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Preface

CaPTion 2023 was the 2nd International Workshop on Cancer Prevention through early
detecTion, organized as a satellite event of the 26th International Conference onMedical
Image Computing and Computer Assisted Intervention (MICCAI 2023) in Vancouver,
Canada. Themain idea of foundingCaPTionwas to create a new research interfacewhere
medical image analysis, machine learning, and clinical researchers could interact and
address the challenges related to cancer and early cancer detection using computational
methods.

Early cancer diagnosis and its treatment for the long-term survival of cancer patients
have been a battle for decades. 19.3 million cancer cases and almost 10 million deaths
were reported in 2020, with lung (18%), colorectal (9.4%), liver (8.3%), stomach (7.7%)
and female breast cancer (6.9%) being the leading causes of mortality. While computa-
tional methods in medical imaging have enabled the detection and assessment of can-
cerous tumors and assist in their treatment, early detection of cancer precursors opens
an opportunity for early treatment and prevention. The workshop provided an oppor-
tunity to present research work in medical imaging around the central theme of early
cancer detection. It strove to address the challenges that must be overcome to translate
computational methods to clinical practice through well-designed, generalizable, inter-
pretable, and clinically transferable methods. Through this new workshop, we aimed
to identify a new ecosystem that would enable comprehensive method validation and
reliability of methods, setting up a new gold standard for sample size and elaborating
evaluation strategies to identify failure modes of methods when applied to real-world
clinical environments.

The CaPTion 2023 proceedings contain 11 high-quality papers of between 10 and 14
pages selected through a rigorous peer review process (with an average of three reviews
per paper). All submissions were peer-reviewed through a double-blind process by at
least threemembers of the scientific review committee, comprising 21 experts (including
chairs) in the field of medical imaging, especially of early cancer detection.

The accepted manuscripts cover various medical image analysis methods primarily
focused on cancer and early cancer detection, progression, inflammation understanding,
multimodality data, and computer-aided navigation. In addition to the papers presented
in this LNCS volume, the workshop included three keynote presentations from world-
renowned experts: Sir Mike Brady (University of Oxford, UK), AnneMartel (University
of Toronto, Canada), and Sravanthi Parasa (Swedish Medical Center, Seattle, USA).

We wish to thank all the CaPTion 2023 authors for their participation and the
members of the scientific review committee for their feedback and commitment to the
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workshop. We are very grateful to our sponsors Satisfai Health Inc. for their valuable
support.
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A Deep Attention-Multiple Instance
Learning Framework to Predict Survival
of Soft-Tissue Sarcoma from Whole Slide
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8 Department of Data and Digital Health, Institute Bergonié, Bordeaux, France

9 Department of Pathology, Institute Gustave Roussy, Villejuif, France
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Abstract. Soft-tissue sarcomas are heterogeneous cancers of the mes-
enchymal lineage that can develop anywhere in the body. A precise pre-
diction of sarcomas patients’ prognosis is critical for clinicians to define
an adequate treatment plan. In this paper, we proposed an end-to-end
Deep learning framework via Multiple Instance Learning (MIL), Deep
Attention-MIL framework, for the survival predictions: Overall survival
(OS), Metastasis-free survival (MFS), and Local-recurrence free survival
(LRFS) of sarcomas patients, by studying the features from Whole Slide
Images (WSIs) of their tumors. The Deep Attention-MIL framework con-
sists of three steps: tiles selection from the WSIs to choose the relevant
tiles for the study; tiles feature extraction by using a pre-trained deep
learning model; and a Deep Attention-MIL model to predict the risk score
for each patient via MIL approach. The risk scores outputted from the
Deep Attention-MIL model are used to divide the patients into low/high-
risk groups and predict survival time. The framework was trained and
validated on a local dataset including 220 patients, then it was used to
predict the survival for 48 patients in an external validation dataset. The
experiments showed the proposed framework yielded satisfactory and
promising results and contributed to accurate cancer survival predictions
on both the validation and external testing datasets: By using the WSIs
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feature only, we obtained an average C-index (of 5-fold cross-validation)
of 0.6901, 0.7179, and 0.6211 for OS, MFS, and LRFS tasks on the vali-
dation dataset, respectively. On the external testing dataset, these scores
are 0.6294, 0.682, and 0.76 for the three tasks (OS, MFS, LRFS), respec-
tively. By adding the clinical features, these scores have been improved
both on validation and external testing datasets. We obtained an aver-
age C-index of 0.7835/0.6378, 0.7389/0.6885, and 0.6883/0.7272 for the
three tasks (OS, MFS, LRFS) on validation/external testing datasets.

Keywords: Multiple Instance Learning · Deep Attention model ·
Survival prediction · Soft-tissue sarcoma · Whole Slide Image

1 Introduction

Soft-tissue sarcomas (STS) are heterogeneous malignant tumors developing any-
where in the body. They represent 1% of cancers in adults and 5% in children.
STSs have a variable prognosis, their management requires the use of aggres-
sive treatments including debilitating surgeries and/or high-dose chemothera-
pies. The prognosis of STS is dominated by two events: local recurrence and
distant metastasis. The occurrence of metastasis is a major adverse factor for
overall survival (OS), but local control of the disease also impacts OS [1]. In most
studies, the most significant factor to predict local recurrence is the quality of
surgical margins [1], whereas metastasis and overall survival are mostly related
to the FNCLCC histological grade [2] which remains to date the most widely
used standard to predict survival of sarcoma patients. A clinical nomogram inte-
grating the grade and clinical variables such as patient age and tumor size has
improved the prognosis evaluation of sarcomas patients [3].

In addition to biological and clinical information, Whole Slide Images (WSIs)
contain information relevant for analyzing the diagnosis and prognosis of cancer,
e.g., Overall survival (OS), Metastasis-free survival (MFS), or Local-recurrence
free survival (LRFS), as well as prediction of response to treatment. WSIs can
indeed assess the tumor growth and morphology in detailed, high resolution.
However, capturing cell detail makes the exported image potentially cumbersome
to cope with, and analyzing WSIs challenging for several reasons: (1) WSIs may
contain a billion difficult pixels to process computationally; (2) a patient could
have several WSIs for study, with significant differences in texture and biological
structures; (3) we receive an only label at the patient level but different WSIs
for diagnosis.

Deep learning has become a current solution for image processing applica-
tions comprising pathological image analysis. However, the processing of WSIs is
different from usual images due to the massive resolution of this kind of image.
One possible solution to overcome this challenge is to consider a weakly super-
vised method via a Multiple Instance Learning (MIL) approach [4]. In MIL,
we split a WSI into non-overlapping tiles (patches). Therefore, a WSI could be
considered a bag of tiles. It is not mandatory to analyze all tiles, as some of
them may not be relevant for diagnostic detection; therefore, a subset of tiles is
selected for the study.
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In recent years, Deep Learning via MIL [5] has emerged as a promising way
to predict survival in cancer patients by analyzing the WSIs [6,7]. Ilse et al.
[6] have proposed to use the attention-MIL for classifying the histopathological
images of breast and colon cancers datasets: the model with attention operator
outperformed the other operators (e.g., max-pooling MIL or mean-pooling MIL),
achieving an average AUC (of 5 folds cross-validation) of 0.775 and 0.968 in
breast and colon cancers datasets, respectively. Yao et al. [7] have introduced
a combination of a Siamese model [8] and an attention-based one to predict
survival based on imaging features. The method used the K-Means algorithm
[9] to cluster the imaging features into several phenotypes. Then, the Siamese
model was used to extract the features for each phenotype before feeding to the
attention module for aggregating the WSI-level feature. Finally, the aggregated
WSI feature was processed by two fully-connected layers and outputted the risk
score for each patient. The method was applied to lung and colorectal cancer
datasets. The C-indexes on lung and colorectal datasets were 0.6963 and 0.652,
respectively. Likewise, Pierre et al. [10] have proposed the MesoNet model to
predict the OS of mesothelioma patients. To develop their model, they firstly
splitted the WSIs into tiles with a size of 224 × 224 pixels and selected 10K of
tiles for analysis due to the limitation of the computation memory. Secondly,
the pre-trained ResNet50 [11] was used to extract the features of the tiles. Then,
a convolutional one-dimensional was used to generate the score for each tile.
Finally, the 10 highest and 10 lowest scores were selected and used as the input
for the multi-layer perceptron classifier to provide the scores for each patient.
MesoNet has achieved an average C-index of 0.642 and 0.643 on the training
(2981 patients) and testing dataset (56 patients), respectively [10].

In this work, we report an end-to-end framework, Deep Attention-MIL, to
predict the survival of sarcomas patients. At the heart of our framework is a
deep learning model with an attention mechanism for survival prediction via
MIL. We evaluate the proposed framework on two datasets originating from two
different comprehensive cancer centers in France. In this work, we show that
the framework offers satisfactory predictions of the survival probability of the
patients compared to the gold standard used sarcomas patients, the FNCLCC
histological grade [12] (Sect. 3.2).

2 Methodology

Figure 1 presents the workflows of the proposed framework. It was developed in
three phases: firstly, the non-overlapping patches (tiles) were extracted from the
WSIs of the patients. Then, a pre-trained deep learning model (e.g., ResNet50
[11]) was used as an encoder to extract the features from the tiles. Finally, the
extracted features were fed into the deep learning survival model to predict the
risk score for each patient. The risk scores were then taken by a non-parametric
estimator (e.g., Kaplan-Meier [13]) to predict the survival probability for the
patient.
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Fig. 1. The workflow of the proposed framework

2.1 Tiles Extraction

A WSI is organized as a pyramid of images with different magnification levels,
the image at the highest level (40× of magnification) could have a resolution
of 100K × 100K pixels, and it is down-sampled over the magnification levels.
Usually, the image at the highest magnification level (40×) is chosen for study.
It is worth noting that a large part of the image does not contain any tissue, and
is therefore useless for analysis. These regions are discarded during the tiling
process. Because of the problem with high resolution of the original image, it is
impossible to apply the classical image processing techniques on whole image for
pre-processing step. Instead, an image at a lower magnification level (e.g., 12×,
scaled image) is used to perform the pre-processing operations (e.g., segmen-
tation, binarization), to select the tissue area, and to determine and mark the
location of the interesting tiles. At the end of this stage, the tiles on the original
image corresponding to the selected tiles on the scaled images are extracted and
used for the study.

As a preferred size from the deep learning models for image classification
[11,14], the original image is divided into non-overlapping tiles with a size of
224 × 224 ( W × H) pixels. Based on the fraction of tissue, tiles are classified
into 4 groups: Group A consists of the tiles that are composed of more than 80%
of tissue, group B contains the tiles which have more than 10% and less than
80% of tissue, group C includes the tiles which have more than 10% of tissue,
and group D of that tiles that do not contain tissue. In the context of this work,
the tiles composed of more than 10% (from group A and B) of tissue have been
used for our analysis. As mentioned, a patient could have several WSIs, even if
we only extract tissue tiles, we can still get hundreds of thousands of tiles for
each patient.

2.2 Features Extraction

Unlike segmentation and detection tasks in WSIs analysis [15–17], our framework
predicts patient-level outcome aggregated from tile-level information. As pointed
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out in [18], training patch-based CNNs for weakly supervised learning is very
time-consuming (several weeks), we propose to use features from pre-trained
models instead of using CNNs to learn features from scratch. Here, for instance,
we use a pre-trained ResNet50 [11] on ImageNet [14] as an extractor to extract
the features of the tiles. For each tile, 2048 features are considered. Then, the
extracted features are concatenated to obtain the features for each patient. The
extracted features of WSIs are presented as a matrix of (N × 2048), where N is
the total number of WSI tiles.

2.3 Deep Attention-Multiple Instance Learning Model for Survival
Prediction

Figure 2 illustrates the proposed deep learning architecture (Deep Attention-
MIL) for survival predictions. The layers of this model can be decomposed into
three groups: the first group consists of the layers before the Attention module
[6]. These are used to aggregate the features for each tile as well as compute the
score for each tile; the second group is an Attention module [6] which outputs
the attention score for each tile. These scores present the importance of each
tile conducted to the final prediction. The attention score is combined with the
corresponding tile features before passing it to the layers in the last group to
estimate the risk score for each patient.

Fig. 2. The proposed Deep Attention-MIL survival model

Our model is derived from other studies [6,7] with modifications to adapt the
architecture to our objective. First, we replaced the ReLU activation function
with PreLU activation, which is more precise in the decision by making the
leakage coefficient a parameter that is learned along with the other network
parameters [19]. Then, to prevent overfitting, we added dropout layers [20] at
the end of each group of layers, and reduce the number of features in the last layer
of the model. It is worth that the final model was obtained after trying different
combinations of layers and performing experiments on the same dataset.

Table 1 details the input/output dimensions at each layer/module of the pro-
posed Deep Attention-MIL survival model. The input of the model is the selected
features of the patient, organized as a matrix of (M×2048) where M is the num-
ber of tiles considered. After passing the layers in the first group, the features of
each tile are collected and dimension is reduced to 256. These reduced features
are inputted to the attention module to output the attention score for each tile



8 V.-L. Le et al.

Table 1. The input/output dimensions at each layer of the survival model.

Layer Input Output

Conv1D/PreLU/Dropout M × 2048 M × 512

FC/PreLU/Dropout M × 512 M × 256

Attention module M × 256 1 × 256

FC 1 × 256 1

(1 × M). The attention score is multiplied with corresponding tile features to
obtain the representation feature for WSI (1 × 256) which is the input for the
last layer in the model. Finally, a linear function learns the representation of
WSI to provide the risk score for the patient.

Attention Module: Local representation (two layers before the attention mod-
ule) encodes features of the tiles, but our model provides the score at the patient
level. Therefore, aggregating tile features into patient-level representation is a
necessary step. A popular choice would be to use the maximum or the mean
operator. Yet, the drawbacks are clear: they are pre-defined and not trainable
which might not be adequate for this specific task. A better way to integrate tile
information is to leverage an attention mechanism that considers the importance
of each tile. In this work, we proposed to use the attention based MIL for aggre-
gation of tile features to obtain the representation of patient-level [6]. It consists
of two linear layers combined with Tanh activation functions. A soft-max activa-
tion function is placed at the end of the module to compute the attention score
for each tile, and ensure that the sum of all attention scores is equal to 1.

3 Experiments and Results

3.1 Dataset Description and Experimental Setups

Datasets: The experiments were carried out on two different clinical
cohorts from two comprehensive cancer centers: Institute Bergonié (Bor-
deaux, France) (IB dataset) and Gustave Rossy (Villejuif, France) (IGR
dataset). These two cohorts were extracted from the Sarcoma BCB
(https://sarcomabcb.org:connect). The criteria of inclusion included: primary
sarcoma, location of trunk walls and limbs, upfront surgical resection, and patient
naive of neoadjuvant therapy. The IB dataset consisted of 220 patients with
more than 450 WSIs representing at least 2 WSIs per patient. The samples in
this dataset were collected from 01/01/1990 to 01/12/2020. The IGR dataset
consisted of 48 patients with more than 100 WSIs collected from 01/01/2000 to
01/12/2016. For all included patients, clinical follow-up was updated regarding
survival, date of death, occurrence of metastasis and local recurrence. The IB
dataset was used to train and validate the models. The IGR dataset was used
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as an external validation cohort (testing dataset). Table 2 details the number
of patients, number of WSIs, recorded events of patients, location for collecting
samples for each dataset.

Ethics: This study was conducted following local ethical guidelines and
approved by the institutional research board of our institutions; all cases are
recorded in the French expert sarcoma network (NetSarc+) database, which is
approved by the National Committee for Protection of Personal Data (CNIL,
no. 910390).

Table 2. The details of studied datasets.

Dataset IB IGR

No. patients 220 48

No. WSIs 450 105

No. patients alive/dead 133/87 36/12

No. patients non-metastatic/metastatic 148/72 37/11

No. patients non-recurrence/recurrence 188/32 40/8

Location Institute Bergonié (Bordeaux, France) Institute Gustave Roussy (Villejuif, France)

Experiments Setup: We evaluated the performance of the model on three
survival tasks: Overall survival (OS), Metastasis free survival (MFS), or Local-
recurrence free survival (LRFS). For each task, we performed a 5-fold cross-
validation on the training dataset (IB). Then, the 5 corresponding models were
used to predict the scores for the patients in the external validation set. (IGR).
For all three tasks, we reported the C-index and Confidence Interval (CI-95%).
The reported C-index in this study was the average C-index of 5-fold cross-
validation.

As mentioned in Sect. 2.1, each patient had a hundred thousand tiles. For
clear computational reasons, we could not analyze all tiles; therefore, we selected
a subset of tiles (M = 10K) for the study. This value is empirically set after trying
different values for the number of tiles for each patient. As the output of this
step, each patient was represented as a matrix of (M × 2048), this matrix was
used as the input of the survival model.

Implementation Details: The model was implemented in the PyTorch library
[21]. The model was trained for 200 epochs using an Adam optimization [22] with
a weight decay of 10−4. The learning rate and batch size have been set to 3×10−3

and 1, respectively. An early stopping strategy was applied by monitoring the
validation loss to avoid over-fitting.

3.2 Experimental Results

In this section, we investigate the performance of our approach. First, we present
the model’s performances on tile features only for three survival tasks: OS, MFS,
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and LRFS. Then, we add more insight to the model by considering some clin-
ical features, compare the two approaches (with and without clinical features).
Finally, these results are compared to the results of a Cox model [23], a standard
model for survival prediction.

Table 3. The C-index scores (± CI-95%) for OS, MFS, and LRFS tasks on IB valida-
tion and IGR testing datasets (with WSI features only).

Dataset OS MFS LRFS

IB 0.6901 (± 0.0388) 0.7179 (± 0.0709) 0.6211(± 0.0537)

IGR 0.6294 (± 0.0153) 0.6820 (± 0.0491) 0.7600(± 0.0184)

Prediction from Tiles Features: Table 3 presents the obtained average C-
index (±CI-95%) for each task on each dataset. On the validation set (IB), we
obtained the average C-index scores of 0.6901 (±0.0388), 0.7179 (±0.0709), and
0.6211 (±0.0537) for OS, MFS, and LRFS tasks, respectively. On the external
validation set (IGR), the average C-index scores on OS and MFS tasks are
lower than the validation set, 0.6294 (±0.0153) and 0.682 (±0.0491) for OS and
MFS, respectively. However, the C-index on LRFS outperforms the score on
the validation set 0.76 (±0.0184). Although the C-index scores are a bit smaller
on the test set, the difference is tiny. This could indicate a good generalization
ability of our approach to unseen data.

As mentioned, the model provided the risk (event) score for each patient.
Then, the risk scores were used to divide the patients into two groups: low-risk
and high-risk, using Eq. 1. Finally, an estimator (e.g., Kaplan-Meier [13]) was
used to obtain the survival probability of the two groups.

dx = f(x) =

{
0 if Px < PI

1 if Px ≥ PI
(1)

where Px is the predicted risk score from the model and PI is the median of
the risk scores.

Figure 3 illustrates the survival curves (in 10 years) of low/high-risk patients
by using the Kaplan-Meier estimator [13] for each task on the IB validation
dataset and the IGR testing dataset. On the IB validation dataset (left column in
3),the statistical information between the two groups was significant (p < 0.05),
and the predictions of our model were good enough to separate the patients.
The prediction curves were compared to the Grade curves (Grade is a gold
standard to classify cancer tissues based on their appearance and behavior when
viewed under a microscope for helping the doctor know about the aggressiveness
of cancer. The grade is usually described using a number from 1 to 3 or 4. The
higher the number, the more different the cancer tissues look from normal tissues
and the faster they are growing), the curves provided by our scores are the same
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Fig. 3. The survival curves on IB validation (left column) and IGR testing (right
column) datasets. From top to bottom: the survival curves on OS, MFS, and LRFS
tasks compared to the histological Grade.

level or better in some periods (e.g., from 5 to 6 years). On the external cohort
(IGR) (right column in Fig. 3), the stratification for OS and MFS were similar
to grade and a bit better for LRFS.

Adding Clinical Features to Imaging: This section presents the results
of the enhanced version of the proposed deep learning model. In this version,
we consider additional clinical features beside the imaging features. In order to
compare to another approach on clinical features, clinicians have selected four
clinical features: age, size of tumor, grade, and histotype, to add to the tiles
features for the prediction of survival.

Table 4 summaries the C-index (± CI-95%) for each task on each dataset.
On the validation dataset (IB), the C-index is improved on all three survival
tasks: OS - 0.7835 (±0.034), MFS - 0.7389 (±0.034), LRFS - 0.6883 (±0.037).
On IGR dataset, the scores for three survival tasks are: OS - 0.6378 (±0.043),
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MFS - 0.6885 (±0.033), LRFS - 0.7272 (±0.068). It is the same improvement
on OS and MFS tasks. However, the improvement in IGR was not as large as
expected from the validation set results, even the score was decreased a little bit
on LRFS task. To explain the difference, we hypothesized that we have a bias
between the clinical data of the patients from the two centers.

Table 4. The C-index scores (± CI-95%) of OS, MFS, LRFS tasks on IB validation
and IGR testing datasets (with WSI and clinical features).

Dataset OS MFS LRFS

IB 0.7835 (± 0.034) 0.7389 (± 0.034) 0.6883 (± 0.037)

IGR 0.6378 (± 0.043) 0.6885 (± 0.033) 0.7272 (± 0.068)

Using the same strategy to evaluate the prediction scores as presented in the
previous section, the output scores of the model are used to split the patients
into low/high-risk groups. Then, we illustrate the two group curves by using the
Kaplan-Meier estimator (Fig. 4). On the IB dataset, the survival curves on OS
and MFS tasks are significantly separate, and they are the same level as the
grade curves; on the LRFS task, the model met difficulty to split the patients in
the first period of 5 years. The survival curves (for three tasks: OS, MFS, and
LRFS) on the IGR dataset are not significantly changed compared to the curves
without clinical features. It seems that adding the clinical has more effect on the
IB (C-index scores) than the IGR dataset.

In addition to the risk score, proposed model also provides the attention score
for each tile, which allows us to predict the survival pattern before predicting the
risk score. Figure 5 illustrates the top 15 tiles of a patient who had a metastatic
relapse, these tiles with high attention scores are the ones affecting the most
the model prediction. Among these, 4 interested normal tissue surrounding the
tumor, 9 originated from the tumor, and 2 normal tissue far from the tumor.

Comparison with the Cox Model: Cox model [23] is a popular model for
the prediction of survival. We have used the Cox model with two objectives: (1)
to verify the informative value of tile encoding, is it enough for use as a feature
in a survival model? (2) to compare the performance of our framework with a
classical method for survival tasks.

Table 5. The C-index scores from Cox model on OS, MFS, LRFS tasks.

Dataset OS MFS LRFS Nb. features

IB 0.7455 0.6835 0.7216 4 features (clinical)

IGR 0.57 0.7049 0.7381

IB 0.7591 0.7071 0.7274 5 features (clinical + risk score)

IGR 0.5733 0.74 0.7279
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Fig. 4. The survival curves (in 10 years) on IB (left column) and IGR (right column)
datasets by using imaging and clinical features. From top to bottom: the survival curves
on OS, MFS, LRFS tasks.

Fig. 5. Top-15 tiles with highest attention score of a metastasic patient from IB dataset.
The blue boxes highlights tiles of normal tissue surrounding the tumor tissue. (Color
figure online)
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The Cox model was trained on the IB dataset and tested on the IGR dataset.
We first try the Cox with 4 clinical features. Then, we used the outputs of deep
learning model (risk score) on WSI features as the fifth feature on the Cox model.
Table 5 shows the C-index scores on three tasks from two datasets (IB/IGR). We
see from the results that adding the tile features has improved the performance
of the Cox model. On the validation set, the Cox model has obtained a C-
index of 0.7455, 0.6835, and 0.7216 for OS, MFS, and LRFS tasks, respectively,
by utilizing clinical features. By adding the deep learning risk score, these C-
indexes have improved to 0.7591, 0.7071, and 0.7274 for OS, MFS, and LRFS
tasks, respectively. In addition, the C-index scores have been improved as well
on the testing set. Besides that, in the comparison between the results of Cox
model (5 features) and proposed Deep Attention-MIL model, our results on the
validation set are better than the Cox model on OS and MFS tasks, while we
are close to Cox’s result on the LRFS task.

Comparison with Other Deep Learning Survival Models: To have an
objective assessment of the performance of the model, we have re-implemented
the methods which have described in [10] and [6]. Then, we performed 5-fold
cross-validation and reported the average values of the C-index on IB dataset.
Table 6 shows the prediction power of the proposed framework compared to the
different survival models based on the average C-index scores of 5-fold cross-
validation on different survival tasks. We see from the table that the perfor-
mance of our proposed framework on OS and MFS tasks outperforms the other
methods, while we are less than a little bit on the LRFS task compared to the
Attention-based MIL average pooling approach. Generally, the proposed frame-
work achieves the best performance among all methods on most of survival tasks.

Table 6. Performance comparison of the proposed framework with other available
methods using average C-index scores (± CI-95%) of OS, MFS, and LRS tasks on IB
validation set. The bold values indicate the best scores for each task.

Method OS MFS LRFS

Deep Attention-MIL (proposed) 0.6901 (± 0.0388) 0.7179 (± 0.0709) 0.6211 (± 0.0537)

MesoNet [10] 0.6118 (± 0.0531) 0.6134 (± 0.0283) 0.5881 (± 0.0790)

Attention-based MIL [6] Max-pooling 0.5905 (± 0.0211) 0.6333 (± 0.1061) 0.5255 (± 0.0477)

Attention-based MIL [6] Average-pooling 0.6468 (± 0.0609) 0.6535 (± 0.0671) 0.6444 (± 0.0454)

4 Discussion and Conclusion

In this paper, we propose a Deep Attention-MIL framework for survival predic-
tions from WSIs. Our objective was to investigate the role of the WSIs for the
prognostic tasks along the clinical features. First, we have built a baseline from
the Cox model, which took into account the clinical only. Then, the deep learn-
ing risk score obtained from WSIs features was added to the analysis of the Cox
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model. In this study, we show that imaging adds some fascinating insight into
the Cox analysis, and that it can improve the performance of the Cox model.
Finally, we propose a fully deep learning framework to combine the tile and clin-
ical features for survival prediction in sarcoma patients. Our framework achieved
good performance for various survival prediction tasks, even better results than
the Cox model, and comparable to the gold standard for cancer studies. The
results have been also compared to several deep survival models, the compari-
son showed that our framework achieves higher performance than these methods.
One should keep in mind that this model may apply to sarcoma patients affected
with any sarcoma histotypes developed in the trunk walls and the limbs naive
of treatment.

The present study raises some questions that we plan to address in future
works. (1) Concerning the feature extraction step, one may replace the current
extractor with another extractor that retains a relation with studied images,
for example, we are examining a self-supervised learning model which can be
downstream to use as an extractor. (2) We plan on analyzing the effect of the
origins of the tiles on the tile selection step, in which we are ongoing to automate
the classification of the tiles from different regions. (3) One needs to investigate
the variability of the WSIs coming from various centers to improve the model’s
performances and develop an adequate harmonization method.
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Guillaume Sheehy1,2 , Sandryne David1,2 , Trang Tran1,2 ,

Frédéric Leblond1,2,3 , Cynthia Ménard2 , and Samuel Kadoury1,2
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Abstract. Breast-conserving surgery is a recommended treatment for
early-stage breast cancer. Recurrence and post-operative complications
are potential risks when margins are not entirely removed during surgery
or when timing constraints in the OR limit extensive analysis of resected
tissue. Raman spectroscopy (RS), a non-destructive optical technique,
enables the acquisition of molecular signatures of tissue samples allowing
confirmation of different diseases, including cancer. Typically, the mea-
sured spectra must be processed and used to train conventional machine
learning classifiers for cancer/normal discrimination. However, there is a
lack of real-time spatially-resolved information that allows confirmation
of cancer at a specific site during surgery. In this paper, we propose a
tissue characterization pipeline based on convolutional neural networks
(CNN), using 4 × 1D convolutional layers for automated feature extrac-
tion and a fully-connected layer as an alternative to classifying the com-
plete RS spectra (without previous feature selection). Using 169 samples
collected from 20 patients, we evaluated the performance of the pro-
posed model, achieving an accuracy and sensitivity of 0.93(0.01) and
0.94(0.02), respectively, improving over traditional SVM-based models.
Results demonstrate the potential of CNN models for classification in
the OR and highlight the value of efficient signal processing to enhance
their use for in-situ cancer detection.

Keywords: Raman spectroscopy · Breast cancer · Convolutional
neural networks

1 Introduction

It is estimated that each year, 287,850 women are diagnosed with invasive breast
cancer in the US alone [9]. Breast-conserving surgery (BCS) is one of the most
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suitable surgery techniques for early-stage cancer for both ductal carcinoma in
situ (DCIS) and invasive cases [11,14,22]. The success rate of standard of care
procedures depends considerably on the presence of residual tumor in the remain-
ing mammary gland. However, due to the difficulty in visual discrimination of
healthy from invasive cancer cells, incomplete excision can lead to recurrence and
require additional surgery. While macroscopic evaluation of the margins is often
performed intraoperatively, positive margins are still detected in up to 20–35%
of cases during postoperative staging [11,12,14,24].

Currently, the lack of accurate real-time intraoperative techniques to detect
cancer cells at the margins has motivated several studies to evaluate various tis-
sue properties [17,18,24]. One such technique, Raman spectroscopy (RS), char-
acterizes microscopic information providing real-time molecular signatures by
taking advantage of the tissue’s highly sensitive optical imaging properties [2,8].
Based on inelastic light scattering, RS has proven useful for ex-vivo characteriza-
tion of several diseases including Alzheimer’s, cardiovascular diseases and brain
cancer [1,5,16], despite being a weak signal [13,23]. Furthermore, the devel-
opment of optical fiber RS probes and the imaging modality’s non-destructive
nature favor its clinical usage [1,25] by facilitating the integration into exist-
ing workflows [10]. Nevertheless, the major limitation of integrating RS for true
real-time analysis within the operating room (OR) is its dependency on domain-
specific signal processing and feature selection steps [23].

With the generated spectral signatures, classification based on the distinctive
hand-selected peaks is typically done using machine learning methods such as
logistic regression [11] and support vector machines (SVM) [7,13,16,27], such
as in [4] for breast cancer detection, reporting sensitivity and specificity of 0.92
and 0.90 respectively. Due to the high number of features, dimensionality reduc-
tion based on principal component analysis [7,27] or feature selection using
Lasso regression are commonly used [10,15,21]. In recent years, autoencoders
(AE) have seen growing use in several medical image processing applications
[13,22]. Nonetheless, these current methods lack the task-specific automatic fea-
ture extraction properties that state-of-the-art methods such as deep learning
(DL) provide for high-dimensional inputs.

The challenges to achieve real-time breast cancer detection are two-fold: 1)
improving feature selection to maximize cancer cell discrimination and 2) reduc-
ing the run-time requirements to allow real-time RS analysis. Currently, both
challenges require significant human involvement in traditional workflows. We
propose a novel method for invasive breast cancer cell detection using an RS
system for rapid tissue characterization by leveraging a 1D CNN for automatic
feature extraction and classification. We compare this method against 2 SVM-
based approaches on a dataset of 20 patients. Furthermore, we hypothesize that
raw RS signals can adequately be used as inputs without significant loss in test
sensitivity thus achieving the necessary requirements for its inclusion in the OR
for breast cancer margin confirmation.
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2 Related Work

In 2020, Santilli et al. [22] explored a DL approach for basal cell cancer detec-
tion using RS. In their study, the authors proposed an autoencoder (5 -fully
connected layer encoder and 5 -fully connected layer decoder) to reconstruct the
input signal and extract a latent space for classification. Working with 127 nor-
mal and 63 cancerous tissue samples, they applied signal processing and data
augmentation to obtain 4000 samples in total, with which they trained a model
obtaining an accuracy of 0.96 in binary classification. Moving to breast cancer,
in 2021, Ma et al. [17] proposed a binary classification model using a single 1-
dimensional CNN layer and two dense layers; in a cohort of 20 patients, they
applied signal processing and data augmentation before the model training to
obtain 0.92 in accuracy. In their study, Fisher Discrimination Analysis (FDA)
and SVM (using different kernels) classifiers were trained and tested on the same
data for comparison.

In other fields, such as mineral and bacterial classification, where data are not
as limited, Zhou et al. [28] trained a deeper and more complex CNN-based model
for multiclass discrimination (top-1 accuracy of 0.92). Inspired by the ResNet
architecture, the authors propose a block consisting of 4 CNN layers, dense lay-
ers, activation functions, and an identity shortcut, a block used 3 times, along
with other CNN and dense layers, to form the complete model. The mineral
dataset contained more than 5000 samples, and the bacteria dataset 60 000;
thus, data augmentation was not applied. The authors applied a relatively sim-
pler signal processing since human body tissue’s significant autofluorescence was
absent, and emphasized the challenge and potential advantages of working with
raw signals rather than processed data.

3 Materials and Methods

3.1 Clinical Data and Setup

The cohort in this study consisted of 20 breast cancer patients: 19 with a con-
firmed diagnosis of invasive cancer who underwent open breast surgery (mas-
tectomy or lumpectomy) and one undergoing breast reduction surgery. For the
latter, optical measurements were acquired on the breast in which no tumor was
radiologically detectable while still diagnosed with breast cancer associated with
a tumor, but detected in the contralateral breast. Informed consent was obtained
before the patient underwent surgery (McGill University Health Center Ethics
Committees, approval number 2021–5997). All recruited patients had a cancer
grade inferior to 4 and a tumor larger than 1 cm. The RS system used for the
ex-vivo optical measurements (Reveal Surgical, Montreal, Canada), consists of
a light source (785 nm laser), a high sensitivity spectrometer (wavelengths from
800 nm to 900 nm) and an optical probe connected to the previous two compo-
nents. This probe was a hand-held single-point RS probe system, which inte-
grates ten optical fibers with a 100 µm diameter core: one central fiber used to
stimulate the tissue and nine used to collect tissue response. This setup allowed
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the mesoscopic in-contact characterization of circular shape sites of 0.5 mm in
diameter. More details on the system can be found in previous works [4,6].

Fig. 1. Stages of the data acquisition process. The process goes from BCS to
histopathological analysis and includes handling of fresh samples and signal process-
ing. The bottom row presents the data used for training the RS classification model
for cancer/normal discrimination, including an example of the 10 raw accumulations
and the processed spectrum for one inspected site.

3.2 Workflow and Data Acquisition

For training purposes, one fresh specimen per patient was inked and sliced
according to institution standards to obtain 5 mm thick slices. A pathologist
then selected 2 smaller samples (cancer and normal) per slice based on visual
inspection.

Several optical measurements were taken on different sites of each sample. A
measurement consisted of 10 accumulations (repeated measurements) acquired
at each location by setting the laser power to 100 mW with an exposure time
per spectrum ranging from 0.1 to 4 s; a background measurement was also made
before any accumulations with the laser off. More details on the selection of these
parameters and the interaction with the tissue can be found at [4,6].

After RS, samples were fixed and processed according to standard histopatho-
logical procedures and observed by an expert to identify cells on the stained
sample slides. The cells were reported as cancer (tumor cells, tumor stroma, or
necrosis), normal (connective tissue, stroma, fibroblast, collagen), or fat (adipose
cells) on every slide. For this study, the “Normal” label was attributed to the
inspected site when at least 80% of the inspected area contained normal cells,
and “Cancer” when 80% of the surface or more were cancer cells. Samples failing
to meet these criteria, as well as fat samples, were excluded from the study.
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The 10 accumulations were processed to obtain a single Raman spectrum per
site (see Fig. 1). This process includes averaging the accumulations, background
and cosmic rays subtraction, normalization with a NIST Raman standard (SRM
2214), autofluorescence removal, standard normal variate normalization, and
assigning each pixel of the spectrometer to a Raman shift. A quantitative quality
factor (QF) metric (range: 0–1) was computed from each resulting spectrum.
Spectra with a QF metric inferior to 0.6 were excluded [3,23].

3.3 Classification Model

In contrast to the widely used SVM methods for binary classification of RS for
cancer detection [8,20,21,27], DL approaches have only begun to be explored in
recent years [13,17,28]. We propose a CNN-based model, fed with complete RS
signals, to be compared with some SVM-based approaches.

Proposed Model: 1D CNN. In the proposed end-to-end DL-based approach,
the selected architecture consisted of 4 × 1D convolutional layers, each followed
by a batch normalization and ReLU activation function (see Fig. 2B) for the auto-
mated feature extraction. Specifically, 1D convolutions are well suited to detect
salient peak signals and automatically extract/generate features from complete
signals [22,28]. The number of layers (3) and features (120, 60, 30) in each were
selected to maximize classification performance while minimizing model capacity
to better adapt to smaller datasets inherent to a pilot study. For the discrimina-
tion component of the CNN, a fully-connected layer (30 features) allowed direct
training of the CNN for supervised binary classification. The paradigm taking
raw RS signals as inputs is the fastest of all compared methods as the fully end-
to-end CNN, after training, can perform inference in near real-time (<1 s). Note
that the paradigm taking processed RS signals as inputs still requires manual
intervention to correctly tune the preprocessing steps.

Fig. 2. Architecture of the DL-based models implemented for discriminating cancer
from normal tissue using breast cancer RS: (A) alternative AE+SVM comparative
method and (B) proposed 1D CNN. The baseline SVM model which is the same as in
[4] is not shown.
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Comparative Methods: SVM/AE+SVM. Previous studies have shown
the classification power of 4 specific peaks on the processed Raman fingerprint
(940 cm−1, 1004 cm cm−1, 1129 cm cm−1 and 1155 cm cm−1) with a feature
selection process based on Lasso regression [4]. We re-implemented the SVM
methodology following the parameters used by *** et al. [4] to establish our
baseline performance. An alternative method (AE+SVM) used an AE module
for dimensionality reduction (see Fig. 2A). It was initially trained offline to craft
features from the raw or processed RS signal. Here, both encoders and decoders
consisted of 4 × 1D convolutional blocks as in the proposed fully CNN method
with 120, 60, 30 and 30, 60 120 features respectively. In the online training
phase, the decoder component was discarded and the encoder was fixed to train
the SVM.

Implementation Details. In the proposed end-to-end DL approach, the 1D
CNN was trained for 30 epochs with Adam optimizer and a learning rate of
0.001. All convolutional layers used a kernel size of 3 and a stride of 2 as a down-
sampling strategy. Models were trained on an NVIDIA-SMI GPU with 16GB
RAM, optimizing for cross-entropy (1D CNN) loss function and implemented
using PyTorch [19].

The AE component was trained initially offline for 50 epochs with the Adam
optimizer and a learning rate of 0.001. Convolutional and transposed convolu-
tional layers with kernel size 3 and stride 2 were used for downsampling and
upsampling respectively. The minimization loss was the L1 loss for input signal
reconstruction. In the online training phase, the 30-feature latent embedding
was then used as inputs to the SVM model, implemented using Scikit-learn
[26], and trained using a linear kernel in both SVM and AE+SVM methods.
To reduce bias from training on an unbalanced dataset (see Table 1) the cost
function penalized false positives at double the weight.

Training and Evaluation. A 5-fold patient cross-validation was performed
for all experiments. The predictions and probabilities were used to compute the
area under the receiver-operating-characteristic curve (AUC), accuracy, sensi-
tivity, and specificity. The complete training-validation process was repeated 5
times for significance testing. Thus metrics were reported as the mean and stan-
dard deviation (SD) of 5 repetitions. The performances were evaluated using a
paired Student’s t-test; a p-value <0.05 was considered a statistically significant
difference.

The hyperparameters of the proposed model were selected by a small abla-
tion study in which different learning rates (0.001, 0.005, 0.01), epochs (20, 30,
60), number of layers (2, 4), and features ([n, 120, 60, 30], [n, 120, 120, 30])
were evaluated (see Appendix), with the results showing only the best model
(comparison based on AUC).
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4 Results

4.1 Clinical Data and Data Processing

In total, the dataset consisted of 169 inspected sites, with the corresponding
histopathological report used as ground truth (for training purposes) and spec-
troscopy features (see Table 1). Figure 3A–B shows the raw and processed signals,
averaged by the target class.

Table 1. Characteristics of the breast cancer patient cohort undergoing open breast
surgery for invasive carcinoma. Each acquisition site (spectral measurement) consisted
of 10 raw spectra, totaling 169 total sites.

Age at diagnosis (Cohort n=20)

Median (years) 67 (range: 54–77)

Number of sites acquisition

Median (per patient) 6 (range: 1–25)

Site label distribution

Normal (> 80% normal cells) 59

Cancer (> 80% cancer cells) 110

Number of spectral points

Raw RS 854†

Processed RS 631

† Raw sample consists of 10 accumulations, and 854 fea-
tures per accumulation.

Fig. 3. End-to-end RS signal transformation to obtain breast cancer tissue classifica-
tion. The (A) raw and (B) processed RS from 169 inspected sites were averaged by
class and plotted with the solid line; the shaded area represents the SD. (C) The ROC
curve for the proposed model (1D CNN) and the baseline (SVM).

4.2 Classification Performance

Table 2 presents the performance of the proposed 1D CNN method compared
with the baseline (SVM) and SVM with dimensionality reduction (AE + SVM)
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methods. Furthermore, the columns present the results of the 3 methods trained
on the standard processed RS inputs or the unprocessed signals (raw) aiming
to minimize run-time delays. Note that current state-of-the-art breast cancer
detection methods use SVM with processed signals and non-automatic feature
selection, obtaining an accuracy of 0.91 during ex-vivo experiments [4] and >0.96
in more controlled in-vitro experiments [27].

Table 2. Comparative results of the proposed end-to-end DL model against other
methods (5-fold, 5 repetitions cross-validation) for discriminating cancer from normal
tissue. Bold font indicates top-performing results from the respective category (col-
umn). Asterisks indicate statistically significant improvement of the proposed model
compared SVM baseline. All figures are presented as: mean(SD).

Model Metric Raw RS Processed RS

SVM AUC 0.82 (0.06) 0.95 (0.01)

Accuracy 0.78 (0.03) 0.90 (0.01)

Sensitivity 0.88 (0.03) 0.89 (0.01)

Specificity 0.57 (0.07) 0.91 (0.02)

AE + SVM AUC 0.77 (0.04) 0.89 (0.01)

Accuracy 0.72 (0.02) 0.86 (0.02)

Sensitivity 0.83 (0.03) 0.90 (0.03)

Specificity 0.51 (0.16) 0.77 (0.08)

1D CNN AUC 0.82 (0.06) 0.95 (0.03)

Accuracy 0.81 (0.04) 0.93 (0.01) *

Sensitivity 0.80 (0.05) 0.94 (0.02) *

Specificity 0.79 (0.04) 0.88 (0.04)

In two of the thresholded metrics, performance of the 1D CNN showed sta-
tistically significant improvements over baseline on processed inputs (accuracy
= 0.93 > 0.90, p < 0.05; sensitivity = 0.94 > 0.89, p < 0.05). No statistically
significant difference was found for AUC (0.95 = 0.95, p = 0.66 ≮ 0.05) and
specificity (0.88 > 0.91, p = 0.23 ≮ 0.05) across 5 repeated iterations. This then
demonstrates the proposed method’s ability at minimizing false negative rates
with a 17.8% reduction in relative error rates while not suffering during training
from class imbalance: with indistinguishable AUC metrics, we can conclude its
performance is not impacted by threshold choice (Fig. 3C).

Recent studies, such as [17], have also compared SVM and CNN, showing the
better performance of the latter. The researchers obtained an accuracy of 0.92
and 0.75 when using 1D CNNs with and without data augmentation, respec-
tively. The results of the present study were obtained with data from a com-
parable cohort and, so far, without data augmentation in the workflow (to be
included in the next stages).
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Furthermore, as the proposed method improves over both SVM-based
approaches—indeed no improvements were found when adding the AE com-
ponent to the SVM across all metrics—we thus obtain a model that removes the
need for expertly tuned features, streamlining the work of feature extraction, one
of the major benefits of the DL approach. While not as relevant for use cases
with already known hand-crafted features (such as this present study), these
results stay nonetheless promising for generalizing to new and explored types of
cancer.

When comparing the same proposed 1D CNN model trained on processed
vs raw RS signals (though not accounting for the larger number of input
features in the raw case), a significant improvement was observed in accu-
racy (0.93 > 0.81, p < 0.05), sensitivity (0.94 > 0.80, p < 0.05) and speci-
ficity (0.88 > 0.79, p < 0.05). This confirms that RS optical signal process-
ing remains the gold standard for maximizing tissue discrimination results in
all approaches—significant difference was found as well in AUC, accuracy and
specificity for SVM, and AUC and accuracy for AE+SVM.

Interestingly, no difference in AUC, accuracy or sensitivity was found between
1D CNN and SVM which were both trained on raw inputs: we assume the noise
level (as a product of a naturally weak signal and a significant background of
the tissue) inherent to unadulterated RS acquisitions poses an upper bound
in classification performance. Indeed, while every raw input model presented
worse results in terms of accuracy, specificity and AUC when compared with the
baseline SVM on processed RS signals, no statistically significant difference was
found for sensitivity for our proposed method on raw signals and the (processed
RS) baseline in the metric with highest clinical relevance: a sensitivity of 0.80 <
0.89, p = 0.06 ≮ 0.05. The resulting lower 20% false negative rate allows the
critical improvements for margin confirmation over the current 20–35% rate
during tumor removal surgery detected only postoperatively [12]. The fact that
this is achieved from raw RS without manual intervention shows the potential
to facilitate real-time analysis (once trained, the inference time range is 1.5 ms–
2.1 ms for a single spectrum).

The major limitation of this study is the low number of patients and samples
(20 and 169, respectively). Current ongoing studies are actively testing alter-
native wide-field RS systems to increase the number of samples and evaluating
the proposed model in larger available brain RS datasets. The proposed model
showed slight improvements over traditional SVMs, which could make it suit-
able for future integration into OR workflows, combined with recently developed
open-source tools [23] or DL strategies for standardized and effective processing.

5 Conclusion

In this study, we proposed a DL pipeline based on shallow CNNs for breast
cancer detection using RS that allows real-time automated feature extraction
and classification. Results show improvements in accuracy and sensitivity with
respect to conventional SVM-based approaches when analyzing processed RS
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signals and on-par performance with raw data. The fundamental role of signal
processing in cancer detection was also confirmed on ex-vivo data. While results
were shown to be similar to the state-of-the-art when using raw RS, there were
no significant differences in false negative rates either, suggesting its potential as
an alternative for incorporating RS in clinical OR workflows. This research thus
allows to get closer to a real-time implementation and helps reduce the need for
follow-up interventions in breast-conserving surgery. Future work will evaluate
the robustness on different tissue types and the role of data augmentation.
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Appendix

Figure 4 shows the results of the hyperparameter optimization. Except for the
learning rate, where a value of 0.001 presented better performance than the
alternatives, variations in the other parameters did not significantly affect the
classification performance. Thus, for the proposed model (described in Sect. 3.3),
we selected those that presented a subtle advantage; in the case of the number
of epochs, the range of training time for 30 epochs was 91–102 s, while for 60
epochs, the range was 173–199 s, so the former was chosen.

Fig. 4. AUC (mean value in red) for the 1D-CNN model during the hyperparameter
optimization, testing different epochs, learning rates, number of layers, and features.
Selected values are shown with an arrow. (Color figure online)
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1. Cordero, E., Latka, I., Matthäus, C., Schie, I., et al.: In-vivo Raman spectroscopy:
from basics to applications. J. Biomed. Opt. 23(07), 1 (2018). https://doi.org/10.
1117/1.jbo.23.7.071210

2. Cui, S., Zhang, S., Yue, S.: Raman spectroscopy and imaging for cancer diagnosis.
J. Healthcare Eng. 2018 (2018). https://doi.org/10.1155/2018/8619342

https://doi.org/10.1117/1.jbo.23.7.071210
https://doi.org/10.1117/1.jbo.23.7.071210
https://doi.org/10.1155/2018/8619342


Raman Spectroscopy Classification for Breast Cancer Confirmation 27

3. Dallaire, F., et al.: Quantitative spectral quality assessment technique validated
using intraoperative in vivo Raman spectroscopy measurements. J. Biomed. Opt.
25(04), 1 (2020). https://doi.org/10.1117/1.jbo.25.4.040501

4. David, S., et al.: In situ Raman spectroscopy and machine learning unveil biomolec-
ular alterations in invasive breast cancer. J. Biomed. Opt. 29(03), 1–33 (2023)

5. Desroches, J., Jermyn, M., Mok, K., Lemieux-Leduc, C., et al.: Characterization of
a Raman spectroscopy probe system for intraoperative brain tissue classification.
Biomed. Opt. Express 6(7), 2380 (2015). https://doi.org/10.1364/boe.6.002380

6. Desroches, J., et al.: Development and first in-human use of a Raman spectroscopy
guidance system integrated with a brain biopsy needle. J. Biophotonics 12(3), 1–7
(2019). https://doi.org/10.1002/jbio.201800396
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Abstract. Lung cancer is one of the leading causes of mortality world-
wide. The survival rate of lung cancer depends on its timely detection
and diagnosis. For pulmonary cancer detection, numerous Computer-
Assisted Diagnosis (CADx) systems have been developed that use the CT
scan imaging modality. Recent advancement in deep learning techniques
has enabled these CADx to automatically model high-level abstractions
in CT-Scan images using a multi-layered Convolutional Neural Network
(CNN). Our proposed CAD system comprises 3D residual U-Net for nod-
ule detection. Initially, the 3D residual U-Net resulted in false positive
results; therefore, a multi-Region Proposal Network (mRPN) was pro-
posed for the improvement of nodule detection. The detected nodules
are assigned a probability of malignancy. Furthermore, each detected
nodule is classified into four classes based on its respective malignancy
score. Extensive experimental results illustrate the effectiveness of our 3D
residual U-Net model. These results demonstrate the exceptional detec-
tion performance achieved by our proposed model with a sensitivity of
97.65% and an average classification accuracy of 96.37%. Performance
analysis demonstrates the potential of the proposed CAD system for
the detection and classification of lung nodules with high efficiency and
precision.
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1 Introduction

Lung cancer has the highest mortality rate in both males and females where
the 3-year survival rate for patients with lung cancer is 25% [19]. There are
no obvious symptoms at the beginning of lung cancer, and as a consequence,
most patients seek treatment at the later stage, minimizing survival chances.
Therefore, early detection and diagnosis of lung cancer is of the utmost impor-
tance [1]. The chest computed tomography (CT) imaging modality provides
high-resolution images of nodules with lavish details; however, pulmonary nod-
ules have inhomogeneous densities and lower contrast compared to blood vessel
segments and other anatomical structures, increasing the complexity of nodule
detection [2,12]. To assist radiologists in automatically detecting nodules and
replacing the time-consuming manual delineation of nodules, Computer-Aided
Detection (CADe) and Diagnosis (CADx) systems are developed. The latest
technologies use Artificial Intelligence (AI) to assist in the auxiliary diagnosis
of the disease and improve the overall accuracy of the diagnosis while decreas-
ing the detection time [10]. In recent literature, researchers have presented deep
learning-based CAD systems with promising results. The convolutional neural
network (CNN) framework has been used for the classification of nodules [7] and
the reduction of false positive (FP) [20]. Shen et al. proposed a Multi-Crop CNN
(MC-CNN) [18] and Setio et al. developed Multi-View CNN (MV-CNN) [16] to
classify lung nodule. A 3D-CNN model based on Volumes of Interest (VOI) and
a Fully Convolutional Network (FCN) was used to produce a score map for nod-
ule classification [9]. Both CADe and CADx systems have been independently
investigated [6], CADe are unable to provide lesion’s radiological characteristics,
consequently missing crucial information, while CADx systems do not identify
lesions and therefore do not possess high levels of automation. Therefore, a new
and advanced CAD system is needed that incorporates the benefits of detection
from CADe and diagnosis from CADx into a single system for better perfor-
mance.

1.1 Contribution

Our contribution is as follows:

– 3D Residual U-Net Model A novel nodule detection method is proposed
using 3D CT images for candidate nodule detection; compared to existing
2D U-Net models, our 3D residual model considers rich spatial features and
therefore has more discriminative selection criteria.

– Multi-Region Proposal Network (mRPN) We added four RPNs so that
nodules with varying diameters can be detected with ease and efficiency. The
RPN split-and-merge cascade network mitigates the problem of undetected
small nodules.

– Malignancy Score-Based Approach (MSBA) Malignancy score is calcu-
lated to classify each detected nodule into one of the four classes based on its
aggregate malignancy score.
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Fig. 1. Overview of our CAD system comprising of 3D residual U-Net and multi-Region
Proposal Network for lung nodule detection and classification.

– False-Positive Reduction Algorithm (FPRA) We proposed an algorithm
for a false positive (FP) reduction rate. Comparative results are much better
than the existing FP reduction algorithm. The performance of the proposed
CAD system is evaluated with state-of-the-art CAD systems using various
performance evaluation metrics. The experimental results showed that the
proposed method can not only be used for detection but also performs well
for the classification of pulmonary cancer nodules as malignant and benign.

1.2 Paper Organization

Section 2 describes our approach, Sect. 3 discusses the implementation details,
Sect. 4 describes the experimental results, and Sect. 5 concludes this paper.

2 Our Approach

We improved three aspects of the lung cancer detection models. First, the
datasets used by most authors do not consider the lung wall. We considered
location as one of the most important features and therefore found that most
nodules occur in close proximity to the lung wall. Therefore, our model avoided
omitting the edge of the lung. Secondly, we used 3d U-Net to filter candidate
nodules [22]. Finally, we applied CNNs for nodule classification.

2.1 Pre-processing

Our in-house dataset comprises 56 patients’ CT scans using a GE CT scan-
ner (with contrast and 3mm slice thickness) in DICOM format. Each CT scan
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is composed of 80 to 200 distinct slices and the primary tumor was manu-
ally delineated using 3D-Slicer software. We resized each CT-scan data using
average upsampling and average downsampling with bilinear interpolation by
ImageJ software. Furthermore, we scaled the pixel value using the min-max
scalar method and applied the CLAHE (Contrast Limited Adaptive Histogram
Equalization) method. Data augmentation is necessary because deep learning-
based models require large training datasets. The positive dataset to train our
proposed model was insufficient, leading to the overfitting problem. We increased
the positive dataset sample by using 128×128×128 window size. We used affine
transformations (rotation [0◦ to 270◦ around the center point], flipping, transla-
tion, and scaling) along with image enhancement by Gaussian High Pass filter
with kernel size 3 × 3 to improve image quality and sharpening filter. For each
image Pn(z) shown in Eq. (1), and S in Eq. (2) where rt, zt is the reset and
update to apply the affine transformations, respectively. While ĥt is the final
augmented state of the data. The affine transformations were standardized so
that the average samples have variance=1 and mean=0.

Pn(z) =
1

σ
√

2π
e
− (z − μ)2

2σ2
(1)

S[rt, zt] = Σ
n
k=−rW(b, W + hr) (2)

2.2 RPN Split-Merge Cascade Network

For the detection of various nodules having different diameters, we used varying
levels of RPNLx referring to different sizes of the nodule. We set the RPNL1

as small anchors to detect the diameter of the nodule τ that ranges from 3 mm
to 10 mm and has a volume υ <= 80 mm3 while RPNL2, RPNL3 and RPNL4

have large anchors to detect nodules ranging from τ = 10 mm–20 mm or υ = 80–
200 mm3, τ = 20 mm–30 mm or υ >= 200–300 mm3 and τ >= 30 mm or υ >
300 mm3, respectively. The motivation behind these RPNs is the four stages
of lung cancer that are categorized by different diameters, while RPNL1 is for
all the input nodules. The RPN split and merge cascade network starts with
the RPNL1 which is further split to either RPNL2 or the rest and then in the
next step it is input for the RPNL3 or RPNL4. Since each RPN level generates
separate RoI sets, a merging layer is required that combines the RoI sets into
one, the RPN levels merge layer RPNm takes the input RoI sets from all the
RPN levels (RPNL1, RPNL2, RPNL3, RPNL4) and outputs an aggregate RoI
set RoIagg. For the possibility of duplicate RoI or low objectiveness score RoI, we
used the non-maxima suppression (Non-MS) when the intersection over union
(IoU) overlap is above the threshold (threshold set at ρt = 0.5). After using
the Non-MS, we selected the top hundred RoI with low objectiveness scores
for further use. Nodule detection using different levels of RPN having various
anchors improves the detection phase, as both diameter and volume are taken
into consideration.
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2.3 3D Residual U-Net Training Strategy and Architecture

Our proposed model relies heavily on exploiting the symmetries of the 3D space
[16]. Therefore, the lung CT scan is converted into 3D fragments which are used
as input for the 3D residual net. For 3D CT images containing lung nodules,
the lung nodule regions were cropped to a size of 128× 128× 64. The 3D resid-
ual net detects the module malignancy based on the characteristics obtained
from the input image, and the probability of cancer stage is estimated [5]. We
used binary valued threshold (corrosion & expansion) and Laplacian of Gaus-
sian to segment the lung nodules (including lung wall), morphologic closing was
performed and connected component operations are labeled in order to remove
background and noise. A hole-filling algorithm based on contour information
was also used to reserve the nodules on the lung wall. We obtained a collection
of the interval [xk, yk] that contains all the intervals of Cn. M, so if n is large

enough,
n∑

k=1

|yk − xk| < η. But
n∑

k=1

|fc(yk) − fc(xk)| = 1. The segmentation issue

is addressed by taking N partitions of the set of features represented by P of
classes M , thus minimizing the cost term of the error function by assigning the
pixel P in Eq. (3) and Eq. (4)

min
M,x

N∑

i=1

‖yi − Pxi‖2
2 s.t. ∀i ‖xi‖0 (3)

E =
1

2

∑N

k=1

∑M

l=1
R

n
klV

2
kl (4)

Another challenge for our proposed model was learning the complex inner
spatial relationship between parameters using deeper CNN. We added multiple
residual blocks in the middle of the 3D U-Net model, which is capable of produc-
ing higher-level packet information. Taking into account the complex anatomical
structures surrounding the lung lesion, we needed an effective method to use con-
textual information at multiple levels [15]. An overview of the CAD system for
the detection of lung nodules using the 3D residual U-Net and multi-Region
Proposal Network (mRPN) is shown in Fig. 1.

2.4 Malignancy Score-Based Approach (MSBA)

For the classification of detected lung lesions in the nodule detection phase, the
Malignancy Score-Based Approach (MSBA) is used to achieve the assessment of
nodule malignancy of candidate lesions. For this phase, the regions of interest
(RoIs) that are marked by the nodule detection phase are redefined from each
marked location resulting from the last step. MSBA assigns the malignancy score
to RoIs by considering the metastasis information provided in the data set to
classify the candidate nodule into T0, T1, T2, and T3 stages. The details of
MSBA are provided in Algorithm 1. The neighboring pixels in 3D surrounding
the RoIs are taken into consideration in terms of intensity values and their
eigenvalues (Hessian Matrix and the Gradient Matrix) to assign an aggregate
score to each candidate-marked lesion. The result of this step is the allocation
of the average score to all candidate nodules.
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Algorithm 1. Malignancy Score-Based Approach
Require: n + 1 candidate nodules (x0, f(x0)), (x1, f(x1)), . . ., (xn, f(xn))
Ensure: Probability of the nodule to be pulmonary cancer nodule Pn(x)
1: Si,j ← 0, 0 ≤ i, j ≤ n;
2: Si,j = f [xi−j , xi−j+1, . . . , xi];
3: for i ← 0 to n do
4: Si,0 ← f(xi);
5: Thus, f(x) is obtained by taking the singular value decomposition;
6: end for
7: for i ← 1 to n do
8: for j ← 1 to i do

9: Si,j ← Si,j−1−Si−1,j−1
xi−xi−j

;

10: Sum of all the prediction values is done taking candidate nodule probability;
11: end for
12: end for
13: Pn(x) ← f(x0);
14: Rn(x) ← 1;
15: for i ← 1 to n do
16: Rn(x) ← Rn(x) · (x − xi−1);
17: Pn(x) ← Pn(x) + Si,i · Rn(x);
18: end for

Table 1. Confusion matrix of lung cancer classification Using 3D Residual U-Net

Stage T0 T1 T2 T3

T0 96.24% (652) 3.32% (24) 5.84% (42) 5.96% (45)

T1 5.94% (29) 92.42% (741) 3.76% (28) 6.64% (61)

T2 10.51% (93) 7.30% (84) 91.35% (722) 3.16% (22)

T3 4.45% (18) 13.18% (102) 6.14% (54) 89.10% (709)

3 Implementation

In addition to our in-house lung cancer CT dataset, we used publicly avail-
able datasets namely the LIDC-IDRI [4], ANODE09 [8], and LUNA16 [17] for
evaluation. The probability of nodules is calculated for the nodule candidates
generated by the classification model. On the basis of this probability, we mark
the nodules as benign and malignant in Fig. 2. To reduce false positive results,
we have proposed an algorithm that considers the probability of the candidate
nodule and further improves the classification of the nodules into different stages
while omitting false positive results at each stage. The details of our proposed
algorithm for false positive reduction are provided in Algorithm 2.

4 Experimental Results

Our results are obtained using the concept that if a detected nodule is very close
to the annotated nodule, we gain a score and the score is related to the FROC
curve on sensitivity at 1/8, 1/4, 1/2, 1, 2, 4, and 8 [21]. We obtained a score of
0.974 (MAX = 1) by randomly selecting data records as the test set (excluding
training and validation dataset), and an accuracy of approximately 0.997 was
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Fig. 2. Qualitative results of our proposed model on in-house dataset showing accu-
rately detected benign nodules (T0) in (a),(b),(c); benign nodules (T1) in (d),(e),(f);
malignant nodules (T2) in (g),(h),(i), malignant nodules (T3) in (j), (k) (l) and accu-
rately detected negative nodules in (m),(n) and (o).

recorded. The results are validated using the common performance metric of
computer-aided detection and diagnosis systems, i.e., average accuracy, speci-
ficity, and sensitivity. For a detailed performance analysis of our CAD system,
we applied the ROC curve, which presents the TPR (True Positive Rate) as the
FPR function (False Positive Rate). We plotted the sensitivity (TPR) with their
respective FPR to compare our CAD system with state-of-the-art CAD systems.

The effectiveness of our method 3D Residual U-Net is verified by comparing
it with Convolutional Neural Networks (CNN), Massive training artificial neural
networks (MTANNs), Fully Convolutional Networks (FCN), Region-based Fully
Convolutional Networks (RFCN), and RNN (Recurrent Neural Networks), the
performance results are depicted in Fig. 3. Table 2 summarizes the performance
of our proposed CAD system in comparison to other CAD systems in terms
of accuracy, sensitivity, specificity, False Positive (FP), and average FP (using
FPRA). It is visible from the confusion matrix in Table 1 that the proposed
model maintains a high sensitivity for the classification of types of lung cancer
even in the region where FP per scan is low. Although the proposed model
achieved a high sensitivity value for stage classification for T0, T2, and T3, the
sensitivity value of T1 decreases as the FP per scan becomes small, which is
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Algorithm 2. False-Positive Reduction Algorithm
Require: Candidate nodule V-RoI VR, sphericity s, ellipticity e, volume v, entropy S, maximum

convergence Cmax, intensity SD σI , maximum radii Rmax, neighbors’ intensity In
Ensure: Elimination of FPs from the candidate nodules yielding the nodules Np(x)
1: Ii,j ← 0, 0 ≤ i, j ≤ n;
2: Ai,j = f [xi−j , xi−j+1];
3: Initial Elimination Phase:
4: First round of Elimination of FPs from candidate nodules non-spherical and having numerous

voxels;
5: for i ← 0 to n do
6: VRi, 0 ← fini(xi)=s+In+v;
7: fini(x) is obtained by sum of the sphericity, neighbors’ intensity and volume;
8: If fini(xi) for any V-RoI VRi, 0 is less than the threshold Tini, V-RoI is eliminated;
9: end for

10: Advance Elimination Phase:
11: for i ← 1 to n do
12: for j ← 1 to i do
13: VRi, j ← fad(xi)=v+s+e+S+Cmax+σI+Rmax+In;

14: Eigenvalues Hessian matrix Hi(x) and Gradient matrix Gi(x);
15: If fad(xi) for any V-RoI VRi, j is less than threshold Tad, V-RoI is eliminated;
16: Features sum fad(x) is done taking candidate nodule features into consideration for the

classification phase;
17: end for
18: end for
19: Classification Phase:
20: Np(x) ← fcl(x0);
21: for i ← 1 to n do
22: Np(x) ← Np(i)+fad(xi). Hn(x) + Gi(x);
23: end for

Table 2. Performance comparison of our proposed model with state-of-the-art

Method Accuracy Sensitivity Specificity FP per scan Avg FP (using FPRA)

CNN [23] 0.797 0.753 0.865 0.070 0.065

TumorNet [11] 0.811 0.815 0.899 0.090 0.083

FCNN [3] 0.843 0.837 0.967 0.110 0.071

DFCNet [13] 0.967 0.821 0.954 0.040 0.029

mRFCN [14] 0.913 0.731 0.864 0.063 0.034

Ours 0.997 0.976 0.942 0.045 0.026

impractical in the clinical environment [14]. A summary of our proposed CAD
system in terms of stage classification is shown in Table 1. The experimental
results demonstrate the superiority in the classification and class generalization
of our proposed 3D Residual U-Net based CAD system. A comparison of nodule
classification by CAD systems is shown in Fig. 4.

A comparison of our model with the existing state-of-the-art CADe systems
on the LIDC-IDRI dataset with varying nodule sizes is shown in Table 3. We
have compared the detection accuracy of our CADe system with the detection
accuracy of five other existing systems, which are evaluated on the dataset from
the LIDC-IDRI database. The high accuracy of our proposed model with varying
sizes signifies the detection capability of our 3D Residual U-Net model. Our
method has promising results in discriminating cancer nodule types without
compromising detection accuracy (Fig. 4).



Fully Automated CAD System for Lung Cancer Detection and Classification 37

Fig. 3. The plot illustrating the sensitivity of the 3D residual model on the Luna16
dataset with the state-of-the-art CAD systems. The x-axis denotes the average number
of FP per scan while the y-axis represents the sensitivity.

Fig. 4. Comparison of our 3D residual U-Net CAD system nodule classification with
state-of-the-art CADe systems.
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Table 3. Comparison of our proposed model on nodule classification with the state-
of-the-art CADe systems using CT dataset (subset of inhouse data, LIDC-IDRI [4],
ANODE09 [8], LUNA16)

Model <= 3 mm 5 mm 10mm 20 mm 30 mm >30 mm Avg ACC*

CNN [20] 0.67 0.78 0.86 0.91 0.88 0.85 0.83

FCNN and SVM [7] 0.75 0.79 0.77 0.91 0.92 0.93 0.73

Multi-Crop CNN [18] 0.68 0.81 0.90 0.89 0.87 0.91 0.85

Multi-View CNN [16] 0.67 0.81 0.86 0.90 0.91 0.87 0.84

VOI Based 3D-FCN [9] 0.90 0.88 0.93 0.94 0.87 0.96 0.91

Ours(3D Residual U-Net) 0.94 0.96 0.96 0.97 0.98 0.98 0.96
* Avg ACC means Average Accuracy; Row 2 to Row 7 represent different nodule sizes

5 Conclusion

We proposed a novel CAD system for the automatic detection and classification
of lung nodules in CT images. Our CAD system comprises two models, the
3D residual U-Net and multi-Region Proposal Network (mRPN), which have
demonstrated effective nodule detection results even with small-sized lesions. For
the classification of nodules, the aggregate malignancy score is calculated for each
detected nodule. Based on this score, detected nodules are classified into four
classes; T0, T1, T2, and T3. Experimental results illustrate the efficacy of our
proposed CAD system in comparison to state-of-the-art CAD systems that use
various performance evaluation metrics. Our proposed CAD system is generic
and therefore could possibly be extended to the detection of other cancers.
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Abstract. Ulcerative colitis (UC) is a chronic inflammatory disease of
the large bowel characterised by quisent periodes and relapses. Endo-
scopic grading of the severity of UC is done by using a widely accepted
scoring system known as the “Mayo Endoscopic Scoring” (MES). The
MES score is largely based on the recognition of phenotypic features of
the mucosal wall, and thus the subjectivity in clinical scoring is unavoid-
able. An automated grading and characterisation can certainly help to
minimise the inter-observer variability and help trainees to get useful
insights. For the first time, we a system capable of not only providing
an automated MES scoring system, but also of generating a descrip-
tion of visible MES phenotypic mucosal representations in these endo-
scopic images through captions. Our aim is to combine the visual fea-
tures together with word sequence embeddings that are learnt jointly
through a recurrent neural network to predict such scene descriptions.
In this work, we explore various recurrent neural network architectures
together with other backbone architectures for visual feature representa-
tions. Our experiments on held-out test samples demonstrate high simi-
larity between the reference and the predicted captions.

Keywords: Colonoscopy · Ulcerative colitis · Image captioning ·
Classification · Deep learning

1 Introduction

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcer-
ative colitis (UC), and characterised by a chronic inflammation affecting the
gastrointestinal tract. As per recent estimates, the annual incidence of UC in
Europe is approximately 24.3 cases per 100,000 populations per year, and in
terms of prevalence it is about 322 cases per 100,000 population per year [9].
However, these numbers are projected to rise as specific geographical patterns
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have indicated an increasing incidence of UC in countries such as Asia and North
Africa [14]. Since UC is a lifelong illness, patients with this condition often expe-
rience relapses and remissions which lead to significant impact on their quality
of life [4]. Additionally, due to the persistent nature of UC, patients have six
times increased risk of colorectal cancer (CRC). Several studies indicate that
the colonoscopy surveillance plays a crucial role in mitigating the development
to colorectal cancer (CRC) [10]. Therefore, an early and accurate diagnosis is
critical to enhance the patient’s chances of long term disease remission, as treat-
ment approaches and subsequent monitoring vary depending on the severity of
the disease.

Colonoscopy is considered as the gold standard diagnostic procedure for UC
as it enables an accurate assessment of the extent and severity of the disease.
Several evaluation methods exist, with the Mayo Endoscopic Score (MES) being
the most extensively used [5,11]. The MES system takes into account several
features including loss of vascular pattern, erythema, friability, granularity, ero-
sions, mucosal bleeding, and ulcerations [11,16]. Here, friability is an important
characteristics that can only can be assessed during endoscopy. Based on these
criteria, UC is classified into four severity scores, ranging from 0 to 3, with MES
0 indicating inactive disease with normal mucosa, MES 1 mild disease, MES 2
moderate disease, and MES 3 severe disease. However, the grading of UC in
endoscopy relies mainly on the level of expertise and ability of health profession-
als. Similarly, UC grading can be very challenging as several images can have
bleeding cause by biopsy and not be due the inflammation. Thus, it is often dif-
ficult to assess vascular pattern on one simple image because there is a variation
between individuals and regions of the colon. Several studies have highlighted
substantial inter- and intra-observer variability in the diagnosis and scoring of
UC due to the subjectivity of qualitative image interpretation in endoscopy
[15,17].

The importance of developing AI tools for automated classification of UC has
increased over recent years in an attempt to improve diagnostic accuracy and
reduce subjectivity. Most of these studies have employed deep learning models
for developing computer-assisted diagnosis (CAD) for classifying inflammation
severity according to MES [6,12,13,19]. A recent survey paper that highlighted
current works on applying deep learning (DL) for UC classification suggested
that UC is highly complex, with highly subtle changes between mild to severe
types makes DL method struggle in accurately classifying [1]. Using multi-modal
data (e.g., both images and text embedding) can help learn clear representations
compared to a single modality (e.g., only images). Moreover one of the limitations
of utilising DL algorithms for diagnostic tasks is the inherent black box nature
of these methods, as they fail to explain the machine-generated decisions on
complex findings such as UC grading, hindering clinical adoption.

In this paper we propose a proof-of-concept approach for image captioning
to develop trustworthy and reliable automated scoring system for UC (Fig. 1).
Our approach aims to provide comprehensive description of UC manifestations in
endoscopic images. Our approach employs an Encoder-Decoder architecture. For
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.

Characterized by 
marked erythema, 
deep ulcers, severe
friability, the mucosa 
shows luminal mild 
bleeding, there is 
complete 
obliteration of the 
vascular pattern 
observed this 
evidence suggest a 
MES3.

There is patchy
obliteration of the 
vascular pattern, the 
mucosa 
demonstrates 
superficial ulcers, 
moderate friability, 
marked erythema, 
mucosal bleeding is 
present these 
findings support a 
MES2.

Normal vascular 
pattern along with 
normal mucosa, no 
visible erosions, or 
bleeding were 
observed these 
findings indicate a 
MES0.

A diagnosis of 
MES1 is supported 
by observations of 
patchy obliteration
of the vascular 
pattern along with 
moderate erythema,
low friability,
erosions, and 
mucosal bleeding.

Fig. 1. Sample images with caption. Mayo Endoscopic Scoring with description as
caption for each categories for grading patients with ulcerative colitis in inflammatory
bowel disease.

the encoder we test a range of distinct backbone architectures, each optimised
for feature extraction. For the decoder, we make use of several recurrent units
including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and
basic Recurrent Neural Networks (RNN). The purpose of our approach is to gen-
erate accurate captions based on several endoscopic features, thereby facilitating
the evaluation of disease severity based on the MES system, while tackling the
prevailing issue of interpretability associated with machine-generated decisions.

The rest of this paper is organised as follows. In Sect. 2 we discuss recent
relevant research on UC scoring and automated medical report generation using
DL. Section 3 outlines the proposed method, while Sect. 4 covers implementation
details, dataset preparation, and results. Finally, discussion and conclusion are
presented in Sect. 5.

2 Related Work

2.1 Deep-Learning Based UC Scoring

In UC grading, several studies have developed deep-learning based classifica-
tions models for assessing colonoscopic inflammations. Sutton et al. [13] used a
DenseNet121 achieving an accuracy of 87.5% and an AUC of 0.90 on the Hyper-
Kvasir dataset. While Ozawa et al. [8] developed a GoogLeNet-based computer-
aided diagnosis system trained using 26,304 colonoscopy images from a total of
841 patients, obtaining an AUROC of 0.98 for Mayo 0–1 versus 2–3 inflamma-
tions. However, these two studies were limited to a binary classification approach.
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In contrast, Bhambhvani and Zamora [2] developed a model capable of individ-
ual MES discrimination (1,2 and 3) using ResNeXt-101. Their proposed model
achieved AUC values of 0.96, 0.89, and 0.86 for MES 3, 2, and 1 respectively,
and an overall accuracy of 77.2%. Following this similar approach, Xu et al. [18]
proposed a 3-way MES classification model based on the EfficientNet-b5 archi-
tecture using HyperKvasir dataset. The model incorporated ArcFace loss, an
additive angular margin penalty based on softmax, and achieved top-1 accu-
racy of 75.06%, top-2 accuracy of 93.68%, and an F1 score of 76.15%. All of
these methods are only classification methods and do not use image captioning
strategy to describe the endoscopic findings.

2.2 Automated Medical Report Generation

So far, a limited number of studies have been conducted related to image caption-
ing in the context of endoscopic diagnosis. Fonollà et al. [6] developed a CADx
system to automatically generate colorectal polyp (CRP) reports based on Blue
light imaging Adenoma Serrated International Classification (BASIC) using four
descriptors. The study model consists of an EfficientNetB4 based encoder and
feature extractor, with the classification layers replaced by a global average pool-
ing layer. The authors employed a pre-trained BERT module for learning polyp
sequences. The visual and text information were later concatenated and passed
through an LSTM to capture word temporal relations. Evaluated using n-gram
based metrics like BLEU and ROUGE, and METEOR scores were used with the
model providing BLUE-1 of 0.67, ROUGE-L of 0.83, and METEOR of 0.50. To
the best of our knowledge, no documented research has focused on automating
the report generation for ulcerative colitis.

3 Method

Our proposed method integrates the Encoder-Decoder framework (Fig. 2). We
adopted different backbones for encoding and recurrent units for decoding in
this architecture including DenseNet121, ResNet50, and Res2Net50 as encoders,
each pre-trained on ImageNet. For the decoding part, we experimented with
LSTM, GRU, and RNN and also with one or two layers.

As shown in Fig. 2, the high-level feature vectors obtained from the encoder
are concatenated with the embeddings of reference captions, produced through
an embedding layer, and then fed into the selected recurrent unit. To prevent
overfitting and to promote model robustness, we implemented a dropout layer
before the final fully-connected layer. This layer maps the outputs to the size of
the vocabulary, and the resulting label indexes are subsequently converted into
corresponding words, forming the predicted captions.

3.1 Feature Extraction

The initial stage of our medical image captioning model involves feature extrac-
tion. For this task, we experimented with three distinct ImageNet pre-trained
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Fig. 2. UC image captioning block diagram. Feature map predictions from an
ImageNet pre-trained encoder network are used and concatenated with the embeddings
of the reference UC captions. Embeddings are then passed to recurrent unit (either
single or two in our experiments). Finally, a dropout and fully connected layer is used
for predicting label indexes that are converted to the corresponding words representing
predicted caption.

Table 1. Experimental results on validation set for classification of MES (0, 1, 2 and
3). Best results is presented in bold.

Backbone Metrics

Accuracy F1-score PPV Recall

DenseNet121 75.75% 74.70% 76.33% 75.75%

ResNet50 75.75% 74.16% 76.74% 75.75%

Res2Net50 78.78% 78.32% 78.08% 78.78%

backbones: DenseNet121, ResNet50, and Res2Net50. We first trained these archi-
tectures to classify images based the MES into four classes: MES-0, MES-1,
MES-2, and MES-3. Table 1 presents the classification accuracies correspond-
ing to each of the selected backbones in our experimental evaluation. Once
trained, the learned weights from this classification task were retained. Dur-
ing the encoder phase of our captioning model, images are processed by one
of these pre-trained backbones, each serving as a feature extractor. This was
accomplished by removing the final layer of the architecture and utilizing the
weights from the MES classification training to ensure the extracted features
were relevant and fine-tuned to our medical dataset.

The backbone transforms the input image into a set of high-level features,
which are output of the encoder phase. To ensure stable learning, we apply batch
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normalization to prevent shifts in feature value distributions during training,
thus promoting consistent learning progress and predictable model performance.

3.2 Sequence Processing and Decoding

For the sequential data pre-processing, the input captions were tokenized and
transformed into a dense vector representation via word embedding layer. This
representation reduces the input data dimensionality and captures semantic rela-
tionships between words. Within each processing batch, a reference caption was
randomly selected from the set to ensure variation and enrich the training pro-
cess. During this process, special tokens are introduced to handle specific sce-
narios, which will be described as follows.

First of all, the <SOS> (Start Of Sentence) token is used to mark the begin-
ning of each caption, whereas the <EOS> (End Of Sentence) token signifies the
conclusion of each caption. Additionally, in order to ensure consistency in the
input size of the recurrent units, all captions were padded with the special token
(<PAD>) in order to reach the maximum sequence length, which in this case is
set to 33 words.

The resultant embeddings are subsequently concatenated with the visual fea-
ture vectors thus integrating the multi-modal information. This process produces
a comprehensive representation that captures both visual features and the cor-
responding text annotations. The combined tensor is subsequently fed to the
chosen recurrent unit. The final fully connected layer modifies the recurrent unit
output to it align with the dimension of the target vocabulary. A linear trans-
formation is used to generate the next word in the sequence by identifying the
word with the highest score.

To generate captions for input images during inference, we use a greedy
decoding approach. The process is initiated with the special token <SOS>. At
each time step, the model generates a probability distribution over the target
vocabulary for the next word, based on the current state and input. The word
with the highest probability is selected as the next word in the sequence. This
sequence of operations continues until the special token <EOS> token is pre-
dicted.

4 Experiments and Results

4.1 Implementation Details

Dataset The dataset used to conduct the experiments is composed of 982
images sourced from both publicly available and in-house data (only MES 0).
In house data was used only to balance the class imbalance in the MES 0 cate-
gory. The public Hyperkvasir dataset comprises of 851 images [3] and in-house
comprised of 131 images of MES 0. The available dataset included MES scores
(0 to 3); however, it lacked descriptions. We employed the widely used clini-
cally accepted MES scoring description [11,16]. For experiments, we split the
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images and the corresponding caption labels into 80% for training (785), 10%
for validation (99), and 10% for testing (98) purposes. Table 2 shows the sample
distribution across sets based on the MES, and Fig. 3 illustrates the number of
samples for the endoscopic visual feature descriptors.

Table 2. Size of train, validation and test set for each MES scoring.

MES Train Validation Test

0 177 22 22

1 145 18 18

2 362 46 45

3 101 13 13

Fig. 3. Data distribution. Number of samples for each of the descriptors that are
used to categorise different stages of ulcerative colitis.

Protocol for Reference Caption Generation. All labels were conducted by
a the first author under the supervision of experts in the domain. Subsequently,
these annotations were reviewed and adjusted by a senior gastroenterologist.
Each image was associated with three distinct reference captions. While the
finalised captions are derived from these expert-reviewed annotations, they do
adhere to a schema. Specifically, the descriptions incorporate information from
five critical endoscopic features: vascular pattern, erythema, friability, the pres-
ence of erosions or ulcers, and the MES. It is important to emphasize that these
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captions are dynamic and vary across images, even when they belong to the same
MES grade. For instance, an MES-2 does not necessarily imply the presence of
other tissue features associated with disease severity.

Example of Sample Template: There is [vascular pattern], the mucosa
demonstrates [degree of erythema], [degree of friability], and [erosion/ulcers],
[degree of bleeding] is present; these findings support a [MES scoring]. It is to be
noted that the template is not static and can differ depending on the mucosal
properties. The same MES grade can have a very different descriptive analysis
based on the mucosa.Figure 1 shows examples of the reference captions.

Training Setup. We train our UC image captioning model using the PyTorch
framework on a GPU setup comprising four NVIDIA Tesla K80 GPUs. We use
a learning rate (lr) of 3e−4 and an Adam optimiser. We set 100 epochs with
a batch size of 32 to train the model presented in all experiments. Finally, all
input images were resized to 224 × 224 pixels, and we use a 256-dimensional
word embedding.

Evaluation Metrics. To assess the performance of our classification backbones
used in this dataset, we employed widely used F1-score, positive predictive value
(PPV), recall and accuracy. Finally, to assess the performance of our final model,
we used a set of evaluation metrics commonly employed in image captioning
tasks. These metrics provide a quantitative measure of how well a model gener-
ates accurate and semantically relevant captions. These include the BLEU (Bilin-
gual Evaluation Understudy) using four different n-grams, ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) score which is recall focused metric,
and Cosine similarity which measures the similarity between two texts based on
the cosine of the angle between their vector representations. We also provide,
frames-per second to provide the relative inference time for each model under
investigation.

4.2 Evaluation Results

Quantitative Results. As observed in Table 3, GRU and RNN with
DenseNet121 provided best metric values over other combinations for two-
layered recurrent networks, achieving a BLEU-4 of 0.7352 and 0.7326, respec-
tively. For example, the models which used DenseNet121 as feature extraction
consistently outperformed those using ResNet50 and Res2Net50, with average
improvements in BLEU-4 scores by 31.9% and 30.2%, respectively. Similarly,
models employing GRU as the decoder significantly surpassed those using RNN
and LSTM. On average, the GRU-based models improved the BLEU-4 scores
by 3.2% and 4.2% over models using GRU and LSTM, respectively.
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Qualitative Results. Figure 5 presents examples of the generated captions
for each MES class. The captions are analysed for descriptor identification accu-
racy, wherein red highlights indicate incorrectly identified descriptors, while blue
highlights denote correctly predicted descriptors. Finally, the black words in the
captions correspond to related terms that are contextually expected and hold no
specific relevance to the descriptor identification task.

As it can be observed in the figure, the model consistently achieved accurate
predictions for the majority of the desired descriptors in each case, particularly

Table 3. Experimental results on test set for automated image description generation.
The two best results are presented in bold.

Layers Backbone RU Metrics

BLUE-1 BLUE-2 BLUE-3 BLUE-4 RL CSim FPS

N = 1 DenseNet121 LSTM 0.8789 0.8166 0.765 0.7203 0.8430 0.8907 22.52

GRU 0.8768 0.8133 0.7607 0.7179 0.8430 0.8817 22.86

RNN 0.8766 0.8117 0.7593 0.7153 0.8365 0.8863 22.95

Res2Net50 LSTM 0.772 0.6784 0.6057 0.5491 0.7314 0.7823 33.55

GRU 0.7782 0.6948 0.6308 0.5753 0.7405 0.7944 27.18

RNN 0.6948 0.6741 0.6167 0.5616 0.7087 0.7635 27.88

ResNet50 LSTM 0.6308 0.6590 0.5853 0.5357 0.7205 0.7703 32.71

GRU 0.5753 0.6699 0.6047 0.5541 0.7178 0.7766 33.55

RNN 0.7405 0.6695 0.6103 0.558 0.7087 0.7519 35.84

N = 2 DenseNet121 LSTM 0.7944 0.8195 0.769 0.7251 0.8911 0.8511 22.28

GRU 0.8855 0.8263 0.7783 0.7352 0.8981 0.8478 21.93

RNN 0.8847 0.8255 0.7766 0.7326 0.8952 0.8512 21.00

Res2Net50 LSTM 0.7614 0.6592 0.5843 0.5354 0.7222 0.7222 24.54

GRU 0.7760 0.6900 0.6336 0.5807 0.7205 0.7689 25.78

RNN 0.7632 0.6619 0.5870 0.5371 0.723 0.7706 27.90

ResNet50 LSTM 0.7614 0.6592 0.5843 0.5354 0.7222 0.7222 24.54

GRU 0.7550 0.6641 0.6073 0.5534 0.7618 0.7058 31.39

RNN 0.7623 0.6650 0.5969 0.5476 0.7190 0.7638 33.47

Fig. 4. Confusion matrix for our best model (DenseNet121-GRU with 2-layers)
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from MES-0 to MES-2. In the case of MES-3 examples, the model encoun-
tered challenges in accurately predicting certain instances, such as distinguish-
ing between moderate and severe friability or differentiating between superficial
and deep ulcers. These specific endoscopic features present inherent challenges
in discriminating between varying levels of severity.

5 Discussion and Conclusion

In this study, we aimed to investigate, the performance of various combinations
of feature extraction backbones and recurrent units to generated automated
descriptions for UC scoring. Our main objective was to identify the most effec-
tive combination that would produce the most accurate captions based on our
descriptors. We observed that employing the DenseNet121 backbone in conjunc-
tion with 2 layers GRU and RNN obtained overall best performance, with respec-
tive BLEU-4 scores of 0.7352 and 0.7326 for automated UC scoring descriptions

Fig. 5. Examples of generated captions for each MES class using the best model
(DenseNet121 with GRU).
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(Table 3). This superior performance could be attributed to several factors: 1)
DenseNet121, as a feature extractor, has shown to be particularly effective for
similar tasks [7] and domain [13]; 2) The dense connections and feature reuse
mechanism employed by this feature extractor contribute to enhanced gradient
flow and feature propagation across the network resulting in more diversified fea-
tures and less redundant parameters; 3) finally as for the decoder model, despite
its simplicity, the GRU effectively captured the necessary temporal dependencies
in the captioning task since GRU focuses on short-term dependencies, which was
suitable given the short sequence length of our captions.

The generated captions exhibited a strong similarity between the ground
truth captions. Moreover, our model consistently achieved accurate prediction
of severity levels for most of the endoscopic features, thus effectively grading UC
in the MES-0 to MES-2 classes (Fig. 4). It is important to note that the model
encountered difficulties when predicting the MES-3 classification, as well as the
associated characteristics indicative of this level of severity. For this classifica-
tion, the model predicted features that were more commonly associated with
an MES-2 classification rather than MES-3. This discrepancy could potentially
be attributed to the limited exposure of the model to severe disease instances
during the training phase, thereby affecting its ability to accurately predict more
severe cases.

In conclusion, our model was capable of generating accurate descriptions
based on the most relevant endoscopic features, thereby effectively grading UC.
Moreover, our study emphasized the value of automated report generation in
addressing the lack of explainability often associated with DL models. By gen-
erating understandable and accurate descriptions, we can develop more trans-
parent and explainable medical diagnosis systems.
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Abstract. Mammography is commonly used as an imaging tech-
nique in breast cancer screening but comes with the disadvantage
of a high overdiagnosis rate and low sensitivity in dense tissue.
Dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI)
features higher sensitivity but requires time consuming dynamic imag-
ing and injection of contrast media, limiting the capability of the
technique as a widespread screening method. In this work, we extend
the masked autoencoder (MAE) approach to perform anomaly detec-
tion on volumetric, multispectral MRI. This new model, coined
masked autoencoder for medical imaging (MAEMI), is trained on two
non-contrast enhanced breast MRI sequences, aiming at lesion detection
without the need for intravenous injection of contrast media and tempo-
ral image acquisition, paving the way for more widespread use of MRI in
breast cancer diagnosis. During training, only non-cancerous images are
presented to the model, with the purpose of localizing anomalous tumor
regions during test time. We use a public dataset for model development.
Performance of the architecture is evaluated in reference to subtraction
images created from DCE-MRI. Code has been made publicly available:
https://github.com/LangDaniel/MAEMI.

1 Introduction

Breast cancer depicts the most commonly diagnosed cancer and leading cancer-
related cause of death in women worldwide [15]. In general, early cancer detection
allows for effective treatment and improves survival substantially [7]. Mammog-
raphy is most frequently employed as a breast cancer screening technique and
was shown to be able to reduce mortality by up to 30% [8]. However, sensitivity
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of the approach depends on breast density. For extremely dense tissue 40% of
cancers are not detected [27], while in other cases an overdiagnosis rate of 31%
has been reported [17].

DCE-MRI refers to the acquisition of images before, during and after intra-
venous injection of contrast media, which improves the signal intensity of neoan-
giogenically induced vascular changes that allows for better detection of lesions
[26]. The technique features a higher sensitivity for detection of breast cancer,
when compared to mammography [23]. However, dynamic imaging and long
scan times in combination with high costs limit widespread use for screening
[16]. Moreover, injection of gadolinium-based contrast agents were identified to
be able to cause side effects, like nephrogenic systemic fibrosis, which raised con-
cerns about the broader health impact of the technique [10]. Additionally, patient
motion during imaging can lead to artifacts in subtraction images, resulting in
incorrect identification of tumor lesions.

Deep learning algorithms may have the power to overcome the need for
contrast injection and temporal imaging and could be trained on non-contrast
enhanced MRI for tumor detection. However, networks require large amounts of
data with detailed voxel level annotations from medical experts, when trained
in a supervised fashion.

Unsupervised anomaly detection aims to identify abnormal cases without
the requirement for labeled examples. This can be achieved by reconstruction-
based methods. Models are trained to recover their input, while restrictions on
the architecture are applied. Such restrictions can be imposed by information
bottlenecks [5] or by the alteration of input images via application of noise [14] or
removal of image parts [29]. During training, normal examples are shown to the
model. In this way, the model is only able to reconstruct image parts stemming
from the normal distribution reasonably well, while abnormal image parts result
in higher error rates that can be utilized to generate anomaly maps during test
time. Applications of anomaly detection (AD) in the medical imaging domain
include but are not limited to: chest X-ray, optical coherence tomography (OCT)
and mammography. Most research in the field has been conducted on MRI of
the brain, e.g. [2,14].

We demonstrate the capability of an unsupervised model for anomaly detec-
tion on non-contrast enhanced breast MRI. Namely, the MAE approach of He et
al. [12] is here extended to be able to handle 3D multispectral medical imaging
data, and trained for anomaly detection on a public breast cancer dataset. Per-
formance of the model is evaluated in reference to subtraction images generated
from DCE-MRI.

1.1 Contribution

In this work we demonstrate the capability of anomaly detection models for iden-
tification of tumor lesion on non-contrast enhanced MRI. To do so, we remodel
the MAE architecture and extend and further develop the approach of Schwartz
et al. [24], enabling unsupervised anomaly detection on 3D multispectral medical
imaging data. Definition of input patches of the vision transformer (ViT) archi-
tecture is advanced and the positional embedding employed by He et al. [12] is
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refined. During training only healthy, non-cancerous breast MRIs are shown to
the model, aiming to identify breast lesions as anomalies during test time. To
the best of our knowledge, we are the first to make the following contributions:

– We extend and further adapt MAEs to perform anomaly detection on 3D
multispectral medical imaging.

– We demonstrate the capability of unsupervised anomaly detection to identify
pathologies in non-contrast enhanced breast MRI.

– We show that performance of anomaly detection algorithms on non-contrast
enhanced MRI is on par with that of DCE-MRI generated subtraction images,
paving the way for a more widespread use of MRI in breast cancer diagnosis.

2 Related Work

Lesions detection on breast MRI has been studied by training of a deep Q-
network [18], modification of RetinaNet [1], and utilization of the ResNet archi-
tecture [13]. Synthetic contrast enhancement was investigated by training of a
generative adversarial network (GAN) [19], utilization of a U-Net like architec-
ture [4], and combination of a encoder-decoder architecture with a LSTM layer
[11].

Notably, all of those approaches were trained on DCE-MRI data, relying on
injection of contrast media, and employed supervised training. To the best of
our knowledge, we are the first to perform unsupervised anomaly detection on
non-contrast enhanced MRI, without the need for contrasted enhanced images,
even during training.

The ability of deep convolutional autoencoders (AEs) to perform reconstruc-
tion based unsupervised anomaly detection on imaging data has been investi-
gated by several studies. Kascenas et al. [14] trained a denoising AE on brain
MRI, such that unhealthy pathologies were removed during test time. Zavrtanik
et al. [29] developed a convolutional AE, masking part of the input to perform
inpainting on natural imaging and video data.

He et al. [12] developed the masked autoencoder (MAE) model on 2D natural
images, to solve a classification downstream task. Schwartz et al. [24] modified
the architecture to allow for anomaly detection on natural imaging data. Here,
we advance the approach to be able to perform anomaly detection on 3D medical
imaging data stemming from different input sequences.

Prabhakar et al. [20] improved the initial MAE architecture by incorporation
of a contrastive and an auxiliary loss term, and trained their architecture on
classification of brain MRI. Our model relies on image reconstruction and com-
putation of a voxel-wise difference in the downstream task. Therefore, we use
unaltered mean squared error (MSE) as a loss.

Xu et al. [28] developed SwinMAE, embedding Swin transformer in the MAE
architecture, for supervised segmentation of parotid tumors in the downstream
task. They trained their model on MRI, feeding slices from different sequences
to the color channels of a 2D model. In contrast, we train our model in 4D,
handling different 3D MRI sequences fully unsupervised.
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Due to its high masking ratio, anomalies are likely to be removed by MAE.
This led Tian et al. [25] to employ the model on anomaly detection in 2D
colonoscopy and X-ray data. They introduced memory-augmented self-attention
and a multi-level cross-attention operator in the underlying ViT architecture, to
limit dependency on random masking. In contrast, we train our model on mul-
tispectral 3D data, without any modifications applied to the ViT architecture,
maximizing the likelihood for anomalies to be removed by application of a high
number of random masks.

3 Dataset

We used the public Duke-Breast-Cancer-MRI cohort [21,22] from The Cancer
Imaging Archive [6]. The set includes axial breast MRI data of 922 patients com-
prising a non-fat saturated pre-contrast T1-weighted sequence, a fat-saturated
T1-weighted pre-contrast sequence and several post-contrast fat-saturated T1-
weighted sequences. Tumor lesion annotations were given in the form of bounding
boxes and segmentation maps, labeling breast tissue, were provided. We stan-
dardized all images to the same voxel spacing of 0.75mm×0.75mm×1.0mm and
cropped them to involve the chest area only. Intensity values of the images were
normalized to a mean and standard deviation value of 0.5 and 0.25 per image.
Cases involving bilateral breast cancer were removed from the cohort. Thus,
each of the remaining patients exhibited one breast that contained a tumor
lesion, treated as abnormal/unhealthy, and another breast not affected by can-
cer, treated as normal/healthy. The dataset was split into a training set of 745
patients, a validation set of 50 patients and a test set of 100 patients. Notably, no
normal - abnormal pairs of the same patient were involved in different datasets.
Due to the high memory requirements of transformer models, MRI-patches of size
240 × 168 × 8 voxels in lateral-posterior-superior (LPS) directions were cropped
from both MRI sequences to be then divided into ViT-patches and processed by
the encoder.

Following clinical routine, subtraction images S between the image acquired
before Ipre and all of the m images acquired after injection of contrast media
Ikpost were computed:

S =
1
m

m∑

k=0

(
Ipre − Ikpost

)2 ∗ min3×3×2, (1)

with a minimum filter of size 3 × 3 × 2 applied for noise removal.

4 Method

A scheme of our model can be seen in the lower part of Fig. 1. We modified
the ViT architecture of Dosovitskiy et al. [9] to 3D multispectral MRI, i.e. the
positional embedding and definition of ViT-patches was redefined and enhanced
to incorporate a third dimension, see Fig. 2.
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Fig. 1. DCE-MRI imaging vs. MAEMI. For DCE-MRI, several MRIs before, during
and after injection of contrast media are acquired. MAEMI uses different random
masks for generation of pseudo-healthy recovered images. Both methods construct
error maps by calculation of the mean squared error difference between each of the
post-contrast/reconstructed images with the pre-contrast/ uncorrupted image.

Fig. 2. 3D multispectral embedding. ViT-patches from different sequences are com-
bined and embedded using a 3D convolutional layer. The positional embedding is
advanced to 3D, adding a additional dimension to the sinusoidal encoding. As for
the MAE model [12], no mask tokens are used in the encoder.

This 3D-ViT was then embedded in the MAE approach [12], which had to be
extended to be able to handle three dimensional input from different sequences.
To do so, generation of mask tokens and random masking of ViT-patches had to
be remodeled. The approach, coined masked autoencoder for medical imaging
(MAEMI), uses a 3D-ViT with 12 transformer blocks and a embedding dimen-
sion of 768 as encoder, while for the decoder a embedding dimension of 384 and
a depth of 4 has been chosen.
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In addition, we further improved the anomaly detection approach of Schwartz
et al. [24]. MRIs were processed by patches, such that memory requirements of
the transformer based architecture could be reduced, enabling exploitation of
whole MRI volumes from different sequences. Only examples of non-cancerous
breast tissue were presented to the model during training. At inference, a strided
overlapping patch scheme, further specified below, has been chosen, in order to
reduce artifacts on patch borders. Multiple random masks have been used, such
that the likelihood for the anomaly to be removed was maximized.

Error maps Es
i per input sequence s, non-fat saturated (NFS) and

fat saturated (FS), were constructed by computation of the MSE between the
reconstructed patches Rs

i and the unmasked MRI-patches Is:

Es
i = (Is − Rs

i)
2 ∗ min3×3×2, (2)

with a minimum filter of size 3 × 3 × 2 applied for further reduction of artifacts.
On a voxel level, final error scores were computed by the mean value of all patch
predictions. Error maps of both multispectral input sequences, NFS and FS,
were then summed up and convolved with the same minimum filter as before:

E =
1
2

(
ENFS + EFS

) ∗ min3×3×2, (3)

for generation of a final image level anomaly map.

Training Specifics. During training, only MRI-patches of healthy breasts,
containing no tumor lesions, were shown to the model with patches being cropped
randomly. In addition to random cropping, random flipping on the coronal and
sagittal plane was applied as a augmentation technique during training. A batch
size of 6 and a learning rate of 10−3 were applied. Each model was trained
for 1000 epochs. Weights of the trained model of He et al. [12], developed on
ImageNet, were used to initialize the transformer layers in the encoder, while
weights of the encoding layer and the decoder were randomly initialized. During
test time, a stride of 64 × 42 × 2 performing 6 repetitions was used to process
whole MRI volumes.

Evaluation. We used voxel wise area under the receiver operating character-
istics curve and average precision as performance measures. Only voxels inside
the breast tissue segmentation masks were taken into account for computation,
as injection of contrast media also leads to an uptake in tissue outside of the
breast area, see Fig. 7 (Supplementary Material). Furthermore, incorporation of
voxels outside of patients’ body, containing air and therefore obviously no tumor
tissue, would lead to an overestimation of performance.

Utilizing average precision (AP) as a performance measure, one has to con-
sider the large imbalance between normal and abnormal tissue labels, leading to
an expected small baseline performance. This baseline can be computed by the
number of voxels inside the bounding box normalized by the number of voxels
inside the breast tissue segmentation mask and is given by a value of 0.046 for
the test set.
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5 Results

ViT-patch size and masking ratio have been varied for hyperparameter tuning.
The best performing model featured a masking ratio of 90% and a ViT-patch size
of 8 × 8 × 2. area under the receiver operating characteristics curve (AUROC)
and AP results are shown in Table 1. Example results are shown in Fig. 3.

Table 1. MAEMI achieves a
higher AUROC, while DCE-MRI
features a higher AP.

AUROC AP

MAEMI 0.732 0.081

DCE-MRI 0.705 0.127

Table 2. Ablation study on different
(axial) ViT-patch sizes, for a fixed mask-
ing ratio of 90%. Smaller patch sizes lead
to higher performance.

ViT-patch size AUROC AP

6 × 6 × 4 0.724 0.0784

8 × 8 × 4 0.712 0.0777

12 × 12 × 4 0.660 0.0750

24 × 24 × 4 0.546 0.0560

Ablation Studies. We studied the influence of the patch size and masking
ratio on model performance. Figure 4 presents the dependency of AUROC and
AP on the masking ratio for a fixed ViT-patch size of 8× 8× 2. Example results
are given in Fig. 6 in the Supplementary Material. Dependency on the ViT-patch
size for a fixed masking ratio of 90% is given in Table 2. The Nvidia RTX A6000
used for training, featuring 48 GB of memory, only allowed for a smallest size
of 8 × 8 × 2, i.e. a size of 6 × 6 × 2 could not be probed. Therefore, the slice
dimension of ViT-patches was fixed at a value of 4 pixels, probing only different
axial sizes.

6 Discussion

We developed a multispectral 3D transformer-based anomaly detection model,
that has been trained to identify breast lesions on non-contrast enhanced MRI.
Model performance was at the same level as for DCE-MRI generated subtraction
images. To the best of our knowledge, we are the first to demonstrate the ability
of breast lesion identification relying solely on non-contrast enhanced MRI.

Eliminating the need for DCE would result in a drastic reduction of costs and
acquisition time, two major factors limiting widespread application of MRI in
breast cancer screening [16]. Patients would be spared from intravenous injection
of contrast media, which is known to be able to cause side effects, and artifacts
in subtraction images, introduced by patient motion, can be removed as a source
of error. Therefore, we paved the way for a more widespread application of MRI
in breast cancer diagnosis. Clinical differences and benefits between MAEMI and
DCE-MRI will still need to be investigated in a larger clinical study.
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Fig. 3. Example results. The first two columns show the non-contrast enhanced images
used as an input to the anomaly detection model, and the last two columns present
subtraction images generated by DCE-MRI and anomaly detection maps generated by
MAEMI, respectively. For patients in rows A, B and C, anomaly maps show superior
performance over subtraction images. For patient D, both methods are able to identify
the pathology. For patient E, our model only detects the borders of the pathology,
while the subtraction image identifies the lesion.

MAEMI achieved a higher AUROC while DCE-MRI generated subtraction
images resulted in better AP performance. Ground truth annotations were given
in the form of bounding boxes, depicting only a rough delineation of tumor tissue.
Determination of an optimal performance measure remains an active area of
research [3].

We found an optimal masking ratio of 90% for our model. Tian et al. [25]
employed the standard masking ratio of 75% for their 2D model, and did not
report any ablation studies. Higher masking ratios increase the likelihood of the
anomaly to be removed, leading better results. However, for very high ratios the
model is not able to recover the input reasonably well, see Fig. 6. This is likely
to causes the steep decline in Fig. 4.
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Fig. 4. Ablation study on the masking ratio for a fixed ViT-patch size of 8 × 8 × 2.
High masking ratios lead to better performance, with an optimum reached at 90%.
Afterwards, performance suffers from a steep decline. This behaviour is likely to be
caused by the fact that larger masking ratios increase the probability of the anomaly
to be removed. However, at a certain level the model is not able to recover the input
images, causing the steep decline.

In future work, we will test the performance of other anomaly detection
methods for identification of tumor lesion on non-contrast enhanced MRI. How-
ever, models are most often developed on 2D data, i.e. on slices of brain MRI,
and have to be advanced to be able to handle 3D data first. Furthermore, the
capability of anomaly detection to replace injection of contrast media will also
be studied for other entities, e.g. in liver MRI.

Data Use Declaration. All data used for this study is publicly available from
The Cancer Imaging Archive [6,21] under the CC BY-NC 4.0 license. Code has
been published at: https://github.com/LangDaniel/MAEMI.
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Fig. 5. Single reconstruction examples. The left block shows axial slices of T1 non-fat
saturated MRI-patches and the right block T1 fat saturated slices. The first column
shows unaltered MRI-patches, the second column the masked model input and the
third column the MRI-patches recovered by MAEMI. Examples represent a masking
ratio of 90% (for the whole 3D patch) and a ViT-patch size of 8×8×2. During inference,
multiple masks are generated to maximize likelihood of anomalies to be removed.

Fig. 6. Reconstruction examples for different masking ratios and a fixed ViT-patch
size of 8 × 8 × 2. Very high ratios (>90%) lead blurry images, while moderate ratios
allow for reconstruction of detailed structures. On the one hand, reconstructions need
to be detailed enough to reduce the amount of false positive findings. On the other,
high masking ratios increase the likelihood of the anomaly to be removed, leading to a
better true positive rate.
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Fig. 7. Subtraction images and anomaly maps were multiplied with segmentation
masks to remove anomalies lying obviously outside of the breast tissue. This is mainly
needed as contrast agent is also taken up in organs outside of the breast. The left column
shows the raw subtraction/anomaly map, and the right column the raw maps multi-
plied with the segmentation mask of the image in the upper left corner. Performance
metrics were only calculated for voxels lying inside the segmentation mask, limiting
the influence of trivial predictions, i.e. voxels that represent air do not containing any
anomalies.

References

1. Ayatollahi, F., Shokouhi, S.B., Mann, R.M., Teuwen, J.: Automatic breast lesion
detection in ultrafast DCE-MRI using deep learning. Med. Phys. 48(10), 5897–
5907 (2021)

2. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for
unsupervised anomaly segmentation in brain MR images: a comparative study.
Med. Image Anal. 69, 101952 (2021)

3. Bercea, C.I., Wiestler, B., Rueckert, D., Schnabel, J.A.: Generalizing unsupervised
anomaly detection: towards unbiased pathology screening. In: Medical Imaging
with Deep Learning (2023)
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1 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
2 Guerbet Research, Villepinte, France

rebeca.vetil@guerbet.com
3 Department of Radiology, Hospital of Annecy-Genevois,
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Abstract. We address the problem of learning Deep Learning
Radiomics (DLR) that are not redundant with Hand-Crafted Radiomics
(HCR). To do so, we extract DLR features using a VAE while enforcing
their independence with HCR features by minimizing their mutual infor-
mation. The resulting DLR features can be combined with hand-crafted
ones and leveraged by a classifier to predict early markers of cancer. We
illustrate our method on four early markers of pancreatic cancer and val-
idate it on a large independent test set. Our results highlight the value
of combining non-redundant DLR and HCR features, as evidenced by an
improvement in the Area Under the Curve compared to baseline methods
that do not address redundancy or solely rely on HCR features.

Keywords: Early Diagnosis · Pancreatic Cancer · Radiomics ·
Variational Autoencoders · Mutual Information

1 Introduction

Computational methods in medical imaging hold the potential to support radi-
ologists in the early diagnosis of cancer, either by detecting small-size abnormal
neoplasms [14], or even earlier in the disease course by recognizing indirect signs
of malignancy. Such signs are usually subtle and organ-dependent, thus requir-
ing a time-consuming and demanding clinical assessment. For example, in the
case of pancreatic cancer, radiologists analyze the overall shape of the organ,
check for fat replacement and note whether the pancreas shows atrophy and/or
senile characteristics [7,18,19]. The identification of cancerous signs using auto-
mated tools can be based on radiomics, which are descriptors of texture and
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shape of a medical image, computed based on spatial relationships between vox-
els and their intensity distribution [11,12]. Radiomics can be divided into two
categories: (i) Hand-Crafted Radiomics (HCR), which are based on predefined
mathematical formulas [11,12]; (ii) Deep Learning Radiomics (DLR), estimated
using deep neural networks [10,23], which may unveil additional complex rela-
tionships between voxels. HCR are generally extracted by open-source frame-
works such as pyradiomics [24]. While such tools facilitate the standardization
of the HCR, they only provide a limited number of predefined features. On the
other hand, DLR features are typically extracted using either discriminative
or generative models. Discriminative models frequently rely on one or multiple
simple CNNs [3–5,13,20]. To prevent overfitting, some methods extract DLR
by utilizing pretrained models trained on large datasets like ImageNet [3,5,20].
The deep neural networks commonly employed for computing these DLR fea-
tures consist of multiple layers, with each layer producing potential features as
its output. As a result, the choice of the layers to retain varies, with each method
employing different heuristics to identify them [5,20]. In the realm of generative
models, auto-encoder (AE) networks are widely used [2]. AEs encode an image
in a latent vector that is subsequently used to reconstruct the original image.
This latent vector is considered to encapsulate the most descriptive features of
the input image, making it a natural choice for representing the DLR [10,21].

The two types of radiomics are complementary: the computation of DLR
is data-driven, which ensures that the extracted features are adapted to a spe-
cific problem or type of data. On the other hand, the predefined and generic
definitions of HCR may make them less adapted for a given specific task, but
favors generalization and interpretability. Therefore, it has been recently pro-
posed to combine HCR with DLR, arguing that this approach could result in
an improved feature set for predictive or prognostic models [2]. The literature
reports two main approaches to perform this combination: decision-level meth-
ods that train separate classifiers on DLR and HCR before aggregating their
predictions [3,5,16], and feature-level methods that concatenate the two types
of radiomics in a single feature vector which is then leveraged by a classifier
[4,13,20]. These approaches extract HCR and DLR features independently, with-
out guaranteeing complementarity between the two sets of features. As a result,
the extracted DLR may be highly redundant with the HCR, limiting the value
of their combination.

Given this context, we propose to extract DLR features that will complement
the information already contained in the HCR. Our contributions are two-fold:

– A deep learning method, based on the VAE framework [9], that extracts non-
redundant DLR features with respect to a predetermined set of HCR. This
is achieved by minimizing the mutual information between the two types of
radiomics during the training of the VAE. The resulting HCR and DLR fea-
tures are leveraged to predict early markers of cancer.

– Validation of the proposed approach in the case of pancreatic cancer, using
2319 training and 1094 test subjects collected from 9 medical institutions with
a split performed at the institution level. This is all the more important as
most combination approaches have been solely evaluated in a cross-validation
setting on mono-centric data [3,5,16].
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Fig. 1. Overview of our method. Starting from a masked image, Hand-Crafted
Radiomics (HCR) are calculated analytically, while Deep Learning Radiomics (DLR)
are extracted by the encoder of a VAE. These two types of radiomics are subsequently
combined and given to the decoder for image reconstruction. The independence of HCR
and DLR is enforced by the minimization of the Mutual Information (MI). The latter
is approximated by the density-ratio trick [8], involving a discriminator Dλ. Following
the training of the VAE, a classifier CM can be trained using both the HCR and DLR
features to predict a specific marker of interest.

2 Method

Our method, illustrated in Fig. 1, relies on a generative model that recreates a 3D
input image from the concatenation of HCR and DLR features. Feature extrac-
tion is done analytically for the HCR and through a VAE encoder for the DLR.
Independence between the features is encouraged through the minimization of
their mutual information, which is estimated by a discriminator relying on the
density-ratio trick [8]. Finally, the resulting features are given to a classifier for
cancer marker prediction.

Generative Framework. Let x ∈ R
V be a 3D image acquired via a standard

imaging technique, and y ∈ {0, 1}V the corresponding binary segmentation mask
of a given organ, with V the number of voxels. In order to focus on a specific
organ and facilitate the extraction of specific features, we work on the masked
image x∗ = x × y. We postulate the existence of a generative model enabling us
to create an image x∗ from a low-dimensional representation space [h, d] where
h ∈ RNh and d ∈ RNd represent the HCR and DLR features with Nh and Nd

being the number of hand-crafted and deep features, respectively. Assuming that
x∗ follows an independent and identically distributed Gaussian distribution, and
that fθ is a non-linear function mapping the concatenation of vectors [h, d] to
the masked image x∗, we hypothesize the following generative process:

pθ(x∗ | y, h, d) =
V∏

v=1/yv=1

1√
2πσ2

exp
(x∗

v − fθ([h, d])v)2

2σ2
(1)
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HCR and DLR Features Computation. We place ourselves within the
VAE framework [9] and assume that p(d) follows a Gaussian distribution with
zero mean and identity covariance. HCR features are calculated analytically,
while DLR features are computed by introducing the approximate posterior
distribution qφ(d | x∗). We hypothesize qφ(d | x∗) ∼ N (μφ(x∗), σ2

φ(x∗)I), and
maximize a lower bound of the marginal log-likelihood log pθ(x∗ | y). We obtain
the following loss function:

LVAE = −Eqφ(d|x∗)[log(pθ(x∗ | y, h, d))] + KL[qφ(d | x∗) | p(d)] (2)

where KL refers to the Kullback-Leibler divergence.

Mutual Information Minimization. To promote the independence between
HCR and DLR features, we propose to minimize their Mutual Information (MI),
expressed here as KL[q(h, d) | q(h)q(d)], where q(h, d) represents the joint distri-
bution of the DLR and HCR features, and q(h)q(d) the product of their marginal
distributions. These terms involve mixtures with a large number of components,
making them intractable. Moreover, obtaining the direct Monte Carlo estimate
necessitates processing the entire dataset in a single pass. Thus, we sample from
these distributions to compute the MI: to sample from q(h, d), we randomly
choose an image x∗

i , extract its HCR features hi as well as its DLR features
di using the VAE encoder, and concatenate them. Samples from q(h)q(d) are
obtained by concatenating vectors hk and dj with k �= j. Finally, to compute
the MI, we need to compute the density-ratio between q(h, d) and q(h)q(d). To
do so, we resort to the density-ratio trick [8], which consists in introducing a
discriminator Dλ([h, d]) able to discriminate between samples from q(h, d) and
samples from q(h)q(d). Thus, we obtain:

KL[q(h, d) | q(h)q(d)] = Eq(h,d)

[
log

q(h, d)

q(h)q(d)

]
≈

∑
i

ReLU

([
log

Dλ(hi, di)

1 − Dλ(hi, di)

])
. (3)

where the ReLU function forces the estimate of the MI to be positive, which
prevents from back-propagating wrong estimates of the density-ratio. Dλ imple-
mentation is detailed in Sect. A.1 of the appendix.

Optimization. The final loss function is:

L = LVAE + κKL[q(h, d) | q(h)q(d)] (4)

This loss function is composed of two terms: the left-hand term, which is the com-
mon VAE loss function and promotes the reconstruction of the masked image
while regularizing the approximate posterior distribution; and the right-hand
term which minimizes the MI between q(h, d) and q(h)q(d), and enforces the
extraction of DLR features which are not redundant with HCR features. The
importance of the MI in the loss function is weighted by κ, which we empiri-
cally set to 1 (see Sect. A.2 of the appendix for more details). To ensure that
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Fig. 2. Portal CT scans showing early markers of pancreatic cancer. Pancreas
are delineated in orange. (A) shows a normal pancreas. White arrows indicate an
abnormal enlarged tail (B), a parenchymal atrophy (C), fat replacement in the neck of
the pancreas (D) and senile characteristics (E). (Color figure online)

the density-ratio is well-estimated, as explained in [8], we opt for an alternate
optimization scheme between the VAE model and the discriminator Dλ: every 5
epochs, we freeze the optimization of the VAE, train the discriminator for 150
epochs, and continue the optimization of the VAE model.

Early Cancer Markers Prediction. Once the VAE model is trained, DLR
can be extracted and leveraged to predict cancer markers. We propose to train,
for each marker of interest, a classifier CM based on the concatenation of HCR
and DLR extracted by our model. Unlike VAE training, which is unsupervised
and task-agnostic, CM training is supervised and specific to a cancer marker.

3 Experiments

We illustrate our method on the pancreas, for which we aim to predict four early
markers of abnormality that manifest prior to the onset of visible lesions:

(i) Abnormal shape: Changes in the shape of the pancreas can be associated
with pancreatic cancer as the tumor growth can lead to various structural
changes in the pancreas [15,25];

(ii) Atrophy: Pancreatic atrophy may signal pancreatic cancer [19] and can indi-
cate small isodense lesions [26];

(iii) Fat replacement: Fat replacement is characterized by the accumulation of
fat within the pancreas and is associated with various metabolic diseases,
pancreatitis, pancreatic cancer, and precancer [7,17,19]. While this mainly
modifies the texture, severe fat replacement can also affect the shape by
inducing lobulated margins;

(iv) Senility: Anatomical changes in the pancreas, such as pancreatic atrophy,
fatty replacement and fibrosis have been documented in elderly individuals
and increase the susceptibility of individuals to pancreatic cancer [7,18].

These early signs are illustrated in Fig. 2.
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Dataset. Data were obtained from our private cohort and split into two inde-
pendent datasets DTrain and DTest, containing 2319 and 1094 abdominal portal
CT scans from six and three independent medical centers, respectively. The ref-
erence labels regarding the early markers previously described were obtained
based on the assessment of the CT scan by a pool of 7 radiologists. Reference
labels were collected for 676 cases of DTrain and all the subjects from DTest.

Preprocessing. For all the subjects, pancreas segmentation masks were
obtained using a segmentation model derived from the nnU-Net [6] and manually
reviewed by radiologists. The CT images and corresponding masks were resam-
pled to 1×1×2 mm3 in the (x, y, z) directions, and centered in a volume of size
192×128×64 voxels. Images intensities were clipped to the [0.5, 99.5] percentiles
and standardized based on the percentiles, mean and standard deviation of the
pancreas intensities in DTrain.

Extracting HCR and DLR. 32 HCR features were extracted utilizing the
pyradiomics library [24], focusing exclusively on shape and first-order intensity
features (see Sect. A.3 in the appendix for the comprehensive list). Complemen-
tary DLR features were extracted using the VAE model of Sect. 2. The architec-
ture followed the U-Net [22] encoder-decoder scheme without skip connections.
The number of convolutional layers and the convolutional blocks were automati-
cally inferred thanks to the nnU-Net self-configuring procedure [6] (see Sect. A.4
in the appendix for details). The model was trained on DTrain for 1000 epochs.
The dimension of DLR features d was set to 32, resulting in a final latent space
dimension for the VAE of 64. Data augmentation consisting of rotation and
cropping was applied during training.

Predicting Early Cancer Markers. For each marker, a logistic regression
was trained based on the concatenation of HCR and DLR features extracted
from the subjects in DTrain for whom reference labels were available. The logis-
tic regression was regularized using L2 penalty, with a default regularization
coefficient of 1. Final predictions for DTest were derived by ensembling models
obtained through a four-fold cross-validation setup.

4 Results

Quantitative Results. To demonstrate the usefulness of extracting DLR with
MI minimization, two VAEs were trained. Both followed the same procedure
(detailed in Fig. 1) but differed only in the presence or absence of the MI min-
imization term in their loss function. Then, several logistic regression models
with different inputs were trained in order to assess the effect of combining HCR
and DLR features. In total, the following experiments were run:
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– HCR only: H32 and H64. These two experiments use the 32 basic HCR
features described in Sect. A.3 of the appendix, and H64 uses a further 32 HCR
gray-level features calculated by the pyradiomics library [24] and selected by
recursive feature elimination.

– DLR only: DMI
32 and D32. 32 DLR features extracted by a VAE with and

without MI minimization, respectively;
– HCR + DLR: HDMI

64 and HD64. 32 basic HCR features + 32 DLR features
extracted by a VAE with and without MI minimization, respectively.

Thus, the logistic regressions of H32, D32 and DMI
32 used vectors of size 32, while

those of H64, HD64 and HDMI
64 used vectors of size 64. Prediction results for each

of the four cancer markers are presented in Table 1.

Table 1. Pancreatic cancer marker prediction. For each experiment, we report
the means and standard deviations of the AUC (in %) obtained by bootstrapping with
10000 repetitions. For each line, first and second best results are in bold and underlined,
respectively. The last row shows the difference in AUC compared with H32, averaged
over the different markers. DLR and HCR refer to Deep Learning Radiomics and Hand-
Crafted Radiomics, respectively.

HCR only DLR only HCR + DLR

H32 H64 D32 DMI
32 HD64 HDMI

64

Abnormal Shape 68.38± 0.07 68.11± 0.07 67.66± 0.07 72.41±0.07 71.2± 0.07 70.07± 0.07

Atrophy 81.05± 0.06 81.57± 0.05 74.08± 0.07 79.08± 0.06 80.82± 0.06 82.57± 0.06

Fat Replacement 70.55± 0.07 69.78± 0.08 65.96± 0.08 65.74± 0.07 69.28± 0.08 71.05±0.07

Senility 71.63± 0.08 70.21± 0.08 70.18± 0.07 69.1± 0.08 72.28± 0.08 72.44± 0.07

δ w.r.t H32 – –0.48± 0.07 –3.43± 0.07 –1.32± 0.07 0.49± 0.07 1.13±0.07

The comparison between H32 and H64 showed that adding 32 gray-level HCR
features was not beneficial as results were similar, or even decreased: for instance,
for senility, the AUC went from 71.63 % (H32) to 70.21 % (H64). On average,
the AUC of H64 lost -0.48 points compared with H32. These experiments demon-
strated the power of the 32 basic HCR features, and the need to find comple-
mentary features that would add value.

Then, for almost all markers, H32 outperformed D32 and DMI
32 , meaning that

no VAE, whether trained with or without MI minimization, managed to auto-
matically extract 32 DLR features as informative as the 32 basic HCR features
used by H32. For texture-related markers, such as fat replacement and senil-
ity, MI minimization did not produce clear differences. On the other hand, on
shape-related markers, the DLR features learned by DMI

32 were shown to be more
relevant than those learned by D32 with a basic VAE. Thus, on average, DLR
features were better when extracted by a VAE trained with MI minimization,
but still proved less informative than HCR features.

Finally, experiments HD64 and HDMI
64 showed that combining the two types

of radiomics is beneficial since the average AUC gained 0.49 (HD64) and 1.13 %
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(HDMI
64 ) compared to H32. Yet, results demonstrated that minimizing the redun-

dancy produced the best results compared with all other approaches. Indeed, in
HD64, adding 32 DLR features produced variable results depending on the mark-
ers: compared to H32, the AUC increased by a maximum of 2.82% for abnormal
shape prediction, and dropped by a maximum of 1.27% for predicting fat replace-
ment. On the other hand, HDMI

64 outperformed H32 on all prediction problems,
meaning that the non-redundant DLR features systematically provided useful
information.

Influence of the Latent Space. To explore the influence of the latent space
dimension on the prediction performances, we replicated the HDMI

64 experiment
with increasing size L of the latent space, and reported prediction results in
Table 2. Table 2 shows that increasing the latent space size resulted in lower
classification performances. Specifically, a latent space size of 32 provided the
most relevant DLR features.

Table 2. Pancreatic cancer marker prediction with varying latent space size.
For each experiment, a VAE with Mutual Information (MI) minimization and latent
space size L was trained. Predictions were obtained after training logistic regressions on
32 basic HCR features + L DLR features extracted by a VAE with MI minimization.
We report the means and standard deviations of the AUC (in %) obtained on the
test set by bootstrapping with 10000 repetitions. For each line, first best results are in
bold. DLR and HCR refer to Deep Learning Radiomics and Hand-Crafted Radiomics,
respectively.

L = 32 L = 64 L = 256 L = 512 L = 1024 L = 2048

Abnormal Shape 70.07± 0.07 69.02± 0.07 68.87± 0.07 69.91± 0.07 69.33± 0.07 68.68± 0.07

Atrophy 82.57± 0.06 82.28± 0.05 81.77± 0.06 82.68± 0.05 80.9± 0.06 80.21± 0.06

Fat Replacement 71.05± 0.07 70.91± 0.07 70.23± 0.08 70.45± 0.08 69.55± 0.07 68.96± 0.08

Senility 72.44± 0.07 72.02± 0.07 70.38± 0.08 71.65± 0.08 72.03± 0.07 69.6± 0.08

Qualitative Results. To visualize the effect of the extracted DLR features, we
looked at the absolute value of the logistic regression weights for D32 and DMI

32

in two ways. In Fig. 3-A, the absolute value of these coefficients are displayed.
The higher the absolute value of the coefficient, the higher its importance in the
logistic regression prediction. When the MI was not minimized, HCR features
had stronger importance than DLR ones. On the other hand, when we encour-
aged the independence between the two types of features through MI minimiza-
tion, the contribution of DLR features to the prediction increased. Figure 3-B
shows the number of DLR features among the k features with highest impor-
tance, for increasing values of k. HDMI

64 and HD64 are shown in blue and orange,
respectively. In addition, two extreme scenarios are shown: one where the logis-
tic regression is predominantly influenced by the DLR features (in green), and
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another one where the logistic regression is primarily driven by the HCR features
(in red). We can see that the blue curve approached the green curve, meaning
that DLR features from HDMI

64 contributed more to the outcome prediction.
When the MI was not minimized, DLR features had less influence on the pre-
dictions as the orange curve approached the scenario in which DLR would be
ignored.

Reconstruction Performances. To explore the reconstruction performances
of the VAE, we computed the average l2 error per voxel between the original test
images and their corresponding reconstructions. Upon applying nnU-Net’s [6]
automatic intensity normalization procedure, voxel intensities were observed to
range from −3 to 2.3. Specifically, we employed a VAE with a latent space
dimension of L = 32 and MI minimization during training. The resulting recon-
struction error was found to be (4.4 ± 1.4) × 10−3, which was comparable to
the l2 error obtained from a VAE trained without MI minimization, amount-
ing to (4.1 ± 1.4) × 10−3. These observations suggest that the introduction of
MI minimization did not significantly impact the quality of the reconstructed
images, neither resulting in deterioration nor improvement. Additionally, Table 3

Fig. 3. Qualitative assessment of the Deep Learning Radiomics (DLR) and
Hand-Crafted Radiomics (HCR) features through the coefficients of the
logistic regressions. A: Absolute value of the coefficients of the logistic regressions.
We plot, for each logistic regression corresponding to one marker, the absolute value of
the coefficient for each of the 64 features. The first 32 features corresponded to DLR,
while the 32 remaining features corresponded to HCR. B: Number of DLR features
among the top k features. Dashed lines represent the extreme scenarios in which all 32
DLR are more informative than all 32 HCR (green) or all 32 HCR are more informative
than all 32 DLR (red). (Color figure online)

Table 3. Reconstruction performances with varying latent space sizes. For
each experiment, a VAE with Mutual Information minimization and latent space size
L was trained. We report the l2 error per voxel between the original image and its
reconstruction, with voxel intensities varying in [−3, 2.3].

L = 32 L = 64 L = 256 L = 512 L = 1024 L = 2048

l2 error ×103 4.4± 1.4 4.4± 1.4 4.4± 1.4 4.4± 1.4 4.3± 1.4 4.3± 1.5
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further explores the relationship between reconstruction performance and latent
space sizes, demonstrating that increasing the latent space size did not have a
discernible effect on the quality of the reconstructions.

5 Discussion and Conclusion

We presented a method to learn DLR features that are not redundant with
HCR ones. The method was based on the well-known VAE framework [9] that
extracted DLR features from masked images in an unsupervised manner. The
complementarity between the two types of radiomics features was enforced by
minimizing their MI, and the resulting features were used to train classifiers
predicting different cancer markers. Experiments in the case of four early mark-
ers of pancreatic cancer indicated that our method increased prediction perfor-
mances with respect to two state-of-the-art approaches. These findings suggest
that our approach holds potential to improve patient survival outcomes. Quali-
tative results confirmed the advantages of minimizing the MI during training, as
it resulted in the generation of DLR features that were complementary to HCR
features and more prominently utilized for marker prediction. These results were
obtained on a large and independent test set, which is particularly important as
radiomics models require robust validation strategies to ensure their generaliza-
tion and reproducibility when applied to new datasets [1]. With this in mind,
it might be interesting to further encourage this feature efficiency by imposing
independence between the DLR features themselves. Another research avenue
could be to simplify the proposed pipeline by developing an end-to-end network
capable of performing both feature extraction and classification tasks within a
unified framework. Achieving this objective would necessitate the simultaneous
training of the feature extractor and multiple sub-networks for each classification
task. However, this approach might pose challenges in terms of training complex-
ity, particularly due to the presence of substantial class imbalances across the
various classification tasks. Alternatively, another possibility is to train an end-
to-end convolutional neural network (CNN). Although more direct in nature,
this approach would entail the training of a separate CNN for each question,
which could be computationally heavier compared to the calibration of a logistic
regression based on a single feature extractor, as suggested in our current work.
Future studies should also address the interpretability of the extracted DLR
features, as this aspect was not covered in the present work.

Acknowledgments. This work was partly funded by a CIFRE grant from ANRT #
2020/1448.

A Appendix

A.1 Estimating the Mutual Information

The Mutual Information (MI) is estimated following the density-ratio trick [8]
which requires to train a discriminator Dλ predicting whether concatenated
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radiomics vectors [h, d] come from q(h, d) or q(h)q(d). Samples for training Dλ

are obtained following the procedure shown in Fig. 4. In practice, Dλ is modeled
as a 2-layer Multi Layer Perceptron with ReLu activation, which is trained by
minimizing a binary cross-entropy (BCE) loss term. Once the discriminator is
trained, the MI between HCR and DLR features can be approximated as follows:

MI(h, d) = Eq(h,d)

[
log

q(h, d)
q(h)q(d)

]
≈

∑

i

ReLU
([

log
Dλ(hi, di)

1 − Dλ(hi, di)

])
. (5)

Fig. 4. Training Dλ. Given three different input images x∗
i , x∗

j and x∗
k, the corre-

sponding HCR and DLR features are computed: hj , hj , hk and di, dj , dk. Samples
from q(h, d) are obtained by concatenating features of a same image (hi and di for
instance), while samples from q(h)q(d) are obtained by concatenating hk and dj with
k �= j.

A.2 Influence of the Hyperparameter κ

The final loss function for training our model is:

L = LVAE + κKL[q(h, d) | q(h)q(d)] (6)

where κ is a hyperparameter weighting the importance of the the mutual infor-
mation in the total loss function. Table 4 reports prediction results obtained
with different values of κ. According to these results, κ was set to 1 in all our
experiments.

Table 4. Cancer marker prediction scores for different values of κ. For each
experiment, we report the means and standard deviations of the AUC (in %) obtained
by bootstrapping with 10000 repetitions. For each line, best result is in bold.

κ = 0.01 κ = 0.1 κ = 1 κ = 10

General Shape 70.44± 0.07 70.01± 0.07 70.07± 0.07 71.03± 0.07

Atrophy 80.82± 0.05 81.43± 0.06 82.57± 0.06 80.77± 0.06

Fat Replacement 69.52± 0.08 70.5± 0.07 71.05± 0.07 68.65± 0.08

Senility 73.14± 0.08 72.36± 0.08 72.44± 0.07 72.38± 0.08
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A.3 HCR Features Extraction

32 HCR features were extracted using the pyradiomics library [24]:

– 14 shape features describing the size and shape of the pancreas
• Mesh Volume
• Voxel Volume
• Surface Area
• Surface Area to Volume ratio
• Sphericity
• Maximum 3D diameter
• Maximum 2D diameter in the axial plane
• Maximum 2D diameter in the coronal plane
• Maximum 2D diameter in the sagittal plane
• Major Axis Length
• Minor Axis Length
• Least Axis Length
• Elongation
• Flatness

– 18 first-order intensity features describing the intensities distribution
within the organ

• Energy
• Total Energy
• Entropy
• Minimum
• 10th percentile
• 90th percentile
• Maximum
• Mean
• Median
• Interquartile Range
• Range
• Mean Absolute Deviation
• Robust Mean Absolute Deviation
• Root Mean Squared
• Skewness
• Kurtosis
• Variance
• Uniformity

More details about each feature can be found on the online documentation.

https://pyradiomics.readthedocs.io/en/latest/features.html
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A.4 Model Architecture

As detailed in Fig. 5, the proposed variational autoencoder (VAE) followed a 3D
encoder-decoder architecture. The network topology (number of convolutions
per block, filter sizes) was chosen based on the nnU-Net self-configuring proce-
dure [6], resulting in 1, 110, 240 trainable parameters. The VAE was trained on
1000 epochs with a batch size of size 32. Every 5 epochs, the VAE was frozen and
the discriminator Dλ was trained for 150 epochs with a batch size equal to the
total training dataset. The VAE and Dλ were optimized using two independent
Adam optimizers with a learning rate of 10−3.

Input of size (b, 1, 64, 128, 192)
Convolu on (filter size F, stride S) + instance norm + leaky ReLU
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Fig. 5. Architecture of the proposed VAE
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Abstract. This study focuses on comparing deep learning methods for
the segmentation and quantification of uncertainty in prostate segmen-
tation from MRI images. The aim is to improve the workflow of prostate
cancer detection and diagnosis. Seven different U-Net-based architec-
tures, augmented with Monte-Carlo dropout, are evaluated for auto-
matic segmentation of the central zone, peripheral zone, transition zone,
and tumor, with uncertainty estimation. The top-performing model in
this study is the Attention R2U-Net, achieving a mean Intersection over
Union (IoU) of 76.3% ± 0.003 and Dice Similarity Coefficient (DSC) of
85% ± 0.003 for segmenting all zones. Additionally, Attention R2U-Net
exhibits the lowest uncertainty values, particularly in the boundaries of
the transition zone and tumor, when compared to the other models.

Keywords: Segmentation · Uncertainty Quantification · Prostate ·
Cancer · Deep Learning · Computer Vision

1 Introduction

Prostate cancer (PCa) is the most common solid non-cutaneous cancer in men
and is among the most common causes of cancer-related deaths in 13 regions
of the world [1]. According to a recent overview, in 2020 prostate cancer was
the most frequently diagnosed cancer in males in 12 regions of the world, which
translates to around 1.41 million new cases [1]. However, when detected in early
stages, the survival rate for regional PCa is almost 100%. In contrast, the survival
rate when the cancer is spread to other parts of the body is of only 30% [2].

Magnetic Resonance Imaging (MRI) is the most widely available non-invasive
and sensitive tool for detection, localization and staging of PCa, due to its high
resolution, excellent spontaneous contrast of soft tissues, and the possibility of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Ali et al. (Eds.): CaPTion 2023, LNCS 14295, pp. 83–93, 2023.
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multi-planar and multi-parametric scanning [3]. MRI can be also be used for
PCa detection through the segmentation of Regions of Interest (ROI). The use
of image segmentation for PCa can help determine the localization and the
volume of the cancerous tissue [4]. Although prostate image segmentation is a
relatively old problem and some novel methods have been proposed, radiologists
still perform a manual segmentation of the prostate gland and regions of interest
(central zone, peripheral zone, and transition zone) [5]. This manual process is
time-consuming, and is sensitive to the specialist experience, resulting in a sig-
nificant intra- and inter-specialist variability. Therefore, automating the process
of segmentation of prostate and gland regions of interest, may help save time
for practitioner radiologists and additionally can be used as a training tool for
others. One of the most popular architectures is the U-Net [6] model, which has
been the inspiration behind many recent works in the literature, such as Swin
U-Net [7], or R2U-Net [8]. While these models have yielded positive outcomes,
inconsistencies in performance have been observed in U-Net-based segmentation
due to the prostate’s anatomical structure. The boundaries between zones can
distort semantic features, leading to unreliable results. Furthermore, automatic
segmentation typically produces deterministic segmentation outcomes [9], and
there is insufficient information available about the model’s confidence level [10].
Despite their successes in many medical image analysis applications, DL algo-
rithms are usually not translated into real-world clinical scenarios because these
do not provide information about the uncertainty associated with their predic-
tion. This is problematic in the challenging context of pathological structures
segmentation (e.g., tumors) as even the top-performing methods are prone to
errors, and due to the lack of uncertainty information, it results impossible tell
apart different sorts of erroneous predictions.

Therefore, the overall segmentation workflow can be improved by providing
the uncertainties of the model that could allow end-users (e.g., clinicians) to
review and refine cases with high uncertainty.

In this work, we carry out a thorough assessment of automatic prostate
zone segmentation models using U-Net, Attention U-Net, Dense U-Net, Atten-
tion Dense U-Net, R2U-Net, Attention R2U-Net, and Swin U-Net architectures.
Additional to the segmentation task, we include the pixel-wise estimation of the
uncertainty, which can be done by obtaining a probability distribution of the
weights of the model. The zones evaluated in this work are the central zone
(CZ), the peripheral zone (PZ), transition zone (TZ), and, in the case of a dis-
ease, the tumor zone (TUM), unlike previous works which only evaluate CZ and
PZ [10].

This paper has five sections including this introduction. Section 2 provides a
review about what has been done in previous works related to prostate segmen-
tation and uncertainty quantification. Section 3 the dataset used is described,
followed by a description of the uncertainty quantification procedure in this seg-
mentation task. In Sect. 4 the results of the experiments are discussed in detail.
Finally the conclusion of this work is presented in Sect. 6.
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2 Related Work

2.1 Deep Learning Segmentation

For segmentation, one of the best known models in the literature is the U-Net
architecture [6], which is the base for many other novel models. The work from
Zhu et al. [11] proposes a U-Net based network to segment the whole prostate
gland, obtaining encouraging results (DSC of 0.885). Moreover, this architecture
has served as the inspiration for some variants that enhance the performance of
the original model. One example is the work from Clark et al. [12] that presents
a model that combines concepts from the U-Net and the inception architectures.
Another example is the work presented by Oktay et al. [13], which proposes the
addition of attention gates inside the original U-Net model with the intention
of focusing on specific target structures. The addition of attention has served
as base for other architectures such as Attention Dense U-Net [14], Attention
R2U-Net [8], among others. Also, the introduction of Transformers in U-Net
architectures is a novel approach for segmentation task that had demonstrated
a good performance in biomedical images, such as Swin U-Net [7]. Despite this,
during the course of this study, no other research was found that segmented the
four zones discussed in this paper. Therefore, the number of studies that consider
a third zone (TZ) is still limited, this is more likely because the most common
datasets used are PROMISE-12 and the one from the PROSTATEx challenge,
with only CZ and PZ. In addition to that, providing a value that quantifies the
uncertainty of the predictions can improve the overall workflow since it could
easily allow refining uncertain cases by human experts.

2.2 Uncertainty Quantification

The work from Theckel et al. [15] introduces a U-Net architecture with spa-
tial dropout to measure the uncertainty related to the segmentation of macular
degeneration, utilizing different sizes of input data. The work from Suman et
al. [16] applied the uncertainty quantification problem to retinal imaging using
a ResNet-based model, modified with standard random dropout layers before
every convolutional block. The work from Liu et al. [10] proposes an automatic
segmentation of the prostate zones and introduces a pixel-wise uncertainty esti-
mator using a ResNet50 backbone with attention and dropout layers.

3 Materials and Methods

3.1 Dataset

The dataset used in the present work was provided by Universidad Politécnica de
Cataluña (UPC) in Barcelona, and Centre Hospitalaire de Dijon in France. The
dataset consists of three-dimensional T2-weighted fast spin-echo (TR/TE/ETL:
3600 ms/ 143 ms/109, slice thickness: 1.25 mm) images acquired with sub-
millimeter pixel resolution in an oblique axial plane. The number of patients
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in the dataset are 19, with a total of 205 images with their corresponding anno-
tation masks (of prostate zones) used as ground truth which were validated by
experts using a dedicated tool [17].

The full dataset of 205 images, contains four different combination of zones,
being: (CZ+PZ), (CZ+PZ+TZ), (CZ+PZ+Tumor), and (CZ+PZ+TZ+Tumor)
with 73, 68, 23, and 41 images, respectively. For the purpose of this work, the
dataset was divided in 85% for training and 15% for testing.

3.2 Uncertainty Estimation in Prostate Segmentation

Epistemic and aleatory uncertainties are the two major types of uncertainty
that can be quantified. Epistemic uncertainty captures the uncertainty related
to the models parameters caused by the lack of data, and, aleatory uncertainty
captures the noise inherent in the input data [10]. The sum of both uncertainties
forms the predictive uncertainty.

In this work, the uncertainty of seven different U-net-based models was mea-
sured in the test set. To approximate the inference of a model, Monte Carlo
(MC) dropout of a hidden layer was performed. MC Dropout is a technique
used in neural networks to incorporate uncertainty. It treats a network with
dropped-out neurons as Monte Carlo samples from all possible combinations,
approximating a Gaussian process [10,18]. The minimization of cross-entropy
loss is similar to minimizing the divergence of the predicted distribution [16].
Using MC Dropout, pixel-wise epistemic uncertainty can be computed as a vari-
ational Bayesian inference problem [16]. During predictions or testing, dropout
is also necessary. The main focus of this study is to investigate the predictive
uncertainty of prostate segmentation, which can be quantified using the entropy
of the predictive distribution [10].

3.3 Proposed Work

This work uses the original U-Net model and six U-Net extensions from the
literature: Attention U-Net [13], Dense U-Net [19], Attention Dense U-Net [14],
R2U-Net [8], Attention R2U-Net, and Swin U-Net [7]. These architectures had
demonstrated great performance segmenting biomedical images, even some of
them with public prostate’s datasets including CZ and PZ. However, unlike in
other works, we proposed to compare the performance segmenting the three
main zones of the prostate (CZ, PZ, and TZ) and a tumor tissue if it is present,
using the dataset described in Sect. 3.1.

Before the final training, an hyperparameter tunning proccess using a strati-
fied 5-Fold validation with the training set was carried out using the base U-Net
model in order to obtain the optimal combination of data augmentation, learn-
ing rate and an approximation of epochs for training. The results demonstrated
that including data augmentation in the training did not increase significantly
the performance of the models. Therefore we decided to use the original dataset
without data augmentation due to computational resources and time process-
ing. The previously mentioned models were trained for 145 epochs, using Adam
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optimizer with a learning rate of 1e–4 and Categorical Cross-Entropy (CCE) loss
function. The performance was evaluated using Dice Score (DSC) and Intersec-
tion over Union (IoU) as the main metrics.

4 Results and Discussion

4.1 Quantitative Results
Table 1 shows a summary of evaluation results of the seven studied architectures,
in terms of two metrics (DSC and IoU) and loss value. In order to obtain these
results, the evaluation of each model was performed T = 50 times, and due to the
incorporation of MC Dropouts the results were different each time. Therefore, the
average of all evaluations and prostate zones is reported with their corresponding
standard deviation.

Table 1. Comparison of model performance in segmentation metrics and loss value.
The metrics are denoted by upward (↑) or downward (↓) arrows, indicating the desired
direction of values. Bold values highlighted in green represent the best score achieved
among all models.

Model IoU ↑ DSC ↑ Loss ↓
U-Net 0.676 ± 0.021 0.770 ± 0.021 0.0139 ± 0.0007

Attention U-Net 0.688 ± 0.011 0.781 ± 0.010 0.0132 ± 0.0003

Swin U-Net 0.725 ± 0.014 0.816 ± 0.014 0.0134 ± 0.0002

Dense U-Net 0.754 ± 0.004 0.846 ± 0.004 0.0146 ± 0.0003

Attention Dense U-Net 0.760 ± 0.006 0.847 ± 0.005 0.0154 ± 0.0004

R2U-Net 0.764 ± 0.002 0.850 ± 0.002 0.0119 ± 0.0001

Attention R2U-Net 0.763 ± 0.003 0.850 ± 0.003 0.0113 ± 0.0001

Based on the metrics values, it can be seen that U-Net was the model with
worst performance. The use of attention to focus on the ROI helped to slightly
outperform the performance in segmentation tasks compared to the original U-
Net by around 1–2% for IoU and DSC.

Moving to Swin U-Net, a novel architecture from the state-of-the-art that
uses Swin Transformers [7] achieved to increase the IoU and DSC values by
more than 7%, and lower loss value compared to U-Net.

In the case of Dense U-Net, the performance of the model exceeds the previ-
ous three architectures, with IoU and DSC scores 11% and 10% better than the
base U-Net, respectively, with a loss value of 0.0146. As a plus, this model did
not need more computational resources or time during its training compared to
base U-Net. The next model consisted on the incorporation of attention modules
to Dense U-Net, which again outperformed all the previous models in the seg-
mentation metrics by 12% of IoU, and 10% of DSC compared to U-Net. However,
it achieved the higher loss value among all of 0.0154.
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The last two architectures R2U-Net and Attention R2U-Net achieved very
similar results, but outperformed all the other models with values of 76.4% and
85% for IoU and DSC, respectively, and the lowest loss value of 0.0113 for the
Attention R2U-Net.

As mentioned before, an uncertainty comparison between the architectures
was carried out per each prostate zone, as well as for the full image with its
corresponding standard deviation as it is shown in Fig. 1. The results shown in
this figure can help us to determine, in relation with previous table, which model
achieved to segment with more certain the prostate and its zones.

In Fig. 1 it is observed that overall, the model that had the lowest mean
uncertainty segmenting all the images in the test set was R2U-Net with a mean
value of 0.048± 0.014 after 50 predictions, validating the results obtained in the
Table 1, being the most reliable and accurate model overall thanks to the use of
recurrent and residual units to get more context information.

Furthermore, the Attention U-Net was the one with the highest uncertainty
overall with a value of 0.086 ± 0.023, having poor results in comparison to the
other models. U-Net and Swin U-Net obtained very similar results in most of the
prostate zones, although in the case of the TZ and Tumor, Swin U-Net achieved
lower uncertainty.

Dense U-Net, Attention Dense U-Net and Attention R2U-Net succeeded
in obtaining smaller uncertainty mean values than U-Net (0.055 ± 0.018,
0.054 ± 0.018, and 0.052 ± 0.014, respectively). Although, TZ and Tumor are
the zones less present in the dataset, and where it looks to be more complex

Fig. 1. Comparison of Uncertainty per each class between DL Architectures. The mean
uncertainty could be identify with a black star inside each box, and the line represents
the median uncertainty value obtained, the best model is indicated with a red box for
each zone. (Color figure online)
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to segment, models like R2U-Net and Attention R2U-Net managed to achieved
a great segmentation performance and uncertainty values in average of those
zones in the test set. It is important to notice that both results are correlated.
These models managed to be adequately trained to perform the most accurate
segmentation task among the others, which can give more confidence to radiol-
ogists when using a prostate segmentation tool based in this trained model.

4.2 Qualitative Results

In Fig. 2, a qualitative comparison is presented among the predictions of each
model using four different example images from the dataset. The comparison
involves all possible combinations of zones. The first two columns display the
original T2-MRI image of the prostate and its corresponding ground truth mask.
Subsequently, each column represents the average of probabilities obtained from
50 predictions for each model. It can be observed that the first two zone com-
binations (Image A and B in Fig. 2) are relatively easier for most models, as
they produce segmentation that closely resemble the ground truth. However,
certain models such as U-Net and Swin U-Net appear to misclassify pixels as
TZ even when they are not present in the ground truth. Nevertheless, based on
the examples in the test set, the models have been trained effectively to achieve
satisfactory segmentation performance on images containing CZ and PZ, and
some including TZ.

Regarding the other two combinations that include the tumor, they posed
the most complex segmentation challenge with notable variation among models.
In Image C of Fig. 2, models like U-Net and Attention Dense U-Net incorrectly
classified a TZ region that was not identified in the ground truth. Meanwhile,
other models tended to excessively smooth the original segmentation, yielding a

Fig. 2. Comparison of average segmentation after 50 predictions for each model in all
the combinations of zones in the dataset.
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seemingly good but possibly inaccurate result. However, when visually compared
to the ground truth, the best segmentation in this example was achieved by R2U-
Net and Attention R2U-Net.

For the last example, most models struggled to accurately segment the tumor.
Surprisingly, U-Net and Dense U-Net produced acceptable results, but Attention
R2U-Net demonstrated the best overall performance.

Figure 3 illustrates the significance of uncertainty by displaying the same four
examples as in the previous figure, along with corresponding uncertainty maps
represented as heat maps for each trained model. The temperature of the image
indicates the level of uncertainty, with higher temperatures indicating greater
uncertainty in those pixels, while lower temperatures indicate higher certainty
in the model’s pixel segmentation.

The model with the highest uncertainty, particularly around the boundaries
of TZ and tumor, is U-Net, followed by Attention U-Net. This observation is evi-
dent. Furthermore, as previously mentioned, the first two examples were easier
for the models, resulting in relatively low uncertainty across most of them. When
dealing with images containing tumors, the inclusion of dense blocks enhanced
model certainty. However, the utilization of recurrent residual blocks and atten-
tion modules surpassed other models, achieving acceptable predictions in the
test set with low uncertainty values, even in TZ and tumor tissues.

Fig. 3. Comparison of uncertainty maps after 50 predictions for each model with pre-
vious examples.

5 Application

In order to have a computer-aided tool which can be used for radiologists or clini-
cians, we proposed a Web App using Flask framework which we called ’ProstAI’,
and it was designed to have easier access to predict images using the best trained



Assessing the Performance of Deep Learning-Based Models 91

model with MC dropouts: Attention R2U-Net. This app predicts the segmenta-
tion mask, as well as the uncertainty map, which is very helpful to indicate the
experts which are the pixels where the model has higher uncertainty about their
segmentation, an example is shown in Fig. 4.

Fig. 4. Example of the analysis page of the ‘ProstAI’ app using a prostate image from
the Test set.

This tool is proposed for experimental usage, further information about the
app and an example of usage can be found in: https://github.com/pabloquihui/
ProstAI.

6 Conclusion

This study makes a valuable contribution to prostate cancer segmentation by
introducing the segmentation of transition and tumor zones, along with the quan-
tification of uncertainty, which has received limited attention in existing litera-
ture. The utilization of a private dataset validated by multiple experts, including
two radiologists and two oncologists, enhances the reliability and accuracy of the
findings. A comparison of seven different deep learning models was conducted
using segmentation metrics, uncertainty scores, and visual inspection. Among
these models, Attention R2U-Net emerged as the top-performing approach in
both analyses. The inclusion of recurrent residual blocks in U-Net (R2U-Net)
notably enhanced the segmentation results by capturing additional contextual
information. Furthermore, Attention R2U-Net demonstrated exceptional pro-
ficiency in segmenting all prostate zones, exhibiting superior performance in
metrics and yielding lower average uncertainty estimated using the MC method.
This highlights the positive impact of attention modules on improving segmen-
tation and, more significantly, reducing uncertainty in predictions by focusing
on the ROI.

https://github.com/pabloquihui/ProstAI
https://github.com/pabloquihui/ProstAI
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Moreover, a web app has been developed with a focus on experimental use for
radiologists. This app provides more accurate, consistent, and faster results and
displays the uncertainty map for each predicted image. The uncertainty map
provides a visual representation of the pixels in which the model is uncertain
about the segmentation, giving radiologists a better idea of the areas that require
further analysis.
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Abstract. Breast cancer is a major health issue, causing millions of
deaths each year worldwide. Magnetic Resonance Imaging (MRI) is an
effective tool for detecting and diagnosing breast tumors, with vari-
ous MRI sequences providing comprehensive information on tumor mor-
phology. However, existing methods for segmenting tumors from multi-
parametric MRI have limitations, including the lack of considering inter-
modality relationships and exploring task-informative modalities. To
address these limitations, we propose the Modality-Specific Information
Disentanglement (MoSID) framework, which extracts both intra- and
inter-modality attention maps as prior knowledge to guide tumor seg-
mentation from multi-parametric MRI. This is achieved by disentangling
modality-specific information that provides complementary clues to the
segmentation task and generating modality-specific attention maps in a
synthesis manner. The modality-specific attention maps are further used
to guide modality selection and inter-modality evaluation. Experiment
results on a large breast dataset show that the MoSID achieves supe-
rior performance over other state-of-the-art multi-modality segmentation
methods, and works reasonably well even with missing modalities.

Keywords: Breast tumor · Segmentation · Disentanglement

1 Introduction

Breast cancer is the most common type of malignant neoplasm affecting women
[9,12]. Early detection and timely treatment can greatly increase survival rate.
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Fig. 1. Multi-parametric breast MR images from three typical cases, including DCE
images (pre-contrast and post-contrast), T2w images, and ADC images.

Magnetic resonance imaging (MRI) is an excellent modality for lesion detec-
tion and diagnosis, due to its sensitiveness to tumors. In clinics, multiple MRI
sequences, e.g., dynamic-contrast enhanced MRI (DCE), T2-weighted image
(T2w), and apparent diffusion coefficient (ADC), provide comprehensive infor-
mation to detect and diagnose tumors. In Fig. 1, compared to the DCE image
without contrast agent injection (i.e., pre-contrast image), the tumor region is
enhanced and exhibits a higher intensity distribution after contrast agent injec-
tion (i.e., post-contrast image). Nonetheless, tumor segmentation from multiple
MRI sequences is still challenging. In most cases, tumor regions show higher sig-
nal in T2w images and lower signal in ADC images (1st case in Fig. 1). However,
some tumors (especially those that are large and have a triple negative molecu-
lar type) may contain slime or calcification, resulting in unusual signal intensity
distribution in T2w and ADC images (2nd and 3rd cases in Fig. 1). Therefore,
these characteristics pose a great challenge for accurately and automatically
segmenting breast tumors from multi-parametric MRI.

Many multi-modality segmentation methods typically focus on extracting
and combining task-specific information from each modality, but usually over-
look the inter-relationships between different modalities. This could limit their
ability to fully exploit the complementary information available across multiple
modalities and may lead to suboptimal segmentation results. Recently, several
disentanglement-based methods have been proposed to improve segmentation
performance, by extracting the complementary and additional information of
individual modality, i.e., modality-specific information. However, the disentan-
glement is usually conducted in the feature space through an attention module
and lacks of interpretability. Moreover, all of these methods fail to address the
questions [5]: (1) Are all modalities for each patient informative for the seg-
mentation task? (2) Will the extracted modality-specific information benefit or
damage the segmentation task?

To address these questions, we propose the Modality-Specific Information
Disentanglement (MoSID) framework for tumor segmentation from multiple
MRI sequences. Based on clinical diagnosis experience, we use the DCE image
as the main modality, and T2w and ADC images as supplementary modalities.
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We aim to extract the specific and complementary information provided by sup-
plementary modalities based on the main modality as prior knowledge in order
to further guide modality selection and evaluation with better segmentation
performance. For the main modality (DCE), the modality-specific information
is defined as all information obtained from this source. For the supplementary
modalities (T2w and ADC), the modality-specific information is the additional
information provided by a supplementary modality, which is not shared with
the main modality and provides complementary clues about the subject. In the
first and second step, our goal is to generate modality-specific attention maps by
disentangling task-oriented, modality-specific information from a perspective of
information theory. Specifically, we synthesize fake T2w and ADC images by fully
leveraging the information from DCE image, representing the shared information
between T2w/ADC and DCE. Together with their real T2w/ADC counterparts
and DCE, four input cases are sent through a segmentation network to gener-
ate intermediate segmentation masks. By comparing the segmentation results
of the four cases, we could obtain the modality-specific attention maps. The
well-generated modality-specific attention maps are then used to guide modality
selection (question 1) and inter-modality voxel-wise evaluation (question 2) in
the third step, with modality trusty gating and modality-specific attention mod-
ules. Experimental results demonstrate that the disentangled modality-specific
attention maps play a crucial role, and obtain significant improvements com-
pared to other state-of-the-art (SOTA) methods. Furthermore, our proposed
MoSID framework also performs well in the absence of T2w or ADC modality,
indicating framework’s great robustness.

2 Methodology

The proposed MoSID framework focuses on utilizing DCE images, which have
high resolution and better tissue contrast, as the main modality for tumor
segmentation. ADC and T2w images are used as supplementary modalities to
extract modality-specific attention to guide the segmentation process. As shown
in Fig. 2, the MoSID framework consists of three steps, each of which will be
described in detail below.

2.1 Step 1: Image Synthesis

The first step of our proposed MoSID method involves synthesizing fake ADC
and T2w images from the DCE images. The aim of this step is to provide the
same task-related information as the DCE images, but from a different modal-
ity view. To accomplish this, we design two synthesis networks, G1 and G2, to
map the DCE images to ADC and T2w spaces, respectively. The synthesized
ADC images x̂ADC and T2w images x̂T2w retain the structural information
from the real DCE images xDCE . The information in the images can be repre-
sented using I(·). Thus, we have I(x̂ADC) = I(G1(xDCE)) ≤ I(xDCE) for the
synthesized ADC images, indicating that they contain nearly the same infor-
mation as the DCE images. The same holds true for the T2w images, with
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Fig. 2. An overview of the proposed MoSID framework, including image synthesis,
modality-specific information disentanglement and breast tumor segmentation. The
detailed structure of modality specific attention and modality trusty gating modules
are also illustrated.

I(x̂T2w) = I(G1(xDCE)) ≤ I(xDCE). By comparing the real images (i.e., xADC

and xT2w) with the synthesized images (i.e., x̂ADC and x̂T2w), we can easily
observe the agreement and differences among the three modalities at the image
level.

2.2 Step 2: Modality-Specific Information Disentanglement

In this step, our goal is to find the modality-specific information by comparing
synthesized images with real images. We design an information extractor, G3, to
extract task-oriented attention for the downstream segmentation task. Initially,
we input the real images {xDCE , xADC , xT2w} into the network and obtain the
segmentation probability p1, which contains information from all modalities.
Next, we input different combinations of real and synthesized images into the
network and obtain segmentation probability maps p2, p3, and p4. For example,
when we input {xDCE , x̂ADC , xT2w} into the network, the task-oriented informa-
tion of p2 comes from xDCE and xT2w because x̂ADC is synthesized from xDCE .
The same also holds for p3 with input {xDCE , xADC , x̂T2w} (information from
xDCE and xADC) and p4 with input {xDCE , x̂ADC , x̂T2w} (information from
xDCE). By subtracting the probability maps, we calculate the specific informa-
tion from T2w (TT2w) and ADC (TADC) that differs from the main modality
DCE: TT2w = p1−p3 and TADC = p1−p2. Since DCE is the main modality with
the most important information, we can obtain modality information from the
DCE modality with TDCE = p4. The specific information from each modality
provides modality trustworthiness and inter-modality attention, which can then
be used to guide the downstream tumor segmentation.
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2.3 Step 3: Breast Tumor Segmentation

In this step, we enhance the exploration of intra- and inter-modality relationships
to improve tumor segmentation performance using well-presented modality-
specific attentions. To achieve this, we employ three encoders with the same
structure for each modality, and we utilize the Modality Specific Attention
(MSA) module and the Modality Trusty Gating (MTG) module to effectively
fuse the multi-modality information. This information is then input into the
decoder to produce the final prediction of tumor probability, as shown in Fig. 2.

Modality Specific Attention (Intra-Modality). In order to better extract
informative features and avoid misleading features within each modality, we
design the Modality Specific Attention (MSA) module, which is used within each
encoder, with a similar structure of the self-attention module in the Attention
U-Net [8]. However, our MSA module differs in using well-presented modality
specific information learned in a previous step, instead of learning it from the
network automatically, resulting in better interpretability and increased atten-
tion on uncertain regions.

Given the original images xm ∈ R
1×L×W×H and the learned modality-

specific information Tm ∈ R
1×L×W×H , where m ∈ [DCE, T2w,ADC] denotes

the modality and L,W,H denote length, width, and height of the input patches,
we first calculate multiple feature maps f i

m ∈ R
C× L

2i−1 × W

2i−1 × H

2i−1 at different
down-sampled scales within each encoder. Here, i ∈ [1, 2, 3, 4, 5] and C rep-
resents the channel number of each feature map. Next, we down-sample the
information Tm to obtain multiple maps tim ∈ R

C× L

2i−1 × W

2i−1 × H

2i−1 at different
scales, and then use the MSA module to calculate the correlation attention maps
gi

m ∈ R
C× L

2i−1 × W

2i−1 × H

2i−1 using the equation:

gi
m = σ(γ(δ(φtim + ϕf i

m + bφ + bϕ) + bδ), (1)

where φ, ϕ, δ are convolution kernel weights, as shown in Fig. 2, and bφ, bϕ, bδ

are corresponding biases. γ and σ are ReLU and Sigmoid activation func-
tions, respectively. The correlation attention maps more accurately capture the
modality-specific information for tumor region localization compared to tim,
and we can obtain localized features oi

m ∈ R
C× L

2i−1 × W

2i−1 × H

2i−1 by calculating
oi

m = f i
m × gi

m as MSA output.

Modality Trusty Gating (Inter-Modality). As discussed previously, some
modalities have abnormal signal intensities that can affect the segmentation
accuracy. To overcome this challenge, we design a Modality Trusty Gating
(MTG) module that could distinguish task-related information by preserving
positive features and removing negative features. The MTG module calculates
the confidence scores between the main modality (DCE) and supplementary
modalities (T2w and ADC) to evaluate the contribution of each modality to the
segmentation task.
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To calculate the confidence scores, we need the feature maps from the encoder
f i

m and the down-sampled modality-specific attention map tim. The confidence
score for the T2w modality (si

T2w) is calculated as follows:

si
T2w = η(ξ(hi

T2w) :: ξ(hi
T2w :: hi

DCE :: hi
ADC)), (2)

where ξ represents average pooling, :: represents feature concatenation, and η
represents a series of operations including linear projection, ReLU, and Sigmoid
activation functions, as illustrated in Fig. 2. Similarly, the confidence score for
the ADC modality (si

ADC) is calculated as:

si
ADC = η(ξ(hi

ADC) :: ξ(hi
T2w :: hi

DCE :: hi
ADC)). (3)

These confidence scores are then used to combine the supplementary modality
features with the main modality features, using the following equation:

zi = κ(υ(hi
T2w :: hi

DCE :: hi
ADC) + si

T2w × hi
T2w + si

ADC × hi
ADC), (4)

where κ and υ are two convolution operators. The final multi-modality features
fed into the decoder have trusty information and produce a final robust segmen-
tation prediction.

3 Experiments and Results

3.1 Dataset and Implementation Details

In this study, a large dataset consisting of 415 cases collected from 413 patients
are used. Each case includes two DCE images (pre- and post-contrast image),
one T2w image, and one ADC image. To reduce the impact of patient motion
during the scan, both T2w and ADC images are well-aligned with DCE images
using the ANTs algorithm [1]. Experienced radiologists manually annotate breast
tumors in the DCE images, which served as the ground truth. In the data pre-
processing stage, all images are resampled to a common space with a voxel size of
1×1×1 mm3 and normalized to the range of [0, 1] using min-max normalization.
The data are randomly split into 249 cases for training (60%), 83 cases for valida-
tion (20%), and the remaining 83 cases for testing (20%). To accommodate GPU
memory limitations, large-scale 3D patches with a voxel size of 128×128×96 are
extracted for training. Random data augmentation techniques such as flipping
and rotation are applied to reduce the risk of overfitting. To evaluate the tumor
segmentation performance, three commonly used metrics were adopted, includ-
ing Dice similarity coefficient (DSC, 0%–100%), Sensitivity (SEN, 0%–100%),
and Average surface distance (ASD, mm).

In our proposed framework, we have two synthesis networks (for synthesiz-
ing DCE to T2w and DCE to ADC), a modality-specific information extraction
network, and a segmentation network. The two synthesis networks and the infor-
mation extraction network are based on RU-Net, which includes four down/up-
sampling operations. The experiments are conducted on PyTorch platform using
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Table 1. Breast tumor segmentation performance in terms of DSC, SEN and ASD.

Method Publication DSC (%) ↑ SEN (%) ↑ ASD (mm) ↓
Robust-Mseg [2] MICCAI’19 77.70 ± 4.57 75.12 ± 4.91 7.10 ± 4.72

Cross-Model [7] MICCAI’19 79.72 ± 4.08 76.46 ± 4.77 5.27 ± 4.01

CSAD [11] JBHI’21 72.92 ± 3.97 72.99 ± 5.05 8.89 ± 3.02

RFNet [3] ICCV’21 74.02 ± 5.19 68.87 ± 5.62 6.14 ± 4.22

MAML [14] MICCAI’21 80.34 ± 3.42 83.03 ± 3.57 6.36 ± 2.89

MMEF-UNet [6] MICCAI’22 79.89 ± 3.23 79.78 ± 3.73 6.79 ± 2.75

NestedFormer [10] MICCAI’22 79.95 ± 3.49 83.62 ± 3.62 7.44 ± 2.79

mmFormer [13] MICCAI’22 79.90 ± 3.20 83.64 ± 2.89 7.26 ± 2.90

MoSID (Ours) CaPTion’23 83.98 ± 2.52 82.92 ± 3.41 2.66 ± 1.38

two NVIDIA TESLA V100 GPUs with 32GB of memory. The initial learning
rate for the synthesis networks is set at 0.0002 and decreases by half every 50
epochs. For the segmentation network, we adopt a RU-Net model with three
encoders for each modality as the baseline. The initial learning rate is set at
0.005 and decreased by half every 50 epochs. More details can be viewed in the
released code repository.

3.2 Segmentation Performance Analysis

Comparison with SOTA Multi-modal Segmentation Methods. We have
compared our proposed MoSID framework with several SOTA methods for multi-
modal tumor segmentation, including Robust-Mseg [2], Cross-Model [7], CSAD
[11], RFNet [3], MAML [14], MMEF-UNet [6], NestedFormer [10] and mmFormer
[13]. It is worth noting that Cross-Model is specifically developed for breast
tumor segmentation, while MAML is designed for liver tumor segmentation,
and CSAD is developed for prostate tumor segmentation. The other methods
are all developed for multi-modal brain tumor segmentation.

As shown in Table 1, the proposed MoSID method surpasses the performance
of other methods. In comparison to latent feature fusion techniques, such as
[2,3,7,11], MoSID demonstrates a better ability to distinguish between trust-
worthy and uncertain regions in each modality, which results in improved seg-
mentation performance. Specifically, MoSID achieves 4.2% increase in DSC and
2.6 mm reduction in ASD compared to the Cross-Model method. The proposed
MoSID method also offers superior performance compared to both late fusion
methods (such as MAML and MMEF-UNet) and transformer-based fusion meth-
ods (such as mmFormer and NestedFormer). While late fusion methods use sta-
tistical convolution kernels to fuse modalities, they do not take into account the
differences between patients. In contrast, MoSID dynamically adjusts modality
fusion based on global-local modality trust, using learned modality-specific infor-
mation attention with MSA and MTG modules. As a result, it achieves better
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Fig. 3. Visual comparison of tumor segmentation results by different methods on two
typical cases. For each case, both left and right breast are illustrated. The red contours
are the ground-truth annotations, and the green contours are the predictions from each
methods. (Color figure online)

segmentation performance. Specifically, compared to MAML, MoSID results in
3.6% increase in DSC and 3.7 mm decrease in ASD. Similarly, compared with
transformer-based methods, MoSID is not susceptible to misleading information
in certain modalities of certain patients, leading to overall better segmentation
performance.

The visualization results further support the superiority of MoSID. As seen
in Fig. 3, each column displays the original DCE-MRI and the corresponding
segmentation results (highlighted by orange and blue boxes) for each method.
The red contour represents the ground-truth annotation and the green contour
shows the segmentation result from each method, which are overlapped for bet-
ter visualization. It is evident that MoSID produces segmentation results that
are more in line with the ground-truth annotation than the other methods.
Additionally, in regions where the DCE-MRI displays misleading enhancement,
MoSID produces correct results without over-segmentation, potentially resulting
in significant improvement for ASD metric, demonstrating its improved perfor-
mance.

In our method, we separate the shared and specific information of each
modality for fine-grained segmentation, similar to uncertainty-based segmen-
tation methods that use Gaussian approximations to detect uncertain regions.
For instance, the Dropout Bayesian Network (DBNet [4]) approximates Gaussian
processes using different types of dropout during inference. However, DBNet still
falls short in effectively exploring the complex modality information, which may
result in misleading information and unsatisfactory performance. Figure 4(a)
overlays the probability map from our method and DBNet for each modality. For
DCE images, our method identifies high uncertainty values on the right breast,
whereas DBNet only contains a few regions with lower uncertainty. Further-
more, DBNet does not provide modality-specific information for T2w and ADC
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Fig. 4. (a) Segmentation attention maps from our methods (the first row) and DBNet
(the second row) for each modality. (b) Segmentation performance of our method and
DBNet in terms of DSC and ASD.

Table 2. Segmentation performance of ablation study in terms of DSC, SEN and ASD.

Baseline MSA MTG DSC (%) ↑ SEN (%) ↑ ASD (mm) ↓
� 76.96 ± 4.74 75.45 ± 5.16 8.72 ± 7.15

� � 82.06 ± 3.65 82.91 ± 3.96 3.28 ± 1.57

� � 81.49 ± 3.16 82.10 ± 3.69 3.95 ± 1.94

� � � 83.98 ± 2.52 82.92 ± 3.41 2.66 ± 1.38

images, which are only distributed on small boundary regions. In contrast, our
method separates the modality-specific information for T2w and ADC images
as attention maps for improved segmentation, resulting in better performance,
as shown in Fig. 4(b).

Ablation Studies. To further evaluate the impact of each component in the
framework, we conduct a series of ablation studies, as summarized in Table 2. The
framework’s performance is improved by the specially designed Modality Spatial
Attention (MSA) module, which effectively leverages modality-specific spatial
information, resulting in 5.1% improvement in DSC. The Modality Trusty Gat-
ing (MTG) module removes misleading information in a global manner, enabling
the network to dynamically adapt to each case. This results in a significant
improvement in segmentation performance, such as 4.5% increase in DSC. Our
full method, MoSID (Baseline + MSA + MTG), achieves the best results, with
7.0%, 7.5%, and 6.1 mm improvement in DSC, SEN, and ASD metrics, respec-
tively.

Missing Modality Segmentation. We would like to emphasize that missing
modality scenario for breast cancer is relatively rare, as DCE scans are required
for clinical diagnosis and ADC/T2w scans only take a few additional minutes to
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collect. Nevertheless, we also demonstrate the capability of MoSID for missing
modality segmentation, which can be applied to other multi-modality segmen-
tation tasks, such as brain tumor segmentation. We use synthesized images to
replace real images for breast tumor segmentation.

When only the DCE modality is available, the DSC and ASD are 70.68%
and 7.57 mm respectively. On the other hand, when the ADC (T2w) modality
is missing, the DSC and ASD are 81.42% (74.11%) and 4.77 mm (4.18 mm)
respectively. These results highlight the importance of using multiple modalities
for breast tumor segmentation. Additionally, our MoSID is robust in handling
missing modality scenario and achieves satisfactory performance.

4 Conclusion

The paper introduces a new approach for breast tumor segmentation in multi-
parametric MRI scans, called as the MoSID framework. This framework focuses
on disentangling task-specific information for each imaging modality, which is
then utilized to guide the segmentation process with the help of modality spe-
cific attention and modality trusty gating modules. The results of the exper-
iments conducted on a comprehensive dataset of multi-parametric MRI scans
indicate that the MoSID framework significantly outperforms state-of-the-art
multi-modality segmentation methods. The effective use of the disentangled
modality-specific attention maps play a crucial role and can be extended to
other tumor segmentation tasks.
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Abstract. Colonoscopy is the most widely used medical technique for
preventing Colorectal Cancer, by detecting and removing polyps before
they become malignant. Recent studies show that around 25% of the
existing polyps are routinely missed. While some of these do appear in
the endoscopist’s field of view, others are missed due to a partial coverage
of the colon. The task of detecting and marking unseen regions of the
colon has been addressed in recent work, where the common approach
is based on dense 3D reconstruction, which proves to be challenging
due to lack of 3D ground truth and periods with poor visual content.
In this paper we propose a novel and complementary method to detect
deficient local coverage in real-time for video segments where a reliable
3D reconstruction is impossible. Our method aims to identify skips along
the colon caused by a drifted position of the endoscope during poor
visibility time intervals. The proposed solution consists of two phases.
During the first, time segments with good visibility of the colon and
gaps between them are identified. During the second phase, a trained
model operates on each gap, answering the question: “Do you observe
the same scene before and after the gap?” If the answer is negative, the
endoscopist is alerted and can be directed to the appropriate area in real-
time. The second phase model is trained using a contrastive loss based
on the auto-generated examples. Our method evaluation on a dataset of
250 procedures annotated by trained physicians provides sensitivity of
75% with specificity of 90%.

Keywords: Colonoscopy · Coverage · Self-supervised Learning

1 Introduction

Colorectal cancer is one of the most preventable cancers, as early detection and
through screening is highly effective. The most common screening procedure is
optical colonoscopy – visually examining the surface of the colon for abnormali-
ties such as colorectal lesions and polyps. However, performing a thorough exami-
nation of the entire colon surface is proven to be quite challenging due to unavoid-
able poor visibility segments of the procedure. As a consequence, improperly

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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inspected regions may lead to a lower detection rate of polyps. Indeed, recent
studies have shown that approximately 25% of polyps are routinely missed dur-
ing a typical colonoscopy procedure [16].

Various efforts to automatically detect and mark non-inspected regions of the
colon are reported in recent publications, where the common approach relies on
the creation of a dense 3D reconstruction of the colon’s shape [8,11,24,26,27,33].
However, such a reconstruction based on video solely is a challenging task, and
especially so in colonoscopy, in which reflections, low-texture content, frequent
changes in lighting conditions and erratic motion are common. As a consequence,
while the above 3D approach has promise, it is limited to segments of the video
exhibiting good visual quality.

In this work we propose a novel real-time approach for detecting deficient
local coverage, complementing the 3D reconstruction methods mentioned above.
Our proposed strategy provides a reliable, stable and robust solution for the
grand challenge posed by temporal periods of poor visual content, such as camera
blur, poor camera positioning, occlusions due to dirt and spayed water, and
more. The proposed method consists of two main phases. During the first, we
identify time segments with good visibility of the colon and gaps of poor visibility
between them. For this purpose we train a binary classifier, leveraging a small set
of annotated images and a self-supervised training scheme. During the second
phase, we train an ML model that aims to answer the following question for
each gap: Do you observe different scenes before and after the gap? (see Fig. 1).
If the answer is positive, we suspect a loss of coverage due to an unintentional
drift of the endoscope position, and therefore alert the endoscopist accordingly
in real-time to revisit the area.

The second phase model is designed to generate low-dimensional frame-based
descriptors that are used for scene-change detection via a simple Cosine distance
evaluation. This network is trained using a contrastive loss based on automat-
ically generated positive and negative pairs of video segments. These training
examples are sampled from good-visibility segments of real colonoscopy videos,
where the translational speed of the endoscope can be reliably estimated.

To evaluate our method we introduce a dataset of 250 colonoscopy procedures
(videos). Two doctors have been asked to evaluate up to 5 gaps per video and
decide whether they suspect loss of coverage there. The evaluation of our method
using this annotated dataset provides sensitivity of 75% with specificity of 90%.

We note that our task of same-scene detection in the colon is related to
image retrieval [2,25,32] and geo-localization [5,19,20]. There is also some sim-
ilarity to techniques employed for face recognition [1,4,10,18] and person re-
identification [7,21,29]. In the narrower domain of colonoscopy, the only closely
related work we are aware of is reported in [22]. While their technique for location
recognition is related to our scene descriptor generation, their eventual tasks are
markedly different, and so are the evaluation protocols. Nevertheless, for com-
pleteness of this work, we evaluate our scene descriptors on their dataset and
show that our method outperforms their results.
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Fig. 1. Our solution starts by detecting time segments with good visibility of the colon
and gaps between them. For each such gap we answer the question: Do you observe
different scenes before and after the gap? If the answer is positive, the endoscopist is
alerted to revisit the area in real-time.

To summarize, this work offers three main contributions:

– We present a novel stable, robust and accurate method for detecting deficient
local coverage in real-time for periods with poor visual content.

– Our coverage solution complements the 3D reconstruction approach, covering
cases beyond its reach;

– We introduce a novel self-supervised method for generating frame-based
descriptors for scene change-detection in colonoscopy videos.

This paper is organized as follow: Sect. 2 describes Phase I of our method, aiming
to identify time segments with good visibility of the colon and gaps between
them. Phase II of our method is presented in Sect. 3, addressing the same-scene
question by metric learning. Section 4 summarizes the results of our experiments
and Sect. 5 concludes the paper.

2 Method: Phase I – Visibility Classification

Our starting point is a frame-based classification of the visibility content. We
characterize good visibility frames as those having a clear view of the tubular
structure of the colon. In contrast, poor visibility frames may include severe
occlusions due to dirt or sprayed water, a poor positioning of the camera - being
dragged on the colon walls, or simply blurred content due to rapid motion.

In order to solve this classification task, we gather training and validation
annotated datasets by experts. Operating on 85 different colonoscopy videos,
5 good visibility segments and 5 poor ones were identified in each. A naive
supervised learning of a classifier leads to an unsatisfactory 84% accuracy on
the validation set due to insufficient data. In an attempt to improve this result,
we adopt a semi-supervised approach. First, we pre-trained an encoder on large
(1e6) randomly sampled frames using simCLR [9]. This unsupervised learning
embeds the frames such that similar ones (obtained by augmentations of the
same frame) are close-by, while different frames (the rest of the frames in the
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batch) are pushed away. Given the learned encoder, we train a binary classifier
on the resulting embeddings using the labeled data. Since the dimension of the
embedding vectors is much smaller than the original frame sizes (512 vs. 2242),
this approach leads to far better accuracy of 93%. We further improve the above
by smoothing the predictions based on their embeddings, as shown in Fig. 2.
For each input batch of 512 frames, their cross-similarities (the cosine distance
between their embedding vectors) are leveraged, such that similar frames are
also encouraged to be assigned to the same class. This improves the per-frame
accuracy on the validation set up to 94%.

Fig. 2. To achieve high accuracy visibility classifier, we train an encoder in an unsu-
pervised manner and then train a binary classifier the resulting embeddings using the
labeled data. Further improvement is made by smoothing predictions based on simi-
larity distances, resulting in 94% accuracy on the validation set.

To conclude, the trained classifier provides a partitioning of the time axis
into disjoint intervals of good or poor visibility. In order to further relax these
intervals, we apply a median filter with window size of 10 frames.

3 Method: Phase II – Gaps with Loss of Coverage

After partitioning the procedure timeline into periods with good visibility and
gaps between them, our goal now is to identify gaps with a potential loss of cov-
erage, defined as exhibiting a change of the scene between their ends. In order
to compare scenes before and after a gap, we learn distinctive frame descrip-
tors. These vectors are compared via a simple distance measure for addressing
the same/not-same scene question. While the direct approach towards this task
would be to gather a training set of many thousands of such gaps along with
their human annotation, we introduce a much cheaper, faster, and easier alter-
native based on a self-supervised approach. In this section we describe all these
ingredients in greater detail.
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3.1 Scene Descriptors

Assume that a training set of the form {F k
1 , F

k
2 , ck}Nk=1 is given to us, where F k

1

and F k
2 are two frames on both sides of a given gap, and ck is their label, being

ck = 1 for the same scene and 0 otherwise. N is the size of this training data, set
in this work to be N = 1e5 examples. We design a neural network f = TΘ(F )
that embeds the frame F to the low-dimensional vector f ∈ R

512, while accom-
modating our desire to serve the same/not-same scene task. More specifically,
our goal is to push same-scene descriptor-pairs to be close-by while forcing pairs
of different scenes to be distant, being the essence of contrastive learning, which
has been drawing increased attention recently [3,9,13,30]. Therefore, we train
TΘ(·) to minimize the loss function

L(Θ) =
N∑

k=1

(2ck − 1)d
(
TΘ(F k

1 ), TΘ(F k
2

)
(1)

=
∑

{ck=1}k

d
(
TΘ(F k

1 ), TΘ(F k
2

) −
∑

{ck=0}k

d
(
TΘ(F k
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In the above expression, d(·, ·) stands for a distance measure. In this work we
use the Cosine similarity d(f1, f2) = 1 − fT

1 f2/‖f1‖2‖f2‖2.

Creating the Training Data: Constructing the training set {F k
1 , F

k
2 , ck}Nk=1

might be a daunting challenge if annotations by experts are to be practiced. We
introduce a fully automatic alternative that builds on a reliable displacement
estimation of the endoscope, accessible in good visibility video segments of any
real colonoscopy. This displacement can be evaluated by estimating the optical-
flow between consecutive frames (see [23,28]) and estimating the amount of flow
trough the frame boundary [15] (see Fig. 3).

Given any time interval of good visibility content, the cumulative directional
transnational motion can be estimated rather accurately. Thus, starting with
such a video segments, and randomly marking an inner part of it of a random

Fig. 3. Endoscope displacement estimation is based on optical-flow calculation between
consecutive frames using the amount of flow trough the frame boundary (see [15]).
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length of 5–30 s as a pseudo-gap, we can define frames on both its ends as having
the same scene or not based on the accumulated displacement. Figure 4 presents
the whole process of creating training examples this way, easily obtaining triplets
{F k

1 , F
k
2 , ck}.

Our attempts to improve the above contrastive training scheme by introduc-
ing a margin, as practiced in [12] and employing a “soft-max” loss version [30],
did not bring a significant improvement. A technique that delivered a benefit is
to pre-train the network TΘ in fully unsupervised way using simCLR [9] (as in
Sect. 2), and proceed along the above contrastive learning scheme.

Fig. 4. We simulate random artificial gaps of various duration in good-visibility video
segments, estimate the endoscope motion within these simulated gaps, and get this way
reliable training examples for our overall task. Gaps associated with low accumulated
motion contribute a ‘same-scene’ training example (ck = 1), while high-motion gaps
refer to a different scene pair (ck = 0).

3.2 Gap Classification

With a simple machinery of a distance evaluation of the frame descriptors on
both ends of any gap, we are now equipped to answer our main questions: Is
there a potential loss of coverage during this poor-visibility video segment? Has
the probe drifted away form its original position? As this distance evaluation can
be applied over various frames on both sides of the gap, the challenge is to find
a reliable fusion of the information within these many pairs of frames. While we
have experimented with various such options, the best results are achieved by
calculating a single descriptor for the scenes before and after the gap, and then
comparing these using a Cosine distance. This unified descriptor, f̄ , is obtained
by a weighted average of the individual descriptors in a segment of 2 s on each
side, fi, as follows: f̄ =

∑
i fiwi/

∑
i wi, where wi = vie

−si , vi and si are the
raw visibility score and the temporal distance to the gap, both referring to the
i-th frame. While the effectiveness of employing such a simple averaging of the
descriptors might seem surprising, a similar strategy was proven successful for
face recognition from multiple views in [31].
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4 Results

As explained in Sect. 3, first we generate per-frame scene descriptors and then
employ them to detect the gaps with potential loss of coverage. This section
starts from presenting the evaluation of the stand-alone scene descriptors and
compares them to SOTA. Then we describe the dataset of the annotated gaps
and present the evaluation of our gap classifier on this dataset.

4.1 Scene Descriptors

We evaluate our scene descriptors on the recently released dataset for colono-
scopic image retrieval – Colon10K [22]. This dataset contains 20 short sequences
(10,126 images), where the positive matching images were manually labeled
and verified by an endoscopist. We follow the setup and the evaluation met-
rics described in [22]. In total, they have 620 retrieval tasks (denoted by “all”),
while 309 tasks use the intervals that are not direct neighbor frames of their
queries as positives (denoted by “indirect”). We use the data from Colon10K
for the evaluation purposes only. Table 1 compares the results to those reported
in [22]. Rank-1 recognition rate is the percentage of tasks in which the most sim-
ilar to the query image is true positive. The Mean average precision is the area
under the precision-recall curve. For both metrics our method outperforms [22]
for both “all” and “indirect” tasks.

Table 1. Comparison of our scene descriptor generation to [22] on the Colon10K
dataset. In all the evaluated metrics our method outperforms [22].

Rank-1 recognition rate Mean average precision (mAP)

Method all indirect all indirect

[22] 0.9032 0.8058 0.9042 0.8245

Our 0.9131 0.8173 0.9723 0.9112

4.2 Gap Classification

Figure 5 demonstrates an example of our gap classification. In the top row the
case with no loss of coverage is presented, where the scene before and after the
gap is the same. In the bottom row the case with potential loss of coverage is
presented, where the scenes before and after the gap are different.

For quantitative evaluation of our gap classification we introduce a dataset
of 250 colonoscopy procedures (videos) from five different hospitals. We have
automatically identified between 2 to 5 true gaps in each video and presented
these to doctors for their annotation – whether a loss of coverage is suspected.
Each gap was evaluated by two doctors and the ones without a consensus (∼25%)
were omitted. This resulted with 750 gaps having high-confidence annotations,
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t t + 4sec t + 8sec t + 12sec

t t + 6sec t + 12sec t + 18sec

Fig. 5. Qualitative evaluation of our gap classification method. Top: no loss of coverage
detected (the scene before and after the gap is the same). Bottom: potential loss of
coverage detected (the scenes before and after the gap are different). The gaps with
the poor visibility frames are highlighted in red. (Color figure online)

150 of which are marked as exhibiting a loss of coverage. Figure 6 presents the
ROC of our direct gap classification method evaluated on the whole dataset
of 750 gaps. At the working point of 10% false alarms (alert on gaps with no
coverage loss) we cover 75% of gaps with real coverage loss. The area under curve
(AUC) is 0.9, which usually indicates a high-accuracy classifier.

Fig. 6. Direct gap classification: ROC curve evaluated on the whole dataset (750 gaps).
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The above classification exploits the information before and after the gap,
while completely disregarding the information about the gap itself. Having a
dataset of annotated true gaps, we can improve this accuracy by a supervised
learning that exploits the gap characteristics. We thus split the dataset of the
annotated gaps 50:50 to training and evaluation. Since we have a very limited
amount of the training examples we use a low-dimensional classifier – Gradient
Boosting [6] – that operates on the following input data: (i) A 32-bin histogram
of the similarity matrix’ values between frames two seconds before and after the
gap; (ii) A 32-bin histogram of the visibility scores two seconds before and after
the gap; (iii) A 32-bin histogram of the visibility scores inside the gap; and (iv)
The duration of the gap. We performed class-balancing using up-sampling with
augmentations before training.

Table 2 compares the original approach to the supervised one, summarizing
the contribution of different input features to the final accuracy (measured by
AUC). In the supervised approach we use one half of the dataset for training,
thus the evaluation is performed using the other half of the dataset for both the
original and the supervised approaches. In the first approach we also explored
a classification based on the gap duration only, getting an AUC of 0.651, being
higher than random but lower than employing frame similarities. Weighing the
scene descriptors by the visibility scores (see Sect. 3) improves the AUC by 2%.
In the supervised approach both gap duration and visibility scores inside the
gap provide a substantial contribution of 2% each to the AUC.

Table 2. Impact of various features on the AUC, evaluated on 375 test gaps.

Method Features

Frame similarities Gap duration Visibility inside the gap Visibility outside the gap AUC

� 0.651

Original � 0.876

� � 0.896

� 0.881

Supervised � � 0.898

� � � 0.929

� � � � 0.932

4.3 Implementation Details

We employ MobilenetV3 [14] backbone both for the visibility classification and
for the scene descriptors. The inference time of each model for a single input
image of 256× 256 is below 20 ms, which makes our approach real-time. The
descriptor network was pre-trained for 200 epochs using simCLR [9] with learning
rate 0.005 and then we continued training on the auto-generated training data
for additional 100 epochs with learning rate 0.001, using Adam optimizer [17].
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5 Conclusion

This work presents a novel method for the detection of deficient local coverage
in real-time for periods with poor visual content, complementing any 3D recon-
struction alternative for coverage assessment of the colon. Our method starts
with an identification of time segments with good visibility of the colon and
gaps between them. For each such gap we train an ML model that tests whether
the scene has changed during the gap, alerting the endoscopist in such cases to
revisit a given area in real-time. Our learning constructs frame-based descriptors
for same scene detection, leveraging a self-supervised approach for generating the
required training set. For the evaluation of the gap classification results we have
built a dataset of 250 colonoscopy videos with annotations of gaps with deficient
local coverage.

We plan to extend our approach to a guidance of the endoscopist to the exact
place where the coverage was lost, and use our scene descriptors for bookmarking
points of interest in the colon. In order to do it we propose to use exhaustive
descriptor similarity comparison in a predefined time interval. This exhaustive
search can also address the limitation of our approach during the movement of
the endoscope backwards.
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Abstract. Colorectal cancer screening through colonoscopy continues
to be the dominant global standard, as it allows identifying pre-cancerous
or adenomatous lesions and provides the ability to remove them during
the procedure itself. Nevertheless, failure by the endoscopist to identify
such lesions increases the likelihood of lesion progression to subsequent
colorectal cancer. Ultimately, colonoscopy remains operator-dependent,
and the wide range of quality in colonoscopy examinations among endo-
scopists is influenced by variations in their technique, training, and dili-
gence. This paper presents a novel real-time navigation guidance system
for Optical Colonoscopy (OC). Our proposed system employs a real-time
approach that displays both an unfolded representation of the colon and a
local indicator directing to un-inspected areas. These visualizations are
presented to the physician during the procedure, providing actionable
and comprehensible guidance to un-surveyed areas in real-time, while
seamlessly integrating into the physician’s workflow. Through coverage
experimental evaluation, we demonstrated that our system resulted in
a higher polyp recall (PR) and high inter-rater reliability with physi-
cians for coverage prediction. These results suggest that our real-time
navigation guidance system has the potential to improve the quality and
effectiveness of OC and ultimately benefit patient outcomes.

Keywords: Colonoscopy · Coverage · Real-time systems

1 Introduction

Colorectal cancer (CRC) is a significant public health issue, with over 1.9 million
new cases diagnosed globally in 2020 [5]. It is one of the most preventable types of
cancer [14], and early detection is crucial for preventing its progression [13,15].
The most commonly used screening method is optical colonoscopy (OC) [10],
which visually inspects the mucosal surface of the colon for abnormalities such
as colorectal lesions. However, the process of detecting CRC in its early stages
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can be difficult, since performing a comprehensive examination of the colon using
OC alone can be challenging, resulting in certain regions of the colon not being
fully examined and potentially reducing the rate of polyp detection.

To address this problem, researchers have conducted extensive studies to
propose assistive technologies that set out to provide clinicians with a better
understanding of the procedure quality. Most existing methods focus on esti-
mating measures of quality, such as the withdrawal time, or on reconstructing
a 3D model of the colon from a video sequence of the procedure, some even
try automating the entire scan procedure using robotic autonomous colonoscopy
navigation [16]. Despite the advancements in technology that allow for the pre-
diction of 3D structures from images, there is still a significant gap in providing
useful and actionable information to clinicians during the procedure in real-
time. Current methods for detecting un-surveyed regions, which usually show a
3D visualization of the colon, are not designed to be easily understood, or inter-
acted with, during the procedure. They may not align with the camera view;
making it difficult for physicians to understand where they need to move the
endoscope to survey missing regions. Other measures of quality, such as cover-
age per frame, or withdrawal time, do not provide clear, usable information to
assist during the procedure in capturing un-surveyed regions. In this paper, we
present ColNav, a novel real-time solution that (i) utilizes an unfolded represen-
tation of the colon to localize the endoscope within the colon, (ii) introduces a
local indicator that directs the physician to un-surveyed areas and (iii) is robust
to real-life issues such as tracking loss. Our approach estimates the centerline
and unfolds the scanned colon from a 3D structure to a 2D image in a way
that not only calculates the coverage, but also provides augmented guidance to
un-surveyed areas without disrupting the physician’s workflow. To the best of
our knowledge, this is the first coverage based, real-time guidance system for
colonoscopies.

2 Related Work

In recent years, there has been an abundance of papers exploring various aspects
of quality measures for colonoscopy, with the goal of assisting clinicians and
improving the overall quality of care.

SLAM for colonoscopy approaches usually rely on estimating a 3D recon-
struction of the colon and post-processing it in order to estimate the un-surveyed
regions (holes). Posner et al. [17] utilized deep features to better track the camera
position, presented tracking loss recovery and loop closure capabilities to create
a consistent 3D model. Ma et al. [11] reconstructed fragments of the colon using
Direct Sparse Odometry (DSO) [7] and a Recurrent Neural Network (RNN) for
depth estimation. However their output is not easily understood nor meant to
be interacted with during the procedure, making them less likely to be adopted
by physicians or impact the clinical outcome.

Direct coverage estimation methods [4,8], aim to predict the coverage on
a segment-by-segment basis by estimating what fraction of the colon has been
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Fig. 1. Our novel, real-time colonoscopy navigation. Flattened image of the colon
(right): (1) un-surveyed areas as black pixels, (2) camera location, (3) coverage per-
centage and length covered. Endoscope view (left): (4) the local compass indicator
directing the physician to look up (ticks highlighted in red). (Color figure online)

viewed in any given segment. Freedman et al. [8] used a CNN to perform depth
estimation for each frame followed by coverage estimation. As it was trained in
a supervised manner using synthetic ground-truth coverage, it cannot be eas-
ily generalized to real data. Blau et al. [4] proposed an unsupervised learning
technique for detecting deficient colon coverage segments modeled as curved
cylinders. However, their method does not run in real-time.

Indirect Quality Objective Measurements: Objective measurements of
quality in colonoscopy are important for minimizing subjective biases and vari-
ations among endoscopists. Yao et al. [23] proposed an auto-detection of non-
Informative frames and Zhou et al. [24] predicted the bowel preparation scores
every 30 s during the withdrawal phase of the procedure. However, these tech-
niques lack the ability to provide real-time information to the physician during
the procedure.

Virtual colon unfolding is a well known visualisation technique for virtual
colonoscopy (VC), where the colon is inspected by analysing the output of a
CT scan. In such cases, a 3D mesh of the entire colon can be extracted from
the CT image volume and mapped onto a 2D grid, providing the physician
with a fast and convenient way to inspect the colon mucosa and find polyps. A
number of solutions have been proposed to perform this mapping [9,19,20,22].
In many cases, the solution uses, as an intermediate step, the computation of the
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centerline, a single continuous line spanning the colon. Although most of these
methods tend to be computationally expensive, Sudarsky et al. [19] proposed a
fast unfolding method based on the straightening of the colon mesh using the
centerline. Using colon unfolding to visualize missed areas in optical colonoscopy
(OC) has been proposed in a number of works [1–3,11]. A cylindrical model of
the colon is used by [1–3] to unwrap and combine frames. This method does not
detect hidden areas behind haustral folds, nor does it handles frames in which
the camera is oriented towards the colon walls. Furthermore, it does not run
in real time and the results were only demonstrated on relatively short colon
segments. The method of Ma et al [11] is based on a more accurate SLAM
reconstruction, but colon unfolding was done offline, for validation purposes, on
a few disconnected colon segments, using a single straight line as centerline. To
the best of our knowledge, no prior work shows a map of the entire colon surface
being consistently updated during the procedure.

3 Method Overview

Our pipeline, ColNav, provides actionable and comprehensible guidance to un-
surveyed areas in real-time and is seamlessly integrated into the physician’s
workflow. While scanning the colon, the physician is presented with 2 screens as
can be seen in Fig. 1. The colon unfolded image, presented on the right, shows
the three-dimensional (3D) colon flattened into a two-dimensional (2D) image.
Black pixels in the image indicate unseen areas, which were missed during the
scan. The location of the endoscope distal tip (camera) in the unfolded colon is
visualized as the green camera frustum marker.

When the physician withdraws the endoscope the green marker moves down,
while the flattened image gets updated with new rows at the bottom. These
rows represent the newly scanned portion of the colon. If the physician decides
to move the endoscope back into the colon, the camera marker will move up.
The relevant areas which were re-scanned will then be updated, but no new
rows will be created in the flattened representation. This enables the physician
to know whether to move the endoscope forwards or backwards to reach the
missed regions (holes). Coverage percentage and the overall travelled length,
computed on the scanned portion of the colon, are displayed as well.

The left screen in Fig. 1 is the main endoscope view with a local compass
indicator directing to un-inspected areas (holes). Once the endoscope is near
an un-inspected area, the relevant sections of the compass indicator will be
highlighted in red, directing the physician towards the areas in need of further
examination.

The ColNav algorithm, as depicted in Fig. 2, consists of three major parts: (i)
centerline estimation, (ii) multi-segment 3D to 2D unfolding, and (iii) local indi-
cator (navigation compass). The inputs of ColNav are the depth and pose of each
RGB frame. To obtain these inputs, we employ our previous work C3Fusion [17]
as a SLAM module. C3Fusion was specifically designed to deal with real life
colonoscopy issues, filter out blurry/ non-informative frames, and 3D reconstruct
the colon from OC.
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Fig. 2. Block diagram of our ColNav method, comprised of three main parts, (i) cen-
terline estimation, (ii) multi-segment 3D to 2D unfolding, and (iii) local indicator
(navigation compass), as well as C3Fusion [17] which is employed as our SLAM mod-
ule

The first component of ColNav is a robust method for centerline estimation.
In the second component, the overall 2D scene representation is obtained by
merging the depth, pose, and RGB of all frames into a single flattened repre-
sentation of the colon. Both components are described in Sect. 3.1. The third
component, the creation of the navigation compass, is described in Sect. 3.2. In
real-life scenarios, C3Fusion may lose track, resulting in the creation of a new
segment when the last frame cannot be connected to any previous frame. Alter-
natively, loop closure may occur, where two disjoint segments are merged, and
their poses are subsequently updated. Our system accommodates these scenarios
by (a) adjusting the previous centerline approximation based on updated poses
and (b) de-integrating frames that have changed location in the flattened image
and re-integrating them with their new pose (see Sect. 3.3). In cases of tracking
loss, the flattened image shows separate segments with red lines that can be
merged if tracking recovery occurs.

3.1 Centerline and Colon Unfolding

In our proposed solution, the 3D representation of each frame is obtained by
back-projecting the depth map into a point cloud. It is then mapped onto a 2D
unfolded representation, using an algorithm analogous to that described in [19].
In particular, the centerline is used for straightening the reconstructed colon
and dividing it into cross-sections perpendicular to the centerline. Each cross-
sectional slice corresponds to a row within the two-dimensional flattened image,
see Fig. 3.

The colon centerline, sometimes also referred to as the medial axis, is usually
defined as a single connected line, spanning the colon and situated at its center,
away from the colon walls [21]. In our case, the centrality requirement is partly
relaxed, as we observed that a shift of the centerline away from the center of
the colon has little effect on the unfolding. In ColNav, unlike prior works, the
centerline and the flattened image are also updated in real time. This creates new
requirements for the centerline: (1) Fast computation. (2) Consistency over time
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Fig. 3. On the left: 3D point cloud of a single frame (blue), centerline (green), vertices
associated with a specific cross-section on the centerline (red) and the camera pose
indicated by the 3 axis vectors. On the right: the flattened image with corresponding
cross-section (red). Note that the holes in the cross-section match the black pixels in
the corresponding row. (Color figure online)

relatively to the camera trajectory. To support these requirements, the centerline
is estimated from the camera trajectory poses.

The centerline algorithm contains the following steps: (1) Filtering outlier
poses from the trajectory. (2) Constructing or updating a graph G of the trajec-
tory, with camera positions as nodes and edges connecting nodes within a thresh-
old distance. (3) Calculating or updating the shortest path length l between each
node n ∈ G. (4) Binning of the trajectory points according to l. (5) Fitting a
B-spline [6] to an aggregate of the trajectory points in each bin. Each time the
trajectory poses are updated, steps (1)–(5) are computed and a new centerline
is re-calculated.

Camera Position Indicator: The camera position for each frame is given by
the SLAM module and is noted by Ti = {(Ri, ti)|Ri ∈ SO(3), ti ∈ R

3}N
i=1 with

N the number of frames in the sequence. To represent the endoscope current
location se on the centerline of size K, The endoscope position ti is projected on
the centerline C = {ck ∈ R

3}K
k=1 by querying the centerline KDTree.

se = arg min
ck∈C

||ti − ck||2, ti ∈ R
3

(1)

3.2 Navigation Compass

The navigation compass serves as a local indicator that visually guides the
physician to areas that have been missed. Specifically, the compass ticks are
highlighted in red to indicate which specific sections of the colon require further
inspection. Based on the camera position along the centerline se, the coverage
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information is extracted from the unfolded image F , where each column rep-
resents bθ - the rotation angle bin around the centerline axis at the endoscope
location se, with θ ∈ {0, ..., 2π}.

When F (se, bθ) - the corresponding pixel in the extracted row - is black
(meaning, it wasn’t covered), the navigation compass tick will be highlighted in
red, otherwise it will remain dark. To make the navigation compass invariant
to camera roll, the camera orientation is projected on the centerline and the
relative angle offset is computed to compensate for misalignment between the
centerline and the camera pose. Figure 3 depicts the extracted row, selected from
the flattened image according to the camera location.

3.3 Unfolding Real-Time Dynamic Update

To achieve real-time and consistent unfolding of the colon, it is crucial to update
the flattened image F whenever new information becomes available. This need
arises as the SLAM pipeline continually refines frames poses, updates frames seg-
ment assignment, and copes with real-life issues. To accomplish this, we closely
monitor the continuous change in frame poses and their assignment to seg-
ments, updating the flattened image through the integration and de-integration
of frames. By adopting this strategy, we can rectify errors resulting from regis-
tration drift or tracking loss.

Managing Unfolding Updates: When an input frame arrives, we seek to
integrate it into the flattened image as quickly as possible, to give the physician
instantaneous feedback of the colon coverage. Since previous frames segment-
assignments or poses could be updated from [17], we de-integrate and re-integrate
all frames if their segment assignment changes. In addition, we sort all frames
within each segment in descending order, based on the difference between their
previous and updated poses. After sorting, we select and re-integrate the top 10
frames from the list. This allows us to dynamically update the unfolded image
to produce a globally-consistent representation of the unfolded colon.

Integration and De-integration: Integration of an RGBD frame fi is defined
as a weighted average of previous mapped samples. For each pixel p in the
flattened image, let F (p) denote its color, W (p) the pixel weight, di(p) the frame’s
sample color to be integrated, and wi(p) the integration weight for a sample of
fi. Each pixel is then updated by:

F
′
(p) =

F (p)W (p) ± wi(p)di(p)
W (p) ± wi(p)

,W
′
(p) = W (p) ± wi(p), wi(p) = 1 (2)

where the + sign is used for integration and the − for de-integrating a frame. A
frame in the flattened image can be updated by de-integrating it from its original
pose and/or segment and integrate it with a new pose into its updated segment.
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4 Experiments

This section presents the validation of our solution through multiple tests, a
comparative study with partially analogous prior works being unfeasible due
to the unavailability of essential data and code. The first test, named ‘Colon
unfolding verification’, demonstrates that our 2D flattened visualization is a
valid representation of the scanned colon. It also showcases our ability to detect
and localize ‘holes’ in the colon using this visualization. To carry out this test,
we used coverage annotations of short colonoscopy clips. Each clip was divided
into four quadrants (See Fig. 4), and two experienced physicians tagged each
quadrant based on its coverage level (‘mostly not covered’, ‘partially covered’,
‘mostly covered’). We then used ColNav to estimate the coverage of each quad-
rant and compared it to the physicians’ annotations. The second test focuses on
the clinical impacts of using our tool during procedures. We estimate coverage
and Polyp Recall (PR) with and without the real-time navigation guidance dur-
ing the scan to demonstrate the possible benefits of our tool. All datasets used
are proprietary.

We conducted all of the tests using a calibrated Olympus CF-H185L/I colono-
scope on a 3D printed colon model. The colon model was manufactured by seg-
menting a CT colon scan from [18] and post-processing it to recover the 3D
structure of the colon. The model was fabricated from the final mesh using a 3D
printer.

ColNav was run on a high-performance computer equipped with an AMD
Ryzen 3960x processor, 128 GB of RAM, and an NVIDIA A6000 GPU. The
algorithm ran at a speed of 20 FPS while the live endoscope stream was in its
native frequency, enabling real-time usage and guidance during the scans.

The annotations for the first test, and the scans in the second test were per-
formed by physicians who, on average, had 6.5 years of experience and conducted
5000 colonoscopies. We also used the baseline PR experiment (without ColNav)
as a standard, and only included physicians with a recall of over 50%.

4.1 Results

Colon Unfolding Verification: Two physicians were asked to annotate the
coverage level of 83 short clips captured using our colon model. To assess the
annotators agreement, we used weighted Cohen’s kappa coefficient [12], due to
the ordinal nature of the coverage categories. The resulting weighted kappa score
of approximately 60% indicated a “moderate” level of agreement. However, the
absolute coverage value given by a single physician might be subjective, making
calibration and comparison difficult. Thus, to overcome this issue, we tested for
agreement on the relative score of the four quadrants. We used Cohen’s kappa
to measure the agreement between the physicians on the order of the sorted
quadrants based on their coverage score (most covered quadrant is first, least
one is last). Cohen’s kappa using the relative coverage scores between the two
annotators is 84.7% meaning ‘almost perfect agreement’, which showcases that
this comparison method is more suited for the task.
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Fig. 4. Left: Representative frame from an annotated clip with the annotated quadrant
numbers. Below, ColNav’s flattened image of the same clip with the corresponding
quadrant numbers. Note that areas that are occluded or aren’t visible in the frame are
mostly dark in the flattened image. Right: Our complete 3D model with the external
magnets that hold in place the small magnetic balls

Table 1. Weighted Cohen’s Kappa over
the relative coverage scores.

Cohen’s Kappa [%]

Annotators A, B 84.7

Anno. A, ColNav 88.4

Anno. B, ColNav 85.9

Table 2. Polyp Recall & Coverage
with/out ColNav (avg.± std)

PR [%] Cov. [%]

Without ColNav 77.8 ± 3.9 91.6 ± 1.5

With ColNav 88.9 ±3.9 96.4 ±1.0

Based on this approach, we applied ColNav to compute a flattened image
for each short clip. Each flattened image was partitioned into four quadrants,
and the coverage percentage was calculated for each quadrant. To evaluate our
predictions, we mapped the coverage percentages to three categories using a
simple threshold: (cov. <= 60%: ‘mostly not covered’, 60% < cov. <= 80%:
‘partially covered’, 80% < cov. <= 100%: ‘mostly covered’).

The results shown in Table 1 present ColNav high levels of agreement with
the two physicians, with agreement rates of 88.4% and 85.9% respectively. These
results demonstrate that ColNav accurately represents the scanned colon and has
high inter-rater reliability with physicians for predicting coverage levels.

Polyp Recall Impact: Real-time estimation of coverage offers the crucial
advantage of guiding physicians to potentially missed areas and enhancing the
detection of polyps in these regions. To evaluate this capability, we conducted a
simulation study by concealing 18 small magnetic balls (diameter = 5 mm) along
the full extent of our colon model, thus simulating polyps (see Fig. 4, Fig. 5).

The placement of the polyps was carefully selected so they could be con-
cealed within the colon folds, while remaining unseen unless the endoscope was
intentionally maneuvered to inspect those specific areas. Three trained physi-
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cians were recruited to perform an optical colonoscopy on the model, with and
without ColNav, while recording their coverage and recall, i.e. the ratio between
the number of balls detected during each test and the total number of balls.

Scans were conducted in the same manner, starting from the end of the model
(‘cecum’), and the colon was examined while the endoscope was withdrawn. To
prevent location bias, we used balls of multiple colors and assigned each physician
a different combination of colors in each test phase (with/without ColNav).

The results, as presented in Table 2, reveal that physicians using ColNav
achieved 11.1% higher polyp recall (PR) and 4.8% better coverage, demonstrat-
ing the effectiveness of our solution and supporting our belief that ColNav could
improve PDR in clinical scenarios.

Fig. 5. frames containing hidden magnetic balls in multiple colors, that were used to
simulate polyps. Unless the endoscope is intentionally maneuvered to inspect those
specific areas the polyps won’t be visible

Real Colonoscopy Videos: To evaluate ColNav ability to handle real OC
videos, a qualitative analysis was carried out, in which several short clips (a
few hundred frames each) of real colonoscopy procedures were selected. ColNav
was used on the recorded procedures, to unfold the colon in order to verify that
miss-scanned ares can be spotted even in real scans.
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(a) reconstructed mesh (b) flattened image

Fig. 6. ColNav on real colonoscopy video segments. (a) 3D reconstructed mesh, (b)
flattened image consists of all frames in the sequence. Red ellipses mark corresponding
uncovered areas. Best viewed in color. (Color figure online)

Figure 6 shows the 3D reconstruction of the short clip alongside the ColNav
flattened colon. From the results, it is evident that the system is able to detect
missing areas (circled in red) even in real colonoscopy procedures.

5 Conclusion

We have presented ColNav, the first of its kind real-time colon navigation sys-
tem, which not only calculates coverage, but also provides augmented guidance
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to un-surveyed areas without disrupting the procedure. The coverage estima-
tion has been shown to have high correlation with experts. Using the system,
physicians were able to improve their coverage and recall in detecting findings
within the colon. The system was qualitatively evaluated on recorded real-life
procedures. Considering that the employed SLAM module was specifically devel-
oped to be robust to optical colonoscopy issues (specular reflections, texture-less
areas, motion/fluid blur, minor deformations), our system was able to deal with
the real colonoscopy clips without any changes. Further research will focus on
improving real-time performance and robustness to extreme colon deformation.
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Abstract. Early detection of Barrett’s Esophagus (BE), the only known
precursor to Esophageal adenocarcinoma (EAC), is crucial for effectively
preventing and treating esophageal cancer. In this work, we investigate
the potential of geometric Variational Autoencoders (VAEs) to learn a
meaningful latent representation that captures the progression of BE.
We show that hyperspherical VAE (S-VAE ) and Kendall Shape VAE
show improved classification accuracy, reconstruction loss, and gener-
ative capacity. Additionally, we present a novel autoencoder architec-
ture that can generate qualitative images without the need for a varia-
tional framework while retaining the benefits of an autoencoder, such as
improved stability and reconstruction quality.

Keywords: Oncology · Pathology · Variational Autoencoders ·
Geometric Deep Learning · Equivariance · Representation Learning

1 Introduction

Esophageal adenocarcinoma (EAC) is an aggressive type of cancer with a gener-
ally poor prognosis that could benefit from recent advances in machine learning,
as it is often diagnosed at a late stage. The only known precursor to EAC, Bar-
rett’s Esophagus (BE), progresses through different stages [17] (Fig. 1), providing
an opportunity for early detection and prevention. Currently, the detection of
dysplasia relies on subjective assessment by pathologists. Advancements in deep
learning have introduced the concept of a digital pathologist using convolutional
neural networks [9,14]. However, while these models have shown promise, they
are limited by a high degree of interobserver variability in labeled training data
[18]. In this work, we explore the potential of unsupervised learning through var-
ious forms of Variational Auto-Encoders (VAEs) [10] in the context of biomarker
research. We utilize an unsupervised representation learning approach in order
to obtain objective tissue representations and explore to what extent learned
representations form a complete description of the tissue by quantifying how
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Fig. 1. Different stages of progression: regular squamous epithelium, non-dysplastic
BE, low-grade dysplastic BE, high-grade dysplastic BE, and EAC

well an input sample can be reconstructed from the latent representation (I),
are meaningful in the context of BE by investigating how well classifiers can
predict tissue stage, taking only the latent representations as input (II), and are
interpretable by exploring the generative capabilities of learned models (III).

In the context of representation learning, we refer to interpretability as both
the capability of generating images from latents (thus providing visual interpre-
tation) and the ability to interpolate between learned representations. That is,
in an ideal scenario, the latent space is organized in regions that correspond to
different stages of BE, and interpolation would correspond to a smooth tran-
sitioning from healthy towards cancerous tissue via NDBE, LGD and HGD. It
is known, however, that interpolation using VAEs suffers from latent-space dis-
tortion, in which case nonsensical images are generated along the trajectory [4].
This can be avoided through geometric modeling of latent spaces (Sect. 1.1).

In this paper we explore the importance of geometric latent space modeling
by comparing hyperspherical VAEs [7] to normal VAEs, and explore a recently
proposed equivariant variant [16] that allows us to be insensitive to the arbitrary
orientation in which tissue is imaged under a microscope [11]. In particular, we
address the objectives I-III through an extensive empirical study that compares
different variants of (V)AEs: variational vs. non-variational; normal Euclidean
vs. hyperspherical latent spaces; equivariant vs. equivariant architectures. Addi-
tionally, we solve the problem of hyperspherical VAEs being limited to small
latent-space sizes, by proposing a new loss that turns hyperspherical autoen-
coders into generative models.

1.1 Related Work

In clinical settings, BE is diagnosed through endoscopic surveillance, where biop-
sies are taken from the esophagus lining and examined under a microscope. The
Vienna criteria [18] are used to classify the severity of dysplasia in BE, which is
subdivided into Non-Dysplastic Barrett’s Esophagus (NDBE), Low-Grade Dys-
plasia (LGD), High-Grade Dysplasia (HGD), and an indefinite class for uncer-
tain diagnoses. Pathologists use specific tissue grading features, such as clonal-
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ity, surface maturation, glandular structure architecture, cytonuclear abnormali-
ties, and inflammation, to make accurate classifications [17]. Such morphological
changes can be captured in the latent space of a variational autoencoder.

To mitigate the distortion issue of the original VAE, various VAEs utilizing
non-Euclidean manifold have been proposed, such as Riemannian [1,5,12,15],
elliptic [2,8,13], or hyperbolic [7]. Notably, Davidson et al. [7] proposes a spher-
ical VAE framework (S-VAE ) that operates on a hyperspherical latent space,
allowing for more flexible and distortion-free representations. Furthermore, in
the context of medical imaging, Lafarge et al. [11] introduced an equivariant
VAE model (SE (2)-VAE), to tackle the issue of encoding irrelevant information,
specifically orientation and translation. The SE(2)-VAE extends the traditional
VAE with a group-convolutional neural network [6], enabling the model to be
invariant to arbitrary rotations and translations. Building upon these advance-
ments, Vadgama et al. [16] proposed the KS-VAE framework, combining a hyper-
spherical latent space and an orientation-disentangled group-convolutional net-
work.

2 Method

2.1 VAEs and Hyperspherical VAEs

VAEs [10] are powerful unsupervised learning models based on the assumption
that data is generated via x = D(z) + ε with ε random noise and D a so-called
decoder, that decodes the data content from a low-dimensional latent variable.
It defines a conditional data distribution p(x|z), the likelihood, which together
with a prior distribution p(z) on the latent space defines a distribution on the
data space from which one can generate (sample) new data points. One is typ-
ically interested in obtaining the compressed latent variable z for a given input
x, which can probabilistically be done via the posterior p(z|x). However, the
computation of the true posterior is typically intractable and one thus resorts to
approximating it with a distribution q(z|x) that is parameterized by an encoder
neural network E. Via the approximation, one does not directly maximize the
(marginal) data-evidence, but instead the Evidence Lower Bound (ELBO) [10]:

LELBO = Eq(z|x)[log p(x|z)] − KL(q(z|x)||p(z)), (1)

which consists of a reconstruction loss (measuring fidelity of reconstructed data)
and the KL divergence between the approximate posterior and prior on z.

When the latent space is Euclidean, the approximate posterior q(z|x) and
prior p(z) are usually normally distributed, with the parameters of q(z|x)
obtained via the encoder network, and those of p(z) set as hyperparameters.
For hyperspherical latent spaces we need an equivalent of the normal distribu-
tion, which is given by the von Mises-Fisher (vMF) distribution:

q(z | μ, κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
exp

(
κμT z

)
, (2)
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where the mean μ is a unit vector (‖μ‖ = 1), κ is a precision parameter, and In(κ)
denotes the modified Bessel function of the first kind at order n = (m/2 − 1).
For the special case of κ = 0, the vMF represents a Uniform distribution on the
(m − 1)-dimensional hypersphere U

(Sm−1
)
. The closed form for KL divergence

term between a uniform distribution and vMF distribution is derived in [7].
A key element of hyperspherical VAEs is that, due to the compactness of

the latent space, it is possible to work with uniform priors that make sure that
the entire latent space is utilized and every z ∈ Sm−1 corresponds to a sensible
data point x. In contrast, in Euclidean VAEs mass in the prior p(z) is typically
centered around the origin. Thus, only a fraction of the space is used, resulting
in inefficiency and challenges in effectively modeling and separating clusters in
the latent space. Hyperspherical models do not suffer from these limitations.

2.2 Generative Hyperspherical Autoencoder Through a New Loss

Hyperspherical VAEs are known to be limited in generative capabilities when the
dimensionality of the hypersphere m becomes large, due to instability in sam-
pling from the posterior vMF distributions [7]. We solve this issue by leveraging
the fact that, due to the uniform prior, the entire latent space is covered. That
is, every z ∈ Sm−1 will equally likely generate a realistic sample of the learned
data distribution. We then propose to avoid having to sample during training, by
training an autoencoder (usually trained with only the reconstruction loss) with
an additional loss that encourages a uniform coverage of data in the latent space
which we call the spread loss. The spread loss maximizes the distance between
encoded data points in a batch via

Lspread =
N∑

i,j=1

−zTi zj , (3)

where we note that maximizing the true distance d(zi, zj) = arccos(zTi zj) is
equal to minimizing (hence minus sign in (3)) their inner products zTi zj . An
example visualizing the effects of spread loss is shown in Fig. 2.

2.3 Roto-Equivariant VAE and KS-VAE

In addition to exploring different geometric latent spaces, we also investigate the
idea of learning orientation-disentangled representations. Classic convolutional
neural networks are not equivariant to rotation, causing the same image patches
in different orientations to result in different learned representation vectors. Since
orientation of scanned biopsies is arbitrary and the intrinsic properties remain
unaltered by rotations, we want to learn rotation invariant representations.

We modify (V)AEs to be rotation equivariant based on the method and code
of [3]. We note that equivariance means that if the input rotates, the encoded
latent transforms in a predictable manner via an action of the rotation group on
the latent space. We follow the approach by Vadgama et al. [16] which utilizes an
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[S-AE without spread loss.] [S-AE with with spread loss.]

Fig. 2. Visualization of 3-D Latent Space for model S-AE without and with spread
loss. The same batch of 200 images was encoded by both models, and different image
classes are visualized with different colored points. It can be observed that the points
encoded by the model trained with spread loss cover a significantly larger area of the
sphere

equivariant encoder to obtain the latent representation z, together with a pose
R ∈ SO(2) (a rotation matrix), which can be utilized to map z to a canonical
pose z0 = ρ(R−1)z, with ρ a representation of the rotation group acting on the
latent space Sm−1. In their work it is shown that if the hyperspherical latent
space is of dimension (n− 1) ∗ 2− 1, the latents z can be interpreted and visual-
ized as shapes/visual symbols that consist of n two-dimensional landmarks in a
Kendall shape space. The approach is similar to the equivariant VAEs developed
by Lafarge et al. [11], except that [16] canonicalizes latents z via a predicted pose
R, and that our approach has a hyperspherical instead of Euclidean latent space.

3 Experiments

3.1 Dataset

We train the models on a proprietary dataset retrieved from the Department of
Pathology of the Amsterdam University Medical Centers and the LANS-panel
(Dutch expert board of esophageal cancer). This dataset consists of digitized
and annotated H&E-stained endoscopic biopsies containing different BE progres-
sion stages. Additionally, we use the BOLERO dataset, which includes biopsies
assessed by a panel of expert BE pathologists [18]. Combining these datasets,
we have a total of 934 biopsies from 324 patients. We use the BOLERO dataset
as the test data. We also reserve 10% of the training set as a validation dataset.

The biopsies were digitized using a Philips Intellisite Ultrafast scanner and
stored as Whole-Slide Images (WSIs), which are highly precise scans of glass
slides containing multiple biopsies at various magnification levels. We preprocess
the data by dividing the WSIs into smaller patches of size 64 × 64. See also
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Fig. 3. To ensure sufficient context, we choose a magnification level of 5× and
only include patches with a threshold of 50% or more relevant tissue (squamous,
NDBE, LGD, or HGD classes). Patch labels are computed based on pathologists’
annotations in accompanying segmentation files, with the label determined by
the dominant class within each patch. To balance the dataset and account for
class imbalances, we stratify the dataset by selecting the 8,000 patches for each
class, resulting in a balanced dataset of 32,000 patches.

Fig. 3. Example of WSI and extracted image patches

3.2 Experimental Setup

We refer to hyperspherical and normal Euclidean VAEs as S-VAE and vanilla-
VAE respectively. In our experiments, we investigate representation learning
models over three axes: 1) We compare hyperspherical to Euclidean latent
spaces, 2) for each model we test both an equivariant (G-CNN) and non-
equivariant (standard CNN) version, 3) we compare variational versus non-
variational autoencoders. We employ the same architecture for all models, based
on the work of Lafarge et al. [11]. The encoder consists of three ConvNeXt
blocks followed by max pooling, while the decoder mirrors this structure. The

Table 1. Reconstruction losses on test dataset

Normal Spherical

Non-Equivariant Equivariant Non-Equivariant Equivariant

M VAE AE Eq. VAE Eq. AE S-VAE S-AE Eq. S-VAE Eq. S-AE

3 1895.56 2013.46 – – 1930.60 2089.98 – –

8 1807.06 1769.14 2103.47 2103.35 1707.14 1743.25 2103.66 2103.27

16 1635.89 1621.97 1290.60 1252.64 1563.19 1607.79 1303.07 1313.58

32 1435.60 1428.11 1161.32 1134.30 1389.64 1403.93 1142.24 1135.50

64 1260.85 1273.44 993.94 988.42 1250.45 1258.50 1009.90 992.39

128 1092.88 1113.56 857.40 853.79 1133.33 1104.18 902.82 853.75

256 904.53 935.09 710.22 706.50 1056.68 925.07 826.10 703.88

512 748.42 736.92 562.11 556.61 – 727.06 – 540.13
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non-equivariant variational models generate parameters for the relevant poste-
rior distribution, while the equivariant models also predict a pose per sample
[16]. We train all models for 500 epochs with a batch size of 128, utilizing the
Adam optimizer and MSE loss. We pad and normalize input images, excluding
outer edges for equivariant models during reconstruction loss computation.

To fairly compare the models, we vary the latent dimension size and test
sizes 3, 8, 16, 32, 64, 128, 256, and 512. As observed in previous research by
Davidson et al. [7] and confirmed in our experiments, high dimensions (> 32)
pose numerical instability for spherical models. To mitigate this instability, we
introduce a minimum value of κ (set at κ = 100) which enables successful train-
ing of spherical autoencoders and VAEs up to a dimension size of 256. However,
it is important to note that this approach limits the expressivity of the model,
and this trade-off will be taken into account during result analysis.

4 Results

The experiments address three qualities of representation learning with the fol-
lowing questions: (I) are the learned representations complete (from a compres-
sion perspective); (II) are the learned representation semantically meaningful?;
(III) what are the generative capabilities of each model?

Table 2. Classification Accuracy of Latent Representations on Test Dataset

Normal Spherical

Non-Equivariant Equivariant Non-Equivariant Equivariant

M VAE AE CNN Eq. VAE Eq. AE Eq. CNN S-VAE S-AE Eq. S-VAE Eq. S-AE

3 0.25 0.26 0.46 – – – 0.25 0.26 – –

8 0.33 0.35 0.48 0.34 0.17 0.45 0.36 0.33 0.23 0.27

16 0.39 0.40 0.47 0.39 0.42 0.52 0.40 0.34 0.34 0.30

32 0.41 0.40 0.46 0.47 0.46 0.50 0.41 0.31 0.49 0.46

64 0.45 0.40 0.45 0.40 0.41 0.54 0.39 0.41 0.40 0.43

128 0.42 0.42 0.47 0.40 0.40 0.51 0.40 0.39 0.40 0.28

256 0.42 0.42 0.51 0.38 0.40 0.50 0.40 0.41 0.39 0.24

512 0.38 0.36 0.47 0.38 0.39 0.51 – 0.37 – 0.25

Table 1 addresses (I) following the idea that minimal information is lost if
the decoder can reconstruct the input from the latent representation z. Here
we observe the following: 1) increasing latent dimension size improves recon-
struction fidelity; 2) the difference in variational vs non-variational autoencoders
is small, but gets more pronounced in the hyperspherical showing that non-
variational methods are preferred for compression; 3) equivariant methods have
better reconstructions than non-equivariant ones; 4) hyperspherical latent space
models outperform Euclidean ones.



Modeling BE Progression Using Geometric VAEs 139

Table 2 characterizes the semantic meaning of learned representations (II) by
testing how well we can train a classifier to categorize a given latent z into each of
the classes as given in Fig. 1. As a baseline, we trained a model with the default
encoder architecture to directly predict class from the input patch. This should
provide an upper bound on classification performance, as this model has access to
all available (uncompressed) data to do the classification. The baseline accuracy
(upper bound) is 0.51 for non-equivariant and 0.54 for equivariant CNN variants.
From Table 2 we make the following observations: 1) Latent dimensions 32 and 64
consistently achieve the highest accuracy across models; 2) hyperspherical VAEs
overall give the best performance; 3) the performance of latent space classifiers
is close to the upper bound, suggesting that semantic meaning is preserved by
the encoders.

To gain insight into the generative capabilities and visual interpretability
(III) of the learned latent spaces, we sample vectors from random latent locations
in all trained models and dimension sizes. Figure 4 showcases one sample per
model and dimension size, demonstrating the general differences between the
models. In terms of these generated images, a noticeable trend is the decrease in
quality for higher dimension sizes across almost all models. Lower dimensions (3,
8, and 16) produce rough, blurry shapes with limited detail. However, in higher
dimensions, images become less realistic, losing shapes and introducing colors not
present in the original dataset. The only models capable of generating realistic
images consistent with reconstructions in higher dimensions are the spherical
VAE and its equivariant counterpart. Among these models, equivariant S-VAE
exhibits slightly more biopsy patch-like structures. However, even the best models
generate images that are too blurry to consider them interpretable.

Fig. 4. Randomly generated images from all model types. Each column shows one
sample from a model trained with a specific latent dimension size

Finally, to evaluate our novel S-AE model and determine its potential as a
generative model, we examine the effects of spread loss on the spherical autoen-
coder model by evaluating randomly generated images. From these images,
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Fig. 5. Randomly image samples generated by S-VAE and S-AE with spread Loss, for
a range of latent dimension sizes

shown in Fig. 5, it becomes apparent that the introduction of spread loss to the
spherical autoencoder substantially improves the quality of generated images.
While generated images of autoencoder models previously looked unrealistic,
with spread loss they resemble those generated by the variational models.

5 Discussion

Although the experiments provide important insights when it comes to design
choices of (V)AEs, which we summarize in the conclusion, we also want to note
in what sense the experiments are limited. Firstly, the fidelity of reconstruc-
tions and generated samples are not yet at the level one hopes for in a context
of interpretability. In comparison, the equivariant VAE of [11], whose neural
network architecture we used as a baseline, gave high quality images of single
nuclei. However, when scaling up to larger tissue areas, thus including clusters
of cells, image quality degrades. We believe this is due to the large variability
of cell positionings, their morphology and appearance. It seems that the image
space is simply too diverse to be captured with the studied VAEs. The fact that
the notion of equivariance and hyperspherical latents significantly improve image
quality provides promising leads for future research.

Secondly, we explored capabilities to learn semantically meaningful represen-
tations via a classification analysis. Although the best methods came close to
empirically found upper bounds on performance, the bounds themselves showed
quite some room for improvement. I.e., ideally, the bound would be close to
100% accuracy. The reasons we believe this is not achieved are two-fold. 1) We
had to limit patch-size (and thus context window) in order to obtain reason-
able image reconstructions with the (V)AEs. Going beyond this would further
degrade reconstructed image quality, however, it would have given more context
for the baseline classifier. 2) The labeling of tissue patches is a highly variable and
subjective manual task. This is precisely the motivation for why we are investi-
gating unsupervised learning methods. Nevertheless, the experiments show that
neural networks can pick up on consistent semantic cues in an unsupervised
manner.
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6 Conclusion

In this study, we explored the application of several variants of VAE to learn
tissue representations in an unsupervised manner, with the intent to develop
tools that contribute to an objective understanding of the progression of Bar-
rett’s esophagus. Our contributions are threefold: 1) the experimental analysis of
(V)AE variants showed the importance of equivariance and hyperspherical latent
space modeling; 2) it showed the potential (latent representations can be seman-
tically meaningful) and limitations (image generations show room for improve-
ment) of generative unsupervised representation learning; and 3) we showed that
one can train generative autoencoders in a non-variational setting without com-
promising on performance. Our novel spread loss allowed to train generative
autoencoders without having to rely on a sampling, thereby circumventing the
problem of limited latent space dimension of hyperspherical VAEs. Our study
showed the stability of generative models with hyperspherical latent spaces and
establishes a strong basis for further representation analysis via e.g., cluster
analysis or interpolation experiments. We presented first steps towards a quan-
titative understanding of the latent space of esophageal tissue and how it could
be organized along the axis of progression from healthy to cancerous tissue.
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