
Specification Sketching for Linear
Temporal Logic

Simon Lutz1,2(B), Daniel Neider1,2, and Rajarshi Roy3

1 TU Dortmund University, Dortmund, Germany
simon.lutz@tu-dortmund.de

2 Center for Trustworthy Data Science and Security, UA Ruhr, Dortmund, Germany
3 Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract. Virtually all verification and synthesis techniques assume
that formal specifications are readily available, functionally correct, and
fully match the engineer’s understanding of the given system. How-
ever, this assumption is often unrealistic in practice: formalizing system
requirements is notoriously difficult, error-prone, and requires substantial
training. To alleviate this hurdle, we propose a novel approach of assisting
engineers in writing specifications based on their high-level understand-
ing of the system. We formalize the high-level understanding as an LTL
sketch that is a partial LTL formula, where parts that are hard to for-
malize can be left out. Given an LTL sketch and a set of examples of
system behavior that the specification should or should not allow, the
task of a so-called sketching algorithm is then to complete the sketch
such that the resulting LTL formula is consistent with the examples.
We show that deciding whether a sketch can be completed falls into the
complexity class NP and present two SAT-based sketching algorithms.
Finally, we implement a prototype with our algorithms and compare it
against two prominent LTL miners to demonstrate the benefits of using
LTL sketches.

1 Introduction

Due to its unique ability to prove the absence of errors mathematically, formal
verification is a time-tested method of ensuring the safe and reliable operation
of safety-critical systems. Success stories of formal methods include application
domains such as communication system [21,34], railway transportation [3,4],
aerospace [16,24], and operating systems [30,50] to name but a few.

However, there is an essential and often overlooked catch with formal veri-
fication: virtually all techniques assume that the specification required for the
design or verification of a system is available in a suitable format, is functionally
correct, and expresses precisely the properties the engineers had in mind. These
assumptions are often unrealistic in practice. Formalizing system requirements is
notoriously difficult and error-prone [9,38,44,45]. Even worse, the training effort
required to reach proficiency with specification languages can be disproportion-
ate to the expected benefits [17], and the use of formalisms such as temporal log-
ics require a level of sophistication that many users might never develop [25,28].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14216, pp. 26–48, 2023.
https://doi.org/10.1007/978-3-031-45332-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45332-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-45332-8_2


Specification Sketching for Linear Temporal Logic 27

To aid the process of formalizing specifications, we introduce a fundamentally
novel approach to writing formal specifications, named specification sketching.
Inspired by recent advances in automated program synthesis [47,48], our new
paradigm allows engineers to express their high-level insights about a system in
terms of a partial specification, named specification sketch, where parts that are
difficult or error-prone to formalize can be left out. To single out their desired
specification, our paradigm additionally allows the engineers to provide positive
(i.e., desirable) and negative (i.e., undesirable) examples of system execution.
Based on this additional data, a so-called sketching algorithm fills in the missing
low-level details to obtain a complete specification.

To demonstrate how our paradigm works, let us consider a simple scenario.
Imagine that an engineer wishes to formalize the following request-response prop-
erty P : every request p has to be answered eventually by a response q. This
property can be expressed in Linear Temporal Logic (LTL)—a popular specifica-
tion language in software verification—as G(p → XF q) using standard temporal
modalities F (“Finally”), G (“Globally”), and X (“neXt”). However, for the sake
of this example, assume that the engineer is unsure of how exactly to formalize
P . In such a situation, our sketching paradigm allows them to express their high-
level insights in the form of a sketch, say G(p → ?), where the question mark
indicates the missing part of the specification. Additionally, they can provide
example executions. Assume that they provide the following infinite executions
of the system: (i) a positive execution {p}{q}{p}{q}{p}{q} · · · , in which every
request is answered by a response in the next time point, and (ii) a negative exe-
cution {p}{q}{p}{p}{p} · · · , in which there are infinitely many requests that are
not answered by a response. Our sketching algorithm then computes a substi-
tution for the question mark such that the completed LTL formula is consistent
with the examples (e.g., ? := XF q). In this example, the engineer left out an
entire temporal formula in the sketch. However, our paradigm also allows one to
leave out Boolean and temporal operators. For instance, one could also provide
?(p → XF p) as a sketch, where the question mark now indicates a missing unary
operator (G in our example).

While the concept of specification sketching can be conceived for a wide
range of specification languages, in this work, we focus on Linear Temporal
Logic (LTL) [39]. Our rationale behind choosing LTL is threefold. First, LTL
is popular in academia and widely used in industry [23,24,27,49], making it
the de facto standard for expressing (temporal) properties in verification and
synthesis. Second, LTL is well-understood and enjoys good algorithmic proper-
ties [15,39]. Third, its intuitive and variable-free syntax have recently prompted
several efforts to adopt LTL (over finite words) also in artificial intelligence (e.g.,
as explainable models [13,43], as reward functions in reinforcement learning [12],
etc.). We introduce LTL and other necessary definitions in Sect. 2.

In Sect. 3, we then formally state the problem of specification sketching for
LTL (or LTL sketching for short). It turns out that the LTL sketching problem
might not always have a solution: there are sketches for which no substitutions
exist that makes them consistent with the given examples (see the example at
the end of Sect. 3). However, we show in Sect. 4 that the problem of deciding



28 S. Lutz et al.

whether such a substitution exists is in the complexity class NP. Moreover, we
develop an effective decision procedure that reduces the original question to a
satisfiability problem in propositional logic. This reduction permits us to apply
highly-optimized, off-the-shelf SAT solvers to check whether a consistent substi-
tution exists.

In Sect. 5, we develop two sketching algorithms for LTL. Following Occam’s
razor principle, both algorithms are biased towards finding “small” (concise)
substitutions for the question marks in a sketch. The rationale behind this choice
is that small formulas are arguably easier for engineers to understand and, thus,
can be safely deployed in practice.

By exploiting the decision procedure of Sect. 4 as a sub-routine, our first
algorithm transforms the sketching problem into several “classical” LTL learning
tasks (i.e., learning of LTL formulas from positive and negative data). This
transformation allows us to apply a diverse array of LTL learning algorithms,
which have been proposed during the last five years [13,37,41]. In addition, our
algorithm immediately benefits from any advances in this field of research.

While the first algorithm builds on top of existing work and, hence, is easy
to use, we observed that it tends to produce non-optimal substitutions for the
unspecified parts of a sketch. Our second algorithm tackles this by searching
for substitutions of increasing size using a SAT-based approach that is inspired
by Neider and Gavran [37]. We formally prove that this algorithm can, in fact,
produce small substitutions (if they exist).

In Sect. 6, we present an experimental evaluation of our algorithms using
a prototype implementation LTL-Sketcher. We demonstrate that our algo-
rithms are effective in completing sketches with different types of missing infor-
mation. Further, we compare LTL-Sketcher against two state-of-the-art spec-
ification mining tools for LTL. From the comparison, we demonstrate that
LTL-Sketcher’s ability to complete missing temporal formulas and temporal
operators enables it to complete more specifications. Moreover, we observe that
providing high-level insights as a sketch reduces the number of examples required
to derive the correct specification. Finally, we conclude in Sect. 7 with a discus-
sion on future work. All the proofs and additional experimental results can be
found in the extended version of this paper [35].

Related Work. Specification sketching can be seen as a form of specification
mining [1]. In this area, the general idea of allowing partial specifications is not
entirely new, but it has not yet been investigated as generally as in this work.
For instance, a closely related setting is the one in which so-called templates are
used to mine temporal specifications from system executions. In this context,
a template is a partial formula similar to a sketch. Unlike a sketch, however,
a template is typically completed with a single atomic proposition or a sim-
ple, usually Boolean formula (e.g., a restricted Boolean combination of atomic
propositions). A prime example of this approach is Texada [31,32], a specifica-
tion miner for LTLf formulas (i.e., LTL over a finite horizon). Texada takes a
template (property type in their terminology) and a set of system executions



Specification Sketching for Linear Temporal Logic 29

as input and completes the template with atomic propositions such that the
resulting LTL formula satisfies all system executions. In contrast to Texada,
our paradigm assists engineers in completing more complex temporal formulas
in their specifications, thus alleviating an even larger burden off an engineer.
Another example in this setting is the concept of temporal logic queries, intro-
duced by Chan [14] for CTL, and later developed by Bruns and Godefroid [10]
for a wide range of temporal logics. However, unlike our paradigm, temporal
logic queries allow only a single placeholder in their template that can be filled
with only atomic propositions.

Various other techniques operate in settings where the templates are even
more restricted. For example, Li et al. [33] mine LTL specification based on
templates from the GR(1)-fragment of LTL (e.g., GF?, G(?1 → X?2), etc.), while
Shah et al. [46] mine LTL formulas that are conjunctions of the set of common
temporal properties identified by Dwyer et al. [19]. In addition, Kim et al. [29]
consider a set of interpretable LTL templates, widely used in the development
of software systems, to obtain LTL formulas robust to noise in the input data.
In the context of CTL, on the other hand, Wasylkowski and Zeller [51] mine
specifications using templates of the form AF?, AG(?1 → F?2), etc. However, all
of the approaches above complete the templates only with atomic propositions
(and their negations in some cases).

Another setting is where general (and complex) temporal specifications are
learned from system executions without any information about the structure
of the specification. The most notable work in this setting is by Neider and
Gavran [37], who learn LTL formulas from system executions using a SAT solver.
Similar to their work is the work by Camacho et al. [13], which proposes a SAT-
based learning algorithm for LTLf formulas via Alternating Finite Automata
as an intermediate representation. Raha et al. [40] present a scalable approach
for learning formulas in a fragment of LTLf without the U-operator, while Roy,
Fisman, and Neider [42] consider the Property Specification Language (PSL).
However, all of these works are “unguided” in that none of them exploit insights
about the structure of the specification to aid the learning/mining process.

Finally, it is worth mentioning that LTL sketching can also be seen as a
particular case of syntax-guided synthesis (SyGuS), where syntactic constraints
on the resulting formulas are expressed in terms of a context-free grammar.
An example of a syntax-guided approach is SySLite [2], a CVC4-based tool
for learning Past-time LTL over finite executions. However, to the best of our
knowledge, we are unaware of any SyGuS engine that can infer specifications in
LTL over infinite (i.e., ultimately-periodic) system executions.

2 Preliminaries

We first set up the notation and definitions that are used throughout the paper.
To model trajectories of a system, we exploit the notion of words defined over

an alphabet consisting of relevant system events. Formally, an alphabet Σ is a
nonempty, finite set whose elements are called symbols. A finite word over an



30 S. Lutz et al.

alphabet Σ is a sequence u = a0 . . . an of symbols ai ∈ Σ for i ∈ {0, . . . , n}.
The empty sequence, referred to as empty word, is denoted by ε. The length of a
finite word u is denoted by |u|, where |ε| = 0. Moreover, Σ∗ denotes the set of all
finite words over Σ, while Σ+ = Σ∗ \ ε denotes the set of all non-empty words.

An infinite word over Σ is an infinite sequence α = a0a1 . . . of symbols
ai ∈ Σ for i ∈ N. We denote the i-th symbol of an infinite word α by α[i] and
the finite infix of α from position i up to (and excluding) position j with α[i, j) =
aiai+1 · · · aj−1. We use the convention that α[i, j) = ε for any i ≥ j. Further,
we denote the infinite suffix starting at position j ∈ N by α[j,∞) = ajaj+1 · · · .
Given u ∈ Σ+, the infinite repetition of u is the infinite word uω = uu · · · ∈ Σω.
An infinite word α is called ultimately periodic if it is of the form α = uvω for a
u ∈ Σ∗ and v ∈ Σ+. Finally, Σω denotes the set of all infinite words over Σ.

Since our algorithms rely on the Satisfiability (SAT) problem, as a prerequi-
site, we introduce Propositional Logic. Let Var be a set of propositional variables,
which take Boolean values from B = {0, 1} (0 representing false and 1 represent-
ing true). Formulas in propositional (Boolean) logic, denoted by capital Greek
letters, are inductively constructed as follows:

– each x ∈ Var is a propositional formula; and
– if Ψ and Φ are propositional formulas, so are ¬Ψ and Ψ ∨ Φ.

Moreover, as syntactic sugar, we allow the formulas true, false, Ψ ∧Φ,Ψ ⇒ Φ,
and Ψ ⇔ Φ, which are defined as usual. A propositional valuation is a mapping v :
Var → B that assigns Boolean values to propositional variables. The semantics
of propositional logic is given by a satisfaction relation |= that is inductively
defined as follows: v |= x if and only if v(x) = 1, v |= ¬Φ if and only if v � Φ,
and v |= Ψ ∨ Φ if and only if v |= Ψ or v |= Φ. In the case that v |= Φ, we
say that v satisfies Φ and call it a model of Φ. A propositional formula Φ is
satisfiable if there exists a model v of Φ. The size of a formula is the number of
its subformulas (defined in the usual way). The satisfiability (SAT) problem is
the well-known NP-complete problem of deciding whether a given propositional
formula is satisfiable. In the recent past, numerous optimized decision procedures
have been designed to handle the SAT problem effectively [6].

Linear Temporal Logic is a logic to reason about sequences of relevant state-
ments about a system by using temporal modalities. Formally, given a set P of
propositions that represent relevant statements about a system, an LTL formula,
denoted by small Greek letters, is defined inductively as follows:

– each proposition p ∈ P is an LTL formula; and
– if ψ and ϕ are LTL formulas, so are ¬ψ, ψ ∨ ϕ, Xψ (“neXt”), and ψUϕ

(“Until”).

As syntactic sugar, we allow standard Boolean formulas such as true, false,
ψ∧ϕ, and ψ → ϕ and temporal formulas such as Fψ := true Uψ (“Finally”) and
Gψ := ¬F¬ψ (“Globally”). While we restrict to these formulas, our paradigm
extends naturally to all temporal operators (e.g., “Release”, “Weak until”, etc.).

LTL formulas are interpreted over infinite words α ∈ (2P)ω. To define
how an LTL formula is interpreted on a word, we use a valuation function



Specification Sketching for Linear Temporal Logic 31

V . This function maps an LTL formula and a word to a Boolean value and
is defined inductively as: V (p, α) = 1 if and only if p ∈ α[0], V (¬ϕ,α) =
1 − V (ϕ,α), V (ϕ ∨ ψ, α) = max{V (ϕ,α), V (ψ, α)}, V (Xϕ,α) = V (ϕ,α[1,∞)),
and V (ϕUψ, α) = maxi≥0{min{V (ψ, α[i,∞)),min0≤j<i{V (ϕ,α[j,∞))}}}. We
call V (ϕ,α) the valuation of ϕ on α and say that α satisfies ϕ if V (ϕ,α) = 1.

∨
U F

p G

q

Fig. 1. Syntax DAG of
(pUG q) ∨ (F(G q))

For a graphical representation of LTL formulas,
we rely on syntax DAGs. A syntax DAG is a directed
acyclic graph (DAG) obtained from the syntax tree
of a formula by merging the common subformulas,
resulting in a canonical representation. Figure 1 illus-
trates the syntax DAG of the formula (pUG q)∨FG q.

The size of an LTL formula |ϕ| is defined as the
number of unique subformulas, which also corresponds
to the number of nodes in the syntax DAG of ϕ. For
instance, the size of the formula in Fig. 1 is six.

We denote the set of all LTL operators as Λ =
P ∪ ΛU ∪ ΛB . Here, the propositions are the nullary
operators, ΛU = {¬,X,F,G} are the unary operators
and ΛB = {∨,∧,U} are the binary operators of LTL. Further, let FLTL denote
the set of all LTL formulas.

3 Problem Formulation

Since the problem of LTL sketching relies heavily on LTL sketches, we begin
with formalizing them first.

LTL Sketch. An LTL sketch is an incomplete LTL formula in which parts that
are difficult to formalize can be left out. The left-out parts are represented using
placeholders, denoted by ?’s. An example of an LTL sketch can be seen in Fig. 2.
We comment on the superscripts on the placeholders in the figure shortly.

?2

U ?1

?0 G

q

Fig. 2. An LTL sketch

Formally, an LTL sketch ϕ? is simply an LTL for-
mula whose syntax is augmented with placeholders.
The placeholders we allow can be of three types: place-
holders of arity zero referred to as Type-0 placehold-
ers, that replace missing LTL formulas; placehold-
ers of arity one referred to as Type-1 placeholders,
that replace missing unary operators; and placehold-
ers of arity two referred to as Type-2 placeholders,
that replace missing binary operators. In Fig. 2 (and
throughout the paper), Type-i placeholders are repre-
sented using ?i.

Given (possibly empty) sets Π0, Π1 and Π2 consisting of Type-0, Type-1 and
Type-2 placeholders, respectively, we define LTL sketches inductively as follows:

– each element of P ∪ Π0 is an LTL sketch; and
– if ϕ?

1 and ϕ?
2 are LTL sketches, ◦ ϕ?

1 is an LTL sketch for ◦ ∈ ΛU ∪ Π1 and so
is ϕ?

1 ◦ ϕ?
2 for ◦ ∈ ΛB ∪ Π2.



32 S. Lutz et al.

Note that an LTL sketch in which Π0 = Π1 = Π2 = ∅ is simply an LTL formula.
Further, let Πϕ? = Π0 ∪ Π1 ∪ Π2 denote the set of all placeholders in an sketch
ϕ?. For the sketch in Fig. 2, Πϕ? = {?0, ?1, ?2}. For brevity, in the rest of the
paper, we refer to an LTL sketch as a sketch.

The placeholders are abstract symbols that apriori do not have meaning.
To assign meaning to a sketch, we need to substitute all Type-0 placeholders
with LTL formulas, all Type-1 placeholders with unary operators, and all Type-
2 placeholders with binary operators. We do this using a so-called substitution
function (or substitution for short).

Formally, a substitution function s maps placeholders and operators present
in a sketch to LTL operators and LTL formulas in such a way that: s(?) ∈ FLTL

if ? ∈ Π0; s(?) ∈ ΛU if ? ∈ Π1; s(?) ∈ ΛB if ? ∈ Π2; and s(λ) = λ for any LTL
operator λ ∈ Λ. Moreover, a substitution s is said to be complete for a sketch
ϕ? if s is defined for every element in Λ ∪ Πϕ? in ϕ?. For example, a possible
complete substitution s for the sketch ϕ? in Fig. 2 can be s(?0) = p, s(?1) = F,
s(?2) = ∨, and s(λ) = λ for λ ∈ Λ.

A complete substitution s can be applied to a sketch ϕ? to obtain an LTL
formula. To make this precise, we define a function fs, which is defined recursively
on the structure of ϕ? as: fs(ϕ?

1 ?2 ϕ?
2) = fs(ϕ?

1) ◦ fs(ϕ?
2), where ◦ = s(?2);

fs(?1ϕ?)) = ◦ fs(ϕ?), where ◦ = s(?1); fs(?0) = s(?0); and fs(ϕ?) = ϕ? if
Πϕ? = ∅. For the complete substitution s for ϕ? defined in the last paragraph
we get fs(ϕ?) = (pUG q) ∨ (F(G q)).

Input Sample. While there can be many ways to complete a sketch, we direct our
search based on two finite, disjoint sets: a set P of positive executions and a set
N of negative executions. We consider the executions to be ultimately periodic
words, i.e., words of the form uvω, where u ∈ (2P)∗ and v ∈ (2P)+, since they
are sufficient to uniquely characterize ω-regular languages [11] (and thus, LTL
formulas). We accumulate all the executions in what we call a sample S = (P,N)
where P ∩ N = ∅. We define its size to be |S| =

∑
uvω∈P∪N |uv|.

We say that an LTL formula ϕ is consistent with a sample S = (P,N)
if V (ϕ, uvω) = 1 for each uvω ∈ P (i.e., all positive words satisfy ϕ) and
V (ϕ, uvω) = 0 for each uvω ∈ N (i.e., all negative words do not satisfy ϕ).

The LTL Sketching Problem. We now state the central problem of the paper.

Problem 1 (LTL sketching). Given an LTL sketch ϕ? and a sample S = (P,N),
find a complete substitution s for ϕ? such that fs(ϕ?) is consistent with S.

Unlike the classical LTL learning problem [37], a solution to the LTL sketch-
ing problem does not always exist. This can be illustrated using the following
simple example. Consider the sketch G(?0) and a sample consisting of a sin-
gle positive word α = {p}{q}ω and a single negative word β = {q}ω. For this
sketch and sample, there does not exist any substitution that leads to an LTL
formula consistent with the sample. Towards contradiction, let us assume that
there exists an LTL formula G(ϕ) such that V (G(ϕ), α) = 1 and V (G(ϕ), β) = 0.



Specification Sketching for Linear Temporal Logic 33

Based on the semantics of the G-operator, V (G(ϕ), α) = V (G(ϕ), α[1,∞)) = 1.
On the other hand, V (G(ϕ), β) = V (G(ϕ), α[1,∞)) = 0 since β = α[1,∞).

Since, for a given LTL sketch and a sample, there might not exist any complete
substitution, a naive enumeration-like algorithm to search over all substitutions
may not terminate. To show that one can indeed design a terminating sketching
algorithm, in the next section, we prove the decidability of LTL sketching .

4 Existence of a Complete Sketch

To devise a terminating algorithm for the LTL sketching problem, we first intro-
duce the related decision problem, which is the following:

Problem 2 (LTL sketch existence). Given an LTL sketch ϕ? and a sample S =
(P,N), does there exist a complete substitution s for ϕ? such that fs(ϕ?) is
consistent with S.

In what follows, we prove that this problem is indeed decidable and belongs
to the complexity class NP. Thereafter, we devise a decision procedure for the
problem by exploiting the satisfiability (SAT) problem.

4.1 The Decidability Result

For the decidability result, we begin by introducing some concepts as a prepara-
tion. Let us first observe the following key property of ultimately periodic words.

Observation 1. Let uvω ∈ (2P)ω and ϕ be an LTL formula. Then, uvω[|u|+ i] =
uvω[|u|+j] for j ≡ i mod |v|. Thus,V (ϕ, uvω[|u|+i,∞)) = V (ϕ, uvω[|u|+j,∞)).

This observation indicates that, for a word uvω, there exists only a finite number
of distinct suffixes of uvω, all of which originate in the initial uv portion of uvω.
Let us then define suf (uvω) = {uvω[i,∞) | 0 ≤ i < |uv|} as the set of all (possi-
bly) distinct suffixes of a word uvω. Moreover, let suf (S) =

⋃
uvω∈(P∪N) suf (uvω)

to be the set of suffixes of all words in S. Now, Observation 1 also indicates that,
to determine the evaluation of an LTL formula ϕ on an ultimately periodic word
uvω, it is sufficient to determine its evaluation on the initial |uv| suffixes of uvω.

Thus, for a compact representation of the evaluation of ϕ on uvω, we intro-
duce a table notation Tϕ

uvω . Mathematically speaking, a table Tϕ
uvω is a |ϕ|× |uv|

matrix that consists of the satisfaction of all the subformulas ϕ′ of ϕ on the suf-
fixes of uvω. We define the entries of this matrix as: Tϕ

uvω [ϕ′, t] = V (ϕ′, uvω[t,∞))
for all subformulas ϕ′ of ϕ and 0 ≤ t < |uv|.

Based on the above definition of the table Tϕ
uvω , we identify three properties

of these tables, which form the main building blocks of the decidability proof
(i.e., proof of Theorem 1), as we see later.

The first property, or as we call it, the Semantic property, is that various
rows of the table are related to each other in a way that reflects the semantics
of LTL. To explain this further, we use Tϕ

uvω [ϕ′, ·] to represent the row of Tϕ
uvω

corresponding to the subformula ϕ′.



34 S. Lutz et al.

We first demonstrate the Semantic property on an example. Consider the
formula ψ = p∨X q and the word α = {p, q}{p}{q}ω. The table Tψ

α is illustrated
in Fig. 3. From the figure, one can see that the row Tψ

α [p ∨X q, ·] corresponds to
the bitwise-OR of the rows Tψ

α [p, ·] and Tψ
α [X q, ·], reflecting the semantics of the

∨-operator that combines formulas p and X q.

0 1 2

p 1 1 0

q 1 0 1

X q 0 1 1

p ∨ X q 1 1 1

Fig. 3. Table T ψ
α for ψ = p ∨ X q and

α = {p, q}{p}{q}ω

∨1

U2 F3

p4 G5

q6

Fig. 4. Syntax DAG of (pUG q) ∨
F(G q) with identifiers (in superscripts)

To define these semantic relations between the rows, we must uniquely iden-
tify the subformula that corresponds to each row. As a result, we assign unique
identifiers i ∈ {1, . . . , n} to each node of the syntax DAG of ϕ enabling us to
denote the subformula rooted at Node i using ϕ[i]. For assigning identifiers, we
follow the strategy that: (i) we assign the root node with 1; and (ii) we assign
each node with an identifier smaller than its children (i.e., if it has any). Note
that one can analogously assign identifiers to syntax DAGs of sketches. Figure 4
demonstrates identifiers for the formula (pUG q) ∨ F(G q). We further define a
function � : {1, . . . , n} �→ Λ that maps the identifiers to the corresponding oper-
ators in the syntax DAG.

We now describe the set of equations that formalize the relation between the
rows. How a row Tϕ

uvω [ϕ[i], ·] relates to the others depends on the operator �(i)
in the root node of ϕ[i]. For instance, if �(i) = p for some proposition p, then we
have the following relation:

Tϕ
uvω [ϕ[i], t] =

{
1 if p ∈ uvω[t]
0 otherwise

(1)

If, on the other hand, �(i) is a X-operator and Node j is the left child of
Node i, we have the following relation:

Tϕ
uvω [ϕ[i], t] =

{
Tϕ

uvω [ϕ[j], t + 1] for 0 ≤ t < |uv| − 1
Tϕ

uvω [ϕ[j], |u|] for t = |uv| − 1
(2)

The above equation exploits the semantics of the X-operator. Further, it exploits
Observation 1 and determines the entry Tϕ

uvω [ϕ[i], |uv| − 1] using the evaluation
of ϕ[j] at uvω[|u|,∞), i.e., the start of the periodic part.

If �(i) is a ∨-operator, and Node j and Node j′ are the left and right children
of Node i, respectively, then we have the following relation:



Specification Sketching for Linear Temporal Logic 35

Tϕ
uvω [ϕ[i], t] = Tϕ

uvω [ϕ[j], t] ∨ Tϕ
uvω [ϕ[j′], t] for 0 ≤ t < |uv| (3)

Again, one can see that the above equation follows from the semantics of the ∨-
operator. For other LTL operators, the relation between rows follows the seman-
tics of the corresponding LTL operator in a similar fashion (see extended ver-
sion [35] for details). Whenever necessary, we use Observation 1 to determine
the semantics of the operator by “looping” around in the period part of uvω.

Next, we describe the second property, the Consistency property. This prop-
erty ensures that Tϕ

uvω [ϕ, 0] = 1 if and only if uvω satisfies ϕ. Thus, for an LTL
formula ϕ consistent with S, we have the following relation:

Tϕ
uvω [ϕ, 0] = 1 for all uvω ∈ P, and Tϕ

uvω [ϕ, 0] = 0 for all uvω ∈ N (4)

The final property we observe is called the Suffix property. This prop-
erty originates from the fact that LTL, being a future-time logic, has the
same evaluation on equal suffixes, i.e., V (ϕ, u1v

ω
1 [t,∞)) = V (ϕ, u2v

ω
2 [t′,∞)) for

u1v
ω
1 [t,∞) = u2v

ω
2 [t′,∞). Formally, we state the property as follows:

Tϕ
u1vω

1
[ϕ, t] = Tϕ

u2vω
2
[ϕ, t′] for all u1v

ω
1 [t,∞) = u2v

ω
2 [t′,∞) (5)

This property becomes significant later, especially for constructing LTL formulas
to substitute Type-0 placeholders.

With the prerequisites set up, we now proceed to describe an NP algorithm
for deciding the LTL sketch existence problem. For an easy presentation of the
algorithm, we consider the simple (but crucial) case where the only missing
information in ϕ? is a single Type-0 placeholder. While one might assume that
non-deterministically guessing a substitution for the placeholder should suffice;
it does not. This is because, apriori, the size of the LTL formula required to
substitute the Type-0 placeholder is not known.

Thus, in our NP algorithm, instead of guessing substitutions, we guess the
entries of the table Tϕ?

uvω for each uvω in S. Note that the tables have a finite
dimension, precisely |ϕ?| × |uv|, for each word uvω. Thus, the overall process of
simply guessing the table entries can be done in time O(poly(|ϕ?|, |S|)).

After guessing the table entries, we must verify that the guessed tables sat-
isfy the three properties, Semantic, Consistency, and Suffix, discussed earlier in
this section. It is easy to verify that checking the first two properties for the tables
requires time O(poly(|ϕ?|, |uv|)) (i.e., polynomial in |ϕ?| and |uv|) for each uvω in
S. For checking the Suffix property, one must identify the equal suffixes in suf (S).
This can be also done in time O(poly(|S|)), simply by unrolling the periodic part
of the suffixes to a fixed length (see extended version [35] for the details).

This algorithm naturally also extends to multiple Type-0 placeholder. The
following lemma now asserts that if the guessed tables satisfy the three prop-
erties, then one can find a suitable complete LTL formula. We present a proof
sketch of the lemma here (for the full proof, see the extended version [35]).

Lemma 1. Let S = (P,N) be a sample and ϕ? be a sketch with only Type-0
placeholders. Then, the following holds: there exists tables Tϕ?

uvω (i.e., |ϕ?| × |uv|



36 S. Lutz et al.

matrices with {0, 1} entries) for each uvω ∈ P ∪ N that satisfy the Semantic,
Consistency, and Suffix properties if and only if there exists a substitution s such
that LTL formula fs(ϕ?) is consistent with S.

Proof sketch: For simplicity, we consider ϕ? to consist of only one Type-0
placeholder ?0. For the forward direction, we explicitly construct an LTL for-
mula for ?0, based on tables Tϕ?

uvω . Towards this, we first construct a sample
S ′ = (P ′, N ′) as: P ′ = {uvω[t,∞) ∈ suf (S) | Tϕ?

uvω [?0, t] = 1}, N ′ = {uvω[t,∞) ∈
suf (S) | Tϕ?

uvω [?0, t] = 0}. Since the tables satisfy the Suffix property, P ′∩N ′ = ∅.
We can now construct a generic LTL formula ψ consistent with S ′ using LTL
learning [37]. For the other direction, we construct Tϕ?

uvω based on T
fs(ϕ

?)
uvω as:

Tϕ?

uvω [ϕ?[i], ·] = T
fs(ϕ

?)
uvω [fs(ϕ?)[i], ·] for each uvω ∈ P ∪ N and 0 ≤ i < |ϕ?|. ��

With this, we conclude the NP algorithm for the case where ϕ? only has Type-
0 placeholders. We can easily extend the algorithm to the case where ϕ? consists
of Type-1 and Type-2 placeholders. In particular, we first guess the operators
to be substituted for the Type-1 and Type-2 placeholders and substitute them.
We then obtain a sketch consisting of only Type-0 placeholders. We now apply
our algorithm that relies on guessing tables, as described above.

Theorem 1. The LTL sketch existence problem is in NP.

We conjecture that the complexity lower-bound of LTL sketch existence is NP-
hard based on the NP-hardness of LTL learning for certain fragments of LTL [22].
However, we have to leave the exact lower-bound of the problem for future work.

4.2 The Decision Procedure

Based on the NP algorithm described above, we now devise a decision procedure
to decide the LTL sketch existence problem. The decision procedure relies upon
reducing the existence of tables Tϕ

uvω satisfying the three properties discussed in
Sect. 4.1 to a satisfiability (SAT) problem.

This reduction relies on a symbolic encoding of the entries of the tables.
To this end, we introduce propositional variables yu,v

i,t for each i ∈ {1, . . . , n},
t ∈ {0, . . . , |uv| − 1}, and uvω ∈ P ∪ N . A variable yu,v

i,t encodes the entry
Tϕ

uvω [ϕ[i], t]. Further, we encode the operators to be substituted for the Type-1
and Type-2 placeholders in ϕ? using the following variables: (i) xi,λ for each
Node i where �(i) is a Type-1 placeholder and each λ ∈ ΛU ; and (ii) xi,λ for
each Node i where �(i) is a Type-2 placeholder and each λ ∈ ΛB.

We now impose constraints on the introduced variables to ensure that the
prospective tables satisfy the three properties necessary for inferring a consistent
LTL formula. We achieve this by constructing a propositional formula Φϕ?,S .
This formula ensures that variables yu,v

i,t encode appropriate tables and using
Lemma 1, its satisfiability ensures the existence of a suitable substitution for ϕ?.

Internally, Φϕ?,S := Φ1,2
? ∧Φsem ∧Φcon ∧Φsuf is a conjunction of four formulas.

The first conjunct Φ1,2
? ensures that the Type-1 and Type-2 placeholders are



Specification Sketching for Linear Temporal Logic 37

substituted by appropriate operators. The conjuncts Φsem , Φcon and Φsuf ensure
that the variables yu,v

i,t encode entries of tables that satisfy the Semantic property
(e.g., Eqs. 1, 2, etc.), the Consistency property (Eq. 4) and the Suffix property
(Eq. 5), respectively. In the remainder of the section, we describe the construction
of each of the four formulas.

We begin by introducing the constraints required for Φ1,2
? . For each Node i

labeled with a Type-1 placeholder (i.e., �(i) ∈ Π1), we design the following
constraint:

[ ∨

λ∈ΛU

xi,λ

]
∧

[ ∧

λ	=λ′∈ΛU

¬xi,λ ∨ ¬xi,λ′
]
, (6)

which ensures that the Type-1 placeholders are substituted with a unique unary
operator. For Type-2 placeholders, we have the exact same constraint except
that the operators range from the set of binary operators ΛB. We now construct
Φ1,2
? simply by taking a conjunction of all such constraints for the nodes labeled

with Type-1 and Type-2 placeholders.
Next, we define Φsem as the conjunction

∧
uvω∈P∪N Φu,v, where Φu,v denotes

a formula that ensures that the variables yu,v
i,t satisfy the semantic relations

for the word uvω. In the formula Φu,v, for each Node i labeled with the X-
operator (i.e., �(i) = X) and having Node j as its left child, we have the following
constraint:

[ ∧

0≤t<|uv|−1

[
yu,v

i,t ↔ yu,v
j,t+1

]]
∧

[
yu,v

i,|uv|−1 ↔ yu,v
j,|u|

]
(7)

This constraint ensures that the variables yu,v
i,t satisfy Eq. 2 for the word uvω.

For nodes labeled with other operators, we construct similar constraints based
on their corresponding semantic relations. If the nodes are labeled with Type-1
or Type-2 placeholders, we additionally rely on variables xi,λ to determine the
operator λ to be substituted in Node i. Based on the operator label λ, we devise
appropriate semantic constraints. Finally, we construct Φu,v as the conjunction
of all such semantic constraints.

We construct the following constraint to ensure Eq. 4 is satisfied for the
prospective tables:

Φcon := [
∧

uvω∈P

yu,v
1,0 ] ∧ [

∧

uvω∈N

¬yu,v
1,0 ] (8)

Finally, for Φsuf , we have the following constraint for each Node i labeled
with a Type-0 placeholder (i.e., �(i) ∈ Π0):

∧

u1vω
1 [t,∞)=u2vω

2 [t′,∞)∈suf (S)

[
yu1,v1

i,t ↔ yu2,v2
i,t′

]
, (9)

which ensures that Eq. 5 is satisfied for the prospective tables.
Overall, we construct a formula Φϕ?,S that ranges over O(n + nm) variables

and is of size O(n + nm3 + m2), where n = |ϕ?| and m = |S|. We conclude this
section by stating the correctness of Φϕ?,S .



38 S. Lutz et al.

Theorem 2. Let ϕ? be a sketch, S a sample, and Φϕ?,S the formula as defined
above. Then, Φϕ?,S is satisfiable if and only if there exists a complete substitution
s such that fs(ϕ?) is consistent with S.

Proof sketch: For the forward direction, based on a model v of Φϕ?,S , we con-
struct a complete substitution s such that fs(ϕ?) is consistent with S. First,
due to constraints like Constraint 6, we can substitute any Type-1 or Type-2
placeholder, say at Node i, with the unique operator λ for which v(xi,λ) = 1.
Second, we construct substitutions for Type-0 placeholders by relying on tables
Tϕ?

uvω that we construct from v as follows: Tϕ?

uvω [ϕ?[i], uvw[t,∞)] = v(yu,v
i,t ) for

each uvω ∈ P ∪ N and i ∈ {1, . . . , n}. Due to Constraints 7, 8, and 9, the con-
structed tables Tϕ?

uvω satisfy the Semantic, Consistency, and Suffix properties.
As a result, one can explicitly construct substitutions for Type-0 placeholders
based on tables Tϕ?

uvω , exploiting Lemma 1. For the other direction, based on the
substitution s, we simply construct a unique assignment v that satisfies Φϕ?,S .

��
5 Algorithms to Complete an LTL Sketch

We now describe two novel algorithms for solving the LTL sketching problem,
which aim at searching for concise LTL formulas from sketches, as alluded to
in the introduction. Thus, our first algorithm relies on existing techniques to
learn minimal LTL formulas. Our second algorithm, alternatively, searches for
formulas of increasing size based on constraint solving.

5.1 Algorithm Based on LTL Learning

This algorithm, which we refer to as Algo1, builds upon the decision proce-
dure for checking the existence of a complete substitution presented in Sect. 4.2.
In particular, it relies on Φϕ?,S from the decision procedure to construct sub-
stitutions for placeholders of a sketch. While it is straightforward to substitute
Type-1 and Type-2 placeholders, the algorithm relies on the classic LTL learning
problem to substitute Type-0 placeholders.

The first step of the algorithm is to construct Φϕ?,S from the given sample and
sketch, as described in Sect. 4.2. If Φϕ?,S is unsatisfiable, the algorithm straight-
away returns that no solution exists, as established by Theorem 2. If satisfiable,
we use a model, say v, of Φϕ?,S (obtained from any off-the-shelf SAT solver) to
complete ϕ?, the details of which we describe next.

Given a model v of Φϕ?,S , one can substitute the Type-1 and Type-2 place-
holders in ϕ? as follows: for each Node i where �(i) is a Type-1 and Type-2 place-
holders, assign s(�(i)) = λ, where λ is the unique operator for which v(xi,λ) = 1.

The Type-0 placeholders, however, are more challenging to substitute. This is
because they represent entire LTL formulas. Towards substituting Type-0 place-
holders, for every Node i for which �(i) is a Type-0 placeholder (i.e., �(i) ∈ Π0),
we first construct a sample Si = (Pi, Ni) as Pi = {uvω[t,∞) ∈ suf (S) | v(yu,v

i,t ) =
1}, and Ni = {uvω[t,∞) ∈ suf (S) | v(yu,v

i,t ) = 0}. We now learn a minimal



Specification Sketching for Linear Temporal Logic 39

LTL formula ϕi consistent with the sample Si (using some LTL learning algo-
rithm [37,40,41]) for substituting �(i). Intuitively, such formulas ϕi ensure that
the tables Tϕ

uvω of ϕ obtained by completing ϕ? satisfy the Semantic, Consistency
and Suffix properties described in Sect. 4.1.

We now establish the correctness of the algorithm using the following theo-
rem:

Theorem 3. Given sketch ϕ? and sample S, Algo1 completes ϕ? to output an
LTL formula that is consistent with S if such a formula exists, otherwise returns
that no such formula exists.

Observe that this algorithm constructs new samples for each Type-0 place-
holder, each of which have size O(|suf (S)|) = O(|S|2). This poses a challenge to
the scalability of this algorithm. Furthermore, the new samples are not optimized
to produce the minimal possible substitutions. Our next algorithm improves both
the runtime and the size of the inferred specification.

5.2 Algorithm Based on Incremental SAT Solving

We now describe an algorithm, abbreviated as Algo2, that reduces LTL sketching
to a series of SAT solving problems, inspired by the SAT-based algorithm of
Neider and Gavran [37]. Given a sample S and a number n ∈ N\{0}, we construct
a propositional formula Ψϕ?,S

n , of size poly(|ϕ?|, |S|), that has the properties that:
(i) Ψϕ?,S

n is satisfiable if and only if one can complete ϕ? to obtain an LTL formula
of size at most n that is consistent with S; and (ii) using a model v of Ψϕ?,S

n ,
one can complete ϕ? to construct a consistent LTL formula of size at most n.

However, in contrast to the algorithms by Neider and Gavran, we first solve
Φϕ?,S (discussed in Sect. 4.2) to determine the existence of a complete substitu-
tion. If and only if Φϕ?,S is satisfiable, our algorithm checks the satisfiability of
Ψϕ?,S

n for increasing values of n (starting from |ϕ?| − 1) to search for an LTL
formula of size at most n that has the same syntactic structure as ϕ?. We con-
struct the resulting LTL formula by substituting the placeholders in ϕ? based on
a model v of the formula Ψϕ?,S

n , similar to what we do in Algo1. The termination
of this algorithm is guaranteed by the decision procedure encoded by Φϕ?,S . The
procedure ensures that we search for a solution only if there exists a complete
and consistent LTL formula, to begin with. Moreover, the properties of Ψϕ?,S

n

ensure that we find the suitable LTL formula if there exists one.
On a technical level, the formula Ψϕ?,S

n is obtained by modifying certain parts
of the formula Φϕ?,S . Precisely, Ψϕ?,S

n := Φ1,2
? ∧ Φ′

sem ∧ Φcon ∧ Φ0
?,n and it intro-

duces two modifications in Φϕ?,S : a new formula Φ0
?,n replaces Φsuf ; and Φ′

sem

adds more constraints to Φsem . The formula Φ0
?,n encodes the structure of LTL

formulas that substitute the Type-0 placeholders. Φ′
sem , again as in Φsem , ensures

that the variables yu,v
i,t encode table entries Tϕ

uvω [ϕ[i], t] that satisfy equations
(e.g., Eqs. 1, 2, etc.) describing the Semantic property. We now briefly describe
the constraints for the newly introduced formulas.



40 S. Lutz et al.

The formula Φ0
?,n relies on an additional set of variables: (i) xi,λ for each

Node i where �(i) is a Type-0 placeholder or i ∈ {|ϕ?| + 1, . . . , n}, and each
λ ∈ Λ ; and (ii) li,j and ri,j for each Node i where �(i) is a Type-0 placeholder
or i ∈ {|ϕ?| + 1, . . . , n}, and each j ∈ {max(i, |ϕ?| + 1), . . . , n}. The variable
xi,λ, again, encodes that Node i is labeled with λ. The variables li,j (and ri,j)
encode that the left child (and the right child) of Node i is Node j. Together the
new variables encode the structure of the prospective LTL formulas for Type-0
placeholders.

We now impose constraints, similar to Constraint 6, on the variables xi,λ

to ensure each node is labeled by a unique LTL operator from Λ. Further, we
impose constraints to ensure that each Node i has a unique left and right child.
Finally, we construct Φ0

?,n as the conjunction of all such structural constraints.
The formula Φ′

sem also relies on new variables yu,v
i,t for each Node i labeled

with a Type-0 variables or i ∈ {|ϕ?| + 1, . . . , n}, each t ∈ {0, . . . , |uv| − 1} and
each uvω in S. Now, we construct semantic constraints such as:

[
xi,X ∧ li,j

]
→

∧

0≤t<|uv|−1

[
yu,v

i,t ↔ yu,v
j,t+1

]
∧

[
yu,v

i,|uv|−1 ↔ yu,v
j,|u|

]
, (10)

that ensures that the yu,v
i,t variables encode entries of table that satisfy Eq. 2. We

construct Φ′
sem as the conjunction of Φsem and the new semantic constraints.

We establish the correctness guarantees using the following theorem:

Theorem 4. Given sketch ϕ? and sample S, Algo2 completes ϕ? to output an
LTL formula that is consistent with S if such a formula exists, otherwise returns
no such formula exists.

Algo2 searches for substitutions of Type-0 placeholders of increasing size
and, thus, is able to find small substitutions for the sketch. However, it may
not always find a minimal consistent LTL formula because a minimal formula
may require the parts of the substitution to share subformulas from the existing
sketch.

To demonstrate this, consider the sketch F(?0) ∨ FG p and the sample con-
sisting of one positive word {}{p}ω and one negative word {}ω. For this input, a
possible output by Algo2 is the formula F p ∨ FG p, which is of size 5. However,
the minimal consistent formula FG p ∨ FG p is of size 4. In this example, substi-
tuting ?0 with G p produces a smaller formula than substituting it with p, since
G p allows more sharing of subformulas.

While Algo2 may not always return a minimal formula, we can provide an
upper bound on its size, thus ensuring its conciseness. To compute this bound,
we define the syntax size |ϕ|s of a formula ϕ to be the number of operators and
propositions appearing in ϕ. Typically, the syntax size |ϕ|s is larger than the
(DAG) size |ϕ|, since it counts all the operators and propositions, including the
repeating ones. For instance, for ϕ = FG q ∨ FG q, |ϕ|s = 7, while |ϕ| = 4.

We now state the guarantee on the size of the formula returned by Algo2 in
the following theorem. Intuitively, the theorem states the size |ϕ| of the formula



Specification Sketching for Linear Temporal Logic 41

that Algo2 returns is bounded by the syntax size |ϕ∗|s of the minimal (DAG
size) solution ϕ∗.

Theorem 5. Given sketch ϕ? and sample S, let ϕ∗ be a minimal formula that
is consistent with S and can be obtained by completing ϕ?. Then, Algo2 returns
a formula ϕ that is consistent with S, can be obtained by completing ϕ? and has
size |ϕ| ≤ |ϕ∗|s .
Proof sketch: Towards contradiction, we assume that the LTL formula ϕ

returned by Algo2 has size |ϕ| > |ϕ∗|s . Now, based on the property of Ψϕ?,S
n (see

first paragraph of Sect. 5.2), Ψϕ?,S
n is satisfiable for n = |ϕ∗|s . This is because

there exists a consistent LTL formula of size at most n = |ϕ∗|s , ϕ∗ itself. Thus,
Algo2, due to its incremental search, should have returned ϕ∗, contradicting our
assumption. ��

6 Experimental Evaluation

In this section, we design experiments to answer the following research questions:

RQ1: Which of the two presented sketching algorithms is more effective?
RQ2: How do our algorithms compare against other specification mining tools

for LTL?

To answer these questions, we have implemented a prototype of our algo-
rithms in Python3, named LTL-Sketcher1. In LTL-Sketcher, we additionally
implement two heuristics to improve the runtime of our algorithms, both of
which are directed toward optimizing the SAT encoding used in the algorithms.
We briefly mention the idea behind the heuristics.

The first heuristic is inspired by the SAT encoding used in Bounded Model
Checking [8]. The encoding exploits a succinct description of the semantics of
LTL using expansion laws [5]. Exemplarily, the expansion law for the U-operator
is ϕUψ = ψ ∨ (ϕ ∧ X(ϕUψ)), which relies on checking satisfaction in the next
position using X-operator. Using the LTL expansion laws reduces the number of
variables required in Φsem . In the second heuristic, we create variables yu,v

i,t only
for the distinct suffixes uvω in S. This is sufficient because LTL formulas have
the same evaluation on equal suffixes (which is also the basis for Eq. 5). Hence,
if two words share a suffix, we can create the variables encoding the semantics
only once, reducing the total number of variables. Also, in this heuristic, the
constraint Φsuf imposing the Suffix property becomes unnecessary. We refer
interested readers to the extended version [35] for the details of the heuristics.

Benchmarks. For evaluating our algorithms, following the literature in LTL
learning , we rely on benchmarks generated synthetically using common LTL
formulas used in practice [19]. We choose the same nine formulas also chosen by

1 The code can be found in https://github.com/rajarshi008/LTLSketcher.

https://github.com/rajarshi008/LTLSketcher


42 S. Lutz et al.

10−1 100 101 102

10−1

100

101

102

TO

TO

Algo1 time

A
l
g
o
2
ti
m
e

Type-1,2 only

10−1 100 101 102 TO

Algo1 time

Type-0 only

(a) Runtime comparison

2 4 6 8

2

4

6

8

Algo1 size

A
l
g
o
2
si
ze

Type-0 only

(b) Size comparison

Fig. 5. Comparison of Algo1 and Algo2 with respect to runtime (in seconds) and
the size of inferred formulas. The points below the diagonal are where Algo2 performs
better. In Fig. 5a, “TO” denotes timeouts. In Fig. 5b, the size of a bubble is proportional
to the number of cases.

Neider and Gavran [37] for generating their benchmarks. We, however, deviate
from their method of generating benchmarks. This is because, as observed by
Raha et al. [40], their method, being fairly naive, consumes more time and often
does not generate adequately different trajectories from a chosen LTL formula.
We, in contrast, design a novel method of generating samples based on random
sampling of words from Büchi automata [7] constructed from the LTL formulas
(using Spot [18]). Overall, we generate 18 samples for each of the nine formulas
(i.e., 162 samples in total), with the number of examples varying from 20 to 800
and the length of words varying from 4 to 16. We conduct all the experiments
on a single core of an Intel Xeon E7-8857 CPU (at 3 GHz) using upto 6 GB of
RAM.

RQ1: Comparison of Sketching Algorithms. To answer RQ1, we compare
Algo1 (from Sect. 5.1) and Algo2 (from Sect. 5.2) based on their running times
and the size of formula inferred. For this comparison, as sketches, we remove
parts (upto 50% in size) of each formula to construct two kinds of sketches: one
with only Type-1 or Type-2 placeholders and one with only Type-0 placeholders
(see extended version [35] for the entire list). Exemplarily, for G(q → G(¬p)),
we construct two sketches: ?11(q →?12(¬p)) and G(q →?0); for F(q)→(pU q), we
construct two sketches ?0 →(pU q) and ?1(q)→(p?2q), etc. We now run the algo-
rithms on the 18 samples and two sketches generated from each of the nine for-
mulas with a timeout of 900 secs.

We depict the runtime comparisons in Fig. 5a. We observe that while both
the algorithms have comparable runtime on sketches with only Type-1 or Type-2
placeholders, Algo1 performs significantly worse on sketches with only Type-0
placeholders with 134 timeouts. We also depict the comparison of formula size
in Fig. 5b. We notice that Algo2 returns smaller formulas than Algo1 in many



Specification Sketching for Linear Temporal Logic 43

cases. The reason Algo1 performs slow and returns large formulas is that it
solves LTL learning on potentially large intermediate samples for sketches with
Type-0 placeholders. Thus, we answer RQ1 in favor of Algo2.

RQ2: Comparison Against LTL Mining Tools. To address RQ2, we com-
pared LTL-Sketcher against two prominent approaches for mining specifications
in LTL. The first approach completes user-defined templates with (Boolean com-
binations of) atomic propositions. For this approach, we select the popular LTL
miner Texada [31]. The second approach learns LTL formulas of minimal size
without syntactic constraints. For this approach, we choose Flie [37] as a pro-
totypical example of this class of algorithms.

The setting of Texada differs from ours in that it permits positive examples
only, and these examples have to be finite words. Thus, in order to have a fair
comparison, we make minor modifications to our SAT encoding (specifically to
the X-operator) to handle finite words. Furthermore, our tool does not require
one to provide negative examples and, hence, can immediately be applied.

Table 1. Number of successes for completing sketches

Sketch Tool F(q) →(¬pU q) F(q) →(pU q) G(q →G(¬p))

full LTL-Sketcher 10 10 10

Texada 6 9 10

medium LTL-Sketcher 10 10 10

Texada 0 1 10

small LTL-Sketcher 10 10 10

Texada 0 1 0

To compare Texada and LTL-Sketcher, we considered six of the nine for-
mulas used in RQ1, dropping the smallest three. For each formula, we created
ten samples with only positive, finite words by truncating ultimately periodic
and ensuring consistency with the formula. Also, we created three sketches for
each formula, retaining different amounts of information: in a full sketch, we
only replaced each atomic proposition with a different Type-0 placeholder; in a
medium sketch, we replaced a larger subformula containing at least one temporal
operator; and in a small sketch, we replaced the formula with a single Type-0
placeholder. As an example, from formula F(q)→(¬pU q), we constructed the
full sketch F(?01)→(¬?02 U?03), the medium sketch F(?01)→?02 and the small sketch
?01.

We ran Texada and LTL-Sketcher on each of these sketches and all cor-
responding samples and counted the cases in which the tools could provide a
substitution. A selection of the results on three prototypical formulas is shown
in Table 1. The remaining results follow the same trend and can be found in
the extended version [35]. We notice that Texada found substitutions for the



44 S. Lutz et al.

0 20 40 60

?0
G(?0)

G(¬p)

0 20 40 60

?0
G(q →?0)

G(q → G(¬p))

0 20 40 60

?0
F q →?0

F q → ((¬p)U q)

0 20 40 60

?0
G(¬p)∨?0

G(¬p) ∨ F(p ∧ (F q))

Fig. 6. The average sample sizes required to recover the original formula (mentioned
in the chart titles). In each chart, the trivial sketch ?0 indicates the run for Flie, while
the other one indicates the run for LTL-Sketcher.

full sketches in most cases. However, when we removed more structural informa-
tion from the specifications (i.e., medium and small sketches), Texada was rarely
able to complete a sketch. By contrast, LTL-Sketcher provided a substitution in
every benchmark. The reason is that Texada’s strategy of exclusively searching
for atomic propositions is only feasible if the user can provide a detailed template
where all temporal operators are specified. Our tool, in contrast, alleviates the
burden of writing complex temporal operators and, thus, is more flexible.

To compare Flie and LTL-Sketcher, we estimated how many examples are
required to infer the desired specification. For this experiment, we used the
same set of nine LTL formulas and sketches with varying amounts of missing
information, some of which can be seen in Fig. 6. To calculate the number of
examples required, we designed a counterexample-guided strategy to compute
a minimal sample required for both tools to obtain the desired formula from a
sketch of it. In this strategy, if a tool does not return the desired formula with
the current sample, we add one of the shortest counterexamples to the sample
that helps eliminate the current solution formula. We continue this process and
end up with a minimal sample of both tools for each sketch.

Figure 6 presents the average size of minimal samples (over ten runs) required
to recover the desired formulas from their sketches. While we present the result
for some formulas here, the remaining results follow the same pattern (see
extended version [35]). We observed that Flie required more examples than
LTL-Sketcher to single out the correct specifications in all the cases. This
asserted the fact that providing high-level insights as a sketch reduces the number
of examples required to derive the desired specification. Thus, to answer RQ2,
the ability to handle sketches provides LTL-Sketcher an edge over existing LTL
mining tools.

7 Conclusion and Future Work

In this work, we introduce LTL sketching—a novel way of writing formal spec-
ifications in LTL. The key idea is that a user can write a partial specification,
i.e., a sketch, which is then completed based on given examples of desired and
undesired system behavior. We have shown that the sketching problem is in NP,
presented two SAT-based sketching algorithms and some heuristics to improve
their performance. Our experimental evaluation has shown that our algorithms



Specification Sketching for Linear Temporal Logic 45

can effectively complete sketches consisting of different types of missing infor-
mation. Further, the ability to handle sketches provides our algorithms an edge
over existing LTL mining approaches.

A natural direction for future work is to lift the idea of specification sketching
to other specification languages, such as Signal Temporal Logic (STL) [36], the
Property Specification Language (PSL) [20], or even visual specifications, such
as UML (high-level) message sequence charts [26]. Moreover, we intend to extend
the notion of sketching beyond the use of examples (e.g., by allowing the engineer
to constrain placeholders using simple logical formulas or regular expressions).

Acknowledgements. This work has been financially supported by Deutsche
Forschungsgemeinschaft, DFG Project numbers 434592664 and 459419731, and the
Research Center Trustworthy Data Science and Security (https://rc-trust.ai), one of
the Research Alliance centers within the UA Ruhr (https://uaruhr.de).

References

1. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Launchbury, J.,
Mitchell, J.C. (eds.) Conference Record of POPL 2002: The 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland, OR,
USA, 16–18 January 2002, pp. 4–16. ACM (2002). https://doi.org/10.1145/503272.
503275

2. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli,
C.: SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In:
FMCAD, pp. 93–103. IEEE (2020)

3. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, N.: A story about formal
methods adoption by a railway signaling manufacturer. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 179–189. Springer, Heidelberg
(2006). https://doi.org/10.1007/11813040 13

4. Badeau, F., Amelot, A.: Using B as a high level programming language in an
industrial project: roissy VAL. In: Treharne, H., King, S., Henson, M., Schneider,
S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg (2005).
https://doi.org/10.1007/11415787 20

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: recent develop-
ments. In: 31st AAAI Conference on Artificial Intelligence, AAAI ’17, pp. 5061–
5063. AAAI Press (2017)

7. Bernardi, O., Giménez, O.: A linear algorithm for the random sampling from reg-
ular languages. Algorithmica 62(1–2), 130–145 (2012)

8. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers, vol. 58, pp. 117–148. Elsevier (2003). https://
doi.org/10.1016/S0065-2458(03)58003-2, https://www.sciencedirect.com/science/
article/pii/S0065245803580032

9. Bowen, J.P.: Gerard o’regan: concise guide to formal methods: theory, fundamen-
tals and industry applications. Form. Aspects Comput. 32(1), 147–148 (2020)

10. Bruns, G., Godefroid, P.: Temporal logic query checking. In: 16th Annual IEEE
Symposium on Logic in Computer Science, Boston, Massachusetts, USA, 16–19

https://rc-trust.ai
https://uaruhr.de
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1007/11813040_13
https://doi.org/10.1007/11415787_20
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://www.sciencedirect.com/science/article/pii/S0065245803580032
https://www.sciencedirect.com/science/article/pii/S0065245803580032


46 S. Lutz et al.

June 2001, Proceedings, pp. 409–417. IEEE Computer Society (2001). https://doi.
org/10.1109/LICS.2001.932516

11. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-
languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58027-1 27

12. Camacho, A., Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: LTL
and beyond: formal languages for reward function specification in reinforcement
learning. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August
2019, pp. 6065–6073. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/840

13. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS, pp. 621–630. AAAI Press (2019)

14. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 34

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

16. Cofer, D., Miller, S.: DO-333 certification case studies. In: Badger, J.M., Rozier,
K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 1–15. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-06200-6 1

17. Courtois, P.J., Seidel, F., Gallardo, F., Bowell, M.: Licensing of safety critical
software for nuclear reactors. Common position of international nuclear regulators
and authorised technical support organisations, December 2015. https://doi.org/
10.13140/RG.2.1.2789.8968

18. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

19. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP, pp. 7–15. ACM (1998)

20. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Series on Integrated
Circuits and Systems, Springer, New York (2006). https://doi.org/10.1007/978-0-
387-36123-9

21. Fecko, M.A., et al.: A success story of formal description techniques: Estelle spec-
ification and test generation for MIL-STD 188–220. Comput. Commun. 23(12),
1196–1213 (2000)

22. Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formulas
from examples. In: ICGI. Proceedings of Machine Learning Research, vol. 153, pp.
237–250. PMLR (2021)

23. Fix, L.: Fifteen years of formal property verification in intel. In: Grumberg, O.,
Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 139–144.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 8

24. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: automated air traffic control design space exploration. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 3–22. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 1

https://doi.org/10.1109/LICS.2001.932516
https://doi.org/10.1109/LICS.2001.932516
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.1007/10722167_34
https://doi.org/10.1007/10722167_34
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-319-06200-6_1
https://doi.org/10.1007/978-3-319-06200-6_1
https://doi.org/10.13140/RG.2.1.2789.8968
https://doi.org/10.13140/RG.2.1.2789.8968
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/978-3-540-69850-0_8
https://doi.org/10.1007/978-3-319-41540-6_1


Specification Sketching for Linear Temporal Logic 47

25. Greenman, B., Saarinen, S., Nelson, T., Krishnamurthi, S.: Little tricky logic:
misconceptions in the understanding of LTL. Art Sci. Eng. Program. 7(2), 7:1–
7:37 (2023)

26. Harel, D., Thiagarajan, P.S.: Message sequence charts. In: UML for Real - Design
of Embedded Real-Time Systems, pp. 77–105. Kluwer (2003). https://doi.org/10.
1007/0-306-48738-1 4

27. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

28. Holzmann, G.J.: The logic of bugs. In: SIGSOFT FSE, pp. 81–87. ACM (2002)
29. Kim, J., Muise, C., Shah, A., Agarwal, S., Shah, J.: Bayesian inference of linear

temporal logic specifications for contrastive explanations. In: IJCAI, pp. 5591–
5598. ijcai.org (2019)

30. Klein, G., et al.: SeL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

31. Lemieux, C., Beschastnikh, I.: Investigating program behavior using the texada
LTL specifications miner. In: ASE, pp. 870–875. IEEE Computer Society (2015)

32. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T). In:
ASE, pp. 81–92. IEEE Computer Society (2015)

33. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: MEM-
OCODE, pp. 43–50. IEEE (2011)

34. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
FDR. Softw. Concepts Tools 17(3), 93–102 (1996)

35. Lutz, S., Neider, D., Roy, R.: Specification sketching for linear temporal logic.
arXiv preprint arXiv:2206.06722 (2022)

36. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

37. Neider, D., Gavran, I.: Learning linear temporal properties. In: FMCAD, pp. 1–10.
IEEE (2018)

38. Pakonen, A., Pang, C., Buzhinsky, I., Vyatkin, V.: User-friendly formal specifica-
tion languages - conclusions drawn from industrial experience on model checking.
In: ETFA, pp. 1–8. IEEE (2016)

39. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977)

40. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing fragments of linear temporal logic. In: TACAS 2022. LNCS, vol. 13243, pp.
263–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 14

41. Riener, H.: Exact synthesis of LTL properties from traces. In: FDL, pp. 1–6. IEEE
(2019)

42. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: IJCAI, pp. 2213–2219. ijcai.org (2020)

43. Roy, R., Gaglione, J.R., Baharisangari, N., Neider, D., Xu, Z., Topcu, U.: Learning
interpretable temporal properties from positive examples only. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 37, no. 5, pp. 6507–6515,
June 2023. https://doi.org/10.1609/aaai.v37i5.25800, https://ojs.aaai.org/index.
php/AAAI/article/view/25800

44. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and auton-
omy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48869-1 2

https://doi.org/10.1007/0-306-48738-1_4
https://doi.org/10.1007/0-306-48738-1_4
http://arxiv.org/abs/2206.06722
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1609/aaai.v37i5.25800
https://ojs.aaai.org/index.php/AAAI/article/view/25800
https://ojs.aaai.org/index.php/AAAI/article/view/25800
https://doi.org/10.1007/978-3-319-48869-1_2


48 S. Lutz et al.

45. Schlör, R., Josko, B., Werth, D.: Using a visual formalism for design verification
in industrial environments. In: Margaria, T., Steffen, B., Rückert, R., Posegga, J.
(eds.) Services and Visualization Towards User-Friendly Design. LNCS, vol. 1385,
pp. 208–221. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053507

46. Shah, A., Kamath, P., Shah, J.A., Li, S.: Bayesian inference of temporal task
specifications from demonstrations. In: NeurIPS, pp. 3808–3817 (2018)

47. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf. 15(5–
6), 475–495 (2013)

48. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: PLDI, pp. 281–294. ACM (2005)

49. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45319-9 1

50. Verhulst, E., de Jong, G.: OpenComRTOS: an ultra-small network centric embed-
ded RTOS designed using formal modeling. In: Gaudin, E., Najm, E., Reed, R.
(eds.) SDL 2007. LNCS, vol. 4745, pp. 258–271. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74984-4 16

51. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage.
Autom. Softw. Eng. 18(3–4), 263–292 (2011)

https://doi.org/10.1007/BFb0053507
https://doi.org/10.1007/3-540-45319-9_1
https://doi.org/10.1007/978-3-540-74984-4_16

	Specification Sketching for Linear Temporal Logic
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	4 Existence of a Complete Sketch
	4.1 The Decidability Result
	4.2 The Decision Procedure

	5 Algorithms to Complete an LTL Sketch
	5.1 Algorithm Based on LTL Learning
	5.2 Algorithm Based on Incremental SAT Solving

	6 Experimental Evaluation
	7 Conclusion and Future Work
	References


