin Lazarovici 

Abstract The essay traces the following idea from the presocratic philosopher Her-
aclitus, to the Pythagoreans, to Newton’s Principia: Laws of nature are laws of pro-
portion for matter in motion. Proportions are expressed by numbers or, as the essay 
proposes, even identical to real numbers. It is argued that this view is still relevant 
to modern physics and helps us understand why physical laws are mathematical. 

1 The “Unreasonable” Effectiveness of Mathematics 

Why is mathematics so successful in describing the natural world? More profoundly, 
why are the fundamental laws of nature–as far as we know them today–expressed in 
mathematical language? 

The puzzle can present itself in different ways, depending on what one takes 
mathematics to be. If one believes that abstract mathematical objects or structures 
exist in some Platonic heaven, one may wonder why they should have anything to 
do with the physical world and how we, as material beings in space and time, are 
able to acquire knowledge of them. With such questions in mind, some authors have 
gone as far as to suggest that the universe we live in is itself mathematical (Tegmark 
(2014); see also Tumulka (2017)). 

If one believes that mathematics is a human invention, one must marvel at the 
confluence of human genius and nature’s kindness that makes it so successful. One 
may try to deflate the “unreasonable effectiveness of mathematics” (Wigner 1960) 
by attributing some of it to selection bias (Wenmackers 2016), pointing to pieces of 
mathematics that, so far, have no use in natural science. One may also argue that our 
cognitive apparatus, which allowed us to invent mathematics, is the product of natural 
evolution and therefore well-adapted to the world (as if the traits that prevented our 
ancestors from being eaten by a tiger would naturally lead to the invention of complex 
analysis). But none of these arguments explain why the language we have been 
successful with is precisely that of mathematics rather than, say, biblical Hebrew or 
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instructions for a Turing machine. And at the end of the day, they do little to address 
Wigner’s sentiment that “[t]he miracle of the appropriateness of the language of 
mathematics for the formulation of the laws of physics is a wonderful gift which we 
neither understand nor deserve” (1960, p.14). 

2 On the Rationality of the Cosmos in Presocratic 
Philosophy 

To understand what mathematics has to do with natural laws–not just in practice, 
but in principle–it helps to go back to a time when the idea of a lawful cosmos 
awakened; the time of the Presocratic natural philosophers around the 6th and 5th 
century BCE. We must imagine an intellectual period marked by a profound insight: 
that we are living in a cosmos (lit. order), that the world is organized according to 
rational principles, and that the human intellect has, at least in principle, access to 
them. In short, it is a period animated by the idea that the world is comprehensible. 

2.1 Parmenides 

We have to start with Parmenides, the great ontologist, because much of the philos-
ophy of the following centuries unfolds in the dialectic that he begins. Parmenides 
teaches, nay, proves, that What Is (to eon) must be uncreated, unchanging, and 
indivisible–one eternal whole: 

One path only is left for us to speak of, namely, that It is. In this path are very many tokens 
that what is is uncreated and indestructible; for it is complete, immovable, and without end. 
Nor was it ever, nor will it be; for now it is, all at once, a continuous one. For what kind of 
origin for it wilt thou look for? In what way and from what source could it have drawn its 
increase? ... I shall not let thee say nor think that it came from what is not; for it can neither 
be thought nor uttered that anything is not. (Poem of Parmenides; fr. 28 B8.1-13 DK) 1

Recognizing What Is is the Way of Truth (alêtheia). It is not the world presented 
to us by our senses but something accessible by rational thought. Indeed, “it is the 
same thing that can be thought and that can be” (fr. 28 B3.1 DK). 

Parmenides was also a great natural philosopher. “A whole series of important 
astronomical discoveries is credited to him: that the morning star and the evening star 
are one and the same; that the earth has the shape of a sphere ... that the phases of the 
moon are due to the changing way in which the illuminated half-sphere of the moon is 
seen from the earth” (Popper, 1992, p. 14). But as Popper argues, these discoveries– 
in particular, that the moon merely appears to be changing–only contribute to his 
mistrust of the senses. They pertain to the Way of doxa, of human beliefs or seemings, 
not true knowledge of What Is.

1 Unless stated otherwise, Presocratic fragments are quoted in the translation by Burnet (1920). 
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It remains unclear how the two relate to one another. Parmenides’ rationalism 
goes so far that, on his Way of Truth, little attempt is made to save the phenomena. 
Something about the holistic Being has to give if it is supposed to explain the cosmos 
we experience. 

2.2 Anaxagoras 

In response to Parmenides, Anaxagoras separates mind and matter, leaving a cosmic 
intelligence–the Nous–as a moving principle to act upon the material world. The 
Nous causes change and diversification by creating a cosmic vortex through which 
matter begins to separate into its constituent elements. Nous is also in us, as our minds 
that control our bodies. The implication is that we can understand the world because 
we share in the cosmic intelligence that shapes it. The testimony of the senses is 
not entirely dismissed, but its tentative character is expressed in the doctrine that 
“appearances are a sight of the unseen” (fr. 59 B21a DK). True knowledge requires 
the refinement of sense experience by rational thought. 

It remains unclear how to understand the Nous when it comes to the subjective 
or individual aspects of mind, what we might call consciousness or, less anachro-
nistically, soul (psyche). While the Presocratics don’t always get a fair shake from 
Aristotle, his criticism of Anaxagoras as conflating mind and soul (De anima 1.2) 
seems pertinent. 

2.3 Heraclitus 

Heraclitus, “the Dark One,” is very clear on one point, that he speaks about something 
which is common to all (frr. 22 B2, B80, B89, B113, B114 DK). For example: 

The waking have one common world, but the sleeping turn aside each into a world of his 
own. (B89 DK) 

Erwin Schrödinger sees therein the idea of an external reality emerging “from the 
fact that part of our sensations and experiences overlap” (2014, p. 73). We can put 
it in a different way. While Anaxagoras separates the all-encompassing BEING of 
Parmenides into matter and mind, Heraclitus splits off the cognizing subject, leaving 
an external world as the object of cognition (cf. Dürr and Lazarovici (2012)). 

Common to all is also the logos, the ordering and unifying principle of the world. 
Since recovering from the influence of Hegel, it has become widely accepted that 
cosmology, not logic or dialectic, is the right starting point for understanding this 
central concept of Heraclitean philosophy (Kurtz 1971). Logos does not rule some 
abstract realm of thought; it rules the universe we all inhabit. We may start with 
fragments like the following:
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This world order (kosmos), the same for all, none of the gods or humans made it, but it 
always was and is and will be: fire ever-living, kindled in measures (métra) and extinguished 
in measures. (B30 DK; translated by Laks and Most (2016)) 

Heraclitus is sometimes presented as the great antagonist of Parmenides because the 
reality he describes appears like the opposite of static being. It is a world in flux, an 
endless process of becoming, opposites united in a ceaseless cycle of transmutation. 
And yet, in this flow of change, Heraclitus recognizes something constant, something 
that manifests order and reflects the underlying logos. Fire, which Heraclitus takes to 
be the most fundamental element, transforms in measures, that is, in certain regular 
proportions: 

Turnings of fire: first sea; then half of the sea, earth; and the other half, lightning storm. [...] 
It spreads out as sea and its measure reaches the same logos as it was before it became earth. 
(B31 DK; translated by Laks and Most (2016) )  

If one wants to settle on a translation for “logos,” the best fit here is indeed proportion 
(Kurtz 1971). Compared to the Nous of Anaxagoras, the Heraclitean logos is a more 
abstract and impersonal concept, coming closer to that of natural law. 

The last quote is one of the notoriously obscure fragments of Heraclitus, whose 
precise meaning is hard to reconstruct. The meaning of “lightning storm” (prêstêr) 
is disputed–is it a form of fire, or a fourth element, viz. air? Also ambiguous is the 
subject of the second sentence and hence what transformation it describes (maybe of 
water back into fire; almost certainly, Heraclitus describes a kind of cycle process). 2

These issues notwithstanding, it seems clear enough that the fragment expresses a 
law of the form water : earth = water : storm, and presumably also fire : water = 
water : earth. 

3 Mathematical Interlude 

It may not be obvious to us today that the term “measures” already points to something 
mathematical. Perhaps we need a definition: 

Definition 1 Two magnitudes .A and .B of the same kind, are commensurable if 
there exists a third magnitude . ∊ and natural numbers .n, m such that .A = n · ∊ and 
.B = m · ∊. In this case, . ∊ is a measure of . A and .B and the ratio .A : B corresponds 
to .n : m. 

It must be emphasized that magnitudes are not numbers, but physical or geomet-
rical quantities (lengths, areas, masses, etc.). Only the ratio of two commensurable 
magnitudes corresponds to the ratio of two numbers–or what we now recognize as 
a (rational) number in its own right. It is important to keep this in mind, especially 
when we talk about the Pythagoreans, because the above definition anticipates a 
fundamental motive of their science and philosophy.

2 On these questions, see, e.g., Kurtz (1971); Jones (1972); Schadewaldt (1978); Kirk et al. (1983). 
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Fig. 1 Descartes’ 
construction of the product 
of.a = O A and.b = O B. 
The segment.OC is 
(arbitrarily) chosen as unity. 
By the intercept theorem, the 
constructed. x = O D
satisfies. a : 1 = x : b

Magnitudes by themselves have only some of the structure of numbers (see 
Maudlin (2014, pp. 9–25)). Two magnitudes of the same kind can be added and 
subtracted but they cannot be multiplied or divided (to yield a third magnitude of the 
same kind). A workaround, at least for line segments, is introduced much later in 
Descartes’ La Géométrie (1637) and requires some arbitrary length to be designated 
as unity (see Fig. 1). This allowed for the very powerful algebraization of geometrical 
problems that paid off immediately with a precise characterization of (im)possible 
constructions with compass and straightedge. 

But the Cartesian solution is very non-Pythagorean and indeed nonsensical from 
a strictly geometric point of view. It corresponds to defining the product of .2m and 
.3m as .6m, when we would could have just as well chosen a different unit, say .cm, 
and multiplied the same two lengths to .60000. 

It is rarely noticed that we are committing the same sin when we represent numbers 
as points on the number line. There is nothing numerical about a linear continuum 
per se. An arbitrary segment must be designated as a unit length, say between two 
points marked “. 0” and “. 1”. Only relative to the scale thus introduced can we say that 
points (or their distances from. 0) correspond to numbers. 

4 Pythagoreanism and Platonism 

4.1 Plato 

We saw that Heraclitus, in his cosmological fragments, describes the logos as a law 
of proportion for the transformations of elements. It is this logos that unifies the 
different elements in cycles of change. While the context differs, we find the same 
kind of calculation in the creationist cosmogony of Plato’s Timaeus:
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God in the beginning of creation made the body of the universe to consist of fire and earth. 
But two things cannot be rightly put together without a third; there must be some bond of 
union between them. And the fairest bond is that which makes the most complete fusion of 
itself and the things which it combines; and proportion is best adapted to effect such a union. 
[...] God placed water and air in the mean between fire and earth, and made them to have 
the same proportion so far as was possible (as fire is to air so is air to water, and as air is to 
water so is water to earth); and thus he bound and put together a visible and tangible heaven. 
And for these reasons, and out of such elements which are in number four, the body of the 
world was created, and it was harmonized by proportion [...]. (Tim. 31b–32c; translated by 
Jowett (1892)) 

Plato also makes explicit what we can only surmise for Heraclitus, that numbers 
(expressing proportions) are a reflection of the eternal in a world in motion: 

Now the nature of the ideal being was everlasting, but to bestow this attribute in its fullness 
upon a creature was impossible. Wherefore he [the creator] resolved to have a moving image 
of eternity, and when he set in order the heaven, he made this image eternal but moving 
according to number, while eternity itself rests in unity; and this image we call time. (37d) 

True knowledge is knowledge of the eternal forms. In the world of change, we can 
only deal in likelihood. This epistemological principle is itself expressed as a law of 
proportion: “As being is to becoming, so is truth to belief.” (Tim. 29c; cf. Rep. VII 
534a). The genesis of the soul explains the possibility of knowledge. It was created 
out of the divisible and material on the one hand and the indivisible and unchangeable 
on the other, and therefore partakes of the nature of both. It is noteworthy that soul and 
number are ascribed a similar status as intermediates between the physical world and 
the realm of the eternal (cf. Plato’s analogy of the divided line in Rep. VI 509d–511e). 

4.2 The Pythagoreans 

Between Heraclitus and Plato, we have the Pythagoreans, and among them a group 
known as the mathēmatikoi. 3 They developed four sciences or mathemata, which 
would come to form the classical quadrivium of education: arithmetic, geometry, 
astronomy, and music (or harmonics). 

The study of musical harmony began with the observation that the simultaneous 
striking of different chords produces consonance when the cord lengths stand in 
certain ratios: 2:1 (the octave), 3:2 (the perfect fifth), 4:3 (the perfect fourth), etc. It 
later turned into a more axiomatic science of harmonic proportions and the musical 
scale. The Pythagorean astronomers recognized the same harmonic proportions in

3 The Pythagorean influence on Plato is undeniable (the Platonic character Timaeus is commonly 
identified as a Pythagorean). Placing Heraclitus in the same lineage is more contentious. Plato 
criticizes Heraclitus on the basis that if everything were in flux, truth and knowledge would not 
be possible (Cratylus 402a ff.). Heraclitus calls Pythagoras an “imposter” (fr. B129 DK), someone 
who has studied many things but lacks understanding (B40 DK). Heraclitus was not an easy fellow. 
Nonetheless, a reconciliation of these great thinkers is not only possible but plausible, and I set 
forth the connections as they seem correct to me. 
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the motions of celestial bodies, postulating that the sun, the moon, and the planets 
(including Earth) move uniformly in circular orbits around a “central fire”. The idea 
of a “music of the spheres” would culminate 2000 years later in Kepler’s Harmonice 
Mundi (1619). Geometry was the study of proportions in their purest form, the 
discovery of mathematical laws in the relations of lengths, areas, and angles. The 
Pythagorean theorem is just the most obvious example. 

The idea of Pythagoreanism as holding that all things are literally made out of 
numbers is a caricature based on the school’s mystical currents. Undoubtedly, though, 
Number was considered divine, the universal principle behind harmony, rationality, 
and beauty in the skies and on Earth. Only through Number is it possible to understand 
the cosmos: 

Indeed, it is the nature of Number which teaches us all things which would otherwise remain 
impenetrable and unknown to every man. For there is nobody who could get a clear notion 
about things in themselves, nor in their relations, if there was no Number or Number-essence. 
By means of sensation, Number instills a certain proportion, and thereby establishes among 
all things harmonic relations [...]; it incorporates intelligible reasons of things, separates 
them, individualizes them, both in limited and unlimited things. (Philolaus, fr. B11 DK, 
cited by Guthrie and Fideler (1987)) 

4.3 The Discovery of Incommensurability 

If one can still sense how sublime and fulfilling the Pythagorean worldview must 
have seemed to believers, it helps to understand the shock caused by the discovery 
of incommensurability. The Pythagoreans had an algorithm–today, we call it the 
Euclidean algorithm–to find the greatest common measure of two like magnitudes. 
Subtract the smaller magnitude as often as possible from the greater, and then the 
remainder from the smaller, and so on. Hippasus is usually credited with the dis-
covery that, for certain line segments–such as the diagonal and side of a square or a 
regular pentagon–this algorithm never terminates (see Fig. 2 below). The discovery 
of incommensurability thus also marks the beginning of the mathematical struggle 
with infinity. Legend has it that Hippasus was drowned at sea as punishment for his 
blasphemy (fr. 18 A4 DK). 

Euclid (Book X, Def. 1.3) and before him Plato (Rep. VII 534d, VIII 546c) already 
refer to incommensurable line segments as irrational, 4 Plato in a way that suggests the 
term had been established before, maybe by the Pythagoreans themselves. It is still a 
big conceptual leap from here to understanding the proportions of incommensurable 
magnitudes as (irrational) numbers, but the step seems almost inevitable. 

The Pythagoreans had more immediate concerns. They had to save their sciences, 
in particular geometry, whose arithmetic foundation crumbled with Hippasus’ dis-
covery of incommensurability. A fundamental question that arose is what it means 
for different magnitudes to stand in the same proportion if this proportion no longer

4 árritos, which translates more literally to ineffable or inexpressible; also  alogon. 
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Fig. 2 Euclidean algorithm 
for the side and diagonal of a 
square. Trying to find a 
common measure leads to an 
infinite regress. In the next 
step, we have to subtract the 
side of the new square 
(.a2 = d − a) from its 
diagonal (.d2 = 2a − d) 

corresponds to a ratio of natural numbers. In other words, one needs an identity cri-
terion for proportions that applies also in the incommensurable case. The following 
solution is attributed to Eudoxus of Cnidus, a student of Plato. It provides the basis 
for the theory of proportions presented in Book V of Euclid’s Elements. 

Definition 2 Let.A, B and.C, D be magnitudes of the same kind. The ratio.A : B is 
equal to.C : D if for all natural numbers.n, m one of the following three cases holds: 

. m · A < n · B and m · C < n · D

m · A = n · B and m · C = n · D

m · A > n · B and m · C > n · D

The second case can only occur for commensurable magnitudes (for which then 
.A : B = C : D = n : m). But if we take the step of recognizing rational numbers 
(and thus license writing. 

n
m ), we can see from Eudoxus’ definition that any proportion 

partitions the rationals such that either. n
m < A : B or. n

m ≥ A : B. This is precisely the 
idea behind Richard Dedekind’s construction of the real numbers, though the fact that 
it took 2000 years (and the invention of set theory) to carry it out shows the magnitude 
of the achievement. While Dedekind (1872) makes a point of looking for arithmetic 
as opposed to geometric principles for the continuum, it is straightforward to translate 
his account into a completion of Eudoxus’ theory of proportions with all the structure 
of the real numbers. For instance, multiplication: Given two proportions .A : B and 
.C : D, their product is the smallest proportion .E : F such that, for all . k, l, m, n ∈
N, nB < m A and k D < lC implies (lm)E ≤ (kn)F . Non-positive numbers can 
be included by admitting magnitudes of positive or negative orientation. 

With the discovery of incommensurability, we lose the crutch of saying that the 
ratio of two magnitudes is like the ratio of two (natural) numbers. Instead, we are led 
to recognize proportions as numbers in their own right–those forming the continuum 
of reals.
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4.4 The Birth of Modern Physics 

The Pythagorean influence was still very present at the time of the scientific rev-
olution, where it combined with the right amount of empirical methodology (not 
too little, but also not too much). Modern physics was born with the discovery of 
mathematical laws that are laws of proportion for the motion of matter. 

Galileo performed his acceleration experiments and reported that “the spaces tra-
versed were to each other as the squares of the times” (1638/1954, p. 179). Expressed 
here is not the algebraic formula.s = 1

2at2, which relates dimensionful quantities on 
both sides, but the fact that, for pairs.(s1, t1), (s2, t2) of times and corresponding dis-
tances, .s1 and.s2 have the same ratio as the squares of . t1 and. t2 (see Thm. II, Prop. II 
on naturally accelerated motion in the Discorsi). That Galileo thought geometrically 
is also evident in the famous passage from Il Saggiatore (1623) that inspired the title 
of this essay: 

Philosophy is written in this grand book, the universe, which stands continually open to our 
gaze. But the book cannot be understood unless one first learns to comprehend the language 
and read the letters in which it is composed. It is written in the language of mathematics, and 
its characters are triangles, circles, and other geometric figures without which it is humanly 
impossible to understand a single word of it; without these, one wanders about in a dark 
labyrinth. (Quoted from Drake (1957, p. 238)) 

Around the same time, Kepler combined Pythagorean ideas with Copernican helio-
centrism and found his harmonic law for planetary motion: The square of the orbital 
period is proportional to the cube of the semi-major axis of its orbit. Two generations 
later, Newton proved that this law follows from a centripetal force inversely propor-
tional to the squares of the distances (Prop. XV, Thm. VII in the Principia). In the 
Principia, one still looks in vain for differential equations or even the famous formula 
.F = GmM

r2 . Classical mechanics is developed geometrically, including “the method 
of the first and last ratios of quantities” introduced to apply results of Euclidean 
geometry to curve segments as they become vanishingly small. 5

5 Why Laws of Nature are Mathematical 

In the preface to the first edition of the Principia, Newton made explicit how he 
saw the relationship between mathematics and natural philosophy in the task of 
“reduc[ing] the phenomena of nature to mathematical laws” (Newton 1687/1999, 
p. 381). The practical side of mechanics involves the manual art of measuring 
magnitudes and carrying out geometrical constructions. “[G]eometry is founded 
on mechanical practice and is nothing other than that part of universal mechan-
ics which reduces the art of measuring to exact propositions and demonstrations”

5 Although Newton had developed a more abstract differential calculus in his Method of Fluxions 
(completed 1671, but not published until 1736), it was not used in the Principia (first published 
1687). 
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(p. 382). In essence, mechanics, as an empirical science, falls short of exact geometry 
only through practical limitations, particularly the inaccuracies of measurements. 

It would be an overstatement to call Newton a Pythagorean. But he is part and 
pinnacle of a long tradition of thought that recognizes geometry–in the sense of 
the rational investigation of relations between magnitudes–as the nexus between 
physics and mathematics. The understanding we can gather from this tradition is 
that the appropriacy of mathematics for the formulation of the laws of nature is 
neither accidental nor merely a matter of convenience. There is something genuinely 
mathematical about the very concept of natural laws. 

Why are the laws of physics mathematical? Because physics is the science of mat-
ter in motion. Regularities of motion manifest themselves in proportions of times, 
distances, and other geometric or perhaps kinematic quantities. Proportions are num-
bers. And numbers are mathematical. 

I believe this answer is still relevant today, as our physics and mathematics have 
become so much more sophisticated. A physical theory can involve whatever kind of 
abstract calculus and higher-order mathematical structures we need. At the end of the 
day, the theory must link up to matter in motion, and this is where mathematics meets 
the physical world, both conceptually and metaphysically. This presupposes, how-
ever, two things that can no longer be taken for granted in contemporary physics: the 
laws must be mathematically consistent and precise. And the theory must postulate 
a clear ontology of matter as that to which the mathematical formalism ultimately 
refers. 6

There would thus be another story to tell about how the Pythagorean understanding 
has been lost in more recent times; perhaps completely when Bohr declared that the 
formalism of quantum mechanics “represents a purely symbolic scheme” (in Schilpp 
(1949, p.110)). What a fall from grace for theory, from a vision of the divine logos 
to a meaningless manipulation of symbols that refers to nothing in the world. But 
I’ll leave this tragedy for another time. 

5.1 Numbers as Proportions 

When I say that (real) numbers are proportions, I mean that they are relations between 
magnitudes. Magnitudes themselves are not numerical (only relative to a chosen unit 
of measurement) and include spatiotemporal relations as well as concrete physi-
cal properties. The metaphysical details of this proposal remain to be spelled out 
elsewhere. 7 Here, I want to make the point that the understanding of numbers as 
proportions (rather than abstract objects of set theory) narrows the gap between what 
we now call Platonism and nominalism.

6 Ideally, it needs what Dürr, Goldstein, and Zanghì (1992) named primitive ontology (see Lazarovici 
and Reichert (2022) for a recent discussion) or what John Bell (2004, Chap. 7) called local beables. 
7 I will also not discuss the ontological status of other mathematical objects. Both a selective realism 
and full-blown Platonism are consistent with the view I propose in regard to numbers. 
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The ratio of the diagonal to the side of a square is .
√
2, as is the ratio of the sides 

of two squares where the first has twice the surface area of the second. These are true 
identity statements, necessarily and a priori. Numbers are universals transcending 
their various instantiations since everything that is particular to given lengths or areas 
or other magnitudes quite literally cancels out when we consider their proportions. 
This is why the Pythagoreans insisted, as Proclus reports, that “numbers are purer 
and more immaterial than magnitudes” and appear “to every mind as one and not 
many, and as free of any extraneous figure or form” (1992, p. 78). 

On the other hand, if space and time are actually continua, all real numbers 
are instantiated in the physical world–in space-time itself and (if this is still too 
abstract) in the motions of material entities. This requires less than a metric structure 
since we don’t need absolute distances. In fact, the nominalist program of Hartry 
Field (Science without Numbers, 2016), which builds on Hilbert’s axiomatization 
of Euclidean geometry, can be read as an exploration of how far one can get with 
only intrinsic structure, such as relations of congruence. I just don’t think it thereby 
“eliminates” numbers in any metaphysically interesting sense. One can debate the 
question of ontological priority (if one is so inclined). But if, say, a circle exists in 
your universe, then the number . π exists as well. 

5.2 Conclusion 

I am certainly not advocating a return to the mathematics of the early 18th century 
or dismissing the awesome progress we have made ever since. We have explored so 
much more of the mathematical universe, set our inquiries on solid logical founda-
tions, and developed powerful concepts and mathematical methods without which 
modern science and technology would not be possible. We have gained tremendous 
knowledge, but we have also lost some of the wisdom of past giants. 

It is easy to get lost in formalism and mathematical abstraction, to the point that 
it seems a great mystery how any of it could have anything to do with the natural 
world, let alone a logos that is not of our own making. This often combines with a 
tendency to make us humans both too small and too large at the same time: it seems 
inconceivable that we could have insight into either mathematical truth or the laws 
of nature unless we are somehow the engineers of both. Detlef Dürr strictly rejected 
such thinking. For him, the purpose of doing science was not only to understand the 
cosmos, but also to recognize our proper place in it. 

I believe–and this is one of the many insights I owe to Detlef–that the under-
standing of numbers as proportions is at least the beginning of an answer to why the 
laws of nature are mathematical. The more profound mystery is why laws of nature 
exist in the first place; what explains the very rationality and comprehensibility of 
the universe. With this, I leave the final word to my teacher: 

What is the origin of physical law? We could answer: there is no origin; it is a brute fact that 
everything can be described by a law, and in the end, it is our human law because our senses 
experience regularities. And we are looking for a code to describe these experiences. And
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mathematics is a good code that we have developed in a process of trial and error. This is 
wrong. We are not working like that, at least not as physicists. If we did, we would pile up 
all kinds of mathematical garbage just as moles pile up mounds of earth. Galilei didn’t do 
that, Newton didn’t do that, and least of all Einstein. To better understand why this idea is 
wrong, you must understand the mathematical formulation of the law, or rather of the laws 
that we have discovered so far. It is not a summary of our observations that all bodies fall to 
the ground; it is not said that some bodies do this and others do that; it is not a bookkeeper’s 
order that we write down. We are looking purposefully for the underlying law of everything. 
We are guided by ideas of beauty, simplicity, elegance that the law should satisfy, and with 
these categories, we are successful. There is no good explanation for our successes [...]. 

— Detlef Dürr (2007): Was heißt und zu welchem Ende studiert man Physik? 8
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Bohmian Mechanics as Cartesian Science 

Michael Esfeld 

(for volume in honour of Detlef Dürr) 

Abstract The paper shows how Bohmian mechanics fits into modern science as 
conceived by Descartes. The primitive ontology of particle positions only vindicates 
the Cartesian conception of matter as res extensa also in the domain of quantum 
physics. Finally, I briefly sketch out how Bohmian mechanics can also be construed 
as respecting the limits that Descartes set for modern science: there is no conflict 
between the ontology and dynamics of matter as set out in Bohmian mechanics and 
a Cartesian stance that takes the mind to be irreducible to matter. 

1 From de Broglie and Bohm to Bohmian Mechanics 

For many years, I’ve misconceived the de Broglie-Bohm quantum theory. Louis 
de Broglie’s (1928) original proposal is one of a wave-particle dualism. Thus, in 
the double slit experiment, the particle goes through one slit and the wave travels 
through both slits. But this doesn’t make sense: As soon as one considers a system 
that consists of more than one particle, the wave function cannot be construed as a 
wave that spreads in physical space. Whatever it may be, the wave function isn’t a 
wave. 

David Bohm’s (1952) revival of de Broglie’s (1928) proposal is of another sort: 
Bohm associates the wave function with a specifically quantum force that is known 
as the quantum potential. Accordingly, he writes the guiding equation down as a 
second order equation. But this isn’t convincing either. Whatever it may be, the wave 
function cannot be a Newtonian force. It doesn’t satisfy Newton’s third law. That 
is precisely the reason why position is an additional, so called hidden variable in 
Bohm’s theory: the wave function acts on the particles, but the particles don’t act 
back on the wave function. Hence, knowing the wave function does in general not
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provide information about the actual particle positions. Consequently, it isn’t possible 
to conceive the dynamics of quantum objects along the lines of classical dynamics 
by adding a specifically quantum force. Trying to do so draws the attention away 
from the crucial point, namely that it is possible—and reasonable—to conceive the 
ontology of quantum objects on a par with the ontology of classical objects, namely 
as particles that always have a determinate position and hence move on trajectories. 
The confusion about a quasi-classical dynamics in Bohm’s (1952) proposal often 
provokes the misconception that throws the baby away with the bathwater, namely 
to abandon the classical ontology of particles together with the classical dynamics. 

Although the wave function can neither be a wave nor a force spreading in physical 
space, the view is widespread that in Bohm’s quantum theory, both the particles and 
the wave function make up the basic ontology of physical things. Thus, David Albert 
writes in his seminal book of 1992 that was the first book that cleared up all the fuzz 
about measurement in quantum mechanics: 

What the physical world consists of besides particles and besides force fields, on this theory, 
is (oddly) wave functions. … The  quantum–mechanical wave functions are conceived of in 
this theory as genuinely physical things … (Albert  1992, p. 135). 

This is odd indeed. For me, I couldn’t make sense of that and therefore didn’t take 
Bohm’s theory seriously for many years. For if indeed that were the truth of the matter, 
the Everettian had a good argument to convince the Bohmian: If we need the wave 
function anyway in our ontology of physical things, there’s no point to admit particles 
in addition to the wave function as so called hidden variables. Harvey Brown (who 
used to be a Bohmian) and David Wallace (who is an outspoken Everrettian) drove 
that point home in a famous paper in 2005 (Brown and Wallace 2005). However, 
Everettian quantum mechanics hardly is a convincing alternative through its denial 
of empirical reality, that is, the existence of a distribution of matter in space and time 
that manifests itself in measurement outcomes. By way of consequence, for lack of 
a better alternative, the legacy of Copenhagen still is influential and framed also my 
thoughts about quantum mechanics for many years, albeit purged of positivism and 
the fuzz about measurement. 

However, everything is clear since Detlef Dürr, Shelly Goldstein and Nino Zanghì 
have developed Bohmian mechanics since the end of the 1980s. In their seminal paper 
published in 1992 (Dürr et al. 1992), they write: 

What we regard as the obvious choice of primitive ontology—the basic kinds of entities that 
are to be the building blocks of everything else (except, of course, the wave function)—should 
by now be clear: Particles, described by their positions in space, changing with time—some 
of which, owing to the dynamical laws governing their evolution, perhaps combine to form 
the familiar macroscopic objects of daily experience. (Quoted from the reprint in Dürr, 
Goldstein and Zanghì 2013, p. 29). 

Hence, the conclusion from the fact that an ontology of both the particles and the 
wave function being physical things is unconvincing is not that there only is the wave 
function. On the contrary, the ontology—that is, the primitive ontology of matter in 
space and time—is particles only. John Bell has laid the ground for clearing up the
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confusion in this way since he has coined the term “local beables” in 1975 (Bell 
1975). 

What, then, is the wave function? According to Dürr, Goldstein and Zanghì, the 
wave function is nomological. That is not to say that it is a law on a par with the 
guiding equation or Newton’s three laws. It is to say that it plays a nomological role: 
It consists in the role that it exercises for the motion of the particles—instead of 
being a physical entity over and above the particles. Again, John Bell makes this 
point without using the term “nomological” in the paper in which he introduces the 
notion of local beables in 1975: 

One of the apparent non-localities of quantum mechanics is the instantaneous, over all space, 
‘collapse of the wave function’ on ‘measurement’. But this does not bother us if we do not 
grant beable status to the wave function. We can regard it simply as a convenient but inessen-
tial mathematical device for formulating correlations between experimental procedures and 
experimental results, i.e., between one set of beables and another. Then its odd behaviour is 
acceptable as the funny behaviour of the scalar potential of Maxwell’s theory in Coulomb 
gauge. (Quoted from the reprint in Bell 1987, p. 53). 

Bell’s wording here is unnecessarily instrumentalist. The crucial point is this one: 
If the particles are recognized as local beables, then we have all the beables that are 
required in physics. There is no need to admit the wave function as a further beable. 
Refusing to do so has moreover the advantage that it helps to dissipate concerns 
about quantum non-locality being some kind of “spooky action at a distance” (Born 
and Einstein 1971, p. 158) in Bohmian mechanics. 

Bohmian mechanics satisfies Einstein’s principle of separability (see Einstein 
1948; English translation of the decisive passage in Howard 1985, pp. 187–188): 
Each particle always has a definite position of its own, and position is the only 
property of the particles. There are no superpositions of anything in physical space. 
Furthermore, in Bohmian mechanics, the violation of Einstein’s principle of local 
action is not tied to—and hence not limited to—wave function collapse; the wave 
function never collapses. The rejection of superpositions and the respect of the prin-
ciple of separability have the consequence that quantum non-locality is generic in 
Bohmian mechanics. For instance, in the double slit experiment, the trajectory of the 
particle after it has passed through one slit depends on whether or not the other slit 
is open. That dependence is immediate and independent of the distance between the 
two slits. The non-locality hence arises well before the particle hits the screen and a 
measurement occurs. But there’s no action between the two slits. 

In treating the wave function as nomological instead of as a physical entity on a par 
with the particles, Bohmian mechanics brings out that the nomological structure of the 
world is non-local. This means that the dynamics of the universe is holistic: The time 
evolution of any one particle in the universe is correlated with strictly speaking the 
time evolution of any other particle in the universe via the universal wave function 
figuring in the guiding equation. These non-local correlations are a nomological 
primitive. There is no further explanation or account of why the dynamics of the 
universe is non-local rather than local. In particular, there is no action in the sense 
of something spreading or being transmitted instantaneously across physical space.
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And there’s no holism that blurs the distinction between the particles: They always 
have a determinate position, and position is their only property. 

If the wave function is nomological in this sense, all the major stances in the meta-
physics of laws of nature can be applied to it. In particular, it admits a treatment in the 
framework of what is known as Humeanism. On Humeanism, the primitive ontology 
is the entire ontology. Laws are the axioms or theorems of the best system, that is, 
the system that strikes the best balance between being simple and being informative 
in representing the evolution of the particular matters of fact, the particles in the case 
of Bohmian mechanics. In philosophical shoptalk, the laws supervene on the particle 
trajectories throughout space and time. The trajectories determine the laws, instead 
of the laws predetermining, governing or even producing the trajectories. 

Applying this stance to the wave function leads to quantum Humeanism, which 
was elaborated on by several researchers independently of one another in the 2010s 
(Callender 2015, Miller 2014, Esfeld  2014, Bhogal and Perry 2017). The wave func-
tion is a parameter that figures in the best system. Hence, first come the particle 
trajectories as a matter of fact, then comes the universal wave function as dynamical 
parameter that belongs to the system that yields the best representation of the particle 
trajectories in terms of being simple and informative. This stance makes evident again 
that there is no conclusive reason to admit any sort of a necessary connection between 
distinct particles. As a matter of fact, when one seeks for a simple and informative 
representation of their motion, this will be one that represents their motion as being 
correlated via an entangled wave function figuring in the law of motion. That is all 
that there is to quantum non-locality. 

Furthermore, quantum Humeanism implies that not only the wave function is 
nomological in being a parameter in the best system, but so are all the other physical 
magnitudes apart from the primitive variable of position. In Bohmian mechanics, all 
the magnitudes apart from position are situated on the level of the wave function, 
including the classical magnitudes of mass and charge (see Brown et al. 1995 and 
1996). They’re not intrinsic properties of the particles (see Esfeld et al. 2017). Hence, 
the primitive ontology, the mosaic of matter in space and time, consists of naked 
particles so to speak that are characterized only by their positions. This stance has 
subsequently become known as Super-Humeanism (see Esfeld and Deckert 2017, 
Sect. 2.3). 

Detlef Dürr wasn’t a Humean about the nomological structure for sure. But this 
isn’t a big deal to my mind: Humeanism is helpful to illustrate a number of issues 
such as the significance of non-locality as sketched out in this section. The big deal 
is to be clear about the distinction between on the one hand ontology in the sense of 
a primitive ontology of matter in space and time and on the other hand dynamical 
or nomological structure in the sense of what enters our physical theories in virtue 
of the function that it exercises for the motion of matter as captured by the primitive 
ontology.
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2 Matter as Res Extensa 

In the first discussion that I had with Detlef Dürr in September 2011, Detlef empha-
sized that all there is to matter is particles standing in spatial relations and the change 
of the relations—in short, matter moves. Everything else is dynamical or nomolog-
ical structure consisting in the role that it plays for the motion of matter. This means 
that Bohmian mechanics is Cartesian science. Bohmian mechanics illustrates that 
Cartesianism remains valid in quantum mechanics. By “Cartesian science”, I mean 
natural science as construed by Descartes. 

The main feature of the Cartesian conception of matter is objectivity: The sensory 
qualities such as colours, sounds, tastes, smells and the like do not belong to the 
things in nature, but to our way of gaining knowledge of them by using our senses. If 
one abstracts from all these features, what remains of the natural world is extension 
and change in extension—that is, motion (see notably Principia Philosophiae, part 
2, § 4). As physics then shows, extension, in turn, is in the last resort point particles 
standing in distance relations to each other. 

There is a good reason for admitting that objectivity boils down to such a meagre 
treatment of matter: When examining a knowledge claim in science, all the empirical 
evidence that can be obtained to confirm or invalidate the claim in question consists in 
observations of the positions and changes of position of discrete objects. Accordingly, 
all measurement outcomes are recorded as relative positions within configurations 
of discrete objects—such as, for instance, pointer positions or digital numbers on a 
screen. John Bell emphasizes this point: 

… in physics the only observations we must consider are position observations, if only the 
positions of instrument pointers. It is a great merit of the de Broglie–Bohm picture to force 
us to consider this fact. If you make axioms, rather than definitions and theorems, about 
the ‘measurement’ of anything else, then you commit redundancy and risk inconsistency. 
(Quoted from the reprint in Bell 1987, p. 166). 

The qualification “in physics” is appropriate: Common sense observations typi-
cally involve colours, sounds or scents of spatially arranged objects. In common 
sense, the positions of objects are discerned by means of these sensory qualities. 
Science abstracts from the sensory qualities. What then remains are the relative posi-
tions of discrete objects and their change. These are correlated with the sensory 
qualities, in the sense that science can account for changes in sensory qualities on 
the basis of changes in position. 

According to physics, macroscopic objects are composed of microscopic objects 
that ultimately are point particles standing in distance relations. Consequently, if 
a theory describes the spatial arrangement of the particles and its change in time 
correctly—that is, the arrangement and evolution of fermionic matter (see Bell 1987, 
p. 175)—, it has got everything right that can ever be checked in scientific experiments 
(see also Maudlin 2019, pp. 49–50). Two theories that agree on the spatio-temporal 
arrangement of the elementary particles defined in terms of the positions of these 
particles only cannot be distinguished by any empirical means, whatever else they
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may otherwise say and disagree on. By the same token, two possible worlds with the 
same spatio-temporal arrangement of the elementary particles are indiscernible by 
any scientific means. 

This is the strongest argument for treating position as the only basic or primi-
tive physical magnitude, and thus for the natural world, insofar as it is accessible to 
science, being res extensa only: Admitting anything else over and above positions 
as basic or primitive would imply treating empirically indiscernible situations or 
worlds as being nonetheless different in some matters of fact. Obviously, this is a 
generalization of Leibniz’ famous argument against Newton’s ontological commit-
ment to absolute space and time (see notably Leibniz’ third letter to Clarke, § 5, 
in Leibniz 1890, pp. 363–364): The argument applies, in fact, to anything that is 
admitted as ontologically primitive in the scientific description of the world beyond 
relative positions and their change. 

That notwithstanding, if all that there is to matter is distance relations between 
sparse point particles and the changes in these distances, it may seem that their 
material nature fades away upon inquiry. However, this concern is unfounded. There 
is nothing incoherent in the notion of point particles as elaborated on in Bohmian 
mechanics. 

If there is a plurality of objects, there has to be something that individuates them— 
that is, something that answers the question why this is one object, that another, etc., 
so that there is a plurality of objects instead of just one. Furthermore, there also has to 
be something that unites these objects so that they make up a world. In other words, 
there has to be a world-making relation; that is, a relation that binds all and only 
those objects together that belong to a world. It is evident that the distance relation 
fulfils the latter task: All and only those objects that are spatially related constitute 
a world. If there were objects not at a distance from each other, they would inhabit 
different worlds. If they are related by distance, they are in one and the same world 
(see Lewis 1986, pp. 69–81). 

Moreover, the distance relations—and only they—individuate the objects: What 
distinguishes each object in a configuration of objects is the position that it has relative 
to all the other objects. Even if a configuration is partially symmetrical, there always 
is at least one object in the real world outside that symmetry relative to which all the 
other objects can be distinguished. Magnitudes that are attributed to physical objects 
over and above their relative positions—such as mass or charge—cannot distinguish 
the latter: they differentiate between various kinds of particles, such as the particle 
species admitted in today’s standard model of elementary particles. But they cannot 
distinguish between the individual particles within a species or kind, because all 
the particles of a given species—such as, for instance, all electrons—have the same 
values of mass, charge, etc. The demand for something that individuates the physical 
objects is fulfilled by the distance relations, and by them only. Therefore, there is no 
need for anything more than distance relations to both individuate the objects and 
have a relation that binds them together so that they constitute a world. 

Indeed, one can regard these considerations as confirming the Cartesian meta-
physics of nature, and vindicating it also in the context of contemporary science 
including quantum mechanics: Nature, insofar as it is accessible to scientific enquiry,
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is res extensa. That is to say, there is nothing more to matter than extension in the 
guise of distance relations individuating point particles and the change in these rela-
tions. Against this background, Dirk-André Deckert and myself have set out to show 
in our book published in 2017 how modern physics can be construed on the basis 
of a primitive ontology of matter that is defined by the following two axioms or 
principles: 

(1) There are distance relations that individuate simple objects—namely, matter 
points. 

(2) The matter points are permanent, with the distances between them changing. 
(Esfeld and Deckert 2017, p. 21). 

At this general level, the geometry into which the configuration of matter has to 
be conceived as being embedded in order to achieve a representation of its dynamics 
remains completely open. Accordingly, the viability of this primitive ontology has 
to be vindicated for each physical theory separately, as outlined in the book Esfeld 
and Deckert (2017). 

3 Mind as Res Cogitans 

When I asked Detlef Dürr about the nature of the mind, he tended to reply that 
we shall tackle this subject when we will have a better understanding of physics. It 
seems to me that this attitude is based on a misunderstanding: Everything becomes 
clear when one realizes that Bohmian mechanics is Cartesian science. Unfortunately, 
our discussions about these issues came to an abrupt end through Detlef’s untimely 
death. 

Cartesian science abstracts from all subjective judgements and seeks objectivity. 
That is how one gets to Bohmian mechanics: matter being featureless point particles 
in motion. However, this very method of seeking objectivity implies that it can in 
principle not be applied to subjective features. If the scientific viewpoint consists in 
abstracting from the latter in order to reach objectivity, then it simply follows that 
those same subjective features are not accessible to the scientific viewpoint. 

This limitation concerns in the first place sense experience. A being that has 
sense experience is not merely an object that moves according to certain laws of 
motion; rather, it has a subjective perception and feeling of what it is like to be in the 
world, having certain qualitative experiences. Science can discover sufficient phys-
iological conditions for having sense experience, and the content of the experience 
may supervene on certain brain states, given certain conditions in the environment. 
Nevertheless, any scientific theory misses the qualitative character of the experience, 
the subjective perspective on the world. It cannot account for what it is like to see 
colours, taste cheese, smell smoke, jump for joy, etc. Accordingly, the issue of how 
to account for subjective experience has come to be known as the hard problem of 
consciousness following Chalmers (1996).
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Subjective experience pertains to many higher-level animals. Thought and 
action—which, as far as we know, characterize only humans—presuppose a subjec-
tive perspective on the world, and thus experience, but are still categorically different 
from it. The obvious argument against human thought and action not being accessible 
to the method of Cartesian science is that in the case of these, the issue is not what 
the objective facts are, but how human subjects assess them in forming beliefs and 
intentions for action. This brings in free will. A being forms beliefs if and only if she 
has the capacity to position herself with respect to her sensory impressions, desires 
and needs and to make up her mind by deliberating about reasons for her beliefs and 
actions. 

This freedom is also a presupposition for science. The very formulation, endorse-
ment and testing in experience of a scientific theory presupposes the freedom of 
scientists to position themselves with respect to the evidence. The referents of the 
theory—whatever the theory poses as existing in the world—cannot impose accep-
tance of the theory on persons or justify the theory. In that sense—as beings that 
formulate and justify theories—persons are as ontologically primitive as are the 
point particles. 

As one can spell out Cartesian res extensa in terms of point particles being indi-
viduated by distance relations, so one can spell out Cartesian res cogitans in terms of 
relations that are characteristic of the mind, namely thinking relations. That is to say: 
Standing in distance relations (extension) makes it that points are matter points (point 
particles), whereas standing in thinking relations makes it that points are minds. In 
neither case is there a substance in the sense of a thing with an intrinsic essence (see 
Esfeld 2020, Chap. 3, for details). 

Being clear about the distinction between primitive ontology and dynamical struc-
ture is a big deal also because it dissipates concerns that one may have about the 
theory of matter being incompatible with the central features of the mind such 
as notably free will. Bohmian mechanics is a deterministic theory. However, on 
Bohmian Humeanism, the trajectories that the particles take in fact fix what the 
wave function of the universe is, instead of the wave function governing or even 
producing the trajectories. Hence, on this stance, there is no conflict between a deter-
ministic dynamics and humans having free will because the laws being deterministic 
doesn’t imply that anything that happens in the world is predetermined in the sense of 
being necessitated by something else. Against this background, there is the prospect 
of making a precise proposal how there can be—even libertarian—free will in a 
Bohmian universe (see Esfeld 2020, Sect. 2.3, and Esfeld 2022 for details, although 
the proposal still needs elaboration). 

Furthermore, Bohmian mechanics leaves many options in the philosophy of time 
open, including even presentism. As Tim Maudlin notes. 

Bohm’s theory is deeply congenial to an ontology which maintains that all which exists is 
that which exists now, i.e. at a point in time classically conceived. … Those puzzled about the 
status of velocities in an ontology in which only an instant of time exists can happily adopt a 
Bohmian ontology of particles (with position) and the wave-function. (Maudlin 2011, p. 113 
note 22).
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Bohmian mechanics is not even committed to absolute time. It can be conceived 
in a Leibnizean, relationalist framework. As Detlef Dürr (2020) showed in one of 
the last research projects to which he contributed, Bohmian mechanics can be done 
on shape space, that is, by working only with relational and thus scale invariant 
quantities, instead of conceiving the particle configuration as being inserted in an 
absolute space and time. Hence, in Bohmian mechanics, the ontology of space 
and time can be as parsimonious as the ontology of matter. In particular, if one 
endorses Bohmian presentism (which can be construed as relationalist presentism) 
and Bohmian Humeanism, there is no problem to admit an open future, which one 
may consider as being required for free will. 

This is the big deal: epistemic humility about science without compromising the 
scientific enterprise. Bohmian mechanics shows how one can be committed to a 
fully objective, fully scientific realist and fully deterministic theory of matter and its 
evolution and yet be clear about the limits of objective science. There’s nothing in this 
theory that imposes anything on us that might be considered as coming into conflict 
with central features of the mind such as the openness of the future or human free 
will even on a libertarian conception of free will. To avoid the pitfalls of scientism— 
that is the view that science in the sense of modern natural science is unlimited—, 
there is no need to compromise physics in any way (as done when one takes quantum 
mechanics to undermine deterministic laws of nature or even realism). One just has to 
understand how Bohmian mechanics vindicates Cartesian science also in the domain 
of quantum physics. 
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Who’s Afraid of the Measurement 
Problem? 

Valia Allori 

Abstract Scientific realists usually claim that quantum mechanics can be made 
compatible with scientific realism by solving the measurement problem, even if 
there is disagreement about which solution is best. In this paper I argue this is due to 
having different views about what it means to make quantum theory compatible with 
scientific realism: ‘relaxed’ realists think it is enough to solve the adequacy problem, 
‘modest’ realists believe that there is also a precision problem, while ‘robust’ real-
ists insist that quantum theory still needs to be suitably completed. These attitudes 
are connected with the type of explanation one favors: while relaxed realists favor 
principle theories, robust realists prefer constructive theories, and modest realists 
provide non-constructive dynamical hybrids as long as they preserve locality and 
separability. 

1 Introduction 

Quantum theory suffers from the realism problem: it is incompatible with scientific 
realism, as it cannot provide a clear picture of reality. Traditionally scientific realists 
think that one can solve the realism problem by solving the measurement problem. 
Solutions of the measurement problem include the GRW theory,the pilot-wave theory, 
and the many-worlds theory. People disagree about which solution is best. In this 
paper I focus on the disagreement between primitive ontologists, who favor the 
pilot-wave theory, and wavefunction realist, who do not. To better understand their 
differences, I also discuss the information-theoretic (IT) approach. I argue (Sect. 2) 
that the disagreement between these approaches boils down to their disagreement 
about how standard quantum theory should solve the realism problem. Proponents 
of the IT approach think that the realism problem is an adequacy problem: the theory 
needs to make empirically adequate predictions. Wavefunction realists instead focus 
on a precision problem (which is the measurement problem): a theory has to have an
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ontology whose dynamics is unique and precisely defined. Finally, primitive ontol-
ogists maintain that the problem to solve is a completeness problem: the theory 
has to have a clear and precise microscopic spatiotemporal ontology. Also, I argue 
that the reason for these differences is that they have diverging realist commitments 
(Sect. 3), because they think of satisfactory theories differently (Sect. 4). Those who 
think the realism problem is the adequacy problem endorse a relaxed realist atti-
tude: a theory should systematize the phenomena with principles constraining the 
phenomena. Instead, those who think that quantum theory is incomplete have in mind 
a robust realist understanding, where a theory explains the phenomena constructively. 
Finally, those who think that the precision problem is the one to be solved endorse 
a modest version of realism, which combines an interest in the reality behind the 
phenomena with a non-constructive understanding guided by the desire of keeping a 
local and separable ontology. I start Sect. 5 by showing how it is unclear why relaxed 
realists are really realists, given their focus on appearances. Moreover, I argue that it 
does little sense for primitive ontologists to discuss the other solutions of the measure-
ment problem other than the pilot-wave theory. As for the wavefunction realists, first, 
I show that the type of explanations they provide seems to undermine their motivation 
for looking for a better theory than standard quantum theory. I conclude in Sect. 6. 

2 Quantum Problems 

Standard quantum mechanics is merely a recipe for predicting experimental results. 
As such, it is incompatible with scientific realism, the view that theories can give 
us information about the world beyond the appearances. Let us call this incompati-
bility the realism problem. Traditionally, it is argued that the realism problem is the 
measurement problem. This problem arises when we assume that the wavefunction, 
the main object of the theory evolves in time according to the linear Schrödinger 
equation: since a solution of this equation describes possible states of affairs of the 
world, because of linearity any sum of solutions (superpositions) describes possible 
situations too. If one also assumes that every system is completely described by such 
wavefunction, then there will be ‘superpositions of states’ at all scales, such as a cat 
in a superposition state of ‘living’ and ‘dead.’ 

2.1 The Adequacy Problem 

Thus, the first problem of standard quantum theory is that it is not empirically 
adequate: we observe no macroscopic superpositions, which instead are predicted 
by the theory. This problem is solved in physics books by postulating the collapse 
rule: when we make a measurement the wavefunction randomly and instantaneously 
collapses into one of the terms of the superposition. There are some realists who 
think that there is no realism problem left: standard quantum theory with collapse
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lays out a set of constraints imposed on the empirical data. These data exist objec-
tively and mind-independently, so one could be realist about those, and not give too 
much importance of what is going on at the microscopic level. Proponents of the 
information-theoretic (IT) approach, QBists and Rainforest Realists can be thought 
as being realists of this sort.1 

2.2 The Precision Problem 

However, many find the collapse rule unsatisfactory: it is unclear when one is 
supposed to apply it, and why it applies. In other words, the realism problem is 
a precision problem: the wavefunction should evolve according to one single precise 
dynamics, whose definition should not appealing to vague concepts like measurement 
or observer. This is the measurement problem as usually understood. Its solutions 
need to be more than just empirically adequate: they also have to have a unique and 
precisely defined dynamics. As a consequence, standard quantum mechanics, which 
is empirically adequate but imprecise, is not adequate. The most promising solu-
tions of this problem are recognized to be: the many-worlds theory2 ; the pilot-wave 
theory3 ; the GRW theory,4 because they all have a unique and precise dynamics. 
The wavefunction is an ingredient in all these theories. There are different views 
about how to think about the wavefunction. One of them is wavefunction realism, 
according to which the wavefunction is not a field in spacetime but it lives in the 
high-dimensional configuration space.5 

2.3 The Completeness Problem 

Others instead have argued that one also needs the ontology to be in spacetime. 
Since the wavefunction is not a spatiotemporal object, then all ‘wavefunction-only’

1 See, respectively: Bub and Pitowsky (2010); Fuchs (2010), Fuchs, Mermin, and Schack (2014), 
DeBrota, and Stacey (2019); Ladyman and Ross (2007, 2013), Ladyman, (2016). 
2 Everett (1957). 
3 Bohm (1952). 
4 Ghirardi et al. (1986). 
5 Albert (1996, 2013, 2015), Ney (2012, 2013, 2015, 2017, 2021) and references therein. There are 
other views about how to think of the wavefunction. When the wavefunction is taken to be a vector 
in Hilbert space, it is called vector space realism or Hilbert space fundamentalism (see Carroll 2022 
and references therein). If the wavefunction, or better the quantum state, is instead taken to be in its 
own category of existence, then one talks about quantum state fundamentalism (Maudlin 2019). In 
the many-worlds framework, some also have endorsed a view called spacetime state realism, which  
takes the states associated to spacetime regions as fundamental (Wallace and Timpson 2009). For 
a comparison between spacetime state realism, the many-world theory, and the primitive ontology 
approach, see Allori (2023). 
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quantum theories are fundamentally incomplete. If so, pure wavefunction theo-
ries like GRW and many-worlds are satisfactory: they need to be completed by a 
spatiotemporal ontology.6 This idea has recently resurfaced in the primitive ontology 
framework.7 In their view, material entities are not represented by the wavefunction 
but by the primitive ontology, which represents a suitable spatiotemporal ontology.8 

There are different ways of completing quantum theory with different spatiotem-
poral ontologies (particles, waves, spatiotemporal events or ‘flashes’, and so on), the 
simplest of which is given by the pilot-wave theory: the simplest ontology (particles), 
and the simplest evolutions (deterministic). One could propose different ontologies 
governed by a Schrödinger-evolving wavefunction as well as by a GRW-evolving 
wavefunction.9 

6 This attitude can be historically tracked down for instance to Lorentz, who objected to Schrödinger 
that his wavefunction was physically unacceptable because it is a field in configuration space, 
rather than in three-dimensions like electromagnetic fields (Lorentz in Przibram, 1967). Similar 
concerns were raised by Einstein (see Einstein’s letters to Schrödinger and Ehrenfest in Howard 
1990) (at least) an early Schrödinger (1926), and de Broglie (1927, reprinted in de Broglie 1956). 
Even Heisenberg expressed similar worries, which arguably pushed him toward anti-realism (Bloch 
1976). 
7 Dürr, Goldstein, and Zanghí (1992); Dürr, Goldstein, and Zanghì (1997); Allori et al. (2008); 
Allori (2013a, 2013b). For a review, see Allori (2015); Allori (2019). 
8 Others have emphasized the importance of spacetime for a satisfactory ontology. For instance, 
Maudlin (e.g. 2016) has argued that satisfactory theories have local beables: “those which (unlike for 
example the total energy) can be assigned to some bounded space–time region” (Bell 1987). Also, 
Norsen (2010) has proposed that we should actively look for a theory entirely formulated in terms of 
spatiotemporal ontologies, without a wavefunction in high dimensional space. This turns out to be 
technically difficult, but perhaps the essence of this can be saved by understanding the wavefunction 
as a multi-field, or poly-wave, in three-dimensional space. This multi-field is an extension of the 
concept of field, as it assigns a number to a set of locations, rather than only one location, in 
the three-dimensional space (Forrest 1988; Belot  2012; Chen  2017; Hubert and Romano 2018; 
Romano 2020). Arguably, one could think of these views as solving the completeness problem, as 
all of them effectively add a spatiotemporal ontology to quantum theory (The disagreement between 
these views and primitive ontologists has to do with symmetries properties, as discussed in Allori 
2021a). 
9 Examples of the latter include GRWp (in which particles evolves stochastically and nonlinearly 
with a law induced by a GRW-evolving wavefunction, see Allori 2020a); GRWm (in which the 
ontology is a matter field defined in terms of a GRW-evolving wavefunction, which therefore 
inherits a dynamics with the same stochastic and nonlinear features, see Benatti, Ghirardi and 
Grassi 1995); GRWf (which has a flashes ontology whose distribution is governed by a GRW-
evolving wavefunction; this theory was first proposed by Bell (1987), and then adopted in Tumulka 
(2006), who developed a relativistic extension). Examples of the latter turn out to be theories with 
a many-worlds character: for instance, in Sm the matter field inherits the superpositions generated 
by the Schrödinger-evolving wavefunction (Allori et al. 2008, 2011; Allori  2019, and references 
therein).



Who’s Afraid of the Measurement Problem? 397

3 Quantum Realisms 

I have argued in the previous section that there is a disagreement about what the 
realism problem is supposed to be. The disagreement is about what dynamics, 
ontology and explanation count as satisfactory. In this section, I discuss different 
requirements for the ontology, while in the next section, I discuss different 
explanatory strategies. 

3.1 Relaxed Realism 

The approaches focusing on the adequacy problem think that quantum theory with 
collapse as more than just a recipe for predicting results. They think of it as a theory 
with a macroscopic ontology of measurement outcomes. Thus, the imprecision of 
the collapse rule does not matter: measurements are unanalyzable primitives10 or 
there are no primitives.11 Usually, these attempts are taken to be not realist enough: 
realists are supposed to care about more than just empirical adequacy. However, 
the proponents of these approaches maintain that either one should remain agnostic 
about which of the various possible microscopic processes is correct, or even that 
a microscopic description is needed. Let’s call this perspective relaxed realism: a 
satisfactory theory needs a spatiotemporal objective ontology, which does not have 
to be microscopic. 

3.2 Modest Realism 

Those who care about the precision problem think that one needs all physical objects 
and processes being governed by a unified, precise dynamics. For instance, wave-
function realists care about having the same dynamics for all scales. Nonetheless, 
they do not insist on the fundamental ontology to be in spacetime. Rather, they 
favor are open to pure-wavefunction theories, such as GRW and many-worlds, for 
reasons connected with locality and separability. Locality is a property of the inter-
action: influence travels at finite velocity. Instead, separability is a property of the 
ontology: the whole can be seen as the sum of its parts. These assumptions seems 
both commonsensical and needed to do physics.12 However, quantum nonlocality has 
threatened them both.13 Ney has argued that only a pure-wave ontology is local and

10 As is the IT approach or in QBism. 
11 As in Rainforest Realism. 
12 See Ney (2021) for more. 
13 See, e.g., Goldstein et al. 2011. and references therein. 
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separable in the fundamental space.14 Consequently, wavefunction realists endorse 
a modest form of realism: a satisfactory theory has a local and separable ontology 
in the fundamental space. They want more than empirical adequacy, but they do not 
require an ontology is spacetime. 

3.3 Robust Realism 

Primitive ontologists think that wavefunction-only quantum theories are incomplete: 
they require a fundamental spatiotemporal ontology, like relaxed realists, but they 
also want it to be microscopic because they want to think of macroscopic objects as 
composed of such fundamental ontology, in a Lego brick picture of reality.15 Thus, 
they are robust realists: a satisfactory quantum theory has a suitably microscopic 
(spatiotemporal) fundamental ontology. 

4 Quantum Explanations 

Wavefunction realists argue that GRW, say, needs no completion because it solves 
the measurement problem by changing the dynamics. Primitive ontologists disagree 
because of the type of realism they endorse: robust realism requires an effectively 
microscopic (spatiotemporal) ontology, which GRW does not have. In contrast, 
wavefunction realists being modest realist, are willing to sacrifice a spatiotemporal 
ontology for a local and separable theory. Proponents of the IT interpretation are even 
more flexible, as they do not even care about having a unique and precise dynamics 
or a microscopic ontology. That’s what makes them relaxed realists. In this section I 
discuss how the type of realism one endorses goes hand in hand with a specific type 
of explanatory strategy.

14 If you have a spatiotemporal ontology, like in the pilot-wave theory, objects may be though as 
separable (they are made of particles), but they interact nonlocally (through the wavefunction). If 
instead you have a spatiotemporal ontology in a many-worlds theory (like in the case of spacetime 
state realism), the theory may be seen as local (the state of any spatiotemporal region depends 
only on the state of some cross-section of its past light cone) but it is non-separable (the intrinsic 
properties of a localized region of space are represented by a density operator, and the density 
operators of two subsystems do not determine the density operator of their union). 
15 This is explicit in Allori (2013a, 2013b, 2015, 2019). In the case of a particle ontology, the 
individual Lego bricks (the particle fundamental ontology) used to build a castle (a macroscopic 
object) are in the same space as the castle (spacetime) and they are smaller than the castle (they are 
microscopic).Notice that waves can be a suitable ontology for robust realists too, even if they are 
delocalized objects and, strictly speaking, they are not microscopic, as long as the following condi-
tions are met. First, they are oscillating in (three-dimensional) space, evolving in time, and also they 
superimpose to form stable and localized wave-packets to reproduce particle-like observed behavior. 
These conditions being satisfied would make waves effectively microscopic. As a consequence, one 
could think of the Lego brick being (three-dimensional) wave-packets instead of particles. 
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According to Einstein, theories are either constructive or they are theories of prin-
ciples.16 Principle theories are formulated in terms principles, which are used as 
constraints on physically possible processes. Instead, constructive theories involve 
the dynamical reduction of macroscopic objects in terms of the motion and interac-
tions of their microscopic constituents. An example of a principle theory is thermo-
dynamics (it has principles such as e.g. “energy is conserved”), and an example of 
(the corresponding) constructive theory is statistical mechanics. Another example of 
principle theory is the 1905 theory of special relativity, as it was formulated in terms 
of the two principles: the equivalence of inertial frames for all physical laws, and the 
principle of constancy of the velocity of light. 

4.1 Principle Theories 

Some have argued that principle theories are preferable. For instance, Bub and 
Pitowsky (2010) have argued that quantum theory is a principle theory, and that 
to explain is to constrain the phenomena without the need of a dynamical account.17 

One could argue that a principle type of explanation is to be preferred because it 
provides a framework which is independent on the detailed assumption about the 
nature of matter. Moreover, Flores (1999) has argued that principle theories are 
explanatory because they unify.18 Be that as it may, the preference of the proponents 
of the IT approach for principle theories fits well with their relaxed realism: a satis-
factory theory systematizes the phenomena, and this can be successfully done using 
principles. 

4.2 Hybrid Theories 

Wavefunction realism has three steps to complete: first, recover three-dimensional 
space from high-dimensional space; then recover a microscopic non-fundamental 
ontology from the wavefunction; and finally, account for the macroscopic behavior. 
For the first step, wavefunction realists argue that three-dimensional space suitably 
emerges. There are various strategies, but they all have in common that they are based 
on principles. For example, Albert uses the principle that the privilege the dimen-
sions in which the Hamiltonian is written. Ney instead uses the principle that privilege

16 Einstein (1919). 
17 “There is no deeper explanation for the quantum phenomena of interference and entanglement 
than that provided by the structure of Hilbert space, just as there is no deeper explanation for the 
relativistic phenomena of Lorentz contraction and time dilation than that provided by the structure 
of Minkowski space–time”(ibid.). 
18 Friedman (1974), Kitcher (1989). 
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the dimensions that respect the fundamental symmetries of the dynamics.19 These 
approaches use principles in the second step as well, namely for the emergence of 
non-fundamental microscopic objects. Albert and Loewer (1996) propose to modify 
the so-called EER (eigenvalue-eigenstate rule) of standard quantum mechanics as 
to define particles as suitably emergent. Later, Albert (2015) proposed that particles 
as we experience them are to be understood as emerging as ‘functional shadows’ 
of the high-dimensional fundamental wavefunction. Once we have this microscopic 
non-fundamental ontology, we can understand macroscopic objects as composed of 
them. So, to complete step two, Albert uses principles, but in step three he employs 
a constructive explanation. Ney (2021) instead first derives microscopic (spatiotem-
poral) particles as the derivative parts of the wavefunction: there is a particle when 
there is a ‘bump’ in the squared of the wavefunction. If so, a particle location is inde-
terminate, as the wavefunction may be spread out. Particles may partially instantiate 
different locations to different degrees, given by the squared amplitude of the wave 
function in that point. Then, in contrast with Albert, Ney does not think of macro-
scopic objects as composed of microscopic particles. Rather, she thinks that deco-
herence, namely the interaction of the environment, is responsible for the emergence 
of macroscopic, classically behaving patterns, along the lines of strategies adopted 
by supporters of the many-worlds theory.20 

These explanatory strategies are not constructive: the macroscopic phenomena 
are not explained in terms of the fundamental spatiotemporal microscopic dynamics. 
Rather, they seem much closer to the type of explanation provided by principle theo-
ries. Albert uses the Hamiltonian and functionalism, Ney uses symmetries and partial 
instantiation to establish the derivative reality of three-dimensional reality, thereby 
providing principles that constrain the phenomena. On the other hand, these are not 
entirely principle explanations. In fact, wavefunction realists care about the dynamics 
in virtue of wanting to solve the precision problem. Moreover, Albert’s functionalist 
account takes the dynamics into account using the form of the Hamiltonian (rather 
than its solutions) to recover three-dimensional objects. Similarly, Ney’s focus on 
symmetries can be understood as taking the dynamics seriously, as well as her appeal 
to decoherence. So, at the end, the type of explanation provided by wavefunction 
realism is a hybrid between principle, compositional and dynamical explanation. 

4.3 Constructive Theories 

Primitive ontologists favor constructive theories.21 Brown (2005) has argued that 
constructive theories are more explanatory than principle theories because not only

19 A similar strategy is employed in vector space realism, in which three-dimensionality is recovered 
in terms of the energy eigenvalues of the Hamiltonian. See Carroll (2022). 
20 See Wallace (2012). 
21 . They follow Einstein, who believed that physics should look for constructive theories, and accept 
principle theories only when one has no other option. He thus expressed his own dissatisfaction 
for the theory of special relativity at the time. However, he could have said something similar for
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they accounts for what we should expect to happen, but also for why it happens.22 

The essence of constructive explanation is to explain compositionally and dynam-
ically. So, primitive ontologists treat standard quantum theory as thermodynamics. 
They are both principle theories: the quantum recipes describe the phenomena by 
specifying the statistics of the experimental results, just as thermodynamics provides 
constraints on macroscopic phenomena. As such, they have a constructive counter-
part, to which we can reduce them. The constructive counterpart of thermodynamics 
is classical mechanics, by thinking of gases as collections of particles. What is the 
constructive counterpart for standard quantum mechanics? This theory would allow 
us to understand not only which quantum principles hold, but why they do. Notice 
therefore that, as it would be absurd to use a gas ontology for classical mechanics 
to constructively explain thermodynamics, one should not use the wavefunction as 
the ontology of the constructive quantum theory: since the wavefunction ‘belongs’ 
to the principle theory, it does not make sense to use it as the ontology for the 
constructive one. In addition, since constructive explanation requires a spatiotem-
poral fundamental ontology, the obvious choice is the one of particles. For once, 
particles seem more compatible with the empirical evidence of tracks in detectors. 
If so, the straightforward constructive counterpart of standard quantum mechanics 
is the pilot-wave theory. 

5 Final Remarks 

For each approach I have identified the driving motivation: preserving principle expla-
nation, preserving locality and separability, and preserving constructive explanation. 
In this section, I wish to evaluate these accounts in their own terms. 

5.1 Puzzles for Relaxed Realists 

As anticipated, relaxed realist attempts are taken to be not realist enough.23 In my 
opinion, however, this type of objections is driven by the idea that to be realist is 
to look for a constructive rather than a principle explanation. In response, propo-
nents of the IT approach deny, as we have seen, that we need constructive under-
standing. However, many remain unconvinced that we should settle for principle type 
of explanations, especially if one could have also a constructive understanding.

quantum theory: his preference for constructive theories is compatible with his idea that quantum 
mechanics is incomplete. Moreover, it fits well with his statistical interpretation of quantum theory, 
as it is a principle theory by constraining the phenomena with suitable rules.
22 See also Brown (2005), Brown and Pooley (2004), Brown and Timpson (2006). See Flores (1999) 
and Felline (2011) for a connection with Salmon’s mechanistic view of explanation (1984). 
23 For example, Egg (2019) has put forward a set of arguments that some implementations of this 
type of realism do not deserve to be labelled realist. 
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Another feature of these approaches that contributed to some confusion is that the 
wavefunction is not seen as ‘ontic,’ namely as describing some physical facts, because 
only measurement results are taken ontologically seriously. As a consequence, these 
approaches make the move of thinking of the wavefunction as epistemic: roughly, it 
encodes our knowledge of the system. Nonetheless, this move makes the approach 
mind dependent. If you have a theory containing something expressing your lack 
of complete information, you are acknowledging that the theory is incomplete. 
However, while it is true that in these approaches the wavefunction does not represent 
physical objects, it does not follow that it cannot be ontic. In fact, the label ‘ontic’ 
just means that it is an objective ingredient of the framework. So, the wavefunction 
could for instance represent a fact describing the interaction between systems, like 
the one expressed by the Hamiltonian. This is straightforwardly compatible with 
these principle approaches, without making the wavefunction epistemic.24 

5.2 Puzzles for Modest Realists 

A problem for wavefunction realists has to do with their motivation. How do they 
justify their attachment to separability and locality? As anticipated, their answer 
is that they are intuitive. However, the locality in wavefunction realism is high-
dimensional locality, so quantum theory is still nonlocal in three-dimensional space. 
The wavefunction realist points out that locality is needed to explain physical action. 
Nonetheless, this move is effective only if we think of three-dimensional locality. 
Moreover, people want locality because this is compatible with relativity: since in 
relativity there is a maximum velocity there cannot be instantaneous action at a 
distance. However, again, this is three-dimensional locality. Similarly, the wave-
function realist cares about separability because it preserves our intuitive notion of 
compositionality: if separability is true, composed systems can be broken down into 
simpler ones. Nonetheless, the separability we care about is in three-dimensions, as 
in the case of locality. 

Another problem is that within wavefunction realism phenomena are not 
accounted from entirely in a constructive way. In fact, one first has to derive three-
dimensionality, then particles, and then macroscopic objects. Each of these steps 
(except the last, in the case of Ney’s approach) involves some sort of principle, like 
relaxed realists. But didn’t they claim that they wanted more? Both approaches essen-
tially systematize the phenomena, with the only difference that wavefunction realists 
systematizes the data precisely. So, one may wonder why we should care about 
precision at all: what is it to be gained by systematizing the phenomena precisely? 
The point of solving the measurement problem was that there seemed to be value in 
having a precise dynamics. But what is this value if one only cares about reproducing 
the appearances? Why do wavefunction realist value the dynamics if they provide 
a non-dynamical explanation? Having a non-constructive explanation and giving

24 See Allori (2020b, 2021b). 
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importance to the dynamics seem to pull in opposite directions: the former pushes 
towards relaxed realism, while the latter towards a robust realism, making wavefunc-
tion realism a peculiar hybrid. There is a tension between the desire of the wave-
function realist of a robust kind of realism, and the kind of explanation wavefunction 
realism actually provides, which is not constructive: the wavefunction realist starts as 
off a robust realist, but she ends up (too) close to the relaxed realist. One can defend 
wavefunction realism (at least in the case of Albert) by observing that, as a matter 
of fact, the principles are needed to recover three-dimensionality and microscopic 
objects, but once these emerge, we can think of macroscopic objects effectively as 
if they are composed of microscopic entities. That is, constructive explanation still 
holds. That is, it is not the only step needed to recover the phenomena, but one of 
the two: principles first, constructive explanation next. 

Notice that having at least one constructive step is essential. In fact, consider 
thermodynamics and statistical mechanics. According to many, the laws of ther-
modynamics could be constructively accounted for in terms of classical statistical 
mechanics. If wavefunction realism does not have a constructive step, then it becomes 
difficult to see how they can accept statistical mechanics: we can think of gases as 
composed by particles only if these particles emerge microscopically. The principles 
need to be used only to go from the high-dimensional space to the three-dimensional 
one, and not after the microscopic particles have emerged. In other words: if someone 
wishes quantum theories to be explanatory in terms of principles only, then they 
should not be too attached to a constructive understanding. However statistical 
mechanics constructively explains thermodynamics, and this arguably extends also 
to quantum statistical mechanics. But if the explanation provided by wavefunction 
realism is non-constructive, then there is a tension. How are these two explanations 
compatible? 

5.3 Puzzles for Robust Realists 

In a robust realist quantum theory, the description provided by the wavefunction is 
never complete, and the fundamental ontology of the theory is spatiotemporal and 
microscopic. As we have seen, this is straightforwardly accomplished by the pilot-
wave theory. Nonetheless, robust realists such as primitive ontologists engage with 
other quantum theories, and they seem to treat them as equally acceptable robust 
realist alternatives. That is, instead of starting from the completeness problem, they 
focus on the measurement problem. But this is puzzling, as they also argue that all 
robust realist quantum theories have to have a spatiotemporal ontology, and two out 
of three ways of solving the measurement problems do not respect such requirement: 
GRW and many-worlds do not solve the completeness problem. These theories solve 
the measurement problem in ways other than completing standard quantum theory. 
So why are they even an option for the primitive ontologists? Admittedly, primitive 
ontologists insist that these theories need to be supplemented by a spatiotemporal 
ontology. However, they are bound to be artificial, as they were meant to solve the
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measurement problem without solving the completeness problem.25 What is it to be 
gained in taking these theories and then turning them into solutions of the complete-
ness problem by supplementing them with a spatiotemporal ontology, especially 
given that one already has the simplest way of doing that, namely the pilot-wave 
theory? 

Primitive ontologists reply that these theories are mere examples of construc-
tive theories, not as real alternatives: they lack either simplicity or motivation.26 

Moreover, one could argue that the value of looking at GRW-type theories with a 
spatiotemporal ontology is to explore the compatibility with quantum mechanics and 
relativity.27 In fact, in addition to the Lorentz invariance of the laws, people disagree 
about what it means that a theory is compatible with relativity. Some have argued 
that a theory is compatible with relativity if it is formulated only with relativistic 
spatiotemporal structure. Lorentz invariant extensions of the pilot-wave theory all 
have a preferred slicing of spacetime, namely a foliation, and since this is not a 
relativistic spatiotemporal structure these theories are all in tension with relativity.28 

Instead some Lorentz invariant extension of GRW theories with a spatiotemporal 
ontology (like GRWm and GRWf) require no preferred foliation. This is the sense 
in which they are more compatible with relativity than the pilot-wave theory.29 This, 
GRW-type theories seem worth exploring. However, it is unclear whether these 
theories can truly accomplish this task.30 

Additionally, the status of the wavefunction in this framework is unclear. 
According to Maudlin (2019), the quantum state, represented by the wavefunction, 
represents some objective fact about the world which is best understood as unanalyz-
able. However, this primitivist categorization does not straightforwardly fit with the 
constructive schema. What is the role of the quantum state within the constructive 
schema? A better fit with the constructive understanding, I think, are the approaches 
which regard the wavefunction as nomological: “the wave function tells the matter

25 GRW was developed to unify a wavefunction dynamics which could eliminate unobserved macro-
scopic superpositions without appealing to measurements, while the many-worlds theory was devel-
oped to maintain the Schrodinger dynamics, which consequently lead to recognize the existence of 
macroscopic superpositions. 
26 For instance, take a many-worlds theory like theory like Sm. This theory predicts macroscopic 
superpositions because the matter density field inherits the superpositions of the wavefunction. 
There is no reason for the primitive ontologists to endorse a theory with a many-worlds character, 
as it is in contrast with the spirit of constructive explanation. So, Sm is not a real contender. Since 
the many-worlds character of Sm results from the linearity of the Schrodinger evolution, which is 
inherited by the evolution of the matter field, arguably a theory like GRWm has not the same many-
worlds character, at least not macroscopically. Anyway, less controversial is the case for GRWp of 
GRWf, since particle or spatiotemporal events cannot superimpose. 
27 Allori (2020a). 
28 See most notably Berndl et al. (1996), Dürr et al. (1999), Dürr et al. (2013). 
29 See Tumulka (2006, 2020) for a Lorentz invariant GRWf without and with interaction; see 
Bedingham et al. (2014) for a Lorentz invariant GRWm theory. 
30 Allori (2022). 
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how to move.”31 My suggestion, dubbed wave-functionalism, is that the wavefunc-
tion should be understood as one way of realizing one of the ingredients needed to 
implement the dynamics for the fundamental ontology. In a slogan, the wavefunc-
tion is the functions it plays in the theory.32 This is compatible with a constructive 
explanation: the wavefunction does not represent the Lego bricks the castle is made 
of, but it represents the rules in the booklet to guide us constructing the castle. 

As a final remark, being the approach constructive, laws of nature should be 
seen as describing the evolution of a physical system through time.33 In fact, a 
constructive approach has two components: matter, understood in terms of Lego 
bricks, and the laws, understood as instructions about how these bricks can stick 
together. Instead, Chen and Goldstein (2022) have recently proposed an account of 
laws of nature as constraint: “laws explain, but not by accounting for the dynamic 
production of successive states of the universe from earlier ones.” In this view, laws 
substantially play the role of principles: they exclude what cannot happen without 
further explaining why that is. If so, this view is in direct contrast with the constructive 
understanding. This creates a tension for Goldstein, who in the past have defended the 
primitive ontology approach. If he endorses a principle understanding of laws, then 
he undermines his case for a spatiotemporal ontology on the basis of constructive 
explanation. Conversely, if he finds laws as constrains as not problematical, then he 
has to provide additional reasons to favor constructive explanation and to require a 
microscopic spatiotemporal ontology. 

6 Conclusion 

In this paper I have argued that, contrarily of the common understanding, it is not 
obvious what problem one needs to solve to make standard quantum mechanics 
amenable to a realist interpretation. Wavefunction realists think it is the measure-
ment problem, namely the problem of precisely eliminating unobserved macroscopic 
superpositions. In their quest for a local and separable ontology, they require a unique 
and precise dynamics, but not a spatiotemporal ontology. However, not everyone 
agrees. For instance, the proponents of the IT approach argue that standard quantum 
mechanics with collapse can be interpreted from a realist perspective, as a realist 
theory for them only needs to be empirically adequate. In this relaxed type of realism, 
a theory explains in terms of principles. In contrast, primitive ontologists require 
a constructive explanation in terms of a microscopic fundamental ontology. This 
leads them to endorse a robust type of realism and to reject all theories without a 
microscopic ontology. 

Even if I am partial to a constructive understanding, the purpose of this paper 
was not to argue for it. Rather it was to understand better where the disagreement

31 Allori et al. (2008). 
32 Allori (2021b). 
33 Maudlin (2007). 
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was coming from. In fact, by clarifying that, one can better fine-tune their argu-
ments. For instance, to say to a proponent of the IT approach that they need a micro-
scopic ontology because constructive explanation fails in their approach will certainly 
not change their mind: they do not care about constructive explanation. Rather, to 
convince them to adopt another view one would have to argue that, for instance, 
principle theories are not explanatory enough. Moreover, after having tried to distill 
the motivations behind the IT approach, I could make a better case for it by showing 
that one can have principle theories with a non-epistemic wavefunction. Similarly, it 
is ineffective to point out to the wavefunction realists that they need a spatiotemporal 
ontology: such an ontology will not preserve locality, which is their guiding principle. 
Instead, to convince them that they approach fails, for instance, one could propose 
a local constructive theory (which would therefore have a spatiotemporal ontology) 
presumably even if such proposal were retrocausal or superdeterministic.34 More-
over, a better case for wavefunction realism could be made by motivating locality 
and separability differently, or justifying a high-dimensional ontology in some other 
way, other than via separability and locality. Finally, pointing out that the pilot-wave 
theory has a foliation is not going to convince primitive ontologists: they are going to 
argue that other constructive theories do not have it. Instead, a better argument against 
the primitive ontology approach would be one which shows that constructive expla-
nation is impossible for some reason. Conversely, one could improve the arguments 
for the primitive ontology approach by showing that this constructive understanding 
can be extended to more general theories like relativistic quantum field theories. 

Be that as it may, the bottom line is that only after there is mutual appreciation of 
the alternative views, one can start making progress efficiently, avoiding situations in 
which the two sides talk past one another. Hopefully, with this paper I have contributed 
to this. 
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The Changing Bell View of Beables: 
A Forgotten Story 

Federico Laudisa 

Abstract John S. Bell is known, among other things, for the introduction of the 
notion of beable. The development of this notion inspired the so-called primitive 
ontology (PO) approach to the foundations of quantum mechanics, proposed for the 
first time by Detlef Dürr, Sheldon Goldstein and Nino Zanghì in 1992. It is not very 
well known, however, that the Bell theory of beables had an early formulation, in 
which Bell curiously adopts some Bohr-reminiscent insights to attack exactly the 
standard Copenhagen version of quantum mechanics. Here I reconstruct the two 
stages of the Bell theory of beables, showing that the first stage is in fact unable to 
adequately confront the foundational problem it was designed to address. Only the 
second stage of the Bell theory could represent a motivation for the PO approach: 
in this respect, it may be of some interest to compare the two-stage reconstruction 
of the Bell theory with recent analyses of the PO approach in terms of beables. 
I dedicate this paper to the dear memory of Detlef Dürr, a leading figure of the 
international community of the foundations of physics and a lovely man. He will 
be long remembered for his inspiring contributions: it was a privilege to enjoy his 
company and his doctrine. 

1 Introduction 

John Stewart Bell is unanimously recognized as one of the leading figures, if not 
the leading figure, of the foundational debate on quantum mechanics (QM) since the 
second half of the twentieth-century. He is also acknowledged as a fierce and relent-
less enemy of Copenhagenish approaches to QM: as is well known, his critical attitude 
toward any purely operational and instrumental understanding of quantum principles 
led him to encourage alternative views, ranging from Bohmian mechanics (starting 
from Bell 1966, his first work concerning the hidden variables’ issue) to (idiosyn-
cratic) forms of the Everett interpretation (Bell 1976), up to an explicit support to
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the so-called dynamical reduction model, or GRW version, of QM in the latest part 
of his career (1987, 1989, 1990). One of the most provocative proposals on the Bell 
part has been the introduction of the notion of beable, a term first introduced in 1973 
with the specific aim of addressing what Bell took to be an intrinsic ambiguity in the 
quantum description of observation: 

This terminology, be-able as against observable, is not designed to frighten with metaphysic 
those dedicated to realphysic. It is chosen rather to help in making explicit some notions 
already implicit in, and basic to ordinary quantum theory.” (Bell 1975, in Bell  20042, p. 52). 

The claim that a ‘theory of’ beables was needed, and its connection with the issue 
of locality, were the focus of the seminal papers of the Seventies in which Bell started 
to elaborate on the notion of beable. At the time the suggestion had not been taken 
too seriously, but the foundational role of beables has surfaced again in more recent 
times, when this notion turned out to be at the source of a true research program, the 
primitive ontology (PO) approach, in the area of the foundations and interpretations 
of quantum mechanics. 

This approach was originally proposed by Detlef Dürr, Shelly Goldstein and Nino 
Zanghì (Dürr et al. 1992). It emphasizes the need, for a well-founded theory, to specify 
in ontologically clear terms the kind of entity the theory itself is primarily supposed 
to account for. As to the notion of beable, it was proposed for the first time as the 
expression of an attitude toward the foundations of quantum mechanics inspired to 
(some form of) scientific realism, but at that time no PO approach was available 
yet. It was clear that the proposal of a notion of beable by Bell was an expression 
of dissatisfaction toward the standard formulation of quantum mechanics, but it is 
far from transparent what the anti-instrumentalistic role, assigned by Bell to that 
notion, should have been exactly. I wish to show that there are at least two different 
readings of the notion of beable in the development of Bell’s foundational analyses, 
corresponding to an evolution in time of the interpretation that Bell provides for the 
notion itself. At an early stage, the concept of beable emerges as the consequence 
of a peculiar Bohrian-sounding view of the status and role of measurement in QM: 
within this view Bell, across several of his papers devoted to the foundations of 
QM, repeatedly and instrumentally exploits Bohr in different places, in order to 
support claims that in fact are meant to undermine the Copenhagen formulation of 
quantum mechanics. In this sense, Bell appears ironically to be using a Bohrian 
insight as a weapon against standard QM! I will stress that this early formulation 
of the notion of beable, in spite of Bell’s aspirations toward a less unsatisfactory 
interpretation of QM, is in fact unable to improve upon the ambiguity of standard 
QM concerning, for instance, the description of the measurement process. Only later 
the Bell interpretation of the notion of beable evolves more explicitly into a second, 
more focused formulation. I will emphasize that it is this new formulation that is apt 
to intertwine with the locality/non-locality issue arising from the formulation of the 
1964 Bell theorem. In retrospect, therefore, we can recognize in this second stage 
of the Bell formulation of the notion of beable one strong motivation for the PO 
approach to the foundations of quantum mechanics. Then the possibility arises to 
assess the relation between the two-stage development of the Bell notion of beable
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and the further evolution of the PO approach, in light of the complex relationships 
between the latter and the former. 

2 The Early History of Beables: Bell and Bohr 

The first occurence of the term beable can be found in a short, programmatic Bell 
paper entitled “Subject and object” and published in 1973 (Bell 1973, in Bell  20042, 
pp. 40–44). First of all, the paper has a telling title. Bell decides to address the central 
role assigned to measurement in the standard formulation of quantum mechanics in 
terms of a distinction—that between ‘subject’ and ‘object’—that has a philosophical 
flavor.1 By pairing an object with a measured system and a subject with a measurer, 
Bell charges the standard formulation of quantum mechanics with a kind of subjec-
tivism, according to which the theory is bound to retain a fundamental vagueness 
and ambiguity on where the boundary between subject and object is supposed to be 
located, no matter how good for practical use the theory is: 

The subject-object distinction is indeed at the root of the unease that may people still feel 
in connection with quantum mechanics. […] In extremis the subject-object division can be 
put somewhere at the ‘macroscopic’ level, where the practical adequacy of classical notions 
makes the precise location quantitatively unimportant. But although quantum mechanics can 
account for these classical features of the macroscopic world as very (very) good approxima-
tions, it cannot do more than that. The snake cannot completely swallow itself by the tail. This 
awkward fact remains: the theory is only approximately unambiguous, only approximately 
self-consistent. (Bell 1973, in Bell  20042, pp. 40–41, emphasis in the original). 

It is in expressing his hope in a less-and-less ambiguous formulation that Bell 
introduces for the first time the term beable: 

[…] it should again become possible to say of a system not that such and such may be 
observed but that such and such be so. The theory would not be about ‘observables’ but 
about ‘beables’.” (Bell 1973, in Bell  20042, p. 41). 

Here in “Subject and object”, Bell does not elaborate as precisely as one could 
wish a theory of beables, but we can interpret his wording as suggesting at least two 
conditions that such a theory should satisfy: 

(i) although the use of the notion of beable cannot simply amount to make quantum 
mechanics a classical theory in any sense, a theory of beables should account for “an 
image of the everyday classical world”, namely they should enable us—as middle-
size natural systems—to recover our subjective experience; 

(ii) at the same time, a theory of beables should justify the idea that beables 
somehow ground, or, even better, constitute observables: as Bell says with a sort of

1 According to a Bell biographer, the very title was a choice of the organizers of the conference in 
which the paper was first presented (Whitaker 2016, p. 290), but Bell employs the distinction with 
a conscious purpose. 
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‘metaphysical’ tone, “the idea that quantum mechanics is primarily about ‘observ-
ables’ is only tenable when such beables are taken for granted. Observables are made 
out of beables.” (Bell 1973, in Bell  20042, p. 41).  

Surprisingly, in order to support the plausibility of beables Bell appears to rely on 
a well-known passage of Niels Bohr, taken from the Bohr contribution to the 1949 
celebrated volume Albert Einstein Philosopher-Scientist: 

[…] it is decisive to recognize that, however far the phenomena transcend the scope of 
classical physical explanation, the account of all evidence must be expressed in classical 
terms.” (Bohr 1949, p. 209, emphasis in the original). 

Bell suggests not only that his notion of beable does justice to the Bohr plea for 
an account of evidence in classical terms, but also that—if formulated in terms of the 
beables’ theory—such plea can be put to work in order to solve the above mentioned 
problem generated by the inherent ambiguity and approximation of standard quantum 
mechanics. The Bell suggestion is ironical, since it uses a major claim of the patriarch 
of the Copenhagen interpretation as a weapon against the Copenhagen interpretation 
itself: the theory of beables is introduced here clearly as an ‘antidote’ to the tendency 
to adopt an axiomatic formulation of quantum mechanics that relies essentially on 
an ill-defined (according to Bell) notion of measurement. 

The use of the name of Bohr in the 1973 paper is not new to Bell, though. It occurs 
in the very first section of the first article devoted by Bell to the issue of hidden vari-
ables, namely the paper On the problem of hidden variables in quantum mechanics, 
written in 1963 but published in 1966. It is the path-breaking article in which Bell 
reviews the existing impossibility proofs for a hidden variable re-interpretation of 
quantum mechanics—from von Neumann 1932 to Jauch-Piron 1963, through the 
work of Gleason in 1957—only to find them all wanting. As is well known, according 
to Bell all these proofs—no matter what the internal variants were—shared a common 
drawback, that of requiring assumptions that it was not reasonable to require from 
any possible, hypothetical hidden variable completion of quantum theory.2 It is in 
the context of anticipating, in the first section, the core of the article that Bell exploits 
the name of Bohr, in order to support his claim and make the unreasonableness of 
the existing impossibility proofs even more apparent: 

It will be urged that these analyses [i.e. the above mentioned proofs] leave the real question 
untouched. In fact it will be seen that these demonstrations require from the hypothetical 
dispersion free states, not only that appropriate ensembles thereof should have all measurable 
properties of quantum mechanical states, but certain other properties as well. These addi-
tional demands appear reasonable when results of measurement are loosely identified with 
properties of isolated systems. They are seen to be quite unreasonable when one remembers 
with Bohr ‘the impossibility of any sharp distinction between the behaviour of atomic objects 
and the interaction with the measuring instruments which serve to define the conditions under 
which the phenomena appear’. (Bell 1966, in Bell  20042, pp. 1–2, my emphasis). 

The Bohr view, referred to by Bell, is that in a quantum measurement process a 
peculiar, non-classical form of non-separability emerges between object system and

2 For recent re-assessments of the Bell arguments against von Neumann-Gleason and Jauch-Piron 
see, respectively, Acuna 2021, and (Laudisa 2023). 
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apparatus. In his 1966 paper Bell appears to exploit this Bohrian non-separability 
in support of his critical attitude toward the no-hidden variable theorems by von 
Neumann, Gleason and Jauch-Piron. In other words, Bell presents the Bohr view 
as an early instance of would have been called ‘contextuality’, suggesting at the 
same time that this should have long taught von Neumann, Gleason, Jauch and Piron 
that any serious hypothetical hidden-variable completion of quantum mechanics was 
bound to incorporate a form of context-dependence in the first place.3 

In the same vein, the name of Bohr emerges in the 1971 Bell paper Introduction 
to the hidden-variable question, where Bell first introduces the family of stochastic 
hidden variable theories. In discussing “the very essential role of apparatus” in the 
quantum–mechanical description of the measurement process, Bell argues that. 

The result of the measurement does not actually tell us about some property previously 
possessed by the system, but about something which has come into being in the combination 
of system and apparatus. Of course, the vital role of the complete physical set-up we learned 
long ago, especially from Bohr.” (Bell 1971, in Bell Bell 20042, p. 35). 

Bell returns to the same point in his later 1982 article “The impossible pilot 
wave”. In recalling once again the lack of generality of the early no-hidden variable 
theorems, Bell writes about what he calls ‘the Gleason-Jauch argument’: 

For a given operator P1 it is possible (when the dimension N of the spin space exceeds 2) to 
find more than one set of other orthogonal projection operators to complete it: 

1 = P1 + P2 + P3 . . .  
= P1 + P'

2 + P'
3 . . .  

where P’2 … commute with P1 and with one another, but not with P2 …. And the extra 
assumption is this: the result of ‘measuring’ is independent of which complementary set… 
or… is ‘measured’ at the same time. The de Broglie-Bohm picture does not respect this. 
[…] In denying the Gleason-Jauch independence hypothesis, the de Broglie-Bohm picture 
illustrates rather the importance of the experimental set-up as a whole, as insisted on by 
Bohr. The Gleason-Jauch axiom is a denial of Bohr’s insight. (Bell 1982, in Bell 20042, 
p. 165). 

We have evidence, then, that Bohr has a place in the Bell line of thought about 
the foundations of quantum mechanics already in the early Sixties, as a forerunner 
of the idea of contextuality. 

But let us return to what we called the Bell theory of beables, as expressed by 
the conditions (i) and (ii). These conditions appear far from uncontroversial, when

3 For the meaning and role of contextuality in the Bohr philosophy of quantum mechanics is a 
relevant issue in the Bohrian scholarship: see for instance (Dieks 2017). Given that Bohr was 
standardly conceived as the major representative of an approach to the foundations of quantum 
mechanics that could not be more alien to Bell in many respects, Abner Shimony has playfully 
described Bell’s use of the Bohr claim: “Bell, by a judo-like manoeuvre, cited Bohr in order to 
vindicate a family of hidden variables theories in which the values of observables depend not only 
upon the state of the system but also upon the context.” (Shimony 1984, in Shimony 1993, p. 121, 
my emphasis). 
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referred to the early, Bohrian characterization of beables by Bell. If condition (i) 
sounds milder, since it seems to require just compatibility with common sense, 
condition (ii) is more puzzling. What sort of ‘constitution’ property is supposed to be 
involved in the claim that observables are ‘made out of’ beables? What are beables 
supposed to be in order to ‘make up’ observables? And what is the exact relation of 
such intuition of ‘constitution’ with the Bohrian view of quantum measurements? 
The use of Bohr against Copenhagen quantum mechanics would do no harm as such, 
but the Bell strategy is dubious by a conceptual point of view. I wish to argue that 
the Bohrian requirement to express experimental evidence in ‘classical’ terms, in 
order for linguistic communications among scientists to be consistenly preserved, 
can hardly be put usefully to work to provide the unambiguous description of the 
quantum measurement process that Bell was searching for. 

The extent to which the reference to Bohr may really play the role of dissolving 
the ambiguity deplored by Bell is a matter of dispute, since it concerns the status of an 
issue that is still debated in the reconstructions of the Bohr attitude toward quantum 
mechanics: the issue of whether, according to Bohr, quantum mechanics should 
be taken as universal—i.e. applicable to all physical systems, including measuring 
instruments—or not. The problem of the universality of quantum mechanics in prin-
ciple emerged since the very origins of quantum theory, due to the increasing diver-
gence from all preceding classical physics that was apparent in the experimental 
development of the theory already in the first decades of the twentieth century. In the 
early days of the debate on the foundations of quantum mechanics, it was far from 
clear what the relation between the classical and the quantum regimes was supposed 
to be, until the mathematical treatment of the theory in the 1932 von Neumann trea-
tise allowed physicists to put the problem in a clearer light in terms of the notorious 
‘measurement problem’, raising for the first time the universality issue for quantum 
mechanics. The von Neumann treatment, and the place occupied by this problem 
in his first formally rigorous formulation of quantum theory, already revealed how 
controversial the status of measurement in quantum mechanics would have been, 
to the extent that the very notion of measurement would turn out to be the locus 
classicus for emphasizing the lack of consensus on the interpretation of the theory: 
von Neumann explicitly confronts the implications of the assumption that—in the 
context of a measurement of a physical quantity on a quantum system S with an 
apparatus A—the laws of QM govern both S and A. This view has acquired with time 
the status of a commonplace: ‘quantum fundamentalism’—this is how, for instance, 
Zinkernagel (2015) calls it—is the claim that “Everything in the universe (if not the 
universe as a whole) is fundamentally of a quantum nature and ultimately describable 
in quantum–mechanical terms.” In Zinkernagel’s words: 

In this formulation, quantum fundamentalism contains both an ontological and an epistemo-
logical thesis: that everything is of a quantum nature is an ontological claim, whereas the idea 
that everything can (at least in principle) be described in quantum terms is epistemological. 
The ontological component of quantum fundamentalism can also be expressed as the idea 
that we live in a quantum world. (Zinkernagel 2015, p. 419, emphasis in the original). 

In fact Bohr never discussed explicitly the measurement problem in the von 
Neumann formal context. A wide consensus was established among most Bohr
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scholars, however, according to which his overall philosophical outlook legitimates 
a non-universalistic reading of quantum mechanics, mainly due to the special role 
attributed to classical categories in accounting for the experimental evidence in 
quantum measurements. For instance in a recent, qualified defense of this consensus, 
Zinkernagel (2015) refers to a 1938 paper in which Bohr argues that. 

[…] in each case some ultimate measuring instruments, like the scales and clocks which 
determine the frame of space-time coordination – on which, in the last resort, even the 
definitions of momentum and energy quantities rest – must always be described entirely on 
classical lines, and consequently kept outside the system subject to quantum mechanical 
treatment.” (Bohr 1938, p. 104, emphasis in the original). 

One can make sense of this argument, according to Zinkernagel, only under the 
assumption that quantum mechanics actually fails to be universal: 

A way to understand Bohr’s requirement is that we need a reference frame to make sense 
of, say, the position of an electron (in order to establish with respect to what an electron has 
a position). And, by definition, a reference frame has a well-defined position and state of 
motion (momentum). Thus the reference frame is not subject to any Heisenberg uncertainty, 
and it is in this sense (and in this context) classical. This does not exclude that any given 
reference system could itself be treated quantum mechanically, but we would then need 
another – classically described – reference system e.g. to ascribe position (or uncertainty in 
position) to the former. (Zinkernagel 2015, p. 430).4 

This view has been challenged. Already (Landsman 2007), for instance, had 
argued that the Bohr texts would not justify an interpretation of his thought to the 
effect that there exists an independent natural realm of an intrinsic classical char-
acter. Let us consider the following passage, contained in a famous Bohr paper 
entitled “On the notions of causality and complementarity”, published in 1948 on 
the philosophical journal Dialectica: 

The construction and the functioning of all apparatus like diaphragms and shutters, serving 
to define geometry and timing of the experimental arrangements, or photographic plates 
used for recording the localization of atomic objects, will depend on properties of materials 
which are themselves essentially determined by the quantum of action. (Bohr 1948, p. 145). 

On the basis of texts like this, Landsman claims that the division system/ 
apparatus, in which the former is described quantum-mechanically whereas the latter 
is described classically, has no ontological import: 

there is no doubt that both Bohr and Heisenberg believed in the fundamental and universal 
nature of quantum mechanics, and saw the classical description of the apparatus as a purely 
epistemological move, which expressed the fact that a given quantum system is being used 
as a measuring device” (Landsman 2007, p. 437, emphasis added). 

In a recent contribution Dieks reinforces this challenge, defending an exclusive 
epistemic reading of the role of the classical notions in the Bohr view of the quantum 
measurement process, denying any ontological quantum non-universalism by Bohr 
(Dieks 2017).

4 A more sustained defense of this view is contained in Zinkernagel (2016). 
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This dispute on the ontological or epistemological flavor of the quantum/classical 
divide, however, leaves the ambiguity point that concerns us here untouched. We 
do not need to take a stance on whether the boundary between the classical and the 
quantum world concerns our knowledge or the ultimate structure of Nature to see 
that we are forced anyway, within the Heisenberg-Bohr Copenhagen framework, to 
acknowledge that, on one hand, we cannot but locate somewhere the infamous ‘cut’ 
between system and apparatus, and on the other hand there is no rigorous recipe 
even on a pragmatic level about where exactly we should put it. As Dieks himself 
remarks, in the very first section of the seminal complementarity paper published in 
1927, Bohr emphasizes that. 

The circumstance […] that in interpreting observations use has always to be made of theoret-
ical notions entails that for every particular case it is a question of convenience at which point 
the concept of observation involving the quantum postulate with its inherent “irrationality” 
is brought in” (Bohr 1934, p. 54, emphasis added), 

Wolfgang Pauli echoed the same point in a 1949 paper, entitled “The Philosophical 
Significance of the Idea of Complementarity”: 

[…] modern physics generalizes the old placing in opposition of apprehending subject on 
one hand and object apprehended on the other to the idea of the cut between the observer or 
instrument of observation and the system observed. While the existence of such a cut is a 
necessary condition of human cognition, modern physics regards the position of the cut as 
to a certain extent arbitrary, and as the result of a choice partly determined by considerations 
of expediency, and therefore partly free. (Pauli 1950, p. 41, emphasis added). 

As a consequence, the ‘ambiguity’ and ‘approximation’ of the standard formula-
tion of quantum mechanics cannot be removed by the use of the Bohrian framework, 
and Bell needed to say (and later did say) more to characterize the kind of solution 
he envisioned. In particular, the Bohrian model of the quantum measurement may at 
most satisfy the Bell condition (i), namely, the ‘functionalistic’ recovery of subjec-
tive experience, but fails to satisfy unambiguously the ‘constitutive’ Bell condition 
(ii), since the concrete individuation of the relevant beables depends on arbitrary 
criteria: with the resources allowed by the Bohr framework, quantum observables 
simply cannot be ‘made out’ of beables. 

3 Beyond Bohr: The New Life of Beables 

In the first appearance of the notion of beable, the early Bell move—use Bohr against 
Copenhagen quantum mechanics—looks then rather unfortunate. But the role that 
we have analyzed in the previous section starts to be replaced in the subsequent 
development of the notion itself. For Bell returns to beables in a 1975 paper, whose 
title (“The theory of local beables”) this time mentions explicitly the need for a theory 
of these ‘objects’, whatever they are meant to be. At first sight, the very opening of 
the paper is in line with the Bohrian attitude we have alluded to:
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This is a pretentious name for a theory which hardly exists otherwise, but which ought to exist. 
The name is deliberately modelled on ‘the algebra of local observables’. This terminology, 
be-able as against observable, is not designed to frighten with metaphysic those dedicated 
to realphysic. It is chosen rather to help in making explicit some notions already implicit in, 
and basic to ordinary quantum theory. For, in the words of Bohr, ‘ it is decisive to recognize 
that, however far the phenomena transcend the scope of classical physical explanation, the 
account of all evidence must be expressed in classical terms.’ It is the ambition of the theory 
of local beables to bring these ‘classical terms’ into the equations, and not relegate them 
entirely to the surrounding talk. (Bell 1975, in Bell  20042, p. 52). 

In clarifying what beables are supposed, or meant, to be, Bell refers again to 
macroscopic pieces of experimental settings in a broad sense—and this is, once 
again, entirely Bohrian in spirit—but, this time, he expresses explicitly the need for 
a clear theory of them, in terms of a more robust sense of physical reality: 

The beables must include the settings of switches and knobs on experimental equipments, 
the current in coils, and the readings of instruments. ‘Observables’ must be made, somehow,  
out of beables. The theory of local beables should contain, and give precise physical meaning 
to, the algebra of local observables. (Bell 1975, in Bell  20042, p. 52).  

This appears to be a turning point in the Bell characterization of beables. Not 
only Bell refers to the difference in electromagnetism between ‘physical’ entities 
(like the electric and magnetic fields) and ‘unphysical’ entities (like potentials), in 
order to set up a distinction according to which beables should be clearly located on 
the ‘physical’ side. He also points here to what we have called above a condition of 
‘constitution’, a more fundamental status that beables should be endowed with: it is 
this status that in principle justifies the observables being made out of beables. This 
conjunction of realism—beables are out there—and constitution—beables are what 
make up observables and all that gravitates around observation—characterizes the 
new Bell theory of beables, and his later paper “Beables for quantum field theory” 
(1984) testifies it: 

There is nothing in the mathematics to tell what is ‘system’ and what is ‘apparatus’, nothing 
to tell which natural processes have the special status of ‘measurements’. Discretion and 
good taste, born of experience, allow us to use quantum theory with marvelous success, 
despite the ambiguity of the concepts named above in quotation marks. But it seems clear 
that in a serious fundamental formulation such concepts must be excluded. In particular 
we will exclude the notion of ‘observable’ in favour of that of ‘beable’. The beables of the 
theory are those elements which might correspond to elements of reality, to things which 
exist. Their existence does not depend on ‘observation’. Indeed observation and observers 
must be made out of beables. (Bell 1984, in Bell  1987, p. 174). 

That beables should correspond “to elements of reality, to things which exist” 
might still sound compatible with the Bell early, Bohrian-sounding formulation that 
we analyzed in the previous section, but clearly this is not the case with the claim 
that the existence of beables does not depend on ‘observation’: in Bohrian terms, 
on the contrary, it is exactly the reference to the context of observation that allows 
macroscopic pieces of experimental settings (namely, what Bell takes as beables in 
his early formulation) to be part of a scientifically meaningful experience.



420 F. Laudisa

In connection with this emphasis both on the ‘reality’ of beables and their ‘consti-
tutive’ nature, Bell introduces for the first time a connection with an intuitive sense 
of locality, called here local causality5 : 

We will be particularly concerned with local beables, those which (unlike the total energy) 
can be assigned to some bounded space-time region. […] It is in terms of local beables that 
we can hope to formulate some notion of local causality. (Bell 1975, in Bell  20042, p. 53, 
emphasis in the original). 

It is this focus on locality—I argue—that determines a new twist for the formula-
tion of a theory of beables, a formulation which starts to diverge from the Bohrian-
sounding notion reviewed in the previous section and receives a more distinctive 
‘fundamental’ status in somewhat ontological terms. Bell attempts to figure out a 
definition of local causality that can work also in an indeterministic setting, an attempt 
that leads him to introduce an expression like {A|Λ}, that stands for the probability 
of a particular value A, given particular values Λ (Bell 1975, in Bell  20042, p. 54).  
An interesting point to note here is that, in introducing this expression, Bell employs 
the term ‘beable’ to denote a value (of a physical quantity), something very different 
from “settings of switches and knobs on experimental equipments”, which was the 
original, Bohrian-sounding meaning attached to the term. On this new background 
Bell operates in a much more explicitly ‘realistic’ (and much less ‘Bohrian’) vein— 
a background in which it is perfectly sensible to conceive an observer-independent 
world whose unveiling is a major task for fundamental physics—and the new reading 
of beables in terms of values is immediately put to work in an EPR-kind of context: 

Let A be localized in a space-time region 1. Let B be a second beable localized in a second 
region 2 separated from 1 in a spacelike way. Now my intuitive notion of local causality is 
that events in 2 should not be ‘causes’ of events in 1, and viceversa. But this does not mean 
that the two sets of events should be uncorrelated, for they could have common causes in 
the overlap of their backward light cones. It is perfectly intelligible then that if Λ in 1 does 
not contain a complete record of events in that overlap, it can be usefully supplemented by 
information from region 2. So in general it is expected that 

{A|Λ, B} /= {A|Λ} 

However, in the particular case thatΛ contains already a complete specification of beables in 
the overlap of the two light cones, supplementary information from region 2 could reasonably 
be expected to be redundant. (Bell 1975, in Bell  20042, p. 54, emphasis in the original). 

It is quite clear, then, that the above mentioned specification of beables makes 
sense in the Bell second, ontologically-loaded formulation of the notion of beable 
(and not in the old, Bohrian-sounding one). Moreover, this new formulation is imme-
diately put to work in the investigation on whether, in the Bell language, quantum 
mechanics might be shown to be ‘locally causal’ if reformulated as a sub-theory of 
a ‘more complete’ theory:

5 As already remarked by others, this expression is likely to be misleading in suggesting that the 
influence at stake should have a direction, which in fact is not necessarily the case. 
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But could it not be that quantum mechanics is a fragment of a more complete theory, in 
which there are other ways of using the given beables, or in which there are additional 
beables – hitherto ‘hidden’ beables? And could it not be that this more complete theory has 
local causality? Quantum mechanical predictions would then apply not to given values of all 
the beables, but to some probability distribution over them, in which the beables recognized 
as relevant by quantum mechanics are held fixed. We will investigate this question, and 
answer it in the negative. (Bell 1975, in Bell  20042, p. 55). 

Thus, the notion of beable (in his second, mature sense) appears to have been 
a major factor for motivating the development of the PO research program in the 
foundations of QM. After the initial proposal by Detlef Dürr, Shelly Goldstein and 
Nino Zanghì, in more recent times the scientific literature on the evaluation of the PO 
approach has been growing significantly in quantity and depth (Allori 2013, 2015). 
Our aim here was just to provide an attempt of reconstructing the Bell own conceptual 
evolution on the notion of beable over the years: an interesting, open question is to 
investigate how the Bell theory of beables fares with respect to some recent claims 
concerning the relationship between beables and the PO approach, and whether the 
evolution from the first to the second formulation of the Bell theory of beables can 
shed some light on the study of this relationship. 
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Probability and Typicality in Statistical 
Mechanics 

Barry Loewer 

Abstract Detlef Dürr was inspirational to many who write about issues in the philo-
sophical foundations of physics and probability. For many years I have been inter-
ested in his work on statistical mechanics and Bohmian mechanics and especially 
by the role of typicality in these theories. In my contribution I will say a few words 
comparing typicality and probability approaches to statistical mechanics and ask 
whether the approaches are friends or foes. 

Since it is difficult to understand the nature of probability, especially when a theory’s 
dynamics are deterministic, Dürr and others proposed that typicality is the more 
fundamental notion and that it is crucial to understanding statistical mechanics and 
Bohmian mechanics. His work inspired an approach to statistical mechanics that has 
many connections to the earlier history of the subject. Among the recent contributors 
to this approach in addition to Detlef have been Allori, Goldstein (2011), Hubert 
(2022), Lazarovici (2020), Lebowitz (1981), Maudlin (2020), Tumulka, Wilhelm 
(2022), and Zanghì. 

The original developers of statistical mechanics, Maxwell, Boltzmann, and Gibbs, 
thought of the probabilities that occur in classical statistical mechanics as epistemic, 
but they also thought that they are in some way objective and physical. They are not 
merely subjective degrees of belief since there seems to be something objective about 
the world that makes certain probability distributions over microstates the correct 
ones. Boltzmann argued that they derive from the chaotic behavior of molecules. 
There also seems to be something not merely epistemic about them since they underlie 
and explain objective regularities like the melting ice cubes and other manifestations 
of the second law of thermodynamics. But they cannot be objective physical prob-
abilities that derive from indeterministic dynamical laws, usually called “propen-
sities,” since the dynamics assumed in classical statistical mechanics and Bohmian 
mechanics are deterministic. So, how should we understand the probabilities in these 
theories?
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One proposal is that logic or rationality plays a role in dictating the (or those) 
objectively correct probability distributions. The usual version of this idea is based on 
the principle of indifference (PI), which proposes that if nature or you have no reason 
to prefer one possibility over another, you should assign them equal probabilities. 
Notoriously, if there are infinitely many possibilities each possibility has probability 
equal to 0 so the principles must be formulated using probability densities. But then 
PI may lead to alternative probability densities and so to contradictions. To avoid 
contradictions, a measure needs to be selected and since there are infinitely many 
measures it is not clear which measure is correct and why it is correct. Jaynes (1968) 
famously attempted to address this issue with his maximum entropy principle. But the 
real issue is that there is no justification for promoting not knowing which possibility 
is the actual one into knowledge of a probability distribution over possibilities? As 
David Albert likes to say, “Not having a clue as to which possibility is actual is not 
the same as having equal confidence in each.” 

Typicality accounts avoid this problem by explaining thermodynamic behavior 
not in terms of probabilities but in terms of the concept of typicality; a concept that 
its advocates consider more basic than probability.1 They then characterize prob-
ability in terms of typical frequencies. The idea is that thermodynamic behavior 
(e.g., the melting of ice cubes), while not following from dynamical laws alone, 
is typical behavior. This means, roughly, that thermodynamic behavior occurs as a 
matter of dynamical law almost all the time for almost all possible initial conditions. 
By appealing to “typicality” this approach seeks to avoid and solve the problems 
encountered by attempts to understand what probability is. 

The basic idea behind the concept is that Bs are typical among As if and only 
if almost all As are  B. “Almost all” means that the number of Bs that are not As is  
negligible. Typicality is a purely numerical (e.g., “how many”) notion. If A is a finite 
set, then it is just a matter of counting. Unlike probability, typicality is not a matter 
of degree. Bs may be typical among As, atypical among As or neither. Typicality has 
no conceptual connection with randomness and is alleged to not run into the same 
difficulties that the usual interpretations of probability encounter. 

If A is infinite but A and B have the same cardinality a measure is required in order 
to specify what “almost all” means when claiming that almost all As are  Bs. Unlike 
objective probability typicality is not connected with degree of belief by Lewis’ 
Principal Principle but it is connected with full belief/disbelief by a similar principle. 
If you think Bs are typical among As then if you have no defeating reason you should 
believe the next B will be an A. 

The questions immediately arise: What measures are appropriate and how to 
justify that a particular measure is appropriate? Advocates of the typicality approach 
say that some measures are “natural” and others not “not natural.” For example, for 
the situation of determining typical outcomes of coin flips the Liouville measure over 
microstates compatible with the macro state of the coin and flipping mechanism is 
natural while a measure that assigns positive measure only to finitely many of the

1 For accounts of typicality and its application to understanding probability and statistical mechanics, 
see Goldstein (2011), Hubert (2022), Lazarovici (2020), Maudlin (2020), and Wilhelm (2022). 
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microstates compatible with this macro state is unnatural. The idea is that a natural 
measure better captures the intuitive meaning of “almost all.” It is also claimed 
that whether or not a measure is natural depends on how it is related to a system’s 
dynamics. For example, the Liouville measure is natural as a measure of typicality 
because it is stationary (i.e., is the same over time as the dynamics evolves a system). 
These features are said to justify its choice as “the correct measure.” 

Advocates of typicality don’t understand the typicality measure as contingent 
hypothesis in addition to the dynamical laws but something more along the lines 
of an a priori consequence of the dynamical laws. This seems to make it close to 
being nomologically necessary. It seems then that even in worlds with our dynamical 
laws, but pervasive anti-thermodynamic behavior the typicality account will say that 
thermodynamic behavior is typical, and one should believe e.g., ice cubes melt. This 
may be a problem since thermodynamic behavior is atypical in these worlds. These 
two justifications—that a natural measure captures the intuitive meaning of “almost 
all” actual As are  B and that it plays nice with the dynamics—are in tension with each 
other. The intuitive meaning of As are typically Bs is that almost all the actual As 
are B. But since the typicality measure doesn’t necessarily follow from the dynamics 
there are nomologically possible worlds in which not all As are  Bs. In fact, there 
are worlds in which most As are not Bs. It is true that in most possible worlds (as 
specified by the measure) most As are  Bs but since there are nomologically possible 
worlds in which most As are not Bs the claim that the dynamical laws bring with 
them what it means for most As to be  Bs can’t be correct. It doesn’t obviously follow 
from the dynamical laws. The correct measure is the appropriate one seems to have 
to be considered to be an additional law. 

The typicality approach usually endorses a principle connecting believing that A 
is typical to believing A. 

CP: If one believes that Bs are typical among As and believes that x is an A then 
one is rationally licensed to believe that x is a B as long as she has no “undermining” 
belief that x is a C and Bs are not typical among As that are C. 

CP is the typicality version of what is known as “Cournot’s Principle.”2 It is akin 
to Lewis’ Principal Principle (PP): 

(PP) Cred(B|P(B) = x & A) = x . 

(Cred(B|A) is a subject’s degree of credence (belief) that B given A.) A is any 
proposition that is admissible with respect to B. A proposition is admissible if and 
only if it provides information about B only by providing information about P(B). 

CP connects typicality with belief or acceptance while the PP connects probability 
with degree of belief. I think of Cournot’s Principle as “a poor man’s Principal 
Principle.”

2 See Shafer (2006) for a discussion of Cournot’s principle. Shafer points out that many of the 
developers of probability including Bernoulli, Cournot, Kolmogorov endorsed the probabilistic 
version and held that it was the way that probability makes contact with non-probabilistic facts and 
justified beliefs about them. 
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On the typicality account probabilities can be identified with typical long run 
frequencies.3 The idea is that given the Liouville measure over initial micro condi-
tions of the coin tossing system if the coin is fair for typical initial conditions typical 
sequences of outcomes of repetitions of coin tosses under conditions C yield heads 
about half the time. Further, typical sequences will appear random in the sense that 
they meet statistical tests for randomness even though the dynamics are completely 
deterministic (Hubert 2022; Lazarovici 2020). 

The typicality account of probability, although it is a frequency account, is very 
different from the usual actual and hypothetical frequency accounts which are open 
to many objections (see Hajek 2002). Like other frequency accounts it assigns prob-
abilities to type not token events. A token event (e.g., the outcome of the next game 
between the Celtics and the Knicks) satisfies many distinct types (e.g., game between 
Celtics and Knicks, game played on Saturday, game played in Madison Square 
Garden etc.), and the typical frequency of Knicks winning may be different for 
each of these types. If the complete micro condition of the state of the universe prior 
to the game is A then it will determine whether the Knicks win or lose. But the 
complete macro state may lead to a typical frequency of Knicks winning different 
from 1 or 0 which we can think of as the probability of the token event. I will return 
to this point later. 

The typicality approach provides an account of why it is that thermodynamic 
behavior including the second law is typical and an account of all thermodynamic 
probabilities. Its Achilles’ heel it is that it depends on a particular measure as the 
correct measure and faces the problems of explaining the epistemic and metaphysical 
status of the measure. That the Liouville measure is the correct typicality measure 
doesn’t follow either analytically from the meaning of “typicality” nor is it entailed 
by the dynamical laws. Further, one may wonder why Gs being typical among Fs 
licenses believing that a particular G is F even in the finite case with an assumption 
that the Fs are equally likely. Something like the Principal of Indifference seems to 
be being assumed. Without an account of its metaphysical status and an epistemic 
justification the typicality account is at best, incomplete. 

I now want to contrast the typicality account with a probabilistic version of Boltz-
mannian statistical mechanics where the probabilities in terms of a development of 
Lewis’ Humean best systems account of laws and chances. Humean accounts of laws 
understand laws to be propositions that describe significant regularities among events 
and states. They are called “Humean” since they avoid any appeal to laws necessi-
tating or governing regularities or to necessary connections among properties. On 
Lewis’ Humean best system account the fact that a proposition is a law supervenes 
on the distribution of events throughout space–time. 

Lewis’ best systems account (BSA) says that laws are certain propositions entailed 
by the axioms that best systematize the totality of the world’s fundamental events. 
According to Lewis the goodness of a system is measured in terms of its informa-
tiveness and simplicity. He mentions these because they are criteria physicists appeal 
to in deciding among fundamental theories, but it is best to think of a best system as

3 See Hubert (2022) for an account of probability in terms of typicality. 
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a system that optimally balances satisfaction of whatever criteria in addition to these 
that physicists use when deciding among theories. 

I now want to contrast the typicality account with a probabilistic version of Boltz-
mannian statistical mechanics where the probabilities in terms of a development of 
Lewis’ Humean best systems account of laws and chances. Humean accounts of laws 
understand laws to be propositions that describe significant regularities among events 
and states. They are called “Humean” since they avoid any appeal to laws necessi-
tating or governing regularities or to necessary connections among properties. On 
Lewis’ Humean best system account the fact that a proposition is a law supervenes 
on the distribution of events throughout space–time. 

On the BSA objective probabilities are not propensities or frequencies but prob-
ability axioms are added to a system as a way of providing information simply. 
They are related to actual frequencies since these are simple and informative but 
not identical to them. For example, a sequence of outcomes of coin flips (HTHTT-
THTHTTHHT…) can be described by saying that its members are the outcomes of 
independent tosses with P(H) = P(T ) = 1/2. Lewis proposes that a system containing 
probability axioms is evaluated in terms of “fit” as well as simplicity and informa-
tiveness. The degree of fit of a system to a world is measured by the likelihood of 
the world given the candidate system. This is an instance of the likelihood principle 
that is used in statistics in comparing evidential support for competing theories.4 

We can think of probability propositions as providing information about non-
probabilistic propositions by way of Lewis’ Principal Principle (PP). A useful version 
connects objective conditional probabilities with conditional degrees of belief:

(
PP∗)Cred(B|A) = x if and only if P(B|A) = x . 

This is an externalist version of the PP that has no need for admissibility. 
The BSA account of objective probabilities is similar to an actual frequency 

account since its probabilities supervene on the actual distribution of non-
probabilistic events. But it differs in that it doesn’t identify probabilities with actual 
frequencies and allows for the possibility that while the probability of an event E 
equals x, repetitions of independent occurrences of E may result in a frequency 
different from x. 

Lewis thought that probabilistic best systems are restricted to those whose dynam-
ical laws are indeterministic and specify the probabilities at a time of a complete 
microstate evolving into alternative future states.5 But the basic idea behind the 
BSA can be developed as to include objective probabilities even when a system’s 
dynamical laws are deterministic (Loewer 2004). This is accomplished by allowing 
candidate systems to include a probability distribution over initial conditions or over 
alternative histories compatible with the deterministic laws. The chance of A at t 
can be identified with the objective probability of A given the micro history of the

4 The likelihood principle is built into Bayesian inference. 
5 The dynamical equation of GRW that describes how the world’s or an isolated system’s quantum 
state evolves is an example of such an indeterministic dynamical law. 
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world up until t. If the dynamical laws are deterministic then chances will all trivially 
be 0 or 1. But even if the dynamical laws are deterministic there may be objective 
conditional probabilities that differ from 0 and 1.6 

The Mentaculus account of statistical mechanics is based on the BSA of laws and 
objective probabilities. It is the claim that the best system for our world has as its 
axioms: 

(1) The dynamical laws 
(2) A uniform probability distribution (PROB) given by the Liouville measure 
over the phase space. 
(3) The Past Hypothesis (PH) that says that the macro state of the universe soon 
after the time of the big bang is one whose entropy is very low and satisfies certain 
other cosmological macro conditions. 

It has been argued (Albert 2000) that this system implies that as long as the 
universe or any of its isolated subsystems are not in their equilibrium macro states 
(states of maximum entropy) it is very likely that their entropies will increase. More 
generally, the Mentaculus entails all the usual claims of statistical mechanics.7 The 
arguments for this are based on Boltzmann’s original arguments developed over the 
history of statistical mechanics and are the same ones employed by the typicality 
account. 

Both the typicality and the Mentaculus accounts can explain the success of statis-
tical mechanics. However, there are important differences between the Mentaculus 
account and the other accounts. Here are some: 

1. Where the typicality account is based on typicality and that is supposed to 
be akin to a cardinality or counting measure the Mentaculus account is based on 
a best system construal of probability. The Mentaculus makes no use of typicality 
or subjective probabilities in accounting for statistical mechanics. The notion of 
typicality plays no role in characterizing probability, but typical behavior can be 
characterized as highly probable behavior. 

2. The typicality account is based on assuming the Liouville measure as the 
typicality measure and is faced with the problems of explaining and justifying its 
epistemic and metaphysical status. It can be understood either as an a priori claim 
explicating the meaning or “typical” for such and such dynamics or as an additional 
law. The typicality account is not committed to a particular metaphysics of laws. 

The Mentaculus doesn’t assume a measure but rather claims that one of the contin-
gent axioms of the best system of the world is a probability distribution specified 
by the Liouville measure. The probability measure doesn’t follow a priori from 
the dynamical laws. That the two fit together so that, for example, the probability 
measure is stationary is a consequence of their being so related makes for a better 
systematization. Because of this there are worlds compatible with the dynamical laws

6 Some (e.g., Shaffer) object to calling these objective probabilities “chances” since they think 
of chances as conceptually connected with indeterminism. No matter what they are called. The 
important point is that they are objective probabilities. 
7 See Albert (2000) and  Loewer  (2020). 
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whose probabilities differ from the statistical probabilities and even worlds with no 
probabilities at all.8 The reasons to believe that PROB entails the correct probabili-
ties for the actual world are usual reasons for believing a scientific theory. It is the 
simplest probability distribution that fits the evidence that has so far been obtained 
and satisfies other scientific criteria for a theory. 

3. The Mentaculus assigns an objective probability to every physically specifiable 
proposition (proposition that can be identified with a set of worlds compatible with the 
dynamical laws) and a conditional probability P(B|A) for every physically specifiable 
A and B where P(A) > 0. Since the Mentaculus assigns P(B|A) for all B and A, it is 
a “probability map of the universe.”9 While the typicality measure also assigns a 
measure to every proposition, only M(A), M(A|B) near 1 or 0 are meaningful. When 
near 1, these mean that A is typical and Bs are typical among As, and when near 0, 
that A is atypical and Bs are atypical among As. 

4. Since the Mentaculus assigns objective conditional probabilities P(B|A) to all  
physical propositions B, A and assumes the PH it is able to account for various 
temporal asymmetries (“time’s arrows”) including the increase in entropy, that we 
can influence the future but not the past, that we can know much more about the past 
than the future, the temporal asymmetry of counterfactuals, that causes precede their 
effects. The typicality and hybrid accounts make no such claims. If the PH is added 
to these accounts, it can do some but not all of this work. 

5. The typicality and Mentaculus accounts do not conflict, but they make different 
assumptions and have somewhat different but non-conflicting consequences. I think 
of them as friends not foes. 
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The History of Moral Certainty as the 
Pre-history of Typicality 

Mario Hubert 

In the whole conduct of the understanding, there is nothing of 
more moment than to know when and where, and how far to give 
assent. 
— John Locke, Of the Conduct of the Understanding 

Abstract This paper investigates the historical origin and ancestors of typicality, 
which is now a central concept in Boltzmannian Statistical Mechanics and Bohmian 
Mechanics. Although Ludwig Boltzmann did not use the word typicality, its main 
idea, namely, that something happens almost always or is valid for almost all cases, 
plays a crucial role for his explanation of how thermodynamic systems approach 
equilibrium. At the beginning of the 20th century, the focus on almost always or 
almost everywhere was fruitful for developing measure theory and probability the-
ory. It was apparently Hugh Everett III who first mentioned typicality in physics in 
1957 while searching for a justification of the Born rule in his interpretation of quan-
tum mechanics. The historically closest concept before these developments is moral 
certainty, which was invented by the medieval French theologian Jean Gerson, and 
it became a standard concept at least until the Age of Enlightenment, when Jakob 
Bernoulli proved the Law of Large numbers. 
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1 A Brief History of Typicality 

Typicality 1 is a statistical concept that has been developed in the context of the 
Boltzmannian approach to Statistical Mechanics and the arrow of time (see, for 
example, Lebowitz 1993, 2008; Goldstein 2001; Goldstein et al. 2020; Bricmont 
2022) and in the context of Bohmian mechanics (Dürr et al. 1992; Dürr and Teufel 
2009; Oldofredi et al. 2016). In Statistical Mechanics, one big problem is to properly 
reduce the Second Law of Thermodynamics to microphysical processes (Myrvold 
2020; Robertson 2021). The Boltzmannian approach says that microstates within a 
specific macrostate typically evolve to a macrostate of higher entropy; in other words, 
most or almost all microstates within a specific macrostate evolve to a macrostate 
of higher entropy. In a similar vein, typicality has been used to explain the quantum 
mechanical Born rule from the microscopic behavior of Bohmian particles (Dürr, 
Goldstein, and Zanghì, 1992). 

In both cases, there is a debate about how to mathematically formalize almost all 
properly and how explanatorily successful typicality is (Volchan 2007; Frigg 2009, 
2011; Frigg and Werndl 2012; Lazarovici and Reichert 2015). Typicality is usually 
formalized by a measure on configuration space or phase space. The main use of 
the measure is to distinguish between “big” sets (those with measure close to 1) and 
“small” sets (those with measure close to 0). A problem with using standard measure 
theory to formalize typicality is that these measures assign sizes to all kinds of sets, 
also those that are neither “big” nor “small”. One way out would be to consider 
equivalence classes of absolutely continuous measures or to replace the measure by 
a new predicate (Maudlin 2020). 

These issues should not bother us here. Instead, my aim is to trace the history of 
typicality. Where does it come from? How did it evolve? Have there been similar 
concepts? 

The idea of typicality in Statistical Mechanics goes back to the work of Lud-
wig Boltzmann (1844–1906) on the Second Law of Thermodynamics (see Darrigol 
2018, for a recent exegesis of Boltzmann’s original papers). The concrete problem 
was to explain under which (microphysical) circumstances a box of gas in non-
equilibrium approaches equilibrium. Boltzmann provided this explanation with his 
.H -Theorem in 1872. The way he wrote his paperWeitere Studien über das Wärmegle-
ichgewicht unter Gasmolekülen (engl. Further Studies on Heat Equilibrium among 
Gas Molecules), 2 however, has created some confusion. Although Boltzmann knew 
about potential exceptions to the Second Law of Thermodynamics as early as 1868, 3

1 Detlef Dürr’s work on typicality has influenced much of current research of this notion. In his 
book Bohmsche Mechanik als Grundlage der Quantenmechanik written in German, he used the 
adjective typisch or the noun das Typische (Dürr 2001); later he changed the noun to Typizität (Dürr, 
Froemel, and Kolb, 2017). 
2 My translation. 
3 James Clerk Maxwell, whose results Boltzmann developed further, was also aware of those excep-
tions already in 1867 when he wrote in a letter to his friend Peter Tait about what has become known 
as Maxwell’s Demon.
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he wrote in 1872 that the.H function (the negative of the entropy) “must necessarily 
decrease” (Darrigol and Renn 2013, Sect. 25.2.7). 

It was only in 1877 that Boltzmann did correct his proof of the .H -theorem after 
Loschmidt’s reversibility objection in 1876, and so he emphasized that the Second 
Law of Thermodynamics allows for exceptions considering an appropriate time scale: 

One cannot prove that for every possible initial positions and velocities of the spheres, their 
distribution must become more uniform after a very long time; one can only prove that the 
number of initial states leading to a uniform state is infinitely larger than that of initial states 
leading to a non-uniform state after a given long time; in the latter case the distribution would 
again become uniform after an even longer time. (Boltzmann, 1877, quoted in Darrigol and 
Renn 2013, p. 775) 

The reception of Boltzmann’s work was already turbulent at his time. Either scholars 
did not read his work, misunderstood his work, or downplayed his work (Brush 1976, 
Chap. 14). In any case, from 1877 on, Boltzmann was explicit in his writings and his 
lectures that a box of gas in non-equilibrium will approach equilibrium for almost 
all initial condition, or, in modern parlance, typically. 

Similar ideas of typicality have been applied in mathematics a little earlier in the 
19th century. The German mathematician Carl Friedrich Gauß (1777–1855) and his 
Belgian colleague Adolphe Quetelet (1796–1874) used the “most probable value” 
in their works on the normal distribution in the period between 1809 and 1857 
(Wagner 2020). Being aware of these developments in mathematics, the German 
sociologist Max Weber (1864–1920) used the word typical in his lectures on General 
(“Theoretical”) Political Economy between 1894 and 1898. 

In the first half of the 20th century, notions of almost all, almost everywhere, 
and almost always true were used in the developments of topology, measure theory, 
probability theory, and classical and quantum statistical mechanics (von Plato 1994; 
Hald 1998; Goldstein et al. 2010). 

Given these developments, it seems that typicality was first explicitly mentioned 
in physics by Hugh Everett (1957, p. 460), when talking about his ‘Relative State’ 
Formulation of Quantum Mechanics, which has later become the many-worlds inter-
pretation of quantum mechanics (Goldstein 2012): 

We wish to make quantitative statements about the relative frequencies of the different 
possible results of observation—which are recorded in the memory—for a typical observer 
state; but to accomplish this we must have a method for selecting a typical element from 
a superposition of orthogonal states. […] The situation here is fully analogous to that of 
classical Statistical Mechanics, where one puts a measure on trajectories of systems in the 
phase space by placing a measure on the phase space itself, and then making assertions (such 
as ergodicity, quasi-ergodicity, etc.) which hold for “almost all” trajectories. (Everett 1957, 
p. 460) 

This passage is important for two reasons. First, Everett uses the word “typical” in 
passing. Given the uses of similar notions before 1957, Everett seems to address a 
community that is familiar with the main idea behind typicality, especially those who 
have worked on ergodicity. Second, with Everett’s mentioning of the word “typical” 
he started to unify previous notions of almost all, almost everywhere, and almost 
always true. This may be a bit of an over-interpretation, but Everett mentions the
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different uses of almost all in Statistical Mechanics, and he wants to use these ideas 
in quantum mechanics too. 

I think it is not farfetched to set 1877 and 1957 as two historical milestones for 
the history of typicality, according to current historical knowledge. 1877 is important 
because Boltzmann explicitly mentions for the first time in a published paper that 
the Second Law of Thermodynamics when reduced to Statistical Mechanics is not 
a universally valid law and that “one can only prove that the number of initial states 
leading to a uniform state is infinitely larger than that of initial states leading to a 
non-uniform state after a given long time.” 1957 is important because it is apparently 
the first time that typicality was used in a physical context. 

Going back further in time, 1713 is another milestone for the history of typicality, 
as Jakob Bernoulli’s work Ars Conjectandi was published in this year, in which he 
proved the Law of Large Numbers that he based on the notion of moral certainty, 
which is another concept close to typicality. The periods 1713–1877 and 1877–1957 
pose their own challenges with respect to the historical development of typicality: 
Who worked on similar concepts between 1713–1877, and did they have a particular 
influence on Boltzmann and the physicists working in Statistical Mechanics at the 
time? Who worked on similar concepts between 1877–1957, and were they influ-
enced by Boltzmann and the physicists working in Statistical Mechanics at the time? 
These questions are largely unanswered up to now, although excellent historical work 
has been done in the history of probability and measure theory that deals with for-
malizing the idea of almost everywhere in the period after 1877 (see, for instance, 
von Plato 1994; Hald 1998). 

In this paper, however, I want to investigate the pre-history of typicality, namely 
the period before 1713. This early period is important not only for historical reasons: 

1. The period before 1713 developed essential ideas for subsequent periods. 
2. We notice a long tradition, in which philosophers and mathematicians tried to get 

a grip on uncertainty. 
3. We can understand the essential idea of typicality by investigating its historical 

precursor moral certainty. 
4. There has been a recent interest to develop in detail a theory of probability that is 

grounded on typicality (Dürr, Froemel, and Kolb, 2017; Maudlin, 2020; Hubert, 
2021; Allori, 2022). 4 We can appreciate this research project by studying how 
Jakob Bernoulli based his Law of Large Numbers on the notion of moral certainty, 
which was a standard notion for a couple of centuries before. 

In the following, I will examine in chronological order in which historical situa-
tions people came up with ideas similar to typicality. My endpoint will be Bernoulli’s 
Ars Conjectandi published posthumously in 1713.

4 The fundamental idea to relate typicality with probability has been expressed in Dürr, Goldstein, 
and Zanghì (1992); Goldstein (2001); Dürr and Teufel (2009); Goldstein (2012). 
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2 Aristotle: Scientific Demonstrations Versus Dialectial 
Deductions 

Aristotle distinguished two basic kinds of explanations. In the Posterior Analytics, 
he defines a scientific explanation as a demonstration, a deductive proof, from first 
principles: 

By a demonstration I mean a scientific deduction; and by scientific I mean a deduction 
by possessing which we understand something. If to understand something is what we 
have posited it to be, then demonstrative understanding in particular must proceed from 
items which are true and primitive and immediate and more familiar than and prior to 
and explanatory of the conclusions. (Aristotle, Posterior Analytics, 71b15-25, translated in 
Aristotle 1994, pp. 2–3) 

The first principles a scientific demonstration relies on are true propositions that have 
a distinguished epistemic status of being better known than the propositions that 
logically follow. They are found by induction, which is successful because we have 
intuition (famously stated at the end of the Posterior Analytics and also mentioned 
in the Nicomachean Ethics, 1139b19-39, 1140b30-1141a8; Bronstein 2012, 2016
for a first-class recent commentary, as well as Gerson 2009, Chap. 4, and Salmieri 
et al. 2014). Scientific demonstrations pose a subclass of deductions. If one can 
logically deduce from first principles a proposition about some state of affairs, one 
has a scientific explanation and scientific knowledge of these state of affairs, if 
the deduction elucidates the causes of the explanandum. Standard examples of first 
principles are universal claims. We can, for example, deduce from All ravens are 
birds and from All birds have wings that All ravens have wings. These kinds of 
syllogisms are the archetype of scientific explanations for Aristotle. 

Aristotle is aware that scientific demonstrations are a very special group of argu-
ments that require a particularly high standard of accuracy that we can only demand 
as an ideal 5 in the sciences; therefore, for intellectual training, casual encoun-
ters, and philosophical inquiry, we need to lower this high bar (Topics, Book 1, 
Chaps. 1–3). In these areas, one needs to replace scientific demonstrations with 
dialectial deductions (Greek: enthumêma, another subtype of deductions). Dialec-
tical deductions have premises that are common beliefs (or reputable or probable 
opinions). As Aristotle says, “The common beliefs are the things believed by every-
one or by most people or by the wise (and among the wise by all or by most or 
by those most known and commonly recognized)” (Aristotle 1995, Topics, 100b20– 
b25). The conclusions of dialectical deductions do not need to be true but at least 
sufficiently convincing. 

In the ethical or political realm, Aristotle argues for a precision of arguments that 
lies between scientific demonstrations and those dialectical deductions:

5 Pasnau (2013) convincingly argues that epistemology in its entire history from (at least) Aristo-
tle until very recently has been mostly focusing on epistemic ideals. Hubert and Malfatti (2022) 
endeavor to revive this tradition for a modern theory of understanding (for a meta-epistemological 
debate, see Carr 2022; Thorstad 2023). 
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Therefore in discussing subjects and arguing from evidence, conditioned in this way, we 
must be satisfied with a broad outline of the truth; that is, in arguing about what is for 
the most part so from premisses which are for the most part true we must be content to 
draw conclusions that are similarly qualified. […] for it is a mark of the trained mind never 
to expect more precision in the treatment of any subject than the nature of that subject 
permits; for demanding logical demonstrations from a teacher of rhetoric is clearly about as 
reasonable as accepting mere plausibility from a mathematician. (Aristotle, Nicomachean 
Ethics, 1094b15-25, translated in Aristotle 2004, p. 5)  

The premises we use in ethical or political explanations are not universal truths but, 
at best, true in most cases. Therefore, the conclusions we reach from these premises 
are only true in most cases as well. Asking for universal truths in ethics and politics 
is not only impossible for all practical purposes, but it would also miss the point of 
what these disciplines are about in the first place, for “[i]t is a mark of the trained 
mind” to realize what kinds of explanations to expect in a particular context. G. W. 
Leibniz echoed Aristotle when he writes in 1670, “Only that degree of certainty is 
to be had which a given matter admits” (translated in Leibniz 1989, p. 122). 

There seems to be a shift in the scope of the premises in dialectical deductions as 
introduced in the Topics and in the Nicomachean Ethics. In the  Topics, the acceptance 
of the premises is purely epistemic depending on how many and which people support 
them, and these premises justify the persuasiveness of the conclusion (given the 
validity of the deduction). This appears to be close to a Bayesian approach, but 
rather one basing the degree of belief of a proposition on the beliefs of a collective 
not of a single agent. 

In the Nicomachean Ethics, on the other hand, the premises are said to be true “for 
the most part”, which can be interpreted in (at least) two ways: either in an epistemic 
(collective Bayesian) way, such that they are regarded as true by most people, or (as 
I think is more plausible) in an ontological–statistical way, such that the premises 
are true in most instances or in most situations. It is this interpretation that captures 
the central idea of typicality, that something is valid only in most cases and not 
universally valid. But before typicality has been developed in the 20th century, the 
notion of moral certainty elaborated on Aristotle’s idea and was a familiar term 
among philosophers thereafter. 

3 Gerson: The Inventor of Moral Certainty 

Scholastic philosophy combined Christian theology with Ancient Greek philosophy; 
especially Aristotle’s philosophy played a pivotal role for metaphysics and episte-
mology. A major project in scholastic philosophy was moral philosophy with the 
aim of finding rational grounds for how to act morally. The standard approach was 
to study particular real cases and to extract from them general principles for moral 
behavior (this method is called casuistry, from Latin casus meaning “case”) that are 
the guiding principles for other (future) occasions. Today, casuistry is still a popular 
method in ethics, especially in business ethics, bioethics, and ethics of AI.
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A reasonable standard method in casuistry is to find out what the best reasons 
are for moral behavior. During the Renaissance era, this method was challenged by 
two skeptical schools (see Schüssler 2009, for a detailed analysis, which I heavily 
rely upon in this section): (i) Neo-Pyrrhonism and (ii) Probabilism (doctrina proba-
bilatis). 

Neo-Pyrrhonism questioned the reliability of weighing different reasons for action 
against each other aiming for a suspension of judgement (Floridi 2002). The Prob-
abilists were less skeptical and argued that it is possible to act morally despite not 
knowing the best reasons, as long as sufficient rationality standards were followed. 

Neo-Pyrrhonism and Probabilism noticed that we act and need to act under uncer-
tainty without knowing the best reasons. A problem was that people became too anx-
ious in their actions under these circumstances—this type of exaggerated irrational 
anxiety was termed scruples (Latin: scrupuli) at this time. The Parisian Christian 
theologian Jean Gerson (1363–1429) tried to solve this dilemma: although it is unre-
alistic to have infallible knowledge in our decision-making processes, we can aim for 
sufficient knowledge for our behavior so that we do not need to suffer from scruples, 
that is, we can have a clear conscience (Gerson, of course, addressed the Medieval 
Christian community). Building on Aristotle’s insight that “Only that degree of cer-
tainty is to be had which a given matter admits” (translated in Leibniz 1989, p. 122), 
Gerson coined the term moral certainty (Latin: certitudo moralis) for the appropriate 
level of certainty for moral actions that is not deemed sinful and that is not justified 
to be followed by scruples: 

There is, however, a moral certainty, which in our purpose is required, and which suffices. 
And this we have, when, in our recollection and examen of conscience, we find we have 
done that, which both our own discretion and the good counsel of others suggested, and have 
for some time been wont commonly so to do. But if our own judgment should not accuse 
us of mortal sin, then there is no new peril in going to holy communion,. […. ] (Gerson 1883, 
pp. 57) 

There are essentially three paths to reach moral certainty (Gerson 1883, p. 40): (i) 
through other people, (ii) through the study of scripture, and (iii) by using your own 
faculty of reason. Gerson’s justification of moral certainty is similar to Aristotle’s 
justification of common beliefs as the premises in a dialectical deduction: “The 
common beliefs are the things believed by everyone or by most people or by the 
wise (and among the wise by all or by most or by those most known and commonly 
recognized)” (Aristotle 1995, Topics, 100b20–b25). Aristotle also emphasized the 
reliance on other people, but, for obvious reasons, he did not add scripture as a 
means for justification. Reason, for Aristotle, seem to rather play a role for making 
deductions or for justifying first principles by intuition. 

Gerson continues the above passage and adds important details about moral cer-
tainty: 

. […. ] even though, as it may often happen, some slight doubts may come into our mind. These 
doubts we ought to repel, and we ought to force ourselves to act contrary to them. I call that 
a slight doubt, when a person judges of a thing, rather that it is just and good, than that it 
is evil; yet some reasons or thoughts occur to the mind, leading to some hesitation, but still 
the first judgment appears far the most certain. Now if both sides seem equally probable, we
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ought to stop till we get more ground for decision one side or other, either by the help of 
our own reason, or by consultation with others, or by a divine inspiration obtained through 
prayer. For unless in this mode a person obtain security in himself, he will always judge that 
he has made a bad confession, and will never feel easy or at peace, and this can never be 
good. (Gerson 1883, pp. 57–58) 

Moral certainty still leaves room for slight doubt, because there always remains a 
degree of uncertainty. Still, a good Christian can act upon moral certainty and should 
not suffer from anxiety that this action is sinful, because everything that could be 
done and considered has been taken care of. If this person does not understand 
this, the consequence would be that one remains unhappy and burdened by fear of 
having done a sinful act, even when one had done everything humanly possible to act 
morally. Like the Pyrrhonic and Neo-Pyrrhonic Skeptics, Gerson aimed at calmness 
of the mind (Greek: ataraxia). Whereas the Pyrrhonic Skeptics thought to reach 
this state by suspension of judgement, as for any argument there can be found a 
counterargument, Gerson suggested to reasonably lower the bar for certainty that 
is suitable for the average Christian to act morally without suffering from scruples. 
Political and ethical experts, on the other hand, can reach a higher level of certainty 
closer to Aristotle’s proposed level in the Nicomachean Ethics (Schüssler 2009, p.  
453). 

After Gerson invented moral certainty it has become a standard concept in scholas-
tic philosophy. 6 It seems to have been so prevalent and useful that even stark critics 
of scholasticism, like René Descartes (1596–1650), used it without any scruples. 

4 Descartes: Moral Certainty Versus 
Absolute/Metaphysical Certainty 

Descartes used the concept of moral certainty implicitly in his Discourse on the 
Method (1637) and explicitly in The Principles of Philosophy (1644) – a detailed 
analysis of these works with respect to moral certainty can be found in Ariew (2011) 
and Samjetsabam (2022). In the spirit of Gerson, Descartes wrote in Part 3 in the 
Discourse on the Method: 

Similarly, since in everyday life we must often act without delay, it is a most certain truth 
that when it is not in our power to discern the truest opinions, we must follow the most 
probable. Even when no opinions appear more probable than any others, we must still adopt 
some; and having done so we must then regard them not as doubtful, from a practical point 
of view, but as most true and certain, on the grounds that the reason which made us adopt 
them is itself true and certain. (Descartes 1985, p. 123)

6 In the 18th century, the concept of moral certainty entered the Anglo-Saxon legal system, and 
it merged into the concept of reasonable doubt by 1824 (Waldman 1959). Other concepts that 
were used before moral certainty in the judicial system were satisfied conscience and satisfied 
understanding (Shapiro 2012, p. 20). 



The History of Moral Certainty as the Pre-history of Typicality 439

Descartes gives a here a manual to adjust our degree of certainty. The best would 
be, of course, to find out the truth. Since we need to make quick decisions in our 
practical life, we often do not have the time to thoroughly examine our thoughts and 
ideas (and even if we had we may not figure out the truth). In this case, we need to 
“follow the most probable.” But this situation of having a most probable opinion is 
not guaranteed, and still we need to choose one of the available options. If we did 
so with good reason, we can be morally certain about the correctness of the opinion 
(even if Descartes does not explicitly mention moral certainty here). Descartes point 
is that our acts would be at least epistemically justified when we are morally certain 
of them. This seems to be a slightly different position from Gerson’s who seems to 
say something stronger, namely, that morally certain acts are morally justified so that 
we would not suffer scruples. It seems plausible that Descartes thinks along these 
lines too, but he does not say so explicitly. 

For his theoretical project, on the other hand, Descartes wants to treat any propo-
sition that can be doubted however slightly as absolutely false, as he says so in Part 
4 of the  Discourse 7: 

For a long time I had observed, as noted above [in Part 3], that in practical life it is sometimes 
necessary to act upon opinions which one knows to be quite uncertain just as if they were 
indubitable. But since I now wished to devote myself solely to the search for truth, I thought 
it necessary to do the very opposite and reject as if absolutely false everything in which I 
could imagine the least doubt, in order to see if I was left believing anything that was entirely 
indubitable. (Descartes 1985, pp. 126–127) 

Descartes introduces here his methodological skepticism, in which he merely pre-
tends that certain opinions are false if he can doubt them in the slightest. His goal 
is to find those opinions that he cannot doubt in the slightest in order to establish a 
firm foundation for his epistemology and natural philosophy. Descartes is here about 
to use moral certainty within natural philosophy and so outside the realm of the-
ology and moral philosophy (Wootton 2015, Chap. 11, Sect. 3, mentions that moral 
certainty was used by the first statisticians by 1662). 

In a subsequent passage in Part 4 of the Discourse on the Method, Descartes 
clarifies his distinction between moral certainty (French: assurance morale) and 
metaphysical certainty (French: certitude métaphysique): 

Finally, if there are still people who are not sufficiently convinced of the existence of God 
and of their soul by the argument I have proposed, I would have them know that everything 
else of which they may think themselves more sure—such as their having a body, there being 
stars and an earth, and the like—is less certain. For although we have a moral certainty about 
these things, so that it seems we cannot doubt them without being extravagant, nevertheless 
when it is a question of metaphysical certainty, we cannot reasonably deny that there are 
adequate grounds for not being entirely sure about them. (Descartes 1985, pp. 129–130)

7 Descartes’ strong position leads to the following problem (I thank Charles Sebens for pointing 
this out). If Descartes treats the proposition . p as false, he would need to treat the proposition . ¬p
as false, too, as both can be doubted. It would seem to be more reasonable to interpret Descartes’ 
position as withholding belief in. p if . p can be doubted. 
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Domain Method Certainty

- existence of God 
- existence of the human mind 
- mathematics

- recognition  of innate ideas
- radical skepticism
- mathematical demonstration 

absolute or metaphysical 
certainty

- natural philosophy 
in particular:
- existence of the outside world
- existence of the human body 

c arguments 
and results 

moral certainty 

Fig. 1 Descartes’ distinction between absolute and moral certainty. In the Discourse and in the 
Principles, Descartes directly argues for the metaphysical or absolute certainty of the existence of 
God and the existence of the human mind (the human soul). About the existence of the outside 
world and the human body, Descartes first showed that we can be morally certain; in a second step, 
he lifts the moral certainty about their existence and even their features to the level of absolute 
certainty 

We have metaphysical certainty of a certain idea or proposition, when we have no 
rational ground for doubts. Descartes claims that he proved the existence of God and 
of the human soul to be metaphysically certain. On the other hand, morally certain 
claims are less certain, but they are sufficiently certain that they can be only doubted 
on “extravagant” grounds. The existence of the outside world (that humans have a 
body, that the earth and the stars exist) is morally certain, because we can only doubt 
them by an extravagant thought experiments, such as a dream (see Fig. 1). 

Descartes’ use of moral certainty is different from Gerson’s in two important 
respects. First, Descartes applies moral certainty beyond moral philosophy. He is 
primarily interested in existence claims about the natural world. Although these 
existence claims are indeed relevant for our practical actions, they are rather the 
preconditions for dealing with the world. Second, Descartes sets a higher bar for 
moral certainty than Gerson. For all practical purposes, morally certain existence 
claims about the world can be in principle doubted, but these doubts do not justify 
us in not believing these claims. Gerson, on the other hand, focuses on morally right 
behavior which does not require so high a degree of certainty as our belief in an 
outside world. 

At the end of his Principles of Philosophy, Descartes examines how certain his 
philosophical edifice is to be the true story of the world. In §205 of Part IV, he 
concludes that his “explanations appear at least to be morally certain," and he defines 
moral certainty in the following way: 

moral certainty [Latin: certa moraliter] is certainty which is sufficient to regulate our behav-
ior, or which measures up to the certainty we have on matters relating to the conduct of life, 
which we never normally doubt, though we know that it is possible, absolutely speaking, 
that they may be false. (translated in Descartes 1985, p. 289) 

Unlike Aristotle, Descartes focuses his distinction on the states of belief of a single 
agent. There are many things in our daily life we have good reasons to take for granted, 
because they are useful or beneficial for us, although we are not absolutely certain 
about them (see also Simmons 2001). Even if you have never been to Kuala Lumpur,
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you are morally certain that this city exists, because of the pictures you have seen and 
the testimonies of other people, and you would buy a ticket if you wish to visit this city 
lacking absolute certainty of its existence. Descartes gave a similar example with the 
city of Rome, and then poses an analogy that his theory is morally certain: Imagine 
you have an encrypted message and you stumble on a key that is able to decode this 
message into some sensible text, a string of words that is grammatically correct and 
meaningful. Then you can be morally certain, certain beyond any reasonable doubt or 
certain for all practical purposes, that this was the correct key, although it is logically 
and physically possible that the writer of the message indeed used a different key that 
would result in a different message. By analogy, Descartes argues, that we can be 
morally certain about the truth of the axioms that he introduces in the Principles of 
Philosophy because they coherently decode and explain the natural world. Different 
axioms or principles would be logically possible but highly implausible or unlikely, 
given the success of his system. 

In this context, moral certainty is related to the inference to the best explanation 
(Lipton 2004). The best explanation that a certain key will decrypt an encrypted 
message into a sensible text is that this key is the right key. Given the accuracy and 
success of Descartes’ system, it best explains the behavior of the world. It seems 
that if .X is the best explanation for . Y , we can be more certain about the truth of . X
than the alternative explanations .X '. As Lipton (2000) says, “Inference to the Best 
Explanation must thus be glossed by the more accurate but less memorable phrase, 
‘inference to the best of the available competing explanations, when the best one is 
sufficiently good’.” If .X is by far the best explanation of . Y then we may be morally 
certain about the truth of . X . 8 Moral certainty is also used in other situations, like in 
moral behavior, where it does not make sense to talk about a best explanation, but  
rather about the right moral behavior or the best moral behavior. We may call this 
situation inference to the best moral behavior. 

In the following paragraph (§206), Descartes argues that certain aspects of his 
theory of the world are even absolutely certain (Latin: certa absolute): 

Absolute certainty arises when we believe that it is wholly impossible that something should 
be otherwise than we judge it to be. This certainty is based on a metaphysical foundation, 
namely that God is supremely good and in no way a deceiver, and hence that the faculty 
which he gave us for distinguishing truth from falsehood cannot leas us into error, so long 
as we are suing it properly and are thereby perceiving something distinctly. Mathematical 
demonstrations have this kind of certainty, as does the knowledge that material things exist; 
and the same goes for all evident reasoning about material things. And perhaps even these 
results of mine will be allowed into the class of absolute certainties, if people consider how 
they have been deduced in an unbroken chain from first and simple principles of human 
knowledge. (translated inch31Descartes:1985aa, p. 290) 

While Descartes referred to this degree of certainty in the Discourse as metaphys-
ical certainty, he changed the terminology in the Principles to absolute certainty. 
Apart from the existence of God, the existence of the human soul, and mathematical 
results, Descartes wants to argue that even some features of his natural philosophy

8 I thank Charles Sebens for pointing out the subtleties regarding the relationship between moral 
certainty and the inference to the best explanation. 
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are justified to be true to a higher degree than moral certainty. 9 He gives two reasons. 
First, since God is not a deceiver, He created us so that we are able to have epistemic 
access to the true structure of the world. Second, Descartes deduced his results from 
true first principles. 

5 Locke: Probability Versus Real Certainty 

The period after Descartes, especially in 17th century England, was marked by metic-
ulous refinements of theories explaining and guiding an agent’s degree of certainty 
given a specific domain and specific arguments within the domain (Shapiro 1985, 
Chap. 2). Scholars, at this time, largely agreed that demonstrations, like mathematical 
proofs, lead to the highest level of certainty humans can attain, and they also largely 
agreed that one cannot demand this high epistemic standard for other disciplines, 
like the natural sciences, history, law, or even religion. They disagreed, however, on 
three things: (i) the domain for reaching moral certainty, (ii) the level of certainty for 
moral certainty, (iii) levels of certainty below moral certainty. 

As different scholars made different proposals for hierarchies of knowledge, John 
Locke (1632–1704) wrote An Essay Concerning Human Understanding in 1689 
to synthesize this complex debate, which had a huge influence later on. Although 
much of Locke scholarship went into analyzing his theory of knowledge, it seems 
that Locke’s aim was to elucidate how one can properly make rational probable 
judgements (Wolterstorff 1996; Boespflug 2023). For our purposes, I want to focus 
on two aspects of Locke’s Essay: (i) he subsumed absolute and moral certainty within 
his notion of real certainty (Enquiry, Book IV, Chap. IV), (ii) for probable reasoning, 
he establishes, what Wolterstorff (1996, p. 79) calls The Principle of Proportionality 
(Enquiry, Book IV, Chap. XV & XVI), which is the historical ancestor of David 
Lewis’s Principal Principle (Lewis 1981). 

Let us first discuss Locke’s notion of real certainty. For Locke, the highest form of 
certainty is attained through knowledge, where he defines knowledge as the percep-
tion of the agreement and disagreement of our own ideas. Ideas are the contents of 
our mind, and we have the capacity to compare these ideas. For example, we have an 
idea of the number 2 and an idea of the number 3. By comparing these ideas of these 
numbers, we find out that 2 is smaller than 3; therefore, we know that 2 is smaller 
than 3. Nevertheless, not all types of knowledge lead to the same degree of certainty: 
thus, Locke introduces a hierarchy of three types of knowledge (see Fig. 2): 

1. Intuitive knowledge (Book IV, Chap. II, Sect. 1), 
2. Demonstrative knowledge (Book IV, Chap. II, Sects. 2–12), 
3. Sensitive Knowledge (Book IV, Chap. II, Sect. 14).

9 Descartes also strives for the absolute certainty of the outside world in his Meditations, which  I  
have left out in this section for lack of space. 
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Domain Method Certainty 

relations between simple ideas direct intuition intuitive knowledge

- mathematics 
- moral philosophy 
- possibly other areas

- reasoning 
- proofs

- demonstrative knowledge 
- real certainty

- existence of the external world 
- existence of particular external 

objects

- unclear 
- God connecting simple 

ideas with the world 

sensitive knowledge

- natural philosophy 
- 17th century science 
- other areas

-
own experience 

- testimony

- belief, opinion 
- degrees of assent 

Fig. 2 Locke’s Hierarchies of Knowledge and Probability (Locke 1689/1997, Book IV, Chap. II) 

Intuitive knowledge is reached when the mind directly or immediately recog-
nizes the relation between simple ideas, for example, that white is not black. One 
level down the ladder is demonstrative knowledge, which can be reached once the 
mind has found a proof to connect two ideas upon reasoning. Mathematics is the 
prime example for demonstrative knowledge. Another level down the ladder, we find 
sensitive knowledge. This is the knowledge that there exists an external world with 
particular external objects beyond our mere ideas in our minds. Locke’s arguments 
for this type of knowledge in Book IV, Chap. II, Sect. 14 and Chap. IV, Sects. 2–5 
is not clear. His main argument, however, sounds Cartesian, because simple ideas 
match the external world by the acts of God. 10 Another step down the ladder, Locke 
locates belief, opinion, and different degrees of assent. Among other domains, nat-
ural philosophy and 17th century science are notable cases here (see also Boespflug 
2023, Chap. 6), and testimony from other people become crucial, too, as another 
method for reaching one’s degree of assent. 

Building on his justification for the reality of simple ideas in Book IV, Chap. 
IV, Sects. 2–5, Locke argues that it follows that mathematical knowledge (through 
proofs) is real knowledge (Sect. 6). This argument prepares Locke to break with the 
tradition of moral certainty—he does not even mention this concept at all in his 
Essay. Remember that moral certainty was originally used as a degree of certainty 
for moral claims that one can be certain of for all practical purposes. But for Locke, 
the domain of morality allows for a higher form of certainty, because it is on a par 
with mathematics, since moral claims can be proven. A correct moral proof will 
lead to real certainty, which is the same certainty as attained through mathematical 
demonstrations (see Fig. 2) 11:

10 “First, the first are simple ideas, which since the mind, as has been showed, can by no means 
make to itself, must necessarily be the product of things operating on the mind in a natural way, and 
producing therein those perceptions which by the wisdom and will of our Maker thy are ordained 
and adapted to.” (Book IV, Chap. IV, Sect. 4). 
11 Locke used real certainty only in this context and did not develop this notion further elsewhere. 



444 M. Hubert

And hence it follows that moral knowledge is as capable of real certainty as mathematics. 
For certainty being but the perception of the agreement or disagreement of our ideas, and 
demonstration nothing but the perception of such agreement, by the intervention of other 
ideas or mediums; our moral ideas, as well as mathematical, being archetypes themselves, 
and so adequate and complete ideas; all the agreement or disagreement which we shall find 
in them will produce real knowledge, as well as in mathematical figures. (Locke 1689/1997, 
Book IV, Chap. IV, Sect. 7) 

Locke sounds overtly optimistic about our ability for moral knowledge. In contrast 
to his predecessors, Locke thought in this passage that it is indeed possible to demon-
strate moral propositions similar to mathematical propositions. Later, however, he 
realized that this is not possible (see Boespflug 2023, Chap. 7, for details). 

Let us now turn to Locke’s theory of probable reasoning (last row in Fig. 2) which 
will culminate in the Principle of Proportionality. First, Locke defines probability 
in contrast to demonstration: 

As demonstration is the showing the agreement, or disagreement of two ideas, by the inter-
vention of one or more proofs, which have a constant, immutable, and visible connexion 
one with another: so probability is nothing but the appearance of such an agreement, or dis-
agreement, by the intervention of proofs, whose connexion is not constant and immutable, 
or at least is not perceived to be so, but is, or appears for the most part to be so, and is enough 
to induce the mind to judge the proposition to be true, or false, rather than the contrary. 
(1689/1997, Book IV, Chap. XV, Sect. 1) 

Whereas demonstrations are logical deductions that generate truths, probability sig-
nifies a scheme of reasoning that does not rely on logical entailments but rather on 
entailments that are valid “for the most part.” Locke realizes that these kinds of 
looser arguments, which are prevalent in our everyday life, are still strong enough to 
be believed to a certain degree, as “[Man] would be often utterly in the dark, and in 
most of the Actions of his Life, perfectly at a stand, had he nothing to guide him in 
the absence of clear and certain Knowledge.” (Book IV, Chap. XIV Sect. 1). 

Since Locke aims to give us a hierarchy of probability, he has to tell us along 
which criteria we can evaluate the probability of a proposition: 

Probability then, being to supply the defect of our knowledge, and to guide us where that 
fails, is always conversant about Propositions, whereof we have no certainty, but only some 
inducements to receive them. The grounds of it are, in short, these two following: 

First, the conformity of any thing with our own knowledge, observation, and experience. Sec-
ondly, the testimony of others, vouching their observation and experience. (Locke 1689/1997, 
Book IV, Chap. XV, Sect. 4) 

Locke presents two criteria for evaluating the probability of a proposition: (i) how 
much the arguments put forward agree (or conform) with our previous knowledge, 
observation, and experience, (ii) the trustworthiness of the testimony of others. 12

When we evaluate a proposition along these two axes, we can assign it a degree of

12 Locke warns us to take the opinions of others as a criterion for probability, though (Book IV, 
Chap. XV, Sect. 6). 
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probability in the following order: (i) demonstration, (ii) improbability, (iii) unlikeli-
ness, (iv) impossibility (Book IV, Chap. XV, Sect. 2). Having done this, the question 
is now how to adjust one’s degree of assent according to this categorization. This is 
where Locke introduces his Principle of Proportionality: 

the mind if it will proceed rationally ought to examine all the grounds of probability, and  
see how they make more or less, for or against any probable proposition, before it assents to 
or dissents from it, and upon a due balancing the whole, reject or receive it, with a more or 
less firm assent, proportionably to the preponderancy of the greater grounds of probability 
on one side or the other. (Locke 1689/1997, Book IV, Chap. XV, Sect. 5) 

Roughly, the Principle of Proportionality says that one should adjust one’s assent 
(or degree of certainty) in accordance to the probability of the proposition. 13 For the 
degree of assent, Locke proposes this hierarchy: (i) full assurance and confidence, 
(ii) conjecture, (iii) doubt, and (iv) distrust. 

With the invention of probability calculus, Locke’s Principle of Proportionality 
would get more fine-grained steps for both probability and assent. Jakob Bernoulli 
will prove a crucial theorem in probability theory, the Law of Large Numbers, which 
combines combines probability, assent, and frequencies. 

6 Jakob Bernoulli: Moral Certainty and the Law of Large 
Numbers 

In this work, Bernoulli introduced and rigorously proved the first limit theorem in 
mathematics, which Siméon Denis Poisson later called the Law of Large Numbers 
and of which Bernoulli himself said later on, “I esteem this discovery more than if I 
had given the quadrature of the circle itself, which even if it were found very great, 
would be of little use” (quoted in Sylla 2016, p. 50). 

Bernoulli’s goal was to find out the best way to assign probabilities to certain 
events. One can determine the probability of a coin toss by examining the physical 
qualities and the tossing mechanism of the coin toss. If the coin is symmetrical and 
the tossing mechanism is not prepared in a special way, the coin has probability . 1/2
to land heads or tails; this method is in Bernoulli’s terminology a priori, because it 
is about dissecting the causes of the phenomenon (Bernoulli 2006, p. 327). 

Bernoulli suggested that it had to be possible to assign the right probabilities also 
from empirical data, even in cases where no a priori method is possible. This is the 
a posteriori method of assigning probabilities: 

What cannot be ascertained a priori, may at least be found out a posteriori from the results 
many times observed in similar situations, since it should be presumed that something can 
happen or not happen in the future in as many cases as it was observed to happen or not to 
happen in similar circumstances in the past (Bernoulli 2006, p. 327).

13 This is very close to the Principal Principle. A detailed analysis of these two principles would 
go beyond the scope of this paper. 
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Making this a posteriori strategy mathematically rigorous was the aim of the Law of 
Large Numbers. Consider Bernoulli’s example of a large urn consisting of .1/3 black 
and .2/3 white balls (mentioned in a letter to Leibniz, quoted in Bernoulli 2006, p.  
40, also in the Ars Conjectandi on p. 328)—in this case, .1/3 and .2/3 would be the a 
priori probabilities. The Law of Large Numbers in Bernoulli’s interpretation says 
that, under these circumstances, you may reach moral certainty after a sufficiently 
long trial that the true proportion does not deviate too much from.2/3 (more precisely, 
that it is within .[2/3 − ∊, 2/3 + ∊] for any given . ∊). 

To answer the above question in full mathematical detail, Bernoulli needs a formal 
definition of moral certainty: 

Something is morally certain if its probability comes so close to complete certainty that the 
difference cannot be perceived. By contrast, something is morally impossible if it has only 
as much certainty as the amount by which moral certainty falls short of complete certainty. 
Thus if we take something that possesses .999/1000 of certainty to be morally certain, then 
something that has only .1/1000 of certainty will be morally impossible. (Bernoulli 2006, p.  
316) 

Two things are remarkable in this quote. First, Bernoulli introduces precise numbers 
when to reach moral certainty. Second, these numbers are not universally valid in 
all circumstances. Moral certainty may have a different mathematical number in 
different settings (this is also an important feature of the formalization of typicality, 
see Maudlin 2020). Bernoulli is explicit on that later on: 

It would be useful accordingly, if definite limits for moral certainty were established by the 
authority of the magistracy. For instance, it might be determined whether .99/100 of certainty 
suffices or whether .999/1000 is required. Then a judge would not be able to favor one side, 
but would have a reference point to keep constantly in mind in pronouncing a judgment. 
(Bernoulli 2006, p. 321) 

There is no unanimously agreed number for what exactly counts as morally certain: 
in one case.99/100 is sufficient, in another.999/1000 may be required. Bernoulli managed to 
give a mathematical formalization of moral certainty and in tandem a mathematical 
theorem, which states under which circumstances one can expect certain empirical 
results with moral certainty. For Bernoulli, probabilities are, on the one hand, frac-
tions of certainty, degrees of belief in modern parlance (Sylla 2016, p. 62); on the 
other hand, Bernoulli connected these a posteriori probabilities with frequencies for 
how often one would pick a black or white ball from an urn, for example. 

In a modern approach to ground probability on typicality, Bernoulli’s picture is 
turned upside-down: the frequencies are identified with probability, while typicality 
replaces moral certainty (Dürr et al. 2017; Maudlin 2020; Hubert 2021). Typicality 
arises from counting physical degrees of freedom and is therefore by definition not 
reflecting degrees of belief, but it is formally astoundingly similar to Bernoulli’s 
notion of moral certainty. To bridge the gap between counting physical degrees of 
freedom and certainty, Wilhelm (2022) invokes a new principle of rationality, the 
Typical Principle, to connect typicality claims with belief about these claims. If a 
proposition makes a typicality claim, an agent should believe this claim (as long as 
the agent has no further information that would undermine this claim). One cannot be
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absolutely certain about typicality claims because it is possible that they are violated 
in a particular case; instead, an agent may be morally certain of them. 

7 Conclusion 

Although moral certainty had a long tradition in philosophy, it is no longer used. 
With recent works in statistical mechanics and Bohmian mechanics, we have with 
typicality in fact a notion that is similar to moral certainty. Typicality formalizes the 
idea of almost all by counting physical degrees of freedom by means of a measure, 
whereas moral certainty is an epistemic notion that we can be almost certain about 
the truth of a proposition. Therefore, we may regard moral certainty as the epistemic 
counterpart of typicality. It requires, however, a deeper analysis to compare both 
concepts in detail, but my aim here was a historical one: the history of moral certainty 
can be regarded as the pre-history of typicality. 

Acknowledgements I started to write this paper in 2019 when I was a Postdoctoral Instructor at 
Caltech, and I wish to thank the Division of the Humanities and Social Sciences for the support and 
resources I have received at the time that made this research possible in the first place. I wish to 
thank the participants of the Caltech Probability Seminar for helpful discussions. I thank Frederick 
Eberhardt, Christopher Hitchcock, and Charles Sebens for their insightful comments on a previous 
draft of the paper. I also thank Ariane Schneck for her helpful comments on the section on Descartes, 
and I thank Mark Boespflug for his helpful comments on the section on Locke. I wish to thank Barry 
Loewer, who was the first to tell me about the relation between moral certainty and typicality. I 
also thank Tim Maudlin for encouraging me to delve into the history of philosophy and for the 
many hours we spoke about typicality. Lastly, I thank an anonymous referee for helpful comments, 
especially on clarifying the recent history of typicality. I am very grateful for having been one of 
Detlef Dürr’s students; his teaching and magnanimity have always inspired me. 

References 

V. Allori, The paradox of deterministic probabilities. Inquiry (2022). https://doi.org/10.1080/ 
0020174X.2022.2065530 

R. Ariew, The new matter theory and its epistemology: descartes (and late scholastics) on hypothe-
ses and moral certainty, in Vanishing Matter and the Laws of Motion: Descartes and Beyond, 
Routledge Studies in Seventeenth Century Philosophy, Chapter 2. ed.  by  P.  Anstey, D. Jalobeanu  
(Routledge, London, 2011), pp.31–46 

Aristotle. Posterior Analytics, 2nd ed. (Clarendon Press, Oxford, 1994). Translated with a com-
mentary by Jonathan Barnes 

Aristotle. Selections. Indianapolis (Hackett Publishing, IN, 1995). Translated, with Introduction, 
Notes, and Glossary by Terence Irwin and Gail Fine 

Aristotle. The Nicomachean Ethics. London: Penguin, Translated by J (A. K, Thomson, 2004) 
J. Bernoulli, The Art of Conjecturing (The Johns Hopkins University Press, Baltimore, 2006). 
Translated with an introduction and notes by Edith Dudley Sylla 

M. Boespflug, Locke’s Twilight of Probability: An Epistemology of Rational Assent (Routledge, 
New York, 2023)

https://doi.org/10.1080/0020174X.2022.2065530
https://doi.org/10.1080/0020174X.2022.2065530
https://doi.org/10.1080/0020174X.2022.2065530
https://doi.org/10.1080/0020174X.2022.2065530
https://doi.org/10.1080/0020174X.2022.2065530
https://doi.org/10.1080/0020174X.2022.2065530
https://doi.org/10.1080/0020174X.2022.2065530
https://doi.org/10.1080/0020174X.2022.2065530


448 M. Hubert

J. Bricmont,Making Sense of Statistical Mechanics (Springer International Publishing, Switzerland, 
2022) 

D. Bronstein, The origin and aim of "Posterior Analytics" II.19. Phronesis 57(1), 29–62 (2012) 
D. Bronstein, Aristotle on Knowledge and Learning: The Posterior Analytics (Oxford University 
Press, Oxford, 2016) 

S.G. Brush, The Kind of Motion We Call Heat: A History of the Kinetic Theory of Gases in the 19th 
Century, volume 2—Statistical Physics and Irreversible Processes (Amsterdam, North-Holland, 
1976) 

J. Carr, Why ideal epistemology? Mind 131, 1131–1162 (2022) 
O. Darrigol, Atoms, Mechanics, and Probability: Ludwig Boltzmann’s Statistico-Mechanical 

Writings—An Exegesis (Oxford University Press, Oxford, 2018) 
O. Darrigol, J. Renn, The emergence of statistical mechanics, in The Oxford Handbook of History 

of Physics, Chapter 25. ed. by J.Z. Buchwald, R. Fox (Oxford University Press, Oxford, 2013), 
pp.765–88 

R. Descartes, The Philosophical Writings of Descartes, vol. 1 (Cambridge University Press, Cam-
bridge, UK, 1985). Translated by John Cottingham, Robert Stoothoff, and Dugald Murdoch 

D. Dürr, Bohmsche Mechanik als Grundlage der Quantenmechanik (Springer, Berlin, 2001) 
D. Dürr, S. Teufel, Bohmian Mechanics: The Physics and Mathematics of Quantum Theory 
(Springer, Berlin, 2009) 

D. Dürr, S. Goldstein, N. Zanghì, Quantum equilibrium and the origin of absolute uncertainty. 
Journal of Statistical Physics 67(5), 843–907 (1992) 

D. Dürr, A. Froemel, M. Kolb, Einführung in die Wahrscheinlichkeitstheorie als Theorie der Typ-
izität (Springer, Heidelberg, 2017) 

H. Everett, “Relative state” formulation of quantum mechanics. Reviews of Modern Physics 29(3), 
454–62 (1957) 

L. Floridi, Sextus Empiricus: The Transmission and Recovery of Pyrrhonism (Oxford University 
Press, Oxford, 2002) 

R. Frigg, Typicality and the approach to equilibrium in Boltzmannian statistical mechanics. Philos-
ophy of Science 76(5), 997–1008 (2009) 

R. Frigg, Why typicality does not explain the approach to equilibrium, in Probabilities, Causes and 
Propensities in Physics, Chapter 4. ed. by M. Suárez (Springer, Heidelberg, 2011), pp.77–93 

R. Frigg, C. Werndl, Demystifying typicality. Philosophy of Science 79(5), 917–29 (2012) 
J. Gerson, The Snares of Devil (Thomas Richardson, London, 1883). https://archive.org/details/ 
SnaresOfTheDevil/mode/2up. Translated by Beta  

L.P. Gerson, Ancient Epistemology (Cambridge University Press, Cambridge, UK, 2009) 
S. Goldstein, Boltzmann’s approach to statistical mechanics, in Chance in Physics: Foundations and 

Perspectives. ed. by J. Bricmont, D. Dürr, M. Galavotti, G. Ghirardi, F. Petruccione, N. Zanghì 
(Springer, Heidelberg, 2001), pp.39–54 

S. Goldstein, Typicality and notions of probability in physics, in Probability in Physics, Chapter 4. 
ed. by Y. Ben-Menahem, M. Hemmo (Springer, Heidelberg, 2012), pp.59–71 

S. Goldstein, L.J. Lebowitz, R. Tumulka, N. Zanghì, Long-time behavior of macroscopic quantum 
systems. European Phys. J. H 35(2), 173–200 (2010) 

S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Gibbs and Boltzmann entropy in classical and 
quantum mechanics, in Statistical Mechanics and Scientific Explanation: Determinism, Indeter-
minism and Laws of Nature, ed. by V. Allori, Chapter 14 (World Scientific, 2020), pp. 519–581 

A. Hald, A History of Mathematical Statistics from 1750 to 1930 (Wiley, 1998) 
M. Hubert, Reviving frequentism. Synthese 199, 5255–5284 (2021) 
M. Hubert, F. Malfatti, Towards ideal understanding. Ergo (2022). Forthcoming 
D. Lazarovici, P. Reichert, Typicality, irreversibility and the status of macroscopic laws. Erkenntnis 
80(4), 689–716 (2015) 

J.L. Lebowitz, Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy. 
Physica A 194, 1–27 (1993) 

J.L. Lebowitz, Time’s arrow and Boltzmann’s entropy. Scholarpedia 3(4), 3348 (2008)

https://archive.org/details/SnaresOfTheDevil/mode/2up
https://archive.org/details/SnaresOfTheDevil/mode/2up
https://archive.org/details/SnaresOfTheDevil/mode/2up
https://archive.org/details/SnaresOfTheDevil/mode/2up
https://archive.org/details/SnaresOfTheDevil/mode/2up
https://archive.org/details/SnaresOfTheDevil/mode/2up
https://archive.org/details/SnaresOfTheDevil/mode/2up


The History of Moral Certainty as the Pre-history of Typicality 449

G.W. Leibniz, Philosophical Papers and Letters, 2nd ed. (Kluwer, Dordrecht, 1989). Translated 
and edited, with an introduction by Leroy E. Loemker 

D. Lewis, A subjectivist’s guide to objective chance, in IFS: Conditionals. ed. by W.L. Harper, R. 
Stalnaker, G. Pearce. Belief, Decision, Chance and Time. (Springer, Netherlands, 1981), pp.267– 
97 

P. Lipton, Inference to the best explanation, in A Companion to the Philosophy of Science. ed. by 
W.H. Newton-Smith (Blackwell, Oxford, 2000), pp.184–193 

P. Lipton, Inference to the Best Explanation (Routledge, New York, 2004) 
J. Locke, An Essay Concerning Human Understanding, ed by R. Woolhouse (Penguin, London, 
1689/1997) 

T. Maudlin, The grammar of typicality, in Statistical Mechanics and Scientific Explanation: Deter-
minism, Indeterminism and Laws of Nature, ed. by V. Allori, Chapter 7 (World Scientific, 2020), 
pp. 231–51 

W.C. Myrvold, Explaining thermodynamics: what remains to be done? in Statistical Mechanics 
and Scientific Explanation: Determinism, Indeterminism and Laws of Nature, ed. by V. Allori, 
chapter 4 (World Scientific, 2020), pp. 113–143 

A. Oldofredi, D. Lazarovici, D.-A. Deckert, M. Esfeld, From the universe to subsystems: why 
quantum mechanics appears more stochastic than classical mechanics. Fluctuations and Noise 
Letters 15, 1–16 (2016) 

R. Pasnau, Epistemology idealized. Mind 122, 987–1021 (2013) 
K. Robertson, Search of the holy grail: how to reduce the second law of thermodynamics. British 
J. Philosop. Sci. (2021). Forthcoming 

G. Salmieri, D. Bronstein, D. Charles, J.G. Lennox, Episteme, demonstration, and explanation: a 
fresh look at aristotle’s Posterior Analytics. Metascience 23(1), 1–35 (2014) 

M. Samjetsabam, Moral certainty of faculty of reason in Descartes’ discourse. Tattva J. Philos. 
13(2), 1–18 (2022). https://doi.org/10.12726/tjp.26.1 

R. Schüssler, Jean Gerson, Moral Certainty and the Renaissance of Ancient Scepticism. Renaissance 
Stud. 23(4), 445–462 (2009). ISSN 02691213, 14774658. http://www.jstor.org/stable/24419382 

B.J. Shapiro, Probability and Certainty in Seventeenth Century England (Princeton University 
Press, Princeton, NJ, 1985) 

B.J. Shapiro, Beyond reasonable doubt: The evolution of a concept, in Fictions of Knowledge: Fact, 
Evidence, Doubt, ed. by Y. Batsaki, S. Mukherji, J.-M. Schramm (Palgrave Macmillan UK, Lon-
don, 2012), pp. 19–39. ISBN 978-0-230-35461-6. https://doi.org/10.1057/9780230354616_2. 
https://doi.org/10.1057/9780230354616_2 

A. Simmons, Sensible ends: latent teleology in descartes’ account of sensation. Journal of the 
History of Philosophy 39(1), 49–75 (2001) 

E.D. Sylla, Probability in the 17th and 18th century continental Europe from the perspective of 
Jacob Bernoulli’s art of conjecturing, in The Oxford Handbook of Probability and Philosophy, 
Chapter 3. ed. by A. Hájek, C. Hitchcock (Oxford University Press, Oxford, 2016), pp.50–68 

D. Thorstad, Why bounded rationality (in epistemology)? Philosophy and Phenomenological 
Research (2023). Forthcoming 

S.B. Volchan, Probability as typicality. Stud. Hist. Philosop. Mod. Phys. 38(4), 801–14 (2007) 
J. von Plato, Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical 

Perspective (Cambridge University Press, Cambridge, UK, 1994) 
G. Wagner, Typicality and minutes rectis laws: From physics to sociology. Journal for General 
Philosophy of Science (2020). https://doi.org/10.1007/s10838-020-09505-7 

T. Waldman, Origins of the legal doctrine of reasonable doubt. J. Hist. Ideas 20(3), 299–316 (1959). 
ISSN 00225037, 10863222. http://www.jstor.org/stable/2708111 

I. Wilhelm, The typical principle. British J. Philosop. Sci. (2022). https://doi.org/10.1086/723240. 
https://doi.org/10.1086/723240 

N. Wolterstorff, John Locke and the Ethics of Belief. Cambridge Studies in Religion and Critical 
Thought (Cambridge University Press, Cambridge, UK, 1996)

https://doi.org/10.12726/tjp.26.1
https://doi.org/10.12726/tjp.26.1
https://doi.org/10.12726/tjp.26.1
https://doi.org/10.12726/tjp.26.1
https://doi.org/10.12726/tjp.26.1
https://doi.org/10.12726/tjp.26.1
https://doi.org/10.12726/tjp.26.1
https://doi.org/10.12726/tjp.26.1
http://www.jstor.org/stable/24419382
http://www.jstor.org/stable/24419382
http://www.jstor.org/stable/24419382
http://www.jstor.org/stable/24419382
http://www.jstor.org/stable/24419382
http://www.jstor.org/stable/24419382
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1057/9780230354616_2
https://doi.org/10.1007/s10838-020-09505-7
https://doi.org/10.1007/s10838-020-09505-7
https://doi.org/10.1007/s10838-020-09505-7
https://doi.org/10.1007/s10838-020-09505-7
https://doi.org/10.1007/s10838-020-09505-7
https://doi.org/10.1007/s10838-020-09505-7
https://doi.org/10.1007/s10838-020-09505-7
https://doi.org/10.1007/s10838-020-09505-7
https://doi.org/10.1007/s10838-020-09505-7
http://www.jstor.org/stable/2708111
http://www.jstor.org/stable/2708111
http://www.jstor.org/stable/2708111
http://www.jstor.org/stable/2708111
http://www.jstor.org/stable/2708111
http://www.jstor.org/stable/2708111
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240
https://doi.org/10.1086/723240


450 M. Hubert

D. Wootton, The Invention of Science: A New History of the Scientific Revolution (HarperCollins 
Publishers, Madrid, 2015)


	Preface
	Contents
	Contributors
	Recollections
	 Some Things I Have Learned From Detlef Dürr
	1 Introduction
	2 An Example
	3 Detlef's Questions
	4 Quantum Mechanics
	5 Mathematics
	6 Directions
	References

	 Detlef Dürr's Path from Mechanics of the Brownian Motion to the Mechanics of the Quantum World: a Personal Point of View
	1 Introduction
	2 Detlef's Work on Mechanical Models of Brownian Motion and Stochastic Processes
	3 Detlef's Work on the Mathematical and Physical Foundations of Bohmian Mechanics, and Some Closing Remarks
	References

	 Detlef the Adventurer
	Foundations of Quantum Mechanics
	 Why Bohm and Only Bohm?
	1 A Misleading Problem: The Measurement One
	2 An Intuitive Solution That Does Not Work
	3 Spontaneous Collapse Theories
	4 The Many-Worlds Interpretation
	5 The de Broglie–Bohm Theory
	6 Conclusions
	References

	 The Prodigy That Time Forgot: The Incredible and Untold Story of John von Newton
	1 The Classical Schrödinger Equation
	2 Reception
	3 Classical Mechanics Without Obs'rv'rs
	4 Criticism of Newton
	5 Lessons from the Rise and Fall of von Newton
	References

	 Bohmian Collapse
	1 Introduction
	2 Basics
	3 Collapse
	4 Conclusion
	References

	 Generic Contextuality
	1 Context
	2 Contextuality
	3 Toy Model of an Energy ``Measurement''
	4 Numerical Illustration
	5 Discussion
	References

	 The Wentaculus: Density Matrix Realism Meets the Arrow of Time
	1 Introduction
	2 Conceptual Foundations
	2.1 Density Matrix Realism
	2.2 The Arrow of Time

	3 The Wentaculus
	3.1 The Initial Projection Hypothesis
	3.2 Three Versions of the Wentaculus
	3.3 Realist Interpretations of the Density Matrix

	4 Implications
	4.1 The Nature of the Quantum State
	4.2 Statistical Mechanical Probabilities
	4.3 Strong Determinism
	4.4 Nomic Vagueness
	4.5 Theoretical Unity

	5 Objections and Replies
	5.1 Reliability of Records
	5.2 Time-Translation Invariance
	5.3 Ontological Redundancy
	5.4 The Classical Analogue

	6 Conclusion
	References

	 Bohmian Mechanics as a Practical Tool
	1 Introduction
	1.1 A Suggestive Review

	2 How Markovian and Non-markovian Stochastic Schrödinger Equations Tacitly Employ Conditional Wavefunctions
	3 Speakable and Operational Information About an Unmeasured System?
	3.1 Breaking Impasse 1: Speakable Information of the ``Unmeasured'' System
	3.2 Breaking Impasse 2: Is This ``Unmeasured'' System Information Operational?
	3.3 Breaking Impasse 3: Is This Information Useful for a Non-Bohmian?

	4 Conclusions
	References

	 Eigenstates in the Many Interacting Worlds Approach: Focus on 2D Ground States
	1 Introduction
	2 Generalization to Arbitrarily Many Degrees of Freedom
	3 A Numerical Implementation for Ground States
	3.1 Application to 2d Ground States

	4 Conclusions
	References

	 Are There Observational Differences Between Bohmian Mechanics and Other Interpretations?
	1 Introduction
	2 Experience Supervenience Postulates
	3 Experiences of a Neutron
	4 Wigner's Cat
	5 Sentient Being with a Spin Brain
	6 Summary
	References

	 A Tentative Completion of Quantum Mechanics
	1 What Is Missing in Text-Book Quantum Mechanics?
	1.1 The Shortcomings of Text-Book Quantum Mechanics

	2 An Analogous Problem in the Theory of Diffusion Processes
	3 ``Unraveling'' the Schrödinger-Von Neumann Equation
	3.1 Fundamental Ingredients of the ETH-Approach to Quantum Mechanics
	3.2 Consequences of the Principle of Diminishing Potentialities
	3.3 The State-Reduction Postulate and the Stochastic Evolution of States

	4 Concluding Remarks
	References

	Relativistic Quantum Theory
	 Space–Time–Matter
	1 A Basic Theorem
	2 Implications for Wave Functions
	2.1 Causally Propagating Positive Energy Wave Functions Cannot Vanish in a Region
	2.2 A Causally Propagating Positive Energy Wave Function is Completely Determined by Its Values in Any Region
	2.3 Transformations of Causally Propagating Positive Energy Wave Functions are Very Special  (e.g. Necessarily Nonlocal)
	2.4 Discussion

	3 An Operational Implication
	3.1 Covariant Detector Formalism
	3.2 A No-Go Theorem
	3.3 Discussion

	4 Towards a Spatial Distribution
	5 Particle Ontology
	References

	 Detection Time of Dirac Particles in One Space Dimension
	1 Introduction
	2 Absorbing Boundary Conditions for the Dirac Equation
	3 Arrival Time of Bohmian Trajectories
	4 Two-Body Problem
	5 Detection Versus Arrival Time
	6 Summary and Outlook
	References

	 The Bohmian Solution to the Problem of Time
	1 Introduction
	2 Non-relativistic Particle
	3 Non-relativistic Bohmian Mechanics
	4 Quantum Gravity
	References

	 Some Often Loosely Used Concepts with Potentially Problematic Implications
	1 Introduction
	2 Novel Physics Occurring at a Certain Scale
	3 Novel Physics Occurring at a Certain Distance from a Black Hole Horizon
	4 Conclusions
	References

	 Probability Conservation for Multi-time Integral Equations
	1 Introduction
	1.1 Motivation

	2 The Integral Equation
	3 Relativistic Probability Conservation
	4 Results
	4.1 Probability Conservation on All Cauchy Surfaces for Retarded Green's Functions and Retarded Interaction Kernels
	4.2 Asymptotic Probability Conservation for Symmetric Green's Fns
	4.3 Implications for Local Conservation Laws

	5 Conclusion
	References

	 Vacuum Polarisation Without Infinities
	1 Introduction
	2 Bogoliubov's Electric Current Formula
	3 Electric Current of a Dirac Sea in an External Field
	4 Second Order Perturbation Without Infinities
	5 The Explicit Expression for the Second Order
	References

	Mathematical Physics
	 The Arrow of Time
	1 Introduction
	2 Objections Against Kinetic Gas Theory
	2.1 Umkehreinwand
	2.2 Wiederkehreinwand

	3 Refutation of These Objections
	3.1 Final Breakthrough
	3.2 The Second Law

	4 Emergence of Irreversibility
	4.1 Microscopic Irreversibility
	4.2 Fluctuation Hypothesis
	4.3 Past Hypothesis
	4.4 Non-normalizable Invariant Measure

	References

	 The Ergodic Hypothesis: A Typicality Statement
	1 Introduction
	2 The Ergodic Hypothesis
	2.1 Measure-Preserving Dynamical Systems
	2.2 Variants of the Ergodic Hypothesis

	3 Essential Ergodicity
	3.1 Typicality and Boltzmann's Notion of Equilibrium
	3.2 Precise Bounds on the Time and Phase Space Average of the Equilibrium State
	3.3 Essential Ergodicity
	3.4 Scope and Limits of (Essential) Ergodicity

	4 Conclusion
	References

	 A Simple Mathematical Framework for Learning and Teaching Probability Theory
	1 Introduction
	2 Typical Physical Behaviour
	3 Working on left parenthesis 0 comma 1 right parenthesis Superscript d(0,1)d with Uniform Distribution
	4 Proceeding to a More General Framework
	5 Kommst du mit zum Bahnhof?
	References

	 Asymptotic Analysis of the Weakly Interacting Bose Gas: A Collection of Recent Results and Applications
	1 Introduction
	2 Asymptotic Expansion of the Ground State
	2.1 Main Result
	2.2 Idea of Proof

	3 Applications
	3.1 Edgeworth Expansion
	3.2 Binding Energy

	4 Dynamics
	4.1 Two-Body Interaction
	4.2 Regularized Nelson Model

	References

	 A Study of the Radiation-Reaction on a Point Charge that Moves Along a Constant Applied Electric Field in an Electromagnetic normal upper B Subscript normal o normal p normal pBopp–Landé–normal upper T Subscript normal h normal o normal m normal a normal sThomas–normal upper P Subscript normal o normal d normal o normal l normal s normal k normal yPodolsky Vacuum
	1 Introduction
	2 BLTP Electrodynamics with a Single Point Charge
	3 The Initial Data
	4 The Solution of the Field Equations
	5 Evaluation of the Radiation-Reaction Force
	5.1 The Small-kappa Regime

	6 The Volterra Equation for the Acceleration
	6.1 The Volterra Equation to upper O left parenthesis kappa cubed right parenthesisO(3) (Small kappa)

	7 Summary and Outlook
	References

	 Revisiting Quantum Mechanical Zero-Range Potentials
	1 Introduction
	2 Zero-Range Interactions in Many-Particle Systems
	3 Point Potentials in One-Body Quantum Mechanics in double struck upper R cubedmathbbR3
	4 Two Heavy and One Light Particle—The Born Oppenheimer Approximation
	References

	Philosophy of Physics
	 Situated Observation and the Quantum Measurement Problem
	1 The Measurement Problem
	2 Bohmian Mechanics
	3 Measurement Records in Bohmian Mechanics
	4 Discussion
	References

	 Why the Book of Nature is Written in the Language of Mathematics
	1 The ``Unreasonable'' Effectiveness of Mathematics
	2 On the Rationality of the Cosmos in Presocratic Philosophy
	2.1 Parmenides
	2.2 Anaxagoras
	2.3 Heraclitus

	3 Mathematical Interlude
	4 Pythagoreanism and Platonism
	4.1 Plato
	4.2 The Pythagoreans
	4.3 The Discovery of Incommensurability
	4.4 The Birth of Modern Physics

	5 Why Laws of Nature are Mathematical
	5.1 Numbers as Proportions
	5.2 Conclusion

	References

	 Bohmian Mechanics as Cartesian Science
	1 From de Broglie and Bohm to Bohmian Mechanics
	2 Matter as Res Extensa
	3 Mind as Res Cogitans
	References

	 Who’s Afraid of the Measurement Problem?
	1 Introduction
	2 Quantum Problems
	2.1 The Adequacy Problem
	2.2 The Precision Problem
	2.3 The Completeness Problem

	3 Quantum Realisms
	3.1 Relaxed Realism
	3.2 Modest Realism
	3.3 Robust Realism

	4 Quantum Explanations
	4.1 Principle Theories
	4.2 Hybrid Theories
	4.3 Constructive Theories

	5 Final Remarks
	5.1 Puzzles for Relaxed Realists
	5.2 Puzzles for Modest Realists
	5.3 Puzzles for Robust Realists

	6 Conclusion
	References

	 The Changing Bell View of Beables: A Forgotten Story
	1 Introduction
	2 The Early History of Beables: Bell and Bohr
	3 Beyond Bohr: The New Life of Beables
	References

	 Probability and Typicality in Statistical Mechanics
	References

	 The History of Moral Certainty as the Pre-history of Typicality
	1 A Brief History of Typicality
	2 Aristotle: Scientific Demonstrations Versus Dialectial Deductions
	3 Gerson: The Inventor of Moral Certainty
	4 Descartes: Moral Certainty Versus Absolute/Metaphysical Certainty
	5 Locke: Probability Versus Real Certainty
	6 Jakob Bernoulli: Moral Certainty and the Law of Large Numbers
	7 Conclusion
	References


