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Abstract. Abstraction is a key verification technique to improve scal-
ability. However, its use for neural networks is so far extremely limited.
Previous approaches for abstracting classification networks replace sev-
eral neurons with one of them that is similar enough. We can classify the
similarity as defined either syntactically (using quantities on the con-
nections between neurons) or semantically (on the activation values of
neurons for various inputs). Unfortunately, the previous approaches only
achieve moderate reductions, when implemented at all. In this work,
we provide a more flexible framework, where a neuron can be replaced
with a linear combination of other neurons, improving the reduction.
We apply this approach both on syntactic and semantic abstractions,
and implement and evaluate them experimentally. Further, we introduce
a refinement method for our abstractions, allowing for finding a better
balance between reduction and precision.

Keywords: Neural network · Abstraction · Machine learning

1 Introduction

Neural Network Abstractions. Abstraction is a key instrument for under-
standing complex systems and analyzing complex problems across all disciplines,
including computer science. Abstraction of complex systems, such as neural net-
works (NN), results in smaller systems, which are not only producing equivalent
outputs (such as in distillation [13]), but additionally can be mapped to the
original system, providing a strong link between the individual parts of the
two systems. Consequently, abstraction find various applications. For instance,
the smaller (abstract) networks are more understandable and the strong link
between the behaviours of the abstract and the original network allows for better
explainability of the original behaviour, too; smaller networks are more efficient
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in resource usage during runtime; smaller networks are easier to verify. Again,
with no formal link between the original network and, say, a distilled or pruned
one, verifying the smaller one is of no use to verifying the original one. In con-
trast, for abstractions, the verification guarantee can be in principle transfered to
the original network, be it via lifting a counterexample or a proof of correctness.

Altogether, abstractions of neural networks are a key concept worth inves-
tigating eo ipso, subsequently offering various applications. However, currently
it is still very under-developed. For defining an abstraction, we need a transfor-
mation linking the original neurons to those in the abstraction. Equivalently, we
need a notion of the similarity of neurons, to identify a good representative of a
group of neurons. The difficulty in contrast to, e.g., predicate abstraction of pro-
grams is that neurons have no inner structure such as values of variables stored
in a state. On the one hand, approaches based on bisimilarity [22] offer a solution
focusing on the “syntax” of neurons: the weights of the incoming connections.
The quantities give rise to an equivalence akin to probabilistic bisimulation. On
the other hand, in search of a stronger tool, approaches such as [2] try to identify
“semantics” of the neurons. For instance, given a vector of inputs to the network,
the I/O semantics of a neuron [2] is the vector of activation values of this neuron
obtained on these inputs. This represents a finite-dimensional approximation of
the actual semantics of a neuron as a computational device. Either way, replac-
ing several neurons with one that is very similar yields only moderate savings
on size if the abstract network is supposed to be similar, i.e., yield mostly the
same predictions and ensure a tight connection between the similar neurons.

Our Contribution. We focus on studying abstraction irrespective of the use
case (verification, smaller networks, explainability), to establish a better princi-
pal understanding of this crucial, yet in this context underdeveloped technique.
First, we explore a richer abstraction scheme, where a group of neurons can
be represented not only by a chosen neuron but also by a linear combination
of neurons. Thus instead of keeping exactly one representative per group, we
can “reuse” the chosen representatives in many linear combinations; in other
words, the representatives can attain many roles, partially representing many
groups, which reduces their required count. We provide several algorithms to do
so, ranging from resource-intensive algorithms aiming to show the limits of the
approach to efficient heuristics approximating the former ones quite closely. We
apply these algorithms to the semantic approach of [2] as well as to the syntactic,
bisimulation-like approach similar to [22] not implemented previously. Experi-
mental results confirm the greater power of this linear-combination approach;
further, they provide insight into the advantages of semantic similarity over the
syntactic one, pointing out the more advantageous future research directions.

Further, we provide a formal link between the concrete and abstract neurons
by proving an error bound induced by the abstraction, showing the abstraction
is valid and (approximately) simulates the original network. We show the bound
is better than the one based on bisimulation. While still not very practical, the
experiments show that even on unseen data, the error is always closely bounded
by the error on the data used for generating the abstraction, and mostly even



Syntactic vs Semantic Abstraction and Refinement of Neural Networks 403

a lot smaller. This empirical version of the concept of error could thus enable
the transfer of reasoning about the abstraction to the original network in a yet
much tighter way.

In addition, we suggest abstraction-refinement procedures to better fine-tune
the trade-off between the precision and the size of the abstraction. The experi-
ments reveal that a more aggressive abstraction followed by a refinement provides
better results than a direct, moderate abstraction. Hence involving our refine-
ment in the abstraction process improves the resulting quality, opening new lines
of attack on efficient neural network abstractions.

Summary. Our contribution can be summarized as follows:

– We define abstractions of neural networks with (approximate) equivalences
being linear equations over semantics of neurons. We provide a theoretical
bound on the induced error, see Theorem 1. We reflect this idea also on the
syntactic, bisimulation-based abstraction.

– We implement both approaches and compare them mutually as well as to
their previous, special cases with equivalences being (approximate) identities.
We perform the experiments on a number of standard benchmarks, such as
MNIST, CIFAR, or FashionMNIST, concluding advantages of semantic over
syntactic approaches and of linear over identity-based ones.

– We introduce an abstraction-refinement procedure and also evaluate its ben-
efits experimentally.

Related Work. There are various approaches for verification of NN, however,
we are not presenting another verifier. Instead, we introduce an approach that
is orthogonal to verification and could be integrated with an existing verifier.
Therefore, we do not compare our approach to any verification tool and refer
the interested reader to the Verification of Neural Networks Competition [4] for
an overview of existing approaches [16,26,31,33].

Network compression techniques share many similarities with abstraction
[7] and either focus on reducing the memory footprint [14,15] or computation
time of the model [12], but in contrast, do not provide any formal relation to
the original network, rendering them inappropriate for understanding redundan-
cies or verification. Knowledge distillation is a prominent technique, which can
reduce networks by a significant amount, but completely loses any connection
to the original network [13], and can thus not be used in verification. There is
some progress in using abstract domains for scalable verification, like [26,27,29],
but they do not produce an abstracted NN for verification. Instead, they apply
abstraction only tightly entangled together with the verification algorithm. These
approaches also try to generate a more scalable verification, however, the key
difference is that they do not return an actual abstracted network that could be
reused or manually inspected. Katz et al. [8] introduce an abstraction scheme for
NN, in which they decompose neurons into several parts, before merging them
again to obtain an over-approximation of the original network. However, their
approach is limited to networks with one output neuron. For networks with
more output neurons, the property to be verified needs to be baked into the
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network, making the approach significantly less flexible. Additionally, this tight
entanglement of specification and neural network does not allow for retrieving
the abstraction later and reusing it for anything else than to verify that specific
property. This strongly contrasts our generic and usage-agnostic abstraction and
their property-restricted abstractions.

Some other works use abstraction after representing a neural network as an
interval neural network [23], or more generally, by using more complex abstract
domains [28]. While theoretically interesting, the practicality of these works has
not been investigated. There are two approaches that we consider to be the
closest to our work: a bisimulation-based approach [22], and DeepAbstract [2],
which we will more closely introduce in the preliminaries, and compare to in the
experiments.

2 Preliminaries

In this work, we focus on classification feedforward neural networks. Such a
neural network N consists of several layers 1, 2, . . . , L, with 1 being the input
layer, L being the output layer and 2, . . . , L − 1 being the hidden layers. Each
layer � contains n� neurons. Neurons of one layer are connected to neurons
of the previous and next layers by means of weighted connections. Associ-
ated with every layer � that is not an output layer is a weight matrix W (�) =
(w(�)(i, j)) ∈ R

n�+1×n� where w(�)(i, j) gives the weights of the connections to
the ith neuron in layer � + 1 from the jth neuron in layer �. We use the nota-
tion W

(�)
i,∗ = [w(�)(i, 1), . . . , w(�)(i, n�)] to denote the incoming weights of neuron

i in layer � + 1 and W
(�)
∗,j = [w(�)(1, j), . . . , w(�)(n�+1, j)]ᵀ to denote the outgoing

weights of neuron j in layer �. Note that W
(�)
i,∗ and W

(�)
∗,j correspond to the ith row

and jth column of W (�) respectively. A vector b(�) = [b(�)1 , . . . , b
(�)
n� ] ∈ R

n� called
bias is also associated with each hidden layer �. The input and output of a neuron
i in layer � is denoted by h

(�)
i and z

(�)
i respectively. We call h� = [h(�)

1 , . . . , h
(�)
n� ]ᵀ

the vector of pre-activations and z� = [z(�)1 , . . . , z
(�)
n� ]ᵀ the vector of activations

of layer �. The neuron takes the input h�, and applies an activation function
φ : R → R element-wise on it. The output is then calculated as z� = φ(h�), where
standard activation functions include tanh, sigmoid, or ReLU [21]. We assume
that the activation function is Lipschitz continuous, which in particular holds
for the aforementioned functions [30]. In a feedforward neural network, informa-
tion flows strictly in one direction: from layer �m to layer �n where �m < �n.
For an n1-dimensional input x ∈ X from some input space X ⊆ R

n1 , the out-
put y ∈ R

nL of the neural network N , also written as y = N(x) is iteratively
computed as:

h(0) = z(0) = x

h(�+1) = W (�)z(�) + b(�+1) (1)

z(�+1) = φ(h(�+1)) (2)

y = z(L)
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where φ(x) is the column vector obtained by applying φ component-wise to x.
We abuse the notation and write z(�)(x), when we want to specify that the
output of layer � is computed by starting with x as input to the network.

2.1 Syntactic and Semantic Abstractions

We are interested in a general abstraction scheme that is not only useful for
verification, but also for revealing redundancies, while keeping a formal link to
the original network. We distinguish between two types of abstraction: semantic
and syntactic. Syntactic abstraction makes use of the weights of the network,
the syntactic information, and allows for overapproximation guarantees that are
not restricted to specific inputs. However, as we shall see in the experiments, the
semantic abstraction can capture the behavior of the original network on typical
input data much more accurately than its syntactic counterpart. This comes at
the cost of a more challenging error analysis.

Semantic Information. In line with DeepAbstract [2], we will create the seman-
tic information based on a set of inputs, the I/O set, X = {x1, . . . ,xn} ⊆ X ,
which is typically a subset of the training dataset. We use the inputs xj ∈ X,
feed them to the network and store the output values {z(�)(xj)}xj∈X of a layer
� in a matrix Z(�) = (z(�)i (xj))i,j . Note that the columns are the z(�)(xj) and
the rows, denoted as Z(�)

i,∗, correspond to the values one neuron i produces for

all inputs xj . We refer to the vector Z(�)
j,∗ as the semantics of neuron i. This

collection of matrices Z(�) for all layers contains the semantic information of the
network.

DeepAbstract. Since we will compare our approach to DeepAbstract [2], we
will give a concise description of the idea of their work. First, it generates the
semantic information Z. For one layer �, it clusters the rows of the matrix by
using standard clustering techniques, e.g. k-means clustering [3]. Each cluster
is considered to be a group of neurons that have similar semantics and similar
behavior. Thus, only one group representative is chosen to remain and the rest
is replaced by the representatives.

Bisimulation. The idea of [22] is to apply the notion of bisimulation to NN. A
bisimulation declares two neurons as equivalent if they agree on their incoming
weights, biases, and activation functions. Additionally, the paper introduces a
δ-bisimulation that allows neurons to be equivalent only up to δ, i.e. two neurons
i, j of layer � with the same activation function are considered to be δ-bisimilar,
if for all k : |w(�−1)(i, k) − w(�−1)(j, k)| ≤ δ and |b(�)i − b

(�)
j | ≤ δ.

3 Linear Abstraction

Our abstraction of a NN is based on the idea that huge NN in their practical
application are usually trained with more neurons than necessary. Since there
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Fig. 1. Linear Abstraction - On the left, the original network with the basis B in blue.
On the right, the abstracted network with the removed neuron n1

1 and the changed
output weights of the basis neurons n1

2, n
1
3, where we assume that n1

1 can be simulated
by α

(1)
1,1 · n1

2 + α
(1)
1,2 · n1

3. (Color figure online)

are techniques to avoid “overfitting”, users of machine learning tend to use NN
that are bigger than necessary for their task [19]. Intuitively, such networks thus
contain redundancies. We want to remove these redundancies to decrease the
size of the network and make it more scalable for verification.

Existing approaches group together similar neurons, and then choose a rep-
resentative. Instead, we propose to replace a neuron with a linear combination
of other neurons. More specifically, we want to replace a neuron i of layer �, not
by one single neuron j, but rather by a clever combination of several neurons,
called the basis, B(�) ⊂ {1, . . . , n�}\{i}, which is a subset of all neurons of this
layer and in this case given as their indices. We assume that the behavior of a
neuron can be simulated by a linear combination of the behavior of the basis
neurons, i.e. by

∑
j∈B(�) α

(�)
i,j · Z(�)

j,∗ for some α
(�)
i,j ∈ R.

Example. Consider the neural network in Fig. 1. It has an input layer with
two neurons n0

1, n
0
2, one hidden layer with three neurons n1

1, n
1
2, n

1
3, and an

output layer with two neurons n2
1, n

2
2. We assume that we are given the basis

B(1) = {n1
2, n

1
3}, marked with blue color in the figure, and the linear coefficients

α
(1)
1,1, α

(1)
1,2. That is, we assume that n1

1 can be simulated by the linear combination

α
(1)
1,1 ·n1

2+α
(1)
1,2 ·n1

3. We can remove neuron n1
1 and its outgoing weights [1, 2]ᵀ, and

add the outgoing weights scaled by the linear coefficients to the basis neurons
instead. We add α

(1)
1,1 · [1, 2]ᵀ to the outgoing weights of neuron n1

2, so we get

[−1, 3]ᵀ + α
(1)
1,1 · [1, 2]ᵀ = [−1 + α

(1)
1,1 · 1, 3 + α

(1)
1,1 · 2]ᵀ, and respectively, we get

[−2 + α
(1)
1,2 · 1, 1 + α

(1)
1,2 · 2]ᵀ as the outgoing weights of neuron n1

3.
The computational overhead to compute a linear combination compared to

finding a representative is negligible, as we will see in our experiments (see
Sect. 5.2). On the other hand, they provide more expressive power, subsuming
the aforementioned clustering-based approach [2]. In particular, we can detect
scaled weights that previous approaches failed to identify.

Please note that although it is possible to replace a neuron with a linear
combination of any other neurons in the network, we will only use neurons
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from the same layer due to more efficient support by modern neural network
frameworks.

In the following sections, we will answer three questions: How can one find a
set of neurons that serves as a basis (Sect. 3.1)? How to find the coefficients for the
linear combination (Sect. 3.2)? How to replace a neuron, once its representation
as a linear combination is given (Sect. 3.3)?

3.1 Finding the Basis

Our approach is meant to find a sufficient smaller subset of neurons in one layer,
which is enough to represent the behavior of the whole layer. We will make use of
the semantic information of a layer �, given as Z(�) = (z(�)i (xj))i,j (see Sect. 2.1).
Based on this, we try to find a basis of neurons, i.e. a set of indices for neurons
in this layer {j1, . . . jk�

} = B(�) ⊂ {1, . . . , n�}, which can represent the whole
space as well as possible. To this end we want to find a subset of size k = |B(�)|
such that ‖∑

j∈B(�) α
(�)
i,j · Z(�)

j,∗ − Zi,∗‖ is minimized. We denote with

AB =

⎡

⎢
⎣

| |
Z(�)

j1,∗ . . . Z(�)
jk�

,∗
| |

⎤

⎥
⎦ (3)

the matrix containing the activations Z(�)
j,∗ of the neurons in the basis as columns.

Greedy Algorithm. The problem of finding an optimal basis of size k w.r.t.
L2 distance can be seen as a variation of the column subset selection problem
which is known to be NP-complete [25]. As a consequence, we use a variant of a
greedy algorithm [1]. While it does not always yield the optimal solution, it has
been observed to work reasonably well in practice [9,10].

It has already been observed that layers closer to the output usually contain
more condensed information and more redundancies, and can, thus, be com-
pressed more aggressively [2]. We present a greedy algorithm that chooses which
layer contains more information and needs a larger basis instead of decreasing
the basis sizes equally fast in each layer.

In Algorithm 1, we see that the procedure iteratively removes neurons from
the basis. To this end, it iterates over all layers l ∈ {1, . . . , L} in the network.
It tries to remove one neuron at a time from the basis. Then it computes the
projection error of the smaller basis, which is defined as ‖Z(�)ᵀ − ΠAB

Z(�)ᵀ‖,
where ΠAB

is the matrix that projects the columns of Z(�)ᵀ
onto the column

space of AB . The columns of AB are the rows of Z(�) whose neurons belong to
B. It greedily evaluates all neurons in all layers and selects the best neuron of
the best layer to be removed. After checking every layer, the algorithm decides
on the best layer and neuron to be removed, i.e. the one with the smallest error.

Since the approach thoroughly evaluates all possibilities, its runtime depends
on both the number of layers and neurons. A natural alternative would be a
heuristic that guides us similarly well through the search space. We provide our
choice of heuristic below.
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Algorithm 1. Greedy algorithm over all layers
1: Given: k neurons to be removed
2: ∀l ∈ {1, . . . , L} : B(�) ← {1, . . . , nl}
3: errormin ← ∞, lbest ← −1, nbest ← −1
4: for i ∈ 1, . . . , k do
5: for l ∈ 1, . . . , L do
6: for j ∈ 0, . . . , nl do
7: Compute the projection error errorj of AB(�)\{j}
8: if errorj < errormin then
9: lbest ← l

10: nbest ← j
11: errormin ← errorj

12: Blbest ← Blbest \ {nbest}
13: return B1, . . . , BL

Variance-Based Heuristic. Instead of a step-wise decision that takes a lot of
computation time, we propose to use a variance-based heuristic. We define the
variance of a vector v ∈ R

n in the usual way by Var(v) =
∑n

i=0(vi − Mean(v))2

where Mean(v) is the mean of the vector values. W.l.o.g. let the neurons be
numbered in such a way that Var(z(�)1 ) ≥ · · · ≥ Var(z(�)n� ). We then choose the
basis to contain the neurons with the k� largest variances, i.e. B = {1, . . . , k}.
We assume that neurons with a higher variance in their output values carry
more information, and are, therefore, more relevant. Indeed, we can see in our
experiments, i.e. Fig. 2, that the heuristic-based approach can achieve similar
results, but in far less time.

3.2 Finding the Coefficients

Given a basis B(�) for some layer �, computed with the before-mentioned app-
roach, we want to find the coefficients that can be used to replace the remaining
neurons which are not part of the basis. We fix a neuron i in layer � that we
want to replace and whose values are stored in Z(�)

i,∗, and we want to minimize

‖∑
j∈B(�) α

(�)
i,j · Z(�)

j,∗ − Zi,∗‖ for α
(�)
i,j .

Since we want to find a linear combination of vectors, a natural choice is
linear programming. The linear program is straightforward and can be found
in [6, Appendix C]. Note that with the linear program, we are minimizing the
L1-distance between the neuron’s values and its replacement, i.e. ‖∑

j∈B(�) α
(�)
i,j ·

Z(�)
j,∗ − Zi,∗‖1.

In a different way, we can also consider the vectors Z(�)
j,∗ for j ∈ B(�) to span a

vector space. If we are given a subset {Z(�)
j,∗|j ∈ B(�) ⊂ {1, . . . , n�}} that forms a

basis for this space, i.e. span((Z(�)
j,∗)j∈B(�)) = span((Z(�)

j,∗)j∈{1,...,n�}), we can repre-

sent any other vector z(�)i in terms of this basis. However, we usually cannot rep-
resent one neuron perfectly by a linear combination of other neurons. Orthogo-
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nal projection gives us the closest point in the subspace span((Z(�)
j,∗)j∈B(�))

for any vector, in terms of L2-distance. Then, α = [α(�)
i,j1

, . . . , α
(�)
i,jk�

]ᵀ :=

(A�
BAB)−1A�

BZ(�)
i,∗ gives us the coefficients for the orthogonal projection of Z(�)

i,∗
on the linear space spanned by the columns of AB . For a more detailed descrip-
tion of orthogonal projection see e.g. [17, Chapter 6.8]. Note that we assume
that the columns of AB are linearly independent. If not we can simply replace
the respective neurons directly.

3.3 Replacement

Assuming, we have a basis B(�) of this layer and we already know the coefficients
α
(�)
i,j ∈ R for j ∈ B(�) that we need to simulate the behavior of neuron i. This

means, we have a linear combination
∑

j∈B(�) α
(�)
i,j · Z(�)

j,∗, which we want to use
instead of neuron i itself. We will replace the outgoing weights W (�) of this layer,
such that for all j ∈ B(�)

W̃
(�)
∗,j = [w(�)(1, j) + α

(�)
i,j w(�)(1, i), . . . , w(�)(n�+1, j) + α

(�)
i,j w(�)(n�+1, i)]ᵀ (4)

= W
(�)
∗,j + α

(�)
i,j W

(�)
∗,i (5)

Furthermore, we set W̃
(�)
∗,i = [0, . . . , 0]ᵀ, and W̃

(�)
i,∗ = [0, . . . , 0]ᵀ. This means that

we will not use the output of neuron i anymore, but rather a weighted sum of
the outputs of neurons in B(�), and that we will not even compute the value of i.
Additionally, we keep track of the changes we apply to the different neurons with
a matrix D(�) = (d(�)j,i ) ∈ R

n�×n�+1 . Initially, D(�) is 0 and after each replacement,

we add α
(�)
i,j ·w(�)(i, i′) to d

(�)
j,i′ for j ∈ B(�) and i′ ∈ {1, . . . , n�+1}. This is necessary

for restoring neurons at a later point.
In the optimal case, the replacement will not change the overall behavior of

the neural network. We can derive a the same semantic equivalence from [22]
incorporated into our setting:

Proposition 1 (Semantic Equivalence). Let N be a neural network with L
layers, � a layer of N , i a neuron of this layer, and B(�) ⊂ {1, . . . , n�}\{i} a
chosen basis. Let Ñ be the NN after replacing neuron i by a linear combination
of basis vectors with coefficients α

(�)
i,j , with the procedure as described above.

If for all inputs x ∈ X ⊂ X , z
(�)
i (x) =

∑
j∈B(�) α

(�)
i,j z

(�)
j (x), then N and Ñ

are semantically equal, i.e. for all inputs x ∈ X, Ñ(x) = N(x).

It is easy to see that this proposition is true, for a full proof see [6, Appendix A].
However, the proposition assumes equality of z

(�)
i (x) and

∑
j∈B(�) α

(�)
i,j z

(�)
j (x) for

x ∈ X, which virtually never holds for real-world neural networks. Therefore,
we want to minimize the difference |z(�)i (x)−∑

j∈B(�) α
(�)
i,j z

(�)
j (x)|, which will not

yield a semantically equivalent abstraction, but an abstraction with very similar
behavior. We can then quantify the difference between the output of the
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original network and the abstraction, i.e. the induced error with the following
Theorem.

Theorem 1 (Over-approximation Guarantee). Let N be an NN with L
layers. For each layer �, we have a basis of neurons B(�), and a set of replaced
neurons I(�). Then, let Ñ be the network after replacing neurons in I(�) as
described above.

We can over-approximate the error between the output of the original network
NL and the output of the abstraction ÑL for x ∈ X ⊂ X by

‖ÑL(x) − NL(x)‖ ≤ b(1 − aL−1)/(1 − a)

with a = λ(‖W‖ + η), b = λ‖W‖ε, with λ(�) being the Lipschitz-constant of
the activation function in layer �, λ = max� λ(�), ‖W‖ = max� ‖W (�)‖1, η =
max� η(�), and ε = max� ε(�), assuming that for all layers � ∈ {1, . . . , L} and for
all inputs x ∈ X, we have

– for i ∈ I(�) : |z(�)i (x) − ∑
j∈B(�) α

(�)
i,j z

(�)
j (x)| ≤ ε(�)

– |∑i∈I(�) W
(�)
∗,i

∑
t∈B(�) α

(�)
i,t | ≤ η(�)

In other words, we can over-approximate the difference in the output of the
original and the abstracted network by a value that depends on the weight
matrices, the activation function and the tightness of the abstracted neurons to
their replacements. The proof can be found in [6, Appendix B]. This Theorem
provides us with the theoretical guarantee that, given our abstraction, we
can provide a valid over-approximation of the output of the original network.

Comparison to the δ-Bisimulation. Let us recap the error definition from
[22]. The difference of the bisimulation and the original network is bounded by
[(2a)k − 1]b/(2a − 1), where a = λ|S|‖W‖ and b = λ(|P |L(N )‖x‖ + 1)δ1. In this
notation, |S| is the maximum number of neurons per layer in the whole network,
|P | the maximum number of neurons in the bisimulation (can be understood
as the number of neurons in an abstraction), L(N ) is the maximum Lipschitz-
constant of all layers, and δ is the maximum absolute difference of the bias and
sum of the incoming weights.

The drawbacks of that approach are twofold: (i) the error is based on one spe-
cific input, and (ii) it makes use of the Lipschitz-constant of the whole network.
Calculating the Lipschitz constant of an NN is still part of ongoing research [11]
and not a trivial problem. In contrast, we improve on both. Our error calculation
generalizes over a set of inputs. Additionally, we use local information, stored in
the weight-matrices, to circumvent using the Lipschitz-constant of the NN.

4 Refinement

For certain inputs the abstraction might not reflect the behavior of the original
network. For these inputs, so-called counterexamples, we may want to refine the
1 Please note that this statement is slightly different from the paper ((2a)k instead of

(2/a)k), which we believe to be a typo in the paper.
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abstraction, as opposed to starting the abstraction from the original network
again. We consider an input to be a counterexample whenever the abstraction
assigns it a different label than the original network. However, a counterexample
can be any input that does not align with the specifications.

We propose to refine the abstraction by restoring some of the replaced neu-
rons. To do this, we need to know which neurons should be replaced and how. We
first briefly mention three heuristics to choose a neuron for restoration. After-
ward, we explain how to restore a neuron. Note that the refinement offers more
than a “roll-back” of the most recent step of the abstraction since it picks the
step-to-be-rolled-back in retrospect reflecting all other steps, leading to a more
informed choice. This could in principle be done directly in the abstraction phase,
but at an infeasible cost of a huge look-ahead.

Refinement Heuristics. We propose three different heuristics: difference-
guided, gradient-guided, and look-ahead.
– The difference-guided refinement looks at the difference of a neuron in the

original and its representation as a linear combination in the abstraction. It
replaces the neuron with the largest difference.

– The gradient-guided refinement additionally takes the gradient of the NN
into account, that is computed as in the training phase of the NN. This
takes into account how the whole network would need to change to fix the
counterexample.

– The look-ahead is the most greedy method and would try out every replaced
neuron. It would check how much the network would improve if the neuron
was replaced and then chooses the neuron with the highest improvement.

More details on the approaches can be found in [6, Appendix D].

Restoration of a Neuron. The restoration principle can be seen as the coun-
terpart of the replacement. Let ˜̃N be the network obtained by replacing several
neurons in the original network N , where we want to restore a deleted neuron i
of layer �. To do this, we need not only to get the original neuron back, including
its incoming and outgoing weights but also to remove the additional outgoing
weights from the basis neurons. Intuitively, the restoration removes the linear
combination, ensures that the original outgoing weights for the neuron are used,
and adjusts the incoming weights of the neuron. We may have changed layer
� − 1, and thus we cannot restore the original incoming weights of neuron i, but
we have to adapt it to changes in the basis B(�−1). This can be done with the
following changes:

– ∀j ∈ B(�): W̃
(�)
∗,j = ˜̃W (�)

∗,j − αjW
(�)
∗,j

– W̃
(�)
∗,i = W

(�)
∗,i

– ∀j ∈ B(�−1): w̃(�−1)(i, j) = w(�−1)(i, j) + d
(�−1)
j,i

Afterward, we subtract αj ·w(�)(i, i′) from d
(�)
j,i′ for i′ ∈ {1, . . . , n�+1} and j ∈ B(�).
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5 Experimental Results

Our experimental section is divided into several parts: The first one covers how
the different methods for finding a basis and the coefficients compare, as described
in Sect. 3.2 and Sect. 3.1. The second part shows experiments on our approach in
comparison to existing works, namely DeepAbstract [2] and our implementation of
bisimulation [22] (which was not implemented before). The third part contains the
comparison between the abstraction based on syntactic and semantic information.
The fourth part describes our experiments on abstraction refinement. Finally, the
last part contains experiments on the error induced by our abstraction. Note that
supplemental experiments can be found in the Appendix.

Lastly, the work of Katz et al. [8] tightly couples the abstraction with the
subsequent particular verification, by integrating the specification as layers into
the network. It is, thus, not clear how an abstraction from [8] could be extracted
from the tool and reused for another purpose. Additionally, our abstraction
would have to be connected with some verification algorithm (DeepPoly, as done
by DeepAbstract, or some other) to compare. Any comparison of the two works
would then mostly compare the different verification tools, not really the abstrac-
tions. Although a comparison of different verifiers linked to our LiNNA is an
interesting next step into one of the possible applications, it is out of the scope
of this paper, which examines the abstraction itself (see Introduction).

Implementation. We implemented the approach in our tool LiNNA (Linear
N eural N etwork Abstraction)2. We used networks that were trained on MNIST
[20], CIFAR-10 [18], and FashionMNIST [32] for our experiments. In the fol-
lowing, we refer to the corresponding trained networks with “L × n”, where L
denotes the number of hidden layers and n is the number of neurons in these
hidden layers. All experiments were conducted on a computer with Ubuntu 22.04
LTS with 2.6 GHz Intel c© CoreTM i7 processors, and 32 GB of RAM.

Performance Measures. We will compare the approaches mostly on (i) the
reduction rate and (ii) the accuracy on a test set. Intuitively, the reduction rate
describes how much the NN was reduced by abstraction. If an NN N has in total
n neurons, but after reduction, there are m neurons left, then the reduction rate
is then defined as RR(N) = 1− m

n . The accuracy of a NN on a test set is defined
as the ratio of how many inputs are predicted with the correct label. This is the
key performance indicator in machine learning and shows how well a network
generalizes to unseen data. In evaluating our abstraction, we follow the same
principle since we want to know how well the NN generalizes after abstraction.
Note that this test set was not used for training or computing the abstraction.

5.1 Abstraction

Finding the Basis. We have given two different methods in Sect. 3.1 to find a
good basis B. While the orthogonal projection yields an equally good abstraction

2 https://github.com/cxlvinchau/LiNNA.

https://github.com/cxlvinchau/LiNNA
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Fig. 2. Finding the basis for replacement - Evaluation on different datasets. The plots
contain a comparison of LiNNA while using the greedy variant (solid) and the variance-
based heuristic (dashed) for finding a basis with orthogonal projection. Comparison of
accuracy (blue) in percent and computation time (red) in seconds. (Color figure online)

compared to linear programming, it outperforms the latter in terms of runtime
by magnitudes. Hence, we conducted the rest of the experiments with orthog-
onal projection. The full comparison between orthogonal projection and linear
programming can be found in [6, Fig. 14, Appendix E].

When we compare the greedy and the heuristic-based approach, shown in
Fig. 2, we see that the former outperforms the latter in terms of accuracy
on MNIST and FashionMNIST. On CIFAR-10, the variance-based approach is
slightly better. However, the variance-based approach is always faster than the
greedy approach and scales better, as can be seen for all datasets. Unsurpris-
ingly, the greedy approach takes more time for higher reduction rates, because it
needs to evaluate many candidates. The variance-based approach just takes the
best neurons according to their variance, which has to be calculated only once.
Therefore, the calculation is constant in terms of removed neurons.

The plots show one more difference in the behavior: On MNIST and Fashion-
MNIST, we see a quite stable accuracy until a reduction rate of 60%. We cannot
see the same behavior on CIFAR-10. We believe this is due to the accuracy and
size of the networks. Whereas it is fairly easy to train a feedforward network
for MNIST and FashionMNIST on a regular computer, this is more challenging
for CIFAR-10. We plan to include more extensive experiments including more
involved NN architectures in future work. Finally, our abstraction relies on the
assumption that NNs contain a lot of redundant information.

We want to emphasize, that in machine learning, it is common to train a
huge network that contains many more neurons than necessary to solve the task
[34]. After the introduction of regularization techniques (e.g. [24]), the problem
of over-fitting (e.g. [5]) has become often negligible. Therefore, the automatic
response to a bad neural network is often to increase its size, either in depth or
in width. Our approach can detect these cases and abstract away the redundant
information.

Finding the Coefficients. We have in total four different approaches to find-
ing the coefficients: greedy or heuristic-based linear programming, and greedy
or heuristic-based orthogonal projection. All four have similar accuracies for the
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Fig. 3. Comparison of LiNNA to
related work - LiNNA (greedy and
heuristic-based variant), DeepAbstract
[2], and our implementation of the
bisimulation [22] is evaluated in terms
of accuracy on the test set for a cer-
tain reduction rate. The experiment
was conducted on an MNIST 3 × 100
network.

Fig. 4. Scalability of LiNNA - Average
runtime for 20 different reduction rates
on one network. The plot at the top
depicts the runtime for MNIST net-
works with 4 layers, w.r.t. number of
neurons. The plot at the bottom shows
the runtime for MNIST networks with
100 neurons per layer, w.r.t. number of
layers.

same reduction rate, whereas the heuristic ones are mostly just slightly worse
than the greedy ones. For a more detailed evaluation, please refer to [6, Appendix
G]. The runtimes of the four approaches, however, differ a lot. Take for example
an MNIST 3 × 100 network. We assume that the abstraction is performed by
starting with the full network and reducing up to a certain reduction rate. Thus,
we have runtimes for each of the approaches for each reduction rate. We take
the average over all the reductions and get 47 s for the greedy orthogonal projec-
tion, 5130 s for the greedy linear programming, 1 s for the heuristic orthogonal
projection, and 2 s for the heuristic linear programming. Linear programming
takes a lot more time than orthogonal projection, and, as already seen before,
the heuristic approaches are much faster than the greedy ones. Please refer to
[6, Appendix J] for more experiments on the runtime. Therefore, we propose to
use the heuristic approach and the orthogonal projection.

Scalability. We evaluate how our approach scales to networks of different sizes.
We evaluate (1) how our approach scales with an increasing number of layers,
and (2) how it scales with a fixed number of layers but an increasing number of
neurons. We show our experiments in Fig. 4. The runtime is the average runtime
over 20 different reduction rates on the same network. One can imagine this as
averaging the runtimes shown in Fig. 2. We can see that the variance-based app-
roach has almost constant runtime, whereas the runtime of the greedy approach
is increasing for both a higher number of layers and neurons.

Final Assessment. We have four possibilities on how to abstract an NN: greedy
orthogonal projection, greedy linear programming, heuristic-based orthogonal
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Fig. 5. Evolution of the accuracy on the test set for different reduction rates, for an
increasing number of layers, or neurons. We show LiNNA (blue-green) for semantic
abstraction, and for syntactic abstraction, bisimulation (red-yellow). The networks were
trained on MNIST and have a fixed number of neurons (100) on the left, and a fixed
number of layers (4) on the right.

projection, and heuristic-based linear programming. Given that the orthogonal
projection outperforms linear programming in terms of accuracy and computa-
tion time, we propose to use orthogonal projection. We believe that it is sufficient
to use the heuristic-based approach, thereby gaining faster runtimes and only
barely sacrificing any accuracy. Whenever we refer to LiNNA from now on with-
out any additions, it will be the heuristic-based orthogonal projection.

5.2 Comparison to Existing Work

We want to show how our approach compares to existing works, i.e. DeepAbstract
and the bisimulation. Since there is no implementation available for the latter,
we implemented it ourselves. Please refer to [6, Appendix F] for the details.
The results of the comparison are shown in Fig. 3. It is evident that DeepAb-
stract achieves higher accuracies than the bisimulation, but LiNNA outperforms
DeepAbstract and the bisimulation in terms of accuracy for all reduction rates.

Concerning the runtime, we measure the runtime of each approach for a cer-
tain reduction rate, starting from the full network. We find that (in the median)
LiNNA (greedy) needs 55 s up to 199 s, LiNNA (heuristic) 2 s up to 3 s, DeepAb-
stract 187 s up to 2420 s, and the bisimulation 1 s up to 2 s, on MNIST networks
of different sizes (starting from 4 × 50 up to 11 × 100). The details can be found
in [6, Appendix J]. The bisimulation performs best, however just slightly ahead
of the heuristic-based LiNNA. The greedy LiNNA, as well as DeepAbstract both
have a much higher computation time.

However, in terms of accuracy, greedy LiNNA seems to be the best-
performing approach, given sufficient time. Due to efficiency, we suggest using
heuristic-based LiNNA, as it is as fast as the bisimulation, but its accuracy is a
lot better and even close to greedy LiNNA.

Since we are interested in the general behavior of the abstraction, we want
to see how the methods work for varying sizes of networks, but not only in
terms of scalability. In Fig. 5, we show the trend for bisimulation and LiNNA for
an increasing number of layers resp. neurons per layer. On the left, we fix the
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Fig. 6. Syntactic VS. Semantic - This
plot shows the difference between using
semantic resp. syntactic information
for the abstraction on an MNIST
5 × 100 network. Semantic: LiNNA
(semantic) and DeepAbstract. Syntac-
tic: LiNNA (syntactic) and the bisimu-
lation.

Fig. 7. Refinement - This plot shows
the accuracy of an MNIST 5×100 net-
work that was abstracted and refined to
a certain reduction rate R. There is also
a plot for an abstraction to the same
reduction rate as after the refinement
but without refining.

number of neurons per layer to 100 and incrementally increase the number of
layers. On the right, we fix the number of layers to four and increase the number
of neurons.

We can see that the performance of the networks from the bisimulation varies
a lot and gets slightly worse when there are more layers, whereas LiNNA has a
very small variation and the performance of the abstractions increases slightly
for more layers. Both approaches compute abstractions that perform better the
more neurons are in a layer, but LiNNA converges to a much steeper curve at
high reduction rates.

For NNs with 400 or more neurons, LiNNA can reduce 80% of the neurons
without a significant loss in accuracy, whereas the bisimulation can do the same
only for up to a reduction rate of 55%.

5.3 Semantic vs Syntactic

In the following, we want to show the differences between semantic and syntactic
abstractions. Recall that syntactic abstraction makes use of the weights of the
network, the syntactic information, with no consideration of the actual behavior
of the NN on the inputs. Semantic abstraction, on the other hand, focuses on the
values of the neurons on an input dataset, which also incorporates information
about the weights. DeepAbstract and LiNNA, both use semantic information,
whereas bisimulation uses syntactic information. We additionally evaluate the
performance of LiNNA on syntactic information.

Which type of information is better for abstraction: semantic or syntactic?
Note that both DeepAbstract and the bisimulation represent a group of neurons
by one single representative, whereas LiNNA makes use of a linear combination.

We summarize our results in Fig. 6. For smaller reduction rates, the bisimula-
tion performs better than LiNNA on syntactic information; for higher reduction
rates it is reversed. In general, the approaches based on semantics (DeepAbstract
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Fig. 8. Comparison of refinement tech-
niques on different architectures for
MNIST. The respective networks were
abstracted with a reduction rate of
50%. The lines show the variance, the
box represents 50% of the data, the line
in the box shows the median.

Fig. 9. Refinement on different layers
- We considered abstractions that were
obtained with a 50% reduction rate
and fixed 1000 counterexamples. The
plots depict the percentage of restored
neurons in the layers of the different
MNIST networks.

and LiNNA - semantic) outperform the other two approaches w.r.t. accuracy.
While abstraction based on syntactic information can provide global guarantees
for any input, abstraction based on semantic information relies on the fact that
its inputs during abstraction are similar to the ones it will be evaluated on later.
However, we see that still the semantic information is more appropriate for pre-
serving accuracy because it combines the knowledge about possible inputs with
the knowledge about the weights.

5.4 Refining the Network

We propose refinement of the abstraction in cases where it does not capture all
the behavior anymore, instead of restarting the abstraction process. We consider
networks that are abstracted up to certain reduction rates, i.e. 20%, 30%, . . . ,
90%, and use the refinement to regain 10% of the neurons. For example, we
reduce the network by 90% and then use refinement to get back to a reduction
rate of 80%. We evaluate this refined network on the test dataset and plot its
accuracy. Additionally, we show the accuracy of the same NN which is directly
reduced to an 80% reduction rate, without refinement. This plot is shown in
Fig. 7 for a 5 × 100 network, trained on MNIST.

The gradient and look-ahead refinement have a similar performance. How-
ever, the difference-based approach even outperforms the direct reduction itself.
This behavior can be explained by the fact that the refinement and the abstrac-
tion look at different metrics for removing/restoring neurons. The refinement can
focus directly on optimizing for the inputs at hand, whereas the abstraction was
generated on the training set. In conclusion, the refinement can even improve
the abstraction and it is beneficial to abstract slightly more than required, and
refine for the relevant inputs, rather than having a finer abstraction directly.



418 C. Chau et al.

Comparison of theDifferent Approaches. We collect images that are labeled
differently by the abstraction and observe the number of neurons that are restored
in order to fix the classification of each image. We ran the experiment on differ-
ent networks that were abstracted with a 50% reduction rate and considered 1000
counterexamples for each network. The results are summarized in Fig. 8, where
we have boxplots for each refinement method on four different network architec-
tures. The look-ahead approach is the most effective technique since it requires
the smallest number of restored neurons. In the median, it only requires 1 to 2
operations. The gradient-based approach performs noticeably worse but outper-
forms the difference-based approach on all networks. The computation time, how-
ever, gives a different perspective: Repairing one counterexample takes on aver-
age <1 s for the difference-based approach, 1 s for the gradient-based, but the
look-ahead approach takes on average 4 s. Interestingly, the look-ahead approach
restores fewer neurons but performs worse in accuracy. The difference-based per-
forms better in terms of accuracy while restoring more neurons.

Insight on the Relevance of Layers. We also investigated in which layers
the different refinement techniques tend to restore the neurons. The plots in
Fig. 9 illustrate the percentage of restored neurons in each layer. Notably, the
look-ahead approach restores most neurons in the first layer, and very few or
none in the later layers, whereas the other approaches have a more uniform
behavior. However, the more layers the network has, the more the gradient- and
difference-based approaches tend to restore more neurons in the first layer. As
reported already by [2], the first layers seem to have a larger influence on the
network’s output and hence should be focused on during refinement. It is even
more interesting that the difference-based approach does not focus on the first
layers as much as the look-ahead approach, but it is better in terms of accuracy.

5.5 Error Calculation

We want to show how the abstraction simulates the original network on unseen
data not only w.r.t. the output but on every single neuron. In other words, is
the discrepancy between the concrete and abstract network higher on the test
data than on the training data that generate the abstraction, or does the link
between the neuron and its linear abstraction generalize well?

In Fig. 10, we look at this ratio (“relative error of the abstraction”), i.e. the
absolute difference of (activation values of) a simulated abstract neuron to the
original neuron, once on the test dataset divided by the maximum value on the
training dataset. We can see that there are cases where the error can be greater
than one (meaning “larger than on the training set”), see the first row of the

plot. However, the geometric mean, defined as
(
ΠN

i=1ai

) 1
N , calculated over all

images is very small. Note that more experiments can be found in [6, Appendix
L]. In conclusion, we can say that our abstraction is close to the original also on
the test dataset, although the theoretical error calculation does not guarantee so
tight a simulation. Future work should reveal how to further utilize the empirical
proximity in transferring the reasoning from the abstraction to the original.



Syntactic vs Semantic Abstraction and Refinement of Neural Networks 419

Fig. 10. Histograms of the relative error of the values of the neurons in an MNIST
3×100 network and its abstraction (reduced by 30%). The first row shows the maximum
relative error of each neuron in the NN, that occurred for some input from the test set.
The second row shows the geometric mean of the relative error of each neuron over 100
images of the test set.

6 Conclusions

The focus of this work was to examine abstraction not as a part of a verification
procedure, but rather as a stand-alone transformation, which can later be used in
different ways: as a preprocessing step for verification, as means of obtaining an
equivalent smaller network, or to gain insights about the network and its training,
such as identifying where redundancies arise in trained neural networks. (This is
analogous to the situation of bisimulation, which has been largely investigated
on its own not necessarily as a part of a verification procedure, and its use in
verification is only one of the applications.)

We have introduced LiNNA, which abstracts a network by replacing neurons
with linear combinations of other neurons and also equip it with a refinement
method. We bound the error and thus the difference between the abstraction
and the original network in Theorem1. The theorem yields a lower and an upper
bound on the network’s output, thereby providing its over-approximation.

We showed that the linear extension provides better performance than exist-
ing work on abstraction for classification networks, both DeepAbstract, and the
bisimulation-based approach. We focused our experimental evaluation on accu-
racy, since the aim of the abstraction is to faithfully mimic the whole classifica-
tion process in the smaller, abstract network, not just one concrete property to
be verified, which describes only a very specific aspect of the network. Interest-
ingly, the practical error is dramatically smaller than the worst-case bounds. We
hope this first, experimental step will stimulate interest in research that could
utilize this actual advantage, which is currently not supported by any respective
theory.

Furthermore, we show that the use of semantic information should be pre-
ferred over syntactic information because it allows for higher reductions while
preserving similar behavior and being cheap since the I/O sets can be quite
small. Bringing back semantics could take us closer to the efficiency of classical
software abstraction, where the semantics of states is the very key, going way
beyond bisimulation.
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