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Abstract. A new model of one-way multicounter machines is intro-
duced. In this model, within each transition, testing the counter sta-
tus of a counter is optional, rather than existing models where they
are always either required (traditional multicounter machines) or no
status can be checked (partially-blind multicounter machines). If, in
every accepting computation, each counter has a bounded number of
sections that decrease that counter where its status is tested, then
the machine is called finite-testable. One-way nondeterministic finite-
testable multicounter machines are shown to be equivalent to partially-
blind multicounter machines, which, in turn, are known to be equivalent
to Petri net languages and languages defined by vector addition sys-
tems with states. However, one-way deterministic finite-testable multi-
counter machines are strictly more general than deterministic partially-
blind machines. Moreover, they also properly include deterministic
reversal-bounded multicounter machines (unlike deterministic partially-
blind multicounter machines). Interestingly, one-way deterministic finite-
testable multicounter machines are shown to have a decidable contain-
ment problem (“given two machines M1,M2, is L(M1) ⊆ L(M2)?”). This
makes it the most general known model where this problem is decidable.
We also study properties of their reachability sets.

1 Introduction

One of the most commonly studied decision problems for models of automata is
the containment problem (also sometimes called the inclusion problem), which is:
“given two machines M1 and M2 from the model, is L(M1) ⊆ L(M2)?”. The con-
tainment problem is important towards model checking. Indeed, if M2 contains
an automaton-based representation of a specification and M1 contains a model,
then M1 satisfies the specification if L(M1) ⊆ L(M2). This automata-theoretic
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approach was initiated by Vardi and Wolper [28], it enables on-the-fly model
checking [8], and it has been studied with different models of automata [23,27].
Furthermore, industrial automated verification tools have implemented and used
automata-based methods [11]. Not only is the containment problem undecidable
for the context-free languages, it is also undecidable for many restriction of
pushdown automata, including deterministic pushdown automata, determinis-
tic one counter automata (the store contains a non-negative integer which can
be increased, decreased, and tested for zero), and nondeterministic one counter
automata where the counter cannot increase after decreasing [1]. In contrast, one
model with a decidable containment problem is one-way deterministic machines
with some number of counters, but on every accepting computation, there is a
bound in the number of changes in direction between non-decreasing and non-
increasing the size of each counter, called reversal-bounded, and they are denoted
by DRBCM (and the nondeterministic version is denoted by NRBCM).

The emptiness problem, “given machine M , is L(M) = ∅?”, is also impor-
tant and commonly decidable for more powerful models. Indeed, it is decid-
able for pushdown automata [12], NRBCM [17], and one-way nondeterministic
partially-blind multicounter machines (denoted by NPBLIND) [10]. The latter
model contains multicounter machines where each counter contains some non-
negative integer, but no differences are allowed in available transitions based
on the counter status (whether a counter is empty or not), besides acceptance
being defined by final state and all counters being zero in the final configu-
ration. In this sense, counter status checks are not allowed. It is known that
NRBCM is properly contained in NPBLIND [10], and also that the following are
equivalent: deciding emptiness for partially-blind multicounter machines, decid-
ing the emptiness problem for Petri nets, and deciding reachability of vector
addition systems. Later, reachability for Petri nets was shown to be decidable
and therefore all three problems are decidable [20,22]. Recently, it was shown
that the boundedness problem (“given M , are there words w1, . . . , wn such that
L(M) ⊆ w∗

1 · · · w∗
n?”) is decidable for vector addition systems with states [6],

hence for NPBLIND as well.
Some restrictions of NPBLIND (resp. labelled Petri nets, and vector addition

systems with states) have also been studied. For example, λ-free determinis-
tic labelled Petri nets have been studied [25,29]. In the latter paper, it was
shown that the complement of the language accepted by any λ-free determin-
istic labelled Petri net could be accepted by a nondeterministic labelled Petri
net (equivalent to NPBLIND). From this, and decidability of emptiness for Petri
nets, it follows that the containment problem is decidable for λ-free deterministic
labelled Petri nets. To note here, this type of Petri net also does not have an
explicit label to detect when it has reached the end of the input, which can limit
the capacity of the machines. In addition, vector addition systems with states
that are boundedly-ambiguous have been studied [5]. When using an acceptance
condition defined by an upward-closed set of configurations, the containment
problem is decidable.

Here, we study deterministic NPBLIND machines with the input end-marker
and also allowing λ transitions, which we denote by DPBLIND. We show that
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the right input-marker strictly increases the capacity, showing the importance of
using this simple construct. Even with λ transitions and the end-marker however,
we show the model is still somewhat limited and cannot accept all DRBCM
languages.

This inspires a simple and novel restriction of multicounter machines, where
the counter status checks are optional. Such a machine is r-testable if, in every
accepting computation, each counter has at most r segments where it decreases
this counter and checks its status at least once (and it is finite-testable if it
is r-testable for some r). This class is denoted by NTCM, and DTCM for the
deterministic restriction. While we show that NTCM and NPBLIND are equiv-
alent, DTCM is shown to be strictly more powerful than both DPBLIND and
DRBCM. Then we show that the complement of every DTCM (hence DPBLIND)
is in NTCM = NPBLIND. From this, it follows that DTCM (and DPBLIND) has a
decidable containment problem (hence also equality problem and universe prob-
lem). This makes DTCM one of the most general automata model known with a
decidable containment problem, as it is significantly more general than DRBCM
and allows λ transitions and has an end-marker unlike the model [25].

All omitted proofs appear in the appendix due to space constraints.

2 Preliminaries

Let N be the set of natural numbers, and N0 be the set of non-negative integers,
and Z be the set of integers. For k ∈ N, let N(k) = {1, . . . , k}. For j ∈ N0, define
π(j) to be 0̂ if j = 0 and 1̂ otherwise. For a set X and k ∈ N, define Xk to be the
set of k-tuples of elements of X. A set Q ⊆ N

k
0 is called a linear set if there exists

vectors �v0, �v1, . . . , �vl ∈ N
k
0 such that Q = {�v0 + i1�v1 + · · ·+ il�vl | i1, . . . , il ∈ N0}.

Here, �v0 is called the constant, and �v1, . . . , �vl are called the periods. The constant
and the periods together are called a representation of the linear set. A set
Q ⊆ N

k
0 is called a semilinear set if it is a finite union of linear sets, and a

representation of Q is the set of representations of each linear set.
We assume a basic familiarity with automata and formal language theory [12].

Let Σ be a finite alphabet, and let Σ∗ be the set of all words over Σ, including
the empty word λ, and Σ+ is the set of all non-empty words. A language over
Σ is any L ⊆ Σ∗. Given L ⊆ Σ∗, the complement of L with respect to Σ is,
L = Σ∗ −L. Given a word w ∈ Σ∗, |w| is the length of w; and given a ∈ Σ, |w|a
is the number of a’s in w.

Given a fixed ordering of an alphabet Σ = {a1, . . . , ak}, then the Parikh
image of w ∈ Σ∗ denoted Ψ(w) = (|w|a1 , . . . , |w|ak

). This is extended to the
Parikh image of languages L ⊆ Σ∗ by Ψ(L) = {Ψ(w) | w ∈ L}. A language
L is said to be Parikh semilinear (or simply semilinear) if Ψ(L) is a semilinear
set. It is known that every regular language (in fact, context-free language) is
Parikh semilinear [24]. We say that a set for a given problem is an effectively
determinable semilinear set if, the set for that problem is a semilinear set, and
moreover there is an effective procedure to determine the semilinear representa-
tion given inputs to the problem.
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A language L ⊆ Σ∗ is bounded if there exists w1, . . . , wn ∈ Σ+ such that
L ⊆ w∗

1 · · · w∗
n. Given words w1, . . . , wn ∈ Σ+ and L ⊆ w∗

1 · · · w∗
n, we define a

function φ from languages L to subsets of N
n
0 that maps φ(L) = {(i1, . . . , in) |

wi1
1 · · · win

n ∈ L}. We call L a bounded Ginsburg semilinear language (or simply
Ginsburg semilinear) if φ(L) is a semilinear set. In the literature, bounded Gins-
burg semilinear is often just referred to by bounded semilinear [3]. Note that the
Parikh image ψ(L) (which is a subset of N

k
0) may be different than φ(L) (which

is a subset of N
n
0 ). However, it is known that every bounded Ginsburg semilinear

language is also Parikh semilinear [3] but there are Parikh semilinear languages
(even bounded ones) that are not Ginsburg semilinear. For example, consider
L = {a2nb | n > 0}∪ba+, which is bounded as it is a subset of a∗b∗a∗. But given
a, b, a, φ(L) = {(2n, 1, 0) | n > 0} ∪ {(0, 1, n) | n > 0}, which is not semilinear,
and so L is not Ginsburg semilinear. However, ψ(L) = {(n, 1) | n > 0} (a is first
letter, b is second) is semilinear and so L is Parikh semilinear.

We define k-counter machines in a slightly unusual way, where it is possible
to either test whether a counter is positive or zero, but also not test the status
of a counter. This allows the definition to be used for multiple purposes.

Definition 1. A one-way nondeterministic k-counter machine is a tuple M =
(Q,Σ, δ, q0, F ) with a finite set of states Q, initial state q0, the final state set F ⊆
Q, an input alphabet Σ, and a transition function δ, which is a partial function
from Q × (Σ ∪ {λ,�}) × N(k) × {0̂, 1̂, ∅̂} to finite subsets of Q × {0,+1,−1},
where � /∈ Σ is the right input end-marker. Here, we call {0̂, 1̂, ∅̂} the set of
tests, with 0̂ the zero-test, 1̂ the non-zero-test, 0̂ and 1̂ collectively the status
tests, and ∅̂ is the no-test. A transition (p, e) ∈ δ(q, a, i, τ) (which we often write
as δ(q, a, i, τ) → (p, e)) can be used if q is the current state and a ∈ Σ ∪ {λ,�}
is read from the input, and

– if τ = ∅̂, then it adds e to counter i,
– if τ = 1̂ and counter i is non-empty, then it adds e to counter i,
– if τ = 0̂ and counter i is empty, then it adds e to counter i,

and it switches to state p. Such a machine is deterministic if,

1. for each q ∈ Q and a ∈ Σ∪{�}, there is at most one counter i, denoted C(q, a)
if one exists, such that δ(q, a, i, τ) ∪ δ(q, λ, i, τ) �= ∅, for some τ ∈ {0̂, 1̂, ∅̂},

2. for all q ∈ Q, a ∈ Σ ∪ {�}, τ ∈ {0̂, 1̂}, where i = C(q, a),

|δ(q, a, i, τ) ∪ δ(q, λ, i, τ) ∪ δ(q, a, i, ∅̂) ∪ δ(q, λ, i, ∅̂)| ≤ 1.

This matches the traditional notion of determinism, except the counter status
can influence the deterministic choice of the next transition to apply if and
only if a status test is used. If a no-test is used, it must be the only available
transition. For example, a deterministic machine could have separate transitions
from δ(q, a, i, 0̂) and δ(q, a, i, 1̂), where the first happens if counter i is zero
and the second happens if counter i is positive. But we cannot have separate
transitions if either both transitions have the same test, or if one is a no-test
as that would lead to multiple possible transitions that could be applied from
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the same instantaneous description (defined next). It is also required that only
one counter can be used from a given state and input letter or empty word, as
otherwise multiple instantaneous descriptions could follow a given one.

Definition 2. An instantaneous description (ID) of k-counter machine M =
(Q,Σ, δ, q0, F ) is a member of Q × (Σ∗� ∪ {λ}) × N

k
0 . Instantaneous descrip-

tions change via the relation 	M (or 	 if M is clear) with (q, aw, y1, . . . , yk) 	
(q′, w, y1, . . . , yi−1, yi + e, yi+1, . . . , yk), if δ(q, a, i, τ) → (q′, e), yi + e ≥ 0, and
either τ = ∅̂ or π(yi) = τ . Then, 	∗ is the reflexive, transitive closure of 	. A
computation on w ∈ Σ∗ is a sequence of IDs,

(p0, w0, y0,1, . . . , y0,k) 	 · · · 	 (pn, wn, yn,1, . . . , yn,k), (1)

where q0 = p0, w0 = w�, y0,i = 0, 1 ≤ i ≤ k; and a computation is an accept-
ing computation of w if yn,i = 0 for 1 ≤ i ≤ k,wn = λ, and pn ∈ F .
Thus, accepting computations end at all 0’s in the counters and in a final state.
Often, we associate labels bijectively from a set Σδ to the transitions of M , and
write ID 	t ID′, t ∈ Σδ if ID 	 ID′ via transition t; and ID 	x ID′ for
x = t1 · · · tm, ti ∈ Σδ, if ID = ID0 	t1 · · · 	tm IDm = ID′. We also define
runs(M) = {x ∈ Σ∗

δ | (q0, w�, 0, . . . , 0) 	x (qf , λ, 0, . . . , 0), qf ∈ F}
Given a computation ID0 	t1 · · · 	tn IDn, n ≥ 0, for i 1 ≤ i ≤ k, we divide

it into so-called decreasing i-segments and increasing i-segments as follows: we
say IDj−1 	tj · · · 	tl IDl is a decreasing i-segment if

– tj decreases counter i,
– there are no transitions that increase counter i in tj , . . . , tl−1,
– either l = n or tl increases counter i,
– the last transition of t1, . . . , tj−1 that changes counter i increases it.

We can naturally order decreasing i-segments. Further, we define the increasing
i-segments between the beginning of the computation to the ID at the start of the
first decreasing i-segment or the last ID if there are no decreasing i-segments,
between the last ID of one decreasing i-segment and the first ID of the next
decreasing i-segment, and from the last ID of the last decreasing i-segment to
the end if it does not end in a decreasing i-segment or it ends with a transition
that increases counter i.

Such a machine M is r-reversal-bounded, if, in every accepting computation,
each counter i, 1 ≤ i ≤ k, has at most r+1 increasing or decreasing i-segments.
It is reversal-bounded if it is r-reversal-bounded for some r. Such a machine is
called partially-blind if all transitions have ∅̂ for tests.

The language accepted by M ,

L(M) = {w ∈ Σ∗ | there is an accepting computation of w},

and the reachability set of M , R(M) = {(q, v1, . . . , vk) | (q0, w�, 0, . . . , 0) 	∗

(q, w′, v1, . . . , vk) 	∗ (qf , λ, 0, . . . , 0), qf ∈ F}.
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As decreasing i-segments are maximal (they start with a decrease, the previous
transition that changes that counter is an increase, and they end with either the
next increase or the end of the computation), we can split each computation,
for each i, uniquely into increasing and decreasing i-segments. The definition of
r-reversal-bounded here is equivalent to that of [17] which counts the number
of changes in direction in each counter. The definition of partially-blind multi-
counter machines is the same to that of [10]. Note these machines do have one
implicit test of all zeros in the counters at the end of the computation. With no-
tests (and partially-blind machines), the machines “crash” (ie. the computation
cannot continue), if any counter tries to go below zero. But the machines cannot
detect that the counters are zero (because the transition function does not allow
differences based on the contents of the counters). Normally the reachability set
is defined without the restriction of appearing within an accepting computation,
but we will use this stronger notion here. Also, sometimes it is defined to not
include the state as a component. We will usually associate the state component
bijectively with a number in {1, . . . , |Q|} so we can, e.g. talk about a reachability
set being a semilinear set.

The class of one-way nondeterministic (resp. deterministic) partially-blind k-
counter machines is denoted by NPBLIND(k) (resp. DPBLIND(k)), and the class
of partially-blind machines is denoted by NPBLIND (resp. DPBLIND). The class
of one-way nondeterministic (resp. deterministic) r-reversal-bounded k-counter
machines is denoted by NRBCM(k, r) (resp. DRBCM(k, r)), and the family of
reversal-bounded multicounter machines is denoted by NRBCM (resp. DRBCM).
By a slight abuse of notation, we will use the same notation for a class of machines
and the family of languages they accept.

It is also known that one-way deterministic two-counter machines accept all
recursively enumerable languages (denoted RE), but there are some recursively
enumerable languages that are not in NPBLIND [10]. Deterministic partially-
blind machines are a restriction of partially-blind machines, and it is therefore
clear that DPBLIND ⊆ NPBLIND � RE. Lastly, note DRBCM � NRBCM �

NPBLIND � RE, with the latter two shown in [10], and DRBCM is known to be
a proper subset of NRBCM [17].

Lastly, we show a simple result in this section which will help throughout
the paper. Given a k-counter machine M = (Q,Σ, δ, q0, F ), denote by Mδ =
(Qδ, Σδ, δ

′, q0, F ′) the deterministic k-counter machine obtained from M with
Qδ = Q ∪ Q′ where Q′ is a primed version of the states in Q, F ′ is the primed
versions of the states in F , and δ′ is built to read t ∈ Σδ to simulate transition
t of M , but it uses states of Q to simulate transitions of M that read letters of
Σ∪{λ}, but M ′ instead reads t, and switches from states in Q to states of Q′ if t
reads � in M , and switches between states in Q′ to simulate only λ transitions.
Lastly, add δ′(q′,�, 1, ∅̂) → (q′, 0) for all q′, where q ∈ Q.
Lemma 3. Given k-counter M = (Q,Σ, δ, q0, F ), the following are true:
– Mδ is deterministic,
– runs(M) = L(Mδ),
– L(M) is not Parikh semilinear implies runs(M) is not Parikh semilinear,
– R(M) is not semilinear implies R(Mδ) is not semilinear.
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3 Properties of Deterministic Partially-Blind Machines

We start this section with an example of a DPBLIND machine before analyzing
its properties.

Example 4. It is known that NPBLIND contains the so-called one-sided Dyck lan-
guage on one letter, D2 = {w ∈ {a, b}∗ | |w|a = |w|b, and if w = xy, then |x|a ≥
|x|b}, which cannot be accepted by any NRBCM [10].

A NPBLIND(1) machine M = (Q,Σ, δ, q0, {q1}) that accepts this language is
as follows,

δ(q0, a, 1, ∅̂) → (q0,+1), δ(q0, b, 1, ∅̂) → (q0,−1), δ(q0,�, 1, ∅̂) → (q1, 0).

This machine by definition is deterministic, and therefore D2 ∈ DPBLIND(1).
Since Dyck languages are Parikh semilinear, this shows that DPBLIND contains
Parikh semilinear languages that are not in NRBCM. Furthermore, consider the
prefix closure of D2, D′

2 = {w ∈ {a, b}∗ | if w = xy, then |x|a ≥ |x|b}. A
DPBLIND M ′ can accept D′

2 by adding transition δ(q1, λ, 1, ∅̂) → (q1,−1) to
M above. Notice that when it reads the end-marker with some value j on the
counter, it continually decreases the counter, and as long as it eventually passes
over 0 on the counter in state q1, it accepts.

The right input end-marker is not necessary for any nondeterministic machine
model defined in the previous section, because the machine can guess that it has
read the last input symbol, and only accept if it guessed correctly. One could
define NRBCMNE (resp. DRBCMNE) machines as being NRBCM machines (resp.
DRBCM) without containing any transitions on the end-marker, and acceptance
is defined as, it reads the entire input w (with no end-marker), and it is in a
final state. This notation was used in [7,14] where machines without the end-
marker were studied with NRBCM and DRBCM. Hence, NRBCM = NRBCMNE.
For that reason, when studying nondeterministic machines, we can leave off
the end-marker in the machine definition and when examining computations.
With deterministic machines though, it is not necessarily so; e.g. it is known
that DRBCMNE � DRBCM [7,14] (in contrast to say deterministic pushdown
automata where they are the same). We do not know of any other one-way
input machine model where they are known to be different. Clearly, for any
deterministic model defined above, the family of languages accepted without the
end-marker is a subset of the entire model as we could simply ignore the marker.
So we by default use the more general definition with the end-marker. Determin-
istic partially-blind multicounter languages have been defined and studied previ-
ously, but they were defined without the end-marker [4], and so we are using the
more general definition with the end-marker here instead. We use the notation
NPBLINDNE (resp. DPBLINDNE) to be NPBLIND (resp. DPBLIND) machines and
languages without the end-marker, where acceptance occurs by hitting the end
of the input in a final state with all counters zero. Then NPBLINDNE = NPBLIND
using the same argument as the start of this section.
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We next see that in fact the language D′
2 from Example 4 requires the end-

marker to accept for deterministic machines, leading to the following separation.

Proposition 5. DPBLINDNE � DPBLIND.

Therefore, the right end-marker increases the power of DPBLIND, similarly to
DRBCM.

Next, we analyze whether DPBLIND and DPBLINDNE contain languages that
are not Parikh semilinear, and whether reachability sets can be non-semilinear.

Proposition 6. DPBLIND and DPBLINDNE both contain machines M such that
L(M) is not Parikh semilinear. Furthermore, both contain machines M such that
R(M) and runs(M) are not semilinear.

Proof. It is known that NPBLIND contains languages that are not Parikh semi-
linear (Theorem 4 of [10]). Let M ∈ NPBLIND accepting any such language.
Considering Mδ, Mδ ∈ DPBLINDNE by Lemma 3. Also Lemma 3 indicates that
L(Mδ) = runs(M) is not Parikh semilinear. For the second point, it is known
that there are M ∈ NPBLIND with R(M) not being semilinear (implied by
being the case for vector addition systems with states [13]). Using Mδ, Lemma
3 implies R(Mδ) is not semilinear. ��
Hence, DPBLIND, DPBLINDNE, and more general models introduced later in this
paper all have languages, ‘runs’, and reachability sets that are not semilinear.
In contrast, languages accepted by NRBCM are all semilinear [17], the ‘runs’ are
semilinear by Lemma 3, and the reachability sets are semilinear, seen as follows:
for each M ∈ NRBCM(k), create M ′ ∈ NRBCM(2k) that nondeterministically
guesses and simulates transitions of M but using λ input and by using two
identical sets of counters until a nondeterministically guessed spot. Then, it
verifies that the input is 1nci1

1 · · · cik
k where n is a number associated with the

current state, and i1, . . . , ik are the same as one copy of the counters. From
then, it continues the simulation using the other set of counters. It is evident
that ψ(L(M ′)) = R(M), which is semilinear [17].

Even though DPBLIND contains languages that are not Parikh semilinear,
we see next that DPBLIND is still somewhat limited and cannot accept some
languages that seem relatively simple and that are Ginsburg semilinear and can
even be accepted by a DRBCM(1, 1). By contrast DRBCM accepts all Ginsburg
semilinear languages [19].

Proposition 7. The language L = {albm | 0 < l < m} is in DRBCM(1, 1)
but not in DPBLIND. Thus, DPBLIND does not contain all Ginsburg semilinear
languages.

Corollary 8. The families DPBLIND (resp. DPBLINDNE) and DRBCM are
incomparable.
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The one direction follows from Proposition 7, and the other since DPBLIND and
DPBLINDNE contain languages that are not Parikh semilinear by Proposition 6,
but DRBCM does not [17].

Proposition 9. DPBLIND is not closed under complement.

Proof. Assume otherwise. Consider L from Proposition 7, and let L′ = {anbm |
n ≥ m}. We can see that L′ can be accepted by a DPBLIND(1) machine that adds
to the counter for each a, then subtracts for each b, and then at the end-marker,
switches to final state and continually decreases the counter. Also, DPBLIND is
clearly closed under intersection with regular languages. But L′ ∩ a+b+ = L ∈
DPBLIND, but this is not in DPBLIND by Proposition 7, a contradiction. ��

Despite not being closed under complement, we will see later that the com-
plement of every DPBLIND language is in NPBLIND, which is sufficient to show
that DPBLIND has a decidable containment problem; in fact, we will determine
a stronger result.

4 Finite-Testable Counter Machines

Next, we introduce a new restriction of counter machines, which will be the
focus of the rest of this paper. A k-counter machine M = (Q,Σ, δ, q0, F ) is r-
testable if, for every acceptable computation and every counter i, 1 ≤ i ≤ k,
there are at most r decreasing i-segments that contain at least one status test.
A machine is finite-testable if it is r-testable for some r ≥ 0. We denote the class
of one-way nondeterministic (resp. deterministic) r-testable k-counter machines
by NTCM(k, r) (resp. DTCM(k, r)). We use NTCM(∗, r) (resp. DTCM(∗, r)) for
r-testable k-counter machines for some k. We also use NTCM (resp. DTCM) to
refer to all one-way nondeterministic (resp. deterministic) finite-testable multi-
counter machines.

Note, we could have alternatively defined r-testable so that for every accepted
word, there is some accepting computation where each counter i has at most r
decreasing i-segments; had we done that, given any machine M , another machine
M ′ could be constructed that uses the finite control to count the number of
decreasing i-segments in each counter, thereby satisfying the definition we use.

It is immediate that every NRBCM (resp. DRBCM) is a NTCM (resp. DTCM),
and therefore NRBCM ⊆ NTCM and DRBCM ⊆ DTCM.

Example 10. It is evident that DPBLIND � DTCM since L = {albm | 0 < l < m}
is in DRBCM(1, 1) but not DPBLIND by Proposition 7. A machine M ∈ DTCM
accepting L contains the following transitions (qf is a final state):

δ(q0, a, 1, 0̂) → (q1,+1), δ(q2, b, 1, 0̂) → (q3, 0),
δ(q1, a, 1, 1̂) → (q1,+1), δ(q3, b, 1, 0̂) → (q3, 0)
δ(q1, b, 1, 1̂) → (q2,−1), δ(q3,�, 1, 0̂) → (qf , 0),
δ(q2, b, 1, 1̂) → (q2,−1)
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Example 11. Next we provide a more complicated example of a machine accept-
ing a language that cannot be accepted by an NRBCM. Recall D′

2 = {w ∈
{a, b}∗ | if w = xy, then |x|a ≥ |x|b} from Example 4 which is not in NRBCM.
Let L1 be D′

2 over {a1, b1} and L2 be D′
2 over {a2, b2}. Let

L = {u1v1 · · · ulvl$x1y1 · · · xnyn | u1 · · · ulx1 · · · xn ∈ L1, v1 · · · vly1 · · · yn ∈ L2,
and |u1 · · · ul|a1 = |u1 · · · ul|b1}.

A DTCM(2, 2) M = (Q,Σ, δ, q0, {qf}) that accepts this language is as follows,
for i ∈ {1, 2},

δ(q0, ai, i, ∅̂) → (q0,+1), δ(q1,�, 1, ∅̂) → (q2, 0),
δ(q0, bi, i, ∅̂) → (q0,−1), δ(q2, λ, 1, 1̂) → (q2,−1)
δ(q0, $, 1, 0̂) → (q1, 0), δ(q2, λ, 1, 0̂) → (q3, 0),
δ(q1, ai, i, ∅̂) → (q1,+1) δ(q3, λ, 2, 1̂) → (q3,−1)
δ(q1, bi, i, ∅̂) → (q1,−1) δ(q3, λ, 2, 0̂) → (qf , 0).

This machine is deterministic because from both q0 and q1 and on each letter
of a1, b1, a2, b2, only a single no-test transition is possible, and from q2 and q3,
only one transition on each status test is possible.

It also appears that this language cannot be accepted by a DPBLIND because
a DPBLIND cannot test for zero until the very last ID. While it is possible to
create two new counters (called the special counters) to count both |u1 · · · ul|a1

and |u1 · · · ul|b1 by counting until $ and then not changing those counters until
the end-marker, it seems not possible to deterministically decrease these special
counters to zero to test that they are equal in the final instantaneous description
while also decreasing the other counters to zero without the ability to test for
zero in a subset of the counters before the final instantaneous description. In
contrast, the DTCM machine above can detect whether an individual counter is
empty unlike NPBLIND, which M does after reading $, and also separately for
each counter after reading �.

Notice that NTCM(∗, 0) corresponds exactly to NPBLIND. Furthermore, we
see that with nondeterministic machines, finite-testability and 0-testability are
equivalent, although converting to 0-testable increases the number of counters.

Proposition 12. NTCM(∗, 0) = NPBLIND = NTCM.

For the rest of this section, we are only concerned with deterministic
machines. We start with a normal form that is useful for the next section.
We say a DTCM(k, r) M = (Q,Σ, δ, q0, F ) is in normal form if, for each
q ∈ Q, a ∈ Σ ∪ {�}, the following are equivalent:

– there is a transition in δ(q, b, i, 0̂) with b ∈ {a, λ},
– there is a transition in δ(q, b, i, 1̂) with b ∈ {a, λ},
– there is no transition in δ(q, b, i, ∅̂) with b ∈ {a, λ}.

Furthermore, M is in strong normal form if M is in normal form, and
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– Q = Q1 ∪ Q2, Q1 ∩ Q2 = ∅, Q2 only contains λ transitions, and in every
computation, M only uses transition from Q1 before reading �, and from Q2

after reading �,
– in every computation, on counter i, at most r successful zero-tests on counter

i are possible.

Remark 13. Here, normal form enforces that on each letter of Σ ∪ {�}, there
is a transition that can be applied with a zero test if and only if there is a
transition that can be applied with a non-zero test, and vice versa (which, by
determinism would imply that there is not a no-test transition that can be
applied). If neither is true, a no-test is available. With strong normal form, as
there are only λ transitions from states in Q2, the normal form rules enforces
that for each q ∈ Q2, there is a transition in δ(q, λ, i, 0̂) if and only if there
is a transition in δ(q, λ, i, 1̂) if and only if there is no transition in δ(q, λ, i, ∅̂).
Therefore there is always at least one transition that can be applied at each
step even after the end-marker, and acceptance purely depends on whether it
eventually can hit a final state with all counters zero.

Lemma 14. Given M ∈ DTCM, a DTCM M ′ can be constructed in normal
form such that L(M) = L(M ′), R(M) = R(M ′), and runs(M) = runs(M ′).
Furthermore, a DTCM M ′′ can be constructed in strong normal form such that
L(M) = L(M ′′).

For deterministic machines, we obtain the following more nuanced situation
than Proposition 12. As part of that, we see that DTCM is equivalent to 1-
testable DTCM (although this increases the number of counters), which in turn
in more powerful than 0-testable DTCM which is equal to DPBLIND. The proof
largely uses Propositions 7, 6 and Corollary 8.

Fig. 1. In the above image, families drawn in the same cell are equal, arrows represent
strict containment, and no arrows between cells represents incomparability.

Proposition 15. The hierarchy diagram in Fig. 1 is correct.

Despite this, we conjecture that for a fixed number of counters, there is an infinite
hierarchy as r increases.
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Next, we show DTCM languages are in DLOG (can be accepted in log-space by
deterministic Turing machines), and hence can all be accepted by a polynomial
time deterministic Turing machine. For the next result, use an encoding of DTCM
whereby r is part of the description of M .

Lemma 16. Let M = (Q,Σ, δ, q0, F ) be a DTCM(k, r). Then the counters are
linearly bounded.

From the lemma, we have:

Proposition 17. DTCM (hence DPBLIND) is in DLOG.

5 Bounded Languages in DTCM and NTCM

Next, we demonstrate that despite DTCM containing languages that are not
Parikh semilinear, every bounded language in DTCM is both Ginsburg semilin-
ear and Parikh semilinear. This result is interesting on its own, and also useful as
a helper towards results in the next section. In parallel, we analyze the reachabil-
ity sets and the ‘runs’ of DTCM accepting bounded languages. The connection
between the ‘runs’ and bounded languages has been established in the litera-
ture. Vector addition system with states (VASS) have a concept called flattable,
whereby a VASS is flattable [21] if the set of all runs are included in a bounded
language (there, the reachability set and runs just need to be reachable from an
initial configuration and not within an accepting computation). It was shown
that a VASS is flattable if and only if its reachability set is definable in the
Presburger arithmetic.

First we need the following two simple properties which use completely stan-
dard constructions, similar to those in [12], and therefore proofs are omitted.

Lemma 18. For k, r ≥ 0, DTCM(k, r) is closed under intersection with regular
languages and inverse homomorphism.

Next, we need another intermediate lemma, which uses the regular periodicity
of the transitions applied by DTCM when accepting letter-bounded languages.

Lemma 19. Given Σ = {a1, . . . , an} and M = (Q,Σ, δ, q0, F ) ∈ DTCM(k, r)
such that L(M) ⊆ a∗

1 · · · a∗
n, both L(M) and runs(M) can both be accepted

by an NRBCM and are both bounded Ginsburg and Parikh semilinear, and a
representation of the semilinear sets can be effectively constructed. Moreover,
R(M) ⊆ N

k+1
0 is semilinear with an effective procedure.

From these, we can obtain the following:

Proposition 20. It is decidable, given M ∈ DTCM(k, r), whether L(M) is
bounded; and if so, we can determine words u1, . . . , un ∈ Σ+ such that L(M) ⊆
u∗
1 · · · u∗

n, and the following are true:

– L(M) ∈ NRBCM is bounded Ginsburg semilinear, φ(L(M)) = Q1 ⊆ N
n
0 is

effectively semilinear;
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– runs(M) ∈ NRBCM is bounded Ginsburg semilinear φ(runs(M)) = Q2 is
effectively semilinear;

– R(M) ⊆ N
k+1
0 is effectively semilinear;

Proof. First note that boundedness was recently shown to be decidable for
NPBLIND [2,6]. Hence, given M ∈ DTCM, we can determine whether L(M)
is bounded, and if so, we can determine words u1, . . . , un ∈ Σ+ such that
L(M) ⊆ u∗

1 · · · u∗
n. Henceforth, we assume u1, . . . , un are known. Let a1, . . . , an

be new symbols and let h be a homomorphism that maps ai to ui for i from
1 to n. As DTCM is closed under inverse homomorphism and intersection with
regular languages by Lemma 18, we can construct M ′ ∈ DTCM with

L(M ′) = h−1(L(M)) ∩ a∗
1 · · · a∗

n = {ai1
1 · · · ain

n | ui1
1 · · · uin

n ∈ L(M)} ∈ DTCM.

By Lemma 19, L(M) is bounded Ginsburg semilinear and we can effectively
determine semilinear set Q such that φ(L(M)) = Q. Then given u1, . . . , un,
φ(L(M)) = Q, and so L(M) is in NRBCM.

Similarly, it follows that runs(M) ∈ NRBCM by using M ′ with the lemma
above, and also R(M) is semilinear. ��

If one were to examine deterministic vector addition systems with states that
either operated with only λ moves, or over bounded languages, the same thing
would be true.

Interestingly it was shown in [3] that the bounded Ginsburg semilinear lan-
guages are equal to the bounded languages in both NRBCM and in DRBCM.
Since DRBCM � DTCM by Proposition 15, it follows that the bounded lan-
guages in DTCM and DRBCM coincide and are exactly the bounded Ginsburg
semilinear languages. It is also known that the bounded languages accepted by
multi-head DFAs and multi-head NFAs are also exactly the bounded Ginsburg
semilinear languages (this is even the case for 2-head DFAs) [16]. And this is also
true for two-way multi-head NPDA where the input heads turn at most a finite
number of times. Furthermore, it follows from [3] that the bounded languages in
any semilinear trio (a family closed under inverse homomorphism, λ-free homo-
morphism, and intersection with regular languages) are always a subset of the
bounded Ginsburg semilinear languages. Some other examples are given in [3] of
families of languages where the bounded languages in the family are exactly the
bounded Ginsburg semilinear languages, such as finite-index ET0L, and Turing
machines with a one-way input tape and a finite-turn worktape.

Corollary 21. The bounded languages in the following families are exactly equal
to the bounded Ginsburg semilinear languages:

– DTCM,
– NRBCM,
– DRBCM,
– multi-head NFA,
– 2-head DFA.
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An interesting question next is whether the bounded languages in NTCM are
Ginsburg or Parikh semilinear. We answer that question negatively.

Proposition 22. The following are true:

– there are bounded languages in NTCM = NPBLIND that are not Parikh semi-
linear,

– there are bounded languages in NTCM that are Parikh semilinear but not
Ginsburg semilinear,

– there are machines M in NTCM where L(M) is bounded but R(M) is not
semilinear.

Certainly though, the bounded Ginsburg semilinear languages in NTCM coin-
cide with the bounded languages in DTCM and those of the families in Corollary
21.

To note, of all the families in Corollary 21 or that are listed above it, the
only family we know of that contain languages that are not Parikh semilinear,
but where the bounded languages within are only bounded Ginsburg semilinear
are the multi-head DFA and NFA families, and now DTCM. It is known however
that even 2-head DFA has an undecidable emptiness problem [26]. From this, it
follows that it is undecidable whether a 2-head DFA accepts a bounded language
(given a 2-head DFA M , construct M ′ to accept L(M){$}Σ∗ where L(M) ⊆ Σ∗

and $ is a new symbol not in Σ, which is bounded if and only if L(M) = ∅). How-
ever, DTCM actually can decide if a given machine accepts a bounded language,
as DTCM ⊆ NPBLIND where boundedness is decidable [2,6]. Hence, DTCM is
the only known class of machines with a decidable boundedness problem (which
is needed for Proposition 20) that contains languages that are not Parikh semi-
linear, but where the bounded languages within are only Ginsburg (or Parikh)
semilinear.

We obtain the following interesting property on reachability sets for NTCM.
It follows from Proposition 20 that for every bounded DTCM, runs(M) is
bounded, and R(M) is semilinear. The following is true even for nondeterministic
machines.

Corollary 23. For each M ∈ NTCM (and NPBLIND), it is decidable if runs(M)
is bounded; and if it is, then runs(M) is Ginsburg semilinear and can be accepted
by a DRBCM, R(M) is a semilinear set, and both semilinear sets can be effectively
computed.

Proof. Given M , build Mδ ∈ DTCM. Since it is decidable whether L(Mδ)
is bounded [6], and if so, we can determine x1, . . . , xd, where xi ∈ Σ+

δ and
L(Mδ) ⊆ x∗

1 · · · x∗
d; this happens if and only if runs(M) is bounded. Using

Proposition 20 on Mδ ∈ DTCM, it then follows that R(Mδ) is semilinear,
L(Mδ) is Ginsburg semilinear, and both can be effectively constructed. It is
known that all bounded Ginsburg languages are in DRBCM [19]. Lemma 3 says
L(Mδ) = runs(M); and if R(M) were not semilinear then neither is R(Mδ).
Therefore, R(M) is semilinear. ��
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6 Complement and Containment of Deterministic
Finite-Testable Machines

In this section, we show the following interesting and surprising property, that the
complement of every DTCM language (hence DPBLIND) is a NTCM = NPBLIND
language. Note that the machine constructed in the proof makes extremely heavy
use of nondeterminism, using a nondeterministic choice at many moves of the
simulation. We also conjecture that DTCM is not closed under complement (as
we proved is the case with DPBLIND), but do not have a proof of this.

We require two technical lemmas which are used to decide properties of
counter values that can eventually reach zeros on every counter without a zero-
test. This will be helpful for constructing the complement. The first will be
used after reading the end-marker to help determine if the counter values can
eventually pass over a final state with all counters being zero, which is required
for acceptance. This proof essentially follows from the proof in the previous
section that all bounded DTCM languages are Parikh semilinear.

Lemma 24. Given a DTCM(k, r) M = (Q,Σ, δ, q0, F ) in strong normal form
with Q partitioned into Q1 and Q2, and q ∈ Q2, where t1, t2, . . . is the sequence
of transitions from q on λ transitions with only non-zero tests or no-tests. Then

Sq = {�v0 | (p0, λ,�v0) 	t1 · · · 	tl (pl, λ,�vl), p0 = q,�vl = �0, pl ∈ F},

is an effectively determinable semilinear set.

Proof. Sequence t1, t2, . . . is infinite by strong normal form. Sq can be seen to be
semilinear as follows: Create M ′ ∈ DTCM(k, r) over {a1, . . . , ak} that on input
aj1
1 · · · ajk

k �, puts ji on counter i and then after reading �, simulates M . Since
L(M ′) ⊆ a∗

1 · · · a∗
k, then ψ(L(M ′)) = Sq. The result is true by Lemma 19. ��

We also require another technical lemma, with a proof akin to Lemma 19.

Lemma 25. Given a DTCM M = (Q,Σ, δ, q0, F ) in strong normal form with
Q partitioned into Q1 and Q2, and q ∈ Q2 where t1, t2, . . . is the sequence of
transitions from q on λ-transitions with only non-zero-tests or no-tests. Then

Rq = {�v0 | (p0, λ,�v0) 	t1 · · · 	tl (pl, λ,�vl), p0 = q, (tl+1 has non-zero-test on
some counter i and �vl(i) = 0) and l is minimal where this is true},

is an effectively semilinear set.

Now we will show the main result.

Proposition 26. For all L ∈ DTCM, L ∈ NTCM = NPBLIND.

Proof. Let M = (Q,Σ, δ, q0, F ) be a DTCM(k, r) in strong normal form with Q
partitioned into Q1 and Q2. Let q ∈ Q. As in the proof of the previous lemmas,
there is a unique sequence of λ transitions that can be applied starting in state
q without a zero-test,

t1, t2, . . . (2)
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This sequence could be infinite if and only if some transition t occurs in this
list at least twice since M is deterministic. We can precompute whether this
sequence for each q ∈ Q is finite or infinite. Moreover, for q ∈ Q2 the sequence
must be infinite by strong normal form (see Remark 13), and we can compute
the semilinear representation of

Sq = {�v0 | (p0, λ,�v0) 	t1 · · · 	tl (pl, λ,�vl), p0 = q,�vl = �0, pl ∈ F, l ≥ 0}.

This set contains all counter values �v0, such that starting in state q with �v0 on
the counters, it can eventually hit some ID with 0 in all counters, and in a final
state. Also, we can precompute for each q ∈ Q2 a semilinear representation of

Rq = {�v0 | (p0, λ,�v0) 	t1 · · · 	tl (pl, λ,�vl), p0 = q, (tl+1 has a non-zero-test on
counter i and �vl(i) = 0) and l is minimal where this is true}.

It is known that given two semilinear sets P1, P2, that P1−P2 is also effectively
semilinear [9]. As N

k
0 is semilinear (where there is a period with a single 1 in one

component and zeros in the other components), therefore N
k
0 − Sq is effectively

semilinear, which we denote by Sq, and similarly for Rq producing Rq.
Now we will build a NTCM M with (2r + 3)k2 counters accepting L(M).

The machine has only a single new final state qf . We describe M as follows.
In M , it operates differently before, and after the end-marker �. Before the
end-marker in M , the only way to not accept some input w would be if the
machine crashes (a no-test transition to be applied would cause a counter to go
below 0), or it enters an infinite loop on λ-transitions (note that there is always
at least one transition that can be applied by strong normal form). Therefore
before the end-marker (including the transition that reads � but no transition
after) M simulates M faithfully using counters that we call C0

1 , . . . , C0
k , except

for the following: first, before simulating each transition t of M that decreases
some counter, i say, M instead makes a nondeterministic choice (we call this the
crashing strategy simulation):

1. M guesses that the simulation can continue, and simulates t;
2. M guesses that the transition t that decreases counter i will cause counter

i to go below 0. In this case, M subtracts all counters other than i by some
nondeterministically guessed amount greater than or equal to 0 (but does not
change counter i), and then it reads the rest of the input including �, and
switches to qf (which will then accept if and only if all counters are zero).
Note that here, M accepts in this way exactly when M would have crashed
on t because it would have decreased counter i below zero, but in M , counter
i does not decrease counter i so must be zero in order for M to accept.

Second, we want M to accept if M would have entered an infinite loop on λ
before hitting �. After simulating each transition that reads an input symbol
a ∈ Σ and ending in state q, we check if the sequence (2) is infinite which
was predetermined. If it is finite, we continue the simulation using the crashing
strategy simulation until either it reads the next letter, or there is a zero-test in
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some counter i with zero on the counter, from which M can continue to simulate.
To note, if there is a successful zero-test, taking to state q′, then there may be
additional transitions on λ, but this will happen at most r times across an entire
accepting computation for each counter.

Assume sequence (2) is infinite. Let α < β be such that tα = tβ and they
are the smallest values where this is the case and therefore the sequence is
t1, . . . , tα−1 followed by tα, . . . , tβ−1 repeated indefinitely by the determinism of
M . Considering the cycle tα, . . . , tβ−1, let �u ∈ Z

k be the sum of the counter values
changed in this sequence. If there is some position i of this vector that is negative,
then when simulating this sequence from any counter ID, it will eventually stop
either by crashing, or detecting a zero with a zero-test. Then we can continue this
simulation using the crashing strategy simulation. If all values in �u are at least 0,
then this will enter an infinite loop from a given ID if it is defined on t1, . . . , tβ−1

without a successful zero-test (if there is a successful zero-test, this cycle ends
and M continues the simulation). Thus it executes this initial sequence of length
β − 1 (detecting crashes with the crashing strategy simulation), and then after
this sequence, M is in an infinite loop. So, M instead switches to qf , reads the
rest of the input, and reduces all counters by some nondeterministically guessed
amount in order to accept.

Next, we will consider the case after reading the end-marker �. Let q(0) be
the state after reading �, and let �v0 be the counter values.

First, M guesses a number m ≥ 0 such that there are m successful tests of 0
that can occur in any computation starting from q(0) and �v0. By strong normal
form 0 ≤ m ≤ rk. This guessed m will later be verified. If guessed correctly, then
the only way for M to not accept is after the mth successful test for zero, either
M crashes, or enters an infinite loop (it does not stop by strong normal form
as there is always at least one transition that can be applied), and M does not
pass over any IDs with all counters 0 in a final state at any point after reading
the end-marker. We will build M to guess and verify m while at the same time
accepting if and only if M would not accept.

Construct M as follows: first M guesses and remembers m in the state.
Then for each j one at a time from 0 to m − 1, M makes copies of the val-
ues currently stored in counters Cj

1 , . . . , C
j
k into counters named Dj

1, . . . , D
j
k and

Cj+1
1 , . . . , Cj+1

k respectively. Then using Dj
1, . . . , D

j
k, M verifies that �vj ∈ Sq(j) ,

thereby verifying that it will not pass over a final state with all counters zero
before the next successful zero-test. To do so, it guesses a linear set in the
semilinear set, then subtracts the constant, and subtracts each period a nonde-
terministically guessed number of times, and these counters are then verified to
be 0. Then it continues to simulate M using Cj+1

1 , . . . , Cj+1
k until a successful

zero-test in some counter ending in some state q(j+1) say with counter values
�vj+1, thereby verifying that at least j + 1 zero-tests were successful. Then it
continues at the beginning of this paragraph for j + 1 until it hits m.

When in q(m) with counter values �vm, then it copies counters Cm
1 , . . . , Cm

k into
both Dm

1 , . . . , Dm
k and E1, . . . , Ek. Using E1, . . . , Ek, it verifies that �vm ∈ Rq(m)

(using the same technique as above where it guesses a linear set, subtracts the
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constant, and each period a guessed number of times), thereby verifying that
another zero-test will not be successful, and then verifies that �vm ∈ Sq(m) using
Dm

1 , . . . , Dm
k thereby verifying that it will not pass over a final state with all

counters 0. If so, then M accepts, otherwise M will never enter a final state and
cannot accept.

Next, we will verify that L(M) = L(M).
Let w ∈ L(M). There are several ways for M to not accept w. First, before

the end-marker, M could crash by trying to subtract from a 0 counter, or it could
enter an infinite loop. After the end-marker, it could not pass over all zeros in
a final state, which could be the result of crashing, or entering an infinite loop
without hitting all 0’s in a final state.

If M crashes before the end-marker, then M would accept by guessing the
exact ID before simulating the next transition causing the crash, which would
therefore have to be zero before the crash. Then M can nondeterministically
reduce all other counters by some amount, read the rest of the input and accept.
Similarly if M gets in an infinite loop on λ before the end-marker, then in M ,
after reading each letter of Σ or successfully simulating a zero-test, it then knows
the state, and if no counter decreases in the cycle part, it can detect whether
M would enter an infinite loop by executing one cycle of the loop, and so M
reads the rest of the input and accepts. After reading the end-marker resulting
in state �v0 in state q(0), say that M has 0 ≤ m successful zero-tests, where m
must be less than or equal to kr (this m exists whether or not M accepts w).
Then, M either crashes, or goes into an infinite loop (as mentioned earlier, it
cannot stop). In any case, as w is not accepted, M will not pass over a final
state with all counters being 0. If M has m successful zero-tests and does not
pass over all 0 in a final state before that, then M will guess m. Indeed, after
hitting each successful zero-test up to m, it is verified that from the current state
q(j) and counter values �vj , that it will not pass over a final state with all 0’s in
the counters by verifying that �vj ∈ Sqj , and indeed Lemma 24 implies that it
cannot pass over all 0’s in a final state. If M either crashes or enters an infinite
loop after the mth successful zero-test (without passing over 0’s in a final state
beforehand), then another successful zero-test will not occur and it will not pass
over all 0’s in a final state, and so �vm will be in both Sqm and Rqm which is
enough for M to accept w. Thus, w ∈ L(M).

Let w ∈ L(M). Before the end-marker, M could guess that the next simu-
lation transition that decreases some counter i would cause M to go below 0,
and instead nondeterministically reduce all other counters by some amount and
accept. Thus, in this situation, w ∈ L(M). The next way that M can accept is if
there is an infinite sequence of transitions that can be applied on a non-zero-test
or a no-test, and no counter value applied in a cycle can decrease, and applying
this cycle at least once without a successful zero-test, which causes M to accept;
in this scenario, M would then be in an infinite loop, and w ∈ L(M).

After the end-marker, the only way for M to accept is if it guesses a number
m ≥ 0 such that there are m successful zero-test, it can simulate M up until
that mth zero-test, for each j from 0 to m, the counter values �vj and state q(j)
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right after the jth successful zero-test all have �vj ∈ Sq(j) , which means that M
would not pass over all counters being 0 in a final state after the jth section; and
�vm ∈ Rq(m) which means that another zero-test would not be successful. Hence,
M cannot accept w, and w ∈ L(M). ��

This can be used to show the following interesting decidability property.

Theorem 27. The containment problem is decidable for DTCM (and
DPBLIND). Furthermore, the problem, “given a NTCM M1 and a DTCM M2,
is L(M1) ⊆ L(M2)?” is decidable.

Proof. Given a nondeterministic machine M1 and a deterministic machine M2,
first construct L(M2) ∈ NPBLIND = NTCM by Proposition 26. Then construct
L(M1) ∩ L(M2) ∈ NPBLIND, as NPBLIND is closed under intersection [10], and
then test emptiness [20,22], which is empty if and only if L(M1) ⊆ L(M2). ��

This result generalizes the known decidability of the containment problem
for DRBCM [17] as DRBCM � DTCM.

However, it is also known that finite-crossing 2DRBCM (these are two-way
DRBCMs where the input is finite-crossing (a machine is finite-crossing if every
accepted word has an accepting computation where there is a bound on the
number of times the boundary between each two adjacent input cells is crossed)
[17], and also 2DRBCM(1) (these are two-way DRBCM machines with a single
reversal-bounded counter) [15,18] have a decidable containment problem, which
could be more general or incomparable to DTCM. The latter family, 2DRBCM(1)
is also powerful enough to accept languages that are not Parikh semilinear like
DTCM. Then, DPBLIND and DTCM join these families as having a decidable
containment problem, and joins 2DRBCM(1) as one which contains languages
that are not Parikh semilinear. This is quite strong as even NRBCM(1, 1) has an
undecidable containment problem [1].

7 Future Directions

Below are some interesting problems that deserve further investigation. Although
we determined here that DPBLIND is not closed under complement, it is open
whether or not DTCM closed under complement. Also, is DTCM with no end-
marker weaker than with the end-marker, as was the case with DPBLIND? Next,
although we showed that DTCM coincides with 1-testable DTCM, is there a
hierarchy in terms of DTCM(k, r) for fixed k or r? Lastly, although we showed
that the complement of every DTCM is in NTCM = NPBLIND, is it also true
that the complement of every unambiguous NTCM (or unambiguous NPBLIND)
is in NTCM?
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