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Preface

This volume contains the papers presented at the 21st International Symposium on
Automated Technology for Verification and Analysis (ATVA 2023). ATVA intends to
promote research in theoretical and practical aspects of automated analysis, verification
and synthesis by providing a forum for interaction between regional and international
research communities and industry in related areas.

ATVA 2023 was organized during October 24–27, 2023 in Singapore. ATVA 2023
received 115 submissions, of which 30 were accepted as regular papers and 7 as tool
papers, while 65 were rejected (another 13 were withdrawn or desk-rejected). All sub-
mitted papers went through a rigorous review process with at least 3 reviews per paper,
followed by an online discussion among PC members overseen by the TPC chairs. This
led to a high-quality and attractive scientific program.

This edition of ATVA was blessed by the presence of three prestigious keynote
speakers, who gave talks covering current hot research topics and revealing many new
interesting research directions:

– David Basin (ETH Zurich, Switzerland): Correct and Efficient Policy Monitoring, a
Retrospective;

– Ewen Denney (NASA Ames Research Center, USA): Dynamic Assurance Cases for
Machine-Learning Based Autonomous Systems;

– Reza Shokri (NUS, Singapore): Privacy in Machine Learning.

The conference was preceded by tutorials on important topics given by three
renowned experts:

– Jin Xing Lim and Palina Tolmach (Runtime Verification Inc, USA): The K
Framework: A Tool Kit for Language Semantics and Verification;

– Ewen Denney (NASA Ames Research Center, USA): Developing Assurance Cases
with AdvoCATE.

ATVA2023wouldnot havebeen successfulwithout the contribution and involvement
of the Program Committee members and the external reviewers who contributed to the
review process (with 311 reviews) and the selection of the best contributions. This event
would not exist if authors and contributors did not submit their proposals. We address
our thanks to every person, reviewer, author, program committeemember and organizing
committee member involved in the success of ATVA 2023. The EasyChair system was
set up for the management of ATVA 2023 supporting submission, review and volume
preparation processes.

The local host and sponsor School of Computing and Information Systems, Sin-
gapore Management University provided financial support and tremendous help with
registration and online facilities. The other sponsor, Springer LNCS, contributed in dif-
ferent forms to help run the conference smoothly. Many thanks to all the local organizers
and sponsors.
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Wewish to express our special thanks to the General Chair, Jin SongDong, and to the
steering committee members, particularly to Yu-Fang Chen, for their valuable support.

August 2023 Étienne André
Jun Sun
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Calvin Chau, Jan Křetínský, and Stefanie Mohr



Contents – Part I xv

Using Counterexamples to Improve Robustness Verification in Neural
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Mohammad Afzal, Ashutosh Gupta, and S. Akshay

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445



Temporal Logics



Lightweight Verification
of Hyperproperties

Oyendrila Dobe1 , Stefan Schupp2 , Ezio Bartocci2 ,
Borzoo Bonakdarpour1(B) , Axel Legay3 , Miroslav Pajic4 ,

and Yu Wang5

1 Michigan State University, East Lansing, USA
borzoo@msu.edu

2 Technische Universität Wien, Vienna, Austria
3 UCLouvain, Ottignies-Louvain-la-Neuve, Belgium

4 Duke University, Durham, USA
5 University of Florida, Gainesville, USA

Abstract. Hyperproperties have been widely used to express system
properties like noninterference, observational determinism, conformance,
robustness, etc. However, the model checking problem for hyperproper-
ties is challenging due to its inherent complexity of verifying properties
across sets of traces and suffers from scalability issues. Previously, sta-
tistical approaches have proven effective in tackling the scalability of
model checking for temporal logic. In this work, we have attempted to
combine these two concepts to propose a tractable solution to model
checking of hyperproperties expressed as HyperLTL on models involving
nondeterminism. We have implemented our approach in PLASMA and
experimented with a range of case studies to showcase its effectiveness.

Keywords: Hyperproperties · Statistical Model Checking ·
Nondeterminism

1 Introduction

Model checking [7] is a well-established method to verify the correctness of a sys-
tem. Typically, it exhaustively checks if all possible individual execution traces
of the system satisfy a property of interest. However, several security and pri-
vacy policies such as noninterference [36,42,49], differential privacy [26], observa-
tional determinism [57] are system-wide properties that require to reason across
multiple independent system’s executions simultaneously. These properties are
referred to as hyperproperties [18].

In the last decade, researchers have proposed several adaptations of classical
temporal logics to specify hyperproperties in a formal and systematic way. Exam-
ples in the non-probabilistic setting are HyperLTL [17] and its asynchronous vari-
ant A-HLTL [8]. HyperLTL extends LTL [50] with explicit quantification over

This project was partially funded by the United States NSF SaTC Awards 2245114
and 2100989, NSF Award CCF-2133160, FWF-project ZK-35, FNRS PDR - T013721,
and by the Vienna Science and Technology Fund (WWTF) [10.47379/ICT19018].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14216, pp. 3–25, 2023.
https://doi.org/10.1007/978-3-031-45332-8_1
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paths that allows to express relations among execution traces from indepen-
dent system’s runs. Recent works in [33,39,41] provide exhaustive and bounded
model-checking algorithms for HyperLTL. For probabilistic hyperproperties,
there are two main specification languages: HyperPCTL [2,24], which quanti-
fies over schedulers and argues over computation trees, and Probabilistic Hyper-
Logic (PHL) [22] which adds quantifiers for schedulers and reasons about traces.
In both contexts, these approaches face two main challenges: scalability and
the need for an explicit model. Scalability is, in particular, critical: (1) Hyper-
LTL model checking is EXSPACE-complete [11], (2) HyperPCTL and A-HLTL
model checking are in general undecidable with decidable fragments in EXS-
PACE [8,24], (3) PHL model checking is in general undecidable with decidable
fragments (reduce to HyperCTL∗) in NSPACE [22,33]. This complexity obstacle
has been a major motivation for the development of alternative approaches to
handle the problem. One possible approach is to provide an approximate result
with certain statistical guarantees, termed statistical model checking (SMC).
SMC is an approximate model checking method that is subject to a small proba-
bility of drawing a wrong conclusion [45–47]. The main idea is to simulate finitely
many traces of a model and conduct hypothesis testing to conclude if there is
enough evidence that the model satisfies or violates the property, subjecting
to a small probability of drawing a wrong conclusion. Such simulation-based
approaches have two main advantages: first, we can use them to approximate
the probability of satisfying the desired property in a model of considerable size,
which we would be otherwise unable to verify exhaustively; second, we can apply
them to black-box systems for which we are unable to access the inner model.
This approach is also intuitive as it can terminate early for cases where it has
already found enough evidence for violation. Consider, a case where a property
is required to hold for all traces. In this case, we should not be able to see a
violation even if we simulate just one trace. Given these advantages, we want
to study its application to verify hyperproperties. Another challenge, in terms
of verification, is the handling of nondeterminism. When modeling systems, we
have to take into consideration the uncertainty that can arise due to incomplete
details, involvement of unknown agents, or noise, in general. From a verifica-
tion perspective, we need to be able to argue that a property holds under any
such possibility of nondeterministic uncertainty. Both HyperPCTL and A-HLTL
model checking has the capability of reasoning over nondeterminism, however,
the high complexity in their model checking solutions basically stems from the
need for “scheduler” synthesis.

Our Contribution. In this work, we chose to model systems as Markov decision
processes (MDPs) to effectively express nondeterminism in terms of possible
actions available in a state, as well as randomization is represented as proba-
bilistic distributions of how the system can evolve once an action is executed.
PLASMA [48] is a model checker that uses a memory-efficient sampling of
schedulers [20] to conduct simulation-based statistical analysis. In this work,
we extend PLASMA’s capability to include the verification of linear, bounded
hyperproperties over systems modeled as MDPs. Our method orchestrates well-
established methods from the SMC community for the analysis of an expressive
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model class in light of bounded HyperLTL properties. The result is a scalable,
lightweight verification approach which is the first of its kind to handle this com-
bination of model class and property. We have added and experimented with an
extension that supports using recorded traces or requesting simulation of black-
box components on-the-fly for hyperproperty verification. This opens the door
to utilizing our approach for applications in cases where explicit modeling is not
possible or error-prone. For evaluation, we present a diverse set of scaling bench-
marks that raises the demand for this expressive model class and property type.
We have selected systems that allow for verification of properties such as nonin-
terference, side-channel information leak, opacity, and anonymity. The systems
under inspection range from classical examples including dining cryptographers,
to examples taken from robotics path planning and real code snippets. The state
space of the resulting models varies in the order of magnitude from tens to hun-
dreds of billions involving tens to thousands of nondeterministic actions. Our
experimental evaluation indicates good performance on systems, unperturbed
by the size of the state space. To summarize, our main contributions are:

1. To the best of our knowledge, we provide the first statistical model checking
approach for the verification of unquantified and bounded HyperLTL prop-
erties involving nondeterminism.

2. We extend the model checker PLASMA by this class of properties. Further-
more, we add capabilities to execute black-box verification.

3. We showcase the general applicability with an extensive evaluation of our
method on various scalable case studies taken from different domains.

Paper Organization: In the rest of the paper, we elaborate on the related works
in Sect. 2, describe the model and specification language in Sect. 3, with the prob-
lem formulation in Sect. 4, the algorithm and implementation details in Sect. 5,
and a range of case studies in Sect. 6. In Sect. 7 we describe our experimental
and convergence results and in Sect. 8 we provide conclusions and future work
suggestions.

2 Related Work

HyperLTL [17] was introduced to express system properties that require simul-
taneous quantification over multiple paths. The authors provided a model
checking algorithm for a fragment of the logic based on self-composition.
In [33], the authors presented the first direct automata-theoretic model check-
ing algorithm that converts the model checking problem for HyperLTL to
automaton-based problems like checking for emptiness. In recent years, there
has been considerable research on HyperLTL verification [19,31,32], and moni-
toring [5,10,11,29,37,51]. From a tools perspective, MCHyper [19,33] has been
developed for model checking, EAHyper [28] and MGHyper [27] for satis-
fiability checking, and RVHyper [30] for run time monitoring. A tractable
bounded sublogic of HyperLTL has been proposed in [41] where the authors
have suggested a QBF-based algorithm to model-check the logic. HyperQB is
a model checker specifically for bounded HyperLTL [40]. However, all of the
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above approaches suffer from the challenges of scalability, inability to handle
probabilistic systems, or lack of support for nondeterminism.

To verify hyperproperties in probabilistic systems there are two main families
of approaches proposed in the literature: exact methods [2,3,23,24] and approx-
imated ones [21,53]. Note that the specification language used in these works
differs from our specification language. Exact methods exploit the underlying
Markov chain structure of the probabilistic system to be verified for computing
precisely (numerically) and for comparing the probabilities of satisfying temporal
logic formulas of multiple and independent sequences of sets of states. Hyper-
PCTL [2] was the first logic proposed to reason exhaustively about hyperprop-
erties in probabilistic systems. This logic was later extended to allow reasoning
over systems involving nondeterminism [3,24] and rewards [25]. A verification
algorithm was implemented in the model checker HyperProb [23]. The main
shortcoming of this approach is scalability. Among the approximated approaches,
in [22] the authors propose an over-approximate and another under-approximate
automata-based model checking algorithms for the alternation-free n-safety frag-
ment of their logic PHL on n self-composed systems. The scheduler synthesis step
is the main challenge in this work.

SMC has been explored to solve problems across different domains for ana-
lyzing dynamic software architectures [14], performing security risk assessments
using attack-defense trees [34], verifying cyber-physical systems [16], validation
of biochemical reaction models [58], etc. Verification of bounded LTL for MDPs
has been proposed using SMC [38] and has shown promising results. Exten-
sive tool support exists for SMC on trace properties with respect to discrete-
event modeling [12], priced timed automata [13], probabilistic model check-
ing [43,44,56], black-box systems [35]. Statistical verification of probabilistic
hyperlogics has been proposed for HyperPCTL∗ [21,53], for continuous Markov
chains [55], and for real-valued signals [6]. However, none of these works reason
about models involving nondeterminism.

3 Preliminaries

We denote the set of natural and real numbers by N and R, respectively. For
n ∈ N, let [n] = {1, . . . , n}. The cardinality of a set is denoted by | · |. We denote
the set of all finite, non-empty finite, and infinite sequences, taken from S by
S∗, S+, and Sω, respectively.

3.1 Model Structures

Markov Decision Process. A labeled Markov decision process (MDP) [7]
is a tuple M = (S, A, s0,AP, L, P ), where (1) S is a finite set of states, (2)
A is the finite set of actions, and A(s) is the set of enabled actions that can
be taken at state s ∈ S, (3) s0 is the initial state, (4) AP is the finite set of
atomic propositions, (5) L : S → 2AP is the state labeling function, and (6)
P : S × A × S → [0, 1] is the transition probability function such that,
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∑

s′∈S
P (s, a, s′) =

{
1, if a ∈ A(s)

0, if a /∈ A(s)
(1)

A path of the MDP is an infinite sequence of states π = s0s1s2 . . . with si ∈ S
such that ∀i ≥ 0, there exists ai ∈ A with P (si, ai, si+1) > 0. A trace trace{π} =
L(s0)L(s1)L(s2) . . . is the sequence of sets of atomic propositions corresponding
to a path. We use π[i] = si to denote the ith state and π[: i] and π[i + 1 :] to
denote the prefix s0s1 . . . si, and the suffix si+1si+2 . . ., respectively.

Discrete-Time Markov Chain. A labeled discrete-time Markov chain
(DTMC) [7] is a tuple D = (S, s0,AP, L, P ), where (1) S is the finite set of
states, (2) s0 is the initial state, (3) AP is the finite set of atomic propositions,
(4) L : S → 2AP is the state labeling function, (5) P : S × S → [0, 1] is the
transition probability function such that, for all s ∈ S,

∑
s′∈S P (s, s′) = 1. A

DTMC is an MDP with each state being associated with a single action.

Scheduler. A scheduler σ is a function σ : S+ → A that resolves the nonde-
terminism at each state of an MDP. It reduces an MDP to a DTMC. Differ-
ent scheduler types are distinguished depending on what information is used to
resolve the nondeterminism in the current state: a history-dependent scheduler
σ(s[: n]) ∈ A(s[n]) would utilize the history of action and state choices to resolve
which action is executed at the current state whereas a memoryless scheduler
σ(s[n]) ∈ A(s[n]), bases its decision only on the current state. In this work, we
consider history-dependent schedulers (which include the class of memoryless
schedulers) whose memory size is bounded by the length of the paths we gener-
ate from the model. We use πMσ to denote a random path drawn from the DTMC
that is induced by the scheduler σ on the MDP M.

3.2 HyperLTL

HyperLTL [17] is the extension of linear-time temporal logic (LTL) [50] that
allows the expression of temporal specifications involving relations between mul-
tiple paths. Each state in the path is observed as a set of atomic propositions that
hold true in that state. HyperLTL involves the evaluation of specifications over
these propositions. An arbitrary path variable π is used to refer to individual
paths that can be generated by the model. Contrary to LTL, each proposition
aπ is associated with a path variable π denoting the path on which it should be
evaluated.

Syntax. We focus on unquantified and bounded HyperLTL defined by the gram-
mar below.

ϕ ::= aπ | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U≤k ϕ (2)

– a ∈ AP is an atomic proposition that evaluates to true or false in a state;
– π is a random path variable from an infinite supply of such variables Π;
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– , ≤k, ≤k, and U≤k are the ‘next’, ‘finally’, ‘global’, and ‘until’ temporal
operators, respectively,

– k ∈ N is the path length within which the operator has to be evaluated.

Following are the connectives defined as syntactic sugar:
true ≡ aπ ∨ ¬aπ, ϕ ∨ ϕ′ ≡ ¬(¬ϕ ∧ ¬ϕ′), ϕ ⇒ ϕ′ ≡ ¬ϕ ∨ ϕ′, ≤k ϕ ≡ true U≤k

ϕ, ≤k ϕ ≡ ¬ ≤k ¬ϕ. We denote U≤∞, ≤∞, and ≤∞ or the unbounded
temporal operators by U , , and , respectively. In our work, we consider only
the bounded fragment of HyperLTL such that for all temporal operators (except

), we evaluate the result on finite fragments of the simulated traces.

Semantics. The path evaluation function V : Π → Sω assigns each path vari-
able π, a concrete path of the labeled DTMC. Below we consider the semantics
of HyperLTL,

V |= aπ iff a ∈ L
(
V (π)[0]

)

V |= ¬ϕ iff V �|= ϕ
V |= ϕ1 ∧ ϕ2 iff V |= ϕ1 and V |= ϕ2

V |= ϕ iff V (1) |= ϕ

V |= ϕ1 U≤k ϕ2 iff there exists i ∈ [0, k], V (i) |= ϕ2

and for all j ∈ [0, i), V (j) |= ϕ1

where V (i) is the i-shift of path assignment V defined by V (i)(π) = (V (π))(i).
For example, the formula V |= aπ1

1 Uk aπ2
2 means that a1 holds on the path V (π1)

until a2 holds on the path V (π2) in k steps.

3.3 Sequential Probability Ratio Test

We use Wald’s sequential probability ratio test (SPRT) [52]. The idea is to
continue sampling until we are either able to reach a conclusion or we have
exhausted a user-provided sampling budget. Assuming we want to verify if a
property ϕ holds on our model D with probability greater than and equal to
θ, i.e., PrD(ϕ) ≥ θ. To use SPRT in this case, we add an indifference region
around our bound to create two distinct and flexible hypothesis tests [4]. For a
given indifference region ε, we define p0 = θ + ε and p1 = θ − ε. Our resultant
hypotheses are,

H0 : PrD(ϕ) ≥ p0 H1 : PrD(ϕ) ≤ p1 (3)

Using these newly created bounds, we define the following probability ratios,

ratiot =
p1

p0
ratiof =

1 − p1

1 − p0
(4)

We define an indicator function 1(T |= ϕ) ∈ {0, 1} that returns 1 if the trace T
satisfies the property ϕ, and returns 0 otherwise. When evaluating ϕ on a set of
sampled traces {T1, . . . , Tn}, we accumulate ratiot if 1(T |= ϕ) = 1 and ratiof
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otherwise. Assuming, we have sampled N traces, the final product of the truth
value corresponds to

pratio =
N∏

i=1

(p1)
1(Ti|=ϕ)(1 − p1)

1(Ti|=¬ϕ)

(p0)1(Ti|=ϕ)(1 − p0)1(Ti|=¬ϕ)
(5)

We iteratively calculate this ratio until the exit condition is met. To restrict the
error in the estimation of the probability θ, we specify error probabilities α as
the maximum acceptable probability of incorrectly rejecting a true H0, and β
as the maximum acceptable probability of accepting a false H0. The boundary
error ratios can be defined as A = β/(1 − α) and B = (1 − β)/α. To reach a
conclusion, we accept H0 if pratio ≤ A, and accept H1 if pratio ≥ B. The case for
specifications with PrD(ϕ) ≤ θ is similar except we use the reciprocals of ratiot

and ratiof .

4 Problem Formulation

HyperLTL allows explicit quantification over traces, allowing the user to express
whether they want their specification to hold across all paths associated with a
path variable or in at least one of those paths. Along with the added expressive-
ness, this formulation distends existing challenges - (1) While checking a spec-
ification across all possible sets of paths provides a robust verification result,
it is considerably expensive, making it impractical as we scale to models with
larger state spaces. (2) Most real-life systems involve uncertainties in the form
of randomization, nondeterminism, or partial observability. Consequently, this
raises a need to express that, for instance, a fraction of the paths of the system
satisfy the specification.

To handle the above challenges, we propose a practical formulation for
expressing unquantified and bounded HyperLTL formulas for models that involve
both probabilistic choices and nondeterminism. We quantify over the path vari-
ables by associating a probabilistic bound denoting the proportion of the set of
traces that should satisfy a given specification. We can express that a specifi-
cation is almost always likely or highly unlikely by adjusting the bound of the
probability p to p ≥ 1 or p ≤ 0, respectively. Intuitively, almost always likely
can be considered as a weaker counterpart of ∀ (forall) quantification, and highly
unlikely can be considered as a weaker counterpart of ¬∃ (existential) quantifi-
cation over path variables. Note that these limits our expression of HyperLTL
formulas with quantifier alternation in any capacity, and we leave that as an
aspect worth exploring in future works.

Consider an MDP M and an unquantified, bounded HyperLTL formula ϕ
that contains path variables (π1, . . . , πm). We consider tuples of m schedulers
to simulate m traces assigned to these path variables, i.e., we have a one-to-
one correspondence between schedulers and path variables. We are interested in
checking if there exists a combination of schedulers that can satisfy the Hyper-
LTL specification ϕ on our model within a given probability bound. Formally,
this can be expressed as,

∃σ1∃σ2 . . . ∃σm PrM(V |= ϕ) ∼ θ (6)
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where θ ∈ [ε, 1 − ε] to allow an indifference region for hypothesis testing (see
Sect. 3.3), σi are schedulers of M, V (πi) is the path drawn from the DTMC Mσi

for i ∈ [n] which is induced by σi on MDP M, and ∼ ∈ {≥,≤}. Note that we can
involve multiple models to yield paths for each scheduler σi. For properties where
we want to check if a given specification holds across all scheduler combinations,
we negate our specification to re-formulate the problem as in Eq. 6. Since we
adopt a statistical model checking algorithm, it is worth noting that we cannot
directly observe if a specification holds for all cases, thus, we utilize this approach
to check if we can satisfy its negation. We elaborate on this in Sect. 5.

5 Approach

We want to utilize the advantages of SMC to verify hyperproperties by answer-
ing our model checking problem using hypothesis testing, specifically SPRT, as
described in Sect. 3.3. The overall approach involves the sampling of schedulers
and traces from one (or more) given MDPs, monitoring the satisfaction of the
property on these traces, and determining if we have gathered enough evidence
to reach a concrete verdict for the property. In this section, we explain the con-
cepts and parameters involved in finding the result of this test such that we can
directly use it to answer our model checking question.

5.1 Scheduler Sampling

One of the main challenges when verifying MDPs is the generation of schedulers
for verification. It stems from the complexity involved in the storage of history to
resolve nondeterminism in the current state. We utilize the lightweight scheduler
sampling feature of PLASMA [20]. This approach avoids the explicit storage
of schedulers by using uniform pseudo-random number generators (PRNGs) to
resolve non-determinism and hashes as seeds for the PRNGs. In the following,
we will give an intuition of the approach inbuilt in PLASMA and how we have
extended it to argue about hyperproperties.

PRNGs form the core of the smart sampling algorithm of PLASMA. Given
a set of possible action choices and sufficient runs of the number generator, they
allow the generation of statistically independent numbers that are uniformly
distributed across a specified range. They are uniquely mapped to their seed
values intsch, ensuring the reproduction of the same value when the generator is
provided with the same seed. Note that we can use PRNGs to identify individual
schedulers but cannot identify specific schedulers. Furthermore, since the seeds
only initialize the PRNGs, using problem-specific information (e.g., about the
property) during the generation of the seed does not allow to relate schedulers.

Each state of the MDP is internally represented as a concatenation of the bits
representing the values of the atomic propositions that are true at that state.
A sequence of states can be represented by concatenating their individual bit
sequences. The sum of the bits of such a sequence of numbers intt, which is an
integer, represents a trace. Concatenation of intsch and intt can be then used
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to uniquely identify both a scheduler and a trace. PLASMA generates a hash
with this concatenated value which represents the history of both the scheduler
and the trace and is used as a seed to resolve the next nondeterministic choice.
PLASMA uses an efficient iterative hash using modular arithmetic that ensures
efficient storage of the possible schedulers mapping the comparatively large set of
schedulers to a smaller set of integers with a low probability of collision. For more
details on this, we refer the reader to [20]. Once the nondeterministic choice is
resolved at a state, PLASMA uses an independent PRNG to uniformly choose a
successor state from the ones available under the chosen action. This is concate-
nated with the trace before generating the next hash for the nondeterministic
resolution.

When working with hyperproperties, we would need to consider a tuple of
schedulers and traces. In this aspect, we can either simulate traces from the
same MDP using different schedulers, use different schedulers for each MDP,
or a combination of both. We define a scheduler tuple σ ⊆ Σm as a tuple of
schedulers sampled from the set of possible schedulers allowed by our MDPs
and m is the number of scheduler quantifiers in our specification as shown in
Eq. 6. We define a trace tuple as a tuple of traces sampled from our model based
on the tuple of schedulers. Thus, ωσ represents the trace tuple ω, sampled from
the DTMCs induced by the scheduler tuple σ. For simplicity, we consider a one-
to-one correspondence between our schedulers and MDPs. We define an indicator
function 1(ωσ |= ϕ) ∈ {0, 1} that returns 1 if the trace tuple ωσ satisfies the
hyperproperty ϕ, and returns 0 otherwise.

The aim is to verify the satisfaction of the given specification under all or
some combination of nondeterministic choices in our system. Since a scheduler
represents a concrete resolution of nondeterminism across the system, our prob-
lem is transformed to that of finding a scheduler tuple that satisfies our specifica-
tion in the form of the described hypothesis in Eq. 6. Intuitively, SMC considers
the proportion of the sampled trace tuples that individually satisfy the property
to estimate the true satisfaction probability in the overall model. To bind the
errors in the estimation, the algorithm uses precision and user-provided error
margins.

For the case where we want to conclude all scheduler tuples satisfy the prop-
erty, we negate the property and try to find a scheduler tuple that satisfies this
negated property. The falsity of this property makes our original property true.
For the case where we want to search if there exists a scheduler tuple, we pose
the hypothesis directly. However, in this case, a false result does not necessarily
guarantee the absence of a witness to the specification; it suggests that our algo-
rithm was unable to find such a scheduler tuple within the given budget, error,
and precision bound. Note that we cannot derive the exact scheduler tuple (we
get the traces generated but not the reduced DTMC) due to the black-box nature
of our sampling. We can only reason about its existence or absence within the
given budget.
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5.2 Implementation

In this section, we discuss the handling of the hypothesis testing of H0 as shown
in Eq. 3 in detail. The case for H1 is similar except we use the reciprocals of ratiot

and ratiof . As shown in Algorithm 1, we begin by initializing the necessary
parameters (line 1). For conducting sequential hypothesis testing on large sys-
tems, we need an additional bound to represent the maximum limit of resources
we want to spend on this verification. To this end, PLASMA utilizes the con-
cept of a user-provided budget. Following the idea described in [20], the algorithm
automatically distributes the budget to determine the number of scheduler and
trace tuples the verification should consider as described in the previous section.
We generate a set of scheduler tuples Σ and create a mapping to store which
scheduler should be used to produce which trace (deriving this information from
the input specification). In lines 2-3, for each scheduler tuple, we use the inter-
nal simulator to simulate the traces as specified by the mapping. In the case of
multiple initial states, we allow the choice of traces with the same or different
initial states. This reduces extra subformulas on the property to decide on initial
states and allows us to verify the property only on relevant trace samples. In
line 4, we use a custom model checker that we have implemented in PLASMA to
verify linear, bounded HyperLTL properties on sets of traces sent as input. We
further allow n-ary boolean operations by extending the general idea of AND,
OR, XOR, etc., to reduce the length of input property the user has to provide.

Algorithm 1. Hypothesis testing on Hyperproperties
Input: MDP model: M, spec: ϕ, Hypothesis H0 : PrM(V |= ϕ) ≥ θ

α, β: desired type I, type II errors,
Nmax : simulation budget, ε: indifference region.

Output: Success, No success, Inconclusive.
1: initialize()// Initializes N , M, p0, p1, A, B, k, ratiot, ratiof

2: Σ ← {M tuples of k randomly chosen seeds}
3: ∀σ ∈ Σ, ∀i ∈ {1, ..., N} : ω

σ
i ← simulate(M, ϕ, σ)

4: R ← {(σ, n)|σ ∈ Σ ∧ N � n =
∑N

i=1 1(ω
σ
i |= ϕ)}

5: if canEarlyAccept(R) then
6: Accept H0 and exit
7: Σ ← {σ ∈ Σ|R(σ) > 0}, M ← |Σ| + 1 // Remove null schedulers
8: if |Σ| = 0 then
9: Quit: No suitable scheduler-tuple found
10: while |Σ| > 1 do
11: initializeSchedulerBasedBounds() // Initializes αM , βM , AM , BM

12: for σ ∈ Σ, i ∈ {1, . . . , |Σ|} do
13: ratioi ← 1
14: for j ∈ {1, . . . , N} do
15: if simulate(M, ϕ, σ) |= ϕ then
16: ratio ← ratio · ratiot; ratioi ← ratio · ratioT

17: else
18: ratio ← ratio · ratiof ; ratioi ← ratio · ratioF

19: if ratioi ≤ AM or ratio ≤ A then
20: Accept H0 and quit: scheduler found
21: else if ratioi ≥ BM then
22: Quit iteration for σ: Scheduler tuple rejected
23: if All schedulers were rejected then
24: Quit: No scheduler found in given budget
25: Σ ← filter(Σ)// Keep only the best-performing scheduler tuples
26: Inconclusive: There exists a scheduler that was neither accepted nor rejected.
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In line 5 of the algorithm, we compare the ratio generated using Eq. 5 against
error boundary A to check if we have already found enough witnesses to accept
our null hypothesis H0. We do not check against boundary B because the absence
of a satisfying scheduler in this initial phase does not ensure that the possibility
of finding such a scheduler is zero. It hints at the need for further sampling. In
line 7, we filter out the null schedulers, i.e., for which none of the trace tuples
satisfied the property. Since we are looking for a scheduler tuple to satisfy the
property with positive probability, null schedulers cannot definitely be our best
search options. For each scheduler tuple in this filtered set, we again sample
N trace tuples. We essentially conduct multiple independent hypothesis tests,
one for each scheduler tuple. Hence, similar to [20], we modify the error for
each scheduler to αM = 1 − M√1 − α, βM = 1 − M√1 − β to account for the
error correction needed. In the initial phase (lines 2-9), the idea was to check
if we can satisfy the boundaries A,B using the truth value of all trace tuples
sampled, irrespective of its scheduler. In the rest of the algorithm, we check if we
can individually accept or reject any scheduler tuple, alongside the global check
for satisfaction across all sampled trace tuples. Since our trace tuples return an
overall true/false for the whole tuple, the error bound for each scheduler tuple
would not change when we are working with alternation-free hyperproperties
instead of trace properties.

In lines 16 and 18, we re-calculate pratio (as in Eq. 5), both for each scheduler
tuple and for all the sampled trace tuples. As we encounter a satisfying tuple
of traces, our overall pratio decreases as ratiot is a value less than one in this
case and with each non-satisfying trace tuple, it increases. If the ratio obtained
over all sampled traces across all schedulers is reduced below A or its scheduler
counterpart is below AM , we either have found a scheduler tuple that satisfies
the property or over all the sampled trace tuples, we have found enough evidence
to reach a conclusion that our hypothesis H0 is satisfied.

At the end of the iteration over the scheduler tuples, we can quit the test if all
our scheduler tuples are rejected, or proceed to the next iteration with only the
best scheduler tuples. We rearrange our scheduler tuples in an ascending order
based on the number of trace tuples that satisfied ϕ. Since we are aiming to
find a scheduler tuple that satisfies ϕ with a probability greater than θ, we only
keep the first half of rearranged scheduler tuples, ensuring that we are looking
only at the schedulers that have a higher chance of exceeding the bound. If our
evaluation reaches line 26, the set Σ would contain one scheduler which we were
neither able to accept nor reject, reaching an inconclusive decision about H0

within the given budget and precision margins. This inconclusive result would
indicate we have to retry the experiment with a higher simulation budget and/or
different precision and error margins for further scrutiny.

Convergence. The algorithm will always terminate in a finite number of iter-
ations as we eliminate half of our candidate scheduler tuples at each iteration.
However, it may not have found a satisfying scheduler tuple within that bound-
ary. For an MDP M and property ϕ, we want to find a good scheduler tuple, i.e.,
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one that satisfies ϕ with probability p ≥ θ − ε. Assuming we have |§| possible
scheduler tuples, and |§g| good schedulers, we use P : § → [0, 1] to denote the
probability with which a scheduler tuple satisfies ϕ. If we sample M scheduler
tuples and N trace tuples per scheduler tuple, the probability of sampling a
trace tuple from a good scheduler tuple that satisfies ϕ is,

(
1 −

(
1 − |§g|

|§|
)M)

︸ ︷︷ ︸
good scheduler tuple

(
1 −

(
1 −

∑
σ∈§g

Pσ

|§g|
)N )

︸ ︷︷ ︸
trace satisfies ϕ

Our aim is to maximize the value of this probability by optimizing the values
of M and N , across which the budget Nmax is the total number of sampling
we want to permit. Since we need to find schedulers that satisfy the property
with probability at least θ, we set N = � 1

θ �. This ensures that we spend our
sampling budget verifying scheduler tuples that have a higher probability of
satisfying our property. For example, if our θ is 0.25, N = 4. If we want to check
for our specification to be ≥ θ, any scheduler that satisfies at least 1 of the 4
sampled traces should be a good candidate for a good scheduler. In case we want
to check for our specification to be ≤ θ, finding such good schedulers would help
us reject the hypothesis easily. We allocate the rest of the budget (such that
N · M ∼ Nmax ) to sample scheduler tuples, thus, we set M = �θNmax �. We
have experimented with various values of budget, adjusting them based on the
expected accuracy of our results.

6 Case Studies

In this section, we discuss case studies to show the applicability and scalability
of our approach. One of the main advantages of statistical model checking lies in
the fact that we do not necessarily need access to the underlying model to verify
a system. This allowed us to utilize our approach on sets of traces generated
from black-box sources. We have separated our case studies into two sections
elaborating on the models of the grey-box (where we have access to the underly-
ing model) and black-box (where we just have access to a set of traces generated
by different schedulers) examples.

6.1 Grey-Box Verification

Group Anonymity in Dining Cryptographers (DC). We explored the
dining cryptographers problem [15] from the perspective of how it is designed to
maintain anonymity. In this model, three cryptographers go out for dinner and
at the end, want to figure out who paid the bill (their manager or one of them)
while respecting each other’s privacy. The protocol proceeds in two stages:(1)
each cryptographer flips a coin and only informs the cryptographer on their
right of the outcome (head or tail), (2) the cryptographers consider both the
coin tosses that they know of, to declare agree in case the tosses were the same,
or disagree otherwise. However, in the case of the cryptographer that actually
paid, they would declare the opposite conclusion.
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Given an odd number of cryptographers, we should have an odd number of
agrees if the manager pays the bill, an even number of agrees if one of the cryp-
tographers paid, and vice versa for an even number of cryptographers. We want
to verify if there is any information leakage depending on which cryptographer
pays. In the model, we nondeterministically choose who pays the bill and the
order in which the cryptographers toss their coin. In case one of the cryptog-
raphers pay in both traces, we expect the parity of coins at the end to be the
same. As described in [9], the order of coin toss should not affect the anonymity
in the protocol. This good behavior can be expressed as a hyperproperty,

ϕDC =
( ∨

i∈(1,2,3)

Cpayiπ1
∧

∨

i∈(1,2,3)

Cpayiπ2

)
=⇒

(done ∧ (c1 ⊕ c2 ⊕ c3))π1

∧
(done ∧ (c1 ⊕ c2 ⊕ c3))π2

For the correctness of the model, we should not be able to find a scheduler that
satisfies the bad behavior ¬ϕDC with positive probability, thus, we design the
hypothesis as,

∃σ1.∃σ2. PrM(V � ϕDC ) > 0

We expect this property to be false for an odd number of cryptographers and
true for even, as our model should ensure anonymity. We experimented with
both unbiased and biased coins in the model to check if that affects the parity of
agreement. The main challenge for this study was the size of the models as shown
in Table 1. Existing exhaustive approaches would take considerable memory and
execution time to verify this model. Hence, an approximate approach like SMC
has its utility here.

Fig. 1. Two robots att-
empting to reach the
same goal.

Noninterference in Path Planning (RNI). Con-
sider the grid in Fig. 1. We have two robots mov-
ing across a two-dimensional plane subdivided (dis-
cretized) into n×n cells. The robots can nondetermin-
istically choose to move to their neighboring cells unre-
stricted (up, down, left, or right) unless it is blocked
by the grid boundaries. However, with a certain error
probability, the chosen target cell is not reached and
instead, the robot stays in its current cell. The grid
can hence, be modeled as an MDP where each state
models a grid cell. Note that we do not restrict or force
any specific strategy for the movement of these robots.
Thus, each scheduler corresponds to a specific strategy that defines how the
robot moves across the grid. We consider the case where two robots (R1 and
R2) are placed in opposite corners of the grid and aim to reach the goal state at
the center of the grid. Assume R1 is our robot of interest and R2 is an intruder.
Motivated by the idea in [22], a specification of interest would be to check if
the plan of R1 to reach the goal is affected by the plans of R2. We design the
hypothesis as the negation of the required property. Hence, we want to determine



16 O. Dobe et al.

if there exists any such scheduler tuple where the movement of R1 would be sim-
ilar but R1 fails to reach the goal in one of them. The unquantified HyperLTL
formula is as follows,

ϕRNI =
(
actR1π1 = actR1π2

) ∧
(¬goalR1π1 U goalR2π1) ⊕ (¬goalR1π2 U goalR2π2)

For any arbitrary probability p, we design our specification as,

∃σ1.∃σ2. PrM(V � ϕRNI ) > p

Fig. 2. Grid divided into reg-
ions to ensure opacity.

Current State Opacity (CSO). Consider the
grid in Fig. 2 where we use only one robot on the
grid, which starts from any of the starting states
labeled S and aims to reach the opposite corner
labeled G. The gray boxes represent obstacles.
Instead of analyzing reachability, we are inter-
ested in analyzing opacity similar to [54]. Opacity
requires that an unauthorized user should not be
able to realize the current state of the system. In
the context of a robot, opacity ensures privacy
is preserved as the robot moves across the grid.
An observer gets an observation corresponding to
each movement of the robot. Note that we have
divided the grid into three regions (blue: near initial, red: between obstacles,
green: near goal) which would generate the same observation even when the
robot is in a different position. Current state opacity specifically states that
while starting from the same initial state (here: either of the lower left corners
marked in blue), it is still feasible to move across the grid using different paths
that can produce the same observation. By different paths, we refer to cases
where the actual positions of the robot are different due to the execution of dif-
ferent actions (up, down, left, right). This would mean that an intruder should
not be able to guess the exact location by merely gathering observations about
the movement of the robot. We can express this formally as,

ϕCSO =
(
startπ1 ∧ startπ2)

∧
¬ ≤k(actπ1 = actπ2)

∧
≤k(regionπ1

= regionπ2
)

where act encodes the action taken by the robot on the grid and region denotes
the corresponding region observed. We want to check if any such combination of
schedulers exists that satisfies the current state opacity with respect to a given
threshold. This is expressed as,

∃σ1.∃σ2. PrM(V |= ϕCSO) > p
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6.2 Black-Box Verification

We use the example of a side-channel timing attack on a password checker as
a black-box case study. We consider several password checkers that vary in the
expected amount of information leaked by observing the execution time, result-
ing from different input guesses. We ran our password checkers on a microcon-
troller and considered numerical passwords of length 10 as input.

Following the approach described in Sect. 5.1, a scheduler is represented as a
seed for a pseudo-random number generator. For a black-box model, the model
checker calls a python script with one parameter (the scheduler seed) as an
input. This seed is used by the model to resolve nondeterminism internally via a
pseudo-random number generator. Internally, the script uses the scheduler seed
to create a random password guess. Here, we assume the password guess and
the actual password is of the same length to simplify code run on the microcon-
troller. The number of correct digits of the generated password guess is saved
and the password is forwarded to the microcontroller via the serial interface
over USB. The execution time of the microcontroller together with the number
of correct bits are returned by the Python script and the out-stream is parsed
and interpreted by the model checker.

We convert numerical return values (rounded to a predefined level of preci-
sion), e.g., the number of correct digits (cd) or the execution time (et) to traces
whose length of consecutive symbols of a type reflects those values. For instance,
the returned pair of values execution time=4, correct digits=1 would be
converted into the trace

{et , cd} → {et} → {et} → {et} → {} → . . .

Leakage of information from an unsafe password checker can be obtained by
observing the execution times for several inputs. Intuitively, if the checking of a
password with more consecutive correct digits (in the front) takes longer than
a password with fewer correct digits, observing the execution time for multiple
guesses should allow guessing the correct password. To formalize this, we use the
specification of unwanted behavior

ϕTAM =( (cdπ1 ∧ ¬cdπ2 ) ∧ (etπ1 ∧ ¬etπ2 )) ⊕ ( (cdπ2 ∧ ¬cdπ1 ) ∧ (etπ2 ∧ ¬etπ1 ))

1 bool checkPassword ( St r ing g ){
2 int i ;
3 for ( i =0; i < g . l ength ( ) ; ++i )
4 {
5 i f ( g [ i ] != s e c r e t [ i ] )
6 return fa l se ;
7 }
8 return true ;
9 }

Listing 1.1. Possible leaky password
checker (BB-L).

Consider the example of a password
checker that leaks information (BB-L)
in Listing 1.1. In contrast, a simple,
safe approach (BB-S) checks the whole
password without the option of an early
return as in Line 6 and thus always pro-
duces the same execution time regard-
less of the correctness of the guess g.
Additionally, we can also add padding
to obfuscate actual execution timing.
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In our experiments, we consider a random delay (BB-*R) between 0 and 10
microseconds or a fixed delay (BB-*F) of 2 microseconds. We want to check, for
an arbitrary probability p, whether a combination of schedulers exists, such that
bad behavior, i.e., information leakage can be derived. This is expressed as,

∃σ1.∃σ2. PrM(V |= ϕTAM ) > p

7 Experimentation/Evaluation

The model details of our grey-box case studies have been reported in Table 1.
Experimental results for our case studies have been summarized in Table 2. The
parameters in Table 2 refer to the number of schedulers (#sch) and traces (#tr)
that were sampled as determined by our algorithm, and the length of the trace (k)
as determined by the user based on knowledge about the model. We separately
report the time required for the sampling of the scheduler (Sim) and trace tuples
and the time required to verify (Ver) the hyperproperty on them. Reported
timing data is the average over 10 runs. Note that in our evaluation we do not
compare our results to the existing model checkers for linear hyperproperties as
they cannot handle probabilistic models with non-determinism.

7.1 Black-Box Verification

Experiments were run on an Intel® Core™ i7 (6× 3.30 GHz) with 32Gb RAM,
the password checkers ran on an esp32 micro-controller to alleviate variance
in timing due to process scheduling. To obtain results with higher precision,
we execute using multiple parameter configurations - size of the indifference
region (ε), the satisfying probability (θ), and sampling budget (Nmax ). The
error probabilities α, β were kept at 0.01 for the whole experiment. Results and
running times for the most accurate runs are shown in Table 2, where different
variants of password checkers (see also Sect. 6) are referenced by their labels.

In total, we have run over 480 combinations of parameters to synthesize accu-
rate results. Table 2 lists results of parameter configurations that are maximizing
the probability of satisfying the property without being inconclusive to give an
estimate on a worst-case scenario. In case the property could be satisfied in the
majority of the 10 runs, we show results for two configurations: one leading to
a large observed probability and a second one that used a higher budget and
smaller indifference region which, thus, can be expected to be more precise.

From the results, we can observe that for safe password checking the tested
variants with no padding (S), fixed padding (SF), and random padding (SR) do
not allow information leakage about the correctness of the password guess via
correlation of the observed execution time. In contrast to this, the experiments
with a leaky password generator with a fixed or no padding scheme (LF, L) allow
correlating execution time and correctness of passwords. Note that in most cases
the created guesses had only zero to one correct digit, as we did not implement
adversarial strategies to guess larger parts of the password.
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7.2 Grey-Box Verification

Experiments were run on an Intel® Core™ i7 (4× 2.3 GHz) with 32Gb RAM.
We ran experiments on each of the described case studies by scaling them across
the different parameters involved. However, due to space constraints, we report
cases that are sufficient to show the scalability and robustness of our approach.

The DC component in the table corresponds to the verification of the dining
cryptographers protocol described in Sect. 6.1. Our specification ϕDC should not
hold for an odd number of cryptographers and should hold for even ones. We
have scaled the model over #c = {4, 7, 8, 15} and witnessed the expected results.
We used a constant budget of 5000 for all the cases reported. We used models
directly from PRISM [1] and were able to verify them without alterations. We
experimented with both biased and unbiased coins. The result produced was
the same proving that the biases of the coins do not affect the outcome of
the protocol. The experiment for the biased coin scenario used the exact same
parameters as reported and yielded similar execution times for both scenarios.

Table 1. Model details of grey-box case studies

CS Param. #States #Transitions #Actions
DC c = 4 2598 6864 5448

c = 7 328760 1499472 1186040
c = 8 1687113 8790480 6952248
c = 15 1011 1012 9 × 1011

RB n = 3 1034 4888 2444
Grid n = 5 12346 77152 38576
Fig. 1 n = 10 256926 1852972 926486
RB n = 10 200 1440 720
Grid n = 20 800 6080 3040
Fig. 2 n = 30 1800 13920 6960

The RNI section in the table
corresponds to noninterference
case study. We have scaled our
grid for N = {3, 5, 10}. We verify
the existence of scheduler tuples
that fails to satisfy noninterfer-
ence with probability bounds of
{0.1, 0.2, 0.5} with a budget of
2000. The trace lengths have been
increased in proportion to the grid
sizes. We have experimented on
arbitrary trace lengths which have
been adjusted as we increase the
grid size. As we do not specify any smart movement strategy for the robots,
these results are based on possible random walks the robots can make on the
grid. The interesting observation here is the difference in execution time based on
the parameters. The cases for θ ≤ 0.1 seem to be challenging, given the current
grid and budget, resulting in an inconclusive result; for n = 10 our experiment
ran for more than 2 d hinting at an inconclusive result within the given bud-
get. This is expected as we are challenging the algorithm to find a scheduler
with a very low probability (between 0 and 0.1) given the large search space.
For θ ≥ 0.2, we are often able to find our target scheduler tuples in the ini-
tial sampling phase, leading to short execution time due to early exit. This is
mainly because we are looking for a scheduler across a wider range of probability
(between 0.2 and 1). Using θ ≥ 0.5 becomes challenging when scaling the model
(with the same budget for comparison) due to the growing number of possible
scheduler tuples, and the lack of any specific strategy that finds traces where
both the robots are aiming to reach the goal. Thus, finding a scheduler with
probability on the higher end (between 0.5 - 1) is not always possible in the
given budget and indifference regions.
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Fig. 3. DC with n = 4 (Pr ≥ 0.1 ± 0.01)

During our experiments on the
opacity case study (CSO), we added
a subformula to ϕCSO to check if the
robot reaches the goal in both traces.
Given that we do not enforce any smart
movement strategy on the movement of
the robot, it usually makes a random
walk in the grid often looping in a few
states for a long time. Consequently,
the probability of the robot actually
reaching the goal is highly unlikely. We
checked the probability of satisfying our specification against {0.05, 0.3, 0.7}. We
used a budget of 3000 for all versions of this experiment and increased the trace
length in proportion to the increase in the grid size.

The plots in Fig. 3,4 depict convergence results, where each line in a graph
shows how the value of ratio changes across a single algorithm run. In each of the
plots, the red line represents the ratio A in Algorithm 1 which serves as our exit
condition. In Fig. 3, we use the sampling budget of 2000 to calculate the ratio.
At the end of this phase, if the ratio is below A, we can declare that we have
found enough evidence for a concrete result of the specification being satisfied
as shown in lines labeled experiment 2 and 3. For the case of experiment 1, we
could not reach a concrete conclusion in the initial round, as the line can be
seen to be well above A. We were required to enter the main algorithm loop and
required a few more samples (∼ 75) to reach the same concrete conclusion.

The robotics case plotted in Fig. 4a shows that we were able to get a concrete
result in the initial sampling for all three cases. We plotted an undecidable case
in Fig. 4b. Note that in experiment 2 we were able to get a concrete result in
the initial sampling round; in experiment 1, we were able to reach a concrete
result in the main algorithm loop after intensive sampling within the chosen
schedulers; and in experiment 3, we could neither find an accepting scheduler
nor reject all schedulers, leading to an inconclusive result. This supports the

Fig. 4. Plots showing the change in ratio based on sampling across schedulers.
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Table 2. Data from experimentation. #sch: number of scheduler-tuples sampled,
#tr: number of trace tuples sampled per scheduler tuple, k: length of traces sampled.

α = β = 0.01.

Case Specification Result Parameters Time [sec]

Study #sch #tr k Sim. Ver.

BB Pr(V � ϕTAM ) ≥ 0.1 ± 0.01 # S False 400 10 80 108 0.09

Pr(V � ϕTAM ) ≥ 0.1 ± 0.01 # SF False 400 10 80 93.1 0.09

Pr(V � ϕTAM ) ≥ 0.1 ± 0.01 # SR False 400 10 80 92.8 0.07

Pr(V � ϕTAM ) ≥ 0.3 ± 0.1 # L True 1201 4 80 102 0.1

Pr(V � ϕTAM ) ≥ 0.25 ± 0.01 # L True 1001 4 80 85.5 0.01

Pr(V � ϕTAM ) ≥ 0.15 ± 0.1 # LF True 601 7 80 92 0.09

Pr(V � ϕTAM ) ≥ 0.1 ± 0.01 # LF Undec 400 10 80 90 0.08

Pr(V � ϕTAM ) ≥ 0.1 ± 0.01 # LR False 400 10 80 88.7 0.08

DC Pr(V � ϕDC ) ≥ 0.1 ± 0.01 (#c = 4) True 500 10 20 1.6 0.5

Pr(V � ϕDC ) ≥ 0.01 ± 0.001 (#c = 4) True 50 100 20 1.4 0.4

Pr(V � ϕDC ) ≥ 0.1 ± 0.01 (#c = 7) False 500 10 25 2.7 0.3

Pr(V � ϕDC ) ≥ 0.01 ± 0.001 (#c = 7) False 50 100 25 2.6 0.6

Pr(V � ϕDC ) ≥ 0.1 ± 0.01 (#c = 8) True 500 10 30 2.6 0.8

Pr(V � ϕDC ) ≥ 0.01 ± 0.001 (#c = 8) True 50 100 30 2.7 0.7

Pr(V � ϕDC ) ≥ 0.1 ± 0.01 (#c = 15) False 500 10 65 4.5 1.8

Pr(V � ϕDC ) ≥ 0.01 ± 0.001 (#c = 15) False 50 100 65 5.1 1.9

RNI Pr(V � ϕRNI ) ≤ 0.1 ± 0.01 (n = 3) Undec 200 10 10 385 0.3

Pr(V � ϕRNI ) ≥ 0.2 ± 0.01 (n = 3) True 400 5 10 3.8 0.2

Pr(V � ϕRNI ) ≥ 0.5 ± 0.01 (n = 3) True 1000 2 10 210 0.15

Pr(V � ϕRNI ) ≤ 0.1 ± 0.01 (n = 5) Undec 200 10 26 2999 0.194

Pr(V � ϕRNI ) ≥ 0.2 ± 0.01 (n = 5) True 400 5 26 38.17 0.33

Pr(V � ϕRNI ) ≥ 0.5 ± 0.01 (n = 5) Undec 1000 2 26 1243 0.67

Pr(V � ϕRNI ) ≥ 0.2 ± 0.01 (n = 10) True 400 5 80 173.65 0.87

Pr(V � ϕRNI ) ≥ 0.5 ± 0.01 (n = 10) Undec 1000 2 80 10.4k 1.38

CSO Pr(V � ϕCSO ) ≤ 0.05 ± 0.001 (n = 10) Undec 150 20 30 84 0.82

Pr(V � ϕCSO ) ≥ 0.3 ± 0.01 (n = 10) True 900 4 30 0.7 0.17

Pr(V � ϕCSO ) ≤ 0.7 ± 0.01 (n = 10) True 2100 2 30 0.93 0.25

Pr(V � ϕCSO ) ≤ 0.05 ± 0.001 (n = 20) Undec 150 20 45 376 0.41

Pr(V � ϕCSO ) ≥ 0.3 ± 0.01 (n = 20) True 900 4 45 2.41 0.34

Pr(V � ϕCSO ) ≤ 0.7 ± 0.01 (n = 20) True 2100 2 45 1.74 0.41

Pr(V � ϕCSO ) ≤ 0.05 ± 0.001 (n = 30) True 150 20 55 511 0.35

Pr(V � ϕCSO ) ≥ 0.3 ± 0.01 (n = 30) True 900 4 55 7.97 0.29

Pr(V � ϕCSO ) ≤ 0.7 ± 0.01 (n = 30) True 2100 2 55 2.45 0.32

results of undecidability that the algorithm returned. The main reason can be
traced back to the fact that we did not specify any strategy for the robots, thus,
sampling across random walks of the robot.

8 Conclusion

We presented a probabilistic formulation of bounded, unquantified HyperLTL
and provided a SMC approach to verify them over MDPs. To handle nondeter-
minism, our approach leverages the smart sampling algorithm presented in [20],
extending it to reason about hyperproperties. We have implemented our app-
roach as an extension of PLASMA [48] adding new capabilities to perform
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black-box verification and demonstrating the scalability of our approach in sev-
eral case studies with large state spaces. This work aimed to showcase that
SMC is a feasible solution for cases where exhaustive or bounded model check-
ing is unable to provide us with any insight. In future directions, we would like
to extend support for quantifier alternations for paths (as in HyperLTL) and
scheduler tuples, as the current approach can only handle existential scheduler
tuples and limits our applicability to a wider variety of security properties.

References

1. PRISM: dining cryptographers’ problem. https://www.prismmodelchecker.org/
casestudies/dining crypt.php
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23. Dobe, O., Ábrahám, E., Bartocci, E., Bonakdarpour, B.: HyperProb: a model
checker for probabilistic hyperproperties. In: Huisman, M., Păsăreanu, C., Zhan,
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Abstract. Virtually all verification and synthesis techniques assume
that formal specifications are readily available, functionally correct, and
fully match the engineer’s understanding of the given system. How-
ever, this assumption is often unrealistic in practice: formalizing system
requirements is notoriously difficult, error-prone, and requires substantial
training. To alleviate this hurdle, we propose a novel approach of assisting
engineers in writing specifications based on their high-level understand-
ing of the system. We formalize the high-level understanding as an LTL
sketch that is a partial LTL formula, where parts that are hard to for-
malize can be left out. Given an LTL sketch and a set of examples of
system behavior that the specification should or should not allow, the
task of a so-called sketching algorithm is then to complete the sketch
such that the resulting LTL formula is consistent with the examples.
We show that deciding whether a sketch can be completed falls into the
complexity class NP and present two SAT-based sketching algorithms.
Finally, we implement a prototype with our algorithms and compare it
against two prominent LTL miners to demonstrate the benefits of using
LTL sketches.

1 Introduction

Due to its unique ability to prove the absence of errors mathematically, formal
verification is a time-tested method of ensuring the safe and reliable operation
of safety-critical systems. Success stories of formal methods include application
domains such as communication system [21,34], railway transportation [3,4],
aerospace [16,24], and operating systems [30,50] to name but a few.

However, there is an essential and often overlooked catch with formal veri-
fication: virtually all techniques assume that the specification required for the
design or verification of a system is available in a suitable format, is functionally
correct, and expresses precisely the properties the engineers had in mind. These
assumptions are often unrealistic in practice. Formalizing system requirements is
notoriously difficult and error-prone [9,38,44,45]. Even worse, the training effort
required to reach proficiency with specification languages can be disproportion-
ate to the expected benefits [17], and the use of formalisms such as temporal log-
ics require a level of sophistication that many users might never develop [25,28].
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To aid the process of formalizing specifications, we introduce a fundamentally
novel approach to writing formal specifications, named specification sketching.
Inspired by recent advances in automated program synthesis [47,48], our new
paradigm allows engineers to express their high-level insights about a system in
terms of a partial specification, named specification sketch, where parts that are
difficult or error-prone to formalize can be left out. To single out their desired
specification, our paradigm additionally allows the engineers to provide positive
(i.e., desirable) and negative (i.e., undesirable) examples of system execution.
Based on this additional data, a so-called sketching algorithm fills in the missing
low-level details to obtain a complete specification.

To demonstrate how our paradigm works, let us consider a simple scenario.
Imagine that an engineer wishes to formalize the following request-response prop-
erty P : every request p has to be answered eventually by a response q. This
property can be expressed in Linear Temporal Logic (LTL)—a popular specifica-
tion language in software verification—as G(p → XF q) using standard temporal
modalities F (“Finally”), G (“Globally”), and X (“neXt”). However, for the sake
of this example, assume that the engineer is unsure of how exactly to formalize
P . In such a situation, our sketching paradigm allows them to express their high-
level insights in the form of a sketch, say G(p → ?), where the question mark
indicates the missing part of the specification. Additionally, they can provide
example executions. Assume that they provide the following infinite executions
of the system: (i) a positive execution {p}{q}{p}{q}{p}{q} · · · , in which every
request is answered by a response in the next time point, and (ii) a negative exe-
cution {p}{q}{p}{p}{p} · · · , in which there are infinitely many requests that are
not answered by a response. Our sketching algorithm then computes a substi-
tution for the question mark such that the completed LTL formula is consistent
with the examples (e.g., ? := XF q). In this example, the engineer left out an
entire temporal formula in the sketch. However, our paradigm also allows one to
leave out Boolean and temporal operators. For instance, one could also provide
?(p → XF p) as a sketch, where the question mark now indicates a missing unary
operator (G in our example).

While the concept of specification sketching can be conceived for a wide
range of specification languages, in this work, we focus on Linear Temporal
Logic (LTL) [39]. Our rationale behind choosing LTL is threefold. First, LTL
is popular in academia and widely used in industry [23,24,27,49], making it
the de facto standard for expressing (temporal) properties in verification and
synthesis. Second, LTL is well-understood and enjoys good algorithmic proper-
ties [15,39]. Third, its intuitive and variable-free syntax have recently prompted
several efforts to adopt LTL (over finite words) also in artificial intelligence (e.g.,
as explainable models [13,43], as reward functions in reinforcement learning [12],
etc.). We introduce LTL and other necessary definitions in Sect. 2.

In Sect. 3, we then formally state the problem of specification sketching for
LTL (or LTL sketching for short). It turns out that the LTL sketching problem
might not always have a solution: there are sketches for which no substitutions
exist that makes them consistent with the given examples (see the example at
the end of Sect. 3). However, we show in Sect. 4 that the problem of deciding
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whether such a substitution exists is in the complexity class NP. Moreover, we
develop an effective decision procedure that reduces the original question to a
satisfiability problem in propositional logic. This reduction permits us to apply
highly-optimized, off-the-shelf SAT solvers to check whether a consistent substi-
tution exists.

In Sect. 5, we develop two sketching algorithms for LTL. Following Occam’s
razor principle, both algorithms are biased towards finding “small” (concise)
substitutions for the question marks in a sketch. The rationale behind this choice
is that small formulas are arguably easier for engineers to understand and, thus,
can be safely deployed in practice.

By exploiting the decision procedure of Sect. 4 as a sub-routine, our first
algorithm transforms the sketching problem into several “classical” LTL learning
tasks (i.e., learning of LTL formulas from positive and negative data). This
transformation allows us to apply a diverse array of LTL learning algorithms,
which have been proposed during the last five years [13,37,41]. In addition, our
algorithm immediately benefits from any advances in this field of research.

While the first algorithm builds on top of existing work and, hence, is easy
to use, we observed that it tends to produce non-optimal substitutions for the
unspecified parts of a sketch. Our second algorithm tackles this by searching
for substitutions of increasing size using a SAT-based approach that is inspired
by Neider and Gavran [37]. We formally prove that this algorithm can, in fact,
produce small substitutions (if they exist).

In Sect. 6, we present an experimental evaluation of our algorithms using
a prototype implementation LTL-Sketcher. We demonstrate that our algo-
rithms are effective in completing sketches with different types of missing infor-
mation. Further, we compare LTL-Sketcher against two state-of-the-art spec-
ification mining tools for LTL. From the comparison, we demonstrate that
LTL-Sketcher’s ability to complete missing temporal formulas and temporal
operators enables it to complete more specifications. Moreover, we observe that
providing high-level insights as a sketch reduces the number of examples required
to derive the correct specification. Finally, we conclude in Sect. 7 with a discus-
sion on future work. All the proofs and additional experimental results can be
found in the extended version of this paper [35].

Related Work. Specification sketching can be seen as a form of specification
mining [1]. In this area, the general idea of allowing partial specifications is not
entirely new, but it has not yet been investigated as generally as in this work.
For instance, a closely related setting is the one in which so-called templates are
used to mine temporal specifications from system executions. In this context,
a template is a partial formula similar to a sketch. Unlike a sketch, however,
a template is typically completed with a single atomic proposition or a sim-
ple, usually Boolean formula (e.g., a restricted Boolean combination of atomic
propositions). A prime example of this approach is Texada [31,32], a specifica-
tion miner for LTLf formulas (i.e., LTL over a finite horizon). Texada takes a
template (property type in their terminology) and a set of system executions
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as input and completes the template with atomic propositions such that the
resulting LTL formula satisfies all system executions. In contrast to Texada,
our paradigm assists engineers in completing more complex temporal formulas
in their specifications, thus alleviating an even larger burden off an engineer.
Another example in this setting is the concept of temporal logic queries, intro-
duced by Chan [14] for CTL, and later developed by Bruns and Godefroid [10]
for a wide range of temporal logics. However, unlike our paradigm, temporal
logic queries allow only a single placeholder in their template that can be filled
with only atomic propositions.

Various other techniques operate in settings where the templates are even
more restricted. For example, Li et al. [33] mine LTL specification based on
templates from the GR(1)-fragment of LTL (e.g., GF?, G(?1 → X?2), etc.), while
Shah et al. [46] mine LTL formulas that are conjunctions of the set of common
temporal properties identified by Dwyer et al. [19]. In addition, Kim et al. [29]
consider a set of interpretable LTL templates, widely used in the development
of software systems, to obtain LTL formulas robust to noise in the input data.
In the context of CTL, on the other hand, Wasylkowski and Zeller [51] mine
specifications using templates of the form AF?, AG(?1 → F?2), etc. However, all
of the approaches above complete the templates only with atomic propositions
(and their negations in some cases).

Another setting is where general (and complex) temporal specifications are
learned from system executions without any information about the structure
of the specification. The most notable work in this setting is by Neider and
Gavran [37], who learn LTL formulas from system executions using a SAT solver.
Similar to their work is the work by Camacho et al. [13], which proposes a SAT-
based learning algorithm for LTLf formulas via Alternating Finite Automata
as an intermediate representation. Raha et al. [40] present a scalable approach
for learning formulas in a fragment of LTLf without the U-operator, while Roy,
Fisman, and Neider [42] consider the Property Specification Language (PSL).
However, all of these works are “unguided” in that none of them exploit insights
about the structure of the specification to aid the learning/mining process.

Finally, it is worth mentioning that LTL sketching can also be seen as a
particular case of syntax-guided synthesis (SyGuS), where syntactic constraints
on the resulting formulas are expressed in terms of a context-free grammar.
An example of a syntax-guided approach is SySLite [2], a CVC4-based tool
for learning Past-time LTL over finite executions. However, to the best of our
knowledge, we are unaware of any SyGuS engine that can infer specifications in
LTL over infinite (i.e., ultimately-periodic) system executions.

2 Preliminaries

We first set up the notation and definitions that are used throughout the paper.
To model trajectories of a system, we exploit the notion of words defined over

an alphabet consisting of relevant system events. Formally, an alphabet Σ is a
nonempty, finite set whose elements are called symbols. A finite word over an
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alphabet Σ is a sequence u = a0 . . . an of symbols ai ∈ Σ for i ∈ {0, . . . , n}.
The empty sequence, referred to as empty word, is denoted by ε. The length of a
finite word u is denoted by |u|, where |ε| = 0. Moreover, Σ∗ denotes the set of all
finite words over Σ, while Σ+ = Σ∗ \ ε denotes the set of all non-empty words.

An infinite word over Σ is an infinite sequence α = a0a1 . . . of symbols
ai ∈ Σ for i ∈ N. We denote the i-th symbol of an infinite word α by α[i] and
the finite infix of α from position i up to (and excluding) position j with α[i, j) =
aiai+1 · · · aj−1. We use the convention that α[i, j) = ε for any i ≥ j. Further,
we denote the infinite suffix starting at position j ∈ N by α[j,∞) = ajaj+1 · · · .
Given u ∈ Σ+, the infinite repetition of u is the infinite word uω = uu · · · ∈ Σω.
An infinite word α is called ultimately periodic if it is of the form α = uvω for a
u ∈ Σ∗ and v ∈ Σ+. Finally, Σω denotes the set of all infinite words over Σ.

Since our algorithms rely on the Satisfiability (SAT) problem, as a prerequi-
site, we introduce Propositional Logic. Let Var be a set of propositional variables,
which take Boolean values from B = {0, 1} (0 representing false and 1 represent-
ing true). Formulas in propositional (Boolean) logic, denoted by capital Greek
letters, are inductively constructed as follows:

– each x ∈ Var is a propositional formula; and
– if Ψ and Φ are propositional formulas, so are ¬Ψ and Ψ ∨ Φ.

Moreover, as syntactic sugar, we allow the formulas true, false, Ψ ∧Φ,Ψ ⇒ Φ,
and Ψ ⇔ Φ, which are defined as usual. A propositional valuation is a mapping v :
Var → B that assigns Boolean values to propositional variables. The semantics
of propositional logic is given by a satisfaction relation |= that is inductively
defined as follows: v |= x if and only if v(x) = 1, v |= ¬Φ if and only if v � Φ,
and v |= Ψ ∨ Φ if and only if v |= Ψ or v |= Φ. In the case that v |= Φ, we
say that v satisfies Φ and call it a model of Φ. A propositional formula Φ is
satisfiable if there exists a model v of Φ. The size of a formula is the number of
its subformulas (defined in the usual way). The satisfiability (SAT) problem is
the well-known NP-complete problem of deciding whether a given propositional
formula is satisfiable. In the recent past, numerous optimized decision procedures
have been designed to handle the SAT problem effectively [6].

Linear Temporal Logic is a logic to reason about sequences of relevant state-
ments about a system by using temporal modalities. Formally, given a set P of
propositions that represent relevant statements about a system, an LTL formula,
denoted by small Greek letters, is defined inductively as follows:

– each proposition p ∈ P is an LTL formula; and
– if ψ and ϕ are LTL formulas, so are ¬ψ, ψ ∨ ϕ, Xψ (“neXt”), and ψUϕ

(“Until”).

As syntactic sugar, we allow standard Boolean formulas such as true, false,
ψ∧ϕ, and ψ → ϕ and temporal formulas such as Fψ := true Uψ (“Finally”) and
Gψ := ¬F¬ψ (“Globally”). While we restrict to these formulas, our paradigm
extends naturally to all temporal operators (e.g., “Release”, “Weak until”, etc.).

LTL formulas are interpreted over infinite words α ∈ (2P)ω. To define
how an LTL formula is interpreted on a word, we use a valuation function
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V . This function maps an LTL formula and a word to a Boolean value and
is defined inductively as: V (p, α) = 1 if and only if p ∈ α[0], V (¬ϕ,α) =
1 − V (ϕ,α), V (ϕ ∨ ψ, α) = max{V (ϕ,α), V (ψ, α)}, V (Xϕ,α) = V (ϕ,α[1,∞)),
and V (ϕUψ, α) = maxi≥0{min{V (ψ, α[i,∞)),min0≤j<i{V (ϕ,α[j,∞))}}}. We
call V (ϕ,α) the valuation of ϕ on α and say that α satisfies ϕ if V (ϕ,α) = 1.

∨
U F

p G

q

Fig. 1. Syntax DAG of
(pUG q) ∨ (F(G q))

For a graphical representation of LTL formulas,
we rely on syntax DAGs. A syntax DAG is a directed
acyclic graph (DAG) obtained from the syntax tree
of a formula by merging the common subformulas,
resulting in a canonical representation. Figure 1 illus-
trates the syntax DAG of the formula (pUG q)∨FG q.

The size of an LTL formula |ϕ| is defined as the
number of unique subformulas, which also corresponds
to the number of nodes in the syntax DAG of ϕ. For
instance, the size of the formula in Fig. 1 is six.

We denote the set of all LTL operators as Λ =
P ∪ ΛU ∪ ΛB . Here, the propositions are the nullary
operators, ΛU = {¬,X,F,G} are the unary operators
and ΛB = {∨,∧,U} are the binary operators of LTL. Further, let FLTL denote
the set of all LTL formulas.

3 Problem Formulation

Since the problem of LTL sketching relies heavily on LTL sketches, we begin
with formalizing them first.

LTL Sketch. An LTL sketch is an incomplete LTL formula in which parts that
are difficult to formalize can be left out. The left-out parts are represented using
placeholders, denoted by ?’s. An example of an LTL sketch can be seen in Fig. 2.
We comment on the superscripts on the placeholders in the figure shortly.

?2

U ?1

?0 G

q

Fig. 2. An LTL sketch

Formally, an LTL sketch ϕ? is simply an LTL for-
mula whose syntax is augmented with placeholders.
The placeholders we allow can be of three types: place-
holders of arity zero referred to as Type-0 placehold-
ers, that replace missing LTL formulas; placehold-
ers of arity one referred to as Type-1 placeholders,
that replace missing unary operators; and placehold-
ers of arity two referred to as Type-2 placeholders,
that replace missing binary operators. In Fig. 2 (and
throughout the paper), Type-i placeholders are repre-
sented using ?i.

Given (possibly empty) sets Π0, Π1 and Π2 consisting of Type-0, Type-1 and
Type-2 placeholders, respectively, we define LTL sketches inductively as follows:

– each element of P ∪ Π0 is an LTL sketch; and
– if ϕ?

1 and ϕ?
2 are LTL sketches, ◦ ϕ?

1 is an LTL sketch for ◦ ∈ ΛU ∪ Π1 and so
is ϕ?

1 ◦ ϕ?
2 for ◦ ∈ ΛB ∪ Π2.
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Note that an LTL sketch in which Π0 = Π1 = Π2 = ∅ is simply an LTL formula.
Further, let Πϕ? = Π0 ∪ Π1 ∪ Π2 denote the set of all placeholders in an sketch
ϕ?. For the sketch in Fig. 2, Πϕ? = {?0, ?1, ?2}. For brevity, in the rest of the
paper, we refer to an LTL sketch as a sketch.

The placeholders are abstract symbols that apriori do not have meaning.
To assign meaning to a sketch, we need to substitute all Type-0 placeholders
with LTL formulas, all Type-1 placeholders with unary operators, and all Type-
2 placeholders with binary operators. We do this using a so-called substitution
function (or substitution for short).

Formally, a substitution function s maps placeholders and operators present
in a sketch to LTL operators and LTL formulas in such a way that: s(?) ∈ FLTL

if ? ∈ Π0; s(?) ∈ ΛU if ? ∈ Π1; s(?) ∈ ΛB if ? ∈ Π2; and s(λ) = λ for any LTL
operator λ ∈ Λ. Moreover, a substitution s is said to be complete for a sketch
ϕ? if s is defined for every element in Λ ∪ Πϕ? in ϕ?. For example, a possible
complete substitution s for the sketch ϕ? in Fig. 2 can be s(?0) = p, s(?1) = F,
s(?2) = ∨, and s(λ) = λ for λ ∈ Λ.

A complete substitution s can be applied to a sketch ϕ? to obtain an LTL
formula. To make this precise, we define a function fs, which is defined recursively
on the structure of ϕ? as: fs(ϕ?

1 ?2 ϕ?
2) = fs(ϕ?

1) ◦ fs(ϕ?
2), where ◦ = s(?2);

fs(?1ϕ?)) = ◦ fs(ϕ?), where ◦ = s(?1); fs(?0) = s(?0); and fs(ϕ?) = ϕ? if
Πϕ? = ∅. For the complete substitution s for ϕ? defined in the last paragraph
we get fs(ϕ?) = (pUG q) ∨ (F(G q)).

Input Sample. While there can be many ways to complete a sketch, we direct our
search based on two finite, disjoint sets: a set P of positive executions and a set
N of negative executions. We consider the executions to be ultimately periodic
words, i.e., words of the form uvω, where u ∈ (2P)∗ and v ∈ (2P)+, since they
are sufficient to uniquely characterize ω-regular languages [11] (and thus, LTL
formulas). We accumulate all the executions in what we call a sample S = (P,N)
where P ∩ N = ∅. We define its size to be |S| =

∑
uvω∈P∪N |uv|.

We say that an LTL formula ϕ is consistent with a sample S = (P,N)
if V (ϕ, uvω) = 1 for each uvω ∈ P (i.e., all positive words satisfy ϕ) and
V (ϕ, uvω) = 0 for each uvω ∈ N (i.e., all negative words do not satisfy ϕ).

The LTL Sketching Problem. We now state the central problem of the paper.

Problem 1 (LTL sketching). Given an LTL sketch ϕ? and a sample S = (P,N),
find a complete substitution s for ϕ? such that fs(ϕ?) is consistent with S.

Unlike the classical LTL learning problem [37], a solution to the LTL sketch-
ing problem does not always exist. This can be illustrated using the following
simple example. Consider the sketch G(?0) and a sample consisting of a sin-
gle positive word α = {p}{q}ω and a single negative word β = {q}ω. For this
sketch and sample, there does not exist any substitution that leads to an LTL
formula consistent with the sample. Towards contradiction, let us assume that
there exists an LTL formula G(ϕ) such that V (G(ϕ), α) = 1 and V (G(ϕ), β) = 0.
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Based on the semantics of the G-operator, V (G(ϕ), α) = V (G(ϕ), α[1,∞)) = 1.
On the other hand, V (G(ϕ), β) = V (G(ϕ), α[1,∞)) = 0 since β = α[1,∞).

Since, for a given LTL sketch and a sample, there might not exist any complete
substitution, a naive enumeration-like algorithm to search over all substitutions
may not terminate. To show that one can indeed design a terminating sketching
algorithm, in the next section, we prove the decidability of LTL sketching .

4 Existence of a Complete Sketch

To devise a terminating algorithm for the LTL sketching problem, we first intro-
duce the related decision problem, which is the following:

Problem 2 (LTL sketch existence). Given an LTL sketch ϕ? and a sample S =
(P,N), does there exist a complete substitution s for ϕ? such that fs(ϕ?) is
consistent with S.

In what follows, we prove that this problem is indeed decidable and belongs
to the complexity class NP. Thereafter, we devise a decision procedure for the
problem by exploiting the satisfiability (SAT) problem.

4.1 The Decidability Result

For the decidability result, we begin by introducing some concepts as a prepara-
tion. Let us first observe the following key property of ultimately periodic words.

Observation 1. Let uvω ∈ (2P)ω and ϕ be an LTL formula. Then, uvω[|u|+ i] =
uvω[|u|+j] for j ≡ i mod |v|. Thus,V (ϕ, uvω[|u|+i,∞)) = V (ϕ, uvω[|u|+j,∞)).

This observation indicates that, for a word uvω, there exists only a finite number
of distinct suffixes of uvω, all of which originate in the initial uv portion of uvω.
Let us then define suf (uvω) = {uvω[i,∞) | 0 ≤ i < |uv|} as the set of all (possi-
bly) distinct suffixes of a word uvω. Moreover, let suf (S) =

⋃
uvω∈(P∪N) suf (uvω)

to be the set of suffixes of all words in S. Now, Observation 1 also indicates that,
to determine the evaluation of an LTL formula ϕ on an ultimately periodic word
uvω, it is sufficient to determine its evaluation on the initial |uv| suffixes of uvω.

Thus, for a compact representation of the evaluation of ϕ on uvω, we intro-
duce a table notation Tϕ

uvω . Mathematically speaking, a table Tϕ
uvω is a |ϕ|× |uv|

matrix that consists of the satisfaction of all the subformulas ϕ′ of ϕ on the suf-
fixes of uvω. We define the entries of this matrix as: Tϕ

uvω [ϕ′, t] = V (ϕ′, uvω[t,∞))
for all subformulas ϕ′ of ϕ and 0 ≤ t < |uv|.

Based on the above definition of the table Tϕ
uvω , we identify three properties

of these tables, which form the main building blocks of the decidability proof
(i.e., proof of Theorem 1), as we see later.

The first property, or as we call it, the Semantic property, is that various
rows of the table are related to each other in a way that reflects the semantics
of LTL. To explain this further, we use Tϕ

uvω [ϕ′, ·] to represent the row of Tϕ
uvω

corresponding to the subformula ϕ′.
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We first demonstrate the Semantic property on an example. Consider the
formula ψ = p∨X q and the word α = {p, q}{p}{q}ω. The table Tψ

α is illustrated
in Fig. 3. From the figure, one can see that the row Tψ

α [p ∨X q, ·] corresponds to
the bitwise-OR of the rows Tψ

α [p, ·] and Tψ
α [X q, ·], reflecting the semantics of the

∨-operator that combines formulas p and X q.

0 1 2

p 1 1 0

q 1 0 1

X q 0 1 1

p ∨ X q 1 1 1

Fig. 3. Table T ψ
α for ψ = p ∨ X q and

α = {p, q}{p}{q}ω

∨1

U2 F3

p4 G5

q6

Fig. 4. Syntax DAG of (pUG q) ∨
F(G q) with identifiers (in superscripts)

To define these semantic relations between the rows, we must uniquely iden-
tify the subformula that corresponds to each row. As a result, we assign unique
identifiers i ∈ {1, . . . , n} to each node of the syntax DAG of ϕ enabling us to
denote the subformula rooted at Node i using ϕ[i]. For assigning identifiers, we
follow the strategy that: (i) we assign the root node with 1; and (ii) we assign
each node with an identifier smaller than its children (i.e., if it has any). Note
that one can analogously assign identifiers to syntax DAGs of sketches. Figure 4
demonstrates identifiers for the formula (pUG q) ∨ F(G q). We further define a
function � : {1, . . . , n} �→ Λ that maps the identifiers to the corresponding oper-
ators in the syntax DAG.

We now describe the set of equations that formalize the relation between the
rows. How a row Tϕ

uvω [ϕ[i], ·] relates to the others depends on the operator �(i)
in the root node of ϕ[i]. For instance, if �(i) = p for some proposition p, then we
have the following relation:

Tϕ
uvω [ϕ[i], t] =

{
1 if p ∈ uvω[t]
0 otherwise

(1)

If, on the other hand, �(i) is a X-operator and Node j is the left child of
Node i, we have the following relation:

Tϕ
uvω [ϕ[i], t] =

{
Tϕ

uvω [ϕ[j], t + 1] for 0 ≤ t < |uv| − 1
Tϕ

uvω [ϕ[j], |u|] for t = |uv| − 1
(2)

The above equation exploits the semantics of the X-operator. Further, it exploits
Observation 1 and determines the entry Tϕ

uvω [ϕ[i], |uv| − 1] using the evaluation
of ϕ[j] at uvω[|u|,∞), i.e., the start of the periodic part.

If �(i) is a ∨-operator, and Node j and Node j′ are the left and right children
of Node i, respectively, then we have the following relation:
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Tϕ
uvω [ϕ[i], t] = Tϕ

uvω [ϕ[j], t] ∨ Tϕ
uvω [ϕ[j′], t] for 0 ≤ t < |uv| (3)

Again, one can see that the above equation follows from the semantics of the ∨-
operator. For other LTL operators, the relation between rows follows the seman-
tics of the corresponding LTL operator in a similar fashion (see extended ver-
sion [35] for details). Whenever necessary, we use Observation 1 to determine
the semantics of the operator by “looping” around in the period part of uvω.

Next, we describe the second property, the Consistency property. This prop-
erty ensures that Tϕ

uvω [ϕ, 0] = 1 if and only if uvω satisfies ϕ. Thus, for an LTL
formula ϕ consistent with S, we have the following relation:

Tϕ
uvω [ϕ, 0] = 1 for all uvω ∈ P, and Tϕ

uvω [ϕ, 0] = 0 for all uvω ∈ N (4)

The final property we observe is called the Suffix property. This prop-
erty originates from the fact that LTL, being a future-time logic, has the
same evaluation on equal suffixes, i.e., V (ϕ, u1v

ω
1 [t,∞)) = V (ϕ, u2v

ω
2 [t′,∞)) for

u1v
ω
1 [t,∞) = u2v

ω
2 [t′,∞). Formally, we state the property as follows:

Tϕ
u1vω

1
[ϕ, t] = Tϕ

u2vω
2
[ϕ, t′] for all u1v

ω
1 [t,∞) = u2v

ω
2 [t′,∞) (5)

This property becomes significant later, especially for constructing LTL formulas
to substitute Type-0 placeholders.

With the prerequisites set up, we now proceed to describe an NP algorithm
for deciding the LTL sketch existence problem. For an easy presentation of the
algorithm, we consider the simple (but crucial) case where the only missing
information in ϕ? is a single Type-0 placeholder. While one might assume that
non-deterministically guessing a substitution for the placeholder should suffice;
it does not. This is because, apriori, the size of the LTL formula required to
substitute the Type-0 placeholder is not known.

Thus, in our NP algorithm, instead of guessing substitutions, we guess the
entries of the table Tϕ?

uvω for each uvω in S. Note that the tables have a finite
dimension, precisely |ϕ?| × |uv|, for each word uvω. Thus, the overall process of
simply guessing the table entries can be done in time O(poly(|ϕ?|, |S|)).

After guessing the table entries, we must verify that the guessed tables sat-
isfy the three properties, Semantic, Consistency, and Suffix, discussed earlier in
this section. It is easy to verify that checking the first two properties for the tables
requires time O(poly(|ϕ?|, |uv|)) (i.e., polynomial in |ϕ?| and |uv|) for each uvω in
S. For checking the Suffix property, one must identify the equal suffixes in suf (S).
This can be also done in time O(poly(|S|)), simply by unrolling the periodic part
of the suffixes to a fixed length (see extended version [35] for the details).

This algorithm naturally also extends to multiple Type-0 placeholder. The
following lemma now asserts that if the guessed tables satisfy the three prop-
erties, then one can find a suitable complete LTL formula. We present a proof
sketch of the lemma here (for the full proof, see the extended version [35]).

Lemma 1. Let S = (P,N) be a sample and ϕ? be a sketch with only Type-0
placeholders. Then, the following holds: there exists tables Tϕ?

uvω (i.e., |ϕ?| × |uv|
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matrices with {0, 1} entries) for each uvω ∈ P ∪ N that satisfy the Semantic,
Consistency, and Suffix properties if and only if there exists a substitution s such
that LTL formula fs(ϕ?) is consistent with S.

Proof sketch: For simplicity, we consider ϕ? to consist of only one Type-0
placeholder ?0. For the forward direction, we explicitly construct an LTL for-
mula for ?0, based on tables Tϕ?

uvω . Towards this, we first construct a sample
S ′ = (P ′, N ′) as: P ′ = {uvω[t,∞) ∈ suf (S) | Tϕ?

uvω [?0, t] = 1}, N ′ = {uvω[t,∞) ∈
suf (S) | Tϕ?

uvω [?0, t] = 0}. Since the tables satisfy the Suffix property, P ′∩N ′ = ∅.
We can now construct a generic LTL formula ψ consistent with S ′ using LTL
learning [37]. For the other direction, we construct Tϕ?

uvω based on T
fs(ϕ

?)
uvω as:

Tϕ?

uvω [ϕ?[i], ·] = T
fs(ϕ

?)
uvω [fs(ϕ?)[i], ·] for each uvω ∈ P ∪ N and 0 ≤ i < |ϕ?|. ��

With this, we conclude the NP algorithm for the case where ϕ? only has Type-
0 placeholders. We can easily extend the algorithm to the case where ϕ? consists
of Type-1 and Type-2 placeholders. In particular, we first guess the operators
to be substituted for the Type-1 and Type-2 placeholders and substitute them.
We then obtain a sketch consisting of only Type-0 placeholders. We now apply
our algorithm that relies on guessing tables, as described above.

Theorem 1. The LTL sketch existence problem is in NP.

We conjecture that the complexity lower-bound of LTL sketch existence is NP-
hard based on the NP-hardness of LTL learning for certain fragments of LTL [22].
However, we have to leave the exact lower-bound of the problem for future work.

4.2 The Decision Procedure

Based on the NP algorithm described above, we now devise a decision procedure
to decide the LTL sketch existence problem. The decision procedure relies upon
reducing the existence of tables Tϕ

uvω satisfying the three properties discussed in
Sect. 4.1 to a satisfiability (SAT) problem.

This reduction relies on a symbolic encoding of the entries of the tables.
To this end, we introduce propositional variables yu,v

i,t for each i ∈ {1, . . . , n},
t ∈ {0, . . . , |uv| − 1}, and uvω ∈ P ∪ N . A variable yu,v

i,t encodes the entry
Tϕ

uvω [ϕ[i], t]. Further, we encode the operators to be substituted for the Type-1
and Type-2 placeholders in ϕ? using the following variables: (i) xi,λ for each
Node i where �(i) is a Type-1 placeholder and each λ ∈ ΛU ; and (ii) xi,λ for
each Node i where �(i) is a Type-2 placeholder and each λ ∈ ΛB.

We now impose constraints on the introduced variables to ensure that the
prospective tables satisfy the three properties necessary for inferring a consistent
LTL formula. We achieve this by constructing a propositional formula Φϕ?,S .
This formula ensures that variables yu,v

i,t encode appropriate tables and using
Lemma 1, its satisfiability ensures the existence of a suitable substitution for ϕ?.

Internally, Φϕ?,S := Φ1,2
? ∧Φsem ∧Φcon ∧Φsuf is a conjunction of four formulas.

The first conjunct Φ1,2
? ensures that the Type-1 and Type-2 placeholders are
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substituted by appropriate operators. The conjuncts Φsem , Φcon and Φsuf ensure
that the variables yu,v

i,t encode entries of tables that satisfy the Semantic property
(e.g., Eqs. 1, 2, etc.), the Consistency property (Eq. 4) and the Suffix property
(Eq. 5), respectively. In the remainder of the section, we describe the construction
of each of the four formulas.

We begin by introducing the constraints required for Φ1,2
? . For each Node i

labeled with a Type-1 placeholder (i.e., �(i) ∈ Π1), we design the following
constraint:

[ ∨

λ∈ΛU

xi,λ

]
∧

[ ∧

λ	=λ′∈ΛU

¬xi,λ ∨ ¬xi,λ′
]
, (6)

which ensures that the Type-1 placeholders are substituted with a unique unary
operator. For Type-2 placeholders, we have the exact same constraint except
that the operators range from the set of binary operators ΛB. We now construct
Φ1,2
? simply by taking a conjunction of all such constraints for the nodes labeled

with Type-1 and Type-2 placeholders.
Next, we define Φsem as the conjunction

∧
uvω∈P∪N Φu,v, where Φu,v denotes

a formula that ensures that the variables yu,v
i,t satisfy the semantic relations

for the word uvω. In the formula Φu,v, for each Node i labeled with the X-
operator (i.e., �(i) = X) and having Node j as its left child, we have the following
constraint:

[ ∧

0≤t<|uv|−1

[
yu,v

i,t ↔ yu,v
j,t+1

]]
∧

[
yu,v

i,|uv|−1 ↔ yu,v
j,|u|

]
(7)

This constraint ensures that the variables yu,v
i,t satisfy Eq. 2 for the word uvω.

For nodes labeled with other operators, we construct similar constraints based
on their corresponding semantic relations. If the nodes are labeled with Type-1
or Type-2 placeholders, we additionally rely on variables xi,λ to determine the
operator λ to be substituted in Node i. Based on the operator label λ, we devise
appropriate semantic constraints. Finally, we construct Φu,v as the conjunction
of all such semantic constraints.

We construct the following constraint to ensure Eq. 4 is satisfied for the
prospective tables:

Φcon := [
∧

uvω∈P

yu,v
1,0 ] ∧ [

∧

uvω∈N

¬yu,v
1,0 ] (8)

Finally, for Φsuf , we have the following constraint for each Node i labeled
with a Type-0 placeholder (i.e., �(i) ∈ Π0):

∧

u1vω
1 [t,∞)=u2vω

2 [t′,∞)∈suf (S)

[
yu1,v1

i,t ↔ yu2,v2
i,t′

]
, (9)

which ensures that Eq. 5 is satisfied for the prospective tables.
Overall, we construct a formula Φϕ?,S that ranges over O(n + nm) variables

and is of size O(n + nm3 + m2), where n = |ϕ?| and m = |S|. We conclude this
section by stating the correctness of Φϕ?,S .
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Theorem 2. Let ϕ? be a sketch, S a sample, and Φϕ?,S the formula as defined
above. Then, Φϕ?,S is satisfiable if and only if there exists a complete substitution
s such that fs(ϕ?) is consistent with S.

Proof sketch: For the forward direction, based on a model v of Φϕ?,S , we con-
struct a complete substitution s such that fs(ϕ?) is consistent with S. First,
due to constraints like Constraint 6, we can substitute any Type-1 or Type-2
placeholder, say at Node i, with the unique operator λ for which v(xi,λ) = 1.
Second, we construct substitutions for Type-0 placeholders by relying on tables
Tϕ?

uvω that we construct from v as follows: Tϕ?

uvω [ϕ?[i], uvw[t,∞)] = v(yu,v
i,t ) for

each uvω ∈ P ∪ N and i ∈ {1, . . . , n}. Due to Constraints 7, 8, and 9, the con-
structed tables Tϕ?

uvω satisfy the Semantic, Consistency, and Suffix properties.
As a result, one can explicitly construct substitutions for Type-0 placeholders
based on tables Tϕ?

uvω , exploiting Lemma 1. For the other direction, based on the
substitution s, we simply construct a unique assignment v that satisfies Φϕ?,S .

��
5 Algorithms to Complete an LTL Sketch

We now describe two novel algorithms for solving the LTL sketching problem,
which aim at searching for concise LTL formulas from sketches, as alluded to
in the introduction. Thus, our first algorithm relies on existing techniques to
learn minimal LTL formulas. Our second algorithm, alternatively, searches for
formulas of increasing size based on constraint solving.

5.1 Algorithm Based on LTL Learning

This algorithm, which we refer to as Algo1, builds upon the decision proce-
dure for checking the existence of a complete substitution presented in Sect. 4.2.
In particular, it relies on Φϕ?,S from the decision procedure to construct sub-
stitutions for placeholders of a sketch. While it is straightforward to substitute
Type-1 and Type-2 placeholders, the algorithm relies on the classic LTL learning
problem to substitute Type-0 placeholders.

The first step of the algorithm is to construct Φϕ?,S from the given sample and
sketch, as described in Sect. 4.2. If Φϕ?,S is unsatisfiable, the algorithm straight-
away returns that no solution exists, as established by Theorem 2. If satisfiable,
we use a model, say v, of Φϕ?,S (obtained from any off-the-shelf SAT solver) to
complete ϕ?, the details of which we describe next.

Given a model v of Φϕ?,S , one can substitute the Type-1 and Type-2 place-
holders in ϕ? as follows: for each Node i where �(i) is a Type-1 and Type-2 place-
holders, assign s(�(i)) = λ, where λ is the unique operator for which v(xi,λ) = 1.

The Type-0 placeholders, however, are more challenging to substitute. This is
because they represent entire LTL formulas. Towards substituting Type-0 place-
holders, for every Node i for which �(i) is a Type-0 placeholder (i.e., �(i) ∈ Π0),
we first construct a sample Si = (Pi, Ni) as Pi = {uvω[t,∞) ∈ suf (S) | v(yu,v

i,t ) =
1}, and Ni = {uvω[t,∞) ∈ suf (S) | v(yu,v

i,t ) = 0}. We now learn a minimal
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LTL formula ϕi consistent with the sample Si (using some LTL learning algo-
rithm [37,40,41]) for substituting �(i). Intuitively, such formulas ϕi ensure that
the tables Tϕ

uvω of ϕ obtained by completing ϕ? satisfy the Semantic, Consistency
and Suffix properties described in Sect. 4.1.

We now establish the correctness of the algorithm using the following theo-
rem:

Theorem 3. Given sketch ϕ? and sample S, Algo1 completes ϕ? to output an
LTL formula that is consistent with S if such a formula exists, otherwise returns
that no such formula exists.

Observe that this algorithm constructs new samples for each Type-0 place-
holder, each of which have size O(|suf (S)|) = O(|S|2). This poses a challenge to
the scalability of this algorithm. Furthermore, the new samples are not optimized
to produce the minimal possible substitutions. Our next algorithm improves both
the runtime and the size of the inferred specification.

5.2 Algorithm Based on Incremental SAT Solving

We now describe an algorithm, abbreviated as Algo2, that reduces LTL sketching
to a series of SAT solving problems, inspired by the SAT-based algorithm of
Neider and Gavran [37]. Given a sample S and a number n ∈ N\{0}, we construct
a propositional formula Ψϕ?,S

n , of size poly(|ϕ?|, |S|), that has the properties that:
(i) Ψϕ?,S

n is satisfiable if and only if one can complete ϕ? to obtain an LTL formula
of size at most n that is consistent with S; and (ii) using a model v of Ψϕ?,S

n ,
one can complete ϕ? to construct a consistent LTL formula of size at most n.

However, in contrast to the algorithms by Neider and Gavran, we first solve
Φϕ?,S (discussed in Sect. 4.2) to determine the existence of a complete substitu-
tion. If and only if Φϕ?,S is satisfiable, our algorithm checks the satisfiability of
Ψϕ?,S

n for increasing values of n (starting from |ϕ?| − 1) to search for an LTL
formula of size at most n that has the same syntactic structure as ϕ?. We con-
struct the resulting LTL formula by substituting the placeholders in ϕ? based on
a model v of the formula Ψϕ?,S

n , similar to what we do in Algo1. The termination
of this algorithm is guaranteed by the decision procedure encoded by Φϕ?,S . The
procedure ensures that we search for a solution only if there exists a complete
and consistent LTL formula, to begin with. Moreover, the properties of Ψϕ?,S

n

ensure that we find the suitable LTL formula if there exists one.
On a technical level, the formula Ψϕ?,S

n is obtained by modifying certain parts
of the formula Φϕ?,S . Precisely, Ψϕ?,S

n := Φ1,2
? ∧ Φ′

sem ∧ Φcon ∧ Φ0
?,n and it intro-

duces two modifications in Φϕ?,S : a new formula Φ0
?,n replaces Φsuf ; and Φ′

sem

adds more constraints to Φsem . The formula Φ0
?,n encodes the structure of LTL

formulas that substitute the Type-0 placeholders. Φ′
sem , again as in Φsem , ensures

that the variables yu,v
i,t encode table entries Tϕ

uvω [ϕ[i], t] that satisfy equations
(e.g., Eqs. 1, 2, etc.) describing the Semantic property. We now briefly describe
the constraints for the newly introduced formulas.
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The formula Φ0
?,n relies on an additional set of variables: (i) xi,λ for each

Node i where �(i) is a Type-0 placeholder or i ∈ {|ϕ?| + 1, . . . , n}, and each
λ ∈ Λ ; and (ii) li,j and ri,j for each Node i where �(i) is a Type-0 placeholder
or i ∈ {|ϕ?| + 1, . . . , n}, and each j ∈ {max(i, |ϕ?| + 1), . . . , n}. The variable
xi,λ, again, encodes that Node i is labeled with λ. The variables li,j (and ri,j)
encode that the left child (and the right child) of Node i is Node j. Together the
new variables encode the structure of the prospective LTL formulas for Type-0
placeholders.

We now impose constraints, similar to Constraint 6, on the variables xi,λ

to ensure each node is labeled by a unique LTL operator from Λ. Further, we
impose constraints to ensure that each Node i has a unique left and right child.
Finally, we construct Φ0

?,n as the conjunction of all such structural constraints.
The formula Φ′

sem also relies on new variables yu,v
i,t for each Node i labeled

with a Type-0 variables or i ∈ {|ϕ?| + 1, . . . , n}, each t ∈ {0, . . . , |uv| − 1} and
each uvω in S. Now, we construct semantic constraints such as:

[
xi,X ∧ li,j

]
→

∧

0≤t<|uv|−1

[
yu,v

i,t ↔ yu,v
j,t+1

]
∧

[
yu,v

i,|uv|−1 ↔ yu,v
j,|u|

]
, (10)

that ensures that the yu,v
i,t variables encode entries of table that satisfy Eq. 2. We

construct Φ′
sem as the conjunction of Φsem and the new semantic constraints.

We establish the correctness guarantees using the following theorem:

Theorem 4. Given sketch ϕ? and sample S, Algo2 completes ϕ? to output an
LTL formula that is consistent with S if such a formula exists, otherwise returns
no such formula exists.

Algo2 searches for substitutions of Type-0 placeholders of increasing size
and, thus, is able to find small substitutions for the sketch. However, it may
not always find a minimal consistent LTL formula because a minimal formula
may require the parts of the substitution to share subformulas from the existing
sketch.

To demonstrate this, consider the sketch F(?0) ∨ FG p and the sample con-
sisting of one positive word {}{p}ω and one negative word {}ω. For this input, a
possible output by Algo2 is the formula F p ∨ FG p, which is of size 5. However,
the minimal consistent formula FG p ∨ FG p is of size 4. In this example, substi-
tuting ?0 with G p produces a smaller formula than substituting it with p, since
G p allows more sharing of subformulas.

While Algo2 may not always return a minimal formula, we can provide an
upper bound on its size, thus ensuring its conciseness. To compute this bound,
we define the syntax size |ϕ|s of a formula ϕ to be the number of operators and
propositions appearing in ϕ. Typically, the syntax size |ϕ|s is larger than the
(DAG) size |ϕ|, since it counts all the operators and propositions, including the
repeating ones. For instance, for ϕ = FG q ∨ FG q, |ϕ|s = 7, while |ϕ| = 4.

We now state the guarantee on the size of the formula returned by Algo2 in
the following theorem. Intuitively, the theorem states the size |ϕ| of the formula
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that Algo2 returns is bounded by the syntax size |ϕ∗|s of the minimal (DAG
size) solution ϕ∗.

Theorem 5. Given sketch ϕ? and sample S, let ϕ∗ be a minimal formula that
is consistent with S and can be obtained by completing ϕ?. Then, Algo2 returns
a formula ϕ that is consistent with S, can be obtained by completing ϕ? and has
size |ϕ| ≤ |ϕ∗|s .
Proof sketch: Towards contradiction, we assume that the LTL formula ϕ

returned by Algo2 has size |ϕ| > |ϕ∗|s . Now, based on the property of Ψϕ?,S
n (see

first paragraph of Sect. 5.2), Ψϕ?,S
n is satisfiable for n = |ϕ∗|s . This is because

there exists a consistent LTL formula of size at most n = |ϕ∗|s , ϕ∗ itself. Thus,
Algo2, due to its incremental search, should have returned ϕ∗, contradicting our
assumption. ��

6 Experimental Evaluation

In this section, we design experiments to answer the following research questions:

RQ1: Which of the two presented sketching algorithms is more effective?
RQ2: How do our algorithms compare against other specification mining tools

for LTL?

To answer these questions, we have implemented a prototype of our algo-
rithms in Python3, named LTL-Sketcher1. In LTL-Sketcher, we additionally
implement two heuristics to improve the runtime of our algorithms, both of
which are directed toward optimizing the SAT encoding used in the algorithms.
We briefly mention the idea behind the heuristics.

The first heuristic is inspired by the SAT encoding used in Bounded Model
Checking [8]. The encoding exploits a succinct description of the semantics of
LTL using expansion laws [5]. Exemplarily, the expansion law for the U-operator
is ϕUψ = ψ ∨ (ϕ ∧ X(ϕUψ)), which relies on checking satisfaction in the next
position using X-operator. Using the LTL expansion laws reduces the number of
variables required in Φsem . In the second heuristic, we create variables yu,v

i,t only
for the distinct suffixes uvω in S. This is sufficient because LTL formulas have
the same evaluation on equal suffixes (which is also the basis for Eq. 5). Hence,
if two words share a suffix, we can create the variables encoding the semantics
only once, reducing the total number of variables. Also, in this heuristic, the
constraint Φsuf imposing the Suffix property becomes unnecessary. We refer
interested readers to the extended version [35] for the details of the heuristics.

Benchmarks. For evaluating our algorithms, following the literature in LTL
learning , we rely on benchmarks generated synthetically using common LTL
formulas used in practice [19]. We choose the same nine formulas also chosen by

1 The code can be found in https://github.com/rajarshi008/LTLSketcher.

https://github.com/rajarshi008/LTLSketcher
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Fig. 5. Comparison of Algo1 and Algo2 with respect to runtime (in seconds) and
the size of inferred formulas. The points below the diagonal are where Algo2 performs
better. In Fig. 5a, “TO” denotes timeouts. In Fig. 5b, the size of a bubble is proportional
to the number of cases.

Neider and Gavran [37] for generating their benchmarks. We, however, deviate
from their method of generating benchmarks. This is because, as observed by
Raha et al. [40], their method, being fairly naive, consumes more time and often
does not generate adequately different trajectories from a chosen LTL formula.
We, in contrast, design a novel method of generating samples based on random
sampling of words from Büchi automata [7] constructed from the LTL formulas
(using Spot [18]). Overall, we generate 18 samples for each of the nine formulas
(i.e., 162 samples in total), with the number of examples varying from 20 to 800
and the length of words varying from 4 to 16. We conduct all the experiments
on a single core of an Intel Xeon E7-8857 CPU (at 3 GHz) using upto 6 GB of
RAM.

RQ1: Comparison of Sketching Algorithms. To answer RQ1, we compare
Algo1 (from Sect. 5.1) and Algo2 (from Sect. 5.2) based on their running times
and the size of formula inferred. For this comparison, as sketches, we remove
parts (upto 50% in size) of each formula to construct two kinds of sketches: one
with only Type-1 or Type-2 placeholders and one with only Type-0 placeholders
(see extended version [35] for the entire list). Exemplarily, for G(q → G(¬p)),
we construct two sketches: ?11(q →?12(¬p)) and G(q →?0); for F(q)→(pU q), we
construct two sketches ?0 →(pU q) and ?1(q)→(p?2q), etc. We now run the algo-
rithms on the 18 samples and two sketches generated from each of the nine for-
mulas with a timeout of 900 secs.

We depict the runtime comparisons in Fig. 5a. We observe that while both
the algorithms have comparable runtime on sketches with only Type-1 or Type-2
placeholders, Algo1 performs significantly worse on sketches with only Type-0
placeholders with 134 timeouts. We also depict the comparison of formula size
in Fig. 5b. We notice that Algo2 returns smaller formulas than Algo1 in many
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cases. The reason Algo1 performs slow and returns large formulas is that it
solves LTL learning on potentially large intermediate samples for sketches with
Type-0 placeholders. Thus, we answer RQ1 in favor of Algo2.

RQ2: Comparison Against LTL Mining Tools. To address RQ2, we com-
pared LTL-Sketcher against two prominent approaches for mining specifications
in LTL. The first approach completes user-defined templates with (Boolean com-
binations of) atomic propositions. For this approach, we select the popular LTL
miner Texada [31]. The second approach learns LTL formulas of minimal size
without syntactic constraints. For this approach, we choose Flie [37] as a pro-
totypical example of this class of algorithms.

The setting of Texada differs from ours in that it permits positive examples
only, and these examples have to be finite words. Thus, in order to have a fair
comparison, we make minor modifications to our SAT encoding (specifically to
the X-operator) to handle finite words. Furthermore, our tool does not require
one to provide negative examples and, hence, can immediately be applied.

Table 1. Number of successes for completing sketches

Sketch Tool F(q) →(¬pU q) F(q) →(pU q) G(q →G(¬p))

full LTL-Sketcher 10 10 10

Texada 6 9 10

medium LTL-Sketcher 10 10 10

Texada 0 1 10

small LTL-Sketcher 10 10 10

Texada 0 1 0

To compare Texada and LTL-Sketcher, we considered six of the nine for-
mulas used in RQ1, dropping the smallest three. For each formula, we created
ten samples with only positive, finite words by truncating ultimately periodic
and ensuring consistency with the formula. Also, we created three sketches for
each formula, retaining different amounts of information: in a full sketch, we
only replaced each atomic proposition with a different Type-0 placeholder; in a
medium sketch, we replaced a larger subformula containing at least one temporal
operator; and in a small sketch, we replaced the formula with a single Type-0
placeholder. As an example, from formula F(q)→(¬pU q), we constructed the
full sketch F(?01)→(¬?02 U?03), the medium sketch F(?01)→?02 and the small sketch
?01.

We ran Texada and LTL-Sketcher on each of these sketches and all cor-
responding samples and counted the cases in which the tools could provide a
substitution. A selection of the results on three prototypical formulas is shown
in Table 1. The remaining results follow the same trend and can be found in
the extended version [35]. We notice that Texada found substitutions for the
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Fig. 6. The average sample sizes required to recover the original formula (mentioned
in the chart titles). In each chart, the trivial sketch ?0 indicates the run for Flie, while
the other one indicates the run for LTL-Sketcher.

full sketches in most cases. However, when we removed more structural informa-
tion from the specifications (i.e., medium and small sketches), Texada was rarely
able to complete a sketch. By contrast, LTL-Sketcher provided a substitution in
every benchmark. The reason is that Texada’s strategy of exclusively searching
for atomic propositions is only feasible if the user can provide a detailed template
where all temporal operators are specified. Our tool, in contrast, alleviates the
burden of writing complex temporal operators and, thus, is more flexible.

To compare Flie and LTL-Sketcher, we estimated how many examples are
required to infer the desired specification. For this experiment, we used the
same set of nine LTL formulas and sketches with varying amounts of missing
information, some of which can be seen in Fig. 6. To calculate the number of
examples required, we designed a counterexample-guided strategy to compute
a minimal sample required for both tools to obtain the desired formula from a
sketch of it. In this strategy, if a tool does not return the desired formula with
the current sample, we add one of the shortest counterexamples to the sample
that helps eliminate the current solution formula. We continue this process and
end up with a minimal sample of both tools for each sketch.

Figure 6 presents the average size of minimal samples (over ten runs) required
to recover the desired formulas from their sketches. While we present the result
for some formulas here, the remaining results follow the same pattern (see
extended version [35]). We observed that Flie required more examples than
LTL-Sketcher to single out the correct specifications in all the cases. This
asserted the fact that providing high-level insights as a sketch reduces the number
of examples required to derive the desired specification. Thus, to answer RQ2,
the ability to handle sketches provides LTL-Sketcher an edge over existing LTL
mining tools.

7 Conclusion and Future Work

In this work, we introduce LTL sketching—a novel way of writing formal spec-
ifications in LTL. The key idea is that a user can write a partial specification,
i.e., a sketch, which is then completed based on given examples of desired and
undesired system behavior. We have shown that the sketching problem is in NP,
presented two SAT-based sketching algorithms and some heuristics to improve
their performance. Our experimental evaluation has shown that our algorithms
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can effectively complete sketches consisting of different types of missing infor-
mation. Further, the ability to handle sketches provides our algorithms an edge
over existing LTL mining approaches.

A natural direction for future work is to lift the idea of specification sketching
to other specification languages, such as Signal Temporal Logic (STL) [36], the
Property Specification Language (PSL) [20], or even visual specifications, such
as UML (high-level) message sequence charts [26]. Moreover, we intend to extend
the notion of sketching beyond the use of examples (e.g., by allowing the engineer
to constrain placeholders using simple logical formulas or regular expressions).
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Research Center Trustworthy Data Science and Security (https://rc-trust.ai), one of
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Abstract. Polynomial zonotopes, a non-convex set representation, have
a wide range of applications from real-time motion planning and con-
trol in robotics, to reachability analysis of nonlinear systems and safety
shielding in reinforcement learning. Despite this widespread use, a fre-
quently overlooked difficulty associated with polynomial zonotopes is
intersection checking. Determining whether the reachable set, repre-
sented as a polynomial zonotope, intersects an unsafe set is not straight-
forward. In fact, we show that this fundamental operation is NP-hard,
even for a simple class of polynomial zonotopes.

The standard method for intersection checking with polynomial zono-
topes is a two-part algorithm that overapproximates a polynomial zono-
tope with a regular zonotope and then, if the overapproximation error
is deemed too large, splits the set and recursively tries again. Beyond
the possible need for a large number of splits, we identify two sources of
concern related to this algorithm: (1) overapproximating a polynomial
zonotope with a zonotope has unbounded error, and (2) after splitting a
polynomial zonotope, the overapproximation error can actually increase.
Taken together, this implies there may be a possibility that the algorithm
does not always terminate. We perform a rigorous analysis of the method
and detail sufficient conditions for the union of overapproximations to
provably converge to the original polynomial zonotope.

1 Introduction

Set-based analysis is the foundation of many formal analysis approaches includ-
ing abstract interpretation methods for software [8] and reachability analysis
methods for cyber-physical and hybrid systems [3]. The usefulness of a set rep-
resentation is determined by what operations can be efficiently supported.

For safety verification, one fundamental operation is intersection checking;
does the set of possible states intersect the set of unsafe states? In this con-
text, one common way to represent sets is using zonotopes [10,12], which are
affine transformations of a unit box. Zonotopes offer a compact representation,
efficiently encode linear transformations, and support linear-time optimization.
However, zonotopes cannot represent non-convex sets and so are less useful when
a nonlinear operation is applied to a set. In contrast, polynomial zonotopes [1] are
closed under polynomial maps and can therefore exactly represent more complex
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Fig. 1. A zonotope (blue, top) is a convex n-dimensional set represented as an affine
transformation of a unit box in p dimensions. A polynomial zonotope (black, bottom)
is a possibly non-convex n-dimensional set represented as a polynomial transformation
of a unit box in p dimensions (P (·) is a polynomial). (Color figure online)

sets. Polynomial zonotopes can be considered as polynomial transformations of
a unit box. The two representations are illustrated in Fig. 1.

One drawback of polynomial zonotopes is that intersection checking is signif-
icantly more complex than zonotopes. Although it is known that the characteri-
zation of solutions of general nonlinear equations with box-constrained domains
is NP-hard [14, Sec. 4.1], is the problem easier for polynomial zonotopes, since
the transformation is always a polynomial? Would the problem become easier if
we only check for halfspace intersections or if we only consider simple polynomi-
als? In this work we prove that intersection checking is NP-hard for polynomial
zonotopes, regardless of such attempts at simplification.

Setting aside the worst-case time complexity, the existing algorithm proposed
to check for intersections, as well as perform plotting, is based on a combination
of overapproximation using zonotopes and refinement using splitting [4,15]. Is
this algorithm guaranteed to converge to the true set, even given infinite run-
time? We identify two sources of concern: (i) the overapproximation of a poly-
nomial zonotope with a zonotope can have unbounded error, and (ii) the error
of polynomial zonotope overapproximation can actually increase after splitting
is performed. This work analyses the proposed algorithm in detail, and derives
fairness conditions that are sufficient to prove the algorithm provably converges.

Practical Example. While the contributions of this work are theoretical in
nature, they are grounded in practical issues the authors observed while work-
ing with polynomial zonotopes. Figure 2 shows a plot of a 2-d projection of a
polynomial zonotope, obtained when computing the reachable set of an uncer-
tain time-varying system [24] using the overapproximate and split algorithm
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Fig. 2. Plotting a polynomial zonotope using the overapproximate and split algorithm
(light gray) does not converge to the true set even after an hour of computation time.
The red dots are the true boundary points and the black dots are random samples.
(Color figure online)

from the CORA tool [2]. Splitting seems to have diminishing returns, as the
light gray overapproximation of the polynomial zonotope remains far from the
true boundary (red points), even when the algorithm runs for over an hour.

Contributions. The key contributions of this paper are:

• We prove that polynomial zonotope intersection checking is NP-hard, even
for simple halfspace constraints and bilinear polynomials (Sect. 3).

• We review the standard intersection-checking algorithm, and demonstrate
two sources of concern, that overapproximation error is unbounded and that
overapproximation error can increase after splitting (Sect. 4).

• We provide conditions where the polynomial zonotope refinement algorithm
provably converges to the original polynomial zonotope (Sect. 5).

First, we review preliminaries and formally define zonotopes and polynomial
zonotopes in Sect. 2.
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2 Preliminaries

Notation. The set R
n is an n-dimensional real space and Z≥0 is the set of all

non-negative integers. Given a matrix A ∈ R
n×m, let A(i, ·) be the i-th row of the

matrix and A(·, j) be the j-th column of the matrix. Given vector x ∈ R
n, the i-

th component of the vector is referred to as xi and the (one-) norm of the vector is
‖x‖ =

∑n
i=1 |xi|. Given a set S ⊆ {1, 2, · · · ,m}, we denote A(·, S) as the matrix

consisting of the column index belonging to S. For example if S = {1, 3}, then
A(·, S) =

[
A(·, 1) A(·, 3)

]
. Similarly, given a set S ⊆ {1, 2, · · · , n}, we denote

A(S, ·) as the matrix that consists of the row index belong to S. We call the
n × n identity matrix In. Given two sets A and B, the Minkowsiki sum of is
written as A ⊕ B =

{
z
∣
∣ z = x + y, x ∈ A, y ∈ B

}
.

We start by defining zonotopes and polynomial zonotopes more formally.

Definition 1 (Zonotope). Given a center c ∈ R
n and generator matrix G ∈

R
n×p, a zonotope is the set

Z =

{

c +
p∑

j=1

αjG(·, i)
∣
∣
∣
∣ αj ∈ [−1, 1]

}

.

We refer to a zonotope using the shorthand notation Z = 〈c, G〉Z . Note in the
illustration in Fig. 1, α was a p-dimensional point, whereas in the definition we
refer to each element as a scalar αj , which we call a factor.

As mentioned in the introduction, a polynomial zonotope is a polynomial
transformation of a p-dimensional unit hypercube. Following the sparse formu-
lation of polynomial zonotopes [17], we explicitly split the factors from the p-
dimensional point into two sets α ∈ R

r and β ∈ R
q, with p = r + q. The β

factors are called independent and only occur in terms by themselves and with
an exponent of one, whereas the α factors are called dependent and are allowed to
multiply other (dependent) factors within the same term or have higher powers.

Definition 2 (Polynomial Zonotope). Given center c ∈ R
n, dependent

factor generator matrix GD ∈ R
n×h, independent factor generator matrix

GI ∈ R
n×q, and exponent matrix E ∈ Z

r×h
≥0 , a polynomial zonotope is the set:

PZ=
{

c +
h∑

i=1

( r∏

k=1

α
E(k,i)
k

)

GD(·,i) +
q∑

j=1

βj GI(·,j)

∣
∣
∣
∣ αk, βj ∈ [−1, 1]

}

.

The intuition why we separate the dependent factors from the independent
factors is that in this way the polynomial zonotope can always be written as a
Minkowski sum of two sets:

PZ = ZI ⊕ PZD
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where

ZI =
{

c +
q∑

j=1

βj GI(·,j)

∣
∣
∣
∣ βj ∈ [−1, 1]

}

,

PZD =

{
h∑

i=1

( r∏

k=1

α
E(k,i)
k

)

GD(·,i)

∣
∣
∣
∣ αk ∈ [−1, 1]

}

.

This splits the general polynomial zonotope into the independent part ZI which
is a zonotope, and the polynomial zonotope PZD which contains only terms
where factors multiply each other or have higher powers. For intersection check-
ing, the complexity arises from the dependent part and so we will often use a
form with only dependent terms like PZD. In this paper, such a polynomial
zonotope, with only dependent terms, will be written using the shorthand nota-
tion 〈GD, E〉PZ .

Example 1. (Fig. 1, bottom) Consider a polynomial zonotope defined as:

PZ =

{[
4
4

]

+ β1

[
1
0

]

+ α1

[
2
0

]

+ α2

[
1
2

]

+ α3
1α2

[
2
2

] ∣
∣
∣
∣ αi, βi ∈ [−1, 1]

}

.

In this example, q = 1, r = 2 and h = 3. We can split PZ into the Minkowski
sum of two sets PZ = ZI ⊕ PZD, with

ZI =
〈[

4
4

]

,

[
1
0

]〉

Z
PZD =

〈[
2 1 2
0 2 2

]

,

[
1 0 3
0 1 1

]〉

PZ
.

3 Intersection Checking is NP-Hard

Given a polynomial zonotope PZ = ZI ⊕ PZD and a linear objective direction
d the polynomial zonotope optimization problem computes the value:

min
x∈PZ

xT d = min
x1∈ZI

xT
1 d + min

x2∈PZD

xT
2 d. (1)

If we want to check whether a polynomial zonotope PZ has intersection with a
halfspace H = {x | xT d ≤ c}, we only need to check if the solution of (1) is larger
than c. Since linear optimization of zonotopes is efficient, the main challenge lies
in computing the optimal value in the polynomial zonotope of dependent terms
PZD. This is illustrated in the following example:

Example 2. Consider checking if the polynomial zonotope PZ from Example 1
has an intersection with the halfspace

H =
{
x ∈ R

2
∣
∣
∣ xT

[
1
1

]

≤ 0
}

.
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In order to check this, we only need to check whether the solution of the
problem below is larger or equal to 0:

min
x∈PZ

xT

[
1
1

]

= min
αk,βk∈[−1,1]

([
4
4

]

+ β1

[
1
0

]

+ α1

[
2
0

]

+ α2

[
1
2

]

+ α3
1α2

[
2
2

])T [
1
1

]

= min
αk,βk∈[−1,1]

8 + β1 + 2α1 + 3α2 + 4α3
1α2

= min
βk∈[−1,1]

8 + β1 + min
αk∈[−1,1]

2α1 + 3α2 + 4α3
1α2

= 7 + (−5) = 2

The minimum value is larger than 0 so there is no intersection with the halfspace.

As we saw in the above example, solving the optimization problem in (1) can
be used to check whether a polynomial zonotope has an intersection with a half-
space. Furthermore, the generators of the polynomial zonotope can be projected
onto the optimization direction resulting in a 1-D optimization problem. How
difficult is this problem? As mentioned in the introduction, the full characteriza-
tion of solutions of nonlinear equations given box domains is NP-hard [14, Sec.
4.1]. In fact, even if we restrict ourselves to optimization and only consider bilin-
ear polynomial zonotopes—the simplest class of polynomial zonotopes with two
variables per term each with an exponent of one—the problem is still NP-hard,
which we show next.

First we introduce the 1-D multi-affine polynomial optimization problem.

Definition 3. Consider the polynomial defined as:

p(x1, x2, · · · , xn) =
∑

I⊆{1,2,··· ,n}
aI

∏

i∈I

xi, (2)

where aI ∈ R. The 1-D multi-affine polynomial optimization problem is:

min
x1,...,xn

xi∈[−1,1]

p(x1, x2, · · · , xn).

Since all variables in a multi-affine optimization problem have an exponent
of one, the partial derivative along each variable cannot change sign. This means
that the optimal value must occur on one of the corners of the n-dimensional
box of the domain and it is sufficient to consider this finite set when optimizing.

min
x1,...,xn

xi∈[−1,1]

p(x1, x2, · · · , xn) = min
x1,...,xn

xi∈{−1}∪{1}
p(x1, x2, · · · , xn)

Note that the polynomial zonotope motivating our work in Fig. 2 was a multi-
affine polynomial zonotope; we obtained the true boundary points shown in red
using a version of this corner enumeration strategy.

The simplest type of non-trivial multi-affine optimization problem has two
variables per term, since any terms with a single variable could be optimized by
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simply looking at the sign of aI similar to optimization methods for zonotopes.
We call this a bilinear optimization problem, which corresponds to optimiza-
tion of a linear objective function over the dependent factors part of a bilinear
polynomial zonotope, which has the corresponding restrictions on its terms

min
x1,...,xn

xi∈{−1}∪{1}

n∑

i=1

n∑

j=i+1

ai,jxixj . (3)

Theorem 1. Optimization over bilinear polynomial zonotopes is NP-complete.

Proof. We show that if we could solve the bilinear optimzation problem from (3),
then we could also solve the minimum edge-deletion graph bipartization problem,
which is NP-complete [11,34]. The minimum edge-deletion graph bipartization
problem is the problem of computing the minimum number of edges that must
be deleted so that an undirected graph G becomes a bipartite graph1. Let G =
(V,E) be an arbitrary undirected graph with vertices V = {1, 2, . . . , n} and edges
E, where an edge e ∈ E connecting vertices i and j is represented as e = (i, j),
with convention i < j. Let δG be the least number of edges we need to remove

to make graph G bipartite. In (3), we assign ai,j =
{

1
2 (i, j) ∈ E
0 (i, j) /∈ E

.

Now define the assignment of the variables corresponding to the optimal
solution of (3) as

x∗
1, · · · , x∗

n = arg min
xi∈{−1}∪{1}

n∑

i=1

n∑

j=i+1

ai,jxixj

and define the value δ as

δ =
|E|
2

+
n∑

i=1

n∑

j=i+1

ai,jx
∗
i x

∗
j (4)

Now consider a bipartie partitioning V = V1∪V2, where V1 =
{
i ∈ V

∣
∣ x∗

i = −1
}

and V2 =
{
i ∈ V

∣
∣ x∗

i = 1
}
. Let Ẽ be the set of edges = (i, j) where either

i, j ∈ V1 or i, j ∈ V2; these are the edges to be removed such that G becomes
a bipartite graph. By the definition of δG, we must have |Ẽ| ≥ δG. Now since
x∗

i x
∗
j = 1 when (i, j) ∈ Ẽ, and x∗

i x
∗
j = −1 when (i, j) ∈ E/Ẽ we have

1 In a bipartite graph, there are two groups of vertices, and edges are only allowed
between the groups, not within each group.
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|Ẽ| =
∑

(i,j)∈Ẽ

x∗
i x

∗
j

=
1
2

⎛

⎝
∑

(i,j)∈Ẽ

x∗
i x

∗
j −

∑

(i,j)∈E/Ẽ

x∗
i x

∗
j

⎞

⎠

︸ ︷︷ ︸
|E|
2

+
1
2

⎛

⎝
∑

(i,j)∈Ẽ

x∗
i x

∗
j +

∑

(i,j)∈E/Ẽ

x∗
i x

∗
j

⎞

⎠

︸ ︷︷ ︸
∑n

i=1
∑n

j=i+1 ai,jx∗
i x∗

j

=
|E|
2

+
n∑

i=1

n∑

j=i+1

ai,jx
∗
i x

∗
j

= δ

Hence δ ≥ δG.
Next, define EG to be the smallest set of edges that need to removed to make

G bipartite, so that |EG| = δG. The graph G̃ = (V,E/EG) is bipartite, so we
can partition the graph G̃ into the two bipartite sets V ∗

1 and V ∗
2 such that there

are only edges are between V ∗
1 and V ∗

2 . Now define:

x′
i =

{−1, i ∈ V ∗
1 ,

1, i ∈ V ∗
2 .

Then, since δ comes from the solution of the minimization problem in (4):

δ ≤ |E|
2

+
n∑

i=1

n∑

j=i+1

ai,jx
′
ix

′
j =

|E|
2

+
1
2

∑

(i,j)∈E/EG

x′
ix

′
j

︸ ︷︷ ︸
(|E|−|EG|)(−1)

+
1
2

∑

(i,j)∈EG

x′
ix

′
j

︸ ︷︷ ︸
|EG|

=
|E|
2

−
( |E| − |EG|

2

)

+
|EG|

2
= |EG| = δG

Therefore δ ≤ δG and combining both parts δ = δG. Hence finding the solution
of minimum edge-deletion graph bipartization problem reduces to solving (3). ��
Corollary 1. Polynomial zonotope intersection checking is NP-hard.

Proof. Since optimization of bilinear polynomial zonotopes is NP-complete,
intersection checking of bilinear polynomial zonotopes is also NP-complete. As
these are a type of polynomial zonotope, halfspace intersection checking of gen-
eral polynomial zonotopes is also at least as difficult, and so is NP-hard. ��

4 The Overapproximate and Split Algorithm

While Corollary 1 showed that checking the intersection between a polynomial
zonotope and another set can be a difficult problem, what algorithm is used
in practice? The existing method [4,15] consists of two steps. In step one, the
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Fig. 3. An illustration of the overapproximate and split intersection algorithm, where
the zonotope over-approximation (dashed line) of the original polynomial zonotope is
too conservative (left) while after splitting the zonotope over-approximation of the two
split polynomial zonotopes is accurate enough to show there is no intersection with the
red shaded region (image from [4]). (Color figure online)

polynomial zonotope is overapproximated using a zonotope. If this zonotope
overapproximation does not intersect the other set, then the smaller polynomial
zonotope does not intersect the other set either and the algorithm terminates.
Otherwise, a point is sampled from inside the polynomial zonotope and tested
if it is inside the other set2. If so, a witness point for the intersection has been
found and the algorithm terminates. If neither of these are applicable, in step
two, the algorithm divides the polynomial zonotope into two smaller polynomial
zonotopes and repeats from step one recursively.

The algorithm used to plot a polynomial zonotope is similar, using a recur-
sive depth bound and then plotting the zonotope overapproximations at the tree
leaves. For this method to obtain high precision, we may need to split the poly-
nomial zonotope into a large number of smaller pieces, compute the zonotope
approximation for each piece, and then take the union of those zonotopes to
serve as the overapproximation of the original polynomial zonotope. Figure 3
shows a visualization of the overapproximate and split intersection algorithm.

4.1 Algorithm Definition

The algorithm consists of two steps: (i) overapproximate and (ii) split.

Overapproximation Step. The key observation motivating the overapproxi-
mation step is that since each factor αk ∈ [−1, 1], the product of factors in each
term in outer sum is also in [−1, 1]:

r∏

k=1

α
E(k,i)
k ∈ [−1, 1]

Therefore, we can replace this product with a new variable βi ∈ [−1, 1]. This
results in an overapproximation because it drops dependencies that the factors
2 The specific sample point is not important for convergence, although it is typically

heuristically derived from the zonotope overapproximation.



60 Y. Huang et al.

αk may have had with other terms. This can be made slightly tighter if the
exponent E(k, i) is always even:

r∏

k=1

α
E(k,i)
k ∈ [0, 1] (E(k, i) is even for all k).

In this case, we replace the product with βi+1
2 , since a zonotope requires each

βi ∈ [−1, 1]. Now we give the formal definition of the overapproximation step:

Definition 4. Let PZ = ZI ⊕ PZD be a polynomial zonotope with PZD =
〈GD, E〉. The zonotope overapproximation of PZ is defined as:

Z = ZI ⊕ ZD (5)

with

ZD =

{
∑

i∈K

βiGD(·, i) +
∑

i∈H

(
βi + 1

2

)

GD(·, i)
∣
∣
∣
∣ βi ∈ [−1, 1]

}

where H is the set of indices of terms with all even powers,

H = {i | ∀k E(k, i) ≡ 0(mod 2)}
and K the set of remaining indices

K = {1, · · · , h}/H

Split Step. When the overapproximation of a polynomial zonotope is too large,
step two of the algorithm splits the polynomial zonotope into two smaller pieces.
This is done by choosing some factor αs to split and then noting:

[−1, 1] =
{

1 + αs

2

∣
∣
∣
∣ αs ∈ [−1, 1]

}

︸ ︷︷ ︸
[0,1]

∪
{

−1 + αs

2

∣
∣
∣
∣ αs ∈ [−1, 1]

}

︸ ︷︷ ︸
[−1,0]

. (6)

We split the dependent part of a polynomial zonotope PZD = 〈GD, E〉PZ into:

PZD1,s =

{
h∑

i=1

As,i

(
1 + αs

2

)E(s,i)

GD(·, i)
∣
∣
∣
∣
∣

αk ∈ [−1, 1]

}

and

PZD2,s =

{
h∑

i=1

As,i

(

−1 + αs

2

)E(s,i)

GD(·, i)
∣
∣
∣
∣
∣

αk ∈ [−1, 1]

}
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where As,i is the product of all the factors in the ith term excluding αs:

As,i =
r∏

k=1,k 	=s

α
E(k,i)
k . (7)

Proposition 1. If PZ = ZI ⊕PZD, where PZ1,s = ZI ⊕PZD1,s and PZ2,s =
ZI ⊕ PZD2,s , then PZ1,s and PZ2,s are polynomial zonotopes and

PZ = PZ1,s

⋃
PZ2,s.

Proof. This follows from the definitions of PZ1,s and PZ2,s using (6).

4.2 Convergence Concerns

While the overapproximate and split algorithm for polynomial zonotopes has
been simply stated in prior work [4,15], we now identify two non-obvious con-
cerns with the approach, given in Propositions 2 and 3.

Convergence Concern 1: As the sizes of the polynomial zonotopes get smaller
in the algorithm due to splitting, we may expect the corresponding zonotope
overapproximation is also getting smaller. However, this is not true in general.

Proposition 2. Overapproximation error can increase during the overapproxi-
mate and split algorithm.

Proof. Consider the following polynomial zonotope:

PZ =
{
α2
1

∣
∣ α1 ∈ [−1, 1]

}
= [0, 1]

The overapproximation of PZ is the zonotope

Z =
{

1 + β1

2

∣
∣
∣
∣ β1 ∈ [−1, 1]

}

= [0, 1]

However, if we split PZ into two parts using (6):

PZ1 = PZ2 =

{
1
4

(

1 + α2
1 + 2α1

) ∣
∣
∣
∣
∣

α1 ∈ [−1, 1]

}

The overapproximation of PZ1 and PZ2 is

Z1 = Z2 =

{
1
4

(
3
2

+
1
2
β1 + 2β2

) ∣
∣
∣
∣
∣

β1, β2 ∈ [−1, 1]

}

=
[

− 1
4
, 1
]

Consequently, the original overapproximation Z ⊂ Z1

⋃Z2. After performing
splitting, the union of the zonotope overapproximations became larger than the
overapproximation before splitting—the overapproximation error has grown. ��
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Fig. 4. When α ∈ [−1, 1], the odd Chebyshev polynomials are between [−1, 1], but the
zonotope overapproximation using Definition 4 grows unbounded.

Convergence Concern 2: As shown above, overapproximation error can
increase during the algorithm, although the individual split polynomial zono-
topes are getting smaller. Is there a bound between the error of a polynomial
zonotope and its overapproximation? No.

Proposition 3. The error between a polynomial zonotope and its zonotope over-
approximation is unbounded.

Proof. Consider the odd Chebyshev polynomials of first kind:

T1(α) = α

T3(α) = 4α3 − 3α

T5(α) = 16α5 − 20α3 + 5α

. . .

For Chebyshev polynomials, when α ∈ [−1, 1] it is known that Tk(α) ∈ [−1, 1]
(see Fig. 4). However, the number of terms in the odd Chebyshev polynomials
grows unbounded as k increases. As a result, if we construct a polynomial zono-
tope from Tk and overapproximate it with a zonotope using Definition 4, the
overapproximation also grows without bound as k increases. ��

Given Propositions 2 and 3, there is a real concern that overapproximate
and split algorithm may not always converge. In the next section, we identify
sufficient conditions where convergence can be guaranteed.

5 Guaranteeing Convergence

While the overapproximate and split algorithm has been presented in prior work,
as discussed in the previous section there is a real concern it may not always
terminate. In this section, we discuss conditions needed to ensure overapproxi-
mation error converges. First, we define the Hausdorff distance between two sets
to serve as a criterion to evaluate the error of the zonotope overapproximation.
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Definition 5 (Hausdorff distance). Given sets S1 and S2, the Hausdorff dis-
tance is:

d(S1, S2) = max

{

sup
x∈S1

inf
y∈S2

‖x − y‖, sup
y∈S2

inf
x∈S1

‖x − y‖
}

.

Note that in the case of nested sets S1 ⊂ S2, the first term is always 0, and the
distance simplifies to

d(S1, S2) = sup
y∈S2

inf
x∈S1

‖x − y‖.

We now show that the Hausdorff distance between a polynomial zonotope and
its zonotope overapproximation can be bounded using the norm of the generator
matrix. We will use the entry-wise matrix one-norm: ‖A‖ =

∑m
j=1 ‖A(·, j)‖.

Lemma 1. Let PZ = ZI ⊕PZD with dependent part PZD = 〈GD, E〉PZD
and

zonotope overapproximation Z = ZI ⊕ ZD from Definition 4,

d(PZ,Z) ≤ ‖GD‖.

Proof. Since PZ ⊂ Z, then

d(PZ,Z) = sup
y∈Z

inf
x∈PZ

‖x − y‖.

Now for any point y in the zonotope overapproximation we can write it as:

y = yI + yD

where yI ∈ ZI and

yD =

(
∑

i∈K

βiGD(·, i) +
∑

i∈H

βi + 1
2

GD(·, i)
)

∈ ZD.

Since yI ∈ PZ, we have:

d(PZ,Z) = sup
y∈Z

inf
x∈PZ

‖x − y‖ ≤ sup
y∈Z

‖yI − y‖ = sup
y∈Z

‖yD‖.

Using the triangle inequality,

‖yD‖ =
∥
∥
∥
∥

∑

i∈K

βiGD(·, i) +
∑

i∈H

βi + 1
2

GD(·, i)
∥
∥
∥
∥ ≤

∑

i∈H
⋃

K

‖GD(·, i)‖ = ‖GD‖

thus completing the proof. ��
Since the union of the split polynomial zonotopes forms the original polynomial
zonotope (Proposition 1), to demonstrate that the union of zonotope approxi-
mations converges to the original polynomial zonotope, we first establish that
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each zonotope overapproximation converges to its respective polynomial zono-
tope. Using Lemma 1, we only need to show that the norm of the dependent
matrix decreases after splitting.

In order to show this, we need additional constraints on how this splitting
variable s is chosen. Various heuristics for choosing s can be found in the liter-
ature, but to ensure convergence we require a fairness assumption, in that each
factor needs to be selected an infinite number of times. We assume s is cho-
sen cyclically to satisfy this requirement. Let us first consider a simple example
which tells us why the norm of the dependent matrix decreases after splitting
cyclically.

Example 3. Let us first consider a polynomial zonotope PZ = {αE
1

∣
∣ α1 ∈

[−1, 1]} which only has a single factor α1, the dependent matrix GD = 1 and
exponent E In this case, when split,

(

±1 + α

2

)E

=
±1
2E

+
1

2E

E∑

j=1

(
E

j

)

(±1)jαj
k (8)

and since the constant will belong to independent part, dependent generator
becomes

G1,1
D =

1
2E

[(
E
1

)
,
(
E
2

)
, · · · ,

(
E
E

)]
, G2,1

D =
1

2E

[−(
E
1

)
,
(
E
2

)
, · · · , (−1)E

(
E
E

)]

and thus the generator norm has shrunk

‖Gj,1
D ‖ = 1 − 1

2E
.

Next we present the more general result.

Lemma 2. Let PZ be a given polynomial zonotope with dependent part PZD =
〈GD, E〉, with r factors and h generators. Assuming cyclical splitting, after
splitting s times, we have 2s polynomial zonotopes PZs

1,PZs
2, · · · ,PZs

2s . When
s < r, the norm cannot increase

‖Gj,s
D ‖ ≤ ‖GD‖

When s = r, the norm decreases by a factor ρ < 1,

‖Gj,s
D ‖ ≤ ρ‖GD‖

where ρ = maxi∈{1,2··· ,h}

(

1 − ( 12 )‖E(·,i)‖
)

, j ∈ {1, 2, · · · , 2s} and Gj,s
D is the

dependent factor generator of PZs
j

Importantly, the factor ρ does not depend on the number of splits, it only
depends on the original PZ.
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Proof. When s < r, let us consider the dependent part of PZs
j , it will have the

following form:

(PZs
j

)
D

=

{
h∑

i=1

Aj
s,iζ

i
j

s∏

k=1

(
1 + αk

2

)E(k,i)

GD(·, i)
∣
∣
∣
∣
∣

αk ∈ [−1, 1]

}

(9)

where ζi
j ∈ {−1, 1} distinguishes between the 2s polynomial zonotopes based on

which side of each factor was chosen while splitting, and Aj
s,i is the product of

factors that have not yet been split:

Aj
s,i =

r∏

k=s+1

α
E(k,i)
k

Now because |ak| ≤ 1, we have both |Aj
s,i| ≤ 1 and

∣
∣
∣
∣
∣

s∏

k=1

(
1 + αk

2

)E(k,i)
∣
∣
∣
∣
∣
≤ 1

As a result the absolute value of their product, the value that multiplies GD(·, i)
in Eq. 9 is also less than 1. Therefore, when s < r for any j ∈ {1, 2, · · · , 2s}, we
have:

‖Gj,s
D ‖ ≤

h∑

i=1

‖GD(·, i)‖ = ‖GD‖

Next, in the other case when s = r we can expand the exponent:

r∏

k=1

(
1 + αk

2

)E(k,i)

=
∑

ξ1,ξ2,··· ,ξr

cξ1,··· ,ξk

r∏

k=1

αξr
k

where all the coefficients are positive and the first one ci
0,··· ,0 =

(
1
2

)‖E(·,i)‖
. By

taking αk = 1 for all αk, we obtain:
∑

ξ1,··· ,ξk

ci
ξ1,··· ,ξr = 1

As a result, we have

h∑

i=1

Aj
s,iζ

i
j

s∏

k=1

(
1 + αk

2

)E(k,i)

GD(·, i) =
h∑

i=1

ζi
j

r∏

k=1

(
1 + αk

2

)E(k,i)

GD(·, i)

=

(
h∑

i=1

ζi
j

(
ci
0,··· ,0GD(·, i)

)
)

︸ ︷︷ ︸
(constant)

+

⎛

⎜
⎝

h∑

i=1

ζi
j

(∑r
k=1 ξk)≥1
∑

ξ1,··· ,ξr

ci
ξ1,··· ,ξr

r∏

k=1

(αk)ξk GD(·, i)

⎞

⎟
⎠
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In this case, the constant part will not be in the dependent part of PZr
j but will

be moved to the independent part, so that:

(PZr
j

)
D

=

{
h∑

i=1

ζi
j

(∑r
k=1 ξk)≥1
∑

ξ1,··· ,ξr

ci
ξ1,··· ,ξr

r∏

k=1

(αk)ξk GD(·, i)
∣
∣
∣
∣
∣

αk ∈ [−1, 1]

}

For any j ∈ {1, 2, · · · , 2s}, we will have:

‖Gj,r
D ‖ =

∥
∥
∥
∥
∥

h∑

i=1

ζi
j

(∑r
k=1 ξk)≥1
∑

ξ1,··· ,ξr

ci
ξ1,··· ,ξrGD(·, i)

∥
∥
∥
∥
∥

≤
h∑

i=1

(∑r
k=1 ξk)≥1
∑

ξ1,··· ,ξr

ci
ξ1,··· ,ξr

︸ ︷︷ ︸
1−( 1

2 )
‖E(·,i)‖

‖GD(·, i)‖

=
h∑

i=1

(

1 −
(

1
2

)‖E(·,i)‖)

‖GD(·, i)‖

≤ ρ

h∑

i=1

‖GD(·, i)‖ = ρ‖GD‖

��
Corollary 2. Let PZ be a given polynomial zonotope with dependent part
PZD = 〈GD, E〉. Using cyclical splitting, after splitting s times, the factor with
index 1 +

(
(s − 1)(mod r)

)
will be split. Let PZs

1,PZs
2, · · · ,PZs

2s be the split
polynomial zonotope after s iterations. Then for any 0 < j ≤ 2s

‖Gj,s
D ‖ ≤ ρ�s/r�‖GD‖

where Gj,s
D is the dependent factor generator matrix of PZs

j .

With this, we can now show that the union of the zonotope overapproximations
converges to the original polynomial zonotope.

Theorem 2. Let PZ be a given polynomial zonotope with dependent part
PZD = 〈GD, E〉. Using cyclical splitting, after splitting s times, the factor with
index 1+

(
(s−1)(mod r)

)
will be split. The corresponding split polynomial zono-

topes are PZs
1,PZs

2, · · · ,PZs
2s and zonotope overapproximation for PZs

j is Zs
j .

As we split more often, the overapproximation error converges to zero:

lim
s→∞ d

(

PZ,

2s⋃

j=1

Zs
j

)

= 0
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Proof. Since PZ ⊆ ⋃2s

j=1 Zs
j ,

d(PZ,

2s⋃

j=1

Zs
j ) = sup

y∈⋃2s
j=1 Zs

j

inf
x∈PZ

‖x − y‖

= max
j

sup
y∈Zs

j

inf
x∈PZ

‖x − y‖

≤ max
j

d(Zs
j ,PZs

j)

≤ ρ�s/r�‖GD‖ (by Corollary 2 and Lemma 1).

Since 0 < ρ < 1, the value of limit of ρ�s/r� converges to zero. ��
Although we have been assuming cyclical variables splitting, the above the-

orem could be adapted to more general splitting schemes by noting that the
generator matrix norm must reduce after every factor has been selected at least
once. As long as the spitting approach is fair, in the sense that it does not ignore
any factors forever, the dependent generator matrix norm will decrease by a
factor of ρ after each full round. Applied repeatedly, the norm of the dependent
matrix will therefore decrease log-linearly to 0, in terms of the number of rounds.

Lastly, in Fig. 2, we motivated our work with a practical example where the
overapproximate and split algorithm did not appear to converge to the true poly-
nomial zonotope. Based on our results in Theorem 2, we know that convergence
is guaranteed, but you may need to split along each dependent factor. In the
polynomial zonotope in the figure, the number of dependent factors was around
50, so even after 40 splits the overapproximation error can remain large.

6 Related Work

Polynomial zonotopes were originally designed to represent non-convex sets to
tightly enclose the reachable sets for a nonlinear system [1]. A sparse version
of the representation was proposed in follow up work [15,17] to support a more
compact representation while still being closed under key nonlinear operations.
Recent extensions add nonlinear constraints to the domain which are called
constrained polynomial zonotopes [16]. Although this was not the focus of the
current paper, the intersection and plotting algorithms for constrained polyno-
mial zonotopes is basically the same as for polynomial zonotopes, except the
overapproximation step results in constrained zonotopes [32] (also called star
sets [9] or AH-Polytopes [31]) rather than zonotopes. Therefore, we expect the
analysis results from this paper to also be transferable to constrained zonotopes.

Besides reachability analysis of nonlinear systems, polynomial zonotopes have
been used for reachability of linear systems with uncertain parameters [24] which
resulted in more accurate reachable sets comparing to zonotope methods. The
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representation has also been used for set-based propagation through neural net-
works [19], real-time planning and control scenarios [26] and safety shielding for
reinforcement learning systems [18].

In cases where the model of the dynamical system is not given, polynomial
zonotopes can also be used for reachability with Koopman linearized surrogate
models obtained from trajectory data [4]. Since Koopman linearization requires
lifting the state through a nonlinear transformation, convex initial sets in the
original space can become complex non-convex sets. Polynomial zonotopes can
provide tight enclosures of these lifted initial sets.

Taylor models [25] are a related set representation sometimes used for reacha-
bility analysis [7] that are similar to polynomial zonotopes with interval remain-
ders added to each variable. Taylor model arithmetic allows one to approximate
arbitrary smooth functions, although the intersection and plotting algorithms
are essentially grid pavings over the domain of the set.

As mentioned in the introduction, polynomial zonotope intersection check-
ing is equivalent to the box-constrained polynomial optimization problem. There
are several methods to solve such problems, for example augmented Lagrangian
methods or sum of squares programming [20,27,28,33]. Augmented Lagrangian
methods consider box constrained polynomial constraint problems as a general
nonlinear programming problem. General nonlinear programming with convex
constraints can usually be solved by considering the KKT conditions [5,6,30].
The KKT points can be found by augmented Lagrangian methods [13,29]. The
exact augmented Lagrangian methods must solve a subproblem in each update.
Hence the inexact augmented Lagrangian methods(iALM) are used in practice.
Although there are many works on iALM [22,23], such methods guarantee local
convergence with local optimal solutions. Therefore, they are not commonly used
for polynomial optimization problems. Sum-of-squares polynomials are polyno-
mials that can be formulated as the sum of the square of several polynomials.
If the polynomial can be formulated in this way, or reformulated after a series
of liftings [21], then the optimization problem can be formulated as semidefi-
nite programming and solved using convex optimization (although the resulting
problem may be very large).

7 Conclusions

In this work we discussed the difficulty of the fundamental intersection checking
operation for the polynomial zonotope set representation. This difficulty is rarely
directly addressed in papers that use polynomial zonotopes, although it can be a
practical limitation of any algorithm that builds upon the set representation. The
complexity is both theoretical and practically relevant, as we have shown cases,
specifically Fig. 2, where accurate approximation using the overapproximate and
split approach is intractable. While polynomial zonotopes are a powerful tool
for formal verification, they are not a panacea, as much of the problem com-
plexity can be often hidden within the representation itself, manifesting when
performing set intersections.
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Abstract. The BDD package Adiar manipulates Binary Decision Dia-
grams (BDDs) in external memory. This enables handling big BDDs, but
the performance suffers when dealing with moderate-sized BDDs. This
is mostly due to initializing expensive external memory data structures,
even if their contents can fit entirely inside internal memory.

The contents of these auxiliary data structures always correspond to
a graph cut in an input or output BDD. Specifically, these cuts respect
the levels of the BDD. We formalise the shape of these cuts and prove
sound upper bounds on their maximum size for each BDD operation.

We have implemented these upper bounds within Adiar. With these
bounds, it can predict whether a faster internal memory variant of the
auxiliary data structures can be used. In practice, this improves Adiar’s
running time across the board. Specifically for the moderate-sized BDDs,
this results in an average reduction of the computation time by 86.1%
(median of 89.7%). In some cases, the difference is even 99.9%. When
checking equivalence of hardware circuits from the EPFL Benchmark
Suite, for one of the instances the time was decreased by 52 h.

Keywords: Binary Decision Diagrams · Directed Acyclic Graphs ·
Maximum Graph Cuts · External Memory Algorithms

1 Introduction

A Binary Decision Diagrams (BDD) [8] is a data structure that has found great
use within the field of combinatorial logic and verification. Its ability to concisely
represent and manipulate Boolean formulae is the key to many symbolic model
checkers, e.g. [3,14,15,17,18,20,23]. Bryant and Heule recently found a use for
BDDs to create SAT and QBF solvers with certification capabilities [9–11] that
are better at proof generation than conventional SAT solvers.

Adiar [38] is a redesign of the classical BDD algorithms such that they are
optimal in the I/O model of Aggarwal and Vitter [1], based on ideas from Lars
Arge [4]. As shown in Fig. 1, this enables Adiar to handle BDDs beyond the limits
of main memory with only a minor slowdown in performance, unlike conventional
BDD implementations. Adiar is implemented on top of the TPIE library [28,41],
which provides external memory sorting algorithms, file access, and priority
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Fig. 1. Running time solving combinatorial BDD benchmarks. Some instances are
labelled with the size of the largest BDD constructed to solve them.

queues. These external memory data structures work by loading one or more
blocks from files on disk into internal memory and manipulating the elements
within these blocks before storing them again on disk. Their I/O-efficiency stems
from a carefully designed order in which these blocks are retrieved, manipulated,
and stored. Yet, initializing the internal memory in preparation to do so is itself
costly. This is evident in Fig. 1 (cf. Sect. 4.3 for more details) where Adiar’s
performance is several orders of magnitude worse than conventional BDD pack-
ages for smaller instance sizes. In fact, Adiar’s performance decreases when the
amount of internal memory increases.

This shortcoming is not desirable for a BDD package: while our research
focuses on enabling large-scale BDD manipulation, end users should not have to
consider whether their BDDs will be large enough to benefit from Adiar. Solving
this also paves the way for Adiar to include complex BDD operations where
conventional implementations recurse on intermediate results, e.g. Multi-variable
Quantification, Relational Product, and Variable Reordering. To implement the
same, Adiar has to run multiple sweeps. Yet, each of these sweeps suffer when
they unecessarily use external memory data structures. Hence, it is vital to
overcome this shortcomming, to ensure that an I/O-efficient implementations of
these complex BDD operations will also be usable in practice.

The linearithmic I/O- and time-complexity of Adiar’s algorithms also applies
to the lower levels of the memory hierarchy, i.e. between the cache and RAM.
Hence, there is no reason to believe that the bad performance for smaller
instances is inherently due to the algorithms themselves; if they used an internal
memory variant of all auxiliary data structures, then Adiar ought to perform
well for much smaller instances.

We argue that simple solutions are unsatisfactory: A first idea would be
to start running classical, depth-first BDD algorithms until main memory is
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exhausted. In that case, the computation is aborted and restarted with external
memory algorithms. But, this strategy doubles the running time. While it would
work well for small instances, the slowdown for large instances would be unac-
ceptable. Alternatively, both variants could be run in parallel. But, this would
halve the amount of available memory and again slow down large instances.

A second idea would be to start running Adiar’s I/O-efficient algorithms with
an implementation of all auxiliary data structures in internal memory. In this
case, if memory is exhausted, the data could be copied to disk, and the com-
putation could be resumed with external memory. This could be implemented
neatly with the state pattern: a wrapper switches transparently to the exter-
nal memory variant when needed. Yet, moving elements from one sorted data
structure to another requires at least linear time. Even worse, such a wrapper
adds an expensive level of indirection and hinders the compiler in inlining and
optimising, since the actual data structure is unknown at compile-time.

Instead, we propose to use the faster, internal-memory version of Adiar’s
algorithms only when it is guaranteed to succeed. This avoids re-computations,
duplicate storage, as well as the costs of indirection. The main research question
is how to predict a sound upper bound on the memory required for a BDD
operation, and what information to store to compute these bounds efficiently.

1.1 Contributions

In Sect. 3, we introduce the notion of an i-level cut for Directed Acyclic Graphs
(DAGs). Essentially, the shape of these cuts is constricted to span at most i
levels of the given DAG. Previous results in [22] show that for i ≥ 4 the problem
of computing the maximum i-level cut is NP-complete. We show that for i ∈
{1, 2} this problem is still computable in polynomial time. These polynomial-
time algorithms can be implemented using a linearithmic amount of time and
I/Os. But instead, we use over-approximations of these cuts. As described in
Sect. 3.4, their computation can be piggybacked on existing BDD algorithms,
which is considerably cheaper: for 1-level cuts, this only adds a 1% linear-time
overhead and does not increase the number of I/O operations.

Investigating the structure of BDDs from the perspective of i-level cuts for i ∈
{1, 2} in Sect. 3.1 and 3.2, we obtain sound upper bounds on the maximum i-level
cuts of a BDD operation’s output, purely based on the maximum i-level cut of its
inputs. Using these upper bounds, Adiar can decide in constant time whether to
run the next algorithm with internal or external memory data structures. Here,
only one variant is run, all memory is dedicated to it, and the exact type of the
auxiliary data structures are available to the compiler.

Our experiments in Sect. 4 show that it is a good strategy to compute the
1-level cuts, and to use them to infer an upper bound on the 2-level cuts. This
strategy is sufficient to address Adiar’s performance issues for the moderate-sized
instances while also requiring the least computational overhead. As Fig. 1 shows,
adding these cuts to Adiar with version 1.2 removes the overhead introduced by
initializing TPIE’s external memory data structures and so greatly improves
Adiar’s performance. For example, to verify the correctness of the small and
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moderate instances of the EPFL combinational benchmark circuits [2], the use
of i-level cuts decreases the running time from 56.5 h down to 4.0 h.

2 Preliminaries

2.1 Graph and Cuts

A directed graph is a tuple (V,A) where V is a finite set of vertices and A ⊆ V ×V
a set of arcs between vertices. The set of incoming arcs to a vertex v ∈ V is
in(v) = A ∩ (V × {v}), its outgoing arcs are out(v) = A ∩ ({v} × V ), and v is a
source if its indegree |in(v)| = 0 and a sink if its outdegree |out(v)| = 0.

A cut of a directed graph (V,A) is a partitioning (S, T ) of V such that S∪T =
V and S∩T = ∅. Given a weight function w : A → R the weighted maximum cut
problem is to find a cut (S, T ) such that

∑
a∈S×T∩A w(a) is maximal, i.e. where

the total weight of arcs crossing from some vertex in S to one in T is maximised.
Without decreasing the weight of a cut, one may assume that all sources in V are
part of the partition S and all sinks are part of T . The maximum cut problem
is NP-complete for directed graphs [30] and restricting the problem to directed
acyclic graphs (DAGs) does not decrease the problem’s complexity [22].

If the weight function w merely counts the number of arcs that cross a cut,
i.e. ∀a ∈ A : w(a) = 1, the problem above reduces to the unweighted maximum
cut problem where a cut’s weight and size are interchangeable.

2.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [8], as depicted in Fig. 2, is a DAG (V,A)
that represents an n-ary Boolean function. It has a single source vertex r ∈
V , usually referred to as the root, and up to two sinks for the Boolean values
B = {⊥,�}, usually referred to as terminals or leaves. Each non-sink vertex
v ∈ V \B is referred to as a BDD node and is associated with an input variable
xi ∈ {x0, x1, . . . , xn−1} where label(v) = i. Each arc is associated with a Boolean
value, i.e. A ⊆ V × B × V (written as v b−→ v′ for a (v, b, v′) ∈ A), such that
each BDD node v represents a binary choice on its input variable. That is,
out(v) = {v ⊥−→ v′, v �−→ v′′}, reflecting xi being assigned the value ⊥, resp. �.
Here, v′ is said to be v’s low child while v′′ is its high child.

An Ordered Binary Decision Diagram (OBDD) restricts the DAG such that
all paths follow some total variable ordering π: for every arc v1 −→ v2 between
two distinct nodes v1 and v2, label(v1) must precede label(v2) according to the
order π. A Reduced Ordered Binary Decision Diagram (ROBDD) further adds
the restriction that for each node v where out(v) = {v ⊥−→ v′, v �−→ v′′}, (1)
v′ �= v′′ and (2) there exists no other node u ∈ V such that label(v) = label(u)
and out(u) = {u ⊥−→ v′, u �−→ v′′}. The first requirement removes don’t care nodes
while the second removes duplicates. Assuming a fixed variable ordering π, an
ROBDD is a canonical representation of the Boolean function it represents [8].
Without loss of generality, we will assume π is the identity.
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x0

⊥ �
(a) x0

x1

⊥ �
(b) x1

x0

x1 x1

⊥ �
(c) x0 ⊕ x1

Fig. 2. Examples of Reduced Ordered Binary Decision Diagrams. Terminals are drawn
as boxes with the Boolean value and BDD nodes as circles with the decision variable.
Low edges are drawn dashed while high edges are solid.

This graph-based representation allows one to indirectly manipulate Boolean
formulae by instead manipulating the corresponding DAGs. For simplicity, we
will focus on the Apply operation in this paper, but our results can be generalised
to other operations. Apply computes the ROBDD for f  g given ROBDDs for
f and g and a binary operator  : B × B → B. This is done with a product
construction of the two DAGs, starting from the pair (rf , rg) of the roots of
f and g. If terminals bf from f and bg from g are paired then the resulting
terminal is bf  bg. Otherwise, when nodes vf from f and vg from g are paired,
a new BDD node is created with label � = min(label(vf ), label(vg)), and its low
and high child are computed recursively from pairs (v′

f , v′
g). For the low child,

v′
f is vf .low if label(vf ) = � and vf otherwise; v′

g is defined symmetrically. The
recursive tuple for the high child is defined similarly.

Zero-Suppressed Decision Diagrams. A Zero-suppressed Decision Diagram
(ZDD) [26] is a variation of BDDs where the first reduction rule is changed:
a node v for the variable label(v) with out(v) = {v ⊥−→ v′, v �−→ v′′} is not
suppressed if v is a don’t care node, i.e. if v′ = v′′, but rather if it assigns the
variable label(v) to ⊥, i.e. if v′′ = ⊥. This makes ZDDs a better choice in practice
than BDDs to represent functions f where its on-set, {x | f(x) = �}, is sparse.

The basic notions behind the BDD algorithms persist when translated to
ZDDs, but it is important for correctness that the ZDD operations account for
the shape of the suppressed nodes. For example, the union operation needs to
replace recursion requests for (vf , vg) with (vf ,⊥) if label(vf ) < label(vg) and
with (⊥, vg) if label(vf ) > label(vg).

Levelised Algorithms in Adiar. BDDs and ZDDs are usually manipulated
with recursive algorithms that use two hash tables: one for memoisation and
another to enforce the two reduction rules [7,27]. Lars Arge noted in [4,5] that
this approach is not efficient in the I/O-model of Aggarwal and Vitter [1]. He
proposed to address this issue by processing all BDDs iteratively level by level
with the time-forward processing technique [13,24]: recursive calls are not exe-
cuted at the time of issuing the request but are instead deferred with one or
more priority queues until the necessary elements are encountered in the inputs.
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2a: [ ((0, 0), ⊥, �) ]
2b: [ ((1, 0), ⊥, �) ]
2c: [ ((0, 0), (1, 0), (1, 1)) , ((1, 0), ⊥, �) , ((1, 1), �, ⊥) ]

Fig. 3. In-order representation of BDDs of Fig. 2

In [38], we implemented this approach in the BDD package Adiar. Furthermore,
with version 1.1 we have extended this approach to ZDDs [34].

In Adiar, each decision diagram is represented as a sequence of its BDD
nodes. Each BDD node is uniquely identifiable by the pair (�, i) of its level
�, i.e. its variable label, and its level-index i. And so, each BDD node can be
represented as a triple of its own and its two children’s unique identifiers (uids).
The entire sequence of BDD nodes follows a level by level ordering of nodes
which is equivalent to a lexicographical sorting on their uid. For example, the
three BDDs in Fig. 2 are stored on disk as the lists in Fig. 3.

The conventional recursive algorithms traverse the input (and the output)
with random-access as dictated by the call stack. Adiar replaces this stack with
a priority queue that is sorted such that it is synchronised with a sequential
traversal through the input(s). Specifically, the recursion requests s −→ t from a
BDD node s to t is sorted on the target t – this way the requests for t are at
the top of the priority queue when t is reached in the input. For example, after
processing the root (0, 0) of the BDD in Fig. 2c, the priority queue includes the
arcs (0, 0) ⊥−→ (1, 0) and (0, 0) �−→ (1, 1), in that order. Notice, this is exactly in
the same order as the sequence of nodes in Fig. 3. Essentially, this priority queue
maintains the yet unresolved parts of the recursion tree (V ′, A′) throughout a
level by level top-down sweep. Yet, since the ordering of the priority queue groups
together requests for the same t, the graph (V ′, A′) is not a tree but a DAG.

For BDD algorithms that produce an output BDD, e.g. the Apply algorithm,
Adiar first constructs (V ′, A′) level by level. When the output BDD node t ∈ V ′

is created from nodes vf ∈ Vf and vg ∈ Vg, the top of the priority queues provides
all ingoing arcs, which are placed in the output. Outgoing arcs to a terminal,
out(t) ∩ (V ′ ×B×B), are also immediately placed in a separate output. On the
other hand, recursion requests from t to its yet unresolved non-terminal children,
out(t)\(V ′ ×B×B), have to be processed later. To do so, these unresolved arcs
are put back into the priority queue as arcs (t b−→ (v′

f , v′
g)) ∈ V ′ × B × (Vf × Vg)

where the arc’s target is the tuple of input nodes v′
f ∈ Vf and v′

g ∈ Vg. This
essentially makes the priority queue contain all the yet unresolved arcs of the
output. For example, when using Apply to produce Fig. 2c from Fig. 2a and 2b,
the root node of the output is resolved to have uid (0, 0) and the priority queue
contains arcs (0, 0) ⊥−→ (⊥, (1, 0)) and (0, 0) �−→ (�, (1, 0)). Both of these arcs are
then later resolved, creating the nodes (1, 0) and (1, 1), respectively.

Yet, these top-down sweeps of Adiar produce sequences of arcs rather than
nodes. Furthermore, the DAG (V ′, A′) is not necessarily a reduced OBDD.
Hence, as shown in Fig. 4, Adiar follows up on the above top-down sweep with
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Apply Reduce

f nodes
�

g nodes

internal arcs

f � g arcs

terminal arcs

f � g nodes

Fig. 4. The Apply–Reduce pipeline in Adiar

a bottom-up sweep that I/O-efficiently recreates Bryant’s original Reduce algo-
rithm in [8]. Here, a priority queue forwards the uid of t′ that is the result from
applying the reduction rules to a BDD node t in (V ′, A′) to the to-be reduced
parents s of t. These parents are immediately available by a sequential reading of
(V ′, A′) since in(t) was output together within the prior top-down sweep. Both
reduction rules are applied by accumulating all nodes at level j from the arcs
in the priority queue, filtering out don’t care nodes, sorting the remaining nodes
such that duplicates come in succession and can be eliminated efficiently, and
finally passing the necessary information to their parents via the priority queue.

3 Levelised Cuts of a Directed Acyclic Graph

Any DAG can be divided in one or more ways into several levels, where all
vertices at a given level only have outgoing arcs to vertices at later levels.

Definition 1. Given a DAG (V,A) a levelisation of vertices in V is a function
L : V → N ∪ {∞} such that for any two vertices v, v′ ∈ V , if there exists an arc
v → v′ in A then L(v) < L(v′).

Intuitively, L is a labeling of vertices v ∈ V that respects a topological ordering
of V . Since (V,A) is a DAG, such a topological ordering always exists and hence
such an L must also always exist. Specifically, let πV in be the longest path in
(V,A) and πv be the longest path of any given v ∈ V to any sink t ∈ V , then
L(v) can be defined to be the difference of their lengths, i.e. |πV | − |πv|.

Given a DAG and a levelisation L, we can restrict the freedom of a cut to be
constricted within a small window with respect to L. Figure 5a provides a visual
depiction of the following definition.

Definition 2. An i-level cut for i ≥ 1 is a cut (S, T ) of a DAG (V,A) with
levelisation L for which there exists a j ∈ N such that L(s) < j + i for all s ∈ S
and L(t) > j for all t ∈ T .

As will become apparent later, deriving the i-level cut with maximum weight
for i ∈ {1, 2} will be of special interest. Figure 5b shows two 1-level cuts and
three 2-level cuts in the BDD for the exclusive-or of the two variables x0 and x1.
A 1-level cut is by definition a cut between two adjacent levels whereas a 2-level
cut allows nodes on level j + 1 to be either in S or in T . In Fig. 5b, both the
maximum 1-level and 2-level cuts have size 4.

Proposition 1. The maximum 1-level cut in a DAG (V,A) with levelisation L
is computable in polynomial time.
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j + 1
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j + i
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...

(a) Definition of an i-level cut.

x0

x1 x1

⊥ �
(b) Example of cuts in a BDD.

Fig. 5. Visualization of i-level (purple), 1-level (cyan) and 2-level (orange) cuts. (Color
figure online)

Proof. For a specific j ∈ L(V ) we can compute the size of the 1-level cut at j
in O(A) time by computing the sum of w((s, t)) over all arcs (s, t) ∈ A where
L(s) ≤ j and L(t) > j. This cut is by definition unique for j and hence maximal.
Repeating this for each j ∈ L(V ) we obtain the maximum 1-level cut of the
entire DAG in O(|L(V )| · |A|) = O(|V | · |A|) time. ��
Proposition 2. The maximum 2-level cut in a DAG (V,A) with levelisation L
is computable in polynomial time.

Proof. Given a level j ∈ L(V ), any 2-level cut for j − 1 has all vertices v ∈ V
with L(v) �= j fixed to be in S or in T . That is, only vertices v where L(v) = j
may be part of either S or of T . A vertex v at level j can greedily be placed in
S if

∑
a∈out(v) w(a) <

∑
a∈in(v) w(a) and in T otherwise. This greedy decision

procedure runs in O(|A|) time for each level, resulting in an O(|L(V )| · |A|) =
O(|V | · |A|) total running time. ��

Lampis, Kaouri, and Mitsou [22] prove NP-completeness for computing the
maximum cut of a DAG by a reduction from the not-all-equal SAT problem
(nae3sat) to a DAG with 5 levels. That is, they prove NP-completeness for
computing the size of the maximum i-level cut for i ≥ 4. This still leaves the
complexity of the maximum i-level cut for i = 3 as an open problem.

3.1 Maximum Levelised Cuts in BDD Manipulation

For an OBDD, represented by the DAG (V,A), we will consider the levelisation
function LOBDD where all nodes with the same label are on the same level.

LOBDD(v) �
{
label(v) if v �∈ B

∞ if v ∈ B

For a BDD f with the DAG (V,A), let Nf � |V \B| be the number of internal
nodes in V . Let Ci:f denote the size of the unweighted maximum i-level cut in
(V,A); in Sect. 3.2 we will consider weighted maximum cuts, where one or more
terminals are ignored. Finally, we introduce the arc (−∞) −→ rf to the root.
This simplifies the results that follow since in(v) �= ∅ for all v ∈ V .
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a1 a2

� α1 α2 α3

(a) Maximum 2-level cut of size 6.

b1

β1 ⊥
(b) Maximum 2-
level cut of size 4.

a1, b1

�, β1 α1, ⊥

a1, ⊥

�, ⊥ α1, ⊥

a2, b1

α1, β1 α1, ⊥

a2, ⊥

α1, ⊥ α2, ⊥

α3, b1

α3, β1 α3, ⊥ α3, ⊥

(c) 6a × 6b’s maximum 2-level cut of size 21 ≤ 6 · 4.

Fig. 6. Relation between the maximal 2-level cut of two BDDs’ internal arcs and the
maximum 2-level cut of their product.

Theorem 1. The maximum cut of the BDD f has a size of at most Nf + 1.

Proof. This is proven via the stronger statement that the maximum cut of a
multi-rooted decision diagram is less than or equal to N + r where N is the
number of internal nodes and r ≥ 1 is the number of roots. This, in turn, is done
by induction on the number of internal nodes N (See the full paper [37]). ��

This bound is tight for i-level cuts, as is evident from Fig. 5b where the size
of the maximum (i-level) cut is 4. Yet, in general, one can obtain a better upper
bound on the maximum i-level cut of the (unreduced) output of each BDD
operation when the maximum i-level cut of the input is known.

Theorem 2. For i ∈ {1, 2}, the maximum i-level cut of the (unreduced) output
of Apply of f and g is at most Ci:f · Ci:g.

Proof. Let us only consider the more complex case of i = 2; the proof for i = 1
follows from the same line of thought.

Every node of the output represents a tuple (vf , vg) where vf , resp. vg,
is an internal node of f , resp. g, or is one of the terminals B = {⊥,�}. An
example of this situation is shown in Fig. 6. The node (vf , vg) contributes with
max(|in((vf , vg))| , |out((vf , vg))|) to the maximum 2-level cut at that level.
Since it is a BDD node, |out((vf , vg))| = 2. We have that |in((vf , vg))| ≤
|in(vf )| · |in(vg)| since all combinations of in-going arcs may potentially exist
and lead to this product of vf and vg. Expanding on this, we obtain

|in((vf , vg))| ≤ |in(vf )| · |in(vg)|
≤ max(|in(vf )| , |out(vf )|) · max(|in(vg)| , |out(vg)|).
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That is, the maximum 2-level cut for a level is less than or equal to the product
of the maximum 2-level cuts of the input at the same level. Taking the maximum
2-level cut across all levels we obtain the final product of C2:f and C2:g. ��

The bounds in Theorem 2 are better than what can be derived from Theo-
rem 1 since Ci:f and Ci:g are themselves cuts and hence their product must be
at most the bound based on the possible number of nodes. They are also tight:
the maximum i-level cut for i ∈ {1, 2} of the BDDs for the variables x0 and x1

in Fig. 2a and 2b both have size 2 while the BDD for the exclusive-or of them
in Fig. 2c has, as shown in Fig. 5b, a maximum i-level cut of size 4.

Theorem 2 is of course only an over-approximation. The gap between the
upper bound and the actual maximum i-level cut arises because Theorem 2 does
not account for pairs (vf , vg), where node vf sits above f ’s maximum 2-level cut
and vg sits below g’s maximum 2-level cut, and vice versa. In this case, outgoing
arcs of vf are paired with ingoing arcs of vg, even though this would be strictly
larger than the arcs of their product. Furthermore, similar to Theorem 1, this
bound does not account for arcs that cannot be paired as they reflect conflicting
assignments to one or more input variables. For example, in the case where the
out-degree is greater for both nodes, the above bound mistakenly pairs the low
arcs with the high arcs and vice versa.

3.2 Improving Bounds by Accounting for Terminal Arcs

Some of the imprecision in the over-approximation of Theorem 2 highlighted
above can partially be addressed by explicitly accounting for the arcs to each
terminal. For B ⊆ B, let wB be the weight function that only cares for arcs to
internal BDD nodes and to the terminals in B.

wB(s b−→ t) =

{
1 if t ∈ V \B or t ∈ B

0 otherwise
.

Let CB
i:f be the maximum i-level cut of f with respect to LOBDD and wB .

The constant hidden within the O(|V | · |A|) running time of the algorithm in
the proof of Proposition 1 is smaller than the one in the proof of Proposition 2.
Hence, the following slight over-approximation of CB

2:f given CB
1:f may be useful

(proved in the full paper [37]).

Lemma 1. For B ⊆ B, C2:f is at most 1
2 · C∅

1:f + CB
1:f .

Finally, we can tighten the bound in Theorem 2 by making sure (1) not to
unnecessarily pair terminals in f with terminals in g and (2) not to pair terminals
from f and g with nodes of the other when said terminal shortcuts the operator.

Lemma 2. The maximum 2-level cut of the (unreduced) output f  g of Apply
excluding arcs to terminals, C∅

2:f�g, is at most

C
Bleft(�)

2:f · C∅
2:g + C∅

2:f · C
Bright(�)
2:g − C∅

2:f · C∅
2:g,

where Bleft(�), Bright(�) ⊆ B are the terminals that do not shortcut .



82 S. C. Sølvsten and J. van de Pol

3.3 Maximum Levelised Cuts in ZDD Manipulation

The results in Sect. 3.1 and 3.2 are loosely yet subtly coupled to the reduction
rules of BDDs. Specifically, Theorem 1 is applicable to ZDDs as-is but Theorem 2
and its derivatives provide unsound bounds for ZDDs. This is due to the fact
that, unlike for BDDs, a suppressed ZDD node may re-emerge during a ZDD
product construction algorithm. For example in the case of the union operation,
when processing a pair of nodes with two different levels, its high child becomes
the product of a node v in one ZDD and the ⊥ terminal in the other – even if
there was no arc to ⊥ in the original two cuts for f and g.

The solution is to introduce another special arc similar to (−∞) −→ rf which
accounts for this specific case: if there are no arcs to ⊥ to pair with, then the
arc (−∞) −→ ⊥ is counted as part of the input’s cut. That is, all prior results for
BDDs apply to ZDDs, assuming CB

i:f is replaced with ZCB
i:f defined to be

ZCB
i:f =

{
CB

i:f + 1 if ⊥ ∈ B and CB
i:f = C

B\{⊥}
i:f

CB
i:f otherwise

.

3.4 Adding Levelised Cuts to Adiar’s Algorithms

The description of Adiar in Sect. 2.2 leads to the following observations.

– The contents of the priority queues in the top-down Apply algorithms are
always a 1-level or a 2-level cut of the input or of the output – possibly
excluding arcs to one or both terminals.

– The contents of the priority queue in the bottom-up Reduce algorithm are
always a 1-level cut of the input, excluding any arcs to terminals.

Specifically, the priority queues always contain an i-level cut (S, T ), where S is
the set of processed diagram nodes and T is the set of yet unresolved diagram
nodes. For example, the 2-level cuts depicted in Fig. 5b reflect the states of the
top-down priority queue within the Apply to compute the exclusive-or of Fig. 2a
and 2b to create Fig. 2c. In turn, the 1-level cuts in Fig. 5b are also the states of
the bottom-up priority queue of the Reduce sweep that follows.

Hence, the upper bounds on the 1 and 2-level cuts in Sect. 3.1, 3.2, and 3.3
are also upper bounds on the size of all auxiliary data structures. That is, upper
bounds on the i-level cuts of the input can be used to derive a sound guarantee of
whether the much faster internal memory variants can fit into memory. To only
add a minimal overhead to the performance, computing these i-level cuts should

Apply Reduce

f nodes, CB
i:f

�
g nodes, CB

i:g

internal arcs

C∅
1:f�g

terminal arcs

f � g nodes, CB
i:f�g

Fig. 7. The Apply–Reduce pipeline in Adiar with i-level cuts.
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x0

x1 x1

x2 x2

x3 x3

x4 x4

⊥ �
(a) Unreduced OBDD

x0

x1

x2

x3

x4

⊥ �
(b) Reduced OBDD

Fig. 8. Example of reduction increasing the 1 and 2-level maximum cut.

be done as part of the preceding algorithm that created the very input. This
extends the tandem in Fig. 4 as depicted in Fig. 7 with the i-level cuts necessary
for the next algorithm.

What is left is to compute within each sweep an upper bound on these cuts.

1-Level Cut within Top-Down Sweeps. The priority queues of a top-down
sweep only contain arcs between non-terminal nodes of its output. While their
contents in general form a 2-level cut, the sweep also enumerates all 1-level cuts
when it has finished processing one level, and is about to start processing the
next. That is, the top-down algorithm that constructs the unreduced decision
diagram (V ′, A′) for f ′ can compute C∅

1:f ′ in O(|LOBDD(V ′)|) time by accumu-
lating the maximum size of its own priority queue when switching from one level
to another. The number of I/O operations is not affected at all.

i-Level Cuts Within the Bottom-Up Reduce. To compute the 1-level and
2-level cuts of the output during the Reduce algorithm, the algorithms in the
proofs of Proposition 1 and 2 need to be incorporated. Since the Reduce algo-
rithm works bottom-up, it cannot compute these cuts exactly: the bottom-up
nature only allows information to flow from lower levels upwards while an exact
result also requires information to be passed downwards. Specifically, Fig. 8 shows
an unreduced BDD whose maximum 1 and 2-level cut is increased due to the
reduction removing nodes above the cut. Both over-approximation algorithms
below are tight since for the input in Fig. 8 they compute the exact result.

Over-Approximating the 1-Level Cut. Starting from the bottom, when processing
a level k ∈ LOBDD(V ) we may over-approximate the 1-level cut CB

1:f for B ⊆
{⊥,�} at j = k by summing the following four disjoint contributions.
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1. After having obtained all outgoing arcs for unreduced nodes for level k, the
priority queue only contains outgoing arcs from a level � < k to a level �′ > k.
All of these arcs (may) contribute to the cut.

2. After having obtained all outgoing arcs for level k, all yet unread arcs to
terminals b ∈ B are from some level � < k and (may) contribute to the cut.

3. BDD nodes v removed by the first reduction rule in favor of its reduced child
v′ and wB( −→ v′) = 1 (may) contribute up to |in(v′)| arcs to the cut.

4. BDD nodes v′ that are output on level k after merging duplicates (definitely)
contribute with wB(v′.low) + wB(v′.high) arcs to the cut.

1 and 2 can be obtained with some bookkeeping on the priority queue and the
contents of the file containing arcs to terminals. 4 can be resolved when reduced
nodes are pushed to the output. Yet, 3 cannot just use the immediate indegree
of the removed node v since, as in Fig. 8, it may be part of a longer chain of
redundant nodes. Here, the actual contribution to the cut at level j = k is the
indegree to the entire chain ending in v. Due to the single bottom-up sweep style
of the Reduce algorithm, the best we can do is to assume the worst and always
count reduced arcs s′ −→ t′ where a node v has been removed between s′ and t′

as part of the maximum cut.

Over-Approximating the 2-Level Cut. The above over-approximation of the 1-
level cut can be extended to recreate the greedy algorithm from the proof of
Proposition 2. Notice, the 1-level (S, T ) cut mentioned before places all nodes of
level j in S, whereas these nodes are free to be moved to T in the 2-level cut for
j − 1. Specifically, Part 4 should be changed such that v′ contributes with

max(wB(v′.low) + wB(v′.high), |in(v′)|) .

This requires knowing |in(v′)|. The Reduce algorithm in [38] reads from a file
containing the parents of an unreduced node v, so information about the reduced
result v′ can be forwarded to its unreduced parents. Hence, one can accumulate
the number of parents, |in(v)|. If |in(v′)| is not affected by the first reduction rule
then this is an upper bound of |in(v′)|. Otherwise, it still is sound in combination
with the above over-counting to solve the 3rd type of contribution.

4 Experimental Evaluation

We have extended Adiar to incorporate the ideas presented in Sect. 3. Each algo-
rithm has been extended to compute sound upper bounds for the next phase.
Based on these, each algorithm chooses during initialisation between running
with TPIE’s internal or external memory data structures. This choice is encap-
sulated within C++ templates, which avoids introducing any costly indirection
when using the auxiliary data structures.

Section 3.4 motivates the following three levels of granularity:

– #nodes: Theorem 1 is used based on knowing the number of internal nodes
in the input and deriving the trivial worst-case size of the output.
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– 1-level: Extends #nodes with Theorem 2. The i-level cuts are given by com-
puting the 1-level cut with the proof of Proposition 1 as described in Sect. 3.4
and then applying Lemma 1 to obtain a bound on the 2-level cut.

– 2-level: Extends the 1-level variant by computing 2-level cuts directly with
the algorithm based on the proof of Proposition 2 in Sect. 3.4.

All three variants include the computation of 1-level cuts – even the #nodes one.
This reduces the number of variables in our measurements. We have separately
measured the slowdown introduced by computing 1-level cuts to be 1.0%.

4.1 Benchmarks

We have evaluated the quality of our modifications on the four benchmarks
below that are publicly available at [32]. These were also used to measure the
performance of Adiar 1.0 (BDDs) and 1.1 (ZDDs) in [34,38]. The first benchmark
is a circuit verification problem and the others are combinatorial problems.

– EPFL Combinational Benchmark Suite [2]. The task is to check equiv-
alence between an original hardware circuit (specification) and an optimised
circuit (implementation). We construct BDDs for all output gates in both
circuits, and check if they are equivalent. We focus on the 23 out of the 46
optimised circuits that Adiar could verify in [38]. Input gates are encoded as
a single variable, xi, with a maximum 2-level cut of size 2.

– Knight’s Tour. On an Nr×Nc chessboard, the set of all paths of a Knight is
created by intersecting the valid transitions for each of the NrNc time steps.
The cut of each such ZDD constraint is ∼8NrNc. Then, each Hamiltonian
constraint with cut size 4 is imposed onto this set [34].

– N-Queens. On an N × N chessboard, the constraints on placing queens are
combined per row, based on a base case for each cell. Each row constraint is
finally accumulated into the complete solution [21]. For BDDs, each basic cell
constraint has a cut size of ∼3N , while for ZDDs it is only 3.

– Tic-Tac-Toe. Initially, a BDD or ZDD with cut size ∼N is created to rep-
resent that N crosses have been set within a 4 × 4 × 4 cube. Then for each of
the 76 lines, a constraint is added to exclude any non-draw states [21]. Each
such line constraint has a cut size of 4 with BDDs and 6 with ZDDs.

4.2 Tradeoff Between Precision and Running Time

We have run all benchmarks on a consumer-grade laptop with one 2.6 GHz Intel
i7-4720HQ processor, 8 GiB of RAM, 230 GiB of available SSD disk, running
Fedora 36, and compiling code with GCC 12.2.1. For each of these 71 benchmark
instances, Adiar has been given 128 MiB or 4 GiB of internal memory.

All combinatorial benchmarks use a unary operation at the end to count
the number of solutions. Table 1 shows the average ratio between the predicted
and actual maximum size of this operation’s priority queue. As instances grow
larger, the quality of the #nodes heuristic deteriorates for BDDs. On the other
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Table 1. Geometric mean of the ratio between the predicted and the actual maximum
size of the unary Count operation’s priority queue. This average is also weighed by the
input size to gauge the predictions’ quality for larger BDDs.

BDD ZDD

#nodes 1-level 2-level #nodes 1-level 2-level

Unweighted Avg. 2.1% 69.2% 86.3% 15.2% 47.8% 67.0%

Weighted Avg. 0.1% 76.5% 77.4% 25.0% 50.7% 61.8%
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Fig. 9. Internal vs. external memory usage for product constructions (128 MiB).

hand, the 1 and 2-level cut heuristics are at most off by a factor of 2. Hence,
since the priority queue’s maximum size is some 2-level cut, the algorithms in
Sect. 3.4 are only over-approximating the actual maximum 2-level cut by a factor
of 2. The result of this is that i-level cuts can safely identify that a BDD with
5.2 · 107 nodes (1.1 GiB) can be processed purely within 128 MiB of internal
memory available. The precision of i-level cuts are worse for ZDDs, but still
allow processing a ZDD with 4.3 ·107 nodes (978 MiB) with 128 MiB of memory.

This difference in precision affects the product construction algorithms, e.g.
the Apply operation. Figure 9 shows the amount of product constructions that
each heuristic enables to run with internal memory data structures. Even when
the average BDD was 107 nodes (229 MiB) or larger, with i-level cuts at least
59.5% of all algorithms were run purely in 128 MiB of memory, whereas with
#nodes sometimes none of them were. Yet, while there is a major difference
between #nodes and 1-level cuts, going further to 2-level cuts only has a minor
effect.

How often internal memory could be used is also reflected in Adiar’s perfor-
mance. Figure 10 shows the difference in the running time between using i-level
cuts and only using #nodes. All benchmarks runs were interleaved and repeated
at least 8 times. The minimum measured running time is reported as it minimises
any noise due to hardware and the operating system [12]. Since the #nodes ver-
sion also includes the computation for the 1-level cuts but does not use them,
any performance decrease in Fig. 10 for 1-level cuts is due to noise.

Using the geometric mean, 1-level cuts provide a 4.9% improvement over
#nodes. Considering the 1.0% overhead for computing the 1-level cuts, this
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Fig. 10. Adiar with i-level cuts compared to #nodes (lower is better). Horizontal lines
show the average difference in performance.

is a net improvement of 3.9%. More importantly, in a considerable amount of
benchmarks, using i-level cuts improves the performance by more than 10%,
sometimes by 30%. These are the benchmark instances where only i-level cuts
can guarantee that all auxiliary data structures can fit within internal memory,
yet the instances are still so small that there is a major overhead in initialising
TPIE’s external memory data structures.

The improvement in precision obtained by using 2-level cuts does not pay off
in comparison to using 1-level cuts. On average, using 2-level cuts only improves
the performance of using #nodes with 2.6%. That is, the additional cost of
computing 2-level cuts outweighs the benefits of its added precision.

Adiar with i-level cuts did not slow down as internal memory was increased
from 128 MiB to 4 GiB. That is, the precision of both these bounds – unlike
#nodes – ensures that external memory data structures are only used when
their initialisation cost is negligible. Hence, Adiar with 1-level cuts covers all our
needs at the minimal computational cost and so is included in Adiar 1.2.

4.3 Impact of Introducing Cuts on Adiar’s Running Time

In [34,38] we measured the performance of Adiar 1.0 and 1.1 against the con-
ventional BDD packages CUDD 3.0 [39] and Sylvan 1.5 [16]. In those experi-
ments [33,35], Sylvan was not using multi-threading and all experiments were
run on machines with 384 GiB of RAM of which 300 GiB was given to the BDD
package. To gauge the impact of using cuts, we now compare our previous mea-
surements without cuts to new ones with cuts on the exact same hardware and
settings. The results of our new measurements are available at [36].

With 300 GiB internal memory available, all three modified versions of Adiar
essentially behave the same. Hence, in Fig. 1 (cf. Sect. 1) we show the best per-
formance for all three versions on top of the data reported in [38]. Even on
the largest benchmarks we see a performance increase by exploiting cuts. Most
important is the increase in performance for the moderate-size instances where
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the initialisation of TPIE’s external memory data structures are costly, e.g. N -
Queens with N < 11 and Tic-Tac-Toe with N < 19. Based on the data in [34,38]
these instances of the combinatorial benchmarks are the ones where the largest
constructed BDD or ZDD is smaller than 4.9 · 106 nodes (113 MiB).

Using the geometric mean, the time spent solving both the combinatorial
and verification benchmarks decreased with Adiar 1.2 on average by 86.1% (with
median 89.7%) in comparison to previous versions. For some instances this dif-
ference is even 99.9%. In fact, Adiar 1.2 is in some specific instances of the
Tic-Tac-Toe benchmarks faster than CUDD. These are the very instances that
are large enough for CUDD’s first – and comparatively expensive – garbage
collection to kick in and dominate its running time.

Verifying the EPFL benchmarks involves constructing a few BDDs that
are larger than the 113 MiB bound mentioned above, but most BDDs are
much smaller. For the 15 EPFL circuits that only generate BDDs smaller than
113 MiB, using cuts decreases the computation time on average by 92% (with
median 92%). While Adiar v1.0 still took 56.5 h to verify these 15 circuits, now
with Adiar 1.2 it only takes 4.0 h to do the same. These 52.5 h are primarily
saved within one of the 15 circuits. Specifically, using cuts has decreased the
time to verify the sin circuit optimised for depth by 52.1 h. Here, the average
BDD size is 2.9 KiB, the largest BDD constructed is 25.5 MiB in size, and up
to 42, 462 BDDs are in use concurrently.

Despite this massive performance improvement with Adiar 1.2 due to our
new technique, there is still a significant gap of 3.7 h with CUDD and Sylvan
on these 15 circuits. We attribute this to the fact that these benchmarks also
include many computations on really tiny BDDs. Although we keep the auxiliary
data structures in internal memory, the resulting BDDs are still stored on disk,
even when they consist of only a few nodes.

5 Conclusion

We introduce the idea of a maximum i-level cut for DAGs that restricts the cut
to be within a certain window. For i ∈ {1, 2} the problem of computing the
maximum i-level cut is polynomial-time computable. But, we have been able
to piggyback a slight over-approximation with only a 1% linear overhead onto
Adiar’s I/O-efficient bottom-up Reduce operation.

An i-level cut captures the shape of Adiar’s auxiliary data structures dur-
ing the execution of its I/O-efficient time-forward processing algorithms. Hence,
similar to how conventional recursive BDD algorithms have the size of their
call stack linearly dependent on the depth of the input, the maximum 2-level
cuts provide a sound upper bound on the memory used during Adiar’s computa-
tion. Using this, Adiar 1.2 can deduce soundly whether using exclusively internal
memory is possible, increasing its performance in those cases. Doing so decreases
computation time for moderate-size instances up to 99.9% and on average by
86.1% (with median 89.7%).
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5.1 Related and Future Work

Many approaches tried to achieve large-scale BDD manipulation with distributed
memory algorithms, some based on breadth-first algorithms, e.g. [21,25,40,42].
Yet, none of these approaches obtained a satisfactory performance. The speedup
obtained by a multicore implementation [16] relies on parallel depth-first algo-
rithms using concurrent hash tables, which doesn’t scale to external memory.

CAL [31] (based on a breadth-first approach [6,29]) is to the best of our
knowledge the only other BDD package designed to process large BDDs on a
single machine. CAL is I/O efficient, assuming that a single BDD level fits into
main memory; the I/O efficiency of Adiar does not depend on this assumption.
Similar to Adiar, CAL suffers from bad performance for small instances. To deal
with this, CAL switches to the classical recursive depth-first algorithms when
all the given input BDDs contain fewer than 219 nodes (15 MiB). As far as we
can tell, CAL’s threshold is purely based on experimental results of performance
and without any guarantees of soundness. That is, the output may potentially
exceed main memory despite all inputs being smaller than 219 nodes, which
would slow it down significantly due to random-access. For BDDs smaller than
CAL’s threshold of 219 nodes, Adiar 1.2 with i-level cuts could run almost all of
our experiments with auxiliary data structures purely in internal memory.

Yet, as is evident in Fig. 1, when dealing with decision diagrams smaller
than 44.000 nodes (1 MiB), there is still a considerable gap between Adiar’s
performance and conventional depth-first based BDD packages (see also end
of Sect. 4.3). Apparently, we have reached a lower bound on the BDD size for
which time-forward processing on external memory is efficient. Solving this would
require an entirely different approach: one that can efficiently and seamlessly
combine BDDs stored in internal memory with BDDs stored in external memory.

5.2 Applicability Beyond Decision Diagrams

Our idea is generalisable to all time-forward processing algorithms: the contents
of the priority queues are at any point in time a 2-level cut with respect to the
input and/or output DAG. Hence, one can bound the algorithm’s memory usage
if one can compute a levelisation function and the 1-level cuts of the inputs.

A levelisation function is derivable with the preprocessing step in [19] and the
cut sizes can be computed with an I/O-efficient version of the greedy algorithm
presented in this paper. Yet for our approach to be useful in practice, one has
to identify a levelisation function that best captures the structure of the DAG
in relation to the succeeding algorithms and where both the computation of the
levelisation and the 1-level cut can be computed with only a negligible overhead.
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Abstract. Code commutativity has increasingly many applications
including proof methodologies for concurrency, reductions, automated
parallelization, distributed systems and blockchain smart contracts.
While there has been some work on automatically generating commu-
tativity conditions through abstraction refinement, the performance of
such refinement algorithms critically depends on (i) the universe of pred-
icates and (ii) the choice of the next predicate during search, and thus
far this has not been examined in detail.

In this paper, we improve commutativity synthesis by addressing
these under-explored requirements. We prune the universe of predicates
through a combination of better predicate generation, new a priori syn-
tactic filtering, and through dynamic reduction of the search space. We
also present new predicate selection heuristics: one based on look-ahead,
and one that utilizes model counting to greedily cover the search space.

Our work is embodied in the new commutativity synthesis tool Ser-
vois2, a generational improvement over the state-of-the-art tool Servois.
Servois2 is implemented in a faster language and has support for CVC5
and Z3. We contribute new, non-trivial commutativity benchmarks. All
of the new features in Servois2 are shown to either increase performance
(geomean 3.58× speedup) or simplify the conditions generated, when
compared against Servois. We also show that our look-ahead heuristic
leads to better scaling with respect to the number of predicates.

1 Introduction

Commutativity of data structure methods and program code applies to a
wide variety of contexts, ranging from proof methodologies for concurrency
(e.g. Siever [1], CIVL [2], Anchor [3]) to exploiting multicore (e.g. parallelizing
compilers [4], transactional memory [5] declarative programming [6,7], scalable
systems [8]) to distributed systems (e.g. CRDTs [9] and blockchain [10,11]).

Accordingly, there have been a variety of techniques and tools for reason-
ing about commutativity, including program analysis [4], sampling [12], random
interpretation [13], and abstract interpretation [11]. A recent workshop1 exem-
plifies the rising interest in commutativity.
1 https://pldi22.sigplan.org/home/cora-2022.
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In many contexts program code does not always commute, and it is therefore
helpful to specify the conditions under which code commutes. In a hashtable,
for example, inserting key k commutes with removing key k′ only when k �= k′.
Bansal et al. [14,15] introduced an abstraction-refinement method for automat-
ically synthesizing such commutativity conditions. The idea is to recursively
test the logical space using an SMT solver, accumulating conditions that imply
commutativity or non-commutativity in disjunctive normal form. While the
authors provided a proof-of-concept abstraction-refinement algorithm, they did
not explore deeper performance considerations including more aggressive search
heuristics, semantic predicate treatment, model counting optimizations, scala-
bility, etc.

This paper focuses on how commutativity condition refinement can be
improved by addressing the key search parameters. By addressing these per-
formance considerations, we improve speed and scalability, as well as quality of
outputted conditions. We encapsulate our results in a new tool that is a gener-
ation improvement in synthesizing commutativity conditions.

Contributions. Our work improves the state-of-the-art in the following ways:

1. Predicate semantics (Sect. 3). In the state of the art, predicates must be
built by manually writing terms, and are then mildly filtered and used with-
out any information as to how one predicate relates to another. Refinement is
exponential in the number of predicates so it is important to focus on impor-
tant predicates. To that end, we improve the treatment of predicates by both
syntactically and then semantically filtering redundant predicates. We next
show how the information from filtering can be used to construct a lattice of
predicates, ordered by implication, and use this lattice to better filter predi-
cates and prune the state space during search. We also automatically extract
terms from the input problem’s pre/post relations.
2. Search heuristics (Sect. 4). A key step in the algorithm is choosing the
next predicate to divide the search space. We implement two new heuristics:

– poke2: A new predicate selection heuristic which avoids redundant SMT
work, while also using the information obtained more directly. Conse-
quently, it performs at most half as many SMT queries, if not fewer, than
Servois’s original implementation.

– mcMax: A heuristic that employs model counting to more quickly cover
the search space. Model counting is the problem of computing the num-
ber of models (i.e. distinct assignments to variables) that satisfy a given
predicate [16]. As many predicates have infinitely many solutions, model-
counting constraint solvers return the number of solutions for a given
predicate within a given bound [17,18]. The mcMax heuristic takes a quan-
titative approach to predicate selection by leveraging model-counting
to greedily pick predicates based on the largest covering of the state
space, making choices based on approximate finite-domain information,
yet maintaining soundness of the overall infinite-domain algorithm.

3. New implementation and pragmatic concerns (Sect. 5). We implemented
Servois2 in OCaml, exploiting the expected performance benefits of OCaml
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over Python. Our implementation is parametric on SMT solver, now support-
ing CVC4, CVC5 and Z3. We therefore inherit the expanded theory support,
expanding the domains in which commute conditions can be synthesized.
Servois2 can now, for example, synthesize commute conditions for Strings
operations like hasChar and concat. We also support interruption, emitting
a sound but incomplete condition, allowing Servois2 to be used in a larger
variety of new settings. Finally, Servois2 has a more well-defined API (as
an OCaml type), allowing one to use it as a library. Servois2 is publicly
available at: github.com/veracity-lang/servois2. The artifact, which con-
tains a copy of the code, is available at: https://www.doi.org/10.5281/zenodo.
7935263.
4. Evaluation (Sect. 6). In order to show that our approaches improve per-
formance in practice, we introduced new, non-trivial benchmarks that Bansal
et al. [14]’s tool Servois struggles to solve. We evaluated all of Servois2’s
new approaches, including the poke2 and mcMax heuristics, in comparison to a
faithful re-implementation of the poke heuristic in our new OCaml implemen-
tation on both the original benchmarks and our new ones. We also compared
the performance improvements between heuristics with additional options
for tuning the synthesis (see Sect. 6). Our experiments demonstrate that our
approaches do give a substantial speedup—3.58× (geometric mean) faster.
In cases that involve theories where model counting can be done efficiently
(strings, linear integer arithmetic, integer arrays), mcMax is often able to offer
better performance. Furthermore, poke2 scales approximately linearly with
the number of state variables, while the other heuristics (including all those
in the prior work) diverge after only a few variables. Finally, given this wide
variety of options, we used a portfolio approach, running each case with all
options (solvers, heuristics, approaches to terms, etc.) and reporting back the
first one to finish.

2 Background: Commutativity Synthesis

We begin with a brief review of abstraction-refinement commutativity condition
synthesis, emphasizing key steps.

Suppose we have an abstract data type (ADT) method call m(ā)/rm, with
method name m, taking argument vector ā and returning value rm. Similarly,
consider a second method call n(b̄)/rn. We say these method calls commute
from an initial ADT state σ, provided that when methods are applied in either
order, they lead to the same final ADT state, and will have observed the same
return values along the way. We notate this m ��σ,ā,b̄,rm,rn

n, with subscripts
omitted when the context is clear. A commutativity condition is a logical formula
ϕn

m(σ, ā, b̄) describing the conditions on the initial ADT state σ (and parameters
ā and b̄) under which m and n always commute. (A non-commutativity condition
ϕ̃ describes conditions when they always do not commute.) As an example, a
Set ADT with methods insert(x) and remove(y), a sufficient commutativity
condition would be ϕremove

insert ≡ x �= y.

https://www.doi.org/10.5281/zenodo.7935263
https://www.doi.org/10.5281/zenodo.7935263
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Fig. 1. The commutativity condition Refine algorithm [14].

We synthesize a commutativity condition ϕ via the Refine algorithm [14],
which takes as input, an ADT specification, with methods’ pre/post conditions
written in SMTLIB. The algorithm uses the binary operator �̂�, which is defined
as �� on a lifted (total) version of the ADT; we omit the full details as they are not
relevant to our improvements on the work. When run on a given pair of methods
m and n, the output of the algorithm is a pair (ϕn

m, ϕ̃n
m) of commutativity/non-

commutativity conditions. Consider as an example input, an ADT for a hashtable
that has three variables representing the state: a size integer, a Set over sort E
of keys, and a finite array H mapping elements of sort E to sort F . Then, for each
method, e.g., put(k, v), the input ADT specification includes a pre-condition (in
this case true) and a post-condition relating the pre-state with input vector
(size, keys, H, k, v) to a tuple of new values with return value (in this case,
true or false representing success) (size new, keys new, H new, r). The Refine
algorithm as output synthesizes commutativity conditions for the input method
pair. In the case of the hashtable example, the solution for the commutativity
synthesis of two calls of the same method put(k1, v1) and put(k2, v2) generated
by the algorithm is ϕ ≡ (v1 = v2 ∧ H[k1] = v2 ∧ k1 ∈ H) ∨ . . . (truncated). Other
cases (disjuncts) omitted for brevity.

The Refine algorithm is presented in Fig. 1. The algorithm recursively par-
titions the logical space along conjunctions of predicates, which are selected
from a set of predicates P. When the algorithm finds a region of the state
space H that is a sufficient condition for commutativity (or mutatis mutandis
non-commutativity), it adds it to an accumulated DNF logical commutativity
condition. Otherwise, the recursive calls use counterexamples to select a predi-
cate p that differentiates the two counterexamples χc and χnc. This predicate is
conjunctively added to H and used in the children recursive calls, and similarly
for its negation. Figure 2 illustrates this process of partitioning the logical space
through the use of differentiating counterexamples.

This process continues until a necessary and sufficient commutativity condi-
tion is found, or all combinations of predicates are exhausted. Typically, exhaus-
tion of predicates is unlikely as there are exponentially many combinations of
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them. Furthermore, the algorithm can theoretically be interrupted (e.g. after a
timeout) to yield a sound commutativity condition.

While the Refine algorithm is a somewhat straightforward form of
abstraction-refinement, the effectiveness of the technique and implementation
thereof critically depends on how predicates are handled, selected, pruned, etc.
We now discuss these details and how Servois2 improves on each of them.

3 Semantic Treatment of Predicates

Refine has worst-case exponential runtime in the number of predicates. While a
Choose function that picks good predicates helps, it is still important to gener-
ate a small set P of relevant predicates and be selective during each recursive call.
At the very least, reducing the number of predicates gives linear improvements
on runtime, as SMT solvers, as well as Choose, must handle every predicate in
P. In this section, we describe better methods of reducing the size of this set P.

(a) Improved predicate filtering. In Servois, after the initial list of predicates
was built from manually provided terms, the SMT solver was queried twice
for each predicate, and any predicate that was tautologically true or false was
discarded. We retain this functionality, but first perform an additional syntactic
layer of filtering by dropping any predicate that is:

1. A reflexive operation on two identical terms,
2. An operation between two constants, or
3. A symmetric case of another predicate already included.

Since all of these filters are done purely syntactically, we save SMT work.

(b) Pruning by exploiting implication. We next determine which predicates imply
other predicates. This can be done via syntactic implication rules such as x >
y ⇒ x+n > y+n. As a benefit, we are able to compute the closure of the logical
implication relation, and are able to sort predicates into equivalence classes.
Thus by removing redundant predicates, the size of the set of predicates can be
reduced.

Given logical implication relations, we can build a lattice out of the partially
ordered set of predicates, ordered by the ⇒ relation. This lattice information can

Fig. 2. Refine recursively divides the logical search space using P.
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be used to dynamically prune predicates that become redundant during runtime
due to selection of other, related predicates. For example, consider the following
LIA benchmark multiVarA �� multiVarB. (Technically Servois/Servois2 inputs
are given as ADT pre/post specifications, but we write this example as code
illustration purposes).
int x, y;
bool multiVarA() {if(x>0) { x = 2*x + y; }; return true}
bool multiVarB() {if(x>y) { x = x - 2*y; } else { x = x - y; }; return true}

Here, the lattice identifies implication chains such as 0 > (2x + y) ⇒ (2x + y) ≤
0 ⇒ 2 > (2x + y) ⇒ (2x + y) ≤ 2, or 0 > (2x + y) ⇒ 0 �= (2x + y). During
search, we are able to use these chains to efficiently pruning the predicate lattice,
effectively reducing the height of the lattice and thus width of the search tree.

Figure 3 illustrates our modifications to the original algorithm in Fig. 1. Start-
ing from main, we perform automated predicate generation PredGen, which
we will discuss below. From this set P, we construct the lattice L with MkLat.
Within Refine, we parameterize Choose by L, allowing the Choose heuristics
discussed in Sect. 4 to make choices based on L. Finally, we prune the search
space by using RmUpper to remove all predicates that are weaker, i.e. higher
in the lattice, than the selected predicate pair (p,¬p). We may do similarly with
the predicates stronger than the negation (RmLower). As a result, recursive
calls will not have to consider any predicates that are already entailed by H.

Constructing the lattice can be costly as the size of the relation is quadratic
in the number of predicates. Furthermore, syntactic rules cannot discover all
implications, so an SMT solver must be invoked if more precision is desired. As
we will see, it is not always worth this overhead. We have thus kept our lattice
treatment as an optional feature. When disabled, the lattice simply behaves as
a set of predicates (i.e. any predicate is only related to itself), à la Fig. 1, and
assume that the set of predicates is closed under negation2.

(c) Automatic predicate generation via term extraction. Servois requires the
programmer to manually provide terms with each method in the ADT specifica-
tion, which can be error-prone and tedious. These terms are then used to build
predicates by using boolean relations such as =, >, etc. We are able to auto-
matically generate the terms for synthesizing the predicates by traversing the
method specification (state variables, method arguments, pre/post-condition),
and extracting basic expressions (categorized by type). The expressions are then
combined with predefined operations for each type (e.g. in-/equality for Integers,
membership/subset/etc. for Sets, contains/prefix/etc. for Strings, . . . ) to gener-
ate the predicates. With this approach, we generate enough predicates to estab-
lish a sufficiently granular search space across all of our benchmarks and we are
not limited in how exhaustively terms are provided. Manual-vs-automatic term

2 To satisfy closure, we include negations of all predicates. This comes at no perfor-
mance loss, as such additions can be skipped over by Choose. This is valid because
Refine recurses upon the negation of the chosen predicate.
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Fig. 3. Our modified algorithm. Figure 1 is recovered when taking L to be the trivial
lattice over negation completion.

extraction leads to different sets and quantities of predicates, which may affect
how conditions are expressed. In Sect. 6 we discuss the performance impact.

(d) Syntax-based generation of predicates. Once predicates are automatically
generated, it is natural to consider whether more complex predicates can be gen-
erated. While the original tool only considered predicates on two given terms,
we found that often, compound terms that may not be provided or directly
in the specification’s syntax would be present in commutativity conditions. We
added the expansion of terms with known and provided functions to allow for
the automated generation of compound terms and predicates. Thus more com-
plex commutativity conditions could be expressed, and the user does not have to
already have specific predicates in mind when listing terms. Due to the exponen-
tial nature of syntax expansion, we get a greatly increased number of predicates.
We found that this increase was too detrimental to performance to be practical—
two or more iterations often times out. However there were still some test cases
that benefited from performing one or two iterations, and the approach would
likely be beneficial with improved pruning.

4 Search Heuristics

At each step, the Refine algorithm must Choose a predicate that differentiates
the commutative and non-commutative examples. While any implementation of
Choose maintains the soundness of Refine, due to the exponential nature of
the number of subsets of predicates, choosing a “good” predicate is important
both to efficiency and quality of the form of the emitted condition. We refer to a
Choose strategy as a “heuristic”. Bansal et al. [14] describe a heuristic—referred
to as poke—which performs a greedy one-step look-ahead.
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Fig. 4. Pseudocode for our poke2 heuristic for choosing which predicate to recurse
upon. Here, P may be obtained from L by taking the underlying set of predicates.
list min(f,P) returns the element of P that minimizes f .

In this section we introduce two new predicate selection heuristics called
Choosepoke2 and ChoosemcMax (or simply, poke2 and mcMax) that, as we show in
Sect. 6, perform better than the Choosepoke of Bansal et al. [14], with trade-offs
to consider between the two of them.

4.1 The poke2 Heuristic

We begin by formalizing the poke2 heuristic, and compare it to the previous
poke heuristic. When the SMT solver is invoked with the “valid()” queries in
Refine, we obtain two satisfying counterexamples: χc for commutativity and
χnc for non-commutativity. poke and poke2 share the common behavior to then
proceed with two steps: (1) Test each predicate to see which hold in which
counterexample (if either); this can be done in the same SMT query that was
used for valid. This testing lets one find predicates that differ between the
commutative counterexample and the non-commutative counterexample. This
is summarized in DiffingPreds; the pseudocode for this subroutine is given at
the bottom of Fig. 4. (2) Next, perform a partial look-ahead on each of these
predicates—however, the way this is done differs between the heuristics.

– The poke2 heuristic. The full pseudocode for poke2 is given in Fig. 4. The
partial look-ahead is encapsulated in the weight function. If a predicate was
true in the commutative case then we can tentatively conjoin it with the
commutativity condition and its inverse with the non-commutativity condi-
tion (mutatis mutandis for false—keeping track of which case is done on Line
4), then query the solver (Lines 5 and 7) to see how many predicates still
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Fig. 5. Pseudocode for mcMax heuristics. As before, P is obtained by taking the under-
lying set of L.

differentiate the two cases. We define the number of remaining differentiating
predicates to be the weight of the predicate (Lines 9–11). Finally we pick
the differentiating predicate that results in the fewest remaining differentiat-
ing predicates in the look-ahead (Line 12). In the case that two predicates
have the same number of new differentiating predicates, we prefer the simpler
(measured in number of atoms) one (not shown).

– The poke heuristic. By contrast, in poke the predicate and its inverse were
tested with both the commutative case and the non-commutative case, irre-
spective of whether it was true or false in the commutative case. This resulted
in many degenerate return values, which not only increased SMT time, but
also could pick less beneficial predicates.

There is no need to prove correctness of poke2, as the Refine algorithm is correct
for any implementation of Choose that picks a differentiating predicate. Our
evaluation of poke2 is thus based on runtime (more detail in Sect. 6.1).

4.2 The mcMax Heuristic

For theories where model counting is efficiently supported by existing tools, we
introduce an additional heuristic called mcMax. mcMax uses model counting to
determine the number of satisfying solutions for each constraint on the state
space. It then uses this count to quantify how well each predicate covers the
state space and picks the predicate with the best coverage.

Model counting requires a finite domain, so we treat state variables as finite
on a bounded domain, e.g., treating integers as fixed-length bit vectors. Recall
that any implementation of Choose is sound, so bounding the domain (tem-
porarily as a heuristic hint) does not threaten soundness. For such fixed-length
bit representations, we ideally require a bit width bound that is large enough
to properly differentiate between coverage ratios. Experimentally, we found that
a bound as low as 4-bit representation of integers was sufficient for LIA con-
straints with relatively small coefficients and a length of 4 was sufficient for
string constraints.

We now describe how mcMax proceeds using the pseudocode given in Fig. 5.
The mcMax heuristic starts off on Line 2 in a similar manner as poke heuristic by
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constructing the subset of differentiating predicates P ′ from the two satisfying
counterexamples. In the next step (Lines 3–4), we calculate the coverage ratio
for both p and its complement ¬p as the fraction of their corresponding models’
count. Finally, the predicate found to represent the largest state region is chosen
(Line 5). Recall that Refine traverses both the given predicate and its negation
(shown in the recursive calls in Fig. 1). In the case that execution is interrupted,
we observe the first recursive call may be explored, while the second is not.
In these cases mcMax often leads to a better (higher coverage ratio) predicate
compared to a non-model-counting heuristic, since we greedily pick the larger
conjuncts.

To overcome the arbitrary first choice among equally covering predicates at
line 6 in Fig. 5a, the variant mcMax-poke2 equips mcMax with the weight-based
ranking of predicates from poke2. Whenever the list of maximal coverage pred-
icates returned by mcMax has at least two candidates, the predicate selection is
turned over to poke2 applied to the candidate list.

5 Implementation

Servois2 is implemented in OCaml and is publicly released under the MIT
License3. The tool has an underlying representation for SMT expressions, and
parses input YAML files and the SMTLIB2 expressions within them. Examples
of the Servois/Servois2 input format are available in the repository. The out-
put commutativity condition is also an SMTLIB2 expression, but may be further
constrained: since it is always in disjunctive normal form, and we add one con-
junct at a time, we may model disjunctive normal form as a list of conjuncts,
which are in turn lists of atoms. The lattice is implemented as a module param-
eterized by any module exposing an ordering relation, and is encoded as a graph
with vertices stored in a map and two edge sets: that of covering elements and
that of elements covered by it.

Model Counting. For counting the solutions satisfied by each predicate, we use
the state-of-the-art model-counting constraint solver ABC [18] that, among
other strengths, allows for passing the specific domain bound along with the
model-counting query. ABC supports precise solving of model-counting queries
over strings, booleans, and linear integer arithmetic. We memorize the counting
results in an association list to reuse them in subsequent calls of ChoosemcMax.

Model Counting for Integer Arrays. We expand the applicability of mcMax heuris-
tics to predicates over array terms by adopting a method similar to the state-
of-the-art model counter for bounded array constraints MCBAT [19]. This app-
roach involves applying a sequence of model-count preserving reductions from
the theory of arrays to the theory of uninterpreted functions and linear integer
arithmetic before dispatching the query to ABC. While MCBAT focuses on for-
mulas that are universally quantified over index variables, our procedure below

3 https://github.com/veracity-lang/servois2.

https://github.com/veracity-lang/servois2
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addresses quantifier-free array constraints with terms a[i] representing the value
stored in the array a at index i.

Consider for example, the problem of counting the solutions 〈x, i, j〉 satisfying
the predicate (x[i] ≥ x[j] − 1), where i, j are integer variables and x represents
arrays of size 4. We accomplish the task in three stages. First, we translate the
predicate into a list of linear integer arithmetic constraints that are conjoined
into a formula. Then we count the number of satisfying solutions 〈xi, xj , i, j〉 by
running ABC on this query:

(i ≥ 0) ∧ (i < 4) ∧ (j ≥ 0) ∧ (j < 4) ∧ (i = j ⇒ xi = xj) ∧ (xi ≥ xj − 1)

Finally, we obtain the total model count by multiplying the translated query
result with the value domain size twice, once for each of the unaccounted and
implicitly unconstrained array values.

The reductions below summarize the steps of our model counting procedure
for formulas with integer array constraints:

1. Replace all compound array index expressions e with fresh variables i and add
corresponding constraints of the form e = i. Perform the replacement from the
outermost expression inwardly. Consider, for example, the term x[k+j−2] > 3
occuring in the query. We first replace the access term k + j − 2 by a fresh
variable i, and then introduce an additional constraint i = k + j − 2 which
captures this replacement.

2. Add array bounds constraints for each array index variable i.
3. Perform Ackermann’s reduction:

– Replace all occurrences of array index terms a[i] with fresh variables ai,
keeping track of the replaced mappings for each array variable a.

– Add functional consistency constraints for each array variable and each
pair of array index terms occurring in the query, i.e. (i = j) ⇒ (ai = aj).

4. Dispatch the set of constraints to ABC and obtain the model-count #mctr.
Thus far, there are only minimal differences to the approach in [19].

5. Identify the unaccounted mappings for each array variable and compute the
partial model-count by considering their summation and the unconstrained
value domain: #mcunacc = |Z|unacc.

6. Obtain final model count as #mc = (#mctr ∗ #mcunacc).

Additional Solvers & Theories. Servois was hardcoded to work with CVC4
[20]. We have parameterized Servois2 by SMT solver via OCaml modules and
extended support for CVC5 [21] and for Z3 [22]. While mostly an implementa-
tion detail, this does allow us to leverage the additional strength of the other
solvers. For example, CVC4 (as of version 1.8) did not have good support for
modulus and division. Both CVC5 and Z3 are able to support such operations,
and Servois2 is able to generate commutativity/non-commutativity conditions
for modular arithmetic examples.

With expanded solver support, Servois2 can tackle more theories, includ-
ing ones for which specialized solvers are useful. Neither bit-vectors nor strings
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were supported in the original release of Servois, but Servois2 can synthe-
size commutativity conditions for both theories. As an example, we showed that
Servois2 is capable of inferring that bit-vector negation always commutes with
itself. We also benchmarked a few string examples, such as substr �� hasChar,
as they also demonstrate the usefulness of model counting.

Early Termination. The following theorem is presented in Bansal et al. [14]:

Theorem 1. For each Refinem
n iteration: ϕ ⇒ m �̂� n, and ϕ̃ ⇒ m \̂�� n.

Thus, if updates to ϕ and ϕ̃ are atomic, then terminating the algorithm at
any point will yield valid conditions. We take advantage of this in Servois2 by
allowing timeouts: the algorithm gracefully terminates after a designated time
by outputting the incomplete (yet valid) conditions ϕ, ϕ̃.

This proves useful in practice, as not all commutativity conditions may be
expressible in terms of the predicates available; a necessary and sufficient condi-
tion for synthesis of a complete commutativity condition via the Refine algo-
rithm is given in Bansal et al. [14]. In such cases, the algorithm must finish its
exponential run-time, only to determine that no complete commutativity condi-
tion is expressible. Even if the algorithm does terminate, after a certain point, the
commutativity condition may be more complex than is useful. Thus it is usually
more useful to cut the execution short and report only the most important few
disjuncts of the commutativity conditions. In Sect. 6.2 we describe an instance
of both a case where the algorithm does not terminate and a case where the
algorithm terminates, but we still may obtain a reasonable condition by limiting
the execution time.

6 Evaluation

We evaluated whether Servois2 improved over the state-of-the-art Servois in
terms of performance (speed) and expressivity. All experiments below were run
on a machine with an AMD EPYC 7452 32-Core CPU, 128 GB RAM, Ubuntu
20.04, and OCaml 4.14.0.

Benchmarks. Our suite of 68 benchmarks begins with those used to evaluate
Servois in the prior work [14]. Since the core goal of our work is to improve per-
formance, we have pruned down this set, removing those benchmarks for which
all tested heuristics can synthesize a condition after zero or one iteration(s). For
example, we omitted the counter and accumulator examples because the con-
ditions generated were either true/false or a single atom. We also removed all
similar method pairs with simple commutativity conditions from the remaining
data structures: sets, hashtables (HT), and stacks (Sta).

In addition to these benchmarks, we contribute new benchmarks for strings
(Str) and linear integer arithmetic calculations (LIA), and a benchmark based
on rigid motions on hexagons (DiH, for “dihedral”). These serve to show the
application of model counting, which works best on these domains. The model
counter is not applicable to the other data sets due to presence of custom data
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declarations. It could also be run on the counter and accumulator benchmarks,
but we do not expect that to be illustrative due to triviality.

Moreover, we used Veracity4 project [6] benchmarks as additional nontrivial
benchmarks. There are 26 reported benchmarks in Veracity that use commuta-
tivity synthesis. We have also implemented some new benchmarks, e.g. Solidity
examples translated to Veracity, to demonstrate various aspects of our improve-
ments in addition to more speedup. We elaborate on the usage of Veracity bench-
marks in Sect. 6.2.

6.1 Performance Results

We would ideally compare the performance of Servois2 versus Servois, but
since Servois2 is written in OCaml, and Servois is written in Python, there is
an obvious speedup from compilation, and indeed we found Servois2 to be at
least twice as fast even using the same heuristics and on the same inputs. (As an
example: the Hashtable put/put example was the slowest running benchmark—
it took 5.31 s with Servois using poke, and 2.61 s with Servois2 using the same
heuristic.)

However, our work is not aimed at comparing Python vs OCaml, so we
instead benchmark across our new heuristics (poke2 and mcMax) and features
in comparison to a faithful re-implementation of Servois’s poke in OCaml.
The re-implementation was created by manually translating the source code of
Servois.

Comparison to poke Baseline. To test the variety of features we have added,
we ran each benchmark with all combinations of features:

– The heuristics poke, poke2, and mcMax/mcMax-poke2 (when applicable).
– With each of the CVC4, CVC5, and Z3 solvers.
– With and without automatic term extraction (Sect. 3).

We report the configuration with the best performance in Table 15, using
poke with CVC4 and no lattice, no term extraction as a reference point for
comparison. The heuristic and solver is given, then whether term extraction was
performed (notated TG). The geometric mean of the speedup ratio of the best
configuration over poke was 3.58×. Note that this speedup is conservative, as
the several benchmarks that timed out with poke (and did not with Servois2)
are excluded. We also report the change in the complexity of the synthesized
commutativity condition in ΔA, indicating the change in the number of atoms
in the synthesized condition. The full generated conditions are omitted; note
that if synthesis terminates with a complete condition, the generated conditions
will be logically equivalent, but sometimes the order of the terms changed. (†)
indicates the cases where the tool terminated with an incomplete condition. We
terminated the benchmarks at 120 s, and indicate the ones that still did not finish

4 http://www.veracity-lang.org.
5 mVarA and mVarB are short for multiVarA and multiVarB.

http://www.veracity-lang.org
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Table 1. Total number of benchmarks: 68 (33 trivial ones omitted)
Benchmarks that previously timed out: 3
Benchmarks that previously crashed: 2
† means condition generated was incomplete. ΔA is change in atom count.
T indicates time out (set at 120 s). j indicates cannot be run.

Benchmark poke (s) Srv2 (s) Spdup ΔA Best Configuration

DiH: motion �� motion j 4.71 n/a n/a mcmax, Z3,

HT: put �� put 2.22 1.28 1.73× 0 poke2, CVC4,

LIA: mVarA �� mVarB 16.23 3.48 4.66× 0 poke2, CVC5,

LIA: sum �� multiVarSum 8.45† 8.36† 1.01× 0 poke, CVC4,

LIA: sum �� posSum 4.38 0.71 6.21× 0 poke2, CVC4,

Str2: set �� concat 9.89† 6.66† 1.48× −1 poke2, Z3, TG

Str3: read �� write 5.31† 0.86† 6.21× 43 poke, CVC5,

Str: hasChar �� concat 2.93 0.57 5.14× 0 mcmax, CVC5, TG

Str: substr �� hasChar 1.75 0.74 2.35× 0 mcmaxpoke2, CVC4,

Vcy: array-disjoint 1.16 0.46 2.52× 0 poke2, CVC4, TG

Vcy: array1 1.51 0.51 2.96× −2 mcmax, CVC4,

Vcy: array2 2.91 0.98 2.97× 0 poke2, CVC4,

Vcy: array3 1.92 0.53 3.62× 0 poke2, Z3,

Vcy: auction3 76.66 23.17 3.31× 8 poke2, CVC4,

Vcy: auction4 1.79 0.34 5.26× 0 poke2, Z3, TG

Vcy: dict 13.37 2.82 4.74× 0 poke2, CVC5,

Vcy: even-odd j 1.02† n/a n/a poke2, CVC5,

Vcy: ht-add-put 7.63 3.37 2.26× 0 poke2, CVC4,

Vcy: ht-cond-mem-get 1.28† 1.19† 1.08× −2 poke2, CVC5,

Vcy: ht-cond-size-get 1.66 0.71 2.34× 0 poke2, CVC4,

Vcy: ht-simple 38.84 18.78 2.07× 4 poke2, CVC4,

Vcy: linear-bool 3.15 0.90 3.50× −2 mcmax, CVC4,

Vcy: linear-cond 2.09 1.30 1.61× −1 poke2, Z3,

Vcy: loop-amt 11.35† 0.30† 37.83× 10 mcmax, Z3,

Vcy: loop-inter 7.83 2.40 3.26× −21 mcmax, CVC5,

Vcy: matrix 3.17 0.24 13.21× 0 poke2, Z3,

Vcy: nested-counter 1 1.12 0.51 2.20× 0 poke2, CVC4,

Vcy: nested-counter 2 4.74† 1.42† 3.34× −19 mcmax, CVC5,

Vcy: nonlinear 7.44 0.59 12.61× 0 poke2, Z3,

Vcy: pullPayment 7.69 1.59 4.84× 0 poke2, Z3,

Vcy: simple 7.69† 2.29† 3.36× 26 poke2, CVC4,

Vcy: standardToken2 T 11.31 n/a n/a poke2, Z3, TG

Vcy: standardToken3 T 1.45 n/a n/a poke2, Z3, TG

Vcy: standardToken4 2.34 0.35 6.69× 0 poke2, Z3,

Vcy: standardToken5 T 13.25 n/a n/a poke2, Z3,

within this time with T. A few benchmarks could not be run under CVC4, and
those are marked with j. All benchmarks whose poke baseline took less than
1 s to execute were omitted from the table due to triviality.
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Table 2. Comparison of runtimes for cases where lattice construction and model
counting is applicable. Note that in many cases, lattice construction always times out
or errors. Lattice timeout was defined at 300 s for Veracity benches and 30 s for other
benches. Those rows are marked with n/a. mVarA is short for multiVarA.

Best Best Latt

Benchmark Non-Latt. Latt. Spdup ΔA Best Config. Cnstr.

DiH: motion �� motion 4.71 n/a n/a n/a n/a T

HT: put �� put 1.28 1.16 1.11× 0 poke2, CVC4 0.31

LIA: mVarA �� mVarB 3.48 1.14 3.07× 0 poke2, CVC4 10.39

LIA: sum �� multiVarSum 8.36† 3.69† 2.27× -53 mcmax, CVC4 1.87

Str2: set �� concat 6.66† n/a n/a n/a n/a T

Vcy: auction3 23.17 n/a n/a n/a n/a T

Vcy: dict 2.82 2.59 1.09× 0 poke2, CVC5 34.09

Vcy: even-odd 1.02† 0.98† 1.04× 0 poke2, CVC5 1.46

Vcy: ht-add-put 3.37 3.14 1.07× 0 poke2, CVC4 7.50

Vcy: ht-cond-mem-get 1.19† n/a n/a n/a n/a T

Vcy: ht-simple 18.78 18.06 1.04× 0 poke2, CVC4 100.86

Vcy: linear-cond 1.30 1.06 1.23× 0 poke2, Z3 1.44

Vcy: loop-inter 2.40 n/a n/a n/a n/a T

Vcy: nested-counter 2 1.42† n/a n/a n/a n/a T

Vcy: pullPayment 1.59 n/a n/a n/a n/a T

Vcy: simple 2.29† 2.11† 1.09× 0 poke2, CVC4 5.51

Vcy: standardToken2 11.31 10.31 1.10× 0 poke2, Z3, TG 113.51

Vcy: standardToken3 1.45 n/a n/a n/a n/a T

Vcy: standardToken5 13.25 n/a n/a n/a n/a T

The mcMax heuristic only applies to ADTs with theories supported by the
model counter ABC [23] extended with our procedure in Sect. 5, hence our
results using that heuristic are limited to the String, LIA, and Dihedral ADTs,
as well as the Veracity benchmarks. Our extension for integer arrays allowed for
the use of mcMax on the majority of the Veracity benchmarks. In some cases,
mcMax provides a significant speedup over poke and even poke2. For example, in
the hasChar �� concat benchmark, mcMax is 2.89× as fast as poke2 (not shown)
and over 5.41× as fast as poke, with the same configuration aside from heuristic.
In other cases, such as in the sum �� multiVarSum analysis, mcMax underperforms
compared to poke2 and poke.

The performance of mcMax seems to depend on the methods considered, but
there are cases where it can significantly improve run time. In future work, we
hope to explore additional model-counting heuristics such as bisecting the search
space rather than greedily covering it.

Extraction of Terms. The original Servois tool required users to provide
terms, sacrificing some degree of automation which is inconvenient and error-
prone. As described in Sect. 3, Servois2 now can automatically extract terms
from the method specifications. As shown in Table 1, denoted by TG, the auto-
mated term extraction can even outperform manually provided terms.
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Fig. 6. Experimental results on the scalability of general-purpose heuristics

In addition, by automatically extracting terms, our approach is another step
closer to a fully automated commutativity synthesizer—the user does not have
to do the manual work of providing terms. We believe that in conjunction with
comparable performance, this makes automated term extraction preferable.

Predicate Lattice. We also evaluated the performance using the predicate
lattice approach outlined in Sect. 3. In practice, we found that the overhead
of lattice construction using SMT queries was typically too high, and it did
not substantially improve synthesis time in most cases. When using syntactic
rules (using a preliminary set of inference rules and axioms), we did not dis-
cover enough implications to be useful in any cases, with still substantial, albeit
greatly reduced overhead. However, we did find that some LIA examples were
improved by using the SMT implication lattice. sum �� multiVarSum in particular
saw a 2.27× speedup from 8.36 s to 3.69 s, which is a substantial speedup even
accounting for the lattice construction time of 1.87 s. In multiVarA �� multiVarB,
the discovery of logically equivalent predicates filtered more than half of the ini-
tial list of predicates—from 280 (including negations of predicates) to 106. For
the complete results, see Table 2. While it remains unclear whether the predicate
lattice can be used for performance gains in most cases, the preliminary results
suggest that further work may yield larger gains in difficult cases.

Scalability. Consider the toy example below, where we have a possibly ordered
set described by x variables and we want to compute another element a that
can potentially be added to the set after applying a marginal decrement. In this
(somewhat artificial) example, the number of predicates increases (Fig. 6b) with
the number of variables, while the commutativity problem has a straightforward
solution: (b = 0) ∨ ((b �= 0) ∧ (a ≥ 0) ∧ (a − b ≥ 0)

∧n−1
i=1 (xi < xi+1)).
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Although mcMax shows promising results, due to reduced applicability to cases
where efficient model counting is supported, we did not consider it for this par-
ticular experiment. Our focus here is on general-purpose heuristics. Figure 6a
reports the results of our experiments running the heuristics simple (presented
in [14]), poke, and poke2 on the above example, with increasingly many vari-
ables (up to 30) and, consequently, increasingly many predicates. For the precise
ADT specification, refer to the “lia scale var template” file in the artifact or
Github provided in Sect. 1. We observe an impressive performance benefit from
the poke2 heuristic. Firstly, observe that starting from only a small number of
predicates, poke2 proved to be one order of magnitude faster than poke which
timed out early in our experiment. Secondly, the increase in the number of state
variables x is roughly linear with the increase of poke2 synthesis time. And lastly,
the poke2 heuristic led to synthesizing the utmost simple condition, namely the
one humanly inferred.

6.2 Case Study: commute Blocks in Veracity

To show Servois2’s applicability, we present the case study of its use in
the Veracity6 project [6], recalled below. The original Servois lacked features
(e.g. solvers, theories, early termination) and performance to be used in such a
setting. Despite the use of Servois2 in Veracity, the improvements described in
the current paper are orthogonal.

Veracity is a parallelizing compiler for a language in which programmers
directly express conditions under which sequential blocks of code commute [6].
Expanding programs with such commutativity annotations enables paralleliza-
tion of sequential code that has dataflow dependencies, which previously could
not be parallelized. We omit the finer details as it is outside the scope of com-
mutativity synthesis. Consider for example, the following Veracity benchmark
even-odd includes a commute statement, with a blank commutativity condition
to be synthesized (or provided by the user):

commute ( ) { { if(x%2==0) x:=x+y;} (1)
{ x:=x+y; } } (2)

Veracity needs Servois2 in order to synthesize the following commutativity con-
dition for these program fragments labeled (1) and (2): y = 0 ∨ (y �= 0 ∧ x%2 =

6 http://www.veracity-lang.org.

http://www.veracity-lang.org
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Table 3. A selected subset of Veracity benchmarks. (Times are in seconds.)

Program Time Inferred Conditions

dict 3.82 i != r && c + x != y || c + x == y

ht-simple 30.64 x + a != z && 3 == tbl[z] && y != z

loop-amt > 120 0 == i && amt == i pre && ctr - 1 > i pre && i pre <= amt && 0
!= i pre && i pre <= ctr && amt != amt pre && ctr - 1 > amt pre
&& amt pre <= amt && 0 != amt pre && amt pre <= ctr && ctr - 1
!= 1 && 1 != ctr && 1 != amt && 1 == ctr + amt || ... || amt ==
i && 1 == ctr && 1 != amt && 1 == ctr + amt

x + y). In more detail, Servois2 is used by first having the Veracity compiler
translate the program code into methods, say block1() and block2() on an ADT
whose state are the program variables x and y. Then, the synthesized commu-
tativity conditions are translated back and inserted in place of the “ ” in the
Veracity commute block. Unfortunately the original Servois’s limited support
for solvers/theories (as well as limited performance) prevents it from synthesiz-
ing a commutativity condition for this benchmark. The divergent behavior of
Servois on some benchmarks was a further impediment to its use in Veracity.

A few selected benchmarks are shown in Table 3. These benchmarks are illus-
trative of the different kinds of typical output from Servois2. Most cases were
similar to the dict example, terminating in a few seconds with a sensible result.
The ht-simple case takes more time. The condition is complete, but due to the
longer time, it may be worth terminating the algorithm early and only receiving
one or two of the disjuncts, especially if they cover the most common cases.
Finally, loop-amt is a case that is not amenable to commutativity inference and
it would be better to terminate sooner and allow the user to attempt a different
approach.

Unlike direct ADT benchmarks, those derived from Veracity programs
involve the composition of numerous effects and thus involve complex com-
mutativity conditions. Consequently, most of the Veracity benchmarks make
substantially more complex queries to Servois2 than the handwritten ADT
specifications. We thus used all of the Veracity benchmarks to test the different
configurations, as mentioned before and shown in Table 1.

New non-trivial benchmarks were manually translated into the Veracity
programming language. These were various combinations of functions from
the SmartContract/Auction, Solidity/StandardToken, and Solidity/PullPay-
ment source codes. Most of these new benchmarks perform better on the new
heuristic poke2 compared to the previously presented approach poke. Also, for
several of them, poke did not terminate, so we had to use the early termination
feature to synthesize the commutativity condition within a specific time frame.
For StandardToken, for example, after executing TransferForm �� Approve with
using poke and 120 s timeout, we get an incomplete condition; however, with
poke2, we can get a complete condition in about 10 s with a reasonable number
of atoms.
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7 Conclusion and Future Work

We have shown a more mature and performant method of automatically syn-
thesizing commutativity conditions in the Servois2 synthesizer. Our results
confirm what one might expect: that more advanced heuristics and better treat-
ment of predicates leads to overall performance improvement. Furthermore, we
have released a far more usable tool that has already been used in recent work [6]
and is ready to be integrated into other commutativity settings such as proof
methodologies [1–3] or distributed systems [9,11]. There are several directions
for future work in this space, discussed below.

Algorithmic Improvements. We saw great improvements in the performance of
the heuristic in keeping track of which predicates aligned with the commutative
(resp. non-commutative) case. The algorithm is currently agnostic to which con-
dition is being pursued, and it may be possible to tag such information in the
recursive calls, leading to similar improvements in performance. Furthermore, the
disjunctive nature of the algorithm may be amenable to parallelization. However,
it is unclear whether the actual reasoning is amenable to parallelization or if it
is not worth the overhead.

Extended Use of Model Counting. mcMax uses the model-counting solver
ABC [23], which targets string, LIA, and boolean constraints, but we could also
use other model counters with support for other theories. Approximate model
counters [24] are a promising avenue for handling model-counting queries across
additional theories, and the integration of such a model counter might lead to
further applicability of mcMax.

The mcMax heuristic provides one model counting heuristic to inform predicate
selection, but we hypothesize that additional heuristics might provide advan-
tages on different benchmarks, for example, by maximizing partitioning rather
than covering. Given the promising results of mcMax, we plan to pursue a more
extensive evaluation of model-counting heuristics.

Model counting might find an additional use in cases where our commuta-
tivity analysis terminates early. Using model counting, we can determine what
portion of the input domain is covered by the resulting commutativity and non-
commutativity conditions, augmenting our analysis with additional reliability
information in cases of early termination. It also may be possible to use this
information to determine when to terminate.

Improving the Use of the Predicate Lattice. Our experiments indicate that the
overhead of lattice construction is significant. Thus for the lattice to be practi-
cal, one would need to both increase its performance benefit and decrease the
overhead from construction. Although Refine prunes predicates based on the
lattice, none of the current heuristics use information about implication chains,
and there may be even more gains to be had by using lattices. There are also
more sophisticated approaches to building the lattice data structure of logical
implications, such as by using the framework GreenTrie [25]. The number of
queries can be greatly reduced through semantic reasoning and caching of sub-
formulas. This could greatly reduce the overhead of lattice construction, thus
making their use more appealing.
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Abstract. We present StHorn, a novel technique for solving the satis-
fiability problem of CHCs, which works lazily and incrementally and is
guided by the structure of the set of CHCs. Our technique is driven by
the idea that a set of CHCs can be solved in parts, making it an easier
problem for the CHC-solver. Furthermore, solving a set of CHCs can
benefit from an interpretation revealed by the solver for its subsets. Our
technique is lazy in that it gradually extends the set of checked CHCs, as
needed. It is incremental in the way it constructs a solution by using sat-
isfying interpretations obtained for previously checked subsets. In order
to capture the structure of the problem, we define an induced CHC hyper-
graph that precisely corresponds to the set of CHCs. The paths in this
graph are explored and used to select the clauses to be solved.

We implemented StHorn on top of two CHC-solvers, Spacer and
Eldarica. Our evaluation shows that StHorn complements both tools
and can solve instances that cannot be solved by the other tools. We con-
clude that StHorn can improve upon the state-of-the-art in CHC solving.

Keywords: Constrained Horn Clauses · CHC-SAT · Verification

1 Introduction

Constrained Horn Clauses (CHCs) is a fragment of First Order Logic (FOL) that
has gained much attention in recent years. One main reason for the rising interest
in CHCs is the ability to reduce many verification problems to satisfiability of
CHCs [5,7,11,17,18,20,25,33]. For example, program verification can naturally
be described as the satisfiability of CHCs modulo a background theory such as
Linear Integer Arithmetic [7]. CHC-solvers can be used as the back-end for a
variety of verification tools [15,19,27,30], separating the generation of verifica-
tion conditions from the decision procedure that determines their correctness.

In this paper we present StHorn, a novel, structure-guided, lazy and incremen-
tal technique for solving the satisfiability problem of CHCs modulo a background
theory. Our technique is driven by the idea that a set of CHCs can be solved
in parts, making each sub-problem easier to solve. Furthermore, solving a set
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of CHCs can benefit from satisfying interpretations, which are revealed when
handling its subsets.

StHorn uses an existing CHC-solver [12,14,23,24,28,34] as a “black-box”.
Given a set of CHCs Π, it chooses a subset of CHCs and tries to solve it using the
existing CHC-solver. If it finds that the subset is unsatisfiable, then it concludes
the entire set of CHCs is unsatisfiable. Otherwise, if a satisfying interpretation
is found, StHorn extends the subset of CHCs, adapts the satisfying interpreation
to be consistent with the new extended subset, and reinvokes the CHC-solver
on the extended subset of CHCs. This process continues iteratively until either
a subset is found to be unsatisfiable, or a satisfying interpretation is found for
the entire set of CHCs Π.

There are three pillars to StHorn: (i) the structure-guided selection of CHC
subsets to be processed; (ii) the incremental usage of satisfying interpretations
when solving the different subsets of CHCs; and lastly (iii) the lazy processing of
CHCs only when needed (when none of the processed subsets is unsatisfiable).

In order to capture the structure of the problem, we define an induced CHC
hypergraph that precisely corresponds to the set of CHCs and depicts the depen-
dencies between them. We present an algorithm for finding the shortest nontrivial
hyperpath in the graph. This algorithm is used for selecting the CHC subsets to
be solved, resulting in minimal clause addition at each iteration. Our selection
strategy is based on the understanding that solving small subsets is often easier
and can be advantageous to the overall solution.

To be incremental, StHorn maintains an interpretation that is injected into
the CHC-solver as a starting point at each iteration, enabling the solver to search
in a reduced state space. When a subset of CHCs is extended, it must be ensured
that the existing satisfying interpretation is consistent with the extended subset.
To this end, StHorn implements an amending procedure, which receives a set of
CHCs and an interpretation, which might not satisfy all of them, and amends
the interpretation such that it becomes consistent with the extended subset.

The combination of the choice of the examined subsets and the way in which
the interpretation is amended defines how StHorn guides the search for a satis-
fying interpretation. Intuitively, StHorn guides the search based on the structure
of the CHCs as reflected by the induced CHC hypergraph.

We implemented StHorn on top of two CHC-solvers: Spacer [28] and Eldar-
ica [24]. For evaluation, we used the CHC-COMP’22 [13] benchmarks, and com-
pared StHorn against Spacer and Eldarica. Our evaluation shows that StHorn
complements both tools and can solve instances that cannot be solved by the
other tools. We conclude that StHorn can improve upon the state-of-the-art in
CHC solving.

The main contributions of this work are as follows:

– We develop an efficient technique for solving CHCs, which considers the struc-
ture of the CHCs during the search for a solution.

– The search for a solution is done incrementally, based on interpretations
learned in previous iterations.
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– We implemented a generic framework that can be used with any existing
CHC-solver. In addition, we implemented two instances of StHorn: one using
Spacer and the other that uses Eldarica and evaluated their performance.
Our implementation is open-source and publicly available.

2 Preliminaries

We consider first-order logic (FOL) modulo a background theory T and denote
it by FOL(T ). We adopt the standard notation and terminology, where FOL(T )
is defined over a signature Σ that consists of constant, predicate and function
symbols, some of which may be interpreted by T . The set of uninterpreted
predicate symbols in Σ is denoted by P. From now on, we fix the background
theory T .

A p-formula is an application of the form p(t1, . . . , tn) for some predicate
symbol p ∈ P and first-order terms ti. Given a set S of symbols, a formula
ϕ is S-free if no S symbols occur in ϕ. We write ϕ[X] for a formula ϕ with
free variables X. We use � and ⊥ to represent the constant symbols True and
False, respectively.

2.1 Constrained Horn Clauses

Definition 1. A Constrained Horn Clause (CHC or clause) is a FOL formula
π of the form ∀X.(B[X] → H[X]), where

– H[X], denoted head(π), is either a p-formula for some p ∈ P, or is P-free.
– B[X], denoted body(π), is a formula either of the form ψ1∧· · ·∧ψk ∧ϕ or ϕ,

where each ψi is a p-formula for some p ∈ P, and ϕ is a P-free constraint.

A clause is called a query if its head is P-free; otherwise, it is called a rule.
A rule with P-free body is called a fact. A clause is linear if its body contains at
most one predicate symbol from P; otherwise, it is non-linear. We refrain from
explicitly adding the universal quantifier when the set of variables is clear from
the context.

A set of CHCs Π is satisfiable if there exists an interpretation of the unin-
terpreted predicate symbols in P such that each CHC π in Π is valid under the
interpretation (modulo T ). CHC-solvers attempt to determine the satisfiability
of a set of CHCs by searching for a satisfying interpretation that is definable in T .
Such an interpretation is called a T -interpretation. Formally, a T -interpretation
I associates every p ∈ P with a P-free formula I(p) over the signature Σ of
FOL(T ). Given a CHC π and a T -interpretation I, we denote by I(π) the for-
mula obtained after substituting every p-formula that occurs in π with I(p). A
T -interpretation I satisfies a CHC π, denoted I |= π, if I(π) is valid (modulo
T ). A T -interpretation I satisfies a set of CHCs Π, denoted I |= Π, if I |= π
for every π ∈ Π. Note that, if there exists a satisfying T -interpretation for Π,
then Π is satisfiable. The converse, however, may not hold due to the limited
expressiveness of FOL(T ). Henceforth, we will only consider T -interpretations
and refer to them simply as interpretations.
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Definition 2 (The CHC-SAT Problem). Given a set of CHCs Π, determine
whether Π is satisfiable.

Note that, if Π is unsatisfiable, then there exists a refutation (a proof of
unsatisfiability) in the form of a ground derivation of ⊥ [8]. Along with deter-
mining whether Π is satisfiable, we are often interested in finding a solution to
it. A solution for a set of CHCs Π is either a satisfying interpretation, when Π
is satisfiable, or a ground refutation, when Π is unsatisfiable.

Finally, for a FOL formula ψ, we denote by Pψ the set of all uninterpreted
predicate symbols that occur in ψ. Given a set of FOL formulas Ψ , PΨ denotes
the set

⋃
ψ∈Ψ Pψ. Note that an interpretation for Π is defined over PΠ .

Example 1. As an example, consider the following schematic set of CHCs over
the set {p1, p2, p3, p4} of uninterpreted predicate symbols:

� → p1(x) (1)
p1(x) ∧ ϕ2(x, y) → p2(x, y) (2)
p1(x) ∧ ϕ3(x, z) → p3(z) (3)

p1(x) ∧ p1(y) ∧ p3(z) ∧ ϕ4(x, y, z) → p4(x, y) (4)
p4(x, y) ∧ ϕ5(x, y, z) → p2(x, z) (5)

p2(x, z) ∧ ϕ6(x, z) → ⊥ (6)

It consists of 5 rules (Clauses 1–5) and a query (Clause 6). Clause 1 is a fact and
Clause 4 is nonlinear, since it includes more than one predicate symbol in its
body. Note that, the predicate symbol p1 occurs twice in the body of Clause 4.
However, Pbody(4) is the set {p1, p3} (rather than a multiset), where repetitions
are ignored.

2.2 Hypergraphs and Hyperpaths

The definitions in this subsection resemble [1]. A directed hypergraph G = (V,E)
consists of a nonempty set of nodes V and a set of hyperedges E. A hyperedge
connects several source nodes to a single target node. It is represented by a pair
e = (S, t), where S ⊆ V is the (nonempty) set of source nodes of e, denoted
source(e) and t ∈ V is the target node of e, denoted target(e).

Definition 3 (Nontrivial Hyperpath). A nontrivial hyperpath in G =
(V,E) from a set of sources S ⊆ V to a target t ∈ V is a nonempty set of
hyperedges ES,t ⊆ E with the following property: the hyperedges in ES,t can be
ordered as a vector (e1, . . . , ek) where,

1. source(ei) ⊆ (S ∪ {target(e1), . . . , target(ei−1)}) for every ei in ES,t.
2. target(ek) = t.
3. There is no nonempty E′ ⊂ ES,t that satisfies 1 and 2.
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vinit vp1 vp3

vp4vp2verr

e1 e3

e2

e6

e4

e5

Fig. 1. A hypergraph example.

According to the above definition, a hyperpath must include at least one
hyperedge. We therefore refer to such hyperpaths as nontrivial. Note that a
hyperpath with an empty set of hyperedges (trivial hyperpath) is possible in [1],
however, in our context we do not consider such hyperpaths. In the sequel,
hyperpaths are always nontrivial.

Let ES,t be a hyperpath form S to t. Due to the minimality of a hyperpath
(condition 3 above), it holds that for every two different hyperedges ei, ej ∈ ES,t,
target(ei) �= target(ej). This and Definition 3 imply the following property.

Property 1. Let ES,t be a hyperpath form S to t and let (X, t) be the unique
hyperedge in ES,t leading to t. Then, ES,t can be written as follows:

ES,t = {(X, t)} ∪ (
⋃

x∈(X\S)

ES,x),

where for every x ∈ (X \S), ES,x is the hyperpath from S to x included in ES,t.

Next, we add weights to the hyperedges of a hypergraph G = (V,E). This
is done with a weight function w : E → N, which associates a non-negative
integer with each hyperedge. A weight function w for hyperedges can be lifted
to a weight function ŵ for hyperpaths, as follows.

Definition 4 (Weight Function for Hyperpaths). Let ES,t be a hyperpath
from S to t and let (X, t) be the unique hyperedge in ES,t leading to t. According
to Property 1, ES,t = {(X, t)} ∪ (

⋃
x∈(X\S) ES,x). The weight function ŵ for

ES,t is defined inductively in the following way:

ŵ(ES,t) = w((X, t)) +
∑

x∈(X\S)

ŵ(ES,x)

That is, the weight of a hyperpath is defined as the sum of the weight of its last
hyperedge with the weights of the hyperpaths leading to each of its sources.1

1 This weight function is called the traversal cost in [1]. For this weight function,
computing the shortest nontrivial hyperpath (see Sect. 4) is polynomial.
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Example 2. Consider the hypergraph in Fig. 1 and the hyperpath E{vinit},vp4
=

{e1, e3, e4}. Assume the weight function for each edge is the number of its sources:
w(ei) = 1 for each i �= 4 and w(e4) = 2. The weight of this hyperpath is

ŵ(E{vinit},vp4
) = w(e4) + ŵ(E{vinit},vp1

) + ŵ(E{vinit},vp3
)

= w(e4) + ŵ(E{vinit},vp1
) + (w(e3) + ŵ(E{vinit},vp1

))

= w(e4) + w(e1) + (w(e3) + w(e1)) = 2 + 1 + (1 + 1) = 5.

Notice that the weight of e1 is considered twice in the weight of E{vinit},vp4
since

e1 belongs to both E{vinit},vp1
= {e1} and E{vinit},vp3

= {e1, e3}.

3 Structure-Guided, Lazy and Incremental CHC Solving

In this section, we present StHorn - a structure-guided, lazy and incremental tech-
nique for CHC-solving. Given a set Π of CHCs, StHorn constructs a solution for
Π by iteratively examining a monotone sequence of its subsets. It starts by choos-
ing a subset of clauses Δ ⊆ Π, and iteratively adds clauses to it, as needed. If at
any point, the subset becomes unsatisfiable, StHorn halts and returns UNSAT.
Otherwise, if a subset of clauses is satisfiable, StHorn tries to extend the satisfy-
ing interpretation for the subset into an interpretation for Π in an incremental
fashion. To this end, StHorn maintains an interpretation I that is injected into
the CHC-solver as a starting point at each iteration, enabling the solver to search
for a solution within a reduced state space. In order for the solver to return a
sound solution when it is invoked to solve the current Δ, I must satisfy all rules
in Δ. The following definition captures this requirement.

Definition 5 (Rule-Satisfiability). Let Δ be a set of CHCs, and I be an
interpretation. I rule-satisfies Δ, denoted I |=r Δ, if I |= π for every rule
π ∈ Δ. Note that in this case, I may not satisfy some of the queries in Δ.

In what follows, we assume that the underlying used CHC-solver can receive
a set Δ of CHCs and an initial interpretation I for the predicates in PΔ. Further,
we assume that the solver returns a sound solution whenever I |=r Δ. We leave
the discussion on this assumption to the end of the section.

In Sect. 6.1 we show that, in fact, the StHorn technique can be implemented
on top of any existing CHC-solver. This includes solvers that cannot receive
initial interpretations for the predicates.

We start with a simple, high-level description of the technique. In the fol-
lowing sections, we go into the fine-grained details of the implementation. The
pseudo-code of StHorn appears in Algorithm 1. The specifications of the algo-
rithm and of its internal procedures are summarized in Fig. 2.

StHorn receives a set Π of CHCs. As mentioned, it maintains a subset of
clauses Δ ⊆ Π and an interpretation I that rule-satisfies Δ. StHorn starts by
calling Select (line 1) and initializing Δ to be some subset of Π (i.e., Δ ⊆ Π).
Next, it initializes the interpretation I of every uninterpreted predicate that
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Algorithm 1. StHorn(Π)
Input: A set Π of CHCs
Output: A solution to Π
1 Δ ← Select(Π, ∅)
2 I(p) ← �, ∀p ∈ PΔ

3 while � do
4 (res, I′, R) ← Solve(Δ, I)
5 if res = UNSAT then
6 return (UNSAT, −, R)
7 else � i.e., res = SAT
8 if Δ = Π then
9 return (SAT, I′, −)

10 else � i.e., Δ ⊂ Π
11 δ ← Select(Π, Δ)
12 Δ ← Δ ∪ δ
13 I ← Amend(I′, Δ, δ)
14 end if
15 end if
16 end while

occurs in Δ to � (line 2). Note that after initialization, I |=r Δ (see the proof
of Theorem 1).

StHorn then moves to the main loop (line 3). Every iteration begins by check-
ing the satisfiability of Δ by invoking the underlying CHC-solver with a call to
Solve (line 4). Consider the case in which Solve returns UNSAT and a ground
refutation R for Δ. Since Δ consists entirely of clauses from Π, R is also a
refutation for Π. Thus, StHorn returns UNSAT and R (line 6). Now, consider
the case in which Solve returns SAT and a satisfying interpretation I ′ for Δ. If
Δ is equal to Π, StHorn returns SAT and I ′ as the satisfying interpretation of
Π (line 9). Otherwise, Δ is a strict subset of Π. As a preparation for the next
iteration, Δ is extended and the interpretation is amended accordingly. First,
the method Select selects a set of fresh clauses δ from Π \ Δ (line 11) that are
added to Δ (line 12). We require that at least one clause is selected (i.e., δ �= ∅)
to guarantee progress. At this stage, I ′ may no longer be a rule-satisfying inter-
pretation with respect to the extended Δ. As a remedy, StHorn invokes Amend
(line 13), which modifies I ′ in order to make it rule-satisfying for Δ before the
subsequent call to Solve.2

Remark 1 (Termination of StHorn). In general, the CHC-SAT problem is unde-
cidable, so termination is not guaranteed. However, if every call to Solve made
by StHorn terminates, then StHorn terminates as well. The reason for this is the
requirement that Select must always return at least one fresh clause from Π.

2 The underlying CHC-solver may also return UNKNOWN. This case can be han-
dled similarly to the case where SAT is returned and is omitted for simplicity of
presentation.
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(res, I′, R) ← StHorn(Π)
Requires: �
Ensures: (res = SAT ⇒ I′ |= Π) and

(res = UNSAT ⇒ R is a ground refutation of Π)

(res, I′, R) ← Solve(Δ, I)
Requires: I |=r Δ
Ensures: (res = SAT ⇒ I′ |= Δ) and

(res = UNSAT ⇒ R is a ground refutation of Δ)

δ ← Select(Π, Δ)
Requires: Δ ⊆ Π
Ensures: δ ⊆ Π \ Δ and (Δ ⊂ Π ⇒ δ �= ∅)

I ← Amend(I′, Δ, δ)
Requires: δ ⊆ Δ and I′ |= Δ \ δ
Ensures: I |=r Δ

Fig. 2. Specifications for the StHorn Algorithm and its Procedures

Theorem 1 (Correctness of StHorn). Let Π be a set of CHCs given to
StHorn. If StHorn returns SAT (UNSAT), then Π is satisfiable (unsatisfiable).

Proof. First, we show that at every call to Solve, I |=r Δ. When Solve is
called for the first time, following the initialization of I, it holds that I(p) = �
for all p ∈ PΔ. Let π := p1 ∧ · · · ∧ pk ∧ ϕ → q be a rule in Δ. The formula
I(q), which is �, is implied by any other formula, and in particular, it is implied
by I(p1) ∧ · · · ∧ I(pk) ∧ ϕ. Therefore, I(π) is valid, i.e., I |= π. Accordingly,
I |=r Δ. In later iterations, Solve is called after Amend, which ensures I |=r Δ
as well. Therefore, the requirement in the specifications of Solve holds in every
invocation.

Assume StHorn returns SAT. From the definition of the algorithm, it follows
that Solve was invoked at the last iteration with Π, and that it returned SAT
and I ′. By the specifications of Solve, it is guaranteed that Π is indeed satisfiable
and that I ′, which is returned by StHorn, satisfies Π. Finally, assume StHorn
returns UNSAT. From the definition of StHorn, it follows that Solve was invoked
at the last iteration with a subset Δ ⊆ Π, and that it returned UNSAT and R.
By the specifications of Solve, it is guaranteed that Δ is indeed unsatisfiable
and that R, which is returned by StHorn, is a ground refutation for Δ. Since Δ
consists entirely of clauses from Π, R is also a ground refutation for Π. �

Requiring Rule-Satisfiablity. We require the CHC-solver to return a sound
solution, given a set of CHCs and a rule-satisfying interpretation. This is essen-
tial, since if there exists a rule that is not satisfied by the injected interpretation,
the solver may return an incorrect result. As an example, consider the following
unsatisfiable set Π of CHCs: {x = 0 → p(x), p(x)∧x = 0 → ⊥}. When given an
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interpretation that is not rule-satisfying, such as the one that maps p(x) to ⊥,
the CHC-solver might conclude that Π is satisfiable after examining the query
and observing that it is satisfied by the injected interpretation.

Rule-satisfiablity is also important in that, whenever a set of CHCs is sat-
isfiable, any rule-satisfying interpretation for it can be strengthened into a sat-
isfying one.3 For example, consider the following satisfiable set Π ′ of CHCs:
{x = 0 → p(x), p(x) ∧ x �= 0 → ⊥}. Π ′ is clearly satisfied by the interpretation
that maps p(x) to the formula x = 0. Now, consider the interpretation that maps
p(x) to x ≥ 0. While this rule-satisfying interpretation does not satisfy Π ′, as
it does not satisfy its query, it can be strengthened by the solver into the above
satisfying interpretation. Note also, that supplying the solver with this initial
interpretation narrows its search space, as otherwise it would have began with
the interpretation that maps p(x) to �.

4 Structure-Guided Selection of CHCs

Recall that a CHC is of the form p1 ∧ · · · ∧ pk ∧ ϕ → q (the variable vectors
are omitted for readability). For brevity, we denote such a clause by the triple
〈{p1, . . . , pk}, ϕ, q〉. Similarly, a fact and a query are denoted by 〈∅, ϕ, q〉 and
〈{p1, . . . , pk}, ϕ,⊥〉, respectively.4 It should be noted that a clause may contain
several occurrences of the same predicate symbol in its body (see, for example,
rule 4 of Example 1). For the purpose of guiding the CHC selection, it is sufficient
to refer to the predicates appearing in the clause body as a set rather than a
multiset. That is, repetitions of predicate symbols in the same body are ignored.
In what follows, Π is the given set of CHCs.

There are two key ingredients that affect the efficiency of StHorn: (1) the
choice of clauses to be examined at each iteration; and (2) the incremental con-
struction of the interpretation. The first task is performed by the procedure
Select, which we describe in this section. The second task is performed by the
underlying CHC-solver and the procedure Amend, which we describe in Sect. 5.

For capturing the structure of the problem, it is useful to model Π as a
directed hypergraph with parallel edges, whose vertices and hyperedges represent
the predicate symbols and clauses, respectively.

Definition 6 (Induced CHC Hypergraph). Let Π be a set of CHCs. The
induced CHC hypergraph of Π is a directed hypergraph GΠ = (VΠ , EΠ), where

VΠ = {vp | p ∈ PΠ} ∪ {vinit, verr}
EΠ = {({vinit}, vq) | 〈∅, ϕ, q〉 ∈ Π} ∪

{({vp1 , . . . , vpk
}, vq) | 〈{p1, . . . , pk}, ϕ, q〉 ∈ Π} ∪

{({vp1 , . . . , vpk
}, verr) | 〈{p1, . . . , pk}, ϕ,⊥〉 ∈ Π}

3 Strengthening can be achieved as follows: if I |=r Π and I′ |= Π then the interpre-
tation that maps every p ∈ PΠ to I(p) ∧ I′(p) satisfies Π.

4 We assume, w.l.o.g., that the head of a query is ⊥.
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There is a correspondence between the hypergraph (vertices and hyperedges)
and the set of CHCs (predicates and clauses). More precisely, a vertex vp ∈ VΠ

corresponds to the predicate p ∈ PΠ , and the vertices vinit and verr correspond
to � and ⊥, respectively. Also, an edge eπ ∈ EΠ corresponds to the clause
π ∈ Π.5 We assume that all the edges of the CHC hypergraph are on a hyperpath
from vinit to verr (see Definition 3). Otherwise, such edges can be removed from
the graph without changing the solution of Π.

Example 3. The hypergraph depicted in Fig. 1 is exactly the induced CHC
hypergraph for the set of clauses of Example 1. Note that, Clause 4 is repre-
sented by the hyperedge e4, whose set of sources is {vp1 , vp3}. As mentioned
above, for our algorithms, there is no need to remember the repetitions of the
predicate symbol p1 in the body of Clause 4.

The procedure Select is iteratively called by StHorn in order to select the
subsets Δ ⊆ Π to be examined. For this purpose, it explores paths in the induced
CHC hypergraph. Our approach is aimed at finding a solution to Π lazily and
incrementally, so Select chooses small subsets of clauses that correspond to
shortest nontrivial hyperpaths in the graph. The proposed selection strategy is
based on the understanding that solving small subsets is often easier and can be
advantageous to the overall solution.

Recall that there is no restriction on the selected subsets, except that they
must include at least one fresh clause from Π to guarantee progress. Nevertheless,
we further require Select to produce only subsets in which all clauses are on
a hyperpath from vinit to verr. Otherwise, if there exists a node vp which is
not reachable from vinit, then there exists a trivial interpretation that assigns
⊥ to p. Similarly, if verr is not reachable from vp, then there exists a trivial
interpretation that assigns � to p.

We start by presenting the algorithm ShortNt for finding the shortest non-
trivial hyperpath from a set of sources U to each node in the graph. This algo-
rithm is a modification of the algorithm presented in [3,4], for finding the shortest
hyperpath in a directed, weighted hypergraph, from a given node to each of the
nodes in the graph. Our algorithm is different from the above in two ways. First,
the shortest path starts at a given set of source nodes U . Second, we search
for only nontrivial hyperpaths. That is, hyperpaths that consist of at least one
hyperedge.

Algorithm ShortNt, depicted in Algorithm 2, gets as input a hypergraph
G = (V,E), a weight function w : E → N and a source set U ⊆ V . It returns a
map Dist : V → N ∪ {∞}, which associates with each node v the weight of the
shortest, nontrivial hyperpath EU,v from U to v (i.e., ŵ(EU,v)). It also returns a
map Last : V → E∪{null}, which associates with each node v, the hyperedge e
on EU,v for which target(e) = v. If v is not reachable from U along a nontrivial

5 In fact, the induced CHC hypergraph may include parallel hyperedges originating
from two CHCs that differ only in their constraints. While we support such a case,
we omit it here for simplicity of presentation.
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Algorithm 2. ShortNt(G,w,U)
Input: A hypergraph G = (V, E), a hyperedge weight function w : E → N and a

source set U ⊆ V
Output: A map Dist : V → N ∪ {∞} and a map Last : V → E ∪ {null}

1 Count(e) ← |S|, ∀e = (S, t) ∈ E
2 Dist(v) ← ∞, ∀v ∈ V
3 Last(v) ← null, ∀v ∈ V
4 Q ← ∅
5 for all v ∈ U do
6 Visit(v)
7 end for
8 while Q �= ∅ do
9 v ← arg minu∈Q Dist(u)

10 Q ← Q \ {v}
11 Visit(v)
12 end while
13 return (Dist, Last)

Visit(v)
14 for all e = (S, t) ∈ E s.t. v ∈ S do
15 Count(e) ← Count(e) − 1
16 if Count(e) = 0 then
17 D ← w(e) + Σv∈(S\U)Dist(v)
18 if D < Dist(t) then
19 Dist(t) ← D
20 Last(t) ← e
21 Q ← Q ∪ {t}
22 end if
23 end if
24 end for

hyperpath, then the values Dist(v) = ∞ and Last(v) = null are returned.
Initially, Dist(v) = ∞ and Last(v) = null, for every v ∈ V (lines 2, 3).

In addition to Dist and Last, ShortNt maintains a map Count : E → N,
such that for each hyperedge e, Count(e) is the number of sources of e that
have not been visited so far. Count(e) is initialized to |source(e)| (line 1). It is
decremented by 1 whenever a source node of e is visited (line 15). Only when it
is set to 0, the hyperedge e is processed (lines 16–21). ShortNT also maintains a
set Q, which contains the nodes in V that are yet to be processed.

ShortNT first processes all source nodes v ∈ U (lines 5–7). It goes over
all edges e for which v is a source (line 14) and decrements Count(e). If
Count(e) is now 0, meaning that all its sources have already been visited, then
Dist(target(e)) and Last(target(e)) are updated. This is done when a shorter
hyperpath to target(e), containing e, is found. In this case, target(e) is added
to Q (lines 16–21). As long as Q is not empty, a node v with minimal Dist(v)
is removed from Q and is processed (lines 8–11).

Remark 2 (Complexity of ShortNt). By a similar argument to the correctness
proof of Dijkstra’s shortest path algorithm, we can show that ShortNt inserts
every node to Q and processes it at most once. Consequently, the algorithm is
polynomial in the size of the hypergraph.

Lemma 1 (Correctness of ShortNT). Given a graph G = (V,E), a weight
function w and a source set U , then for every node v ∈ V reachable from U ,
ShortNT returns Dist(v) and Last(v) so that Dist(v) is the weight of the short-
est, nontrivial hyperpath EU,v from U to v, and Last(v) is the edge e in EU,v

such that target(e) = v.
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Algorithm 3. Select(Π,Δ)
Input: A set Π of CHCs and a subset Δ ⊆ Π
Output: A subset δ ⊆ Π \ Δ such that δ �= ∅ if Δ ⊂ Π
1 let GΠ\Δ = (VΠ\Δ, EΠ\Δ)
2 Reach ← {vp ∈ VΠ\Δ | p ∈ PΔ}
3 w(e) ← |S|, ∀e = (S, t) ∈ EΠ\Δ

4 (Dist, Last) ← ShortNt(GΠ\Δ, w, {vinit} ∪ Reach)
5 v ← arg minu∈Reach∪{verr} Dist(u)
6 Opt ← {v}
7 δ ← ∅
8 while Opt �= ∅ do
9 let u ∈ Opt

10 Opt ← Opt \ {u}
11 if u /∈ ({vinit} ∪ Reach) then
12 e ← Last(u)
13 δ ← δ ∪ {π(e)}
14 Opt ← Opt ∪ source(e)
15 end if
16 end while
17 return δ

Next, we describe the procedure Select, given in Algorithm 3. It gets as input a
subset of clauses Δ ⊆ Π and explores the graph GΠ\Δ. It returns a set δ ⊆ Π\Δ,
which is nonempty if Δ is a strict subset of Π. Select starts by initializing a set
of nodes Reach, which consists of all nodes in GΠ\Δ, corresponding to predicate
symbols that appear in Δ (line 2). Next, it sets the weight of each hyperedge
to the number of its sources (line 3). It now computes Dist and Last by calling
ShortNt on the graph GΠ\Δ, with weights w as defined above, and the set of
sources {vinit} ∪ Reach (line 4). Note that, any node in the graph originating
from the previously processed set Δ is now a source for ShortNt.

From all shortest paths computed by ShortNt, Select chooses the shortest
among those whose final target is a node v in either Reach or {verr} (line 5).
Thus, the chosen path EH,v starts at H = {vinit} ∪ Reach and ends in v ∈
({verr} ∪ Reach). In lines 6–16, the chosen path is traversed backwards from
v, producing the set of hyperedges on it and accumulating their corresponding
clauses in δ (line 13). Note that, π(e) in line 13 returns the clause corresponding
to the hyperedge e.

Lemma 2 (Correctness of Select). Given a set Π of CHCs and a subset
Δ ⊆ Π, Select returns a subset δ ⊆ Π\Δ, which is nonempty if Δ ⊂ Π.

5 Ensuring Rule-Satisfiability

In this section, we describe the procedure Amend. First, we describe a simplified
version of the procedure, and then present two modifications that can enhance
its performance (Sects. 5.1 and 5.2).
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Algorithm 4. Amend(I ′,Δ, δ)
Input: A set Δ of CHCs, a subset δ ⊆ Δ and an interpretation I′ that satisfies Δ \ δ
Output: An interpretation I that rule-satisfies Δ
1 I(p) ← I′(p), ∀p ∈ PΔ\δ

2 I(p) ← �, ∀p ∈ (Pδ \ (PΔ\δ))
3 Q ← {π ∈ δ | head(π) �= ⊥}
4 while Q �= ∅ do
5 let π = 〈X, ϕ, q〉 ∈ Q
6 Q ← Q \ {π}
7 (res, −, −) ← Solve({I(π)}, −)
8 if res = UNSAT then
9 I(q) ← �

10 Q ← Q ∪ {π′ ∈ Δ | q ∈ Pbody(π′) ∧ head(π′) �= ⊥}
11 end if
12 end while

Consider the StHorn algorithm again. At line 12, a subset δ of new clauses
from Π is added to Δ. At this point, it is no longer guaranteed that the current
interpretation I ′ rule-satisfies Δ. In order to maintain the correctness of StHorn,
I ′ must be modified before the next call to Solve. The modification of I ′ is
performed by the procedure Amend. The goal of Amend is to construct an inter-
pretation I such that I |=r Δ, while preserving as many parts as possible from
the existing interpretation I ′. This makes StHorn incremental when invoking
Solve, as it allows the CHC-solver to use previously learned information that
narrows the state space. In the worst case, predicates in I are reset back to �.

The pseudo-code of the procedure appears in Algorithm 4. Amend is given
a set Δ of CHCs, a subset δ ⊆ Δ, and an interpretation I ′ that satisfies all
clauses in Δ, except possibly the clauses in δ. The procedure constructs and
returns an interpretation I that rule-satisfies Δ. First, the interpretation of all
predicates that occur in the previous examined subset (Δ\δ) is initialized to the
current interpretation I ′ (line 1) and the interpretation of all fresh predicates
(i.e., predicates that occur in δ but not in Δ \ δ) is initialized to � (line 2). The
procedure maintains a set of clauses Q, consisting of all rules in Δ that might
not be satisfied by I. According to the specifications of the procedure, those
clauses are initially the rules in δ, so Q is initialized accordingly (line 3).

Amend then proceeds to its main loop (line 4). At each iteration, a clause
π = 〈X,ϕ, q〉 is removed from Q (lines 5–6). Then, in order to check whether
I |= π, a new CHC-SAT problem consisting of a single clause I(π) is constructed
and sent to Solve (line 7). As I(π) does not contain any uninterpreted predicate
symbol, no initial interpretation is injected into the solver. If I |= π, then nothing
has to be done and a new iteration begins. Otherwise, the interpretation of the
head predicate q is reset to � (line 9). After weakening the interpretation of q,
I may no longer satisfy all rules in Δ where q is one of the body predicates.
Therefore, any such rule is added to Q (line 10), and the forward amendment
process continues.
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Remark 3 (Termination of Amend). During the execution of Amend, a rule in
Δ is added to Q only if the interpretation of one of its body predicates is reset
to � (lines 9–10). For every predicate q ∈ PΔ, such a reset can occur at most
once, since afterward every rule with q as the head predicate is satisfied trivially.
Due to the above, and since every rule has a finite number of body predicates,
a rule is inserted into Q finitely many times. Therefore, if every call to Solve
during the execution of Amend terminates, then Amend terminates as well.

Lemma 3 (Correctness of Amend). Let Δ be a subset of CHCs, δ be a subset
of Δ, and I ′ an interpretation that satisfies Δ \ δ. Then, if Amend terminates on
Δ, δ and I ′, it returns an interpretation I that rule-satisfies Δ.

Proof. Let π = p1 ∧ · · · ∧ pk ∧ ϕ → q be a rule in Δ. Let n be the number of
iterations that the main loop of Amend was executed and 
 be the last iteration
in which π was removed from Q. We denote by Ij the interpretation after the
j-th iteration of the loop. We will show that In |= π, i.e., that In(p1) ∧ · · · ∧
In(pk) ∧ ϕ ⇒ In(q).

Consider the case in which 
 = 0. In this case, π was never added to Q during
the execution of Amend. First, we claim that In(pi) = I0(pi) for 1 ≤ i ≤ k. This
holds, because, if there existed an iteration in which the interpretation of some
pi was changed (line 9), then π would have been added to Q (line 10). Moreover,
by the initialization of I and Q (lines 1 and 3), we have that I0 agrees with I ′

on all predicates in PΔ\δ and that π ∈ Δ \ δ. Therefore, since it is required that
I ′ |= Δ \ δ, it holds that I0 |= π. Finally, because the interpretation of every
predicate may only be weakened in Amend, for every j1 < j2 and r ∈ PΔ it holds
that Ij1(r) ⇒ Ij2(r). Therefore, I0(q) implies In(q). To summarize, we have:

In(p1) ∧ · · · ∧ In(pk) ∧ ϕ ≡ I0(p1) ∧ · · · ∧ I0(pk) ∧ ϕ ⇒ I0(q) ⇒ In(q)

Now, consider the case in which 
 > 0. Similarly, we establish the following:

In(p1) ∧ · · · ∧ In(pk) ∧ ϕ ≡ I�(p1) ∧ · · · ∧ I�(pk) ∧ ϕ ⇒ I�(q) ⇒ In(q)

Here, the first implication holds since when a CHC is removed from Q, it is
either satisfied by the current interpretation, or the interpretation of its head
predicate is set to true. Thus, In |= π as needed. �

In the remainder of the section, we describe two modifications to Amend aimed
at extracting and preserving more information from the amended interpretation.

5.1 Exploiting Conjunctive Interpretations

The first modification to Amend exploits the shape of the interpretation formulas.
Many solvers operate on formulas in the form c1 ∧ · · · ∧ cn (e.g. Conjunctive
Normal Form). Recall that Amend checks whether I |=r Δ after the addition of
new clauses from Π. For every checked rule π = p1 ∧ · · · ∧ pk ∧ ϕ → q, it is
checked whether I(p1)∧ · · · ∧I(pk)∧ϕ → I(q) is valid. If I(q) is not implied by
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I(p1) ∧ · · · ∧ I(pk) ∧ ϕ, then I(q) is reset to �. After this update to I, it holds
that I |= π. However, all the information previously learnt regarding q is lost.
When I(q) is a conjunction formula c1 ∧ · · · ∧ cn, we can check each conjunct
separately, i.e., for every 1 ≤ i ≤ n we check whether I(p1)∧· · ·∧I(pk)∧ϕ → ci

is valid. Then, we remove from I(q) only the conjuncts ci that are not implied.
In the worst case, no conjuncts are implied, and I(q) is reset to �. In practice,
we can often retain significant parts of the interpretation using this approach.
After applying this optimization, rules in Δ might be inserted into Q additional
times. Nevertheless, since every conjunctive interpretation has a finite number
of conjuncts, each rule is still inserted into Q a finite number of times.

5.2 Extending Existing Interpretations

In this subsection, we introduce a preliminary step that, if successful, will elimi-
nate the need to run Amend. Before amending the interpretation, one can try
to extend I ′ for the fresh predicates (i.e., predicates in Pδ \ (PΔ\δ)). For
this, we construct a new CHC-SAT problem with the following set of CHCs:
δ′ = {I ′(π) | π ∈ δ ∧head(π) �= ⊥}. δ′ is created by substituting every non-fresh
predicate (i.e., every predicate in PΔ\δ) with its I ′ interpretation in every rule
in δ. All fresh predicates remain uninterpreted.

When Amend is invoked, it first constructs δ′ and calls Solve. If δ′ is satis-
fiable, I ′ is extended for the fresh predicates according to the satisfying inter-
pretation returned by Solve. In this case, Amend halts and returns the new
interpretation without further checks. Otherwise, if δ′ is unsatisfiable, Amend is
executed as before.

6 Implementation Details and Experimental Evaluation

6.1 Implementation Details

We implemented StHorn as an open-source generic framework in C++. In addi-
tion, we implemented two instances of StHorn: one using Spacer [28] through
the C++ API of Z3’s [32]. The other uses Eldarica [24] as a CHC-solver. For
the Eldarica instance we implemented a JAVA API for Eldarica (which is
implemented in Scala). Then, we used JNI in order to invoke Eldarica (through
the JAVA API we implemented) from our C++ framework. Our implementation
is available in https://github.com/omerap/StructuralHorn.

StHorn with Spacer: We denote this instance of StHorn as StHornS . Spacer is
based on IC3/PDR [9,23,28]. Satisfying interpretations are given in Conjunctive
Normal Form (CNF), and the Z3 API allows to pre-load interpretations for the
predicates appearing in the CHCs. This is done by adding conjuncts to a given
predicate. Adding “partial” interpretations to the predicates allowed us to use
Spacer incrementally seamlessly, without modifying the set of CHCs.

https://github.com/omerap/StructuralHorn
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StHorn with Eldarica: We denote this instance of StHorn as StHornE . In con-
trast to Spacer, Eldarica is based on Predicate Abstraction, Counterexample-
Guided Abstraction Refinement (CEGAR) and Interpolation. In addition,
Eldarica’s API does not enable to load an interpretation for a predicate.
Instead, it supports an incremental usage where solving can be invoked with
a substitution map such that predicates are completely substituted with a given
formula.

For using Eldarica in StHorn, we implemented a satisfiability-preserving
transformation for CHCs. Let Π be the set of CHCs. The transformation uses
additional predicates that are added in the following way. First, we add the set
PΠ

g := {pg | p ∈ PΠ} that consists of a ghost predicate for every predicate in Π.
Then, we add the set PΠ

en := {pπ | π ∈ Π} that consists of an enable predicate
for every clause in Π. While ghost predicates have the same arity as their original
counterparts, enable predicates have 0-arity (i.e., they are uninterpreted Boolean
constants). The new set of uninterpreted predicates is PΠ ∪ PΠ

g ∪ PΠ
en.

Next, the clauses are modified such that the enable predicate pπ is added (as
a conjunct) to the body of every clause π. Then, if the body of a clause contains
a p-formula p(t1, . . . , tn), where p ∈ PΠ , the pg-formula pg(t1, . . . , tn) is added
(as a conjunct) to the body as well. In this way, StHorn can use Eldarica’s
incremental API by supplying every call to the solver with a substitution map
that substitutes every ghost predicate with its current rule-satisfying interpreta-
tion, and using the enable predicates to control what subset of clauses is being
considered (in a similar manner to enable literals in SAT).

Remark 4. Importantly, while this transformation is satisfiability-preserving and
allows StHorn to use any CHC-solver (even one that is not incremental), it is
more limiting than what the Z3 API is allowing. The main reason is that using
this method can only result in strengthening of the rule-satisfying interpreta-
tion, since the given substitutions are not modified by the solver. Both Spacer
and Eldarica employ various optimizations that can help convergence. The
above transformation may interfere with such optimizations. As an example, by
employing “global guidance” [29], Spacer can generalize a set of lemmas that
are already present in an interpretation of a predicate (during its execution).
If we would have used the above transformation with Spacer, we would have
most likely interfere with this optimization.

6.2 Experimental Evaluation

In this section, we present our experimental results. We used the CHC-COMP’22
benchmarks [13], and compared StHorn against Spacer and Eldarica. The
comparison is done with respect to the corresponding instance. Namely, StHornS

against Spacer and StHornE against Eldarica. For the comparison we used
two categories: (1) linear clauses over the theory of Linear Integer Arithmetic
(LIA), and (2) non-linear clauses over the theory of LIA. Overall, there are 499
CHC instances for the linear CHCs, and 456 non-linear CHCs instances. All
experiments were executed on a workstation with AMD EPYC 74F3, a 24-Core
CPU. Every instance was given 900 s and 8 GB of memory.
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Table 1. Comparison of StHorn and Spacer

Benchmarks Tool Total SAT UNSAT Hard

Solved Time [s] Solved Time [s] Solved Time [s] Solved Time [s]

Linear CHCs Spacer 320 (7) 76.5 234 67.2 86 101.2 43 468.8

StHornS 322 (9) 67.4 234 63.4 88 78.2 45 411.2

portfolio 329 53.5 239 48.7 90 66.5 52 326.9

Non-Linear CHCs Spacer 386 (2) 60.4 276 48.8 110 88.1 68 265.4

StHornS 406 (22) 48.9 286 56.7 120 30.2 88 198.4

portfolio 408 23.8 287 30.6 121 7.7 90 100.3

In the case of Z3, to increase the reliability of the evaluation and demon-
strate that the results were not determined by random decisions made by Z3, all
experiments were executed with three different random seeds (a Z3 parameter),
and the results presented are an average of these runs.6

Table 1 and Table 2 summarize the experiments comparing StHorn with
Spacer and Eldarica, respectively. The tables present both the total number
of solved instances and the average run-time, as well as a distinction between
satisfiable and unsatisfiable instances. The reported average runtimes only con-
sider the instances that were solved by at least one of the tools (if both tools
report “unknown”, the instance is not counted). The numbers in brackets repre-
sent uniquely solved instances. In addition, both tables present results for hard
instances, which are instances where at least one of the tools required at least
60 s to solve. Lastly, the tables also present the results of a portfolio solver.
Namely, a solver that runs both variants simultaneously (StHornS and Spacer
for Table 1; StHornE and Eldarica for Table 2) and halts when one of them
terminates with a definitive result. In the following we analyze the results of
both tables, divided by linear and non-linear CHCs instances.

StHornS vs Spacer

Linear CHCs: In this category, StHornS solves two more instances than Spacer
and also performs better w.r.t. runtime (though the difference is not big). The
set of instances they solve are also different as StHornS solves 9 instances not
solved by Spacer, while Spacer solves 7 instances not solved by StHornS .

Non-Linear CHCs: On these instances, StHornS solves 20 more instances than
Spacer. As can be seen from the table, the average runtime is in favor of
StHornS . When further analyzing the results we discover that if one consid-
ers only unsatisfiable instances, not only StHornS solves more instances, it also
performs almost 3 times faster.

Portfolio: We also present the results for a portfolio solver that runs both
StHornS and Spacer simultaneously. From these results we see that the portfo-

6 We were not able to find such a parameter for Eldarica.
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Table 2. Comparison of StHorn and Eldarica

Benchmarks Tool Total SAT UNSAT Hard

Solved Time [s] Solved Time [s] Solved Time [s] Solved Time [s]

Linear CHCs Eldarica 226 (18) 140.2 156 98.9 70 220 40 532.7

StHornE 231 (23) 108.7 151 97.5 80 130.2 45 403.3

portfolio 249 65.6 164 50 85 95.6 63 239.5

Non-Linear CHCs Eldarica 325 (40) 74.5 198 81.5 127 63.2 134 156.4

StHornE 302 (17) 168.3 194 129.1 108 231.5 111 366.7

portfolio 342 27.3 211 19.1 131 40.5 151 53

lio solver shows a great improvement in runtime over each of the solvers alone,
in both categories. This shows that StHornS can complement Spacer.

StHornE vs Eldarica

Linear CHCs: StHornE performs better than Eldarica on the set of linear
CHCs as it solves more instances and performs better w.r.t. runtime. In addition,
the set of instances solved by each tool is different: StHornE solves 23 instances
not solved by Eldarica, while Eldarica solves 18 instances not solved by
StHornE . Analyzing the instances based on their satisfiability shows that the
biggest improvement is achieved on unsatisfiable instances (1.7 times faster).

Non-Linear CHCs: On these instances, however, Eldarica performs better
than StHornE , on both number of solved instances and average runtime. A more
detailed analysis of the results reveal that for StHornE , the time spent in the
Amend procedure is significant. This has a few reasons. First, the interpreta-
tions returned by Eldarica are not necessarily a set of conjuncts, which lim-
its StHornE ’s ability to retain parts of the satisfying interpretations returned
when analyzing a subset of clauses. Second, since Eldarica does not have an
API that allows “pre-loading” a rule-satisfying interpretation for a predicate,
we used a satisfiability-preserving transformation. However, this transformation
limits StHornE (see Remark 4) such that it can only “strengthen” the given
rule-satisfying interpretation when invoking Solve. Lastly, since StHornE makes
many calls to Eldarica through JNI, this imposes an overhead.

Portfolio: Despite all of the above, when considering a portfolio solver that
invokes both StHornE and Eldarica, performance improve quite significantly
both in the number of solved instances and runtime. This again shows that
StHornE can complement Eldarica and improve its performance.

Summary. Overall, StHorn solved more instances and had a faster runtime than
Spacer and Eldarica. One exception is the Non-linear category, where Eldar-
ica outperforms StHorn. StHorn, however, demonstrated substantial improve-
ments in the portfolio solver, both in the latter category and the rest, indicating
that it complements both tools by allowing them to solve new instances more effi-
ciently. In addition, our evaluation indicates a greater improvement for UNSAT
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instances, but also a promising improvement for SAT instances. It is therefore
evident that StHorn can improve upon the state-of-the-art in CHC solving.

7 Related Work

There is a large body of work on solving the CHC-SAT problem, with a
plethora of algorithms and tools that are based on different methods such
as IC3/PDR, interpolation, Counterexample-Guided Abstraction Refinement
(CEGAR), Predicate Abstraction, and Machine Learning [7,8,12,14,16,23,24,
28,34]. The technique presented in this paper, StHorn, is orthogonal to these
algorithms as it uses a CHC-solver as a “black-box”.

CHCs gained popularity in recent years since many program, and recently
hardware, verification problems can be reduced to the satisfiability of CHCs [7,
17,20,26,33]. Many program verification algorithms work by analyzing differ-
ent paths in the program separately, when trying to establish the correctness of
the whole program [10,21,22,31]. In this sense, StHorn draws its intuition from
path-sensitive verification algorithms. However, most program verification algo-
rithms that operate on paths consider bounded execution paths in the control
flow graph, while StHorn considers complete paths in the graph, that may include
loops. Intuitively, this is similar to analyzing complete fragments of a program
that include loops, without unrolling them explicitly. The closest work to ours
in this regard is [6] where complete fragments of a program (i.e., “path pro-
grams”) are considered. The usage, however, is quite different as they use “path
invariants” to eliminate spurious counterexamples in the context of CEGAR,
whereas we construct satisfying interpretations for CHC sets incrementally based
on interpretations of satisfiable subsets.

Hypergraphs have been suggested before in [2] for solving propositional Horn
formulas, in which the uninterpreted predicate symbols are Boolean. That is,
they can be assigned either � or ⊥. Given a propositional Horn formula, they
show how to maintain on-line information about its satisfiability during the
insertion of new clauses. Clearly, this is a different problem.

Lastly, StHorn uses a structure-guided heuristic for selecting the subsets to
be solved and tries to re-use information when analyzing different subsets. We
are unaware of a similar heuristic for prioritizing clauses during the search for a
satisfying interpretation.

8 Conclusion

In this work, we present StHorn, a technique for deciding the satisfiability of
a set Π of CHCs. StHorn handles monotonically larger subsets of Π, which are
selected based on its structure. The technique exploits a satisfying interpretation
obtained for one subset as a basis for solving subsequent subsets. We use a CHC-
solver as a “black-box”. Our evaluation shows that StHorn, when added on top of
Spacer, improves upon state-of-the-art. Moreover, it complements both Spacer
and Eldarica, allowing them to solve new instances more efficiently.
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Future research plans include: (i) designing domain-oriented selection strate-
gies; (ii) enhancing current (syntactic) strategies with semantic hints; and (iii)
integrating the technique natively into a CHC-solver, reducing the overhead
imposed by its API and further improving performance.
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Abstract. We consider the problem of hypersafety verification, i.e. of
verifying k-safety properties of a program. While this can, in principle,
be addressed by self composition, which reduces the k-safety verifica-
tion task into a standard (1−)safety verification exercise, verifying self-
composed programs is not easy. The proofs often require that the func-
tionality of every component program be captured fully, making invari-
ant inference a challenge. Recently, a technique for property directed self
composition (or, Pdsc) was proposed to tackle this problem. Pdsc tries
to come up with a semantic self-composition function, together with the
inductive invariant that is needed to verify the safety of the self-composed
program. One of its crucial limitations, however, is that it relies on users
to supply a set of predicates in which the composition and the invari-
ant may be expressed. It is quite challenging even for a user to supply
such a set of predicates – the set needs to be sufficiently expressive, so
that the invariant can be expressed using those predicates (and their
boolean combinations), but not overly expressive to increase the search-
space unnecessarily. This paper proposes a technique to automate Pdsc
fully, by discovering new predicates whenever the given set is found to
be insufficient. We present three different approaches for obtaining pred-
icates – relying on syntax-guided synthesis, quantifier elimination, and
interpolation – and discuss the strengths and limitations of these.

1 Introduction

A hypersafety or a k-safety property is a program safety property whose vio-
lation needs at least k program runs to be demonstrated. Determinism and
non-interference are common examples of such properties. A straightforward
way to transform a k-safety property into a usual (1-)safety property is self-
composition [7], in which k memory-disjoint copies of the program are composed
with each other. Since the copies are memory-disjoint, the composition may be
thought of as an asynchronous parallel composition in which all interleavings
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have the same behavior. Thus, a hypersafety property that holds in some inter-
leaving holds for all interleavings. A trace of such a composed program naturally
corresponds to an interleaving of k traces of the original program, and that is
how self-composition reduces a k-safety property to a safety property.

As a technique, self-composition is both sound and complete for k-safety [37].
It also allows us to use the rich literature that exists for verifying (1-)safety
properties. However, verifying self-composed programs is not an easy exercise.
For instance, if the programs are composed sequentially, proving properties may
often require that the functionality of every component be captured fully, and the
required invariants can be difficult to obtain even for very simple programs and
properties. Since all interleavings (or compositions) behave similarly, it helps to
shift the focus of the problem on finding one which is easy to prove correct [16,37].

A recent technique of property directed self composition [37] addresses this
problem by appealing to this very insight – that the way the copies are composed
determines how complicated it is to verify the composed program. Note that
since the copies are memory-disjoint, all compositions are safe if any one of
them is proved safe. Informally speaking, Pdsc attempts to find an easy-to-
prove composition and prove that it is safe. It comes up with a semantic self-
composition function, together with the inductive invariant that is needed to
verify the safety of the program composed according to that function. Since this
problem is undecidable in general, it is made tractable by fixing a language of
proofs, described by a given set of predicates and their boolean combinations,
and navigating the space of all possible compositions to see if one of them can
be proved safe by finding an inductive invariant in this language. The algorithm
relies on the property that a transition system has an inductive invariant in a
language of predicates (and boolean combinations) if and only if its abstraction
using those predicates is safe. Thus, by using predicate abstraction, Pdsc either
obtains an inductive invariant or is able to prove that none exists in the given
language.

Interestingly, 2-safety verification is closely related to the task of checking
equivalence of two programs. Program equivalence is an important problem
owing to its diverse applications, that include translation validation and compiler
correctness [22,27,29], code refactoring [33], program synthesis [4], hypersafety
verification [3,16,37], superoptimization [10,35], and programming and software
engineering education [24] amongst many others. Naturally, self-composition
offers a solution for this too, but verifying the composed programs can be quite
challenging. Consider, for example, two programs that sum all the numbers in
the range [1, n] – even if both the programs are iterating over the digits from
1 to n and adding it to the sum, a sequential composition of these two pro-
grams requires non-linear inductive invariants to establish equivalence. An ideal
composition in this case would be one where the program statements (or loop
iterations) are composed statement by statement, i.e. in lock-step. The property
itself, that the two sums are equal, becomes an inductive invariant of the lock-
step composition. Thus, Pdsc becomes a useful technique for addressing the
problem of program equivalence as well.
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An important caveat of Pdsc, however, is that it relies on users to supply a
set of predicates in which the composition and the invariant may be expressed.
It is quite challenging even for a user to supply such a set of predicates – the set
needs to be sufficiently expressive, so that the invariant can be expressed using
those predicates (and their boolean combinations), but not overly expressive to
increase the search-space unnecessarily. Therefore, it is crucial for the usefulness
of Pdsc that an automatic way of obtaining these predicates be devised and
developed. While there are techniques that can mine predicates (to construct
invariants) from program source [18–20,30], and Pdsc itself proposes to do this
in order to lessen the user-dependence, the necessary predicates may very often
be absent from the source code (our motivating example, for instance, in Sect. 2).
Another limitation of the Pdsc algorithm is that it only tries to find an invariant
that can establish the given k-safety property. If it fails in doing so, it does not
look for a counterexample (a refutation witness).

This paper proposes an algorithm that works on top of Pdsc, to i) automat-
ically enrich the set of predicates, when it realizes that the current set is insuf-
ficient, till a proof is derived, and ii) look for a counterexample when it cannot
obtain a proof with a given set of predicates, so that new predicates are added
only if a refutation witness can also not be derived so far. Though explained later
(in Sect. 3.4), the insufficiency of a given set of predicates emerges as an abstract
counterexample trace. This trace must be spurious if the property holds, and if
the property does not hold then it may correspond to an actual concrete coun-
terexample. Therefore, the purpose of new predicates is to capture the reason for
spuriousness. We have designed two different approaches to synthesize new pred-
icates, one that uses a counterexample-guided method of predicate refinement,
and another one that obtains them as interpolants from the infeasibility-proof
of the counterexample trace. For the first approach, we encode the task as an
abduction query, and solve it either using a Syntax-Guided Synthesis (SyGuS)
solver (with CVC4-1.8 [6]) or an SMT Solver (Z3 [13]). For the second one,
we compute interpolants using MathSAT5 [11]. An experimental comparison of
these techniques have been presented in Sect. 6.

The core contributions of this paper are:

1. An improvement of the Pdsc algorithm that not only makes it capable to
look for proofs as well as refutations, but also removes its user-dependence
and enables it to strengthen its proof language iteratively, on demand, in a
counterexample-guided way.

2. An implementation on top of Pdsc, with three different methods for deriving
new predicates – using a SyGuS solver, or an SMT solver, or an interpolat-
ing prover. And an experimental comparison of these on several hypersafety
verification and program equivalence benchmarks from the literature.

Outline of the paper. The rest of the paper is organized as follows. We start with
a motivating example in Sect. 2, and then move to the necessary background in
Sect. 3, which includes a description of the Pdsc algorithm that we build upon.
Section 4 talks about the challenges and the key contributions that we have made.
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We describe our algorithm in Sect. 5, and the details of our implementation and
experiments in Sect. 6. Section 7 discusses the related work, and Sect. 8 contains
our concluding remarks.

2 Motivating Example

Consider the example shown in Fig. 1(a) and (b). This is a benchmark from [37];
for ease of understanding, we have presented it as two separate programs, and
refer to the underlying 2-safety property simply as an equivalence check. The
task is prove that these programs compute the same output value, given the
same input. This is indeed true; both the programs take an integer x as input
and compute 2 ∗ x2, although differently. The first program (v1) goes through
the while loop 2x times, adding x to y each time. The second program (v2) goes
through the loop only x times, incrementing y by x each time, but doubles the
value of y before it returns.

A self-composition approach that does a sequential composition in this case
would require that both the programs be completely analyzed individually before
the outputs can be compared. For example, one needs to synthesize invariants for
loops in both programs separately, which in this case are non-linear expressions:
(0 ≤ z ≤ 2x)∧ y = x∗ (2x− z) and (0 ≤ z ≤ x)∧ y = x∗ (x− z), for the versions
v1 and v2 respectively.

dblSqr-v1(x){

y = 0;
z = 2 * x;

while (z > 0) {
z = z - 1;
y = y + x;

}

return y;
}

(a)

dblSqr-v2(x){

y = 0;
z = x;

while (z > 0){
z = z - 1;
y = y + x;

}

y = 2 * y;
return y;

}

(b)

Fig. 1. doubleSquare example, from [37]

An alternative approach could be to analyze their runs in an interleaved
fashion, up to selected “checkpoints” in each program. An advantage of using such
an interleaved composition for analysis is that the required invariants are likely
to be simpler because of the choice of the checkpoints as synchronization points
for interleaving. The checkpoints can be chosen where the outputs are expected
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to be behaviorally equivalent, or if not, then at least there is a linear relation
between them. For instance, for the programs shown in Fig. 1, the checkpoints
can be added such that the components synchronized after every two iterations
of the loop in v1 and one iteration of the loop in v2. If this happens, then at each
synchronization point the value of y in v1 will be double that of y in v2. After
the loop exit, before the programs return, since v1 does not run any instruction,
while v2 multiplies its copy of y by 2, it becomes evident – by only tracking
linear relation in the variables – that the programs are doing the same thing.

The technical challenge in this approach lies in finding good synchronization
points, or equivalently, a suitable composition, that has an easy-to-find safe
inductive invariant. An additional challenge lies in that the expressiveness of
the proof language (i.e., the one in which invariants have to be searched) is
dependent on the choice of the composition candidate. In the next section, we
will understand how the Pdsc technique addresses these concerns, and discuss
the limitations and challenges that lie ahead.

3 Background

3.1 Programs, Safety Properties, and Invariants

Similar to [37], we model a program as a transition system that defines its
behavior. A transition system is a tuple T = (S,R, F ), where S is a set of states,
R ⊆ S ×S is a transition relation that specifies an arbitrary step in an execution
of the program, and F ⊆ S is a set of terminal states such that every terminal
state s ∈ F has an outgoing transition to itself and no additional outgoing
transitions (terminal states allow us to reason about pre-post specifications of
programs).

An execution (or trace) of the program is given by a sequence of states
π = s0, s1, ... such that for every i ≥ 0, (si, si+1) ∈ R. An execution is called
terminating if its corresponding sequence has the suffix si, si, .. for some si ∈ F ,
and the terminating execution is said to end at si.

We denote the set of variables by V , and the transition relation by a formula
over V ∪ V ′ where post-states of transitions are over V ′. We use sets of states
and their symbolic representation via formulas interchangeably.

We consider safety properties defined via a (pre, post) pair, where pre and
post are formulas over V , representing sets of states. T satisfies (pre, post) if
every terminating execution of T that starts in a state that satisfies pre, ends at
a state that satisfies post .

An inductive invariant, for a transition system T and a safety property given
as (pre, post), is a formula Inv such that the following conditions hold.

(1) pre ⇒ Inv , (2) Inv ∧ R ⇒ Inv ′, (3) Inv ⇒ (F ⇒ post)

Inv ′ denotes the formula Inv with every variable replaced by its correspond-
ing primed version.
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It is noteworthy that any inductive invariant satisfies the first two conditions,
while the last condition holds only for an invariant that is sufficiently strong to
discharge the given safety property. We sometimes refer to such an inductive
invariant, one that satisfies all the three conditions above, as a safe inductive
invariant, and even as a safety proof.

A k-safety property refers to k interacting executions of T , and is also given
by a (pre, post) pair, except that pre and post are defined over V1
 . . .
Vk where
Vi denotes the ith copy of program variables. Naturally, pre and post represent
sets of k-tuples of program states, and a specific k-tuple of states (s1, . . . , sk)
in the k-cartesian product of S can be represented as a conjunction of formulas
over V1 
 . . . 
 Vk. A terminal k-tuple of states is one in which all individual
states are terminal, and a k execution is terminating if it ends at a terminal
k-tuple of states. T is said to satisfy a k-safety property (pre, post) if for every
k terminating executions that start in states s1, . . . , sk such that (s1, . . . , sk)
|= pre, it holds that they end at states t1, . . . , tk such that (t1, . . . , tk) |= post .

3.2 Abduction

Abductive inference [14] is a form of backward logical reasoning, to infer likely
hypothesis from a given conclusion. Formally, given an invalid implication Γ ⇒
φ, abductive inference finds a formula ψ such that Γ ∧ψ ⇒ φ is valid, and Γ ∧ψ
is satisfiable.

Note that φ is a trivial solution but it is not useful because it completely disre-
gards our existing knowledge (of Γ ). In this paper (as discussed later, Sect. 5.2),
we rely on SyGuS and SMT solvers for doing abductive inference.

3.3 Interpolation

Consider an unsatisfiable set of clauses which have been partitioned into two
sets, A and B. An interpolant [12] I for the pair (A,B) is a formula for which
the following hold:

– A ⇒ I
– I ∧ B is unsatisfiable
– I refers only to the common variables of A and B.

Such an interpolant, for first-order theories can be generated in linear
time [31] from the resolution proof of unsatisfiability (of A and B).

3.4 Property Directed Self Composition

Property directed self composition, or Pdsc, is a recent technique that combines
the search of invariants with that of a composition. It does this by fixing a
language of proofs, LP, described by a given set of predicates, P, and their
boolean combinations, and navigating the space of all possible compositions to
see if one of them has a proof in this language. Fixing the language not only
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makes the search tractable, it also allows Pdsc to rely on the property that a
transition system has an inductive invariant in LP if and only if its abstraction
using P is safe. Therefore, by using predicate abstraction, it is possible with
Pdsc to either obtain an inductive invariant in LP, or prove that none exists.

The way Pdsc navigates through the composition space is by defining a
composition function f : S k → P({1..k}), mapping each k-state to a non-empty
set of copies that are to participate in the next step of the self composed program.
This composition function is semantic, in that it does not necessarily depend
on what are the syntactic constructs used in the next step of the component
programs. This allows Pdsc to explore beyond syntactic compositions, which
may not always be possible or useful.

Given a composition function f , Pdsc creates a composed transition relation
T f = (Sk, Rf , F k), where the set of states consists of all k-states, the terminal
states are those in which all individual states are terminal, and Rf includes a
transition from (s1, ..., sk) to (s′

1, ..., s
′
k) if and only if f(s1, ..., sk) = M , and

(∀i ∈ M. (si, s
′
i) ∈ R) ∧ (∀i /∈ M. si = s′

i).
Intuitively, the composition function tells, for any state, what are the copies

that are scheduled to move next, and the composed transition relation ensures
that the components move as per their individual transition relation in the copies
that are scheduled to move, and not move at all in any other copy.

Algorithm 1. Property Directed Self Composition
1: Fblock ← ∅

� block compositions that cannot be proved safe
2: f ← lockstep
3: while true do
4: Tf = compose(f, T1, . . . , Tk)

5: ATf

P = abstract(Tf ,P)

6: (res, inv , cex ) = isBadReachable(ATf

P , pre, post)
� where bad is negated post

7: if (res = safe) then
8: return (f, inv)
9: else

10: Fblock ← Fblock ∪ {f} � block f to get rid of cex
11: if (not all compositions are blocked) then
12: f ← pickUnblockedComposition(Fblock)

� try a different, unblocked, composition
13: else
14: return (no proof in the language of P)

Algorithm 1 presents an overview of how Pdsc works. The composition is set
to lockstep in the beginning, and the composed transition relation is obtained
and abstracted with the given set of predicates. If the abstraction is found to be
safe, at any stage, the algorithm returns a composition-invariant pair; otherwise,
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the composition is modified and the process is repeated. If none of the compo-
sitions succeed, the algorithm concludes that no invariant, which is a boolean
combination of these given predicates, is inductive and safe. In other words,
either the language is not rich enough to capture a safety proof for any of the
compositions, or the program is not safe.

We have presented only a brief overview of the Pdsc algorithm, with the aim
of making this paper self-contained. We refer the interested readers to [37] for a
detailed discussion.

3.5 Revisiting Our Motivating Example

Let us recall the example shown in Fig. 1. We argued earlier that the loops in the
two programs may be synchronized such that for every two iterations of the loop
in the first one, we run only one iteration of that in the second one. This way
of composing the loops of the two programs gives us a simpler loop invariant:
y1 = 2∗y2. The way Pdsc arrives at this composition automatically is by fixing a
proof language, and then by searching among the possible compositions allowed
by the language.

Figure 2 shows the composition and the proof obtained automatically by
Pdsc, for our motivating example. Intuitively, Pdsc takes the input set of pred-
icates (defining the proof language), and uses it to construct abstract states for
every (consistent) combination of predicates and their negation. And then it
explores transitions, labelled by the program copies whose next statement/block
has to be executed, between these states to find a path to a final state where the
property holds (e.g. the rightmost state in Fig. 2). Clearly, the search depends on
the input set of predicates. For this example, Pdsc expects four predicates from
the user (without which it would not have been able to construct the three states
shown in Fig. 2 and discharge the proof): z1==2*z2, y1==2*y2, z1==2*z2-1, and
y1==2*y2+x2. Note that the predicates y1==y2 and x1==x2 are available as the
postcondition and precondition respectively, and thus need not be supplied exter-
nally.

z1==2*z2
y1==2*y2

x1==x2

z1==2*z2-1
y1==2*y2+x2

x1==x2

y1==y2

{v1}

{v1,v2}

{v2}

Fig. 2. Composition and proof obtained by Pdsc, for the example in Fig. 1
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4 Challenges and Contributions

We look at the important caveats of Pdsc– i) it works for finding proofs but
cannot detect real counterexamples, ii) it requires a set of predicates supplied
externally, and iii) it cannot make progress if the supplied predicates are found
to be insufficient to express a safe inductive invariant. The following key com-
ponents of our algorithm helps us overcome these limitations.

1. spuriousness checker, to obtain a real counterexample trace if the programs
do not satisfy the desired k-safety property (or, in our case, behave differently
for the same input)

2. predicate synthesizer, to eliminate spurious counterexample traces and to
enrich the language for finding safe invariants.

It is noteworthy that since Pdsc works by checking safety of an abstraction
of the composed transition relation, it may be possible to do the above by inter-
facing Pdsc with a predicate-abstraction engine that can supply the predicates
for refinement. However, interfacing with a black-box engine is not very useful
because these predicates define the language of proofs, which in turn, decides
the complexity of the composition-invariant search, and therefore it is important
to have control on their quality and quantity to get a scalable solution.

We describe our algorithm formally in the next section, along with the details
of the two components that we have added, and a proof that our algorithm works.

5 Algorithm

Algorithm 2 presents a pseudo-code of our approach, which enhances the original
Pdsc algorithm (shown in Algorithm 1) with the ability to synthesize predicates,
to strengthen the language of proofs whenever necessary. In particular, the pro-
posed enhancement is captured in lines 14-20, that i) returns the counterexample
(cex) generated in line 7 if it is indeed a feasible trace by using a spuriousness
check (lines 14 and 15), ii) adds a predicate to refine the counterexample if spu-
rious (lines 18 and 18), and iii) resets the composition space and restarts the
search from the lockstep composition (lines 19 and 20).

The next two subsections describe the two procedures – isSpurious and
synthesizePredicates – mentioned in the algorithm.

5.1 Spuriousness Check

The counterexample obtained in line 7 of Algorithm 2 is essentially a sequence
of abstract states that end in a bad state, i.e., a state that violates the post .
Each abstract state is defined by a valuation of all the predicates in P. Let us
denote this sequence of abstract states as: A0, A1, . . . , Abad. These states, in the
counterexample trace, are connected by a transition relation which is defined by
the transition relations of the component programs, and the current composition
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Algorithm 2. Pdsc with Predicate Synthesis
1: Fblock ← ∅

� block compositions that cannot be proved safe
2: f ← lockstep
3: while true do
4: Tf = compose(f, T1, . . . , Tk)

5: ATf

P = abstract(Tf ,P)

6: (res, inv , cex ) = isBadReachable(ATf

P , pre, post)
� where bad is negated post

7: if (res = safe) then
8: return (f, inv)
9: else

10: Fblock ← Fblock ∪ {f} � block f to get rid of cex
11: if (not all compositions are blocked) then
12: f ← pickUnblockedComposition(Fblock)

� try a different, unblocked, composition
13: else
14: if (isSpurious(cex ) is false) then
15: return (unsafe, cex )
16: else � cex is spurious
17: P′ ← synthesizePredicates(cex )

� new predicates that eliminate cex

18: P = P ∪ P′ � strengthen the language of proofs
19: Fblock ← ∅ � unblock the blocked compositions
20: f ← lockstep � restart, with lockstep composition

function. We start by taking a concrete initial state c0, a model of A0, and then
applying the transitions of the trace on c0 step by step. After taking the ith step,
it is checked that the concrete target state arrived at, let us call it ci, is actually
a model of the corresponding abstract state Ai. If this indeed holds all the way
up to Abad, then we have an actual counterexample trace. Otherwise, there must
be a transition 〈Ai, Tf , Ai+1〉 in the abstract trace that could not be taken by
the concrete state ci (i.e., ci+1 ∧ Ai+1 was unsat), where ci+1 is the concrete
state reached after taking Tf from ci, and Tf is the composed transition relation
as per the current composition function f .

Intuitively, this means that it is not possible to go from a part of Ai (that
part exists, because we know that ci belongs to it) to Ai+1 along the composed
transition relation. Therefore, in order to refine this spuriousness, it is necessary
to add a predicate that identifies the part. The goal of the synthesizePredicates
procedure is to find such a predicate.

5.2 Synthesizing Predicates from Counterexamples

We illustrate how a spurious transition of the form 〈Asrc, Tf , Atgt〉, where Tf

is the composed transition relation and Asrc and Atgt are the source and tar-
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get states, is blocked by doing a counterexample-guided abstraction refinement.
The problem of blocking a spurious transition is essentially a problem of logical
abduction [15], which works towards finding an explanatory hypothesis for a
desired outcome. The desired outcome here is that Atgt should not be reachable
along Tf from Asrc, but currently it is. In other words,

Asrc(V ) ∧ Tf (V, V ′) � ¬Atgt(V ′)

Therefore, we need to find a hypothesis, p(X), possibly over a subset of
variables, i.e. X ⊆ V , such that

p(X ⊆ V ) ∧ Asrc(V ) ∧ Tf (V, V ′) ⇒ ¬Atgt(V ′)

But, at the same time, it is important to discard trivial solutions – one that
uses the consequent itself as p, and another that makes the antecedent false.
Therefore, the abducer looks for a minimal (logically weakest) solution under
the condition that

p(X ⊆ V ) ∧ Asrc(V ) ∧ Tf (V, V ′) � ⊥
We use the following two ways to solve for p.

Using a SyGuS Solver. We encode these constraints directly into the SyGuS
input language [32], and use CVC4 [6] (version 1.8) to obtain a solution. SyGuS
allows an enumerative search strategy that leads to smaller predicates.

Quantifier Elimination Using Z3. A solution to the abductive inference
problem is given by

∀ ((V ∪ V ′) \ X). Asrc(V ) ∧ Tf (V, V ′) ⇒ ¬Atgt(V ′)

or, equivalently, by the negation of

∃ ((V ∪ V ′) \ X). Asrc(V ) ∧ Tf (V, V ′) ∧ Atgt(V ′)

We obtain a solution by quantifier elimination using Z3 [13]. Since we are
looking at the problem of predicate refinement, it is not necessary to negate the
solution (negating a predicate does not affect the expressiveness of our proof
language in any way).

Given an input program and a safety property specified as (pre, post), and
an initial proof language – defined by predicates that are needed to specify pre
and post and their boolean combinations – Algorithm 2 either terminates with a
proof, or a counterexample, or goes on enriching the language of proofs, in each
iteration making it provably more expressive than the earlier one. The algorithm
is not guaranteed to terminate, since the problem of finding the composition-
invariant pair is undecidable in general [37]. It can, in principle, terminate for
finite state systems, although with exponential complexity, since the set of pos-
sible composition-invariant pairs is itself finite for finite state systems. Note the
number of predicates is also finite in a finite-state systems.
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Theorem 1. The proposed refinement ensures progress, i.e., the predicate added
in every step, which is the solution of the abduction query, gets rid of the spurious
counterexample, and strictly strengthens the proof language.

Proof. It is easy to see that the refinement indeed removes the spurious coun-
terexample, because the queries given to SyGuS solver and to Z3 exactly encode
this constraint that the target should not be reachable from the source. We also
know that a solution certainly exists, because the concrete state corresponding
to the Asrc is itself a non-trivial solution.

To argue that the newly added predicate pn (say) strictly enriches the proof
language given by P = {p1, . . . , pn−1}, let us assume, on the contrary, that it does
not. In that case, pn can be written as a boolean combination of the predicates
in P. Since Asrc is also a boolean combination of predicates in P, they (Asrc and
pn) must either agree on all predicates in P or disagree on at least one of them.
The latter is not possible since this disagreement would mean that abduction
problem was solved trivially by falsifying the antecedent, however we know that
it is not true because trivial solutions are avoided. On the other hand, if they
agree on all the predicates {p1, . . . , pn−1} then Asrc ∧ pn is simply Asrc and the
spuriousness could not have been removed. Hence, a contradiction.

The soundness of our algorithm follows directly from the soundness of Pdsc.

5.3 Obtaining Predicates from Infeasibility Proofs

As described in Sect. 5.1, an abstract counterexample trace is a sequence of
transitions that begin at the initial abstract state and end at a bad state. Note
that the transitions in such a trace are labelled by program statements from
the two (or more) program copies/components. To check whether an abstract
trace is feasible, we can collect the program statements from the transitions of
the entire trace, and give it to a solver to check for satisfiability. This gives
us an alternate, more general way to check if the abstract counterexample was
spurious, independent of any concrete initial state.

If the solver returns sat, we get an actual counterexample trace as a model,
which demonstrates that the desired property fails to hold. However, if the solver
returns unsat, then the sequence interpolants [26] obtained from the infeasibility
proof (of the concrete trace) may be used as additional predicates to strengthen
the proof language. Although at this point it would be sound to add all the
interpolants as predicates to strengthen the proof language, it must be noted
that the search of a proof gets more and more difficult as the proof language
gets richer (because the number of abstract states is exponential in the number of
predicates, and Pdsc searches through the states to find a composition-invariant
pair). Therefore, there is a downside to making the proof language needlessly
expressive – the search of a composition-invariant pair will become considerably
harder in every iteration. A practical solution, naturally, is to add only a few
interpolants or even sub-expressions from what the prover gives us. In particular,
our implementation:
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– is parametrized to add at most p predicates each time (in our experiments,
we use p = 2)

– prioritizes expressions that relate variables that have not been related so far
in the existing set of predicates

– prioritizes adding shorter and logically stronger expressions.

Note that this approach is still sound, though we cannot guarantee now that
the newly added predicates necessarily remove the spurious counterexample.
Adding all the interpolants obtained from the infeasibility proof would certainly
eliminate the counterexample, but it will make the algorithm quite inefficient.
Our experiments support that the compromise of adding only a few interpolants,
or sub-expressions derived from them, is indeed very useful in practice.

6 Implementation and Experiments

6.1 Implementation

We have implemented our approach in a tool1, PdscSynth, which is built on the
Pdsc tool2. Like Pdsc, our input is a transition system encoded by Constrained
Horn Clauses (CHC) in SMT2 format, a correctness (k-safety) property, and a
set of predicates that specify the pre and post conditions. While Pdsc expects an
additional set of predicates (that may be mined automatically from the program
syntax, or supplied manually), PdscSynth gets them automatically, lazily on
demand, by doing:

1. Syntax-Guided Synthesis, using CVC4 [6], version 1.8
2. Quantifier Elimination, using Z3 [13], version 4.8.9, and
3. Craig Interpolation, using MathSAT5 [11], version 5.6.6.

In CVC4, we use restrict ourselves to Linear Integer Arithmetic (which is
what our benchmarks are also restricted to), and use the default grammar that
CVC provides for LIA. The variables and the constants for the grammar come
from the program. Quantifier elimination is performed using the recursive QSAT
technique [8], available in Z3 tool.

6.2 Benchmarks

An interesting use-case of 2-safety verification is automated evaluation of pro-
gramming assignments which may be done by checking equivalence between a
submitted program and a reference solution. With this in mind, we have used
9 programming assignments samples in our experiments, derived from [24]. In
addition, our benchmarks consists of 7 examples derived from [37], and 3 crafted
examples. Each benchmark consists of two component programs (that may be
copies, or syntactically/semantically different programs), and the correctness
1 Artifacts available at: https://github.com/Akshatha-Shenoy/PdscSynth.
2 https://bitbucket.org/sharonsh/pdsc/src/master/.

https://github.com/Akshatha-Shenoy/PdscSynth
https://bitbucket.org/sharonsh/pdsc/src/master/
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property is stated as a set of pre- and post-conditions. Intuitively, we check the
equivalence property for all the benchmarks, except in case of squareSum where
the components compute the sum of squares of integers in a given interval, and
the property is that a bigger interval leads to a bigger sum.

We call a benchmark safe if the composed programs in the benchmark satisfy
the given correctness property, and unsafe otherwise. Since the sample program-
ming assignment solutions include correct as well as incorrect solutions, we have
6 unsafe benchmarks and 3 safe ones. The benchmarks derived from the Pdsc
paper are all safe, and we got them by deleting all the manually supplied pred-
icates (excluding those predicates that are necessary to specify the pre- and
post-condition). For the doubleSquare benchmark, we also created instances of
varying difficulty by retaining some of the manually supplied predicates. The
crafted benchmarks were obtained from two different programs: one that sums
all numbers from 1 to n (a safe and an unsafe version), and another one that
increments two equal numbers by different values and then decrements them by
the same value to get equal numbers in the end again (safe version).

6.3 Results

We ran PdscSynth on all the 19 benchmarks described above. Table 1 shows
the results of our experiments. The columns SyGuS, QE, and Interpolation con-
tain, except in case of timeouts, two comma-separated entries – the number of
predicates synthesized on the left, and the time taken to produce a proof (or a
counterexample) on the right. The letters ‘m’ and ‘s’ denote minutes and sec-
onds, respectively. The experiments were run on an Intel i5 machine running at
1.70GHz, with 16 GB of RAM. The ‘timeout’ indicates that the technique could
not decide the benchmark within 10min.

It is noteworthy that interpolation was able to produce the desired predicates
in every case. The time taken and the predicates added by the interpolation
technique confirm that the technique was effective (in its selection of predicates
to add, so that the proof language becomes richer but not needlessly expres-
sive). In several unsafe benchmarks (fig4_1, fig4_2, subsume_1, subsume_2
and puzzle_1), interpolation needed fewer predicates in comparison to QE and
SyGuS. This is because with SyGuS and QE, we check the spuriousness of one
concretization of the abstract trace at a time, unlike in case of interpolation
where all possible concretizations are checked at once. Thus, interpolation adds
a predicate only when none of the concretizations of an abstract trace is feasi-
ble. Whereas, QE and SyGuS may add a predicate needlessly even though the
current abstract trace has a feasible concretization (which hasn’t been looked at
yet).

The quantifier elimination with Z3 was also able to get the necessary and
sufficient predicates in a larger number of cases (in particular, where SyGuS
could not scale). For the examples where SyGuS also worked, it almost always
got smaller predicates than QE, though not necessarily fewer in numbers (for
sum_pc, SyGuS had to synthesize four more predicates as compared to quan-
tifier elimination, whereas for inc_dec SyGuS managed with two predicates
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lesser). The quantifier elimination with Z3 performed quite well in comparison
to interpolation as well, solving all the benchmarks except halfSquare and most
of doubleSquare variants. However, the proofs generated with QE were often
quite big, as the technique obtained predicates that were much bigger in size
compared to SyGuS and Interpolation.

Table 1. No. of predicates synthesized, and the time taken by SyGuS (Syntax-Guided
Synthesis, using CVC4-1.8), QE (Quantifier Elimination, using Z3 4.8.9), and Interpo-
lation (using MathSAT5 5.6.6), and a comparison with LLRÊVE on our benchmarks

S. No. Benchmark Source Safe/Unsafe SyGuS(#pred, time) QE (#preds, time) Interpolation (#preds, time) LLRÊVE

1. sum_to_n crafted safe timeout 8, 1 m 32 s 3, 17.36 s 0.056 s
2. sum_to_n_err crafted unsafe 0, 0.34 s 0, 0.77 s 0, 1.43 s 0.069 s
3. inc_dec crafted safe 2, 9.15 s 4, 20.95 s 3, 13.95 s unknown
4. squareSum cav19 safe 0, 0.66 s 0, 1.14 s 0, 1.67 s –
5. sum_pc cav19 safe 5, 1 m 32 s 1, 13.58 s 4, 1m28s unknown
6. fig4_1 icse16 unsafe 1, 3.65 s 2, 7.16 s 0, 2.26 s 0.038 s
7. fig4_2 icse16 unsafe 1, 3.86 s 2, 7.24 s 0, 2.27 s 0.067 s
8. fig4_ref_ref icse16 safe 0, 0.11 s 0, 0.58 s 0, 0.96 s 0.044 s
9. subsume_1 icse16 unsafe timeout 3, 7.88 s 0, 2.20 s 0.041 s
10. subsume_2 icse16 unsafe timeout 2, 5.22 s 0, 2.24 s 0.061 s
11. subsume_ref_ref icse16 safe timeout 1, 3.9 s 8, 24.48 s 0.051 s
12. puzzle_1 derived from icse16 unsafe timeout 4, 26.8 s 2, 9.04 s 0.040 s
13. puzzle_2 derived from icse16 unsafe timeout 8, 2 m 31 s 8, 4 m 7 s 0.029 s
14. puzzle_ref_ref derived from icse16 safe timeout 2, 10.33 s 1, 5.73 s 0.061 s
15. halfSquare cav19 safe timeout timeout 3, 6 m 9 s unknown
16. doubleSquare_1 derived from cav19 safe timeout timeout 11, 3 m 42 s timeout
17. doubleSquare_2 derived from cav19 safe timeout timeout 10, 3 m 14 s timeout
18. doubleSquare_3 derived from cav19 safe timeout timeout 7, 1 m 50 s timeout
19. doubleSquare_4 derived from cav19 safe 4, 1 m 19 s 9, 3 m 26 s 1, 17.12 s timeout

6.4 Performance on Our Motivating Example

Let us recall our motivating example once again. As described in Sect. 3.5, Pdsc
was able to construct a proof with the help of four user-supplied predicates:
z1==2*z2, y1==2*y2, z1==2*z2-1, and y1==2*y2+x2. We created four variants
of this benchmark: doubleSquare_1 (where none of these four were supplied),
doubleSquare_2 (where only z1==2*z2 was supplied), doubleSquare_3 (where
z1==2*z2 and y1==2*y2 were supplied), and doubleSquare_4 (where y1==2*y2
was removed, the other three were supplied). As shown in the results table, Pdsc-
Synth was able to solve all the four benchmarks using Interpolation, whereas
none of the other techniques could work even for the simpler variants (except
doubleSquare_4 which could be solved but needed more predicates and a lot
more time with SyGuS and QE).

6.5 Comparison with LLRÊVE

We also compared PdscSynth with LLRÊVE3, an automated regression verifi-
cation tool, as it can automatically check programs for equivalence [21]. Table 1
3 https://formal.kastel.kit.edu/projects/improve/reve/.

https://formal.kastel.kit.edu/projects/improve/reve/
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shows the results of this comparison; we used both Z3 v4.8.9 and Eldarica
v2.0.8 as the backend solver, and have reported the better of the two results.
While LLRÊVE could solve all the unsafe benchmarks fairly quickly, the only
safe benchmarks that it could solve were the ones for which the components
were exactly the same. There were four such benchmarks in our experiments:
sum_to_n, and the *_ref_ref benchmarks where reference implementations for
programming assignments were compared to themselves. For all other safe bench-
marks, LLRÊVE could not decide that they were indeed safe, even though we
let it run beyond the timeout for about 30min. Also, note that we could not run
LLRÊVE on the squareSum benchmark because the safety property there is not
an equivalence check.

6.6 Reducing Predicate Size for Quantifier Elimination

In order to discover smaller predicates as solutions, we implemented a strategy
for Z3 to eliminate as many variables as possible, and return a solution in the
smallest set of variables possible, under the broad assumption that predicates
in fewer variables would also be smaller. This is not always true; in fact, we
realized that it is better to eliminate all but two variables to begin with, and
come to eliminating all but one variable only in the end. In general, while this
strategy helps in reducing the size of predicates, such strategies can impact the
performance adversely. Striking a good balance between scalability and useful-
ness of the predicates, therefore, is crucial, and makes for an important direction
of future work.

7 Related Work

The novelty of our work lies in giving a completely automatic approach for doing
property directed self composition [37] to address the problem of k-safety veri-
fication. While the user-dependence has been described here as a problem only
for Pdsc, related techniques like [9] are also dependent on predicates that may
be used to align the component programs. In particular, [9] uses an alignment
predicate to construct a program alignment automaton that semantically aligns
the programs between which equivalence is to be checked, quite like how Pdsc
composes the component programs. The predicates play an important role in
these techniques, and therefore it is crucial to have techniques that can generate
useful predicates completely automatically.

Since self-composition poses the same challenges for proving equivalence of
programs as it does for 2-safety verification, an automated property directed self
composition technique can be helpful in a number of applications of program
equivalence. This includes evaluation of programming assignment w.r.t. a given
correct implementation [3], semantic alignment [9], translation validation [23,38],
design and verification of compiler optimizations [28,39], and program synthesis
and superoptimization [5,36], among several others. We reiterate that it is the



Automated Property Directed Self Composition 155

combined strength of Pdsc and the automation that makes this approach usable
and effective in practice.

Our method relies on different techniques for synthesizing predicates:
SyGuS [2], Abductive inference [14], and Interpolation [25]. These techniques
are certainly related in the way they can address a common problem, which
in our case is the strengthening of the proof language. They have also been
used together, sometimes in conjunction with other techniques, to address
related problems like inferring inductive invariants [17,20] and maximal spec-
ifications [1,34]. The commonality of the techniques, which makes them suitable
for these problems, is their ability to generalize (from examples or counterex-
amples). Whereas, they differ in how they perform the generalization, and thus
have different strengths as confirmed by our experiments.

8 Conclusion and Future Work

This paper proposes an algorithm that builds on top of a property directed self
composition technique for hypersafety verification, and overcomes some of its
important caveats. Pdsc expects users to supply a proof language in which it
searches for an easy-to-prove composition. Our algorithm gets rid of the user-
dependence that Pdsc has, and makes it capable to do refutations as well. We
have implemented, and experimented with three different techniques relying on
SyGuS, Quantifier Elimination, and Interpolation, that can construct and enrich
the proof language as and when required for a given program and a property.
Our experiments demonstrate that the proposed techniques are effective as well
as efficient.

Looking ahead, we see several interesting directions of future work. For one,
since the space of compositions is navigated repeatedly, it may be useful to iden-
tify good and bad regions of the composition space each time, and use it in
subsequent iterations to scale better. However, this is challenging as the compo-
sition space changes every time the proof language is strengthened. For certain
applications, e.g. while proving equivalence of programs, it may be desirable to
obtain proofs that are shorter and thus easier to understand. Therefore, the task
of finding smaller, and few but useful predicates is an important one, and makes
for an interesting future work. It would also be worthwhile to enhance our tech-
nique to handle programs with arrays and other data-structures so that we can
look at a wider set of benchmarks.
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Abstract. Value-based static analysis techniques express computed
program invariants as logical formula over program variables.
Researchers and practitioners use these invariants to aid in software engi-
neering and verification tasks. When selecting abstract domains, prac-
titioners weigh the cost of a domain against its expressiveness. How-
ever, an abstract domain’s expressiveness tends to be stated in absolute
terms; either mathematically via the sub-polyhedra the domain is capa-
ble of describing, empirically using a set of known properties to verify,
or empirically via logical entailment using the entire invariant of the
domain at each program point. Due to carry-over effects, however, the
last technique can be problematic because it tends to provide simplistic
and imprecise comparisons.

We address these limitations of comparing, in general, abstract
domains via logical entailment in this work. We provide a fixed-point
algorithm for including the minimally necessary variables from each
domain into the compared formula. Furthermore, we empirically evaluate
our algorithm, comparing different techniques of widening over the Zones
domain and comparing Zones to an incomparable Relational Predicates
domain. Our empirical evaluation of our technique shows an improved
granularity of comparison. It lowered the number of more precise invari-
ants when comparing analysis techniques, thus, limiting the prevalent
carry-over effects. Moreover, it removed undecidable invariants and low-
ered the number of incomparable invariants when comparing two incom-
parable relational abstract domain.

Keywords: Static Analysis · Abstract Domain Comparison ·
Data-Flow Analysis · Abstract Interpretation

1 Introduction

Various value-based static analysis techniques express computed program invari-
ants as a logical formula over program variables. For example, abstract inter-
pretation [7] uses abstract domains such as Zones [16] and Octagons [18] to
describe an invariant as a set of linear integer inequalities in a restricted for-
mat. Other techniques such as symbolic execution [12] and predicate analysis
combined with a symbolic component [21] do the same, only using a general
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É. André and J. Sun (Eds.): ATVA 2023, LNCS 14216, pp. 159–175, 2023.
https://doi.org/10.1007/978-3-031-45332-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45332-8_8&domain=pdf
http://orcid.org/0000-0002-6032-474X
http://orcid.org/0000-0003-4522-9725
https://doi.org/10.1007/978-3-031-45332-8_8


160 K. Ballou and E. Sherman

linear integer arithmetic format. These invariants are then used for program
verification [4,24], program optimization [1,11], and for software development
tasks.

Static analysis developers rarely use a computed invariant by itself, but rather
compare them to determine effects of new algorithms or abstract domain choices
on the invariant precision. For example, to evaluate tuning analyzer parameters,

static analysis researchers compare invariant values I and
∼
I from the original

and tuned analyzer runs, respectively. If an invariant becomes more precise, we
conclude that the new technique or a different domain choice results in a more
precise analysis. For relational domains, one can use queries to an SMT solver,
such as Z3 [19], to determine which invariant is more precise by checking their
implication relations.

However, to objectively measure such effects in a computed invariant after
statement s, Is, we need to compare only the part of Is affected by the transfer

function of s, τs. This way, if
∼
I has already been more precise than I before s

and τs has not changed the relevant facts, then the comparison should disregard

the carry-over precision improvement in
∼
Is.

The comparison of two relational invariants I and
∼
I involves two steps: (1)

identifying a changed component of each invariant at a given statement and
(2) performing minimal comparison between the changed components of I and
∼
I. In our previous work [3] we addressed step (1) for the Zones domain where
using data-flow analysis (DFA) information, we developed efficient algorithms
that find a minimally changed set of inequalities in a Zone invariant.

In this work we target step (2), assuming that an abstract domain has some
means to perform step (1) using either elementary or sophisticated algorithms.
Thus, the contributions of this paper include: (a) development and analysis
of a minimal comparison algorithm for relational abstract domains and (b)
investigating its effect on comparisons between different widening techniques for
Zones domain as well as comparison between Zones and incomparable Predicate
domains with a relational component.

The rest of the paper is organized as follows. In Sect. 2, we provide the back-
ground, context, and motivation for our work. In Sect. 3, we describe our fixed-
point algorithm. In Sect. 4, we explain our experimental setup and evaluation,
and in Sect. 5, we examine the results of our experiments. We connect this work
with previous research in Sect. 6. Finally, we conclude and discuss future work
in Sect. 7.

2 Background and Motivation

We refer to an invariant and the corresponding abstract domain as relational if
it is expressed as a conjunction of formulas over program variables, e.g., a set of
linear integer inequalities. We first explain the concept of the minimal/dependent
change for an invariant and then explain challenges of comparing two relational
domains, and sketch how our proposed approach works.
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2.1 Minimal Changes in Relational Abstract Domains

Consider the relational invariants computed by a data-flow analysis framework
using the Zones abstract domain as shown in Fig. 1a. Let us assume the analyzed
code has four program variables: w, x, y, and z. Here, the incoming flow to the
conditional statement has the following invariant: Iin = z ≤ x∧w → �∧y → �.
That is, variables w and y are unbounded while x and z are bounded by a ≤
relation. The transfer function of the true branch adds the y ≤ x inequality,
thus, making y bounded. This results in the It = z ≤ x ∧ y ≤ x ∧ w → �
invariant. Similarly, the invariant for the false branch becomes If = z ≤ x∧x ≤
y − 1 ∧ w → �.

Even though If and It are new invariants, they inherit two unchanged
inequalities z ≤ x and w → � from Iin. This suggests that some part of a
previously computed invariants have not changed by the transfer function of the
conditional statement. Thus, if for some program, Iin is more precise because
of z ≤ x and remains more precise in It because of the same inequality, such
carry-over precision results should be disregarded.

Previous work determining minimal changes in a relational abstract domain
approach [3] addresses this problem by identifying the dependent portion of the
invariant affected by the statement’s transfer function. For example, the minimal
change algorithm for Zones [3] can compute the minimal sub-formula given the
potentially changed variables x and y. Specifically, the algorithm identifies only
the y ≤ x part of It having changed from Iin. Likewise for If , the algorithm
identifies two inequalities: z ≤ x and x ≤ y − 1 as the changed portion of the
invariant1.

The minimal change algorithm can be sophisticated and accurately compute
the changed part of the invariants, or can be over-approximating, and in the
worst case return the entire invariant. In our previous work we developed an
efficient collection of such algorithms for the Zones abstract domain. In this
work, we assume that a relational domain has an invariant change method Δ
implemented, which takes as input an invariant and a set of updated variables
and returns a portion of I, e.g., in this example Δ(It, {x, y}) = y ≤ x. The
shaded regions of the invariants in the Figs. 1a and 1b indicate the changed
parts of the out state for each branch.

2.2 Comparing Relational Domains

Now consider invariants in Fig. 1b computed for the same code fragment, but
using an improved algorithm. This algorithm is able to compute additional infor-

mation for
∼
Iin = z ≤ x ∧ w ≤ y, which is more precise than Iin since

∼
Iin

constrains the values of w and y. The checkmark symbol, ✓, by
∼
I in Fig. 1b

indicates an increased precision comparing to the corresponding invariants I in
Fig. 1a.

1 z ≤ x is included due to transitive effects through x.
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Fig. 1. Original Static Analysis (a) and Improved Static Analysis (b)

When we compare using the entirety of the invariants instead of simply the
changed portion of the invariants for the false branch, the result would be that
∼
It is more precise than It. Thus, simply applying Δ for both invariants can filter
out erroneous, carry-over improvements, which we annotate with the ✗ symbol.

In the case of the false branch, the set of variables in their respective changed
portions of the invariants are the same. However, this is not always the case,
which we can see on the true branch. There, Δ(It, {x, y}) = y ≤ x, but

Δ(
∼
It, {x, y}) = y ≤ x ∧ w ≤ y has an extra variable w. To make a sound

comparison, we need to conjoin w → � with the result of Δ(It, {x, y}). The
challenge here is to identify the smallest necessary additions to the changed
portions of the invariants to perform a sound comparison.

In the next section we present our proposed approach that addressees this
problem by developing a fixed-point algorithm that, in each iteration, discovers
a minimal set of inequalities (modulo Δ) in one invariant that is adequate for
comparison with the changed part of the other invariant.

3 Approach

In this section, we explain the theoretical basis for our approach to minimally
compare relational invariants via logical entailment. We start by defining the
problem, and then we present our algorithm that solves it. At the end, we perform
an analysis of the proposed algorithm.

3.1 Problem Definition

We define the problem in a context of a DFA framework, where the framework
provides a set of updated variables, dv, that resulted in a new invariant I. An
abstract domain for I has a function Δ implemented, which returns a portion
of I that have been updated or are dependent on the variables in the set dv. In
the worst case, Δ(I, dv) = I, i.e., a transfer function affects the entire invariant.
In the best case Δ(I, dv) = ∅, i.e., nothing has changed. We also introduce a
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Algorithm 1. Common minimal changed variable set
Require: V (I1) = V (I2) ∧ V (Δ(I1, dv1)) ⊆ V (I1) ∧ V (Δ(I2, dv2)) ⊆ V (I2)
Ensure: S1 = S2 ⊆ V (I1)
1: function CommonVarSet(dv1, dv2, I1, I2)
2: S1 ← V(Δ (I1, dv1))
3: S2 ← V(Δ (I2, dv2))
4: while S1 	= S2 do
5: if S1 ⊃ S2 then
6: dv2 ← S1 \ S2

7: S2 ← S2∪ V(Δ (I2, dv2)))
8: else if S2 ⊃ S1 then
9: dv1 ← S2 \ S1

10: S1 ← S1∪ V(Δ (I1, dv1)))
11: else if S1 ⊃⊂ S2 then
12: dv1 ← S2 \ S1

13: dv2 ← S1 \ S2

14: S1 ← S1∪ V(Δ (I1, dv1)))
15: S2 ← S2∪ V(Δ (I2, dv2)))
16: end if
17: end while
18: return S1

19: end function

function V that returns the set of variables used in I. For example, we use it to
define the following property: V (Δ(I, dv)) ⊆ V (I).

Let I1 and I2 be two relational invariants, and let dv1 and dv2 be their
corresponding sets of updated variables. Then the problem of finding a minimal
changed part of two invariants reduces to finding a common minimal updated
set of variables S such that

S = V (Δ(I1, S)) = V (Δ(I2, S)) (1)

A minimal solution for such recursive definitions is commonly obtained by
a fixed-point iteration algorithm with initial values S0 set to the smallest set,
which in our case is S0 = dv1∪dv2. If S0 = ∅, then dv1 = dv2 = ∅, Δ(I1, dv1) = ∅,
Δ(I2, dv2) = ∅, and, ultimately, S = ∅. That is, nothing has changed between
the two invariants. However, if S0 	= ∅, then we need to iteratively solve for S in
Eq. 1.

3.2 Finding a Common Changed Variable Set

Algorithm 1 shows the pseudocode of the optimized fixed-point computation
algorithm to solve Eq. 1. The algorithm takes as arguments, the updated vari-
ables for each domain, dv1 and dv2, two invariants to compare, I1 and I2. It
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requires basic conditions for its correctness: each set of invariants are described
over the same set of variables and Δ does not introduce any new variables. The
output is the solution for Eq. 1.

The algorithm first computes the initial changed variable sets, S1 and S2

for each invariant, lines 2 and 3, affected by the updated variables dv1 and dv2,
respectively.

At line 4, the algorithm compares the two sets and if they are not equal, i.e.,
the fixed-point has not been reached, the algorithm enters the main iteration
loop. Inside the body of the loop, the algorithm first tests whether one set of
variables is a proper superset of the other, lines 5 and 8.

As a simple optimization, if one of the sets is a proper superset, it only
augments the smaller set as done on lines 6–7 and lines 9–10, respectively. For
example, if S1 ⊃ S2, S2 is augmented by the variables which are not already in
S2. Afterwards, a new updated variable set is computed from the set difference of
S1 and S2, line 6. Then, the algorithm computes the changed variable set as the
union between the existing set S2 and the newly computed minimum variables,
line 7. Similar computations are done for the case when S2 ⊃ S1, lines 9–10.

Finally, when the changed variable sets are incomparable— line 11— then
both changed variable sets are recomputed in a similar fashion as described in
lines 12–15. Upon the loop’s termination, i.e., when S1 = S2, the algorithm
returns one of the dependent sets, line 18.

To demonstrate how Algorithm 1 compares two invariants, consider the
invariants on the true branch from our example in Fig. 1b. There, I1 = z ≤
x ∧ y ≤ x ∧ w → � and I2 = z ≤ x ∧ y ≤ x ∧ w ≤ y. The updated variables are
dv1 = {x, y} and dv2 = {x, y}.

The algorithm computes {x, y} for S1 and {w, x, y} for S2. Since S2 is
a proper superset of S1, we recompute S1, lines 9 and 10. Specifically, dv1
becomes {w}. S1 is then recomputed: S1 = S1 ∪ V (Δ(I1, dv1)), which results
in S1 = {x, y} ∪ {w} = {w, x, y}. At this point, S1 = S2, terminating the loop,
and the algorithm returns the set S1 = {w, x, y}. Then, an SMT solver can be
used to compare logical relations of Δ(I1, S1) and Δ(I2, S1), for example, using
implication relations. Or, in case of comparisons between Zones, one can use its
custom equivalence and inclusion operations [16].

As mentioned, under worst-case conditions, Algorithm 1 returns the entire
set of variables. In other words, it devolves into a full invariant comparison.
This can happen if the variables within the invariant are tightly coupled with all
other variables. Another situation which can cause a worst-case comparison is
when an abstract domain has an ineffective Δ function, which performs a basic
dependency analysis such as slicing [3,23].

Below we present termination and complexity analysis for Algorithm 1. We
start with a proof sketch of termination.

Proof. First, we begin with the following assumptions: the variable projections
for both domains are equivalent, i.e., V (I1) = V (I2); and we assume the invari-
ant minimization functions for each domain yield a subset of the variable pro-
jections, that is, Δ(I1, dv1) ⊆ V (I1), and similarly for I2.
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At each iteration, the union of variables over the minimization function is
always increasing by at least one variable in either S1 or S2. Therefore, within
a finite number of iterations S1 and S2 reach fixed-point, which is bounded by
V (I1) = V (I2) condition. Thus, Algorithm 1 terminates. �

The time-complexity of Algorithm 1 depends on the number of variables and
the complexity of the Δ functions of the abstract domains. That is, the complex-
ity of Algorithm 1 is O(N) · (CΔ1 +CΔ2), where N is the number of variables in
the program under analysis and CΔi

is the complexity of the invariant minimiza-
tion function for the corresponding domain. In the worst-case, at each iteration
the sets S1 and S2 augmented by a single variable from Δ computations.

4 Methodology

To determine the effectiveness of the proposed algorithm, we use it to compare
invariants produced by different techniques and by different relational abstract
domains on the same program. For each subject program, each analysis outputs
invariants after each statement. Over the corpus of programs, we compute 6564
total invariants. We store the invariants as logical formulas in SMT-LIB format.
We run analyses on two relational domains, Zones and Relational Predicates [21],
and compare the results of a standard Zones analysis to advanced Zones analyses,
and Zones analysis to Relational Predicates analysis.

The goal of the empirical evaluation is to answer the following research ques-
tions:

RQ1 Does our technique affect the invariant comparison between different anal-
ysis techniques for the same abstract domain?

RQ2 Does our technique affect the invariant comparison between two different
relational domains?

RQ3 How effective and efficient is Algorithm 1 on real-world invariant compar-
isons?

We consider different analysis techniques over the Zones domain to measure
the precision gained by various advanced techniques. We consider the iteration
parameter before widening. We also consider the widening method employed,
which ensures termination for Zones analysis.

We then compare the most precise Zones technique to Relational Predi-
cates [21], two incomparable domains. Our previous work [3] has shown the ben-
efit of minimally comparing incomparable domains to demonstrate realized pre-
cision. However, in this case, we extend the invariants of the Predicates domain
with a symbolic relational component.

For Relational Predicates, the minimization function is a selection based
solely on notions of variable reachability, e.g., variable dependence, but it might
not be minimal because of the generality of inequalities used in the relational
part. We also computed minimization over Relational Predicates using a purely
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Fig. 2. Logical implication between two example abstract states in SMT-LIB.

connected component concept, similar to the technique by Visser et al. [23],
however, the reachable variant performed marginally better.

We use the Minimal Neighbors (MN) minimization function from our previ-
ous work [3] for Zones which provides the smallest invariant partition given a
set of changed variables. This minimization algorithm considers the semantics of
the formulas under the changed variables. Using these semantics, it selects the
minimal dependent substate from the logical formula representing the invariant.

Subject Programs. Our subject programs consist of 192 Java methods from
previous research on the Predicates domain [21]. These methods were extracted
from a wide range of real-world, open-source projects and have a high number of
integer operations. The subject programs range from 1 to 1993 Jimple instruc-
tions, a three address intermediate representation. The average branch count for
the methods is 6 (σ = 11), with one method containing a maximal 56 branches.
A plurality of our subject methods, 81 methods, contain at least one loop, with
one method containing 12 loops.

Experimental Platform. We execute each of the analyses on a cluster of Cen-
tOS 7 GNU/Linux compute nodes, running Linux version 3.10.0-1160.76.1,
each equipped with an Intel R© Xeon R© Gold 6252 and 192 GB of system mem-
ory. We use an existing DFA static analysis tool [2,21] implemented in the Java
programming language. The analysis framework uses Soot [20,22] version 4.2.1.
Similarly, we use Z3 [19], version 4.8.17 with Java bindings to compare SMT
expressions for the abstract domain states. Finally, we use Java version 11 to exe-
cute the analyses, providing the following JVM options: -Xms4g, -XX:+UseG1GC,
-XX:+UseStringDeduplication, and -XX:+UseNUMA.

Implementation. We modified an existing DFA framework such that the Zones
analysis outputs its entire invariant for each program point. Each invariant is
further reduced using a redundant inequality reduction technique proposed by
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Larsen et al. [13]. For all domains, unbounded variables are set to top, �, and
excluded from the output expression. This further simplifies the formulas. Using
the formulas from each analysis, in the usual way, we entail them into implication
SMT formulas. For example, if an analysis produces I1 = z ≤ x ∧ y ≤ x and
another produces I2 = z ≤ x ∧ y ≤ x ∧ w ≤ y. We entail these two expressions
into the logical implication SMT query as shown in Fig. 2.

After entailment, we use Z3, using the linear integer arithmetic (LIA) the-
ory for Zones to Zones comparisons and the non-linear integer arithmetic (NIA)
theory for Zones to Relational Predicates comparisons, to decide model behavior
of each domain. While Zones, and numerical abstract domains in general, have
understood equality mechanisms such as double inclusion based deciders, entail-
ment allows us to determine the pre-order between the two domain instances.

Evaluations. In total, we perform three different invariant comparisons, sum-
marized in the following list:

Z � Zk=5—Zones using standard widening after two iterations and Zones widen-
ing after five iterations.

Z � Zths—Zones with standard widening and Zones with threshold widening.
Zths ≺� P—Zones with threshold widening and Relational Predicates.

In all instances of Zones sans Zk=5, widening happens after two iterations
over widening nodes. We use a generic set of thresholds for Zones based on powers
of 10: {0, 1, 10, 100, 1000}. Using a tuned set of thresholds for each program would
yield better individual results, but overall does not affect our conclusions.

We use a generic disjoint domain for the basis of the Relational Predicates,
based on Collberg et al.’s [6] study of numerical constants in Java Programs.
Specifically, the predicate domain used in this study consists of the following
set of disjoint elements: {(−∞,−5], (−5,−2], −1, 0, 1, [2, 5), [5,+∞)}. The
relational component of the Predicates domain consists of symbolic information
gathered through the process of analysis [21].

5 Evaluation Results and Discussions

In this section, we present the results of our experiments and discuss their impli-
cations to the research questions posed in the previous section.

5.1 Technique Comparisons

To answer RQ1, we consider the comparisons of different techniques using the
Zones abstract domain. Since different techniques using the same domain create
a partial ordering of their respective precision, we need only consider equivalent
and less precise outcomes. To verify correctness of our implementation, however,
we ensured that no other precision outcomes occurred.
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Table 1. Zones k = 2 widening compared
to Zones k = 5 widening

Comparison Z ≡ Zk=5 Z ≺ Zk=5

Full 6555 9

Minimal 6562 2

Table 2. Zones compared to Zones with
Threshold Widening

Comparison Z ≡ Zths Z ≺ Zths

Full 6519 45

Minimal 6545 19

Table 3. Zones with Threshold Widening compared to Relational Predicates

Comparison Zths ≡ P Zths ≺ P Zths � P Zths ≺� P Zths ? P

Full 1227 3173 196 1947 21
Minimal 3675 2353 248 288 0

Table 1 shows the breakdown of invariants computed by standard widen-
ing after two iterations and standard widening after five iterations. Comparing
invariants using the entire invariant, deferred widening produces nine more pre-
cise invariants. However, when using our minimized comparison technique, the
slim advantage reduces to two invariants.

Table 2 shows the breakdown of invariants between standard widening after
two iterations and threshold widening after two iterations. Here, we see the
largest gain in precision. Using the entire invariant to compare, threshold widen-
ing computes 45 more precise invariants. Again, however, the precision gain is
cut by more than 50% when using minimal comparisons. The choice of thresh-
olds could improve the precision, but for best results, the set of thresholds needs
to be tailored specifically to each program.

As we can see between Z � Zk=5 and Z � Zths, our comparison technique
lowers the number of more precise invariants, thus eliminating the carry-over
precision instances. That is, our technique lowers the number of more precise
invariants advanced techniques compute. However, in doing so, our technique
presents a more nuanced image of the realized precision gain advanced techniques
offer.

5.2 Zones Versus Relational Predicates

Table 3 shows the precision breakdown of Zones with threshold widening com-
pared to Relational Predicates, RQ2. Given that Zones and Predicates are
inherently incomparable domains, we must consider all precision comparison
categories. With the full invariant compairsions, Relational Predicates are more
precise than Zones in about 50% of the invariants. The next largest category
of invariants is incomparable, ≺�, which accounts for 30% of invariants. Here,
Zones and Predicates are complementary, neither more nor less precise than the
other. Zones and Predicates are equivalent in 19% of all invariants, and Zones are
more precise in about 3% of all invariants. Finally, using the full invariant, 21 of
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the program points, the relation between two invariants could not be established
by Z3 since it returned UNKNOWN.

Our technique eliminates the undecidable results. Moreover, it dramatically
reduces the number of incomparable invariants– only 4% of invariants remain
incomparable. Similar to carry-over precision, incomparable invariants arise
when one domain computes a more precise invariant for one variable, and the
other domain computes a more precise invariant for another, unrelated variable
at a later program point. Considering the entire invariant results in incompara-
ble precision. However, by comparing only the relevant, changed variables, our
technique largely disentangles the imprecision in the comparison.

The equivalent invariant category is the next largest affected category, where
more than half, 56%, of computed invariants between Zones and Relational Pred-
icates become equivalent. Relational Predicates lose 13% of more precise invari-
ants, and Zones gains about 1% of invariants which it computes more precisely
than Relational Predicates.

By comparing only the necessary variables at each program point, our tech-
nique allows general, relational abstract domains to be compared without unde-
cidable results. The reduction in incomparable invariants between two otherwise
difficult to compare domains provides a clearer precision performance picture
between the two domains.

Effect on Efficiency of Comparison. To demonstrate the effect on efficiency
of comparing our minimal comparison to the full state comparison with respect
to the logical entailment and solver queries, we collected five (5) executions of the
Z3 solver processing the logical entailment queries. Figure 3 shows the averaged
runtime comparisons between Z3 comparing states using the entire state and our
proposed minimal technique. In Fig. 3 (a), we compare the runtimes for Zones
versus Zones with Threshold Widening. We see the two runtimes appear simi-
lar. Indeed, a statistical t-test confirms the two distributions fail to be rejected
as similar. However, in the range above the average, 0.04, the majority of the
points are below the diagonal line, indicating that the minimum comparison is
faster than the full comparison. This runtime behavior is expected for these two
abstract domains since the two domains are similar and as shown in Table 2, the
number of states where the two domains are equal is significant. In Fig. 3 (b),
we compare the runtimes of Zones with Threshold Widening against Relational
Predicates. The average runtime for the full comparisons is about 2.7 s. The
minimum comparison has an average of about 0.8 s. We see a significant differ-
ence between the two visually as the majority of points are below the diagonal
line. As before, these results seem intuitive since the resulting queries for the
proposed technique result in fewer invariants per abstract state. Overall, we see
our technique improves the efficiency of relational domain comparison.



170 K. Ballou and E. Sherman

Fig. 3. Runtime (in seconds) comparisons between full and minimum invariant sets
using Z3 to compute logical entailment. In (a) compares Zones to Zones with Threshold
Widening. In (b) compares Zones with Threshold Widening to Relational Predicates.

5.3 Iterations and Variable Reductions

To determine if Algorithm 1 is efficient, RQ3, we use the iteration depth count to
determine how many times the algorithm iterates before it reaches a stable set of
variables for comparison. Over all instances of Zones comparisons, the iteration
count was either zero or one, with no outliers. That is, either Zones computed
the same set of changed variables and the dependent set between two techniques
was immediately equivalent. Or, the set of dependent variables is captured with
only a single extension, mostly to the Zones using standard widening, Z.

Comparing Zones to Relational Predicates, we see similar results. The average
number of iterations is between zero and one iteration. However, we have several
outliers at two iterations. Instrumentation found 12 instances of extreme outliers,
11 for three iterations, and one instance of four iterations. Furthermore, more
variety exists in the branches for Zones versus Relational Predicates. Unlike
comparing techniques between Zones invariants, comparing Zones to a more
general, relational formula required more augmentation by each domain.

To evaluate effectiveness of Algorithm 1, RQ3, we consider the proportion of
variables necessary for comparison. We instrumented our algorithm to compute
the proportion of variables it returns after reaching a stable set, compared to
the variable projection of the incoming invariants. We plot the frequency of
proportions of variables returned by Algorithm 1 in Fig. 4. In Fig. 4a, we plot
variable reductions across all comparisons of Zones: standard widening after two
iterations versus standard widening after five iterations and standard widening
versus threshold widening. Figure 4b shows the variable reductions for Zones
with threshold widening versus Relational Predicates. Considering a single bin in
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Fig. 4. Frequency plot of proportion of variables selected by Algorithm 1 which are
necessary for comparing two invariants. (a) represents the frequencies of proportions
when comparing techniques using Zones. (b) represents the frequencies of proportions
when comparing Zones to Relational Predicates.

Fig. 4, for example, 0.1, represents the frequency where Algorithm 1 needed only
10% of the variables occurring in the original invariants to adequately compare
the two.

Shown in Fig. 4, the large frequencies in the 0 bin shows our technique was
able to remove all variables from the invariants from comparison, eliminating
the need to compare the two invariants. Comparing advanced techniques uti-
lizing Zones shows more than 6500 instances, and about 1850 in Zones versus
Relational Predicates.

Our technique reduces the number of variables necessary for comparison by
50% or more in 90% of comparisons between techniques of Zones, and at least by
25% in 93% of comparisons. For Zones and Relational Predicates, our technique
reduces the necessary, relevant variables by 50% or more in 80% of comparisons
and by 12% in 93% of comparisons. That is, in the majority of comparisons,
our technique reduces the number of variables necessary for comparing two rela-
tional domains or techniques. The quality of a domain’s Δ function affects the
performance and effectiveness of Algorithm 1. We see only a few iterations in
the algorithm when comparing analysis techniques utilizing Zones since we used
a minimal Δ function for Zones. However, we see an increase in iterations when
comparing with a non-optimal Δ, as in Zones and Relational Predicates. That
is, the quality of Δ can have an outsized impact on the practicality of our tech-
nique. However, given the preponderance of variable reductions and low iteration
counts over the corpus of methods and comparisons, we conclude that the pro-
posed algorithm is practical and effective.
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5.4 Discussion

The evaluation results show our technique enables more precise comparison
between relational abstract domain invariants. When comparing two techniques
using the same domain, our minimal comparison strategy precisely captures the
techniques’ relative precision, disentangling accumulated carry-over effects from
realized precision gains.

While we do not have a proven state minimization function for Relational
Predicates, our technique still shows improvement when comparing incomparable
relational abstract domains. Specifically, our comparison removes unknowns and
dramatically reduced incomparable invariants, which makes it easier to make
software engineering decisions.

The average iteration depth for Algorithm 1 shows the algorithm’s efficiency
and practicality. Even when using an imprecise minimization function for Rela-
tional Predicates, our technique only needed a maximum of four iterations to
arrive at a stable set of common variables for comparison. Moreover, in the
majority of comparisons, Algorithm 1 returned a significantly smaller proportion
of variables than the entirety of the variables in each invariant, demonstrating
the efficacy of the technique.

6 Related Work

Our previous work [3] found a set of algorithms for efficiently computing Δ
for the Zones domain. Using the algorithms, it compared Zones to other non-
relational domains, which in the context of data-flow analysis (DFA) and this
work, have trivial Δ functions. We extend the previous work by considering
comparisons between relational abstract domains, abstracting the Δ function
for each domain.

Comparing the precision gain of new analysis techniques or comparing the
precision of newly proposed abstract domains is a common problem in the liter-
ature. Previous work in this area generally compare precision in one of two ways.
One, the comparison is based on known a priori program properties over bench-
mark programs [8–10,14,15]. Two, the comparison is based on logical entailment
of computed invariants [10,17,21].

Close to our work, Casso et al. [5] propose several metrics for computing
the distance between different abstract domain elements and, consequently, the
distance between different analyses over those abstract domains. Thus, using
distance metrics as a proxy, they are able to compute a categorization of preci-
sion over different abstract domains. However, the work and proposed metrics
are constrained to non-numerical abstract domains within (Constraint) Logic
Programming. We believe a combination of approaches toward (a set of) metrics
that measures across different weakly-relational numerical abstract domains to
be an interesting line of future work.

To the best of our knowledge, this work represents one of the first stud-
ies improving the granularity of precision characteristics for categorization of



Minimally Comparing Relational Abstract Domains 173

relational abstract precision comparisons. We believe this work would benefit
existing work which compares relational abstract domains or new analysis tech-
niques using relational abstract domains.

7 Conclusion and Future Work

In this study, we defined the problem of minimally comparing relational invari-
ants, proposed an algorithm which solves the problem, and experimentally evalu-
ated whether the algorithm indeed solves the problem using real-world programs.
Using our algorithm, we can remove the precision carry-over effects advanced
analysis techniques introduce, providing clear precision benefits for advanced
techniques. For example, the benefits of deferred widening and threshold widen-
ing are smaller than anticipated. Moreover, our technique enables the comparison
of relational abstract domains which are otherwise difficult to compare directly.
Specifically, we see our technique removed the UNKNOWN invariants and dramati-
cally reduced the incomparable invariants when comparing Zones to Relational
Predicates. Finally, Algorithm 1’s average iteration depth and variable reduction
demonstrate the algorithm’s overall practicality and usefulness when comparing
analysis techniques and relational abstract domains.

Future Work. Developing a minimization function, Δ for Relational Predi-
cates would enable a comprehensive, empirical study of the relative precision
of weakly-relational numerical abstract domains to Predicates. Furthermore, we
believe the proposed technique of comparison can benefit adaptive analysis tech-
niques which selectively choose the appropriate abstract domain during analy-
sis. Similarly, an interesting, additional empirical comparison to consider is one
where strictly the exit invariants are considered between domains and strategies.
Octagons [18] are not included in this study because a minimization strategy for
Octagons has not been developed. However, this is an interesting avenue to
pursue and we intend to use the technique of this work to compare Zones to
Octagons, which will empirically quantify the precision gain of Octagons over
Zones.

Acknowledgments. The work reported here was supported by the U.S. National
Science Foundation under award CCF-19-42044.

References

1. Abate, C., et al.: An extended account of trace-relating compiler correctness and
secure compilation. ACM Trans. Program. Lang. Syst. 43(4), 1–48 (2021). https://
doi.org/10.1145/3460860

2. Ballou, K., Sherman, E.: Incremental transitive closure for zonal abstract domain.
In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods. NFM
2022. LNCS, vol. 13260, pp. 800–808. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06773-0 43, http://dx.doi.org/10.1007/978-3-031-06773-0 43

https://doi.org/10.1145/3460860
https://doi.org/10.1145/3460860
https://doi.org/10.1007/978-3-031-06773-0_43
https://doi.org/10.1007/978-3-031-06773-0_43
http://dx.doi.org/10.1007/978-3-031-06773-0_43


174 K. Ballou and E. Sherman

3. Ballou, K., Sherman, E.: Identifying minimal changes in the zone abstract domain.
In: David, C., Sun, M. (eds.) Theoretical Aspects of Software Engineering, vol.
13931, pp. 221–239. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
35257-7 13, http://dx.doi.org/10.1007/978-3-031-35257-7 13

4. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation - PLDI ’03 (2003). https://doi.org/10.1145/781131.781153
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17. Miné, A.: Weakly Relational Numerical Abstract Domains, December 2004.
https://pastel.archives-ouvertes.fr/tel-00136630
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Abstract. Event-driven multi-threaded programming is an important
idiom for structuring concurrent computations. Stateless Model Check-
ing (SMC) is an effective verification technique for multi-threaded pro-
grams, especially when coupled with Dynamic Partial Order Reduc-
tion (DPOR). Existing SMC techniques are often ineffective in han-
dling event-driven programs, since they will typically explore all pos-
sible orderings of event processing, even when events do not conflict. We
present Event-DPOR, a DPOR algorithm tailored to event-driven multi-
threaded programs. It is based on Optimal-DPOR, an optimal DPOR
algorithm for multi-threaded programs; we show how it can be extended
for event-driven programs. We prove correctness of Event-DPOR for all
programs, and optimality for a large subclass. One complication is that
an operation in Event-DPOR, which checks for redundancy of new exe-
cutions, is NP-hard, as we show in this paper; we address this by a
sequence of inexpensive (but incomplete) tests which check for redun-
dancy efficiently. Our implementation and experimental evaluation show
that, in comparison with other tools in which handler threads are sim-
ulated using locks, Event-DPOR can be exponentially faster than other
state-of-the-art DPOR algorithms on a variety of programs and manages
to completely avoid unnecessary exploration of executions.

1 Introduction

Event-driven multi-threaded programming is an important idiom for structur-
ing concurrent computations in distributed message-passing applications, file
systems [31], high-performance servers [11], systems programming [12], smart-
phone applications [33], and many other domains. In this idiom, multiple threads
execute concurrently and can communicate through shared objects. In addition,
some threads, called handler threads, have an associated event pool to which all
threads can post events. Each handler thread executes an event processing loop
in which events from its pool are processed sequentially, one after the other,
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interleaved with the execution of other threads. An event is processed by invok-
ing an appropriate handler, which can be, e.g., a callback function.

Testing and verification of event-driven multi-threaded programming faces all
the usual challenges of testing and verification for multi-threaded programs, and
furthermore suffers from additional complexity, since the order of event execu-
tion is determined dynamically and non-deterministically. A successful and fully
automatic technique for finding concurrency bugs in multithreaded programs
(i.e., defects that arise only under some thread schedulings) and for verifying
their absence is stateless model checking (SMC) [15]. Given a terminating pro-
gram and fixed input data, SMC systematically explores the set of all thread
schedulings that are possible during program runs. A special runtime scheduler
drives the SMC exploration by making decisions on scheduling whenever such
choices may affect the interaction between threads. SMC has been implemented
in many tools (e.g., VeriSoft [16], Chess [34], Concuerror [10], Nidhugg [2],
rInspect [42], CDSChecker [35], RCMC [22], and GenMC [26]), and success-
fully applied to realistic programs (e.g., [17] and [25]). To reduce the number of
explored executions, SMC tools typically employ dynamic partial order reduc-
tion (DPOR) [1,13]. DPOR defines an equivalence relation on executions, which
preserves relevant correctness properties, such as reachability of local states and
assertion violations, and explores at least one execution in each equivalence class.

Existing DPOR techniques for multi-threaded programs lack effectiveness in
handling the complications brought by event-driven programming, as has been
observed by e.g., Jensen et al. [20] and Maiya et al. [28]. A naïve way to handle such
a program is to consider all pairs of events as conflicting, implying that different
orderings of event executions by a handler thread will be considered inequivalent.
A major drawback is then that a DPOR algorithm cannot exploit the fact that
different orderings of event executions by a single handler thread can be consid-
ered equivalent in the case that events are non-conflicting. In this way, a program
in which n non-conflicting events are posted to a handler thread by n concurrent
threads can give rise ton! explorations by a standard DPOR algorithm, whereas all
of them are in fact equivalent. On the other hand, some events may be conflicting,
so a DPOR algorithm for event-driven programs should explore only the necessary
inequivalent orderings between conflicting events. This can be achieved by defin-
ing an equivalence on executions, which respects only the ordering of conflicting
accesses to shared variables, irrespective of the order in which events are executed.
For plain multi-threaded programs, this equivalence is the basis for several effective
DPOR algorithms [1,13]. The challenge is to develop an effective DPOR algorithm
also for event-driven programs.

In this paper, we present Event-DPOR, a DPOR algorithm for event-driven
multi-threaded programs where handlers can execute events from their event
pool in arbitrary order (i.e., the event pool is viewed as a multiset). The mul-
tiset semantics is used in many works [20,21,37], often with the significant
restriction that there is only one handler thread; we consider the more gen-
eral case with an arbitrary number of handler threads. Event-DPOR is based
on Optimal-DPOR [1,3], a DPOR algorithm for multi-threaded programs. The
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basic working mode of Optimal-DPOR is similar to several other DPOR algo-
rithms: Given a terminating program, one of its executions is explored and then
analyzed to construct initial fragments of new executions; each fragment that is
not redundant (i.e., which can be extended to an execution that is not equivalent
to a previously explored execution), is subsequently extended to a maximal exe-
cution, which is analyzed to construct initial fragments of new executions, and so
on. Event-DPOR employs the same basic mode of operation as Optimal-DPOR,
but must be extended to cope with the event-driven execution model. One com-
plication is that the constructed initial fragments must satisfy the constraints
imposed by the fact that event executions on a handler are serialized; this may
necessitate reordering of several events when constructing new executions from
an already explored one. Another complication is that the check whether a new
fragment is redundant is NP-hard in the event-driven setting, as we prove in this
paper. We alleviate this by defining a sequence of inexpensive but incomplete
rendundancy checks, using a complete decision procedure only as a last resort.

We prove that the Event-DPOR algorithm is correct (explores at least one
execution in each equivalence class) for event-driven programs. We also prove
that it is optimal (explores exactly one execution in each equivalence class) for
the class of so-called non-branching programs, in which the possible sequences
of shared variable accesses that can be performed during execution of an event,
whose handler also executes other events, does not depend on how its execution
is interleaved with other threads.

We have implemented Event-DPOR in an extension of the Nidhugg tool [2].
Our experimental evaluation shows that, when compared with other SMC tools
in which event handlers are simulated using locks, Event-DPOR incurs only a
moderate constant overhead, but can be exponentially faster than other state-
of-the-art DPOR algorithms. The same evaluation also shows that, unlike other
algorithms that can achieve analogous reduction, Event-DPOR manages to
completely avoid unnecessary exploration of executions that cannot be seri-
alized. Moreover, in all the programs we tried, also those that are not non-
branching, Event-DPOR explored the optimal number of traces, suggesting that
Event-DPOR is optimal not only for non-branching programs but also for a
good number of branching ones. Also, our sequence of inexpensive checks for
redundancy was sufficient in all tried programs, i.e., we never had to invoke the
decision procedure for this NP-hard problem.

2 Related Work

Stateless model checking has been implemented in many tools for analysis of mul-
tithreaded programs (e.g., [2,10,16,22,26,34,35,42]). It often employs DPOR,
introduced by Flanagan and Godefroid [13] to reduce the number of schedulings
that must be explored. Further developments of DPOR reduce this number fur-
ther, by being optimal (i.e., exploring only one scheduling in each equivalence
class) [1,3,7,23] or by weakening the equivalence [5–7,9].

DPOR has been adapted to event-driven multi-threaded programs. Jensen et
al. [20] consider an executionmodel inwhich events are processed in arbitrary order
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(multiset semantics) and apply it to JavaScript programs. Maiya et al. [28] consider
a model where events are processed in the order they are received (FIFO seman-
tics), and develop a tool, EM-Explorer, for analyzing Android applications which,
given a particular sequence of event executions, produces a set of reorderings of its
events which reverses its conflicts. The above works are based on the algorithm of
Flanagan and Godefroid [13], implying that they do not take advantage of subse-
quent improvements in DPOR algorithms [1,3,23], nor do they employ techniques
such as sleep sets for avoiding redundant explorations. It is known [3] that even
with sleep sets, the algorithm of Flanagan and Godefroid can explore an exponen-
tial number of redundant executions compared to more recently proposed DPOR
algorithms which are optimal [1,3,23]. Without sleep sets, the amount of redun-
dant exploration will increase further. Recently, Trimananda et al. [39] have pro-
posed an adaptation of stateful DPOR [40,41] to non-terminating event-driven
programs, which has been implemented in Java PathFinder. For analogous reason
as for priorDPOR algorithms for event-driven programs [20,28], also this approach
does not avoid performing redundant explorations.

For actor-based programs, in which processes communicate by message-
passing, Aronis et al. [7] have presented an improvement of Optimal-DPOR in
which two postings of messages to a mailbox are considered as conflicting only
if their order affects the subsequent behavior of the receiver. Better reduction
can then be achieved if the receiver selects messages from its mailbox based on
some criterion, such as by pattern matching on the structure of the message.
However, this execution model differs from the one we consider in this paper.

Event-driven programs where handlers select messages in arbitrary order
from their mailbox can be analyzed by modeling messages as (mini-)threads that
compete for handler threads by taking locks, and applying any SMC algorithm
for shared-variable programs with locks. Since typical SMC algorithms always
consider different lock-protected code sections as conflicting, this approach has
the drawback of exploring all possible orderings of events on a handler. There
exists a technique to avoid exploring of all these orderings in programs with locks,
in which lock sections can be considered non-conflicting if they do not perform
conflicting accesses to shared variables. This LAPOR technique [24] is based
on optimistically executing lock-protected code regions in parallel, and aborting
executions in which lock-protected regions cannot be serialized. This can led to
significant useless exploration, as also shown in our evaluation in Sect. 8.

The problem of detecting potentially harmful data races in single executions
of event-driven programs has been addressed by several works. The main chal-
lenge for data race detection is to capture the often hidden dependencies for
applications on Android [8,18,19,30] or on other platforms [29,36–38]. Detect-
ing data races is a different problem than exploring all possible executions of
a program, in that it considers only one (possibly long) execution, but tries to
detect whether it (or some other similar execution) exhibits data races.
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3 Main Concepts and Challenges

In this section, we informally present core concepts of our approach by examples1

Fig. 1. A program and its execution tree with the four executions that Optimal-DPOR
will explore. In E1, the red arcs show the conflict order; the blue arrows the pro-
gram order. The first wakeup sequence is shown in green; the remaining two continue
with blue. (Color figure online)

3.1 Review of Optimal-DPOR

Our DPOR algorithm for event-driven programs is an extension of
Optimal-DPOR [1]. Let us illustrate Optimal-DPOR on the program snippet
shown in Fig. 1. In this code, three threads s, t, and u access three shared
variables x, y, and z,2 whereas a, b, c, and d are thread-local registers.
Optimal-DPOR first explores a maximal execution, which it inspects to detect
races. From each race, it constructs an initial fragment of an alternative execu-
tion which reverses the race and branches off from the explored execution just
before the race. Let us illustrate with the program in Fig. 1. Assume that the first
execution is E1 (cf. the tree in Fig. 1). The DPOR algorithm first computes its
happens-before order, denoted hb−→E1 , which is the transitive closure of the union
of: (i) the program order, which totally orders the events in each thread (small
blue arrows to the left of E1), and (ii) the conflict order which orders conflicting
events: two events are conflicting if they access a common shared variable and
at least one is a write (red arcs left of E1). A race consists of two conflicting
events in different threads that are adjacent in the hb−→E1-order. The execution
E1 contains two races (red arcs in Fig. 1). Let us consider the first race, in which
the first event is s: x=1 and the second event is t: b=x. The alternative execution
is generated by concatenating the sequence of events in E1 that do not succeed

1 Note that in the remainder of the paper, we will use the term message to refer to
what was called event in Sects. 1 and 2, for the reason that the literature on DPOR
has reserved the term event to denote an execution of a program statement. We will
also use mailbox instead of event pool.

2 Throughout this paper, we assume that threads are spawned by a main thread, and
that all shared variables get initialized to 0, also by the main thread.
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Fig. 2. An event-driven program with non-conflicting messages (top left). A program
with non-atomic conflicting messages (bottom left) and its tree of executions (right).

the first event in the hb−→E1 order (i.e., t: a = y;u: c = z) with the second event of
the race t: b=x. This forms a wakeup sequence, which branches off from E1 just
before the race, i.e., at the beginning of the exploration (green in Fig. 1). The sec-
ond race, between s: x=1 and u: d=x induces the wakeup sequence t.u.u formed
from the sequence t: a = y;u: c = z and the second event u: d = x, also branching
off at the beginning (note that t.u.u does not contain the second event t: b=x of t
since it succeeds s: x=1 in the hb−→E1-ordering). When attempting to insert t.u.u,
the algorithm will discover that this sequence is redundant, since its events are
consistently contained in a continuation (t.u.t.u) of the already inserted wakeup
sequence t.u.t, and it will therefore not insert t.u.u. After this, the algorithm will
reclaim the space for E1, extend t.u.t into a maximal execution E2, in which races
are detected that generate two new wakeup sequences (which start in green and
continue in blue), which are extended to two additional executions (cf. Fig. 1).

3.2 Challenges for Event-Driven Programs

A naïve way in which existing DPOR algorithms can handle event-driven pro-
grams is to consider all pairs of messages as conflicting. However, such an app-
roach is not effective, since it will lead to exploration of all different serialization
orders of the messages, even if they are non-conflicting, as is the case for the top
left program of Fig. 2 in which two threads s and t post two messages p1 and p2
to a handler thread h. (We show messages labeled by the message identifier and
wrapped in brackets.) Since the events of p1 and p2 are non-conflicting, exploring
only one execution suffices. In general, some messages of a program may be con-
flicting and some may not be, so a DPOR algorithm for event-driven programs
should explore only the necessary inequivalent orderings between conflicting mes-
sages. Event-DPOR achieves this by extending Optimal-DPOR’s technique for
reversing races between events in different threads to a mechanism for reversing
races between events in different messages.
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Fig. 3. A program with messages that branch on read values and its exploration tree.
(Color figure online)

We illustrate this mechanism on the program at the bottom left of Fig. 2.
Assume that the first explored execution is E1. It contains two races between
events in the two messages, one on x and one on y. According to Optimal-DPOR’s
principle for race reversal, the race on x should induce an alternative execution
composed of the sequence of events that do not happen-after the first event (i.e.,
h: p1: u = 1 h: p2: v = 2) and the second event h: p2: a = x (for brevity, we do not
show the two post events). However, since message execution is serialized, these
events cannot form an execution. Therefore, Event-DPOR forms the alternative
execution (shown in blue) by appending the second event h: p2: a = x to a maxi-
mal subset of the events of E1 which is closed under hb−→E1 -predecessors (i.e., if it
contains an event e then it also contains all its hb−→E1-predecessors), and which can
forman execution that does not contain the first event. Later, thiswakeup sequence
is extended to execution E2. Let us then consider the race on y. The constructed
wakeup sequence should append the second event h: p2: b = y to a maximal subset
of events that do not happen-after the first event h: p1: y = 1. However, there is no
execution that satisfies these constraints, since it would have to include h: p2: a = x
before its hb−→E1-predecessorh: p1: x = 1. The conclusion is that the race on y cannot
(and should not) be considered for reversal, whereas that on x should be reversed.
More generally, if two messages executing on the same handler thread are in con-
flict, then a wakeup sequence is constructed consisting of only the second message
up until and including its first conflicting event.

When messages can branch on values read from shared variables, reversing
the order of two messages may change the control flow of each involved message.
Also in this case, Event-DPOR’s principles for reversing races work fine. We
illustrate this on the program in Fig. 3, consisting of two threads s and t and a
handler thread h. Thread s posts a message p1 to h and thereafter writes to x.
Thread t posts message p2 to h that reads from x and may then read from y.

Assume that the first execution is E1, where s’s access to x goes last. The
execution has two races: one on y between p1: y = 2 and p2: b = y, and one on x
between p2: a = x and s: x = 1. The race on x can be handled in the same way as
in Optimal-DPOR: the wakeup sequence is s: x = 1, which branches off after the
prefix s.t.p1 (green in Fig. 3), and will subsequently be extended to execution E2.
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Fig. 4. A program in which a reversal of the race on x will reorder messages on the
handler k, and two executions that will be explored.

The race on y is a race between events in two messages on the same handler
thread. As in the previous example, the wakeup sequence will include the second
message up until and including the first racing event, which is p2: b = y. Included
in the events that do not happen-after the first event is also s: x = 1, which must
be placed after its predecessor p2: a = x, yielding the wakeup sequence p2: a = x;
s: x = 1; p2: b = y, which branches off after s: post(p1,h), t: post(p2,h). This
is the blue rightmost branch of the tree in Fig. 3, and is later extended into the
execution E3. Execution E3 has a race on x. Its reversal produces the wakeup
sequence s: x = 1, which is a tentative branch next to p2: a = x. However, this
wakeup sequence is not in conflict with the left branch labeled p1: b = y, which
means that it will not be inserted for the reason that it is equivalent to a subse-
quence of an execution starting with p1: b = y, namely E2.

Reordering Messages when Reversing Races. Event-DPOR’s principles for
reversing races may necessitate reordering of messages on handlers that are
not involved in the race. Consider the program in Fig. 4. Assume that the first
explored execution is E1, where we have omitted the initial sequence of post
events of thread t for succinctness. In E1, message p1 is processed before p2,
and q1 is processed before q2. There are three races in E1, one on each of the
shared variables x, y, z. Let us consider the race on x, shown by the red arrow.
A wakeup sequence which reverses this race must include all events of q2, since
these are the hb−→E1-predecessors of q2: c = x. It must also include the write to
z by p2 since it is a hb−→E1 -predecessor of events in q2. On the other hand, it
cannot include any part of the message q1, since q1 must now occur after q2,
and therefore it also cannot include the read of y by p1 since its predecessor
in q1 is missing. In summary, the wakeup sequence contains two fully processed
messages p2 and q2, the event h: p1: d = 1 of p1, but no events from q1. Such a
wakeup sequence must branch off after the post events of t, i.e., from the root of
the tree to the right in Fig. 4. Later, this wakeup sequence is extended to a full
execution E2. In total, the program of Fig. 4 has eight inequivalent executions
(the other six are not shown).
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4 Computation Model

4.1 Programs

We consider programs consisting of a finite set of threads that interact via a
finite set of (shared) variables. Each thread is either a normal thread or a handler
thread. A normal thread has a finite set of local registers and runs a determinis-
tic code, built in a standard way from expressions and atomic statements, using
standard control flow constructs (sequential composition, selection and bounded
iteration). Atomic statements read or write to shared variables and local regis-
ters, including read-modify-write operations, such as compare-and-swap. A han-
dler thread has a mailbox to which all threads (also handler threads) can post
messages. A mailbox has unbounded capacity, implying that the posting of a
message to a mailbox can never block. A message consists of a deterministic
code, built in the same way as the code of a thread. We let post(p, h) denote
the statement which posts the message p into the mailbox of handler thread h.
A handler thread repeatedly extracts a message from its mailbox, executes the
code of the message to completion, then extracts a next message and executes
its code, and so on. Messages are extracted from the mailbox in arbitrary order.
The execution of a message is interleaved with the statements of other threads.

The local state of a thread is a valuation of its local registers together with
the contents of its mailbox. A global state of a program consists of a local state
of each thread together with a valuation of the shared variables. The program
has a unique initial state, in which mailboxes are empty.

Recall that we use message to denote what is called event in Sect. 1.

4.2 Events, Executions, Happens-Before Ordering, and Equivalence

We use s, t, . . . for threads, p, q, . . . for messages and non-handler threads, x, y,
z for shared variables, and a, b, c, d for local registers. We assume, wlog, that
the first event of a message does not access a shared variable, but only performs
a local action, e.g., related to initialization of message execution. In order to
simplify the presentation, we henceforth extend the term message to refer not
only to a message but also to a non-handler thread.

The execution of a program statement is an event, which affects the global
state of the program. An event is denoted by a pair 〈p, i〉, where p denotes
the message containing the event and i is a positive integer, denoting that the
event results from the i-th execution step in message p. An execution sequence
E is a finite sequence of events, starting from the initial state of the program.
Since thread and message codes are deterministic, an execution sequence E can
be uniquely characterized by the sequence of messages (including non-handler
threads) that perform execution steps in E, where we use dot(.) as concatenation
operator. Thus p.p.q denotes the execution sequence consisting first of two events
of p, followed by an event of q.

We let enabled(E) denote the set of messages that can perform a next event
in the state to which E leads. A sequence E is maximal if enabled(E) = ∅.
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We use u, v, w, . . . to range over sequences of events. We introduce the following
notation, where E is an execution sequence and w is a sequence of events.

– 〈〉 denotes the empty sequence.
– E�w denotes that E.w is an execution sequence.
– w\p denotes the sequence w with its first occurrence of p (if any) removed.
– dom(E) denotes the set of events 〈p, i〉 in E, that is, 〈p, i〉 ∈ dom(E) iff E

contains at least i events of p. We also write e ∈ E to denote e ∈ dom(E).
– next[E](p) denotes the next event to be performed by the message p after the

execution E if p ∈ enabled(E), otherwise next[E](p) is undefined.
– ê denotes the message that performs e, i.e., e is of form e = 〈ê, i〉 for some i.
– E′E denotes that E′ is a (not necessarily strict) prefix of E.

We say that p starts after E if p has been posted in E, but not yet performed
any events in E. We say that p is active after E if p has been posted in E, but
not finished its execution in E.

Definition 1 (Happens-before). Given an execution sequence E, we define
the happens-before relation on E, denoted hb−→E, as the smallest irreflexive par-
tial order on dom(E) such that e hb−→E e′ if e occurs before e′ in E and either

– e and e′ are performed by the same message p,
– e and e′ access a common shared variable x and at least one writes to x, or
– ̂e′ is the message that is posted by e and e′ is the first event of ̂e′. �	
The hb-trace (or trace for short) of E is the directed graph (dom(E), hb−→E).

Definition 2 (Equivalence). Two execution sequences E and E′ are equiv-
alent, denoted E 
 E′, if they have the same trace. We let [E]� denote the
equivalence class of E. �	
Note that for programs that do not post or process messages, 
 is the standard
Mazurkiewicz trace equivalence for multi-threaded programs [1,13,14,32]. We
say that two sequences of events, w and w′, with E�w and E�w′, are equivalent
after E, denoted w 
[E] w

′ if E.w 
 E.w′.

5 The Event-DPOR Algorithm

In this section, we present Event-DPOR, a DPOR algorithm for event-driven
programs. Given a terminating program on given input, the algorithm explores
different maximal executions resulting from different thread interleavings.

5.1 Central Concepts in Event-DPOR

Definition 3 (Happens-before Prefix). Let E and E′ be execution
sequences. We say that E′ is a happens-before prefix of E, denoted E′ � E,
if (i) dom(E′) ⊆ dom(E), (ii) hb−→E′ is the restriction of hb−→E to E′, and (iii)
whenever e

hb−→E e′ for some e′ ∈ dom(E′), then e ∈ dom(E′). We let w′ �[E] w
denote that E.w′ � E.w. �	
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Intuitively, E′ � E denotes that the execution E′ is “contained” in the execution
E in such a way that it is not affected by the events in E that are not in E′.3
To illustrate, for the top left program of Fig. 2, the execution E′ consisting of
t: post(p2,h) h: p2: y = 2 is a happens-before prefix of any maximal execution
of the program, since the event of p2 cannot happen-after any other event than
the event that posts p2, which is already in E′.

Definition 4 (Weak Initials). Let E be an execution sequence, and w be a
sequence with E �w. The set WI[E](w) of weak initials of w after E is the set
of messages p such that E�p.w′ for some w′ with w �[E] p.w

′. �	
Intuitively, p is in WI[E](w) if p can execute the first event in a continuation of
E which “contains” w, in the sense of �. In Event-DPOR, the concept of weak
initials is used to test whether a new sequence is redundant, i.e., is “contained in”
an execution that have been explored or in a wakeup sequence that is scheduled
for exploration. Note that in Definition 4, we can generally not choose w′ as
w\p. This happens, e.g., if p does not occur in w but instead w contains another
message p′ which executes on the same handler as p and does not conflict with
p; in this case w′ must contain a completed execution of p inserted before p′.

Fig. 5. Program illustrating weak initials.

Consider the program shown on
the right. If we let E be the execu-
tion s.t and w be the sequence p1,
we have p2 ∈ WI[E](w), since w �[E]

p2.p2.p1. This illustration shows that
in order to determine whether p ∈
WI[E](w) for a message p, one must
know which shared-variable access will
be performed by next[E](p), and, in
case p starts after E but will execute
after some other message on its han-
dler, also the sequences of shared-variable accesses that p will perform when
executing to completion (Fig. 5).

The weak initial check problem consists in checking whether p ∈ WI[E](w).

Theorem 1. The weak initial check problem is NP-hard.

The proof of the above theorem can be found in the longer version of this
paper [4]. There we also propose a sequence of inexpensive rendundancy checks,
which have shown to be sufficient for all our benchmarks.

Definition 5 (Races). Let E be a maximal execution sequence. Two events e

and e′ in different messages are in a race, denoted e �E e′, if e hb−→E e′ and

(i) e and e′ access a common shared variable and at least one is a write, and
(ii) there is no event e′′ with e

hb−→E e′′ and e′′ hb−→E e′. �	
3 The relation w′ �[E] w is also introduced in [28], as “w is a dependence-covering

sequence of w′.”.
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Intuitively, a race arises between conflicting accesses to a shared variable, by
events which are in different messages but adjacent in the hb−→E order.

5.2 The Event-DPOR Algorithm

The Event-DPOR algorithm, shown as pseudocode in Algorithm 1, performs a
depth-first exploration of executions using the recursive procedure Explore(E),
where E is the currently explored execution, which also serves as the stack of the
exploration. In addition the algorithm maintains three mappings from prefixes
of E, named done, wut, and parkedWuS . For each prefix E′ of E,

– done(E′) is a mapping whose domain is the set of messages p for which the call
Explore(E′.p) has returned. If p does not start after E′, then done(E′)(p)
is the shared variable-access performed by next[E′](p). If p starts after E′,
then done(E′)(p) is the set of sequences of shared variable-accesses that can
be performed in a completed execution of p after E′. The information in
done(E′)(p) is collected by Algorithm 1 during the call Explore(E′.p) (Lines
22 to 31).

– wut(E′) is a wakeup tree, i.e., an ordered tree 〈B,≺〉 where B is a prefix-closed
set of sequences, whose leaves are wakeup sequences. For each sequence u ∈ B,
the order ≺ orders its children (of form u.p) by the order in which they were
added to wut(E′). The order ≺ between children of a node is extended to a
total order ≺ on B by letting ≺ be the induced post-order relation between
the nodes in B (i.e., if the children u.p1 and u.p2 are ordered as u.p1 ≺ u.p2,
then u.p1 ≺ u.p2 ≺ u in the induced post-order). The leaves of wut(E′) will
subsequently be extended to maximal execution by the recursive exploration,
in order of increasing ≺.

– parkedWuS (E′) is a set of wakeup sequences v that were previously being
inserted into some wakeup tree wut(E′′) with E′′ ≤ E′, but were “parked”
at the sequence E′ because at that time there was not enough information
to determine where in wut(E′′) to place v. Later, when a branch of wut(E′′)
has been extended to a maximal execution, it should be possible to determine
where to insert v.

Each call to Explore(E) first initializes done(E) and parkedWuS (E) (wut(E)
was initialized before the call), and thereafter enters one of two phases: race
detection (Lines 4 to 11) or exploration (Lines 13 to 31). The race detection
phase is invoked when E is a maximal execution sequence. First, for each wakeup
sequence v parked at a prefix E′ of E it invokes InsertParkedWuS(v,E′) to insert
v into the appropriate wakeup tree (Lines 5 to 7). Thereafter, each race (of form
e �E e′) in E is analyzed by ReverseRace(E, e, e′), which returns a set of
executions that reverse the race. Each such execution E′.v is returned as a pair
〈E′, v〉, where v is a wakeup sequence that should be considered for insertion in
the wakeup tree at E′. Each wakeup sequence v is checked for redundancy (Line
10), using the information in done. If v is not redundant, it is inserted into the
wakeup tree at E′ for future exploration (Line 11).
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Algorithm 1: Event-DPOR
Initial call: Explore(〈〉) with wut(〈〉) = 〈{〈〉}, ∅〉

1 Explore(E)// Returns set of sequences of shared-variable access of messages active after E

2 done(E) := ∅;
3 parkedWuS(E) := ∅;
4 if enabled(E) = ∅ then // When E is maximal, enter race detection
5 foreach E′ ≤ E do
6 foreach v ∈ parkedWuS(E′) do // Parked wakeup sequences
7 InsertParkedWuS(v,E′); // are inserted at the appropriate place

8 foreach e, e′ such that e �E e′ do // For each race in E

9 foreach 〈E′, v〉 ∈ ReverseRace(E, e, e′) do // For each race reversal
10 if ¬∃E′′, w, p s.t. E′′.w = E′ ∧ p ∈ dom(done(E′′)) ∧ p ∈

WI[E′′](w.v) then // If v is not redundant
11 Insert(v ,E ′, 〈〉); // insert v into the wakeup tree at E′

12 else // If not at a maximal execution sequence, explore.
13 if wut(E) = 〈{〈〉}, ∅〉 then // If tree of wakeup sequences is empty ...
14 choose p ∈ enabled(E); // ... select an arbitrary p.
15 wut(E) := 〈{〈〉, p}, {(p, 〈〉)}〉; // Adapt wakeup tree accordingly

16 foreach message q that is active after E do
17 msgAccesses(q) := ∅; // Initialize the sequences of accesses for messages
18 while ∃q ∈ wut(E) do // While the wakeup tree is not empty...
19 let p = min≺{q ∈ wut(E)}; // ... pick next branch, ...
20 wut(E.p) := subtree(wut(E), p); // ... extract next wakeup tree, ...
21 let tmpAccesses = Explore(E.p); // ... and make a recursive call
22 if next[E](p) is the last event of message p then
23 add p to dom(tmpAccesses) with tmpAccesses(p) = {〈〉}
24 if next[E](p) performs a global access then
25 prepend next[E](p)’s access to each sequence in tmpAccesses(p)
26 foreach message q that is active after E do
27 msgAccesses(q) ∪= tmpAccesses(q)
28 add p to the domain of done(E); // Mark p as explored
29 if If p starts after E then // If p starts a message after E, ...
30 done(E)(p) := msgAccesses(p); // ... store p’s sequences of accesses
31 else done(E)(p) := next[E](p)’s access; // else, store next[E](p)’s access
32 remove all sequences of form p.w from wut(E); // At end, cleanup

33 return msgAccesses

The exploration phase (Lines 13 to 33) is entered if exploration has not
reached the end of a maximal execution sequence. First, if wut(E) only contains
the empty sequence, then an arbitrary enabled message is entered into wut(E)
(Lines 14 and 15). Thereafter, each sequence in wut(E) is subject to recursive
exploration. We find the ≺-minimal child p of the root of wut(E) (Line 19),
and make the recursive call Explore(E.p) (Line 21). Before the call, wut(E.p)
is initialized (Line 20) to the subtree rooted at p in wut(E). During the call
Explore(E), information is also collected about the sequences of shared-variable
accesses that can be performed by each message that is active after E, and subse-
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quently stored in the mapping done. The information is collected in the variable
msgAccesses, which is initialized at Line 17. Each recursive call Explore(E.p)
returns the sets of access sequences performed by messages that are active after
E.p (Line 21). After prepending the access performed by next[E](p) to the sets
of access sequences performed by p (Line 25), the sets returned by Explore(E.p)
are added to the corresponding sets in msgAccesses (Line 27). Finally, p is
added to the domain of done(E) (Line 28). If p starts a message after E, then
done(E)(p) is assigned the set of access sequences performed by p (Line 30),
otherwise only the access of next[E](p). Thereafter, the subtree rooted at p is
removed from wut(E) (Line 32). When all recursive calls of form Explore(E.p)
have returned, the accumulated sets of access sequences are returned (Line 33).

Event-DPOR calls functions that are briefly described in the following para-
graphs. More elaborate descriptions (with pseudocode) are in the longer version
of this paper [4].

ReverseRace(E, e, e′) is given a race e �E e′ in the execution E (Line 8), and
returns a set of executions that reverse the race in the sense that they perform
the second event e′ of the race without performing the first one, and (except for
e′) only contain events that are not affected by the race. More precisely, it returns
a set of pairs of form 〈E′, u.e′〉, such that (i) E′.u is a maximal happens-before
prefix of E such that E′.u.e′ is an execution, and (ii) dom(E′) is a maximal
subset of dom(E′.u) such that E′ ≤ E. An illustration of the ReverseRace
function was given for the race on x in the program of Fig. 4.

Insert(v ,E ′, 〈〉), called at Line 11, inserts the wakeup sequence v into the
wakeup tree wut(E′). If there is already some leaf u of wut(E′) such that
u �[E′] v or v �[E′] u, then the insertion leaves wut(E′) unaffected. Other-
wise Insert(v ,E ′, 〈〉) attempts to find the ≺-minimal non-leaf sequence u in
wut(E′) with u �[E′] v, and insert a new leaf of form u.v′ into wut(E′), such
that v �[E′] u.v

′, which is ordered after all existing descendants of u in wut(E′).
The function finds such a u by descending into wut(E′) one event at a time;
from each node u′ it searches a next node u′.p as the ≺-minimal child with
u′.p �[E′] v. If, during this search, a message p starts after E′.u′ it may happen
that the wakeup tree does not contain enough subsequent events to determine
whether u′.p �[E′] v; in this case the sequence v is “parked” at the node u′.p: the
insertion of v will be resumed when E′.u′.p is extended to a maximal execution
(at Line 7 with E′ being E′.u′).

InsertParkedWuS(v,E′) inserts a wakeup sequence v, which is parked after a
prefix E′ of the execution E, into an appropriate wakeup tree. The function first
decomposes E′ as E′′.p, and checks whether p ∈ WI[E′′](v), using information
about the accesses of p that can be found in E. If the check succeeds, then
insertion proceeds recursively one step further in the execution E, otherwise v
conflicts with p and should be inserted into the wakeup tree after E′′.

Checking for Redundancy. Tests of form p ∈ WI[E](w) for a message p and
an execution E.w appear at Line 10 and in the functions InsertWuS and
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InsertParkedWuS. If p does not start after E, then the check can be straight-
forwardly performed using sleep sets [14]. If p starts after E, then checking
whether p ∈ WI[E](w) is NP-hard in the general case (see Theorem 1). To avoid
expensive calls to a decision procedure, Event-DPOR employs a sequence of
incomplete checks, starting with simple ones, and proceeding with a next test
only if the preceding was not conclusive. These tests are in order: 1) If p is the
first message (if any) on its handler in w, then p ∈ WI[E](w) is trivially true.
2) If the happens-before relation precludes p from executing first on its handler,
then p ∈ WI[E](w) is false; checking this may require w to be extended so that
p (and possibly other messages) are executed to completion. 3) An attempt is
made to construct an actual execution in which p is the first message on its han-
dler, which respects the happens-before ordering. 4) If all previous tests were
inconclusive, a decision procedure is invoked as a final step.

6 Correctness and Optimality

A program is defined to be non-branching if each message, which executes on
the same handler as some other message, performs the same sequence of accesses
(reads or writes) to shared variables during its execution, regardless of how its
execution is interleaved with other threads and messages. Note that the non-
branching restriction does not apply to non-handler threads nor to messages that
are the only ones executing on their handler. For illustration, all the programs
in Sect. 3, except the one in Fig. 3, are non-branching.

The following theorems state that Event-DPOR is correct (explores at least
one execution in each equivalence class) for all event-driven programs and opti-
mal (explores exactly one execution in each equivalence class) for non-branching
programs. Proofs can be found in the longer version of this paper [4].

Theorem 2 (Correctness). Whenever the call to Explore(〈〉) returns during
Algorithm 1, then for all maximal execution sequences E, the algorithm has
explored some execution sequence in [E]�.

Theorem 3 (Optimality). When applied to a non-branching program, Algo-
rithm 1 never explores two maximal execution sequences which are equivalent.

7 Implementation

Event-DPOR was implemented in a prototype on top of Nidhugg. Nidhugg [2]
is a state-of-the-art stateless model checker for C/C++ programs with Pthreads,
which works at the level of the LLVM Intermediate Representation. Nidhugg
comes with a selection of DPOR algorithms. One of them is Optimal-DPOR,
which we have used as a basis for Event-DPOR’s implementation.

For our prototype, we have extended the data structures of Nidhugg with
the information needed by Event-DPOR. For instance, nodes in wakeup trees
contain new information, such as the set of parked wakeup sequences, and events
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in executions include the information in tmpAccesses, used to compute the done

set as shown in Lines 23 to 30 of Algorithm 1. The relation hb−→E is represented by
a vector clock per event, containing the set of preceding events. When reversing
races (in ReverseRace) and checking for redundancy (Line 10 of Algorithm 1),
the relation hb−→E is extended by a saturation operation that captures ordering
constraints induced by serialized message execution.

Concerning race reversal, instead of reversing multiple races between mes-
sages executed on the same handler, our implementation detects and reverses
only the race induced by the first conflict, since other races cannot be reversed,
as explained using the example in Fig. 2. Moreover, in cases where ReverseRace
would return several maximal executions that reverse a race, our implementa-
tion instead returns their union, even though it may not form an execution (e.g.,
since it may contain several incomplete executed messages on a handler). From
this union, events will be removed adaptively during wakeup tree insertion to
extract only those maximal executions that generate new leaves in a wakeup
tree.

8 Evaluation

In this section, we evaluate the performance of our prototype implementation
and put it into context. Since currently there is no other SMC tool for event-
driven programs to compare against,4 we have created an API, in the form of a C
header file, that implements event handlers as pthread mutexes (locks) and sim-
ulates messages as threads that wait for their event handler to be free. This API
allows us to use plain C/pthread programs to compare Event-DPOR with the
Optimal-DPOR algorithm implemented in Nidhugg as baseline, but also with
the Lock-Aware Partial Order Reduction (LAPOR) algorithm [24], implemented
in GenMC. The LAPOR algorithm is often analogous to Event-DPOR w.r.t.
the amount of reduction that it can achieve when event handlers are modeled as
global locks. We also include in our comparison the baseline DPOR algorithm
of GenMC that tracks the modification order (–mo) of shared variables. For
Nidhugg, we used its master branch at the end of 2022; for GenMC, we used
version 0.6.1.5 We have run all benchmarks on a Ryzen 5950X desktop running
Arch Linux and used a timeout of ten hours. All the benchmark programs we
use are parametric, typically on the number of threads used (and thus messages
posted); their parameters are shown inside parentheses.

We will compare implementations of different DPOR algorithms based on
the number of executions that they explore, as well as the time that this takes.
For some programs, LAPOR also examines a fair amount of blocked executions
(i.e., executions that cannot be serialized and need to be aborted), which natu-
rally affects its time performance. In Table 1, we show the number of executions

4 All our attempts to use R4 failed miserably; the tool has not been updated since 2016.
5 GenMC v0.6.1 (released July 2021) warns that LAPOR usage with –mo is experi-

mental; in fact, LAPOR support has been dropped in more recent GenMC versions.

https://github.com/eth-sri/R4
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Table 1. Performance of different DPOR algorithm implementations.

explored by an entry of the form T+B, where T is the number of complete traces
and B is the number of blocked executions. (We omit the B part when it is zero.)

In the first benchmark program (posters), each thread posts to a single event
handler two messages containing stores to some atomic global variable, and
then the value of this variable is checked by an assertion. This simple program
allows us to establish the baseline speed of all implementations. We can see that
GenMC –mo is the fastest implementation. The reason is that by default it does
not perform any checks whether the explored executions are sequentially con-
sistent, which allows it to be five times faster than LAPOR, and seven to nine
times faster than Nidhugg’s algorithm implementations. We can also observe
that Event-DPOR incurs a small but noticeable overhead over Optimal-DPOR
for the extra machinery that its implementation requires.

The next two benchmark programs were taken from a paper by Kragl et
al. [27]. In buyers, n “buyer” threads coordinate the purchase of an item from a
“seller” as follows: one buyer requests a quote for the item from the seller, then the
buyers coordinate their individual contribution, and finally if the contributions
are enough to buy the item, the order is placed. In ping-pong, the “pong” handler
thread receives messages with increasing numbers from the “ping” thread, which
are then acknowledged back to the “ping” event handler.

Looking at Table 1, we notice that, in both buyers and ping-pong, all algo-
rithms explore the same number of traces, but LAPOR also explores a significant
number of executions that cannot be serialized and need to be aborted. In fact,
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for both benchmarks, the aborted executions significantly outnumber the traces
explored. This affects negatively the time that LAPOR takes, and GenMC
–lapor becomes the slowest implementation. In contrast, Event-DPOR does not
suffer from this problem and shows similar scalability as baseline GenMC and
Optimal-DPOR.

With the four remaining benchmarks, we evaluate all implementations in pro-
grams where algorithms tailored to event-driven programming, either natively
(Event-DPOR) or which are lock-aware (when handlers are implemented as
locks), have an advantage. The first program (consensus), again from the paper
by Kragl et al. [27], is a simple broadcast consensus protocol for n nodes to
agree on a common value. For each node i, two threads are created: one thread
executes a broadcast method that sends the value of node i to every other
node, and the other thread is an event handler that executes a collect method
which receives n values and stores the maximum as its decision. Since every node
receives the values of all other nodes, after the protocol finishes, all nodes have
decided on the same value. The next program (prolific) is synthetic: n threads
send n messages with an increasing number of stores to and loads from an atomic
global variable to one event handler. The sparse-mat program computes the num-
ber of non-zero elements of a sparse matrix of dimension m×n, by dividing the
work into n tasks sent as messages to different handlers, which compute and
join their results. The last benchmark (plb) is taken from a paper by Jhala and
Majumdar [21]. A fixed sequence of task requests is received by the main thread.
Upon receiving a task, the main thread allocates a space in memory and posts
a message with the pointer to the allocated memory that will be served by a
thread in the future.

Refer again to Table 1. In consensus, all algorithms start with the same num-
ber of traces, but LAPOR and Event-DPOR need to explore fewer and fewer
traces than the other two algorithms, as the number of nodes (and threads)
increases. Here too, LAPOR explores a significant number of executions that
need to be aborted, which hurts its time performance. On the other hand,
Event-DPOR’s handling of events is optimal here. The prolific program shows a
case where algorithms not tailored to events (or locks) explore (n − 1)! traces,
while LAPOR and Event-DPOR explore only 2n−2 consistent executions, when
running the benchmark with parameter n. It can also be noted that Event-DPOR
scales much better than LAPOR here in terms of time, due to the extra work that
LAPOR needs to perform in order to check consistency of executions (and abort
some of them). The sparse-mat program shows another case where algorithms
that are not tailored to events explore a large number of executions unneces-
sarily (� denotes timeout). This program also shows that Event-DPOR beats
LAPOR time-wise even when LAPOR does not explore executions that need to
be aborted. Finally, plb shows a case on which Event-DPOR and LAPOR really
shine. These algorithms need to explore only one trace, independently of the
size of the matrices and messages exchanged, while DPOR algorithms not tai-
lored to event-driven programs explore a number of executions which increases
exponentially and fast.
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We remark that, in all benchmarks, the inexpensive checks for redundancy
were sufficient. Moreover, in all benchmarks, also those that are not non-
branching (such as the one in Fig. 3), Event-DPOR explored the optimal number
of traces. Results from an extended set of benchmarks appear in the longer ver-
sion of this paper [4].

9 Concluding Remarks

In this paper, we presented a novel SMC algorithm, Event-DPOR, tailored to
the characteristics of event-driven multi-threaded programs running under the
SC semantics. The algorithm was proven correct and optimal for event-driven
programs in which the variable accesses of events do not depend on how their
execution is interleaved with other threads.

We have implemented Event-DPOR in a publicly available prototype based
on the Nidhugg tool. With a wide range of event-driven programs, we have
shown that Event-DPOR incurs only a moderate constant overhead over its
baseline implementation (Optimal-DPOR), it is exponentially faster than exist-
ing state-of-the-art SMC algorithms in time and number of traces examined on
programs where events’ actions do not conflict, and does not suffer from perfor-
mance degradation caused by having to examine non-serializable executions.

Event-DPOR assumes that handlers can process their events in arbitrary
order. Directions for future work include to retarget Event-DPOR for event-
driven programs with other policies (e.g., FIFO), and for specific event-driven
execution models.

Artifact. An artifact containing the benchmarks and all the tools used in the
evaluation, including the version of Nidhugg with Event-DPOR support, is
available at https://doi.org/10.5281/zenodo.7929004.
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Abstract. Checking whether two quantum circuits are equivalent is
important for the design and optimization of quantum-computer appli-
cations with real-world devices. We consider quantum circuits consisting
of Clifford gates, a practically-relevant subset of all quantum operations
which is large enough to exhibit quantum features such as entangle-
ment and forms the basis of, for example, quantum-error correction and
many quantum-network applications. We present a deterministic algo-
rithm that is based on a folklore mathematical result and demonstrate
that it is capable of outperforming previously considered state-of-the-art
method. In particular, given two Clifford circuits as sequences of single-
and two-qubit Clifford gates, the algorithm checks their equivalence in
O(n · m) time in the number of qubits n and number of elementary
Clifford gates m. Using the performant Stim simulator as backend, our
implementation checks equivalence of quantum circuits with 1000 qubits
(and a circuit depth of 10.000 gates) in ∼22 s and circuits with 100.000
qubits (depth 10) in ∼15 min, outperforming the existing SAT-based and
path-integral based approaches by orders of magnitude. This approach
shows that the correctness of application-relevant subsets of quantum
operations can be verified up to large circuits in practice.

1 Introduction

Quantum computing promises to perform classically intractable tasks for a
wide range of applications [38,40]. While we are entering the era of Noisy
Intermediate-Scale Quantum computing [43], the high noise levels necessitate
precise compilation of textbook quantum circuits onto real-world devices, which
can only handle shallow-depth circuits and have various constraints (connectiv-
ity, topology, native gate sets, etc.) [20,23]. A crucial part of the design and
optimization over quantum circuits is verifying whether two quantum circuits,
each presented by a classical description, implement the same quantum opera-
tion, i.e. checking equivalence of quantum circuits.

Correctness verification is a well-studied field in the classical domain [26,34,
35] but unfortunately not all methods directly carry over to quantum computing
because the state of n quantum bits is generally represented as 2n complex val-
ues [40]. Due to the reversibility of quantum circuits, verifying equivalence of cir-
cuits C1, C2 is reducible to checking if the circuit C1 ·C−1

2 , i.e., C1 followed by the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14216, pp. 199–216, 2023.
https://doi.org/10.1007/978-3-031-45332-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45332-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-45332-8_10


200 D. Thanos et al.

inverse of C2, is equivalent to the identity circuit, i.e., a circuit that implements
an operator that does not modify the inputs. Exact and approximate identity
checking, i.e., determining whether the circuit is close to the identity circuit, fall
in quantum complexity classes which are analogs of NP [2,11] (NQP [44] and
QMA [31,32], respectively). Thus we should not hope for efficient algorithms in
general.

Existing deterministic methods analyzing circuits consisting of only quantum
gates as quantum operations (no quantum measurements) are based on encoding
as Boolean satisfiability instances [10] (also [52,53] for restricted circuits), satisfi-
ability modulo theories [9], path-sums [4,5], rewrite rules [22,42,51], and on vari-
ous flavors of decision diagrams, including QMDD [17,18,41,46], LIMDD [47,48],
Tensor-DD [30], BDD [19,50] and others [49,54]. In addition, some probabilistic
methods are known [16,36].

In this paper, we focus on exact equivalence checking of two (classical descrip-
tions of) circuits with Clifford gates only, a subset of all quantum gates which
is ubiquitous to quantum computing and is highly relevant for quantum error
correction [27,45] and quantum networking applications [29]. For exact identity
checking of Clifford circuits, a reduction to satisfiability was presented by [10],
in a tool called QuSAT, and an approach based on path-sums in the Feynman
tool [4]. For approximate identity check, a polynomial-time algorithm exists [7]
whose runtime scales with the accuracy of the approximation (a polynomial in
the number of qubits).

We demonstrate that a folklore characterization of equivalence of general
circuits translates into an O(m ·n)-time deterministic algorithm for exact equiv-
alence checking of Clifford circuits, with n the number of qubits and m the
total number of elementary Clifford gates in the two circuits. The algorithm
(many-one) reduces the equivalence check to circuit simulation which can be
done efficiently [1,28], in the particular case of equivalence checking of Clifford
circuits.

We empirically evaluate the algorithm by using the performant Clifford-
circuit simulator Stim [25], reaching circuit depths of 1000 qubits and 10.000
elementary Clifford gates in less than a minute, and 100.000 qubits for depth-10
circuits in approximately 15 min, outperforming the state-of-the-art SAT-based
and path-sum approaches by orders of magnitude. Our open-source implemen-
tation can be found on [21].

We emphasize that the task in this work is equivalence checking given a white-
box classical descriptions of the quantum circuit, as opposed to the different task
where one is given access to a quantum computer which performs the quantum
circuit as black box [39]. For Clifford circuits, specifically see [12] and [36].

In Sect. 2, we provide the necessary background to quantum computing and a
simple example of applying the algorithm for comparing two equivalent circuits.
We state the theorem explicitly and give the resulting algorithm in Sect. 3. In
Sect. 4, we empirically evaluate our implementation, using the Stim simulator as
a backend. We conclude in Sect. 5.
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2 Preliminaries

We briefly introduce relevant quantum computing concepts and refer to [40] for
a more elaborate introduction.

2.1 Quantum Circuits and Fundamental Concepts

Classical circuits are limited to bits, which take values 0 and 1. In contrast, the
state of a quantum bit or qubit can be expressed as a complex-valued 2-vector

of unit norm. Examples of single-qubit states are

[
1√
2
1√
2

]
and

[
1√
5

2i√
5

]
where i is the

imaginary unit (i2 = −1). Two possible quantum states are the computational-

basis states
[
1
0

]
and

[
0
1

]
, usually denoted in Dirac notation as |0〉 and |1〉. Thus,

we can rewrite the two examples from before as 1√
2
(|0〉 + |1〉) =

[
1√
2
1√
2

]
and

1√
5
(|0〉 + 2i |1〉) =

[
1√
5

2i√
5

]
. More generally, we can write an arbitrary single-qubit

state |φ〉 =
[
α0

α1

]
= α0 |0〉 + α1 |1〉 where the complex numbers αi satisfy |α0|2 +

|α1|2 = 1. Here, |z| denotes the modulus of the complex number z: when writing
z = a + b · i for real numbers a, b, the modulus equals |z| =

√
a2 + b2 and can

also be defined through the complex conjugate z∗ = a − b · i as |z| =
√

z · z∗.
Two single-qubit quantum states |φ〉 , |ψ〉 are combined into a two-qubit state

|φ〉 ⊗ |ψ〉, where ⊗ denotes the tensor product (Kronecker product) from lin-
ear algebra. In general, an n-qubit state is a complex vector of 2n entries and
can be written in Dirac notation as

∑
x∈{0,1}n αx |x〉, where |x〉 are defined as

e.g. |0010〉 = |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉. Here, the complex values αx should satisfy∑
x∈{0,1}n |αx|2 = 1, i.e. the norm of the vector representing the quantum state

equals 1. Examples of two-qubit states are |00〉 and 1√
6
(|00〉+i |01〉−2 |11〉). Any

(nA + nB)-qubit quantum state |φ〉 that cannot be written as a product state
|φA〉 ⊗ |φB〉, with |φA〉 (|φB〉) a state of nA (nB) qubits, is called entangled, e.g.
1√
2
(|00〉 + |11〉).
There are two main operations on quantum states in the usual circuit model:

quantum gates and quantum measurements. We will only use gates here. A
quantum gate on n qubits is a unitary operator that is represented by a 2n

by 2n unitary matrix U . (Unitarity, defined below, ensures that the operator is
reversible and norm-preserving.) A quantum state |φ〉 is updated by a unitary
matrix as U · |φ〉 where · denotes matrix-vector multiplication. As example,
consider the following single-qubit gates:

Hadamard: H =
1√
2

[
1 1
1 −1

]
Phase gate: S =

[
1 0
0 i

]
.
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Applying the Hadamard gate to the state |0〉 for example, we obtain

H · |0〉 =
1√
2

[
1 1
1 −1

]
·
[
1
0

]
=

1√
2

[
1
1

]
=

|0〉 + |1〉√
2

and similarly one can compute S |1〉 = i |1〉.
A quantum gate U is a unitary matrix, which means U · U† = U† · U = 12n ,

where 12n is the identity matrix on vectors of 2n entries (i.e. the matrix that
has the property 12n · v = v for each vector v of 2n complex numbers) and the
adjoint operator (.)† means transposing the matrix and replacing each matrix
entry by its complex conjugate. For example, the Hadamard gate and phase gate
have adjoint operators

H† =
1√
2

[
1 1
1 −1

]
= H S† =

[
1 0
0 −i

]
.

It is not hard to check that indeed H† · H = S† · S = 12 =
[
1 0
0 1

]
. Applying an

n-qubit gate A to the first part of an (n + m)-qubit quantum state |φ〉 is done
by tensoring with the identity, i.e. A ⊗ 12m is applied to the entire state |φ〉.

Another notion which we will use later is the bra 〈φ| = (|φ〉)† and the inner
product 〈φ| · |ψ〉 = 〈φ|ψ〉 =

∑
x∈{0,1}n a∗

x · bx for |φ〉 =
∑

x∈{0,1}n ax |x〉 and
|ψ〉 =

∑
x∈{0,1}n bx |x〉. Observe that state normalization implies that 〈φ|φ〉 = 1.

A quantum circuit is composed of qubits represented by horizontal lines
(wires) and quantum gates represented by boxes, with each gate acting on one or
more qubits. The input state is represented to the left of the wires of the circuit
(typically |0〉⊗n), and the output state is obtained after the sequential appli-
cation of the circuit’s gates. These gates, which are typically unitary operators
of small size, can be combined with matrix multiplication into a single unitary
operator describing the entire circuit as a single operator. See Example 1 for an
explicit calculation of a quantum circuit’s output state. A quantum algorithm is
a uniform family of quantum circuits (like in circuit complexity [6]).

A special but important class of quantum circuits are the Clifford circuits.
Any Clifford gate can be written as a Clifford circuit1 consisting only of three
elementary Clifford gates: H,S and CNOT . The controlled not (CNOT ) gate
acts on two qubits: The first is called the “control” and the second one the
“target” qubit. It is symbolized by a vertical line connecting the two qubits,
with a dot representing the control qubit and ⊕ representing the target (see
Example 1). The CNOT gate and its inverted counterpart NOTC (see circuit B
in Example 1) are defined as the following two-qubit operators:

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ , NOTC =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ .

1 When we say ‘circuit’, we mean the sequence of quantum gates, i.e. without the
input state, e.g., |0〉⊗n.
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One of the significant features of Clifford circuits is that they can be simulated in
polynomial time in the number of qubits and number of elementary Clifford gates
by classical computers, as shown by the Gottesman-Knill theorem [28] (see also
Sect. 2.2). In addition, with the usual input |0〉⊗n, Clifford circuits can generate
various entangled states, and become universal—meaning they can approximate
any quantum circuit—if non-Clifford gates are added to the gate set [14].

Example 1. We provide an example for calculating the output states of the two
circuits A and B below. This example uses Hadamard gates and CNOT gates.

A)

H H

H H
B)

In this example, we assume here that the initial state on each qubit is |0〉.

A) We start by making the calculations for circuit A. For a Hadamard gate
applied on the first qubit we get:

H |0〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1 · 1 + 1 · 0

1 · 1 + (−1) · 0

]
=

1√
2

[
1
1

]
=

1√
2

(|0〉 + |1〉)

The result of applying a Hadamard gate on the second qubit will be the same.
Since the two qubits are independent we can calculate the state of this system
by tensoring the two states:(

1√
2
(|0〉 + |1〉)

)
⊗

(
1√
2
(|0〉 + |1〉)

)

=
1√
2

1√
2
(|0〉 + |1〉) ⊗ (|0〉 + |1〉)

=
1
2
(|0〉 ⊗ |0〉 + |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 + |1〉 ⊗ |1〉).

=
1
2
(|00〉 + |01〉 + |10〉 + |11〉).

In matrix notation this would be:

1
2

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ +

1
2

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ +

1
2

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ +

1
2

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ =

1
2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ .

Now we will calculate how this state is transformed when we apply a CNOT
gate where the first qubit is the control qubit and the second one is the target
qubit:
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CNOT · 1
2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ · 1

2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ =

1
2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

So the state remains the same. The CNOT is interpreted as follows: when-
ever b1 = 1 flip the second input of |b1b2〉. So we can directly calculate
1
2 (|00〉+ |01〉+ |10〉+ |11〉) which becomes 1

2 (|00〉+ |01〉+ |11〉+ |10〉) without
explicitly performing the matrix multiplication. We observe that, as expected,
this method returns an identical state. Finally, we apply the two remaining
Hadamard gates to the state 1

2 (|00〉 + |01〉 + |10〉 + |11〉).

(H ⊗ H)

⎛
⎜⎜⎝1

2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

1
4

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ = |00〉

Therefore, applying Hadamard gates to each qubit of the circuit starting with
the initial state 1

2 (|00〉 + |01〉 + |10〉 + |11〉) results to the state |00〉.

B) Now for the much simpler circuit B, we start again by both qubits in the
state |0〉. Following the same rules that we applied for the CNOT of circuit
B, the resulting state will also be |00〉.

Note that in the examples above, we have applied the gates in steps. Generally,
this in not necessary, as one can combine the small unitary transformations
(the gates) into a single unitary transformation. This, typically large, unitary
operator will have the same effect as applying the gates in steps. For instance,
for circuit A, we obtain the following operator UA, which is equal to the UB

unitary (NOTC) for circuit B:

UA = (H ⊗ H) · CNOT · (H ⊗ H) =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ = NOTC = UB .

2.2 Stabilizer States

The Pauli gates are defined as follows:

I = 12 =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

The n-qubit Pauli group Pn is the set {αP | α ∈ {±1,±i}, P ∈ Paulin} where
Paulin is the tensor product of n Pauli operators (a “Pauli string”). For example,
we have X ⊗ Z ⊗ Y ⊗ Y ∈ Pauli4 and −iX ⊗ Z ⊗ Y ⊗ Y ∈ P4. The Pauli group
forms a group under matrix multiplication. Any two elements Pk, Pl ∈ Pn either
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commute or anti-commute: either Pk · Pl = Pl · Pk or Pk · Pl = −Pl · Pk. Finally,
we can give an alternative, equivalent definition of the Clifford group in terms of
Pauli matrices: the Clifford group is the set of unitary operators that leave the
Pauli group fixed when acting on it by conjugation, i.e. all the 2n × 2n unitary
matrices V such that V PV † ∈ Pn for all P ∈ Pn.

We will now lay out the stabilizer formalism for efficient classical simulation
of Clifford circuits [1,28]. A unitary operator U stabilizes a quantum state if
U |φ〉 = |φ〉. The so-called stabilizer states form a strict subset of all quantum
states which can be described as stabilized by maximal commutative subgroups
of the Pauli group using n elements of Pn. For example, the state |0〉 is stabilized
by the group {I, Z} because I |0〉 = |0〉 and Z |0〉 = |0〉. Another example is the
state |+〉 = 1√

2
(|0〉 + |1〉), which is stabilized by {I,X}. If |φ〉 and |ψ〉 are

stabilizer states with stabilizer groups G,H, respectively, then |φ〉 ⊗ |ψ〉 is also
a stabilizer state with stabilizer group {g ⊗ h | g ∈ G,h ∈ H}. For example, the
state |11〉 = |1〉 ⊗ |1〉 is stabilized by the group {I ⊗ I,−I ⊗ Z,−Z ⊗ I, Z ⊗ Z}.
Some stabilizer states are entangled, such as 1√

2
(|00〉 + |11〉), which is stabilized

by {I ⊗ I,X ⊗ X,−Y ⊗ Y,Z ⊗ Z}.
Maximal commutative subgroups of the Pauli group only have a single quan-

tum state they stabilize [40]; thus, we can represent any stabilizer state by
its stabilizer group, instead of by providing its description as a vector of 2n

complex numbers. The stabilizer group of an n-qubit stabilizer state has 2n

elements, so storing all of those would not yield a succinct description of the
state. However, the stabilizer group can be succinctly represented by the gener-
ator set of the stabilizer group, which only has n elements ∈ Pn. For example,
the set E = {−Z ⊗ I,−I ⊗ Z} is a set of generators for the stabilizer group
G = {I ⊗ I,−I ⊗ Z,−Z ⊗ I, Z ⊗ Z} of the state |11〉 because each element of G
can be written as a product of elements of E. Since there are four Pauli gates,
we can represent Pauli gate using log2(4) = 2 bits. Furthermore, one can show
that each element of a stabilizer group is of the form ±P1 ⊗ · · · ⊗ Pn with Pj a
Pauli gate; thus, 2n + 1 bits are needed to represent an element of an n-qubit
stabilizer group [1,24] (2n for the Pauli gates in the Pauli string and the 1 bit for
the prefactor ±). Therefore, by this method, only n · (2n + 1) = 2n2 + n bits are
required for the description of a quantum state that can be generated by Clifford
circuits while a naive description would require 2n complex numbers. To empha-
size the quadratic structure of the generator set, we will write the generators in
the so-called tableau form, e.g. for the stabilizer generators of |11〉:

E =
{−Z ⊗ I

−I ⊗ Z

}
∼=

{
Z ⊗ Z

−I ⊗ Z

}

Here, the tableau after the “∼=” symbol, consists of a different set of gener-
ators for the same stabilizer group, i.e. representing the same stabilizer state.
Such alternate generators can be obtained by swapping and multiplying tableau
rows (elements from the stabilizer generator), in a process similar to Gaussian
elimination [8].

Updating the generators of a stabilizer state after an elementary Clifford
gate is applied to the corresponding stabilizer state can be done in time O(n), as
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Table 1. Lookup table for the action of conjugating Pauli gates by Clifford gates. The
subscripts “c” and “t” stand for “control” and “target”.

Gate Input Output Gate Input Output

X Z

CNOT

IcXt IcXt

H Y −Y XcIt XcXt

Z X IcYt ZcYt

X Y YcIt YcXt

S Y −X IcZt ZcZt

Z Z ZcIt ZcIt

follows. Suppose that P = ±P1 ⊗ · · · ⊗ Pn stabilizes an n-qubit state |φ〉. Then
given an n-qubit gate U , UPU† stabilizes U |φ〉. This is because UPU†U |φ〉 =
UP |φ〉 = U |φ〉, because U†U = 12n (as U is unitary). Now if U is a single-
qubit operation, we can write Uj = I ⊗ I ⊗ · · · ⊗ I ⊗ U ⊗ I ⊗ · · · ⊗ I with U
at the j-th position in the tensor product. Therefore, the application of U to
the j-th qubit of |φ〉 updates each element of the stabilizer group to UjPU†

j =
±IP1I ⊗· · ·⊗UPjU

† ⊗· · ·⊗IPnI = ±P1⊗· · ·⊗UPjU
† ⊗· · ·⊗Pn. Since Clifford

gates map elements of the Pauli group to elements of the Pauli group, UPjU
†

is of the form αP for P a Pauli gate and some α ∈ {±1}.2 Thus, only the ±
factor in front and j-th entry in the tensor product of P should be updated. This
can be done in constant time by a lookup table for each of H,S and each Pauli
gate (see Table 1). Computing the state after applying H or S takes O(n) time
in the tableau representation, since we only need to update the n generators of
its stabilizer group (a column in the tableau and possibly the column with ±
factors). A similar procedure works for the two-qubit gate CNOT, also requiring
O(n) time to update the stabilizer generators, in this case by modifying two
columns of the table and the ± factors.

Example 2. To illustrate the use of the tableau form, we will update the gener-
ators {Z1, Z2} of the |00〉 state, according to the gates in circuit A of Example
1. The “−→” symbol will indicate applying one or more gates to the tableau.

{Z1, Z2} =
{

Z ⊗ I
I ⊗ Z

}
H1,H2−−−−→

{
HZH† ⊗ HIH†

HIH† ⊗ HZH†

}
=

{
X ⊗ I
I ⊗ X

}

CNOT−−−−→
{

CNOT (X ⊗ I) CNOT †

CNOT (I ⊗ X) CNOT †

}
=

{
X ⊗ X
I ⊗ X

}

H1,H2−−−−→
{

HXH† ⊗ HXH†

HIH† ⊗ HXH†

}
=

{
Z ⊗ Z
I ⊗ Z

}

2 α cannot be ±i because |α|2 = 1, which follows from |α|2I = (αP ) · (αP )† =
(UPjU

†)(UPjU
†)† = UPjU

†UP †
j U† = UPjP

†
j U† = UIU† = I.
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2.3 Circuit Equivalence-Check Problem

We proceed to formally state the main problem. We are presented with two
n-qubit Clifford quantum circuits U and V , each represented by (a classical
description of) a circuit of only elementary Clifford gates (e.g., H,S and CNOT).
The aim of the method is to determine whether or not U and V are equivalent.

Definition 1. Fix the number of qubits n ≥ 1. Given two n-qubit unitaries U, V ,
we say that U is equivalent to V , denoted U � V , if U = cV for some complex
number c.

The factor c is often called ‘global phase’ and is irrelevant to any observable
properties of the two unitaries (for details, see [40]). We remark that if U = cV ,
then c satisfies |c|2 = 1. This follows from the fact that U and V are unitaries:
1 = UU† = (cV ) · (cV )† = cV · c∗V † = |c|2 · V V † = |c|2 · 1, hence |c|2 = 1.

3 Reducing Circuit Equivalence to Classical Simulation

We explicitly formulate the folkore result (e.g. the two-qubit case is mentioned in
[40, §10.5.2]) that gives the necessary and sufficient conditions for two unitaries
to be equivalent. We give a self-contained proof which requires minimal prior
knowledge.

Theorem 1. Let U, V be two unitaries on n ≥ 1 qubits. Then U is equivalent
to V if and only if the following conditions hold:

1. for all j ∈ {1, 2, . . . , n}, we have UZjU
† = V ZjV

†; and
2. for all j ∈ {1, 2, . . . , n}, we have UXjU

† = V XjV
†.

Here, as before, we have denoted Zj = I ⊗· · ·⊗ I ⊗Z ⊗ I ⊗· · ·⊗ I, i.e. an n-fold
tensor product of identity gates I with the Pauli Z gate at the j-th position.
Analogously, Xj = I ⊗ · · · ⊗ I ⊗ X ⊗ I ⊗ · · · ⊗ I where X is the Pauli X gate.

Proof. If U � V , then U = cV for some c ∈ C, |c| = 1, so UZjU
† = cV Zj(cV )† =

cV Zj(V )† · c∗ = |c|2V ZjV
† = V ZjV

† and similarly for Xj where c∗ is the
complex conjugate of c.

For the converse direction, we first note that if U and V coincide on Xj

and Zj by conjugation, then they must coincide by conjugation on all Pauli
strings. The reason for this is that any Pauli string can be written as a product
of {Xj , Zj}nj=1 modulo a complex number from {±1,±i}. Given such a product
P =

∏n
k=1 Xxk

k Zzk
k where xk, zk ∈ {0, 1} determine if Xk or Zk is included in the

product, we see that UPU† = U (
∏n

k=1 Xxk

k Zzk
k ) U† =

∏n
k=1 UXxk

k U†UZzk
k U†.

This shows that UPU† = V PV † if UXkU
† = V XkV

† and UZkU
† = V ZkV

† for
all k = 1, 2, . . . , n.

Given an n-qubit quantum state |φ〉, we can write

|φ〉〈φ| =
∑
P

αPP (1)
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where the summation runs over all Pauli strings of length n, i.e. P ∈ Paulin =
{I,X, Y, Z}⊗n, and the weights αP ∈ C are unique, i.e. each Paulin string P is
associated with a weight αP . The reason this can be done is that any 2n × 2n

matrix with complex entries can be written as linear combination of n-qubit
Pauli strings [33,40] (the ‘Pauli basis’) and |φ〉〈φ| indeed is an 2n × 2n matrix.
Now by conjugating both sides of Eq. 1, we obtain

U |φ〉〈φ|U† =
∑
P

αPUPU† (2)

which by the observation above (that U and V coincide on all Pauli strings by
conjugation) equals

V |φ〉〈φ|V † =
∑
P

αPV PV † (3)

hence
A |φ〉〈φ|A† = |φ〉〈φ| (4)

where A = V †U . This arises from the fact that A† = (V †U)† = U†V and, since
U and V coincide on all Pauli strings by conjugation,

A |φ〉〈φ|A† = V †U |φ〉〈φ|U†V = V †
(∑

P

αPUPU†
)
V †

= V †
( ∑

P

αPV PV †
)
V = |φ〉〈φ| (5)

since V † cancels out with V .
By applying 〈φ| from the left and |φ〉 to the right on both sides of Eq. 4,

we obtain | 〈φ|A|φ〉 |2 = |〈φ|φ〉|2 = 1. Thus, the modulus of the inner product
between A |φ〉 and |φ〉 equals the product of their norms (which both equal
1), hence the tightness condition of the Cauchy-Schwarz inequality implies that
A |φ〉 and |φ〉 are linearly dependent. That is, |φ〉 is an eigenvector of A.

Since this holds for arbitrary n-qubit states |φ〉, each vector is an eigenvector
of A. By standard linear algebra, we know that this implies that A is a multiple
of the identity operator. Thus A = c12n for some complex number c, hence
V †U = c12n by definition of A. Applying V to the left of both sides of V †U =
c12n yields U = cV . �

The above theorem is applicable to general quantum circuits. However, for
the purposes of this study, we will concentrate on Clifford circuits. In that case,
the theorem induces an algorithm which reduces the equivalence checks in Part
1 and 2 of the theorem to simulating the circuits U and V , which for the case
of Clifford circuits, is well known to be efficient [1,28].

The Algorithm. From Sect. 2, we know that S0 = {Zj | j = 1, 2, . . . , n}
generate the stabilizer group of the state |0〉⊗n, and thus S0 “represents” |0〉⊗n

in the stabilizer formalism. The same holds for {Xj | j = 1, 2, . . . , n} and the
state |+〉⊗n, where |+〉 = 1√

2
(|0〉 + |1〉). Furthermore, updating a stabilizer state
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representation {g1, g2, . . . , gn} (i.e. the gj are generators of the state’s stabilizer
group), after a Clifford gate U is found as {Ug1U

†, . . . , UgnU†}. So computing
UZjU

† for all j = 1, 2, . . . , n is the same as computing the classical simulation of
U |0〉⊗n in the stabilizer formalism and computing UXjU

† for all j = 1, 2, . . . , n is
the same as classical simulation of U |+〉⊗n. Combining these facts with Theorem
1, we obtain the following algorithm for equivalence checking of Clifford circuits
which is essentially a (many-one) reduction to Clifford circuit simulation.

To be explicit, given Clifford circuits U, V , we determine whether they are
equivalent as follows:

1. Simulate U gate-by-gate in the stabilizer formalism, where the stabilizer group
generators of the input state are {Z1, Z2, . . . , Zn}, i.e. the input state is |0〉⊗n.
This yields the output generator set {UZ1U

†, UZ2U
†, . . . , UZnU†}.

2. Do the same for V , yielding {V Z1V
†, V Z2V

†, . . . , V ZnV †}.
3. Check for each j = 1, 2, . . . , n, whether the Pauli elements UZjU

† and V ZjV
†

are equal. If there is some j for which they are non-equal, return “Non-
equivalent.”

4. Repeat steps (1–3) for the input stabilizer generator set {X1,X2, . . . , Xn},
which is produced by starting with the generator set of |0〉⊗n, followed by
applying the Hadamard gate H on each qubit (since HZH† = X).

5. If the algorithm reaches this point, U and V agree by conjugation on all Xj

and Zj . Return “Equivalent.”

Example 3 shows an example execution of the algorithm on the two-qubit
circuits we saw before.

Example 3. We aim to determine whether circuits A and B from Example 1
are equivalent. Following the algorithm above, we need to compute the output,
under conjugation, of the two circuits for each of the inputs Z1, Z2,X1,X2.

a) Circuit A on {Z1, Z2}:
Example 2 shows that the resulting tableau is

{
Z ⊗ Z
I ⊗ Z

}

b) Circuit B on {Z1, Z2}:{
Z ⊗ I
I ⊗ Z

}
NOTC−−−−→

{
NOTC (Z ⊗ I) NOTC†

NOTC (I ⊗ Z) NOTC†

}
=

{
Z ⊗ Z
I ⊗ Z

}

c) Circuit A on {X1,X2}:{
X ⊗ I
I ⊗ X

}
H1,H2−−−−→

{
HXH† ⊗ HIH†

HIH† ⊗ HXH†

}
=

{
Z ⊗ I
I ⊗ Z

}

CNOT−−−−→
{

CNOT (Z ⊗ I) CNOT †

CNOT (I ⊗ Z) CNOT †

}
=

{
Z ⊗ I
Z ⊗ Z

}

H1,H2−−−−→
{

HZH† ⊗ HIH†

HZH† ⊗ HZH†

}
=

{
X ⊗ I
X ⊗ X

}
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d) Circuit B on {X1,X2}:{
X ⊗ I
I ⊗ X

}
NOTC−−−−→

{
NOTC (X ⊗ I) NOTC†

NOTC (I ⊗ X) NOTC†

}
=

{
X ⊗ I
X ⊗ X

}

We observe that the two circuits output, under conjugation, the same ele-
ments of the Pauli group, for each of Z1, Z2, X1 and X2. Therefore, we can
conclude that circuits A and B are equivalent.

We note that requiring that U and V agree on all Xj and Zj by conjugation
(step 3 of the Algorithm) is a stronger statement than requiring that U and V
output the same state on input |0〉⊗n and |+〉⊗n. As counterexample for n = 2,
consider the identity circuit 14. We have 14 |00〉 = |00〉 = UA |00〉 = UB |00〉 and
14 |++〉 = |++〉 = UA |++〉 = UB |++〉, where UA and UB are the unitaries
for circuits A and B from Example 1, respectively. This calculation can also be
done in terms of stabilizer tableaux using the ∼= relation to check if the tableaux
generate the same stabilizer group:{

Z ⊗ I
I ⊗ Z

}
︸ ︷︷ ︸
for 14|00〉

∼=
{

I ⊗ Z
Z ⊗ Z

}
︸ ︷︷ ︸

for UA|00〉=UB |00〉

and
{

X ⊗ I
I ⊗ X

}
︸ ︷︷ ︸
for 14|++〉

∼=
{

X ⊗ I
X ⊗ X

}
︸ ︷︷ ︸

for UA|++〉=UB |++〉

That is, the list of generators of the stabilizer groups of 14 |00〉 (14 |++〉) and
UA |00〉 = UB |00〉 (UA |++〉 = UB |++〉) are equivalent in the sense that they
give rise to the same stabilizer group (and hence represent the same quantum
state) but they are not equal. Unitaries are only equivalent if they output equal
Pauli group elements under conjugation. Indeed, 14 is not equivalent to UA or
UB : a witness to their non-equivalence is the state |01〉, since 14 |01〉 = |01〉 �=
|11〉 = UA |01〉 = UB |01〉.

Since storing the n stabilizer generators for an n-qubit state requires O(n2)
space, naively initializing the tableaux {Z1, . . . , Zn} and {X1, . . . , Xn} takes
O(n2) time. Next, updating a tableau for a single-qubit gate or two-qubit gate
takes time O(n). Hence the runtime of the algorithm is O(n2 +m ·n) with m the
sum of the number of elementary Clifford gates in U and V . However, we can
avoid the O(n2) initialization time, by amortizing the creation of the stabilizer
generator set over the update operations using a lazy initialization approach.
To be precise, let us keep track of the stabilizer generators by listing them in
an n × (n + 1) matrix where the (n + 1)-th column consists of factors ±1 and
the entries of the first n columns are Pauli gates [24]. Instead of initializing this
matrix, we only mark all columns as uninitialized. The uninitialized entries in
column k of the matrix are filled when a gate is applied to the k-th qubit for
the first time, in which case the algorithm runs over all elements of column k
anyway (and the column of ± factors). This lazy initialization brings the total
runtime of the algorithm down to O(m · n).
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4 Experiments

We implemented the algorithm from Sect. 3 in Python using the open-source
Stim Clifford-circuit simulator [25] as a backend. See [21] for our open-source
implementation.

We empirically evaluated the implementation and compared the runtime to
QuSAT [10,37], a recent SAT-based Clifford equivalence checker and the Feyn-
man tool [4]. We used a laptop with a 3.2 GHz M1 processor with 8Gb RAM.

To make a fair comparison, we adopt the experimental setting of [10] and
generate random circuits using QuSAT, which consists of generating random
sequences of elementary Clifford gates H,S,CNOT. QuSAT generates circuits
which are completely “filled” in the sense that if the depth is d, the number of
gates applied to each qubit is also d; thus, since only H,S,CNOT are used, the
number of gates in a depth-d circuit is between d · n

2 (only two-qubit gates) and
d · n (only single-qubit gates). We emphasize that the runtime of this work’s
method is deterministic and a function of the number of qubits and the number
of gates only, and is hence independent of the gates that the two input circuits
consist of, or the ordering of the gates.

We validated the correctness of our implementation by comparing its
results with QuSAT. Across all circuit pairs in which QuSAT terminated, we
found a consistent classification as either equivalent or non-equivalent by both
approaches.

First, we ran both QuSAT and our implementation on both equivalent and
non-equivalent random Clifford circuits which were thus produced by QuSAT.
The results are shown in Fig. 1, for varying number of qubits (Fig. 1a, Fig. 1b and
Fig. 1c) and varying quantum-circuit depth (Fig. 1d). We performed an equal
amount of experiments with non-equivalent circuit pairs, again drawing them
from the experimental setting of QuSAT [10]. The resulting plots appear indis-
tinguishable from the ones for equivalent circuit pairs, and for that reason we
omit them here.

We observe that the implementation is very fast and can handle large cir-
cuits: up to 1000 qubits with a depth of 10.000 gates in ∼22 s, and 100.000 qubits
with 10 gates in ∼15 min (Fig. 1b). The tested regime of the method consistently
outperforms QuSAT by one to two orders of magnitude (10× to 100×) or even
more. We also see that the runtime of QuSAT, whose runtime is heuristic, seems
to scale exponentially in the number of qubits whereas the runtime of our app-
roach is deterministic and scales polynomially in both number of qubits and
number of gates (Sect. 3).

Next, we also compare with the Feynver submodule for circuit-equivalence
checking of the Feynman tool [4]. Feynver is based on Feynman path-integrals
and it can verify the equivalence of general quantum circuits. For Clifford circuits
specifically, its runtime scales polynomially in the number of elementary gates
for Clifford circuits, just like the method presented in this work. To compare
to Feynver, we again let QuSAT generate random circuits and input them to
both Feynver and our implementation. We found that Feynver terminated on
all equivalent circuit pairs, but for non-equivalent pairs it often aborted. This
behavior is known [3]. Our experiments showed that Feynver is outperformed by
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Fig. 1. Runtime comparison of circuit-equivalence checking between equivalent
randomly-generated Clifford circuits, for both the method from this work and QuSAT.
The step pattern observed for lower values is a result of the limitations of the time-
measuring function which operates in milliseconds. The runtimes for non-equivalent
circuits (not displayed) have an indistinguishable appearance.

both QuSAT and our implementation. For equivalent circuit pairs, the runtimes
of Feynver and our implementation are shown in Fig. 2 for a varying number
of qubits (Fig. 2a) and a varying quantum-circuit depth (Fig. 2b). The running
times for the non-equivalent pairs for which Feynver terminated successfully were
similar.



Fast Equivalence Checking of Quantum Circuits of Clifford Gates 213

Fig. 2. Runtime of circuit-equivalence checking between equivalent randomly-
generated Clifford circuits for various circuit depths and the number of qubits.

5 Conclusions

In this paper, we demonstrate that a deterministic algorithm, which is based
on a folklore mathematical result, can surpass the efficiency of current methods
for exact equivalence checking of quantum circuits consisting of Clifford gates.
The algorithm reduces equivalence checking to classical simulation of Clifford
circuits and runs in time O(n · m), with n the number of qubits and m the
total number of elementary Clifford gates of the two input circuits. This scaling
implies efficient equivalence checking for various application-relevant circuits, for
example the circuits for producing the two-dimensional cluster states (resource
states for universal quantum computing [15]), GHZ states (resource states for
various quantum communication protocols [29]) or performing error detection
(excluding the measurement) in quantum error correction [45].

We have implemented the algorithm using the Stim simulator and tested it on
a variety of benchmark circuits with different sizes and depths, and compared
it to two existing state-of-the-art methods, QuSAT and Feynver. Our results,
reaching 1000 qubits (with depth 10.000) in less than a minute and 100.000 qubits
(depth 10) in ∼15 min, demonstrate that this approach consistently outperforms
both. Furthermore, since the method is deterministic, its scaling behavior is
known.

Possible future work includes extending this method to arbitrary circuits
using non-Clifford gates [4,7], following existing classical simulation formalisms
of such circuits [13]. Our preliminary results towards this direction appear
promising.
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Abstract. The increasing complexity of Field-Programmable Gate
Array (FPGA) applications necessitates high-level design and formal
verification. Traditional approaches often fall short, prompting a shift
towards Model-Driven Development (MDD) strategies utilising exe-
cutable models. Executable models simplify the design process by
directly translating high-level, human-readable models into executable
code, eliminating manual transcoding errors. However, the challenge of
verifying these models in an automated manner remains largely unsolved.
The contribution of this paper is a model-driven software engineering
methodology utilising logic-labelled finite-state machines (LLFSMs) that
enable the automated generation of executable FPGA code from high-
level, human-readable models as well as associated Kripke structures for
the verification (through model-checking) of high-level executable mod-
els running on FPGA platforms. We present a method that utilises the
semantics of logic-labelled finite state machines on an FPGA to signif-
icantly reduce the size of the created Kripke structures compared with
existing LLFSM approaches.

Keywords: Automatic Verification · Model-Driven Software
Engineering · Logic-Labelled Finite State Machines · FPGAs

1 Introduction

The evolution of technology has brought about increasing reliance on Field-
Programmable Gate Arrays (FPGAs) for their versatility, speed, and real-time
performance capabilities. These unique properties have made them instrumen-
tal in the design and development of real-time systems, telecommunication net-
works, computer vision, and embedded systems. However, as FPGA applications
grow more complex, their design and verification become increasingly challeng-
ing. This necessitates a shift from traditional design methods towards Model-
Driven Development (MDD) approaches, where high-level, human-readable mod-
els are employed to design, verify, and implement these systems.

Model-Driven Development provides an abstraction layer that enables design-
ers to focus on the functionality of the system while abstracting away lower-level
hardware details. This high-level approach simplifies the development process
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14216, pp. 217–234, 2023.
https://doi.org/10.1007/978-3-031-45332-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45332-8_11&domain=pdf
http://orcid.org/0000-0003-4217-7210
http://orcid.org/0000-0002-9373-0875
http://orcid.org/0000-0002-9668-849X
https://doi.org/10.1007/978-3-031-45332-8_11


218 M. McColl et al.

and reduces the likelihood of errors that arise from manual translation into code.
However, the verification of these high-level models in an automated manner is
a challenge that remains to be addressed.

The primary contribution of this paper is an MDD design that allows the
automated generation of Kripke structures that allow verification of high-level
executable models running on FPGA platforms. We discuss the issues and limita-
tions of existing methods and how to overcome them to handle the complexity of
models that utilise FPGA designs while maintaining the advantages of high-level
model abstraction.

The rest of this paper is structured as follows. Section 2 explores the back-
ground of verifiable MDD utilising high-level, human-readable models. This is
followed in Sect. 3 by our detailed design of executable models of logic-labelled
finite-state machines running on an FPGA. We then demonstrate how we can cre-
ate Kripke structures for automated model-checking (Sect. 4). Finally, we sum-
marise our findings in Sect. 5.

2 Background

The Unified Modelling Language (UML) has unified the various disparate nota-
tional systems for software design and modelling and has become the de-facto
standard for model-driven software engineering (MDSE). There has been remark-
able progress in MDSE [1–3] in creating verifiable executable models that define
behaviour at a high level. However, the automatic verification of deployable sys-
tems remains a challenge. By far, the biggest challenge with common modelling
systems are semantic variations. In other words, while the UML has unified
notation, formal correctness of resulting execution semantics only holds in some
scenarios [4], even in current versions of executable UML (fUML) [5]. Moreover,
concurrency and parallelism are severely hampered by the fact that execution
paths may diverge due to race conditions or other sensitivities towards instruc-
tion execution order. This is the case, even if the same sources and systems
are utilised in building and executing the model, as ambiguities remain when it
comes to the semantics of these systems [6]. In essence, this violates the promise
that executable models allow us to create a fully automated one-to-one mapping
between design and implementation so that we can perform formal verification on
the real software that executes on the target system. These ambiguities in UML
semantics have repeatedly been identified as causing confusion in the industry
and leading to inconsistencies and suboptimal results [7,8]. This is not helped
by the fact that almost from the beginning, inconsistencies have been created
in different UML implementations with different semantics [9] that frustrate the
reproducibility of model checking.

It is, therefore, unsurprising that the predominant focus has been on testing
approaches, such as test-driven development [10] and continuous integration [11].
However, we argue that, while pragmatic, this is a flawed approach, as testing
is, by definition, incomplete. In particular, testing can only prove the existence
of defects, not their absence. We will therefore focus on formal methods for
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verifying the correctness of executable models. We have already demonstrated
earlier [3] that we can achieve consistent and faithful execution semantics of exe-
cutable models of real-time systems that allow verification in both the time and
value domains. Without going into detail here, suffice it to say that while event-
driven modelling has been the predominant paradigm that has been productive
for traditional systems such as desktop computers or cloud architectures, it has
long been recognised that such systems fundamentally follow a best-effort app-
roach that cannot guarantee bounded execution and completion times sufficient
to meet hard deadlines [12]. By contrast, time-triggered systems guarantee con-
sistency in both the value and time domains, making formal verification feasible
for a much larger class of systems [13].

A key challenge that remains is the creation and verification of graphs used
for model-checking. While some systems create a combinatorial state explosion
when deriving their Kripke structures, making them too complex to formally
verify as-is, we have already shown that we can utilise dependency analysis to
isolate modules and verify them independently without jeopardising the verifia-
bility of the composite system as a whole [14]. Moreover, we have shown that we
can utilise the same MDSE approach that has traditionally been used on com-
puter systems, but achieve orders of magnitude higher execution speeds when
utilising FPGAs [15]. This is essential as embedded architectures often exhibit
semantic differences between the original UML design and the compiled software
executing on the embedded device [4]. This phenomenon has been especially
pronounced when examining UML translations into FPGAs [16–18]. Common
translation differences in FPGAs include implicit priorities on transitions, dis-
tributed event queues and semantic differences between formal event processing
and the limitations of the underlying hardware.

While we have been able to overcome these inconsistencies and are now able
to create consistent, high-level executable models that run on FPGAs [15], formal
verification has, thus far, eluded us. Before we detail the design that allows us
to now create Kripke structures of an executable model on an FPGA, we need
to recall the principles of logic-labelled finite-state machines that make these
executable models possible.

2.1 Logic-Labelled Finite-State Machines

Logic-labelled finite-state machines (LLFSMs) are an approach to modelling that
follows the ubiquitous footsteps of modelling with finite-state machines (FSMs).
However, in contrast to the event-driven nature of UML statecharts, LLFSMs
utilise expressions in a decidable logic to decorate transitions [19]. In other words,
they follow the principles of UML state diagrams where only guards, but not events
are used, effectively capturing the fact that an event has occurred into a Boolean
expression that reflects this. This avoids the impossibility of translating mathe-
matically perfect events, i.e. a semantics of zero duration with perfect order, into
a feasible implementation that has to work with event queues and other approxi-
mations. With the departure from the notion that reactiveness needs to be driven
by events, we can achieve real-time object-oriented modelling [20].
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LLFSMs utilise the notion that execution is subdivided into atomic ringlets.
Each ringlet execution is an activity that comprises a sequence of actions:

1. A snapshot of external input variables is taken.
2. Where a state ringlet is executed for the first time (e.g. a different state was

executed previously), an OnEntry action is run.
3. All transitions are evaluated in a pre-defined order of priority.
4. If a transition fires, an OnExit action gets run.
5. Otherwise, an Internal action gets executed.
6. A snapshot of resulting output variables is written.

We will now detail our design that, for the first time, enables us to run an
executable LLFSM model on an FPGA while creating the corresponding Kripke
structure on-device to enable formal verification.

3 Design

We begin this section by presenting our design for creating executable models
in FPGAs. We then discuss the methods used to reduce the Kripke structure
by using the semantics of our models. We have previously used LLFSMs on
FPGAs by segregating each ringlet into a periodic process that maps to clock
edges [15], as shown in Fig. 1. This mapping creates a synchronous execution
between parallel FSMs that allows for the separation of read and write actions
between shared variables. This structure is fundamental to LLFSMs on FPGAs,
allowing more complex forms of behaviour by composing and ordering different
ringlets. Importantly, this overcomes any race conditions that might otherwise
occur between finite-state machines running in parallel and facilitates atomic
execution. In other words, the ringlet process is never executed partially but
instead presents an indivisible structure that always completes once started [15].

Fig. 1. The Ringlet Execution Cycle [15]

Our FPGA models are executable in the complete sense, as we define state
actions and variables in VHDL, a hardware description language used to describe
hardware constructs in the FPGA. We perform code generation to translate the
graphical depiction of our LLFSM into the executable code that the FPGA
enacts. This automatic translation removes semantic differences between design
and implementation as the translation software moves the user’s code within the
machine into the correct sections within a VHDL template. We have constructed
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our LLFSM template to enforce the formal semantics of LLFSMs without incur-
ring semantic differences or gaps.

Our main contribution here is that we can now generate corresponding VHDL
that performs automatic and optimised Kripke structure construction for our
executable models on-device. Generating Kripke structures in this way creates
a graph directly derived from the behaviour of the software on the target hard-
ware as it executes. This graph is in a format that can be used to run automated
proofs using a model checker such as nuXmv [21]. The Kripke structure reflects
precisely what is executed on the FPGA, ensuring there is no semantic gap
between the high-level model and the executable. This process is well aligned
with formally verifying safety-critical and dependable systems, as formal verifi-
cation takes place on structures derived directly from the physical hardware.

Since we will be examining the Kripke structure of our LLFSMs, it is impor-
tant to be aware of some key variables used in the VHDL template to enforce
the LLFSM semantics. We will use three variables in our Kripke structures that
are generated in the VHDL template, namely internalState, previousRinglet and
targetState. The internalState variable is used to track which step in the ringlet
the LLFSM is currently in (see Sect. 2.1) and reflects the values within the timing
diagram of Fig. 1. The previousRinglet variable captures the state the machine
executed immediately before the current ringlet the machine is executing. This
variable allows us to determine whether or not OnEntry should be executed in
the current ringlet. The final variable, targetState, is used to determine if the
LLFSM is about to transition to a new state. This variable then contains the
state the LLFSM will transition to in the next ringlet.

Another key contribution is the reduction of the Kripke structure size by
taking advantage of the LLFSM semantics. We can leverage a ringlet’s execution
cycle (see Fig. 1) to minimise the Kripke structure size while supporting parallel
execution. Let us examine how these Kripke structure optimisations work by
examining a simple LLFSM. Consider the LLFSM depicted in Fig. 2 containing
the variables within Table 1. This LLFSM starts in an empty initial state that
performs no functions and then transitions to state S0. Within state S0, the
machine sets the value of external variable y to the value of external variable
x. The external variables x and y are examples of variables that map to inputs

Fig. 2. LLFSM I, depicting an initial state and a state S0 executing a simple VHDL
value assignment.
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Table 1. The variables within LLFSM I.

Name Type Scope Mode

x std_logic External input
y std_logic External output

and outputs respectively, as associated, for example, with sensors and actuators.
This variable assignment only occurs once during the first ringlet of the S0

state (OnEntry). All subsequent ringlets will perform no function as the Internal
action of state S0 is empty.

We can now derive a partial Kripke structure for the first ringlet of state S0

(Fig. 3). This Kripke structure assumes that the variable x has the value of ‘0’
(logic low) at the beginning of the ringlet. We have also removed the snapshot
semantics to demonstrate the state explosion without our optimisations. This
is very close to typical UML translations into FPGAs. The Kripke structure
in Fig. 3 shows the Kripke states between the OnEntry action and the Check-
Transition phase of state S0’s first ringlet. Notice that several Kripke states are
describing the CheckTransition phase of this ringlet due to the different values
that are possible for the variable x. This Kripke structure represents the actual
code that is executed on an FPGA and must account for each value of x (a
std_logic variable in VHDL). There are 9 possible values that a std_logic vari-
able can be in, however, these values will generally resolve to a combination of
logic low and logic high bit values when executed on the actual hardware. This
resolution is dictated by the synthesiser and FPGA fabric [22], so we cannot
ignore this for the general case.

Since x is an external variable representing a sensor reading, this value can
change at any point in time and must be accounted for in the Kripke structure
in these circumstances. For each CheckTransition Kripke state in this figure, we
will also have the same edges for the next Kripke state (Internal in this case)
where the same sensor may change its value. The total number of Kripke states
for this ringlet is 171 (for each OnEntry state, we have 9 CheckTransition states
and 9 Internal states). There are 9 OnEntry states in total, therefore the total
Kripke structure for the first ringlet is 9 · 19 = 171. This combinatorial state
space represents an example of the state explosion problem for our LLFSM.

3.1 Reducing the Kripke Structure Size Using Snapshot Semantics

We now demonstrate how the Kripke structure is altered by introducing snap-
shot semantics. Before the start of each ringlet, a snapshot of all input external
variables is taken. This snapshot takes the input (sensor) value at the start of
the ringlet and writes it into a local copy that the LLFSM acts upon during the
ringlet’s execution. The LLFSM acts upon local copies of the output external
variables during the ringlet’s execution as well. At the end of the ringlet, the
output local variables are written back to the external variables of the LLFSM.
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S0

x: ‘0’
y: ‘0’
internalState: “OnEntry”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘0’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘U’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘1’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘X’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘H’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘L’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘-’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘W’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘Z’
y: ‘0’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

x == ‘0′

x == ‘U′

x == ‘1′

x == ‘X′

x == ‘H′ x == ‘L′

x == ‘−′

x == ‘W ′

x == ‘Z′

Fig. 3. The Kripke Structure of the First Ringlet in State S0 without Snapshot Seman-
tics.

These read and write sections of an LLFSMs execution are depicted as Read-
Snapshot and WriteSnapshot in Fig. 1 respectively.

The advantage of this semantics is that the local snapshot variable repre-
senting x in our example is not modified after the ReadSnapshot phase of the
ringlets execution. The result of this semantics drastically reduces the number
of Kripke states in our ringlet. We have updated the Kripke structure for this
example in Fig. 4. Please note that x now represents the snapshot variable x
while EXTERNAL_x represents the corresponding sensor variable x. We again
assume that the first sensor reading is x = ‘0’. For brevity, we have reduced the
number of edges in this figure into a set of values. The actual Kripke structure
would represent each value in the sets labelling the edges as a separate edge. In
the Kripke structure in Fig. 4, we have omitted the external variable EXTER-
NAL_x as the number of states to depict would be too large to show here. The
main trend that is observable from this Kripke structure is that the x snapshot
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S0

x: ‘0’
y: ‘U’
EXTERNAL˙y: ‘U’
internalState: “ReadSnapshot”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘0’
y: ‘0’
EXTERNAL˙y: ‘U’
internalState: “OnEntry”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘0’
y: ‘0’
EXTERNAL˙y: ‘U’
internalState: “Internal”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘0’
y: ‘0’
EXTERNAL˙y: ‘U’
internalState: “CheckTransition”
previousRinglet: “Initial”
targetState: “S0”

S0

x: ‘0’
y: ‘0’
EXTERNAL˙y: ‘0’
internalState: “WriteSnapshot”
previousRinglet: “Initial”
targetState: “S0”

EXTERNAL˙ x == {‘0′, ‘1′, ‘U ′, ‘X ′, ‘−′, ‘Z′, ‘W ′, ‘L′, ‘H ′}

EXTERNAL˙ x == {‘0′, ‘1′, ‘U ′, ‘X ′, ‘−′, ‘Z′, ‘W ′, ‘L′, ‘H ′}

EXTERNAL˙ x == {‘0′, ‘1′, ‘U ′, ‘X ′, ‘−′, ‘Z′, ‘W ′, ‘L′, ‘H ′}

EXTERNAL˙ x == {‘0′, ‘1′, ‘U ′, ‘X ′, ‘−′, ‘Z′, ‘W ′, ‘L′, ‘H ′}

Fig. 4. The Kripke Structure of the First Ringlet in State S0 with Snapshot Semantics.

variable no longer needs to be mutated during every phase of the ringlet. To
illustrate this, assume that EXTERNAL_x represents a sensor measuring some
property in the environment. Even though the corresponding sensor values may
continuously change, we are only interested in the value that is present when we
take a snapshot. Therefore, the sensor reading has no further influence over the
LLFSM until the next ringlet’s ReadSnapshot phase. We can also observe that
the EXTERNAL_y variable is not assigned the value of snapshot variable y
until the WriteSnapshot Kripke state. We can use these properties to further
reduce the complexity and size of the Kripke structure.

Consider the new Kripke structure in Fig. 5. In this Kripke structure, we
have two Kripke states designated S0Read and S0Write. These states represent
the state of the LLFSM immediately before ReadSnapshot and immediately after
WriteSnapshot respectively. Due to the snapshot semantics, our external vari-
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Fig. 5. The Optimized First Ringlet of State S0 when EXTERNAL_x = ‘0’.

ables (which map to sensors and actuators) only affect (or are affected by) the
execution of our machine during these points in time. Therefore, since these val-
ues do not impact the machine’s runtime during the ringlet execution, we can
treat the ringlet as a black box removing the intermediate states from the Kripke
structure entirely.

We can also remove unnecessary variables from the Kripke structure that are
used to track and execute the LLFSM semantics. For example, we can remove
previousRinglet since the only influence this variable has is to decide whether to
execute OnEntry or not. Since this condition is a boolean, we can replace the
previousRinglet variable with a simple executeOnEntry variable. This optimisa-
tion removes the possibility of state explosions from additional state transitions
in the LLFSM. We also remove internalState since this variable is used to track
the ringlets execution. Since we are treating the ringlet as a black box, we do
not need to include this variable in the Kripke structure.

In S0Read, we can also remove targetState since this variable has no influence
over how the ringlet is executed and the x snapshot since it is the same as
EXTERNAL_x. In S0Write, we can remove the y snapshot since it is equal to
EXTERNAL_y and the EXTERNAL_x variable and x snapshot since their
values will be modified in the next Read state. The x variables in the Write
state do not influence the next Read state.

The new Kripke structure contains 2 states per value of EXTERNAL_x
(Read and Write). Since there are 9 values of x in this ringlet, we have a total
of 9·2 = 18 Kripke states for this ringlet. This number presents an 89% reduction
in the size of the Kripke structure for this ringlet.

There is one further optimisation that we have included in the LLFSM seman-
tics. During the ReadSnapshot phase of the ringlets execution, we read all input
external variables into local copies. We have modified this semantics slightly to
only read the input variables that a state is using in one of its ringlets. This
further optimisation removes additional external variables from a Read Kripke
state if those variables were not used in that Kripke states ringlet. This approach
allows us to use many different variables in different states without creating a
combinatorial state explosion.
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4 Automatic Kripke Structure Generation

To evaluate our design, we have implemented several tools to perform Kripke
structure generation for LLFSMs on FPGAs. The process of creating LLFSMs
for FPGAs and performing a formal verification is as follows.

1. Design the LLFSM in an LLFSM editor.
2. Perform code generation using the built-in compilation options in the editor.

The generated code will contain the VHDL code for the LLFSM and the
Kripke structure generator.

3. Synthesis, place and route.
4. Generate the bitstream and load onto the FPGA.
5. Use external interfaces such as Ethernet, or UART to retrieve the generated

Kripke structure.

Our Kripke structure generator takes advantage of the parallel architecture of the
FPGA to generate the correct Kripke structure. To parallelise our generation,
we have decomposed the LLFSM into ringlets that need to be executed and
evaluated. The generator begins in the initial state of the LLFSM and executes
the first ringlet to determine the next reachable state to execute. The generator
then follows a specific procedure until it has executed all reachable states. The
procedure of the generator is composed of the following steps.

1. Choose the next state to execute. This will include the state to execute,
the value of its output external variables, the machine variables, the state
variables, and whether the LLFSM needs to execute OnEntry.

2. Choose all possible combinations of input external variables that this state
uses and execute them on the LLFSM in parallel for each combination. In the
example shown in Fig. 2, this would be 1 LLFSM for the Initial state and 9
LLFSMs for the S0 state.

3. Execute the LLFSMs starting in ReadSnapshot and wait until they reach
WriteSnapshot.

4. Stop the LLFSMs and save the Read and Write states, removing all dupli-
cates.

5. Determine the next set of states to execute by observing the Write states
and the previous states that were executed.

6. If there are no more states to execute, stop generating, otherwise go to Step 1.

Following this procedure, the LLFSM dictates the states to explore in the Kripke
structure generation. Each new Kripke state that is discovered is recorded by
the generator and used to explore the state-space of the LLFSM further. If the
Kripke state is new, then the generator will place it onto a queue of states to
explore further (i.e. subsequent Read states resulting from the new Write state).
Following this process, the generator will continue to discover new Kripke states
until it has explored the entire reachable state space of the LLFSM. Throughout
the Kripke structure generation, the generator tracks previously explored Kripke
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states to remove duplicate pathways. If a Read state has been explored previ-
ously, then the Kripke structure generator will not execute that ringlet again.
The generator finishes when there are no more Kripke states left to explore.

The accuracy and completeness of the Kripke structure generation is guar-
anteed since the execution of the LLFSM drives the entire process. The Kripke
structure generator is simply observing and recording the Kripke states as the
LLFSM encounters them. When the generator observes all reachable Kripke
states (i.e. there are no more Read states queued), the generation is finished and
the Kripke structure is complete. Moreover, the structure is completely repre-
sentative of the behaviour of the LLFSM as the structure is directly generated
from the LLFSM execution.

The Kripke structure generator is generated for each machine from the states
and variables contained within the LLFSM. The entire Kripke Structure gener-
ator exists within a small number of VHDL source files, including the generated
code for the LLFSMs. These files may be included in existing HDL projects
to facilitate interoperability between other components within the project. No
additional tooling is required to facilitate the new VHDL source files in these
projects.

4.1 Furnace Relay Case Study

We now demonstrate our approach with an example taken from the literature.
Consider the UML state machine shown in Fig. 6. This FSM is taken directly
from McUmber and Cheng’s paper [17]. McUmber and Cheng’s FSM is con-
verted to VHDL using their code generator. Due to the embedded hardware in
FPGAs, this translation is not exact and incurs semantic differences between
model definition and execution. The authors use a process block to represent
each state within the FurnaceRelay FSM. This process block does not contain
any signals in its sensitivity list, nor does it incorporate any clock sources. This
code is not synthesisable as signals within this FSM are latched with flip-flops
during the rising edge of a clock signal. The authors of this paper have ignored
this and tried to create a purely event-triggered semantics consistent with UML
by setting event signals high within extremely small durations (1 fs in this exam-
ple) before exiting. This behaviour tries to emulate the instantaneous nature of

Fig. 6. The FurnaceRelay UML State Machine
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formal events but incurs a small, but finite amount of time as a result of execut-
ing on real hardware. Physics dictates that instantaneous events are not possible
within digital circuits, as it takes time to latch and propagate signals within the
FPGAs fabric. The delays are considerable (when compared to the 1 fs speci-
fication) using the limited clock frequencies of FPGAs. More importantly, they
can create an inconsistent behaviour due to the partial ordering of events [23,24]
creating divergence points in the UML semantics.

4.2 Utilising LLFSM Semantics

Even though the authors reference event-driven UML semantics [17], the actual
semantics of their FSM is more akin to that of an LLFSM, but hiding the
crucial fact that a latched logic value is what is being evaluated. An LLFSM
polls its variables and assigns new values at specific points in time [19]. This
process translates well into FPGAs as they latch signals based on clock edges [15].
We may thus translate LLFSM models into FPGAs without incurring semantic
differences [15]. Therefore, to formally verify the FSM in Fig. 6, it is preferable
to perform a mapping into an LLFSM first.

To perform an accurate formal verification, we first convert the UML FSM
into an LLFSM. We have attempted to match the UML FSM with variables of
the same size and type. However, some of the code is missing from the publica-
tion and conservative assumptions were made to create a synthesisable LLFSM.
Specifically, the demand variable needed to support at least 4 different values,
so we have chosen a 2-bit std_logic_vector instead of the enumeration in the
original publication. We have also replaced the instate signal that was indicating
the state of the relay with a std_logic signal called relayOn. The instate signal
definition was not shown in the original publication. The resulting LLFSM is
depicted in Fig. 7 with the variables in Table 2. The resulting VHDL code for
this LLFSM and its Kripke structure generator is available on GitHub [25] and
consists of 729 FurnaceRelay LLFSMs executing in parallel. The Kripke struc-
ture size of this LLFSM is 4543 Kripke states and it took 740 ns to generate the
entire graph on the FPGA at 125 MHz. The Kripke structure size of the cor-
responding UML FSM is estimated to be greater than 4,782,969 Kripke states.
The LLFSM-equivalent Kripke structure is thus reduced by more than 99.9%.
To highlight the Kripke structure generation, we have provided screenshots of
simulation results for some of these ringlets.

Table 2. The variables within the FurnaceRelay LLFSM.

Name Type Scope Mode

heat std_logic External input
demand std_logic_vector(1 downto 0) External input
relayOn std_logic External output
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Fig. 7. The FurnaceRelay LLFSM.

We begin in the Initial state by executing the initial ringlet of the LLFSM
(Figs. 8 and 9).

Fig. 8. The Initial Ringlet Waveforms.

This ringlet transitions the LLFSM into the FROff state. Once in that state,
the LLFSM will either transition to FROn if demand is “10” and heat is ‘1’
(Figs. 10 and 11) or otherwise remain in FROff (Figs. 12 and 13). Please note
that the figures for the FROff ringlets represent the ringlet where the previous
state was FROn. This is why relayOn is logic high during the Read phase of this
Kripke structure. When the LLFSM is in FROn, it will either transition back
to FROff when demand is “01” (Figs. 14 and 15) or otherwise remain in FROn
(Figs. 16 and 17).
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Fig. 9. The Initial Ringlet.

Fig. 10. Waveforms of an FROff Ringlet that Transitions to FROn.

Fig. 11. An FROff Ringlet that Transitions to FROn.

Fig. 12. Waveforms of an FROff Ringlet that doesn’t Transition.
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Fig. 13. An FROff Ringlet that doesn’t Transition.

Fig. 14. Waveforms of an FROn Ringlet that Transitions to FROff.

The previous description provided an overview of the behaviour of our
LLFSM by examining the ringlets executed in the Kripke structure. Covering
these cases, the Kripke structure generator executes these ringlets until all reach-
able ringlets have been executed. Once this has been achieved, the generator
stops and the Kripke structure is complete.

Fig. 15. An FROn Ringlet that Transitions to FROff.
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Fig. 16. Waveforms of an FROn Ringlet that doesn’t Transition.

Fig. 17. An FROn Ringlet that doesn’t Transition.

5 Conclusion

In this paper, we have demonstrated the feasibility of automatic verification
of high-level executable models running on FPGAs. We have shown how we
can model system behaviour using logic-labelled finite-state machines. Impor-
tantly, we can utilise the parallelism that FPGAs provide without jeopardising
the atomicity of executing ringlets, implementing snapshot behaviour utilising
deterministic, clock-synchronised execution of states across the FPGA fabric.

We have further demonstrated how we can create Kripke structures in an
automated fashion that can then be utilised using standard model-checking tools.
Moreover, we can optimise these Kripke structures to significantly reduce the
state-space needed for system verification. Finally, we can create these Kripke
structures directly on the FPGA, ensuring not only consistency in semantics, but
also dramatically increasing the speed with which we can create these Kripke
structures in hardware when compared to software running on a microprocessor.
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Abstract. While Koopman operator linearization has brought many
advances for prediction, control, and verification of dynamical systems,
its main disadvantage is that the quality of the resulting model heavily
depends on the correct tuning of hyper-parameters such as the num-
ber of observables. Our AutoKoopman toolbox is a Python package that
automates learning accurate models in a Koopman linearized repre-
sentation with low effort, offering several tuning strategies to optimize
the hyper-parameters associated with the Koopman operator techniques
automatically. AutoKoopman supports discrete as well as continuous-
time models and implements all major types of observables, which
are polynomials, random Fourier features, and neural networks. As we
demonstrate on several benchmarks, our toolbox is able to automati-
cally identify very accurate dynamic models for symbolic, black-box, as
well as real systems. AutoKoopman is available at https://github.com/
EthanJamesLew/AutoKoopman and on PyPI as autokoopman.
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1 Introduction

Identifying models that represent the dynamic behavior of systems is a central
challenge in science and engineering. Koopman operator theory has emerged as
a useful perspective of these systems because it equivalently represents nonlin-
ear systems by higher-dimensional linear systems [17], allowing one to leverage
a robust body of linear system analysis methods. In particular, Koopman oper-
ator linearization transforms the states of the original system into a new space
of observables where the dynamics are linear. Obtaining the nonlinear map-
ping from states to observables is a prime challenge and often inhibits practical
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É. André and J. Sun (Eds.): ATVA 2023, LNCS 14216, pp. 237–250, 2023.
https://doi.org/10.1007/978-3-031-45332-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45332-8_12&domain=pdf
http://orcid.org/0000-0002-6509-6846
http://orcid.org/0009-0008-9685-0558
http://orcid.org/0000-0002-4726-8931
http://orcid.org/0000-0001-6017-7623
http://orcid.org/0000-0001-9240-7999
http://orcid.org/0000-0003-4947-9553
http://orcid.org/0000-0002-0686-0365
https://github.com/EthanJamesLew/AutoKoopman
https://github.com/EthanJamesLew/AutoKoopman
https://doi.org/10.1007/978-3-031-45332-8_12


238 E. Lew et al.

Fig. 1. High-level structure of the AutoKoopman toolbox

application. Our AutoKoopman toolbox addresses this issue by automating this
process, which also enables non-experts to efficiently use the Koopman frame-
work.

Let us first summarize the state of the art for Koopman operator lineariza-
tion. Koopman theory has long been used for analysis [5,26], control [18,31], and
verification [2,3] of dynamical systems, and also several theoretical contributions
motivate it as a well-suited representation for data-driven models [25,27]. For
identifying linear systems, dynamic mode decomposition (DMD) is the ubiq-
uitous method for learning the system matrices from data trajectories [35,37].
While DMD produces a best-fit linear model, advances have been made to extend
it to highly nonlinear systems by fixing the observables in the Koopman frame-
work to a specified function [43,44]. In addition, variants for DMD have been
developed for many adjacent problems, such as control [33], noisy models [41],
and multi-resolution components [19]. More recently, techniques leverage deep
learning to discover arbitrary Koopman representations. These techniques often
use autoencoders to learn an observables mapping [1,42,46]. A notable variation
to the autoencoder architecture aims to reduce the dimensionality of the observ-
able space by adding an auxiliary network that parameterizes continuous spectra
of a system [22]. Finally, Koopman linearization is related to the more general
problem of coordinate discovery. While Koopman linearization embeds states
in a space where their dynamics become linear, coordinate discovery embeds
in them a space where the dynamics become simpler but can remain weakly
nonlinear. Recent work combines sparse symbolic regression and deep learning
approaches to identify such spaces [8,28].

Some libraries exist for identifying dynamics: pySINDy [39] uses sparse
regression to learn system equations. The packages pyDMD [11] and pyKoopman
[32] implement system identification algorithms via variants of DMD, though
they do not provide deep learning-based approaches. Moreover, the estimators
in these packages depend on numerous hyper-parameters that need to be tuned
either manually or with another framework. To the best of our knowledge, there
do not exist any libraries that provide general implementations of Koopman
approaches with neural network observables.
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2 Problem Statement

We aim to identify the dynamics of a continuous-time system ẋ(t) = f(x(t),u(t))
with state x(t) ∈ X ⊆ R

n and input u(t) ∈ U ⊆ R
m from a set of o trajectories

T =
{
[(xi(t0),ui(t0)), . . . , (xi(tsi−1),ui(tsi−1))]

}o

i=1
,

where the i-th trajectory has si snapshots. For the ease of presentation we
assume that the observations are sampled with time step Δt = tk+1− tk, though
AutoKoopman does not require this. Since we only require the states at specific
time points, we from now on consider the equivalent discrete-time system

xk+1 = FΔt(xk,uk), (1)

where the flow function Ft : Rn × R
m → R

n is defined as

Ft (x0,u(t)) = x0 +
∫ t

0

f(x(τ),u(τ))dτ, (2)

and we use the shorthand notation xk = x(tk). The only requirement we have
on the system in (1) is that it is possible to generate system trajectories from it.
Consequently, the system dynamics can be described by an arbitrary black-box
function f(x(t),u(t)), which includes hybrid systems, discrete-time systems, and
even real systems.

Rather than learning f generically, we use Koopman operator linearization,
which results in a globally linear representation of the system. Koopman lin-
earization utilizes a new space H, which is defined by the image of the states
and inputs through an observables function g : X × U → H. The dynamics of
the system are then governed by a linear operator Kt : H → H,

Kt

(
g(x0,u0)

)
= g

(
Ft(x0,u0),u(t)

)
, (3)

which is the so-called Koopman operator. Note that since it is linear, the Koop-
man operator Kt(x) = Ktx can be represented by a matrix Kt ∈ R

p×p. While for
each nonlinear system there exists a space H that enables the exact Koopman
linearization in (3), this space is infinite dimensional in general. While techniques
exist which can learn an infinite dimensional linear operator implicitly—e.g. ker-
nel methods [44]—we utilize ones that learn the operator explicitly. Therefore,
our goal is to find a finite space H where the dynamics can be approximated well
by a linear operator. This corresponds to the following optimization problem for
finding the observables g and the Koopman operator KΔt via minimization of
the mean square error over the set of trajectories T :

argming, KΔt

∑

(xk,uk)∈T

∥
∥g (xk+1,uk+1) − KΔtg (xk,uk)

∥
∥
MSE

. (4)

While (4) considers the error for the prediction over one time step, it is also
possible to minimize the aggregated error for the prediction over multiple time
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steps. Since finding the optimal solution for the optimization problem (4) is
infeasible in general, one instead aims to compute a close-to-optimal solution
in a heuristic way, often by fixing the observables g and then learning KΔt.
Moreover, it is common practice to consider an observable mapping g(xk,uk) =
[gx(xk),uk] with an observable function gx that acts only on the states. In this
case the dynamics of the Koopman linearized system (3) can be formulated as

gx

(
xk+1

)
= Agx

(
xk

)
+ B uk, A ∈ R

p×p, B ∈ R
p×m, (5)

where KΔt = [A,B]. Note that it is also possible to directly identify a continuous-
time instead of a discrete-time model, which we describe in detail in Sect. 3.3.

3 Toolbox Features

We now present the features and implementation details of the AutoKoopman
package. AutoKoopman is written in Python 3.9 and uses the third-party packages
Pytorch for deep learning, pySindy for system identification, and pyDMD for
dynamic mode composition. Figure 1 outlines the package architecture. The
toolbox uses a modular design, making it very easy to exchange single modules
by custom implementations and to add new functionality. For example, one can
easily add different optimization algorithms for performing the hyper-parameter
tuning. Moreover, the toolbox provides a convenience function auto_koopman
that allows the user to access the whole functionality of the toolbox with a
single function call and without requiring any knowledge about the underlying
class structure. Let us demonstrate this convenience function with the following
code example:

from autokoopman import auto_koopman

experiment_results = auto_koopman(
training_data, # list of trajectories

obs_type="rff", # random Fourier feature observables

opt="bopt") # auto-tuning via bayesian optimization

The results returned by this code example contain the identified Koopman model
as well as the optimal parameter values determined by hyper-parameter opti-
mization. The convenience function provides many settings to refine the training
and optimization process, but they all have reasonable defaults to learn accurate
models even if the user does not specify any settings.

3.1 Trajectories Data Preparation

The input to AutoKoopman is a set of trajectories T , which is represented as an
object of class TrajectoriesData class. This class provides many data prepa-
ration methods so that AutoKoopman can automatically pre-process the data
before training. For example, if a discrete-time model should be identified and
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the provided data is not uniformly sampled, interpolation methods are used to
convert the data to a uniform time series. Moreover, numerical differentiation
methods for approximating the time-derivative are available, which is required
for identifying continuous-time models. Overall, AutoKoopman therefore has no
special requirements on the format of the data, making it very convenient to use
the toolbox.

3.2 Types of Observables

The observable mapping is represented by the KoopmanObservable class. The
main method of that class accepts a state and input and returns an element in
the observables space g : X ×U → H. One convenient feature is that the observ-
able functions are composable: Any two observables functions g1,g2 can be aug-
mented together to create larger sets of observables g(x,u) = [g1(x,u),g2(x,u)].
An exemplary use-case for this are applications where it is required to recover
the original system state from the observable space, which can be achieved by
adding identity observables g1(x,u) = x.

Random Fourier Features. Random Fourier features [34] are used to approx-
imate kernel DMD using extended DMD [10]. Kernel DMD is part of a class of
algorithms that employ kernel functions, a symmetric, positive definite func-
tion k : X × X → R that encodes the similarity of two observations. Kernels
are especially advantageous for high-dimensional feature spaces, where instead
of explicitly computing elements of that space, one can instead efficiently com-
pute the similarity between data pairs via the kernel function. Commonly used
kernel functions are radial basis functions, polynomials, and spline kernels. In
our case we cannot use the kernel function directly since we require an explicit
representation of the observable mapping g. We therefore need a method to
exploit the advantageous properties of kernels, without sacrificing the explicit
observable mapping. Random Fourier features achieve this for stationary ker-
nels by utilizing a connection of a kernel to its Fourier transform [34]. The
function gx(x) = [g1(x), . . . , gp(x)] approximately preserves the kernel function
k(x,x′) ≈ gx(x)Tgx(x′) within some error bound, where the scalar observables
take the form

gi(x) =
√

2 cos
(
ωT

i x + bi

)
, i = 1, . . . , p.

Here, bi ∈ R is selected uniformly from the interval [0, 2π] and ωi ∈ R
n is drawn

from a probability distribution μ(ω) corresponding to the kernel function used.
A normal distribution, for example, is used for the radial basis function kernel
[34, Fig. 1].

Polynomials. Carleman linearization equivalently represents the dynamic
behavior of a polynomial system by an infinite dimensional linear system [7].
This linearization can be viewed as Koopman linearization using a polynomial
basis to span the function space. So, a natural choice for observables is a set of
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multi-variate monomials. For a specific polynomial system only a finite number
of monomial terms are required if the vector space spanned by the observables is
closed under the operation of Lie-derivatives [36]. However, the number of mono-
mials that exist grows significantly with the dimensions and maximum order of
the polynomial. For high polynomial orders, it is therefore often advantageous
to represent the polynomial observables implicitly using kernel DMD.

Neural Network Observables. Since neural networks can be trained to rep-
resent arbitrary functions, a natural idea is to use them as observables. This
approach has been shown to perform very well in many applications such as
fluid control [29], object-centric physics [20], and autonomous driving [45]. To
find both the mapping and linear dynamics simultaneously, deep learning has
been applied successfully. For this, an autoencoder architecture consisting of a
encoder/decoder pair gx, g−1

x is used, where the encoder gx : X → H maps from
the original state space to the observable space and the decoder g−1

x : H → X
maps from the observable space back to the original space. Both, the encoder as
well as the decoder are represented by neural networks. These networks depend
on several hyper-parameters—e.g., the number of hidden layers, the dimensions
of the hidden layers, and the type of activation function—which can either be set
by the user or tuned automatically by AutoKoopman. Finally, the loss function
for neural network training consists of several loss terms:

(1) Reconstruction loss:
∥
∥xk − g−1

x (gx (xk))
∥
∥
MSE

(2) Prediction loss:
∥
∥xk+1 − g−1

x

(
KΔt g (x0,u0)

) ∥
∥
MSE

(3) Linearity loss: ‖g (xk+1,uk+1) − KΔt g (xk,uk)‖MSE

(4) Metric loss:
∑

i,j |‖gx(xi) − gx(xj)‖ − ‖xi − xj‖|

Here, the reconstruction loss captures the reconstruction accuracy of the autoen-
coder, the prediction loss quantifies how well the network predicts future states,
the linearity loss, which is identical to the general cost function in (4), evalu-
ates how well the network predicts future states in the observable space, and
the metric loss encourages that distances between states in the original and in
the observable space are preserved, which aims to prevent obtaining observables
with very large values. Note that the prediction and linearity loss can also be
computed over multiple time steps, which often improves the results.

3.3 Regression Estimators

The algorithms represented by the Estimator class implement different methods
for solving the optimization problem (4).

Dynamic Mode Decomposition. While for neural network observables the
Koopman operator is determined together with the observables via deep learning,
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the common practice for polynomial and random Fourier feature observables is
to first determine suitable observables, and then find the Koopman operator that
yields the best-fit linear model for these observables. In this case the optimal solu-
tion for the optimization problem (4) can be determined via extended dynamic
mode decomposition (eDMD) which performs DMD in the observables space
[43]. For eDMD one first constructs the matrices X = [gx(x0), . . . ,gx(xs−1)],
X ′ = [gx(x1), . . . ,gx(xs)] and U = [u0, . . . ,us−1] from the set of trajectories T .
The dynamics of the Koopman linearized system (5) can then be expressed as
X ′ = AX + B U = KΔt[X,U ], so that the optimization problem (4) becomes

argminKΔt
‖X ′ − KΔt[X,U ]‖MSE .

It is well known that the solution that minimizes the mean square error is given
as KΔt = X ′[X,U ]+, where [X,U ]+ denotes the Moore-Penrose inverse. Since
we usually have a lot of data, the matrix [X,U ] is very large. For computational
efficiently, the Moore-Penrose inverse is therefore estimated by a low-rank matrix
approximation using singular value decomposition (SVD). The rank for SVD is
a hyper-parameter, which if tuned properly helps to avoid over-fitting the model
to high-frequency noise in the data. If the goal is to identify a continuous-time
instead of a discrete-time linear system, we simply have to exchange the matrix
X ′ by the corresponding time-derivatives X ′ = [∂ gx(x0)/∂t, . . . , ∂ gx(xs−1)/∂t],
which can be estimated using numerical differentiation

Sparse Regression. Though Koopman theory treats the dynamics in the
observables space as linear, techniques exist that relax the observables to a
change of coordinates yielding simpler but still nonlinear dynamics [8]. In par-
ticular, the goal is to obtain dynamics with only few nonlinear terms, where the
nonlinear dynamics is represented as a symbolic closed-form expression. This
method is called sparse identification of nonlinear dynamics (SINDy). SINDy
treats system identification as a sparse regression problem, attempting to deter-
mine terms in the dynamics that are similar to terms in a provided library [6].
This approach comes with a collection of hyper-parameters, which are the library
of terms to consider during regression as well as additional sparsity optimization
parameters.

3.4 Hyper-parameter Tuning

As shown in the previous section, the overall Koopman linearization process
introduces several hyper-parameters. The accuracy of an identified model is typ-
ically very sensitive to the choice of these parameters, making adequate manual
tuning challenging. AutoKoopman therefore provides several strategies for tuning
these hyper-parameters automatically, which are presented in this section. All
of these strategies apply cross-validation, where the dataset T is split into a
training set Ttrain and a validation set Tval. AutoKoopman also supports k-folds
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cross-validation, which trains the model k times over disjoint validation datasets.
This usually results in a better model, but also prolongs the computation time.
As a metric for the accuracy of the identified model the loss function for the
optimization problem in (4) is used.

Grid Search. Grid search exhaustively samples values for hyper-parameters by
generating candidates from a grid. While suitable default values for the search
ranges for all hyper-parameters are provided, AutoKoopman also allows the user to
manually specify ranges for the hyper-parameters that should be optimized. This
range is then discretized automatically for the grid search. Grid search is reliable
but suffers from the curse of dimensionality; it works well in low-dimensional
spaces, but the number of candidates grows exponentially as the hyper-parameter
space dimension increases. Grid search is therefore well-suited for polynomial and
random Fourier feature observables which only depend on few hyper-parameters,
but computationally demanding for neural network observables that come with
many parameters.

Random Search. For random search all hyper-parameters are treated as inde-
pendent random variables with either uniform or log-uniform distribution. The
optimization algorithm then samples a fixed number of times or until a given
compute budget is exceeded to determine good hyper-parameters. While by
default AutoKoopman automatically decides for which parameters to use a uni-
form and for which a log-uniform distribution, this can also be explicitly speci-
fied by the user if desired. Random search has many practical advantages com-
pared to grid search—simplicity and parallelism—and performs better in high-
dimensional spaces [4].

Bayesian Optimization. Bayesian optimization can quickly find the global
minimum of a multi-dimensional function by incorporating information learned
from previous hyper-parameter evaluations [38]. This is achieved by constructing
the posterior predictive distribution for the loss function. While Bayesian opti-
mization is known for being a more efficient hyper-parameter tuning method
than random or grid search, it comes with its own set of hyper-parameters: a
covariance function to model the posterior distribution and an acquisition func-
tion to select the next batch of points. For the Bayesian optimizer implemented
in AutoKoopman we choose the commonly used Matern52 covariance function
and use a heuristic to determine its lengthscale.
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Table 1. Comparison of the constructed Koopman linearized models.

System Baseline Polynomial Fourier Neural Net.
dims error time error time error time error time

symbolic Pendulum 2 21.4% 0.30 1.37% 14.8 1.62% 16.4 43.2% 114
FitzHugh-Nagumo 2 49.6% 0.18 35.6% 6.23 0.55% 15.2 67.8% 147
Robertson 2 6.43% 0.19 6.43% 2.79 26.0% 15.0 19.23% 173
Production-Destruction 2 26.5% 0.19 26.5% 2.77 2.07% 15.31 59.3% 323
Spring Pendulum 4 89.7% 0.19 89.7% 3.73 0.03% 15.6 8.6% 98.2
Laub-Loomis 7 5.47% 0.26 0.21% 9.82 0.04% 16.0 22.25% 92.4
Biological Model 9 0.06% 0.35 0.06% 4.81 0.01% 15.7 22.3% 178
Trans. Regulator Network 48 27.5% 0.53 27.5% 4.57 4.60% 18.4 3.11% 165

sim Engine Control 2 13.5% 3.25 13.5% 40.2 2.54% 119 22.9% 429
Longitudinal Control 7 3.24% 0.32 3.24% 2.09 0.00% 35.9 3.13% 164
Collision Avoidance 16 2.61% 13.1 2.61% 236 2.39% 600 95.1% 849

real Electric Circuit 3 14.4% 25.1 14.4% 2217 14.4% 1609 14.9% 1240
F1tenth Racecar 4 64.1% 1.88 64.1% 53.9 60.1% 41.7 50.7% 177
Robot Arm 12 66.4% 11.1 66.4% 163 33.0% 517 23.9% 360

4 Numerical Experiments

In this section we evaluate the performance of AutoKoopman on several bench-
mark systems. These benchmarks can be categorised into three groups: symbolic
models, black-box models, and real data. The results for different types of observ-
ables are summarized in Table 1. For comparison, we also added the results for
baseline linearization, which identifies a linear model without using the Koop-
man framework. As a metric for the accuracy of the identified models we use the
relative error based on the Euclidean norm, which is defined as

ε =
1
s

s∑

i=1

∥
∥x(ti) − xpred(ti)

∥
∥
2∥

∥x(ti)
∥
∥
2

,

where x(t) is the ground truth data and xpred(t) is the prediction of the iden-
tified model. The error is computed on a validation dataset that is different
from the training dataset. For a fair comparison, we use 200 observables for all
experiments. Moreover, we apply grid search as the auto-tuning method for base-
line linearization, polynomial, random Fourier feature observables and Bayesian
optimization for neural network observables. This choice is motivated by the
observation that Bayesian optimization usually performs much better than grid
search if many hyper-parameters have to be tuned, as it the case for neural net-
work observables. All computations are carried out on a 4-core machine with 60
GB of memory and an NVIDIA K80 GPU.
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Fig. 2. Left: Predictions for the spring pendulum using different types of observables,
where the ground truth is shown by the dashed black line. Right: Hyper-parameter opti-
mization strategies for identifying a Koopman linearized model with random Fourier
feature observables for the Laub-Loomis benchmark.

Symbolic Models. First, we examine models for which the dynamics is given
by a symbolic nonlinear first-order differential equation. In particular, we con-
sider a pendulum (see [40, Fig. 8.11]), a spring pendulum (see [24, Fig. 1.4]),
the FitzHugh-Nagumo model [12], the Robertson chemical reaction system [14,
Sect. 3.1], the production destruction and Laub-Loomis benchmarks from [13],
the biological model in [9, Example 5.2.4], and a transcriptional regulator net-
work from [23, Sect. VIII.D]. We use a randomly generated training and vali-
dation dataset consisting of 10 trajectories each as well as a sampling period of
0.1 s and a final time of 10 s for all models. The results in Table 1 demonstrate
that the Koopman linearized models computed with AutoKoopman are on aver-
age much more accurate compared to identifying a linear model, where random
Fourier feature observables achieve especially good results. This can also be seen
in Fig. 2 (left), where the predicted trajectories for different types of observ-
ables are exemplary visualized for the spring pendulum system. Moreover, train-
ing neural network observables via deep learning takes significantly longer than
DMD used for the other observables. Finally, the comparison of the different
hyper-parameter optimization strategies shown in Fig. 2 (right) demonstrates
that more sophisticated optimization strategies such as Bayesian optimization
often perform better than simple strategies such as random search.

Black-Box Systems. To evaluate the performance of AutoKoopman for black-
box systems, we consider the model of a F-16 fighter jet ground collision avoid-
ance system [15]. In particular, we examine the following three scenarios: 2-
dimensional engine control, 7-dimensional longitude control, and the full 16-
dimensional model. We use 400 trajectories for training the 16-dimensional sys-
tem, and 20 trajectories for the lower-dimensional cases. Moreover, the final time
is 50 s for the 2-dimensional model and 15 s for the two other systems. All other
settings are identical to the ones for the symbolic models. The results in Table 1
demonstrate that even for very complex black-box systems AutoKoopman is able
to identify very accurate models in reasonable time. Note that the computation
time for the 16-dimensional model is higher since we used a larger training set.
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Fig. 3. Left: Predictions from a discrete-time and a continuous-time model identified
with AutoKoopman on noisy data measured from an electric circuit. Right: Trajectory
driven by the F1tenth car during application of model predictive control, where the
goal set is shown in green.

Real Measurements. Finally, we can also apply AutoKoopman directly to data
measured from the real system, which completely eliminates the requirement for
a system model. For this we consider a dataset from an electric circuit that rep-
resents a LMC6484 lowpass filter [16] consisting of 7 trajectories, a dataset from
a 6 degree-of-freedom Schunk LWA 4P robot arm [21] consisting of 100 trajecto-
ries, and a dataset from a F1tenth racecar [30] consisting of 41 trajectories. The
randomly generated validation dataset consists of 2 trajectories for the electric
circuit and 10 trajectories for the two other benchmarks, and we train on all
remaining trajectories. The results in Table 1 demonstrate that AutoKoopman
robustly generates accurate models, even though the measured data traces are
perturbed by high-frequent measurement errors. Moreover, as shown in Fig. 3
(left), identifying a continuous-time instead of a discrete-time model can often
further improve the results since it might prevent over-fitting to noisy data.

Application to System Control. One of the main advantages of the Koop-
man framework is that the dynamics of the resulting models is linear, which
makes them easier to analyse, verify, and control. We demonstrate this on the
example of the F1tenth car, for which we design a model predictive controller
that solves a reach-avoid task. In particular, we use the Koopman model that
we obtained by applying AutoKoopman together with random Fourier feature
observables to traces measured from the F1tenth car. Since the dynamics of the
system is linear, the optimization problem for model predictive control can be
solved very efficiently, which enables us to perform the computations online on
the real F1tenth car with a control frequency of 10 Hz. Moreover, the results of
the experiments visualized in Fig. 3 (right) demonstrate that the model obtained
with AutoKoopman is accurate enough to steer the car to the desired goal set while
avoiding obstacles.
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5 Conclusion

In this paper, we present AutoKoopman, a toolbox for fully automated system
identification using Koopman operator linearization. The toolbox implements
polynomial observables, random Fourier feature observables, and neural net-
work observables, and enables identifying discrete-time as well as continuous
time models. Moreover, AutoKoopman provides multiple strategies for optimiz-
ing hyper-parameters, and therefore fully automates the system identification
process. The numerical results demonstrate that AutoKoopman is able to identify
accurate Koopman linearized models for symbolic system models, black-box sys-
tems as well as data measured from real systems. Moreover, the obtained models
are well suited for system control, as shown in the example of a F1tenth car.
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8. Champion, K., Lusch, B., Kutz, J.N., Brunton, S.L.: Data-driven discovery of coor-
dinates and governing equations. Proc. Natl. Acad. Sci. 116(45), 22445–22451
(2019)

9. Chen, X.: Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Mod-
els. Ph.D. thesis, RWTH Aachen University (2015)

https://doi.org/10.1007/978-3-031-13185-1_24
https://doi.org/10.1007/978-3-031-13185-1_24


AutoKoopman Toolbox 249

10. DeGennaro, A.M., Urban, N.M.: Scalable extended dynamic mode decomposi-
tion using random kernel approximation. SIAM J. Sci. Comput. 41(3), 1482–1499
(2019)

11. Demo, N., Tezzele, M., Rozza, G.: PyDMD: python dynamic mode decomposition.
J. Open Source Softw. 3(22), 530 (2018)

12. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J . 1(6), 445–466 (1961)

13. Geretti, L., et al.: ARCH-COMP20 category report: continuous and hybrid systems
with nonlinear dynamics. In: Proceedings of the International Workshop on Applied
Verification of Continuous and Hybrid Systems, pp. 49–75 (2020)

14. Geretti, L., et al.: ARCH-COMP21 category report: continuous and hybrid systems
with nonlinear dynamics. In: Proceedings of the International Workshop on Applied
Verification of Continuous and Hybrid Systems, pp. 32–54 (2021)

15. Heidlauf, P., Collins, A., Bolender, M., Bak, S.: Verification challenges in F-16
ground collision avoidance and other automated maneuvers. In: Proceedings of
the International Workshop on Applied Verification of Continuous and Hybrid
Systems, pp. 208–217 (2018)

16. Kochdumper, N., et al.: Establishing reachset conformance for the formal analysis
of analog circuits. In: Proceedings of the Asia and South Pacific Design Automation
Conference, pp. 199–204 (2020)

17. Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc.
Natl. Acad. Sci. 17(5), 315–318 (1931)
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26. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator.

Annu. Rev. Fluid Mech. 45, 357–378 (2013)
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Abstract. Runtime monitoring is an essential part of guaranteeing the
safety of cyber-physical systems. Recently, runtime monitoring frame-
works based on formal specification languages gained momentum. These
languages provide valuable abstractions for specifying the behavior of a
system. Yet, writing specifications remains challenging as, among other
things, the specifier has to keep track of the timing behavior of streams.
This paper presents the RTLola Playground, a browser-based devel-
opment environment for the stream-based runtime monitoring framework
RTLola. It features new methods to explore the static analysis results of
RTLola, leveraging the advantages of such a formal language to support
the developer in writing and understanding specifications. Specifications
are executed locally in the browser, plotting the resulting stream values,
allowing for intuitive testing. Step-wise execution based on user-provided
system traces enables the debugging of identified errors.

Keywords: Integrated Development Environment · Runtime
Monitoring · Static Analysis · Visualization

1 Introduction

Cyber-physical systems have become an essential part of our everyday lives.
Being safety-critical, their failure threatens humans and the environment. Con-
sequently, new methods are needed to ensure their correct and safe behavior.
While synthesizing or verifying such systems based on logics is an active field of
research, applying these approaches to more extensive systems is computation-
ally infeasible. Runtime verification techniques provide scalability by monitoring
the system’s behavior at runtime. This methodology has proven to be applica-
ble in many real-world scenarios [14,18]. In Runtime Verification, a monitoring
component is deployed alongside the system, observing it and producing verdicts
about its health and conformity. Such monitors can be realized through conven-
tional programming or generated automatically from a specification given in a
formal specification language. One class of formal specification languages ade-
quate for such a task are stream-based specification languages. Pioneered by
Lola [15], they process incoming data as streams from which new streams can
be computed. Trigger conditions can be defined to assess the system’s state and
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Fig. 1. The stream-based Monitoring Approach

notify an operator in case of a violation. This stream-based monitoring approach
is summarized in Fig. 1. One stream-based specification language is RTLola [17].
It features real-time capabilities paired with a strong type system. Other such
languages are, for example, TeSSLa [21], and Striver [19].

While stream-based specification languages provide useful abstractions to
model the behavior of cyber-physical systems, writing correct specifications and
reasoning about them is equally crucial as it is challenging [16]. Especially con-
cerning autonomous aircraft, understanding the specification is essential with
regard to certification and regulation conformity [23].

This paper presents the RTLola Playground
1. A new web-based inte-

grated development environment for RTLola. It eases the process from adopt-
ing runtime verification techniques to writing and testing specifications. It is
based on the RTLola Framework extended with new static analyses that are
then visualized by the tool. For example, directed graph-based analysis results
can be explored interactively, similar to Evonne [13], a tool for visualizing
proof trees generated by automated reasoning methods. Taking inspiration from
other “playground”-style web-based IDEs for programming languages [4,20], the
RTLola Playground executes specifications directly in the browser based
on user-provided system traces. Monitor verdicts and intermediate values are
plotted in graphs to assess the specification’s correctness visually. To ease the
debugging of specifications, a method for their step-wise execution is included.
Other web-based tools for formal methods take a similar approach. The stream-
based specification language TeSSLa also features a playground [21] where users
can quickly test specifications. Yet, it does not aid the specifier in understanding
static analysis results.

The rest of this paper is organized as follows: Section 2 presents motivat-
ing examples highlighting the benefits of the RTLola Playground. Follow-
ing, Sect. 3 presents an overview of the RTLola specification language. Section 4
gives the main points of the existing RTLola toolchain and its library structure.
In Sect. 5, we present the web-based IDE for RTLola and briefly overview the
tool’s architecture. Section 6 reviews the RTLola Playground from a users
perspective before Sect. 7 concludes the paper.

1
RTLola Playground: https://rtlola.org/playground.

https://rtlola.org/playground
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2 Writing Specifications is Hard

Fig. 2. Screenshot of the RTLola playground. The left panel contains the specification
editor, the right panel the dependency graph and the trace editor, and the bottom
panel contains the output of the interpreter as the CLI output and a plot.

Writing specifications poses similar challenges as programming in general. Large
specifications do not fit into the human working memory and small errors such
as simple typos or copy&paste errors can creep in. The RTLola Playground

tackles these problems on several fronts.
As depicted in the screenshot of the user interface in Fig. 2 it is divided into

three sections. The left panel features a rich text editor for specifications. The
right panel contains the editor for traces and the dependency graph, a static anal-
ysis result of the RTLola framework. The visualization of static analysis results
is complemented by the integration of an interactive execution of the monitor
on a user-provided trace. The bottom panel features either a plot or a textual
representation of the resulting stream values allowing for a quick exploration of
the specification’s behavior. Just like the dependency graph, the plot also allows
zooming and hiding uninteresting streams.

RTLola is a language with a rich type system that is already used to check
the specification prior to execution but showing the inferred types directly in line
with the specification further improves the feedback loop. Some of the simple
copy&paste errors such as forgetting to change the accessed stream can already
have an influence on the inferred pacing type and therefore more easily spotted
as seen in Fig. 3a. The RTLola framework already uses another static analysis
artifact: the dependency graph. It consists of all streams, sliding windows, and
accesses. A more complete definition of the dependency graph is given in Defini-
tion 1. The same error as described above would lead to a different edge in the
graph which can break the symmetry between copied parts as seen in Fig. 3b.
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Other simple errors such as accessing a stream with a wrong offset cannot
be spotted by checking the inferred types. A wrong offset does not change the
inferred type but it changes the thickness of the edge when viewing the depen-
dency graph in memory view mode and potentially the buffering requirement of
the accessed stream which leads to a different color as seen in Fig. 4. Similarly,
a mismatch in a periodic pacing type leads to different color in the pacing view
mode.

To tackle the aspect of cognitive overload, the RTLola Playground allows
for merging connected nodes in the dependency graph to hide currently unin-
teresting parts as is demonstrated in Fig. 5. This could be augmented on the
language level by adding a module system. Some preliminary exploration has
been done in this direction.

3 The RTLola Specification Language

In this section, we give an overview of the RTLola specification language. An
RTLola specification consists of input streams, representing sensor reading of
the system, output streams, representing internal computations and trigger con-
ditions, constituting an assessment of the system’s health. Furthermore, RTLola
distinguishes streams by their timing behavior. This timing behavior is part of
RTLola’s type system and is called the pacing type of a stream. There are two
disjunct timing variants: Event-based streams are evaluated in an ad-hock man-
ner whenever the streams they depend on produce a new value. Periodic streams
produce values at a fixed frequency. The specification in Listing 1.1 is used as a
running example throughout this section and monitors abrupt altitude changes
of an autonomous aircraft.

1 input altitude : Float
2
3 output avg_altitude @1Hz :=
4 altitude.aggregate(over: 1min, using: avg)
5
6 output altitude_diff :=
7 abs(altitude - avg_altitude.hold(or: altitude))
8
9 trigger altitude_diff > 10.0 "Altitude changed too quickly"

Listing 1.1. RTLola: A running Example.

In this specification’s first line, the input stream altitude is declared. As for
all input streams, only its value type, Float in this case, is known. Distinctly,
RTLola does not pose any assumptions on the timing behavior of input streams,
i.e. the time when a new sensor reading arrives at the monitor remains unknown
till runtime.

As the name suggests, the output stream avg_altitude declared in line 3 com-
putes the average as a sliding window over the altitude input stream. A sliding
window accumulates all values of the target stream in the given time frame. In
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Fig. 3. A specification with a typical copy&paste error in the form of an access from
check_lon to lat instead of lon. This error can be spotted in the editor due to a change
in the inferred pacing type of the accessing stream. Likewise, the dependency graph
shows an additional edge width breaks the symmetry and therefore can also be spotted
easily.

Fig. 4. A specification with a typical typo in the offset of a stream access. This error
does not change the inferred pacing type but the different offset changes the required
memory of the accessed stream and therefore its color in the memory view mode. In
addition, the corresponding edge in the dependency graph is thicker.

Fig. 5. The dependency graph of the same specification. Once fully expanded and once
a large part of it merged to better focus on the rest.
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the example above, this time frame is one minute. Because sliding windows do
not imply any timing for their evaluation, the stream has to be annotated with
an explicit frequency of 1 Hz, inducing that a new stream value, and therefore
for the window, is computed every second. Note that sliding windows must have
a periodic timing to have bounded memory. We refer the interested reader to
[17] for more details on sliding windows.

The following output stream in line 6 computes the difference between the
average altitude and the currently measured one. It highlights an essential part of
the RTLola type system: Periodic and event-based streams must not be accessed
synchronously in the same expression. The altitude access in the stream’s
expressions constitutes a synchronous access. A synchronous access reads the
target stream’s current value and additionally binds the accessing stream’s tim-
ing to the accessed stream’s timing. This guarantees that the accessing stream
is only evaluated if the accessed value exists. As events can never be assumed
to happen with a fixed frequency the type-checking procedure fails if a stream
accesses both a periodic and an event-based stream synchronously, as no common
timing can be determined in which both accessed values are always guaranteed
to exist.

To resolve this, the stream in line 6 of Listing 1.1 uses a hold access to
the timed average stream. A hold access refers to the last computed value of
a stream. If no such value exists, a provided default value is substituted. Last,
a trigger is defined to alert the operator if the current altitude deviates more
than ten units from its average.

4 The RTLola Framework

The RTLola framework is split into two purviews. The RTLola Frontend is
responsible for parsing and analyzing specifications. A Backend handles the
event input, executes the specification, and forwards the output to the user.
Executing a specification can follow different paradigms. The specification can
be interpreted by the RTLola Interpreter or cross-compiled to a programming
or hardware description language by the RTLola Compiler.

ExportAnalysePrepare

Naming
AnalysisParsingSpecification Type

Analysis
Dependency

Analysis
Memory
Analysis Lowering

IR

IR

Fig. 6. An overview of the RTLola Frontend
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4.1 The RTLola Frontend

The RTLola Frontend2 is divided into multiple phases consisting of multiple
stages. Figure 6 depicts an overview of these stages. In the first phase, the spec-
ification is parsed into an abstract syntax tree. The AST is then transformed
into its de-sugarized form by representing all syntactic sugar constructs by basic
RTLola expressions.

Next, the naming analysis checks the AST for duplicated or undefined
stream names. For example, this stage rejects all specifications in which the
same stream is defined multiple times. Afterward, the AST is transformed into
a high-level intermediate representation by replacing stream name occurrences
with numerical ids based on the previous analysis.

The type analysis infers a value and a pacing type for every stream. The
value type of a stream determines the semantics of produced values. The value
type system is similar to the one of programming languages. Consequently,
RTLola also supports the usual value types, such as signed and unsigned inte-
gers, floats, strings, and booleans, including combinations of those types through
tuples.

The pacing type of a stream determines the temporal behavior of a stream,
i.e., when a new stream value is computed. As described in Sect. 3, there are
two classes of pacing types. An event-based type (e.g. @(lat ∧ lon) in Fig. 3a)
signals that the stream is computed whenever an event occurs. An event is
a combination of input streams receiving a new value synchronously. Such a
combination is described through a positive boolean formula over input streams.
A synchronous access from one event-based stream to another is allowed iff the
accessing stream’s pacing type implies the pacing of the accessed stream.

A periodic type (@1 Hz) indicates that a stream is computed at a fixed fre-
quency. A synchronous access from one periodic stream to another is allowed iff
the accessing stream’s frequency divides the frequency of the accessed stream.
A synchronous access from an event-based stream to a periodic stream or vice
versa is not allowed.

The dependency analysis computes the dependency graph of the specifica-
tion and checks its well-formedness as presented in [15]. The dependency graph
of a specification is defined as follows:

Definition 1. The dependency graph of a specification with inputs i1, ..., im
and outputs o1, .., on is a directed weighted multi-graph G = 〈V,E〉 with
V = {i1, ..., im, o1, ..., on}. An edge e = 〈oi, ok, w〉 is in E iff the expression
of oi contains ok.offset(by: w, or: c) as a sub-expression or e = 〈oi, ik, w〉 if
ik.offset(by: w, or: c) is a sub-expression. Synchronous accesses are reflected as
offsets by 0.

To recap, the dependency graph of a not well-formed specification contains a
cycle with an accumulated weight of 0. As a result, specifications such as:
1 output a:= b
2 output b:= a

2 RTLola Frontend: https://crates.io/crates/rtlola-frontend.

https://crates.io/crates/rtlola-frontend
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are rejected.
The memory analysis computes a per stream upper bound for the number

of values that must be stored as defined in [17]. Intuitively, if the maximal offset
a stream is accessed with is 2, then three values must be stored for that stream,
including the current value.

After the high-level intermediate representation is validated through the
static analyses, it is lowered into the final intermediate representation, drop-
ping information irrelevant to backends.

Evaluation

IR

Input
PluginTrace

IR
Output

Channel
1

Output
Channel

2

Verdict

Fig. 7. An overview of the RTLola Interpreter

4.2 The RTLola Interpreter

The RTLola Interpreter3 is an interpreter for RTLola specifications. Developed
for the rapid prototyping of specifications, it forms the basis for evaluating speci-
fications in the RTLola Playground. Figure 7 shows an overview of the inter-
preter architecture. The specification can be processed directly in the form of its
intermediate representation. To handle a variety of trace formats, the interpreter
adds a layer of indirection through input plugins that translate events from their
trace representation to an internal representation. This way, the interpreter can
accept events in various formats like CSV, network packet capture (PCAP), or
serialized as bytes.

Each event starts a new evaluation cycle in which all periodic streams up to
the current point are evaluated before all event-based streams are evaluated that
were activated by the event. Which information the produced verdict contains is
up to configuration and ranges from trigger messages to the current state of all
streams. The verdict is forwarded to one or multiple output channels responsible
for displaying or forwarding that information.

5 Tool Overview

The RTLola Playground is a progressive web application based on the
Vue [11] framework and in general written in TypeScript [9]. An overview of
3 RTLola Interpreter: https://crates.io/crates/rtlola-interpreter.

https://crates.io/crates/rtlola-interpreter
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Fig. 8. Simplified overview of the main software components and their interaction. The
blue boxes are deployed as WebAssembly compiled from Rust code. The other parts
are implemented in TypeScript. Web workers from third-party libraries are not shown.
(Color figure online)

the main components and their interaction is shown in Fig. 8. The components
communicate mostly via shared Pinia [7] stores.

The RTLola framework is implemented in the Rust [8] language. This allows
for easy compilation to WebAssembly [12] which means, that the code running
in the browser matches the code powering the RTLola Interpreter executable.

The text editing is provided by the Monaco Editor [5] which is extracted from
Visual Studio Code [10]. For the specification editor, we also provide a language
server for RTLola which is mostly a wrapper written in TypeScript and Rust
around the RTLola Frontend. This ensures that the user gets the same errors as
if they were using the RTLola interpreter executable. The language server mostly
communicates with the specification editor via the Language Server Protocol [6]
to enable inline hints and diagnostics but it also provides additional artifacts such
as the dependency graph and the intermediate representation of the specification.

The dependency graph is mostly based on the D3.js [2] library while the
layout is handled by the Eclipse Layout Kernel (elkjs) [3] guided by informa-
tion from the static analysis. A thin wrapper written in TypeScript and Rust
around the RTLola interpreter API allows for executing monitors directly in the
browser. One can inspect the CLI output as if one were to use RTLola inter-
preter executable but in addition the playground also contains a plot of all scalar
numerical and boolean stream values. The plot is based on Apache ECharts [1]
which provides the typical interactions such as hover, filtering, and zooming.

6 Application Scenarios

This section reviews the benefits of the RTLola Playground by considering
two usage scenarios.
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Firstly, new users of RTLola can quickly test their mental model about
stream-based specification languages. They can run specifications and try them
against different traces without interacting with a complicated command line
interface or dealing with an installation process. Additionally, we plan to inte-
grate an interactive tutorial directly into the RTLola Playground to lower
the entry barrier further. There have been many studies on how and when
to give feedback during learning [22,24]. More elaborate feedback than simple
right/wrong improves learning and in the case of the RTLola Playground we
believe that for type errors, showing the expected and the actual type strikes a
good balance between enough information and feedback complexity. For learning
basic programming skills immediate feedback seems to work best for beginners.
Immediate feedback can be detrimental if it leads to simply gaming the system
until a correct answer is found but as we do not have a given task this is not the
case for the RTLola Playground.

Secondly, expert users of RTLola can use the RTLola Playground to get
better insights into the specification’s memory consumption, timing behavior, or
locality. Exemplary, expert users can use the dependency graph to identify pos-
sible optimizations. In Fig. 5, one can see that the count aggregation is repeated
five times with an identical duration. This can be optimized by outsourcing this
aggregation into a separate stream.

These application scenarios show, that the RTLola Playground is not
only suitable for users of different knowledge backgrounds but can also be a step
towards a wide adoption of runtime verification techniques.

7 Conclusion

This paper presented the RTLola Playground, a web-based integrated devel-
opment environment for the stream-based specification language RTLola. Built
with cutting-edge web technologies like WebAssembly and web workers, it fea-
tures a rich text editor for specifications, integrated testing and debugging capa-
bilities, and interactive visualizations for static analysis results. We have demon-
strated how specific specification errors can be identified using either the edi-
tor’s feedback or the static analysis results. We elaborated on how different
user groups can use the playground to their advantage and hence conclude that
the RTLola Playground helps specifiers to write correct specifications faster
while keeping the entry barrier for new users low.

In the future, we plan to reuse most of the components of the tool in an
extension for the Visual Studio Code editor and integrate an interactive tutorial
into the playground.

Lastly, we encourage other community members to port their research tools to
the browser. Many modern compiler toolchains support a compilation to Web-
Assembly, which keeps the overhead feasible. A web-based tool enables easy
adoption and makes research easier to reproduce and transfer.
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Abstract. We present pymwp, a static analyzer that automatically
computes, if they exist, polynomial bounds relating input and output
sizes. In case of exponential growth, our tool detects precisely which
dependencies between variables induced it. Based on the sound mwp-
flow calculus, the analysis captures bounds on large classes of programs
by being non-deterministic and not requiring termination. For this rea-
son, implementing this calculus required solving several non-trivial imple-
mentation problems, to handle its complexity and non-determinism, but
also to provide meaningful feedback to the programmer. The duality of
the analysis result and compositionality of the calculus make our app-
roach original in the landscape of complexity analyzers. We conclude by
demonstrating experimentally how pymwp is a practical and performant
static analyzer to automatically evaluate variable growth bounds of C
programs.

Keywords: Static Program Analysis · Automatic Complexity
Analysis · Program Verification · Bound Inference · Flow Analysis

1 Introduction – Making Use of Implicit Complexity

Certification of any program is incomplete if it ignores resource considerations,
as runtime failure will occur if usage exceeds available capacity. To address this
deficiency, automatic complexity analysis produced many different implementa-
tions [9,13–15] with varying features. This paper presents the development and
specificities of our automatic static complexity analyzer, pymwp.

The first original dimension of our tool is its inspiration, coming from Implicit
Computational Complexity (ICC) [10]. This field designs systems guaranteeing
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program’s runtime resource usage that tend to possess practically useful proper-
ties. For this reason, it is conjectured that ICC systems could be used to achieve
realistic complexity analysis [18, p. 16]. Our series of work [5,6] is testing this
hypothesis, and resulted in the tool we present in this paper: pymwp is one of
the first ICC-inspired applications, and the first mechanization of the specific
technique it implements. Let us first exemplify what pymwp calculates.

Example 1. Consider an imperative program with a fixed number of parameters:

void increasing(int X1 , int X2 , int X3) {
while (X2 < X1) { X2 = X1 + X1; }
while (X3 < X2) { X3 = X2 + X2; }

}

Independently of the arguments passed (henceforth called initial values), once
computation concludes, X1 will hold the same value, but the values held by X2
and X3 may have changed. By manual analysis, we can deduce that the variable
values “growth bound” between the initial values X1, X2 and X3 (overloading
initial values and parameter names) and their final values (denoted X1’, X2’ and
X3’), omitting constants, is X1’ = X1, X2’ ≤ max(X1, X2) and X3’ ≤ max(X3, X2+
X1)1. Therefore, for all initial values, the value growth of the variable’s value
is bounded by a polynomial w.r.t. its initial values. Our analysis is designed to
either produce such bounds, or to pinpoint variables that grow exponentially.

Introducing more variables, or potentially non-terminating iteration, or com-
plicating the logic would make manual analysis difficult. However, our static ana-
lyzer handles all those cases automatically. It determines if a program accepts
at least one polynomial bounding the final value of its variables in terms of their
initial values—what we call its growth bound. If a bound cannot be established, it
provides feedback on sources of failure, identifying variable pairs that have “too
strong” dependencies. The technique is sound [16, p. 11], meaning a positive
result guarantees program has satisfactory value growth behavior at runtime.

The mwp-flow analysis [16], that powers this tool, is of interest for its flexibil-
ity, originality, and uncommon features [9] such as being compositional and not
requiring termination. However, using it to implement an automatic analyzer
required important theoretical adjustments, and to sidestep or solve computa-
tionally expensive steps in the derivation of the bounds. For example, approaches
to determine bounds were motivated by the need to compute them rapidly and
present them in a concise human-interpretable manner, which is problematic for
potentially exponential number of outputs. The theoretical improvements were
presented previously [5] and serve as basis for pymwp. In this paper, we focus
on the tool and its recent advancements, with following contributions.

1. We present the static analyzer pymwp in Sect. 3. It evaluates automatically
if an input program has a polynomial growth bound and provides actionable

1 Observe that the bound for X3’ involves X1 and X2: the presence of X1 in the bound
of X2’ transitively impacts the bound for X3’, because the analysis is compositional.

https://github.com/statycc/pymwp/blob/22f2ee159d86e83c3ee46ec62ecbc2b0a89d2d28/c_files/tool_paper/tool_ex_1.c
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feedback on failure. Our tool is easy to use and install; open-source, well-
documented, and persistently available for future reuse.

2. Implementing the theoretical mwp-calculus required to solve several non-
trivial implementation problems. Specifically, how to obtain fast and concise
results was solved by recent tool developments, and discussed in Sect. 4.

3. Sect. 5 demonstrates that pymwp is a practical and performant static analyzer
by experimentally analyzing a set of canonical C programs. The evaluation
also includes every example presented in this paper.

2 Calculating Bounds with mwp-Analysis

Given a deterministic imperative program over integers constructed using while,
if and assignments, the mwp-analysis aims at discovering the polynomials
bounding the variables final values X1’, . . . , Xn’ in terms of their initial values
X1, . . . , Xn [16, p. 5]. This section gives insight on how to interpret the results
of pymwp, exemplifies those bounds in more detail, and identifies its distinctive
features in the landscape of automatic complexity analysis.

2.1 Interpreting Analysis Results: mwp-Bounds and ∞
The mwp-flow analysis internally captures dependencies between program’s vari-
ables to determine existence of growth bounds and locates problematic data flow
relations. A flow can be 0, meaning no dependency; maximal of linear, weak poly-
nomial, polynomial or ∞, in increasing order of dependency. When the value of
every variable in a program is bounded by at most a polynomial in initial values,
the flow calculus assigns each variable an mwp-bound. It is a number-theoretic
expression of form max(x,poly1(y)) + poly2(z), where variables characterized
by m-flow are listed in x; w-flows in y, and p-flows in z. Honest polynomials
poly1 and poly2 are build up from constants and variables by applying + and
×. Any of the three variable lists might be empty and poly1 and poly2 may not
be present. A bound of a program is conjunction (∧) of mwp-bounds. Variables
that depend “too strongly” are assigned ∞-flow, to indicate exponential growth.

Expression reads as “The growth of X’ is bounded by . . . ”

X’ ≤ 0 “. . . a constant.”
X’ ≤ X “. . . a polynomial in X.” (its initial value)
X′ ≤ max(X, X1) + X2 × X3 “. . . a polynomial in X or X1, X2 and X3.”

Determining program bounds is complicated because the flow calculus is non-
deterministic. This enables to analyze a larger class of programs, but also means
that one program may be assigned multiple bounds. If a program is assigned
a bound, it is derivable in the calculus. An impossibility result occurs when all
derivation “paths” yields an ∞-result.
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2.2 Additional Foundational Examples

One important and original aspect is that the mwp-flow analysis ignores Boolean
conditions, assuming that both if-branches evaluate, and that loops executes an
arbitrary number of cycles. This lets pymwp analyze non-terminating programs
without complications, and justifies why all conditions will be abstracted as b.

Letting C1 ≡ X2 = X1 + X1 and C2 ≡ X3 = X2 + X2, Example 1 estab-
lished that the iterative composition while b C1; while b C2 has a polyno-
mial growth bound, i.e., the property of interest2. We now elaborate on mwp-
flow analysis behavior by inspecting two more expository programs, letting
C3 ≡ X3 = X3 * X3.

Example 2. Consider program while b C3. Even if C3 in itself admits the bound
X3’ ≤ X3, the value stored in variable X3 will grow exponentially on each iter-
ation. Therefore, the program cannot get a growth bound, due to the ∞ flow
between X3 and itself introduced by the while statement.

Example 3. Combining elements from the previous two examples, we construct
while b C1; while b C2; C3. Variables X1 and X2 are unaffected by C3, but
X3 changes. We over-approximate the final value of X3 to obtain the program’s
growth bound X1’ ≤ X1∧ X2’ ≤ max(X2, X1)∧ X3’ ≤ X1+ X2+ X3. This example
shows how partial results (X3’ ≤ max(X3, X1+X2) and X3’ ≤ X3) can be combined
to obtain new bounds (X3’ ≤ X1+ X2+ X3) by compositionality.

In the tool user guide, we present even more examples with in-depth discus-
sion, to elaborate on the behavior and results of mwp-analysis.

2.3 Originalities of mwp-flow Analysis

The mwp technique offers many properties that make it unique and practically
useful. It is a syntactic analysis, not based on general purpose reasoners e.g.,
abstract interpreters or model checkers. It requires little structure, and no man-
ual annotation from the analyzed program. This enables its implementation on
any imperative programming language, and potentially at different stages of
compilation. Compositionality is another significant feature. Non-compositional
techniques require inlining programs and are common among automated com-
plexity analyses [9]. With compositionality, analysis can be performed on parts
of whole-programs, and after refactoring, repeated only on those parts that
changed.

Several tools that evaluate resource bounds already exist [1,2,8,12–15,17];
including LOOPUS [25] and C4B [9], that specialize in C language inputs. Com-
prehensive evaluations of these tools have also been performed recently [9,11,25].
The main distinguishing factor between these tools and pymwp is the program’s
complexity property of interest: pymwp evaluates the existence of polynomial
growth bounds w.r.t. initial values. We illustrate the difference in obtained
bounds in Table 1. It is not an extensive comparison but suffices to show that
pymwp differs in its aims from the other related techniques.
2 pymwp actually outputs X1’ ≤ X1 ∧ X2’ ≤ max(X2, X1) ∧ X3’ ≤ max(X3, X1+ X2).

https://statycc.github.io/.github/pymwp/
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Table 1. Comparison of obtained resource bounds for various C language analyzers, on
examples from Carbonneaux et al. [9, p. 26]. LOOPUS and C4B find asymptotically
tight bounds based on amortization. LOOPUS calculates bounds on loop iterations,
C4B derives global whole-program bounds, and pymwp analyzes variables growths. The
inputs are part of Sect. 5 benchmark suite, and available in the pymwp repository [24].

Input LOOPUS C4B pymwp

t19.c max(0, i − 102) + max(0, k + i+ 51) 50 + |[−1, i]| + |[0, k]| i’ ≤ i+ k ∧ k’ ≤ k

t20.c 2 · max(0, y − x) + max(0, x − y) |[x, y]| + |[y, x]| X’ ≤ X ∧ y’ ≤ y

t47.c 1 + max(n, 0) 1 + |[0, n]| n’ ≤ n ∧ flag’ ≤ 0

3 Technical Overview of pymwp

In this section we present the main contribution of the paper: the pymwp static
analyzer. It is a command-line tool that analyzes programs written in subset of C
programming language presented in Sect. 3.3. The name alludes to its implemen-
tation language, Python, which we selected for its flexibility and use in previous
related works [4,19,20]. Our tool takes as input a path to a C program, and
returns for each function it contains a growth bound—if at least one can be
established—or a list of variable dependencies that may cause the exponential
growth.3 The pymwp development is open source [24] with releases published
at Python Package Index (PyPI) [22], GitHub [24] and Zenodo [7]. A tool user
guide is available at https://statycc.github.io/.github/pymwp/.

3.1 Program Analysis in Action

The default procedure for performing mwp-analysis is as follows:

1. Parse input file to obtain an abstract syntax tree (AST).
2. Initialize a Result object T .
3. For each function (or “program”, interchangeably) in the AST:

(a) Create an initial Relation R—briefly, this complex structure represents
variables and their dependencies, at a program point (Sect. 4.1).

(b) Sequentially for each statement in function body:
i Recursively apply inference rules to obtain Ri.
ii Compose Ri with previous relation: R = R ◦ Ri.
iii If no bound exists, terminate analysis of function body.

(c) If bounds exist, evaluate R to determine the bounds (Sect. 4.3)
(d) Append function analysis result to T .

4. Return T .

3.2 Usage

There are multiple ways to use pymwp. It has a text-based application interface,
and can be run from terminal, or it can be imported as a Python module into
3 Obtaining this feedback requires to specify the --fin argument.

https://github.com/statycc/pymwp/blob/c6887d8e8a2c2b0e2a6b7ad960851ec693c603d3/c_files/tool_paper/t19_c4b.c
https://github.com/statycc/pymwp/blob/c6887d8e8a2c2b0e2a6b7ad960851ec693c603d3/c_files/tool_paper/t20_c4b.c
https://github.com/statycc/pymwp/blob/c6887d8e8a2c2b0e2a6b7ad960851ec693c603d3/c_files/tool_paper/t47_c4b.c
https://statycc.github.io/.github/pymwp/
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larger software engineering developments. The analysis is automatic and read-
only, therefore it is possible to pair pymwp with other tools and integrate it into
compilation or verification toolchains. The online demo provides one example use
case. It is a web server application with pymwp as a package dependency. Other
derived uses can be developed similarly. The easiest way to install pymwp is from
PyPI, using command pip install pymwp. The default interaction command
is

pymwp path/to/file.c [args]

where the first positional argument is required. By default, pymwp displays the
analysis result with logging information, and writes the result to a file. This
behavior is customizable by specifying arguments. For a list of currently sup-
ported arguments run pymwp –-help.

3.3 Scope of Analyzable Programs

The programs analyzable with pymwp are determined by its supported syntax.
pymwp delegates the task of parsing C files to its dependency, pycparser [21],
which aims to support the full C99 specification. Programs that cannot be parsed
will expectedly throw an error. Otherwise, analysis proceeds on the generated
AST, and pymwp handles nodes that are syntactically supported by its calcu-
lus4. It skips unsupported nodes with a warning. We decided on this permissive
approach, because it allows to obtain partial results and manually inspect unsup-
ported operations. However, to establish a guaranteed bound, the input program
must fully conform to the supported syntax of the calculus. Currently the syntax
has limitations, e.g., arrays and pointer operations are unsupported. Extending
the analysis to richer syntax is a direction for future work.

4 Implementation Advancements

Notable technical progress has occurred since the initial mention of pymwp in
the literature [5]5. We will discuss those solutions in this section.

4.1 Motivations for Refining Analysis Results

Understanding pymwp’s advances requires to briefly reflect on its past. The
mwp-flow, as originally designed [16], is an inference system that has an unbear-
able computational cost, as it manipulates non-deterministically an exponen-
tial number of sizable matrices [5, Sect. 2.3] to try to establish a bound. Our
enhanced mwp-technique [5] resolved this challenge by internalizing the non-
determinism in a single matrix, containing coefficients and functions from choices

4 List of supported features: https://statycc.github.io/pymwp/features.
5 Full comparison: https://github.com/statycc/pymwp/compare/FSCD22...0.4.2.

https://statycc.github.io/pymwp/demo/
https://statycc.github.io/pymwp/features
https://github.com/statycc/pymwp/compare/FSCD22...0.4.2
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into coefficients. This way, all derivations—including the ones that will fail—
are constructed at the same time, moving the problem from “Is there a deriva-
tion?” to “Among all the derivations you constructed, is there one without ∞
coefficient?”—an equivalent question that however complicates the production
of the actual bound.

While answering the first question is too computationally expensive, pymwp’s
FSCD 2022 version can answer the second, and it can further, if all deriva-

tions contain ∞ coefficients, terminate early for faster result [5, Sect. 4.4]. This
was achieved thanks to a complex Relation data structure6, but extracting finer
information from that data structure remained an outstanding problem. In par-
ticular, we wanted to provide the following feedback to the programmer: (i) If
no bound exists, the location of the exponential growth. (ii) If bounds exist, the
value of at least one of them. The current version of pymwp can now provide
this feedback, thanks to a long maturation that we now detail.

4.2 Exposing Sources of Failure

Since pymwp identifies polynomial bounds, it reports failure on programs con-
taining at least one variable whose value grows exponentially w.r.t. at least one
of its initial value. Earlier tool versions would indicate that failure was detected
without reporting the involved variables. Determining this information is com-
plicated because of our treatment of non-determinism, but it is valuable, as
addressing one of those points of failure would suffice to obtain a polynomial
growth bound. Even if the program cannot be refactored satisfactorily, then
analyzing the exponential growth allows to assess potential impact on the par-
ent software application.

Our solution is to record additional information about ∞-coefficient in the
Relation data structure, and to list all variable pairs on which failure may occur.
Since detailed failure information may not be relevant in some use-cases, and is
costly to compute, it was added as an optional –fin argument.

Example 4. From our tool user guide (output abridged for clarity):

int foo(int X1, int X2 , int X3){
if (X1 == 1){

X1 = X2+X1;
X2 = X3+X2;

}
while(X1 < 10){

X1 = X2+X1;
}

}

$ pymwp infinite/infinite_3.c --fin
foo is infinite
Possibly problematic flows:
X1 → X1 ‖ X2 → X1 ‖ X3 → X1

Reads as “X1 depends too strongly on all variables.”

6 A complex data structure sounds daunting, but it is in fact one of the highlights of
the system, and enables to solve a difficult derivation problem efficiently. For details,
see the documentation at https://statycc.github.io/pymwp/relation.

https://github.com/statycc/pymwp/releases/tag/FSCD22
https://statycc.github.io/.github/pymwp/#inf-prog
https://statycc.github.io/pymwp/relation
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4.3 Efficiently Determining Bounds

In the alternative case, where bounds are determined to exist, the next step is to
evaluate the bounds—step 3(c) in the pymwp workflow (Sect. 3.1). This is prob-
lematic because the calculus can yield an exponential number of bounds w.r.t.
the program size, as illustrated in Table 3 with e.g., benchmark 32. long. As a
result, the evaluation phase—e.g., extracting the bounds from this conglomer-
ate of derivations—is increasingly costly. Handling this task efficiently required
us to discover a computational solution, and finding a compact format to rep-
resent the results in interpretable and memory-efficient manner. For simplicity
we describe this process only at high-level, but refer to the implementation for
complete details.

Determining mwp-bounds requires two separate steps, starting with the
Relation data structure generated during analysis phase. The first challenge
is to determine which paths in our conglomerate of derivations produce bounds
(i.e., does not contain ∞). A naïve brute force solution would iterate over all
paths, but this is too slow for practical use. Instead, we developed a set-theoretic
approach, that determines first all derivation paths that lead to ∞ and then
negates those paths. We capture this process in a structure called Choice, and
the result of this computation is called a choice vector. A choice vector contains
all derivation paths yielding a bound in a compact, regular expression-like repre-
sentation. Once those paths are known, it is possible to extract from a Relation
an mwp-bound (represented as a Bound object), by applying a selected path.
Currently, we take the first choice from the choice vector, and display it as a
result. Leveraging this set of bounds and its utilities is discussed in conclusion
and left for future work.

5 Experimental Evaluation

To establish that pymwp is a practical and performant static analyzer, we evalu-
ated it on a benchmark suite of canonical C programs. We ran the analyzer on the
benchmarks and measured the results, thus conducting an evaluation of perfor-
mance and behavioral correctness. We did not perform tool comparison or use a
standard suite for two reasons: absence of a representative comparison target (cf.
Sect. 2.3) and syntactic restrictions that limit the scope of analyzable programs
(cf. Sect. 3.3). However, the choice methodology judiciously evaluates pymwp,
and facilitates transparency and reproduction of experiments. We actively put
heavy emphasis to ensure—with software engineering best practices e.g., tests,
documentation [23], and long-term archival deposits [7]—that pymwp, and the
evaluation presented here, are available and reusable for future comparisons.

5.1 Methodology

Benchmarks Description. The suite contains 50 C programs, written in the
subset of C99 syntax supported by pymwp. The benchmarks are designed pur-
posely to exercise various data flows that pose challenges to the analyzer, e.g.,

https://statycc.github.io/pymwp/relation
https://statycc.github.io/pymwp/choice/
https://statycc.github.io/pymwp/bound/
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increasing parameters, binary operations, loops and decisions, and various com-
binations of those operations. The benchmarks are organized into seven cate-
gories based on their expected result (∞ vs. non-∞); origin in related publica-
tions [5,16], and in this tool paper; and interest (basic examples, others). We
omit these categories here, but they are apparent in the benchmarks distribu-
tion. The suite is available from pymwp repository [24], as a release asset on
GitHub, and Zenodo [7].

Metrics. For each benchmark, we record 1. Benchmark name, corresponding
to C file name, followed by “: program name” if a file contains multiple pro-
grams. 2. The lines of code (loc) in the benchmark. Observe this number ranges
between 4 and 45: this is reasonable and representative, because the analysis is
compositional. Analysis of even a large C file reduces to analysis of its functions,
that would be expectedly similar in size to these benchmarks. 3. The time (ms)
required to complete program analysis. We use milliseconds for precision since
all analyses conclude within seconds. For ∞-programs, the time is for perform-
ing full evaluation with feedback, although a result of existential failure could
be obtained faster. 4. Number of program initial values (vars), which internally
impacts complexity of the analysis. 5. Number of polynomial bounds discovered
by the analyzer. The number of bounds is 0 if the result is ∞. 6. If a program is
derivable, we capture one of its bounds.

Experimental Setup. The measurements were performed on a Linux x86_64,
kernel v.5.4.0-1096-gcp, Ubuntu 18.04, with 8 cores and 32 GB virtual memory.
The machine impacts only observed execution time; other metrics are determin-
istic. The software environment was Python runtime 3.8.0, gcc 7.5.0, GNU Make
4.1, and the dev dependencies of pymwp. Because the measurement utilities of
pymwp are not distributed with its release, the experiments must be run from
source. We used source code version 0.4.2. The command to repeat experi-
ments is make bench. It runs analysis on benchmarks and generates two tables
of results.

5.2 Results

The evaluation results are presented in Table 2. We emphasize in these results
the obtained bounds and their correctness, while the obtained execution times
provide referential information of performance. The analyzer correctly finds a
polynomial bound for noninfinite benchmarks, and rejects exponential and infi-
nite benchmarks. The analyzer is also able to derive bounds for potentially non-
terminating while benchmarks. Observe that the analysis concludes rapidly even
for a long example with 45 loc, and for explosion, that has initial values count
18. The number of bounds for long is high, because it is a complicated derivation
with high degree of internalized non-determinism.

For programs that have polynomial growth bounds, we give a simplified
example bound in Table 3. We omit in this representation variables whose only

https://github.com/statycc/pymwp/tree/c6887d8e8a2c2b0e2a6b7ad960851ec693c603d3/c_files
https://github.com/statycc/pymwp/releases/download/0.4.2/examples.zip
https://github.com/statycc/pymwp/releases/tag/0.4.2
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Table 2. Benchmark results for a canonical test suite of C programs. Benchmark that
have 0 bounds represents case where analyzer reports an ∞-result.

# Benchmark loc ms vars bounds

1. assign_expression 8 0 2 3
2. assign_variable 9 0 2 3
3. dense 16 15 3 81
4. dense_loop 17 66 3 81
5. example14: f 4 2 2 1
6. example14: foo 11 0 2 3
7. example16 15 7 4 27
8. example3_1_a 10 1 3 9
9. example3_1_b 10 2 3 9
10. example3_1_c 11 3 3 1
11. example3_1_d 12 1 2 0
12. example3_2 12 2 3 0
13. example3_4 22 14 5 0
14. example5_1 10 0 2 1
15. example7_10 10 1 3 9
16. example7_11 11 9 4 27
17. example8 8 1 3 9
18. explosion 23 405 18 729
19. exponent_1 16 7 4 0
20. exponent_2 13 4 4 0
21. gcd 12 10 2 0
22. if 7 0 2 3
23. if_else 7 0 2 9
24. infinite_2 6 16 2 0
25. infinite_3 9 7 3 0

# Benchmark loc ms vars bounds

26. infinite_4 9 2189 5 0
27. infinite_5 11 518 5 0
28. infinite_6 14 1031 4 0
29. infinite_7 15 298 5 0
30. infinite_8 23 722 6 0
31. inline_variable 9 0 2 3
32. long 45 2875 5 177147
33. notinfinite_2 4 1 2 9
34. notinfinite_3 9 7 4 9
35. notinfinite_4 11 30 5 3
36. notinfinite_5 11 29 4 9
37. notinfinite_6 16 34 4 81
38. notinfinite_7 15 283 5 9
39. notinfinite_8 22 856 6 27
40. simplified_dense 9 1 2 9
41. t19_c4b 9 2 2 81
42. t20_c4b 7 1 2 9
43. t47_c4b 12 1 2 3
44. tool_ex_1 7 5 3 1
45. tool_ex_2 7 0 2 0
46. tool_ex_3 9 8 3 3
47. while_1 7 1 2 3
48. while_2 7 1 2 1
49. while_if 9 3 3 9
50. xnu 26 17 5 6561

Table 3. Examples of obtained bounds for corresponding benchmarks. For compact-
ness, the bounds are simplified to exclude variables that have dependency only on
self.

# Benchmark bound

1. y2′ ≤ y1
2. x′ ≤ y
3. X0′ ≤ max(X0, X2) + X1 ∧ X1′ ≤ X0 × X1 × X2

∧ X2′ ≤ max(X0, X2) + X1
4. X0′ ≤ max(X0, X2) + X1 ∧ X1′ ≤ X0 × X1 × X2

∧ X2′ ≤ max(X0, X2) + X1
5. X2′ ≤ max(X2, X1)
6. X2′ ≤ X1
7. X1′ ≤ R+ X1 ∧ X2′ ≤ X1 ∧ X_1′ ≤ X1 ∧ R′ ≤ R+ X1
8. X1′ ≤ X2+ X3
9. X1′ ≤ X2 × X3
10. X1′ ≤ max(X1, X2+ X3)
15. X3′ ≤ X3+ X1 × X2
16. X1′ ≤ X1+ X2 × X3 × X4 ∧ X2′ ≤ X2+ X3 × X4

∧ X3′ ≤ X3+ X4
17. X1′ ≤ X1+ X2 × X3
18. x0′ ≤ x1+ x2 ∧ x3′ ≤ x4+ x5 ∧ x6′ ≤ x7+ x8

∧ x9′ ≤ x10+ x11 ∧ x12′ ≤ x13+ x14
∧ x15′ ≤ x16+ x17

22. y′ ≤ max(x, y)
23. x′ ≤ max(x, y) ∧ y′ ≤ max(x, y)
31. y2′ ≤ y1
32. X0′ ≤ X2+ X1 × X4 ∧ X1′ ≤ max(X2, X3, X4) + X1

∧ X2′ ≤ max(X2, X3) + X1 × X4
∧ X3′ ≤ max(X2, X3) + X1
∧ X4′ ≤ X1 × X2 × X3 × X4

33. X0′ ≤ X0+ X1 ∧ X1′ ≤ X0 × X1

# Benchmark bound

34. X0′ ≤ max(X0, X1) + X2 × X3
∧ X1′ ≤ X1+ X2 ∧ X2′ ≤ X2+ X3

35. X1′ ≤ max(X1, X2+ X3) ∧ X2′ ≤ max(X2, X3)
∧ X4′ ≤ max(X4, X5)

36. X1′ ≤ max(X1, X4) + X2 × X3
∧ X2′ ≤ max(X2, X4) + X3
∧ X3′ ≤ max(X3, X4)

37. X1′ ≤ max(X1, X4) + X2 × X3
∧ X2′ ≤ max(X2, X4) + X3

38. X1′ ≤ max(X1, X2+ X3+ X4+ X5)
∧ X2′ ≤ max(X2, X3+ X4+ X5)
∧ X3′ ≤ max(X3, X4+ X5)
∧ X4′ ≤ max(X4, X5)

39. X1′ ≤ X1+ X2 × X3 × X4 × X5
∧ X2′ ≤ max(X2, X1+ X3+ X4+ X5)
∧ X3′ ≤ max(X3, X1+ X4+ X5) + X2
∧ X4′ ≤ max(X4, X1+ X5) + X2
∧ X6′ ≤ max(X6, X1+ X3+ X4+ X5) + X2

40. X0′ ≤ X0+ X1 ∧ X1′ ≤ X1+ X0
41. i′ ≤ i+ k
43. flag′ ≤ 0

44. X2′ ≤ max(X2, X1) ∧ X3′ ≤ max(X3, X1+ X2)
46. X2′ ≤ max(X2, X1) ∧ X3′ ≤ X1+ X2+ X3
47. y′ ≤ max(x, y)
48. x′ ≤ max(x, y)
49. y2′ ≤ max(y2, y1) ∧ r′ ≤ max(y2, y1)
50. beg′ ≤ 0 ∧ end′ ≤ 0 ∧ i′ ≤ 0
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dependency is on self, e.g.,X’ ≤ X.7 The table serves to demonstrate that pymwp
can derive complex multivariate bounds automatically, and to present the result
of a non-deterministic computation in a digestible form. It also clarifies what the
analyzer computes and that those results are original in form.

6 Conclusion

This paper presented pymwp, its recent technical advancements, and evaluated
its performance. Our tool reasons efficiently about existence of the variables’
growth bounds w.r.t. its initial value, and can be paired with other tools for
extended verification and compound analyses. Possible enhancements of the tool
involve extending it to support richer syntax, and exploring the space of discov-
ered bounds. For example, we could investigate whether constraints such as “Is
there a bound where this particular variable growth linearly?” can be satisfied.
Another open question is to identify distinct bounds.

Beyond enhancements of pymwp, several future directions and extended
applications can follow. Perhaps the most interesting of those is to formally verify
the analysis technique, and work is already underway in that direction [3]. Since
the analysis does not require much structure from an input program, it could
be useful for analyzing intermediate representations during compilation. It could
also find use cases in restricted domain-specific languages, and resource-restricted
hardware, to establish guarantees of their runtime behavior. Long term, the fast
compositional analysis could also be useful to construct IDE plug-ins to provide
low-latency feedback to programmers.

Acknowledgments. The authors wish to express their gratitude to the reviewers for
their thoughtful comments, and to Antonio Flores Montoya, for the preparation and
public sharing of his PhD thesis experimental evaluation resources [11].
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Abstract. This paper presents ppLTLTT, a tool for translating pure-
past linear temporal logic formulae into temporal testers in the form of
automata. We show how ppLTLTT can be used to easily extend exist-
ing LTL-based tools, such as LTL-to-automata translators and reac-
tive synthesis tools, to support a richer input language. Namely, with
ppLTLTT, tools that accept LTL input are also made to handle pure-
past LTL as atomic formulae. While the addition of past operators does
not increase the expressive power of LTL, it opens up the possibility
of writing more intuitive and succinct specifications. We illustrate this
intended use of ppLTLTT for Slugs, Strix, and Spot’s command line
tool LTL2TGBA by describing three corresponding wrapper tools pSlugs,
pStrix, and pLTL2TGBA, that all leverage ppLTLTT. All three wrapper
tools are designed to seamlessly fit this paradigm, by staying as close to
the respective syntax of each underlying tool as possible.

Keywords: Past Linear Temporal Logic · Temporal Testers ·
Omega-Automata · Reactive Synthesis

1 Introduction

Linear temporal logic (LTL) is a popular choice of specification language for both
the formal verification and the synthesis of programs. It has been established
that LTL with past (pLTL) can be exponentially more succinct than LTL [13],
and perhaps more importantly, it allows for arguably more natural specifications
of real-world properties, reducing the risk of incorrectly formulating them. As
a fictional but plausible example, consider a program that may flag for two
different errors, represented by the variables err1 and err2. We may wish to
express that a termination signal, represented by the variable end, should be
triggered as soon as both errors have occurred, and only then. This can be done
in pLTL with the formula,

G ((O err1 ∧ O err2 ∧ ˜YH¬end) ⇔ end). (1)
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An equivalent LTL formula is,

G (end ⇒ XG¬end)∧
((¬err1 ∧ ¬err2 ∧ ¬end)W ((err1 ∧ ((¬err2 ∧ ¬end)W (err2 ∧ end)))∨
(¬err1 ∧ ¬err2 ∧ ¬end)W ((err2 ∧ ((¬err1 ∧ ¬end)W (err1 ∧ end))))))).

The above formula becomes significantly more complex when we add more errors
that should trigger termination (in fact, it is factorial in the number of errors
[9]). Doing the same for its pLTL counterpart only requires adding conjuncts
of the form O (erri). The past has been also suggested as a way to increase
the expressiveness of fragments of LTL that can be handled more efficiently for
synthesis, such as GR(1) [4].

Despite the above considerations, there is a lack of general-purpose tool sup-
port for pLTL. For example, LamaConv only allows for the translation of pLTL to
two-way Büchi (or parity(3)) automata [1], which limits opportunities for further
processing. FRET supports a limited notion of past in its specification language
[10], and SpeAR provides a natural language interface for writing pure-past LTL
requirements and checking them for logical consistency [8]. But neither FRET
nor SpeAR enable the usage of pure-past LTL beyond their workflows. GOAL,
with its capability to translate full pLTL to different types of ω-automata, comes
close to providing general support [17]. However, while feature-rich, GOAL was
designed to be used for educational purposes [18], and these translations are not
implemented with performance in mind. The lack of support for past is particu-
larly glaring for reactive synthesis tools, where it is vital to express specifications
as concisely as possible, due to the high computational complexity of synthesis.

An interesting fragment of pLTL is LTL augmented atomically with pure-
past LTL (ppLTL) formulae, which we call LTL+pp. The property of exponential
succinctness of pLTL w.r.t. LTL is maintained by this fragment (the exam-
ple formula that proves it for pLTL is also in LTL+pp [13], as is the example
above). This fragment is arguably more intuitive than full pLTL, since it does
not require reasoning that in a complex manner mixes different time directions,
by disallowing the occurrence of future temporal operators under past temporal
operators in the syntax tree. Moreover, as we briefly describe in Sect. 4, LTL+pp
allows for a straightforward compositional approach to constructing correspond-
ing automata.

In the next section, we describe the syntax and semantics of pLTL and of
the fragments LTL+pp and ppLTL, and define temporal testers [15]. Following
that, we describe ppLTLTT, a tool for generating temporal testers from ppLTL
formulae, and then propose this tool as the basis for a toolchain to allow the
input of existing tools for LTL-based tasks (e.g., for automata generators and
reactive synthesis) to be expanded from LTL to LTL+pp. We further describe the
application of our approach to Slugs [7], Strix [12,14], and Spot’s command
line tool LTL2TGBA [5], and describe three corresponding wrapper tools pSlugs,
pStrix and pLTL2TGBA, that all leverage ppLTLTT. We describe some experiments
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performed to investigate the viability of this approach. ppLTLTT and the three
wrapper tools are available at GitHub1.

2 Linear Temporal Logic with Past and Temporal Testers

Formulae of pLTL are constructed from a set of propositional variables, Boolean
values and operators, and the temporal operators X, U, Y, and S.

Definition 1 (Syntax of pLTL). Given a set of propositional variables AP ,
the well-formed formulae of pLTL are generated by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | Yϕ | ϕSϕ,

where p ∈ AP .

Formulae of pLTL are evaluated over infinite words, which are sequences of truth
assignments to the variables in AP . We call such a truth assignment a valuation.
We write (σ, t) |= ϕ to denote that the infinite word σ models ϕ at time t.

Definition 2 (Semantics of pLTL). Let σ = σ0σ1 · · · ∈ (2AP )ω be an infinite
word over a set of propositional variables AP , ϕ a pLTL formula, and t ∈ N.
The semantic entailment relation |= is defined by,

(σ, t) |= �
(σ, t) |= p ⇔ p ∈ σt

(σ, t) |= ¬ϕ ⇔ (σ, t) �|= ϕ
(σ, t) |= ϕ1 ∧ ϕ2 ⇔ (σ, t) |= ϕ1 and (σ, t) |= ϕ2

(σ, t) |= Xϕ ⇔ (σ, t + 1) |= ϕ
(σ, t) |= ϕ1 Uϕ2 ⇔ ∃k ≥ t . ((σ, k) |= ϕ2 ∧ ∀j ∈ [t, k) . (σ, j) |= ϕ1)
(σ, t) |= Yϕ ⇔ t > 0 and (σ, t − 1) |= ϕ
(σ, t) |= ϕ1 Sϕ2 ⇔ ∃k ≤ t . ((σ, k) |= ϕ2 ∧ ∀j ∈ (k, t] . (σ, j) |= ϕ1)

The rest of the standard Boolean and temporal operators can be formulated in
this language in the usual manner. We assume the reader is familiar with the
derivation of other Boolean operators, and only present the following derived
temporal operators:

Fϕ := �Uϕ

Gϕ := ¬F¬ϕ

ϕ1 Wϕ2 := ϕ1 Uϕ2 ∨ Gϕ1

ϕ1 Rϕ2 := ϕ2 W (ϕ1 ∧ ϕ2)

Oϕ := �Sϕ

Hϕ := ¬O¬ϕ

ϕ1
˜Sϕ2 := ϕ1 Sϕ2 ∨ Hϕ1

˜Yϕ := Yϕ ∨ ¬Y�
We define the fragments of pure-past LTL (ppLTL) and LTL with pure-past
subformulae as atoms (LTL+pp).

1 https://github.com/DoppeD/ppLTLTT.
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Definition 3 (ppLTL and LTL+pp). Given a set of propositional variables
AP , the well-formed formulae of ppLTL (ψ) and LTL+pp (ϕ) are generated by
the following grammar:

ψ ::= � | p | ¬ψ | ψ ∧ ψ | Yψ | ψ Sψ

ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ.

The semantics is the same as that of pLTL.

Definition 4 (Temporal testers). Let ϕ be a ppLTL formula and z a propo-
sitional variable that does not appear in ϕ. A temporal tester Tz(ϕ) = (S, s0, δ)
for ϕ is a deterministic Büchi automaton with alphabet 2V ar(ϕ)∪{z}, that recog-
nizes exactly the formula G (z ⇔ ϕ), where S is its set of states, of which all
are accepting, s0 is its initial state and δ its transition relation.

Since temporal testers contain no sink states, the variable z acts as a monitor
for the truth value of ϕ for every prefix of an input word. In the sequel, we will
refer to z in the above definition as the monitor variable of the temporal tester.

We refer the reader to [15] for a more in-depth presentation of temporal
testers, and of pLTL and its properties.

3 ppLTLTT

We present ppLTLTT, a tool that translates ppLTL formulae into temporal testers,
which are output in Hanoi Omega-Automata format [3]. For example, a temporal
tester for the simple formula ϕ := Y p generated by ppLTLTT is represented in
Fig. 1.

In addition to the Boolean operators ∧,∨,¬,⇒,⇔, and ⊕ (exclusive or),
ppLTLTT supports both the primitive and the derived past operators described
in Sect. 2.

Fig. 1. Temporal tester for the formula ϕ = Yψ, generated by ppLTLTT.

3.1 ppLTL to Temporal Testers

The tool takes a pure-past LTL formula ϕ and constructs a temporal tester for
it. Each state of the temporal tester corresponds to the subset of subformulae
of ϕ that are true when a run reaches that state. Accordingly, every transition,
updates the set of true subformulae after reading one more input letter. The
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Algorithm 1: The ppLTLTT algorithm
1 Function BuildTT(ϕ, z):
2 AP ← Var(ϕ)
3 Q, q0, δ ← ∅
4 Pϕ ← {ψ | Yψ ∈ Sub(ϕ) ∨ ∃ψ1, ψ2 . ψ ∈ {Oψ1, ψ1 Sψ2} ∩ Sub(ϕ)}
5 Pϕ ← Pϕ ∪ {¬ψ | ˜Yψ ∈ Sub(ϕ) ∨ ∃ψ1, ψ2 . ψ ∈ {Hψ1, ψ1

˜Sψ2} ∩ Sub(ϕ)}
6 S ← S.push(q0)
7 while ¬(S.empty) do
8 s ← S.pop
9 if s /∈ Q then

10 Q ← Q ∪ {s}
11 forall v ∈ 2AP do
12 s′ ← {ψ ∈ Pϕ | �ψ, s, v� = 	}
13 S ← S.push(s′)
14 if �ϕ, s, v� = 	 then
15 δ ← δ ∪ {(s, v ∪ {z}, s′)}
16 else
17 δ ← δ ∪ {(s, v, s′)}
18 return (Q, q0, δ)

construction is detailed in Algorithm 1, which uses the evaluation function in
Algorithm 2. Given a ppLTL formula ϕ, Algorithm 1 first collects all subformulae
that appear immediately under a Y and all subformulae that appear in O and
S subformulae (line 4). Moreover, it collects the negation of subformulae that
appear immediately under a ˜Y and all subformulae that appear in H and ˜S
subformulae (line 5). States of the constructed temporal tester will then be
subsets of these collected formulae (Pϕ), where a subformula ψ ∈ Pϕ is in a
given state s iff all prefixes that reach s satisfy, at their final position, Y ψ.
For each subformula we choose the polarity that is suitable for our choice of
identifying the initial state q0 as the empty set of formulae. At the beginning of
a trace before having read even the first letter, every formula of the form Y ψ,
Oψ, or ψ1 Sψ2 does not hold. Conversely, every formula of the form ˜Y ψ, Hψ,
or ψ1

˜Sψ2 does hold. Thus, by choosing to follow the negations of the latter we
can start with the initial state q0 = ∅ (line 3).

The algorithm then proceeds to construct a temporal tester for ϕ incremen-
tally, starting from a stack of states consisting of only the initial state. At each
step, all possible transitions are considered (line 11), and for each such transition
the set of formulae of Pϕ that are true after the transition are collected (line 12),
capturing the next state s′. This state is added to the state stack, and z added
to the transition label only if the full formula ϕ is true at that time point (lines
14-17).

The evaluation function from Algorithm 2 is used to determine when a for-
mula is true on a transition from a state s (see lines 12 and 14), by using
the knowledge of what happened now (the transition label v) and what held
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Algorithm 2: The evaluation function
1 Function �ψ, s, v�:
2 switch ψ do

/* We omit the cases for Boolean connectives */
3 case p do
4 return (p ∈ v)
5 case Yψ1 do
6 return (ψ1 ∈ s)

7 case ˜Yψ1 do
8 return (¬ψ1 
∈ s)
9 case Oψ1 do

10 return (�ψ1, s, v� ∨ (Oψ1 ∈ s))
11 case Hψ1 do
12 return (�ψ1, s, v� ∧ (¬Hψ1 /∈ s))
13 case ψ1 Sψ2 do
14 return ((�ψ1, s, v� ∧ (ψ1 Sψ2 ∈ s)) ∨ �ψ2, s, v�)

15 case ψ1
˜Sψ2 do

16 return ((�ψ1, s, v� ∧ (¬(ψ1
˜Sψ2) /∈ s)) ∨ �ψ2, s, v�)

true before (the formulae from Pϕ in s). This algorithm exploits the expan-
sion law for the temporal operators, which implies that the truth value of each
(pure-past) temporal subformula at each time step is completely determined
by its truth value in the previous state, together with the current valuation.
For example, the expansion of the Since operator (lines 13-14 in Algorithm 2) is
ϕ1 Sϕ2 ≡ ϕ2∨(ϕ1∧Y (ϕ1 Sϕ2)). We omit the cases for the Boolean connectives
in the algorithm; these are as expected.

As states are represented by subsets of subformulae of ϕ, the algorithm
returns an automaton with at most 2n states, where n is the size of the formula.
Moreover, since the transitions from a state correspond in a one-to-one manner
to valuations of the propositional variables in ϕ, the automaton is deterministic.

3.2 Implementation Notes

The tool is implemented in Haskell. Subformulae are collected by traversing the
abstract syntax tree of the input formula. Each unique subformula with a top-
level past operator is annotated with an index, as is every propositional variable.
Each state (set of subformulae) is internally represented as an Integer2, where
bit i represents the truth value of the subformula with index i.

2 Note that Haskell Integers are of arbitrary precision; the input formula’s size is only
limited by the computer’s memory.
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Fig. 2. The proposed toolchain.

4 Adding Past to Existing Tools

ppLTLTT is intended to be used as part of a toolchain to extend existing LTL-
based tools to LTL+pp, as illustrated in Fig. 2. A given LTL+pp specification
is first separated into an LTL and a ppLTL part by replacing each pure-past
subformula with a fresh variable. Each such subformula and its corresponding
monitor variable are then translated into a temporal tester by ppLTLTT. The
resulting temporal tester is combined with the LTL specification in a way that
is dependent on the target tool, to which the result is then passed on. By using
ppLTLTT in this way, it is possible to extend existing tools that interact with
LTL specifications to support a larger fragment of pLTL, namely LTL+pp, in a
straightforward manner.

As a proof of concept, we implemented this toolchain for three existing tools:
Slugs, Strix, and Spot’s command-line tool LTL2TGBA, which we describe below.
These are (if not the best then among the best) state-of-the-art tools for differ-
ent usage of LTL: Slugs handles GR(1) synthesis, Strix handles general LTL
synthesis, and Spot converts LTL to automata and implements many automata
transformations. We begin by explaining the encoding of the characteristic LTL
formula of a given temporal tester.

4.1 Encoding Temporal Testers in LTL

Let Tz(ϕ) = (S, s0, δ) be a temporal tester generated for the ppLTL formula ϕ,
with monitor variable z /∈ Var(ϕ) and alphabet AP = Var(ϕ) ∪ {z}. For every
state s, let β(s) denote its encoding as a Boolean formula3. We encode Tz(ϕ) as
the following LTL formula:

3 The auxiliary tools described in Sect. 4 default to a binary encoding, but users can
opt for a one-hot encoding instead.



ppLTLTT: Temporal Testing for Pure-Past Linear Temporal Logic Formulae 283

β(s0) ∧
∧

s∈S

∧

v∈2AP

G

(

β(s) ∧
∧

p∈v∩Var(ϕ)

p ∧
∧

q∈Var(ϕ)\v

¬q ⇒ �z� ∧ X (β(δ(s, v)))

)

(2)

where �z� = z if z ∈ v and �z� = ¬z otherwise

Note that we here treat δ as a function, to simplify the presentation.
In practice, instead of generating complete temporal testers, we do not gen-

erate and encode transitions in which the truth value of the monitor variable
z does not match the current truth value of the formula ϕ, which is entirely
determined by the valuation v ∩ Var(ϕ) together with the current state.

Consider the temporal tester in Fig. 1. It consists of two states s0 and s1 (0
and 1 in the figure). Using a binary encoding, these are represented by a single
propositional variable s. With the state encoding β(s0) = ¬s, β(s1) = s, the
tester is encoded as,

¬s ∧ G(¬s ∧ p ⇒ ¬z ∧ X s) ∧ G(¬s ∧ ¬p ⇒ ¬z ∧ X¬s)
∧G(s ∧ p ⇒ z ∧ X s) ∧ G(s ∧ ¬p ⇒ z ∧ X¬s).

4.2 Adding Past to Slugs: pSlugs

Slugs [7] is a tool for GR(1) synthesis [16]. It requires input GR(1) specifica-
tions written in the slugsin format, using prefix notation. A more syntactically
expressive structured format is also available; specifications written in this for-
mat must be converted into slugsin before being passed to Slugs.

Given a slugsin specification, pSlugs converts the pure-past subformulae
into temporal testers as described at the start of Sect. 4, and encodes each into
the specification in the manner described in Sect. 4.1. To encode the temporal
tester in slugsin, we allocate the required number of Boolean variables to encode
the states (in binary or unary as explained). These new variables are added as
output variables, while the initialization and transition invariants mentioned
in Sect. 4.1 are added to the system’s initialization and transition invariants,
respectively. As Slugs treats specifications as well-separated [11], there is no
problem with the controller breaking safety.

4.3 Adding Past to Strix: pStrix

Strix [12,14] is a reactive synthesis tool for full LTL. It takes as input an LTL
formula and a designation of input and output variables. The corresponding
wrapper tool pStrix is broadly identical to pSlugs in function and interface,
but the temporal testers generated from its input are encoded directly as con-
juncts in the form of Eq. 2. To avoid issues with well-separation of the resulting
specification, the final format of the formula given to Strix is the conjunction
of the formulae relating to the newly allocated output variables with the LTL
formula resulting from the removal of pure-past. That is, if ϕ is an LTL+pp
formula with non-overlapping pure-past subformulae ψ1, . . . , ψn, then the final
specification for Strix is ϕ[z1/ψ1, ..., zn/ψn] ∧

∧

i∈[1..n] Tzi
(ψi).
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4.4 Adding Past to LTL2TGBA: pLTL2TGBA

LTL2TGBA [5] is a component of Spot [6]. It is a command-line tool that trans-
lates LTL formulae into various kinds of automata. Although the wrapper tool
pLTL2TGBA follows the same initial steps of formula separation and conversion
into temporal testers as pSlugs and pStrix, it combines the results differently.
While pSlugs and pStrix syntactically manipulate the input, pLTL2TGBA works
directly with the automata by making use of autfilt (another Spot command-
line tool). Once the input has been separated, the LTL part is translated by
LTL2TGBA into the desired automaton type. This LTL-automaton is then com-
posed with the temporal testers by taking their product using autfilt. Finally,
monitor variables become redundant and we instruct autfilt to remove them.

To exemplify the process, let ϕ be the pLTL formula presented in the intro-
duction (1). The pure-past subformula will be replaced with a fresh variable z
by pLTL2TGBA, resulting in the two formulae,

ϕf = G (z ⇔ end)

ϕp = z ⇔ O err1 ∧ O err2 ∧ ˜YH¬end.

The formula ϕf is translated into an automaton A(ϕf ) by LTL2TGBA, while ϕp is
translated into a temporal tester Tz(ϕp) by ppLTLTT. The two are then combined
by autfilt to obtain an automaton whose language is exactly the models of ϕf ,

G (z ⇔ end) ∧ G (z ⇔ O err1 ∧ O err2 ∧ ˜YH¬end),

which is clearly equivalent to ϕ.

5 Experimental Evaluation

All experiments in this section were performed on a Dell Latitude 5420, with
an Intel Core i7-1185G7 clocked at 3GHz, and 32GB of DDR4 RAM clocked
at 3200MHz, running 64-bit Ubuntu 22.04.1 LTS. For comparisons with other
tools we use the latest versions at time of writing. For Goal we use the version
dated 2020-05-06, for Strix v.21.0.0, for Spot v.2.11.5, and for Slugs we use
the code in commit dc2b1e0 from [2].

For pStrix and pSlugs we use arbiter specifications as test cases, a com-
monly used example for synthesis. An arbiter is conceived of as a controller
granting access to resources as they are requested by clients. For n clients, there
are request variables r1, r2, . . . , rn and grant variables g1, g2, . . . , gn. The require-
ments of the controller are that a) only one grant is given at a time, b) it is
strongly fair, and c) it will not grant access to a resource if there is no open
request for it. We can express these conditions as follows:

∧

i�=j

G(¬gi ∨ ¬gj) ∧
∧

i

(GFri ⇒ GFgi) ∧
∧

i

G(gi ⇒ Y(¬gi S ri)).
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Table 1. Results of synthesizing arbiters with pStrix and pSlugs.

No. of Clients # of Added Variables Synthesis (s) No. of States

Arbiter with Strong Fairness, pStrix
1 2 0.03 s 2
2 4 0.04 s 8
3 6 0.6 s 48
4 8 1.04 s 384
5 10 16.37 s 3840
6 12 OOM N/A
Arbiter, pSlugs
1 4 0.02 s 6
2 8 0.03 s 72
3 12 0.10 s 552
4 16 1.46 s 3904
5 20 34.30 s 26720
6 24 714.43 s 180096

Table 2. Timings of translating arbiters to NBA with pLTL2TGBA and different algo-
rithms of Goal.

Arbiter with Strong Fairness, pLTL2TGBA and Goal timings
No. of Clients pLTL2TGBA ltl2aut ltl2aut+ couvreur ltl2buchi modella

1 0.058 s 0.646 s 0.587 s 0.622 s 0.629 s 0.651 s
2 0.071 s 5.108 s 2.956 s 9.864 s 5.690 s 11.779 s
3 15.143 s TO TO TO TO TO

The multi-variable strong fairness condition cannot be expressed in GR(1),
however. In pSlugs, we replace it with GF(¬ri

˜S gi), which is equivalent to the
requirement G(ri ⇒ Fgi). That is, every request should eventually be followed
by a grant. It is well known how to encode future-time formulae of the latter
form in GR(1) by adding an additional variable [4]. In our case, however, we use
the LTL+pp equivalent, which is automatically handled by ppLTLTT:

∧

i�=j

G(¬gi ∨ ¬gj) ∧
∧

i

GF(ri
˜S gi) ∧

∧

i

G(gi ⇒ Y(¬gi S ri)).

Table 1 shows the result of synthesizing arbiters with a varying number of
clients using pStrix and pSlugs. It shows how many variables were added to
each specification, the time it took to synthesize the translated specification,
and the number of controller states. OOM indicates that the program ran out
of memory. For general reactive synthesis with pStrix (or Strix) OOM is to be
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expected with larger formulae, given the 2EXPTIME-complete complexity of
reactive synthesis.

As Goal is the only tool that we are aware of able to translate pLTL to Büchi
automata, we compare the performance of pLTL2TGBA to Goal in translating
arbiters to nondeterministic Büchi automata, using the same specifications as
for pStrix. Because Goal offers a choice of several translation algorithms, we
only include the five most performant. We set a timeout of ten minutes; TO
indicates that the process did not finish within this time limit. The results are
shown in Table 2.

6 Conclusion

We have presented ppLTLTT, a tool for translating pure-past linear temporal
logic formulae into temporal testers in the form of automata. We have inte-
grated ppLTLTT with three existing LTL-based tools, namely Slugs, Strix and
Spot’s command-line tool LTL2TGBA, with the aim, among other things, of mak-
ing controller synthesis more scalable. As future work we intend to optimize the
encoding of temporal testers in LTL, and add features such as allowing the user
to have fine grained control over how pure-past subformulae are abstracted.
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Abstract. We propose a novel tool, AquaSense, to automatically reason
about the sensitivity analysis of probabilistic programs. In the context
of probabilistic programs, sensitivity analysis investigates how the per-
turbation in the parameters of prior distributions affects the program’s
result, i.e., the program’s posterior distribution. AquaSense leverages
quantized inference, an efficient and accurate approximate inference algo-
rithm that represents distributions of random variables with quantized
intervals. AquaSense is the first tool to support sensitivity analysis of
probabilistic programs that is at the same time symbolic, differentiable,
and practical.

Our evaluation compares AquaSense with an existing system PSense
(a system that relies on fully symbolic inference). AquaSense can com-
pute the sensitivity of all 45 parameters from 12 programs, compared
to 11/45 that PSense computes. AquaSense is particularly effective on
programs with continuous distributions: it achieves an average speedup
of 18.10× over PSense (which, in contrast, can solve only a handful
of problems). Our evaluation shows that AquaSense computes exact
results on discrete programs. On 91% of evaluated continuous param-
eters, AquaSense computed the sensitivity results within 40 s with
high accuracy (below 5% error). The paper also discusses AquaSense’s
performance-accuracy trade-offs, which can enable different operational
points for programs with different input data sizes.

Keywords: Probabilistic Programming · Sensitivity Analysis ·
Quantized Inference

1 Introduction

Probabilistic programming (PP) provides an intuitive way to encode statistical
models in the form of programs. It is a quickly rising discipline that has seen
applications in areas like computer vision [22], robotics [25], scientific simula-
tion [4], and data science [28]. Probabilistic programming allows a developer to
encode uncertainty in the program as random variables. When declaring ran-
dom variables, the developer specifies the prior beliefs of the random variables
using probability distributions and encodes the model in the program by relat-
ing the random variables to data observations. The developer then makes queries
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about the posterior distribution of these random variables after execution of the
program.

When developing a probabilistic program, developers need to make assump-
tions regarding the model and the data on which the inference is performed
(e.g., a common assumption is Gaussian distributions with a fixed variance).
However, it is unknown how reliable these assumptions are. Many studies have
reported that a wrong prior could lead to incorrect results [5,21,27]. Testing
the sensitivity of the parameters of prior distributions is a way to identify such
incorrectly-chosen priors and improve the underlying statistical model.

In this work, we focus on the sensitivity analysis of probabilistic programs,
which addresses the question: if we change the prior distribution, how will the
posterior distribution of random variables change?

AquaSense. We present AquaSense, an automated tool for efficient and accu-
rate sensitivity analysis of probabilistic programs. AquaSense takes a probabilis-
tic program as input, injects a symbolic perturbation ε for each prior parameter
in the program, then simulates the change in the posterior distribution due to
the ε values.

At its core, AquaSense leverages quantized inference of probabilistic pro-
grams. Quantized inference splits the values of continuous random variables
into finite intervals and thus works around intractable integrals [17]. Our
quantization-based sensitivity analysis can solve a significantly broader range
of probabilistic programs than existing tools, while guaranteeing the point-wise
convergence of the result sensitivity for continuous programs and small error in
practice.

Results. We compare our approach to PSense [19], a system for exact sensitivity
analysis, which uses PSI [14], an exact symbolic inference engine, together with a
computer algebra system to computes a symbolic and exact sensitivity function.

We evaluated AquaSense on 12 probabilistic programs and analyzed the sen-
sitivity of 45 prior parameters. Results show that AquaSense computes the sen-
sitivity of all 45 parameters, compared to 11 by the baseline PSense. On all
11 discrete parameters, AquaSense produces exact results with comparable per-
formance with PSense. On 34 continuous parameters, AquaSense achieves an
average speedup of 18.10× over PSense. On 31 (91%) continuous parameters,
AquaSense produces results within 5% of relative error in 40 s, averaging 5.89s.
We also show that the time-accuracy trade-off of AquaSense is reasonable.

Contributions. We summarize our contributions as follows:

1. We design and build a quantization-based sensitivity analyzer AquaSense
for real-world probabilistic programs. AquaSense supports multiple front-end
languages and leverages quantized inference to analyze models that are out
of reach of existing tools.

2. We formally prove the point-wise convergence of AquaSense analysis to the
exact analysis results on continuous programs with bounded support. We
present empirical evidence that AquaSense is exact on discrete programs.
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Listing 1.1. Example Prob. Program

1 # Data observations
2 vector x[N] = [3.0,...]
3 vector y[N] = [0.6094,...]
4
5 # Model
6 b0 ~ uniform(-1, 1)
7 b1 ~ uniform(-1, 1)
8 sigma ~ uniform(0, 2)
9 for (i in 1:N)

10 y[i] ~ normal(b0+x[i]*b1, sigma)

3. We experimentally show AquaSense supports a broader set of continuous
programs and achieves orders-of-magnitude speedup than the existing tool
PSense, while having comparable capability and speed on discrete programs.

Availability. Latest source code and artifact is available at https://github.com/
uiuc-arc/aquasense.

2 Example: Sensitivity-Driven Development

Probabilistic programming is an intuitive way to express a statistical model
as a computer program. Listing 1.1 shows such a simple probabilistic program
representing a regression model. Suppose we observed a dataset with pairs of
x and y, and we want to fit a line y = b0 + x * b1 to the dataset, where b0
(the slope) and b1 (the intercept) are unknowns. We write such a probabilistic
program to solve the distributions of b0 and b1 in the program.

In the program, we first specify the prior distributions of intercept b0, slope
b1, and standard deviation sigma as uniform distributions, indicating they are
equally likely everywhere on their support [-1,1] and [0,2] (Lines 6–8). Next,
we specify that each datum y[i] is drawn from a normal distribution with
mean b0 + x[i] * b1 and standard deviation sigma (Lines 9–10). In Bayesian
terms, in each iteration, we update our belief (prior) about the slope, intercept,
and error, upon learning that the datum y[i] follows the specified distribution.
In the end, the program is represented by a joint posterior probability density
f(b0, b1, sigma). Given a probabilistic program, probabilistic systems can auto-
matically compute the joint probability density defined by the program.

Choosing Prior Parameters. In this program, the developer chose a uniform
prior to reflect the lack of a prior knowledge of b1. However, when choosing the
parameters of the uniform prior - the lower and upper bounds (marked in brown
in Listing 1.1) - the developers are unaware of how such ad-hoc decisions would
affect the final result. Given the program as input, AquaSense can automatically

https://github.com/uiuc-arc/aquasense
https://github.com/uiuc-arc/aquasense
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Fig. 1. AquaSense vs. True
Results

Fig. 2. Density Cube Visualization

test the sensitivity of these parameters, which guide developers to adjust the
prior distributions/parameters so that the model’s sensitivity is fitting. We detail
the example at the end of this section.

Sensitivity Analysis with AquaSense. Given the program (Listing 1.1),
AquaSense first performs a pre-analysis to identify the three random variables
and their six prior parameters. AquaSense injects noise to test each parameter’s
sensitivity. For example, to test how the posterior of b1 changes if its upper
bound parameter of the prior 1 is perturbed, AquaSense injects a perturbation
parameter ε and updates the prior to b1~uniform(-1, 1+ε).

AquaSense measures sensitivity as the distance between the posteriors with
and without perturbation, as in previous works [19]. For simplicity, we use the
Expectation Distance (ED) that measures the absolute difference between the
expectations of posteriors; AquaSense also supports standards such as Total
Variation Distance, Kolmogorov-Smirnov distance [24], and user-defined metrics.
The sensitivity of a random variable X measured in Expectation Distance is

EDX(ε) = |EX∼P (0)[X] − EX∼P (ε)[X]|,

where EX∼P (ε)[X] and EX∼P (0)[X] are the expectations of the posterior distri-
bution of X with and without ε added to its prior parameters, respectively.

In the example above, AquaSense would sample evenly-distributed εs, whose
range can be supplied by the user or inferred by AquaSense using heuristics. It
calls AQUA [17], the quantized inference algorithm, to run the programs with
and without noise (i.e., ε = 0). AQUA would return the approximated pos-
terior distribution density functions, p̂X∼P (ε)(x) and p̂X∼P (0)(x), for the pro-
grams with and without noise. Next, AquaSense integrates the approximated
density functions to get the approximated posterior expectation as ÊX∼P (ε)[X]
and ÊX∼P (0)[X]. Because AQUA outputs the posterior densities p̂·(·) as piece-
wise constant functions, AquaSense can get around integration with summation.
In the end, AquaSense computes the approximated ÊDX(ε). We can show that
ÊDX(ε) could converge pointwisely to the exact EDX(ε) with more quantization
splits (see Sect. 4).



292 Z. Zhou et al.

AquaSense outputs the sensitivity of the program as an interpolated function
of ε. AquaSense can also visualize the distance function by plotting distance
against the noise like the yellow markers in Fig. 1. To demonstrate AquaSense’s
accuracy, we also show the true expectation distance computed manually with
a solid blue line in Fig. 1. For this simple example, PSense fails to compute the
sensitivity of b1 (See Sect. 5).

Improving the Program Based on Sensitivity Results. As the function of
difference between posterior expectations with respect to perturbation, a steep
ED indicates the prior chosen is sensitive to perturbation. In the example above,
as the developer supplies an upper bound parameter (1) to the uniform distri-
bution, the probability will be truncated to zero when b1 is larger than 1. If the
incoming data exhibit a probability distribution that is “substantial” on [1, ∞],
e.g., the part [1, ∞] has more likelihood than the prior support [-1,1], then the
computed posterior will “miss” this part of the likelihood due to the prior. In
Fig. 1, AquaSense helps detect that the ED is 0.01 when ε is 0.2. This means if
the developer has chosen a different prior b1 ~ uniform(-1, 1.2), the result
expectation of b1 would change by 0.01, which is negligible for uniform(-1,
1). This result indicates the chosen prior parameter is relatively insensitive to
perturbation. In contrast, suppose the sensitivity at ε = 0.2 is high, e.g. ED = 1,
which means changing the prior from b1 ~ uniform(-1, 1) to uniform(-1,
1.2) would increase the expectation of the posterior of b1 by 1, so the developer
is advised to modify the prior to b1 ~ uniform(-1, 1.2) in order to capture
the “missing” posterior density of b1 on [1, 1.2]. Sensitivity analysis and prior
updates can be applied iteratively this way until sensitivity is deemed suitable.

In conclusion, sensitivity analysis can help a) expose such misses of density
outside of the prior support and, b) quantitatively measure its severity. Anal-
ogously, sensitivity analysis can also be used to identify other types of poorly-
chosen prior parameters, e.g., mean, standard deviation, and degrees of freedom.

3 Background: Automated Inference Algorithms

The goal of probabilistic programming is to compute the joint probability den-
sity f . To this end, probabilistic programming languages (e.g., AQUA [17], PSI
[15], Stan [6]) are coupled with automated inference algorithms that compute
the density f either exactly or approximately. For example, PSI implements
exact inference using computer algebra, computes the posterior symbolically via
p(b0, b1, sigma) = f(b0,b1,sigma)∫

f(b0,b1,sigma)db0,b1,sigma , which requires integration that is
often intractable. The prior work PSense uses PSI to compute posterior distri-
butions of probabilistic programs, and thus also suffers from intractable integrals.

AquaSense implements sensitivity analysis on top of AQUA’s quan-
tized inference. AQUA approximates the symbolic joint probability density
f(b0, b1, sigma) with quantized samples, by storing the quantization of f ’s
domain and co-domain in multidimensional arrays. In the example above, AQUA
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quantizes b0, b1, sigma into evenly spaced values, e.g., [−1,−0.8, ..., 0.8, 1], when
using 10 splits. Then AQUA computes f(b0, b1, sigma) at all combinations of
the variable values, to obtain a three-dimensional array, called Density Cube.
Figure 2 shows a visualization of the Density Cube, with each dimension repre-
senting a random variable. Among the 103 mini-cubes, a warmer color means
higher probability. In AQUA, normalization is reduced to summation over the
Density Cube. AQUA outputs the approximated joint posterior density function,
denoted p̂(b0, b1, sigma).

Alternatives to AQUA include computer-algebra-based exact inference like
PSI and sampling-based inference like Stan. Intractability severely limits exact
inference to simple models with few continuous distributions (see Sect. 5).
Sampling-based inference are not accurate enough for sensitivity analysis, as
studies have shown [19] [17]. For the particular task of sensitivity analysis, quan-
tized inference is an ideal candidate as it can get around the intractability prob-
lem while being more accurate than sampling-based inference.

4 AquaSense Workflow

Fig. 3. AquaSense Workflow

Input: A Probabilistic Program. AquaSense takes a probabilistic program
in any probabilistic programming language (PPL) supported by StormIR [13]
(which is an intermediate probabilistic programming language), including Stan
[16], PSI [15], Pyro [26], or StormIR itself. See Fig. 4 for its syntax.

Noise Instrumentation. Given a program P , AquaSense applies a pre-analysis
to find the random variables and their prior parameters. The bound of noise of
each parameter is user-supplied or computed using a heuristic. For each prior
parameter, it generates a new program, as P (ε), by injecting a symbolic noise
variable ε at the parameter. AquaSense evenly samples a set of values of ε from
its bounds as B.
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Fig. 4. Syntax of StormIR

AQUA Inference. AquaSense employs AQUA [17], the quantized inference
engine, to solve a probabilistic program. AQUA takes a probabilistic program P
and outputs the approximated posterior of a random variable x as a piece-wise
constant function, denoted as p̂X∼P (x).

Fig. 5. AQUA Inference
Example

Figure 5 illustrates an example of AQUA analy-
sis results. The red line represents the true density
that PSI would calculate, and the gray bars represent
AQUA’s approximation. With AquaSense noise instru-
mentation, AquaSense runs AQUA on the program
P (ε) with quantized values of ε, to simulate the pro-
gram results due to different ε, as {p̂X∼P (εi)(x)|εi ∈ B}.

Metrics Calculator. Next, AquaSense computes the sensitivity metrics based
on inference results, e.g., the Expectation Distance (ED) [19], Kolmogorov-
Smirnov statistic [24], Total Variation Distance (TVD) or other user-provided
metrics. For simplicity, we use ED throughout this work. For each εi ∈ B,
AquaSense first computes ÊX∼P (0) =

∫
x

x · p̂X∼P (0)(x)dx and ÊX∼P (εi) =
∫

x
x · p̂X∼P (εi)(x)dx, and then computes ÊDX(εi) = |ÊX∼P (0) − ÊX∼P (εi)|.

Output: Program Sensitivity. Finally, AquaSense interpolates sensitivity as
a function of ε. Using ED, it outputs EDX(ε) by interpolating {ÊDX(εi)|εi ∈ B}.
AquaSense allows users to specify the number of ε samples and the number of
quantization splits used in AQUA to control the analysis’ time-accuracy trade-
off. This design allows AquaSense to produce accurate sensitivity estimates on
a much wider range of probabilistic programs than existing tools.

Formal Guarantee of AquaSense Accuracy. For continuous PPs with
bounded support, we formally state the convergence of AquaSense’s quantized
sensitivity at any concrete ε ∈ B. For discrete PPs, we show in Sect. 5 with empir-
ical experiments that AquaSense is exact up to machine imprecision. Without
loss of generality, we assume AquaSense uses the ED metric; and one can show
the convergence for other metrics (e.g. KS and TVD) analogously.

Theorem 1. Given any ε ∈ B, denote AquaSense output as ÊD
N,C

X (ε), where
N is number of quantization splits of each random variable and C is the bounded
domain of all the random variables required by AQUA. Let EDX(ε) be the exact
sensitivity at ε. If the support of all the random variables is a subset of C, then

lim
N→∞

ÊD
N,C

X (ε) = EDX(ε).

We can prove the theorem using the following lemma from [17].
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Lemma 1. Let the posterior density function of the program P computed by
AQUA be p̂N,C

X∼P (x) , which defines the cumulative density function (CDF),
F̂N,C

X∼P (x) =
∫

p̂N,C
X∼P (x)dx. Let the exact CDF of the program be FX∼P (x). Then

by Theorem 1 of AQUA algorithm [17], one can guarantee the convergence in
distribution:

lim
N→∞

F̂N,C
X∼P (x) = FX∼P (x).

Corollary 1. Given that C is a bounded domain containing all the support of
random variables in the program, we can apply the Portmanteau lemma [20] to
get the convergence of approximated expectation to the exact one:

lim
N→∞

Ê
N,C
X∼P [X] = EX∼P [X].

Here, ÊN,C
X∼P [X] =

∫
x∈CX

x · p̂N,C
X∼P (x)dx will be computed by AquaSense without

additional approximation; p̂N,C
X∼P (x) is a piecewise constant function (output of

AQUA), and AquaSense can evaluate the integral with summation. The corollary
also holds for Ê

N,C
X∼P (ε)[X] when we inject a constant value ε in the program.

Proof of Theorem 1. AquaSense employs AQUA to compute the posteriors and it
sets a hyper-parameter N to be the quantization splits for each random variable.
Given that the support of all the random variables is a subset of C, by Corollary 1
and the definition of limits (i.e. the subtraction and absolute rules of limits),

lim
N→∞

|ÊN,C
X∼P (0)[X] − Ê

N,C
X∼P (ε)[X]| = |EX∼P (0)[X] − EX∼P (ε)[X]|.

By definition of ED, we prove Theorem 1.

5 Evaluation

Benchmarks. We evaluate AquaSense on a benchmark suite consisted of 12
probabilistic programs: 7 from PSense [19] benchmarks, 3 from AQUA [17], and
2 new programs; they have a total of 11 discrete and 34 continuous parameters.
We performed the experiments on AMD Ryzen 7 5800X 8-Core CPU @ 3.00GHz
with 32 GM RAM and one Nvidia Geforce RTX 3090 with 24 GB memory
(running Ubuntu 20.04). AquaSense’s tensor computation is performed on the
GPU.

Accuracy Metrics. For each parameter, we evaluated two metrics: the aver-
age absolute error |Err| = 1

|B|
∑

ε∈B |EDX(ε) − EDtruth(ε)|, and average relative

error Err% =
∑

ε∈B
|EDX(ε)−EDtruth(ε)|

|B|EDtruth(ε)
, i.e., the average distance (and its ratio)

between AquaSense interpolated ED and true ED. We consider B to be a valid
set of noises with moderate sensitivity to evaluate both tools. The ground truth
of sensitivity EDtruth is computed using two methods: a) PSense, b) manually
computed with the assistance of Mathematica when PSense fails. Computing
the true sensitivity may take hours or days, which adds to the necessity of an
automated tool like AquaSense. We discard the sensitivity below the threshold
1e-6 when computing the errors to tolerate machine imprecision.
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5.1 Performance and Accuracy of AquaSense

Table 1 presents AquaSense’s accuracy and performance compared to PSense.
Each row represents a parameter of which AquaSense evaluates the sensitivity.
The first three columns shows the Parameter Properties: “Prog.” shows the
name of the program; “Dist.” shows the distributions in the program, where
prior distributions are underlined; “D/C” shows whether the program is discrete
(D) or continuous (C); “Param” shows the parameter to analyze. For example,
the program “expl_away” contains four discrete, Uniform Integer distributions
(UI), where two of them are priors (UI). Each Discrete Uniform Integer distribu-
tion has two parameters, i.e. the lower and upper bound (lb, ub), so AquaSense
analyzed four parameters for this program.

We run AquaSense doubling #splits from 100 until Err% is below 5% or |Err|
is below 1e-6 (colored in green ), or AquaSense runs out of memory (in red ).
“#spl” (Column 5) shows the largest #splits that produces the corresponding
Err% (Column 7) and |Err| (Column 8). On discrete programs with finite sup-
port, AquaSense uses the cardinality of the distribution support as #spl, denoted
by Sup. The column “Acc.” shows if AquaSense is accurate enough (Err% is below
5% or |Err| is below 1e-6). Column “PSense Time(s)” shows PSense execution
time in seconds. We report a timeout (T.O.) if it exceeds 10min, and an error
(Err.) if the result finished but not solved to closed form. Column “AquaSense
Time(s)” shows the total time, minus the time to initialize the GPU. Total time
include the noise instrumentation time (“NI(s)”) and sensitivity evaluation time
(“SE(s)”). “Speedup” is AquaSense’s speedup over PSense.

Capability. Our results show that AquaSense successfully computes the sensi-
tivity of all parameters. In comparison, PSense is only able to solve the sensitivity
of 8 out of 11 discrete parameters and 3 out of 34 continuous parameters. We
observe that for most continuous program, PSense failed to solve integrals to
the closed form, which is the fundamental problem of exact inference, meaning
PSense’s capability cannot be improved much by simply allocating more time.

Execution Time and Accuracy. Compared to PSense, AquaSense is on aver-
age faster by 18.10× on continuous models, and for discrete models has simi-
lar execution time (slower by 11%). The maximum speedup is 35.16× (for the
“gamma” model). For all the discrete models, AquaSense results are exact (with
error smaller than machine imprecision). For 31/34 (91%) continuous parame-
ters, AquaSense has an average relative error less than 5% or an average abso-
lute error less than 1e-6. Two parameters in “tug” show higher relative error
as the sensitivities are close to zero (<1e–4), but the absolute error is already
at around 1e−3. One parameter in “sgl_reg” has higher (6%) relative error for
the same reason. Overall, AquaSense works on many real-world models out of
reach of PSense, and offers orders-of-magnitude speedup at a reasonable cost of
accuracy.
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Table 1. Performance of AquaSense vs. PSense
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Fig. 6. Time-Err% Trade-off Fig. 7. Examples of AquaSense results

5.2 Trade-Off Between Accuracy and Performance

The number of quantization splits (#splits) controls the trade-off between per-
formance and accuracy of AquaSense. Figure 6 shows AquaSense’s relative error
and execution time w.r.t. #splits. Error and time are averaged over all 34 con-
tinuous benchmarks. Execution time fluctuates when #splits is less than 12800
due to overhead, but grows exponentially afterward as expected. Relative error
decreases exponentially as #splits increase. Our key observation: on average, the
relative error is already small when execution time starts growing exponentially.

To illustrate the trade-off, we pick the two parameters that used the most
#splits in Table 1, i.e. on which AquaSense performed the worst. We plot their
True ED against AquaSense’s interpolations with different #splits. In Fig. 7, the
x-axis shows the values of ε and the y-axis shows ED. The True ED is shown in a
blue line, and AquaSense results are shown in markers of different styles/colors.
These plots demonstrate that AquaSense converges as #splits increases.

6 Related Work

Existing sensitivity analysis techniques suffer from scalability and/or precision
problems. PSense [19] is the state-of-the-art sensitivity analysis tool for prob-
abilistic programs. PSense symbolically evaluates integrals that represent the
program’s posterior distribution. This approach works only for small programs,
and becomes intractable when the program has multiple continuous distributions
(See Table 1). Sound logic frameworks for bounding the sensitivity of probabilis-
tic programs [1–3,30] often yield a coarse over-approximation of sensitivity for
soundness. Also, they are not fully automated and require developers’ effort to
implement the proof for general probabilistic programs. Chan and Darwiche [7]
implemented the tool SamIam to compute the sensitivity of belief networks.
However, it only supports discrete distributions.

Sensitivity analysis, as illustrated in our example (Sect. 2), can help devel-
opers debug anomalies in the model through an iterative process. The previ-
ous methods for debugging probabilistic programs targeted different challenges:
[23] focuses on debugging probabilistic assertion failures, while [8] concentrates
on addressing convergence issues of MCMC. Other approaches [9–12] focus
on debugging the implementation of the probabilistic programming systems
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or machine learning applications. Furthermore, through the lens of statistical
modeling, researchers in statistics have proposed various strategies [5,29,31] to
improve the model robustness. According to a recent study [18] that systemati-
cally evaluated these strategies, sensitivity analysis can aid developers select the
most appropriate among these strategies.

7 Conclusion

We propose a new system, AquaSense, for sensitivity analysis on real-world
probabilistic programs. AquaSense leverages quantized inference to interpolate
parameter sensitivity. Our evaluation on 12 programs with 45 parameters shows
that AquaSense achieved better efficiency and scalability than the baseline.
AquaSense empowers software engineers and data scientists with the ability to
understand and improve the reliability of their probabilistic programs.
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Abstract. Runtime assurance (RTA) addresses the problem of keeping
an autonomous system safe while using an untrusted (or experimental)
controller. This can be done via logic that explicitly switches between the
untrusted controller and a safety controller, or logic that filters the input
provided by the untrusted controller. While several tools implement spe-
cific instances of RTAs, there is currently no framework for evaluating
different approaches. Given the importance of the RTA problem in build-
ing safe autonomous systems, an evalutation tool is needed. In this paper,
we present the RTAEval framework as a low code framework that can be
used to quickly evaluate different RTA logics for different types of agents
in a variety of scenarios. RTAEval is designed to quickly create scenarios,
run different RTA logics, and collect data that can be used to evaluate
and visualize performance. In this paper, we describe different compo-
nents of RTAEval and show how it can be used to create and evaluate
scenarios involving multiple aircraft models.

Keywords: Runtime assurance · Autonomous systems

1 Introduction

Safe operation of autonomous systems is critical as their real world deployment
becomes more common place in domains such as aerospace, manufacturing and
transportation. However, the need for safety is often at odds with the need to
experiment with, and therefore deploy, new untrusted technologies in the pub-
lic sphere. For example, experimental controllers created using reinforcement
learning can provide better performance in simulations and controlled environ-
ments, but assuring safety in real world circumstances is currently beyond our
capabilities for such controllers. Runtime assurance (RTA) [3,15–17] addresses
this tension. The idea is to introduce a decision module that somehow chooses
between a well-tested Safety controller and the experimental, Untrusted con-
troller , assuring safety of the overall system while also allowing experimentation
with the new untrusted technology where and when possible. Specific RTA tech-
nologies are being researched and tested for aircraft engine control [1], air-traffic
management [4], and satellite rendezvous and proximity operations [9].
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The Simplex architecture [16,17] first proposed this idea in a form that is rec-
ognizable as RTA. Since then, the central problem of designing a decision module
that chooses between the different controllers has been addressed in a number of
works such as SimplexGen [3], Black-Box Simplex [13], and SOTER [5]. The two
main approaches for building the decision module are based on (a) an RTASwitch
which chooses one of the controllers using the current state or (b) an RTAFilter
which blends the outputs from the two controllers to create the final output. In cre-
ating an RTASwitch, the decision can be based on forward-simulation of the cur-
rent state [19], model-based [3] and model-free forward reachability [13], or model-
based backward reachability [3]. The most common filtering method is Active Set
Invariance Filtering (ASIF) [2], wherein a control barrier function is used to blend
the control inputs from the safety and untrusted controllers such that the system
remains safe with respect to the control barrier functions [7,12,14].

While these design methods for the decision module have evolved quickly,
a software framework for evaluating the different techniques has been missing.
In this paper, we propose such a flexible, low-code framework called RTAEval
(Fig. 1). A low-code framework is one which simplifies the development of appli-
cations by providing a library of tools which reduces the amount of code required
to be written by the user. Low-code frameworks are becoming more commonplace
as the need to quickly experiment, deploy, and test new technologies becomes
more urgent. One example of a low-code framework is the Scenic Library [11]
which can be used to quickly and easily spin up new test environments for testing
perception and control algorithms. In this work, we introduce a framework in a
similar vein which can be used to test new runtime assurance technologies. This
framework consists of a module for defining scenarios, possibly involving multiple
agents; a module for executing the defined scenario with suitable RTASwitches
and RTAFilters; and a module for collecting and visualizing execution data.
RTAEval allows different agent dynamics, decision modules, and metrics to be
plugged-in with a few lines of code. In creating RTAEval, we have defined stan-
dardized interfaces between the agent simulator, the decision module (RTA),
and data collection.

In Sect. 2, we give an overview of RTAEval. In Sect. 2.1, we discuss how sce-
narios are defined, and, in Sect. 2.2, we discuss how the user should provide
decision modules (also called the RTALogic). In Sect. 2.3, we discuss data col-
lection, evaluation, and visualization. Finally, in Sect. 3, we show a variety of
examples implemented in RTAEval. A tool suite for this framework can be found
at https://github.com/RationalCyPhy/RTAEval.

2 Overview of the RTAEval Framework

The three main components of RTAEval are (a) the scenario definition, (b) the
scenario execution, and (c) the data collection, evaluation, and visualization
module (See Fig. 1). A scenario is defined by the agent and its low-level con-
troller, the unsafe sets, the untrusted and safety controllers, the time horizon for
analysis, and the initial conditions. Given this scenario definition, the scenario
is executed iteratively over the specified time horizon.

https://github.com/RationalCyPhy/RTAEval
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During each iteration of the closed-loop execution of the RTA-enabled
autonomous system, the current state of the agent and the sets of unsafe states
are collected. This observed state information is given to both the untrusted
and safety controller, which each compute control commands. Both of these
commands are evaluated by the user-provided decision module (i.e., RTA logic),
which computes and returns the actual command to be used by the agent. The
agent then updates its state, and the computation moves to the next iteration.
While the execution proceeds, data – such as the RTA computational perfor-
mance, controller commands, agent states, and observed state information of
the unsafe sets – is collected via the data collection module. At the end of an
execution, this data is evaluated to summarize the overall performance of the
RTA. This summary includes computation time of the RTA logic, untrusted ver-
sus safety controller usage, and the agent’s distance from the unsafe set. We also
provide a visualization of this data.

A low-code tool suite of the RTAEval framework is written in Python, which
was chosen for its ease of implementation and interpretibility. The tool is flexible
in that it allows for a wide variety of simulators and coding languages and
can be generalized to scenarios where multiple agents are running a variety of
different RTA modules. Simple Python implementations of vehicle models (some
of which we provide in simpleSim) can be incorporated directly. However, users
can incorporate new agent models within simpleSim as long as the agent has a
function step that defines the dynamics and low-level controller of the agent
and returns the state of the agent at the next time step. An example of this is
provided in Example 1 and Fig. 4. The safety and untrusted controllers should
also be encoded in step, which simply takes in the command (or mode) to be
used over the next time step. Higher fidelity simulators such as CARLA [6] and
AirSim [18] can also be used in place of simpleSim for the execution block. The
observed state information would need to be provided to our data collection,
evaluation, and visualization tool in the format seen in Fig. 2.

Fig. 1. RTAEval framework. (Scenario Definition and Execution) Some user-defined sce-
nario is executed. The scenario is defined by the safety controller, untrusted controller,
plant and low level controllers, unsafe sets, and sensor. (Data collection, evaluation,
and visualization) The execution data is collected, evaluated, and visualized using our
provided suite of tools.
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2.1 Scenario Definition and Execution

A scenario is defined by the agent, unsafe sets, safety and untrusted controllers,
initial conditions, and time horizon T > 0. The simulation state at time t ∈ [0, T ]
consists of the agent state, the unsafe set definition, and the control command
at time t. The agent has an identifier, a state, and some function step that
takes in some control command at time t and outputs the system state at time
t + 1. The unsafe sets are the set of states that the system must avoid over
the execution of the scenario. We say that the agent is safe if it is outside the
unsafe set. The safety and untrusted controllers compute control commands for
the system, which are then filtered through the RTA logic, as discussed further
in Sect. 2.2. The initial conditions define the simulation state at time 0. Then,
given a scenario with some time horizon T and an RTA logic, an execution of the
scenario is a sequence of time-stamped simulation states over [0, T ]. Note that,
while we define an execution as a discrete time sequence of simulation states, the
actual or real-world execution of the scenario may be in continuous time; thus,
we simply sample the simulation states at a predefined interval. We call the part
of the execution that contains only the sequence of agent states the agent state
trace. Similarly, we call the part of the execution that only contains the sequence
control commands the mode trace and the part that only contains the sequence
of unsafe set states the unsafe set state trace.

Fig. 2. Execution structure required by the
RTAEval evaluation and visualization

In order for our evaluation and
visualization to work, the execu-
tion must be given to the data col-
lection as a dictionary, the struc-
ture of which is shown in Fig. 2.
Here, there are three levels of dic-
tionaries. The highest level dictio-
nary has the keys ‘agents’ and
‘unsafe’, which point to dictio-
naries containing the state and
mode traces of the agents and
state traces of the unsafe sets
respectively. The second level of
dictionaries has keys that cor-
respond to different agents and
unsafe sets. We call these keys the agent and unsafe set IDs. Each agent ID points
to a dictionary containing the state and mode traces of that agent. The state
trace is a list of time-stamped agent states, and the mode trace is a sequential
list of control commands. Each unsafe set ID points to a dictionary containing
the set type and state trace of that unsafe set. The set type is a string that tells
RTAEval what type of set that particular unsafe set is. Currently, RTAEval sup-
ports the following set types: point, ball, hyperrectangle, and polytope. Each set
has a definition that, together with the type, defines the set of states contained
within the unsafe set. Then, the state trace for an unsafe set is a sequence of
time stamped definitions of the set.
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Example 1. Consider the following adaptive cruise control (ACC) scenario shown
in Fig. 3 as a running example. An agent with state x = [p, v]� has dynamics
given by

f(x,m) =
[
0 1
0 0

]
x +

[
0
1

]
a(x,m),

where a(x,m) = gS(x) if m = S and a(x,m) = gU(x) if m = U. The agent tries
to follow at distance d > 0 behind a leader moving at constant speed v̄. The
position of the leader at time t is given by pL(t). Then, the untrusted controller
gU and safety controller gS are given by

gS(x) = k1((pL(t) − d) − p) + k2(v̄ − v) and gU(x) =

{
amax (pL(t) − p) > d

−amax else
,

where k1 > 0 and k2 > 0. The function step is a composition of the untrusted
controller, the safety controller, and the dynamics function of the system.

A collision between the agent and leader occurs if ‖pL(t) − p(t)‖ ≤ c, c < d.
There is then an unsafe set centered on the leader agent, and it is defined by
O = {[p, v, t]� ∈ X ×R≥0 | ‖pL(t)−p‖ ≤ c}. The function updateDef then takes
in the current state of the simulator and creates the unsafe set centered on the
leader. The initial conditions for this scenario are then the initial agent state x0,
the initial leader state xL0, and the time horizon T > 0.

Fig. 3. Example visualization of the scenario
defined in Example 1. The leader is shown in
black, the follower is shown in orange, and
the unsafe region is shown in red.

This scenario is shown in our
low code framework in Figs. 4 and 5.
The dynamics of the agent are
defined in step in lines 11–26 of
Fig. 4. The proportional controller is
defined in lines 1–4 and the bang-
bang controller is defined in lines 6–
9. This is all contained within a class
AccAgent. In Fig. 5, we set up the
scenario. In lines 2–5, we define the
goal point for the agent. In lines 7–

15, we create the agent, the leader, and the unsafe set. Finally, in line 18, we
initialize the scenario to be executed; in lines 21–26, we add the agents and unsafe
sets to the scenario; and in lines 29–30, we set up the scenario parameters.

2.2 RTA Logics

We provide an RTA base class that can be used in RTAEval. The user must
provide the RTA logic to be evaluated. This logic takes in an observed state
and outputs the control command to be used by the plant. This observed state
information has to be provided in the format shown in Fig. 2 for data collection,
evaluation, and visualization to work. The RTA base class is shown in Fig. 6.
We provide the functions RTASwitch and setupEval. Users must provide the
switching logic as RTALogic. When creating RTA, the user can decide to use
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1 def P(self , time_step): #Proportional controller
2 xrel = self.goal_state [0] - self.state_hist [ -1][0]
3 vrel = self.goal_state [1] - self.state_hist [ -1][1]
4 return self.Kp[0]* xrel + self.Kp[1]* vrel
5

6 def BangBang1D(self , time_step): # Bang -bang controller
7 x_err_curr = self.goal_state [0] - self.state_hist [ -1][0]
8 v_err_curr = self.goal_state [1] - self.state_hist [ -1][1]
9 return np.sign(x_err_curr)*self.a_max

10

11 def step(self , mode , initialCondition , time_step , simulatorState):
12 self.goal_state = self.desired_traj(simulatorState)
13 if mode == ’SAFETY ’:
14 self.control = self.P
15 elif mode == ’UNTRUSTED ’:
16 self.control = self.BangBang1D
17 else:
18 self.control = self.no_control ()
19 a_curr = self.control(time_step)
20 if abs(a_curr) > self.a_max:
21 a_curr = np.sign(a_curr)*self.a_max
22 x_next = initialCondition [0] + initialCondition [1]* time_step
23 v_next = initialCondition [1] + a_curr*time_step
24 if abs(v_next) >= self.v_max:
25 v_next = np.sign(v_next)*self.v_max
26 return [x_next , v_next]

Fig. 4. Controller and step functions for the agent in Example 1. The first function
defined is the proportional controller (Safety) and the second function is the Bang-bang
controller (Untrusted). The step function (lines 11–26) takes in the current mode and
state of the agent, as well as the time stpe and current suimulator state. In lines 13–18
it decides which controller to use, and in lines 19–26, it updates the staet of the agent.

our data collection by running setupEval in init . This will create a data
collection object called eval, which saves the data used for our evaluation (see
Sect. 2.3). The switch is performed in RTASwitch, which also stores the current
perceived state of the simulator from the point of view of the agent, as well as
the time to compute the switch. The user provided switching logic RTALogic
takes in the current state of the simulator and returns the mode that the agent
should operate in. To create different logics, the user must create an RTA class
derived from the RTA base class, which implements the function RTALogic. An
example of this is given in Example 2.

Example 2. An example of a simple RTA switching logic can be seen in Fig. 7.
This is a simulation-based switching logic that was designed for the adaptive
cruise control introduced in Example 1. Here, the future states of the simulator
are predicted over some time horizon T and saved as predictedTraj in line 2. We
then check over this predicted trajectory to see if the agent ever enters the unsafe
set in lines 3–11. If it does, then the safety controller is used, and if it does not,
then the untrusted controller is used. Once RTALogic is created, we add it to a
new class called accSimRTA and use it to create an RTA object called egoRTA for
egoAgent1. We can then change line 22 in Fig. 5 to RTAs = [egoRTA, None].
This will associate egoRTA with egoAgent1 and run the RTA switching logic
every time the state of egoAgent1 is updated.
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1 # Define desired goal point for the follower agent (ego):
2 def agent1_desiredTraj(simulationTrace):
3 lead_state = simulationTrace[’agents ’][’leader ’][’state_trace ’][ -1][1:]
4 return [lead_state [0] - 10, lead_state [1]]
5

6 # Create the ego agent:
7 agent1 = AccAgent("follower",file_name=controllerFile)
8 agent1.follower = True
9 agent1.desired_traj = agent1_desiredTraj

10

11 # Create the leader agent:
12 leader = AccAgent("leader",file_name=controllerFile)
13

14 # Create the unsafe set centered on leader agent:
15 unsafe1 = relativeUnsafeBall("unsafe1", [5], 7, "leader")
16

17 # Initialize the ACC scenario:
18 accSim = simpleSim ()
19

20 # Initialize agents and unsafe sets in the scenario:
21 agents = [agent1 , leader]
22 RTAs = [None , None]
23 modes = [ccMode.UNTRUSTED , ccMode.NORMAL]
24 inits = [[0,1], [5 ,1]]
25 accSim.addAgents(agents=agents , modes=modes , RTAs=RTAs , initStates=inits)
26 accSim.addUnsafeSets(unsafe_sets = [unsafe1 ])
27

28 # Set simulation parameters
29 accSim.setSimType(vis=False , plotType="2D", simType="1D")
30 accSim.setTimeParams(dt=0.1, T=5)

Fig. 5. Python code snippet defining the scenario in our low-code RTAEval frame-
work. The untrusted and safety controllers are contained within the dynamics of the
AccAgent, which is defined in a separate file. The scenario is executed in a simply
python simulator, which is initiated on line 18. Initially, the agents are not assigned
RTAs, but this will be done in Sect. 2.2. The agents and unsafe sets are added to the
scenario, and the simulation parameter are set in lines 29 and 30.

2.3 Data Collection, Evaluation, and Visualization

We now discuss the data collection, evaluation, and visualization tool which is
provided as a part of RTAEval. This tool is a class that has some collection func-
tions and post-processing functions. To use the data collection and evaluation
functionalities provided, the user must add the line self.setupEval() when cre-
ating the RTA object. Data collection occurs via the functions collect trace
and collect computation times. Here, collect trace collects the simulation
traces, and collect computation times collects the time it takes for the RTA
module to compute a switch. An example of how the data collection can be
incorporated in the RTA module is shown in Fig. 7. The traces are collected and
stored as a dictionary of the form shown in Fig. 2. Once the data has been col-
lected over a scenario, we can use them to evaluate the performance of the RTA
over a scenario. Examples of the data evaluation, as well as screenshots from
our simulator are shown in Sect. 3. A summary of the RTA’s performance in the
scenario can be quickly given by running eval.summary(). The main metrics
that we study are the following: Computation time gives the running time of
RTASwitch each time it is invoked. We provide the average, minimum, and max-
imum times to compute the switch. Distance from unsafe set is the distance
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1 class baseRTA(abc.ABC):
2 def __init__(self):
3 self.do_eval = False # Don’t automatically set up RTAEval
4 pass
5

6 @abc.abstractmethod
7 def RTALogic(self , simulationTrace: dict) -> Enum:
8 # User provided logic for switching RTA
9 pass

10

11 def RTASwitch(self , simulationTrace: dict) -> Enum:
12 start_time = time.time()
13 rtaMode = self.RTALogic(simulationTrace)
14 running_time = time.time() - start_time
15

16 if self.do_eval:
17 self.eval.collect_computation_time (running_time)
18 self.eval.collect_trace(simulationTrace)
19 return rtaMode
20

21 def setupEval(self):
22 # Add this to init when inheriting baseRTA to inclde evaluation
23 self.do_eval = True
24 self.eval = RTAEval ()

Fig. 6. Base RTA class used in the low-code RTAEval framework. Users need only
provide the decision logic, which we call RTALogic.

1 def RTALogic(simulationTrace):
2 predictedTraj = simulate_forward(simulationTrace)
3 egoTrace = predictedTraj[’agents ’][ egoAgent.id][’state_trace ’]
4 for unsafeSet in self.unsafeSets:
5 unsafeSetTrace = predictedTraj[’unsafe ’][ unsafeSet.id][’state_trace ’]
6 for i in range(len(unsafeSetTrace)):
7 egoPos = egoTrace[i][1]
8 unsafeSetDef = unsafeSetTrace[i][1]
9 pos_max = unsafeSetDef [0][0] - unsafeSetDef [1]

10 if egoPos > pos_max:
11 return egoModes.SAFETY
12 return egoModes.UNTRUSTED

Fig. 7. Example RTA switching logic for Example 2. Here, the trajectory of the follower
agent is simulated forward, and if it ever comes within collision distance of the leader,
then the safety controller is used.

between the ego agent and the unsafe sets. We also allow the user to find the
distance from other agents in the scenario. Time to collision (TTC) is the
time until collision between the ego agent and the other agents if none of them
change their current trajectories. Finally, we also provide information on the
percent controller usage, which is the proportion of time each controller is
used over the course of the scenario. We also provide information on the number
of times a switch occurs in a scenario. Example results are shown in Sect. 3.

3 RTAEval Examples

In this section, we present some examples using our provided suite of tools
for RTAEval. We evaluate two different decision module logics: SimRTA and
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ReachRTA. SimRTA is the simulation based switching logic introduced in Exam-
ple 2. ReachRTA is similar to SimRTA but uses reachable sets that contain all
possible trajectories of the agent as the basis of the switching logic. We eval-
uate these RTAs in 1-, 2-, and 3-dimensional scenarios with varying numbers
of agents. These scenarios are described in more detail in Table 1. Here, the
workspace denotes the dimensions of the physical space that the systems live in.
Note that, while all the examples presented have some physical representation,
this is not a necessary requirement of the tool. We also provide pointers to where
the dynamics of the agents can be found, as well as the untrusted and safety
controllers used. Visualizations of the scenarios can be seen in Figs. 3 and 8.

Table 1. Brief description of evaluated scenarios.

ACC Dubins GCAS

Workspace 1 2 3

Dynamics
Untrusted

Example 1
Bang-bang controller
(Example 1)

Dubin’s car [8]
PID with
accleration [10]

Dubin’s plane [8]
PID with
acceleration [10]

Safety PID (Example 1) PID with
deceleration [10]

PID with deceleration
and pitching up [10]

Unsafe Leader (ball) Leader (ball) and
building (rectangle)

Leader (ball) and
ground (polytope)

Visualization Fig. 3 Fig. 8 Fig. 8

Scenario length 10 s 20 s 40 s

Fig. 8. Example scenarios in Table 1. Left: 2-dimensional dubins aircraft with building
collision avoidance. The leader is shown in black, and the followers are shown in orange
and blue. The desired trajectories are shown in gray. Right: Ground collision avoidance.
The leader is shown in black and the follower is shown in orange. The desired trajectory
is shown in white.

Each of these scenarios is executed using simpleSim, and the two RTA logics
are created for them. Data is collected over the scenario lengths in Table 1.
Note that the scenario length is the simulation time for the scenario and not
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the real time needed to run the scenario. We run these scenarios with varying
numbers of agents and present the running time of the scenario execution and
evaluations in Table 2. The simulation time step is set to 0.05 for all scenarios.
Here, exec time is the time it takes to run the scenario, RTA comp time is the
average time it takes to run the user-provided RTA logic per iteration, and %
RTA comp is the percentage of the exec time that is taken by the RTA decision
module. That is, % RTA computation is roughly the number of time steps in
a scenario multiplied by the the average RTA comp time and divided by the
execution time. Finally, eval time is the time it takes to get a full summary of
how the RTA performs for each agent. The evaluation summary includes the
average decision module computation time, controller usage, distance from the
unsafe sets and other agents, and time to collision with the unsafe sets and other
agents. We note that a majority of the run time for the scenario execution is
due to the RTA logic computation time and not our tool. Additionally, while the
run time of the evaluation is affected by the number of agents in the scenario,
it is mostly affected by the set type of the unsafe set, where the polytope in the
GCAS scenario causes the biggest slow down in evaluation time.

Table 2. Running time for execution and evaluation of RTAs with the tool suite
provided for RTAEval.

SimRTA ReachRTA

Scenario Num
agents

Exec
time
(s)

RTA
comp
time
(ms)

% RTA
Comp

Eval
time
(s)

Exec
time
(s)

RTA
comp
time
(ms)

% RTA
Comp

Eval
time
(s)

ACC 1 18.49e-3 0.07 76.63 7.27e-3 0.35 1.71 97.89 8.22e-3

2 50.08e-3 0.10 84.12 18.16e-3 1.12 2.76 98.66 17.96e-3

5 0.18 0.16 90.47 87.96e-3 6.01 5.96 99.10 0.10

Dubins 1 2.32 4.99 86.06 32.88e-3 15.18 37.10 97.76 34.15e-3

3 15.30 11.84 92.89 0.18 71.60 58.83 98.60 0.11

10 203.87 49.77 97.65 0.70 461.71 114.08 98.83 0.76

GCAS 1 5.85 6.08 83.12 30.62 39.28 47.65 97.02 31.423

1 45.27 17.84 94.60 83.61 174.00 71.11 98.07 98.10

The summary of an RTA performance is given out in a text file from which
visualizations like the one in Fig. 9 can be easily created. In addition to the
computation time, distance from the unsafe sets, distance from the other agents,
and controller usage, the minimum times to collision (TTC) for the unsafe sets
and other agents are also reported. The summary information is saved in such
a way that users can pull up snapshots of the scenario at any point in time.
This means that the user can examine the state of the scenario that caused
an unwanted result. Such functionality aids in the rapid prototyping of RTA
technologies and logics.
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Fig. 9. Example visualization from three agent dubins scenario. From left to right:
Controller usage plot, distance from other agents, and distance from unsafe sets. ego2
and ego3 denote the other aircraft.

4 Conclusion

We presented the RTAEval suite of Python-based tools for evaluating different
runtime assurance (RTA) logics. Different RTA switching logics can be quickly
coded in RTAEval, and we demonstrate its functionality in rapid prototyping
of RTA logics on a variety of examples. RTAEval can be used in multi-agent
scenarios and scenarios with perception models. Interesting next steps might
include extending the functionality of RTAEval to filtering methods such as ASIF
and scenarios that involve effects of proximity-based communication.
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Abstract. Temporal causality describes what concrete input behavior
is responsible for some observed output behavior on a trace of a reactive
system, and can be used to, e.g., generate explanations for counterexam-
ples uncovered by a model checker. In this paper, we present CATS, the
first tool that can automatically verify whether a given temporal prop-
erty (specified in QPTL) is a cause for some observed ω-regular effect.
In addition to checking whether a given property is a cause, CATS can
search for potential causes by exhaustively exploring a cause sketch, i.e.,
a temporal formula in which some parts are left unspecified. Our exper-
iments show that CATS can effectively check causes and search for causes
in small reactive systems.

1 Introduction

Causality analysis plays an increasingly important role in computer science and
has practical applications such as explaining the behavior of systems [3,5,15,17],
establishing accountability in multi-agent systems [19], and as a reasoning tool
for verification [35,36] and synthesis [2]. These approaches rely on the philosoph-
ical foundations of Lewis and Hume [33,39] that suggest counterfactual reasoning
as a method of establishing a causal relationship between events. Following this
reasoning, a property (or, in previous works, an event) is only a cause if, in case
the cause does not occur, the effect is absent as well. Halpern and Pearl [29,30]
formalized these notions into a rigorous system of structural equations over finite
sets of events (variables). However, when naïvely applying it to reactive sys-
tems, i.e., systems that continuously interact with their environment, Halpern
and Pearl’s original definition fails as the behavior is characterized by infinitely
many variables. Recently, Coenen et al. [18] lifted the ideas of Halpern and Pearl
to the temporal domain and presented a framework in which (symbolic) tem-
poral properties, expressed in temporal logic such as LTL or QPTL, constitute
causes and effects.

Example 1. Consider the system of Fig. 1 over inputs i1, i2 and output E, which
marks a failure. When checking whether the system satisfies ¬E, a model
checker might return π = {i1, i2}{i1, i2}{i1}({i1, E})ω as a concrete counterex-
ample. We are interested in explaining the effect ϕE = E on the given (actual)
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error trace. Using the theory presented in [18] we can formally show that
ϕC = i1 ∧

(
(¬i2)U(i1 ∧ ¬i2)

)
constitutes an actual cause for ϕE . Such a

cause provides important information for debugging: It pinpoints that, in the
first position, only i1 is relevant; it does not refer to the second position on the
trace as those inputs are irrelevant; and it precisely captures the information
that, in order to reach the error state, i1 must occur strictly before i2. �

Fig. 1. An example system. Each edge has
the form φ | o where φ is a Boolean for-
mula over the inputs and o ∈ 2{E} is a set
of outputs. We write φ instead of φ | ∅.

Coenen et al. [18] showed that
checking if an ω-regular property con-
stitutes an actual cause on a lasso-
shaped trace is decidable. However,
as their theory was not implemented,
reasoning about causal relationships
required manual computation. Given
the intricate nature of causality
(which encompasses complex features
such as contingencies and interven-
tions [18,29,30]), this manual reason-
ing is both time-consuming and error-
prone.

CATS. In this paper, we present CATS [11], short for Causal Analysis on Tem-
poral Sequences, a fully-automatic implementation of the theory of [18]. CATS
can check if a given temporal property (specified in QPTL [42]) qualifies as a
cause on an actual lasso trace. Internally, our tool relies on encoding the cause-
checking problem into the model-checking problem for hyperproperties [16,21],
i.e., properties that relate multiple traces in a system.

Our tool serves two purposes: First and foremost, CATS allows for the auto-
matic checking of symbolic causes (temporal formulas). This is a useful feature in
many settings, perhaps most prominently in counterexample debugging, where
we are interested in getting succinct yet informative summaries of what temporal
input behavior triggered the violation of a property.

Secondly, CATS serves as a playground to experiment with temporal cause
definitions. Causality definitions are inherently linked to human intuition, and
coming up with a useful one is difficult (as, e.g., witnessed by the multiple
updates of Halpern and Pearl’s definitions [28–30]). A fully-automatic tool for
cause checking allows us to experiment with more evolved causality definitions
and see (within a few seconds; and with no manual computation) how small
changes in the definition transfer to actual examples. This is particularly impor-
tant in a temporal setting, where many parameters need to be fixed (e.g., what
constitutes a “closer” trace as defined by Lewis [18,22,39]).

Cause Sketching. The main purpose of CATS is to check if a given temporal
property qualifies as a cause. However, often it is also useful to infer a cause
automatically. While general synthesis of temporal causes is not possible yet
(cause synthesis corresponds to the search for an appropriate set of traces, a

https://doi.org/10.5281/zenodo.8192053
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problem that is notoriously difficult [10]), we propose a very useful approxima-
tion in the form of cause sketching. Inspired by program sketching [43] and query
checking [12], CATS supports cause sketches – temporal properties in which some
propositional holes are left unspecified. CATS then attempts to find an appro-
priate instantiation for all holes to generate an actual cause. On the theoretical
side, we show that for time-bounded effects (i.e., properties whose satisfaction or
violation can be determined by only looking at the first n steps), any potential
cause only needs to refer to the first n steps. On the practical side, this implies
that for time-bounded effects (which naturally occur in counterexample analysis
where an error occurs after a fixed number of steps), there exists a cause sketch
that encompasses all potential causes.

Related Work. We base our causality analysis on the theoretical founda-
tions for temporal causality by Coenen et al. [18] (recapped in Sect. 3). For
a comprehensive survey on applications of causality in formal methods and for
providing explanations, see [3]. Leue et al. [13,37] propose a symbolic descrip-
tion of counterfactual causes in Event Order Logic (implemented into the tool
SpinCause [38]), which can reason about the ordering of LTL-definable events.
In particular, the logic cannot reason about the absolute timing as is, e.g., needed
to specify that the input at the second position is part of the cause (cf. Exam-
ple 1). Gössler and Métayer [23] define causality for component-based systems,
and Gössler and Stefani [24] study theoretical foundations of causality based
on counterfactual builders. Both works differ from our approach as we consider
actual causality on the property level.1

Many existing works focus on explaining finite counterexamples [4,25,26,44].
Beer et al. [5] present a tool for causal analysis of finite traces with respect to LTL
specifications by highlighting events that led to the violation. HyperVis [31] pro-
vides visualization of counterexamples for hyperproperties through highlighting.
Coenen et al. [17] infer a cause for a hyperproperty violation, defined as a finite
set of events (i.e., time points) on the trace. In contrast to all of the above, CATS
provides symbolic causes (defined in QPTL) that can refer to infinitely many
time points and – given their logical nature – are easier to understand. At the
same time, the underlying theory provides strong guarantees for time-bounded
effects as, e.g., encountered in error analysis (cf. Proposition 1).

Structure. In the next section, we provide preliminaries and recap the theory
presented in [18]. Section 4 gives an overview of CATS. In Sect. 5, we evaluate the
cause-checking ability of CATS on both hand-crafted examples and systems drawn
from the SYNTCOMP competition [34]. In Sect. 6, we study CATS’s cause-sketching
functionality.

1 The term “actual causality” was coined by Halpern and Pearl [29] and describes
causes in a concrete (actual) instance (e.g., a trace) of a system. In contrast, global
causality describes all of the system behavior that can cause an effect.
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2 Preliminaries

Systems and Traces. We model a reactive system as a finite state transition
system T over a set of atomic propositions AP = I ·∪ O , which is partitioned
into inputs I and outputs O . A system then generates a set of traces Traces(T ) ⊆
(2AP)ω. For more details, see [18, § 5.1].

QPTL and HyperQPTL. HyperQPTL [9,41] extends linear-time temporal logic
(LTL) [40] by adding quantification over atomic propositions, as well as explicit
quantification over traces in a system. Given a set of trace variables V, Hyper-
QPTL formulas are defined by the following grammar

ϕ ::= ∀π. ϕ | ∃π. ϕ | ∀q. ϕ | ∃q. ϕ | ψ

ψ ::= aπ | q | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where π ∈ V is a trace variable, a ∈ AP is an atomic proposition, and q 	∈ AP
is a fresh quantified proposition. We also consider the usual derived Boolean
constants (
,⊥), Boolean connectives (∨, →, ↔, 	↔), and temporal operators
eventually ( ψ := 
U ψ) and globally ( ψ := ¬( ¬ψ)).

In a HyperQPTL formula, atomic propositions are indexed by trace variables.
For example, ψ := (aπ ↔ bσ) states that, on the trace that is bound to trace
variable π, a holds iff b holds on the trace bound to trace variable σ. This allows
us to compare multiple traces within a temporal formula which we use, e.g.,
to define a distance metric on traces. The trace variables in the formula are
(existentially or universally) quantified at the top level. For example ∀π.∃σ. ψ
states that for every trace π in the system, there exists a trace σ such that
ψ holds on those two traces. In addition to trace quantification, HyperQPTL
features propositional quantification (as found in QPTL [42]). This allows us to
capture all ω-regular causes and effects, even those that are not LTL-definable.
For more details on HyperQPTL and the full semantics, see [9] or [41].

3 Temporal Causality

Our tool is based on the theory of temporal causality as defined by Coenen et
al. [18], extending Halpern and Pearl’s foundational definition of actual causality
to the setting of temporal causes and effects in reactive systems. In this section,
we recall the key aspects from [18].

Interventions. Interventions define the counterfactual scenarios where the cause
does not appear. Counterfactuals are the closest worlds in which the cause does
not appear [39].

Example 2. Consider, for example, the LTL property ϕ = a and the actual
trace π = {a}ω. To have a meaningful definition of counterfactuals, that is,
closest worlds in which the cause ϕ does not appear, it is not enough to negate
the formula ϕ, as this would result in a set of traces that are not necessarily
close enough to the original trace π. �
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Instead, Coenen et al. [18] adopt the idea of distance metrics known from
Lewis [39]. Given a trace π, a distance metric <π is a strict partial order such
that σ <π σ′ if trace σ is closer to π than trace σ′. The intervention set V (ϕ,<π)
then consists of the closest traces σ that do not satisfy ϕ:

V (ϕ,<π) =
{
σ ∈ Traces(T ) | σ � ¬ϕ ∧ ¬∃σ′ ∈ Traces(T ). σ′ � ¬ϕ ∧ σ′ <π σ

}
.

Distance Metrics in HyperQPTL. To handle distance metrics algorithmically,
we consider them as being defined by a HyperQPTL formula. For example

σ <min
π σ′ ⇐⇒

( ∧

i∈I

(iπ 	↔ iσ) → (iπ 	↔ iσ′)
)

∧
∨

i∈I

(iσ 	↔ iσ′) (1)

specifies that σ is closer to π than σ′ iff whenever σ and π differ on some input,
so should σ′ and π, and σ′ and σ differ at least in one position.

Example 3. In Example 2, {}({a})ω is closer (w.r.t. <min
π ) to π than {}{}({a})ω.

The intervention set V (ϕ,<min
π ) thus contains all traces in which a does not

appear at exactly one position, i.e., traces of the form ({a})∗{}({a})ω. �

Causality on Temporal Sequences. We are now ready to recall Coenen et al.’s [18]
definition of temporal causality. Following Halpern and Pearl, Coenen et al. [18]
use contingencies to deal with cases of preemption, i.e., scenarios where a possible
cause gets nullified by another earlier cause for the same effect. Formally, they
define the counterfactual automaton CT

π to account for the contingencies of a
lasso trace π. See [18, § 5.2] for details.

Definition 1 ([18]). Let T be a system over AP = I ·∪ O , π ∈ Traces(T ) a
trace, <π a distance metric, and ϕC , ϕE two QPTL formulas over I and O ,
respectively. We say that ϕC is a cause of ϕE on π in T if the following three
conditions hold:

PC1: π � ϕC and π � ϕE.
PC2: For every counterfactual input sequence σ ∈ V (ϕC , <π), there is some

trace π′ ∈ CT
π s.t. π′ � ¬ϕE and

∧
i∈I (iπ ↔ iπ′).

PC3: There is no ϕ′
C s.t. ϕ′

C → ϕC is valid and ϕ′
C satisfies PC1 and PC2.

The counterfactual condition (PC2) requires that for every closest input
sequences in which the cause does not hold, we can use contingencies to avoid
the effect. PC1 requires that cause and effect are satisfied by the actual trace at
hand, and PC3 poses that the cause is semantically minimal.

Infinite Chains and Vacuity Condition. The above <min
π metric may admit infi-

nite chains of ever smaller interventions, resulting in an empty intervention set
V (ϕ,<π), which renders PC2 vacuously valid.

Example 4 ([18]). Let us consider the cause candidate ϕ := a and the trace
π = {a}ω. Under the distance metric <min

π (1), there exists no closest traces
that negate ϕ. For example, {}ω >min

π {a}({})ω >min
π {a}{a}({})ω >min

π · · ·
forms an infinite chain with no minimal element. Formula ϕ thus qualifies as a
cause for all effects that hold on π. �
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To catch such situations, we add an additional vacuity condition, which, e.g.,
ensures that a (cf. Example 4) never constitutes a non-vacuous cause.

Definition 2 (Vacuity Condition). Under the conditions of Definition 1,
ϕC is a non-vacuous cause, if, in addition to PC1-PC3, the following holds:

PC4: The intervention set Vπ(ϕC , <π) is non-empty.

Some distance metrics are strong enough to always satisfy PC4. For example,
Coenen et al. [18] propose an extension of <min

π which only orders traces that
have the same rejection structure, that is, traces that falsify the cause formula
at the same positions of the trace (see [18]). An alternative extension of <min

π

we have discovered when experimenting with CATS is the following:

σ <full
π σ′ ⇐⇒ (σ <min

π σ′) ∧
∧

i∈I

(
(iπ 	↔ iσ)

)
→

(
(iσ ↔ iσ′)

)

The metric <full
π only orders traces that have the same infinite interventions

(with respect to individual atomic propositions).

Example 5. Recall Example 4. The traces σ = {}ω and σ′ = {a}({})ω are not
ordered by <full

π , as σ already intervenes on infinitely many positions against a
in π = {a}ω and σ′ does not equal σ when both are projected to a. The infinite
chain w.r.t. <min

π from Example 4 thus does not exist; all elements in the chain
are minimal w.r.t. <full

π . �

The modular design of CATS encourages experiments with different distance
metrics. By default, CATS uses <min

π (1) ( [18]) together with the vacuity condi-
tion PC4, as our experiments show that this performs best in practice.

4 CATS: Tool Overview

In this section, we discuss the input of CATS (Sect. 4.1) and provide a basic
overview of the internal working (Sect. 4.2). All experiments in this paper were
conducted on a Macbook Pro with an M1 Pro CPU and 32 GB of memory.

4.1 Input Specification

CATS supports arbitrary ω-regular properties specified in QPTL [42], an exten-
sion of LTL with explicit quantification over propositions. A cause-checking
instance specifies the following: (1) The system – given as an arbitrary automa-
ton in the HANOI-automaton format [1]; (2) a partition of the atomic propositions
into inputs and outputs; (3) the cause and effect as QPTL formulas; and (4)
a lasso-shaped trace. When given a cause-checking instance, CATS determines if
the given cause candidate qualifies as an actual cause.

CATS can also be used in cause-sketching mode. In this mode, the cause is
a QPTL formula that includes holes, and CATS tries to find a formula within
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this sketch (i.e., a formula where all holes in the sketch are instantiated with
propositional – non-temporal – formulas) that qualifies as a cause. In sketching
mode, CATS either provides an actual cause or determines that no formula within
the given sketch qualifies as a cause. See [12] for details on sketching in the
context of query checking.

4.2 Algorithmic Core

Internally, CATS relies on a HyperQPTL-based encoding of the cause-checking
problem. As observed in [18], the causality requirements PC1-PC3 can be
expressed as a HyperQPTL model-checking problem. CATS decomposes this
model checking problem as much as possible into 5 separate checks instead
of one large one as used in [18]. Having multiple (but smaller) checks is cru-
cial for the performance of CATS on larger cause formulas. By leveraging the
HyperQPTL-encoding, CATS can discharge most of the heavy computation as
HyperQPTL model-checking problems. For this, CATS relies on the automata-
based model checker AutoHyper [8,9]; alternative hyperproperty verification
approaches [6,7,32] can be substituted easily.

Handling Contingencies. If desired by the user, CATS adds the ability to reason
about contingencies – a central feature of Halpern and Pearl’s actual causality.
For details on this so-called contingency automaton, see [18, Def. 8].2

Trace Checking for Cause Sketching. When invoked in sketching mode, most
cause candidates within a sketch do not hold on the given trace and thus violate
PC1. CATS can filter out these instances very effectively by employing an inex-
pensive trace-check of the candidate on the given lasso, which prunes the search
space significantly. While there are exponentially many candidates within each
cause sketch, in practice, only a few satisfy PC1 and thus progress to the algo-
rithmically harder stages that require (proper) hyperproperty model checking.

5 Evaluation 1 - Cause Checking

To evaluate the cause-checking with CATS, we use both hand-crafted examples
(Sect. 5.1) and instances from the annual SYNTCOMP competition (Sect. 5.2).

5.1 Hand-Crafted Examples

We collected a range of hand-crafted instances (consisting of system, lasso, cause,
and effect). These systems are typically very small (so performance is not an
issue) and serve as a test of the underlying causality definition. We depict the
results in Table 1.
2 Coenen et al. [18] use the assumption that every state of the transition system is

labeled by a unique set of outputs. In practice, this assumption is unrealistic, so, in
many cases, the contingency automaton leads to unintuitive results and prevents the
discovery of causes. In CATS, we thus decided to allow the user to decide whether or
not to use contingencies.
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Table 1. Hand-crafted cause-checking instances. We display whether or not the cause
candidate is a cause (✓ if it is a cause and ✗ if it is not) and the time taken by CATS in
seconds. Example 1, mod changes the actual trace to π = {i1, i2}{i1, i2}{i1}({E})ω
such that ϕC is no longer a cause.

Instance Res t

Spurious Arbiter [18] ✗ 0.6
Arbiter simple [18] ✓ 1.2
Arbiter [18] ✓ 9.7
Example 1 ✓ 0.9
Example 1, mod ✗ 1.0
Example 6, odd ✓ 1.4

Instance Res t

Example 6, globally ✗ 0.7
Example 7 ✓ 2.1
Example 8 ✓ 1.1
Example 8 mod ✗ 1.2
TP Left [18, Thm. 6] ✗ 0.3
TP Right [18, Thm. 6] ✓ 1.1

Example 6. Consider the system in Fig. 3a, which models a simple arbiter for
two processes; each can issue a request (I = {r0, r1}) and might be answered
by a grant (O = {g0, g1}). Importantly, the arbiter is biased towards process 0,
i.e., prioritizes process 0 if both issue a request. Suppose we observe the trace
({r0, r1}{r0, g0})ω and are interested in a cause for ϕE = ¬g1, i.e., process 1
never gets a grant. CATS can automatically verify the cause ϕC = ∃q.q ∧ (q ↔

¬q) ∧ (q → r0) (instance Example 6, odd), stating that the cause is that
process 0 issues requests at all odd positions. In particular, CATS can also infer
that r0 is not a cause (instance Example 6, globally); the requests at even
positions are irrelevant for the effect. Such a precise cause cannot be expressed
in LTL and requires the ω-regularity possible in QPTL. We stress that such an
automatic analysis was not possible before, and each instance required manual
(error-prone) checking. �

5.2 Syntcomp Evaluation

In the previous section, we considered hand-crafted examples that stress the
underlying theory. In this section, we test the performance of CATS on a larger
set of benchmarks. To obtain an interesting set of reactive systems, we use
benchmarks from the reactive synthesis competition (SYNTCOMP) [34]. SYNTCOMP
includes a collection of LTL formulas that specify requirements for a diverse
collection of reactive systems. We use existing LTL synthesis tools (in our case
ltlsynt [20]) to synthesize a strategy/system for each (realizable) LTL specifica-
tion (within a timeout of 5min). We obtain a collection of 204 systems of varying
sizes. For each SYNTCOMP system, we randomly generate 10 different lasso traces
and use spot’s randltl to generate random cause and effect formulas (over the
inputs and outputs, respectively). This gives us a total of 204 ∗ 10 = 2040 cause-
checking instances. In Fig. 2, we depict the running time of CATS against the
size of the underlying system. We observe that the vast majority of instances
can be solved in less than 10 s. We can also see how the running time of each
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Fig. 2. We use CATS to check different cause-effect pairs in systems obtained from
SYNTCOMP [34] benchmarks. Note that the time scale is logarithmic.

instance depends on the number of checks that are needed; due to the incre-
mental checking by CATS (based on the decomposition of the cause-checking
formula), instances that, e.g., already violate PC2 are not checked further. The
overall running time thus depends on the number of stages that are passed.

6 Evaluation 2 - Cause Sketching

As already alluded to in the introduction, a typical use case of causal analysis is
the analysis of a counterexample. The user can use such a cause to, e.g., extract
a minimal error from the concrete error trace and effectively debug the system.

Example 7. Consider the simple system in Fig. 3b in which output E marks an
error. A model checker might return the concrete path π = {i1, i2}4({E})ω. While
the concrete path reaches the error state, it provides very little information about
which inputs actually caused the error. Instead, we can use CATS to find a cause
for the effect ϕE = E. When given to CATS with an appropriate sketch,
it will compute the cause ϕC = i1 ∧ (i1 ∨ i2), which characterizes exactly the
events on π that are of relevance: i1 must hold in the first step, and either i1 or
i2 must hold in the third (to avoid the self-loop). Note that this cause is tightly
coupled with the concrete trace π. In particular, the cause does not describe all
input events that lead to the error state, but only the minimal changes needed
to avoid the error on the concrete example. The time for checking this causal
relationship is depicted in Table 1 (instance Example 7). �

Example 8. As a second example, consider the system in Fig. 3c and the concrete
path π = {i}2({E})ω. CATS can automatically verify the cause ϕC = i∨ i for the
effect ϕE = E. Note that this cause is disjunctive as we need to intervene on
i in the first and second step to avoid the effect. Symbolic causes (as supported
by CATS) can describe such effects very succinctly. In contrast, previous methods
cannot handle such examples: they are either limited to a finite-variable setting
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Fig. 3. Three example systems. Each edge has the form φ | o where φ is a boolean
formula over I and o ⊆ O a set of outputs. We write φ instead of φ | ∅.

and conjunctive causes [29,30] or can only reason about the order of events but
not about the concrete time using ’s [37,38]. The time for checking this causal
relationship is given in Table 1 (instance Example 8). Table 1 also depicts a
modified version using trace π = {i}{}({E})ω (instance Example 8,mod). This
results in ϕC = i ∨ i no longer being a cause. �

6.1 Causes for Time-Bounded Effects

When employing causality-based analysis on counterexamples, we often
encounter effects of the form n E for some n ∈ N. We refer to such effects as
time-bounded effects. We can formally prove that – within the causality frame-
work of Coenen et al. [18] – an effect that is time-bounded by n ∈ N has a cause
iff it has a time-bounded cause, i.e., a cause that only refers to the first n steps.

Proposition 1. Let ϕE = n ψ be an effect, where ψ does not contain temporal
operators, and let π be a trace. Then, there exists a cause for ϕE on π iff there
exists a cause that uses at most n nested ’s, and no other temporal operators.

When looking for causes of the form n E for some n, it thus suffices to check
for causes that refer to the first n positions. It is easy to see that there exists a
cause sketch that captures all such candidates (a simple DNF with atoms of the
form j ψ with j ≤ n).

6.2 Automatically Sketching Causes

To evaluate CATS’s cause-sketching ability, we use spot’s randaut [20] to generate
100 random systems of varying size (between 10 and 50 states) and randomly
mark one state with a fresh E proposition. Using a model checker (in our case, a
simple breath-first-search), we verify whether the error state is reachable, and if
it is, compute a concrete (lasso) trace reaching the error in say n steps. We then
use CATS to infer a cause for ϕE = n E, which, by Proposition 1, can be done
by exploring an appropriate sketch.

Our results are displayed in Table 2. We find that although CATS explores
many candidates, most of them can be pruned early using the inexpensive trace
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Table 2. Evaluation of CATS’s sketching for counterexample analysis. We depict the
average length of the counterexample trace (avg. |π|), the average number of cause
candidates checked (avg. #check ), the average time (in seconds) spent on cause checking
(avg. tcheck ), the average total time needed by CATS (avg. t), and the percentage of cases
in which we could find a cause (avg. success).

avg. |π| avg. #check avg. tcheck avg. t avg. success

6.28 169.1 2.08 s 2.19 s 86%

check for PC1 (cf. Section 4.2). The actual time tcheck for checking (which takes
up the vast majority of CATS’s total computation time) is thus reasonable, as
only a few of the (on average) 169.1 candidates progress to the expensive hyper-
property model-checking phase.

Limitations. We emphasize that CATS can, obviously, not compete with dedi-
cated methods for counterexample analysis [5,14,27]. The big advantage of CATS
stems from its reliance on an advanced theory that is not limited to counterexam-
ple analysis but applicable to arbitrary causal relationships. Despite the strong
theoretical foundations (dating back to Halpern and Pearl’s seminal definition
[29,30]), CATS provides strong guarantees on the existence of causes (Proposition
1) and performs well in small systems.

7 Conclusion

Causal analysis has a long tradition in the analysis of systems. While most
efforts on comprehensive causal definitions (mainly originating in philosophy)
focused on finite settings, recent work discussed causality in reactive systems,
where cause and effect reason about the infinite behavior of a system [18]. In
this paper, we have presented CATS, the first tool that pushes causality in reac-
tive systems towards automation. With CATS, causality definitions are no longer
condemned to be purely theoretical endeavors but can be applied and tested
fully automatically in actual systems. This allows for discovery and verifica-
tion of causal relationships and serves as a playground to experiment with more
advanced causality definitions.

With CATS, we have shown that verifying causes based on an advanced causal-
ity theory is possible in practice and that sketching is a viable method to infer
causes. For future work, it is interesting to attempt to synthesize a (ω-regular)
cause directly. In such developments, CATS can serve as a useful baseline and
debugger.
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Žikelić, Ðor -de I-357


	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Temporal Logics
	Lightweight Verification of Hyperproperties
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Model Structures
	3.2 HyperLTL
	3.3 Sequential Probability Ratio Test

	4 Problem Formulation
	5 Approach
	5.1 Scheduler Sampling
	5.2 Implementation

	6 Case Studies
	6.1 Grey-Box Verification
	6.2 Black-Box Verification

	7 Experimentation/Evaluation
	7.1 Black-Box Verification
	7.2 Grey-Box Verification

	8 Conclusion
	References

	Specification Sketching for Linear Temporal Logic
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	4 Existence of a Complete Sketch
	4.1 The Decidability Result
	4.2 The Decision Procedure

	5 Algorithms to Complete an LTL Sketch
	5.1 Algorithm Based on LTL Learning
	5.2 Algorithm Based on Incremental SAT Solving

	6 Experimental Evaluation
	7 Conclusion and Future Work
	References

	Data Structures and Heuristics
	On the Difficulty of Intersection Checking with Polynomial Zonotopes
	1 Introduction
	2 Preliminaries
	3 Intersection Checking is NP-Hard
	4 The Overapproximate and Split Algorithm
	4.1 Algorithm Definition
	4.2 Convergence Concerns

	5 Guaranteeing Convergence
	6 Related Work
	7 Conclusions
	References

	Predicting Memory Demands of BDD Operations Using Maximum Graph Cuts
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Graph and Cuts
	2.2 Binary Decision Diagrams

	3 Levelised Cuts of a Directed Acyclic Graph
	3.1 Maximum Levelised Cuts in BDD Manipulation
	3.2 Improving Bounds by Accounting for Terminal Arcs
	3.3 Maximum Levelised Cuts in ZDD Manipulation
	3.4 Adding Levelised Cuts to Adiar's Algorithms

	4 Experimental Evaluation
	4.1 Benchmarks
	4.2 Tradeoff Between Precision and Running Time
	4.3 Impact of Introducing Cuts on Adiar's Running Time

	5 Conclusion
	5.1 Related and Future Work
	5.2 Applicability Beyond Decision Diagrams

	References

	Better Predicates and Heuristics for Improved Commutativity Synthesis
	1 Introduction
	2 Background: Commutativity Synthesis
	3 Semantic Treatment of Predicates
	4 Search Heuristics
	4.1 The poke2 Heuristic
	4.2 The mcMax Heuristic

	5 Implementation
	6 Evaluation
	6.1 Performance Results
	6.2 Case Study: commute Blocks in Veracity

	7 Conclusion and Future Work
	References

	Verification of Programs and Hardware
	Structure-Guided Solution of Constrained Horn Clauses
	1 Introduction
	2 Preliminaries
	2.1 Constrained Horn Clauses
	2.2 Hypergraphs and Hyperpaths

	3 Structure-Guided, Lazy and Incremental CHC Solving
	4 Structure-Guided Selection of CHCs
	5 Ensuring Rule-Satisfiability
	5.1 Exploiting Conjunctive Interpretations
	5.2 Extending Existing Interpretations

	6 Implementation Details and Experimental Evaluation
	6.1 Implementation Details
	6.2 Experimental Evaluation

	7 Related Work
	8 Conclusion
	References

	Automated Property Directed Self Composition
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Programs, Safety Properties, and Invariants
	3.2 Abduction
	3.3 Interpolation
	3.4 Property Directed Self Composition
	3.5 Revisiting Our Motivating Example

	4 Challenges and Contributions
	5 Algorithm
	5.1 Spuriousness Check
	5.2 Synthesizing Predicates from Counterexamples
	5.3 Obtaining Predicates from Infeasibility Proofs

	6 Implementation and Experiments
	6.1 Implementation
	6.2 Benchmarks
	6.3 Results
	6.4 Performance on Our Motivating Example
	6.5 Comparison with LLRÊVE
	6.6 Reducing Predicate Size for Quantifier Elimination

	7 Related Work
	8 Conclusion and Future Work
	References

	Minimally Comparing Relational Abstract Domains
	1 Introduction
	2 Background and Motivation
	2.1 Minimal Changes in Relational Abstract Domains
	2.2 Comparing Relational Domains

	3 Approach
	3.1 Problem Definition
	3.2 Finding a Common Changed Variable Set

	4 Methodology
	5 Evaluation Results and Discussions
	5.1 Technique Comparisons
	5.2 Zones Versus Relational Predicates
	5.3 Iterations and Variable Reductions
	5.4 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	Tailoring Stateless Model Checking for Event-Driven Multi-threaded Programs
	1 Introduction
	2 Related Work
	3 Main Concepts and Challenges
	3.1 Review of Optimal-DPOR
	3.2 Challenges for Event-Driven Programs

	4 Computation Model
	4.1 Programs
	4.2 Events, Executions, Happens-Before Ordering, and Equivalence

	5 The Event-DPOR Algorithm
	5.1 Central Concepts in Event-DPOR
	5.2 The Event-DPOR Algorithm

	6 Correctness and Optimality
	7 Implementation
	8 Evaluation
	9 Concluding Remarks
	References

	Fast Equivalence Checking of Quantum Circuits of Clifford Gates
	1 Introduction
	2 Preliminaries 
	2.1 Quantum Circuits and Fundamental Concepts
	2.2 Stabilizer States 
	2.3 Circuit Equivalence-Check Problem

	3 Reducing Circuit Equivalence to Classical Simulation
	4 Experiments
	5 Conclusions
	References

	Automatic Verification of High-Level Executable Models Running on FPGAs
	1 Introduction
	2 Background
	2.1 Logic-Labelled Finite-State Machines

	3 Design
	3.1 Reducing the Kripke Structure Size Using Snapshot Semantics

	4 Automatic Kripke Structure Generation
	4.1 Furnace Relay Case Study
	4.2 Utilising LLFSM Semantics

	5 Conclusion
	References

	Tool Papers
	AutoKoopman: A Toolbox for Automated System Identification via Koopman Operator Linearization
	1 Introduction
	2 Problem Statement
	3 Toolbox Features
	3.1 Trajectories Data Preparation
	3.2 Types of Observables
	3.3 Regression Estimators
	3.4 Hyper-parameter Tuning

	4 Numerical Experiments
	5 Conclusion
	References

	Leveraging Static Analysis: An IDE for RTLola
	1 Introduction
	2 Writing Specifications is Hard
	3 The RTLola Specification Language
	4 The RTLola Framework
	4.1 The RTLola Frontend
	4.2 The RTLola Interpreter

	5 Tool Overview
	6 Application Scenarios
	7 Conclusion
	References

	pymwp: A Static Analyzer Determining Polynomial Growth Bounds
	1 Introduction – Making Use of Implicit Complexity
	2 Calculating Bounds with mwp-Analysis
	2.1 Interpreting Analysis Results: mwp-Bounds and 
	2.2 Additional Foundational Examples
	2.3 Originalities of mwp-flow Analysis

	3 Technical Overview of pymwp
	3.1 Program Analysis in Action
	3.2 Usage
	3.3 Scope of Analyzable Programs

	4 Implementation Advancements
	4.1 Motivations for Refining Analysis Results
	4.2 Exposing Sources of Failure
	4.3 Efficiently Determining Bounds

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusion
	References

	ppLTLTT: Temporal Testing for Pure-Past Linear Temporal Logic Formulae
	1 Introduction
	2 Linear Temporal Logic with Past and Temporal Testers
	3 ppLTLTT
	3.1 ppLTL to Temporal Testers
	3.2 Implementation Notes

	4 Adding Past to Existing Tools
	4.1 Encoding Temporal Testers in LTL
	4.2 Adding Past to Slugs: pSlugs
	4.3 Adding Past to Strix: pStrix
	4.4 Adding Past to LTL2TGBA: pLTL2TGBA

	5 Experimental Evaluation
	6 Conclusion
	References

	AquaSense: Automated Sensitivity Analysis of Probabilistic Programs via Quantized Inference
	1 Introduction
	2 Example: Sensitivity-Driven Development
	3 Background: Automated Inference Algorithms
	4 AquaSense Workflow
	5 Evaluation
	5.1 Performance and Accuracy of AquaSense
	5.2 Trade-Off Between Accuracy and Performance

	6 Related Work
	7 Conclusion
	References

	RTAEval: A Framework for Evaluating Runtime Assurance Logic
	1 Introduction
	2 Overview of the RTAEval Framework
	2.1 Scenario Definition and Execution
	2.2 RTA Logics
	2.3 Data Collection, Evaluation, and Visualization

	3 RTAEval Examples
	4 Conclusion
	References

	Checking and Sketching Causes on Temporal Sequences
	1 Introduction
	2 Preliminaries
	3 Temporal Causality
	4 CATS: Tool Overview
	4.1 Input Specification
	4.2 Algorithmic Core

	5 Evaluation 1 - Cause Checking
	5.1 Hand-Crafted Examples
	5.2 Syntcomp Evaluation

	6 Evaluation 2 - Cause Sketching
	6.1 Causes for Time-Bounded Effects
	6.2 Automatically Sketching Causes

	7 Conclusion
	References

	Author Index

