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Abstract. The increasing complexity of Field-Programmable Gate
Array (FPGA) applications necessitates high-level design and formal
verification. Traditional approaches often fall short, prompting a shift
towards Model-Driven Development (MDD) strategies utilising exe-
cutable models. Executable models simplify the design process by
directly translating high-level, human-readable models into executable
code, eliminating manual transcoding errors. However, the challenge of
verifying these models in an automated manner remains largely unsolved.
The contribution of this paper is a model-driven software engineering
methodology utilising logic-labelled finite-state machines (LLFSMs) that
enable the automated generation of executable FPGA code from high-
level, human-readable models as well as associated Kripke structures for
the verification (through model-checking) of high-level executable mod-
els running on FPGA platforms. We present a method that utilises the
semantics of logic-labelled finite state machines on an FPGA to signif-
icantly reduce the size of the created Kripke structures compared with
existing LLFSM approaches.

Keywords: Automatic Verification + Model-Driven Software
Engineering * Logic-Labelled Finite State Machines -+ FPGAs

1 Introduction

The evolution of technology has brought about increasing reliance on Field-
Programmable Gate Arrays (FPGAs) for their versatility, speed, and real-time
performance capabilities. These unique properties have made them instrumen-
tal in the design and development of real-time systems, telecommunication net-
works, computer vision, and embedded systems. However, as FPGA applications
grow more complex, their design and verification become increasingly challeng-
ing. This necessitates a shift from traditional design methods towards Model-
Driven Development (MDD) approaches, where high-level, human-readable mod-
els are employed to design, verify, and implement these systems.

Model-Driven Development provides an abstraction layer that enables design-
ers to focus on the functionality of the system while abstracting away lower-level
hardware details. This high-level approach simplifies the development process
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and reduces the likelihood of errors that arise from manual translation into code.
However, the verification of these high-level models in an automated manner is
a challenge that remains to be addressed.

The primary contribution of this paper is an MDD design that allows the
automated generation of Kripke structures that allow verification of high-level
executable models running on FPGA platforms. We discuss the issues and limita-
tions of existing methods and how to overcome them to handle the complexity of
models that utilise FPGA designs while maintaining the advantages of high-level
model abstraction.

The rest of this paper is structured as follows. Section 2 explores the back-
ground of verifiable MDD utilising high-level, human-readable models. This is
followed in Sect.3 by our detailed design of executable models of logic-labelled
finite-state machines running on an FPGA. We then demonstrate how we can cre-
ate Kripke structures for automated model-checking (Sect.4). Finally, we sum-
marise our findings in Sect. 5.

2 Background

The Unified Modelling Language (UML) has unified the various disparate nota-
tional systems for software design and modelling and has become the de-facto
standard for model-driven software engineering (MDSE). There has been remark-
able progress in MDSE [1-3] in creating verifiable executable models that define
behaviour at a high level. However, the automatic verification of deployable sys-
tems remains a challenge. By far, the biggest challenge with common modelling
systems are semantic variations. In other words, while the UML has unified
notation, formal correctness of resulting execution semantics only holds in some
scenarios [4], even in current versions of executable UML (fUML) [5]. Moreover,
concurrency and parallelism are severely hampered by the fact that execution
paths may diverge due to race conditions or other sensitivities towards instruc-
tion execution order. This is the case, even if the same sources and systems
are utilised in building and executing the model, as ambiguities remain when it
comes to the semantics of these systems [6]. In essence, this violates the promise
that executable models allow us to create a fully automated one-to-one mapping
between design and implementation so that we can perform formal verification on
the real software that executes on the target system. These ambiguities in UML
semantics have repeatedly been identified as causing confusion in the industry
and leading to inconsistencies and suboptimal results [7,8]. This is not helped
by the fact that almost from the beginning, inconsistencies have been created
in different UML implementations with different semantics [9] that frustrate the
reproducibility of model checking.

It is, therefore, unsurprising that the predominant focus has been on testing
approaches, such as test-driven development [10] and continuous integration [11].
However, we argue that, while pragmatic, this is a flawed approach, as testing
is, by definition, incomplete. In particular, testing can only prove the existence
of defects, not their absence. We will therefore focus on formal methods for
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verifying the correctness of executable models. We have already demonstrated
earlier [3] that we can achieve consistent and faithful execution semantics of exe-
cutable models of real-time systems that allow verification in both the time and
value domains. Without going into detail here, suffice it to say that while event-
driven modelling has been the predominant paradigm that has been productive
for traditional systems such as desktop computers or cloud architectures, it has
long been recognised that such systems fundamentally follow a best-effort app-
roach that cannot guarantee bounded execution and completion times sufficient
to meet hard deadlines [12]. By contrast, time-triggered systems guarantee con-
sistency in both the value and time domains, making formal verification feasible
for a much larger class of systems [13].

A key challenge that remains is the creation and verification of graphs used
for model-checking. While some systems create a combinatorial state explosion
when deriving their Kripke structures, making them too complex to formally
verify as-is, we have already shown that we can utilise dependency analysis to
isolate modules and verify them independently without jeopardising the verifia-
bility of the composite system as a whole [14]. Moreover, we have shown that we
can utilise the same MDSE approach that has traditionally been used on com-
puter systems, but achieve orders of magnitude higher execution speeds when
utilising FPGAs [15]. This is essential as embedded architectures often exhibit
semantic differences between the original UML design and the compiled software
executing on the embedded device [4]. This phenomenon has been especially
pronounced when examining UML translations into FPGAs [16-18]. Common
translation differences in FPGAs include implicit priorities on transitions, dis-
tributed event queues and semantic differences between formal event processing
and the limitations of the underlying hardware.

While we have been able to overcome these inconsistencies and are now able
to create consistent, high-level executable models that run on FPGAs [15], formal
verification has, thus far, eluded us. Before we detail the design that allows us
to now create Kripke structures of an executable model on an FPGA, we need
to recall the principles of logic-labelled finite-state machines that make these
executable models possible.

2.1 Logic-Labelled Finite-State Machines

Logic-labelled finite-state machines (LLFSMs) are an approach to modelling that
follows the ubiquitous footsteps of modelling with finite-state machines (FSMs).
However, in contrast to the event-driven nature of UML statecharts, LLFSMs
utilise expressions in a decidable logic to decorate transitions [19]. In other words,
they follow the principles of UML state diagrams where only guards, but not events
are used, effectively capturing the fact that an event has occurred into a Boolean
expression that reflects this. This avoids the impossibility of translating mathe-
matically perfect events, i.e. a semantics of zero duration with perfect order, into
a feasible implementation that has to work with event queues and other approxi-
mations. With the departure from the notion that reactiveness needs to be driven
by events, we can achieve real-time object-oriented modelling [20].
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LLFSMs utilise the notion that execution is subdivided into atomic ringlets.
Each ringlet execution is an activity that comprises a sequence of actions:

—_

A snapshot of external input variables is taken.

Where a state ringlet is executed for the first time (e.g. a different state was
executed previously), an OnEntry action is run.

All transitions are evaluated in a pre-defined order of priority.

If a transition fires, an OnFEzit action gets run.

Otherwise, an Internal action gets executed.

A snapshot of resulting output variables is written.

o

o Gt W

We will now detail our design that, for the first time, enables us to run an
executable LLFSM model on an FPGA while creating the corresponding Kripke
structure on-device to enable formal verification.

3 Design

We begin this section by presenting our design for creating executable models
in FPGAs. We then discuss the methods used to reduce the Kripke structure
by using the semantics of our models. We have previously used LLFSMs on
FPGAs by segregating each ringlet into a periodic process that maps to clock
edges [15], as shown in Fig. 1. This mapping creates a synchronous execution
between parallel FSMs that allows for the separation of read and write actions
between shared variables. This structure is fundamental to LLFSMs on FPGAs,
allowing more complex forms of behaviour by composing and ordering different
ringlets. Importantly, this overcomes any race conditions that might otherwise
occur between finite-state machines running in parallel and facilitates atomic
execution. In other words, the ringlet process is never executed partially but
instead presents an indivisible structure that always completes once started [15].

ReadSnapshot CheckTransition WriteSnapshot
OnEntry / NoOnEntry OnkExit / Internal

Fig. 1. The Ringlet Execution Cycle [15]

Our FPGA models are executable in the complete sense, as we define state
actions and variables in VHDL, a hardware description language used to describe
hardware constructs in the FPGA. We perform code generation to translate the
graphical depiction of our LLFSM into the executable code that the FPGA
enacts. This automatic translation removes semantic differences between design
and implementation as the translation software moves the user’s code within the
machine into the correct sections within a VHDL template. We have constructed
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our LLFSM template to enforce the formal semantics of LLFSMs without incur-
ring semantic differences or gaps.

Our main contribution here is that we can now generate corresponding VHDL
that performs automatic and optimised Kripke structure construction for our
executable models on-device. Generating Kripke structures in this way creates
a graph directly derived from the behaviour of the software on the target hard-
ware as it executes. This graph is in a format that can be used to run automated
proofs using a model checker such as nuXmv [21]. The Kripke structure reflects
precisely what is executed on the FPGA, ensuring there is no semantic gap
between the high-level model and the executable. This process is well aligned
with formally verifying safety-critical and dependable systems, as formal verifi-
cation takes place on structures derived directly from the physical hardware.

Since we will be examining the Kripke structure of our LLFSMs, it is impor-
tant to be aware of some key variables used in the VHDL template to enforce
the LLFSM semantics. We will use three variables in our Kripke structures that
are generated in the VHDL template, namely internalState, previousRinglet and
targetState. The internalState variable is used to track which step in the ringlet
the LLFSM is currently in (see Sect. 2.1) and reflects the values within the timing
diagram of Fig. 1. The previousRinglet variable captures the state the machine
executed immediately before the current ringlet the machine is executing. This
variable allows us to determine whether or not OnEntry should be executed in
the current ringlet. The final variable, targetState, is used to determine if the
LLFSM is about to transition to a new state. This variable then contains the
state the LLFSM will transition to in the next ringlet.

Another key contribution is the reduction of the Kripke structure size by
taking advantage of the LLFSM semantics. We can leverage a ringlet’s execution
cycle (see Fig. 1) to minimise the Kripke structure size while supporting parallel
execution. Let us examine how these Kripke structure optimisations work by
examining a simple LLFSM. Consider the LLFSM depicted in Fig. 2 containing
the variables within Table 1. This LLFSM starts in an empty initial state that
performs no functions and then transitions to state Sy. Within state Sy, the
machine sets the value of external variable y to the value of external variable
z. The external variables x and y are examples of variables that map to inputs

- ~
So
@ | Initial frue OnEntry
Yy <=z
OnExit
Internal
. J

Fig. 2. LLFSM I, depicting an initial state and a state Sy executing a simple VHDL
value assignment.
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Table 1. The variables within LLFSM 1.

Name | Type Scope Mode
z std_logic | External | input
y std_logic | External | output

and outputs respectively, as associated, for example, with sensors and actuators.
This variable assignment only occurs once during the first ringlet of the Sy
state (OnEntry). All subsequent ringlets will perform no function as the Internal
action of state Sy is empty.

We can now derive a partial Kripke structure for the first ringlet of state Sy
(Fig. 3). This Kripke structure assumes that the variable = has the value of ‘0’
(logic low) at the beginning of the ringlet. We have also removed the snapshot
semantics to demonstrate the state explosion without our optimisations. This
is very close to typical UML translations into FPGAs. The Kripke structure
in Fig. 3 shows the Kripke states between the OnEntry action and the Check-
Transition phase of state Sy’s first ringlet. Notice that several Kripke states are
describing the CheckTransition phase of this ringlet due to the different values
that are possible for the variable x. This Kripke structure represents the actual
code that is executed on an FPGA and must account for each value of z (a
std_logic variable in VHDL). There are 9 possible values that a std_logic vari-
able can be in, however, these values will generally resolve to a combination of
logic low and logic high bit values when executed on the actual hardware. This
resolution is dictated by the synthesiser and FPGA fabric [22], so we cannot
ignore this for the general case.

Since z is an external variable representing a sensor reading, this value can
change at any point in time and must be accounted for in the Kripke structure
in these circumstances. For each CheckTransition Kripke state in this figure, we
will also have the same edges for the next Kripke state (Internal in this case)
where the same sensor may change its value. The total number of Kripke states
for this ringlet is 171 (for each OnEntry state, we have 9 CheckTransition states
and 9 Internal states). There are 9 OnEntry states in total, therefore the total
Kripke structure for the first ringlet is 9 - 19 = 171. This combinatorial state
space represents an example of the state explosion problem for our LLFSM.

3.1 Reducing the Kripke Structure Size Using Snapshot Semantics

We now demonstrate how the Kripke structure is altered by introducing snap-
shot semantics. Before the start of each ringlet, a snapshot of all input external
variables is taken. This snapshot takes the input (sensor) value at the start of
the ringlet and writes it into a local copy that the LLFSM acts upon during the
ringlet’s execution. The LLFSM acts upon local copies of the output external
variables during the ringlet’s execution as well. At the end of the ringlet, the
output local variables are written back to the external variables of the LLFSM.
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x: ‘H’ x: ‘L’

y: ‘0’ y: ‘0’

internalState: “CheckTransition” internalState: “CheckTransition”
previousRinglet: “Initial” previousRinglet: “Initial”
targetState: “Sp” targetState: “Sg”

e N

So ( So )
x: ‘X’ x: ‘-’
y: ‘0’ y: ‘0’

.interna,IState: “CheckTransition”
previousRinglet: “Initial”
targetState: “Sp”

intert\alState: “CheckTransition”
previousRinglet: “Initial”
targetState: “Sg”

\

e N
So )
x: ‘U’ z==‘U" |x: 0
y: ‘0’ y: ‘0’
internalState: “CheckTransition”| internalState: “OnEntry”
previousRinglet: “Initial” previousRinglet: “Initial”
targetState: “Sg” targetState: “Sg”
\ J \
z?!T)’
N
So r So ]
x: ‘0’ x: ‘1’
y: ‘0’ z —a gy ‘0’
internalState: “CheckTransition”| internalState: “CheckTransition”|
previousRinglet: “Initial” previousRinglet: “Initial”
targetState: “Sp” targetState: “Sp”
J
So So
x: ‘W’ x: ‘72’
y: ‘0’ y: <0’
internalState: “CheckTransition” internalState: “CheckTransition”
previousRinglet: “Initial” previousRinglet: “Initial”
targetState: “Sp” targetState: “Sg”

Fig. 3. The Kripke Structure of the First Ringlet in State So without Snapshot Seman-
tics.

These read and write sections of an LLFSMs execution are depicted as Read-
Snapshot and WriteSnapshot in Fig. 1 respectively.

The advantage of this semantics is that the local snapshot variable repre-
senting x in our example is not modified after the ReadSnapshot phase of the
ringlets execution. The result of this semantics drastically reduces the number
of Kripke states in our ringlet. We have updated the Kripke structure for this
example in Fig.4. Please note that x now represents the snapshot variable z
while EXTERNAL x represents the corresponding sensor variable z. We again
assume that the first sensor reading is x = ‘0’. For brevity, we have reduced the
number of edges in this figure into a set of values. The actual Kripke structure
would represent each value in the sets labelling the edges as a separate edge. In
the Kripke structure in Fig.4, we have omitted the external variable EXTER-
NAL _z as the number of states to depict would be too large to show here. The
main trend that is observable from this Kripke structure is that the z snapshot
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EXTERNAL z == {0,1,U' ‘X'~ Z' W' ‘L' ‘H?}

s SO N\ 'd SO N\
x: ‘0 x: ‘0
y: ‘U’ y: 0
EXTERNALy: ‘U’ EXTERNALy: ‘U’
internalState: “ReadSnapshot” internalState: “OnEntry”
previousRinglet: “Initial” previousRinglet: “Initial”
targetState: “Sp” targetState: “Sp”
(. J (. J

EXTERNAL r == {‘0’7‘1/7‘U/,‘XI,‘—,,‘Z’,‘W’,‘LZ‘H’}

EXTERNAL z == {0,1,U' X"~ *Z' W' ‘L', *H'}

s SO N\ 'd SO N\
x: ‘0 x: ‘0
y: 0 y: 0
EXTERNALy: ‘U’ EXTERNALy: ‘U’
internalState: “Internal” internalState: “CheckTransition”
previousRinglet: “Initial” previousRinglet: “Initial”
targetState: “Sp” targetState: “Sp”
(. J (. J

EXTERNAL r == {40/7 41/7 ‘U/7 4)(/7 c_/7 4ZI’ ‘W/, 4L/7 :Hl}

4 1\

So

x: ‘0’

y: ‘0’

EXTERNALy: ‘0’
internalState: “WriteSnapshot”
previousRinglet: “Initial”
targetState: “Sp”

(. J

Fig. 4. The Kripke Structure of the First Ringlet in State Sp with Snapshot Semantics.

variable no longer needs to be mutated during every phase of the ringlet. To
illustrate this, assume that EXTERNAL z represents a sensor measuring some
property in the environment. Even though the corresponding sensor values may
continuously change, we are only interested in the value that is present when we
take a snapshot. Therefore, the sensor reading has no further influence over the
LLFSM until the next ringlet’s ReadSnapshot phase. We can also observe that
the EXTERNAL y variable is not assigned the value of snapshot variable y
until the WriteSnapshot Kripke state. We can use these properties to further
reduce the complexity and size of the Kripke structure.

Consider the new Kripke structure in Fig.5. In this Kripke structure, we
have two Kripke states designated Sgpeqq and Soyy,ire- These states represent
the state of the LLFSM immediately before ReadSnapshot and immediately after
WriteSnapshot respectively. Due to the snapshot semantics, our external vari-



Automatic Verification of High-Level Executable Models Running on FPGAs 225

1 SoRead ) ( Sowrite )
EXTERNAL x: ‘0’ EXTERNAL y: ‘0’

y: ‘U’ executeOnEntry: false
executeOnEntry: true targetState: “Sp”

(. J (. J

Fig. 5. The Optimized First Ringlet of State So when EXTERNAL z = ‘0.

ables (which map to sensors and actuators) only affect (or are affected by) the
execution of our machine during these points in time. Therefore, since these val-
ues do not impact the machine’s runtime during the ringlet execution, we can
treat the ringlet as a black box removing the intermediate states from the Kripke
structure entirely.

We can also remove unnecessary variables from the Kripke structure that are
used to track and execute the LLFSM semantics. For example, we can remove
previousRinglet since the only influence this variable has is to decide whether to
execute OnFEntry or not. Since this condition is a boolean, we can replace the
previousRinglet variable with a simple executeOnEntry variable. This optimisa-
tion removes the possibility of state explosions from additional state transitions
in the LLFSM. We also remove internalState since this variable is used to track
the ringlets execution. Since we are treating the ringlet as a black box, we do
not need to include this variable in the Kripke structure.

In SoReqd, We can also remove targetState since this variable has no influence
over how the ringlet is executed and the z snapshot since it is the same as
EXTERNAL_ x. In Soywy,ite, we can remove the y snapshot since it is equal to
EXTERNAL vy and the EXTERNAL 1 variable and z snapshot since their
values will be modified in the next Read state. The x variables in the Write
state do not influence the next Read state.

The new Kripke structure contains 2 states per value of EXTERNAL z
(Read and Write). Since there are 9 values of x in this ringlet, we have a total
of 9-2 = 18 Kripke states for this ringlet. This number presents an 89% reduction
in the size of the Kripke structure for this ringlet.

There is one further optimisation that we have included in the LLFSM seman-
tics. During the ReadSnapshot phase of the ringlets execution, we read all input
external variables into local copies. We have modified this semantics slightly to
only read the input variables that a state is using in one of its ringlets. This
further optimisation removes additional external variables from a Read Kripke
state if those variables were not used in that Kripke states ringlet. This approach
allows us to use many different variables in different states without creating a
combinatorial state explosion.
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4 Automatic Kripke Structure Generation

To evaluate our design, we have implemented several tools to perform Kripke
structure generation for LLFSMs on FPGAs. The process of creating LLFSMs
for FPGAs and performing a formal verification is as follows.

1. Design the LLFSM in an LLFSM editor.

2. Perform code generation using the built-in compilation options in the editor.

The generated code will contain the VHDL code for the LLFSM and the

Kripke structure generator.

Synthesis, place and route.

Generate the bitstream and load onto the FPGA.

5. Use external interfaces such as Ethernet, or UART to retrieve the generated
Kripke structure.

= w

Our Kripke structure generator takes advantage of the parallel architecture of the
FPGA to generate the correct Kripke structure. To parallelise our generation,
we have decomposed the LLFSM into ringlets that need to be executed and
evaluated. The generator begins in the initial state of the LLFSM and executes
the first ringlet to determine the next reachable state to execute. The generator
then follows a specific procedure until it has executed all reachable states. The
procedure of the generator is composed of the following steps.

1. Choose the next state to execute. This will include the state to execute,
the value of its output external variables, the machine variables, the state
variables, and whether the LLFSM needs to execute OnEntry.

2. Choose all possible combinations of input external variables that this state
uses and execute them on the LLFSM in parallel for each combination. In the
example shown in Fig. 2, this would be 1 LLFSM for the Initial state and 9
LLFSMs for the Sy state.

3. Execute the LLFSMs starting in ReadSnapshot and wait until they reach
WriteSnapshot.

4. Stop the LLFSMs and save the Read and Write states, removing all dupli-
cates.

5. Determine the next set of states to execute by observing the Write states
and the previous states that were executed.

6. If there are no more states to execute, stop generating, otherwise go to Step 1.

Following this procedure, the LLFSM dictates the states to explore in the Kripke
structure generation. Each new Kripke state that is discovered is recorded by
the generator and used to explore the state-space of the LLFSM further. If the
Kripke state is mew, then the generator will place it onto a queue of states to
explore further (i.e. subsequent Read states resulting from the new Write state).
Following this process, the generator will continue to discover new Kripke states
until it has explored the entire reachable state space of the LLFSM. Throughout
the Kripke structure generation, the generator tracks previously explored Kripke
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states to remove duplicate pathways. If a Read state has been explored previ-
ously, then the Kripke structure generator will not execute that ringlet again.
The generator finishes when there are no more Kripke states left to explore.

The accuracy and completeness of the Kripke structure generation is guar-
anteed since the execution of the LLFSM drives the entire process. The Kripke
structure generator is simply observing and recording the Kripke states as the
LLFSM encounters them. When the generator observes all reachable Kripke
states (i.e. there are no more Read states queued), the generation is finished and
the Kripke structure is complete. Moreover, the structure is completely repre-
sentative of the behaviour of the LLFSM as the structure is directly generated
from the LLFSM execution.

The Kripke structure generator is generated for each machine from the states
and variables contained within the LLFSM. The entire Kripke Structure gener-
ator exists within a small number of VHDL source files, including the generated
code for the LLFSMs. These files may be included in existing HDL projects
to facilitate interoperability between other components within the project. No
additional tooling is required to facilitate the new VHDL source files in these
projects.

4.1 Furnace Relay Case Study

We now demonstrate our approach with an example taken from the literature.
Consider the UML state machine shown in Fig. 6. This FSM is taken directly
from McUmber and Cheng’s paper [17]. McUmber and Cheng’s FSM is con-
verted to VHDL using their code generator. Due to the embedded hardware in
FPGAs, this translation is not exact and incurs semantic differences between
model definition and execution. The authors use a process block to represent
each state within the FurnaceRelay FSM. This process block does not contain
any signals in its sensitivity list, nor does it incorporate any clock sources. This
code is not synthesisable as signals within this FSM are latched with flip-flops
during the rising edge of a clock signal. The authors of this paper have ignored
this and tried to create a purely event-triggered semantics consistent with UML
by setting event signals high within extremely small durations (1 fs in this exam-
ple) before exiting. This behaviour tries to emulate the instantaneous nature of

demand(heat)[in.Heat]

demand(enough)

Fig. 6. The FurnaceRelay UML State Machine
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formal events but incurs a small, but finite amount of time as a result of execut-
ing on real hardware. Physics dictates that instantaneous events are not possible
within digital circuits, as it takes time to latch and propagate signals within the
FPGAs fabric. The delays are considerable (when compared to the 1 fs speci-
fication) using the limited clock frequencies of FPGAs. More importantly, they
can create an inconsistent behaviour due to the partial ordering of events [23,24]
creating divergence points in the UML semantics.

4.2 Utilising LLFSM Semantics

Even though the authors reference event-driven UML semantics [17], the actual
semantics of their FSM is more akin to that of an LLFSM, but hiding the
crucial fact that a latched logic value is what is being evaluated. An LLFSM
polls its variables and assigns new values at specific points in time [19]. This
process translates well into FPGAs as they latch signals based on clock edges [15].
We may thus translate LLFSM models into FPGAs without incurring semantic
differences [15]. Therefore, to formally verify the FSM in Fig. 6, it is preferable
to perform a mapping into an LLFSM first.

To perform an accurate formal verification, we first convert the UML FSM
into an LLFSM. We have attempted to match the UML FSM with variables of
the same size and type. However, some of the code is missing from the publica-
tion and conservative assumptions were made to create a synthesisable LLFSM.
Specifically, the demand variable needed to support at least 4 different values,
so we have chosen a 2-bit std_logic_ vector instead of the enumeration in the
original publication. We have also replaced the instate signal that was indicating
the state of the relay with a std_logic signal called relayOn. The instate signal
definition was not shown in the original publication. The resulting LLFSM is
depicted in Fig.7 with the variables in Table 2. The resulting VHDL code for
this LLFSM and its Kripke structure generator is available on GitHub [25] and
consists of 729 FurnaceRelay LLFSMs executing in parallel. The Kripke struc-
ture size of this LLFSM is 4543 Kripke states and it took 740 ns to generate the
entire graph on the FPGA at 125 MHz. The Kripke structure size of the cor-
responding UML FSM is estimated to be greater than 4,782,969 Kripke states.
The LLFSM-equivalent Kripke structure is thus reduced by more than 99.9%.
To highlight the Kripke structure generation, we have provided screenshots of
simulation results for some of these ringlets.

Table 2. The variables within the FurnaceRelay LLFSM.

Name |Type Scope Mode

heat std_logic External | input

demand | std_logic_vector(1 downto 0) | External | input

relayOn | std_ logic External | output
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Fig. 7. The FurnaceRelay LLFSM.
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We begin in the Initial state by executing the initial ringlet of the LLFSM

(Figs.8 and 9).

[0
W readSnapshot

e .fr_relayOn

o .executeOnEntry
W writeSnapshot

o fr_relayOn

¥ nextState[1:0)

executeOnEntry

o
o .observed

(U,TRUE),(U,1 TRUE),TRUE

U,TRUE

TRUE

U,1,TRUE

Fig. 8. The Initial Ringlet Waveforms.

{U,TRUE), (U, 1,TRUE), TRUE

This ringlet transitions the LLFSM into the FRO(f state. Once in that state,
the LLFSM will either transition to FROn if demand is “10” and heat is ‘1’
(Figs. 10 and 11) or otherwise remain in FROff (Figs.12 and 13). Please note
that the figures for the FROff ringlets represent the ringlet where the previous
state was FROn. This is why relayOn is logic high during the Read phase of this
Kripke structure. When the LLFSM is in FROn, it will either transition back
to FROff when demand is “01” (Figs. 14 and 15) or otherwise remain in FROn

(Figs. 16 and 17).
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Initialread

Initialw rite

relayOn: ‘U’
executeOnEntry: true

relayOn: ‘U’
executeOnEntry: true
targetState: “FROf f”

Fig. 9. The Initial Ringlet.

v W [264]

~ M readSnapshot
» M demand[1:0]

I8 .heat
le fr_relayOn
o & teQnEntry
~ M writeSnapshot
lg relayOn
> W nextState[1:0]
o .executeOnEntry

|8 .observed

Fig. 10. Waveforms of an FROff Ringlet that Transitions to FROn.

FROffRead

1\ 4 1\

FROf fwrite

EXTERNAL demand: “10”
EXTERNAL heat: ‘1’
relayOn: ‘1’
executeOnEntry: true

EXTERNAL _relayOn: ‘0’
executeOnEntry: true
targetState: “F ROn”

Fig.11. An FROff Ringlet that Transitions to FROn.

~ B readSnaps
> B demand[1:0]
lo heat
la fr_relayOn
-uteOnEntry

> & nextState[1:0]

l¢ .executeOnEntry

8 .0bs

(2,0,1,TRUE),(0,1,FALSE),TH
2,01, TRUE

2

0

4

TRUE

S
01,FALSE 0,1,FALSE

Fig. 12. Waveforms of an FROff Ringlet that doesn’t Transition.
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FROfchad

EXTERNAL demand: “10”
EXTERNAL heat: ‘0’
relayOn: ‘1’
executeOnEntry: true
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FROf fwrite

EXTERNAL relayOn: ‘0’

executeOnEntry: false

targetState: “FROf f”

Fig. 13. An FROff Ringlet that doesn’t Transition.

v R [21]
- M readSnapshot
» M demand[1:0]
8 fr_relayOn
e .executeOnEntry

¥ writeSnapshot

e .executeOnEntry

4 .obzerved

{1,0,TRUE),{1,1,TRUE),TRU}

1,0, TRUE
1

0

TRUE
11, TRUE

Fig. 14. Waveforms of an FROn Ringlet that Transitions to FROFf.

The previous description provided an overview of the behaviour of our
LLFSM by examining the ringlets executed in the Kripke structure. Covering
these cases, the Kripke structure generator executes these ringlets until all reach-
able ringlets have been executed. Once this has been achieved, the generator
stops and the Kripke structure is complete.

FROnRead

EXTERNAL demand: “01”
relayOn: ‘0’
executeOnEntry: true

FRO’”/W'I‘H,H

EXTERNAL relayOn: ‘1’

executeOnEntry: true
targetState: “F RO f f”

Fig.15. An FROn Ringlet that Transitions to FROJf.
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- R [20] (0,0, TRUE),(1,2 FALSE) TRY

%' readSnapshot 0,0 TRUE
> M _demand[1:0] 0
le fr_relayOn 0
1§ .executeOnEntry TRUE
- B writeS 1,2 FALSE

o .rel

teCOnEntry

e .observed

Fig. 16. Waveforms of an FROn Ringlet that doesn’t Transition.

( 1\ 4 1\
FROchad FROTLVVM'M

EXTERNAL demand: “00” EXTERNAL relayOn: ‘1’

relayOn: ‘0’ executeOnEntry: false

executeOnEntry: true targetState: “FROn”

A J (. J

Fig.17. An FROn Ringlet that doesn’t Transition.

5 Conclusion

In this paper, we have demonstrated the feasibility of automatic verification
of high-level executable models running on FPGAs. We have shown how we
can model system behaviour using logic-labelled finite-state machines. Impor-
tantly, we can utilise the parallelism that FPGAs provide without jeopardising
the atomicity of executing ringlets, implementing snapshot behaviour utilising
deterministic, clock-synchronised execution of states across the FPGA fabric.
We have further demonstrated how we can create Kripke structures in an
automated fashion that can then be utilised using standard model-checking tools.
Moreover, we can optimise these Kripke structures to significantly reduce the
state-space needed for system verification. Finally, we can create these Kripke
structures directly on the FPGA, ensuring not only consistency in semantics, but
also dramatically increasing the speed with which we can create these Kripke
structures in hardware when compared to software running on a microprocessor.
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