
A Novel Family of Finite Automata
for Recognizing and Learning ω-Regular

Languages

Yong Li , Sven Schewe , and Qiyi Tang(B)

University of Liverpool, Liverpool, UK

qiyitang@liverpool.ac.uk

Abstract. Families of DFAs (FDFAs) have recently been introduced as
a new representation of ω-regular languages. They target ultimately peri-
odic words, with acceptors revolving around accepting some representa-
tion u · vω. Three canonical FDFAs have been suggested, called periodic,
syntactic, and recurrent. We propose a fourth one, limit FDFAs, which
can be exponentially coarser than periodic FDFAs and are more suc-
cinct than syntactic FDFAs, while they are incomparable (and dual to)
recurrent FDFAs. We show that limit FDFAs can be easily used to check
not only whether ω-languages are regular, but also whether they are
accepted by deterministic Büchi automata. We also show that canonical
forms can be left behind in applications: the limit and recurrent FDFAs
can complement each other nicely, and it may be a good way forward to
use a combination of both. Using this observation as a starting point, we
explore making more efficient use of Myhill-Nerode’s right congruences in
aggressively increasing the number of don’t-care cases in order to obtain
smaller progress automata. In pursuit of this goal, we gain succinctness,
but pay a high price by losing constructiveness.

1 Introduction

The class of ω-regular languages has proven to be an important formalism to
model reactive systems and their specifications, and automata over infinite words
are the main tool to reason about them. For example, the automata-theoretic
approach to verification [24] is the main framework for verifying ω-regular spec-
ifications. The first type of automata recognizing ω-regular languages is non-
deterministic Büchi automata [6] (NBAs) where an infinite word is accepted if
one of its runs meets the accepting condition for infinitely many times. Since
then, other types of acceptance conditions, such as Muller, Rabin, Streett and
parity automata [25], have been introduced. All the automata mentioned above
are finite automata processing infinite words, widely known as ω-automata [25].

The theory of ω-regular languages is more involved than that of regular
languages. For instance, nondeterministic finite automata (NFAs) can be deter-
minized with a subset construction, while NBAs have to make use of tree struc-
tures [21]. This is because of a fundamental difference between these language
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14215, pp. 53–73, 2023.
https://doi.org/10.1007/978-3-031-45329-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45329-8_3&domain=pdf
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0002-9093-9518
http://orcid.org/0000-0002-9265-3011
https://doi.org/10.1007/978-3-031-45329-8_3

54 Y. Li et al.

classes: for a given regular language R, the Myhill-Nerode theorem [18,19] defines
a right congruence (RC) �R in which every equivalence class corresponds to a
state in the minimal deterministic finite automata (DFA) accepting R. In con-
trast, there is no similar theorem to define the minimal deterministic ω-automata
for the full class of ω-regular languages1. Schewe proved in [23] that it is NP-
complete to find the minimal deterministic ω-automaton even given a determinis-
tic ω-automaton. Therefore, it seems impossible to easily define a Myhill-Nerode
theorem for (minimal) ω-automata.

Recently, Angluin, Boker and Fisman [2] proposed families of DFAs (FDFAs)
for recognizing ω-regular languages, in which every DFA can be defined with
respect to a RC defined over a given ω-regular language [3]. This tight connection
is the theoretical foundation on which the state of the art learning algorithms
for ω-regular languages [3,12] using membership and equivalence queries [1] are
built. FDFAs are based on well-known properties of ω-regular languages [6,7]:
two ω-regular languages are equivalent if, and only if, they have the same set
of ultimately periodic words. An ultimately periodic word w is an infinite word
that consists of first a finite prefix u, followed by an infinite repetition of a finite
nonempty word v; it can thus be represented as a decomposition pair (u, v).
FDFAs accept infinite words by accepting their decomposition pairs: an FDFA
F = (M, {N q}) consists of a leading DFA M that processes the finite prefix u,
while leaving the acceptance work of v to the progress DFA N q, one for each
state of M. To this end, M intuitively tracks the Myhill-Nerode’s RCs, and
an ultimately periodic word u · vω is accepted if it has a representation x · yω

such that x and x · y are in the same congruence class and y is accepted by the
progress DFA N x. Angluin and Fisman [3] formalized the RCs of three canonical
FDFAs, namely periodic [7], syntactic [16] and recurrent [3], and provided a
unified learning framework for them.

In this work, we first propose a fourth one, called limit FDFAs (cf. Section 3).
We show that limit FDFAs are coarser than syntactic FDFAs. Since syntactic
FDFAs can be exponentially more succinct than periodic FDFAs [3], so do our
limit FDFAs. We show that limit FDFAs are dual (and thus incomparable in
the size) to recurrent FDFAs, due to symmetric treatment for don’t care words.
More precisely, the formalization of such FDFA does not care whether or not
a progress automaton N x accepts or rejects a word v, unless reading it in M
produces a self-loop. Recurrent progress DFAs reject all those don’t care words,
while limit progress DFAs accept them.

We show that limit FDFAs (families of DFAs that use limit DFAs) have two
interesting properties. The first is on conciseness: we show that this change in
the treatment of don’t care words not only defines a dual to recurrent FDFAs but
also allows us to identify languages accepted by deterministic Büchi automata
(DBAs) easily. It is only known that one can identify whether a given ω-language
is regular by verifying whether the number of states in the three canonical FDFAs
is finite. However, if one wishes to identify DBA-recognizable languages with

1 Simple extension of Myhill-Nerode theorem for ω-regular languages only works on a
small subset [4,15].

Novel Families of Finite Automata 55

FDFAs, a straight-forward approach is to first translate the input FDFA to an
equivalent deterministic Rabin automaton [2] through an intermediate NBA,
and then use the deciding algorithm in [10] by checking the transition structure
of Rabin automata. However, this approach is exponential in the size of the
input FDFA because of the NBA determinization procedure [8,21,22]. Our limit
FDFAs are, to the best of our knowledge, the first type of FDFAs able to identify
the DBA-recognizable languages in polynomial time (cf. Sect. 4).

We note that limit FDFAs also fit nicely into the learning framework intro-
duced in [3], so that they can be used for learning without extra development.

We then discuss how to make more use of don’t care words when defining
the RCs of the progress automata, leading to the coarsest congruence relations
and therefore the most concise FDFAs, albeit to the expense of losing construc-
tiveness (cf. Sect. 5).

2 Preliminaries

In the whole paper, we fix a finite alphabet Σ. A word is a finite or infinite
sequence of letters in Σ; ε denotes the empty word. Let Σ∗ and Σω denote
the set of all finite and infinite words (or ω-words), respectively. In particular,
we let Σ+ = Σ∗ \ {ε}. A finitary language is a subset of Σ∗; an ω-language
is a subset of Σω. Let ρ be a sequence; we denote by ρ[i] the i-th element of
ρ and by ρ[i..k] the subsequence of ρ starting at the i-th element and ending
at the k-th element (inclusively) when i ≤ k, and the empty sequence ε when
i > k. Given a finite word u and a word w, we denote by u · w (uw, for short)
the concatenation of u and w. Given a finitary language L1 and a finitary/ω-
language L2, the concatenation L1 · L2 (L1L2, for short) of L1 and L2 is the set
L1 · L2 = {uw | u ∈ L1, w ∈ L2 } and Lω

1 the infinite concatenation of L1.

Transition System. A (nondeterministic) transition system (TS) is a tuple
T = (Q, q0, δ), where Q is a finite set of states, q0 ∈ Q is the initial state,
and δ : Q × Σ → 2Q is a transition function. We also lift δ to sets as
δ(S, σ) :=

⋃
q∈S δ(q, σ). We also extend δ to words, by letting δ(S, ε) = S and

δ(S, a0a1 · · · ak) = δ(δ(S, a0), a1 · · · ak), where we have k ≥ 1 and ai ∈ Σ for
i ∈ {0, · · · , k}.

The underlying graph GT of a TS T is a graph 〈Q,E〉, where the set of
vertices is the set Q of states in T and (q, q′) ∈ E if q′ ∈ δ(q, a) for some a ∈ Σ.
We call a set C ⊆ Q a strongly connected component (SCC) of T if, for every
pair of states q, q′ ∈ C, q and q′ can reach each other in GT .

Automata. An automaton on finite words is called a nondeterministic finite
automaton (NFA). An NFA A is formally defined as a tuple (T , F), where T is
a TS and F ⊆ Q is a set of final states. An automaton on ω-words is called a
nondeterministic Büchi automaton (NBA). An NBA B is represented as a tuple
(T , Γ) where T is a TS and Γ ⊆ {(q, a, q′) : q, q′ ∈ Q, a ∈ Σ, q′ ∈ δ(q, a)} is a set
of accepting transitions. An NFA A is said to be a deterministic finite automaton
(DFA) if, for each q ∈ Q and a ∈ Σ, |δ(q, a)| ≤ 1. Deterministic Büchi automata

56 Y. Li et al.

(DBAs) are defined similarly and thus Γ is a subset of {(q, a) : q ∈ Q, a ∈ Σ},
since the successor q′ is determined by the source state and the input letter.

A run of an NFA A on a finite word u of length n ≥ 0 is a sequence of
states ρ = q0q1 · · · qn ∈ Q+ such that, for every 0 ≤ i < n, qi+1 ∈ δ(qi, u[i]).
We write q0

u−→qn if there is a run from q0 to qn over u. A finite word u ∈ Σ∗

is accepted by an NFA A if there is a run q0 · · · qn over u such that qn ∈ F .
Similarly, an ω-run of A on an ω-word w is an infinite sequence of transitions
ρ = (q0, w[0], q1)(q1, w[1], q2) · · · such that, for every i ≥ 0, qi+1 ∈ δ(qi, w[i]).
Let inf(ρ) be the set of transitions that occur infinitely often in the run ρ. An
ω-word w ∈ Σω is accepted by an NBA A if there exists an ω-run ρ of A over
w such that inf(ρ) ∩ Γ
= ∅. The finitary language recognized by an NFA A,
denoted by L∗(A), is defined as the set of finite words accepted by it. Similarly,
we denote by L(A) the ω-language recognized by an NBA A, i.e., the set of ω-
words accepted by A. NFAs/DFAs accept exactly regular languages while NBAs
recognize exactly ω-regular languages.

Right Congruences. A right congruence (RC) relation is an equivalence rela-
tion � over Σ∗ such that x � y implies xv � yv for all v ∈ Σ∗. We denote by
| � | the index of �, i.e., the number of equivalence classes of �. A finite RC is
a RC with a finite index. We denote by Σ∗/� the set of equivalence classes of
Σ∗ under �. Given x ∈ Σ∗, we denote by [x]� the equivalence class of � that x
belongs to.

For a given RC � of a regular language R, the Myhill-Nerode theorem [18,19]
defines a unique minimal DFA D of R, in which each state of D corresponds to
an equivalence class defined by � over Σ∗. Therefore, we can construct a DFA
D[�] from � in a standard way.

Definition 1 ([18,19]). Let � be a right congruence of finite index. The TS
T [�] induced by � is a tuple (S, s0, δ) where S = Σ∗/�, s0 = [ε]�, and for each
u ∈ Σ∗ and a ∈ Σ, δ([u]�, a) = [ua]�.

For a given regular language R, we can define the RC �R of R as x �R

y if, and only if, ∀v ∈ Σ∗. xv ∈ R ⇐⇒ yv ∈ R. Therefore, the minimal DFA
for R is the DFA D[�R] = (T [�R], F�R

) by setting final states F�R
to all

equivalence classes [u]�R
such that u ∈ R.

Ultimately Periodic (UP) Words. A UP-word w is an ω-word of the form
uvω, where u ∈ Σ∗ and v ∈ Σ+. Thus w = uvω can be represented as a pair of
finite words (u, v), called a decomposition of w. A UP-word can have multiple
decompositions: for instance (u, v), (uv, v), and (u, vv) are all decompositions of
uvω. For an ω-language L, let UP(L) = {uvω ∈ L | u ∈ Σ∗ ∧ v ∈ Σ+ } denote
the set of all UP-words in L. The set of UP-words of an ω-regular language L
can be seen as the fingerprint of L, as stated below.

Theorem 1 ([6,7]). (1) Every non-empty ω-regular language L contains at
least one UP-word. (2) Let L and L′ be two ω-regular languages. Then L = L′

if, and only if, UP(L) = UP(L′).

Novel Families of Finite Automata 57

Families of DFAs (FDFAs). Based on Theorem 1, Angluin, Boker, and Fis-
man [2] introduced the notion of FDFAs to recognize ω-regular languages.

Definition 2 ([2]). An FDFA is a pair F = (M, {N q}) consisting of a leading
DFA M and of a progress DFA N q for each state q in M.

Intuitively, the leading DFA M of F = (M, {N q}) for L consumes the finite
prefix u of a UP-word uvω ∈ UP(L), reaching some state q and, for each state q
of M, the progress DFA N q accepts the period v of uvω. Note that the leading
DFA M of every FDFA does not make use of final states—contrary to its name,
it is really a leading transition system.

Let A be a deterministic automaton with TS T = (Q, q0, δ) and x ∈ Σ∗. We
denote by A(x) the state δ(q0, x). Each FDFA F characterizes a set of UP-words
UP(F) by following the acceptance condition.

Definition 3 (Acceptance). Let F = (M, {N q}) be an FDFA and w be a
UP-word. A decomposition (u, v) of w is normalized with respect to F if M(u) =
M(uv). A decomposition (u, v) is accepted by F if (u, v) is normalized and we
have v ∈ L∗(N q) where q = M(u). The UP-word w is accepted by F if there
exists a decomposition (u, v) of w accepted by F .

Note that the acceptance condition in [2] is defined with respect to the decom-
positions, while ours applies to UP-words. So, they require the FDFAs to be
saturated for recognizing ω-regular languages.

Definition 4 (Saturation [2]). Let F be an FDFA and w be a UP-word in
UP(F). We say F is saturated if, for all normalized decompositions (u, v) and
(u′, v′) of w, either both (u, v) and (u′, v′) are accepted by F , or both are not.

We will see in Sect. 4.1 that under our acceptance definition the saturation
property can be relaxed while still accepting the same language.

In the remainder of the paper, we fix an ω-language L unless stated otherwise.

3 Limit FDFAs for Recognizing ω-Regular Languages

In this section, we will first recall the definitions of three existing canonical
FDFAs for ω-regular languages, and then introduce our limit FDFAs and com-
pare the four types of FDFAs.

3.1 Limit FDFAs and Other Canonical FDFAs

Recall that, for a given regular language R, by Definition 1, the Myhill-Nerode
theorem [18,19] associates each equivalence class of �R with a state of the min-
imal DFA D[�R] of R. The situation in ω-regular languages is, however, more
involved [4]. An immediate extension of such RCs for an ω-regular language L
is the following.

58 Y. Li et al.

Definition 5 (Leading RC). For two u1, u2 ∈ Σ∗, u1 �L u2 if, and only if
∀w ∈ Σω. u1w ∈ L ⇐⇒ u2w ∈ L.

Since we fix an ω-language L in the whole paper, we will omit the subscript
in �L and directly use � in the remainder of the paper.

Assume that L is an ω-regular language. Obviously, the index of � is finite
since it is not larger than the number of states in the minimal deterministic
ω-automaton accepting L. However, � is only enough to define the minimal ω-
automaton for a small subset of ω-regular languages; see [4,15] for details about
such classes of languages. For instance, consider the language L = (Σ∗ · aa)ω

over Σ = {a, b}: clearly, | � | = 1 because L is a suffix language (for all u ∈ Σ∗,
w ∈ L ⇐⇒ u · w ∈ L). At the same time, it is easy to see that the minimal
deterministic ω-automaton needs at least two states to recognize L. Hence, �
alone does not suffice to recognize the full class of ω-regular languages.

Nonetheless, based on Theorem 1, we only need to consider the UP-words
when uniquely identifying a given ω-regular language L with RCs. Calbrix et
al. proposed in [7] the use of the regular language L$ = {u$v : u ∈ Σ∗, v ∈
Σ+, uvω ∈ L} to represent L, where $ /∈ Σ is a fresh letter2. Intuitively, L$

associates a UP-word w in UP(L) by containing every decomposition (u, v) of w
in the form of u$v. The FDFA representing L$ is formally stated as below.

Definition 6 (Periodic FDFAs [7]). The � is as defined in Definition 5.
Let [u]� be an equivalence class of �. For x, y ∈ Σ∗, we define periodic RC

as: x ≈u
P y if, and only if, ∀v ∈ Σ∗, u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L.

The periodic FDFA FP = (M, {N u
P }) of L is defined as follows.

The leading DFA M is the tuple (T [�], ∅). Recall that T [�] is the TS con-
structed from � by Definition 1.

The periodic progress DFA N u
P of the state [u]� ∈ Σ∗/� is the tuple (T [≈u

P

], Fu), where [v]≈u
P

∈ Fu if uvω ∈ L.

One can verify that, for all u, x, y, v ∈ Σ∗, if x ≈u
P y, then xv ≈u

P yv. Hence,
≈u

P is a RC. It is also proved in [7] that L$ is a regular language, so the index
of ≈u

P is also finite.
Angluin and Fisman in [3] showed that, for a variant of the family of lan-

guages Ln given by Michel [17], its periodic FDFA has Ω(n!) states, while the
syntactic FDFA obtained in [16] only has O(n2) states. The leading DFA of the
syntactic FDFAs is exactly the one defined for the periodic FDFA. The two types
of FDFAs differ in the definitions of the progress DFAs N u for some [u]�. From
Definition 6, one can see that N u

P accepts the finite words in Vu = {v ∈ Σ+ :
u · vω ∈ L}. The progress DFA N u

S of the syntactic FDFA is not required to
accept all words in Vu, but only a subset Vu,v = {v ∈ Σ+ : u · vω ∈ L, u � u · v},
over which the leading DFA M can take a round trip from M(u) back to itself.
This minor change makes the syntactic FDFAs of the language family Ln expo-
nentially more succinct than their periodic counterparts.

Formally, syntactic FDFAs are defined as follows.

2 This enables to learn L via learning the regular language L$ [9].

Novel Families of Finite Automata 59

Definition 7 (Syntactic FDFA [16]). The � is as defined in Definition 5.
Let [u]� be an equivalence class of �. For x, y ∈ Σ∗, we define syntactic RC

as: x ≈u
S y if and only if u · x � u · y and for ∀v ∈ Σ∗, if u · x · v � u, then

u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L.
The syntactic FDFA FS = (M, {N u

S }) of L is defined as follows.
The leading DFA M is the tuple (T [�], ∅) as defined in Definition 6.
The syntactic progress DFA N u

S of the state [u]� ∈ Σ∗/� is the tuple (T [≈u
S

], Fu) where [v]≈u
S

∈ Fu if u · v � u and uvω ∈ L.

Angluin and Fisman [3] noticed that the syntactic progress RCs are not
defined with respect to the regular language Vu,v = {v ∈ Σ+ : u·vω ∈ L, u � u·v}
as �Vu,v

that is similar to �R for a regular language R. They proposed the
recurrent progress RC ≈u

R that mimics the RC �Vu,v
to obtain a DFA accepting

Vu,v as follows.

Definition 8 (Recurrent FDFAs [3]). The � is as defined in Definition 5.
Let [u]� be an equivalence class of �. For x, y ∈ Σ∗, we define recurrent RC

as: x ≈u
R y if and only if ∀v ∈ Σ∗, (u · x · v � u ∧ u · (xv)ω ∈ L) ⇐⇒ (u · yv �

u ∧ u · (y · v)ω ∈ L).
The recurrent FDFA FR = (M, {N u

R}) of L is defined as follows.
The leading DFA M is the tuple (T [�], ∅) as defined in Definition 6.
The recurrent progress DFA N u

R of the state [u]� ∈ Σ∗/� is the tuple (T [≈u
R

], Fu) where [v]≈u
R

∈ Fu if u · v � u and uvω ∈ L.

As pointed out in [3], the recurrent FDFAs may not be minimal because,
according to Definition 3, FDFAs only care about the normalized decomposi-
tions, i.e, whether a word in Cu = {v ∈ Σ+ : u · v � u} is accepted by the
progress DFA N u

R. However, there are don’t care words that are not in Cu and
recurrent FDFAs treat them all as rejecting3.

Our argument is that the don’t care words are not necessarily rejecting and
can also be regarded as accepting. This idea allows the progress DFAs N u to
accept the regular language {v ∈ Σ+ : u · v � u =⇒ u · vω ∈ L}, rather
than {v ∈ Σ+ : u · v � u ∧ u · vω ∈ L}. This change allows a translation of
limit FDFAs to DBAs with a quadratic blow-up when L is DBA-recognizable
language, as shown later in Sect. 4. We formalize this idea as below and define a
new type of FDFAs called limit FDFAs.

Definition 9 (Limit FDFAs). The � is as defined in Definition 5.
Let [u]� be an equivalence class of �. For x, y ∈ Σ∗, we define limit RC as:

x ≈u
L y if and only if ∀v ∈ Σ∗, (u · x · v � u =⇒ u · (x · v)ω ∈ L) ⇐⇒ (u · y · v �

u =⇒ u · (y · v)ω ∈ L).
The limit FDFA FL = (M, {N u

L}) of L is defined as follows.
The leading DFA M is the tuple (T [�], ∅) as defined in Definition 6.
The progress DFA N u

L of the state [u]� ∈ Σ∗/� is the tuple (T [≈u
L], Fu)

where [v]≈u
L

∈ Fu if u · v � u =⇒ uvω ∈ L.

3 Minimizing DFAs with don’t care words is NP-complete [20].

60 Y. Li et al.

We need to show that ≈u
L is a RC. For u, x, y, v′ ∈ Σ∗, if x ≈u

L y, we need to
prove that xv′ ≈u

L yv′, i.e., for all e ∈ Σ∗, (u · xv′ · e � u =⇒ u · (xv′ · e)ω ∈
L) ⇐⇒ (u · yv′ · e � u =⇒ u · (yv′ · e)ω ∈ L). This follows immediately from
the fact that x ≈u

L y by setting v = v′ · e for all e ∈ Σ∗ in Definition 9.
Let L = aω + abω be a language over Σ = {a, b}. Three types of FDFAs are

depicted in Fig. 1, where the leading DFA M is given in the column labeled with
“Leading” and the progress DFAs are in the column labeled with “Syntactic”,
“Recurrent” and “Limit”. We omit the periodic FDFA here since we will focus
more on the other three in this work. Consider the progress DFA N aa

L : there
are only two equivalence classes, namely [ε]≈aa

L
and [a]≈aa

L
. We can use v = ε to

distinguish ε and a word x ∈ Σ+ since aa · ε � aa =⇒ aa · (ε · ε)ω ∈ L does not
hold, while aa · x � aa =⇒ aa · (x · ε)ω ∈ L holds. For all x, y ∈ Σ+, x ≈aa

L y
since both aa ·x � aa =⇒ aa · (x · v)ω ∈ L and aa · y � aa =⇒ aa · (y · v)ω ∈ L
hold for all v ∈ Σ∗. One can also verify the constructions for the syntactic and
recurrent progress DFAs. We can see that the don’t care word b for the class
[aa]� are rejecting in both N aa

S and N aa
R , while it is accepted by N aa

L . Even
though b is accepted in N aa

L , one can observe that (aa, b) (and thus aa · bω) is
not accepted by the limit FDFA, according to Definition 3. Indeed, the three
types of FDFAs still recognize the same language L.

When the index of � is only one, then ε � u holds for all u ∈ Σ∗. Corollary 1
follows immediately.

Corollary 1. Let L be an ω-regular language with | � | = 1. Then, periodic,
syntactic, recurrent and limit FDFAs coincide.

We show in Lemma 1 that the limit FDFAs are a coarser representation of
L than the syntactic FDFAs. Moreover, there is a tight connection between the
syntactic FDFAs and limit FDFAs.

Lemma 1. For all u, x, y ∈ Σ∗,

1. x ≈u
S y if, and only if u · x � u · y and x ≈u

L y.
2. | ≈u

L | ≤ | ≈u
S | ≤ | � | · | ≈u

L |; | ≈u
L | ≤ | � | · | ≈u

P |.

Proof. 1. – Assume that ux � uy and x ≈u
L y. Since x ≈u

L y holds, then for all
v ∈ Σ∗, (uxv � u =⇒ u · (xv)ω ∈ L) ⇐⇒ (uyv � u =⇒ u · (yv)ω ∈ L).
Since ux � uy holds, then u ·xv � u ⇐⇒ u ·yv � u for all v ∈ Σ∗. Hence,
by Definition 7, if uxv
� u (and thus uyv
� u), it follows that x ≈u

S y
by definition of ≈u

S ; otherwise we have both uxv � u and uyv � u hold,
and also u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L, following the definition of ≈u

L.
It thus follows that x ≈u

S y.
– Assume that x ≈u

S y. First, we have ux � uy by definition of ≈u
S . Since

ux � uy holds, then u · xv � u ⇐⇒ u · yv � u for all v ∈ Σ∗. Assume
by contradiction that x ≈u

L y. Then there must exist some v ∈ Σ∗ such
that u · xv � u · yv � u holds but u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L does
not hold. By definition of ≈u

S , it then follows that x
≈S
u y, violating our

assumption. Hence, both ux � uy and x ≈u
L y hold.

Novel Families of Finite Automata 61

Fig. 1. Three types of FDFAs for L = aω + abω. The final states are marked with
double lines.

2. As an immediate result of the Item (1), we have that | ≈u
L | ≤ | ≈u

S | ≤
| � | · | ≈u

L |. We prove the second claim by showing that, for all u, x, y ∈ Σ∗,
if ux � uy and x ≈u

P y, then x ≈u
S y (and thus x ≈u

L y). Fix a word v ∈ Σ∗.
Since ux � uy holds, it follows that ux · v � u ⇐⇒ uy · v � u. Moreover, we
have u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L because x ≈u

P y holds. By definition
of ≈u

S , it follows that x ≈u
S y holds. Hence, x ≈u

L y holds as well. We then
conclude that | ≈u

L | ≤ | � | · | ≈u
P |. ��

According to Definition 1, we have x � y iff T [�](x) = T [�](y) for all x, y ∈
Σ∗. That is, M = (T [�], ∅) is consistent with �, i.e., x � y iff M(x) = M(y)
for all x, y ∈ Σ∗. Hence, u · v � u iff M(u) = M(u · v). In the remaining part
of the paper, we may therefore mix the use of � and M without distinguishing
the two notations.

We are now ready to give our main result of this section.

62 Y. Li et al.

Theorem 2. Let L be an ω-regular language and FL=(M[�], {N [≈u

]}[u]�∈Σ∗/�) be the limit FDFA of L. Then (1) FL has a finite number of states,
(2) UP(FL) = UP(L), and (3) FL is saturated.

Proof. Since the syntactic FDFA FS of L has a finite number of states [16]
and FL is a coarser representation than FS (cf. Lemma 1), FL must have finite
number of states as well.

To show UP(FL) ⊆ UP(L), assume that w ∈ UP(FL). By Definition 3, a
UP-word w is accepted by FL if there exists a decomposition (u, v) of w such
that M(u) = M(u·v) (equivalently, u·v � u) and v ∈ L∗(N ũ

L) where ũ = M(u).
Here ũ is the representative word for the equivalence class [u]�. Similarly, let
ṽ = N ũ

L (v). By Definition 9, we have ũ · ṽ � ũ =⇒ ũ · ṽω ∈ L holds as ṽ is a
final state of N ũ

L . Since v ≈ũ
L ṽ (i.e., N ũ

L (v) = N ũ
L (ṽ)), ũ · v � ũ =⇒ ũ · vω ∈ L

holds as well. It follows that u · v � u =⇒ u · vω ∈ L since u � ũ and
u · v � ũ · v (equivalently, M(u · v) = M(ũ · v)). Together with the assumption
that M(u · v) = M(u) (i.e., u � u · v), we then have that u · vω ∈ L holds. So,
UP(FL) ⊆ UP(L) also holds.

To show that UP(L) ⊆ UP(FL) holds, let w ∈ UP(L). For a UP-word w ∈ L,
we can find a normalized decomposition (u, v) of w such that w = u · vω and
u · v � u (i.e., M(u) = M(u · v)), since the index of � is finite (cf. [3] for more
details). Let ũ = M(u) and ṽ = N ũ

L (v). Our goal is to prove that ṽ is a final
state of N ũ

L . Since u � ũ and u ·vω ∈ L, then ũ ·vω ∈ L holds. Moreover, ũ ·v � ũ
holds as well because ũ = M(ũ) = M(u) = M(ũ ·v) = M(u ·v). (Recall that M
is deterministic.) Hence, ũ · v � ũ =⇒ ũ · vω ∈ L holds. Since ṽ ≈ũ

L v, it follows
that ũ · ṽ � ũ =⇒ ũ · ṽω ∈ L also holds. Hence, ṽ is a final state. Therefore,
(u, v) is accepted by FL, i.e., w ∈ UP(FL). It follows that UP(L) ⊆ UP(FL).

Now we show that FL is saturated. Let w be a UP-word. Let (u, v) and (x, y)
be two normalized decompositions of w with respect to M (or, equivalently, to
�). Assume that (u, v) is accepted by FL. From the proof above, it follows that
both u · v � u and u · vω ∈ L hold. So, we know that u · vω = x · yω ∈ L. Let
x̃ = M(x) and ỹ = N x̃

L(y). Since (x, y) is a normalized decomposition, it follows
that x · y � x. Again, since x̃ � x, x̃ · y � x̃ and x̃ · yω ∈ L also hold. Obviously,
x̃ ·y � x̃ =⇒ x̃ ·yω ∈ L holds. By the fact that y ≈x̃

L ỹ, x̃ · ỹ � x̃ =⇒ x̃ · ỹω ∈ L
holds as well. Hence, ỹ is a final state of N x̃

L . In other words, (x, y) is also
accepted by FL. The proof for the case when (u, v) is not accepted by FL is
similar. ��

3.2 Size Comparison with Other Canonical FDFAs

As aforementioned, Angluin and Fisman in [3] showed that for a variant of the
family of languages Ln given by Michel [17], its periodic FDFA has Ω(n!) states,
while the syntactic FDFA only has O(n2) states. Since limit FDFAs are smaller
than syntactic FDFAs, it immediately follows that:

Corollary 2. There exists a family of languages Ln such that its periodic FDFA
has Ω(n!) states, while the limit FDFA only has O(n2) states.

Novel Families of Finite Automata 63

Now we consider the size comparison between limit and recurrent FDFAs.
Consider again the limit and recurrent FDFAs of the language L = aω + abω in
Fig. 1: one can see that limit FDFA and recurrent FDFA have the same number
of states, even though with different progress DFAs. In fact, it is easy to see that
limit FDFAs and recurrent FDFAs are incomparable regarding the their number
of states, even when only the ω-regular languages recognized by weak DBAs are
considered. A weak DBA (wDBA) is a DBA in which each SCC contains either
all accepting transitions or non-accepting transitions.

Lemma 2. If L is a wDBA-recognizable language, then its limit FDFA and its
recurrent FDFA have incomparable size.

Proof. We fix u, x, y ∈ Σ∗ in the proof. Since L is recognized by a wDBA, the
TS T [�] of the leading DFA M is isomorphic to the minimal wDBA recognizing
L [15]. Therefore, a state [u]� of M is either transient, in a rejecting SCC, or in
an accepting SCC. We consider these three cases.

– Assume that [u]� is a transient SCC/state. Then for all v ∈ Σ∗, u · x · v
� u
and u · y · v
� u.
By the definitions of ≈u

R and ≈u
L, there are a non-final class [ε]≈u

L
and possibly

a sink final class [σ]≈u
L

for ≈u
L where σ ∈ Σ, while there is a non-final class

[ε]≈u
R

for ≈u
R. Hence, x ≈u

L y implies x ≈u
R y.

– Assume that [u]� is in a rejecting SCC. Obviously, for all v ∈ Σ∗, we have
that u · x · v � u =⇒ u · (x · v)ω /∈ L and u · y · v � u =⇒ u · (y · v)ω /∈ L.
Therefore, there is only one equivalence class [ε]≈u

R
for ≈u

R. It follows that
x ≈u

L y implies x ≈u
R y.

– Assume that [u]� is in an accepting SCC. Clearly, for all v ∈ Σ∗, we have
that both u ·x ·v � u =⇒ u · (x ·v)ω ∈ L and u ·y ·v � u =⇒ u · (y ·v)ω ∈ L
hold. That is, we have either u ·x · v � u∧u · (x · v)ω ∈ L hold, or u ·x · v
� u.
If x ≈u

R y holds, it immediately follows that (u · x · v � u =⇒ u · (x · v)ω ∈
L) ⇐⇒ (u · y · v � u =⇒ u · (y · v)ω ∈ L) holds. Hence, x ≈u

R y implies
x ≈u

L y.

Based on this argument, it is easy to find a language L such that its limit
FDFA is more succinct than its recurrent FDFA and vice versa, depending on
the size comparison between rejecting SCCs and accepting SCCs. Therefore, the
lemma follows. ��

Lemma 2 reveals that limit FDFAs and recurrent FDFAs are incomparable in
size. Nonetheless, we still provide a family of languages Ln in Lemma 3 such that
the recurrent FDFA has Θ(n2) states, while its limit FDFA only has Θ(n) states.
One can, of course, obtain the opposite result by complementing Ln. Notably,
Lemma 3 also gives a matching lower bound for the size comparison between
syntactic FDFAs and limit FDFAs, since syntactic FDFAs can be quadratically
larger than their limit FDFA counterparts, as stated in Lemma 1. The language
which witnesses this lower bound is given as its DBA B depicted in Fig. 2. We
refer to [13, Appendix A] for detailed proof.

64 Y. Li et al.

Fig. 2. The ω-regular language Ln represented with a DBA B. The dashed arrows are
Γ -transitions and ∗-transitions represent the missing transitions.

Lemma 3. Let Σn = {0, 1, · · · , n}. There exists an ω-regular language Ln over
Σn such that its limit FDFA has Θ(n) states, while both its syntactic and recur-
rent FDFAs have Θ(n2) states.

Finally, it is time to derive yet another “Myhill-Nerode” theorem for ω-
regular languages, as stated in Theorem 3. This result follows immediately from
Lemma 1 and a similar theorem about syntactic FDFAs [16].

Theorem 3. Let FL be the limit FDFA of an ω-language L. Then L is regular
if, and only if FL has finite number of states.

For identifying whether L is DBA-recognizable with FDFAs, a straight for-
ward way as mentioned in the introduction is to go through determinization,
which is, however, exponential in the size of the input FDFA. We show in Sect. 4
that there is a polynomial-time algorithm using our limit FDFAs.

4 Limit FDFAs for Identifying DBA-Recognizable
Languages

Given an ω-regular language L, we show in this section how to use the limit
FDFA of L to check whether L is DBA-recognizable in polynomial time. To this
end, we will first introduce how the limit FDFA of L looks like in Sect. 4.1 and
then introduce the deciding algorithm in Sect. 4.2.

4.1 Limit FDFA for DBA-Recognizable Languages

Bohn and Löding [5] construct a type of family of DFAs FBL from a set S+

of positive samples and a set S− of negative samples, where the progress DFA
accepts exactly the language Vu = {x ∈ Σ+ : ∀v ∈ Σ∗. if u · xv � u, then u ·
(xv)ω ∈ L}4. When the samples S+ and S− uniquely characterize a DBA-
recognizable language L, FBL recognizes exactly L.
4 Defining directly a progress RC ≈u that recognizes Vu is hard since Vu is quantified

over all v-extensions.

Novel Families of Finite Automata 65

The progress DFA N u
L of our limit FDFA FL of L usually accepts more words

than Vu. Nonetheless, we can still find one final equivalence class that is exactly
the set Vu, as stated in Lemma 4.

Lemma 4. Let L be a DBA-recognizable language and FL=(M, {N u
L}[u]�∈Σ∗/�)

be the limit FDFA of L. Then, for each progress DFA N u
L with L∗(N u

L)
=
∅, there must exist a final state x̃ ∈ Fu such that [x̃]≈u

L
= {x ∈ Σ+ :

∀v ∈ Σ∗. u · (x · v) � u =⇒ u · (x · v)ω ∈ L}.

Proof. In [5], it is shown that for each equivalence class [u]� of �, there exists a
regular language Vu = {x ∈ Σ+ : ∀v ∈ Σ∗. if u ·xv � u, then u · (xv)ω ∈ L}. We
have also provided the proof of the existence of Vu in [13, Appendix C], adapted
to our notations. The intuition of Vu is the following. Let B = (Σ,Q, ι, δ, Γ) be
a DBA accepting L. Then, [u]� corresponds to a set of states S = {q ∈ Q : q =
δ(ι, u′), u′ ∈ [u]�} in B. For each q ∈ S, we can easily create a regular language
Vq such that x ∈ Vq iff over the word x, Bq (the DBA derived from B by setting
q its initial state) visits an accepting transition, Bq goes to an SCC that cannot
go back to q, or Bq goes to a state that cannot go back to q unless visiting an
accepting transition. Then, Vu = ∩q∈SVq.

Now we show that Vu is an equivalence class of ≈u
L as follows. On one hand,

for every two different words x1, x2 ∈ Vu, we have that x1 ≈u
L x2, which is

obvious by the definition of Vu. On the other hand, it is easy to see that x′
≈u
L x

for all x′ /∈ Vu and x ∈ Vu because there exists some v ∈ Σ∗ such that u·x′ ·v � u
but u · (x′ · v)ω /∈ L. Hence, Vu is indeed an equivalence class of ≈u

L. Obviously,
Vu ⊆ L∗(N u

L), as we can let v = ε, so for every word x ∈ Vu, we have that
u · x � u =⇒ u · xω ∈ L. Let x̃ = N u

L (x) for a word x ∈ Vu. It follows that x̃ is
a final state of N u

L and we have [x̃]≈u
L

= Vu. This completes the proof. ��

By Lemma 4, we can define a variant of limit FDFAs for only DBAs with
less number of final states. This helps to reduce the complexity when translating
FDFAs to NBAs [2,7,12]. Let n be the number of states in the leading DFA M
and k be the number of states in the largest progress DFA. Then the resultant
NBA from an FDFA has O(n2k3) states [2,7,12]. However, if the input FDFA
is FB as in Definition 10, the complexity of the translation will be O(n2k2), as
there is at most one final state, rather than k final states, in each progress DFA.

Definition 10 (Limit FDFAs for DBAs). The limit FDFA FB =(M, {N u
B})

of L is defined as follows.
The transition systems of M and N u

B for each [u]� ∈ Σ∗/� are exactly the
same as in Definition 9.

The set of final states Fu contains the equivalence classes [x]≈u
L

such that,
for all v ∈ Σ∗, u · xv � u =⇒ u · (xv)ω ∈ L holds.

The change to the definition of final states would not affect the language
that the limit FDFAs recognize, but only their saturation properties. We say an
FDFA F is almost saturated if, for all u, v ∈ Σ∗, we have that if (u, v) is accepted
by F , then (u, vk) is accepted by F for all k ≥ 1. According to [12], if F is almost

66 Y. Li et al.

saturated, then the translation algorithm from FDFAs to NBAs in [2,7,12] still
applies (cf. [13, Appendix B] about details of the NBA construction).

Theorem 4. Let L be a DBA-recognizable language and FB be the limit FDFA
induced by Definition 10. Then (1) UP(FB) = UP(L) and (2) FB is almost
saturated but not necessarily saturated.

Proof. The proof for UP(FB) ⊆ UP(L) is trivial, as the final states defined
in Definition 10 must also be final in Definition 9. The other direction can be
proved based on Lemma 4. Let w ∈ UP(L) and B = (Q,Σ, ι, δ, Γ) be a DBA
accepting L. Let ρ be the run of B over w. We can find a decomposition (u, v) of
w such that there exists a state q with q = δ(ι, u) = δ(ι, u · v) and (q, v[0]) ∈ Γ .
As in the proof of Lemma 4, we are able to construct the regular language
Vu = {x ∈ Σ+ : ∀y ∈ Σ∗, u · x · y � u =⇒ u · (x · y)ω ∈ L}. We let S = {p ∈
Q : L(Bq) = L(Bp)}. For every state p ∈ S, we have that vω ∈ L(Bp). For each

p ∈ S, we select an integer kp > 0 such that the finite run p
vkp

−−→ δ(p, vkp) visits
some accepting transition. Then we let k = maxp∈S kp. By definition of Vu, it
follows that vk ∈ Vu. That is, Vu is not empty. According to Lemma 4, we have
a final equivalence class [x]≈u

L
= Vu with vk ∈ [x]≈u

L
. Moreover, u · vk � u since

q = δ(ι, u) = δ(q, v). Hence, (u, vk) is accepted by FB , i.e., w ∈ UP(FB). It
follows that UP(FB) = UP(L).

Now we prove that FB = (M, {N u
B}) is not necessarily saturated. Let

L = (Σ∗ · aa)ω. Obviously, L is DBA recognizable, and � has only one equiv-
alence class, [ε]�. Let w = aω ∈ UP(L). Let (u = ε, v = a) be a normalized
decomposition of w with respect to � (thus, M). We can see that there exists a
finite word x (e.g., x = b is such a word) such that ε ·a ·x � ε and ε · (a ·x)ω /∈ L.
Thus, (ε, a) will not be accepted by FB. Hence FB is not saturated. Nonetheless,
it is easy to verify that FB is almost saturated. Assume that (u, v) is accepted
by FB. Let ũ = M(u) and ṽ = N ũ

B(v). Since ṽ is the final state, then, according
to Definition 10, we have for all e ∈ Σ∗ that ũ · ṽe � ũ =⇒ ũ · (ṽe)ω ∈ L. Since
v ≈u

L ṽ, ũ · ve � ũ =⇒ ũ · (ve)ω ∈ L also holds for all e ∈ Σ∗. Let e = vk · e′

where e′ ∈ Σ∗, k ≥ 0. It follows that ũ · vke′ � ũ =⇒ ũ · (vke′)ω ∈ L holds for
k ≥ 1 as well. Therefore, for all e′ ∈ Σ∗, k ≥ 1, (ũ · ṽe′ � ũ =⇒ ũ · (ṽe′)ω ∈
L) ⇐⇒ (ũ · vke′ � ũ =⇒ ũ · (vke′)ω ∈ L) holds. In other words, ṽ ≈ũ

L vk for
all k ≥ 1. Together with that uvk � u, (u, vk) is accepted by FB for all k ≥ 1.
Hence, FB is almost saturated. ��

4.2 Deciding DBA-Recognizable Languages

We show next how to identify whether a language L is DBA-recognizable with
our limit FDFA FL. Our decision procedure relies on the translation of FDFAs
to NBAs/DBAs. In the following, we let n be the number of states in the leading
DFA M and k be the number of states in the largest progress DFA. We first
give some previous results below.

Lemma 5 ([12, Lemma 6]). Let F be an (almost) saturated FDFA of L. Then
one can construct an NBA A with O(n2k3) states such that L(A) = L.

Novel Families of Finite Automata 67

Now we consider the translation from FDFA to DBAs. By Lemma 4, there is
a final equivalence class [x]≈u

L
that is a co-safety language in the limit FDFA of L.

Co-safety regular languages are regular languages R ⊆ Σ∗ such that R ·Σ∗ = R.
It is easy to verify that if x′ ∈ [x]≈u

L
, then x′v ∈ [x]≈u

L
for all v ∈ Σ∗, based

on the definition of ≈u
L. So, [x]≈u

L
is a co-safety language. The DFAs accepting

co-safety languages usually have a sink final state f (such that f transitions to
itself over all letters in Σ). We therefore have the following.

Corollary 3. If L is DBA-recognizable then every progress DFA N u
L of the limit

FDFA FL of L either has a sink final state, or no final state at all.

Our limit FDFA FB of L, as constructed in Definition 10, accepts the same
co-safety languages in the progress DFAs as the FDFA obtained in [5], although
they may have different transition systems. Nonetheless, we show that their
DBA construction still works on FB. To make the construction more general,
we assume an FDFA F = (M, {N q}q∈Q) where M = (Q,Σ, ι, δ) and, for each
q ∈ Q, we have N q = (Qq, Σ, ιq, δq, Fq).

Definition 11 ([5]). Let F = (M, {N q}q∈Q) be an FDFA. Let T [F] be the TS
constructed from F defined as the tuple T [F] = (QT , Σ, ιT , δT) and Γ ⊆ {(q, σ) :
q ∈ QT , σ ∈ Σ} be a set of transitions where

– QT := Q ×
⋃

q∈Q Qq;
– ιT := (ι, ιι);
– For a state (m, q) ∈ QT and σ ∈ Σ, let q′ = δm̃(q, σ) where N m̃ is the

progress DFA that q belongs to and let m′ = δ(m,σ). Then

δ((m, q), σ) =

{
(m′, q′) if q′ /∈ Fm̃

(m′, ιm′) if q′ ∈ Fm̃

– ((m, q), σ) ∈ Γ if q′ ∈ Fm̃

Lemma 6. If F is an FDFA with only sink final states. Let B[F] = (T [F], Γ)
as given in Definition 11. Then, UP(L(B[F])) ⊆ UP(F).

Proof. Let w ∈ UP(L(B[F])) and ρ be its corresponding accepting run. Since w
is a UP-word and B[F] is a DBA of finite states, then we must be able to find
a decomposition (u, v) of w such that (m, ιm) = B[F](u) = B[F](u · v), where ρ
will visit a Γ -transition whose destination is (m, ιm) for infinitely many times.
It is easy to see that M(u · v) = M(u) since B[F](u) = B[F](u · v). Moreover,
we can show there must be a prefix of v, say v′, such that v′ ∈ L∗(N m). Since
L∗(N m) is co-safety, we have that v ∈ L∗(N m). Thus, (u, v) is accepted by F .
By Definition 3, w ∈ UP(F). Therefore, UP(L(B[F])) ⊆ UP(F). ��

By Corollary 3, FB has only sink final states; so, we have that
UP(L(B[FB])) ⊆ UP(FB). However, Corollary 3 is only a necessary condition
for L being DBA-recognizable, as explained below. Let L be an ω-regular lan-
guage over Σ = {1, 2, 3, 4} such that a word w ∈ L iff the maximal number that

68 Y. Li et al.

Fig. 3. An example limit FDFA F = (M, {N ε
L})

occurs infinitely often in w is even. Clearly, L has one equivalence class [ε]� for
�. The limit FDFA F = (M, {N ε

L}) of L is depicted in Fig. 3. We can observe
that the equivalence class [4]≈ε

L
corresponds to a co-safety language. Hence, the

progress DFA N ε
L has a sink final state. However, L is not DBA-recognizable.

If we ignore the final equivalence class [2]≈ε
L

and obtain the variant limit FDFA
FB as given in Definition 10, then we have UP(FB)
= UP(L) since the ω-word
2ω is missing. But then, by Theorem 4, this change would not lose words in L if
L is DBA-recognisable, leading to contradiction. Therefore, L is shown to be not
DBA-recognizable. So the key of the decision algorithm here is to check whether
ignoring other final states will retain the language. With Lemma 7, we guarantee
that B[FB] accepts exactly L if L is DBA-recognizable.

Lemma 7. Let L be a DBA-recognizable language. Let FB be the limit FDFA
L, as constructed in Definition 10. Let B[FB] = (T [FB], Γ), where T [FB] and
Γ are the TS and set of transitions, respectively, defined in Definition 11 from
FB. Then UP(FB) = UP(L) ⊆ UP(L(B[FB])).

Proof. We first assume for contradiction that some w ∈ L is rejected by B[FB].
For this, we consider the run ρ = (q0, w[0], q1)(q1, w[1], q2) . . . of B[FB] on w. Let
i ∈ ω be such that (qi−1, w[i−1], qi) is the last accepting transition in ρ, and i = 0
if there is no accepting transition at all in ρ. We also set u = w[0 · · · i − 1] and
w′ = w[i · · ·]. By Definition 11, this ensures that B[FB] is in state ([u]�, ι[u]�)
after reading u and will not see accepting transitions (or leave N [u]�

B) while
reading the tail w′.

Let D = (Q′, Σ, ι′, δ′, Γ ′) be a DBA that recognizes L and has only reachable
states. As D recognizes L, it has the same right congruences as L; by slight abuse
of notation, we refer to the states in Q′ that are language equivalent to the state
reachable after reading u by [u]� and note that D is in some state of [u]� after
(and only after) reading a word u′ � u.

As u · w′, and therefore u′ · w′ for all u′ � u, are in L, they are accepted
by D, which in particular means that, for all q ∈ [u]�, there is an iq such that
there is an accepting transition in the first iq steps of the run of Dq (the DBA
obtained from D by setting the initial state to q) on w′. Let i+ be maximal

Novel Families of Finite Automata 69

among them and v = w[i · · · i + i+]. Then, for u′ � u and any word u′vv′, we
either have u′vv′
� u, or u′vv′ � u and u′ · (vv′)ω ∈ L. (The latter is because v
is constructed such that a run of D on this word will see an accepting transition
while reading each v, and thus infinitely many times.) Thus, N [u]�

B will accept
any word that starts with v, and therefore be in a final sink after having read v.

But then B[FB] will see another accepting transition after reading v (at the
latest after having read uv), which closes the contradiction and completes the
proof. ��

So, our decision algorithm works as follows. Assume that we are given the
limit FDFA FL = (M, {N q

L}) of L.

1. We first check whether there is a progress DFA N q
L such that there are final

states but without the sink final state. If it is the case, we terminate and
return “NO”.

2. Otherwise, we obtain the FDFA FB by keeping the sink final state as the
sole final state in each progress DFA (cf. Definition 10). Let A = NBA(FL) be
the NBA constructed from FL (cf. Lemma 5) and B = DBA(FB) be the DBA
constructed from FB (cf. Definition 11). Obviously, we have that UP(L(A)) =
UP(L) and UP(L(B)) ⊆ UP(FB) = UP(L).

3. Then we check whether L(A) ⊆ L(B) holds. If so, we return “YES”, and
otherwise “NO”.

Now we are ready to give the main result of this section.

Theorem 5. Deciding whether L is DBA-recognizable can be done in time poly-
nomial in the size of the limit FDFA of L.

Proof. We first prove our decision algorithm is correct. If the algorithm returns
“YES”, clearly, we have L(A) ⊆ L(B). It immediately follows that UP(L) =
UP(L(A)) ⊆ UP(L(B)) ⊆ UP(FB) ⊆ UP(FL) = UP(L) according to Lemmas 5
and 6. Hence, UP(L(B)) = UP(L), which implies that L is DBA-recognizable.
For the case that the algorithm returns “NO”, we analyze two cases:

1. F has final states but without sink accepting states for some progress DFA.
By Corollary 3, L is not DBA-recognizable.

2. L(A)
⊆ L(B). It means that UP(L)
⊆ UP(L(B)) (by Lemma 5). It follows
that L is not DBA-recognizable by Lemma 7.

The algorithm is therefore sound; its completeness follows from Lemmas 6 and 7.
The translations above are all in polynomial time. Moreover, checking the

language inclusion between an NBA and a DBA can also be done in polynomial
time [11]. Hence, the deciding algorithm is also in polynomial time in the size of
the limit FDFA of L. ��

Recall that, our limit FDFAs are dual to recurrent FDFAs. One can observe
that, for DBA-recognizable languages, recurrent FDFAs do not necessarily have
sink final states in progress DFAs. For instance, the ω-regular language L =
aω + abω is DBA-recognizable, but its recurrent FDFA, depicted in Fig. 1, does
not have sink final states. Hence, our deciding algorithm does not work with
recurrent FDFAs.

70 Y. Li et al.

5 Underspecifying Progress Right Congruences

Recall that recurrent and limit progress DFAs N u either treat don’t care words
in Cu = {v ∈ Σ+ : uv
� u} as rejecting or accepting, whereas it really does not
matter whether or not they are accepted. So why not keep this question open?
We do just this in this section; however, we find that treating the progress with
maximal flexibility comes at a cost: the resulting right progress relation ≈u

N is
no longer an equivalence relation, but only a reflexive and symmetric relation
over Σ∗ × Σ∗ such that x ≈u

N y implies xv ≈u
N yv for all u, x, y, v ∈ Σ∗.

For this, we first introduce Right Pro-Congruences (RP) as relations on words
that satisfy all requirements of an RC except for transitivity.

Definition 12 (Progress RP). Let [u]� be an equivalence class of �. For
x, y ∈ Σ∗, we define the progress RP ≈u

N as follows:

x ≈u
N y iff ∀v ∈ Σ∗. (uxv � u∧uyv � u) =⇒ (u ·(xv)ω ∈ L ⇐⇒ u ·(yv)ω ∈ L).

Obviously, ≈u
N is a RP, i.e., for x, y, v′ ∈ Σω, if x ≈u

N y, then xv′ ≈u
N yv′. That

is, assume that x ≈u
N y and we want to prove that, for all e ∈ Σ∗, (u · xv′e �

u ∧ u · yv′e � u) =⇒ (u · (xv′e)ω ∈ L ⇐⇒ u · (yv′e)ω ∈ L). This follows
immediately by setting v = v′e in Definition 12 for all e ∈ Σ∗ since x ≈u

N y. As
≈u

N is not necessarily an equivalence relation5, so that we cannot argue directly
with the size of its index. However, we can start with showing that ≈u

N is coarser
than ≈u

P ,≈u
S ,≈u

R, and ≈u
L.

Lemma 8. For u, x, y ∈ Σ∗, we have that if x ≈u
K y, then x ≈u

N y, where
K ∈ {P, S,R,L}.

Proof. First, if x ≈u
P y, x ≈u

N y holds trivially.
For syntactic, recurrent, and limit RCs, we first argue for fixed v ∈ Σ∗ that

– ux � uy =⇒ uxv � uyv, and therefore
ux � uy ∧

(
u · x · v � u =⇒ (u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L)

)

|= (uxv � u ∧ uyv � u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L),
– (u · x · v � u ∧ u · (xv)ω ∈ L) ⇐⇒ (u · yv � u ∧ u · (y · v)ω ∈ L)

|= (uxv � u ∧ uyv � u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L), and
– (u · x · v � u =⇒ u · (x · v)ω ∈ L) ⇐⇒ (u · y · v � u =⇒ u · (y · v)ω ∈ L)

|= (uxv � u ∧ uyv � u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L),

which is simple Boolean reasoning. As this holds for all v ∈ Σ∗ individually, it
also holds for the intersection over all v ∈ Σ∗, so that the claim follows. ��

Now, it is easy to see that we can use any RC ≈ that refines ≈u
N and use

it to define a progress DFA. It therefore makes sense to define the set of RCs
that refine ≈u

N as RC(≈u
N) = {≈ | ≈⊂≈u

N is a RC}, and the best index | ≈u
N |

of our progress RP as | ≈u
N | = min{| ≈ | | ≈∈ RC(≈u

N)}. With this definition,
Corollary 4 follows immediately.
5 In the language L = aω + abω from the example of Fig. 1, for example, we have

a ≈ab
N ε and a ≈ab

N b, but b �≈ab
N ε.

Novel Families of Finite Automata 71

Corollary 4. For u ∈ Σ∗, we have that | ≈u
N | ≤ | ≈u

K | for all K ∈ {P, S,R,L}.
We note that the restriction of ≈u

N to Cu ×Cu is still an equivalence relation,
where Cu = {v ∈ Σ∗ : uv � u} are the words the FDFA acceptance conditions
really care about. This makes it easy to define a DFA over each ≈∈ RC(≈u

N)
with finite index: Cu/≈u

N
is good if it contains a word v s.t. u · vω ∈ L, and a

quotient of Σ∗/≈ is accepting if it intersects with a good quotient (note that it
intersects with at most one quotient of Cu). With this preparation, we now show
the following.

Theorem 6. Let L be an ω-regular language and FL=(M[�], {N [≈u

]}[u]�∈Σ∗/�) be the limit FDFA of L s.t. ≈u∈ RC(≈u
N) with finite index for

all u. Then (1) FL has a finite number of states, (2) UP(FL) = UP(L), and (3)
FL is saturated.

The proof is similar to the proof of Theorem 2 and can be found in [13,
Appendix D].

6 Discussion and Future Work

Our limit FDFAs fit nicely into the learning framework for FDFAs [3] and are
already available for use in the learning library ROLL6 [14]. Since one can treat
an FDFA learner as comprised of a family of DFA learners in which one DFA
of the FDFA is learned by a separate DFA learner, we only need to adapt the
learning procedure for progress DFAs based on our limit progress RCs, without
extra development of the framework; see [13, Appendix E] for details. We leave
the empirical evaluation of our limit FDFAs in learning ω-regular languages as
future work.

We believe that limit FDFAs are complementing the existing set of canonical
FDFAs, in terms of recognizing and learning ω-regular languages. Being able
to easily identify DBA-recognizable languages, limit FDFAs might be used in
a learning framework for DBAs using membership and equivalence queries. We
leave this to future work. Finally, we have looked at retaining maximal flexibility
in the construction of FDFA by moving from progress RCs to progress RPs.
While this reduces size, it is no longer clear how to construct them efficiently,
which we leave as a future challenge.

Acknowledgements. We thank the anonymous reviewers for their valuable feedback.
This work has been supported by the EPSRC through grants EP/X021513/1 and
EP/X017796/1.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

6 https://github.com/iscas-tis/roll-library.

https://doi.org/10.1016/0890-5401(87)90052-6
https://github.com/iscas-tis/roll-library

72 Y. Li et al.

2. Angluin, D., Boker, U., Fisman, D.: Families of DFAs as acceptors of ω-regular
languages. Log. Methods Comput. Sci. 14(1), 1–21 (2018)

3. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016). https://doi.org/10.1016/j.tcs.2016.07.031

4. Angluin, D., Fisman, D.: Regular ω-languages with an informative right congru-
ence. Inf. Comput. 278, 104598 (2021). https://doi.org/10.1016/j.ic.2020.104598

5. Bohn, L., Löding, C.: Passive learning of deterministic Büchi automata by combi-
nations of DFAs. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2022,
4–8 July 2022, Paris, France. LIPIcs, vol. 229, pp. 114:1–114:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ICALP.
2022.114

6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: 1960
Proceedings of the International Congress on Logic, Method, and Philosophy of
Science, pp. 1–12. Stanford University Press (1962)

7. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-
languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58027-1 27

8. Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of tran-
sition labeled Büchi automata. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp.
151–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-
1 13

9. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 2

10. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω automata vis-a-vis deter-
ministic Buchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS,
vol. 834, pp. 378–386. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58325-4 202

11. Kurshan, R.P.: Complementing deterministic büchi automata in polynomial
time. J. Comput. Syst. Sci. 35(1), 59–71 (1987). https://doi.org/10.1016/0022-
0000(87)90036-5

12. Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for büchi automata
based on family of DFAs and classification trees. Inf. Comput. 281, 104678 (2021).
https://doi.org/10.1016/j.ic.2020.104678

13. Li, Y., Schewe, S., Tang, Q.: A novel family of finite automata for recognizing and
learning ω-regular languages (2023)

14. Li, Y., Sun, X., Turrini, A., Chen, Y.-F., Xu, J.: ROLL 1.0: ω-regular language
learning library. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019, Part I. LNCS, vol.
11427, pp. 365–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17462-0 23

15. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995). https://doi.org/10.1006/inco.1995.1070

16. Maler, O., Staiger, L.: On syntactic congruences for omega-languages. Theor. Com-
put. Sci. 183(1), 93–112 (1997). https://doi.org/10.1016/S0304-3975(96)00312-X

17. Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris 15 (1988)

https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1016/j.ic.2020.104598
https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1016/S0304-3975(96)00312-X

Novel Families of Finite Automata 73

18. Myhill, J.: Finite automata and the representation of events. In: Technical Report
WADD TR-57-624, pp. 112–137 (1957)

19. Nerode, A.: Linear automaton transformations. In: American Mathematical Soci-
ety, pp. 541–544 (1958)

20. Pfleeger, C.P.: State reduction in incompletely specified finite-state machines.
IEEE Trans. Comput. 22(12), 1099–1102 (1973). https://doi.org/10.1109/T-C.
1973.223655

21. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24–26 October
1988, pp. 319–327. IEEE Computer Society (1988). https://doi.org/10.1109/SFCS.
1988.21948

22. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de
Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00596-1 13

23. Schewe, S.: Beyond hyper-minimisation—minimising dbas and DPAs is NP-
complete. In: Lodaya, K., Mahajan, M. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2010, 15–18 December 2010, Chennai, India. LIPIcs, vol. 8, pp. 400–411.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010). https://doi.org/10.
4230/LIPIcs.FSTTCS.2010.400

24. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the Symposium on Logic in
Computer Science (LICS 1986), Cambridge, Massachusetts, USA, 16–18 June 1986,
pp. 332–344. IEEE Computer Society (1986)

25. Wilke, T., Schewe, S.: ω-automata. In: Pin, J. (ed.) Handbook of Automata Theory,
pp. 189–234. European Mathematical Society Publishing House, Zürich, Switzer-
land (2021). https://doi.org/10.4171/Automata-1/6

https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4171/Automata-1/6

	A Novel Family of Finite Automata for Recognizing and Learning -Regular Languages
	1 Introduction
	2 Preliminaries
	3 Limit FDFAs for Recognizing -Regular Languages
	3.1 Limit FDFAs and Other Canonical FDFAs
	3.2 Size Comparison with Other Canonical FDFAs

	4 Limit FDFAs for Identifying DBA-Recognizable Languages
	4.1 Limit FDFA for DBA-Recognizable Languages
	4.2 Deciding DBA-Recognizable Languages

	5 Underspecifying Progress Right Congruences
	6 Discussion and Future Work
	References

