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Preface

This volume contains the papers presented at the 21st International Symposium on
Automated Technology for Verification and Analysis (ATVA 2023). ATVA intends to
promote research in theoretical and practical aspects of automated analysis, verification
and synthesis by providing a forum for interaction between regional and international
research communities and industry in related areas.

ATVA 2023 was organized during October 24–27, 2023 in Singapore. ATVA 2023
received 115 submissions, of which 30 were accepted as regular papers and 7 as tool
papers, while 65 were rejected (another 13 were withdrawn or desk-rejected). All sub-
mitted papers went through a rigorous review process with at least 3 reviews per paper,
followed by an online discussion among PC members overseen by the TPC chairs. This
led to a high-quality and attractive scientific program.

This edition of ATVA was blessed by the presence of three prestigious keynote
speakers, who gave talks covering current hot research topics and revealing many new
interesting research directions:

– David Basin (ETH Zurich, Switzerland): Correct and Efficient Policy Monitoring, a
Retrospective;

– Ewen Denney (NASA Ames Research Center, USA): Dynamic Assurance Cases for
Machine-Learning Based Autonomous Systems;

– Reza Shokri (NUS, Singapore): Privacy in Machine Learning.

The conference was preceded by tutorials on important topics given by three
renowned experts:

– Jin Xing Lim and Palina Tolmach (Runtime Verification Inc, USA): The K
Framework: A Tool Kit for Language Semantics and Verification;

– Ewen Denney (NASA Ames Research Center, USA): Developing Assurance Cases
with AdvoCATE.

ATVA2023wouldnot havebeen successfulwithout the contribution and involvement
of the Program Committee members and the external reviewers who contributed to the
review process (with 311 reviews) and the selection of the best contributions. This event
would not exist if authors and contributors did not submit their proposals. We address
our thanks to every person, reviewer, author, program committeemember and organizing
committee member involved in the success of ATVA 2023. The EasyChair system was
set up for the management of ATVA 2023 supporting submission, review and volume
preparation processes.

The local host and sponsor School of Computing and Information Systems, Sin-
gapore Management University provided financial support and tremendous help with
registration and online facilities. The other sponsor, Springer LNCS, contributed in dif-
ferent forms to help run the conference smoothly. Many thanks to all the local organizers
and sponsors.



vi Preface

Wewish to express our special thanks to the General Chair, Jin SongDong, and to the
steering committee members, particularly to Yu-Fang Chen, for their valuable support.

August 2023 Étienne André
Jun Sun
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Correct and Efficient Policy Monitoring,
a Retrospective

David Basin1(B) , Srđan Krstić1 , Joshua Schneider1 ,
and Dmitriy Traytel2

1 Institute of Information Security, Department of Computer Science, ETH Zurich,
Zürich, Switzerland

{basin,srdan.krstic,joshua.schneider}@inf.ethz.ch
2 Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark
traytel@di.ku.dk

Abstract. The MonPoly project started over a decade ago to build
effective tools for monitoring trace properties, including functional cor-
rectness, security, and compliance policies. The original MonPoly tool
supported monitoring specifications given in metric first-order temporal
logic, an expressive specification language. It handled both the online
case, where system events are monitored as they occur, and the offline
case, monitoring logs. Our tool has evolved over time into a family of
tools and supporting infrastructure to make monitoring both scalable
and suitable for high assurance applications. We survey this evolution
which includes: (1) developing more expressive monitors, e.g., adding
aggregation operators, regular expressions, and limited forms of recur-
sion; (2) delimiting efficiently monitorable fragments and designing new
monitoring algorithms for them; (3) supporting parallel and distributed
monitoring; (4) using theorem proving to verify monitoring algorithms
and explore extensions; and (5) carrying out ambitious case studies.

Keywords: runtime verification · monitoring · temporal logic

1 Introduction

Monitoring is a Formal Method for system analysis where one analyzes a sys-
tem’s behavior as system events occur, or afterwards when reading the events
from logs. The objective is to decide whether the system’s observed behavior sat-
isfies a given specification and, if not, to report violations. This problem is general
and has wide ranging applications. The events can be at any level of abstraction
(machine instructions, operating system calls, I/O events, etc.) and one can apply
monitoring to hardware, operating systems, software programs and components,
network traffic, etc. Moreover, depending on the problem domain, the specifica-
tion may state ordering requirements on the events, real-time requirements on
when they occur, or requirements on the relationships between data referenced
by the events. The challenge then is to design monitors that are general enough
to handle many relevant problem domains and to make their decisions efficiently
and effectively, even in the presence of high-velocity event streams.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14215, pp. 3–30, 2023.
https://doi.org/10.1007/978-3-031-45329-8_1
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http://orcid.org/0000-0003-2952-939X
http://orcid.org/0000-0001-8314-2589
http://orcid.org/0000-0001-8253-4513
http://orcid.org/0000-0001-7982-2768
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4 D. Basin et al.

Tool Logic Features Reference s Sect.

MonPoly MFOTL RANF
Ω,def online [20, 26, 28, 31] 4.1

CppMon MFOTL RANF
Ω,def online [56] 4.1

StaticMon MFOTL RANF
Ω,def,rec online, pre-compiled [57, 58] 4.1

HashMon MFOTL RANF
Ω,def online, randomized [91, 92] 4.1

VeriMon MFODL RANF
Ω,def,rec online, verified [16, 17, 20, 97] 4.1, 6

MFOTL2RANF MFOTL → MFOTLRANF translation [82, 85] 4.2
MonPoly-Reg MFOTL online [26, 28] 4.3
Aerial MDL equivalence verdicts [12, 35, 69] 4.4
Hydra MDL multi-head [81, 84, 87] 4.4
Vydra MDL multi-head, verified [81, 87] 4.4, 6
Slicing framework MFOTL RANF offline, parallel [15] 5.1
Slicing framework MFOTL RANF

Ω,def , QTL [62] online, parallel [43, 94, 96] 5.2
POLIMON MTL ↓ unordered input [32, 34] 5.3
TimelyMon MFOTL RANF unordered input [88] 5.3

Fig. 1. Our monitors and related tools

We have been working for over a decade on different aspects of this problem.
Parts of our research were project driven, tackling challenges that arose in apply-
ing monitoring to different problem domains and making our monitoring tools
scale. Other parts were curiosity driven, exploring different monitoring semantics,
algorithms, specification languages, parallelization techniques, and even formal
verification applied to monitoring itself. We provide here a retrospective on this
work, explaining the tools we have built, summarized in Fig. 1, and highlighting
their advances within the context of the larger field of runtime verification. We
hope this will be of value both for those researchers interested in understanding
our tools and the problems they address and those wishing to understand some
of the challenges in bridging theory and practice in this exciting research area.

Our aim has been to develop foundations and tools to cover the largest possi-
ble range of applications. Our starting point has been the expressive specification
language of metric first-order temporal logic (MFOTL) built on first-order logic
with equality and metric temporal logic (MTL) operators. For some applications
MFOTL is still not expressive enough. Hence we have systematically explored
extensions of MFOTL (Sect. 2), such as adding aggregation operators (−Ω in
Fig. 1), regular expressions from dynamic logic (−DL), and limited forms of recur-
sion (−rec ). Unfortunately, monitoring using expressive specification languages
is computationally intractable in the standard monitoring setting (Sect. 3). We
have therefore explored ways to mitigate this problem by: delimiting efficiently
monitorable fragments of MFOTL (Sect. 4), such as those monitorable using rela-
tional data structures (−RANF), and designing monitoring algorithms for them;
weakening some of the requirements on monitors, such as how they present their
output; and providing support for parallel and distributed monitoring (Sect. 5).

As monitoring is often used in critical applications where correctness matters,
it is important that monitors themselves are correct. Part of our journey has been
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Fig. 2. Semantics of MFOTL (gray background) and its extensions

in using theorem provers to formally verify our monitoring algorithms (Sect. 6).
The verified monitors can be run directly, with some performance slowdown
compared to their optimized but unverified brethren. Alternatively they can be
used to ascertain the correctness of other monitors using differential testing.

We describe our results here as well as substantial case studies that we carried
out to learn where bottlenecks and limitations are in practice (Sect. 7).

2 The Logic

We present a logic that unifies our tools’ specification languages. Presently, no
tool supports all presented features, but all features are supported by some tool
(see Fig. 1). We start with metric first-order temporal logic (MFOTL) [28,47] and
extend it with regular expressions [17,36], aggregations operators [24], a freeze
quantifier [32], and a recursion operator [102]. We refer to the cited publications
for detailed explanations and the historical background of each operator.

We fix a set of event names E and for simplicity assume a single infinite
domain of values D. We consider D to include integers, strings, and floats, as
well as POSIX regular expressions to match strings against (not to be confused
with the temporal regular expressions occurring in formulas). The event names
p ∈ E have associated arities ι(p) ∈ N. An event p(d1, . . . , dι(p)) is an element
of E × D

∗. We further fix infinite sets of variables V and registers R such that
V, R, D, and E are all pairwise disjoint. Let I be the set of nonempty intervals
[a, b) := {x ∈ N | a ≤ x < b}, where a ∈ N, b ∈ N ∪ {∞}, and a < b. Terms
T include V ∪ D and can also be constructed by applying operators defined
on D (e.g., + and × on integers) to terms. Formulas ϕ and temporal regular
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expressions r are defined (mutually) inductively, where t, p, r, x, and I range
over T, E, R, V, and I, respectively:

ϕ ::= p(t) | tpts(t, t) | t R t | ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | I ϕ | I ϕ | ϕ SI ϕ | ϕ UI ϕ |
↓rx. ϕ | x ← Ω(t;x) ϕ | def p(x) := ϕ in ϕ | rec p(x) := ϕ in ϕ | I r | I r

r ::= � | ϕ? | rr | r + r | r∗ .

Here R ∈ {=, <,≤,
RE⇐} is a rigid (i.e., non-changing) relation and Ω ∈

{CNT,SUM,AVG,MIN,MAX,MED} is an aggregation function on multisets, e.g.,
CNT⦃1, 1, 2⦄ = 3 and SUM⦃1, 1, 2⦄ = 4. We write a for a list of zero or more a.

MFOTL formulas are built from operators shown in gray background. For-
mulas p(t) are called (atomic) predicates. The special predicate tpts refers to
the current time(-point and time-stamp). Besides logical operators (¬, ∨, ∃) and
rigid relations (R), MFOTL has metric past and future temporal operators 
(previous),  (next), S (since), and U (until), which may be nested freely. Metric
temporal logic (MTL) is a fragment of MFOTL with nullary predicates and no
quantification.

The addition of  (past match) and  (future match) operators to MTL
and MFOTL results in their dynamic variants MDL and MFODL, respectively.
These operators use temporal regular expressions constructed from wildcard (�),
test (?), concatenation, alternation (+), and star (∗) operations. We also consider
formulas with freeze quantification ↓rx. α. In particular, MTL↓ is the extension
of MTL with freeze quantifiers. Finally, MFOTL is extended with aggregations
x ← Ω(t;x) α (called MFOTLΩ), and with non-recursive (MFOTLdef) and
recursive (MFOTLrec ) definitions. The latter two are given by formulas of the
form def p(x) := α in β and rec p(x) := α in β, respectively. We derive additional
operators: truth � := 0 = 0, falsehood ⊥ := ¬�, inequality t1 = t2 := ¬(t1 = t2),
conjunction α ∧ β := ¬(¬α ∨ ¬β), implication α → β := ¬α ∨ β, current
time-point tp(i) := ∃t. tpts(i, t) and time-stamp ts(t) := ∃i. tpts(i, t), universal
quantification ∀x. α := ¬(∃x. ¬α), eventually I α := � UI α, always I α :=
¬I ¬α, once I α := � SI α, and historically I α := ¬I ¬α. A formula
is future-bounded iff all subformulas of the form αU[a,b) β and [a,b) r (including
derived operators) satisfy b < ∞.

Formulas are interpreted over temporal structures, which model execu-
tions of a monitored system. A temporal structure σ is an infinite sequence
(τσ

i ,Dσ
i , Rσ

i )i∈N, where τσ
i ∈ N is a time-stamp, the database Dσ

i ∈ P(E × D
∗)

is a finite set of events, and the register map Rσ
i assigns each register r ∈ R a

single domain value from D. Time-stamps must be monotone (∀i. τi ≤ τi+1) and
progressing (∀τ. ∃i. τ < τi). Note that different time-points i = j may have the
same time-stamp τi = τj .

Figure 2 shows the relation σ, v, i |= ϕ defining the satisfaction of the formula
ϕ for a temporal structure σ, a valuation v, and a time-point i. The valuation v
assigns domain values to ϕ’s free variables V(ϕ). Overloading notation, v is also
the extension of v to terms T in the obvious way, e.g., v(t1 + t2) = v(t1) + v(t2).
The valuation v[x �→d] is equal to v except that d is assigned to the variable x.
Similarly, trace σ[p�X] is equal to σ except that the set of events for predicate
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p from Dσ
i is replaced by X(i) at each time-point i. The rigid relation x

RE⇐ r
is satisfied by all strings x matched by the POSIX regular expression r. The
other rigid relations behave as expected. Aggregations support grouping using
variables g and their semantics is defined using multiset union

⊎
. The addi-

tional operators are intuitive, e.g., unfolding a non-recursive definition (even
under temporal operators) results in an equivalent formula. The semantics of
recursive definitions is as expected provided all recursive occurrences of p in ϕ
are evaluated at past time-points.

For I ∈ I and n ∈ N, let I −n denote the interval {x−n | x ∈ I}∩ N and I−

the set of intervals {I −m | m ∈ N}\{∅}, which is always finite. We write SF(ϕ)
for the set of ϕ’s subformulas and define interval-skewed subformulas ISF(ϕ) as

SF(ϕ) ∪ {α SJ β | α SI β ∈ SF(ϕ), J ∈ I−} ∪ { J r | I r ∈ SF(ϕ), J ∈ I−}
∪ {α UJ β | α UI β ∈ SF(ϕ), J ∈ I−} ∪ {J r | I r ∈ SF(ϕ), J ∈ I−}.

3 Monitoring Setting

The central problem in monitoring is, given a policy and a trace from a monitored
system, to decide whether the trace satisfies the policy. The monitoring problem
has many variants that motivate specialized algorithms. For example, one may
grant the monitor random access to the trace for efficiency, or require the timely
detection of violations for some applications. Here we sketch the most important
problem dimensions as well as the setting in which we position our tools. A more
detailed taxonomy for runtime verification tools has been developed by Falcone
et al. [52] and extensive introductions to the topic by many others [11,72,90].

Offline monitors run after the monitored system has terminated and therefore
read the complete trace, typically stored as a log file. In contrast, online monitors
run while the monitored system executes and observe a trace’s prefix up to the
present. They typically receive the trace incrementally, as a stream of events,
one event at a time. Equivalently, online monitors read the trace with a single
one-way reading head that moves forward only, whereas offline monitors have
random access to the entire trace. Every online monitor can be used offline by
replaying the log file as a stream, but it may be less efficient than a dedicated
offline tool. We primarily develop online monitors, yet we propose a multi-head
approach that lies in between offline and online monitoring (Sect. 4.4).

The linear order of events observed by a monitor (be it in a log file or a stream)
does not necessarily coincide with the events’ temporal order of occurrence in the
monitored system. We speak of a trace only when they do coincide; otherwise,
we call the monitor’s input observations. For example, most distributed systems
do not provide traces in this strict sense because it is difficult to reconstruct the
true order of events [98]. Our monitors operate on traces by default. We discuss
two approaches that handle more general observations in Sect. 5.3.

All our approaches work with policies of the form ϕ where ϕ is future-
bounded. Such policies describe safety properties,1 characterized by bad pre-
1 Although not every safety property expressible in MFOTL has this form [47].
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fixes [5], which are finite traces with all their infinite extensions violating the
policy. Our monitors detect all bad prefixes of ϕ by evaluating the formula
¬ϕ at every time-point. Their output is monotonic with respect to time-points
and consists of exactly those time-points at which ¬ϕ is satisfied in all infinite
extensions. A non-empty output indicates that ϕ is violated. Dually, co-safety
properties [60] of the form ϕ′ can be monitored by evaluating ϕ′ directly.

A monitor’s output may range from a single bit to detailed proof trees [73].
As described above, to monitor a policy ∀x. ϕ, our monitors evaluate ¬∀x. ϕ
at every time-point. After pushing the negation in and dropping the leading exis-
tential quantifiers, they can evaluate ¬ϕ, which has free variables. The computed
valuations are output together with the corresponding time-points and provide
insight into the policy’s violations. The output is never provided for time-points
beyond the observed trace prefix. This cannot be avoided in general: a policy
ϕ is violated on all traces (and therefore also on all extensions of the empty
prefix) iff ϕ is unsatisfiable, which is undecidable for MFOTL [22].

4 Restrictions and Algorithms

We describe our algorithms for monitoring fragments of our logic. Restricting
the policy language has two advantages. First, without restrictions it may be
impossible to build a monitor that satisfies the desired properties. For example,
detecting bad prefixes is already undecidable for a much weaker form of quantifi-
cation than that of MFOTL [37]. Second, algorithms can be tailored to language
fragments yielding better performance in exchange for less expressiveness or con-
ciseness.

We focus primarily on fragments that retain MFOTL’s first-order aspects and
which can be monitored using finite relations (Sect. 4.1). A monitor-independent
translation makes these fragments more user-friendly by lifting syntactic restric-
tions (Sect. 4.2). We also compare the finite relation approach to automatic struc-
tures (Sect. 4.3). While less expressive, propositional languages are attractive
because they admit better complexity. Notably, we developed two algorithms
that achieve (almost) event-rate independence for MDL (Sect. 4.4).

4.1 Relational Algebra Normal Form

In database theory, Codd’s theorem [48] states that relational algebra and
domain-independent queries expressed using the relational calculus are equally
expressive. Relational algebra consists of effectively computable operations on
finite relations, whereas the relational calculus is essentially first-order logic.
Domain-independence [51] ensures finite query results, independently of the
domain that the query’s variables range over. Relational algebra normal form
(RANF) [1,55] is a syntactically defined, domain-independent fragment of the
relational calculus with a straightforward translation to the algebra.

The policy language fragment supported by MonPoly [27,31], VeriMon [16,
97], CppMon [56], StaticMon [58], and HashMon [92] is a generalization of RANF
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Fig. 3. Relational algebra normal form for a subset of MFOTL

from first-order logic to MFOTL. We sometimes call it the monitorable frag-
ment [28] (not to be confused with other notions of monitorability [80]). The
motivation is the same as for databases: one can translate this fragment directly
to operations acting on (streams of) finite relations. In the following, we first
describe aspects common to the aforementioned RANF-based tools, thus speak-
ing of a single abstract monitor, before explaining the main differences between
the tools.

General Approach. The basic idea is to view the policy formula as a tree whose
nodes correspond to relational operations. The monitor processes the input trace
incrementally. Every time-point gives rise to a database that supplies the leaves
of the tree with relations. Then, the monitor evaluates the tree, bottom up.
The relation obtained at the root, which is appended to the in-order output
stream, contains the satisfying valuations of the formula. The main difference
to the database setting is that some tree nodes, namely those corresponding
to temporal operators, are stateful. Future operators are handled by delaying
intermediate computations that depend on those operators. Our monitors over-
approximate the required delay using the formula’s intervals. Hence they do not
detect minimal bad prefixes; however, they eventually report a bad prefix when
there is one.

Figure 3 defines the RANF fragment for a subset of our logic; we discuss more
advanced operators below for those tools that support them. The first column
contains patterns: any formula obtained by instantiating a pattern is in RANF
if the instantiations of α and β are in RANF, and the constraints in the second
column are satisfied. Formulas can often be rewritten to obtain an equivalent
RANF formula, e.g., by applying the distributive law to p(x, y) ∧ (q(x) ∨ q(y)).
However, finding suitable rewrite rules becomes difficult once temporal operators
are involved. MonPoly implements a simple but incomplete rewriting procedure.
We describe a more general translation in Sect. 4.2. The third column in Fig. 3
describes the relational algebra operation that is used to evaluate formulas match-
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ing the pattern. Most are standard [1]. The generalized projection evaluates the
term t on each tuple in the input relation to compute the value assigned to x in
the output relation. The anti-join generalizes set difference such that the “neg-
ative” relation may have a subset of the other relation’s variables. Aggregation
operators are computed by first partitioning the relation into groups (if there
are grouping variables) and afterwards, for each group, evaluating the term t on
the tuples and combining the results using the appropriate aggregation function
(e.g., sum, count, or average).

Temporal Operators. The implementation of the temporal operators is specific to
the monitoring setting, although temporal–relational algebras have been studied
previously [79,100]. A basic approach, used in MonPoly’s original implemen-
tation [26,28], employs auxiliary relations that are maintained as part of the
monitor’s state. For I α, the auxiliary relation is simply the evaluation result
for α at the previous time-point. For α SI β, the auxiliary relation extends the
tuples obtained from β with the corresponding time-stamp, which is used to
check the interval constraint I. All tuples must satisfy α since the time-point
when they were most recently added to the relation. Several optimizations are
possible. For example, the special cases  and  benefit from a sliding-window
algorithm [30]. A specialized data structure that improves the evaluation time
of S in general was first introduced in VeriMon [17]. The evaluation of future
temporal operators is not symmetric to the past operators. Specifically, α UI β
requires an additional auxiliary relation that stores the time-points at which
uninterrupted α sequences start.

Example. We explain how a MonPoly-style algorithm monitors the policy
∀x. p(x) →[0,3] q(x). Specifically, it evaluates ¬ϕ ≡ p(x) ∧ ¬χ, where
χ ≡ [0,3] q(x). All subformulas of ¬ϕ have a single free variable x and their
evaluation results are thus all unary relations, i.e., sets. The monitor maintains
an additional binary relation Sχ in its state, which is used for the[0,3] operator.
This relation stores pairs (τ, x) such that the event q(x) occurred most 3 time
units ago, and τ is the most recent time-stamp for the event. For each input
(τσ

i ,Dσ
i , Rσ

i ), corresponding to the time-point i, the monitor proceeds as follows.

(1) Evaluate q(x) by computing Eq = {x | q(x) ∈ Dσ
i }.

(2) Remove pairs (τ, x) from Sχ where τσ
i − τ > 3 or x ∈ Eq, then add (τσ

i , x)
for all x ∈ Eq. This restores Sχ’s invariant.

(3) The result of χ is Eχ = {x | (τ, x) ∈ Sχ}.
(4) Evaluate p(x) by computing Ep = {x | p(x) ∈ Dσ

i }.
(5) Compute E¬ ϕ = Ep\Eχ as a special case of anti-join to evaluate p(x)∧ ¬χ.
(6) The formula ¬ϕ is satisfied (i.e., the policy is violated) at time-point i iff

E¬ ϕ is non-empty. In this case, the monitor outputs E¬ ϕ.

Tool-Specific Details and Extensions. The main difference between MonPoly’s
and VeriMon’s algorithms is the scheduling in the presence of delays due to
future operators. VeriMon uses buffers attached to every binary operator to



Correct and Efficient Policy Monitoring, a Retrospective 11

“align” the relations computed for the two operands. It evaluates the operator
whenever a pair of relations (for the same time-point) is available. The operands
are evaluated independently and eagerly. In contrast, MonPoly’s scheduling is
asymmetric: the second operand is evaluated only once the first has yielded a
result, which requires buffering for the atomic predicates. The two strategies dif-
fer in their memory usage, which is incomparable because the buffered relations’
size depends on the formula.

Extensions compatible with the RANF approach include the “dynamic” oper-
ators  and , as well as the def and rec constructs. The operators  and 
generalize S and U to regular expressions. We have implemented them in VeriMon
using Antimirov’s partial derivatives [6]. The syntactic restrictions that guaran-
tee finite relations are subtle, and we refer to the corresponding paper [17] for
details. To evaluate def p(x) := α in β, our monitors evaluate α eagerly first
and buffer any results to be used in the subsequent evaluation of β. For rec ,
which is currently supported by VeriMon and StaticMon, we exploit that only
the valuations of p at past time-points are relevant when evaluating α. Hence no
fixpoint computation is required. The tools syntactically check that every use
of p in α is guarded by a strict past operator, such as  or I , where I does
not include zero. This guarantees that the monitor can eventually evaluate every
time-point [102].

The monitors mentioned so far use immutable tree data structures to rep-
resent finite relations. CppMon [56] reimplements VeriMon’s algorithm in C++
using mutable hash tables. StaticMon develops this idea further by using C++
template metaprogramming [2] to generate an optimized monitor program tai-
lored for each formula. It outperforms MonPoly, VeriMon, and CppMon on
many benchmarks [58]. HashMon [92] reuses MonPoly’s evaluation algorithm.
In addition, HashMon can automatically replace large domain values, such as
long strings, by short, randomized hash values to reduce the monitor’s memory
usage.

4.2 Translation to RANF

The restrictions imposed by the RANF on negations and the subformula’s
free variables may hamper concise, intuitive formalizations. While one can
often rewrite a formula manually into an equivalent RANF representation, this
increases the risk of formalization errors. For example, it is difficult to rewrite the
formula p(x)∧ (q(x, y) S r(y)), which is not in RANF because of the subformula
q(x, y)S r(y). However, this formula is actually domain-independent as p(x) and
r(y) jointly provide an upper bound on the set of satisfying valuations.

Raszyk proposed an automatic translation for arbitrary relational calculus
queries [83] and MFOTL formulas [85] into RANF. The translation, implemented
in the tool MFOTL2RANF, introduces an additional free variable x∞. If x∞ = 1
in any satisfying valuation, the set of satisfying valuations for the given trace
prefix is infinite and no further guarantees are made. This case cannot occur if
the original formula is domain-independent. Otherwise, the satisfying valuations
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without x∞ correspond precisely to those of the original formula. For the above
example, we get (with minor simplifications)

(
p(x) ∧ (

q(x, y) S
(
( q(x, y)) ∧ r(y)

)) ∨
p(x) ∧ (

q(x, y) S
(
q(x, y) ∧ (

( q(x, y)) ∧ (¬ q(x, y)) ∧ r(y)
))) ∨

p(x) ∧ r(y) ∧ ¬ q(x, y)
)

∧ x∞ = 0 .

The translation detects the domain-independence and it sets x∞ to zero. The
three disjuncts correspond to a case distinction over possible origins of relevant
values for x in the evaluation of the subformula q(x, y) S r(y): either there is a
q(x, y) event concurrent with or before r(y), or the earliest occurrence of q(x, y)
is strictly within the span of S, or there is no such occurrence and p(x) serves
as the bound.

Adding the automatic translation to our monitors is ongoing work. It is an
open question whether and how the translation can be extended to cover addi-
tional features of MFOTL and our extensions, such as inequalities, aggregations,
and rec .

4.3 Automatic Structures

An alternative approach that lifts the restrictions of RANF is to replace finite
relations with automatic structures [42,68]. These structures represent each rela-
tion as a finite-state automaton that recognizes those (suitably encoded) tuples
that are in the relation. The main advantage is that automatic structures are
closed under all Boolean operations, including negation and projection. More-
over, they can represent and operate on (a subset of the) infinite relations.

Binary decision diagrams (BDDs) are an efficient implementation of auto-
matic structures. They are used in an alternative implementation of MonPoly’s
algorithm called MonPoly-Reg [26,28], as well as Havelund et al.’s DejaVu
tool [61,62]. The two monitors mainly differ in the encoding of tuples repre-
senting valuations. MonPoly-Reg, which supports only integer values, uses the
MONA library [64], whose automata natively read multiple variables in parallel.
DejaVu translates values to bitstrings, which it then concatenates into tuples.

The use of automatic structures has drawbacks. All operators in terms
(e.g., +) and all rigid relations (e.g., ≤), must be expressible as regular lan-
guages. This generally limits the scope to Presburger arithmetic and none of
the above tools handle aggregations. Moreover, the time and memory used by
the BDD operations depend on the internal variable ordering and can be unpre-
dictable [102].

4.4 Propositional Monitoring

A monitor’s time and memory performance depends on the sizes of its inputs, i.e.,
the formula and trace. The latter is typically larger than the former by orders of
magnitude. Therefore, one ideally uses trace-length independent monitors, whose
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memory complexity is independent of the trace size. Moreover, for monitors that
support real-time constraints, it is desirable that the memory complexity be
independent of the trace’s event rate, i.e., the number of events per unit of time.
Traces arising in practice have a bound on their event rate, although the bound
may be unknown in advance. We henceforth focus on such (event-rate) bounded
traces.

Both event-rate independent (ERI) and trace-length independent (TLI) mon-
itoring algorithms are not attainable for first-order specifications. For example,
monitoring p(x) requires, in the worst case, memory proportional to the entire
trace prefix seen by the monitor. In contrast, TLI monitoring algorithms for the
propositional fragments of MFOTL (like MTL) have been proposed in the past.
These, however, deviate from our monitoring setting (Sect. 3): they either do not
support future operators [29,33,63], only produce a single Boolean verdict for a
formula at the trace’s first time-point [53,99], or access the trace in an offline
manner [89]. The challenge is to develop an online ERI algorithm that supports
both future operators and produces verdicts for every time-point. Our monitors
achieve this by operating in a slightly modified monitoring setting: they either
output out-of-order equivalence verdicts, or use multiple reading heads.

Equivalence Verdicts. Our Aerial tool [12,35] solves the above challenge by out-
putting verdicts differently. In addition to the standard Boolean verdicts, it out-
puts equivalence verdicts of the form j ≡ i stating that the verdict at time-point
j is identical to the verdict at an earlier time-point i < j, although both verdicts
are currently unknown. This makes Aerial’s output non-monotonic with respect
to time-points and requires slightly more effort to understand. To output equiva-
lence verdicts, the algorithm must refer to natural numbers encoding time-points,
which requires logarithmic space as time-points increase with the trace length.
Aerial refers to time-points using an offset within a block of consecutive time-
points labeled with the same time-stamp. It therefore requires logarithmic space
in the event rate, since the size of such a block is bounded by the event rate.
Due to this logarithmic dependence, Aerial is an almost ERI algorithm.

As an example, consider the policy  (p →[0,3] q) similar to the one from
Sect. 4.1, only propositional and with a future [0,3] operator. The equation

σ, v, i |=I α iff σ, v, i |= α or σ, v, i + 1 |=I−(τi+1−τi) α

reduces the satisfaction of I α to a disjunction of the satisfaction of α at the
same time-point i and the satisfaction of I−(τi+1−τi) α at the next time-point
i + 1. The algorithm can immediately compute the satisfaction at the current
time-point i, but it must wait for the one at the next time-point. This also
means that after processing time-point i, the algorithm cannot store a Boolean
verdict for the formula I α in its state. Instead, it stores a dependency in
the form of a pointer to the part of its state referring to I−(τi+1−τi) α, which
becomes available after processing time-point i + 1. More generally, for every
(interval-skewed) subformula (recall ISF(·) from Sect. 2), the algorithm stores
a Boolean combination of such dependencies in the form of symbolic Boolean
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expressions. By processing the subsequent time-points, the algorithm may resolve
some expressions to Boolean values and output them as verdicts. Crucially, if
the algorithm detects two semantically equivalent Boolean expressions for the
top-level formula at different time-points, it outputs an equivalence verdict and
removes one of the two expressions from its state. As the number of semantically
different Boolean expressions only depends on the formula, so does the space
needed to store them. Aerial extends this idea to MDL operators  and 
using partial derivatives [6].

Multi-head Monitoring. Our Hydra tool [84,87] implements an ERI algorithm
that supports both past and future operators, but, unlike Aerial, produces
Boolean verdicts in time-point order. It achieves this by using multiple inde-
pendent and unidirectional reading heads. If an event is needed for subsequent
analysis after it was read, a standard online monitor must keep it in its memory.
The idea of using multiple heads is to avoid this memory usage and rely on one
of the reading heads to read the event again. The way Hydra reads its input
trace makes it neither an online nor an offline monitor. An online monitor does
not require the trace to be persistent, whereas Hydra requires this for the part of
the trace between its first and last reading head. In contrast, an offline monitor
has a reading head without movement constraints, while all of Hydra’s reading
heads are unidirectional.

Conceptually, a multi-head monitor for an MTL formula ϕ is built recursively
from multi-head (sub-)monitors, one for each direct subformula of ϕ. The total
number of reading heads equals the number of atomic predicates in ϕ. The
algorithm recursively steps the monitors in a loop, where a step either advances
one reading head or propagates a cached verdict from a sub-monitor to its parent.
Once every sub-monitor for ϕ has produced a verdict, the algorithm computes
as many verdicts for ϕ as possible (which may be none) based on the MTL
semantics of ϕ’s top-level operator. For example, Hydra monitors the policy
 (p →[0,3] q) using two reading heads for p and q. The[0,3] operator stores
a run-length encoded list of integers. In the list, zeros representing time-points
are interleaved with the (positive) time-stamp differences between them. The
list encodes a sequence of time-points, spanning a time-stamp difference of at
most 3, at which q is not satisfied. It is updated using the verdicts from the
head for q, which runs ahead. Specifically, whenever the head reports a q event,
all time-points in the list become positive verdicts for the [0,3] operator (after
checking the interval constraint). Finally, the → operator combines the verdicts
returned by its sub-monitors.

Hydra generalizes [86] the idea of multi-head monitoring to MDL operators
 and  using a number of heads exponential in the formula’s size [87]. Both
Aerial and Hydra outperform MonPoly on their specialized fragment.

5 Parallelization

The algorithms described in Sect. 4 all execute sequentially. The only way to
make them faster (beyond clever optimizations) is to use a faster processor,
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which clearly has its limits. It is thus natural to ask how one can parallelize the
existing algorithms or develop new parallel ones, which is not straightforward
as the linear nature of traces results in a bias towards sequential processing.
Theoretical results are promising: Kuhtz and Finkbeiner [70] and later Bundala
and Ouaknine [44] showed that LTL and MTL monitoring over finite traces is
in the highly parallelizable circuit complexity class NC. However, these results
do not generalize to first-order policies, where the complexity rises to PSPACE-
complete [37], which likely rules out fast parallel algorithms. We must therefore
resort to a best effort strategy.

We discuss task-parallel and data-parallel approaches. With task parallelism,
independent operations within the monitor are executed in parallel. Data par-
allelism partitions the data instead, i.e., the trace. While parallel monitoring,
distributed monitoring, and monitoring of distributed systems all have different
requirements, there are some connections that we discuss in Sect. 5.3.

5.1 Scalable Offline Monitoring

Offline monitors are more easily parallelized than online ones because all data
is available from the start. We summarize results on applying the MapReduce
framework [49] to offline monitoring. MapReduce is suitable for computations
on large sets of data items. There are two phases. In the first phase, each data
item is mapped (transformed) individually and the results are each assigned a
key, which is used for grouping. In the second phase, each group is independently
reduced to a result. Clearly, both phases are parallelizable provided the groups
are not too large.

Barre et al. [10] evaluate LTL formulas bottom up using one round of MapRe-
duce for each layer of the formula tree. They combine task and data parallelism:
the map phase operates on all time-points and operators in the current layer,
whereas the reduce phase is organized by operators only. Follow-up work gen-
eralized this approach to MTL with aggregations [41] and a more fine-grained
partitioning of temporal operators based on their interval constraints [40].

We developed a slicing framework [14,15] based on MapReduce and data
parallelism. The map phase applies slicers to partition the input trace into a
finite collection of slices, which are again traces. Each slice is associated with
a restriction, a subset of the valuations and time-stamps that the monitor may
output for a given policy formula. In the reduce phase, MonPoly is used as a
submonitor that evaluates the formula on each slice. Its outputs are intersected
with the corresponding restriction and combined. For correctness, it is important
that the slices are sound and complete with respect to their restrictions. Slices
need not be (and, in general, are not) disjoint. However, by choosing the slicers
carefully, each slice has significantly fewer events than the input trace, such that
each parallel invocation of MonPoly runs for a shorter amount of time and uses
less memory.

There are two fundamental types of slicers, which may be composed. A data
slicer selects events as a function of the events’ parameters (domain values). It
is parametrized by one of the formula’s free variables x and a subset Sx of the
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domain. Any event that may be involved in a satisfying valuation v of the formula,
such that v(x) ∈ Sx, is included in the slice. This is determined using a static
over-approximation. For example, for the formula p(x)∧¬ (∃y. q(x, y) ∨ q(y, x)),
the slice Sx = {3} receives the events p(3), q(3, c), and q(c, 3) for all c.

In contrast, the time slicer considers the events’ time-stamps. The basic idea
is to split the trace into contiguous chunks. However, if the formula uses tem-
poral operators, they cannot be evaluated correctly near the chunk boundaries.
Therefore, there must be a sufficient overlap between adjacent chunks. This over-
lap can again be computed statically in advance based on the formula’s relative
intervals. The relative interval of p ∧[1,2] (q ∨[7,7] r) is [−2, 6], for instance,
as any relevant event is contained within that interval relative to the current
time-stamp.

5.2 Scalable Online Monitoring

MapReduce was designed for offline (batch) processing and it is not directly
suitable for low-latency online monitors. In contrast, the data stream model of
computation is tailored to continuous queries over rapidly changing data [9],
which online monitoring can be seen as an instance of. Data stream manage-
ment systems (DSMS) are generic platforms that provide high-level abstractions,
while taking care of common issues in large-scale data stream processing such as
scheduling, distributed execution, and fault tolerance [4,46,101].

Our online slicing framework [94,96] transplants the data slicing approach
onto the Apache Flink DSMS [4], which parallelizes stream processing using
multiprocessing or a distributed cluster. Data slicing is more useful for online
monitoring than time slicing as the reduction in the maximum number of events
across all slices is often higher over short periods of time. The main criterion for
choosing Flink was its support for distributed snapshots [45], which enables fault-
tolerance. If a machine in a distributed monitoring cluster fails, for example, the
monitor can restart from the latest snapshot, which reduces the latency until
it catches up with the event stream. To this end, we implemented a custom
operator for Flink’s data flow that can extract MonPoly’s state.

We improved the slicing framework along several dimensions. The joint data
slicer takes all free variables of the policy formula into account. Parametrized
by a slicing strategy (an assignment of valuations over the free variables to slice
identifiers), it computes for every event a subset of target slices that the event
must be included in. We extended the joint data slicer with support for def and
rec and identified a policy fragment for which the submonitors’ outputs need
not be filtered against the slicing strategy [93], which is otherwise required by
(joint) data slicers.

Moreover, we developed an automatic slicing strategy selection for the joint
data slicer. It adapts the hypercube algorithm for the parallel processing of rela-
tional joins [3,38] to our setting. The algorithm is so called because it partitions
the domain of every variable separately, such that each slice corresponds to a
hypercube of the product space over all variables. The number of splits per vari-
able is optimized to minimize event duplication. This requires specific statistics
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of the event stream, such as the relative frequency of the different event names.
These statistics may change substantially over time in a long-running stream and
so may the corresponding optimal strategy. To change the strategy at runtime,
we developed a state splitting and merge interface for MonPoly [95], since the
submonitors’ states must be kept consistent with the current slicing strategy.

Both the offline and the online framework are black box approaches because
they rely on a standard, non-parallelized monitoring tool. This is convenient
because all tool optimizations are readily available and the implementation can
be changed relatively easily. For example, we have used not only MonPoly but
also DejaVu with our online framework. However, it is known specifically for joins
that redistributing data in multiple rounds may improve performance [38]. This
corresponds to exchanging data between individual operators in the monitor’s
execution. We describe such a parallel white box monitor in Sect. 5.3.

5.3 Monitoring Distributed Systems

We focus on centralized specifications, which take a holistic view of a distributed
system and abstract away from its structure [52]. Many temporal logics for cen-
tralized specifications—including MFOTL—assume that a total order is defined
over all events. Yet it is often difficult to determine the true order of events
generated by different components in an asynchronous distributed systems. The
uncertainty about the ordering can be reduced, but not eliminated, using logi-
cal clocks such as vector clocks [75]. A global physical (real-time) clock may be
approximated by employing synchronization protocols, but it has limits in envi-
ronments with high event rates [39]. The RV community has developed many
approaches that try to circumvent these obstacles [54]. Here we summarize our
contributions to this area.

The interleaving-sufficient fragment [21,22] is a syntactically defined subset
of MFOTL that can be monitored correctly on any interleaving of traces from
different sources (e.g., components), meaning that the formula is either satis-
fied or violated on any interleaving. The only assumption is that a global clock
with a possibly low resolution creates the time-stamps across all traces. The
collapse-sufficient fragment is contained in the interleaving-sufficient fragment
and consists of formulas that can be monitored correctly on the collapse, where
all events with the same time-stamp are combined into a single time-point. Such
fragments are useful because determining whether any (or all) interleavings sat-
isfy a propositional formula is already (co-)NP-complete [22].

We used the collapse-sufficient fragment with the online slicing framework
to parallelize slicing itself [19]. In the original framework, the slicer can become
a bottleneck if the event rate (number of events per second) is too high. The
idea is to slice the streams from each source in parallel and then merge the
incoming slices at each submonitor. If the monitored policy is collapse-sufficient,
it suffices to sort and group the events by their time-stamp using a (small)
buffer. However, this approach still requires a low-resolution global clock. For a
propositional fragment, we have shown that monitoring is possible even if the
clock has bounded error [23].
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When the monitor is operating in a distributed setting, messages sent may
get lost or arrive out-of-order and components may even crash. Basin et al. [32,
34] developed a monitoring algorithm that uses a three valued Kleene logic to
soundly operate in the presence of knowledge gaps; the third value ⊥ stands
for “unknown”. Reasoning is monotonic with respect to a partial order on truth
values where t and f are incomparable, and both are greater than ⊥. Hence
verdicts, once emitted, are never retracted, even when knowledge gaps are filled
as events come in, out-of-order. The out-of-order monitor (POLIMON) supports
the language MTL↓, which is MTL augmented with freeze quantifiers, where ↓
is a quantifier that extracts data values from registers and bind these values to
logical variables.

A second, recently developed monitor for the out-of-order-setting is Time-
lyMon [88]. TimelyMon supports the RANF fragment of MFOTL with proper
quantification and is thus more expressive than POLIMON, which is limited to
freeze quantification. TimelyMon can receive individual events (not databases)
in any order, but expects them to be labeled with the correct time-points and
time-stamps (as defined by the temporal structure). It outputs assignments
out-of-order, which allows it to signal policy violations much earlier than Mon-
Poly and VeriMon, whose verdicts are delayed by the future interval bounds.
Technology-wise, TimelyMon is implemented in the Timely Dataflow DSMS [76]
and thus constitutes a white box implementation of a data-parallel online mon-
itor (Sect. 5.2). Initial experiments confirm TimelyMon’s good scalability with
increasing numbers of workers, which is simply a parameter in Timely Dataflow.

6 Verification

Monitors use complex, optimized algorithms to efficiently support expressive
specification languages. These algorithms’ correctness is rarely obvious. Even
worse, pen-and-paper proofs of correctness usually reason about idealized pseu-
docode. These proofs can be faulty, and so can be the translation from pseu-
docode to code. Over the years, we have found and fixed various errors in Mon-
Poly’s code.

VeriMon [16,17,97,102] was conceived out of our frustration with this build-
break-fix cycle. Our original goal was to create a simplified version of Mon-
Poly with strong correctness guarantees, machine-checked using the interactive
theorem prover Isabelle/HOL [78]. To this end, we have formalized MFOTL’s
syntax and semantics, the simplified monitor’s specification, and its correctness
statement. We then defined invariants on the monitor’s state and proved in
Isabelle that they are preserved by the monitor’s steps and imply the correct-
ness statement. Finally, using Isabelle’s code generator [59], we extracted exe-
cutable OCaml code from our formalization. The resulting functional program,
augmented with MonPoly’s unverified formula and log parsers and user interface
is what we call VeriMon.

Is VeriMon more trustworthy than MonPoly? Isabelle will not accept a vague
or incomplete argument: all reasoning passes through Isabelle’s kernel, which is
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a trustworthy guardian. Since Isabelle accepts the proof of VeriMon’s correct-
ness statement (expressing that the monitor’s output complies with the speci-
fied MFOTL semantics), errors can only happen in reused, unverified parts of
MonPoly’s code or in the formal specification of MFOTL. The actual monitoring
algorithm, arguably the most complex part of a monitor, is error-free. To further
increase trustworthiness, we are working on verifying the unverified code used by
VeriMon and validating MFOTL’s specification by manual inspection, asserting
that it faithfully represents what we intend to model.

VeriMon proved useful beyond its trustworthiness. Verifying a monitor has
significantly improved our own understanding of the matter and provided us with
a platform for experimentation and growth. VeriMon has become the incubator
for first-order monitoring research. For example, new constructs like temporal
regular expressions [17] and recursive definitions [102], previously unseen in any
first-order monitor supporting future temporal operators, were introduced in
VeriMon. We have also optimized VeriMon’s simplified algorithms, sometimes
inspired by optimizations used in MonPoly, other times going beyond, e.g.,
by incorporating multi-way joins from databases [17]. Moreover, we developed
entirely new components, such as a type system and a type inference algorithm.
In all cases, we took care, with Isabelle’s help, to maintain or extend the correct-
ness proof.

Eventually, the new features started migrating to other, unverified monitors,
which still outclass VeriMon in efficiency. We have also used VeriMon as a reliable
testing oracle. Differential testing on random inputs revealed several previously
unknown implementation errors in MonPoly and helped us to localize them [17].

VeriMon is not our only verified monitor. The multi-head monitor Hydra
(Sect. 4.4) has a verified counterpart, Vydra, and the online slicing framework’s
core (Sect. 5.2) is also formally verified. We firmly believe that theorem proving
is a must when the goal is to develop and implement complex algorithms one
can trust.

7 Applications

Research in monitoring strongly benefits from the plethora of immediate applica-
tions and the close interplay between theory and practice. Theoretical advances
in monitoring lead to performance improvements in terms of memory use, execu-
tion time, parallelism, and even metatheoretic guarantees about what monitoring
achieves. Conversely, applications provide insights on which features are useful
in practice and whether tools scale in realistic settings. Although the scope of
applications for monitoring is wide, our focus has been on problems in security,
data protection, and protocols for distributed systems.

7.1 Security and Anomaly Detection

Security policies regulate which actions may and must not happen within a sys-
tem. The vast majority of these policies constitute safety properties (the excep-
tions are typically information flow policies, which are hyperproperties). Hence,
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they are excellent candidates for monitoring since policy violations are detectable
on finite traces. Also relevant for security is that monitors can be used to detect
anomalous behavior, for example for intrusion detection. Such applications ben-
efit from statistical computations as offered by our logic’s aggregations.

A prototypical security policy has the form  ∀x. action(x) → authorized(x).
Namely, every occurrence of some action must be authorized. The x are param-
eters associated with the action, e.g., attributes of the user responsible for the
action, the resource(s) used, or the environment. Moreover, authorized specifies
that authorization is present or, alternatively, is a formula specifying the condi-
tions for authorization. As a concrete example

∀u, a, o. exec(u, a, o) → ∃r. UA(u, r) ∧ PA(r, a, o)

might formalize access restrictions in a system implementing an access control
mechanism based on some variant of Role-based Access Control (RBAC). It
states that whenever a user u carries out an action a on an object o, then the
user is assigned to the role r under the user assignment relation UA and moreover
the role r is granted the privilege to carry out action a on the object o, under the
permission assignment relation PA. We provide extensive examples of how secu-
rity policies can be formalized in MFOTL [25], ranging from simple access control
requirements like the above to more complex policies formalizing history-based
access control policies like so-called Chinese Wall policies, where access rights
change dynamically with each access, and separation-of-duty requirements.

We carried out a large-scale case study with Google, monitoring compliance
to access control policies of Google employees using Google’s infrastructure [15].
Policies concerned configurations of accessing computers, time limits on the use
of authentication tokens, and restrictions on software used during access. We
used offline monitoring, taking events from a distributed logging infrastructure
recording log data on roughly 35,000 computers accessing sensitive resources over
a period of two years. The log data contained roughly 77.2 million time-points
and 26 billion events, and required 0.4 TB to store in a compressed form. For
each policy, we used 1,000 computers for slicing and monitoring. The original
MonPoly system was used together with the offline slicing framework (Sect. 5.1)
leveraging Google’s MapReduce infrastructure. Namely, we split the log into
10,000 slices whereby each computer processed 10 slices on average. Overall,
processing time was on the order of hours (2–12 h), with the vast majority of
time being spent on monitoring, and it scaled well with the introduction of more
computing resources.

In the context of anomaly detection, we developed policies that aim at iden-
tifying fraudulent reviews in an e-commerce setting. The first policy, based on
an algorithm by Heydari et al. [65], detects outliers in the number of reviews
received by a brand. This required encoding a tumbling window [46] by com-
bining aggregations and temporal operators. We applied the policy to a dataset
of reviews published on Amazon [77] to evaluate HashMon. Hashing the review
texts reduced the memory usage by a third [92]. The other policies detect brands
whose products receive identical reviews (as determined by the score and, option-
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ally, the text) from the same user. These policies were designed to be challeng-
ing for our monitors as it is difficult or impossible to rewrite them in RANF
(Sect. 4.1). The formulas obtained from the MFOTL2RANF tool outperformed
other approaches, including MonPoly-Reg, on synthetic data and the Amazon
data [85].

7.2 Privacy and Data Protection

We have also carried out case studies on using monitoring to check compliance
to privacy and data protection policies. We first used MonPoly in a case study
with Nokia [22], which revolved around the use of cell-phone data of participants
and ensuring compliance to privacy policies by auditing logs for proper usage of
this data. For example, policies required that data would only be propagated to
certain systems, that appropriate anonymization steps would be taken prior to
sharing, data requested for deletion would actually be deleted from all appropri-
ate systems, etc.

In more recent work [8], we formalized a substantial part of the GDPR in
MFOTL. The GDPR has challenges that go beyond traditional access control.
For example, once access is granted, data may only be used when there is a legal
basis for the usage or users have granted explicit consent. Users may also restrict
how their data is processed at any time and have the right to have their data
deleted. Our formalization of such rights provided a basis for using MonPoly to
determine GDPR compliance. We carried out a case study on the use of sensitive
data by a research foundation concerning how they evaluated and awarded grant
applications.

Finally, we have used MonPoly as an enforcement component [67] in a data
protection framework called Taint, Track, and Control (TTC) [66]. Applications
developed in TTC natively use dynamic information-flow control to track the
provenance information of every value in their memory and persistent storage.
This information includes the identifiers of all user whose data affected the value.
Users can formulate their data protection policies in MFOTL, and TTC deter-
mines if revealing a value conforms to the policies. In particular, the application’s
execution trace (including the provenance information) is monitored by MonPoly
and, based on its output, all attempted violations are prevented.

7.3 Distributed Systems

A significant challenge in the Nokia case study mentioned above was that the
data was stored in multiple logs collected from components of a distributed sys-
tem. Hence, even assuming synchronized clocks, there is only a partial order
on time-stamped data rather than a total order assumed by MFOTL’s seman-
tics. We tackled this problem by expressing policies with formulas in MFOTL’s
collapse-sufficient fragment and monitoring the collapse of the trace (Sect. 5.3).

We also used MonPoly in a case study to check properties of the Internet
Computer (IC) [18]. The IC is a complex distributed system that facilitates gov-
ernance and execution of Web3 applications and spans over 1,200 nodes world-
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Fig. 4. The Internet Computer’s logging-behavior policy [18]

wide. Web3 applications process data with decentralized ownership (e.g., finan-
cial assets). Hence the integrity of their execution must be ensured on devices
beyond the asset owner’s control. The IC ensures this by combining an efficient
consensus protocol and state machine replication [50]. The efficiency of the IC’s
consensus protocol is achieved by grouping all IC nodes into subnets of man-
ageable size. The configuration of the IC (e.g., the assignment of the nodes to
subnets) is highly dynamic and the IC possesses numerous other features that are
challenging to monitor, such as a long-lived high event-rate execution, a layered
software architecture, and continuous evolution. The policies we have formalized
range from common symptoms of the IC’s production incidents to properties
of the IC’s consensus protocol, including malicious behaviors and infrastructure
outages that the protocol must tolerate.

For example, Fig. 4 shows our formalization of the logging-behavior IC
policy. The policy first computes the current assignment of nodes to subnets
(predicate InSubnet) based on the IC’s initial configuration (InSubnet0) and the
nodes that have joined (RegistryAddNodeTo) or left (RegistryRemoveNodeFrom) a
subnet. Next, for each subnet the policy compares its nodes’ logging frequencies
computed over a 10min sliding window (MsgCount) against the median logging
frequency over all nodes in the subnet (TypicalBehavior). Only messages con-
taining orchestrator in their component name are relevant for the frequency
calculation.
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The IC’s execution traces were recorded in a detailed JSON format, which
required a non-trivial mapping to more abstract events (e.g., RegistryAddNodeTo)
with appropriate parameters. This motivated a recent extension of MFOTL and
MonPoly with complex data types, like records, variants, and recursive types [74].

8 Conclusions and Open Problems

Monitoring is a fascinating research area given the rich interplay between theory
and practice. While the gold standard for system verification is the full verifica-
tion of implementations using model-checkers and theorem provers, monitoring
offers an attractive alternative. Not only is monitoring relatively lightweight and
easy to use, it has a larger scope. Namely, one can monitor extremely complex
systems, even involving humans and non-technical components, provided one
has policies for their behavior. Moveover the verdicts returned are statements
about the actual system’s behavior, rather than a mathematical model thereof.
Below we discuss some research questions and open problems that have arisen
from our work.

Whenever monitoring is used in practice, the question arises how to handle
policy violations. We learned from our IC case study (Sect. 7.3) that engineers
value detailed and precise information about violations, as it helps them identify
and fix the root cause more quickly. As a first step towards explainable and
certifiable monitor verdicts, we have developed a monitor for MTL that outputs
minimal proof objects [13,73]. Can one go farther and design a feedback loop that
aids with fault localization by matching such certificates against the monitored
system?

Both a monitor’s performance and correctness are critical. VeriMon is fre-
quently outperformed by the unverified tools MonPoly and StaticMon. We
believe there are two main reasons for this performance gap: the exclusive use
of immutable data structures and the layers of abstractions that were vital for
the proofs but cannot be simplified by the compiler. Our long-term goal is to
refine VeriMon to a highly efficient, imperative implementation. Despite impres-
sive advances in verified refinement [7,71], the complex, recursive invariants of
VeriMon’s state require new ideas to break this effort down into manageable and
composable parts.

Complex policies are often built from abstract concepts that must be made
precise for monitoring. For example, in the IC case study from Sect. 7.3, the
predicate TypicalBehavior was defined as the median logging frequency of nodes
in a subnetwork. One could well imagine that what constitutes typical behavior
is something that can be learned, using machine learning, rather than specified
a priori. Combining monitoring with machine learning is an exciting topic, with
many applications, e.g., in security, anomaly detection, and beyond.
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Abstract. Learning an automaton that approximates the behavior of a
black-box system is a long-studied problem. Besides its theoretical signifi-
cance, its application to search-based testing and model understanding is
recently recognized. We present an algorithm to learn a nonlinear hybrid
automaton (HA) that approximates a black-box hybrid system (HS) from
a set of input–output traces generated by the HS. Our method is novel
in handling (1) both exogenous and endogenous HS and (2) HA with
reset associated with each transition. To our knowledge, ours is the first
method that achieves both features. We applied our algorithm to various
benchmarks and confirmed its effectiveness.

Keywords: Automata Learning · Inferring Hybrid Systems · Learning
Cyber-Physical Systems

1 Introduction

Mathematical modeling of the behavior of a system is one of the main tasks
in science and engineering. If a system exhibits only continuous dynamics, it
is well modeled by ordinary differential equations (ODE). However, many sys-
tems exhibit continuous and discrete dynamics, being instances of hybrid systems
(HS). For instance, in modeling an automotive engine, the ODE must be switched
following the status of the gear. A similar combination of continuous and discrete
dynamics also appears in many other systems, e.g., biological systems [5].

Fig. 1. A bouncing ball model

Hybrid automata (HAs) [3] is a formalism
for HS. Figure 1 illustrates an HA modeling
a bouncing ball. In an HA, a set of loca-
tions (represented by a circle in Fig. 1) and
transitions between them (represented by an
arrow) expresses its discrete dynamics. An
ODE associated with each location expresses
continuous dynamics. In the HA in Fig. 1, the ODEs at the location show the
free-fall behavior of the system, and the transition shows the discrete jump
caused by bouncing on the floor (i.e., a change in the ball’s velocity).

It is a natural research direction to automatically identify an HA given sys-
tem’s behavior. Not only is it interesting as research, but it is also of a practical
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Table 1. Comparison of hybrid automata learning methods

Non-linear ODEs? Exo- and Endogenous? Infer Resets? Support Inputs?

Ours Polynomial Yes Yes Yes
[16] Polynomial Only Exogenous No Yes
[26] Linear Yes No Yes*
[20,21] Linear Only Endogenous No No

* Although this feature is claimed in the paper, the available implementation does not
support it.

Fig. 2. Overview of our HA learning algorithm. In the below center figure, the circle
and the star points stand for each segment’s first and last points.

impact since learning a model of a black-box system is recently being applied to
automated testing (e.g., black-box checking [15,19,24].) There have been vari-
ous techniques to infer an HA from a set of input–output system trajectories.
However, as Table 1 shows, all the existing methods have some limitations in the
inferred HA. To the best of our knowledge, there is no existing work that achieves
all of the following features: (1) Learned HAs may involve nonlinear ODE as a
flow; (2) Learned HAs may be exogenous (i.e., mode changes caused by external
events) and endogenous (i.e., mode changes caused by internal events); and (3)
Learned HAs may involve resetting of variables at a transition.

This paper proposes an HA-learning algorithm that achieves the three fea-
tures above. Namely, our algorithm learns an HA that may be exogenous, endoge-
nous or both. A learned HA can reset variables at transitions. These two features
make it possible to infer the bouncing ball example in Fig. 1, which is not pos-
sible in some of the previous work [16] despite its simplicity. Furthermore, an
HA learned by our algorithm may involve ODEs with polynomial flow functions,
whereas existing work like [20,21,26] can infer only HAs with linear ODEs.
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Figure 2 shows the overview of our HA learning algorithm. Our algorithm
consists of a location identification step and a transition identification step. We
explain each step below.

Location Identification Step. To identify the locations, our algorithm first splits
trajectories into segments so that each segment consists only of continuous
dynamics. To this end, the algorithm estimates the derivative of each point on a
trajectory with the linear multistep method (LMM) [12] and detects the points
where the derivative changes discontinuously.

Then, the segments are grouped into clusters so that the segments in each
cluster have similar continuous dynamics. For this, we conduct clustering based
on the distance determined by dynamic time warping (DTW) [4], which takes
two segments and computes their similarity in terms of the “shape.” We treat
each cluster as a location of an HA in the following steps.

After the clustering, our algorithm synthesizes an ODE that best describes
the continuous dynamics of the segments in each cluster. Our ODE inference is
by a template-based approach. For each location, we fix a polynomial template—
a polynomial whose coefficients are symbols for unknowns—for the flow function
of the ODE. Then, we obtain coefficients of the polynomial via linear regression
of the values in a trajectory and the derivative estimated by LMM.

Transition Identification Step. Once locations are identified, our algorithm next
synthesizes the transition relation. It first identifies the pairs of locations (or
clusters) between which there is a transition. Concretely, the algorithm identifies
a transition from location c1 to location c2 if (1) there is a segment s1 in c1 and
s2 in c2 and (2) s1 immediately precedes s2 in a trajectory.

The algorithm then synthesizes the guard and the reset on each transition.
We synthesize the guard and the reset on each transition in a data-driven man-
ner. Moreover, we introduce type annotation to improve the inference of resets
utilizing domain knowledge; we explain the method in detail in Sect. 3.2.

Contributions. Our contributions are summarized as follows.

– We propose an algorithm inferring a general subclass of HAs from a set of
input and output trajectories.

– We introduce type annotations to improve the inference of the resets.
– We experimentally show that our algorithm infers HAs fairly close to the

original system under learning.

Related Work. Despite the maturity of switched-system identification [9,12],
only a few algorithms have been proposed to infer HAs. This scarcity of work in
HA learning may be attributed to the additional information that needs to be
inferred for HAs (e.g., variable assignments.)

Table 1 summarizes algorithms inferring an HA from a set of trajectories.
In [20,21], an HA is learned from a set of trajectories; however, it does not
support systems with inputs. Moreover, only linear ODEs can be learned. In [26],
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an HA with inputs and outputs is learned from trajectories, but the learned
ODEs are still limited to linear functions. In [16], an HA with polynomial ODEs
is learned from inputs and outputs trajectories. However, the guards in the
transitions consist only of the input variables and timing constraints. Due to this
limitation, their method cannot infer an endogenous HA such as the bouncing
ball model in Fig. 1. Compared with these methods, our algorithm supports the
most general class of HAs, to our knowledge.

We remark that most of the technical ingredients used in our algorithm are
already presented in the previous papers. For example, using LMM for segmenta-
tion and inference of polynomial ODEs is also used by Jin et al. [12] for learning
switched dynamical systems and we adapted it for learning HA. The use of DTW
for clustering is common in [16]. We argue that our significant technical contri-
bution is the achievement of learning the general class of HAs by an appropriate
adaptation and combination of these techniques, e.g., by projecting the output
dimensions during segmentation. The use of type annotation to improve the
inference of variable assignments is also our novelty, up to our knowledge.

Organization. After reviewing the preliminaries in Sect. 2, we present our HA
learning algorithm and an experimental evaluation of it in Sect. 3 and Sect. 4,
respectively. Finally, we conclude in Sect. 5.

2 Preliminaries

For a set X, we denote its powerset by P(X). For a pair p := (a, b), we write
pr1(p) for a and pr2(p) for b. We denote naturals and reals by N and R, respec-
tively. For vectors u, and v with the same dimension, the relative difference
between them is rd(u, v) := ‖u−v‖

‖u‖+‖v‖ where ‖u‖ is the Euclidean norm of u. We
write [a, b] for the inclusive interval between a and b.

2.1 Trajectories and Hybrid Automata

For a time domain [0, T ] ⊆ R and n ∈ N , an n-dimensional (continuous) signal
σ is a function assigning an n-dimensional vector σ(t) ∈ Rn to each timepoint
t ∈ [0, T ]. Execution of a system with n1 dimensional inputs and n2 dimensional
outputs can be modeled by an (n1 + n2)-dimensional signal.

A (discrete) trajectory is a sequence of vectors with timestamps. Concretely,
an n-dimensional trajectory (t1, x1), (t2, x2), . . . , (tN , xN ) is a finite sequence
of pairs of timestamp ti ∈ R and the corresponding value xi ∈ Rn sat-
isfying t1 < t2 < · · · < tN . For a signal σ : [0, T ] → Rn, a trajectory
(t1, x1), (t2, x2), . . . , (tN , xN ) is a discretization of σ if for any i ∈ {1, 2, . . . , N},
we have xi = σ(ti). We call each vector (ti, xi) in a trajectory as a (sampling)
point.

Hybrid automata (HAs) [3,14] is a formalism to model a system exhibiting
an interplay between continuous and discrete dynamics. Since we aim to learn
an HA from a set of trajectories with inputs and outputs, we employ HAs with
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input and output variables. To define HAs, we fix a finite set of (continuous state)
variables X , input variables I, and output variables O such that X = I � O. A
valuation is a mapping δ ∈ RX that represents the value of each variable.

Definition 1 (Hybrid automaton). A hybrid automaton (HA) H, is a tuple
(L, Inv , Init ,Flow ,Trans) where:

– L is a finite set of locations;
– Inv : L → P(RX ) is a function mapping each location � to the invariant at �;
– Init , the initial condition, is a pair (�0, δ0) such that �0 ∈ L and δ0 ∈ Inv(�0);
– Flow is a flow function mapping each location � ∈ L to ODEs of the form

ẋ = f(x, u), called flow equation, where x is the vector of all the variables in
O and u is the vector of all the variables in I;

– Trans is the set of discrete transitions denoted by a tuple e = (�,G,M, �′),
where �, �′ ∈ L are the source and target locations, G ⊆ P(RX ) is the guard,
and M : RX → RO is the assignment function.

For a transition e ∈ Trans, we write G(e) and M(e) for the guard and the
assignment function of e, respectively.

Intuitively, a guard G(e) of a transition e is the condition that enables the
transition: A transition e can be fired if a valuation δ for the variables satisfies δ ∈
G(e). An assignment M(e) specifies how a valuation is updated if the transition
e fired: A valuation is updated from δ to δ′ such that for each x ∈ O and u ∈ I,
we have δ′(x) = M(e)(δ)(x) and δ′(u) = δ(u) if e is fired.

The semantics of an HA is formalized by the notion of a run. A state of an
HA H is a pair (�, δ), where � is a location of H and δ ∈ RX is a valuation.

Definition 2 (Run). A run of an HA (L, Inv , Init ,Flow ,Trans) is a sequence

(�0, δ0)
τ0−→ (�0, δ′

0)
e0−→ (�1, δ1)

τ1−→ (�1, δ′
1)

e1−→ . . .
eN−1−−−→ (�N , δN ) τN−−→ (�N , δ′

N )

satisfying (�0, δ0) ∈ Init and for each i ∈ {0, 1, . . . , N}, there are signals
σx

i : [0, τi] → RO and σu
i : [0, τi] → RI such that (i) for any x ∈ O and

u ∈ I, we have σx
i (0)(x) = δi(x) and σu

i (0)(u) = δi(u), σx
i (τi)(x) = δ′

i(x), and
σx

i (τi)(u) = δ′
i(u), (ii) for any t ∈ [0, τi], we have (σx

i (t), σ
u
i (t)) ∈ Inv(�i) and

σ̇x
i (t) = Flow(�i)(σx

i (t), σ
u
i (t)), and (iii) we have δ′

i ∈ G(ei) and δi+1 is such that
for each x ∈ O and u ∈ I, we have δi+1(x) = M(ei)(δ′

i)(x) and δi+1(u) = δ′
i(u).

For such a run ρ, a signal σ : [0, TN ] → RX is the signal over ρ if σ is such that
σ(t)(x) = σx

i (t−Ti−1) and σ(t)(u) = σu
i (t−Ti−1)(u) for each x ∈ O, u ∈ I, and

i ∈ {0, 1, . . . , N} such that Ti ≤ t < Ti+1, where Ti =
∑i

j∈0 τj and TN+1 = ∞.

2.2 Linear Multistep Method

The linear multistep method (LMM) [6] is a technique to numerically solve
an initial value problem of an ODE ˙x(t) = f(x, t). Concretely, it approxi-
mates the value of x(tn+M ) by using the values of x(tn), . . . , x(tn+M−1) and
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f(xn, tn), . . . , f(xn+M−1, tn+M−1)—namely, M previous discretized values of x
and f(x, t)—where tn+i = tn + ih for some h > 0. For this purpose, LMM
assumes the following approximation parameterized over (αi)i and (βi)i:

M∑

i=0

αix(tn−i) ≈ h

M∑

i=0

βif(x(tn−i), tn−i).

Then, LMM determines the values of (αi)i and (βi)i so that the error of the above
approximation, quantified with Taylor’s theorem, is minimum; see [6,12,23] for
more detail. The approximation with the determined values of (αi)i and (βi)i is
used to successively determine the values of x(t) from its initial value.

In the context of our work, we estimate the derivative of a trajectory at each
point without knowing the ODE. To this end, we use backwards differentiation
formula (BDF) [13,23] derived from LMM. The idea is to compute the polyno-
mial passing all the points (tn, x(tn)), . . . , (tn+M−1, x(tn+M−1)) using Lagrange
interpolation [6,13] and derive the formula to approximate the derivative at
(tn+M , x(tn+M )) from the polynomial using LMM. Concretely, Lagrange interpo-
lation yields the polynomial: x(t) ≈ ∑M

m=0 x(tn−m)
∏

i�=m
t−tn−m

tn−i−tn−m
. By taking

the derivative of both sides and setting t to tn, we obtain ẋ(tn) = f(x(tn), tn) ≈
∑M

m=0 x(tn−m)
∏

i�=m( d
dt

t−tn−m

tn−i−tn−m
)
∣
∣
∣
t=tn

. We use this formula to estimate the

derivative at each point in a trajectory. For instance, the formula to estimate
the derivatives with M = 2 is: f(x(tn)) = 1

h (
3
2x(tn)− 4

2x(tn−1)+ 1
2x(tn−2)) [23].

The above formula estimates the derivative at x(tn) using M previous
points—hence called backward BDF. Dually, we can derive a formula that esti-
mates the derivative at x(tn) using M following points called forward BDF. We
use both in our algorithm.

2.3 Dynamic Time Warping (DTW)

Our algorithm introduced in Sect. 3 first splits given trajectories so that each
segment includes only continuous dynamics. Then, it classifies the generated
segments based on the “similarity” of the ODE behind. For the classification
purpose, we use dynamic time warping (DTW) [4]—one of the methods for
quantifying the similarity between time-series data in their shapes—as the mea-
sure of the similarity inspired by [16]. The previous work [16] applies DTW for
HA learning and confirms its effectiveness.

The DTW distance between two time-series data X := (x1, x2, . . . , xM )
and Y := (y1, y2, . . . , yN ), where M,N ∈ N , is defined as follows. The align-
ment path between X and Y is a finite sequence P := (p1, . . . , pl) where
pi ∈ {1, 2, . . . ,M}×{1, 2, . . . , N} and P is an alignment between {1, . . . , M} and
{1, . . . , N}. Concretely, P should satisfy the following conditions: (1) p1 = (1, 1);
(2) pl = (M,N); (3) (ai+1 − ai, bi+1 − bi) is either (1, 0), (0, 1), or (1, 1) for any
(pi, pi+1) = ((ai, bi), (ai+1, bi+1)). For example, ((1, 1), (1, 2), (2, 3), (3, 3), (3, 4))
is an alignment path between (x1, . . . , x3) and (y1, . . . , y4).
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An alignment path P = (p1, . . . , pl) between X := (x1, x2, . . . , xM ) and Y :=
(y1, y2, . . . , yN ) determines the sum dP :=

∑l
i=1 ||x(pr1(pi)) − y(pr2(pi))|| of the

distances between corresponding points in X and Y . Then, the DTW distance
DTWdist(X,Y ) between X and Y is defined by minP dP , where P moves all the
alignment paths between X and Y . There is an efficient algorithm computing
DTWdist(X,Y ) in O(MN) based on dynamic programming [18].

For X and Y , let P be the alignment that gives the optimal sum of dis-
tances between X and Y . We write DTWcorrel(X,Y ) for correl(P1, P2), where
P1 := (pr1(p1), . . . , pr1(pl)), P2 := (pr2(p1), . . . , pr2(pl)), and correl(P1, P2) is
the Pearson product-moment correlation coefficients between P1 and P2. This
value becomes larger if P1 and P2 increase evenly. Thus, the higher this value is,
the more X is similar to Y . The effectiveness of this value in classifying segments
is also shown in [16].

3 HA Learning from Input–Output Trajectories

Our proposed algorithm is an offline and passive approach for learning automata,
which involves observing input-output behavior from a given dataset without
interacting with the system during learning. Here, we present our HA learning
algorithm from given trajectories. Our problem setting is formalized as follows.

Passive HA learning problem:
Input: trajectories {(ti1, xi

1), (t
i
2, x

i
2), . . . , (t

i
Ni

, xi
Ni

) | i ∈ {1, 2, . . . ,M}} that
are discretizations of signals over runs of an HA H
Output: an HA H approximating H

Our current algorithm learns an HA such that (i) the invariant of each loca-
tion is true, (ii) each guard is expressed as a polynomial inequality, and (iii)
each assignment function is a linear function. We assume that (i) each location
of H has different ODEs and (ii) for each pair (�, �′) of locations of H, there is
at most one transition from � to �′.

Figure 2 outlines our HA learning algorithm. We first present the identifica-
tion of the locations and then present that of the transitions.

3.1 Identification of Locations

We identify the locations of an HA by the following three steps: (i) segmentation
of the given trajectories, (ii) clustering of the segments, and (iii) inference of
ODEs and initial locations.

Segmentation of the Trajectories. The first step in our HA learning algo-
rithm is segmentation. Each trajectory is divided into segments so that the
dynamics in each segment are jump-free. We perform segmentation by identify-
ing the change points—the points where the derivative discontinuously changes—
along a trajectory. Our approach builds on Jin et al.’s [12] method for learning
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Algorithm 1. Outline of our segmentation algorithm
Input: A trajectory τ = (t1, x1), (t2, x2), . . . , (tN , xN ), the step size M in BDF, and

the thresholds εFwdBwd and εBwd

Output: cp ⊆ {1, 2, . . . , N} is the set of change points
1: candidates ← ∅; C ← ∅
2: for all i ∈ {M + 1, M + 2, . . . , N − M} do
3: fwd i ← fF(τ |O, i, M) � Compute the forward BDF
4: bwd i ← fB(τ |O, i, M) � Compute the backward BDF
5: if rd(fwd i, bwd i) > εFwdBwd then
6: add i to candidates
7: while candidates �= ∅ do
8: i ← min(candidates); remove i from candidates
9: if i + 1 �∈ candidates or rd(bwd i, bwd i+1) ≥ εBwd then

10: add i to cp
11: while i + 1 ∈ candidates do
12: remove i + 1 from candidates; i ← i + 1

Fig. 3. Illustration of our segmentation algorithm near a boundary of a segment. The
red circle in the right figure is the change point because it is the first point satisfying
rd(fwd i, bwd i) > εFwdBwd and rd(bwd i, bwd i+1) > εBwd. (Color figure online)

switched dynamical systems, but we adapted and modified it to extend the app-
roach for learning hybrid systems.

Algorithm 1 outlines our segmentation algorithm. For simplicity, we present
an algorithm for a single trajectory; this algorithm is applied to each trajec-
tory obtained from the system. First, for each point in the trajectory, we esti-
mate the derivative using forward and backward BDF (fwd i and bwd i, respec-
tively) and deem the point as a candidate of change points if rd(fwd i, bwd i)
exceeds the threshold. For example, among the three red circles in Fig. 3, we
have fwd i ≈ bwd i for the one in Fig. 3a and rd(fwd i, bwd i) 
 0 for the others.
Thus, the red circles in Figs. 3b and 3c are the candidates of the change point.
We remark that fwd i and bwd i are computed with the trajectory τ |O projected
to the output variables, and our segmentation is not sensitive to the change in
the input variables I.

When there are consecutive candidates of the change points, we take the
first one satisfying rd(bwd i, bwd i+1) ≥ εBwd to precisely estimate the change
point. Such an optimization is justified under the assumption that there are at
least 2M − 1 points between two consecutive mode changes. For example, in the
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Algorithm 2. Outline of the clustering of the segmented trajectories
Input: Set Sg of segments and thresholds εdst and εcor for distance and diagonality
Output: C = {C1, C2, . . . , Cn} is a set of set of segments such that each Ci is a cluster
1: C ← ∅
2: while Sg �= ∅ do
3: pick sg from Sg � We still have sg ∈ Sg after picking it.
4: C ′ ← {sg ′ ∈ Sg | DTWdist(sg |O, sg ′|O) < εdst ∧ DTWcorrel(sg |O, sg ′|O) > εcor}
5: Sg ← Sg \ C ′ � C ′ always includes sg , and sg is removed from Sg .
6: add C ′ to C

example shown in Fig. 3, the red circle in Fig. 3c is deemed to be the change
point because this is the first candidate satisfying rd(bwd i, bwd i+1) ≥ εBwd.
Note that, in inferring ODEs, we consider only the points within a segment that
satisfy rd(fwd i, bwd i) ≤ εFwdBwd. This means that candidate points near the
boundary of change points are excluded if they do not meet this condition. This
is similar to the approach proposed by Jin et al. [12]

The algorithm splits the trajectories at the identified change points into
segments; the change points are not included in the segments. Our approach
improves upon Jin et al. [12] by adapting their approach for learning switched
dynamical systems to the problem of learning hybrid systems. Specifically, we
identify change points in a twofold manner. While their approach considers all
candidates as change points and drops them from resulting segments, we go a step
further and determine the closest change point that precisely separates modes.
To achieve this, we search for candidate points until the condition bwd i ≈ bwd i+1

is no longer satisfied. This adaptation enables us to include candidate points in
the segment actively involved in the transition action, leading to more accurate
identification of the transition process.

Clustering of the Segments. Then, we cluster the segmented trajectories so
that the segments with similar continuous behaviors are included in the same
cluster. For instance, in Fig. 2, the continuous behaviors in S1a, S2a, S2d, and S3a

are similar and hence included in a single cluster. We use the identified clusters
as the set of locations in the resulting HA. This construction is justified when
each location has a different ODE.

Algorithm 2 outlines our clustering algorithm. The overall idea is, the algo-
rithm picks one segment (line 3) and creates a cluster by merging similar seg-
ments (line 4). We use both DTWdist and DTWcorrel to determine the similarity
between segments. We remark that we compare the segments sg |O and sg ′|O
projected to the output variables to ignore the similarity in the input variables.

Inference of ODEs and Initial Locations. Our ODE inference is by a
template-based linear regression. First, we fix a template Φ(x; θ) = θ1f1(x) +
θ2f2(x)+ · · ·+θNfN (x) of the ODE. In our current implementation, each fi is a
monomial whose degree is less than a value specified by a user, but an arbitrary
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template can be used. Then, for each cluster Ci and for each output variable
o ∈ O, we construct the set Pi,o of points in Ci,1 and the derivative of o at this
point. Formally, Pi,o = {(x, ẋ(o)) | ∃sg ∈ Ci. x ∈ sg}. The derivative ẋ(o) is,
for example, computed by BDF. Moreover, we can reuse the derivative used in
Algorithm 1. Finally, we use linear regression to compute the coefficients θ such
that for each (x, ẋ(o)) ∈ Pi,o, we have ẋ(o) ≈ Φ(x; θ).

In the resulting HA, the initial locations are the locations such that the
corresponding cluster contains the first segment for some trajectories. Therefore,
we have multiple initial locations if there are trajectories such that their first
segments do not satisfy the similarity condition during clustering.

3.2 Identification of Transitions

Fig. 4. Illustration of the
points connecting clus-
ters Ci and Cj

After identifying the locations of the resulting HA by
clustering the segments, we construct transitions. Let
sg1, sg2, . . . , sgm be the segments obtained from a sin-
gle trajectory by Algorithm 1 and ordered in chrono-
logical order; segment sg i immediately precedes sg i+1

in the original trajectory. For each segment sgg, we
denote its initial point, the second last point, and the
last point by sgη1

g , sgη2
g , and sgη3

g , respectively.
The idea of the transition identification is to make

one transition for each triple (sgη2
g , sgη3

g , sgη1
g+1)—called a connection triple—and

use these points in a triple to infer its guard and assignment; see Fig. 4 for an
illustration. We note that such a triple is always defined since each segment has
at least three points.

Formally, for clusters Ci and Cj and a segmented trajectory sg1, sg2, . . . , sgm,
the set Ti,j of connection triples from Ci to Cj is as follows:

Ti,j = {(sgη2
g , sgη3

g , sgη1
g+1) | g ∈ {1, 2, . . . ,m − 1}, sgg ∈ Ci, sgg+1 ∈ Cj}

If there are multiple trajectories in HA learning, we construct Ti,j for each tra-
jectory and take their union.

We infer guards and assignments using Ti,j . For each cluster pair (Ci, Cj),
the guard of the transition from Ci to Cj is obtained using a support vector
machine (SVM) to classify the second last points and the last points. More
precisely, for T⊥

i,j = {sgη2
g | ∃(sgη2

g , sgη3
g , sgη1

g+1) ∈ Ti,j} and T�
i,j = {sgη3

g |
∃(sgη2

g , sgη3
g , sgη1

g+1) ∈ Ti,j}, we compute an equation of hyperplane separating
T⊥

i,j and T�
i,j using SVM and construct an inequality constraint G that is satisfied

by the points in T�
i,j but not by that in T⊥

i,j .
For each cluster pair (Ci, Cj), the assignment in the transition from Ci to Cj

is obtained using linear regression to approximate the relationship between the
valuation before and after the transition. More precisely, we use linear regression

1 Notice that, as mentioned above, we only consider the points within a segment that
satisfy rd(fwd i, bwd i) ≤ εFwdBwd.
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to compute an equation M such that for each (sgη2
g , sgη3

g , sgη1
g+1) ∈ Ti,j and for

each x ∈ O, sgη1
g+1(x) is close to M(sgη3

g )(x). Such M is used as the assignment.

Improving Assignments Inference with Type Annotation. If we have no
prior knowledge of the system under learning, we infer assignments using linear
regression, as mentioned above. However, even if the exact system dynamics are
unknown, we often know how each variable behaves at jumps. For instance, it
is reasonable to believe that a variable representing temperature is continuous;
hence, it does not change its value at jumps. Such domain knowledge is helpful
in inferring precise assignments rather than one using linear regression.

To easily enforce the constraints from domain knowledge on variables, we
extend our assignment inference to allow users to annotate each variable with
types expressing how a variable is assumed to behave at jumps. We currently
support the following types.

No Assignments. If a variable is continuous at a jump (e.g., the variable rep-
resenting temperature mentioned above), one annotates the variable with “no
assignments”. For a variable x with this annotation, the procedure above infers
an assignment that does not change the value of x.

Constant Assignments. If the value assigned to a variable at a jump is a fixed
constant, we annotate the variable with “constant assignments”. For instance,
in the bouncing ball HA depicted in Fig. 1, the variable x is reset to 0 upon
reaching the ground or when the guard condition is satisfied.

Constant Pool. If the value assigned to a variable at a jump is chosen from a
finite set, one annotates the variable with “Constant pool” accompanied with the
finite set {v1, . . . , vn}. An example of such a variable is one representing the gear
in a model of an automotive. For a variable with this annotation, our algorithm
infers the assignment at a jump by majority poll: For a transition from cluster
Ci to Cj , it chooses the value most frequently occurring in Ti,j as sgη1

g+1.

3.3 Impact of Parameter Selection on Model Accuracy

We recognize the complexity and potential challenges inherent in ensuring that
our proposed hybrid automaton closely emulates the original black-box sys-
tem, given the intricate and often nonlinear dynamics at play. Nevertheless,
our methodology is developed to capture the crucial behaviors of the original
system, serving as a foundation for further analysis and understanding. In our
method, specific tuning parameters play pivotal roles during the segmentation
and clustering processes. To illustrate, the parameter εFwdBwd contributes signif-
icantly to effective segmentation, while εBwd facilitates pinpointing the correct
transition point, which in turn allows for the accurate inference of data points for
guards and assignments. It is critical to mention that the choice of these thresh-
olds must be well-thought-out. For instance, a large value for εFwdBwd might
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overlook some change points, while a smaller value could lead to unnecessary
redundancy. Therefore, depending on the dynamical class of the system under
study, these thresholds may require careful adjustments.

Similarly, during the clustering process, the thresholds DTWdist and
DTWcorrel play instrumental roles in establishing efficient similarity compar-
isons between segments. While a DTWcorrel of 0.8 typically works well in decid-
ing segment similarity, the co-adjustment of DTWdist and DTWcorrel parameters
effectively allows the clustering process to manage the number of modes in the
learned hybrid automaton, balancing precision in the process. In essence, the
judicious selection of these parameters is integral to the success of our method
in learning an accurate hybrid automaton.

In addition, it is crucial to emphasize that the accuracy of the learned hybrid
automaton heavily depends on the amount of data available. We have adapted
our segmentation process and ODE inference from the approach presented by Jin
et al. [12], which provides bounds for estimation errors based on sampling time
step and a priori knowledge of system dynamics. While perfect replication of the
black-box system may not be achievable, the goal is to construct a meaningful
and practical model within the framework of a hybrid automaton. See Table 1
for a comparison of these methods.

4 Experiments

We implemented our proposed algorithm using a combination of C++, Python,
and MATLAB/Simulink/Stateflow: The HA learning algorithm is written in
Python; The learned model is translated into a Simulink/Stateflow model by a
C++ program; We use MATLAB to simulate the learned model. We optimized
the ODE inference by using only a part of the trajectories when they were
sufficiently many. We take M = 5 as the step size for BDF. Our implementation
is available at https://github.com/rajgurung777/HybridLearner and the artifact
at https://doi.org/10.5281/zenodo.7934743.

We conducted experiments (i) to compare the performance of our algorithm
against a state-of-the-art method and (ii) to evaluate how the type annotation
helps our learning algorithm. For the former evaluation, we compared our algo-
rithm against one of the latest HA learning methods called POSEHAD [16].
Among the recent hybrid-automata learning methodologies, POSEHAD is the
closest to ours in that (1) it handles hybrid systems with nonlinear ODEs and (2)
it supports input signals to a system; see Table 1. We compared our algorithm
with and without a type annotation for the latter evaluation, denoted as “Type”
and “W/o Type,” respectively. We also compared our method with two other
methods (HAutLearn [26] and HySynthParametric [21]); the result is presented
in Sect. 4.3.

In the upcoming comparisons in Sects. 4.2 and 4.3, our proposed method is
contrasted with several existing approaches, including POSEHAD, HAutLearn,
and HySynthParametric. While noteworthy in their respective areas, these meth-
ods have certain limitations when it comes to handling the comprehensive fea-
tures of hybrid automata - a challenge our method is designed to overcome.

https://github.com/rajgurung777/HybridLearner
https://doi.org/10.5281/zenodo.7934743
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Specifically, our approach manages all crucial aspects of hybrid automata, such as
guards, nonlinear ODEs, assignments, and support for input signals. It’s impor-
tant to underline that the purpose of these comparisons is not to downplay these
existing methods but to highlight the unique scope of functionality and adapt-
ability our method brings to exploring hybrid automata. While this may give an
initial impression of an unbalanced comparison, it’s essential to emphasize the
comprehensive capabilities of our approach, designed to address the gaps left by
these other notable methods.

Each benchmark consists of a Simulink/Stateflow model, which we call an
original model, and two sets of trajectories generated from the original model,
which we call training and test sets. We generated trajectories by feeding random
input trajectories and random initial values of the state variables to the original
model. The training set is used to learn an HA, which we call a learned model,
and the test set is used to evaluate the accuracy of the learned model. For each
benchmark, the size of the training and test sets are 64 and 32, respectively.

To evaluate the accuracy of the learned model, we feed the same input tra-
jectories and the same initial values to the original and the learned models and
compared their output trajectories. The comparison is based on the DTW dis-
tance DTWdist. A low DTW distance indicates higher accuracy of the learned
model. We denote as δO1 and δO2 the DTW distances between trajectories gener-
ated from the original and the learned model on the output variable, O1, and O2,
respectively. We note that, in POSEHAD, the DTW distance is not computed
with the entire trajectories but with the segmented trajectories. All the experi-
ments reported in this paper are conducted on a machine with an Intel Core i9
CPU, 2.40GHz, and 32 GiB RAM. We used εBwd = 0.01 in all our experiments.

4.1 Benchmark Description

We briefly describe the benchmarks used in our experiments.

Ball. This is a benchmark modeling a bouncing ball taken from the demo
example of Simulink [2]. Figure 1 shows the HA. The acceleration due to the
gravity g is taken as input. The range of g is [−9.9,−9.5]. We modify the original
Simulink model to parameterize the initial values of x and v. We also set the
model to operate on a fixed-step solver. We let x ∈ [10.2, 10.5] and v = 15. The
reset factor c in Fig. 1 is c = −0.8. We execute the model for a time horizon of
13 units with a sampling time of 0.001, i.e., each trajectory consists of 13,000
points. We use εFwdBwd = 0.1, εdst = 9.0, and εcor = 0.8.

Tanks. This benchmark models a two tanks system [11]. Figure 7a shows the
HA. The system consists of two tanks with liquid levels x1 and x2. The first tank
has in/out flow controlled by a valve v1, whereas, the second tank has outflow
controlled by the other valve v2. Both tanks have external in/out flow controlled
by the input signal u. There is also a flow from the first tank to the second tank.
In summary, the system has four locations for on and off of v1 and v2. The range
of the input is u ∈ [−0.1, 0.1], the initial liquid level of the two tanks are x1 = 1.2
and x2 = 1, and the initial location is off_off. We execute the model for a time
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Fig. 5. HA models for Osci and Cells benchmarks

horizon of 9.3 units with a sampling time of 0.001, i.e., each trajectory consists
of 9,300 points. We use εFwdBwd = 0.01, εdst = 1.5 and εcor = 0.7.

Osci. This is a benchmark modeling a switched oscillator without filters [8].
Osci is an affine system with two variables, x and y oscillating between two
equilibria to maintain a stable oscillation. The HA is shown in Fig. 5a. All the
transitions have constant assignments. This system has no inputs. The initial
values are x, y ∈ [0.01, 0.09], and the initial location is loc1. We execute the model
for a time horizon of 10 units with a sampling time of 0.01, i.e., each trajectory
consists of 1,000 points. We use εFwdBwd = 0.1, εdst = 1.0 and εcor = 0.89.

Cells. This is a benchmark modeling excitable cells [10,27], which is a biologi-
cal system exhibiting hybrid behavior. We use a variant of the excitable cell used
in [22]. Our HA model is shown in Fig. 5b. This model has no inputs. We take
the initial values for the voltage x ∈ [−76,−74]. The Upstroke is the initial loca-
tion. We execute the model for a time horizon of 500 units with a sampling time
of 0.01, i.e., each trajectory consists of 50,000 points. We use εFwdBwd = 0.01,
εdst = 1.0, and εcor = 0.92.

Engine. This benchmark models an engine timing system taken from the demo
examples in the Simulink automotive category [1]. The model is a complex non-
linear system with two inputs and one output signal. The inputs are the desired
speed of the system and the load torque, while the output signal is the engine’s
speed. We simulate the model for a time horizon of 10 units with a sampling
time of 0.01, i.e., each trajectory consists of 1,000 points. We use εFwdBwd = 0.99,
εdst = 560 and εcor = 0.89.

4.2 Results and Discussion

Overall Discussion. Table 2 shows the summary of the results. In columns
δO1 and δO2 , we observe that for all the benchmarks, the HAs learned by our
algorithm (both “W/o Type” and “Type”) achieved higher accuracy in terms of
Avg(δ). This is because of the adequate handling of the input variables and the
inference of the resets at transitions. Moreover, type annotation improves model
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Table 2. Summary of the results. The columns δO1 and δO2 show the minimum (Min),
maximum(Max), average (Avg), and standard deviation (Std) of the DTW distance
between trajectories generated by the original model and the learned model feeding
the test set. The columns Time show the total running time in seconds for learning an
HA. Cells with the best results are highlighted.

Model Measure
W/o Type Type POSEHAD

δO1 δO2 Time δO1 δO2 Time δO1 δO2 Time

Ball

Min(δ) 0.15 0.27

351.2

0.15 0.27

336.7

127.0 1.5e+6

41535.9
Max (δ) 16.4 12.1 16.4 12.1 39660.7 8.3e+8
Avg (δ) 1.8 2.1 1.8 2.1 9566.2 1.7e+8
Std (δ) 3.3 3.1 3.3 3.1 12695.3 1.8e+8

Tanks

Min(δ) 0.1 0.3

383.1

0.003 0.005

383.5

37.8 7.8e+12

13771.5
Max (δ) 3.9 2.6 3.2 2.6 2.3e+4 2.0e+14
Avg (δ) 0.9 1.3 0.2 0.3 8.1e+3 9.5e+13
Std (δ) 1.0 0.68 0.8 0.74 7.6e+3 5.9e+13

Osci

Min(δ) 0.21 0.3

24.1

0.17 0.2

24.9

15.8 8.8

404.2
Max (δ) 0.4 0.7 0.3 0.6 1.5e+3 933.9
Avg (δ) 0.3 0.3 0.2 0.2 1.2e+3 716.0
Std (δ) 0.04 0.1 0.03 0.09 404.0 313.4

Cells

Min(δ) 13.2 –

2404.2

1.3 –

2358.5

2.5e+9 –

191050.0
Max (δ) 155.3 – 150.5 – 5.1e+9 –
Avg (δ) 63.9 – 58.1 – 3.1e+9 –
Std (δ) 53.9 – 57.3 – 8.3e+8 –

Engine

Min(δ) 2.2e+4 –

50.6

3.2e+4 –

47.9

2.8e+3 –

197.6
Max (δ) 1.7e+5 – 5.4e+4 – 4.2e+14 –
Avg (δ) 6.6e+4 – 4.2e+4 – 1.3e+13 –
Std (δ) 4.8e+4 – 5.5e+3 – 7.4e+13 –

accuracy, as shown in benchmarks Tanks, Osci, Cells, and Engine. However,
in Ball, both methods perform equally.

We also observe that for the HAs learned by our learning algorithm, the max-
imum DTW distance Max(δ) tends to be close to the minimum DTW distance
Min(δ). This indicates that trajectories generated by our learned model do not
have a high deviation from the trajectories generated by the original model. We
discuss the detail later in this section. In contrast, in the POSEHAD algorithm,
they tend to have a high difference between Min(δ) and Max(δ). We also observe
that for the HAs learned by the POSEHAD algorithm, the standard deviation
Std(δ) is much larger than that learned from ours. This suggests that our learn-
ing algorithm is better at generalization. Moreover, our algorithm takes much
less time than POSEHAD. For instance, in the Cells benchmark, our algorithm
takes less than one hour, whereas POSEHAD takes more than 53 h.
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Fig. 6. The HA learned by our
algorithm with type annotation
on Ball

Discussion for Each Benchmark. Figure 6
shows the learned HA for Ball produced by our
algorithm with a type annotation. We observe
that the ODE is precisely learned. Although the
guard is far from the expected condition x ≤ 0, it
is close to the expected condition given the range
of the state variables; for instance when we have
v ≈ −20.55 and g ≈ −9.8, the condition is about
x ≤ 0.020, which is reasonably close to x ≤ 0.
Furthermore, our algorithm accurately inferred
the assignment of v as v ::= −0.8v. In Fig. 8a and
8b, we show plots of the trajectories obtained
from the HAs learned by our algorithm (with
and without type annotation), the output trajectory predicted by POSEHAD,
and the trajectory obtained from the original model. In Fig. 8b, we did not
include the predicted trajectory by POSEHAD due to its high error. We observe
that the trajectories obtained from our learned models coincide with the original
benchmark trajectory, while the trajectory predicted by POSEHAD does not.

Figure 7b shows the HA learned by our algorithm with type annotation on
the Tanks benchmark. Since the initial value, x2 = 1, is satisfied by the guard
at the initial location, the system takes an instant transition to location off_on
(see Fig. 7a). Therefore, all trajectories contain data starting from this location,
and our algorithm identifies this to be the initial location. Moreover, the trajec-
tories given to the learning algorithm do not include data visiting the location
on_on, and this mode is not present in the learned model. We observe that the
ODEs are exactly learned, and the guards are close to the original model. In
Fig. 8c, we show a plot of the trajectories obtained from the HAs learned by our
algorithm (with and without type annotation), the output trajectory predicted
by POSEHAD, and the trajectory obtained from the original model. The models
learned by our algorithm produced trajectories close to the original model, while
several parts predicted by POSEHAD are far from the original one.

Fig. 7. HAs on Tanks benchmark
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Fig. 8. Trajectories on (a–b) Ball (c) Tanks (d) Osci (e) Cells and (f) Engine

For the Engine model, due to the system’s complexity, our algorithm pro-
duced HAs at most with 37 locations and 137 transitions. In Fig. 8f, we show a
plot of the trajectories obtained from the HAs learned by our algorithm (with
and without type annotation), the output trajectory predicted by POSEHAD,
and the trajectory obtained from the original model. The models learned by
our algorithm produced trajectories uniformly close to the original model, while
several parts predicted by POSEHAD are far from the original one. Similar
observations on accuracy can be drawn from Figs. 8d and 8e on Osci and Cells
benchmarks, respectively.

4.3 Comparison with Other Methods

We compared our proposed approach with other state-of-the-art methods: HAut-
Learn [26] and HySynthParametric [21]. We conducted this experiment using
only Osci, which does not take an input signal, since HAutLearn and HySynth-
Parametric do not support a model taking inputs; see Table 1.

The result is shown in Fig. 9. Figures 9a and 9b (resp., Figs. 9c and 9d) show
the plots obtained by the learned models trained with five (resp., 64) trajecto-
ries. The training time with five trajectories was as follows: 60.9 s for HAutLearn;
15.6 s for HySynthParametric; 2.2 s for ours. The training time with 64 trajec-
tories was as follows: 1442.3 s for HAutLearn; 1483.6 s for HySynthParametric;
24.9 s for ours.

For the experiment with five training trajectories, the HA learned by HAut-
Learn is as precise as our method. However, for the experiment with 64 training
trajectories, we observed that the switching guard in the HA learned by HAut-
Learn allowed the model to take an early jump from the second jump onwards,
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Fig. 9. Trajectories obtained from the learned HAs on the Osci benchmark by the
three tools. (a) and (b) are trained using five trajectories, while (c) and (d) show
models trained using 64 trajectories.

thus generating plots that do not coincide with the original trajectories. We can
observe that the HA learned by HySynthParametric is less precise than ours.

The performance of HAutLearn was largely affected by the values of multiple
parameters. The plots in Fig. 9 is obtained by tuning parameters through trials
and errors.

5 Conclusion

This paper presents an algorithm to learn an HA with polynomial ODEs from
input–output trajectories. We identify the locations by segmenting the given
trajectories, clustering the segments, and inferring ODEs. We learn transition
guards using SVM with a polynomial kernel and assignment functions using lin-
ear regression. Our experimental evaluation suggests that our algorithm produces
more accurate HAs than the state-of-the-art algorithms. Moreover, we extended
the inference of assignments with type annotations to utilize prior knowledge of a
user. In future work, we plan to utilize our learned HA model to perform black-
box checking [15,19,24] for falsification, model-bounded monitoring of hybrid
systems [25], and controller synthesis [7,17].
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Abstract. Families of DFAs (FDFAs) have recently been introduced as
a new representation of ω-regular languages. They target ultimately peri-
odic words, with acceptors revolving around accepting some representa-
tion u · vω. Three canonical FDFAs have been suggested, called periodic,
syntactic, and recurrent. We propose a fourth one, limit FDFAs, which
can be exponentially coarser than periodic FDFAs and are more suc-
cinct than syntactic FDFAs, while they are incomparable (and dual to)
recurrent FDFAs. We show that limit FDFAs can be easily used to check
not only whether ω-languages are regular, but also whether they are
accepted by deterministic Büchi automata. We also show that canonical
forms can be left behind in applications: the limit and recurrent FDFAs
can complement each other nicely, and it may be a good way forward to
use a combination of both. Using this observation as a starting point, we
explore making more efficient use of Myhill-Nerode’s right congruences in
aggressively increasing the number of don’t-care cases in order to obtain
smaller progress automata. In pursuit of this goal, we gain succinctness,
but pay a high price by losing constructiveness.

1 Introduction

The class of ω-regular languages has proven to be an important formalism to
model reactive systems and their specifications, and automata over infinite words
are the main tool to reason about them. For example, the automata-theoretic
approach to verification [24] is the main framework for verifying ω-regular spec-
ifications. The first type of automata recognizing ω-regular languages is non-
deterministic Büchi automata [6] (NBAs) where an infinite word is accepted if
one of its runs meets the accepting condition for infinitely many times. Since
then, other types of acceptance conditions, such as Muller, Rabin, Streett and
parity automata [25], have been introduced. All the automata mentioned above
are finite automata processing infinite words, widely known as ω-automata [25].

The theory of ω-regular languages is more involved than that of regular
languages. For instance, nondeterministic finite automata (NFAs) can be deter-
minized with a subset construction, while NBAs have to make use of tree struc-
tures [21]. This is because of a fundamental difference between these language
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É. André and J. Sun (Eds.): ATVA 2023, LNCS 14215, pp. 53–73, 2023.
https://doi.org/10.1007/978-3-031-45329-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45329-8_3&domain=pdf
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0002-9093-9518
http://orcid.org/0000-0002-9265-3011
https://doi.org/10.1007/978-3-031-45329-8_3


54 Y. Li et al.

classes: for a given regular language R, the Myhill-Nerode theorem [18,19] defines
a right congruence (RC) �R in which every equivalence class corresponds to a
state in the minimal deterministic finite automata (DFA) accepting R. In con-
trast, there is no similar theorem to define the minimal deterministic ω-automata
for the full class of ω-regular languages1. Schewe proved in [23] that it is NP-
complete to find the minimal deterministic ω-automaton even given a determinis-
tic ω-automaton. Therefore, it seems impossible to easily define a Myhill-Nerode
theorem for (minimal) ω-automata.

Recently, Angluin, Boker and Fisman [2] proposed families of DFAs (FDFAs)
for recognizing ω-regular languages, in which every DFA can be defined with
respect to a RC defined over a given ω-regular language [3]. This tight connection
is the theoretical foundation on which the state of the art learning algorithms
for ω-regular languages [3,12] using membership and equivalence queries [1] are
built. FDFAs are based on well-known properties of ω-regular languages [6,7]:
two ω-regular languages are equivalent if, and only if, they have the same set
of ultimately periodic words. An ultimately periodic word w is an infinite word
that consists of first a finite prefix u, followed by an infinite repetition of a finite
nonempty word v; it can thus be represented as a decomposition pair (u, v).
FDFAs accept infinite words by accepting their decomposition pairs: an FDFA
F = (M, {N q}) consists of a leading DFA M that processes the finite prefix u,
while leaving the acceptance work of v to the progress DFA N q, one for each
state of M. To this end, M intuitively tracks the Myhill-Nerode’s RCs, and
an ultimately periodic word u · vω is accepted if it has a representation x · yω

such that x and x · y are in the same congruence class and y is accepted by the
progress DFA N x. Angluin and Fisman [3] formalized the RCs of three canonical
FDFAs, namely periodic [7], syntactic [16] and recurrent [3], and provided a
unified learning framework for them.

In this work, we first propose a fourth one, called limit FDFAs (cf. Section 3).
We show that limit FDFAs are coarser than syntactic FDFAs. Since syntactic
FDFAs can be exponentially more succinct than periodic FDFAs [3], so do our
limit FDFAs. We show that limit FDFAs are dual (and thus incomparable in
the size) to recurrent FDFAs, due to symmetric treatment for don’t care words.
More precisely, the formalization of such FDFA does not care whether or not
a progress automaton N x accepts or rejects a word v, unless reading it in M
produces a self-loop. Recurrent progress DFAs reject all those don’t care words,
while limit progress DFAs accept them.

We show that limit FDFAs (families of DFAs that use limit DFAs) have two
interesting properties. The first is on conciseness: we show that this change in
the treatment of don’t care words not only defines a dual to recurrent FDFAs but
also allows us to identify languages accepted by deterministic Büchi automata
(DBAs) easily. It is only known that one can identify whether a given ω-language
is regular by verifying whether the number of states in the three canonical FDFAs
is finite. However, if one wishes to identify DBA-recognizable languages with

1 Simple extension of Myhill-Nerode theorem for ω-regular languages only works on a
small subset [4,15].
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FDFAs, a straight-forward approach is to first translate the input FDFA to an
equivalent deterministic Rabin automaton [2] through an intermediate NBA,
and then use the deciding algorithm in [10] by checking the transition structure
of Rabin automata. However, this approach is exponential in the size of the
input FDFA because of the NBA determinization procedure [8,21,22]. Our limit
FDFAs are, to the best of our knowledge, the first type of FDFAs able to identify
the DBA-recognizable languages in polynomial time (cf. Sect. 4).

We note that limit FDFAs also fit nicely into the learning framework intro-
duced in [3], so that they can be used for learning without extra development.

We then discuss how to make more use of don’t care words when defining
the RCs of the progress automata, leading to the coarsest congruence relations
and therefore the most concise FDFAs, albeit to the expense of losing construc-
tiveness (cf. Sect. 5).

2 Preliminaries

In the whole paper, we fix a finite alphabet Σ. A word is a finite or infinite
sequence of letters in Σ; ε denotes the empty word. Let Σ∗ and Σω denote
the set of all finite and infinite words (or ω-words), respectively. In particular,
we let Σ+ = Σ∗ \ {ε}. A finitary language is a subset of Σ∗; an ω-language
is a subset of Σω. Let ρ be a sequence; we denote by ρ[i] the i-th element of
ρ and by ρ[i..k] the subsequence of ρ starting at the i-th element and ending
at the k-th element (inclusively) when i ≤ k, and the empty sequence ε when
i > k. Given a finite word u and a word w, we denote by u · w (uw, for short)
the concatenation of u and w. Given a finitary language L1 and a finitary/ω-
language L2, the concatenation L1 · L2 (L1L2, for short) of L1 and L2 is the set
L1 · L2 = {uw | u ∈ L1, w ∈ L2 } and Lω

1 the infinite concatenation of L1.

Transition System. A (nondeterministic) transition system (TS) is a tuple
T = (Q, q0, δ), where Q is a finite set of states, q0 ∈ Q is the initial state,
and δ : Q × Σ → 2Q is a transition function. We also lift δ to sets as
δ(S, σ) :=

⋃
q∈S δ(q, σ). We also extend δ to words, by letting δ(S, ε) = S and

δ(S, a0a1 · · · ak) = δ(δ(S, a0), a1 · · · ak), where we have k ≥ 1 and ai ∈ Σ for
i ∈ {0, · · · , k}.

The underlying graph GT of a TS T is a graph 〈Q,E〉, where the set of
vertices is the set Q of states in T and (q, q′) ∈ E if q′ ∈ δ(q, a) for some a ∈ Σ.
We call a set C ⊆ Q a strongly connected component (SCC) of T if, for every
pair of states q, q′ ∈ C, q and q′ can reach each other in GT .

Automata. An automaton on finite words is called a nondeterministic finite
automaton (NFA). An NFA A is formally defined as a tuple (T , F ), where T is
a TS and F ⊆ Q is a set of final states. An automaton on ω-words is called a
nondeterministic Büchi automaton (NBA). An NBA B is represented as a tuple
(T , Γ ) where T is a TS and Γ ⊆ {(q, a, q′) : q, q′ ∈ Q, a ∈ Σ, q′ ∈ δ(q, a)} is a set
of accepting transitions. An NFA A is said to be a deterministic finite automaton
(DFA) if, for each q ∈ Q and a ∈ Σ, |δ(q, a)| ≤ 1. Deterministic Büchi automata
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(DBAs) are defined similarly and thus Γ is a subset of {(q, a) : q ∈ Q, a ∈ Σ},
since the successor q′ is determined by the source state and the input letter.

A run of an NFA A on a finite word u of length n ≥ 0 is a sequence of
states ρ = q0q1 · · · qn ∈ Q+ such that, for every 0 ≤ i < n, qi+1 ∈ δ(qi, u[i]).
We write q0

u−→qn if there is a run from q0 to qn over u. A finite word u ∈ Σ∗

is accepted by an NFA A if there is a run q0 · · · qn over u such that qn ∈ F .
Similarly, an ω-run of A on an ω-word w is an infinite sequence of transitions
ρ = (q0, w[0], q1)(q1, w[1], q2) · · · such that, for every i ≥ 0, qi+1 ∈ δ(qi, w[i]).
Let inf(ρ) be the set of transitions that occur infinitely often in the run ρ. An
ω-word w ∈ Σω is accepted by an NBA A if there exists an ω-run ρ of A over
w such that inf(ρ) ∩ Γ 
= ∅. The finitary language recognized by an NFA A,
denoted by L∗(A), is defined as the set of finite words accepted by it. Similarly,
we denote by L(A) the ω-language recognized by an NBA A, i.e., the set of ω-
words accepted by A. NFAs/DFAs accept exactly regular languages while NBAs
recognize exactly ω-regular languages.

Right Congruences. A right congruence (RC) relation is an equivalence rela-
tion � over Σ∗ such that x � y implies xv � yv for all v ∈ Σ∗. We denote by
| � | the index of �, i.e., the number of equivalence classes of �. A finite RC is
a RC with a finite index. We denote by Σ∗/� the set of equivalence classes of
Σ∗ under �. Given x ∈ Σ∗, we denote by [x]� the equivalence class of � that x
belongs to.

For a given RC � of a regular language R, the Myhill-Nerode theorem [18,19]
defines a unique minimal DFA D of R, in which each state of D corresponds to
an equivalence class defined by � over Σ∗. Therefore, we can construct a DFA
D[�] from � in a standard way.

Definition 1 ([18,19]). Let � be a right congruence of finite index. The TS
T [�] induced by � is a tuple (S, s0, δ) where S = Σ∗/�, s0 = [ε]�, and for each
u ∈ Σ∗ and a ∈ Σ, δ([u]�, a) = [ua]�.

For a given regular language R, we can define the RC �R of R as x �R

y if, and only if, ∀v ∈ Σ∗. xv ∈ R ⇐⇒ yv ∈ R. Therefore, the minimal DFA
for R is the DFA D[�R] = (T [�R], F�R

) by setting final states F�R
to all

equivalence classes [u]�R
such that u ∈ R.

Ultimately Periodic (UP) Words. A UP-word w is an ω-word of the form
uvω, where u ∈ Σ∗ and v ∈ Σ+. Thus w = uvω can be represented as a pair of
finite words (u, v), called a decomposition of w. A UP-word can have multiple
decompositions: for instance (u, v), (uv, v), and (u, vv) are all decompositions of
uvω. For an ω-language L, let UP(L) = {uvω ∈ L | u ∈ Σ∗ ∧ v ∈ Σ+ } denote
the set of all UP-words in L. The set of UP-words of an ω-regular language L
can be seen as the fingerprint of L, as stated below.

Theorem 1 ([6,7]). (1) Every non-empty ω-regular language L contains at
least one UP-word. (2) Let L and L′ be two ω-regular languages. Then L = L′

if, and only if, UP(L) = UP(L′).
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Families of DFAs (FDFAs). Based on Theorem 1, Angluin, Boker, and Fis-
man [2] introduced the notion of FDFAs to recognize ω-regular languages.

Definition 2 ([2]). An FDFA is a pair F = (M, {N q}) consisting of a leading
DFA M and of a progress DFA N q for each state q in M.

Intuitively, the leading DFA M of F = (M, {N q}) for L consumes the finite
prefix u of a UP-word uvω ∈ UP(L), reaching some state q and, for each state q
of M, the progress DFA N q accepts the period v of uvω. Note that the leading
DFA M of every FDFA does not make use of final states—contrary to its name,
it is really a leading transition system.

Let A be a deterministic automaton with TS T = (Q, q0, δ) and x ∈ Σ∗. We
denote by A(x) the state δ(q0, x). Each FDFA F characterizes a set of UP-words
UP(F) by following the acceptance condition.

Definition 3 (Acceptance). Let F = (M, {N q}) be an FDFA and w be a
UP-word. A decomposition (u, v) of w is normalized with respect to F if M(u) =
M(uv). A decomposition (u, v) is accepted by F if (u, v) is normalized and we
have v ∈ L∗(N q) where q = M(u). The UP-word w is accepted by F if there
exists a decomposition (u, v) of w accepted by F .

Note that the acceptance condition in [2] is defined with respect to the decom-
positions, while ours applies to UP-words. So, they require the FDFAs to be
saturated for recognizing ω-regular languages.

Definition 4 (Saturation [2]). Let F be an FDFA and w be a UP-word in
UP(F). We say F is saturated if, for all normalized decompositions (u, v) and
(u′, v′) of w, either both (u, v) and (u′, v′) are accepted by F , or both are not.

We will see in Sect. 4.1 that under our acceptance definition the saturation
property can be relaxed while still accepting the same language.

In the remainder of the paper, we fix an ω-language L unless stated otherwise.

3 Limit FDFAs for Recognizing ω-Regular Languages

In this section, we will first recall the definitions of three existing canonical
FDFAs for ω-regular languages, and then introduce our limit FDFAs and com-
pare the four types of FDFAs.

3.1 Limit FDFAs and Other Canonical FDFAs

Recall that, for a given regular language R, by Definition 1, the Myhill-Nerode
theorem [18,19] associates each equivalence class of �R with a state of the min-
imal DFA D[�R] of R. The situation in ω-regular languages is, however, more
involved [4]. An immediate extension of such RCs for an ω-regular language L
is the following.
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Definition 5 (Leading RC). For two u1, u2 ∈ Σ∗, u1 �L u2 if, and only if
∀w ∈ Σω. u1w ∈ L ⇐⇒ u2w ∈ L.

Since we fix an ω-language L in the whole paper, we will omit the subscript
in �L and directly use � in the remainder of the paper.

Assume that L is an ω-regular language. Obviously, the index of � is finite
since it is not larger than the number of states in the minimal deterministic
ω-automaton accepting L. However, � is only enough to define the minimal ω-
automaton for a small subset of ω-regular languages; see [4,15] for details about
such classes of languages. For instance, consider the language L = (Σ∗ · aa)ω

over Σ = {a, b}: clearly, | � | = 1 because L is a suffix language (for all u ∈ Σ∗,
w ∈ L ⇐⇒ u · w ∈ L). At the same time, it is easy to see that the minimal
deterministic ω-automaton needs at least two states to recognize L. Hence, �
alone does not suffice to recognize the full class of ω-regular languages.

Nonetheless, based on Theorem 1, we only need to consider the UP-words
when uniquely identifying a given ω-regular language L with RCs. Calbrix et
al. proposed in [7] the use of the regular language L$ = {u$v : u ∈ Σ∗, v ∈
Σ+, uvω ∈ L} to represent L, where $ /∈ Σ is a fresh letter2. Intuitively, L$

associates a UP-word w in UP(L) by containing every decomposition (u, v) of w
in the form of u$v. The FDFA representing L$ is formally stated as below.

Definition 6 (Periodic FDFAs [7]). The � is as defined in Definition 5.
Let [u]� be an equivalence class of �. For x, y ∈ Σ∗, we define periodic RC

as: x ≈u
P y if, and only if, ∀v ∈ Σ∗, u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L.

The periodic FDFA FP = (M, {N u
P }) of L is defined as follows.

The leading DFA M is the tuple (T [�], ∅). Recall that T [�] is the TS con-
structed from � by Definition 1.

The periodic progress DFA N u
P of the state [u]� ∈ Σ∗/� is the tuple (T [≈u

P

], Fu), where [v]≈u
P

∈ Fu if uvω ∈ L.

One can verify that, for all u, x, y, v ∈ Σ∗, if x ≈u
P y, then xv ≈u

P yv. Hence,
≈u

P is a RC. It is also proved in [7] that L$ is a regular language, so the index
of ≈u

P is also finite.
Angluin and Fisman in [3] showed that, for a variant of the family of lan-

guages Ln given by Michel [17], its periodic FDFA has Ω(n!) states, while the
syntactic FDFA obtained in [16] only has O(n2) states. The leading DFA of the
syntactic FDFAs is exactly the one defined for the periodic FDFA. The two types
of FDFAs differ in the definitions of the progress DFAs N u for some [u]�. From
Definition 6, one can see that N u

P accepts the finite words in Vu = {v ∈ Σ+ :
u · vω ∈ L}. The progress DFA N u

S of the syntactic FDFA is not required to
accept all words in Vu, but only a subset Vu,v = {v ∈ Σ+ : u · vω ∈ L, u � u · v},
over which the leading DFA M can take a round trip from M(u) back to itself.
This minor change makes the syntactic FDFAs of the language family Ln expo-
nentially more succinct than their periodic counterparts.

Formally, syntactic FDFAs are defined as follows.

2 This enables to learn L via learning the regular language L$ [9].
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Definition 7 (Syntactic FDFA [16]). The � is as defined in Definition 5.
Let [u]� be an equivalence class of �. For x, y ∈ Σ∗, we define syntactic RC

as: x ≈u
S y if and only if u · x � u · y and for ∀v ∈ Σ∗, if u · x · v � u, then

u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L.
The syntactic FDFA FS = (M, {N u

S }) of L is defined as follows.
The leading DFA M is the tuple (T [�], ∅) as defined in Definition 6.
The syntactic progress DFA N u

S of the state [u]� ∈ Σ∗/� is the tuple (T [≈u
S

], Fu) where [v]≈u
S

∈ Fu if u · v � u and uvω ∈ L.

Angluin and Fisman [3] noticed that the syntactic progress RCs are not
defined with respect to the regular language Vu,v = {v ∈ Σ+ : u·vω ∈ L, u � u·v}
as �Vu,v

that is similar to �R for a regular language R. They proposed the
recurrent progress RC ≈u

R that mimics the RC �Vu,v
to obtain a DFA accepting

Vu,v as follows.

Definition 8 (Recurrent FDFAs [3]). The � is as defined in Definition 5.
Let [u]� be an equivalence class of �. For x, y ∈ Σ∗, we define recurrent RC

as: x ≈u
R y if and only if ∀v ∈ Σ∗, (u · x · v � u ∧ u · (xv)ω ∈ L) ⇐⇒ (u · yv �

u ∧ u · (y · v)ω ∈ L).
The recurrent FDFA FR = (M, {N u

R}) of L is defined as follows.
The leading DFA M is the tuple (T [�], ∅) as defined in Definition 6.
The recurrent progress DFA N u

R of the state [u]� ∈ Σ∗/� is the tuple (T [≈u
R

], Fu) where [v]≈u
R

∈ Fu if u · v � u and uvω ∈ L.

As pointed out in [3], the recurrent FDFAs may not be minimal because,
according to Definition 3, FDFAs only care about the normalized decomposi-
tions, i.e, whether a word in Cu = {v ∈ Σ+ : u · v � u} is accepted by the
progress DFA N u

R. However, there are don’t care words that are not in Cu and
recurrent FDFAs treat them all as rejecting3.

Our argument is that the don’t care words are not necessarily rejecting and
can also be regarded as accepting. This idea allows the progress DFAs N u to
accept the regular language {v ∈ Σ+ : u · v � u =⇒ u · vω ∈ L}, rather
than {v ∈ Σ+ : u · v � u ∧ u · vω ∈ L}. This change allows a translation of
limit FDFAs to DBAs with a quadratic blow-up when L is DBA-recognizable
language, as shown later in Sect. 4. We formalize this idea as below and define a
new type of FDFAs called limit FDFAs.

Definition 9 (Limit FDFAs). The � is as defined in Definition 5.
Let [u]� be an equivalence class of �. For x, y ∈ Σ∗, we define limit RC as:

x ≈u
L y if and only if ∀v ∈ Σ∗, (u · x · v � u =⇒ u · (x · v)ω ∈ L) ⇐⇒ (u · y · v �

u =⇒ u · (y · v)ω ∈ L).
The limit FDFA FL = (M, {N u

L}) of L is defined as follows.
The leading DFA M is the tuple (T [�], ∅) as defined in Definition 6.
The progress DFA N u

L of the state [u]� ∈ Σ∗/� is the tuple (T [≈u
L], Fu)

where [v]≈u
L

∈ Fu if u · v � u =⇒ uvω ∈ L.

3 Minimizing DFAs with don’t care words is NP-complete [20].



60 Y. Li et al.

We need to show that ≈u
L is a RC. For u, x, y, v′ ∈ Σ∗, if x ≈u

L y, we need to
prove that xv′ ≈u

L yv′, i.e., for all e ∈ Σ∗, (u · xv′ · e � u =⇒ u · (xv′ · e)ω ∈
L) ⇐⇒ (u · yv′ · e � u =⇒ u · (yv′ · e)ω ∈ L). This follows immediately from
the fact that x ≈u

L y by setting v = v′ · e for all e ∈ Σ∗ in Definition 9.
Let L = aω + abω be a language over Σ = {a, b}. Three types of FDFAs are

depicted in Fig. 1, where the leading DFA M is given in the column labeled with
“Leading” and the progress DFAs are in the column labeled with “Syntactic”,
“Recurrent” and “Limit”. We omit the periodic FDFA here since we will focus
more on the other three in this work. Consider the progress DFA N aa

L : there
are only two equivalence classes, namely [ε]≈aa

L
and [a]≈aa

L
. We can use v = ε to

distinguish ε and a word x ∈ Σ+ since aa · ε � aa =⇒ aa · (ε · ε)ω ∈ L does not
hold, while aa · x � aa =⇒ aa · (x · ε)ω ∈ L holds. For all x, y ∈ Σ+, x ≈aa

L y
since both aa ·x � aa =⇒ aa · (x · v)ω ∈ L and aa · y � aa =⇒ aa · (y · v)ω ∈ L
hold for all v ∈ Σ∗. One can also verify the constructions for the syntactic and
recurrent progress DFAs. We can see that the don’t care word b for the class
[aa]� are rejecting in both N aa

S and N aa
R , while it is accepted by N aa

L . Even
though b is accepted in N aa

L , one can observe that (aa, b) (and thus aa · bω) is
not accepted by the limit FDFA, according to Definition 3. Indeed, the three
types of FDFAs still recognize the same language L.

When the index of � is only one, then ε � u holds for all u ∈ Σ∗. Corollary 1
follows immediately.

Corollary 1. Let L be an ω-regular language with | � | = 1. Then, periodic,
syntactic, recurrent and limit FDFAs coincide.

We show in Lemma 1 that the limit FDFAs are a coarser representation of
L than the syntactic FDFAs. Moreover, there is a tight connection between the
syntactic FDFAs and limit FDFAs.

Lemma 1. For all u, x, y ∈ Σ∗,

1. x ≈u
S y if, and only if u · x � u · y and x ≈u

L y.
2. | ≈u

L | ≤ | ≈u
S | ≤ | � | · | ≈u

L |; | ≈u
L | ≤ | � | · | ≈u

P |.

Proof. 1. – Assume that ux � uy and x ≈u
L y. Since x ≈u

L y holds, then for all
v ∈ Σ∗, (uxv � u =⇒ u · (xv)ω ∈ L) ⇐⇒ (uyv � u =⇒ u · (yv)ω ∈ L).
Since ux � uy holds, then u ·xv � u ⇐⇒ u ·yv � u for all v ∈ Σ∗. Hence,
by Definition 7, if uxv 
� u (and thus uyv 
� u), it follows that x ≈u

S y
by definition of ≈u

S ; otherwise we have both uxv � u and uyv � u hold,
and also u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L, following the definition of ≈u

L.
It thus follows that x ≈u

S y.
– Assume that x ≈u

S y. First, we have ux � uy by definition of ≈u
S . Since

ux � uy holds, then u · xv � u ⇐⇒ u · yv � u for all v ∈ Σ∗. Assume
by contradiction that x ≈u

L y. Then there must exist some v ∈ Σ∗ such
that u · xv � u · yv � u holds but u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L does
not hold. By definition of ≈u

S , it then follows that x 
≈S
u y, violating our

assumption. Hence, both ux � uy and x ≈u
L y hold.
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Fig. 1. Three types of FDFAs for L = aω + abω. The final states are marked with
double lines.

2. As an immediate result of the Item (1), we have that | ≈u
L | ≤ | ≈u

S | ≤
| � | · | ≈u

L |. We prove the second claim by showing that, for all u, x, y ∈ Σ∗,
if ux � uy and x ≈u

P y, then x ≈u
S y (and thus x ≈u

L y). Fix a word v ∈ Σ∗.
Since ux � uy holds, it follows that ux · v � u ⇐⇒ uy · v � u. Moreover, we
have u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L because x ≈u

P y holds. By definition
of ≈u

S , it follows that x ≈u
S y holds. Hence, x ≈u

L y holds as well. We then
conclude that | ≈u

L | ≤ | � | · | ≈u
P |. ��

According to Definition 1, we have x � y iff T [�](x) = T [�](y) for all x, y ∈
Σ∗. That is, M = (T [�], ∅) is consistent with �, i.e., x � y iff M(x) = M(y)
for all x, y ∈ Σ∗. Hence, u · v � u iff M(u) = M(u · v). In the remaining part
of the paper, we may therefore mix the use of � and M without distinguishing
the two notations.

We are now ready to give our main result of this section.



62 Y. Li et al.

Theorem 2. Let L be an ω-regular language and FL=(M[�], {N [≈u

]}[u]�∈Σ∗/�) be the limit FDFA of L. Then (1) FL has a finite number of states,
(2) UP(FL) = UP(L), and (3) FL is saturated.

Proof. Since the syntactic FDFA FS of L has a finite number of states [16]
and FL is a coarser representation than FS (cf. Lemma 1), FL must have finite
number of states as well.

To show UP(FL) ⊆ UP(L), assume that w ∈ UP(FL). By Definition 3, a
UP-word w is accepted by FL if there exists a decomposition (u, v) of w such
that M(u) = M(u·v) (equivalently, u·v � u) and v ∈ L∗(N ũ

L ) where ũ = M(u).
Here ũ is the representative word for the equivalence class [u]�. Similarly, let
ṽ = N ũ

L (v). By Definition 9, we have ũ · ṽ � ũ =⇒ ũ · ṽω ∈ L holds as ṽ is a
final state of N ũ

L . Since v ≈ũ
L ṽ (i.e., N ũ

L (v) = N ũ
L (ṽ)), ũ · v � ũ =⇒ ũ · vω ∈ L

holds as well. It follows that u · v � u =⇒ u · vω ∈ L since u � ũ and
u · v � ũ · v (equivalently, M(u · v) = M(ũ · v)). Together with the assumption
that M(u · v) = M(u) (i.e., u � u · v), we then have that u · vω ∈ L holds. So,
UP(FL) ⊆ UP(L) also holds.

To show that UP(L) ⊆ UP(FL) holds, let w ∈ UP(L). For a UP-word w ∈ L,
we can find a normalized decomposition (u, v) of w such that w = u · vω and
u · v � u (i.e., M(u) = M(u · v)), since the index of � is finite (cf. [3] for more
details). Let ũ = M(u) and ṽ = N ũ

L (v). Our goal is to prove that ṽ is a final
state of N ũ

L . Since u � ũ and u ·vω ∈ L, then ũ ·vω ∈ L holds. Moreover, ũ ·v � ũ
holds as well because ũ = M(ũ) = M(u) = M(ũ ·v) = M(u ·v). (Recall that M
is deterministic.) Hence, ũ · v � ũ =⇒ ũ · vω ∈ L holds. Since ṽ ≈ũ

L v, it follows
that ũ · ṽ � ũ =⇒ ũ · ṽω ∈ L also holds. Hence, ṽ is a final state. Therefore,
(u, v) is accepted by FL, i.e., w ∈ UP(FL). It follows that UP(L) ⊆ UP(FL).

Now we show that FL is saturated. Let w be a UP-word. Let (u, v) and (x, y)
be two normalized decompositions of w with respect to M (or, equivalently, to
�). Assume that (u, v) is accepted by FL. From the proof above, it follows that
both u · v � u and u · vω ∈ L hold. So, we know that u · vω = x · yω ∈ L. Let
x̃ = M(x) and ỹ = N x̃

L(y). Since (x, y) is a normalized decomposition, it follows
that x · y � x. Again, since x̃ � x, x̃ · y � x̃ and x̃ · yω ∈ L also hold. Obviously,
x̃ ·y � x̃ =⇒ x̃ ·yω ∈ L holds. By the fact that y ≈x̃

L ỹ, x̃ · ỹ � x̃ =⇒ x̃ · ỹω ∈ L
holds as well. Hence, ỹ is a final state of N x̃

L . In other words, (x, y) is also
accepted by FL. The proof for the case when (u, v) is not accepted by FL is
similar. ��

3.2 Size Comparison with Other Canonical FDFAs

As aforementioned, Angluin and Fisman in [3] showed that for a variant of the
family of languages Ln given by Michel [17], its periodic FDFA has Ω(n!) states,
while the syntactic FDFA only has O(n2) states. Since limit FDFAs are smaller
than syntactic FDFAs, it immediately follows that:

Corollary 2. There exists a family of languages Ln such that its periodic FDFA
has Ω(n!) states, while the limit FDFA only has O(n2) states.
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Now we consider the size comparison between limit and recurrent FDFAs.
Consider again the limit and recurrent FDFAs of the language L = aω + abω in
Fig. 1: one can see that limit FDFA and recurrent FDFA have the same number
of states, even though with different progress DFAs. In fact, it is easy to see that
limit FDFAs and recurrent FDFAs are incomparable regarding the their number
of states, even when only the ω-regular languages recognized by weak DBAs are
considered. A weak DBA (wDBA) is a DBA in which each SCC contains either
all accepting transitions or non-accepting transitions.

Lemma 2. If L is a wDBA-recognizable language, then its limit FDFA and its
recurrent FDFA have incomparable size.

Proof. We fix u, x, y ∈ Σ∗ in the proof. Since L is recognized by a wDBA, the
TS T [�] of the leading DFA M is isomorphic to the minimal wDBA recognizing
L [15]. Therefore, a state [u]� of M is either transient, in a rejecting SCC, or in
an accepting SCC. We consider these three cases.

– Assume that [u]� is a transient SCC/state. Then for all v ∈ Σ∗, u · x · v 
� u
and u · y · v 
� u.
By the definitions of ≈u

R and ≈u
L, there are a non-final class [ε]≈u

L
and possibly

a sink final class [σ]≈u
L

for ≈u
L where σ ∈ Σ, while there is a non-final class

[ε]≈u
R

for ≈u
R. Hence, x ≈u

L y implies x ≈u
R y.

– Assume that [u]� is in a rejecting SCC. Obviously, for all v ∈ Σ∗, we have
that u · x · v � u =⇒ u · (x · v)ω /∈ L and u · y · v � u =⇒ u · (y · v)ω /∈ L.
Therefore, there is only one equivalence class [ε]≈u

R
for ≈u

R. It follows that
x ≈u

L y implies x ≈u
R y.

– Assume that [u]� is in an accepting SCC. Clearly, for all v ∈ Σ∗, we have
that both u ·x ·v � u =⇒ u · (x ·v)ω ∈ L and u ·y ·v � u =⇒ u · (y ·v)ω ∈ L
hold. That is, we have either u ·x · v � u∧u · (x · v)ω ∈ L hold, or u ·x · v 
� u.
If x ≈u

R y holds, it immediately follows that (u · x · v � u =⇒ u · (x · v)ω ∈
L) ⇐⇒ (u · y · v � u =⇒ u · (y · v)ω ∈ L) holds. Hence, x ≈u

R y implies
x ≈u

L y.

Based on this argument, it is easy to find a language L such that its limit
FDFA is more succinct than its recurrent FDFA and vice versa, depending on
the size comparison between rejecting SCCs and accepting SCCs. Therefore, the
lemma follows. ��

Lemma 2 reveals that limit FDFAs and recurrent FDFAs are incomparable in
size. Nonetheless, we still provide a family of languages Ln in Lemma 3 such that
the recurrent FDFA has Θ(n2) states, while its limit FDFA only has Θ(n) states.
One can, of course, obtain the opposite result by complementing Ln. Notably,
Lemma 3 also gives a matching lower bound for the size comparison between
syntactic FDFAs and limit FDFAs, since syntactic FDFAs can be quadratically
larger than their limit FDFA counterparts, as stated in Lemma 1. The language
which witnesses this lower bound is given as its DBA B depicted in Fig. 2. We
refer to [13, Appendix A] for detailed proof.
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Fig. 2. The ω-regular language Ln represented with a DBA B. The dashed arrows are
Γ -transitions and ∗-transitions represent the missing transitions.

Lemma 3. Let Σn = {0, 1, · · · , n}. There exists an ω-regular language Ln over
Σn such that its limit FDFA has Θ(n) states, while both its syntactic and recur-
rent FDFAs have Θ(n2) states.

Finally, it is time to derive yet another “Myhill-Nerode” theorem for ω-
regular languages, as stated in Theorem 3. This result follows immediately from
Lemma 1 and a similar theorem about syntactic FDFAs [16].

Theorem 3. Let FL be the limit FDFA of an ω-language L. Then L is regular
if, and only if FL has finite number of states.

For identifying whether L is DBA-recognizable with FDFAs, a straight for-
ward way as mentioned in the introduction is to go through determinization,
which is, however, exponential in the size of the input FDFA. We show in Sect. 4
that there is a polynomial-time algorithm using our limit FDFAs.

4 Limit FDFAs for Identifying DBA-Recognizable
Languages

Given an ω-regular language L, we show in this section how to use the limit
FDFA of L to check whether L is DBA-recognizable in polynomial time. To this
end, we will first introduce how the limit FDFA of L looks like in Sect. 4.1 and
then introduce the deciding algorithm in Sect. 4.2.

4.1 Limit FDFA for DBA-Recognizable Languages

Bohn and Löding [5] construct a type of family of DFAs FBL from a set S+

of positive samples and a set S− of negative samples, where the progress DFA
accepts exactly the language Vu = {x ∈ Σ+ : ∀v ∈ Σ∗. if u · xv � u, then u ·
(xv)ω ∈ L}4. When the samples S+ and S− uniquely characterize a DBA-
recognizable language L, FBL recognizes exactly L.
4 Defining directly a progress RC ≈u that recognizes Vu is hard since Vu is quantified

over all v-extensions.
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The progress DFA N u
L of our limit FDFA FL of L usually accepts more words

than Vu. Nonetheless, we can still find one final equivalence class that is exactly
the set Vu, as stated in Lemma 4.

Lemma 4. Let L be a DBA-recognizable language and FL=(M, {N u
L}[u]�∈Σ∗/�)

be the limit FDFA of L. Then, for each progress DFA N u
L with L∗(N u

L ) 
=
∅, there must exist a final state x̃ ∈ Fu such that [x̃]≈u

L
= {x ∈ Σ+ :

∀v ∈ Σ∗. u · (x · v) � u =⇒ u · (x · v)ω ∈ L}.

Proof. In [5], it is shown that for each equivalence class [u]� of �, there exists a
regular language Vu = {x ∈ Σ+ : ∀v ∈ Σ∗. if u ·xv � u, then u · (xv)ω ∈ L}. We
have also provided the proof of the existence of Vu in [13, Appendix C], adapted
to our notations. The intuition of Vu is the following. Let B = (Σ,Q, ι, δ, Γ ) be
a DBA accepting L. Then, [u]� corresponds to a set of states S = {q ∈ Q : q =
δ(ι, u′), u′ ∈ [u]�} in B. For each q ∈ S, we can easily create a regular language
Vq such that x ∈ Vq iff over the word x, Bq (the DBA derived from B by setting
q its initial state) visits an accepting transition, Bq goes to an SCC that cannot
go back to q, or Bq goes to a state that cannot go back to q unless visiting an
accepting transition. Then, Vu = ∩q∈SVq.

Now we show that Vu is an equivalence class of ≈u
L as follows. On one hand,

for every two different words x1, x2 ∈ Vu, we have that x1 ≈u
L x2, which is

obvious by the definition of Vu. On the other hand, it is easy to see that x′ 
≈u
L x

for all x′ /∈ Vu and x ∈ Vu because there exists some v ∈ Σ∗ such that u·x′ ·v � u
but u · (x′ · v)ω /∈ L. Hence, Vu is indeed an equivalence class of ≈u

L. Obviously,
Vu ⊆ L∗(N u

L ), as we can let v = ε, so for every word x ∈ Vu, we have that
u · x � u =⇒ u · xω ∈ L. Let x̃ = N u

L (x) for a word x ∈ Vu. It follows that x̃ is
a final state of N u

L and we have [x̃]≈u
L

= Vu. This completes the proof. ��

By Lemma 4, we can define a variant of limit FDFAs for only DBAs with
less number of final states. This helps to reduce the complexity when translating
FDFAs to NBAs [2,7,12]. Let n be the number of states in the leading DFA M
and k be the number of states in the largest progress DFA. Then the resultant
NBA from an FDFA has O(n2k3) states [2,7,12]. However, if the input FDFA
is FB as in Definition 10, the complexity of the translation will be O(n2k2), as
there is at most one final state, rather than k final states, in each progress DFA.

Definition 10 (Limit FDFAs for DBAs). The limit FDFA FB =(M, {N u
B})

of L is defined as follows.
The transition systems of M and N u

B for each [u]� ∈ Σ∗/� are exactly the
same as in Definition 9.

The set of final states Fu contains the equivalence classes [x]≈u
L

such that,
for all v ∈ Σ∗, u · xv � u =⇒ u · (xv)ω ∈ L holds.

The change to the definition of final states would not affect the language
that the limit FDFAs recognize, but only their saturation properties. We say an
FDFA F is almost saturated if, for all u, v ∈ Σ∗, we have that if (u, v) is accepted
by F , then (u, vk) is accepted by F for all k ≥ 1. According to [12], if F is almost



66 Y. Li et al.

saturated, then the translation algorithm from FDFAs to NBAs in [2,7,12] still
applies (cf. [13, Appendix B] about details of the NBA construction).

Theorem 4. Let L be a DBA-recognizable language and FB be the limit FDFA
induced by Definition 10. Then (1) UP(FB) = UP(L) and (2) FB is almost
saturated but not necessarily saturated.

Proof. The proof for UP(FB) ⊆ UP(L) is trivial, as the final states defined
in Definition 10 must also be final in Definition 9. The other direction can be
proved based on Lemma 4. Let w ∈ UP(L) and B = (Q,Σ, ι, δ, Γ ) be a DBA
accepting L. Let ρ be the run of B over w. We can find a decomposition (u, v) of
w such that there exists a state q with q = δ(ι, u) = δ(ι, u · v) and (q, v[0]) ∈ Γ .
As in the proof of Lemma 4, we are able to construct the regular language
Vu = {x ∈ Σ+ : ∀y ∈ Σ∗, u · x · y � u =⇒ u · (x · y)ω ∈ L}. We let S = {p ∈
Q : L(Bq) = L(Bp)}. For every state p ∈ S, we have that vω ∈ L(Bp). For each

p ∈ S, we select an integer kp > 0 such that the finite run p
vkp

−−→ δ(p, vkp) visits
some accepting transition. Then we let k = maxp∈S kp. By definition of Vu, it
follows that vk ∈ Vu. That is, Vu is not empty. According to Lemma 4, we have
a final equivalence class [x]≈u

L
= Vu with vk ∈ [x]≈u

L
. Moreover, u · vk � u since

q = δ(ι, u) = δ(q, v). Hence, (u, vk) is accepted by FB , i.e., w ∈ UP(FB). It
follows that UP(FB) = UP(L).

Now we prove that FB = (M, {N u
B}) is not necessarily saturated. Let

L = (Σ∗ · aa)ω. Obviously, L is DBA recognizable, and � has only one equiv-
alence class, [ε]�. Let w = aω ∈ UP(L). Let (u = ε, v = a) be a normalized
decomposition of w with respect to � (thus, M). We can see that there exists a
finite word x (e.g., x = b is such a word) such that ε ·a ·x � ε and ε · (a ·x)ω /∈ L.
Thus, (ε, a) will not be accepted by FB. Hence FB is not saturated. Nonetheless,
it is easy to verify that FB is almost saturated. Assume that (u, v) is accepted
by FB. Let ũ = M(u) and ṽ = N ũ

B(v). Since ṽ is the final state, then, according
to Definition 10, we have for all e ∈ Σ∗ that ũ · ṽe � ũ =⇒ ũ · (ṽe)ω ∈ L. Since
v ≈u

L ṽ, ũ · ve � ũ =⇒ ũ · (ve)ω ∈ L also holds for all e ∈ Σ∗. Let e = vk · e′

where e′ ∈ Σ∗, k ≥ 0. It follows that ũ · vke′ � ũ =⇒ ũ · (vke′)ω ∈ L holds for
k ≥ 1 as well. Therefore, for all e′ ∈ Σ∗, k ≥ 1, (ũ · ṽe′ � ũ =⇒ ũ · (ṽe′)ω ∈
L) ⇐⇒ (ũ · vke′ � ũ =⇒ ũ · (vke′)ω ∈ L) holds. In other words, ṽ ≈ũ

L vk for
all k ≥ 1. Together with that uvk � u, (u, vk) is accepted by FB for all k ≥ 1.
Hence, FB is almost saturated. ��

4.2 Deciding DBA-Recognizable Languages

We show next how to identify whether a language L is DBA-recognizable with
our limit FDFA FL. Our decision procedure relies on the translation of FDFAs
to NBAs/DBAs. In the following, we let n be the number of states in the leading
DFA M and k be the number of states in the largest progress DFA. We first
give some previous results below.

Lemma 5 ([12, Lemma 6]). Let F be an (almost) saturated FDFA of L. Then
one can construct an NBA A with O(n2k3) states such that L(A) = L.
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Now we consider the translation from FDFA to DBAs. By Lemma 4, there is
a final equivalence class [x]≈u

L
that is a co-safety language in the limit FDFA of L.

Co-safety regular languages are regular languages R ⊆ Σ∗ such that R ·Σ∗ = R.
It is easy to verify that if x′ ∈ [x]≈u

L
, then x′v ∈ [x]≈u

L
for all v ∈ Σ∗, based

on the definition of ≈u
L. So, [x]≈u

L
is a co-safety language. The DFAs accepting

co-safety languages usually have a sink final state f (such that f transitions to
itself over all letters in Σ). We therefore have the following.

Corollary 3. If L is DBA-recognizable then every progress DFA N u
L of the limit

FDFA FL of L either has a sink final state, or no final state at all.

Our limit FDFA FB of L, as constructed in Definition 10, accepts the same
co-safety languages in the progress DFAs as the FDFA obtained in [5], although
they may have different transition systems. Nonetheless, we show that their
DBA construction still works on FB. To make the construction more general,
we assume an FDFA F = (M, {N q}q∈Q) where M = (Q,Σ, ι, δ) and, for each
q ∈ Q, we have N q = (Qq, Σ, ιq, δq, Fq).

Definition 11 ([5]). Let F = (M, {N q}q∈Q) be an FDFA. Let T [F ] be the TS
constructed from F defined as the tuple T [F ] = (QT , Σ, ιT , δT ) and Γ ⊆ {(q, σ) :
q ∈ QT , σ ∈ Σ} be a set of transitions where

– QT := Q ×
⋃

q∈Q Qq;
– ιT := (ι, ιι);
– For a state (m, q) ∈ QT and σ ∈ Σ, let q′ = δm̃(q, σ) where N m̃ is the

progress DFA that q belongs to and let m′ = δ(m,σ). Then

δ((m, q), σ) =

{
(m′, q′) if q′ /∈ Fm̃

(m′, ιm′) if q′ ∈ Fm̃

– ((m, q), σ) ∈ Γ if q′ ∈ Fm̃

Lemma 6. If F is an FDFA with only sink final states. Let B[F ] = (T [F ], Γ )
as given in Definition 11. Then, UP(L(B[F ])) ⊆ UP(F).

Proof. Let w ∈ UP(L(B[F ])) and ρ be its corresponding accepting run. Since w
is a UP-word and B[F ] is a DBA of finite states, then we must be able to find
a decomposition (u, v) of w such that (m, ιm) = B[F ](u) = B[F ](u · v), where ρ
will visit a Γ -transition whose destination is (m, ιm) for infinitely many times.
It is easy to see that M(u · v) = M(u) since B[F ](u) = B[F ](u · v). Moreover,
we can show there must be a prefix of v, say v′, such that v′ ∈ L∗(N m). Since
L∗(N m) is co-safety, we have that v ∈ L∗(N m). Thus, (u, v) is accepted by F .
By Definition 3, w ∈ UP(F). Therefore, UP(L(B[F ])) ⊆ UP(F). ��

By Corollary 3, FB has only sink final states; so, we have that
UP(L(B[FB ])) ⊆ UP(FB). However, Corollary 3 is only a necessary condition
for L being DBA-recognizable, as explained below. Let L be an ω-regular lan-
guage over Σ = {1, 2, 3, 4} such that a word w ∈ L iff the maximal number that
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Fig. 3. An example limit FDFA F = (M, {N ε
L})

occurs infinitely often in w is even. Clearly, L has one equivalence class [ε]� for
�. The limit FDFA F = (M, {N ε

L}) of L is depicted in Fig. 3. We can observe
that the equivalence class [4]≈ε

L
corresponds to a co-safety language. Hence, the

progress DFA N ε
L has a sink final state. However, L is not DBA-recognizable.

If we ignore the final equivalence class [2]≈ε
L

and obtain the variant limit FDFA
FB as given in Definition 10, then we have UP(FB) 
= UP(L) since the ω-word
2ω is missing. But then, by Theorem 4, this change would not lose words in L if
L is DBA-recognisable, leading to contradiction. Therefore, L is shown to be not
DBA-recognizable. So the key of the decision algorithm here is to check whether
ignoring other final states will retain the language. With Lemma 7, we guarantee
that B[FB ] accepts exactly L if L is DBA-recognizable.

Lemma 7. Let L be a DBA-recognizable language. Let FB be the limit FDFA
L, as constructed in Definition 10. Let B[FB] = (T [FB ], Γ ), where T [FB ] and
Γ are the TS and set of transitions, respectively, defined in Definition 11 from
FB. Then UP(FB) = UP(L) ⊆ UP(L(B[FB ])).

Proof. We first assume for contradiction that some w ∈ L is rejected by B[FB ].
For this, we consider the run ρ = (q0, w[0], q1)(q1, w[1], q2) . . . of B[FB ] on w. Let
i ∈ ω be such that (qi−1, w[i−1], qi) is the last accepting transition in ρ, and i = 0
if there is no accepting transition at all in ρ. We also set u = w[0 · · · i − 1] and
w′ = w[i · · · ]. By Definition 11, this ensures that B[FB ] is in state ([u]�, ι[u]�)
after reading u and will not see accepting transitions (or leave N [u]�

B ) while
reading the tail w′.

Let D = (Q′, Σ, ι′, δ′, Γ ′) be a DBA that recognizes L and has only reachable
states. As D recognizes L, it has the same right congruences as L; by slight abuse
of notation, we refer to the states in Q′ that are language equivalent to the state
reachable after reading u by [u]� and note that D is in some state of [u]� after
(and only after) reading a word u′ � u.

As u · w′, and therefore u′ · w′ for all u′ � u, are in L, they are accepted
by D, which in particular means that, for all q ∈ [u]�, there is an iq such that
there is an accepting transition in the first iq steps of the run of Dq (the DBA
obtained from D by setting the initial state to q) on w′. Let i+ be maximal
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among them and v = w[i · · · i + i+]. Then, for u′ � u and any word u′vv′, we
either have u′vv′ 
� u, or u′vv′ � u and u′ · (vv′)ω ∈ L. (The latter is because v
is constructed such that a run of D on this word will see an accepting transition
while reading each v, and thus infinitely many times.) Thus, N [u]�

B will accept
any word that starts with v, and therefore be in a final sink after having read v.

But then B[FB ] will see another accepting transition after reading v (at the
latest after having read uv), which closes the contradiction and completes the
proof. ��

So, our decision algorithm works as follows. Assume that we are given the
limit FDFA FL = (M, {N q

L}) of L.

1. We first check whether there is a progress DFA N q
L such that there are final

states but without the sink final state. If it is the case, we terminate and
return “NO”.

2. Otherwise, we obtain the FDFA FB by keeping the sink final state as the
sole final state in each progress DFA (cf. Definition 10). Let A = NBA(FL) be
the NBA constructed from FL (cf. Lemma 5) and B = DBA(FB) be the DBA
constructed from FB (cf. Definition 11). Obviously, we have that UP(L(A)) =
UP(L) and UP(L(B)) ⊆ UP(FB) = UP(L).

3. Then we check whether L(A) ⊆ L(B) holds. If so, we return “YES”, and
otherwise “NO”.

Now we are ready to give the main result of this section.

Theorem 5. Deciding whether L is DBA-recognizable can be done in time poly-
nomial in the size of the limit FDFA of L.

Proof. We first prove our decision algorithm is correct. If the algorithm returns
“YES”, clearly, we have L(A) ⊆ L(B). It immediately follows that UP(L) =
UP(L(A)) ⊆ UP(L(B)) ⊆ UP(FB) ⊆ UP(FL) = UP(L) according to Lemmas 5
and 6. Hence, UP(L(B)) = UP(L), which implies that L is DBA-recognizable.
For the case that the algorithm returns “NO”, we analyze two cases:

1. F has final states but without sink accepting states for some progress DFA.
By Corollary 3, L is not DBA-recognizable.

2. L(A) 
⊆ L(B). It means that UP(L) 
⊆ UP(L(B)) (by Lemma 5). It follows
that L is not DBA-recognizable by Lemma 7.

The algorithm is therefore sound; its completeness follows from Lemmas 6 and 7.
The translations above are all in polynomial time. Moreover, checking the

language inclusion between an NBA and a DBA can also be done in polynomial
time [11]. Hence, the deciding algorithm is also in polynomial time in the size of
the limit FDFA of L. ��

Recall that, our limit FDFAs are dual to recurrent FDFAs. One can observe
that, for DBA-recognizable languages, recurrent FDFAs do not necessarily have
sink final states in progress DFAs. For instance, the ω-regular language L =
aω + abω is DBA-recognizable, but its recurrent FDFA, depicted in Fig. 1, does
not have sink final states. Hence, our deciding algorithm does not work with
recurrent FDFAs.
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5 Underspecifying Progress Right Congruences

Recall that recurrent and limit progress DFAs N u either treat don’t care words
in Cu = {v ∈ Σ+ : uv 
� u} as rejecting or accepting, whereas it really does not
matter whether or not they are accepted. So why not keep this question open?
We do just this in this section; however, we find that treating the progress with
maximal flexibility comes at a cost: the resulting right progress relation ≈u

N is
no longer an equivalence relation, but only a reflexive and symmetric relation
over Σ∗ × Σ∗ such that x ≈u

N y implies xv ≈u
N yv for all u, x, y, v ∈ Σ∗.

For this, we first introduce Right Pro-Congruences (RP) as relations on words
that satisfy all requirements of an RC except for transitivity.

Definition 12 (Progress RP). Let [u]� be an equivalence class of �. For
x, y ∈ Σ∗, we define the progress RP ≈u

N as follows:

x ≈u
N y iff ∀v ∈ Σ∗. (uxv � u∧uyv � u) =⇒ (u ·(xv)ω ∈ L ⇐⇒ u ·(yv)ω ∈ L).

Obviously, ≈u
N is a RP, i.e., for x, y, v′ ∈ Σω, if x ≈u

N y, then xv′ ≈u
N yv′. That

is, assume that x ≈u
N y and we want to prove that, for all e ∈ Σ∗, (u · xv′e �

u ∧ u · yv′e � u) =⇒ (u · (xv′e)ω ∈ L ⇐⇒ u · (yv′e)ω ∈ L). This follows
immediately by setting v = v′e in Definition 12 for all e ∈ Σ∗ since x ≈u

N y. As
≈u

N is not necessarily an equivalence relation5, so that we cannot argue directly
with the size of its index. However, we can start with showing that ≈u

N is coarser
than ≈u

P ,≈u
S ,≈u

R, and ≈u
L.

Lemma 8. For u, x, y ∈ Σ∗, we have that if x ≈u
K y, then x ≈u

N y, where
K ∈ {P, S,R,L}.

Proof. First, if x ≈u
P y, x ≈u

N y holds trivially.
For syntactic, recurrent, and limit RCs, we first argue for fixed v ∈ Σ∗ that

– ux � uy =⇒ uxv � uyv, and therefore
ux � uy ∧

(
u · x · v � u =⇒ (u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L)

)

|= (uxv � u ∧ uyv � u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L),
– (u · x · v � u ∧ u · (xv)ω ∈ L) ⇐⇒ (u · yv � u ∧ u · (y · v)ω ∈ L)

|= (uxv � u ∧ uyv � u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L), and
– (u · x · v � u =⇒ u · (x · v)ω ∈ L) ⇐⇒ (u · y · v � u =⇒ u · (y · v)ω ∈ L)

|= (uxv � u ∧ uyv � u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L),

which is simple Boolean reasoning. As this holds for all v ∈ Σ∗ individually, it
also holds for the intersection over all v ∈ Σ∗, so that the claim follows. ��

Now, it is easy to see that we can use any RC ≈ that refines ≈u
N and use

it to define a progress DFA. It therefore makes sense to define the set of RCs
that refine ≈u

N as RC(≈u
N ) = {≈ | ≈⊂≈u

N is a RC}, and the best index | ≈u
N |

of our progress RP as | ≈u
N | = min{| ≈ | | ≈∈ RC(≈u

N )}. With this definition,
Corollary 4 follows immediately.
5 In the language L = aω + abω from the example of Fig. 1, for example, we have

a ≈ab
N ε and a ≈ab

N b, but b �≈ab
N ε.
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Corollary 4. For u ∈ Σ∗, we have that | ≈u
N | ≤ | ≈u

K | for all K ∈ {P, S,R,L}.
We note that the restriction of ≈u

N to Cu ×Cu is still an equivalence relation,
where Cu = {v ∈ Σ∗ : uv � u} are the words the FDFA acceptance conditions
really care about. This makes it easy to define a DFA over each ≈∈ RC(≈u

N )
with finite index: Cu/≈u

N
is good if it contains a word v s.t. u · vω ∈ L, and a

quotient of Σ∗/≈ is accepting if it intersects with a good quotient (note that it
intersects with at most one quotient of Cu). With this preparation, we now show
the following.

Theorem 6. Let L be an ω-regular language and FL=(M[�], {N [≈u

]}[u]�∈Σ∗/�) be the limit FDFA of L s.t. ≈u∈ RC(≈u
N ) with finite index for

all u. Then (1) FL has a finite number of states, (2) UP(FL) = UP(L), and (3)
FL is saturated.

The proof is similar to the proof of Theorem 2 and can be found in [13,
Appendix D].

6 Discussion and Future Work

Our limit FDFAs fit nicely into the learning framework for FDFAs [3] and are
already available for use in the learning library ROLL6 [14]. Since one can treat
an FDFA learner as comprised of a family of DFA learners in which one DFA
of the FDFA is learned by a separate DFA learner, we only need to adapt the
learning procedure for progress DFAs based on our limit progress RCs, without
extra development of the framework; see [13, Appendix E] for details. We leave
the empirical evaluation of our limit FDFAs in learning ω-regular languages as
future work.

We believe that limit FDFAs are complementing the existing set of canonical
FDFAs, in terms of recognizing and learning ω-regular languages. Being able
to easily identify DBA-recognizable languages, limit FDFAs might be used in
a learning framework for DBAs using membership and equivalence queries. We
leave this to future work. Finally, we have looked at retaining maximal flexibility
in the construction of FDFA by moving from progress RCs to progress RPs.
While this reduces size, it is no longer clear how to construct them efficiently,
which we leave as a future challenge.
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Abstract. A new model of one-way multicounter machines is intro-
duced. In this model, within each transition, testing the counter sta-
tus of a counter is optional, rather than existing models where they
are always either required (traditional multicounter machines) or no
status can be checked (partially-blind multicounter machines). If, in
every accepting computation, each counter has a bounded number of
sections that decrease that counter where its status is tested, then
the machine is called finite-testable. One-way nondeterministic finite-
testable multicounter machines are shown to be equivalent to partially-
blind multicounter machines, which, in turn, are known to be equivalent
to Petri net languages and languages defined by vector addition sys-
tems with states. However, one-way deterministic finite-testable multi-
counter machines are strictly more general than deterministic partially-
blind machines. Moreover, they also properly include deterministic
reversal-bounded multicounter machines (unlike deterministic partially-
blind multicounter machines). Interestingly, one-way deterministic finite-
testable multicounter machines are shown to have a decidable contain-
ment problem (“given two machines M1,M2, is L(M1) ⊆ L(M2)?”). This
makes it the most general known model where this problem is decidable.
We also study properties of their reachability sets.

1 Introduction

One of the most commonly studied decision problems for models of automata is
the containment problem (also sometimes called the inclusion problem), which is:
“given two machines M1 and M2 from the model, is L(M1) ⊆ L(M2)?”. The con-
tainment problem is important towards model checking. Indeed, if M2 contains
an automaton-based representation of a specification and M1 contains a model,
then M1 satisfies the specification if L(M1) ⊆ L(M2). This automata-theoretic
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approach was initiated by Vardi and Wolper [28], it enables on-the-fly model
checking [8], and it has been studied with different models of automata [23,27].
Furthermore, industrial automated verification tools have implemented and used
automata-based methods [11]. Not only is the containment problem undecidable
for the context-free languages, it is also undecidable for many restriction of
pushdown automata, including deterministic pushdown automata, determinis-
tic one counter automata (the store contains a non-negative integer which can
be increased, decreased, and tested for zero), and nondeterministic one counter
automata where the counter cannot increase after decreasing [1]. In contrast, one
model with a decidable containment problem is one-way deterministic machines
with some number of counters, but on every accepting computation, there is a
bound in the number of changes in direction between non-decreasing and non-
increasing the size of each counter, called reversal-bounded, and they are denoted
by DRBCM (and the nondeterministic version is denoted by NRBCM).

The emptiness problem, “given machine M , is L(M) = ∅?”, is also impor-
tant and commonly decidable for more powerful models. Indeed, it is decid-
able for pushdown automata [12], NRBCM [17], and one-way nondeterministic
partially-blind multicounter machines (denoted by NPBLIND) [10]. The latter
model contains multicounter machines where each counter contains some non-
negative integer, but no differences are allowed in available transitions based
on the counter status (whether a counter is empty or not), besides acceptance
being defined by final state and all counters being zero in the final configu-
ration. In this sense, counter status checks are not allowed. It is known that
NRBCM is properly contained in NPBLIND [10], and also that the following are
equivalent: deciding emptiness for partially-blind multicounter machines, decid-
ing the emptiness problem for Petri nets, and deciding reachability of vector
addition systems. Later, reachability for Petri nets was shown to be decidable
and therefore all three problems are decidable [20,22]. Recently, it was shown
that the boundedness problem (“given M , are there words w1, . . . , wn such that
L(M) ⊆ w∗

1 · · · w∗
n?”) is decidable for vector addition systems with states [6],

hence for NPBLIND as well.
Some restrictions of NPBLIND (resp. labelled Petri nets, and vector addition

systems with states) have also been studied. For example, λ-free determinis-
tic labelled Petri nets have been studied [25,29]. In the latter paper, it was
shown that the complement of the language accepted by any λ-free determin-
istic labelled Petri net could be accepted by a nondeterministic labelled Petri
net (equivalent to NPBLIND). From this, and decidability of emptiness for Petri
nets, it follows that the containment problem is decidable for λ-free deterministic
labelled Petri nets. To note here, this type of Petri net also does not have an
explicit label to detect when it has reached the end of the input, which can limit
the capacity of the machines. In addition, vector addition systems with states
that are boundedly-ambiguous have been studied [5]. When using an acceptance
condition defined by an upward-closed set of configurations, the containment
problem is decidable.

Here, we study deterministic NPBLIND machines with the input end-marker
and also allowing λ transitions, which we denote by DPBLIND. We show that
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the right input-marker strictly increases the capacity, showing the importance of
using this simple construct. Even with λ transitions and the end-marker however,
we show the model is still somewhat limited and cannot accept all DRBCM
languages.

This inspires a simple and novel restriction of multicounter machines, where
the counter status checks are optional. Such a machine is r-testable if, in every
accepting computation, each counter has at most r segments where it decreases
this counter and checks its status at least once (and it is finite-testable if it
is r-testable for some r). This class is denoted by NTCM, and DTCM for the
deterministic restriction. While we show that NTCM and NPBLIND are equiv-
alent, DTCM is shown to be strictly more powerful than both DPBLIND and
DRBCM. Then we show that the complement of every DTCM (hence DPBLIND)
is in NTCM = NPBLIND. From this, it follows that DTCM (and DPBLIND) has a
decidable containment problem (hence also equality problem and universe prob-
lem). This makes DTCM one of the most general automata model known with a
decidable containment problem, as it is significantly more general than DRBCM
and allows λ transitions and has an end-marker unlike the model [25].

All omitted proofs appear in the appendix due to space constraints.

2 Preliminaries

Let N be the set of natural numbers, and N0 be the set of non-negative integers,
and Z be the set of integers. For k ∈ N, let N(k) = {1, . . . , k}. For j ∈ N0, define
π(j) to be 0̂ if j = 0 and 1̂ otherwise. For a set X and k ∈ N, define Xk to be the
set of k-tuples of elements of X. A set Q ⊆ N

k
0 is called a linear set if there exists

vectors �v0, �v1, . . . , �vl ∈ N
k
0 such that Q = {�v0 + i1�v1 + · · ·+ il�vl | i1, . . . , il ∈ N0}.

Here, �v0 is called the constant, and �v1, . . . , �vl are called the periods. The constant
and the periods together are called a representation of the linear set. A set
Q ⊆ N

k
0 is called a semilinear set if it is a finite union of linear sets, and a

representation of Q is the set of representations of each linear set.
We assume a basic familiarity with automata and formal language theory [12].

Let Σ be a finite alphabet, and let Σ∗ be the set of all words over Σ, including
the empty word λ, and Σ+ is the set of all non-empty words. A language over
Σ is any L ⊆ Σ∗. Given L ⊆ Σ∗, the complement of L with respect to Σ is,
L = Σ∗ −L. Given a word w ∈ Σ∗, |w| is the length of w; and given a ∈ Σ, |w|a
is the number of a’s in w.

Given a fixed ordering of an alphabet Σ = {a1, . . . , ak}, then the Parikh
image of w ∈ Σ∗ denoted Ψ(w) = (|w|a1 , . . . , |w|ak

). This is extended to the
Parikh image of languages L ⊆ Σ∗ by Ψ(L) = {Ψ(w) | w ∈ L}. A language
L is said to be Parikh semilinear (or simply semilinear) if Ψ(L) is a semilinear
set. It is known that every regular language (in fact, context-free language) is
Parikh semilinear [24]. We say that a set for a given problem is an effectively
determinable semilinear set if, the set for that problem is a semilinear set, and
moreover there is an effective procedure to determine the semilinear representa-
tion given inputs to the problem.
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A language L ⊆ Σ∗ is bounded if there exists w1, . . . , wn ∈ Σ+ such that
L ⊆ w∗

1 · · · w∗
n. Given words w1, . . . , wn ∈ Σ+ and L ⊆ w∗

1 · · · w∗
n, we define a

function φ from languages L to subsets of N
n
0 that maps φ(L) = {(i1, . . . , in) |

wi1
1 · · · win

n ∈ L}. We call L a bounded Ginsburg semilinear language (or simply
Ginsburg semilinear) if φ(L) is a semilinear set. In the literature, bounded Gins-
burg semilinear is often just referred to by bounded semilinear [3]. Note that the
Parikh image ψ(L) (which is a subset of N

k
0) may be different than φ(L) (which

is a subset of N
n
0 ). However, it is known that every bounded Ginsburg semilinear

language is also Parikh semilinear [3] but there are Parikh semilinear languages
(even bounded ones) that are not Ginsburg semilinear. For example, consider
L = {a2nb | n > 0}∪ba+, which is bounded as it is a subset of a∗b∗a∗. But given
a, b, a, φ(L) = {(2n, 1, 0) | n > 0} ∪ {(0, 1, n) | n > 0}, which is not semilinear,
and so L is not Ginsburg semilinear. However, ψ(L) = {(n, 1) | n > 0} (a is first
letter, b is second) is semilinear and so L is Parikh semilinear.

We define k-counter machines in a slightly unusual way, where it is possible
to either test whether a counter is positive or zero, but also not test the status
of a counter. This allows the definition to be used for multiple purposes.

Definition 1. A one-way nondeterministic k-counter machine is a tuple M =
(Q,Σ, δ, q0, F ) with a finite set of states Q, initial state q0, the final state set F ⊆
Q, an input alphabet Σ, and a transition function δ, which is a partial function
from Q × (Σ ∪ {λ,�}) × N(k) × {0̂, 1̂, ∅̂} to finite subsets of Q × {0,+1,−1},
where � /∈ Σ is the right input end-marker. Here, we call {0̂, 1̂, ∅̂} the set of
tests, with 0̂ the zero-test, 1̂ the non-zero-test, 0̂ and 1̂ collectively the status
tests, and ∅̂ is the no-test. A transition (p, e) ∈ δ(q, a, i, τ) (which we often write
as δ(q, a, i, τ) → (p, e)) can be used if q is the current state and a ∈ Σ ∪ {λ,�}
is read from the input, and

– if τ = ∅̂, then it adds e to counter i,
– if τ = 1̂ and counter i is non-empty, then it adds e to counter i,
– if τ = 0̂ and counter i is empty, then it adds e to counter i,

and it switches to state p. Such a machine is deterministic if,

1. for each q ∈ Q and a ∈ Σ∪{�}, there is at most one counter i, denoted C(q, a)
if one exists, such that δ(q, a, i, τ) ∪ δ(q, λ, i, τ) �= ∅, for some τ ∈ {0̂, 1̂, ∅̂},

2. for all q ∈ Q, a ∈ Σ ∪ {�}, τ ∈ {0̂, 1̂}, where i = C(q, a),

|δ(q, a, i, τ) ∪ δ(q, λ, i, τ) ∪ δ(q, a, i, ∅̂) ∪ δ(q, λ, i, ∅̂)| ≤ 1.

This matches the traditional notion of determinism, except the counter status
can influence the deterministic choice of the next transition to apply if and
only if a status test is used. If a no-test is used, it must be the only available
transition. For example, a deterministic machine could have separate transitions
from δ(q, a, i, 0̂) and δ(q, a, i, 1̂), where the first happens if counter i is zero
and the second happens if counter i is positive. But we cannot have separate
transitions if either both transitions have the same test, or if one is a no-test
as that would lead to multiple possible transitions that could be applied from
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the same instantaneous description (defined next). It is also required that only
one counter can be used from a given state and input letter or empty word, as
otherwise multiple instantaneous descriptions could follow a given one.

Definition 2. An instantaneous description (ID) of k-counter machine M =
(Q,Σ, δ, q0, F ) is a member of Q × (Σ∗� ∪ {λ}) × N

k
0 . Instantaneous descrip-

tions change via the relation 	M (or 	 if M is clear) with (q, aw, y1, . . . , yk) 	
(q′, w, y1, . . . , yi−1, yi + e, yi+1, . . . , yk), if δ(q, a, i, τ) → (q′, e), yi + e ≥ 0, and
either τ = ∅̂ or π(yi) = τ . Then, 	∗ is the reflexive, transitive closure of 	. A
computation on w ∈ Σ∗ is a sequence of IDs,

(p0, w0, y0,1, . . . , y0,k) 	 · · · 	 (pn, wn, yn,1, . . . , yn,k), (1)

where q0 = p0, w0 = w�, y0,i = 0, 1 ≤ i ≤ k; and a computation is an accept-
ing computation of w if yn,i = 0 for 1 ≤ i ≤ k,wn = λ, and pn ∈ F .
Thus, accepting computations end at all 0’s in the counters and in a final state.
Often, we associate labels bijectively from a set Σδ to the transitions of M , and
write ID 	t ID′, t ∈ Σδ if ID 	 ID′ via transition t; and ID 	x ID′ for
x = t1 · · · tm, ti ∈ Σδ, if ID = ID0 	t1 · · · 	tm IDm = ID′. We also define
runs(M) = {x ∈ Σ∗

δ | (q0, w�, 0, . . . , 0) 	x (qf , λ, 0, . . . , 0), qf ∈ F}
Given a computation ID0 	t1 · · · 	tn IDn, n ≥ 0, for i 1 ≤ i ≤ k, we divide

it into so-called decreasing i-segments and increasing i-segments as follows: we
say IDj−1 	tj · · · 	tl IDl is a decreasing i-segment if

– tj decreases counter i,
– there are no transitions that increase counter i in tj , . . . , tl−1,
– either l = n or tl increases counter i,
– the last transition of t1, . . . , tj−1 that changes counter i increases it.

We can naturally order decreasing i-segments. Further, we define the increasing
i-segments between the beginning of the computation to the ID at the start of the
first decreasing i-segment or the last ID if there are no decreasing i-segments,
between the last ID of one decreasing i-segment and the first ID of the next
decreasing i-segment, and from the last ID of the last decreasing i-segment to
the end if it does not end in a decreasing i-segment or it ends with a transition
that increases counter i.

Such a machine M is r-reversal-bounded, if, in every accepting computation,
each counter i, 1 ≤ i ≤ k, has at most r+1 increasing or decreasing i-segments.
It is reversal-bounded if it is r-reversal-bounded for some r. Such a machine is
called partially-blind if all transitions have ∅̂ for tests.

The language accepted by M ,

L(M) = {w ∈ Σ∗ | there is an accepting computation of w},

and the reachability set of M , R(M) = {(q, v1, . . . , vk) | (q0, w�, 0, . . . , 0) 	∗

(q, w′, v1, . . . , vk) 	∗ (qf , λ, 0, . . . , 0), qf ∈ F}.
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As decreasing i-segments are maximal (they start with a decrease, the previous
transition that changes that counter is an increase, and they end with either the
next increase or the end of the computation), we can split each computation,
for each i, uniquely into increasing and decreasing i-segments. The definition of
r-reversal-bounded here is equivalent to that of [17] which counts the number
of changes in direction in each counter. The definition of partially-blind multi-
counter machines is the same to that of [10]. Note these machines do have one
implicit test of all zeros in the counters at the end of the computation. With no-
tests (and partially-blind machines), the machines “crash” (ie. the computation
cannot continue), if any counter tries to go below zero. But the machines cannot
detect that the counters are zero (because the transition function does not allow
differences based on the contents of the counters). Normally the reachability set
is defined without the restriction of appearing within an accepting computation,
but we will use this stronger notion here. Also, sometimes it is defined to not
include the state as a component. We will usually associate the state component
bijectively with a number in {1, . . . , |Q|} so we can, e.g. talk about a reachability
set being a semilinear set.

The class of one-way nondeterministic (resp. deterministic) partially-blind k-
counter machines is denoted by NPBLIND(k) (resp. DPBLIND(k)), and the class
of partially-blind machines is denoted by NPBLIND (resp. DPBLIND). The class
of one-way nondeterministic (resp. deterministic) r-reversal-bounded k-counter
machines is denoted by NRBCM(k, r) (resp. DRBCM(k, r)), and the family of
reversal-bounded multicounter machines is denoted by NRBCM (resp. DRBCM).
By a slight abuse of notation, we will use the same notation for a class of machines
and the family of languages they accept.

It is also known that one-way deterministic two-counter machines accept all
recursively enumerable languages (denoted RE), but there are some recursively
enumerable languages that are not in NPBLIND [10]. Deterministic partially-
blind machines are a restriction of partially-blind machines, and it is therefore
clear that DPBLIND ⊆ NPBLIND � RE. Lastly, note DRBCM � NRBCM �

NPBLIND � RE, with the latter two shown in [10], and DRBCM is known to be
a proper subset of NRBCM [17].

Lastly, we show a simple result in this section which will help throughout
the paper. Given a k-counter machine M = (Q,Σ, δ, q0, F ), denote by Mδ =
(Qδ, Σδ, δ

′, q0, F ′) the deterministic k-counter machine obtained from M with
Qδ = Q ∪ Q′ where Q′ is a primed version of the states in Q, F ′ is the primed
versions of the states in F , and δ′ is built to read t ∈ Σδ to simulate transition
t of M , but it uses states of Q to simulate transitions of M that read letters of
Σ∪{λ}, but M ′ instead reads t, and switches from states in Q to states of Q′ if t
reads � in M , and switches between states in Q′ to simulate only λ transitions.
Lastly, add δ′(q′,�, 1, ∅̂) → (q′, 0) for all q′, where q ∈ Q.
Lemma 3. Given k-counter M = (Q,Σ, δ, q0, F ), the following are true:
– Mδ is deterministic,
– runs(M) = L(Mδ),
– L(M) is not Parikh semilinear implies runs(M) is not Parikh semilinear,
– R(M) is not semilinear implies R(Mδ) is not semilinear.
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3 Properties of Deterministic Partially-Blind Machines

We start this section with an example of a DPBLIND machine before analyzing
its properties.

Example 4. It is known that NPBLIND contains the so-called one-sided Dyck lan-
guage on one letter, D2 = {w ∈ {a, b}∗ | |w|a = |w|b, and if w = xy, then |x|a ≥
|x|b}, which cannot be accepted by any NRBCM [10].

A NPBLIND(1) machine M = (Q,Σ, δ, q0, {q1}) that accepts this language is
as follows,

δ(q0, a, 1, ∅̂) → (q0,+1), δ(q0, b, 1, ∅̂) → (q0,−1), δ(q0,�, 1, ∅̂) → (q1, 0).

This machine by definition is deterministic, and therefore D2 ∈ DPBLIND(1).
Since Dyck languages are Parikh semilinear, this shows that DPBLIND contains
Parikh semilinear languages that are not in NRBCM. Furthermore, consider the
prefix closure of D2, D′

2 = {w ∈ {a, b}∗ | if w = xy, then |x|a ≥ |x|b}. A
DPBLIND M ′ can accept D′

2 by adding transition δ(q1, λ, 1, ∅̂) → (q1,−1) to
M above. Notice that when it reads the end-marker with some value j on the
counter, it continually decreases the counter, and as long as it eventually passes
over 0 on the counter in state q1, it accepts.

The right input end-marker is not necessary for any nondeterministic machine
model defined in the previous section, because the machine can guess that it has
read the last input symbol, and only accept if it guessed correctly. One could
define NRBCMNE (resp. DRBCMNE) machines as being NRBCM machines (resp.
DRBCM) without containing any transitions on the end-marker, and acceptance
is defined as, it reads the entire input w (with no end-marker), and it is in a
final state. This notation was used in [7,14] where machines without the end-
marker were studied with NRBCM and DRBCM. Hence, NRBCM = NRBCMNE.
For that reason, when studying nondeterministic machines, we can leave off
the end-marker in the machine definition and when examining computations.
With deterministic machines though, it is not necessarily so; e.g. it is known
that DRBCMNE � DRBCM [7,14] (in contrast to say deterministic pushdown
automata where they are the same). We do not know of any other one-way
input machine model where they are known to be different. Clearly, for any
deterministic model defined above, the family of languages accepted without the
end-marker is a subset of the entire model as we could simply ignore the marker.
So we by default use the more general definition with the end-marker. Determin-
istic partially-blind multicounter languages have been defined and studied previ-
ously, but they were defined without the end-marker [4], and so we are using the
more general definition with the end-marker here instead. We use the notation
NPBLINDNE (resp. DPBLINDNE) to be NPBLIND (resp. DPBLIND) machines and
languages without the end-marker, where acceptance occurs by hitting the end
of the input in a final state with all counters zero. Then NPBLINDNE = NPBLIND
using the same argument as the start of this section.
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We next see that in fact the language D′
2 from Example 4 requires the end-

marker to accept for deterministic machines, leading to the following separation.

Proposition 5. DPBLINDNE � DPBLIND.

Therefore, the right end-marker increases the power of DPBLIND, similarly to
DRBCM.

Next, we analyze whether DPBLIND and DPBLINDNE contain languages that
are not Parikh semilinear, and whether reachability sets can be non-semilinear.

Proposition 6. DPBLIND and DPBLINDNE both contain machines M such that
L(M) is not Parikh semilinear. Furthermore, both contain machines M such that
R(M) and runs(M) are not semilinear.

Proof. It is known that NPBLIND contains languages that are not Parikh semi-
linear (Theorem 4 of [10]). Let M ∈ NPBLIND accepting any such language.
Considering Mδ, Mδ ∈ DPBLINDNE by Lemma 3. Also Lemma 3 indicates that
L(Mδ) = runs(M) is not Parikh semilinear. For the second point, it is known
that there are M ∈ NPBLIND with R(M) not being semilinear (implied by
being the case for vector addition systems with states [13]). Using Mδ, Lemma
3 implies R(Mδ) is not semilinear. ��
Hence, DPBLIND, DPBLINDNE, and more general models introduced later in this
paper all have languages, ‘runs’, and reachability sets that are not semilinear.
In contrast, languages accepted by NRBCM are all semilinear [17], the ‘runs’ are
semilinear by Lemma 3, and the reachability sets are semilinear, seen as follows:
for each M ∈ NRBCM(k), create M ′ ∈ NRBCM(2k) that nondeterministically
guesses and simulates transitions of M but using λ input and by using two
identical sets of counters until a nondeterministically guessed spot. Then, it
verifies that the input is 1nci1

1 · · · cik
k where n is a number associated with the

current state, and i1, . . . , ik are the same as one copy of the counters. From
then, it continues the simulation using the other set of counters. It is evident
that ψ(L(M ′)) = R(M), which is semilinear [17].

Even though DPBLIND contains languages that are not Parikh semilinear,
we see next that DPBLIND is still somewhat limited and cannot accept some
languages that seem relatively simple and that are Ginsburg semilinear and can
even be accepted by a DRBCM(1, 1). By contrast DRBCM accepts all Ginsburg
semilinear languages [19].

Proposition 7. The language L = {albm | 0 < l < m} is in DRBCM(1, 1)
but not in DPBLIND. Thus, DPBLIND does not contain all Ginsburg semilinear
languages.

Corollary 8. The families DPBLIND (resp. DPBLINDNE) and DRBCM are
incomparable.
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The one direction follows from Proposition 7, and the other since DPBLIND and
DPBLINDNE contain languages that are not Parikh semilinear by Proposition 6,
but DRBCM does not [17].

Proposition 9. DPBLIND is not closed under complement.

Proof. Assume otherwise. Consider L from Proposition 7, and let L′ = {anbm |
n ≥ m}. We can see that L′ can be accepted by a DPBLIND(1) machine that adds
to the counter for each a, then subtracts for each b, and then at the end-marker,
switches to final state and continually decreases the counter. Also, DPBLIND is
clearly closed under intersection with regular languages. But L′ ∩ a+b+ = L ∈
DPBLIND, but this is not in DPBLIND by Proposition 7, a contradiction. ��

Despite not being closed under complement, we will see later that the com-
plement of every DPBLIND language is in NPBLIND, which is sufficient to show
that DPBLIND has a decidable containment problem; in fact, we will determine
a stronger result.

4 Finite-Testable Counter Machines

Next, we introduce a new restriction of counter machines, which will be the
focus of the rest of this paper. A k-counter machine M = (Q,Σ, δ, q0, F ) is r-
testable if, for every acceptable computation and every counter i, 1 ≤ i ≤ k,
there are at most r decreasing i-segments that contain at least one status test.
A machine is finite-testable if it is r-testable for some r ≥ 0. We denote the class
of one-way nondeterministic (resp. deterministic) r-testable k-counter machines
by NTCM(k, r) (resp. DTCM(k, r)). We use NTCM(∗, r) (resp. DTCM(∗, r)) for
r-testable k-counter machines for some k. We also use NTCM (resp. DTCM) to
refer to all one-way nondeterministic (resp. deterministic) finite-testable multi-
counter machines.

Note, we could have alternatively defined r-testable so that for every accepted
word, there is some accepting computation where each counter i has at most r
decreasing i-segments; had we done that, given any machine M , another machine
M ′ could be constructed that uses the finite control to count the number of
decreasing i-segments in each counter, thereby satisfying the definition we use.

It is immediate that every NRBCM (resp. DRBCM) is a NTCM (resp. DTCM),
and therefore NRBCM ⊆ NTCM and DRBCM ⊆ DTCM.

Example 10. It is evident that DPBLIND � DTCM since L = {albm | 0 < l < m}
is in DRBCM(1, 1) but not DPBLIND by Proposition 7. A machine M ∈ DTCM
accepting L contains the following transitions (qf is a final state):

δ(q0, a, 1, 0̂) → (q1,+1), δ(q2, b, 1, 0̂) → (q3, 0),
δ(q1, a, 1, 1̂) → (q1,+1), δ(q3, b, 1, 0̂) → (q3, 0)
δ(q1, b, 1, 1̂) → (q2,−1), δ(q3,�, 1, 0̂) → (qf , 0),
δ(q2, b, 1, 1̂) → (q2,−1)
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Example 11. Next we provide a more complicated example of a machine accept-
ing a language that cannot be accepted by an NRBCM. Recall D′

2 = {w ∈
{a, b}∗ | if w = xy, then |x|a ≥ |x|b} from Example 4 which is not in NRBCM.
Let L1 be D′

2 over {a1, b1} and L2 be D′
2 over {a2, b2}. Let

L = {u1v1 · · · ulvl$x1y1 · · · xnyn | u1 · · · ulx1 · · · xn ∈ L1, v1 · · · vly1 · · · yn ∈ L2,
and |u1 · · · ul|a1 = |u1 · · · ul|b1}.

A DTCM(2, 2) M = (Q,Σ, δ, q0, {qf}) that accepts this language is as follows,
for i ∈ {1, 2},

δ(q0, ai, i, ∅̂) → (q0,+1), δ(q1,�, 1, ∅̂) → (q2, 0),
δ(q0, bi, i, ∅̂) → (q0,−1), δ(q2, λ, 1, 1̂) → (q2,−1)
δ(q0, $, 1, 0̂) → (q1, 0), δ(q2, λ, 1, 0̂) → (q3, 0),
δ(q1, ai, i, ∅̂) → (q1,+1) δ(q3, λ, 2, 1̂) → (q3,−1)
δ(q1, bi, i, ∅̂) → (q1,−1) δ(q3, λ, 2, 0̂) → (qf , 0).

This machine is deterministic because from both q0 and q1 and on each letter
of a1, b1, a2, b2, only a single no-test transition is possible, and from q2 and q3,
only one transition on each status test is possible.

It also appears that this language cannot be accepted by a DPBLIND because
a DPBLIND cannot test for zero until the very last ID. While it is possible to
create two new counters (called the special counters) to count both |u1 · · · ul|a1

and |u1 · · · ul|b1 by counting until $ and then not changing those counters until
the end-marker, it seems not possible to deterministically decrease these special
counters to zero to test that they are equal in the final instantaneous description
while also decreasing the other counters to zero without the ability to test for
zero in a subset of the counters before the final instantaneous description. In
contrast, the DTCM machine above can detect whether an individual counter is
empty unlike NPBLIND, which M does after reading $, and also separately for
each counter after reading �.

Notice that NTCM(∗, 0) corresponds exactly to NPBLIND. Furthermore, we
see that with nondeterministic machines, finite-testability and 0-testability are
equivalent, although converting to 0-testable increases the number of counters.

Proposition 12. NTCM(∗, 0) = NPBLIND = NTCM.

For the rest of this section, we are only concerned with deterministic
machines. We start with a normal form that is useful for the next section.
We say a DTCM(k, r) M = (Q,Σ, δ, q0, F ) is in normal form if, for each
q ∈ Q, a ∈ Σ ∪ {�}, the following are equivalent:

– there is a transition in δ(q, b, i, 0̂) with b ∈ {a, λ},
– there is a transition in δ(q, b, i, 1̂) with b ∈ {a, λ},
– there is no transition in δ(q, b, i, ∅̂) with b ∈ {a, λ}.

Furthermore, M is in strong normal form if M is in normal form, and
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– Q = Q1 ∪ Q2, Q1 ∩ Q2 = ∅, Q2 only contains λ transitions, and in every
computation, M only uses transition from Q1 before reading �, and from Q2

after reading �,
– in every computation, on counter i, at most r successful zero-tests on counter

i are possible.

Remark 13. Here, normal form enforces that on each letter of Σ ∪ {�}, there
is a transition that can be applied with a zero test if and only if there is a
transition that can be applied with a non-zero test, and vice versa (which, by
determinism would imply that there is not a no-test transition that can be
applied). If neither is true, a no-test is available. With strong normal form, as
there are only λ transitions from states in Q2, the normal form rules enforces
that for each q ∈ Q2, there is a transition in δ(q, λ, i, 0̂) if and only if there
is a transition in δ(q, λ, i, 1̂) if and only if there is no transition in δ(q, λ, i, ∅̂).
Therefore there is always at least one transition that can be applied at each
step even after the end-marker, and acceptance purely depends on whether it
eventually can hit a final state with all counters zero.

Lemma 14. Given M ∈ DTCM, a DTCM M ′ can be constructed in normal
form such that L(M) = L(M ′), R(M) = R(M ′), and runs(M) = runs(M ′).
Furthermore, a DTCM M ′′ can be constructed in strong normal form such that
L(M) = L(M ′′).

For deterministic machines, we obtain the following more nuanced situation
than Proposition 12. As part of that, we see that DTCM is equivalent to 1-
testable DTCM (although this increases the number of counters), which in turn
in more powerful than 0-testable DTCM which is equal to DPBLIND. The proof
largely uses Propositions 7, 6 and Corollary 8.

Fig. 1. In the above image, families drawn in the same cell are equal, arrows represent
strict containment, and no arrows between cells represents incomparability.

Proposition 15. The hierarchy diagram in Fig. 1 is correct.

Despite this, we conjecture that for a fixed number of counters, there is an infinite
hierarchy as r increases.



Containment Problem for Deterministic Multicounter Machine Models 85

Next, we show DTCM languages are in DLOG (can be accepted in log-space by
deterministic Turing machines), and hence can all be accepted by a polynomial
time deterministic Turing machine. For the next result, use an encoding of DTCM
whereby r is part of the description of M .

Lemma 16. Let M = (Q,Σ, δ, q0, F ) be a DTCM(k, r). Then the counters are
linearly bounded.

From the lemma, we have:

Proposition 17. DTCM (hence DPBLIND) is in DLOG.

5 Bounded Languages in DTCM and NTCM

Next, we demonstrate that despite DTCM containing languages that are not
Parikh semilinear, every bounded language in DTCM is both Ginsburg semilin-
ear and Parikh semilinear. This result is interesting on its own, and also useful as
a helper towards results in the next section. In parallel, we analyze the reachabil-
ity sets and the ‘runs’ of DTCM accepting bounded languages. The connection
between the ‘runs’ and bounded languages has been established in the litera-
ture. Vector addition system with states (VASS) have a concept called flattable,
whereby a VASS is flattable [21] if the set of all runs are included in a bounded
language (there, the reachability set and runs just need to be reachable from an
initial configuration and not within an accepting computation). It was shown
that a VASS is flattable if and only if its reachability set is definable in the
Presburger arithmetic.

First we need the following two simple properties which use completely stan-
dard constructions, similar to those in [12], and therefore proofs are omitted.

Lemma 18. For k, r ≥ 0, DTCM(k, r) is closed under intersection with regular
languages and inverse homomorphism.

Next, we need another intermediate lemma, which uses the regular periodicity
of the transitions applied by DTCM when accepting letter-bounded languages.

Lemma 19. Given Σ = {a1, . . . , an} and M = (Q,Σ, δ, q0, F ) ∈ DTCM(k, r)
such that L(M) ⊆ a∗

1 · · · a∗
n, both L(M) and runs(M) can both be accepted

by an NRBCM and are both bounded Ginsburg and Parikh semilinear, and a
representation of the semilinear sets can be effectively constructed. Moreover,
R(M) ⊆ N

k+1
0 is semilinear with an effective procedure.

From these, we can obtain the following:

Proposition 20. It is decidable, given M ∈ DTCM(k, r), whether L(M) is
bounded; and if so, we can determine words u1, . . . , un ∈ Σ+ such that L(M) ⊆
u∗
1 · · · u∗

n, and the following are true:

– L(M) ∈ NRBCM is bounded Ginsburg semilinear, φ(L(M)) = Q1 ⊆ N
n
0 is

effectively semilinear;
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– runs(M) ∈ NRBCM is bounded Ginsburg semilinear φ(runs(M)) = Q2 is
effectively semilinear;

– R(M) ⊆ N
k+1
0 is effectively semilinear;

Proof. First note that boundedness was recently shown to be decidable for
NPBLIND [2,6]. Hence, given M ∈ DTCM, we can determine whether L(M)
is bounded, and if so, we can determine words u1, . . . , un ∈ Σ+ such that
L(M) ⊆ u∗

1 · · · u∗
n. Henceforth, we assume u1, . . . , un are known. Let a1, . . . , an

be new symbols and let h be a homomorphism that maps ai to ui for i from
1 to n. As DTCM is closed under inverse homomorphism and intersection with
regular languages by Lemma 18, we can construct M ′ ∈ DTCM with

L(M ′) = h−1(L(M)) ∩ a∗
1 · · · a∗

n = {ai1
1 · · · ain

n | ui1
1 · · · uin

n ∈ L(M)} ∈ DTCM.

By Lemma 19, L(M) is bounded Ginsburg semilinear and we can effectively
determine semilinear set Q such that φ(L(M)) = Q. Then given u1, . . . , un,
φ(L(M)) = Q, and so L(M) is in NRBCM.

Similarly, it follows that runs(M) ∈ NRBCM by using M ′ with the lemma
above, and also R(M) is semilinear. ��

If one were to examine deterministic vector addition systems with states that
either operated with only λ moves, or over bounded languages, the same thing
would be true.

Interestingly it was shown in [3] that the bounded Ginsburg semilinear lan-
guages are equal to the bounded languages in both NRBCM and in DRBCM.
Since DRBCM � DTCM by Proposition 15, it follows that the bounded lan-
guages in DTCM and DRBCM coincide and are exactly the bounded Ginsburg
semilinear languages. It is also known that the bounded languages accepted by
multi-head DFAs and multi-head NFAs are also exactly the bounded Ginsburg
semilinear languages (this is even the case for 2-head DFAs) [16]. And this is also
true for two-way multi-head NPDA where the input heads turn at most a finite
number of times. Furthermore, it follows from [3] that the bounded languages in
any semilinear trio (a family closed under inverse homomorphism, λ-free homo-
morphism, and intersection with regular languages) are always a subset of the
bounded Ginsburg semilinear languages. Some other examples are given in [3] of
families of languages where the bounded languages in the family are exactly the
bounded Ginsburg semilinear languages, such as finite-index ET0L, and Turing
machines with a one-way input tape and a finite-turn worktape.

Corollary 21. The bounded languages in the following families are exactly equal
to the bounded Ginsburg semilinear languages:

– DTCM,
– NRBCM,
– DRBCM,
– multi-head NFA,
– 2-head DFA.



Containment Problem for Deterministic Multicounter Machine Models 87

An interesting question next is whether the bounded languages in NTCM are
Ginsburg or Parikh semilinear. We answer that question negatively.

Proposition 22. The following are true:

– there are bounded languages in NTCM = NPBLIND that are not Parikh semi-
linear,

– there are bounded languages in NTCM that are Parikh semilinear but not
Ginsburg semilinear,

– there are machines M in NTCM where L(M) is bounded but R(M) is not
semilinear.

Certainly though, the bounded Ginsburg semilinear languages in NTCM coin-
cide with the bounded languages in DTCM and those of the families in Corollary
21.

To note, of all the families in Corollary 21 or that are listed above it, the
only family we know of that contain languages that are not Parikh semilinear,
but where the bounded languages within are only bounded Ginsburg semilinear
are the multi-head DFA and NFA families, and now DTCM. It is known however
that even 2-head DFA has an undecidable emptiness problem [26]. From this, it
follows that it is undecidable whether a 2-head DFA accepts a bounded language
(given a 2-head DFA M , construct M ′ to accept L(M){$}Σ∗ where L(M) ⊆ Σ∗

and $ is a new symbol not in Σ, which is bounded if and only if L(M) = ∅). How-
ever, DTCM actually can decide if a given machine accepts a bounded language,
as DTCM ⊆ NPBLIND where boundedness is decidable [2,6]. Hence, DTCM is
the only known class of machines with a decidable boundedness problem (which
is needed for Proposition 20) that contains languages that are not Parikh semi-
linear, but where the bounded languages within are only Ginsburg (or Parikh)
semilinear.

We obtain the following interesting property on reachability sets for NTCM.
It follows from Proposition 20 that for every bounded DTCM, runs(M) is
bounded, and R(M) is semilinear. The following is true even for nondeterministic
machines.

Corollary 23. For each M ∈ NTCM (and NPBLIND), it is decidable if runs(M)
is bounded; and if it is, then runs(M) is Ginsburg semilinear and can be accepted
by a DRBCM, R(M) is a semilinear set, and both semilinear sets can be effectively
computed.

Proof. Given M , build Mδ ∈ DTCM. Since it is decidable whether L(Mδ)
is bounded [6], and if so, we can determine x1, . . . , xd, where xi ∈ Σ+

δ and
L(Mδ) ⊆ x∗

1 · · · x∗
d; this happens if and only if runs(M) is bounded. Using

Proposition 20 on Mδ ∈ DTCM, it then follows that R(Mδ) is semilinear,
L(Mδ) is Ginsburg semilinear, and both can be effectively constructed. It is
known that all bounded Ginsburg languages are in DRBCM [19]. Lemma 3 says
L(Mδ) = runs(M); and if R(M) were not semilinear then neither is R(Mδ).
Therefore, R(M) is semilinear. ��
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6 Complement and Containment of Deterministic
Finite-Testable Machines

In this section, we show the following interesting and surprising property, that the
complement of every DTCM language (hence DPBLIND) is a NTCM = NPBLIND
language. Note that the machine constructed in the proof makes extremely heavy
use of nondeterminism, using a nondeterministic choice at many moves of the
simulation. We also conjecture that DTCM is not closed under complement (as
we proved is the case with DPBLIND), but do not have a proof of this.

We require two technical lemmas which are used to decide properties of
counter values that can eventually reach zeros on every counter without a zero-
test. This will be helpful for constructing the complement. The first will be
used after reading the end-marker to help determine if the counter values can
eventually pass over a final state with all counters being zero, which is required
for acceptance. This proof essentially follows from the proof in the previous
section that all bounded DTCM languages are Parikh semilinear.

Lemma 24. Given a DTCM(k, r) M = (Q,Σ, δ, q0, F ) in strong normal form
with Q partitioned into Q1 and Q2, and q ∈ Q2, where t1, t2, . . . is the sequence
of transitions from q on λ transitions with only non-zero tests or no-tests. Then

Sq = {�v0 | (p0, λ,�v0) 	t1 · · · 	tl (pl, λ,�vl), p0 = q,�vl = �0, pl ∈ F},

is an effectively determinable semilinear set.

Proof. Sequence t1, t2, . . . is infinite by strong normal form. Sq can be seen to be
semilinear as follows: Create M ′ ∈ DTCM(k, r) over {a1, . . . , ak} that on input
aj1
1 · · · ajk

k �, puts ji on counter i and then after reading �, simulates M . Since
L(M ′) ⊆ a∗

1 · · · a∗
k, then ψ(L(M ′)) = Sq. The result is true by Lemma 19. ��

We also require another technical lemma, with a proof akin to Lemma 19.

Lemma 25. Given a DTCM M = (Q,Σ, δ, q0, F ) in strong normal form with
Q partitioned into Q1 and Q2, and q ∈ Q2 where t1, t2, . . . is the sequence of
transitions from q on λ-transitions with only non-zero-tests or no-tests. Then

Rq = {�v0 | (p0, λ,�v0) 	t1 · · · 	tl (pl, λ,�vl), p0 = q, (tl+1 has non-zero-test on
some counter i and �vl(i) = 0) and l is minimal where this is true},

is an effectively semilinear set.

Now we will show the main result.

Proposition 26. For all L ∈ DTCM, L ∈ NTCM = NPBLIND.

Proof. Let M = (Q,Σ, δ, q0, F ) be a DTCM(k, r) in strong normal form with Q
partitioned into Q1 and Q2. Let q ∈ Q. As in the proof of the previous lemmas,
there is a unique sequence of λ transitions that can be applied starting in state
q without a zero-test,

t1, t2, . . . (2)
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This sequence could be infinite if and only if some transition t occurs in this
list at least twice since M is deterministic. We can precompute whether this
sequence for each q ∈ Q is finite or infinite. Moreover, for q ∈ Q2 the sequence
must be infinite by strong normal form (see Remark 13), and we can compute
the semilinear representation of

Sq = {�v0 | (p0, λ,�v0) 	t1 · · · 	tl (pl, λ,�vl), p0 = q,�vl = �0, pl ∈ F, l ≥ 0}.

This set contains all counter values �v0, such that starting in state q with �v0 on
the counters, it can eventually hit some ID with 0 in all counters, and in a final
state. Also, we can precompute for each q ∈ Q2 a semilinear representation of

Rq = {�v0 | (p0, λ,�v0) 	t1 · · · 	tl (pl, λ,�vl), p0 = q, (tl+1 has a non-zero-test on
counter i and �vl(i) = 0) and l is minimal where this is true}.

It is known that given two semilinear sets P1, P2, that P1−P2 is also effectively
semilinear [9]. As N

k
0 is semilinear (where there is a period with a single 1 in one

component and zeros in the other components), therefore N
k
0 − Sq is effectively

semilinear, which we denote by Sq, and similarly for Rq producing Rq.
Now we will build a NTCM M with (2r + 3)k2 counters accepting L(M).

The machine has only a single new final state qf . We describe M as follows.
In M , it operates differently before, and after the end-marker �. Before the
end-marker in M , the only way to not accept some input w would be if the
machine crashes (a no-test transition to be applied would cause a counter to go
below 0), or it enters an infinite loop on λ-transitions (note that there is always
at least one transition that can be applied by strong normal form). Therefore
before the end-marker (including the transition that reads � but no transition
after) M simulates M faithfully using counters that we call C0

1 , . . . , C0
k , except

for the following: first, before simulating each transition t of M that decreases
some counter, i say, M instead makes a nondeterministic choice (we call this the
crashing strategy simulation):

1. M guesses that the simulation can continue, and simulates t;
2. M guesses that the transition t that decreases counter i will cause counter

i to go below 0. In this case, M subtracts all counters other than i by some
nondeterministically guessed amount greater than or equal to 0 (but does not
change counter i), and then it reads the rest of the input including �, and
switches to qf (which will then accept if and only if all counters are zero).
Note that here, M accepts in this way exactly when M would have crashed
on t because it would have decreased counter i below zero, but in M , counter
i does not decrease counter i so must be zero in order for M to accept.

Second, we want M to accept if M would have entered an infinite loop on λ
before hitting �. After simulating each transition that reads an input symbol
a ∈ Σ and ending in state q, we check if the sequence (2) is infinite which
was predetermined. If it is finite, we continue the simulation using the crashing
strategy simulation until either it reads the next letter, or there is a zero-test in
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some counter i with zero on the counter, from which M can continue to simulate.
To note, if there is a successful zero-test, taking to state q′, then there may be
additional transitions on λ, but this will happen at most r times across an entire
accepting computation for each counter.

Assume sequence (2) is infinite. Let α < β be such that tα = tβ and they
are the smallest values where this is the case and therefore the sequence is
t1, . . . , tα−1 followed by tα, . . . , tβ−1 repeated indefinitely by the determinism of
M . Considering the cycle tα, . . . , tβ−1, let �u ∈ Z

k be the sum of the counter values
changed in this sequence. If there is some position i of this vector that is negative,
then when simulating this sequence from any counter ID, it will eventually stop
either by crashing, or detecting a zero with a zero-test. Then we can continue this
simulation using the crashing strategy simulation. If all values in �u are at least 0,
then this will enter an infinite loop from a given ID if it is defined on t1, . . . , tβ−1

without a successful zero-test (if there is a successful zero-test, this cycle ends
and M continues the simulation). Thus it executes this initial sequence of length
β − 1 (detecting crashes with the crashing strategy simulation), and then after
this sequence, M is in an infinite loop. So, M instead switches to qf , reads the
rest of the input, and reduces all counters by some nondeterministically guessed
amount in order to accept.

Next, we will consider the case after reading the end-marker �. Let q(0) be
the state after reading �, and let �v0 be the counter values.

First, M guesses a number m ≥ 0 such that there are m successful tests of 0
that can occur in any computation starting from q(0) and �v0. By strong normal
form 0 ≤ m ≤ rk. This guessed m will later be verified. If guessed correctly, then
the only way for M to not accept is after the mth successful test for zero, either
M crashes, or enters an infinite loop (it does not stop by strong normal form
as there is always at least one transition that can be applied), and M does not
pass over any IDs with all counters 0 in a final state at any point after reading
the end-marker. We will build M to guess and verify m while at the same time
accepting if and only if M would not accept.

Construct M as follows: first M guesses and remembers m in the state.
Then for each j one at a time from 0 to m − 1, M makes copies of the val-
ues currently stored in counters Cj

1 , . . . , C
j
k into counters named Dj

1, . . . , D
j
k and

Cj+1
1 , . . . , Cj+1

k respectively. Then using Dj
1, . . . , D

j
k, M verifies that �vj ∈ Sq(j) ,

thereby verifying that it will not pass over a final state with all counters zero
before the next successful zero-test. To do so, it guesses a linear set in the
semilinear set, then subtracts the constant, and subtracts each period a nonde-
terministically guessed number of times, and these counters are then verified to
be 0. Then it continues to simulate M using Cj+1

1 , . . . , Cj+1
k until a successful

zero-test in some counter ending in some state q(j+1) say with counter values
�vj+1, thereby verifying that at least j + 1 zero-tests were successful. Then it
continues at the beginning of this paragraph for j + 1 until it hits m.

When in q(m) with counter values �vm, then it copies counters Cm
1 , . . . , Cm

k into
both Dm

1 , . . . , Dm
k and E1, . . . , Ek. Using E1, . . . , Ek, it verifies that �vm ∈ Rq(m)

(using the same technique as above where it guesses a linear set, subtracts the
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constant, and each period a guessed number of times), thereby verifying that
another zero-test will not be successful, and then verifies that �vm ∈ Sq(m) using
Dm

1 , . . . , Dm
k thereby verifying that it will not pass over a final state with all

counters 0. If so, then M accepts, otherwise M will never enter a final state and
cannot accept.

Next, we will verify that L(M) = L(M).
Let w ∈ L(M). There are several ways for M to not accept w. First, before

the end-marker, M could crash by trying to subtract from a 0 counter, or it could
enter an infinite loop. After the end-marker, it could not pass over all zeros in
a final state, which could be the result of crashing, or entering an infinite loop
without hitting all 0’s in a final state.

If M crashes before the end-marker, then M would accept by guessing the
exact ID before simulating the next transition causing the crash, which would
therefore have to be zero before the crash. Then M can nondeterministically
reduce all other counters by some amount, read the rest of the input and accept.
Similarly if M gets in an infinite loop on λ before the end-marker, then in M ,
after reading each letter of Σ or successfully simulating a zero-test, it then knows
the state, and if no counter decreases in the cycle part, it can detect whether
M would enter an infinite loop by executing one cycle of the loop, and so M
reads the rest of the input and accepts. After reading the end-marker resulting
in state �v0 in state q(0), say that M has 0 ≤ m successful zero-tests, where m
must be less than or equal to kr (this m exists whether or not M accepts w).
Then, M either crashes, or goes into an infinite loop (as mentioned earlier, it
cannot stop). In any case, as w is not accepted, M will not pass over a final
state with all counters being 0. If M has m successful zero-tests and does not
pass over all 0 in a final state before that, then M will guess m. Indeed, after
hitting each successful zero-test up to m, it is verified that from the current state
q(j) and counter values �vj , that it will not pass over a final state with all 0’s in
the counters by verifying that �vj ∈ Sqj , and indeed Lemma 24 implies that it
cannot pass over all 0’s in a final state. If M either crashes or enters an infinite
loop after the mth successful zero-test (without passing over 0’s in a final state
beforehand), then another successful zero-test will not occur and it will not pass
over all 0’s in a final state, and so �vm will be in both Sqm and Rqm which is
enough for M to accept w. Thus, w ∈ L(M).

Let w ∈ L(M). Before the end-marker, M could guess that the next simu-
lation transition that decreases some counter i would cause M to go below 0,
and instead nondeterministically reduce all other counters by some amount and
accept. Thus, in this situation, w ∈ L(M). The next way that M can accept is if
there is an infinite sequence of transitions that can be applied on a non-zero-test
or a no-test, and no counter value applied in a cycle can decrease, and applying
this cycle at least once without a successful zero-test, which causes M to accept;
in this scenario, M would then be in an infinite loop, and w ∈ L(M).

After the end-marker, the only way for M to accept is if it guesses a number
m ≥ 0 such that there are m successful zero-test, it can simulate M up until
that mth zero-test, for each j from 0 to m, the counter values �vj and state q(j)
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right after the jth successful zero-test all have �vj ∈ Sq(j) , which means that M
would not pass over all counters being 0 in a final state after the jth section; and
�vm ∈ Rq(m) which means that another zero-test would not be successful. Hence,
M cannot accept w, and w ∈ L(M). ��

This can be used to show the following interesting decidability property.

Theorem 27. The containment problem is decidable for DTCM (and
DPBLIND). Furthermore, the problem, “given a NTCM M1 and a DTCM M2,
is L(M1) ⊆ L(M2)?” is decidable.

Proof. Given a nondeterministic machine M1 and a deterministic machine M2,
first construct L(M2) ∈ NPBLIND = NTCM by Proposition 26. Then construct
L(M1) ∩ L(M2) ∈ NPBLIND, as NPBLIND is closed under intersection [10], and
then test emptiness [20,22], which is empty if and only if L(M1) ⊆ L(M2). ��

This result generalizes the known decidability of the containment problem
for DRBCM [17] as DRBCM � DTCM.

However, it is also known that finite-crossing 2DRBCM (these are two-way
DRBCMs where the input is finite-crossing (a machine is finite-crossing if every
accepted word has an accepting computation where there is a bound on the
number of times the boundary between each two adjacent input cells is crossed)
[17], and also 2DRBCM(1) (these are two-way DRBCM machines with a single
reversal-bounded counter) [15,18] have a decidable containment problem, which
could be more general or incomparable to DTCM. The latter family, 2DRBCM(1)
is also powerful enough to accept languages that are not Parikh semilinear like
DTCM. Then, DPBLIND and DTCM join these families as having a decidable
containment problem, and joins 2DRBCM(1) as one which contains languages
that are not Parikh semilinear. This is quite strong as even NRBCM(1, 1) has an
undecidable containment problem [1].

7 Future Directions

Below are some interesting problems that deserve further investigation. Although
we determined here that DPBLIND is not closed under complement, it is open
whether or not DTCM closed under complement. Also, is DTCM with no end-
marker weaker than with the end-marker, as was the case with DPBLIND? Next,
although we showed that DTCM coincides with 1-testable DTCM, is there a
hierarchy in terms of DTCM(k, r) for fixed k or r? Lastly, although we showed
that the complement of every DTCM is in NTCM = NPBLIND, is it also true
that the complement of every unambiguous NTCM (or unambiguous NPBLIND)
is in NTCM?
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Abstract. Parallel and distributed computing holds a promise of scal-
ing verification to hard multi-agent scenarios such as the ones involv-
ing autonomous interacting vehicles. Exploiting parallelism, however,
typically requires handcrafting solutions using knowledge of verification
algorithms, the available hardware, and the specific models. The Ray
framework made parallel programming hardware agnostic for large-scale
Python workloads in machine learning. Extending the recently developed
Verse Python library for multi-agent hybrid systems, in this paper we
show how Ray’s fork-join parallelization can help gain up to 6× speedup
in multi-agent hybrid model verification. We propose a parallel algorithm
that addresses the key bottleneck of computing the discrete transitions
and exploits concurrent construction of reachability trees, without locks,
using dynamic Ray processes. We find that the performance gains of
our new reachset and simulation algorithms increase with the availabil-
ity of larger number of cores and the nondeterminism in the model. In
one experiment with 20 agents and 399 transitions, reachability analysis
using the parallel algorithm takes 35min on a 8 core CPU, which is a
6.28× speedup over the sequential algorithm. We also present an incre-
mental verification algorithm that reuses previously cached computations
and compare its performance.

1 Introduction

The hybrid automaton framework is useful for precisely describing and simulat-
ing scenarios involving interacting autonomous vehicles and other types of intel-
ligent agents [1,4,8,9,11,15,20,23]. Parallel computing holds promise in scaling
the verification of such hybrid models to scenarios with many agents, which in
turn, multiply the number of expensive mode transitions that have to be com-
puted. Despite several recent efforts [3,7,12] that we discuss in Sect. 2, build-
ing effective parallel verification algorithms remains a difficult art. It requires
detailed knowledge of the computing hardware, the parallelism in the target
models and how parallelism could be exploited in the verification algorithm.
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Parallelization is particularly important for multi-agent hybrid scenarios. As
the agents interact, they make decisions that are modeled as discrete transitions
and the number of transitions to be computed usually blows up over the analysis
time horizon. For reachability analysis algorithms—a mainstay for verification—
the set of reachable states is computed using two functions: (a) a postCont func-
tion computes the set of states that can be reached over a fixed time, while the
agents follow a given dynamics (or mode). And, (b) a postDisc function com-
putes the change in state when an agent makes a decision or a transition. For
nondeterministic decisions (e.g., brake or steer to avoid collision), multiple post-
Disc computations have to be performed. A reachability algorithm thus builds a
tree, the reachtree, where each branch corresponds to the unique choices made
by all the relevant agents. Even with deterministic models, as a set of states is
propagated forward in reachability analysis, this set can trigger multiple transi-
tions. All of this contributes to an explosion of the reachtree, which often grows
exponentially with longer analysis horizons and larger numbers of agents.

The Ray framework from RISELab has made it easier for application devel-
opers to scale-up their data science and machine learning algorithms through
parallel computing, without having them worry about compute infrastructure
details [19,21]. Ray supports the fork-join style of parallelization with remote
function calls that run on other cores on the same machine or other machines.
This style of parallelization is hardware agnostic and is easier to use as it does
not involve the explicit use of synchronization primitives like locks.

In this paper, we propose and implement a Ray-based parallel reachability
algorithm that utilizes the fact that different branches in the reachtree can be
computed independently. This approach allows us to compute multiple branches
of the tree simultaneously, which improves analysis performance. We use the
recently developed Python Verse library [18] for multi-agent hybrid systems, as
the underlying framework within which we develop our parallelized algorithm. In
our experiments, we see that the parallel reachability algorithm can be effective
in improving performance, especially in more complex hybrid automata models
where more nondeterministic branching can occur. In an experiment involving
several vehicles in a 4-way intersection (called isect(4,20) in Sect. 5), we get a
6.28× performance boost over the original sequential version of the reachability
algorithm in Verse.

In industrial applications, verification procedures can be integrated in the
CI/CD pipelines [6,22]. For engineers to use the verification results, it has been
observed that the algorithms should run in 15–20 min and not over hours [5,
22,24]. One of the ways in which this level of performance is achieved in the
above studies is by performing incremental verification. That is, the verification
algorithm only runs on the relevant part of the codebase that changes in each
developer commit, and the algorithm reuses proofs from in previous verification
runs. Inspired by these observations, our second contribution in this paper is the
development of an incremental verification algorithm for hybrid scenarios.

This algorithm maintains a cache which contains information on previously
computed trajectories and discrete transitions. These results are indexed with
the state of the system. If the system reaches a state similar to one in the cache,
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then its result can be reused. Instead of caching the result of every timestep,
the incremental verification algorithm uses the same task unit as the parallel
algorithm, making it possible to use both algorithms at the same time and
have the best of both worlds. In the experiments we see that the incremental
verification algorithm is able to reuse some computations and significantly speed
up analysis in some situations, while in others it provides no benefits.

The rest of the paper is organized as follows: In Sect. 2 we discuss related
work on parallel verification of hybrid systems. Section 3 introduces hybrid multi-
agent scenarios and how they translate into hybrid automata. We will present the
design and the correctness of our parallel and incremental verification algorithms
in Sect. 4. Finally, in Sect. 5 we will present the experimental evaluation of these
algorithms.

2 Related Work

A number of software tools have been developed for creating, simulating, and
analyzing hybrid system models. Table 1 summarizes the actively maintained
tools and those that have incorporated some form of parallelization.

Table 1. Parallelization methods used in hybrid verification tools.

Tool name Parallelization
target

Supported
dynamics

Language/library

C2E2 [8] None nonlinear C++
SpaceEx [11] None linear Java
Flow∗ [4] None nonlinear C++
DryVR [10] None nonlinear Python
XSpeed [12] CPU & GPU linear C++
JuliaReach [3] CPU nonlinear Julia
CORA [1] None nonlinear Matlab
dreach [17] None nonlinear C++
HyLAA [2] None linear Python
PIRK [7] CPU & GPU nonlinear C++, pFaces
this paper CPU nonlinear Python, Ray

Both CPUs and GPUs can be used to parallelize computation, but they differ
in the type of tasks suitable for parallelization on each. The complex cores of
CPUs today make them good at computing complex algorithms serially, but
common desktop-grade CPUs only have 8 to 32 cores. On the other hand, GPUs
have much simpler cores but many of them, from hundreds to thousands. This
makes them efficient at performing many numerical calculations at the same
time, but unsuitable for any algorithm involving complex logic.
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JuliaReach [3] utilizes CPU-based parallelization for boosting the perfor-
mance of reachability computation. PIRK [7] uses the pFaces [16] runtime to par-
allelize reachability of continuous states using both CPUs and GPUs. XSpeed [12]
besides CPU also support using GPUs for accelerating the computation of con-
tinuous and discrete state evolutions. The Ray framework [21] was developed at
RISELab at UC Berkeley with the aim to make parallel and distributed com-
puting easier for researchers by helping them focus on application development
work, regardless of the specifics of their compute cluster. The Ray framework has
been used in several successful projects, including Uber using it for performing
large-scale deep learning training for autonomous vehicles. To the best of our
knowledge, our work is the first to parallelize hybrid system reachability analysis
with Ray.

One approach to parallelize reachability analysis algorithms is to spawn a
collection of threads, each of which explores a part of the reachable state space.
The downside of this approach is that resources, such as memory, are shared
between different threads, which in turn, implies the need for locking. We have
chosen to use Ray [21], a popular parallelization framework for Python, for imple-
menting parallel verification algorithms. The use of Ray allows us to implement
algorithms without using locks.

XSpeed is a hybrid automaton verification tool that incorporated several par-
allelization algorithms [12]. We have adapted the AsyncBFS algorithm imple-
mented in XSpeed to Verse. However, there are several differences in the designs.
First, XSpeed is only able to handle linear systems, more specifically, invertible
linear systems, while our algorithm is able to handle non-linear systems. Second,
explicit locking is no longer necessary due to Ray’s design. Last but not least,
we have chosen a different granularity of parallelization in Verse that is coarser
than the algorithm presented in XSpeed. XSpeed’s algorithm assigns one pair of
postCont and postDisc as the task for a single thread. However, we have cho-
sen to use a batch of several post operations as a task. This is mainly due to
one of Python’s limitations. The Python interpreter uses a Global Interpreter
Lock (GIL) which prevents Python code from utilizing multi-threading capabil-
ities, and multiple processes have to be used instead to achieve parallelism. In
this case, all the resources, including the input hybrid automaton and computed
reachable sets, have to be copied back and forth between different processes
and the overhead for this can be high. Therefore, we choose to use the batch
operation to reduce the number of copying needed.

3 Preliminaries: Hybrid Multi-agent Scenarios

In this paper, we are basing our algorithms on hybrid multi-agent scenarios. Each
of these scenarios contains a collection of agents interacting in an environment.
We will describe the agents and scenario in this section and in Sect. 3.2 we will
discuss how a scenario formally defines a hybrid system.
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Fig. 1. Left: A 4-way intersection scenario with 2 lanes in each direction, showing the
lane boundaries. Each lane extends very far outside of the picture. Right: Computed
reachsets with 3 agents (represented with 3 different colors) on the intersection scenario
with 3 lanes in each direction. The red car goes from north to south, the green car goes
from east to west, and the blue car goes from east to south. (Color figure online)

3.1 Agents in Hybrid Scenarios

An agent is a hybrid automaton that reacts based on the states of all agents in
the scenario. An A in a scenario with k − 1 other agents is defined by a tuple
A = 〈X,D,X0, d0, G,R, F 〉, where

1. X and D are the continuous state space and discrete mode space respectively,
X0 is the set of initial continuous states and d0 is the initial mode;

2. G and R are the guards and resets functions for the agent, which jointly define
the discrete transitions for the agent;

3. F is the flow function, which defines the evolution of the continuous states.

We will describe each of these components briefly.
X is the agent’s continuous state space. In Fig. 1 we show the environment

of an intersection example. The continuous state variables can be x, y, θ, v for
the position, heading, and speed for the vehicle agents in this example. D is the
agent’s discrete mode space. In the intersection example, some of the modes can
correspond to the internal state of the agent, while others can correspond to its
location in the environment. One possible discrete mode could be 〈SW-0, Normal〉,
where SW-0 means the agent is tracking the leftmost lane going from south to
west, and Normal means the agent is cruising along the road.

The guard G and reset R functions jointly define the discrete transitions.
For a pair of modes d, d′ ∈ D, G(d, d′) ⊆ Xk defines the condition under which
a transition from d to d′ is enabled, and R(d, d′) : Xk → X defines how the
continuous states of the agent are updated when the mode switch happens.
Both of these functions take as input the full continuous states of all the other
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k − 1 agents in the scenario. This means that the transitions of every agent can
depend on its own state that also on the observable1 state of the other agents.
For a single agent, we refer to the combination of guards and resets for that
agent as a decision logic.

The flow function F : X×D×R
≥0 → X defines the continuous time evolution

of the continuous state. For any initial condition 〈x0, d0〉 ∈ Y , F (x0, d0)(·) gives
the continuous state of the agent as a function of time. In this paper, we use F
as a black-box function (see footnote2).

3.2 Scenario to Hybrid Verification

A scenario SC is defined by a collection of k agent instances {A1...Ak}. We
assume agents have identical state spaces, i.e., ∀i, j ∈ {0, ..., k − 1},Xi =
Xj ,Di = Dj , but they can have different decision logics and different continu-
ous dynamics. We make this assumption to simplify the implementation of the
handling of the decision logic. This does not affect the expressive power of Verse
as different state variable and mode types could be unioned into a single type.

Next, we define how a scenario SC specifies a hybrid automaton H(SC). We
will use a hybrid automaton close to that in Definition 5 of [10]. As usual, the
automaton has discrete and continuous states and discrete transitions defined
by guards and resets.

Given a scenario with k agents, SC = {A1, ...Ak}, the corresponding hybrid
automaton H(SC) = 〈X,X0,D,D0,G,R,TL〉, where

1. X :=
∏

i Xi is the continuous state space. An element x ∈ X is called a state.
X0 :=

∏
i X0

i ⊆ X is the set of initial continuous states.
2. D :=

∏
i Di is the mode space. An element d ∈ D is called a mode. d0 :=∏

i d0i ⊆ D is the initial mode.
3. For a pair of modes d,d′ ∈ D, G(d,d′) ⊆ X defines the continuous states

from which a transition from d to d′ is enabled. A state x ∈ G(d,d′) iff there
exists an agent i ∈ {1, ..., k}, such that xi ∈ Gi(di,d′

i) and dj = d′
j for j �= i.

4. For a pair of modes d,d′ ∈ D, R(d,d′) : X → X defines the change of
continuous states after a transition from d to d′. For a continuous state
x ∈ X, R(d,d′)(x) = Ri(di,d′

i)(x) if x ∈ Gi(di,d′
i), otherwise = xi.

5. TL is a set of pairs 〈ξ,d〉, where the trajectory ξ : [0, T ] → X describes the
evolution of continuous states in mode d ∈ D. Given d ∈ D,x0 ∈ X, ξ should
satisfy ∀t ∈ R

≥0, ξi(t) = Fi(x0
i ,di)(t).

1 The observable state is defined by a sensor function; here we assume that the full
state is observable.

2 This design decision is relatively independent. For reachability analysis, we currently
uses black-box statistical approaches implemented in DryVR [10] and NeuReach [25].
If the simulator is available as a white-box model, such as differential equations, then
the algorithm could use model-based reachability analysis.
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In [18] it is shown that H(SC) is indeed a valid hybrid automaton for a
scenario with k agents SC = {A1, ...,Ak} provided that all agents have identical
sets of states and modes, Yi = Yj ,∀i, j ∈ {0, ..., k − 1}.

For some trajectory ξ we denote by ξ.fstate, ξ.lstate, and ξ.ltime the initial
state ξ(0), the last state ξ(T ), and ξ.ltime = T . For a sampling parameter δ > 0
and a length m, a δ-execution of a hybrid automaton H = H(SC) is a sequence
of m labeled trajectories α(x0,d0;m) := 〈ξ0,d0〉, ..., 〈ξm−1,dm−1〉, such that

(1) ξ0.fstate = x0 ∈ X0,d0 ∈ D0;
(2) ∀i ∈ {1, ...,m − 1}, ξi.lstate ∈ G(di,di+1) and

ξi+1.fstate = R(di,di+1)(ξi.lstate);
(3) ∀i ∈ {1, ...,m − 1}, ξi.ltime = δ for i �= m − 1 and

ξi.ltime ≤ δ for i = m − 1.

We define the first and last state of an execution β = α(x0,d0;m) =
〈ξ0,d0〉, ..., 〈ξm−1,dm−1〉 as β.fstate = ξ0.fstate = x0, β.lstate = ξm−1.lstate
and the first and last mode as β.fmode = d0 and β.lmode = dm−1.

3.3 Bounded Reach Sets

We will define a pair of post operators, that will be useful in the computation of
executions. Consider a scenario SC with k agents and the corresponding hybrid
automaton H(SC). For any δ > 0, continuous state x ∈ X and a pair of modes
d,d′, the discrete postd,d′ : X → X and continuous postd,δ : X → X operators
are defined as follows:

postd,d′(x) = x′ ⇐⇒ x ∈ G(d,d′) and x′ = R(d,d′)(x)

postd,δ(x) =
⋃

t∈[0,δ)

∏

i∈{1,...,k}
Fi(xi,di, t)

These operators are also lifted to sets of states in the usual way. If part of the
input states are not contained within the guard conditions, they will be ignored
in the returned result by postd,d′ .

In addition, we define postd,δ(x).lstate =
∏

i∈{1,...,k} Fi(xi,di, δ), in other
words postd,δ(x).lstate represents the frontier of the continuous states after δ-
time. We conclude this section with the definition of the bounded reachable
states of H(SC).

Definition 1. The bounded reachable states of H(SC) is

Reach(X0,d0, δ, Tmax) =
⋃

x0∈X0

α(x0,d0;m)
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where: (1) X0 ⊆ X and d0 ∈ D are the initial states of the hybrid automaton; (2)
Tmax is the time horizon; (3) α(x0,d0;m) is a valid execution; (4) m = �Tmax

δ 
is the length of execution.

4 Parallel and Incremental Verification Algorithms

In this section, we will describe the parallel and incremental algorithms for com-
puting reachable states that we have implemented in Verse. We will also discuss
their correctness. For the sake of a self-contained presentation, we will first intro-
duce several important notations and subroutines in the context of the sequential
reachability algorithm. Then in Sect. 4.2 and 4.3, we will add in optimizations
before getting to the final version of the algorithm.

4.1 Reachability Analysis

Recall that for a scenario SC and its hybrid system model H(SC), X and D
are respectively the continuous state space and discrete mode space. The build-
ing blocks for all reachability algorithms are two functions postCont(d0, δ,X0)
and postDisc(d0,d1,X0) that compute (or over-approximate) postd0,δ(X

0) and
postd0,d1(X0), respectively. Similar to Sect. 3.3, we will use postCont(d0, δ,X0).
lstate to denote the frontier of postCont(d0, δ,X0). In Verse, postCont is imple-
mented using algorithms in [10,25].

The sequential verify function implements a reachability analysis algorithm
using these post operators (Algorithm 1). This algorithm constructs an exe-
cution tree Tree = V up to depth Tmax in breadth-first order. Each node
N = 〈X,d, t, stride, children〉 ∈ V is a tuple of a set of states, a mode, the start
time, the stride, which can be computed by postCont, and children of the current
node. The root is 〈X0,d0, 0, stride, children〉 given a initial set of states X0 and
mode d0. The children field of each node provides the edge relations for the tree.
There is an edge from 〈X,d, t, stride, children〉 to 〈X′,d′, t′, stride′, children′〉 if
and only if X′ = postd,δ(postd,d′(X)).lstate and t′ = t + δ. We will use the dot
field access notation to refer to fields of a node. For example for a node N ,
N.stride and N.X refers to the stride and the set of initial states in N .

Note that one of the arguments to the verify_step function is a node with
only the X, d and t fields populated. After this function executes, it populates
the stride and children fields of the node N and returns a completed node.

To show the correctness of the verify algorithm, we will first show some
key properties of the verify_step function in Proposition 1. Throughout this
section, we fix a scenario SC and the corresponding hybrid automaton H(SC).
Let X and D be the continuous and discrete state spaces of H(SC).
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Algorithm 1
1: function verify_step(N, δ) where N.stride = ∅, N.children = ∅

2: N.stride ← postCont(N.X, N.d, δ)
3: for d′ ∈ D s.t. G(N.d,d′) ∩ N.stride.lstate �= ∅ do
4: X′ ← postDisc (N.stride.lstate, N.d, d’)
5: N.children ← N.children ∪ 〈X′,d′, N.t+ δ, ∅, ∅〉
6: return N

7: function verify(H,X0,d0, δ, Tmax)
8: queue ← [〈X0,d0, 0, ∅, ∅〉]
9: reachset ← ∅

10: while queue �= ∅ do
11: N ← queue.dequeue()
12: N ← verify_step(N, δ)
13: reachset ← reachset ∪ N.stride
14: for N ′ ∈ children s.t. N ′.t < Tmax do
15: queue.add(N ′)

16: return reachset

Proposition 1. For any set of states X0 ⊆ X, mode d0 ∈ D and time t, the
node N = verify_step(〈X0,d0, t, ∅, ∅〉, δ) satisfies the following:

postd,δ(X) ⊆ N.stride (1)

∀N ′ ∈ N.children,G(N.d, N ′.d) ∩ N.stride.lstate �= ∅ (2)
∀N ′ ∈ N.children,postN.d,N ′.d(postN.d,δ(N.X).lstate) ⊆ N ′.X. (3)

Proof. For (1), from line 2 in Algorithm 1, N.stride = postCont(N.X, N.d, δ).
As we assumed about postCont in the start of Sect. 4.1, postN.d,δ(N.X) ⊆
N.stride and postN.d,δ(N.X).lstate ⊆ N.stride.lstate.

For (2), from the loop condition at line 3, for every children N ′ ∈ N.children:
G(d0, N ′.d) ∩ N.stride.lstate �= ∅

For (3), for every children N ′ ∈ N.children:

postN.d,N ′.d(postN.d,δ(N.X).lstate) ⊆ postN.d,N ′.d(N.stride.lstate)

⊆ postDisc(N.stride.lstate, N.d, N ′.d)
= N ′.X

��
Proposition 2. Given initial states X0 ⊆ X and d0 ∈ D, time step δ and time
horizon Tmax,

Reach(X0,d0, δ, Tmax) ⊆ verify(X0,d0, δ, Tmax).
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Proof. Let m = �Tmax
δ  be the height of the reachset tree, and ε = Tmax −

(m − 1)× δ. According to the Definition 1 of bounded reachable states, we have
Reach(X0,d0, δ, (m − 1) × δ + ε) =

⋃
x0∈X0 α(x0,d0;m).

We will prove by induction on the height of the reachset tree
Reach(X0,d0, δ, (m − 1) × δ + ε). For the base case, Reach(X0,d0, δ, ε) ⊆
verify(X0,d0, δ, δ). Let N = 〈X0,d0, 0, ∅, ∅〉, then it follows immedi-
ately that Reach(X0,d0, δ, ε) = postd0,ε(X

0) ⊆ postCont(X0,d0, δ) =
verify_step(N, δ).stride = verify(X0,d0, δ, δ).

Induction hypothesis: Given Reach(X0,d0, δ, k × δ + ε) ⊆ verify(X0,d0, δ, (1 +
k) × δ) where k ∈ [1,m − 1), show Reach(X0,d0, δ, (k + 1) × δ + ε) ⊆
verify(X0,d0, δ, (k + 2) × δ).

Induction step:

verify(X0,d0, δ, (k + 2) × δ) = verify(X0,d0, δ, (k + 1) × δ)

∪
⋃

Xk,dk

verify_step(Xk,dk, δ).stride

Reach(X0,d0, δ, (k + 1) × δ + ε) =
⋃

x0∈X0

α(x0,d0; k + 1)

=
⋃

x0∈X0

α(x0,d0; k) ∪
⋃

x′,d′
α(x′,d′; 1)

where d′ ∈ D s.t. α(x0,d0; k).lstate ∈ G(α(x0,d0; k).lmode,d′) and x′ =
R(α(x0,d0; k).lmode,d′)(α(x0,d0; k).lstate).

Xk and dk come from the nodes in the queue. Since the verify algo-
rithm uses BFS, these nodes will be all the children from the last layer
in verify(X0,d0, δ, (k + 1) × δ), thus

⋃
Xk,dk verify_step(Xk,dk, δ) ⊇

⋃
x′,d′ α(x′,d′, ε).

Combining this with the induction hypothesis:

Reach(X0,d0, δ, k×δ+ε) =
⋃

x0∈X0

α(x0,d0, k+1) ⊆ verify(X0,d0, δ, (1+k)×δ)

we get Reach(X0,d0, δ, (k + 1) × δ + ε) ⊆ verify(X0,d0, δ, (k + 2) × δ), which
completes the proof. ��

4.2 Parallel Reachability with Ray

In this section, we show how we parallelize the verification algorithm shown
above using Ray [21]. Ray uses remote functions as an abstraction for performing
parallelization. Remote functions in Ray can be called on one process but will
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be executed in another process. These processes can be on different cores of
the same machine, or cores on other network-connected machines. Throughout
this paper, we will assume that the remote functions execute on other cores
within the same machine. However, we note that thanks to Ray’s abstraction,
our implementation can as easily take advantage of networked clusters.

For a Python function with arguments f(args), the function f can be turned
into a remote function by decorating the definition of the function with the
ray.remote decorator. Such remote functions can be called via f.remote(args).
In order to simplify the pseudocode, we will simply use a remote keyword
instead.

In Ray, two processes communicate through a distributed database. For a
remote function, both the arguments and the return value will be stored in the
database. From the caller’s side, when a remote function is called, the arguments
to the function will be sent automatically to the database, and a reference to
the return value of the function is returned immediately. For the remote process,
the arguments are first fetched from the database, then the function will run,
and lastly, the return value is sent back to the database. The caller can poll and
fetch the value back by using the ray.wait() function. For an array of value
references refs, ray.wait(refs) blocks until one of the references in refs is
available, fetches and returns that value along with the rest of the references.

The basic parallel algorithm is shown in Algorithm 2. The verify_parallel
algorithm uses a queue to explore the tree just like verify, however there are
two branches in the loop. One of them pops nodes from the queue and calls
verify_step on the node as a remote function, while the other waits for the
results to come back, processes the result, and adds new nodes to the queue.
The algorithm prioritizes sending out computations, which means there can be
multiple remote computations inflight at the same time, increasing parallelism
and thus speedup. As more branching in the scenario benefits the algorithm
more, we can use the number of leaves in the reachtree as a simple metric to
measure this potential benefit. In other words, the more leaves there are in a sce-
nario’s reachtree, the more speedup we expect to see. Note that as several nodes
can happen in parallel, they may be computed in a different order compared to
verify.

Proposition 3. For any set of states X0 ⊆ X and mode d0 ∈ D,

verify_parallel(X0,d0, δ, Tmax) = verify(X0,d0, δ, Tmax)

Proof. To prove the equality, we can show that the set of calls to verify_step in
verify and verify_parallel are the same. In verify, verify_step is called
at line 12; in verify_parallel, verify_step is called at line 8 as a remote
function call. We assume that remote calls in Ray will always return and that
given the same arguments, remote function calls to verify_step will return
the same values as non-remote calls. We can then compare the tree generated
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Algorithm 2
1: function verify_parallel(H,X0,d0, δ, Tmax)
2: queue ← [〈X0,d0, 0, ∅, ∅〉]
3: refs ← ∅

4: reachset ← ∅

5: while queue �= ∅ ∨ refs �= ∅ do
6: if queue �= ∅ then
7: N ← queue.dequeue()
8: refs.add(remote verify_step (N, δ))
9: else � wait only when queue is empty

10: 〈N, refs〉 ← ray.wait(refs)
11: reachset ← reachset ∪ N.stride
12: for N ′ ∈ N.children do
13: if N ′.t < Tmax then
14: queue.add(N ′)

15: return reachset

by both verify and verify_parallel and prove by induction on the height
of the tree currently computed. Note that due to the nondeterministic ordering
of node traversal, the verify_parallel can begin computing nodes that have
k + 1 depth before finishing nodes at depth k.

Base Case: Given a set of initial states X0 ⊆ X and initial mode d0 ⊆ D, we
want to show that

verify(X0,d0, δ, 1 × δ) = verify_parallel(X0,d0, δ, 1 × δ)

and the children of both trees are the same.
Let N = verify_step(〈X0,d0, 0, ∅, ∅〉, δ), then:

verify(X0,d0, δ, 1 × δ) = N.stride

= verify_parallel(X0,d0, δ, 1 × δ)

Thus, the two trees are equal. The children for both are N.children, and they
are equal.

Induction Step: Given verify(X0,d0, δ, k × δ) = verify_parallel(X0,d0, δ,
k × δ) where k ∈ [1,m), and their children are equal, show

verify(X0,d0, δ, (k + 1) × δ) = verify_parallel(X0,d0, δ, (k + 1) × δ)

Since the children of all nodes at depth k for verify and verify_parallel
are the same, they must generate the same set of nodes at depth k + 1, which
gives the same set of reachable states. ��
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Note that in practice, computing verify_step is cheap. Calling small remote
functions like this will incur a lot of overhead due to the cost of communica-
tion and serialization/deserialization of data. When implementing the algorithm
verify_parallel, we have chosen to batch together these computations, so that
each remote function call computes as many timesteps as possible until a discrete
mode transition is hit.

4.3 Incremental Verification

In this section, we show how we implement an incremental verification algorithm
on top of verify_parallel.

Consider two hybrid automata Hi = H(SCi), i ∈ {1, 2} that only differ in the
discrete transitions. That is, (1) X2 = X1, (2) D2 = D1, and (3) TL2 = TL1,
while the initial conditions, the guards, and the resets are slightly different3. SC1

and SC2 have the same sensors, maps, and agent flow functions. Let Tree1 =
V1 and Tree2 = V2 be the execution trees for H1 and H2. Our idea of incremen-
tal verification is to reuse some of the computations in constructing the tree for
H1 in computing the same for H2.

Recall that in verify, expanding each vertex N1 of Tree1 with a possible
mode involves a guard check, a computation of postd,δ and postd,d′ . The algo-
rithm verify_incremental avoids performing these computations while con-
structing Tree2 by reusing those computations from Tree1, if possible. To this
end, verify_incremental uses a cache (C) that stores the result of a batch
of verify_step. This is the same as that in Sect. 4.2, which simply batches
together all the adjacent verify_step that have the same discrete modes. We’ll
call this batch operation verify_batch. The pseudocode for verify_batch is
described in Algorithm 3. Formally, here are the properties of verify_batch:

Proposition 4. For any set of states X0 ⊆ X, mode d0 ∈ D, time step δ and
time horizon Tmax, let 〈reachset, branches, N0〉 = verify_batch(〈X0,d0, 0, ∅,
∅〉, δ, Tmax). Then for the ith node explored in verify_batch, we have:

N i ∈ verify_step(N i−1, δ).children

N i.d = N i−1.d

we further have:

branches =
⋃

i∈[0,k)

{N ′ | N ′ ∈ N i.children s.t. N ′.d �= N i.d}

reachset =
⋃

i∈[0,k)

N i.stride

N0 = 〈X0,d0, 0, ∅, ∅〉;∀N ∈ branches, N.d �= d0; k ≤ �Tmax

δ


where k is the number of nodes in the batch.
3 Note that in this section subscripts index different hybrid automata, instead of agents

within the same automaton (as we did in Sects. 3 and 3.2).
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For verify_batch(X0,d0, δ, Tmax), the cache C will be indexed by 〈X0,
d0〉, and the value will be the same as that of verify_batch. Unlike normal
caches, a cache hit can happen for C when the incoming key 〈X′,d′〉 satisfies
X′ ⊆ X0 ∧ d′ = d0.

The incremental verification algorithm is presented in Algorithm 3. The func-
tion verify_incremental checks C before every post computation to retrieve
and reuse computations when possible. The cache can save information from any
number of previous executions, so verify_incremental can be even more effi-
cient than verify_parallel when running many consecutive verification runs.

The correctness property of verify_incremental is the same as that of
algorithm verify_parallel in Sect. 4.2, i.e. the reachset computed by algo-
rithm verify_incremental for SC2, when given a cache populated with data
from SC1, is an overapproximation of the reachset computed by verify. More
formally:

Proposition 5. Given scenarios SC1 and SC2 with the same sensors,
map, and agent flow functions, for cache C = ∅, any initial condi-
tions X0

1,X
0
2 ⊆ X, d0

1,d
0
2 ∈ D, timestep δ and time horizon Tmax, after

verify_incremental(H1,X0
1,d

0
1, δ, Tmax, C) is executed,

verify(H2,X0
2,d

0
2, δ, Tmax) ⊆ verify_incremental(H2,X0

2,d
0
2, δ, Tmax, C)

Proof. For any initial conditions X0
1,X

0
2 ⊆ X, d0 ∈ D, timestep δ, time horizon

Tmax and time t, let:

〈reachset1, branches1〉 = verify_batch(X0
1,d

0, δ, Tmax, t)

〈reachset2, branches2〉 = verify_batch(X0
2,d

0, δ, Tmax, t)

Given that verify_batch simply batches together postCont and postDisc
operations, X0

1 ⊆ X0
2 =⇒ reachset1 ⊆ reachset2. As the cache C just stores

the result of verify_batch, X0
1 ⊆ X0

2 =⇒ reachset1 ⊆ C(X0
2,d

0). That
is, verify_incremental(H2,X0

2,d
0, δ, Tmax, ∅) ⊆ verify_incremental(H2,

X0
2,d

0, δ, Tmax, C). That is, the reachset returned from a verify_incremental
with caches would be an overapproximation of a version that doesn’t have caches.

From Proposition 4, a verify_batch call can simply be decomposed into mul-
tiple verify_step calls. With the two conditions stated above, the algorithm
for verify_incremental can be simplified to be the same as the algorithm of
verify_parallel, which we have proven to be equivalent to verify. Thus, it fol-
lows that verify(H2,X0

2, d
0
2, δ, Tmax) = verify_parallel(H2,X0

2,d
0
2, δ, Tmax)

⊆ verify_incremental(H2,X0
2, d

0
2, δ, Tmax). ��
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Algorithm 3
1: function verify_batch(N0, δ, Tmax) where N0.stride = ∅, N0.children = ∅

2: branches ← ∅

3: reachset ← ∅

4: N ← N0

5: while t < Tmax do
6: N ← verify_step(N, δ)
7: reachset ← reachset ∪ N.stride
8: if ∃N ′ ∈ N.children s.t. N ′.d = N.d then
9: branches ← branches ∪ (N.children \ N ′)

10: N ← N ′

11: t ← t+ δ
12: else
13: return reachset, branches ∪ N.children, N0

14: function verify_incremental(H,X0,d0, δ, Tmax, C)
15: queue ← [〈X0,d0, 0, ∅, ∅〉]
16: refs ← []
17: reachset ← ∅

18: while queue �= ∅ ∨ refs �= ∅ do
19: if queue �= ∅ then
20: N ← queue.dequeue()
21: if C(N.X, N.d) �= ∅ then � queries the cache
22: 〈subreachset, branches〉 ← C(N.X, N.d)
23: reachset ← reachset ∪ subreachset
24: for N ′ ∈ branches s.t. N ′.t < Tmax do
25: queue.add(N ′)

26: else
27: refs.add(remote verify_batch (N, δ, Tmax))
28: else � wait only when queue is empty
29: 〈〈subreachset, branches, N〉, refs〉 ← ray.wait(refs)
30: C(N.X, N.d) ← 〈subreachset, branches〉 � update the cache with results
31: reachset ← reachset ∪ subreachset
32: for N ′ ∈ branches s.t. N ′.t < Tmax do
33: queue.add(N ′)

34: return reachset

5 Experimental Evaluation

We have implemented parallel and incremental verification algorithms in the
Verse library [18], and in this section we will evaluate their performance against
Verse’s original sequential algorithm. Our goal is to glean qualitative lessons.
We are not comparing against parallel tools mentioned in Sect. 2 because (a)
it is not straightforward to implement multi-agent models in these other tools
and (b) it is hard to draw fair conclusions comparing running time and memory
usage across C++ and Python tools.

We perform these experiments on scenarios described in Table 2. Besides the
intersection scenario, we also adopt some examples from [18]. Types of agents
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include: (1) 4-d vehicle with bicycle dynamics and Stanley controller [13], and (2)
6-d drone with a NN-controller [14]. Some of the agents have collision avoidance
logics (CA) for switching tracks. All experiments were performed on a desktop
PC with 8 core (16 thread) Intel Xeon E5-2630.

Table 2. Name and description of scenarios.

Scenario Description

isect(l,n) 4-way intersection of Fig. 1 with l lanes and n vehicles, all
having CA

drone 3 straight parallel tracks in 3D space with 3 drones, one
having CA

drone8 3 Figure-8 tracks in 3D space with 2 drones, both having CA
curve 3-lane curved road with 3 vehicles, one having CA
wide(n,a) 5-lane straight road with n vehicles, a of which having CA
race 3-lane circular race track with 3 vehicles, one having CA

5.1 Parallel Reachability Speeds up with Cores and Branching

Table 3 shows the experimental results on running verify_parallel on these
scenarios on using 2, 4, and 8 CPU cores. The data is sorted according to the
number of leaves of the reachtree, which we use as a metric to measure the
potential parallelism in a scenario, as we discussed in Sect. 4.2.

Table 3. Runtime for verifying the examples in Table 2. Columns are: name of the
scenario (name), number of timesteps simulated (length), number of mode transitions
(#Tr), the width of the execution tree (#leaves), the run time of the verify (serial),
the run time of verify_parallel using 2, 4, or 8 cores and the corresponding speedup
in parentheses. All running times are in seconds.

name length #Tr #leaves serial 2 cores 4 cores 8 cores

curve 400 4 2 50 56 (0.89) 55 (0.91) 56 (0.89)
drone 450 7 2 29 37 (0.78) 30 (0.97) 29 (1)
race 600 7 2 220 162 (1.36) 156 (1.41) 157 (1.4)
drone8 400 8 4 31 36 (0.86) 36 (0.86) 37 (0.84)
wide(7,2) 1600 37 7 188 135 (1.39) 136 (1.38) 137 (1.37)
isect(4,9) 1000 37 11 342 349 (0.98) 190 (1.8) 130 (2.63)
isect(4,10) 800 59 15 587 606 (0.97) 318 (1.85) 197 (2.98)
wide(8,3) 600 105 20 311 313 (0.99) 172 (1.81) 104 (2.99)
isect(4,15) 1000 102 37 2115 2085 (1.01) 1081 (1.96) 653 (3.24)
isect(4,20) 1060 399 140 13100 8416 (1.56) 4477 (2.93) 2085 (6.28)
isect(4,12) 800 589 225 7136 4445 (1.65) 2214 (3.3) 1302 (5.62)
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First, we observe that for scenarios with more than 37 transitions, paral-
lelization speeds up reachability analysis with at least 4 cores. Secondly, the
number of leaves in a scenario roughly correlates to the speedup gained. This is
illustrated in the experiments as we move down the table, we can see that the
speedup ramp-up. Lastly, for each scenario the speedup generally increases with
the number of cores. Maximum gains are made with the isect(4,20) scenario,
which has a wide execution tree with many transitions. The verify_parallel
algorithm reduces the running time from over 3 and a half hours to a little over
30min. This performance gain can make a tool usable, where previously it was
not [22,24].

Because of the overhead of parallelism, some scenarios can be slower while
using verify_parallel than verify. The overhead mainly comes from 2 areas:
process creation and communication costs. As the number of parallel tasks
increase, Ray creates more processes dynamically to handle those work, and the
time caused by creating and initializing those processes can be larger than the
benefit provided by parallelism. In addition, it takes time to send the inputs to
and receive the results from the remote processes. This overhead gets larger with
more agents in the scenario, larger state and/or mode spaces, longer time hori-
zon, and more complex decision logics. However, from our results, this overhead
does not overshadow the savings the verify_parallel algorithm introduce.

5.2 Incremental Verification Can Speed up Reachability Across
Model Updates

To test our incremental verification algorithm, we apply it to several scenar-
ios undergoing changes and edits. In this section we will report on the drone8,
wide(8,3), and isect(4,15) scenarios. We will modify the initial condition or
behavior of agents in the scenario. We measure the similarity across the mod-
els using the earliest time (Tchange) when the automaton’s behavior changes:
for two identical scenarios Tchange would be ∞, when the initial conditions
of one of the agents is changed then Tchange = 0%, and when the decision
logic code of one of the agents is changed Tchange indicates the time where
the change affects runtime behavior. We run each of the experiments with
the verify, serialized verify_incremental, verify_parallel, and parallelized
verify_incremental algorithms. The results are shown in Table 4.

From the table we can observe that when compared to the non-incremental
versions of the algorithms, the incremental versions provide more speedup when
the behavior of the automata are closer. We can see from the table that as Tchange
goes higher, the speedups provided by incremental verification trend upwards.
In the ideal case, where the same scenario is verified again, the verification time
is reduced from 575 s to 20 s for isect(4,15). For a case when the scenario is
changed, the maximum gain we observe is from 404 s to 82 s for isect(4,15).

Secondly, we observe that combination of incremental verification and paral-
lelization can sometimes give us more savings. For example, in row 5 of Table 4,
we can observe that the parallelized verify_incremental algorithm, which
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Table 4. Runtime for verifying the examples in Table 2. Columns are: name of the
scenario (name), number of timesteps simulated (T ), single or repeated runs (single),
number of mode transitions (#Tr), the width of the execution tree (#leaves), the
time for the first change in automaton behavior (Tchange), the run time of verify
(ser), the run time and hit rate of verify_incremental without parallelization (inc
ser, hit rate), the run time of verify_parallel (par), the run time and hit rate of
verify_incremental with parallelization (inc par, hit rate). The unit of run time is in
seconds.

name T #Tr #leaves Tchange ser inc ser hit rate par inc par hit rate

drone 450 9 3 75% 53 29 90% 51 30 90%
wide(8,3) 600 51 10 15.67% 173 20 100% 80 51 96.74%
wide(8,3) 600 105 20 ∞ 335 17 100% 104 16 100%
wide(8,3) 600 49 8 0% 182 129 95.31% 72 53 87.95%
isect(4,15) 400 5 2 0% 116 98 59.57% 100 83 29.79%
isect(4,15) 400 37 12 ∞ 575 36 100% 189 20 100%
isect(4,15) 400 24 9 82.25% 404 35 100% 159 82 39.7%

takes 83 s to finish, out performs both the serialized verify_incremental algo-
rithm and the verify_parallel algorithm alone, which takes 98 s and 100 s
respectively. However, in some situations the serial verify_incremental algo-
rithm can be much faster than the parallel verify_incremental algorithm. This
typically happened when the number of leaves is small as shown in row 7 of the
table. The situation is caused by the overhead introduced from parallelization.
Even though the cache provides run time savings, the trajectories will need to
be copied to the remote processes when they are in the cache, which causes more
overhead.

6 Conclusions and Future Directions

In this paper, we presented parallel and incremental verification algorithms for
hybrid multi-agent scenarios using Ray and Verse. For large scenarios with more
than 10 agents, and large number of branches, the speedup can be 3 or 6 times.
The incremental verification algorithm verify_incremental makes it faster to
iterate on models. When the states and decision logics do not change much, the
algorithm can give significant speedups.

This work suggests several directions for future research. Currently the algo-
rithms parallelize the computation on a per-branch basis. Agent-level paralleliza-
tion could be useful for large scenarios with clusters of non-interacting agents.
Being able to divide up tasks at a finer scale would mean more opportuni-
ties for parallelization, but we would also need to be careful of too small task
sizes and develop batching algorithms that both take advantage of the paral-
lelization and minimizing the overhead induced. In incremental verification, the
algorithm currently redoes the computation as soon as any of the agents reaches
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states or exhibits behaviors never seen before. This is fairly evident from the
experiments, where the caching is not able to provide runtime improvements
when the initial conditions change. Finer-grained analysis of agent interactions
can be done so that changes in agents’ states or behaviors will only trigger
recomputation of agents that will be affected. Moreover, in some situations the
verify_incremental algorithm can become slower due to enabling paralleliza-
tion. We can improve this by avoiding using remote functions when the result is
already in the cache.
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Abstract. Since the 1970s with the work of McNaughton, Papert and
Schützenberger [21,23], a regular language is known to be definable in
the first-order logic if and only if its syntactic monoid is aperiodic. This
algebraic characterisation of a fundamental logical fragment has been
extended in the quantitative case by Droste and Gastin [10], dealing
with polynomially ambiguous weighted automata and a restricted frag-
ment of weighted first-order logic. In the quantitative setting, the full
weighted first-order logic (without the restriction that Droste and Gastin
use, about the quantifier alternation) is more powerful than weighted
automata, and extensions of the automata with two-way navigation, and
pebbles or nested capabilities have been introduced to deal with it [5,19].
In this work, we characterise the fragment of these extended weighted
automata that recognise exactly the full weighted first-order logic, under
the condition that automata are polynomially ambiguous.
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1 Introduction

Early works by McNaughton, Papert and Schützenberger [21,23] have enabled
an automata-theoretic characterisation of first-order logic over finite words: a
regular language is definable in the first-order logic if and only if its syntactic
monoid is aperiodic. From the minimal automaton recognising the language, we
can compute its syntactic monoid and check aperiodicity to conclude. Moreover,
from the aperiodic minimal automaton, we can deduce a first-order formula
equivalent to it.

More recently, Droste and Gastin [10] have extended this result to deal with
quantitative extensions of the first-order logic and automata. These quantitative
extensions find their origin in the works of Schützenberger [22] that investigated
weighted automata, and their expressive power in terms of (formal power) series
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that are mappings from finite words to weights of a semiring. Weighted automata
were originally thought as finite state automata where each transition (as well
as initial and final states) are equipped with weights of a semiring. Along a
run, weights are combined by the multiplication of the semiring, while non-
determinism is resolved by considering the sum of the weights of all accepting
runs over a word. By changing the semiring we consider, weights can model
cost, rewards, energy or probabilities in a unified way: see [12]. Many extensions
have then been considered, by allowing for more structures than words (infinite
words [15], trees [16], nested words [3,14]) and more weights than semirings
(valuation monoids [13], multioperator monoids [18]).

In order to describe the series describable by weighted automata in a more
readable way, it might be useful to have more high-level ways of description, like
weighted logics based on monadic second order (MSO) features, introduced by
Droste and Gastin [9]. Based on the seminal result by Büchi, Elgot, and Trakht-
enbrot [6,17,24], they have explored a weighted extension of MSO logic on finite
words and semirings: the semantics of disjunction and existential quantification
are based on the sum of the semiring, while the ones of conjunction and uni-
versal quantification are based on the product. The appropriate restriction on
the logic was found in order to obtain the exact same expressivity as weighted
automata: a restriction is needed for combinatorial reasons, certain operators
of the logic being able to generate series growing too quickly with respect to
the length of the input word. In particular, universal quantifications must be
used only once over very basic formulas, and conjunction is not allowed. Once
again, this seminal result relating weighted automata and weighted logics has
been extended in many ways: on trees [16], on nested words [3,14], with weights
valuation monoids [13], to cite only a very few.

In [20], the semantics of weighted automata and weighted MSO logic has
been revisited in a uniform way allowing one to obtain many previous results
in a simplified way. First, an abstract semantics is defined, mapping each word
to a multiset of sequences of weights (one sequence per accepting run): this
abstract semantics does not depend on the weight structure, since no actual
computation is made. The abstract semantics can then be aggregated into a
single output weight by an ad-hoc operator: we call this the concrete semantics.
Methodologically speaking, showing that two models have equal abstract seman-
tics is sufficient (but not necessary in general) to show that they have equivalent
concrete semantics.

In [10], Droste and Gastin consider the first-order fragment WFO of the
weighted MSO logic, with the same kind of restrictions as the one explored for
weighted MSO logic to recover the same expressive power as weighted automata.
Under this restriction, they show that the logic WFO is expressively equivalent
to weighted automata that are aperiodic (defined similarly as in the unweighted
setting) and polynomially ambiguous. Moreover, the proof is constructive and
works for the abstract semantics (and thus for any concrete semantics).

In order to express more properties than the restricted logics (WFO and
weighted MSO), weighted automata with two-way navigation and pebbles or
nested capabilities have been introduced [5,19], with an equivalent logic based on
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an extension of WFO with some limited transitive closure operators. As noted in
[10] by Droste and Gastin, this is thus natural to ask what the models of two-way
nested/pebble weighted automata are that recognise exactly the full WFO logic.
In this work, we answer this question: the series recognised by WFO logic can be
obtained from two-way nested/pebble weighted automata that are aperiodic and
polynomially unambiguous. This generalises the results of [10] only working for
a small fragment of WFO, and one-way (non-nested) weighted automata, but the
condition has a similar flavour. The aperiodicity condition on two-way automata
models has been explored in [7]. Our proof is constructive and goes through a
special case of two-way automata that are called sweeping where every change
of direction happens on the border of the input word (and not in the middle).
This allows us to more easily reuse the work by Droste and Gastin, which only
works for one-way models.

After defining the weighted first-order logic we study in Sect. 2, and the
nested two-way weighted automata in Sect. 3, we prove the equivalence between
the various formalisms in subsequent sections: the translation from the logic to
sweeping nested weighted automata is done in Sect. 4; sweeping nested weighted
automata are translated back in the logic in Sect. 5. The most difficult part of
the proof is the translation from two-way nested weighted automata to sweeping
nested weighted automata: this does not hold if we do not have nesting mech-
anisms, and this translation thus raises the number of nesting necessary in the
model.

2 Weighted First-Order Logic

In this section, we introduce the weighted first-order logic whose power we will
characterise in the following with respect to some automata model. The logic
used in [10] is a fragment of this logic where nesting of operations is limited to
be as expressive as weighted automata.

Definition 1. For a set K of weights and an alphabet A, we let WFO(K, A) be
the logic defined by the following grammar:

ϕ ::= � | Pa(x) | x ≤ y | ¬ϕ | ϕ ∧ ϕ | ∀xϕ (FO)

Φ ::= 0 | 1 | k | ϕ?Φ : Φ | Φ + Φ | Φ · Φ | ΣxΦ | ΠxΦ | Π−1
x Φ (WFO)

where a ∈ A, k ∈ K and x, y are first order variables.

Formulas ϕ stand for the classical (Boolean) first-order logic over words
on the alphabet A. Their semantics is defined classically over words u =
u1u2 · · · un ∈ A∗ and valuations σ : V → {1, 2, . . . , n} of the free variables V
of the formula, letting u, σ |= ϕ when the formula is satisfied by the word and
the valuation.

Formulas Φ are weighted formulas that intuitively associate a weight with
each word and valuation of free variables. As described in [19], the semantics is
defined in two steps: first we give an abstract semantics associating with each
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word and valuation a multiset of sequences of weights in K; then we may define
a concrete semantics by describing how to fuse the multiset of sequences into
a single weight. This differs from the classical semantics that directly compute
the concrete semantics, but for our later proofs the other equivalent definition
is much easier to manipulate.

Let u ∈ A∗ be a word and σ : V → {1, 2, . . . , n} be a valuation where V is a set
of variables. The abstract semantics of a WFO formula φ, with V as free variables,
is denoted by {|φ|}V(u, σ): it is a multiset of sequences of weights, i.e. a series
of N〈K∗〉 mapping each sequence to its multiplicity in the multiset. As usual,
we denote multisets via the symbols {{.}}. The disjoint union of two multisets is
obtained as the sum of the associated series, it is denoted by S1 ∪ S2. The product
of two multisets is obtained as the Cauchy product of the associated series, it
is denoted by S1 · S2 = {{s1s2 | s1 ∈ S1, s2 ∈ S2}}. This defines a structure of
semiring on multisets where neutral elements are the empty multiset (i.e. the
series mapping all sequences to 0), denoted by ∅, and the singleton {{ε}} that
only contains the empty sequence. The constants 0 and 1 of the logic represent
those constants.

The semantics of WFO is defined inductively as follows:

{|0|}V(u, σ) = ∅ {|1|}V(u, σ) = {{ε}} {|k|}V(u, σ) = {{k}}

{|ϕ?Φ1 : Φ2|}V(u, σ) =

{
{|Φ1|}V(u, σ) if u, σ |= ϕ

{|Φ2|}V(u, σ) otherwise

{|Φ1 + Φ2|}V(u, σ) = {|Φ1|}V(u, σ) ∪ {|Φ2|}V(u, σ)
{|Φ1 · Φ2|}V(u, σ) = {|Φ1|}V(u, σ) · {|Φ2|}V(u, σ)

{|ΣxΦ|}V(u, σ) =
⋃

i∈{1,2,...,|u|}
{|Φ|}V∪{x}(u, σ[x �→ i])

{|ΠxΦ|}V(u, σ) = {|Φ|}V∪{x}(u, σ[x �→ 1]) · · · {|Φ|}V∪{x}(u, σ[x �→ |u|])
{|Π−1

x Φ|}V(u, σ) = {|Φ|}V∪{x}(u, σ[x �→ |u|]) · · · {|Φ|}V∪{x}(u, σ[x �→ 1])

For sentences (formulas without free variables), we remove the set V of vari-
ables as well as the valuation σ from the notation. Given a series f ∈ (N〈K∗〉)〈A∗〉
we say that f is WFO-definable if there exists a sentence Φf such that for all
words u ∈ A∗, f(u) = {|Φf |}(u).

We also define the 1-way fragments WFO→ and WFO← by discarding binary
product (·), as well as Π−1

x and Πx, respectively.
The fragment rWFO→ of logic studied in [10] is obtained by the following

grammar:

Ψ ::= k | ϕ?Ψ : Ψ (step-wFO)
Φ ::= 0 | ϕ?Φ : Φ | Φ + Φ | ΣxΦ | ΠxΨ (rWFO→)

where k ∈ K, ϕ is a formula of FO, and x is a first order variable.
Notice that the abstract semantics of a formula from step-wFO maps every

word to a singleton multiset. Since 1 is removed, as well as the binary product,
and Πx is restricted to step-wFO formulas, it is easy to check inductively that the
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abstract semantics of a formula from rWFO→ maps every word u to a multiset
of sequences of weights all of the length of u.

To interpret the abstract semantics in terms of a single quantity, we more-
over provide an aggregation operator aggr : N〈K∗〉 → S to a set S of weights. The
concrete semantics of a formula Φ is then obtained by applying aggr over the
multiset obtained via the abstract semantics. The set S can be equipped of var-
ious algebraic structures, like semirings or valuation monoids [11], as explained
in [19]. In the case of a semiring, we for instance let aggr(f) be the sum over all
sequences k1k2 · · · kn of f(k1k2 · · · kn) × k1 × k2 × · · · × kn.

Example 1. As a first example, consider as a set of weights the languages over
the alphabet A. It is naturally equipped with a structure of semiring, where the
addition is the union of languages and the multiplication is the concatenation of
languages. This semiring is non-commutative which validates our introduction
of two product quantification operators, one from left to right and one from right
to left. For instance, suppose we want to compute the mapping f : A∗ → 2A∗

that associates to a word u all the words of the form w̃w̃ with w all factors of u
(i.e. consecutive letters taken inside u), where w̃ denotes the mirror image of the
word w. For instance, f(abb) = {aa, bb, baba, bbbb, bbabba}. We can describe this
function via a formula of WFO as follows. We suppose that A = {a, b} to simplify,
and we let K = {a,b} be the weights that represent the singleton languages {a}
and {b}. Then, we describe a formula mirror-factor(x, y) that computes the mirror
image of the factor in-between positions pointed by x and y:

mirror-factor(x, y) = Π−1
z (x ≤ z ∧ z ≤ y)?(Pa(z)?a : b) : 1

Then, the mapping f can be described with the formula Φ:

ΣxΣy (x ≤ y)?[mirror-factor(x, y) · mirror-factor(x, y)] : 0

The abstract semantics of the formula associates a multiset of words w̃w̃ with
w all factors of u. For instance, {|Φ|}(aa) = {{aa,aa,aaaa}}. To provide a con-
crete semantics, we simply consider the aggregation operator that computes the
product of sets of weights and removes duplicates in multisets. �
Example 2. As a second example, consider the alphabet A = {a, b}, and the nat-
ural semiring (N,+,×, 0, 1), i.e. the aggregation operator that naturally comes
with a semiring. It is a commutative semiring, thus the operator Π−1 becomes
semantically equivalent (with respect to the concrete semantics, but not to the
abstract one) to Π. Consider the series f : A∗ → N defined for all words u ∈ A∗

by f(u) = |u|a|u|b , where |u|c denotes the number of a given letter c in the word
u. This series can be defined by the following formula, where we intentionally
reuse the same variable name twice (but the semantics would be unchanged if
the internal variable x was renamed y): Πx (Pb(x)?Σx (Pa(x)?1 : 0) : 1). The
abstract semantics maps a word with m letters a and n letters b to the multiset
containing mn copies of the sequence 1. For instance, for the word abbaa, the
abstract semantics computes {{ε}} · {{1, 1, 1}} · {{1, 1, 1}} · {{ε}} · {{ε}}, where we have
decomposed it with respect to the outermost Πx operator. Once aggregated, all
sequences map to 1, and we thus count mn as expected. �
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3 Nested Two-Way Weighted Automata

Weighted automata are a well-studied model of automata equipped with weights,
introduced by Schützenberger [22]. They have been extended to several weight
structures (semirings, valuation monoids), once again with a unified abstract
semantics introduced in [19]. They also have been extended with two-way navi-
gation, and pebbles or nested capabilities, in order to get more power [5,20]. In
order to simplify our later proofs, we first redefine the semantics of the nested
two-way weighted automata with the abstract semantics seen above for the logic.

Since we consider two-way navigation in a word, it is classical to frame the
finite word by markers, both on the left and on the right, so that the automaton
knows the boundary of the domain. We denote by �,� the left and right markers
of the input word, respectively, that are supposed to be symbols not already
present in the alphabet A we consider.

Definition 2. First, by convention, we let (−1)-nested two-way weighted
automata to be constants of K. Then, for r ≥ 0, we let r-NWA(K, A) (or, r-NWA
if K and A are clear from the context) be the class of r-nested two-way weighted
automata over a finite set K of constants and alphabet A, that are all tuples
A = 〈Q,Tr, I, F 〉 where

– Q is a finite set of states;
– Tr is the transition relation split into two subsets.

1. For a ∈ A, there are transitions of the form (q, a,B, d, q′) ∈ Q × A ×
(r − 1)-NWA(K, A × {0, 1}) × {←,→} × Q, meaning that the automaton
is in state q, reads the letter a, calls the (r − 1)-nested two-way weighted
automaton B over the same set K of weights and alphabet A × {0, 1}
(used to mark the current position), decides to move in the d-direction,
and changes its state to q′.

2. For a ∈ A∪{�,�}, there are some other transitions where the automaton
B is replaced by a weight from K, or by the special constant 1 (that we
used in the logic WFO) to forbid the call of a nested automaton (especially
on the markers): these transitions are thus of the form

(q, a, k, d, q′) ∈ (
Q × A × (K ∪ {1}) × {←,→} × Q

)
∪ (

Q × {�} × (K ∪ {1}) × {→} × Q
)

∪ (
Q × {�} × (K ∪ {1}) × {←} × Q

)
where we have chosen to remove the possibility to move right on a right
marker, and left on a left marker (to avoid exiting the possible positions
in the input word);

– I ⊆ Q is the set of initial states;
– F ⊆ Q is the set of final states.

An automaton B that appears in the transitions of an automaton A is called
a child of A, and reciprocally A is a parent of B (notice that an automaton could
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have several parents, since it can appear in the transitions of several automata).
This describes a directed acyclic relationship of dependency between automata:
we thus say that an automaton is a descendant of another one if they are related
by a sequence of parent-child relationship. The unique automaton with no ances-
tors shall be called the root.

In the following a transition of the form (q, a, x, d, q′) is said to go from state
q to state q′, reading letter a, having weight x, and is called a d-transition.

We now define the abstract semantics of an r-NWA(K, A) A, mapping each
word u ∈ A∗ to a multiset of sequences of weights {|A|}(u) ∈ N〈K∗〉. Config-
urations of such an automaton are tuples (u, i, q) where u = u1 · · · un is the
word in {ε,�}A∗{ε,�} (that could start and end with the markers, or not, in
order to be able to define subruns on an unmarked word, that we will use later),
i ∈ {1, . . . , n} is a position in the word, and q ∈ Q is the current state. We call
run a sequence ρ = (u, i0, q0)

δ0,f0−−−→ (u, i1, q1)
δ1,f1−−−→ · · · δm,fm−−−−→ (u, im, qm), where

i0, . . . , im−1 ∈ {1, . . . , n}, im ∈ {0, 1, . . . , n, n + 1} is the final position (that
could exit the word on left or right) δ0, . . . , δm ∈ Tr and f0, . . . , fm are multisets
in N〈K∗〉 such that for all j ∈ {0, . . . , m − 1}:

– δj is a transition from state qj to state qj+1 reading letter uij ;
– if δj is a →-transition then ij+1 = ij + 1, otherwise ij+1 = ij − 1;
– if uij ∈ A and the transition has weight B that is a (r − 1)-NWA(K, A×{0, 1}),

then fj = {|B|}(u′) where u′ is the word over alphabet A×{0, 1}, that will later
be denoted by (u, ij), whose left component is u and whose right component
is the constant 0 except at position ij where it is 1;

– if the transition has weight k ∈ K, then fj = {{k}},
– if the transition has weight 1, then fj = {{ε}}.

The initial position of the run is i0, and its final position is im. The run is
accepting if q0 ∈ I, qm ∈ F . Notice that we do not require runs to start on the
left marker and stop at the right marker. The weight wt(ρ) of this run is given
as the product of multisets f0 · f1 · · · fm.

A run is called simple if it never goes twice through the same configura-
tion. Not all runs are simple, but we restrict ourselves to using only those in
the semantics: otherwise, an infinite number of runs should be summed, which
would produce an infinite multiset (and then the aggregator function should be
extended to add this possible behaviour). This restriction was also considered in
[5,20].

We then let {|A|}(u) be the union (as multiset) of the weights of accepting
simple runs (whatever their initial and final positions). As for the logics above,
we may then use an aggregation operator to obtain a concrete semantics [[A]]
mapping each word u to a weight structure S.

Given a series f ∈ (N〈K∗〉)〈A∗〉 we say that f is NWA-definable if there exists
r ≥ 0 and an r-NWA(K, A) A such that for all words u ∈ A∗, f(u) = {|A|}(u).
Example 3. We describe in Fig. 1 a 2-NWA A that recognises the series described
in Example 1. Two levels of nesting are used to mark non-deterministically the
positions x and y, such that x ≤ y (or only one of them if x = y). Then, the last
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Fig. 1. An 2-NWA that recognises the series described in Example 1. The letter A is
used in transitions to denote the presence of all possible letters from A. Notice that the
runs of all the automata may start and stop at any position of the word, as described
in the semantics.

level of nesting is used to compute the value of the formula mirror-factor(x, y) ·
mirror-factor(x, y) by two passes from right to left. �

A run over a word u is called left-to-right (resp. left-to-left, right-to-right,
right-to-left) if its initial position is 1 (resp. 1, |u|, |u|) and its final position is
|u| + 1 (resp. 0, |u| + 1, 0). Intuitively, we thus use this terminology to detect
if a run starts on the first or last position of the word, and if it exits the word
either on the left or on the right.

Navigational Restrictions. An r-NWA→ (respectively, r-NWA←) is an r-NWA
where all transitions appearing in the automaton or its descendants are →-
transitions (resp. ←-transitions). Those models are called one-way in the follow-
ing, since the head movement is fixed during the whole run.

An r-nested sweeping weighted automaton (r-swNWA) is an r-NWA where
changes of directions are only allowed (in this automaton or its descendants) at
markers. More formally, states of the automaton and each of its descendants are
separated in two sets Q→ and Q← such that for all transitions (q, a,B, d, q′) or
(q, a, k, d, q′),

– if q, q′ ∈ Q→, then d = →;
– if q, q′ ∈ Q←, then d = ←;
– if q ∈ Q→ and q′ ∈ Q←, then d = ← and a = �;
– if q ∈ Q← and q′ ∈ Q→, then d = → and a = �.

Ambiguity. An r-NWA A is called polynomially ambiguous if there is a poly-
nomial p such that over every word u on its alphabet the number of accepting
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runs of A, as well as the number of accepting runs of any of its descendants, is
at most p(|u|). If the polynomial p is linear, A is said to be linearly ambiguous.
If the polynomial p is the constant 1, A is said to be unambiguous. Notice that
the condition deals with all runs, and not only the simple ones.

Polynomial ambiguity (indeed even finite ambiguity, where the number of
accepting runs must be finite for all words) implies that all accepting runs are
simple: otherwise, there would be an infinite number of accepting runs, by allow-
ing the loops to happen as many times as possible.

The 2-NWA of Fig. 1 is linearly ambiguous since the toplevel automaton A
has only to choose the position where to start the run, the automaton Ax has
then only to choose the position where to call the next automaton, and the
automaton Ax,y is unambiguous.

Aperiodicity. In order to define a notion of aperiodicity for NWA, we need to
enhance the usual notion of aperiodicity for automata to incorporate weights,
two-way navigations, and nesting. As in [10], we simply do not care about weights
and thus require that the unweighted version of the automata are aperiodic. For
two-way navigations, we rely on existing extensions of the notion of transition
monoid for two-way automata and transducers [1,2,7]. Finally, for nesting, we
simply require that each automaton appearing in an NWA is aperiodic.

More formally, given a NWA A over the alphabet A, its transition monoid
is the quotient of the free monoid A∗ by a congruence relation capturing the
equivalence of two behaviours of the automaton. As for runs, we distinguish four
types of behaviours: left-to-left, left-to-right, right-to-left and right-to-right. The
left-to-left behaviour bhA

ll (w) of w ∈ {ε,�}A∗{ε,�} in A is the set of pairs of
states (p, q) such that there exists a left-to-left run over w from state p to state q
(notice that we do not care if the descendant automata that are called along
this run are indeed “accepting” the word). The other behaviours can be defined
analogously.

Definition 3. Let A = 〈Q,Tr, I, F 〉 be a NWA(K, A). The transition monoid
of A is A∗\ ∼A where ∼A is the conjunction of the following congruence rela-
tions, defined for w,w′ ∈ A∗ by:

– w ∼A
ll w′ iff bhA

ll (w) = bhA
ll (w

′)
– w ∼A

lr w′ iff bhA
lr(w) = bhA

lr(w
′)

– w ∼A
rl w′ iff bhA

rl(w) = bhA
rl(w

′)
– w ∼A

rr w′ iff bhA
rr(w) = bhA

rr(w
′)

Notice that in the previous definition, we only focus on words not containing
markers. This is because we only use this monoid in order to define aperiodicity
of the automata where we focus on powers of elements of the monoid, which
correspond to runs on iterates of a word in which it makes no sense to duplicate
some markers.

An r-NWA is aperiodic if its transition monoid, as well as the ones of all
its descendants, are aperiodic (i.e. for all elements x of the monoid, there is a
natural number n such that xn = xn+1).
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Given an NWA A, its left-to-right (resp. right-to-left) projection is the
NWA

−→A (resp.
←−A) obtained by only keeping →-transitions (resp. ←-transitions)

in the root automaton. Interestingly, when starting from sweeping automata,
aperiodicity is preserved when taking such projections.

Lemma 1. If a swNWA A is aperiodic then
−→A and

←−A are aperiodic.

Proof. Let A = 〈Q,Tr, I, F 〉 be a swNWA(K,A). We prove the result for
−→A . The

proof for
←−A follows analogously.

Consider the word u ∈ A∗. Then there exists a natural number k such that
bhA

e (uk) = bhA
e (uk+1) for e ∈ {ll, lr, rl, rr}. If u = ε, then bh

−→A
e (u) = {(p, p) | p ∈

Q} = bh
−→A
e (u2) for e ∈ {ll, lr, rl, rr}. It remains to prove the lemma when u is

not empty. Immediately, we have bh
−→A
ll (u) = bh

−→A
ll (u

2) = bh
−→A
rl (u) = bh

−→A
rl (u

2) = ∅.
Since no run of the sweeping automaton A over u can change the direction
of its head movement over w that does not contain end markers, we have
bh

−→A
lr (u

k) = bhA
lr(u

k) = bhA
lr(u

k+1) = bh
−→A
lr (u

k+1). Finally, bh
−→A
rr(u) = {(p, q) |

(p, u|u|, x,→, q) ∈ Tr} = bh
−→A
rr(u

2).

For every word u ∈ A∗, we thus have bh
−→A
e (uk′

) = bh
−→A
e (uk′+1) for e ∈

{ll, lr, rl, rr}, where k′ = max(1, k). Hence,
−→A is aperiodic. �

Results. The goal is to find an adequate characterisation of the automata models
that recognise exactly the series WFO-definable or the fragments introduced
before. Droste and Gastin [10] paved the way of this study by characterising
rWFO→ with a fragment of the classical one-way weighted automata, that are 0-
NWA→ where the semantics is computed by only considering accepting runs that
start on the first letter of the word, and end on the last letter of the word: this
is because of the specific type of multiset produced by formulas of rWFO→, all
elements being of the same length (the length of the input word). In particular,
markers are useless in this context.

Theorem 1 ([10]). For all series f ∈ (N〈K∗〉)〈A∗〉, the following conditions are
equivalent:

1. f is definable by a polynomially ambiguous aperiodic 0-NWA→

2. f is rWFO→-definable.

Here, and in the following, classes C1 and C2 of models are said to be equiva-
lent if for all models M1 ∈ C1 and M2 ∈ C2 working on the same alphabet and
the same sets of weights, and for all words u, the abstract semantics {|M1|}(u)
is equal to the abstract semantics {|M2|}(u). This then implies that, for every
aggregation function, the concrete semantics are also the same.

The proof of this theorem is constructive in both directions, and we will
revisit it in the next sections, providing generalisations of it in order to get our
main contribution:
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Theorem 2. For all series f ∈ (N〈K∗〉)〈A∗〉, the following conditions are equiv-
alent:

1. f is definable by a linearly ambiguous aperiodic NWA;
2. f is definable by a polynomially ambiguous aperiodic NWA;
3. f is WFO-definable;
4. f is definable by a linearly ambiguous aperiodic swNWA
5. f is definable by a polynomially ambiguous aperiodic swNWA.

The rest of the article is devoted to a sketch of the proofs of Theorem 2. We
provide in Sect. 4 the sketch of proof of 3 ⇒ 4, in Sect. 5 the sketch of proof of
5 ⇒ 3, and in Sect. 6 the sketch of proof of 2 ⇒ 5. We can then conclude by the
trivial implications 4 ⇒ 1 ⇒ 2.

As a side result, we also obtain a characterisation for one-way models:

Theorem 3. For all series f ∈ (N〈K∗〉)〈A∗〉, the following conditions are equiv-
alent:

1. f is definable by a linearly ambiguous aperiodic NWA→;
2. f is definable by a polynomially ambiguous aperiodic NWA→;
3. f is WFO→-definable.

These theorems complete the picture initiated in [5, Theorem 5.11] where it
is shown that, in commutative semirings, NWA (called pebble two-way weighted
automata, with a more operational view of dropping/lifting pebbles, but the
expressive power is identical) are equivalent to an extension of the logic WFO
with a bounded weighted transitive closure operator. It is also noted that, even in
non commutative semirings, the whole logic WFO→ with the bounded transitive
closure operator can be translated into equivalent NWA.

4 From the Logic to Automata

In this section, we prove the implication 3 ⇒ 4 of Theorem 2. This is obtained
by a generalisation of the proof given by Droste and Gastin in [10, Theorem 16],
where they only deal with restricted one-way logic and non-nested one-way
automata. The proof is indeed simpler since we can rely on the use of nest-
ing, contrary to them where they need a careful construction for formulas ΠxΨ
of rWFO→.

The construction is performed by induction on the formula of WFO, making
use of nesting in automata, as originally demonstrated in [5, Proposition 5.13]
to transform every formula of a logic containing WFO (as well as a bounded
weighted transitive closure operator) into NWA.

As known since [21,23], from every formula ϕ of FO, we can obtain an equiva-
lent classical deterministic finite state automaton that is aperiodic, starts on the
marker � and ends on the marker �. By putting on every transition the weight 1,
this results in a 1-NWA→ Aϕ that is unambiguous and aperiodic, whose abstract
semantics is equal to the formula ϕ?1 : 0.
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Consider then a formula Φ = ϕ?Φ1 : Φ2, where, by induction, we already have
two r-NWA A1 and A2 for Φ1 and Φ2 (without loss of generality we adapt the
maximal level r of nesting by adding useless levels). We can use the 1-NWA→ Aϕ

in order to produce an r-NWA equivalent to Φ: the first level consists in Aϕ, and
once it unambiguously reach the marker �, we continue the run by going back
to the left marker, and continue either to A1 or to A2, whether the formula ϕ
was concluded to be satisfied or not, respectively.1

The sum and product of two formulas can be computed by taking the disjoint
union of two automata, or by starting the computation of the second after the
computation of the first one (either by going back to the beginning of the word,
or using a level of nesting).

For the quantification operators, we use one more level of nesting. Sup-
pose that we have an r-NWA(K, A × {0, 1}) A equivalent to a formula Φ with
a free variable x. Then, the formula Σx Φ can be defined by the following
(r + 1)-NWA(K, A), making use of the fact that we can non-deterministically
start and end a run wherever we want: the automaton thus has a single transi-
tion that calls A. For the Πx operator, the toplevel automaton scans the whole
word from left to right, and calls A on each position (that is not a marker).
For the Π−1

x operator, we do the same but starting from the right marker and
scanning the whole word from right to left. In both the cases, the root of the
resulting automaton is aperiodic.

To conclude that the constructed NWA is linearly ambiguous and aperiodic,
we make use of the fact that linearly ambiguous aperiodic automata are closed
under disjoint union, nesting and concatenation with unambiguous (even finitely
ambiguous) automata. It is indeed true for the case of disjoint unions, the indi-
vidual automata still preserve the aperiodicity in their simulations and any run
in the new automaton must be restricted to one of the automata. In the case of
nesting, every transition of the soon-to-be-child automaton is replaced by all its
extensions with respect to the input letter. Since the transitions are now oblivi-
ous to the marking of an input, the aperiodicity of the new child automaton is
once again ensured under the extended alphabet. To understand the closure of
linear ambiguity of automata under concatenation with unambiguous automata,
one must just observe that the concatenation of automata essentially multiples
the ambiguities of the factor automata, since every run in the concatenation is
the sequence of a run in the first factor and one in the second.

5 From Nested Sweeping Weighted Automata
to the Logic

This section aims at proving the implication 5 ⇒ 3 of Theorem 2. We shall first
prove it in the 1-way case.

1 In the proof of Theorem 3, we replace this construction by the use of nesting that
allows one to restart from the first position of the word in order to compute the
behaviour of either A1 or A2.
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Lemma 2. For all polynomially ambiguous aperiodic r-NWA→ (resp. r-NWA←),
there exists an equivalent formula of WFO→ (resp. WFO←).

Proof. Once again, we only deal with the left-to-right result, the other one being
obtained symmetrically. Let Ap,q denote the r-NWA→ obtained from A where
the initial and final states are p and q respectively. We prove by induction on r,
that for all r-NWA→ A and each pair of states p and q, we can construct a WFO→

sentence Φp,q such that {|Ap,q|} = {|Φp,q|}. We then conclude by considering all
initial states p and final states q.

If r = 0, the result follows, after trimming the root of A so that all states
can be reached from an initial state and reach a final state (no matter if the
descendant automata called on the transition indeed accept the word), directly
from the construction of Droste and Gastin [10, Proposition 9 and Theorem
10]. Note that trimming the automaton does not alter its semantics. The main
difference in our case is the fact that our automata can non-deterministically
start and end in the middle of the word. We may however start by modifying
them to force them to start on the left marker and end on the right marker: it
suffices to add self-loop transitions at the beginning and the end of weight 1 (so
that these additional transitions do not modify the abstract semantics).

We now suppose that r > 0, and assume that the result holds for r − 1.
Consider an r-NWA→(K, A) A that we suppose trimmed. As in the previous
case, we can produce a formula Φ for A, abstracting away for now the weight kB
on the transitions that stands for a (r − 1)-NWA→(K, A × {0, 1}) B.

We use the induction hypothesis to produce a formula ΦB of WFO for every
(r − 1)-NWA→(K, A × {0, 1}) B that appears in the transitions of A. We modify
this formula so that we incorporate a fresh first order variable x standing for the
position on which B is called. Then, we replace every subformula P(a,i)(y) with
(a, i) ∈ A × {0, 1} by Pa(y) ∧ y = x if i = 1, Pa(y) ∧ y �= x if i = 0.

In the formula Φ produced by Droste and Gastin, each weight kB appears in
a subformula with a distinguished first order variable x encoding the position of
the letter read by the transition that should compute the weight kB. Thus, we
simply replace every such weight kB by the modified formula ΦB above. �

We then turn to the case of sweeping automata.

Lemma 3. For every polynomially ambiguous aperiodic swNWA, there exists an
equivalent formula of WFO.

Proof. The proof also goes by induction on the level of nesting, and follows the
same construction as the previous lemma. The only novelty is the treatment of
change of directions in the runs. We thus only consider the case of 0-swNWA
below.

For a 0-swNWA A = 〈Q,Tr, I, F 〉, we show that for each pair of states p
and q, we can construct a formula of WFO Φp,q equivalent to Ap,q. As before,
without loss of generality, we can suppose that every accepting run starts on the
left marker, and stops on the right marker.
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Given a word w = w1 · · · wm, every run from p to q on �w� can then be
decomposed as

(p,�, k0,→, p0)ρ1(p1,�, k2,←, p2)ρ2(p3,�, k4,→, p4) · · ·
(p2n−1,�, k2n,→, p2n)ρ2n+1(p2n+1,�, k2n+2,←, q)

where ρ2i+1 only contains →-transitions (for i ∈ {0, . . . , n}), and ρ2i only ←-
transitions (for i ∈ {1, . . . , n}). Since we assume polynomial ambiguity of A,
we must have n ≤ |Q|. Otherwise, there exists a position which is visited twice
in the same state, thus allowing infinitely many runs over the input word by
pumping this looping fragment of the run. We then immediately obtain that, for
every word w, the multiset {|Ap,q|}(w) can be decomposed as∑

n≤|Q|
(p,�,k0,→,p0),...,

(p2n+1,�,k2n+2,←,q)∈Tr

{{k0}}{|−→Ap0,p1 |}(w){{k2}}{|←−Ap2,p3 |}(w) · · · {|−→Ap2n,p2n+1 |}(w){{k2n+2}}

It remains to show that the above decomposition can be translated into an
equivalent WFO sentence. Since trimming preserves aperiodicity, using Lemma 1,
we know that for every p, q ∈ Q, both

−→Ap,q and
←−Ap,q are aperiodic. By Lemma 2,

we can thus construct equivalent WFO sentences
←−
Φ p,q and

−→
Φ p,q, respectively.

We now define,

Φp,q =
∑

n≤|Q|
(p,�,k0,→,p0),...,

(p2n+1,�,k2n+2,←,q)∈Tr

k0 · −→
Φ p0,p1 · k2 · ←−

Φ p2,p3 · · · · −→Φ p2n,p2n+1 · k2n+2

It can be proved that {|Ap,q|} = {|Φp,q|}. Finally, we set Φ =
∑

p∈I,q∈F Φp,q and
we can check that this formula is equivalent to A. �

6 From Nested Two-Way Weighted Automata to Nested
Sweeping Weighted Automata

In this section we finally provide a sketch of the proof of 2 ⇒ 5 in Theorem 2.
This is the most novel and challenging part of the proof. In particular, notice that
such an implication requires the use of nesting: the following example of 0-NWA
does not have an equivalent 0-swNWA, even under the restriction of polynomial
ambiguity and aperiodicity.

Example 4. Consider the 0-NWA(K, A) Aex depicted in Fig. 2, over the alphabet
A = {a, b} and with weights K = {f, g}. Its semantics maps every word of
A∗ of the form u = am1b · · · amnb to the multiset {{fm1gm1 · · · fmngmn}}, and
every word of the form u = am1b · · · amn to the multiset {{fm1gm1 · · · fmn}}. The
automaton Aex is unambiguous (even deterministic). By a computation of its
transition monoid, it can also be shown to be aperiodic. We can prove (see the
long version [8]) that it has no equivalent 0-swNWA, since it is crucial that the
automaton switches direction several times in the middle of the word. �
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Fig. 2. A 0-NWA Aex.

Consider now a 0-NWA A (we will explain at the very end how to do this
for an r-NWA). We build an swNWA A equivalent to it, that will moreover be
aperiodic and polynomially ambiguous if A is.

To understand our construction of A, consider an accepting simple run of A
over a word u. In order to get closer to a sweeping automaton, we first split the
run into subruns that go from the beginning of the run of the left marker to the
right marker or the end of the run (possibly hitting in the mean time the left
marker), and then to the left marker again (possibly hitting in the mean time
the right marker), and so on. We get at most |Q| subruns by doing so, since the
run is simple (and thus cannot visit more than |Q| times each marker).

For each subrun, we further decompose them as follows. We only present here
the decomposition for the left-to-right case, the other one being symmetrical.

For a left-to-right run over the word w = w1 · · · wn (with w1 possibly being
equal to �, but wn �= �), we decompose it into the interleaving of subruns with
only →-transitions, ending in an increasing sequence of positions (ij)1≤j≤m, and
some right-to-right subruns on the prefix words w1 · · · wij . Formally, every left-
to-right run can be written as ρ1λ1ρ2λ2 · · · λm−1ρm where we have a sequence
of positions 0 = i0 < i1 < · · · < im−1 < im = n + 1 such that

– for all j ∈ {1, . . . , m}, ρj is a run over wij−1+1 · · · wij−1 with only →-
transitions: notice that this run can be empty if ij = ij−1 + 1;

– for all j ∈ {1, . . . , m − 1}, λj is a right-to-right run over w1 · · · wij that starts
with a ←-transition.

We exemplify the decomposition on the left of Fig. 3. We thus build an NWA
A whose root automaton is a sweeping automaton that emulates the black ρ-
parts, interleaved with some new →-transitions from state p (in a position ij)
to state q (in the corresponding position ij + 1): the weight of this transition is
a (non-sweeping) NWA(K, A × {0, 1}) A(p,q) that is in charge of emulating the
blue subrun λj from state p to state q of A, keeping marked the position ij in
the second component of the alphabet A × {0, 1}.

We treat the various new automata A(p,q) recursively to transform them to
sweeping automata too. We thus similarly decompose the λ-subruns as before,
by adapting the previous decomposition working only for left-to-right runs. In
the decomposition of a right-to-right run over the word w = w1 · · · wn (with
w1 possibly being equal to �, but wn �= �), the ρ-parts will be right-to-left,
and we will add a special left-to-right additional run τ at the end to come back
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Fig. 3. On the left, the decomposition of a left-to-right run as a sequence
ρ1λ1ρ2λ2ρ3λ3ρ4 with ρ3 being empty. On the right, the decomposition of a right-
to-right run as a sequence ρ1λ1ρ2λ2ρ3τ .

to the right of the word. Formally, every right-to-right run can be written as
ρ1λ1ρ2λ2 · · · λm−1ρmτ where we have a sequence of positions 1 ≤ im < · · · <
i1 < i0 = n + 1 such that

– for all j ∈ {1, . . . , m}, ρj is a left-to-right run over wij+1 · · · wij−1−1 with only
→-transitions: notice that this run can be empty if ij−1 = ij + 1;

– for all j ∈ {1, . . . , m − 1}, λj is a left-to-left run over wij · · · wn that starts
with a →-transition;

– τ is a left-to-right run over wim · · · wn.

We exemplify the decomposition on the right of Fig. 3. Once again, the
automaton A(p,q) is transformed into a NWA where the root automaton is a
sweeping automaton that emulates the black ρ-parts, interleaved with some new
←-transitions with a weight being a NWA that computes the λ-subruns as well
as the τ one. We once again treat these NWA recursively similarly as before (new
cases occur in terms of directions).

This recursive decomposition of the runs, and thus the associated construc-
tion of sweeping automata, can be terminated after a bounded number of itera-
tions. Indeed, in all simple runs of A, no more than |Q| configurations are visited
for a particular position of the word. Since each recursive step in the decompo-
sition consumes each position in the black runs, this implies that after |Q| steps,
there are no remaining blue subruns to consider. At level |Q| of nesting, we thus
do not allow anymore the addition of new transitions that would simulate fur-
ther blue λ-subruns. The previous argument is the core of the correctness proof
showing that the sweeping automaton produced is equivalent to A.

In case A is an r-NWA, we use the black ρ-subruns to compute the children
automata of A with nested calls. In contrast the added transitions that are
supposed to launch the emulation of the blue λ-subruns call another sweeping
automaton below.

Example 5. We apply the construction on the 0-NWA of Example 4. This will
produce the 2-swNWA A in Fig. 4. We also depict the actual decomposition of
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Fig. 4. 2-swNWA A obtained by our construction, starting from the automaton of
Example 4, and the decomposition of a run of this automaton showing which sweeping
automaton computes each subrun.

a run over the word �abbaaba�. The black subruns are the ρ-parts that are
computed by the sweeping root automaton (it is sweeping, and not one way, just
because of the final transition). The automaton A1←−p ,−→p is in charge of computing
the blue λ-subruns. Notice that the subscript tells the automaton that it should
start (at the marked position, which is checked by the first transition of the
automaton) in state p going left, and should stop (once again at the marked
position) in state p going right. There are two cases. For the leftmost λ-subrun,
the sweeping automaton can entirely compute it. For the other ones, it cannot
since there is a change of direction in the middle of the word. The red dotted part
is thus the τ -final piece of the decomposition in the second step of the recursion,
that is taken care of by automaton A2−→q ,−→p .

The above construction preserves the ambiguity of the automata. However,
we are not able to directly show that it preserves aperiodicity. We must encode
more information in the state space of the various sweeping automata in order
to allow for the proof of aperiodicity. In particular, we encode some pieces of
information on the behaviours allowed in the current position, allowing us to
better understand the structure of the transition monoid of the built automaton.
The full construction and proof is given in the long version [8], which concludes
the proof of the last implication of Theorem 2.
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7 Conclusion

We have extended the results of Droste and Gastin [10] relating restricted
weighted first-order logic and aperiodic weighted automata with some restric-
tions about ambiguity. We thus have closed open questions raised by them,
introducing an abstract semantics for a full fragment of weighted first-order logic,
and showing the equivalence between this logic and aperiodic nested weighted
automaton with linear or polynomial ambiguity.

We have only studied linear and polynomial ambiguity, contrary to Droste
and Gastin that have also characterised finitely-ambiguous and unambiguous
aperiodic weighted automata with fragments of the logic. We leave as future
work similar study for nested weighted automata, but we do hope that similar
restrictions may apply also in our more general case.

However, dropping the condition on polynomial ambiguity would certainly
lead to a logical fragment beyond weighted first-order logic. In particular, the
main difficulty is that the logic is not easily able to check the simplicity condition
of the accepting runs in this case.

Having introduced two-way navigations (and also nesting) makes possible to
ask similar questions to other input structures than words, like finite ranked or
unranked trees [16], nested words [3,14], or even graphs [4]. Nested weighted
automata and weighted logics have already been studied in this setting, without
any characterisation of the power of first-order fragments.

Last but not least, contrary to the unweighted setting, our characterization
(as well as the one by Droste and Gastin) does not yet lead to a procedure
deciding if the series recognised by a given (nested two-way) weighted automa-
ton is indeed recognisable by an aperiodic one, i.e. in the convenient first-order
fragment of the logic. We still lack the algebraic tools allowing for such decision
procedures.
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Abstract. We study the complexity of reductions for weighted reacha-
bility in parametric Markov decision processes. That is, we say a state
p is never worse than q if for all valuations of the polynomial inde-
terminates it is the case that the maximal expected weight that can
be reached from p is greater than the same value from q. In terms of
computational complexity, we establish that determining whether p is
never worse than q is coETR-complete. On the positive side, we give
a polynomial-time algorithm to compute the equivalence classes of the
order we study for Markov chains. Additionally, we describe and imple-
ment two inference rules to under-approximate the never-worse relation
and empirically show that it can be used as an efficient preprocessing
step for the analysis of large Markov decision processes.

Keywords: Markov decision process · sensitivity analysis · model
reduction

1 Introduction

Markov decision processes (MDPs, for short) are useful mathematical models
to capture the behaviour of systems involving some random components and
discrete (non-deterministic) choices. In the field of verification, they are studied
as formal models of randomised algorithms, protocols, etc. [1,6] In artificial
intelligence, MDPs provide the theoretical foundations upon which reinforcement
learning algorithms are based [17,20].

From the verification side, efficient tools have been implemented for the
analysis of MDPs. These include, for instance, PRISM [15], Storm [12], and
Modest [9]. While those tools can handle ever larger and complexer MDPs, as
confirmed by the most recent Comparison of Tools for the Analysis of Quan-
titative Formal Models [4], they still suffer from the state-explosion problem.
While most tools can check the MDP against a rich class of specifications (linear
temporal logic, probabilistic computation-tree logic, etc.), they often reduce the
task to reachability analysis and solve the latter using some version of value iter-
ation [10] which has an exponential worst-case complexity. When implementing
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model checkers, it is usual for a pre-processing step to remove as many states and
transitions as possible while preserving the maximal reachability probability.

In this work we focus on reduction techniques to improve the runtime of MDP
analysis algorithms as implemented in the aforementioned verification tools. We
are particularly interested in reductions based on the graph underlying the MDP
which do not make use of the concrete probability distributions. Such reduc-
tions can also be applied to partially known MDPs that arise in the context
of reinforcement learning [2]. Several graph and automata-theoretic reduction
techniques with these properties already exist. They focus on the computation
of states with specific properties, for instance: extremal-value states (i.e. states
whose probability of reaching the target set of states is 0 or 1), maximal end
components (i.e. sets of states which can almost-surely reach each other), and
essential states [5,7] (i.e. sets of states which form a graph-theoretic separator
between some given state and the target set), to name a few. In [16], Le Roux
and Pérez have introduced a partial order among states, called the never-worse
relation (NWR, for short), that subsumes all of the notions listed above. Their
main results in that work were establishing that the NWR the natural decision
problem of comparing two states is coNP-complete, and giving a few inference
rules to under-approximate the full NWR.

In this paper, we extend the NWR to weighted reachability in parametric
MDPs. Formally, we have assign weights to the target set of states and allow for
transitions to be labelled with polynomials instead of just concrete probability
values. Then, we say a state p is never worse than q if for all valuations of the
indeterminates, it is the case that the maximal expected weight that can be
reached from p is at least the same value from q. Beyond the fact that weighted
reachability is a natural extension of reachability, it is well-known that optimiz-
ing the expected mean-payoff can be reduced to optimizing expected weighted
reachability (see, e.g., [14]).

We show that determining whether p is NWR than q is coETR-complete,
so it is polynomial-time interreducible with determining the truth value of a
statement in the existential theory of the reals. Along the way, we prove that
the NWR for weighted reachability reduces in polynomial time to the NWR for
(Boolean) reachability. Regarding theoretical results, we further establish that
the equivalence classes of the NWR can be computed in polynomial time for
a special class of parametric Markov chains. In contrast, for parametric MDPs,
deciding equivalence is just as hard as the corresponding NWR decision problem.
Finally, we improve (and corrected small errors in) the inference rules from Le
Roux and Pérez and give a concrete algorithm to use them to reduce the size of
a given MDP. We then evaluate the an implementation of our algorithm on a
number of benchmarks from the Quantitative Verification Benchmark Set [11].

2 Preliminaries

For a directed graph G = (V,E) and a vertex u ∈ V , we write uE = {v ∈ V |
(u, v) ∈ E} to denote the set of (immediate) successors of u. A sink is a vertex
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u such that uE = ∅. For a finite alphabet Σ, Σ∗ is the set of all finite words
over Σ including the empty word ε, and Σ+ is the set of all non-empty words.

Let X = {x1, . . . , xk} be a finite set of variables and p(x1, . . . , xk) be a poly-
nomial with rational coefficients on X. For a valuation val : X → R of the vari-
ables, we write p[val] for the image of p given val(X), i.e. p(val(x1), . . . , val(xk)).
We write p ≡ 0 to denote the fact that p is syntactically equal to 0 and p = 0
to denote that its image is 0 for all valuations. Finally, we write Q[X] to denote
the set of all polynomials with rational coefficients on X.

2.1 Stochastic Models

A distribution on a finite set S is a function f : S → R≥0, with
∑

s∈S f(s) = 1.

Definition 1 (Markov chains). A (weighted) Markov chain is a tuple C =
(S, μ, T, ρ) with a finite set of states S, a set of target states T ⊆ S, a probabilistic
transition function μ : (S \ T ) × S → R≥0 with ∀s ∈ S \ T :

∑
s′∈S μ(s, s′) = 1

(i.e. μ maps non-target states onto probability distributions over states), and a
weight function ρ : T → Q that assigns weights to the target states.

Note that all states in T are sinks: μ(t, s) is undefined for all t ∈ T, s ∈ S.
A run of C is a finite non-empty word π = s0 . . . sn over S such that 0 <

μ(si, si+1) for all 0 ≤ i < n. The run π reaches s′ ∈ S if s′ = sn. The probability
associated with a run is defined as Pμ(π) =

∏
0≤i<n μ(si, si+1).

We also define the probability of reaching a set of states.

Definition 2 (Reachability). Given a Markov chain C = (S, μ, T, ρ), an ini-
tial state s0 ∈ S and a set of states B ⊆ S, we denote by P

s0
C [♦B] the probability

of reaching B from s0. If s0 ∈ B then P
s0
C [♦B] = 1, otherwise:

P
s0
C [♦B] =

∑

π=s0...sn∈(S\B)+B

Pμ(π).

For brevity, when B = {a}, we write P
s0
C [♦a] instead of Ps0

C [♦{a}].
Now, we use the weights of targets states to define a weighted reachability value.

Definition 3 (Value of a state). Given a Markov chain C = (S, μ, T, ρ) and
a state s0 ∈ S, the (expected reward) value of s0 is Rews0

C =
∑

t∈T P
s0
C [♦t] · ρ(t).

Finally, we recall a definition of parametric Markov decision processes.

Definition 4 (Markov decision processes). A weighted and parametric
Markov decision process (wpMDP) is a tuple M = (S,A,X, δ, T, ρ) with finite
sets S of states; A of actions; X of parameters; and T ⊆ S of target states.
δ : (S \ T ) × A × S → Q[X] is a probabilistic transition function that maps
transitions onto polynomials and ρ : T → Q is a weight function.
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We assume, without loss of generality, that there is an extra state fail ∈ T ,
with ρ(fail) = 0. Intuitively, this is a “bad” target state that we want to avoid.
Throughout the paper, we sometimes only specify partial probabilistic transition
functions. This slight abuse of notation is no loss of generality as (for all of our
purposes) we can have all unspecified transitions lead to fail with probability 1.
We also assume that all states with no path to a target state can be replaced
with a state with a transition to fail . It is known that all such states can be
computed in polynomial time [1, Algorithm 45].

In this paper, we will work with the following subclasses of wpMDPs.

pMDPs or (non-weighted) parametric MDPs are the subclass of wpMDPs which
have only two states in T , namely, T = {fin, fail} where ρ(fin) = 1 and
ρ(fail) = 0. For pMDPs, we omit ρ from the tuple defining them since we
already know the weights of the targets.

wp̃MDPs or weighted trivially parametric MDPs have, for each transition, a
unique variable as polynomial. That is, the probabilistic transition function
is such that δ(s, a, s′) ≡ 0 or δ(s, a, s′) = xs,a,s′ ∈ X, for all (s, a, s′) ∈
(S\T )×A×S. Since all parameters are trivial in such wpMDPs, we omit their
use. Instead, an wp̃MDPs is a tuple (S,A,Δ, T, ρ) where Δ ⊆ (S \T )×A×S
represents all transitions that do not have probability 0.

p̃MDPs or (non-weighted) trivially parametric MDPs are both non-weighted
and trivially parametric. We thus omit ρ and X from their tuple representa-
tion (S,A,Δ, T ) where Δ is as defined for wp̃MDPs.

For the rest of this section, let us fix a wpMDP M = (S,A,X, δ, T, ρ).

Definition 5 (Graph preserving valuation, from [13]). A valuation val :
X → R is graph preserving if the following hold for all s ∈ (S \T ), s′ ∈ S, a ∈ A:

– probabilities are non-negative: δ(s, a, s′)[val] ≥ 0,
– outgoing probabilities induce a distribution:

∑
s′′∈S δ(s, a, s′′)[val] = 1,

– δ(s, a, s′) 
≡ 0 =⇒ δ(s, a, s′)[val] 
= 0.

The set of all such graph-preserving valuations is written as ValgpM.

A graph-preserving valuation of any wpMDP M gives an MDP (with real proba-
bilities) that we call M[val] by substituting each parameter with the correspond-
ing real number and computing the value of the polynomials on each transition.
Such an MDP is equivalent to the ones that appear in the literature [1,13,16].

Fig. 1. Example of a Markov chain C with Rewp
C = 0.75 and Rewq

C = 2.375. Circles
depict states; arrows, transitions; double circles, target states with their integer labels
being their weights.
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Fig. 2. Examples of all wpMDP subclasses we consider. Solid squares represent state-
action pairs (see Sect. 2.2).

Definition 6 (Strategies). A (memoryless deterministic) strategy σ is a func-
tion σ : (S\T ) → A that maps states to actions. The set of all such deterministic
memoryless strategies is written as ΣM.

The wpMDP M with a valuation val and strategy σ induce a Markov chain
Mσ

val = (S, μ, T, ρ) where μ(s, s′) = δ(s, σ(s), s′)[val] for all s ∈ (S \ T ), s′ ∈ S.

Remark 1. Note that we only consider memoryless deterministic strategies. This
is because we are interested in strategies that maximise the expected reward
value for a given valuation. Since all targets are trapping, one can prove, e.g.,
by reduction to quantitative reachability or expected mean payoff [1], that for
all valuations, there is an optimal memoryless and deterministic strategy.

2.2 The Graph of a WpMDP

It is convenient to work with a graph representation of a wpMDP. In that regard,
we consider states s (depicted as circles ©) and state-action pairs (s, a) (depicted
as squares �) to be vertices. We call the vertices in SN = (S \ T ) × A nature
vertices and we will use these to denote state-action pairs throughout the paper.
We use V = S ∪ SN to denote the set of vertices of a wpMDP. The graph
G(M) = (V,E) of a wpMDP is thus a bipartite graph with S and SN being the
two partitions. We define the set of edges as follows.

E = {(s, (s, a)) ∈ S × SN | ∃s′ ∈ S \ {fail} : δ(s, a, s′) 
≡ 0}
∪ {((s, a), s′) ∈ SN × S | δ(s, a, s′) 
≡ 0}

That is, there is an edge from a state to a nature vertex if the nature vertex
has that state as the first component of the tuple and if it can reach some state
other than fail with non-zero probability; there is one from a nature vertex to a
state if the polynomial on the corresponding transition is not syntactically zero.
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Let val ∈ ValgpM be a graph-preserving valuation and σ ∈ ΣM a strategy. We
now define the (reward) value of a vertex in G(M) with respect to val and σ.

Rewσ
M[val](v) =

{∑
s′∈vE δ(s, a, s′)[val] · Rewσ

M[val](s
′) if v = (s, a) ∈ SN

Rewv
Mσ

val
otherwise

Further, we write Rew∗
M[val](v) for the value maxσ∈ΣM Rewσ

M[val](v), i.e. when
the strategy is chosen to maximise the value of the vertex. We use Rewσ

val and
Rew∗

val when the wpMDP being referred to is clear from context.

Remark 2. In the case of pMDPs and p̃MDPs, Rewσ
M[val](v) = P

v
Mσ

val
[♦fin]. The

reader can easily verify this by looking at the definition of reward.

Example 1. In Fig. 2a, the valuation val = {x = 0.6, y = 0.28} is a graph-
preserving one. We then get Rew∗

val(q, a) = 1 − 0.28 = 0.72 and Rew∗
val(q, b) =

0.6(4) = 2.4. Hence, the optimal strategy for state q will be to choose action
b and Rew∗

val(q) = 2.4. Now, we get that Rew∗
val(p) = Rew∗

val(p, a) = 2(0.28) +
(2(0.6)2 − 0.28)Rew∗

val(q) = 1.616.

2.3 The Never-Worse Relation

Let M = (S,A,X, δ, T, ρ) be a wpMDP and G(M) = (V,E). We will now
take the never-worse relation (NWR) [16] and generalise it to take into account
polynomials on transitions and weighted target states.

Definition 7 (Never-worse relation for wpMDPs). A subset W ⊆ V of
vertices is never worse than a vertex v ∈ V , written v � W , if and only if:

∀ val ∈ ValgpM,∃w ∈ W : Rew∗
val(v) ≤ Rew∗

val(w).

We write v ∼ w if v � {w} and w � {v}, and ṽ for the equivalence class of v.

For brevity, we write v � w instead of v � {w}. For two subsets U,W ⊆ V , we
write U � W if and only if U 
= ∅ and u � W for all u ∈ U .

Example 2. In Fig. 2a, we have p � q. This is because the constraints 2x2 −
y + 2y = 1 and 0 < 2y < 1 on any graph preserving valuation ensure that
1
2 < x. Thus, Rew∗

val(q) = Rew∗
val(q, a) > 2. Now, the value of p will be a convex

combination of 1 and Rew∗
val(q). Hence, it’s value will be at most the value of q.

3 From Weighted to Non-Weighted MDPs

In this section, we show that we can efficiently transform any wpMDP into a
non-weighted one with a superset of states and such that the NWR is preserved.
Technically, we have two reductions: one to transform wpMDPs into pMDPs
and one to transform wp̃MDPs into p̃MDPs. The former is easier but makes
use of the non-trivial polynomials labelling transitions while the latter is more
involved. It follows that algorithms and complexity upper-bounds for the NWR
as studied in [16] can be applied to the trivially parametric weighted case.
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Fig. 3. The pMDP N constructed from M, where z = 1/ρ(tn) and ai represents the
state-action pair (ti, a). The ratio of the reward values in N of all the target states in
M is the same as in N .

Remark 3. Below, we will make the assumption that the target states all have
distinct non-negative weights. That is T = {t0, . . . , tn} with 0 = ρ(t0) < ρ(t1) <
· · · < ρ(tn). This is no loss of generality. If we have negative weights, we can
subtract the smallest negative weight (−k) from all the weights. This will make
all the weights non-negative and the never-worse relations will be preserved since
the reward value of each state will increase by k. If ti and tj have ρ(ti) = ρ(tj)
then, because all target states are trapping, we can add (on any action a ∈ A)
a transition such that δ(ti, a, tj) = 1 and remove remove ti from T . This can be
realised using logarithmic space, does not add states, and it preserves the NWR.

3.1 Removing Weights from Parametric MDPs

Let M be a wpMDP. We construct a pMDP N equivalent to M as described
in Fig. 3. The idea is to add transitions from the target states to freshly added
fail and fin states to preserve the ratio between the values of the original target
states. That is, for all states p, q ∈ T \ {t0}, our construction guarantees the
following: Rewp

Mσ
val

/Rewq
Mσ

val
= Rewp

N σ
val

/Rewq
N σ

val
, for all parameter valuations

val ∈ ValgpM and all strategies σ ∈ ΣM. It is then easy to see, by the definition of
values, that all other pairs of vertices in G(M) — excluding t0, which preserves
its exact value — also have the ratio between their values preserved.

Theorem 1. Given a wpMDP M, let G(M) = (V,E) and N be the pMDP
obtained by the above construction. If v ∈ V and W ⊆ V , we have v � W in M
if and only if v � W in N .

In the next section, we give an alternative reduction which preserves the
property of being trivially parametric. That is, it does not add transitions with
non-trivial probabilities.

3.2 Removing Weights from Trivially Parametric MDPs

From a given wp̃MDP M, we construct a p̃MDP N by adding to it n+3 vertices
and 3n+2 edges as depicted in Fig. 4. To simplify things, we make the assumption
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Fig. 4. The p̃MDP N constructed from M where ai represents the state-action pair
(ti, a). The ordering of the reward values of the vertices is preserved but not the ratio.

that any nature vertex v ∈ SN which does not have a path to fin has an edge to
t0. This is no loss of generality as such vertices can be detected in polynomial
time (see, e.g. [1, Algorithm 46]) and this preserves their value.

Unlike in the parametric case, the ratio of the reward values of the target
vertices is not preserved but their ordering is: ρ(ti) < ρ(tj) in G(M) if and only if
P

ti

N σ
val
[♦fin] < P

tj

N σ
val
[♦fin] for all valuations val ∈ ValgpN and all strategies σ ∈ ΣN .

Lemma 1. In the non-weighted p̃MDP N , for all valuations val ∈ ValgpN and all
strategies σ ∈ ΣN , we have 0 = P

t0
N σ

val
[♦fin] < P

t1
N σ

val
[♦fin] < · · · < P

tn

N σ
val
[♦fin].

We show that this property, although it may not seem intuitive, is sufficient to
preserve all the never-worse relations.

Theorem 2. Given a wp̃MDP M, let G(M) = (V,E) and N be the p̃MDP
obtained by the above construction. If v ∈ V and W ⊆ V , we have v � W in M
if and only if v � W in N .

Proof (Sketch). We first prove the contrapositive of the “if” direction: Suppose
v 
� W in the wp̃MDP M, then there is a valuation val ∈ ValgpM for which
Rew∗

M[val](v) > Rew∗
M[val](w) for all w ∈ W . We can now construct a valuation

val′ ∈ ValgpN so that Rew∗
N [val′](v) > Rew∗

N [val′](w) for all w ∈ W . The existence
of such a val′ will show that v 
� W in N , thus concluding the proof in this
direction. More concretely, val′ is obtained from val by adding probabilities to
the dashed edges in G(N ) so that the ratio of the reward values of states in T
in N is the same as the ratio of their weights in M.

Second, we prove the contrapositive of the “only if” direction: Suppose v 
� W
in the non-weighted p̃MDP N . This means that there exists a valuation val ∈
ValgpM such that Rew∗

N [val](v) > Rew∗
N [val](w) for all w ∈ W . We can then use the

reward values of vertices in G(N ) (for this fixed val) to partition the vertices so
that all vertices in a same partition have the same reward value. This partition
reveals some nice properties about the structure of G(N ), and hence G(M). We
use this to construct a new valuation val′ ∈ ValgpM for the original wp̃MDP M
and show that Rew∗

M[val′](v) > Rew∗
M[val′](w) for all w ∈ W . ��
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4 The Complexity of Deciding the NWR

It has been shown in [16] that deciding the NWR for trivially parametric MDPs1
is coNP-complete and remains coNP-hard even if the set of actions is a sin-
gleton (i.e. the MDP is essentially a Markov chain) and even when comparing
singletons only (i.e. v � w). We have shown, in the previous section, that any
wp̃MDP can be reduced (in polynomial time) to a p̃MDP while preserving all the
never-worse relations. Observe that the reduction does not require adding new
actions. These imply coNP-completeness for deciding the NWR in wp̃MDPs.

Theorem 3. Given a wp̃MDP M with G(M) = (V,E) and v ∈ V,W ⊆ V ,
determining whether v � W is coNP-complete. Moreover, the problem is coNP-
hard even if both W and the set A of actions from M are singletons.

Regarding general wpMDPs, known results [13,19] imply that deciding the
NWR is coETR-hard. The existential theory of the reals (ETR) is the set of all
true sentences of the form:

∃x1 . . . ∃xnϕ(x1, . . . , xn) (1)

where ϕ is a quantifier-free (first-order) formula with inequalities and equalities
as predicates and real polynomials as terms. The complexity class ETR [18] is
the set of problems that reduce in polynomial time to determining the truth value
of a sentence like in (1) and coETR is the set of problems whose complement
is in ETR. It is known that NP ⊆ ETR ⊆ PSPACE.

For completeness, we provide a self-contained proof of the NWR problem
being coETR-hard even for pMDPs. To do so, we reduce from the bounded-
conjunction-of-inequalities problem, BCon4Ineq for short. It asks, given poly-
nomials f1, . . . , fm of degree 4, whether there is some valuation val : X → (0, 1)
such that

∧m
i=0 fi[val] < 0? This problem is ETR-hard [13, Lemma 5].

Theorem 4. Given a pMDP M with G(M) = (V,E) and v ∈ V,W ⊆ V , deter-
mining whether v � W is coETR-complete. Moreover, the problem is coETR-
hard even if both W and the set A of actions from M are singletons.

Proof (Sketch). To show coETR-hardness, we first reduce BCon4Ineq to the
problem of deciding whether there exists a graph-preserving valuation for a given
pMDP M. Let f1, · · · , fm be the polynomials. Let k > ki for all i where ki is the
sum of the absolute values of the coefficients of the polynomial fi. We define new
polynomials f ′

1, . . . , f
′
m where f ′

i = fi

k . Note that for any val : X → (0, 1), we
have

∧m
i=0 fi[val] < 0 if and only if

∧m
i=0 f ′

i [val] < 0 and we have −1 < f ′
i [val] < 1

for any such val. We now define a pMDP including the states and distributions
shown in Fig. 5. All the edges from the set {n1, . . . , nm} to {fail ,fin} ensure
that 0 < −fi < 1 for all 1 ≤ i ≤ m and the edges from the set {v1, . . . , vn} to
{fail ,fin} ensure that the variables can only take values from the open set (0, 1).

1 Technically, Le Roux and Pérez show that the problem is hard for target arenas. In
appendix, we give reductions between target arenas and p̃MDPs.
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Fig. 5. The pMDP used to show coETR-hardness of determining whether there exists
a graph-preserving valuation for a pMDP.

Thus, this pMDP has a graph-preserving valuation if and only if there is some
val : X → (0, 1) for which −1 < f ′

i < 0. To conclude, we note that fin 
� fail if
and only if there is a graph-preserving valuation for the pMDP we constructed.
Observe that to obtain the full pMDP we can add states {s1, . . . , sm} and edges
from si to ni, for all i. Hence, the set of actions A can be a singleton.

To show that deciding the NWR is in coETR, we simply encode the negation
of the NWR into a formula as in (1) that is in ETR if and only if the negation of
the NWR holds. The encoding is quite natural and can be seen as a “symbolic”
version of the classical linear programs used to encode MDP values. ��

We conclude this section with a discussion on the NWR equivalence relation.

4.1 The Complexity of Deciding NWR Equivalences

Unfortunately, deciding NWR equivalences is just as hard as deciding the NWR
in general. To prove this, we give a small gadget which ensures that v ∼ w if
and only if some NWR holds.

Theorem 5. Given a pMDP M with G(M) = (V,E) and v, w ∈ V , determining
whether v ∼ w is coETR-hard. If M is a p̃MDP then the problem is coNP-hard
in general and in P if its set of actions A is a singleton.

To show that NWR equivalences are decidable in polynomial time for p̃MDPs
with one action, we argue that u ∼ w holds if and only if there exists a unique
z ∈ V such that Pu

C [♦z] = P
w
C [♦z] = 1. This characterisation allows us to compute

all equivalence classes based on where every state is almost-surely reachable from.
The latter can be done in polynomial time [1, Algorithm 45].

5 Action Pruning via the NWR

In this section, we show various ways to efficiently under-approximate the NWR
— that is, obtain subsets of the relation — and use these under-approximations
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to reduce the size of the wpMDP by pruning actions and by collapsing equivalent
states of a wpMDP. As we have shown in Sect. 3, any weighted wp̃MDP can
be efficiently converted into a (non-weighted) p̃MDP while preserving all the
never-worse relations from the original weighted model. Hence, we present under-
approximations for non-weighted models only (i.e., T = {fin, fail}). We will also
focus on trivially parametric MDPs only. Note that if U � W in a p̃MDP, then
U � W in any pMDP having the same underlying graph as the first p̃MDP.
(That is, as long as it admits a graph-preserving valuation.)

Henceforth, let M = (S,A,Δ, T ) be a non-weighted trivially parametric
MDP and write G(M) = (V,E). We make the assumption that all extremal-
value vertices [16] have been contracted: An extremal-value vertex v ∈ V is such
that either Rew∗

val(v) = 0 or Rew∗
val(v) = 1 holds for all val ∈ ValgpM. The set

of all such vertices can be computed in polynomial time [1, Algorithm 45]. One
can then contract all value-1 vertices with fin and all value-0 with fail , without
changing the values of the other vertices.

5.1 The Under-Approximation Graph

We will represent our current approximation of the NWR by means of a
(directed) under-approximation graph U = (N,R) such that N ⊆ 2V . For
U,W ∈ N , let U

U−→ W denote the fact that there is a path in U from U to
W . Throughout our algorithm we will observe the following invariant.

∀U,W ∈ N : U
U−→ W =⇒ U � W (2)

Initializing the Graph. For our initial under-approximation of the NWR, we
construct U with vertex set N = {{v}, vE | v ∈ V }. That is, it contains all
states, all state-action pairs, and all sets of immediate successors of states or
state-action pairs. For the edges, we add them so that the following hold.

1. R � ({fail}, n) for all n ∈ N
2. R � (n, {fin}) for all n ∈ N
3. R � ({v}, vE) for all v ∈ V
4. R � (vE, {v}) for all v ∈ S

Recall that V and S are the set of all vertices and the set of all states of the
MDP respectively. This initialization yields a correct under-approximation.

Lemma 2. Let U be the initial under-approximation graph as defined above.
Then, invariant (2) holds true.

Below, we describe how the under-approximation graph can be updated to get
ever tighter under-approximations of the NWR.

Updating and Querying the Graph. Whenever we add a vertex U to some under-
approximation graph U , we also add:
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– an edge from {fail} and each U ′ ∈ N such that U ′ ⊂ U to U ,
– an edge from U to {fin} and each U ′′ ∈ N such that U ⊂ U ′′, and
– an edge from U to W if {u} U−→ W holds for all u ∈ U .

When we add an edge (U,W ) to U , we first add the vertices U and W as
previously explained, if they are not yet in the graph. Finally, to query the
graph and determine whether U

U−→ W , we simply search the graph for W from
U as suggested by the definitions.

Lemma 3. Let U ′ be an under-approximation graph satisfying invariant (2) and
U the under-approximation graph obtained after adding an edge (U,W ) ∈ 2V ×2V

as described above. If U � W then U satisfies invariant (2).

Before we delve into how to infer pairs from the NWR to improve our approxi-
mation graph, we need to recall the notion of end component.

5.2 End Components and Quotienting

Say (P,B) is a sub-MDP of M, for P ⊆ S and B ⊆ {(p, a) | (p, (p, a)) ∈ E}, if:

– for all p ∈ P there is at least one a ∈ A such that (p, a) ∈ B, and
– for all p′ ∈ S and (p, a) ∈ B with ((p, a), p′) ∈ E we have p, p′ ∈ P .

One can think of sub-MDPs as a collection of connected components of the
original MDP obtained by removing some actions from some states.

A sub-MDP (P,B) of M is an end component if the subgraph of G(M)
induced by P ∪ B is strongly connected. The end component (P,B) is maximal
(a MEC) if there is no other end component (P ′, B′) 
= (P,B) such that B ⊆ B′.
The set of MECs can be computed in polynomial time [1, Algorithm 47].

It is known that end components are a special case of the NWR. In fact, all
vertices in a same end component are NWR-equivalent [16, Lemma 3]. Hence,
as we have done for extremal-value states, we can assume they have been con-
tracted. It will be useful, in later discussions, for us to make explicit the quoti-
enting construction realizing this contraction.

MEC Quotient. Let s ∈ S. We use the notation [[s]]MEC to denote the unique
MEC (P,B) containing s. That is, [[s]]MEC = {s} if s is not part of any MEC;
and [[s]]MEC = P otherwise. Now, we denote by M/MEC the MEC-quotient of
M. That is, M/MEC is the p̃MDP M/MEC = (S′, A,Δ′, T ′) where:

– T ′ = {[[t]]MEC | ∃t ∈ T},
– S′ = {[[s]]MEC | ∃s ∈ S}, and
– Δ′ = {([[s]]MEC, a, [[s′]]MEC) | ∃(s, a, s′′) ∈ Δ, [[s]]MEC 
= [[s′′]]MEC}.

The construction does preserve the never-worse relations amongst all states.

Proposition 1. For all U,W ⊆ S we have that U � W in G(M) if and only if
{[[u]]MEC | ∃u ∈ U} � {[[w]]MEC | ∃w ∈ W} in G(M/MEC).

We now describe how to prune sub-optimal actions while updating the
approximation graph via inference rules for the NWR.
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5.3 Pruning Actions and Inferring the NWR

The next theorem states that we can prune actions that lead to sub-optimal
vertices with respect to the NWR once we have taken the MEC-quotient.

Theorem 6. Let M be a p̃MDP such that M is isomorphic with M/MEC. Then,
for all valuations val ∈ ValgpM and all (s, a) ∈ S ×A with (s, a) � (sE \{(s, a)}):

max
σ

P
s
Mval

σ
[♦fin] = max

σ′
P

s
N val

σ′
[♦fin],

where N = (S,A,Δ \ {(s, a, s′) ∈ Δ | ∃s′ ∈ S}, T ).

It remains for us to introduce inference rules to derive new NWR pairs based
on our approximation graph U . The following definitions will be useful.

Essential States and Almost-sure Reachability. We say the set W ⊆ V is essential
for2 U ⊆ V , written U � W , if each path starting from any vertex in U and
ending in fin contains a vertex from W . (Intuitively, removing W disconnects U

from fin.) We say that U ⊆ V almost-surely reaches W ⊆ V , written U
a.s.−−→ W ,

if all states u ∈ U become value-1 states after replacing T with W ∪ {fail}
and making all w ∈ W have weight 1. Recall that value-1 states are so for all
graph-preserving valuations and that they can be computed in polynomial time.
Similarly, whether W is essential for U can be determined in polynomial time
by searching in the subgraph of G(M) obtained by removing W . We also define,
for W ⊆ V , a function fW : 2S → 2S :

fW (D) = D ∪
{
z ∈ V

∣
∣
∣ {z} U−→ W ∪ D

}

and write μD.fW (D) for its least fixed point with respect to the subset lattice.

Inference Rules. For all U,W ⊆ V , the following rules hold true. It is worth
mentioning that these are strict generalisations of [16, Propositions 1, 2].

U � μD.fW (D)
U � W

∃w ∈ W : {w} a.s−−→ {s ∈ S | U
U−→ {s}}

U � W (3)

Example 3. Fig. 6 depicts two p̃MDPs for the two inference rules. In Fig. 6a, we
see that the set {v,fin}, a set of vertices better than v, can almost-surely be
reached by u. Hence, v � u by the second inference rule. In Fig. 6b, we use
the first inference rule: D is initialized as empty. Then, we see that u is never
worse than w and x from the initialization and thus get D = {u,w, x}. We can
continue this to add the two actions of v to D, however, we can already see that
{u,w, x} is essential for v. Hence, we get that v � u.

2 This definition is inspired by [7] but it is not exactly the same as in that paper.
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Fig. 6. Examples showing how the two inference rules are used

Lemma 4. Let U be an approximation graph satisfying (2). Then, the inference
rules from (3) are correct.

Our proposed action-pruning method is given as Algorithm 1. Note that in
line 15 we do a final contraction of NWR equivalences. These are the equivalences
that can be derived between any two singletons {x} and {y} that lie on a same
cycle in U . The algorithm clearly terminates because the NWR is finite, there is
no unbounded recursion, and there are no unbounded loops. Finally, correctness
follows from the results in this section and, for the aforementioned contraction
of NWR equivalence classes, from [16, Theorem 1].

Algorithm 1: Reduction using the under-approximation
Inputs : A p̃MDP M = (S, A, Δ, T )
Output : A (hopefully) smaller p̃MDP

1 Initialize U ;
2 repeat
3 for s ∈ S do
4 for (s, a) ∈ sE do
5 W ← sE \ {(s, a)};

6 if {(s, a)} U−→ W then
7 Prune all {(s, a, s′) ∈ Δ | ∃s′ ∈ S};
8 else if {(s, a)} � μD.fW (D) then
9 Add edge ((s, a), W ) to U ;

10 Prune all {(s, a, s′) ∈ Δ | ∃s′ ∈ S};

11 else if ∃w ∈ W : {w} a.s.−−→ {s′ ∈ S | {(s, a)} U−→ {s′}} then
12 Add edge ((s, a), W ) to U ;
13 Prune all {(s, a, s′) ∈ Δ | ∃s′ ∈ S};
14 until U is unchanged ;
15 Contract NWR equivalences from cycles in G;
16 Return the new p̃MDP;
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6 Experiments

In this section, we show the results of the experiments that we have conducted
to assess the effectiveness of the techniques described in the previous sections.
We first motivate the research questions that we wish to answer using the exper-
iments. Then, we describe the models that we have used during the experiments,
including the pre-processing steps that were performed. Next, we describe the
different setups in which our techniques have been applied to the selected and
pre-processed models. Finally, we discuss the results that we have obtained dur-
ing the experiments. Everything needed to re-run our experiments is in [8].

We approach our experiments with the following research questions in mind.

Q1. Is the NWR really useful in practice?
Q2. Does our under-approximation give us significant reductions in the size of

some models? How do these reductions compare to the known reductions?
Q3. Does the under-approximation yield reductions in early iterations?

Note that the first question is (intentionally) vague. To approach it, we thus focus
on the more concrete two that follow. Namely, for the under-approximation, we
want to know whether we can reduce the size of common benchmarks and,
moreover, whether such reduction in size is obtained through a small number of
applications of our inference rules. On the one hand, a positive answer to Q2
would mean the NWR is indeed useful as a preprocessing step to reduce the size
of an MDP. On the other hand, a positive answer to Q3 would imply that a
small number of applications of our inference rules is always worth trying.

6.1 Benchmarks and Protocol

For the experiments, we have considered all discrete-time MDPs encoded as
PRISM models [15] from the Quantitative Verification Benchmark set [4], pro-
vided that they have at least one maximal reachability property. From these, we
have filtered out those that have an unknown number of states, or more than
64.000 states, as specified on the QComp website, in order to limit the runtime
of the experiments.

We have added every maximal reachability property from the props files as
labels in the model files. In some cases, either out of curiosity, or to compare
with other known reductions, we have introduced new labels to the models as
final states. For example, in the wlan_dl benchmark, instead of checking the
minimum probability of both stations sending correctly within deadline, we check
the maximum probability of doing so. In the consensus benchmarks, we add
new labels fin_and_all_1 and fin_and_not_all_1 to compare our reductions
to the ones used by Bharadwaj et al. [2]. Some of these labels used in the tables
and graphs later are listed below:

1. Model: consensus. Labels: disagree, fin_and_all_1, fin_and_not_all_1.
The label disagree is one of the properties in the property file and the other
two labels are meant for comparisons with past results [2].
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2. Model: zeroconf_dl. Label: deadline_min. The minimum probability of not
finishing within the deadline does not look like a maximum reachability prob-
ability question, but it turns out to be the same as the maximum probability
of reaching a new IP address within the deadline.

3. Model: zeroconf. Label: correct_max.
4. Model: crowds. Label: obs_send_all.
5. Model: brp. Labels: no_succ_trans, rep_uncertainty, not_rec_but_sent.

The PRISM files, with the added labels, have then converted into an explicit
JSON format using STORM [12]. This format was chosen since it explicitly
specifies all states and state-action pairs in an easy to manipulate file format.

We have then applied two pre-processing techniques. Namely, we have col-
lapsed all extremal states and state-action pairs and collapsed all MECs. These
two techniques, and the way they relate to the never-worse relation, are described
in the previous sections. Some models were completely reduced after collapsing
all extremal states, with only the fin and fail states remaining. We have not
included such MDPs in the discussion here onward, but they are listed in [8].
Collapsing the MECs does not prove to be as effective, providing no additional
reductions for the models under consideration.

6.2 Different Setups

In each experiment, we repeatedly apply Algorithm 1 on each model. If for two
consecutive iterations, the collapse of equivalent states (see line 15) has no effect
then we terminate the experiment. Each iteration, we start with an empty under-
approximation graph, to avoid states removed during the collapse being included
in the under-approximation. This is described in Algorithm 2.

Algorithm 2: The experimental setup
Inputs : A p̃MDP M = (S, A, Δ, T )
Output : A p̃MDP that can be analysed

1 Contract extremal-value states;
2 Contract MECs;
3 repeat
4 Start with an empty under-approximation U ;
5 Apply Algorithm 1;
6 until collapsing NWR equivalences has no effect ;

In order to reduce the runtime of the experiments, we consider a maximal
number of iterations for the loops specified on line 2 of Algorithm 1 and line 3 of
Algorithm 2. We refer to the loop of Algorithm 1 as the “inner loop”, and to the
loop of Algorithm 2 as the “outer loop”. During the experiments, we found that
running the inner loop during the first iteration of the outer loop was too time-
consuming. We therefore decide to skip the inner loop during the first iteration
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of the outer loop. Even then, running the inner loop turns out to be impractical
for some models, resulting in the following two experimental setups:

1. For some models, we allow the outer loop to run for a maximum of 17 times.
In our experiments, no benchmark required more than 7 iterations. The inner
loop is limited to 3 iterations.

2. For others, we ran the outer loop 3 times without running the inner loop.

The Markov chains considered in our experiments are always used in the
second experimental setup because Markov chains are MDPs with a single action
for each state, making the action-pruning inner loop redundant.

Remark 4. Every time we add a node U to the under-approximation graph, we
skip the step “an edge from U to W if {u} U−→ W holds for all u ∈ U ” since we
found that this step is not efficient.

6.3 Results, Tables and Graphs

Remark 5. We use the term choice to denote a state-action pair in the MDP.

Table 1 shows the state-space reduction in some of the benchmarks we ran.
After preprocessing, we obtain a 61% reduction on average in all the brp bench-
marks with "no_succ_trans" and "rep_uncertainty" as final states and a
40% reduction on average with "not_res_but_sent" as final states. In the
zeroconf_dl benchmarks, we obtain a further 50% reduction on average and
around 69% reduction in all zeroconf benchmarks. In consensus benchmarks
with "disagree" final states, we get around 37% further reduction after the
preprocessing only removed less than 16% of the states. The rest of the data
(including further benchmarks) can be found in [8]. All of these observations3
point to Q2 having a positive answer.

Among all the benchmarks we tested, only zeroconf and some instances of
consensus and zeroconf_dl see any improvements after the first iteration of
the algorithm [8]. Even then, the majority of the improvement is seen in the
first iteration, the improvement in the later iterations is minimal, as depicted
in Fig. 7, and no benchmark runs for more than 7 iterations. The consensus
benchmark with "disagree" final states runs with the second setup for (N =
2,K = 8), (N = 2,K = 16) and with the first setup for (N = 2,K = 2), (N =
2,K = 4). As seen in Table 1, all the instances gave us around a 36% further
reduction after preprocessing, although the ones where the algorithm ran only
for one iteration are significantly faster. This gives us a positive answer for Q3.

3 We were not able to properly compare our results to the ones in [2]. The sizes reported
therein do not match those from the QComp models. The authors confirmed theirs
are based on modified models of which the data and code have been misplaced.
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Table 1. Table with the number of states and choices during each step of running the
benchmarks. The last column has the running time after preprocessing. The experi-
ments with (gray) colored running time were run with the first experimental setup.

original size preprocessing under-approx
benchmark instance #st #ch #st #ch #st #ch time

consensus
"disagree"

(N,K)

(2,2) 274 400 232 344 148 260 78.17s
(2,4) 530 784 488 728 308 548 383.13s
(2,8) 1042 1552 1000 1496 628 1124 19.38s
(2,16) 2066 3088 2024 3032 1268 2276 78.47s

consensus
"fin_and_all_1"

(N,K)

(2,2) 274 400 173 280 127 232 124.33s
(2,4) 530 784 365 600 271 504 674.17s
(2,8) 1042 1552 749 1240 561 1052 14.14s
(2,16) 2066 3088 1517 2520 1137 2140 57.78s

consensus
"fin_and_not_all_1"

(N,K)

(2,2) 274 400 165 268 123 226 61.15s
(2,4) 530 784 357 588 267 498 317.95s
(2,8) 1042 1552 741 1228 555 1042 14.00s
(2,16) 2066 3088 1509 2508 1131 2130 58.24s

zeroconf_dl
"deadline_min"

(N,K,reset,deadline)

(1000,1,true,10) 3837 4790 460 552 242 333 98.47s
(1000,1,true,20) 7672 9775 2709 3351 1313 1945 79.49s
(1000,1,true,30) 11607 14860 4999 6211 2413 3605 266.00s
(1000,1,true,40) 15642 20045 7289 9071 3513 5265 560.82s
(1000,1,true,50) 19777 25330 9579 11931 4613 6925 1013.18s
(1000,1,false,10) 12242 18200 460 552 242 333 95.69s

zeroconf
"correct_max"
(N,K,reset)

(1000,2,true) 672 814 388 481 118 150 29.13s
(1000,4,true) 1090 1342 674 855 206 260 76.06s
(1000,6,true) 1508 1870 960 1229 294 370 161.01s
(1000,8,true) 1926 2398 1246 1603 382 480 237.69s

crowds
"obs_send_all"

(TotalRuns,CrowdSize)

(3,5) 1200 1198 268 266 182 180 1.03s
(4,5) 3517 3515 1030 1028 632 630 11.93s
(5,5) 8655 8653 2930 2928 1682 1680 87.76s
(6,5) 18819 18817 6905 6903 3782 3780 467.08s
(3,10) 6565 6563 833 831 662 660 13.12s
(4,10) 30072 30070 5430 5428 3962 3960 481.47s
(3,15) 19230 19228 1698 1696 1442 1440 69.90s

brp
"no_succ_trans"

(N,MAX)

(64,2) 2695 2693 1982 1980 768 766 26.76s
(64,3) 3528 3526 2812 2810 1087 1085 53.80s
(64,4) 4361 4359 3642 3640 1406 1404 89.44s
(64,5) 5194 5192 4472 4470 1725 1723 134.57s

brp
"rep_uncertainty"

(N,MAX)

(64,2) 2695 2693 1982 1980 768 766 25.74s
(64,3) 3528 3526 2812 2810 1087 1085 52.20s
(64,4) 4361 4359 3642 3640 1406 1404 87.62s
(64,5) 5194 5192 4472 4470 1725 1723 133.96s

brp
"not_rec_but_sent"

(N,MAX)

(64,2) 2695 2693 8 6 5 3 0.004s
(64,3) 3528 3526 10 8 6 4 0.01s
(64,4) 4361 4359 12 10 7 5 0.01s
(64,5) 5194 5192 14 12 8 6 0.01s
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Fig. 7. Some plots visualizing the reductions obtained per iteration.

7 Conclusions

We have extended the never-worse relation to the quantitative reachability set-
ting on parametric Markov decision processes. While the complexity of deciding
the relation is relatively high (coETR-complete), efficient under-approximations
seem promising. We believe that the relation could be made more applicable by
exploring the computation of such under-approximations in an on-the-fly fash-
ion such as, for instance, on-the-fly MEC algorithms [3]. The following questions
also warrant futher (empirical) study: What kind of MDPs have large reductions
under the NWR? What do the reduced MDPs look like? What kinds of states
are detected and removed by the NWR under-approximations?

As additional future work, we think it is worthwhile to study approxima-
tions that are (more) efficient when the MDP is encoded as a reduced ordered
binary decision diagram (BDD) or in a particular modelling language such as
the PRISM language. For the latter, an initial work in this direction is [21].
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Abstract. In this paper, we propose an approximating framework for
analyzing parametric Markov models. Instead of computing complex
rational functions encoding the reachability probability and the reward
values of the parametric model, we exploit the scenario approach to syn-
thesize a relatively simple polynomial approximation. The approxima-
tion is probably approximately correct (PAC), meaning that with high
confidence, the approximating function is close to the actual function
with an allowable error. With the PAC approximations, one can check
properties of the parametric Markov models. We show that the scenario
approach can also be used to check PRCTL properties directly – with-
out synthesizing the polynomial at first hand. We have implemented our
algorithm in a prototype tool and conducted thorough experiments. The
experimental results demonstrate that our tool is able to compute poly-
nomials for more benchmarks than state-of-the-art tools such as PRISM
and Storm, confirming the efficacy of our PAC-based synthesis.

1 Introduction

Markov models (see, e.g., [52]) have been widely applied to reason about quanti-
tative properties in numerous domains, such as networked, distributed systems,
biological systems [37], and reinforcement learning [4,59]. Properties analyzed on
Markov models can either be simple, such as determining the value of the prob-
ability that a certain set of unsafe states is reached and how an expected reward
value compares with a specified threshold, or complex, involving employing tem-
poral logics such as PCTL [10,35] and PRCTL [1]. To verify these properties, var-
ious advanced tools have been developed, such as PRISM [44], Storm [24,36],
MRMC [42], CADP 2011 [28], PROPhESY [23] and IscasMc [33].

In this paper we consider parametric discrete time Markov chains (pDTMCs),
whose transition probabilities are not required to be constants, but can depend
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on a set of parameters. For this type of model, the value of the analyzed prop-
erty can be described as a function of the parameters, mapping either to truth
values or to numbers. In many cases, these functions are rational functions,
that is, fractions of co-prime polynomials. The exact rational function is com-
monly challenging to compute as it often involves polynomials with very high
degree [5,41]. Moreover, the Markov models applied in real life may be very
large, with thousands of states, so it is very complicated to compute the rational
functions accurately. However, to analyze the properties of such Markov models
in practical applications, we often allow for a certain acceptable level of error,
without guaranteeing that the given property holds absolutely.

Contribution of the Paper. In this work, we propose an alternative app-
roach to replace the exact solution of function fϕ that describes the value of
the analyzed property ϕ in the given pDTMC and pDTMRM. The main idea
is exploiting the scenario approach [16,18] to learn an approximating function –
polynomial f̃ϕ with low degree to approximate the actual function fϕ with prob-
ably approximately correct (PAC) guarantee, i.e., with high confidence 1 − η,
the probability that the approximation error is within an error margin λ is at
least 1 − ε.

We demonstrate how to use PAC approximation f̃ϕ to synthesize parameters
and analyze the properties of original functions fϕ. We use PAC approxima-
tion to check the safe region of the parameter space and some global probabil-
ity properties. We also extend to reward properties: we show how to use PAC
approximation to estimate the lower bound of the expectation of fϕ over the
domain of the parameters. Extending our approach to parametric MDPs is also
feasible, as long as we treat the MDP strategy as in [2], we allow the strategy
to change for the different MDP instances.

Experimental results show that our prototype PacPMA can solve more
properties under the same conditions than the state-of-the-art verification tools
Storm and PRISM, and provide PAC approximations with a statistical guar-
antee. We demonstrate that as the degree of the polynomial approximation
increases, the computed error margin λ approaches zero, indicating that the
polynomial with higher degree provides a more accurate approximation of the
original function. As for the accuracy of the approximation, we show that PAC
approximation f̃ϕ can approximate fϕ two to three orders of magnitude more
accurately than the Taylor expansion of the actual function fϕ. We also demon-
strate that the PAC approximation can approximately capture the lower bound
of the expected reward of pDTMRM with high confidence, thus can help to
verify the reward properties.

Related Work. Model checking of parametric Markov models is not a new
area and a number of related works exist, each with different strengths and
weaknesses. In the following, we demarcate our work from the existing ones.

Daws has devised a language-theoretic approach to solve the reachability
problem of parametric Markov chains [22], where the model is viewed as a finite
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automaton. Based on the state elimination approach [38], the regular expression
describing the language of such an automaton is computed, which is transformed
into a rational function over the parameters of the model in a postprocessing
step. The method has been improved by intertwining the state elimination and
the computation of the rational function [32], this improved algorithm has been
implemented in the tool PARAM [31]. PARAM also supports bounded reacha-
bility, relying on matrix-vector multiplication with rational function entries, and
reachability rewards [11,25]. All these works [31,32] compute the precise rational
function that describes the property of interest. Unfortunately, it is challenging
to evaluate it, due to the large coefficients and high exponents. Moreover, the
works discussed above do not consider properties specified by a temporal logic.

Several improvements have been proposed in later works. Jansen et al. [39]
perform the state elimination in a more systematic order, often leading to bet-
ter performance in practice. The work [53] provides the first sound and feasible
technique for parameter synthesis of Markov decision processes, Spel et al. [57]
achieved efficient parameter optimization by combining monotonicity checking
and parameter lifting, allowing for further evaluation of the safety of parameter
space. The work [27] uses arithmetic circuits, which are DAG-like structures, to
represent such rational functions. A further work [30] follows a related approach
to solve (potentially nested) PRCTL formulas for Markov decision processes: the
state space is divided into hyperrectangles, and one has to show that a particular
decision is optimal for a whole region. The work [5] improves the computation of
the rational function by means of a fraction-free Gaussian elimination; the exper-
imental evaluation confirms its effectiveness. There are also methods for checking
parametric continuous time Markov chains [34], by using a scenario approach [3]
or by being based on Gaussian processes [13,14]. A recent work [26] proposes a
fast parametric model checking method named fPMC, which extends the cur-
rent parametric model checking approaches to systems with complex behaviors
and multiple parameters. A recent survey [40] provides an overview of parame-
ter synthesis for Markov models. In the above Markov model checking methods,
the accurate algorithm is computationally complex, while the approximate algo-
rithms rarely provide a probability guarantee. However, our proposed method
for verifying parametric Markov models based on scenario approach provides
both efficiency and probabilistic guarantee.

The scenario approach was first introduced in [15], based on constraint sam-
pling to deal with uncertainty in optimization. The works [16,18,19] study a
probabilistic solution framework for robust properties, the work [50] proposes a
method to solve chance constrained optimization problems lying between robust
optimization and scenario approach, which does not require prior knowledge of
the probability distribution of the parameters. Based on [15,16], the work [17]
allows violating some of the sampled constraints in order to improve the opti-
mization value, and the work [58] expands the scenario optimization problem to
multi-stage problems. Recently, the scenario approach has been applied to verify
safety properties of black-box continuous time dynamical systems [60] and the
robustness of neural networks [48].



Scenario Approach for Parametric Markov Models 161

Fig. 1. An example of discrete time Markov chain

The most related to our work is [2], which also applies the scenario approach
for analyzing parametric Markov chains and Markov decision processes. The
main difference with our work is that in [2], the authors compute the probability
that the instances of the parametric MDP satisfy a given property ϕ, by sampling
the parameter values according to some assumed distribution. Instead, our work
targets at computing an approximation of the complicated function fϕ depending
on the parameters – such as the one corresponding to the reachability probability
ϕ. Our framework can bound the error between the actual function and the
approximation we compute. Moreover, as a side result, our PAC approximations
can be used for visualizing the reachability probability, finding counterexamples,
and analyzing the properties of the original functions with a certain confidence.

Organization of the Paper. After giving in Sect. 2 some preliminaries, models,
and logic we use in this paper, in Sect. 3 we present our PAC-based model check-
ing approach; we evaluate it empirically in Sect. 4 before concluding the paper
in Sect. 5 with some final remarks.

Due to space constraints, the proofs are provided in the technical report [49].

2 Preliminaries

In this section, we first recall DTMCs, a well-known probabilistic model (see,
e.g., [6]), reward structures, the probabilistic logic PRCTL we adopt to express
properties on them, and then consider their extension with parameters.

2.1 Probabilistic Models

Definition 1. Given a finite set of atomic propositions AP, a (labelled) discrete
time Markov chain (DTMC) D is a tuple D = (S, s̄,P, L) where S is a finite set
of states; s̄ ∈ S is the initial state; P : S × S → [0, 1] is a transition function
such that for each s ∈ S, we have

∑
s′∈S P(s, s′) = 1; and L : S → 2AP is a

labelling function.

The underlying graph of a DTMC D = (S, s̄,P, L) is a directed graph 〈V,E〉
with V = S as vertices and E = { (s, s′) ∈ S × S |P(s, s′) > 0 } as edges.

As an example of DTMC, consider the DTMC D shown in Fig. 1. D has
5 states (from s0 to s4), with s0 being the initial one (marked with the gray
background and the small incoming arrow); transitions with probability larger
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than 0 are depicted as arrows, so for example we have P(s0, s1) = 0.8 > 0, while
the labels assigned to each state are shown on the top-right corner of the state
itself, e.g., L(s2) = {�} while L(s0) = ∅.

DTMCs can be equipped with reward structures that assign values to states
and transitions; such reward structures can be used to count the number of
transitions taken so far or to attach “costs” or “gains” to the DTMC.

Definition 2. A discrete time Markov reward model (DTMRM) R is a pair
R = (D, r) where D is a DTMC and r : S ∪ (S ×S) → R≥0 is a reward function.

For example, the reward function c defined as c(s) = 0 and c(s, s′) = 1 for
each s, s′ ∈ S allows us to “count” the number of steps taken by the DTMC.

Let D be a DTMC; a path π of D is a (possibly infinite) sequence of states
π = s0s1s2 · · · such that for each meaningful i ∈ N, we have P(si, si+1) > 0; we
write πi to indicate the state si. We let Paths∗(D) (Paths(D), resp.) denote the
sets of all finite (infinite, resp.) paths of D. Given a finite path π = s0s1s2 · · · sn,
we denote by |π| the number of states n + 1 of π.

Given a DTMRM R = (D, r), we can define the expected cumulative reward
ExpRewR

s as follows (cf. [6,32,43]): given set T ⊆ S of states, ExpRewR
s (T ) is

the expectation of the random variable XT : Paths(D) → R≥0 with respect to
the XT defined as follows:

XT (π) =

⎧
⎪⎨

⎪⎩

0 if π0 ∈ T,

∞ if πi /∈ T for each i ∈ N,
∑min{ n∈N | πn∈T }−1

i=0 r(πi) + r(πi, πi+1) otherwise.

2.2 Probabilistic Reward Logic PRCTL

To express properties about probabilistic models with rewards, we use formulas
from PRCTL, the Probabilistic Reward CTL logic [1], that extends PCTL [10,35]
with rewards. Such formulas are constructed according to the following grammar,
where ϕ is a state formula and ψ is a path formula:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | P��p(ψ) | R��r(Fϕ)

ψ ::= Xϕ | ϕ U ϕ | ϕ U≤k ϕ

where a ∈ AP , �	 ∈ {<,≤,≥, >}, p ∈ [0, 1], r ∈ R≥0, and k ∈ N. We use freely
the usually derived operators, like ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), tt = a ∨ ¬a, and
Fϕ = ttU ϕ. The PCTL logic is just PRCTL without the R��r(Fϕ) operator.

The semantics of a state formula ϕ and of a path formula ψ is given with
respect to a state s and a path π of a DTMRM R = (D, r), respectively. The
semantics is standard for all Boolean and temporal operators (see, e.g., [6,20]);
for the P��p operator, it is defined as s |= P��p(ψ) iff Prs({π ∈ Paths(D) |π |=
ψ }) �	 p and, similarly, s |= R��r(ψ) iff ExpRews({π ∈ Paths(D) |π |= ψ }) �	 r.

With some abuse of notation, we write R |= ϕ if s̄ |= ϕ; we also consider
P=?(ψ) and R=?(ψ) as PRCTL formulas, asking to compute the probability (resp.
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Fig. 2. An example of parametric discrete time Markov chain

expected reward) of satisfying ψ in the initial state s̄ of R, i.e., to compute the
value Pr s̄({π ∈ Paths(D) |π |= ψ }) (resp. ExpRew s̄({π ∈ Paths(D) |π |= ψ })).

Consider the DTMC D shown in Fig. 1. As an example of PRCTL formula,
there is P=?(F�) that asks to compute the probability of eventually reaching a
state labelled with �, for which we have P=?(F�) ≈ 0.78.

2.3 Parametric Models

We now recall the definition of parametric models from [30,32]. Given a finite
set of variables, or parameters, V = {v1, . . . , vn}, let v = (v1, . . . , vn) denote
the vector of parameters and range: V → R be the function assigning to each
parameter v ∈ V its closed interval range(v) = [Lv, Uv] ⊆ R of valid values. Given
the ring PV of the polynomials with variables V over the field R of real numbers,
a rational function f is a fraction f(v) = g1(v)

g2(v)
where g1, g2 ∈ PV; let FV denote

the set of rational functions. An evaluation ν is a function ν : V → R such that
for each v ∈ V, ν(v) ∈ range(v). Given f = g1

g2
∈ FV and an evaluation ν, we

denote by f〈ν〉 the rational number f(ν(v)) = f(ν(v1), . . . , ν(vn)); we assume
that f〈ν〉 is well defined for each evaluation ν, that is, we assume that g2〈ν〉 �= 0
for each evaluation ν.

Definition 3. Given a finite set of parameters V, a parametric discrete time
Markov chain (pDTMC) DV with parameters V is a tuple DV = (S, s̄,P, L)
where S, s̄, and L are as in Definition 1, while P : S × S → FV.

Definition 4. Given a pDTMC DV = (S, s̄,P, L), an evaluation ν induces the
DTMC D〈ν〉 = (S, s̄,Pν , L), provided that Pν(s, s′) = P(s, s′)〈ν〉 for each s, s′ ∈
S satisfies the conditions given in Definition 1.

The extension to parametric DTMRMs (pDTMRMs) is trivial: a pDTMRM
RV is just a pair RV = (DV, r) where DV is a pDTMC and r is a reward function.

To simplify the presentation and ensure that the underlying graph of DV

does not depend on the actual evaluation, we make the following assumption:

Assumption 1 (cf. [30]). Given a pDTMC DV, for each pair of evaluations
ν1 and ν2, for the induced DTMCs DV〈ν1〉 and DV〈ν2〉 we have that for each
s, s′ ∈ S, it holds that Pν1(s, s

′) = 0 if and only if Pν2(s, s
′) = 0.

By this assumption, either a state s′ has probability 0 to be reached from s
(i.e., it is not reachable) independently of the evaluation, or it is always reachable,
with possibly different probability values.
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As an example of pDTMC, consider the model shown in Fig. 2: now, p and
q are the parameters, with e.g. range(p) = [0.01, 0.09] and range(q) = [0.25, 0.8].
One evaluation is ν(p) = 0.05 and ν(q) = 0.8, which gives us the DTMC shown
in Fig. 1. The rational function corresponding to the PRCTL formula P=?(F�)
is q2

q+2p−2pq ≈ 0.78 when evaluated on ν, as one would expect.

3 Probably Approximately Correct Function Synthesis

In this section, we show how to approximate the exact functions for the properties
of Markov models such as reachability probability with low-degree polynomials,
while providing a statistical PAC guarantee on the closeness of the approximating
polynomial with the approximated function.

3.1 Probably Approximately Correct Models

Our method provides a PAC approximation, with respect to the given signif-
icance level η and error rate ε. First, we define the PAC approximation of a
generic function f as follows.

Definition 5. Given a set of n variables V = {v1, . . . , vn}, their domain X =∏n
i=1 range(vi), and a function f : X → R, let P be a probability measure over

X, λ ∈ R≥0 be a margin to measure the approximation error, and ε, η ∈ (0, 1]
be an error rate and a significance level, respectively.

We say that the polynomial f̃ ∈ PV is a PAC approximation of f with (ε, η)-
guarantee if, with confidence 1 − η, the following condition holds:

P (|f̃(v) − f(v)| ≤ λ) ≥ 1 − ε.

In this work, we assume that P is the uniform distribution on the domain
X =

∏n
i=1 range(vi) unless otherwise specified. Intuitively, our aim is to make

the PAC approximation f̃ as close as possible to f , so we introduce the margin
λ to describe how close the two functions are. The two statistical parameters
η and ε are the significance level and error rate, respectively; they are used
to measure how often the difference between f̃ and f respects the threshold λ.
Specifically, the significance level η is a threshold set to describe the degree of risk
of accepting an error while the error rate ε is used to describe the probability that
the difference between the value f(v) and f̃(v) obtained by randomly sampled
v in the domain X exceeds λ, so we can adjust these parameters to change the
quality of the approximation.

3.2 The Scenario Approach

PAC approximation is inspired by the scenario approach proposed in [16,18],
where the scenario approach was originally applied to robust convex program-
ming problems [7,8,29]. Robust convex programming problems are a type of
uncertain convex optimization problem, which has a general form as follows:
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min
θ∈Θ⊆Rm

aT θ

s.t. fω(θ) ≤ 0 ∀ω ∈ Ω
(1)

under the assumption that fω : Θ → R is a convex function of θ ∈ Θ for every
uncertain parameter ω ∈ Ω. We also assume that the set Θ is convex and closed.

The set Ω has an infinite number of elements in general, the main obstacle on
solving the optimization problem (1) is that it has infinitely many constraints.
In most cases, robust convex optimization problems are NP-hard [7,8]. Instead
of solving the problem (1), based on the famous Helly theorem in convex anal-
ysis [54], the work [16] transform problem (1) to scenario optimization problem
as formalized in Definition 6 by using finitely many constraints, while providing
statistical guarantee on the error rate made with respect to the exact solution
of (1).

Definition 6. Let P be a probability measure over set Ω and ω1, . . . , ωl be l
independent identically distributed samples taken from Ω according to P . The
scenario optimization problem corresponding to the problem (1) is defined as

min
θ∈Θ⊆Rm

aT θ

s.t.
l∧

i=1

fωi
(θ) ≤ 0 ωi ∈ Ω

(2)

The optimization problem (2) can be seen as the relaxation of the prob-
lem (1), since we do not require that the optimal solution θ∗

l of the problem (2)
satisfies all constraints fω(θ∗

l ) ≤ 0 for each ω ∈ Ω, but only the constraints
corresponding to the l samples from Ω according to P . The issue now is how to
provide a strong enough guarantee that the optimal solution θ∗

l of (2) also satis-
fies the other constraints fω(θ) ≤ 0 with ω ∈ Ω\{ωi}l

i=1 we have not considered.
To answer this question, an error rate ε is introduced to bound the proba-

bility that the solution θ∗
l violates the constraints of problem (1); we denote by

η the significance level with respect to the random sampling solution algorithm.
Statistics theory ensures that as the number of samples l increases, the probabil-
ity that the optimal solution of the optimization problem (2) violates the other
unseen constraints will tend to zero rapidly. The minimal number of sampled
points l is related to the error rate ε ∈ (0, 1] and significance level η ∈ (0, 1] by:

Theorem 1 ([18]). If the optimization problem (2) is feasible and has a unique
optimal solution θ∗

l , then P (fω(θ∗
l ) > 0) < ε, with confidence at least 1 − η,

provided that the number of constraints l satisfies

l ≥ 2
ε

·
(

ln
1
η

+ m
)
,

where m is the dimension of θ, that is, θ ∈ Θ ⊆ R
m, ε and η are the given error

rate and significance level, respectively.

Theorem 1 indicates that the number of sampling points can be flexibly
changed according to the error rate, confidence level, and the number of param-
eters. We can observe that when the error rate ε is fixed, the number of sampling
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points l is linearly related to the number of parameters m. In Theorem 1, we
assume that the optimization problem (2) has a unique optimal solution θ∗

l . This
is not a restriction in general, since for multiple optimal solutions we can just
use the Tie-break rule [16] to get a unique optimal solution.

3.3 Synthesizing Parametric Functions

We now apply the above scenario approach to the synthesis of the paramet-
ric functions for pDTMRMs. Given a pDTMRM RV = (DV, r) with DV =
(S, s̄,P, L), let v denote the vector of parameters (v1, . . . , vn) of DV. For a
PRCTL state formula ϕ, the analytic function fϕ(v), representing the prob-
ability or the expected reward of the paths satisfying ϕ in the pDTMRM RV,
can be a rational function with a very complicated form [31,32] since the polyno-
mials in these rational functions may have exponentially many terms. Our aim
is to approximate the function fϕ(v) with some low degree polynomial f̃ϕ(v).

The reason why we choose a polynomial f̃ϕ(v) with low degree to fit the
rational function fϕ(v) is that the graph of polynomials f̃ϕ(v) and original
functions fϕ(v) are both surfaces and the polynomial f̃ϕ(v) can approximate
the rational function fϕ(v) well if we synthesize appropriately the coefficients
c = (c0, c1, c2) of the polynomial by learning them.

It is worth mentioning that no matter how complicated the function fϕ(v) is
(it could also be any kind of function other than rational functions), we can still
obtain an approximating polynomial f̃ϕ(v) of fϕ(v) by solving an optimization
problem, and utilize it to analyze various properties the original function fϕ(v)
may satisfy. In the remainder of this section, we show how we synthesize such
coefficients c, and thus the polynomial; we first introduce some notations.

Given the vector of parameters v and a degree d ∈ N, we denote by vd the
vector of monomials vd = (vα)‖α‖1=d, where each monomial vα is defined as
vα = vα1

1 vα2
2 · · · vαn

n , with α = (α1, . . . , αn) ∈ N
n and ‖α‖1 =

∑n
i=1 αi. Then,

we associate a vector ci of coefficients to each of the monomials in the vector
(vi)d

i=0, obtaining the PAC approximation f̃(v) =
∑d

i=0 ci · vi. For example,
if the pDTMC DV has two parameters v1 and v2, then for d = 2 we get the
quadratic polynomial f̃(v) = c0 + c1 · v + c2 · v2 = c0 + (c11 · v1 + c12 · v2) +
(c21 · v2

1 + c22 · v1 · v2 + c23 · v2
2). In general, for n parameters and a polynomial

of degree d, we need
(
n+d

n

)
coefficients.

Given a PAC approximation schema f̃(v) =
∑d

i=0 ci ·vi = c ·(1,v, · · · ,vd)T ,
we solve the following Linear Programming (LP) problem with infinitely many
constraints to learn the coefficients c = (ci)d

1 of the polynomial f̃(v):

min
c,λ

λ

s.t. − λ ≤ f(v) − c · (1,v, . . . ,vd)T ≤ λ, ∀v ∈ X,

c ∈ R
(n+d

n ), λ ≥ 0

(3)

where f(v) is the analytic function on the domain X =
∏n

i=1 range(vi), the
domain R

(n+d
n ) of vectors c is convex and closed, and the constraints of (3) are
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continuous convex functions with respect to the variable c for any v, which
satisfies the condition of Theorem 1. Note that for pDTMRMs we do not need
to compute the rational function fϕ used as f in problem (3) to get its value
on v, since we can first instantiate the pDTMRM with v and then compute the
value of ϕ in the instantiated DTMRM.

Given the error rate ε and the significance level η, by Theorem 1 we need
only to independently and identically sample at least l ≥ 2

ε

(
ln 1

η +
(
n+d

n

)
+ 1

)

points X̃ = {vi}l
i=1 to form the constraints used in the relaxed LP problem, as

done in the problem (2). Concretely, we get the following LP problem:

min
c,λ

λ

s.t.
l∧

i=1

−λ ≤ f(vi) − c · (1,vi, · · · ,vd
i )T ≤ λ, ∀vi ∈ X̃,

c ∈ R
(n+d

d ), λ ≥ 0.

(4)

We solve the optimization problem (4) to get the coefficients c, hence the PAC
approximation f̃ of the original function f , with the statistical guarantees given
by Definition 5; in the context of a pDTMRM RV and a PRCTL state formula
ϕ, we get the PAC approximation f̃ϕ of the original function fϕ.

3.4 PRCTL Property Analysis

Given the probabilistic formula ϕ = P=?(ψ) with path formula ψ, we can obvi-
ously use the PAC approximation f̃ϕ to check whether the domain of parameters
X is safe, with PAC guarantee. In this section, we introduce a direct PAC based
approach for checking domain’s safety, without having to learn the approxima-
tions first. Then, we consider linear approximations and discuss how counterex-
amples can be generated in this case before showing how the polynomial PAC
approximation f̃ϕ can be used to analyze global properties of fϕ over the whole
parameter space X. Lastly, we present how to extend the approach to the reward
formula ϕ = R=?(Fϕ′).

Definition 7 (Safe Region). Let X =
∏n

i=1 range(vi) be the domain of a set
of n parameters V. Given a function f : X → R≥0 and a safety level ζ ∈ R≥0,
we say that the point v ∈ V is safe if and only if f(v) < ζ; we call X safe if and
only if each v ∈ V is safe.

Intuitively, we hope that the probability of the pDTMRM RV to reach an
unsafe state under any choice of the parameters will be less than the given safety
level, to check whether the domain X of the parameters is safe, we can resort to
solve the following optimization problem with respect to the given error rate ε
and significance level η, and compare the obtained optimal solution λ∗ with ζ:

min λ

s.t. f(v) ≤ λ ∀v ∈ X̃,
(5)
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Fig. 3. The rational function fϕ(p, q) = q2

q+2p−2pq
and its linear approximations f̃ϕ(p, q)

with different choices of ε and η

where X̃ ⊆ X is a set of samples such that |X̃| ≥
⌈
2
ε · (ln 1

η + 1)
⌉
. The optimiza-

tion problem (5) can be solved in time O(|X̃|), since it only needs to compute
the maximum value of fϕ(v) for v ∈ X̃ as the optimal solution λ∗. Although the
calculation is very simple, polynomials with degree 0, i.e., constants, also have
good probability and statistical meaning, so we have the following result as a
direct consequence of the definitions:

Lemma 1. Given the safety level ζ, if the optimal solution λ∗ of the problem (5)
satisfies λ∗ < ζ, then the domain X is safe with (ε, η)-guarantee. Otherwise, if
λ∗ ≥ ζ, then the parameter point v∗ ∈ X̃ corresponding to λ∗ is unsafe.

By Lemma 1, we can analyze with (ε, η)-guarantee whether the parameter
space is safe or not. For example, consider the pDTMC DV shown in Fig. 2 and
the safety property P<0.8(F(×c ∨×o)). If we set ε = η = 0.05, by sampling in the
region X = [0.01, 0.09] × [0.25, 0.8] at least 160 points and solving the resulting
optimization problem (5), we get the optimal value λ∗ = 0.747 by rounding to
three decimals. Since λ∗ = 0.747 < 0.8, by Lemma 1, the region X is safe with
(0.05, 0.05)-guarantee.

Linear PAC Approximation and Counterexamples. Since constants can
approximate the maximum value of the function f with the given (ε, η)-PAC
guarantee, linear functions can also be used to approximate f , which are more
precise than constants. Also, we can check whether there is an unsafe region in
the domain of parameters X with a given confidence, by the following Lemma 2,
and further search counterexamples by linear PAC approximations.

Lemma 2. Given the domain of parameters X, a function f : X → R≥0, and
a probability measure P over X, let f̃ be a PAC approximation of f with (ε, η)-
guarantee. Given the safety level ζ ∈ R≥0, if for each v ∈ X we have f̃(v)+λ < ζ,
then P (f(v) < ζ) ≥ 1 − ε holds with confidence 1 − η. In turn, if P (f̃(v) − λ >
ζ) > ε, then there exist v ∈ X such that f(v) > ζ holds with confidence 1 − η.
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The plots in Fig. 3 show the results of applying linear PAC approximation
on the function fϕ(p, q), with ϕ = P=?(F�), for the pDTMC DV shown in
Fig. 2. We sampled 280 points for ε = η = 0.05 and 2182 points for ε = 0.01
and η = 0.001, respectively, according to Thm. 1. The plot on the left, where
we fix the parameter p = 0.05, shows that even if we sample just 280 points,
fϕ(p, q) and f̃ϕ(p, q) are closer than the computed margin λ. For the case ε =
η = 0.05, the linear approximation is f̃ϕ(p, q) = −0.035 + 1.063q − 0.718p with
λ = 0.011 by rounding the coefficients to three decimals. We can easily check
that for each (p, q) ∈ X we have f̃ϕ(p, q) + λ < 0.85 by linear programming, so
X = [0.01, 0.09] × [0.25, 0.8] is a 0.85-safe region with respect to fϕ(p, q) with
(0.05, 0.05)-guarantee. However, if we set ζ = 0.6, we can prove P (f̃ϕ −λ > ζ) =
0.288 > ε = 0.05, so by Lemma 2 we get that there exist an unsafe region such
that f(p, q) > ζ, with confidence 95%.

We can take advantage of the easy computation of linear programming with
linear functions to further search for potential counterexamples that may exist.
The maximum value of f̃ϕ can be found at (0.01, 0.8), according to the linearity
of f̃ϕ, so we can instantiate the pDTMC DV in Fig. 2 with the parameter point
(0.01, 0.8) to get that fϕ(p, q) = 0.796. Since fϕ(p, q) > 0.6 for the safety level
ζ = 0.6, we can claim that the real counterexample (0.01, 0.8) is found. In the
case that the parameter point v0 = (p, q) corresponding to maximum value of f̃ϕ

is a spurious counterexample for the pDTMC with respect to ϕ, we can learn a
more precise approximation by adding v0 to X̃. One may also divide the domain
X into several subdomains and analyze each of them separately.

As for the computational complexity, it is easy to find the maximum value
of a linear function by linear programming; on the other hand, computing the
maximum value of polynomials and rational functions is rather difficult if their
degree is very high or the dimension of the parameter space is too large. So a
linear function is a good alternative to compute the maximum value of f with
PAC guarantee, while polynomials are suitable for analyzing more complicated
properties, such as the global ones considered below.

Polynomial PAC Approximation. One advantage of polynomials over ratio-
nal functions is that they make it easy to compute complex operations such
as inner product and integral [55], as needed to evaluate e.g. the Lp norm

‖g‖p = p

√∫
Z
|g(z)|p dz of a function g : Z → R, with p ≥ 1. This means that

we can adopt polynomials to check some more complicated properties of a
pDTMRM RV, such as whether the function fϕ is close to a given number β on
the whole parameter space X. This is useful, for instance, to evaluate how much
the behavior of RV with respect to the property ϕ is affected by the variations
of the parameters. We can model this situation as follows:

Definition 8. Given the domain X of a set of parameters, a function f : X →
R≥0, a safety level ζ, and β ∈ R≥0, we say that f is near β within the safety
level ζ on X with respect to the Lp norm, if ‖f − β‖p < ζ.

To verify the above property, we can rely on the following result:
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Lemma 3. Given X, f , ζ, and β as in Definition 8, let M be an upper bound
of f(X) and f̃ be a PAC approximation of f with (ε, η)-guarantee and margin
λ; let |X| =

∫
X

1 dv. For each p ≥ 1, if f̃ satisfies the condition

p

√(
λ p

√
(1 − ε) · |X| + ‖f̃ − β‖p

)p

+ ε · |X| · max(|M − β|p, βp) < ζ (6)

then ‖f − β‖p < ζ holds with confidence 1 − η.

Consider again the pDTMC DV shown in Fig. 2 and ϕ = P=?(F�); since fϕ

represents probabilities, we have the well-known upper bound M = 1. Here we
consider the L2 norm, which is widely used in describing the error between func-
tions in the signal processing field (see, e.g., [12,21]), as it can reflect the global
approximation properties and is easy to compute. To simplify the notation, let
UB denote the complex expression occurring in the formula (6), that is:

UB(f̃ϕ,X, β) =

√(
λ
√

(1 − ε) · |X| + ‖f̃ϕ − β‖2
)2

+ ε · |X| · max(|1 − β|2, β2).

We want to know whether fϕ(p, q) = q2

q+2p−2pq is near 0.5 within 0.05, i.e., given
the safety level ζ = 0.05, we want to check ‖fϕ − 0.5‖2 < 0.05. According to
Lemma 3, we first compute a PAC approximation f̃ϕ of fϕ. By setting ε =
η = 0.05, we get the quadratic polynomial f̃ϕ(p, q) = 0.013 + 0.925q − 1.442p +
0.953pq + 2.072p2 + 0.085q2, by rounding to three decimals. In this case, we get
UB(f̃ϕ,X, β) = 0.0432 < ζ = 0.05, so Lemma 3 applies. If, instead, we would
have chosen ζ ′ = 0.04, then we cannot prove ‖fϕ − 0.5‖2 < 0.04 by relying on
Lemma 3. To do so, we need to consider the more conservative values ε = 0.01
and η = 0.001, which give us UB(f̃ϕ,X, β) = 0.0379 < ζ ′ = 0.04, so we can
derive that ‖fϕ − 0.5‖2 < 0.04 holds with confidence 99.9%.

Extension to Reward Models. The extension of the constructions given
above to reward properties is rather easy: for instance, we can approximate
the rational function representing the state property ϕ = R=?(Fϕ′), the reward
counterpart of P=?(ψ′), by instantiating fϕ(vi) in Problem (4) with the expected
reward value computed on the pDTMC instantiated with vi. Similarly, we can
compute linear and polynomial PAC approximations for safe regions, with the
latter defined in terms of the value of the reward instead of the probability.

We can consider also the following case: given a pDTMRM RV, we want
to verify whether the expected value of ϕ = R=?(Fϕ′) over the parameters v,
denoted fϕ(v), can reach a given reward level ρ. This model the scenarios where,
to make a decision, we need to know whether the expectation of the rewards for
a certain decision satisfies the given conditions. We formalize this case as follows:

Definition 9. Given the domain X of a set of parameters, a function f : X →
R≥0, a reward level ρ, and a probability measure P over X, we say that the
expectation of f on X with respect to P can reach the reward level ρ, if

∫

X

f(v) dP (v) > ρ. (7)
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We can resort to the following lemma to check condition (7):

Lemma 4. Given X, f , P , and ρ as in Definition 9, let f̃ be a PAC approxi-
mation of f with (ε, η)-guarantee and margin λ. If f̃ satisfies the condition

∫

X

(f̃(v) − λ) dP (v) − ε · |X| · max
v∈X

(f̃(v) − λ) > ρ, (8)

then Condition (7) holds with confidence 1 − η.

4 Experimental Evaluation

We have implemented the PAC-based analysis approach proposed in Sect. 3 in a
prototype tool named PacPMA1, the PAC-based Parametric Model Analyzer,
and evaluated it on several benchmarks: we considered the DTMCs from the
PRISM benchmark suite [45], some of the resulting models are also available as
examples in the Storm [36] repository2. We replaced the probabilistic choices
in them with parameters. The probabilistic choices in most of the models corre-
spond to the flip of a fair coin, so we considered three possibles ranges for the
parameters, namely [0.01, 0.33], [0.33, 0.66], and [0.66, 0.99], to represent the fact
that the coin is strongly unfair to head, rather fair, and strongly unfair to tail,
respectively. For the remaining models, where the choice is managed by the uni-
form distribution over several outcomes, we split the outcomes into two groups
(e.g., odd and even outcomes) and then used a parametric coin and five intervals
to choose the group. By considering the reachability properties available for each
DTMC and the choice of the constants controlling the size of the DTMCs, we get
a total of 936 benchmarks for our evaluation for probabilistic properties and 620
benchmarks for expected rewards. We performed our experiments on a desktop
machine with an i7-4790 CPU and 16 GB of memory running Ubuntu Server
20.04.4; we used BenchExec [9] to trace and constrain the tools’ executions:
we allowed each benchmark to use 15 GB of memory and imposed a time limit
of 10 min of wall-clock time.

PacPMA is written in JAVA and uses Storm [36] and MATLAB to get the
value of the analyzed property and the solution of the LP problem, respectively.
We also used Storm v1.7.0 and PRISM [44] v4.7 to compute the actual rational
functions for the benchmarks, to check how well our PAC approximation works in
practice. We were unable to compare with the fraction-free approach proposed
in [5] since it is implemented as an extension of Storm v1.2.1 that fails to
build on our system. To avoid to call repeatedly Storm for each sample as
an external process, we wrote a C wrapper for Storm that parses the input
model and formula and sets the model constants only once, and then repeatedly
instantiates the obtained parametric model with the samples and computes the
corresponding values of the property, similarly to the batch mode used in [3]. We

1 https://github.com/iscas-tis/PacPMA/.
2 https://github.com/moves-rwth/storm/.

https://github.com/iscas-tis/PacPMA/
https://github.com/moves-rwth/storm/


172 Y. Liu et al.

Table 1. Overview of the outcomes of the experiments

Outcome PRISM Storm PacPMAd (1 thread/8 threads)

d = 1 d = 2 d = 3 d = 4 d = 5

P=?[ψ] Success 522 576 594/629 585/621 576/621 576/621 576/603

Memoryout 18 63 0/306 0/306 0/306 0/306 0/306

Timeout 396 297 342/1 351/9 360/9 360/9 360/27

R=?[ψ] Success 153 224 302/302 302/302 302/302 302/302 302/302

Memoryout 0 0 0/282 0/282 0/282 0/282 0/282

Timeout 467 396 318/36 318/36 318/36 318/36 318/36

also implemented a multi-threaded evaluation of the sampled points, by calling
multiple instances of the wrapper in parallel on a partition of the samples.

4.1 Overall Evaluation

In Table 1 we show the outcome of the different tools on the 936 probabilistic
(marked with P=?[ψ]) and 620 reward (marked with R=?[ψ]) benchmarks, namely
whether they successfully produced a rational function or whether they failed by
timeout or by running out of memory. Besides the results for PRISM and Storm
computing the actual rational function, we report two values for each outcome
of PacPMAd, where the superscript d indicates the degree of the polynomial
used as template: in e.g. the pair 594/629, the first value 594 is relative to the
single-threaded PacPMA1, while the value 629 is for the 8-threaded PacPMA1,
i.e., PacPMA with 8 instances of the Storm wrapper running in parallel. As
parameters for PacPMA, we set ε = η = 0.05; for the benchmarks with two
parameters, this results in sampling between 280 and 1000 points, for d = 1 to
d = 5, respectively. To make the comparison between the different templates
fairer, we set the same random seed for each run of PacPMA; this ensures that
all samples used by e.g. PacPMA2 are also used by PacPMA5.

As we can see from Table 1, PacPMA is able to compute polynomials
with different degrees for more benchmarks than Storm and PRISM. By
inspecting the single experiments, for the probabilistic properties we have that
PRISM ⊆ Storm ⊆ PacPMAd

n ⊆ PacPMAd′
n for each d′ < d degrees and

n threads, as sets of successfully solved cases; we also have that PacPMAd
1 ⊆

PacPMAd
8 for each d. For the reward properties we have that PacPMAd

n =
PacPMAd′

n′ for each combination of d, d′ ∈ {1, · · · , 5} and n, n′ ∈ {1, 8} and
that Storm,PRISM ⊆ PacPMAd

n; however Storm and PRISM are incom-
parable, with cases solved by Storm but not by PRISM, and vice-versa. In the
next section we will evaluate how the margin λ changes depending on the degree
d and the statistical parameters ε and η through the induced number of samples.
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Fig. 4. Scatter plot for the margin λ for different PacPMAd and box plots for the
margin λ

Fig. 5. Value of ‖fϕ − f̃ϕ‖2 and of λ vs. degree of polynomials and number of samples

4.2 Relation of the Polynomial Degree d and the Number
of Samples with the Margin λ and the Distance ‖fϕ − f̃ϕ‖2

In Fig. 4 we present plots for PacPMA using polynomial templates with different
degrees and how the computed λ changes. As we can see from the plots, by using
a higher degree we get a lower value for the margin λ, as one would expect given
that polynomials with higher degree can approximate better the shape of the
actual rational function: from the box plots on the right side of the figure, we
can see that using higher degree polynomials allows us to get values for λ that
are much closer to 0. Note that in these box plots we removed the lower whiskers
since they are 0 for all degrees, and we use a logarithmic y-axis. The scatter plot
shown on the left side of Fig. 4, where we compare the values of λ produced by
PacPMA1 with those by PacPMAd, for d = 2, 3, 4, 5, confirms that the higher
the degree is, the closer to 0 the corresponding mark is, since the points for the
same benchmark share the same x-axis value.

In Fig. 5 we show the value of ‖fϕ − f̃ϕ‖2 for different degrees of the poly-
nomial and the number of samples, as well as the corresponding values of the
computed λ. The plots are relative to one benchmark such that the correspond-
ing rational function (a polynomial having degree 96) computed by Storm can
be managed by MATLAB without incurring obvious numerical errors while
having the margin λ computed by PacPMA2 reasonably large (λ ≈ 0.063).
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Fig. 6. Comparison of ‖fϕ − β‖2 with UB(f̃ϕ, X, β) for η = 0.05 and different ε

From the plots, we can see that we need at least 100 samples to get a rather
stable value for ‖fϕ − f̃ϕ‖2, so that the value of ‖fϕ − f̃ϕ‖2 is smaller for higher
degrees, which reflects the more accurate polynomial approximation of the orig-
inal function, in line with the plots in Fig. 4. However, for the same degree,
increasing the number of samples does not always lead to a decrease in ‖fϕ−f̃ϕ‖2
value. This happens because with few points, the polynomial can fit them well,
as indicated by the low value of λ; however, such few points are likely to be not
enough to represent accurately the shape of fϕ. By increasing the number of
samples, the shape of fϕ can be known better, in particular where it changes
more; this makes it more difficult for the polynomials to approximate fϕ, as
indicated by the larger λ; on the other hand, they get closer to fϕ, so ‖fϕ − f̃ϕ‖2
stabilizes.

4.3 Relation of the Statistical Parameters ε and η with the Distances
‖fϕ − β‖2 and UB(f̃ϕ , X, β)

We now consider the behavior of fϕ and whether it remains close to some num-
ber β within ζ, that is, we want to check whether ‖fϕ − β‖2 < ζ holds. Here
we set the safety level ζ to be 0.1 and consider different β’s values for differ-
ent functions fϕ. We consider 20 rational functions computed by Storm that
MATLAB can work without incurring in obvious numerical errors, such as those
outside the probability interval [0, 1]. For each of the function, we computed the
corresponding value of β by sampling 20 points for the parameters and taking
the average value, rounded to the first decimal, of the function on them. We rely
on Lemma 3 to perform the analysis; the results are shown in Fig. 6.

In the figure, we plot the actual value of ‖fϕ − β‖2, the boundary ζ, and the
value of UB(f̃ϕ,X, β) computed with respect to η = 0.05 and different choices
of ε for the 20 functions. As we can see, the smaller ε, the higher the number
of cases on which Lemma 3 ensures ‖fϕ − β‖2 < ζ; this is expected, since a
smaller ε increases the number of samples, so the approximating polynomial f̃ϕ

gets closer to the real shape of fϕ. Moreover, when ‖fϕ − β‖2 is already close
to ζ, there is little space for f̃ϕ to differ from fϕ, as happens for the e.g. the
function 1. Thus it is more difficult for us to be able to rely on Lemma 3 to check
whether ‖fϕ − β‖2 < ζ holds, even if this actually the case.
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Fig. 7. Distance from fϕ of the Taylor expansion vs. the approximating polynomial

4.4 Comparison with the Taylor Expansion

We compare the accuracy of PAC approximation against that of the Taylor
expansion on the same cases used for Fig. 6; the comparison is shown in Fig. 7. For
the comparison with fϕ, we consider the degree 2 for both the Taylor expansion
f t

ϕ and the approximating polynomial f̃ϕ computed with ε = η = 0.05. For the
Taylor expansion f t

ϕ, we considered two versions: the expansion at the origin,
i.e., (0, 0) for two parameters (marked as “‖fϕ − f t

ϕ‖2 at (0, 0)” in Fig. 7), that
is commonly used since it is cheaper to compute than the expansions at other
points; and the expansion at the barycenter of the space of the parameters
(marked as “‖fϕ − f t

ϕ‖2 at center” in Fig. 7).
As we can see from the plot, that uses a logarithmic scale on the y-axis, the

distance ‖fϕ − f̃ϕ‖2 is between one and three orders of magnitude smaller than
‖fϕ − f t

ϕ‖2 at the origin. If we consider ‖fϕ − f t
ϕ‖2 at the barycenter, we get

values much closer to ‖fϕ − f̃ϕ‖2, but still larger up to one order of magnitude.
One of the reasons for this is that the Taylor expansion reflects local properties
of fϕ at the expansion point, while the PAC approximation provides a global
approximation of fϕ, thus reducing the overall distance. Compared with the
Taylor expansion, the PAC approximation has also other advantages: the PAC
approximation can handle both white-box and black-box problems, i.e., we do
not need to get the analytical form of fϕ; this means that we can treat it as a
black box and get a good approximation of it while the Taylor expansion can
only be applied after computing the actual function fϕ. Moreover, the PAC
approximation is able to generate polynomials with any given error rate and
provide probabilistic guarantee, while Taylor expansion cannot.

4.5 Extension to Reward Models

In Fig. 8 we show how Eq. (8) applies to
∫

X
fϕ(v) dP (v) for a selection of 30

reward properties fϕ computed by Storm; as usual, we compute f̃ϕ with ε = η =
0.05. In the figure, we report the actual value of

∫
X

fϕ(v) dP (v) as well as that of
the expression in Eq. (8) computed for the polynomial PAC approximations f̃ϕ at
different degrees. As we can see from Fig. 8, the higher the degree of f̃ϕ, the more
accurate the estimation of the

∫
X

fϕ(v) dP (v)’s lower bound is. In particular,
the quadratic f̃ϕ provides a very close lower bound for

∫
X

fϕ(v) dP (v); this
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Fig. 8. Lower bound for Eq. (7) by PAC approximation with different degrees

is remarkable, since evaluating max(f̃(v) − λ) in Eq. (8) is often an NP-hard
non-convex optimization problem [51,56] and, for cubic or higher polynomials,
it requires specialized theories and tools to solve [46,47,61].

5 Conclusion

In this paper, we presented a PAC-based approximation framework for studying
several properties of parametric discrete time Markov chains. Within the frame-
work, we can analyze the safety regions of the domain of the parameters, check
whether the actual probability fluctuates around a reference value within a cer-
tain bound, and get a polynomial approximating the actual probability rational
function with given (ε, η)-PAC guarantee. An extended experimental evaluation
confirmed the efficacy of our framework in analyzing parametric models.

As future work, we plan to investigate the applicability of the scenario app-
roach to other Markov models and properties, such as continuous time Markov
chains and Markov decision processes with and without rewards, where param-
eters can also control the rewards structures. Moreover, we plan to explore the
combination of the scenario approach with statistical model checking and black-
box verification and model learning.

Acknowledgements. We thank the anonymous reviewers for their useful remarks
that helped us improve the quality of the paper. Work supported in part by the CAS
Project for Young Scientists in Basic Research under grant No. YSBR-040, NSFC under
grant No. 61836005, the CAS Pioneer Hundred Talents Program, the ISCAS New
Cultivation Project ISCAS-PYFX-202201, and the ERC Consolidator Grant 864075
(CAESAR).

This project is part of the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk�lodowska-Curie grant no. 101008233.

Data Availibility Statement. An environment with the tools and data used for the
experimental evaluation presented in this work is available in the following Zenodo
repository: https://doi.org/10.5281/zenodo.8181117.

https://doi.org/10.5281/zenodo.8181117


Scenario Approach for Parametric Markov Models 177

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40903-8 8

2. Badings, T.S., Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu,
U.: Scenario-based verification of uncertain parametric MDPs. Int. J. Softw.
Tools Technol. Transf. 24(5), 803–819 (2022). https://doi.org/10.1007/s10009-022-
00673-z

3. Badings, T.S., Jansen, N., Junges, S., Stoelinga, M., Volk, M.: Sampling-based
verification of CTMCs with uncertain rates. In: Shoham, S., Vizel, Y. (eds.) CAV
2022 Part II. LNCS, vol. 13372, pp. 26–47. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-13188-2 2

4. Bai, H., Cai, S., Ye, N., Hsu, D., Lee, W.S.: Intention-aware online POMDP plan-
ning for autonomous driving in a crowd. In: IEEE International Conference on
Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26–30 May, 2015, pp.
454–460. IEEE (2015). https://doi.org/10.1109/ICRA.2015.7139219

5. Baier, C., Hensel, C., Hutschenreiter, L., Junges, S., Katoen, J., Klein, J.: Para-
metric Markov chains: PCTL complexity and fraction-free Gaussian elimination.
Inf. Comput. 272, 104504 (2020). https://doi.org/10.1016/j.ic.2019.104504

6. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
7. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4),

769–805 (1998). https://doi.org/10.1287/moor.23.4.769
8. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper.

Res. Lett. 25(1), 1–13 (1999). https://doi.org/10.1016/S0167-6377(99)00016-4
9. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-

tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2017). https://doi.org/
10.1007/s10009-017-0469-y

10. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

11. Blackwell, D.: On the functional equation of dynamic programming. J. Math. Anal.
Appl. 2(2), 273–276 (1961)

12. Boggess, A., Narcowich, F.J.: A First Course in Wavelets with Fourier Analysis.
Wiley, Hoboken (2015)

13. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016). https://doi.
org/10.1016/j.ic.2016.01.004

14. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 23

15. Calafiore, G.C., Campi, M.C.: Uncertain convex programs: randomized solutions
and confidence levels. Math. Program. 102(1), 25–46 (2005). https://doi.org/10.
1007/s10107-003-0499-y

16. Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design.
IEEE Trans. Autom. Control. 51(5), 742–753 (2006). https://doi.org/10.1109/
TAC.2006.875041

17. Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-
constrained optimization: feasibility and optimality. J. Optim. Theory Appl.
148(2), 257–280 (2011). https://doi.org/10.1007/s10957-010-9754-6

https://doi.org/10.1007/978-3-540-40903-8_8
https://doi.org/10.1007/s10009-022-00673-z
https://doi.org/10.1007/s10009-022-00673-z
https://doi.org/10.1007/978-3-031-13188-2_2
https://doi.org/10.1007/978-3-031-13188-2_2
https://doi.org/10.1109/ICRA.2015.7139219
https://doi.org/10.1016/j.ic.2019.104504
https://doi.org/10.1287/moor.23.4.769
https://doi.org/10.1016/S0167-6377(99)00016-4
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1016/j.ic.2016.01.004
https://doi.org/10.1016/j.ic.2016.01.004
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/s10107-003-0499-y
https://doi.org/10.1007/s10107-003-0499-y
https://doi.org/10.1109/TAC.2006.875041
https://doi.org/10.1109/TAC.2006.875041
https://doi.org/10.1007/s10957-010-9754-6


178 Y. Liu et al.

18. Campi, M.C., Garatti, S., Prandini, M.: The scenario approach for systems and
control design. Annu. Rev. Control. 33(2), 149–157 (2009). https://doi.org/10.
1016/j.arcontrol.2009.07.001
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Abstract. High-performance probabilistic model checkers like the Mod-
est Toolset’s mcsta follow the topological ordering of an MDP’s strongly
connected components (SCCs) to speed up the numerical analysis. They
use hand-coded and -optimised implementations of SCC-finding algo-
rithms. Verified SCC-finding implementations so far were orders of mag-
nitudes slower than their unverified counterparts. In this paper, we show
how to use a refinement approach with the Isabelle theorem prover to
formally verify an imperative SCC-finding implementation that can be
swapped in for mcsta’s current unverified one. It uses the same state
space representation as mcsta, avoiding costly conversions of the repre-
sentation. We evaluate the verified implementation’s performance using
an extensive benchmark, and show that its use does not significantly
influence mcsta’s overall performance. Our work exemplifies a practical
approach to incrementally increase the trustworthiness of existing model
checking software by replacing unverified components with verified ver-
sions of comparable performance.

1 Introduction

Probabilistic model checking [2] is an automated verification technique for
system models with randomness, such as Markov decision processes (MDPs).
Today’s probabilistic model checkers like Prism [26], Storm [22], or the Mod-
est Toolset [17] check MDPs of tens to hundreds of millions of states on
common desktop hardware in minutes. This performance is in part achieved by
using the “topological approach” [8,18] where the analysis treats every sub-MDP
corresponding to a strongly connected component (SCC) in the MDP’s state-
transition graph separately, solving them in their reverse topological order. The
most well-known such method is topological value iteration [8], but the same
idea applies to other approaches like using linear programming (LP) solvers,
with one linear program generated for each SCC.

As verification tools, probabilistic model checkers are critical software: we use
them in the design and evaluation of safety- and performance-critical systems,
and rely on them delivering correct results. Yet, they are not thoroughly verified
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themselves: they constitute large trusted code bases (the Modest Toolset,
for example, consists of approx. 150 k lines of C# code as of the writing of
this paper) developed ad-hoc in academic contexts. In addition to the danger of
implementation bugs, unsound algorithms have been used in probabilistic model
checking in the past [14], and published pseudocode contains mistakes (e.g. that
of the sound value iteration algorithm given in [41]). This calls for the application
of verification technology to the probabilistic model checkers themselves.

Replacing a complete model checker’s code base by a fully verified one,
keeping the original tool’s capabilities and performance, is a gigantic task. For
this reason, we today only see inefficient fully verified (non-probabilistic) model
checkers [6,44], and fully verified certifiers [43,45] that a posteriori establish the
correctness of an unverified model checker’s result. The latter, however, require
cooperation from the unverified tool to produce an additional compact certifi-
cate, and the existence of an efficient certificate verification procedure.

In this paper, we exemplify a third, practical approach with an emphasis on
performance: to incrementally replace an existing tool’s unverified code by veri-
fied implementations of verified algorithms, component-by-component. In order
to avoid performance regressions, the new components must use the original data
structures and interfaces, and the verifier must work with or generate efficient
imperative implementations. With every step, the trusted code base shrinks, and
the trustworthiness of the larger tool increases. At every step, the new verified
code can be thoroughly benchmarked and optimised.

We apply this approach to the mcsta probabilistic model checker of the Mod-
est Toolset. It consists of components with well-defined interfaces, ranging
from input language semantics over state space exploration, graph-based pre-
computations [12], finding SCCs, end component elimination, and essential states
reduction [9] to the actual numeric solution methods like variants of value iter-
ation or linear programming. Of these components, we chose to replace the step
of finding SCCs that enables the topological solution methods. This is because
(i) it is a critical step for both the performance of the solution method and the
correctness of the final result, and (ii) we can reuse parts of an existing formal-
ization [30] of Gabow’s SCC-finding algorithm [13], allowing us to focus on the
performance and tool integration challenges.

To produce a verified algorithm that works directly on the imperative data
structures of mcsta, we use the Isabelle LLVM tool [32,34] that produces ver-
ified LLVM code using the Isabelle theorem prover [38]. To keep the abstract
algorithmic ideas separate from the actual implementations and data structures,
we use a stepwise refinement approach supported by the Isabelle Refinement
Framework [35], consisting of four conceptual steps: A correctness proof for gen-
eral path-based SCC algorithms (Sect. 3), the use of Gabow’s particular data
structures (Sect. 4), the imperative implementation (Sect. 5), and the generation
of LLVM code (Sect. 6). The first two steps are an adaptation of the ideas of the
existing verified but slow functional implementation of Gabow’s algorithm [30]
to prepare for the imperative refinement. The last two steps are entirely new,
using new imperative data structures both internally and on the interface to
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mcsta. In particular, the algorithm needs to work with mcsta’s representation of
the graph (in terms of an MDP) and return the information about the found
SCCs to mcsta.

To assess the impact of replacing an unverified component of a probabilistic
model checker by a correct-by-construction version, we performed an extensive
experimental comparison using benchmarks from the Quantitative Verification
Benchmark Set [20] (Sect. 7). We found that, by using an imperative implemen-
tation and avoiding costly glue code and transformations or copies of the data
(e.g. of mcsta’s MDP data structures into a more generic graph representation),
our verified implementation outperforms the existing implementation of Tar-
jan’s algorithm in mcsta (being around twice as fast) and achieves performance
comparable to a manually-optimised unverified C implementation of Gabow’s
algorithm that we newly built as a comparison baseline (which on average is
only a bit faster). This means that we have replaced a unverified algorithm with
a faster, provably correct one.

Related Work. Only a few verified model checker implementations exist that
can be applied to significant problem sizes: CAVA [6,10] is a fully verified LTL
model checker, featuring a fragment of Promela [37] as input language. While
able to check medium-size examples in reasonable time, it is much slower than
highly optimized unverified tools such as SPIN [25]. Similarly, the fully veri-
fied MUNTA model checker [44] for timed automata is still significantly slower
than the highly optimized unverified counterpart UPPAAL [5], and the verified
IsaSAT solver [11] placed last in the SAT2022 competition [4].

On the other hand, the results of model checking can be certified by a for-
mally verified certifier. This requires the existence of a practical certification
mechanism, and the support of the unverified model checker. Formally verified
certification tools that work on significant problem sizes exist for e.g. timed
automata model checking [43,45] and SAT solving [23,33].

There are some formalizations of Markov decision processes and value itera-
tion in Isabelle/HOL [24] and Coq [42]. However, there is no documentation on
extracting executable code from these proofs. Additionally, there is a formaliza-
tion of value iteration for discounted expected rewards [36] which extracts Stan-
dard ML code from the proof. Strongly connected component finding algorithms
have been formally verified with various tools, including Isabelle/HOL [30],
Coq [39], and Why3 [7]. However, [39] and [7] do not report on extracting exe-
cutable code from their verification at all, and the code extracted from [30] is
roughly one order of magnitude slower than a textbook reference implementation
of the same algorithm in Java.

Our replacement of mcsta’s unverified SCC-finding implementation by a ver-
ified one is part of a larger effort to improve the trustworthiness of the tool, in
which we already developed an efficient sound variant of value iteration [19] and
proposed a way to avoid floating-point rounding errors with limited performance
impact [16], but did not yet apply verification to the tool itself.
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Fig. 1. MDP Mex Fig. 2. Graph Gex := (S, EMex
) with its

SCCs

2 Preliminaries

R is the set of real numbers; [0, 1] ⊆ R denotes the real numbers from 0 to 1. For
a set X, 2X is its power set. A (discrete) probability distribution over a set X is
a function μ : X → [0, 1] where support(μ) def= {x ∈ X| μ(x) > 0 } is finite and∑

x∈support(µ) μ(x) = 1. Dist(X) is the set of probability distributions over X.

2.1 Markov Decision Processes

Our work is implemented in the context of the probabilistic model checker mcsta.
One of the core problems in probabilistic model checking are reachability prop-
erties, where an optimal solution regarding some metric towards reaching a set
of target states is computed in a Markov decision process (MDP) [40].

Definition 1. An MDP is a triple M = (S, s0, prob) of a finite set of states S
with initial state s0 ∈ S and a transition function prob : S → 2Dist(S).

An MDP moves in discrete time steps. In each step, from current state s, one
distribution μ ∈ prob(s) is chosen non-deterministically and sampled to obtain
the next state. A policy resolves the non-determinism in an MDP by choosing
one probability distribution for each state. The goal is to find a policy that
maximizes/minimizes the probability or expected reward to reach a target state.

Example 1. Figure 1 shows an MDP with states s0 to s3 where s0 is the initial
state. Using distribution α, we go to state s1 with probability 0.3 and to s2 with
probability 0.7. Using distribution β, we go to state s0 and s1 with probability
0.9 and 0.1 respectively. The maximal probability to reach state s1 is 1, achieved
by the policy that chooses β until we reach s1, where it chooses α indefinitely.

A graph is a pair G = (V,E) of a set of vertices V connected by edges E ⊆ V ×V .
E∗ is the reflexive transitive closure of E.

Definition 2. A strongly connected component (SCC) of G is a set U ⊆ V
such that U ×U ⊆ E∗ (it is strongly connected) and ∀U ′

� U : ¬(U ′ ×U ′ ⊆ E∗)
(it is maximal).

Given M = (S, s0, prob), let EM
def= { (s, s′) | ∃μ ∈ prob(s) : s′ ∈ support(μ) }.

Then (S,EM) is the graph of M. U is an SCC of M iff U is an SCC of (S,EM).
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Example 2. Figure 2 shows the graph Gex of MDP Mex from Fig. 1. It also shows
the three SCCs of Gex outlined in green, blue, and red.
The optimal value (probability or expected reward) of a state (and consequently
the decision of the optimal policy) only depends on the optimal values of its suc-
cessors. Decomposing the MDP into its SCCs and solving the SCCs in reverse
topological order guarantees that each state’s successors have either been solved
to (ε-)optimality before, or are being considered in the current SCC. This app-
roach breaks down the MDP into smaller subproblems; if the MDP consists of
many similarly sized SCCs, the computation uses much less time and memory
than naive methods [8,18]. mcsta currently implements topological LP solving.

2.2 Program Verification Based on Refinement in Isabelle/HOL

To comprehend (and verify) the optimized implementation of an algorithm, we
use a stepwise refinement approach. We start with the abstract algorithmic idea
describing the essence of the algorithm on the level of manipulating mathematical
objects like maps and sets. We then use a series of refinement steps to gradually
replace the abstract mathematical objects by actual data structures until we
arrive at the executable implementation. In the process, we prove that each
refinement step preserves correctness. The steps are typically independent, which
helps to keep the overall proof structured and manageable. Different components
can be refined independently (e.g. separating data and program refinement), to
be assembled at a later stage or used in other algorithms, without re-playing the
intermediate steps. A good refinement design is key to a manageable proof, and,
as all design choices, requires experience and involves trade-offs.

The Isabelle Refinement Framework (IRF) [35] implements stepwise refine-
ment on top of Isabelle/HOL. It provides a formal notion of programs and refine-
ment, tools like a verification condition generator that facilitate proving, and a
library of reusable verified data structures. Its recent LLVM backend [32] sup-
ports the generation of LLVM bytecode. In the following, we give a brief overview
of the IRF. For an in-depth description, we refer the reader to [32,35].

Programs are modelled by shallow embedding into a nondeterminism error
monad ′a nres ≡ fail | spec (′a ⇒ bool). Intuitively, a program fails (fail) or
nondeterministically returns a result that satisfies P (spec P). The return x
combinator returns the only result x, and the bind combinator do {x←m; f x}
selects a result x of m, and then executes f x. A program fails if there is at
least one nondeterministic possibility to fail. Thus, do {x←m; f x} fails if m
fails, or if f fails for at least one possible result of m. The assert P combinator
does nothing (i.e. returns a unit value) if P holds, and fails otherwise. The IRF
provides further combinators and syntax for control flow.

A (concrete) program m′ refines an (abstract) program m (written m′ ≤ m)
if every possible result of m′ is a result of m. Also, m′ ≤ fail and fail �≤ spec P:
the intuition is to assume that the abstract program does not fail, i.e. the concrete
program can do anything in case the abstract program fails. We lift a refinement
relation R between concrete and abstract data to program m using ⇓R m, which
returns all concrete results that are related to some abstract result of m.
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Example 3. We use the IRF to refine a pop operation of a stack:

(∗1∗)
ssel :: ′a set ⇒ (′a × ′a set) nres; lpop :: ′a list ⇒ (′a × ′a list) nres
ssel s ≡ do { assert s�={}; spec λ (x,s′). x∈s ∧ s′=s−x }
lpop l ≡ do { assert l�=[]; return (last l, butlast l)}
′a da = 64 word × 64 word × ′a ptr (∗ length, capacity, pointer to array ∗)
apop :: ′c da ⇒ (′c × ′c da) llM
apop (l,c,a) ≡ do { l←ll sub l 1; p←ll ofs ptr a l; r←ll load p; return (r,(l,c,a)) }
(∗2∗)
Rls :: ′a list × ′a set; Rls ≡ { (xs,set xs) | xs. distinct xs }
(l,s) ∈ Rls =⇒ lpop l ≤⇓(Id × Rls) (ssel s) (short: lpop,ssel : Rls → Id × Rls )
Ada :: (′a ⇒ ′c ⇒ assn) ⇒ ′a list ⇒ ′c da ⇒ assn; (∗ definition elided ∗)
apop, lpop : (Ada e)d → e × Ada e

(∗3∗)
Aset :: (′a ⇒ ′c ⇒ assn) ⇒ ′a set ⇒ ′c da ⇒ assn; Aset e ≡ Ada e O Rls

apop, ssel : (Aset e)d → e × Aset e

First (1) we define functions to remove an arbitrary element from a non-empty
set (ssel) and to pop the last entry of a non-empty list and dynamic array
(lpop/apop). Then (2) we define the refinement relation Rls between distinct
lists and sets. We show for related arguments (l,s)∈Rls that all possible outputs
of lpop l and ssel s are related through Id × Rls, i.e. the first elements of the
pair are equal, and the second elements are related by Rls. We also introduce
a shortcut notation that elides the parameter names. We then define a refine-
ment between dynamic arrays and lists: Ada e l d is a separation logic assertion
that states that the dynamic array d contains the elements from list l, where
the elements themselves are refined by e1. The annotation d on a parameter
refinement indicates that this refinement is no longer valid after execution of the
concrete program (typically the data has been destructively updated). Finally
(3) we compose (O) our assertion with a relation to show that apop refines ssel.

2.3 Existing Formalisation of Gabow’s Algorithm

Our work builds on an existing formalisation [30] of Gabow’s algorithm [13]. That
formalisation uses an early version of the IRF [29], targeting purely functional
SML code; it is an order of magnitude slower than a reference implementation in
Java. While incompatible with our goal of creating a fast drop-in replacement to
be used directly on the mcsta data structures, we can reuse parts of the existing
abstract formalisation. In the following sections, we indicate the parts we reused,
referring to the existing work as the original formalization.

1 Note that the order of the refinement relations ((′a ×′c) set) is different from the
assertions (′c⇒′a⇒assn).
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3 Abstract Path-Based Algorithm

Gabow’s SCC-finding algorithm is a path-based algorithm: It maintains a path
from the start node that is extended in each iteration via an edge from the path’s
tail. When the edge leads back onto the path, the resulting cycle is collapsed
into a single node. When there are no more outgoing edges left, the last node
corresponds to an SCC and is removed from the path. We follow a similar design
approach as the original formalization: We first define a skeleton algorithm that
performs the DFS, but discards the found SCCs. We then reuse parts of the skele-
ton to define an actual SCC-finding algorithm. This technique makes the proof
more modular, factoring out general properties of Gabow-style algorithms [30].

3.1 The Skeleton Algorithm

1 skeleton ≡ do {
2 let D0 = {};
3 r ← foreach outer invar V0 (λv0 D0. do {
4 if v0/∈D0 then do {
5 s ← initial v0 D0;
6 (p,D,pE,vE) ← while (invar v0 D0) (λ(p, ). p �= []) (λ(p,D,pE,vE). do {
7 (vo,(p,D,pE,vE)) ← select edge (p,D,pE,vE);
8 case vo of
9 None ⇒ do { return (pop (p,D,pE,vE)) }

10 | Some v ⇒ do {
11 if v ∈ ⋃

(set p) then do { return (collapse v (p,D,pE,vE)) }
12 else if v/∈D then do { push v (p,D,pE,vE) }
13 else do { return (p,D,pE,vE) }
14 }
15 }) s;
16 return D
17 } else return D0
18 }) D0;
19 return r}

The outer loop of the skeleton (l. 3) iterates over all nodes V0. The inner loop
performs a DFS, maintaining a program state consisting of a segmented path
p :: ′v set list, the “done” nodes D :: ′v set, pending edges pE :: ′v multiset, and
visited edges vE :: ′v set. The operations perform changes to that state, e.g.

definition collapse v (p,D,pE,vE) ≡
let i=idx of p v; p = take i p @ [

⋃
(set (drop i p))] in (p,D,pE,vE)

where @ appends two lists, idx of p v returns the index of v in p (which we
prove to exist) and take i p/drop i p yields/discards the first i elements of p. In
essence this operation combines all segments from index i onwards. For the other
operations we refer to the supplementary material.

In each step, the skeleton selects a pending edge from the last segment of
the path (l. 7). If no such edge exists (l. 9), the last segment is an SCC. In the
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Fig. 3. The state of the path based SCC algorithm before and after a collapse step.
The dotted nodes and edges are not yet visited by the algorithm.

skeleton, we pop the last segment from the path. Later, we will perform some
extra work to mark the found SCC. Otherwise (l. 10), if the selected edge goes
back into the path (l. 11), we have found a cycle, and collapse all its nodes into
a single segment. If the edge leads to a new node (l. 12), we add this node to the
current path. Otherwise (l. 13), the edge leads to a done node and we ignore it.

Example 4. Figure 3 visualizes a step in the program where p = [{0}, {1, 3}, {2}],
D = {}, pE = {(1, 4), (2, 3)} and vE = {(0, 3), (3, 1), (1, 3), (1, 2)}. Then, explor-
ing e.g. back edge (2, 3) collapses all segments in that cycle. Now p = [{0},
{1, 3, 2}], D = {}, pE = {(1, 4)} and vE = {(0, 3), (3, 1), (1, 3), (1, 2), (2, 3)}.

The original formalization only supports successor functions that return a set of
nodes. However, the successor function on the graph data structure of mcsta is
more efficient if we allow duplicates in the list of successors. This can cause the
same edge to be explored multiple times, which, however, does not matter as
the target node is marked as done on successive explorations. To later allow this
implementation, we had to change pE to be a multiset of pending edges in the
abstract algorithm. This revealed a problem in the original formalization: the set
of visited edges was defined implicitly, but a multiset of pending edges does not
allow for such implicit representation. We solved this by explicitly introducing
vE into the abstract state, which even simplified the existing proofs. Note that
vE is a ghost variable, i.e. no other parts of the state depend on it. Thus, we can
easily eliminate it in the next refinement step (Sect. 4.1).

Invariants. To define the invariants, we use Isabelle’s locale mechanism [3]
that allows us to define named hierarchical contexts with fixed variables and
assumptions. First, we define a set of initial nodes V 0. Then, we define finite
graphs as an adjacency function E succ that maps each node to a list of adjacent
nodes and an according abstraction E α that returns the set of edges induced
by E succ:

locale fr graph = fixes V0 :: ′v set and E succ :: (′v ⇒′v list)
assumes 1: finite (E α∗ ‘‘ V0)

The invariant of the outer loop extends fr graph, adding the loop’s state (it,D):

locale outer invar loc = fr graph V0 E succ
for V0 and E succ :: (′v ⇒′v list) + fixes it :: ′v set and D :: ′v set
assumes 1: it⊆V0 and 2: V0 − it ⊆ D
and 3: D⊆E α∗‘‘V0 and 4: E α‘‘D ⊆ D
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The invariant guarantees that (1) the nodes we still have to iterate over (it) are
in V0 , (2) the nodes we already have iterated over (V 0 − it) are done, (3) done
nodes are reachable, and (4) done nodes can only reach other done nodes. The
invariant invar loc of the inner loop is defined using the same locale construct,
but with more extensions. The invariant states that: all nodes within a segment
of path p are mutually reachable and segments are topologically ordered; done
nodes remain done, are reachable, and only reach other done nodes; edges in pE
start in p; and visited edges lead to segments that are topological successors of
the source segment. Furthermore, we added restrictions to the new set of visited
edges. These state that: edges from done nodes are visited; visited edges only
exist between done and path nodes; and unvisited edges from p are pending.

The termination proof of the original formalization was more involved. But
using vE we were able to simplify it significantly: Each iteration of the inner loop
decreases the lexicographic ordering of the number of unvisited edges, pending
edges, and length of the path. Using the IRF’s verification condition generator
(VCG), we prove that every operation preserves the invariant and decreases the
termination ordering. Equipped with these lemmas, the VCG can automatically
show that the skeleton terminates and preserves the invariant.

3.2 Abstract SCC-Finding Algorithm

We can then refine the algorithm to also compute a list l::′v set list of the SCCs
in topological order. Formally:

scc set ≡ {scc. is scc E α scc ∧ scc ⊆ E α∗ ‘‘ V0}
ordered l ≡ (∀i j. i < j −→ j < length l −→ l!i × l!j ∩ E α∗ = {})
compute SCC spec ≡ spec (λl. set l = scc set ∧ ordered l)

For this, we add a list l of discovered SCCs to the algorithm’s state and amend the
pop function to add the identified SCC to that list. We call that new algorithm
compute SCC. To prove it correct, we extend the invariant of both the outer and
inner loop by the statement that l contains exactly the SCCs of the done part
of the graph, in topological order (definition elided). With this extension, and
reusing the lemmas we have already proved for the skeleton, it is straightforward
to show:

theorem compute SCC correct: compute SCC ≤ compute SCC spec

4 Formalizing Gabow’s Algorithm

The main challenge of path-based approaches is finding efficient data structures
to capture the segments. Gabow’s data structure exploits the behaviour of the
DFS: it stores the path as a stack of nodes, in the order they are visited. Adjacent
nodes in the path are in the same SCC or in a topological successor/predecessor,
such that a list of boundary indices can be used to encode the segmentation.
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4.1 The Skeleton of Gabow’s Algorithm

To refine our algorithm to use Gabow’s data structure, we again work in two
steps: We first refine the skeleton, then reuse this refinement for an actual SCC-
finding algorithm. Gabow’s data structure uses three stacks and a map to rep-
resent the state: The sequence stack S :: ′v list contains the states on the path
in the order they were first visited. The boundaries stack B :: nat list contains
natural numbers representing indices (or bounds) on stack S: all nodes on S
between subsequent entries in B form a segment, the last entry of B being the
start index of the last segment. The working list P :: (′v × ′v list) list contains a
tuple of nodes on the path and a nonempty list of pending successors. Finally,
the node state map I :: ′v ⇒ node state option maps nodes to node states:

datatype node state = STACK nat | DONE nat

I v = None indicates that node v has not yet been discovered, Some (STACK i)
indicates that v is on the sequence stack S at index i, and Some (DONE j)
indicates that v is done and belongs to SCC number j. Note that we do not use
j in the skeleton, but already add it to node state for convenience.

Similarly to the abstract algorithm, the operations perform changes to the
concrete program state, e.g.

definition collapse impl fr (S,B,I,P) v ≡ do {
i←idx of impl (S,B,I,P) v; assert (i+1 ≤ length B);
let B = take (i+1) B; return (S,B,I,P) }

where idx of impl implements idx of through a lookup using I and B. For the
other implementations we refer to the supplementary material.

Data Structure Invariants. The invariant oGS invar makes sure that the
stack is empty on the outer loop. GS invar for Gabow’s data structure remained
largely unchanged w.r.t. the original formalization: it ensures that B is sorted,
distinct, and points to a node on S; as long as there are nodes in S, there are
bounds in B starting at 0; I specifies that node v lies at index j in S; parent
nodes in P are also in S and have unprocessed successors; parent nodes in P
are distinct and sorted by their index in S. We added that S consists only of
reachable nodes (set S ⊆ (E α∗ ‘‘V0)). While this is not required to show the
correctness of the data structure at this abstraction level, it comes in handy
to show that the length of the stack is bounded when we refine the indexes to
64-bit machine words in the next step. This is a recurring design pattern: some
assertions that are only required for a concrete refinement step are most easily
proved already on the abstract level.

Example 5. A possible encoding of Fig. 3 in Gabow’s data structure is S =
[0, 3, 1, 2], B = [0, 1, 3], I : [0 �→ Some (STACK 0 ), 1 �→ Some (STACK 2 ), 2 �→
Some (STACK 3 ), 3 �→ Some (STACK 1 ), 4 �→ None], P = [(1, [4]), (2, [3])].
Then, back edge (2,3) is explored. We pop that entry in P , i.e. P = [(1, [4])].
I(3) = Some (STACK 1) so we pop B until we reach v ≤ 1; B becomes [0, 1].
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Iterators. We implement P as a stack containing pairs of a node of the graph
and an iterator over its successors. We also considered implementing P as a
stack of stacks, where the inner stacks contain the unvisited successors. This
was slower in practice as it requires more memory allocations and deallocations.
While the iterator is an implementation detail of the data structure that we con-
sider in Sect. 5, we reason about iterators here because we expect that reasoning
about the link between the iterators and the graph in separation logic in the
next refinement layer would be more complex. We define an iterator as a tuple
of a node u and an index ci representing the ci-th index of E succ u. We let
succ count u ≡ length (E succ u) and define five operations for the iterator:

index begin u = (u,0) get state = λ (u,ci). u
successor at = λ (u,ci). (E succ u) ! ci
has next ≡ λ (u,ci). Suc ci < succ count u next index = λ (u,ci). (u,ci + 1)

index begin creates an iterator pointing to the start of the iteration sequence;
get state returns the source node of the iterator (in other words the state whose
successors we iterate over); successor at returns the element that the iterator
points to; has next checks if there exists a next element in the sequence (in our
case it checks there are unprocessed successors left); and next index updates the
iterator to point to the next element in the sequence.

Refinement Relation. We connect Gabow’s data structure to the abstract
program state via an abstraction function:

seg start i ≡ B!i seg end i ≡ if i+1 = length B then length S else B!(i+1)
seg i ≡ {S!j | j. seg start i ≤ j ∧ j < seg end i } remaining successors

= (λ (u,ci). map (λ ci′. successor at (u,ci′)) [ci..<succ count u])
edges of succs = (λ (u,ci). map (λv. (u,v)) (remaining successors (u,ci)))
p α ≡ map seg [0..<length B] D α ≡ {v. ∃ i. I v = Some (DONE i)}
pE α = mset (concat (map edges of succs P))
GS α ≡ (p α,D α,pE α) oGS α I ≡ {v. ∃ i. I v = Some (DONE i)}
Here, map f xs returns a list in which each element in xs is mapped using f ,
mset turns a list into a multiset and concat concatenates a list of lists into a
single list. This reconstructs the p, D, and pE parts of the abstract state from
the concrete state. The vE part is a ghost variable and remains unconstrained
in the refinement relation. We define:

GS rel ≡ { (c,(p,D,pE,vE)) . (c,(p,D,pE)) ∈ br GS α (GS invar V0 E succ) }
oGS rel ≡ br oGS α (oGS invar V0 E succ)

Here, br α Inv ≡ {(c, α c) | c. Inv c} builds a relation from an abstraction func-
tion and invariant.

Refinement Proof. We first show that the concrete operations refine the cor-
responding abstract ones, e.g.
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lemma collapse refine: (s,(p,D,pE,vE))∈GS rel ∧ (v,v′)∈Id ∧ v′∈⋃
(set p)

=⇒ collapse impl fr v s ≤⇓GS rel (RETURN (collapse v′ (p,D,pE,vE)))

We proceed analogously for the other operations. This allows us to show that
the concrete inner loop refines the abstract inner loop. This works similarly for
the outer loop. Finally, we get the following theorem:

theorem skeleton impl refine: skeleton impl ≤ ⇓oGS rel skeleton

4.2 Gabow’s SCC-Finding Algorithm

We implement the list l of SCCs in the abstract algorithm by the length i of the
list and the node state map: the nodes of the SCC l!j have state Some (DONE j):

SCC at I j ≡ {v. I v = Some (DONE j)}
SCC α (i,I) ≡ map (SCC at I) [0..<i]

locale GSS invar ext = . . . +
assumes 1: j < i =⇒ SCC at I j �= {} and 2: j ≥ i =⇒ SCC at I j = {}
assumes 3: finite (SCC at I j) and 4: I v �= None =⇒ v ∈ E α∗‘‘V0

locale SCC invar = GSS invar ext + assumes 5: I v �= Some (STACK i)
SCC rel ≡ br SCC α SCC invar

The invariant ensures that (1) every index j < i is assigned to a non-empty
SCC, and (2) no indices j ≥ i have been assigned. Moreover, (3) SCCs are finite
and (4) only assigned to reachable nodes. During the outer loop, and for the
representation of the returned result (SCC rel), we additionally know (5) that
the stack is empty.

The algorithm compute SCC impl adds the counter i to the skeleton algo-
rithm. Reusing the lemmas from refining the skeleton algorithm, it is straight-
forward to show

theorem compute SCC impl refine:
compute SCC impl ≤ ⇓SCC rel compute SCC

That is, our new algorithm returns a pair (i, I) that represents the topologically
ordered list of SCCs returned by the abstract algorithm compute SCC.

5 Refinement to LLVM

We now make the step from our model of Gabow’s algorithm with abstract
data types (compute SCC impl) to a model of an LLVM implementation with
concrete LLVM data types along mcsta’s interface (Modest compute SCC impl).
At this point, we depart from the path taken by the original formalisation.

Some of the data structures we refine to are standard and well-supported by
the IRF library: we represent nodes and indices as 64-bit words, use dynamic
arrays for the stacks S, B, and P in the algorithm state, and represent I by
an array map: an array of node states indexed by the nodes. In this section, we
highlight the two most interesting refinements.
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5.1 Node State

Recall (cf. Sect. 4.1) that the node state is either None, STACK j, or DONE k,
where j is an index into the stack S, and k is the number of the SCC that the
node belongs to. For a graph with N nodes, we have j, k < N . This gives us
a straightforward encoding of node states into 64-bit words: None becomes −1,
STACK j becomes j, and DONE k becomes k+N . While certainly not optimal,
this encoding is easy to realise with the IRF standard library. We consider the
incurred graph size bound of N < 262 to be sufficient.

5.2 MDP Graph Data Structure

Performance-wise, it is crucial that our algorithm works on the state space
(MDP) data structure provided by mcsta, rather than copying to its own data
structure. mcsta encodes a state (node) as a 64-bit word < N , where N is the
number of states in the MDP. It represents the graph structure of the MDP by
three arrays St , Tr , and Br . Each element of St indicates an interval in the Tr
array, describing the outgoing transitions (i.e. distributions) of a state. Similarly,
Tr represents intervals in the Br array, describing the outgoing branches (i.e.
elements of the distribution’s support) of the transition. Finally, the Br array
contains the target nodes of the branches. The intervals in St and Tr are encoded
as a 20-bit length and 44-bit start index, packed into a single 64 bit word.

The iterator on the graph is independent of mcsta. We use a structure for the
iterator consisting of five 64-bit words (v, tc, te, bc, be). v represents the state, tc
and te represent the current and last index of the iteration sequence to Tr and
bc and be represent the current and last index to Br .

Example 6. By representing the bit-packing as a tuple of natural numbers we
have that St = [(2, 0), (1, 2), (1, 3), (1, 4)], Tr = [(2, 0), (2, 2), (2, 4), (1, 6), (1, 7)]
and Br = [1, 2, 0, 1, 1, 3, 2, 1] encodes Gex from Fig. 2. State s1 (at index 1) has 1
transition at index 2 (derived from St[1] = (1, 2)). This transition has 2 branches
starting at index 4 (derived from Tr[2] = (2, 4)). The successors of s1 are thus s1
(as Br[4] = 1) and s3 (as Br[5] = 3). The iterator (v, tc, te, bc, be) = (1, 0, 1, 1, 2)
points to s3. We observe v = 1 which means we consider a successor of state s1.
We also observe that tc = 0 which means that the iterator points to transition
index 0. We also remember that the transition sequence for this state starts at
index 2 (St[1] = (1, 2)) which we add to tc. So the index points to transition
2. Lastly, we observe that bc = 1, which is also relative. The branch sequence
for transition 2 starts at 4 (Tr[2] = (2, 4)) which we add to bc. So the iterator
points to branch 5. Since Br[5] = 3 the iterator points to state s3.

We have to implement the graph and the iterator with its operations from Sect. 4.
We choose a two-step approach, following a similar structure as in Example 3.
We model the graph as mg1 :: (nat × nat) list × (nat × nat) list × nat list and
the iterator as it1 :: (nat × nat × nat × nat × nat):

Rmg1 N :: (mg1 × (′v ⇒′v list)) set; Rmg1 N ≡ br mg α (mg invar N)
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Rit1 :: (it1 × (′v ⇒′v list)) set; Rit1 ≡ br it α (it invar)
succ at1 :: mg1 ⇒ it1 ⇒ nat nres; (definition elided)
succ at1, successor at : Rmg1 N → Rit1 → Id

Refinement relation Rmg1 N uses abstraction functions mg α and mg invar (def-
initions elided) that encode that we have N states, indices are in bounds, and
intervals do not overlap, which ensures that the numbers of successors are
bounded by N . Refinement relation Rit1 uses abstraction functions it α and
it invar (definitions elided) which encode that the iterator is valid for the given
graph structure and is within bounds. Function succ at1 refines successor at
w.r.t.Rmg1 and Rit1, which we prove using the IRF’s VCG. The representation
of the result does not change (as indicated by the Id relation).

In the next step, we do the bit-packing (Abp), represent nodes by 64-bit words
(Asnat), and use arrays for the lists (Aarr). The output list is refined by

Abp :: nat × nat ⇒ 64 word ⇒ assn Asnat :: nat ⇒ 64 word
Aarr :: (′a ⇒ ′c ⇒ assn) ⇒ ′a list ⇒ ′c ptr ⇒ assn

mg2 ≡ 64 word ptr × 64 word ptr × 64 word ptr
Amg2 :: mg1 ⇒ mg2 ⇒ assn; Amg2 ≡ Aarr Abp × Aarr Abp × Aarr Asnat

it2 ≡ 64 word × 64 word × 64 word × 64 word × 64 word
Ait2 :: it1 ⇒ it2 ⇒ assn; Ait2 ≡ Asnat × Asnat × Asnat × Asnat × Asnat

succ at2 :: mg2 ⇒ it2 ⇒ 64 word da llM (def. elided, generated by Sepref)
succ at2, succ at1 : Amg2 → Ait2 → Asnat

The definition of succ at2 and the refinement lemma are synthesised by Sepref,
which implements a heuristics to apply data refinements automatically [31].

Finally, we combine the two steps to get the desired refinement from abstract
graphs to mcsta’s concrete MDP data structure, which we can then use to refine
our main algorithm:

Amg N :: (′v ⇒′v list) ⇒ mg2 ⇒ assn
Amg ≡ Amg2 O Rmg1 N Ait ≡ Ait2 O Rit1

succ at2, successors at :: Amg N → Ait → Asnat

We have omitted similar steps for the other iterator operations. For those, we
refer to the supplementary material.

5.3 Main Algorithm

We again use Sepref to synthesise an implementation of compute SCC impl
which we call Modest compute SCC impl. We use the aforementioned refine-
ments to achieve this. We combine all refinements to relate it with the specifi-
cation compute SCC spec (cf. Sect. 3.2). The resulting theorem states that our
implementation is correct. As this is part of the trusted code base, we invested
some effort into making the theorem readable and eliminate unnecessary depen-
dencies on internal IRF concepts. At the end, we obtain a Hoare triple using
separation logic and refinement assertions for the input and output data types:
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theorem Modest graph SCC impl correct htriple: llvm htriple
(∗1∗) (Asnat N ni ∗ Amg N E succ Ei ∗ N < 262)
(∗2∗) (Modest compute SCC impl ni Ei)
(∗3∗) (λri. EXS r. Asnat N ni ∗ Amg N E succ Ei ∗ N < 262 ∗ Aout r ri ∗
(∗4∗) set r = scc set ∧ ordered r)

The precondition (1) requires a signed 64-bit integer ni with value N :: nat, and
an MDP graph data structure Ei representing an abstract successor function
E succ with N nodes. We also assume that N is within the bounds incurred
by our encoding of node states (cf. Sect. 5.1). Then (2) running our LLVM pro-
gram Modest compute SCC impl ni Ei yields that (3) ni and the graph remain
unaltered, and (4) the result ri encodes a list r of SCCs in topological order.

Here, ri = (ii , Ii) contains the number of SCCs and an array that contains
the SCC number for each node. The assertion Aout first maps ri to a natural
number and an actual map (Aam), and then uses SCC rel (cf. Sect. 4.2) to map
that to a list of SCCs:

Aout ≡ (Asnat × Aam) O SCC rel

6 Implementation in the Modest Toolset

We have now refined our specification into a model of LLVM in Isabelle/HOL.
As the last step in our approach, we extract executable LLVM code. We generate
a C header with type definitions to encapsulate our data so that it can be used
by LLVM as well as from C. This allows us to easily align the header with the
format that mcsta supports. The export llvm command generates the LLVM
code of our SCC finding algorithm as well as the corresponding C header file:

export llvm Modest compute SCC impl is
void compute SCC(my size t, modest graph t ∗, scc result t ∗) defines ‹
typedef uint64 t my size t; typedef my size t node t;
typedef uint64 t shared nat t; typedef uint64 t ∗bitset t;
typedef struct { shared nat t ∗states; struct

{ shared nat t ∗transitions; node t ∗branches; }; } modest graph t;
typedef struct { my size t num sccs; node t ∗scc map;
} scc result t;

› file modest gabow.ll

The nested anonymous struct in modest graph t reflects Isabelle/HOL’s mod-
elling of tuples as right-nested pairs. We compile the LLVM code into a shared
library and invoke the functions in this library from mcsta via C#’s “P/Invoke”
mechanism to use libraries following the C ABI. In mcsta, we added a command-
line option to choose the SCC algorithm to use for its topological LP implemen-
tation: the previous unverified C# implementation of Tarjan’s algorithm; a new,
manually implemented and optimized version of Gabow’s algorithm in C that we
added for a fairer performance comparison; and the new verified Isabelle LLVM
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implementation. This allows us to easily run tests and performance benchmarks
on the three algorithms.

The topological LP implementation in mcsta requires not only that the SCCs
are topologically sorted—which is a postcondition of our LLVM program—but
also that the states are sorted by SCC. The latter is done on-the-fly by mcsta’s
Tarjan implementation, and currently by unverified “glue code” integrating the
new algorithms. We aim to either remove this requirement from mcsta, or adapt
the verified implementation to include the on-the-fly sorting of states as well.

7 Benchmarks

We benchmark our new SCC implementation to show that unverified and verified
code have similar performance. We do so by comparing the runtime of all three
algorithms now available in mcsta on a set of benchmark instances (combinations
of a parametrised system model, parameter values, and a property to check) from
the Quantitative Verification Benchmark Set (QVBS) [20].

7.1 Benchmark Selection

We consider three types of models from the QVBS for our benchmark set:
DTMC, MDP, and probabilistic timed automata (PTA) [28]. mcsta syntacti-
cally converts the latter to MDP via the digital clocks approach [27]. As SCC
algorithms have linear complexity, we need large state spaces to stress-test the
implementations. This means that memory is our main bottleneck. We thus
selected all DTMC, MDP, and PTA benchmark instances from the QVBS that
have between 1 and 100 million states. We found that models with fewer states
finish too quickly for reliable runtime measurements, while larger models lead to
out-of-memory situations on the machine we use.

A benchmark instance includes a property (e.g. a query for a maximum
reachability probability) to check. Since our focus is not on the actual numeric
algorithms computing the value of the property, but the SCC-finding prepro-
cessing step, we limit ourselves to one property per applicable model-parameters
combination, and instruct mcsta via its --exhaustive option to explore the full
state space. This leaves us with 39 different instances to benchmark.

7.2 Benchmarking Setup

All our benchmarks were performed on an Intel Core i7-12700H system with
32GB of RAM running 64-bit Ubuntu Linux 22.04. We use the mobench utility
of the Modest Toolset to run the benchmarks in an automated fashion based
on a JSON file specifying the benchmark instances to use and tools to execute.
For the latter, we specify three command line invocations for mcsta: one for our
new verified implementation of Gabow’s algorithm (“Isabelle Gabow”), one for
the manual C implementation of the same algorithm (“C Gabow”), and one for
the pre-existing C# implementation of Tarjan’s algorithm (“Tarjan”). Running
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Fig. 4. SCCs only Fig. 5. SCCs + glue code Fig. 6. Topological LP time

mobench yields a CSV file with all measurements, and log files for each individual
benchmark run. We then use the Modest Toolset’s moplot utility to generate
the scatter plots shown in the remainder of this paper. Each benchmark instance
results in one point (x, y) indicating that the x-axis task took x seconds to
complete while the y-axis task took y seconds for this instance. We note that
the “consensus” instance with parameter values K = 2, N = 8 ran out of memory,
and the “zeroconf” model caused the LP solver to time out on both its instances.
We thus omit these 3 failed instances in our plots.

7.3 Benchmarking Results

Figure 4 compares the runtime of all three implementations of the core SCC-
finding algorithms, excluding any time used by the glue code described in Sect. 6.
Replacing the C# Tarjan implementation by the verified one of Gabow’s algo-
rithm appears to boost the performance, with benchmarks that are more than
twice as fast. We suspect the two most important reasons for the difference in
performance to be that the Tarjan implementation additionally sorts the MDP’s
states on-the-fly, and that we compare two different algorithms. However, we
have no reliable data to determine the influence on the performance for the lat-
ter, if it exists. On the other hand, the manual C implementation of Gabow’s
algorithm appears to perform similarly to the verified implementation, with the
manual implementation having a slight edge in general. This is expected as we
have more control over micro-optimizations in the manual implementation.
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Figure 5 shows the same comparison but including the time spent in the
“glue code” that sorts the MDP’s states by SCC for the topological LP solver.
Recall that, for Tarjan’s algorithm in mcsta, this is done on-the-fly, so we can-
not measure it separately. The “fair” difference in performance for these two
implementations thus lies between what is shown in Figs. 4 and 5. As expected,
the runtime shifts in favour of the Tarjan implementation here, yet the perfor-
mance boost remains considerable, with speedups of up to two times. This is
because the glue code generally takes much less time than the actual SCC algo-
rithm. When comparing the manual C implementation to the verified Isabelle
LLVM implementation in this setting, the manual implementation still wins.
Both implementations use the same glue code, so effectively we see a fixed offset
added to both runtimes.

Finally, Fig. 6 compares the entire model checking procedure, including state
space exploration and LP solving (using mcsta’s default LP solver, which is cur-
rently GLOP, part of the Google OR Tools). We see that, in the grand scheme
of things, we maintain the performance of mcsta by replacing the existing unver-
ified Tarjan implementation by a verified implementation of Gabow’s algorithm.
We improved the performance of the SCC calculation, but since this is only a
small fragment of the model checking procedure it does not show in the figure.
It does however mean that we have replaced an important part of our model
checker without affecting the performance.

We see one outlier in Fig. 6, which is the instance of the “ij” model with
parameters num tokens var = 20. This is caused by a combination of two effects:
First, mcsta converts the probabilities in the model to floating-point numbers at
some point, which incurs a rounding error and may lead to the accumulation of
imprecisions on further processing. This instance works with very small numbers,
causing the imprecisions to accumulate along the topology, eventually resulting
in a linear program that the LP solver considers infeasible. This causes mcsta
to abort with a corresponding error message to the user2. Second, topological
orderings are not unique, and different implementations of different SCC-finding
algorithms can produce different orderings. For this benchmark instance, our
implementations of Tarjan’s and Gabow’s algorithms in fact produce different
orderings; and the one obtained by Tarjan’s finds an infeasible SCC much later
than the one of Gabow’s. As a result, the topological LP procedure—solving the
SCCs in reverse topological order—aborts much earlier on the Tarjan ordering.

Another notable benchmark instance was of the “zeroconf” model, where the
LP solver did not terminate for unknown reasons no matter which SCC-finding
algorithm we used (and which was therefore excluded from Figs. 4, 5 and 6).
This highlights the need to verify code—especially for the core components such
as SCC finding or LP solving of safety-critical software like a model checker.

2 Despite the error, we did not exclude this instance from the figures because the
error is after the SCC computation, so mobench did not flag it as a problem—and
ultimately, this provides an interesting insight.

https://developers.google.com/optimization
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8 Conclusion

We have replaced the SCC-finding algorithm of the state-of-the-art probabilistic
model checker mcsta, part of the Modest Toolset, by a verified version, with-
out negatively affecting mcsta’s overall performance. We see this work as a first
step in gradually replacing the unverified components of a probabilistic model
checker by verified ones. While this approach does not immediately produce a
fully verified model checker, we can benchmark and optimize each verified com-
ponent to avoid performance regressions, while decreasing the trusted code base
of the model checker with each replacement step. To avoid expensive copying
of data representations at the interface between verified and unverified compo-
nents, the verified algorithms have to work on the same data structures as the
original model checker. To this end, we used a stepwise refinement approach to
obtain verified LLVM code which can readily be linked with mcsta.

Our verification is based on an existing verification of a rather inefficient
purely functional SCC algorithm, which we significantly extended: we general-
ized the abstract algorithm to support duplicate successor nodes, and clarified
the proof by introducing a ghost variable. Moreover, we added additional data
structure invariants that are required for in-bounds checks when refining to 64-bit
integers. Finally, we replaced the whole implementation by an efficient impera-
tive one. In particular, we accurately modelled mcsta’s graph data structure.

We embedded the resulting verified LLVM code into mcsta, and extensively
benchmarked it. Our verified algorithm in isolation is faster than the original
unverified one used by mcsta, so its use has no negative effect on mcsta’s overall
performance. To explore the optimisation potential for future work, we also
benchmarked a hand-optimized C implementation.

Future Work. The biggest bottleneck in the current implementation is the glue
code. We aim to remove this by means of a different encoding, by removing
from mcsta the need for states to be sorted by SCC, or by extending the verified
implementation by an on-the-fly sorting. Beyond that, our experiments suggest
that further optimizing our verified SCC implementation will only have a minute
effect on the overall performance. Thus, it is also worth looking at other com-
ponents of the model checker: Maximal end component finding algorithms [1]
are required for sound (i.e. guaranteed ε-correct) MDP solution algorithms like
interval iteration [15]. As they require an SCC algorithm as a subroutine, they
are an obvious next candidate for verification. Interval iteration itself is a fur-
ther promising verification target, in particular its floating-point-correct vari-
ants [16]. To this end, we are already working on extending the IRF to reason
about floating-point numbers.

Data Availibility Statement. Our supplementary material, proofs, and the tools
used to obtain the results presented in this paper are archived and available at DOI
10.4121/aff9f553-0e9e-4ec2-90e0-20c5b6152862 [21].

https://doi.org/10.4121/aff9f553-0e9e-4ec2-90e0-20c5b6152862
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Abstract. We consider lexicographic bi-objective problems on Markov
Decision Processes (MDPs), where we optimize one objective while guar-
anteeing optimality of another. We propose a two-stage technique for
solving such problems when the objectives are related (in a way that
we formalize). We instantiate our technique for two natural pairs of
objectives: minimizing the (conditional) expected number of steps to
a target while guaranteeing the optimal probability of reaching it; and
maximizing the (conditional) expected average reward while guarantee-
ing an optimal probability of staying safe (w.r.t. some safe set of states).
For the first combination of objectives, which covers the classical frozen
lake environment from reinforcement learning, we also report on experi-
ments performed using a prototype implementation of our algorithm and
compare it with what can be obtained from state-of-the-art probabilistic
model checkers solving optimal reachability.
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1 Introduction
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Fig. 1. In the game of Frozen Lake, a robot moves in a slippery grid. It has to reach
the target (the gem) while avoiding holes in the grid. The robot can no longer move
once in a hole. Part of the grid contains walls and the robot cannot move into them.
The frozen surface of the lake being slippery, when the robot tries to move by picking a
cardinal direction, the next state is determined stochastically over adjacent directions.
For example, trying to move right would result on the robot going to the cell on the
right with probability 0.8 but going up or down with probability 0.1 for each.

Markov decision processes. These tools can be used to compute strategies (or
schedulers) that maximize the probability of, for instance, reaching a set of states.
As a concrete example, they can be used to solve the Frozen Lake problem shown
in Fig. 1, where a robot must navigate from an initial point to a target while
avoiding holes in the ice. The ground is frozen and so the movements of the
robot are subject to stochastic dynamics. While model-checkers provide optimal
strategies for the probability of reaching the target, those strategies may not
be efficient in terms of the expected number of steps required to reach it. For
instance, the strategy returned by Storm for the grid given in Fig. 1 requires on
average 345 steps to reach the target, while there are other strategies that are
optimal for reachability that can reach the target in just 34 steps on average.
Indeed, a strategy can be optimal in terms of the probability to reach the target
while (seemingly) behaving like a random walk on the grid (on portions without
holes in particular). In the worst case, one could expect to reach the target after
large number of steps (even on grids where there is a short and direct path to
target), which can be considered useless for practical purposes.1 Therefore, in
this context, we aim to not only maximize the probability of reaching the tar-
get, but also minimize the expected number of steps required to reach it, which
is thus a multi-objective problem. Unfortunately, multi-objective optimization
is not yet standard for probabilistic model checkers and most of them support
it only for specific combinations of some objectives. For instance, Storm can
solve the optimal reachability problem and compute the minimal expected cost
to target, but only for target sets that can be reached with probability one. The

1 In particular, the strategy could be used as a component of some larger approach
dealing with a more challenging problem too difficult for exact methods. In these
cases, such as [8], one frequently relies on machine-learning techniques (e.g. Monte-
Carlo methods or reinforcement learning) that run simulations for a fixed number
of steps. Thus, a strategy that takes needlessly too many steps to reach a target will
not help with learning practical and relevant strategies.
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latter is not usually the case in the Frozen Lake problem: the robot may need to
walk next to a hole, and risk falling into it, in order to reach the target. In this
paper, we demonstrate how to address the problems we have identified with the
Frozen Lake example by leveraging the algorithms implemented in Storm.

We identify a family of bi-objective optimization problems that can be solved
in two steps using readily available model-checking tools. This family of problems
is formalized as follows. Let M be an MDP and Σ(M) the set of all strategies
for it. We study reward functions that map strategies σ ∈ Σ(M) to real numbers
via the induced MC Mσ. Concretely, let f, g : Σ(M) → R. We say a strategy
σ ∈ Σ(M) is f -optimal if f(σ) = supτ∈Σ(M) f(τ) and write Σf for the set of all
f -optimal strategies.

There are multiple ways in which one can approach the problem of finding
optimal strategies with respect to both f and g (see, e.g., [11] and references
therein). In this work, we fix a lexicographic order on the functions. Formally,
we want to compute a strategy σ such that the following holds:

σ ∈ Σf and g(σ) = sup
τ∈Σf

g(τ) (1)

Our Contribution. In this paper, we discuss the problem described above for
two concrete cases of f and g. First, we tackle the motivating example from
Frozen Lake and detail how to find strategies that maximize f , the probability
of reaching a set of target states, while minimizing the conditional expected
number of steps to reach them, encoded as g. It is not clear how to obtain an
exact finite representation of the set Σf of all optimal strategies for f . To solve
this problem, we first compute an over-approximation Σover

f of Σf . We then
prune the original MDP in such a way that the set of all strategies in the pruned
MDP is exactly Σover

f . In this context, Σover
f will be the set of strategies that

only play actions used by at least one optimal strategy for reachability. We then
optimize a modified objective g′ in the pruned MDP, that, in turn, optimizes
both f and g in the lexicographic order in the original MDP. The pruned MDP
may contain actions from states that are part of some strategy maximizing the
probability of reaching a target but which (taken together) do not make any
progress towards the target (for example, a self-loop). These actions, however,
are not part of the strategies that optimize g′ in the pruned MDP and hence they
are also not part of the strategies that are returned by our algorithm. Secondly,
we also consider the problem of maximizing the probability of remaining in a safe
set of states, encoded as f , while maximizing the expected mean-payoff along
safe paths, encoded as g. Unlike the case for reachability, in this problem, we
can in fact construct an exact finite representation of Σf in the form of an MDP
(Theorem 2), which we again construct by pruning the original one. Similar to
the reachability case, we then optimize a modified objective g′ in the pruned
MDP. In both of these cases, we prove (in Theorems 1 and 3) that the strategies
optimizing g′ in the pruned MDP, are solutions to Eq. 1.

Note that, the solution to the second problem is related to the shielding [2]
framework and similar works [12,18], where one computes an exact representa-
tion of the set of all optimal strategies for the first objective and then solves
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for the second objective within that space. However, as remarked earlier, it is
unclear how to get an exact representation of Σf in the first problem.

In both cases, our solution to these (lexicographic) bi-objective problems can
be implemented by using two calls to off-the-shelf tools like Storm or PRISM,
thus resulting in a polynomial-time solution. We report on experimental results
for the Frozen Lake example that validate the need and practicality of our app-
roach. Finally, we discuss other instances of multi-objective problems where our
approach naturally generalizes.

Related Works. The strategy synthesis problem in MDPs (or stochastic games,
their 2.5-players extension) can be defined for a wide variety of temporal objec-
tives and quantitative rewards. Multi-objective problems are particularly chal-
lenging, as they need to optimize for multiple, potentially conflicting, goals.
[10] detailed a strategy synthesis algorithm for lexicographic combinations of
ω-regular objectives. This problem has also been studied with model-free, rein-
forcement learning approaches [16]. However, these approaches do not consider
objectives that maximize quantitative rewards, and cannot optimize for proper-
ties such as the time to reach a target. In [6], one can mix LTL objectives with
mean-payoff rewards and in [21] a lexicographic combination of discounted-sum
rewards is considered. Moreover, a discounted semantics of LTL2 is studied in
[1], and can be used as a way to optimize for the time until a target is reached.
Combinations of LTL and total-reward objectives have been considered in works
such as [15] and [13], under assumptions that exclude our problem. Indeed, while
minimizing the time to reach a target can be encoded as optimizing the total-
reward of a slightly modified structure (where costs are 1 at every move before
the target is reached then 0 forever), these works are not directly applicable to
our problem: applying [15] requires the assumption that the optimal probability
to reach a target is 1 in order to minimize the expected time to target, and
[13] searches for a strategy on the Pareto frontier instead of optimizing for a
lexicographic combination of objectives.

Note that minimizing the time to reach a target (a variant of the stochastic
shortest path problem [5]) is only well-defined under the condition that the target
is reached, so that our example requires studying conditional probabilities. This
notion has been studied in single-objective settings, so that for example proba-
bilistic model-checkers can optimize for the (conditional) probability of satisfying
an ω-regular event under the condition that another ω-regular event holds [3]. In
particular, [4] details how to maximize the expected total-reward until a target
is reached, under the assumption that the target is indeed reached with positive
probability. This does not solve our motivating example however, as it may yield
a strategy that is suboptimal for the probability of reaching the target. Finally,
we note that tools such as [9] can handle settings similar to our second example
(optimizing for safety and mean-payoff), but they do not consider conditional
mean-payoff.

2 This allows one to express constraints on the number of steps needed to satisfy an
Until operator.
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Overall, our general two-stage technique covers combinations of objectives
that are subcases of problems previously studied (e.g. in [10]) but it is also
applicable to combinations not previously considered. Interestingly, and to the
best of our knowledge, optimizing for a reachability objective while minimiz-
ing the conditional time to satisfy is not formally covered by previous work on
multi-objective strategy synthesis, and is not an available feature of probabilistic
model-checkers. It may be possible that this problem can be reduced to finding
bias-optimal strategies [14] in a slightly modified MDP. However, this does not
generalize to other objectives.

The missing proofs can be found in the longer version of the paper [7].

2 Preliminaries

A probability distribution on a countable set S is a function d : S → [0, 1] such
that

∑
s∈S d(s) = 1. We denote the set of all probability distributions on set S by

D(S). The support of a distribution d ∈ D(S) is Supp(d) = {s ∈ S | d(s) > 0}.

2.1 Markov Chain

Definition 1 (Markov chain). A (discrete-time) Markov chain or an MC is
a tuple M = (S, P ), where S is a countable set of states and P is a mapping
from S to D(S).

For states s, s′ ∈ S, P (s)(s′) denotes the probability of moving from state s to
state s′ in a single transition and we denote this probability P (s)(s′) as P (s, s′).

For a Markov chain M , a finite path ρ = s0s1 . . . si of length i > 0
is a sequence of i + 1 consecutive states such that for all t ∈ [0, i − 1],
st+1 ∈ Supp(P (st)). We also consider states to be paths of length 0. Similarly,
An infinite path is an infinite sequence ρ = s0s1s2 . . . of states such that for all
t ∈ N, st+1 ∈ Supp(P (st)). For a finite or infinite path ρ = s0s1 . . ., we denote its
(i+1)th state by ρ[i] = si. We denote the last state of a finite path ρ = s0s1 . . . sn

by last(ρ) = sn. Let ρ = s0s1 . . . si and ρ′ = s′
0s

′
1 . . . s′

j be two paths such that
si = s′

0. Then, ρ · ρ′ denotes the path s0s1 . . . sis
′
1 . . . s′

j . For a finite or infinite
path ρ = s0s1 . . ., we denote its i-length prefix as ρ|i = s0s1 . . . si.

For a finite path ρ ∈ PathsM , we use PathsωM (ρ) to denote the set of all paths
ρ′ ∈ PathsωM such that there exists ρ′′ ∈ PathsωM with ρ′ = ρ · ρ′′. PathsωM (ρ) is
called the cylinder set of ρ.

The σ-algebra associated with the MC M is the smallest σ-algebra that
contains the cylinder sets PathsωM (ρ) for all ρ ∈ PathsM . For a state s in S, a
measure is defined for the cylinder sets as –

PM,s(PathsωM (s0s1 . . . si)) =

{∏i−1
t=0 P (st)(st+1) if s0 = s

0 otherwise.

We also have PM,s(PathsωM (s)) = 1 and PM,s(PathsωM (s′)) = 0 for s′ �= s. This
can be extended to a unique probability measure PM,s on the aforementioned
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σ-algebra. In particular, if C ⊆ PathsM is a set of finite paths forming pair-
wise disjoint cylinder sets, then PM,s(∪ρ∈CPathsωM (ρ)) =

∑
ρ∈C PM,s(PathsωM (ρ)).

Moreover, if Π ∈ PathsωM is the complement of a measurable set Π ′, then
PM,s(Π) = 1 − PM,s(Π ′).

2.2 Markov Decision Process

Definition 2 (Markov decision process). A Markov decision process or an
MDP is a tuple M = (S,A, P ), where S is a finite set of states, A is a finite set
of actions, and P is a (partial) mapping from S × A to D(S).

P (s, a)(s′) denotes the probability that action a in state s leads to state s′ and
we denote this probability P (s, a)(s′) as P (s, a, s′). Note that not all actions
may be legal from a state. Therefore, if an action a is legal from a state s, we
will have

∑
s′∈S P (s, a, s′) = 1. Otherwise, we will have P (s, a, s′) is undefined

(denoted by ⊥) for all s′ ∈ S.
The definitions and notations used for paths in Markov chain can be extended

in the case of MDPs. In an MDP, a path is a sequence of states and actions.
For an MDP M, a (probabilistic) strategy is a function σ : PathsM → D(A)

that maps a finite path ρ to a probability distribution in D(A). For a path
ρ ∈ PathsM and a strategy σ, we will write σ(ρ, a) in place of σ(ρ)(a). A strategy
σ is deterministic if the support of the probability distributions σ(ρ) has size 1.
A strategy σ is memoryless if σ(ρ) depends only on last(ρ), i.e. if σ satisfies that
for all ρ, ρ′ ∈ PathsM, last(ρ) = last(ρ′) ⇒ σ(ρ) = σ(ρ′). We denote the set of all
finite paths in M starting from s following σ by PathsM(s, σ).

An MDP M induced by a strategy σ defines an MC Mσ. Intuitively, this
is obtained by unfolding M using the strategy σ and using the probabilities in
M to define the transition probabilities. Formally, Mσ = (PathsM, Pσ) where
for all paths ρ ∈ PathsM, Pσ(ρ)(ρ · as) = σ(ρ)(a) · P (last(ρ), a)(s). Thus, a
state ρ in PathsM uniquely matches a finite path ρ′ in Mσ where last(ρ′) = ρ.
This way when a strategy σ and a state s is fixed, the probability measure PMσ,s

defined in Mσ is also extended for paths in PathsM. We write the expected value
of a random variable X with respect to the probability distribution PMσ,s as
EMσ,s(X). For the ease of notation, we write PMσ,s and EMσ,s as Pσ,s and Eσ,s

respectively, if the MDP M is clear from the context. Also, we write PathsωMσ
(ρ)

as Cylσ(ρ), if the MDP M is clear from the context.
In the sequel, we make use of (technical) lemmas that follow from the exten-

sive literature on Markov chains and MDPs. However, for completeness, and to
give the reader intuition regarding the presented objectives, we also give proofs
for some of them.

3 Length-Optimal Strategy for Reachability

We begin by considering the multi-objective problem motivated by the game of
frozen lake – the robot tries to reach a target with as few steps as possible while
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not compromising on the probability of reaching a target. More formally, in this
section, we find a strategy in an MDP that minimizes the expected number
of steps to reach some goal states among those strategies that maximize the
probability of reaching the goal states.

We consider a set of target states T ⊆ S in M, and assume that every
state in T is a sink state, that is, it has only one outgoing action to itself with
probability 1. Given a path ρ in an MC M = (S, P ), we use lenT (ρ) to denote
the length of the shortest prefix of ρ that reaches one of the states of T , that is,
lenT (ρ) = i if ρ[i] ∈ T and for all j < i, ρ[j] /∈ T .

For an MDP M = (S,A, P ), let Pσ,s(♦T ) be the probability of reaching
a state in T , starting from s ∈ S, following the strategy σ in M. Then, let
ValM(s) = maxσ Pσ,s(♦T ) be the maximum probability to reach T from s, and
ΣM,s(♦T ) = argmaxσ Pσ,s(♦T ) be the set of all optimal strategies.

Problem statement.

Given an MDP M, an initial state s0 and a set of goal states T , our objective
is to find a strategy that minimizes Eσ,s0(lenT | ♦T ) among the strategies in
ΣM,s0(♦T ), that is, the strategies which maximize Pσ,s0(♦T ).

For the rest of this section, we fix the MDP M = (S,A, P ) and a set of
target states T ⊆ S. Note that, in this case, the functions σ 	→ Pσ,s0(♦T ) and
σ 	→ −Eσ,s0(lenT | ♦T ) correspond to the two functions f and g, respectively,
and the set ΣM,s0(♦T ) corresponds to Σf , described in the introduction (Eq. 1).

3.1 Maximizing Probability to Reach a Target

We denote the set {(s, a) ∈ S × A | ValM(s) =
∑

s′ P (s, a, s′) · ValM(s′)} by
OptM. For s ∈ S, let OptM(s) be the set {a | (s, a) ∈ OptM}. Finally, we use
ΣOpt

M to represent the set of strategies that takes actions according to OptM,
that is, ΣOpt

M = {σ | ∀ρ,∀a ∈ Supp(σ(ρ)); (last(ρ), a) ∈ OptM} .

Lemma 1. For every state s ∈ S and for every a ∈ A,

ValM(s) ≥
∑

s′
P (s, a, s′) · ValM(s′) .

Proof. Suppose, there is a state s ∈ S and an action a ∈ A such that ValM(s) <∑
s′ P (s, a, s′) ·ValM(s′). Now, consider the strategy σ′ that takes action a from

s and then from paths s ·as′ follows a strategy σs′ ∈ ΣM,s′(♦T ) that maximizes
the probability to reach states in T from s′. Formally,

σ′(ρ) =

{
a if ρ = s

σs′(ρ′) if ρ = s · as′ · ρ′

Then, Pσ′,s(♦T ) =
∑

s′ P (s, a, s′) · Pσs′ ,s′(♦T ) =
∑

s′ P (s, a, s′) · ValM(s′) >
ValM(s) , which is a contradiction as ValM(s) ≥ Pσ,s(♦T ) for any σ. �
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Lemma 2. For every state s ∈ S, ΣM,s(♦T ) ⊆ ΣOpt
M .

Proof. Towards a contradiction, suppose that, there is a strategy σ∗ ∈ ΣM,s(♦T )
such that σ∗ /∈ ΣOpt

M . Then there exists a path ρ and an action a ∈ Supp(σ∗(ρ))
such that (last(ρ), a) �∈ OptM. Let last(ρ) = t. Then, from Lemma 1 and the fact
that (t, a) �∈ OptM, we get:

ValM(t) >
∑

s′
P (t, a, s′) · ValM(s′) , (2)

and for every other action a′ �= a,

ValM(t) ≥
∑

s′
P (t, a′, s′) · ValM(s′) . (3)

Consider the strategy σ∗ that differs from σ∗ only on paths with ρ as prefix: on
every path having ρ as a prefix, σ∗ takes the next action according to a strategy
σt ∈ ΣM,t(♦T ) that maximizes the probability to reach a state in T from t,
whereas, it takes action according to σ∗ on every other path. Formally,

σ∗(ρ′) =

{
σt(ρ′′) if ρ′ = ρ · ρ′′

σ∗(ρ′) otherwise.

Note that, for every strategy σ, and for all a′ ∈ A, PMσ∗ ,ρ·a′s′(♦T ) ≤ ValM(s′) .

Therefore, Pσ∗,ρ(♦T ) =
∑

a′

(
σ∗(ρ, a′) ·

∑

s′

(
P (t, a′, s′) · Pσ∗,ρ·a′s′(♦T )

) )

≤
∑

a′

(
σ∗(ρ, a′) ·

∑

s′

(
P (t, a′, s′) · ValM(s′)

) )

<
∑

a′
σ∗(ρ, a′) · ValM(t) [from Eq. 2 and 3]

= ValM(t)

So, Pσ∗,ρ(♦T ) = Pσt,t(♦T ) = ValM(t) > Pσ∗,ρ(♦T ). For a finite path ρ and
an infinite path ρ′, we write ρ � ρ′ if there exists an infinite path ρ′′ such that
ρ′ = ρ · ρ′′. Now note that, for every strategy σ,

Pσ,s(♦T ) = Pσ,s(ρ′ |= ♦T ∧ ρ � ρ′) + Pσ,s(ρ′ |= ♦T ∧ ρ �� ρ′)
= Pσ,s(Cylσ(p)) · Pσ,ρ(♦T ) + Pσ,s(ρ′ |= ♦T ∧ ρ �� ρ′) (4)

Since for any ρ′ such that ρ �� ρ′, σ∗(ρ′) = σ∗(ρ′), we have Pσ∗,s(Cylσ(ρ)) is
equal to Pσ∗,s(Cylσ∗(ρ)), and furthermore, Pσ∗,s(ρ′ |= ♦T ∧ ρ �� ρ′) is equal to
Pσ∗,s(ρ′ |= ♦T ∧ρ �� ρ′). Plugging this into Eq. 4 for σ∗ and σ∗, and the fact that
Pσ∗,ρ(♦T ) < Pσ∗,ρ(♦T ), we conclude Pσ∗,s(♦T ) < Pσ∗,s(♦T ), which contradicts
the fact that σ∗ is an optimal strategy. �
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3.2 Minimizing Expected Conditional Length to Target

In the following, we propose a simple two-step pruning algorithm to solve the
multi-objective problem defined earlier in this section. Towards that direction,
we first modify the given MDP M in the following manner.

Definition 3. We define the pruned MDP M′ = (S′, A, P ′) with S′ = {s ∈ S |
ValM(s) > 0} and P ′ constructed from P in the following way:

P ′(s, a, s′) =

{
P (s, a, s′) · ValM(s′)

ValM(s) if (s, a) ∈ OptM and s, s′ ∈ S′

⊥ otherwise.

Note that M′ = (S′, A, P ′) is well-defined, since P ′ is a probability distribution.
Indeed,

∑
s′ P ′(s, a, s′) =

∑
s′ P (s, a, s′) · ValM(s′)

ValM(s) = ValM(s)
ValM(s) = 1.

From the construction of M′, we get that the set Σ(M′) of all strategies
in M′ is, in fact, ΣOpt

M . Following similar notation as introduced earlier, for a
strategy σ ∈ Σ(M′), we write PM′

σ,s and EM′
σ,s as P

′
σ,s and E

′
σ,s, respectively.

Also, we write PathsωM′
σ
(ρ) as Cyl′σ(ρ).

We now have all the ingredients to present the algorithm:

Algorithm 1
Input: M = (S, A, P ), s0 ∈ S and T ⊆ S.
1: Create MDP M′ = (S′, A, P ′) according to Definition 3.
2: Find a strategy σ∗ that minimizes the expected length in M′:

σ∗ ∈ argminσ E
′
σ,s0(lenT ) .

3: return σ∗.

Note that, the strategies present in the pruned MDP M′ contain every strat-
egy of M that optimizes the probability of reaching a target (Lemma 2). To
show that Algorithm 1 indeed returns a length-optimal strategy maximizing the
probability of reachability in M, we need to show the following:

– the strategy given by Algorithm 1 is indeed a strategy that optimizes the
probability to reach a target, and

– for every strategy σ ∈ ΣM,s0(♦T ), the conditional expected length to a target
state Eσ,s0(lenT | ♦T ) in M is the same as E

′
σ,s0

(lenT ) in M′. Therefore, it
is enough to minimize the expected length in M′.

We first show a relation between the measures of cylinder sets in M and M′.

Lemma 3. For every strategy σ ∈ ΣOpt
M and for every path ρ = s0a0s1 . . . sn ∈

((S′ \ T ) · A)∗T ∩ PathsM′(s0, σ), P′
σ,s0

(Cyl′σ(ρ)) =
Pσ,s0 (Cylσ(ρ))

ValM(s0)
.
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Proof. As sn ∈ T , ValM(sn) = 1. So,

P
′
σ,s0(Cyl

′
σ(ρ)) =

n−1∏

i=0

σ(ρ|i, ai) · P ′(si, ai, si+1)

=

n−1∏

i=0

σ(ρ|i, ai) · P (si, ai, si+1) · ValM(si+1)

ValM(si)

= Pσ,s0(Cylσ(ρ)) · ValM(sn)

ValM(s0)
=

Pσ,s0(Cylσ(ρ))

ValM(s0)
.

�
Using Lemma 3 we will prove that (cf. Corollary 1) every strategy that max-

imizes the probability of reaching a target state in M, reaches a target state in
M′ with probability 1, and vice versa.

Lemma 4. For every strategy σ ∈ ΣOpt
M , P′

σ,s0
(♦T ) = Pσ,s0 (♦T )

ValM(s0)
.

Proof. Note that, PathsM′(s0)∩ ((S′ \T ) ·A)∗T = PathsM(s0)∩ ((S \T ) ·A)∗T ,
since in the construction of M′ we only remove states of M from which no state
in T is reachable. Therefore, using Lemma 3, we get:

P
′
σ,s0(♦T ) =

∑

ρ∈PathsM′ (s0)∩((S′\T )A)∗T

P
′
σ,s0(Cyl

′
σ(ρ))

=
∑

ρ∈PathsM(s0)∩((S\T )A)∗T

Pσ,s0(Cylσ(ρ))

ValM(s0)

=
Pσ,s0(♦T )

ValM(s0)
.

�
Corollary 1. For every σ ∈ Σ(M), σ ∈ ΣM,s0(♦T ) iff P

′
σ,s0

(♦T ) = 1.

Since for every σ ∈ ΣM,s0(♦T ), Pσ,s0(♦T | ♦T ) = 1, we can write:

Eσ,s0(lenT | ♦T ) =

∞∑

r=0

r · Pσ,s0({ρ | ρ |= ♦T ∧ lenT (ρ) = r})
Pσ,s0(♦T )

=
∞∑

r=0

r ·
∑

ρ∈PathsM(s0)∩((S\T )A)∗T :lenT (ρ)=r

Pσ,s0(Cylσ(ρ))

ValM(s0)
.

We now relate the expected length of reaching a target state in M′ with the
expected conditional length of reaching a target state in M.

Lemma 5. For any strategy σ ∈ ΣM,s0(♦T ), E′
σ,s0

(lenT ) = Eσ,s0(lenT | ♦T ).
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Proof. Using PathsM′(s0) ∩ ((S′ \ T ) · A)∗T = PathsM(s0) ∩ ((S \ T ) · A)∗T ,
Lemma 3 and Corollary 1, we get:

E
′
σ,s0(lenT ) =

∞∑

r=0

r · P′
σ,s0({ρ | ρ |= ♦T ∧ lenT (ρ) = r})

=
∞∑

r=0

r ·
∑

ρ∈PathsM′ (s0)∩((S′\T )A)∗T :lenT (ρ)=r

P
′
σ,s0(Cyl

′
σ(ρ))

=

∞∑

r=0

r ·
∑

ρ∈PathsM(s0)∩((S\T )A)∗T :lenT (ρ)=r

Pσ,s0(Cylσ(ρ))

ValM(s0)

= Eσ,s0(lenT | ♦T ) .

�
Finally, we prove the correctness of Algorithm 1:

Theorem 1. Given an MDP M = (S,A, P ), a state s0 ∈ S and T ⊆ S, let σ∗

be the strategy returned by Algorithm 1. Then,

1. Pσ∗,s0(♦T ) = ValM(s0).
2. Eσ∗,s0(lenT | ♦T ) = min

σ∈ΣM,s0 (♦T )
Eσ,s0(lenT | ♦T )

Proof. From Corollary 1, we get that E
′
σ,s0

(lenT ) �= ∞ iff σ ∈ ΣM,s0(♦T ).
So if σ∗ /∈ ΣM,s0(♦T ), then E

′
σ∗,s0

(lenT ) = ∞. But since for any strategy
σ in ΣM,s0(♦T ), E

′
σ,s0

(lenT ) < ∞, it contradicts the fact that σ∗ minimizes
E

′
σ,s0

(lenT ). Therefore, σ∗ ∈ ΣM,s0(♦T ), and hence Pσ∗,s0(♦T ) = ValM(s0).
From Lemma 5, we get for any σ ∈ ΣM,s0(♦T ),

Eσ,s0(lenT | ♦T ) = E
′
σ,s0

(lenT )

=⇒ argmin
σ∈ΣM,s0 (♦T )

Eσ,s0(lenT | ♦T ) = argmin
σ∈ΣM,s0 (♦T )

E
′
σ,s0

(lenT )

Hence, σ∗ ∈ argminσ∈ΣM,s0 (♦T ) Eσ,s0(lenT | ♦T ) and therefore, we conclude,
Eσ∗,s0(lenT | ♦T ) = min

σ∈ΣM,s0 (♦T )
Eσ,s0(lenT | ♦T ). �

Note that, constructing the MDP M′ (Line 1 of Algorithm 1) takes polyno-
mial time. Finding a strategy that optimizes E

′
σ,s0

(lenT ) also takes polynomial
time [5]. Therefore, the overall algorithm terminates in polynomial time.

4 Experimental Results

We have made a prototype implementation of the pruning-based algorithm
(Algorithm 1) described in Sect. 3. In this section, we compare the performance
(expected number of steps to reach the goal states) of our algorithm with the
strategies generated by Storm that (only) maximize the probability of reaching
the goal states.
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Table 1. Comparison of the expected conditional length to reach the target for the
strategies given by Algorithm 1 (vDistOpt) and Storm (vStorm) on some of the ran-
domly generated layouts, sorted by their ratio. ‘Shortest distance’ refer to the length of
the shortest path to the target (without considering the stochastic dynamics of Frozen
Lake) and ‘ValM(s0, ♦T )’ represents the maximum probability of reaching the target
from the initial position of the robot (s0).

layouts (M) ValM(s0, ♦T ) Shortest distance vDistOpt vStorm

1 0.66 9 76.48 76.48
2 0.52 18 299.75 629.16
3 1.00 2 2.40 12.12
4 1.00 3 3.44 34.47
5 1.00 6 7.71 137.56
6 0.68 10 264.04 9598.81
7 1.00 5 112.69 9367.02
8 0.91 10 11.49 5879.63
9 1.00 3 3.66 5711.76
10 0.91 5 12.89 149357.57

In our MDP, when the robot tries to move by picking a direction, the next
state is determined randomly over the neighbouring positions of the robot,
according to the following distribution weights: the intended direction gets a
weight of 10, and other directions that are not a wall and not the reverse direc-
tion of the intended one get a weight of 1, the distribution is then normalized so
that the weights sum up to 1.

We generated 100 layouts of size 10 × 10 where we placed walls in (i) each
cell in the border of the grid and (ii) with probability 0.1, at each of other cells.
We then placed holes in the remaining empty cells with the same probability.
Finally, we chose the position of the target and the starting position from the
remaining empty cells uniformly at random.

From these layouts, we constructed MDPs described in the Prism language,
a format supported by Storm. For each MDP, we extracted two strategies: (i)
a strategy σStorm ∈ ΣM,s(♦T ) that is produced by Storm that optimizes the
probability to reach the target, and (ii) σDistOpt, a strategy that is derived from
Algorithm 1. Note that, both of these strategies are optimal for the probability
to reach the target. However, the first strategy does not focus on optimizing the
length to reach the target. For both of these strategies, we calculate the expected
conditional distance to the target in their induced Markov chains. Table 1 reports
on our experimental results for a representative subset of the 100 layouts we
generated, one of each decile (one layout from the 10 best percents, one from
the 10 − 20% range, etc.).

Observe that the strategy given by Algorithm 1 does not necessarily suggest
following the shortest path, as this may not optimize the first objective (reaching
the target with maximum probability). For example, in the layout in Fig. 1, the
‘shortest’ path to the target has length 10. But if we need to maximize the
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probability to reach the target, from the cell in the grid marked with 1, instead
of going right, a better strategy would be to keep going to the cell above and then
coming back. This way, the agent will avoid the hole below with certainty, and
will eventually go to the right. This is the strategy that Algorithm 1 provides,
which has expected conditional length to the target 33.85. On the other hand,
the expected conditional length to the target while following the optimal strategy
produced by Storm is much larger (345.34). This is because it asks the robot to
loop in the 6×3 area in the left. Because of the stochastic dynamics it eventually
leaves this area and reaches the target, but it may take a long time, increasing
the expected conditional length.

While performing the experiments on the 100 randomly generated layouts,
we observed that in 9 layouts out of 10, the expected conditional length (vStorm)
for the strategy σStorm is at least twice the expected conditional length (vDistOpt)
for the strategy σDistOpt. In 69% of the layouts, vStorm values are 10 times worse
than the vDistOpt values. In the worst cases (23% of the layouts), vStorm values
are at least a 1000 times worse than the vDistOpt values.

5 Safety and Expected Mean Payoff

In this section, we consider another multi-objective problem – as a first objective,
we maximize the probability of avoiding a set of states in an MDP, and as a sec-
ond objective, we maximize the expected conditional Mean Payoff. We propose
a pruning-based algorithm, similar to Algorithm 1, to solve this problem.

For this section, we augment the definition of an MDP M with a reward
function R : S × A → R, where S,A and P are the same as in the previous
sections. Furthermore, we consider a set of states Bad ⊂ S in M and assume
that every state in Bad is a sink state.

For an MDP M = (S,A, P,R), let PMσ,s(�¬Bad) be the probability of
avoiding all states in Bad, starting from s ∈ S, following the strategy σ in M.
Then, let ValM(s) = maxσ PMσ,s(�¬Bad) be the maximum probability to avoid
Bad from s, and ΣM,s(�¬Bad) = argmaxσ PMσ,s(�¬Bad) be the set of all
optimal strategies for safety.

To formally define the second objective, we first define the total reward of
horizon n for a path ρ = s0a0 . . . as Rewn(ρ) =

∑n−1
i=0 R(si, ai). Then, for a

strategy σ and a state s, the expected mean-payoff is defined as

Eσ,s(MP) = lim inf
n→∞

1
n
Eσ,s(Rewn) .

The optimal expected average reward starting from a state s in an MDP M
is defined over all strategies σ in M as supσ Eσ,s(MP). One can restrict the
supremum to the deterministic memoryless strategies [20, section 9.1.4].

We use Eσ,s(Rewn | �¬Bad) to denote the expected conditional finite horizon
reward. Then the expected conditional mean-payoff is defined as

Eσ,s(MP | �¬Bad) = lim inf
n→∞

1
n
Eσ,s(Rewn | �¬Bad) .

Intuitively, it represents the expected mean-payoff one would obtain by following
the strategy σ and staying safe.
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Problem statement.

Given an MDP M, an initial state s0 and a set of states Bad where ValM(s0) > 0,
our objective is to find a strategy that maximizes EMσ,s0(MP | �¬Bad) among
the strategies in ΣM,s0(�¬Bad), i.e., the strategies maximizing PMσ,s0(�¬Bad).

For the rest of this section, we fix the MDP M = (S,A, P,R) and a set of bad
states Bad ⊂ S. Note that, in this case, the functions σ 	→ Pσ,s0(�¬Bad) and
σ 	→ Eσ,s0(MP | �¬Bad) correspond to the two functions f and g, respectively,
and ΣM,s0(�¬Bad) corresponds to Σf , described in the introduction (Eq. 1).

5.1 Maximizing Probability of Staying Safe

We denote the set {(s, a) ∈ S × A | ValM(s) =
∑

s′ P (s, a, s′) · ValM(s′)} using
OptM. For s ∈ S, let OptM(s) be the set {a | (s, a) ∈ OptM}. Finally, we use
ΣOpt

M to represent the set of strategies that takes actions according to OptM,
that is, ΣOpt

M = {σ | ∀ρ,∀a ∈ Supp(σ(ρ)); (last(ρ), a) ∈ OptM} .
We first state the following results, analogous to Lemma 1 and 2 respectively,

which can be proved similarly as in the case of reachability.

Lemma 6. For every state s ∈ S \ Bad and for every action a,

ValM(s) ≥
∑

s′
P (s, a, s′) · ValM(s′) .

Lemma 7. For every state s ∈ S, ΣM,s(�¬Bad) ⊆ ΣOpt
M .

Furthermore, we will show that, unlike reachability, in this case, the other
direction of the containment also holds:

Lemma 8. For every state s ∈ S, ΣM,s(�¬Bad) ⊇ ΣOpt
M .

In order to prove Lemma 8, we first develop a few intermediate results. We
start with defining the following notations:

UPre0(Bad) = Bad, UPrei+1(Bad) = {s | ∀a,∃s′ ∈ UPrei(Bad), P (s, a, s′) > 0},

UPre∗(Bad) =
∞⋃

i=0

UPrei(Bad) .

Furthermore, we define Good = S \ UPre∗(Bad), V = S \ (Good ∪ Bad).

Lemma 9. For every state s ∈ S, ValM(s) = 1 iff s ∈ Good.

Proof. For s ∈ Good, ∃a such that Supp(P (s, a)) ⊆ Good. This gives a strategy
to surely avoid Bad, and hence ValM(s) = 1.

If s �∈ Good, then either (i) s ∈ Bad, in which case ValM(s) = 0, or (ii)
s ∈ UPre∗(Bad), and hence s ∈ UPrei(Bad) \UPrei−1(Bad) for some i. Then, for
every action a, Supp(P (s, a))∩UPrei−1(Bad) �= ∅. This implies, for any strategy
σ, there is a path from s of length at most i reaching Bad following σ. Since this
path has a non-zero probability, we therefore get that ValM(s) < 1. �
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For a strategy σ and a finite path ρ, we define the strategy σρ as follows: for any
finite path ρ′ starting from last(ρ), σρ(ρ′) = σ(ρ · ρ′).

Lemma 10. For every strategy σ ∈ ΣOpt
M , and every finite path ρ in M following

σ, Pσρ,last(ρ)(�¬Bad) = 1 iff last(ρ) ∈ Good.

Proof. We denote last(ρ) by s. First, let s ∈ Good. Then we can show that
∀a ∈ OptM(s),Supp(P (s, a)) ⊆ Good. Indeed, if there exists an action a ∈
OptM(s) and a state s′ ∈ Supp(P (s, a)) such that s′ /∈ Good, then from Lemma 9,
Val(s′) < 1, which would further imply that

ValM(s) =
∑

s′
P (s, a, s′) · ValM(s′) <

∑

s′
P (s, a, s′) = 1 ,

which contradicts the fact that s ∈ Good (using Lemma 9). So for every strategy
σ in ΣOpt

M , every path from s following σρ only visits states from Good. Therefore,
Pσρ,s(�¬Bad) = 1.

To conclude, observe that if s ∈ S \ Good, Pσρ,s(�¬Bad) ≤ ValM(s) < 1. �
In the following, for the ease of notation, for any state s ∈ S and a strategy σ,

we denote Pσ,s(Cylσ(ρ)) by Pσ,s(ρ). Recall that, for every action a ∈ OptM(s),
ValM(s) =

∑
s′ P (s, a, s′) · ValM(s′) . We can then expand ValM(s) as:

ValM(s) =
∑

a

σ(s, a)ValM(s) =
∑

a

σ(s, a)
∑

s′
P (s, a, s′) · ValM(s′) .

We can generalize the above statement by unfolding ValM(·) for n steps:

Lemma 11. For every state s ∈ S and for every strategy σ ∈ ΣOpt
M ,

ValM(s) =
∑

ρ∈(V A)nV

Pσ,s(ρ) · ValM(last(ρ)) +
∑

ρ∈(V A)<nGood

Pσ,s(ρ)

The summation in the first term of the above expression is taken over all paths
that reach neither Good nor Bad within n steps, whereas the summation in the
second term is over all paths that reach some state in Good within n steps. The
result in Lemma 11 follows from the following result:

Lemma 12. For every finite path ρ = s0a0s1 . . . sn of length n and for every
strategy σ in ΣOpt

M , for all k < n:

ValM(sk) =
∑

ρ′∈(V A)n−kV

Pσρ|k
,sk (ρ

′) · ValM(last(ρ′)) +
∑

ρ′∈(V A)<n−kGood

Pσρ|k
,sk (ρ

′) .

Using Lemma 12, we can now prove Lemma 11:

Proof of Lemma 11. Putting k = 0 in Lemma 12, we get:

ValM(s0) =
∑

ρ′∈(V A)nV

Pσ,s0(ρ
′) · ValM(last(ρ′)) +

∑

ρ′∈(V A)<nGood

Pσ,s0(ρ
′) .

�
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We now characterize P(·) in the same way as we did for Val(·). Note that, for
any state s and any strategy σ, we can expand Pσ,s(�¬Bad) as

Pσ,s(�¬Bad) =
∑

a

σ(s, a)
∑

s′
P (s, a, s′) · Pσsas′ ,s′(�¬Bad) .

Analogous to Lemma 11, we can generalize this statement by unfolding P(·) for
n steps:

Lemma 13. For every state s ∈ S and for every strategy σ ∈ ΣOpt
M ,

Pσ,s(�¬Bad) =
∑

ρ∈(V A)nV

Pσ,s(ρ) · Pσρ,last(ρ)(�¬Bad) +
∑

ρ∈(V A)<nGood

Pσ,s(ρ) .

Lemma 14. For every s ∈ S, and every σ ∈ ΣOpt
M , ValM(s) = Pσ,s(�¬Bad).

Proof. If s ∈ Good, ValM(s) = Pσ,s(�¬Bad) = 1. If s ∈ Bad, ValM(s) =
Pσ,s(�¬Bad) = 0. Finally, if s ∈ V , from Lemma 11 and Lemma 13,

ValM(s) − Pσ,s(�¬Bad) =
∑

ρ∈(V A)nV

Pσ,s(ρ) · (ValM(last(ρ)) − Pσρ,last(ρ)(�¬Bad))

<
∑

ρ∈(V A)nV

Pσ,s(ρ) [Using Lemma 10]

For s ∈ UPre∗(Bad), there is a path of length at most |V | reaching Bad in Mσ.
So limn→∞

∑
ρ∈(V A)nV Pσ,s(ρ) = 0. �

Lemma 8 follows directly from Lemma 14. Then, using Lemma 7 and 8, we
conclude the following theorem:

Theorem 2. For every state s ∈ S, ΣM,s(�¬Bad) = ΣOpt
M .

5.2 Maximizing Expected Conditional Mean Payoff

We propose a simple two-step pruning algorithm, similar to Algorithm 1, to solve
the multi-objective problem defined by safety and mean-payoff. We first modify
the given MDP M in the following manner.

Definition 4. Let S′ = {s ∈ S | ValM(s) > 0}. We define M′ = (S′, A, P ′, R)
where P ′ is defined as follows:

P ′(s, a, s′) =

{
P (s, a, s′) · ValM(s′)

ValM(s) if (s, a) ∈ OptM and s ∈ S′

⊥ otherwise.

Note that M′ is again well-defined. We now present the two-step algorithm:
For a state s0, a strategy σ, and a finite path ρ = s0a0s1 . . . sn ∈ (S′A)∗S′ ∩

PathsM′(s0, σ), we define, GoodCylσ(ρ) = Cylσ(ρ) ∩ {ρ′ | ρ′ |= �¬Bad}. Then,
using Lemma 14, we get that if σ ∈ ΣOpt

M , then

Pσ,s0(GoodCylσ(ρ)) = Pσ,s0(Cylσ(ρ)) ·Pσρ,sn(�¬Bad) = Pσ,s0(Cylσ(ρ)) ·ValM(sn). (5)
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Algorithm 2
Input: M = (S, A, P, R), s0 ∈ S, Bad ⊆ S

1: Create the MDP M′ = (S′, A, P ′, R′) according to Definition 4.
2: Find a strategy σ∗ that maximizes the expected mean payoff in M′:

σ∗ ∈ argmaxσ E
′
σ,s0(MP) .

3: return σ∗.

Lemma 15. For every strategy σ ∈ ΣOpt
M , s0 ∈ S′ and every finite path ρ =

s0a0s1 . . . sn ∈ (S′A)∗S′ ∩ PathsM′(s0, σ), P′
σ,s0

(Cyl′σ(ρ)) =
Pσ,s0 (GoodCylσ(ρ))

ValM(s0)
.

Proof.

P
′
σ,s0

(Cyl′σ(ρ)) =
n−1∏

i=0

σ(ρ|i, ai) · P ′(si, ai, si+1)

=
n−1∏

i=0

σ(ρ|i, ai) · P (si, ai, si+1) · ValM(si+1)
ValM(si)

= Pσ,s0(Cylσ(ρ)) · ValM(sn)
ValM(s0)

=
Pσ,s0(GoodCylσ(ρ))

ValM(s0)
[from Eq. 5]

�
We now show the following correlation between the expected mean-payoff in

M′ and the expected conditional mean-payoff in M:

Lemma 16. For every strategy σ, E′
σ(MP) = Eσ(MP | �¬Bad)

Proof. For r ∈ R, we define ξr = {ρ ∈ PathsM(s0) ∩ (SA)nS | Rewn(ρ) = r}
and ξ′

r = {ρ ∈ PathsM′(s0) ∩ (S′A)nS′ | Rewn(ρ) = r}. Note that for a fixed n,
there are finitely many such non-empty ξr. From the definition of the conditional
expected reward in M, we get:

Eσ,s0(Rewn | �¬Bad) =
∑

r

r · Pσ,s0({ρ | Rewn(ρ) = r} ∩ �¬Bad)
Pσ,s0(�¬Bad)

=
∑

r

r ·
∑

ρ∈ξr

Pσ,s0(Cylσ(ρ) ∩ �¬Bad)
ValM(s0)

=
∑

r

r ·
∑

ρ∈ξr

Pσ,s0(GoodCylσ(ρ))
ValM(s0)

.
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Then, E′
σ,s0(Rewn) =

∑

r

r · P′
σ,s0({ρ | Rewn(ρ) = r}) =

∑

r

r ·
∑

ρ∈ξ′
r

P
′
σ,s0(Cyl

′
σ(ρ))

=
∑

r

r ·
∑

ρ∈ξ′
r

Pσ,s0(GoodCylσ(ρ))

ValM(s0)

=
∑

r

r ·
∑

ρ∈ξr

Pσ,s0(GoodCylσ(ρ))

ValM(s0)
(6)

= Eσ,s0(Rewn | �¬Bad) (7)

The equality in Eq. 6 is due to the fact that for any finite path ρ = s0 . . . sn ∈
(SA)nS \ (S′A)nS′, ∃i s.t. ValM(si) = 0, which implies, Pσ,s0(GoodCylσ(ρ)) ≤
Pσ,s0(GoodCylσ(s0 . . . si)) = Pσ,s0...si

(�¬Bad) ≤ ValM(si) = 0.
Finally, dividing by n and taking limit on the both sides of Eq. 7, we get

E
′
σ,s0

(MP) = Eσ,s0(MP | �¬Bad). �
Now we prove the correctness of Algorithm 2:

Theorem 3. Given an MDP M = (S,A, P,R), a state s0 ∈ S and Bad ⊂ S,
let σ∗ be the strategy returned by Algorithm 2. Then,

1. Pσ∗,s0(�¬Bad) = ValM(s0).
2. Eσ∗,s0(MP | �¬Bad) = max

σ∈ΣM,s0 (�¬Bad)
Eσ,s0(MP | �¬Bad)

Proof. From Theorem 2, for any σ in ΣOpt
M , Pσ,s0(�¬Bad) = ValM(s0). Note

that a strategy in M′ would be in ΣOpt
M . Therefore, Pσ∗,s0(�¬Bad) = ValM(s0).

From Lemma 16, we get for any σ,

Eσ,s0(MP | �¬Bad) = E
′
σ,s0

(MP)

⇒ argmax
σ∈ΣM,s0 (�¬Bad)

Eσ,s0(MP | �¬Bad) = argmax
σ∈ΣM,s0 (�¬Bad)

E
′
σ,s0

(MP)

Hence, σ∗ ∈ argmaxσ∈ΣM,s0 (�¬Bad) Eσ,s0(MP | �¬Bad) and therefore, we con-
clude, Eσ∗,s0(MP | �¬Bad) = max

σ∈ΣM,s0 (�¬Bad)
Eσ,s0(MP | �¬Bad). �

Note that, constructing the MDP M′ (Line 1 of Algorithm 2) takes polyno-
mial time. Finding a strategy that optimizes E

′
σ,s0

(MP) also takes polynomial
time [20, Chapter 9]. Therefore, the overall algorithm takes polynomial time.

6 Discussion

The work presented in this article proposes a pruning-based approach (Algo-
rithms 1, 2) that can be used to solve certain multi-objective problems in MDPs.
The algorithms work by first pruning the given MDP based on the first objec-
tive, and then solving the (possibly simplified) second objective on the pruned
MDP. Note that, optimizing the second objective, in turn, optimizes both of the
objectives in the lexicographic order.
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The case where the first objective is to maximize the probability of reaching
a set of (target) states in an MDP and the second objective is to minimize the
conditional expected time to reach the same set of states, has been discussed in
Sect. 3. Note that one can consider more general (positive) cost functions and
try to minimize the conditional expected cost to reach the target states as a
secondary objective, keeping the first objective unchanged.

Based on a suggestion by Jakob Piribauer, we conjecture that the second
objective considered in this paper can, in fact, be replaced by any measurable
function. More precisely, when the first objective is to remain safe, our technique
can be applied to solve the bi-objective problem where the second objective is
to optimize the expected value of a measurable function g, conditioned on the
event that safety is satisfied. To this end, we can prove the following result:
every strategy in the original MDP M that maximizes E(g | �¬Bad) while
maximizing the probability of staying safe, also maximizes the expected value of
g in the pruned MDP M′, that is,

sup
σ∈ΣM

Safe

Eσ(g | �¬Bad) = sup
σ∈Σ(M′)

E
′
σ(g)

where ΣM
Safe denotes the set of all strategies that maximize the probability of

staying safe in M. We believe this result can be proved by generalizing the
proof of Lemma 16.

Similarly, when the primary objective is to reach a set of target states with
as high probability as possible, we believe our technique will be able to compute
the optimal strategy when the secondary objective is given by any measurable
function g. We conjecture that the following result will hold: any strategy in
M that first maximizes the probability to reach a target and further maximizes
the expected value of a measurable function g conditioned on reaching a target
state, will also maximize the (unconditional) expected value of g in the pruned
MDP M′, among the strategies that reach a target almost surely, that is, with
probability 1. More formally, we can obtain the following result:

sup
σ∈ΣM

Reach

Eσ(g | ♦T ) = sup
σ∈ΣM′

a.s.Reach

E
′
σ(g)

where ΣM′
a.s.Reach is the set of all strategies in M′ that, when followed, forces M′

to reach a target state with probability 1. Further, if it is the case that every
strategy in M′ maximizing the (unconditional) expected value of g reaches a
target with probability 1 (which was the case in the pair of objectives considered
in Sect. 3), then the problem reduces to finding a strategy in M′ that maximizes
the (unconditional) expected value of g among all strategies, that is,

sup
σ∈ΣM

Reach

Eσ(g | ♦T ) = sup
σ∈Σ(M′)

E
′
σ(g) .

While we studied only two-dimensional lexicographic objectives for the sake
of clarity and simplicity, we note that our work can be straight-forwardly
extended to more than two reward structures. For example, one may want to
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optimize for safety first, reachability second, and minimal expected time to reach
a target as a third objective. In this case, we would proceed in three steps: a
first pruning of the MDP that solves the safety problem, a second pruning that
over-approximate the winning strategies for reachability, and finally we would
minimize the expected distance.
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Abstract. The innovations in reactive synthesis from Linear Temporal
Logics over finite traces (LTLf) will be amplified by the ability to verify
the correctness of the strategies generated by LTLf synthesis tools. This
motivates our work on LTLf model checking. LTLf model checking, how-
ever, is not straightforward. The strategies generated by LTLf synthesis
may be represented using terminating transducers or non-terminating
transducers where executions are of finite-but-unbounded length or infi-
nite length, respectively. For synthesis, there is no evidence that one type
of transducer is better than the other since they both demonstrate the
same complexity and similar algorithms.

In this work, we show that for model checking, the two types of
transducers are fundamentally different. Our central result is that LTLf
model checking of non-terminating transducers is exponentially harder
than that of terminating transducers. We show that the problems are
EXPSPACE-complete and PSPACE-complete, respectively. Hence, consid-
ering the feasibility of verification, LTLf synthesis tools should synthesize
terminating transducers. This is, to the best of our knowledge, the first
evidence to use one transducer over the other in LTLf synthesis.

1 Introduction

Linear Temporal Logic over finite traces [14] (LTLf) is the finite-horizon coun-
terpart of the well-known Linear Temporal Logic (LTL) over infinite traces [24].
LTLf is rapidly gaining popularity among real-world applications where behav-
iors are better expressed over a finite but unbounded horizon [7,11,12,19,35].

Reactive synthesis from LTLf specifications, or LTLf synthesis [2,8,10,13,
15,18,29,37] has amassed so much interest that the 2023 Reactive Synthesis
1 http://www.syntcomp.org/news/.
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Competition (SYNTCOMP) will inaugrate an LTLf track1. Consequently, LTLf
synthesis tools have been growing in complexity [2,9,18,29,37]. Their correct-
ness, however, is rarely verified. To continue the innovations in synthesis and to
successfully conduct large-scale competitions like SYNTCOMP there is, there-
fore, a need to verify the correctness of the synthesized strategies/transducers.
Verifying the results as opposed to verifying the tools has been advocated in
various contexts, including translation validation [27], program checking [6], and
equivalence checking [22]. For LTL synthesis, result checking is simply LTL model
checking. For LTLf synthesis, we need LTLf model checking. But this is a topic
that has not been studied so far, hence this work.

We observe that LTLf model checking for LTLf synthesis tools is not as
straightforward as one might have thought to be. The standard approach in
the literature on LTLf synthesis generates non-terminating transducers. This
includes the seminal work on synthesis [13] and the SYNTCOMP guidelines [20].
The executions of non-terminating transducers are of infinite length. Since LTLf
formulas are defined on finite traces only, an execution of a non-terminating
transducer is said to satisfy an LTLf formula if there exists a finite-length prefix
that satisfies the formula [13]. Few works on synthesis do mention the possibility
of terminating transducers as the output [2,37]. Since their executions are of
finite length, LTLf satisfaction is defined naturally on terminating transducers.
When it comes to synthesis, there is no clear evidence that one type of transducer
is better than the other, since the complexity and algorithms of synthesis are
the same for both types. We believe this is why existing works on LTLf synthesis
do not make a clear distinction between the two. For implementations, how-
ever, most works use non-terminating transducers as they directly correspond
to standard Mealy/Moore machines (See state-of-the-art tools, e.g., Syft [37],
Lisa [2], and Lydia [9]). This work shows, however, that from the model-checking
perspective, the two types of transducers are fundamentally different and bear
a significant impact on synthesis.

Our central result is that LTLf model checking of non-terminating transduc-
ers is exponentially harder than LTLf model checking of terminating transducers.
We demonstrate that under LTLf specifications, model checking non-terminating
transducers is EXPSPACE-complete, whereas model checking terminating trans-
ducers is PSPACE-complete. An immediate implication of this result is that for
non-terminating transducers, LTLf model checking is exponentially harder than
LTL model checking, which is known to be PSPACE-complete [33]. This result
is unexpected because a factor behind the increasing popularity of LTLf is the
perception that problems using LTLf are at most as hard as those using LTL,
if not simpler (See Table 1). This is because LTLf formulas can be expressed by
automata over finite words [14], which allow for practically scalable algorithms
for automata constructions [30]. Conversely, LTL formulas require automata
over infinite words [36], for which the automata manipulation is harder in the-
ory [17,26,31,32] and in practice [16,21]. It is no wonder that an exponential
increase in the model-checking complexity seems surprising at first.

The exponential blow-up in LTLf model-checking of non-terminating trans-
ducers arises from subtlety in the problem definition. A transducer satisfies a
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Table 1. LTL vs. LTLf: Complexity w.r.t. specification. NT and T abbreviate non-
terminating and terminating models, respectively.

LTL LTLf

Non-deterministic Automata (NBA) Exponential (NFA) Exponential

Satisfiability PSPACE-complete [28] PSPACE-complete [14]

Synthesis 2EXPTIME-complete [25] 2EXPTIME-complete [13]

Model Checking (NT) PSPACE-complete [33] EXPSPACE-complete (New!)

Model Checking (T) Undefined PSPACE-complete (New!)

formula if there are no counterexamples. In non-terminating transducers, an
infinite execution is a counterexample if every finite prefix does not satisfy the
LTLf formula. Formally, for an LTLf formula φ, let pref(φ) represent the language
consisting of all infinite executions for which every prefix satisfies φ. Then, a non-
terminating transducer M satisfies an LTLf formula φ iff L(M) ∩ pref(¬φ) = ∅,
where L(M) is the set of all executions of M. This is where LTLf model checking
fundamentally differs from LTL model checking, as counterexamples in LTL are
obtained simply from an automaton for the negation of the formula [33]. W.l.o.g.,
we show that while pref(φ) is ω-regular for all LTLf formulas φ, the size of their
non-deterministic Büchi automata (NBA) is doubly exponential in the size of

the formula, i.e., 22
O(|φ|)

and 22
Ω(

√
|φ|)

. Once again, this differs from LTL model
checking, where the size of the NBAs for counterexamples is singly exponential
in the size of the formula. As a result, we show LTLf model checking of non-
terminating transducers is in EXPSPACE using on-the-fly emptiness checking of
L(M) ∩ pref(¬φ). We establish EXPSPACE-hardness from first principles.

In contrast, we show that LTLf model checking of terminating transducers
is PSPACE-complete. Due to their finite-length executions, counterexamples in
terminating transducers are completely characterized by the negation of the
formula, lending the same complexity as LTL model checking.

Thus, our results offer a clear recommendation between the two types of
transducers in LTLf synthesis. We argue that synthesis tools should account for
the feasibility of the verification of the synthesized transducers. Consequently, we
recommend that synthesis tools should generate terminating transducers rather
than non-terminating transducers. We believe this is the first work to offer theo-
retical evidence to use one transducer over the other in synthesis. Furthermore,
these results could be applied immediately to run the LTLf track in SYNTCOMP.

Outline. Sect. 2 outlines preliminaries on LTLf and LTLf synthesis. Section 3
motivates and defines LTLf model checking. Section 4 is dedicated to pref(φ).
Section 5 develops the complexity of model checking. Lastly, Sect. 6 concludes.

2 Preliminaries and Notations

We use the standard notions of deterministic and non-deterministic finite
automata (DFAs and NFAs, respectively) as well as deterministic and
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non-deterministic Büchi automata (DBAs and NBAs, respectively). For an
automaton, we use the notation A = (Σ,S, ι, δ, F ) where Σ is a finite set of
symbols (called an alphabet), S is a finite set of states, ι ∈ S is the initial state,
F ⊆ S is the set of accepting states, and δ ⊆ S ×Σ ×S is the transition relation.
We use standard semantics for all automata, hence refer details to the appendix
of [3].

2.1 Linear Temporal Logic over Finite Traces (LTLf)

LTLf [1,14] extends propositional logic with finite-horizon temporal operators.
In effect, LTLf is a variant of LTL [24] that is interpreted over finite rather than
infinite traces. The syntax of an LTLf formula over a finite set of propositions
Prop is identical to LTL, and defined as

ϕ := true | false | a ∈ Prop | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

where X (Next) and U (Until), are temporal operators. We also include their
dual operators, N (Weak Next) and R (Release), defined as Nϕ ≡ ¬X¬ϕ and
ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2). We also use typical abbreviations such as Fϕ ≡ trueUϕ,
Gϕ ≡ falseRϕ, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2. We denote by |φ|
the length/size of a formula φ, i.e., the number of operators in φ.

The semantics of LTLf is similar to LTL but is interpreted over finite traces.
A finite sequence ρ over 2Prop is said to satisfy an LTLf formula φ over Prop,
denoted by ρ |= φ, if ρ, 0 |= φ where for all positions 0 ≤ i < |ρ|, ρ, i |= φ is
defined inductively on φ as follows:

– ρ, i |= true; ρ, i �|= false; ρ, i |= a iff a ∈ ρi;
– ρ, i |= ¬ϕ iff ρ, i �|= ϕ;
– ρ, i |= φ1 ∧ φ2 iff ρ, i |= φ1 and ρ, i |= φ2;
– ρ, i |= Xφ iff i + 1 < |ρ| and ρ, i + 1 |= φ;
– ρ, i |= φ1Uφ2 iff there exists j s.t. i ≤ j < |ρ| and ρ, j |= φ2, and for all k,

i ≤ k < j, we have ρ, k |= φ1.

Observe that X requires that there exists a next position; In the context of
finite traces, its negation also contains the situation that no next position exists,
formulated as ¬(Xtrue) or equivalently Nfalse. This differs from LTL where the
Next operator is applied to all positions. Also, note that LTLf formulas are
evaluated on traces of non-zero length.

The language of an LTLf formula φ over Prop is the set of all finite sequences ρ
over 2Prop such that ρ |= φ. The language of an LTLf formula is regular. The NFA
and DFA representing LTLf are of size singly exponential and doubly exponential,
respectively, in the size of the formula [14]. We note that a letter σ ∈ Σ of the
NFA/DFA corresponds to a valuation over the set Prop of propositions.

2.2 LTLf Synthesis and Transducers

Let LTLf formula φ be defined over propositional variables partitioned into I
and O representing the input and output variables, respectively. Given such an
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LTLf formula φ, the problem of LTLf realizability is to determine whether there
exists a strategy f : (2I)∗ → 2O such that for all λI = I0, I1, · · · ∈ (2I)ω, there is
an integer k ≥ 0 such that the finite trace ρ = (I0 ∪ f(ε)), (I1 ∪ f(I0)), · · · , (Ik ∪
f(I0, I1, · · · , Ik−1)) satisfies φ. The LTLf synthesis problem is to generate such
a function, if the given formula is realizable [13]. Intuitively, LTLf synthesis
can be viewed as a game between two agents, an environment and a system,
who continually take turns to assign values to the input and output variables,
respectively, to generate a sequence of input and output variables. W.l.o.g., we
assume the system plays first, followed by the environment, and so on. The goal of
synthesis is to generate a strategy for the system agent so that all resulting plays
with the environment satisfy the given specification. We note that our model-
checking results also hold when the environment plays first, as we will model
strategies as transition systems in model checking for generality (cf. Section 3).

Non-terminating Transducers. The standard in LTLf synthesis is to rep-
resent the strategy f using (non-terminating) transducers [13,20]. W.l.o.g., a
transducer is a Moore machine M = (Q, q0, I,O, δ,G) where Q is a finite set of
states, q0 ∈ Q is the initial state, and I and O are finite sets of input and output
variables, respectively. Functions δ : Q × 2I → Q and G : Q → 2O are the tran-
sition function and the output function, respectively. Given an input sequence
λI = I0, I1, · · · ∈ (2I)ω, the output sequence is λO = G(q0), G(q1), · · · ∈ (2O)ω

where q0 is the initial state and qi+1 = δ(qi, Ii) for all i ≥ 0.
Then, given an LTLf formula with variables partitioned into I and O the

realizability and synthesis problem is to generate a Moore machine M such that
for all input sequences λ = I0, I1, · · · ∈ (2I)ω, there exists an integer k ≥ 0 such
that ρ = (I0, G(q0)), (I1, G(q1)) . . . (Ik, G(qk)) satisfies φ. Intuitively, the system
and environment play indefinitely, where the system plays as per the transducer.
The play (an execution in the transducer) satisfies an LTLf formula if there exists
a finite-length prefix that satisfies the formula.

Terminating Transducers. The strategy f can also be represented using
terminating transducers [2,37]. W.l.o.g., a terminating transducer is a Ter-
minating Moore machine M = (Q, q0, I,O, δ,G, F ) where Q, q0, I, O, δ,
and G are as defined for Moore machines and ∅ �= F ⊆ Q are the termi-
nal states. An input sequence λI = I0, I1, · · · Ik ∈ (2I)∗ generates an output
sequence λO = G(q0), G(q1), . . . G(qk) ∈ (2O)∗ where q0 is the initial state and
qi+1 = δ(qi, Ii) for all 0 ≤ i < k.

Then, given an LTLf formula with variables partitioned into I and O, the
realizability and synthesis problem is to generate a terminating Moore machine
M such that for all input sequence λ = I0, I1, · · · ∈ (2I)ω, there exists an integer
k ≥ 0 such that ρ = (I0, G(q0)), (I1, G(q1)) . . . (Ik, G(qk)) with qk+1 = δ(qk, Ik) ∈
F and ρ satisfies φ. Intuitively, the synthesized terminating transducer is such
that as soon as a play lands in a terminal state of the transducer, the system
agent controlling the output variables wins the game and this play is over as it is
guaranteed that the play seen so far satisfies the given formula. On the contrary,
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in non-terminating transducers, the system agent does not have the ability to
terminate a game as it is never informed of whether it has seen a satisfying
prefix.

3 LTLf Model Checking

In addition to being of independent interest, our motivation behind LTLf model
checking is to support the ongoing development of LTLf synthesis tools. As syn-
thesis tools continue to become more complex, it is imperative that we design
automatic approaches to check their correctness. One way is to evaluate whether
the result generated from these tools is correct. In the case of LTLf synthesis,
result checking corresponds to LTLf model checking. Finally, an immediate appli-
cation of LTLf model checking could be in running the inaugural LTLf track in
the Reactive Synthesis Competition (SYNTCOMP) [20].

We begin by defining the model-checking problem. As described in Sect. 2.2,
the result of LTLf synthesis could be a terminating or a non-terminating trans-
ducer. Since LTLf satisfaction on executions in the two types of transducers
differ, we define model-checking on them separately. For the sake of generality,
we define model-checking with respect to transition systems (TS) as opposed to
transducers. Translations from transducers to transition systems are standard
and polynomial [23]. Hence, the translation details have been omitted.

Non-Terminating Transition Systems are those that run indefinitely, i.e.,
their executions are of infinite length (e.g. network servers). Formally, a non-
terminating TS is a structure M = (Σ,S, T, ι, L), where Σ is a finite proposi-
tional alphabet, S is a finite set of states, relation T ⊆ S × S is the transition
relation with no sink states, ι is the initial state, and L : S → 2Σ is the labeling
function. An execution ρ = s0s1 · · · in M is an infinite sequence of consecutive
states beginning with the initial state, i.e., s0 = ι and (si, si+1) ∈ T for all i ≥ 0.
The label sequence of ρ is the sequence L(ρ) = L(s0)L(s1) · · · . The n-length
finite prefix of ρ and its label sequence are given by ρ[0, n] = s0 · · · sn−1 and
L(ρ[0, n]) = L(s0) · · · L(sn−1), respectively, for n > 0.

Since executions are of infinite-length and LTLf formulas are interpreted over
finite-length sequences only, we say an execution ρ in M satisfies an LTLf formula
φ, denoted by ρ |= M, as follows

ρ |= φ iff ∃n > 0 s.t. L(ρ[0, n]) |= φ,

i.e., there exists a finite-length prefix of the execution that satisfies the formula.

Terminating Transition Systems are those that terminate after a finite but
unbounded amount of steps (e.g. a terminating program). Formally, a termi-
nating TS is given by a structure M = (Σ,S, T, ι, L, F ), where Σ, S, T ⊆ S ×S,
ι, and L : S → 2Σ are defined as for nonterminating transition systems and
∅ �= F ⊆ S are the terminal states, which are the only states that are allowed to
be sink states. An execution ρ = s0 · · · sn in M is a finite sequence of consecutive



Model Checking Strategies from Synthesis over Finite Traces 233

states beginning with the initial state and ending in a terminal state, i.e., s0 = ι
and (si, si+1) ∈ T for all 0 ≤ i < n, and sn ∈ F . Its label sequence is the sequence
L(ρ) = L(s0) · · · L(sn).

An execution ρ in M satisfies an LTLf formula φ, denoted by ρ |= φ,

ρ |= φ iff L(ρ) |= φ.

Model Checking. We first define satisfaction and then model checking.

Definition 1 (M |= φ). Given a non-terminating (resp., terminating) transi-
tion system M and an LTLf formula φ, we say TS M satisfies φ, denoted by
M |= φ, if for all (resp., finite) executions ρ of M, we have that ρ |= φ.

Definition 2 (Model Checking). Given a non-terminating (resp. terminat-
ing) transition system M and an LTLf formula ϕ, the problem of LTLf model
checking of non-terminating (resp. terminating) models is to determine whether
M satisfies ϕ.

Note on abuse of notation. The notation |= has been overloaded to express
satisfaction at several occasions, namely, in LTLf semantics, in defining when
executions of non-terminating and terminating systems satisfy a formula, and
when a system satisfies a formula. We overload notation to avoid new symbols
for each case, as the context is clear from the L.H.S.

4 Prefix Language of LTLf Formulas

This section builds the basic blocks for LTLf model checking of non-terminating
systems. Recall from Sect. 3, an (infinite-length) execution in a non-terminating
system M violates an LTLf formula φ if all of its finite prefixes violate φ. So, the
counterexamples are captured by the language that accepts an infinite word iff
all of its finite prefixes violate φ (or satisfy ¬φ). We call this the prefix language
of an LTLf formula ¬φ. Then, clearly, M |= φ iff the intersection of M with
the prefix language of ¬φ is empty, making the prefix language a basic block to
model-check non-terminating systems.

We first observe that the prefix languages for LTLf formulas are ω-regular.
We then show that one can construct a DBA accepting the prefix language of an
LTLf formula, which incurs a doubly exponential blow-up (Sect. 4.1). One may
expect that the complexity of the construction can be improved if we target
at NBAs. We show, however, that the doubly exponential blow-up is not due
to a lack of better construction, but a fundamental trait of the problem itself
(Theorem 2). This is in contrast to the construction of NBA/NFA for LTL/ LTLf,
where only deterministic automata constructions incur doubly exponential blow-
ups and nondeterministic automata constructions incur singly exponential blow-
ups, hinting at the hardness of model checking. Finally, we identify a fragment
of LTLf formulas for which a singly exponential construction of NBAs for their
prefix languages can be obtained via a translation from LTLf to LTL (Sect. 4.2).
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4.1 Prefix Automata for LTLf

This section formally defines the prefix language/automata for LTLf formulas
and proves that their automata constructions involve an unavoidable double-
exponential blow-up. The upper and lower bounds are shown in Theorem 1 and
Theorem 2, respectively.

Definition 3 (Prefix Language). Given an LTLf formula φ, the prefix lan-
guage of φ, denoted by pref(φ), is such that an (infinite-length) word w ∈ pref(φ)
iff every finite prefix of w satisfies φ, i.e., ∀n > 0.w[0, n] |= φ.

Recall that the semantics of LTLf requires traces of non-zero length only (see
Sect. 2). So we only need n > 0, instead of n ≥ 0, ignoring the empty word.
By abuse of notation, we let pref(φ) denote both the prefix language and its
corresponding automaton, called the prefix automaton.

We start by showing pref(φ) is ω-regular for LTLf formula φ:

Theorem 1 (Prefix automata: Upper bound). For an LTLf formula φ,
the language pref(φ) is ω-regular. The Büchi automaton recognizing pref(φ) has
22

O(|φ|)
states.

Proof. Given LTLf formula φ, we construct a DBA for pref(φ) as follows:

1. Construct a DFA D = (Σ,Q, ι, δ, F ) for ¬φ, i.e., L(D) = L(¬φ).
We require D to be complete in the sense that for every state s and every
alphabet a ∈ Σ, there exists a successor t = δ(s, a).

2. Obtain a DBA C = (Σ,Q, ι, δ′, F ) by converting all accepting states F of D
to accepting sink states in C. For this, replace all outgoing transitions from
all accepting states in D with self loops on all letters.
Formally, replace every δ(f, a) = t in DFA D with f = δ′(f, a) in DBA C,
for all f ∈ F and a ∈ Σ. For all other states, let δ′ behaves identically to δ.

3. Obtain the desired Büchi automaton B = (Σ,Q, ι, δ′,F = Q\F ) by swapping
accepting and non-accepting states of C.

Since C is a DBA with accepting sink states, C is the complement of B. Hence,
it suffices to show that C accepts w ∈ Σω iff there exists a finite prefix of w
that satisfies ¬φ. Clearly, w ∈ L(C) then w must have a finite-prefix satisfying
¬φ since the accepting states of C and D are identical. Conversely, we need to
show that despite δ and δ′ being different, C will accept all words that contain a
finite prefix satisfying ¬φ. For this, we show that for every such word, C retains
the transitions to accept the shortest prefix satisfying ¬φ. Details can be found
in the appendix of [3]. Finally, the number of states of C are bounded by those
of D which is doubly exponential in |φ| [14]. ��

Observe that the Büchi automaton B constructed above is deterministic. One
of our key discoveries is that the doubly exponential blow-up appears even in
the construction of NBAs for pref(φ), demonstrating that the blow-up is funda-
mentally unavoidable. Theorem 2 presents such an LTLf formula to demonstrate
the blow-up. The rest of the section builds up to that construction.
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We observe that the blow-up is caused by the combination of two aspects:
First is the universal quantification on prefixes of words in pref(φ); Second is the
ability of an LTLf formula to identify the k-th last positions of finite words using
the X (Next) modality. At first, we identify an ω-regular language, parameterized
with n ≥ 1, such that all NBAs accepting the language have at least 22

n

states.
Let n ∈ N and Σ = {0, 1,#,&}. Consider the language Ln ⊆ Σω where

u · & · v ∈ Ln s.t. if #w# appears in v then #w# also appears in u,

where w ∈ {0, 1}n, u ∈ {0, 1,#}∗ and v ∈ {0, 1,#}ω. Intuitively, Ln consists of
infinite words that are (a) split into two parts by a special character “&” and
(b) all words of the form #w# appearing after “&” must have appeared before
“&”, for all n-length words w ∈ {0, 1}n. Essentially, Ln is a bit-level adaption
of the language Kd where x · & · y ∈ Kd if digits appearing in y are a subset
of digits appearing in x, where x ∈ D∗ and y ∈ Dω for D = {0, 1, · · · , d − 1}.
Obviously, the words 14&1 and 134&4 are good prefixes of a word x · & · y ∈ Kd

when d > 5. There are also less obvious good prefixes, such as a permutation
of D followed by the letter &. We need to recognize all good prefixes in order
to accept the language Kd. So, it is necessary to keep track of the digits (i.e.,
subsets of D) that the automaton has seen so far in an input word. Hence, the
NBA of Kd needs 2Ω(d) states. The same proof can be adapted to show that the
NBA of Ln consists of 22

Ω(n)
states. We refer to [3] for more detailed proofs.

Next, we need to identify a regular language Fn such that, by abuse of nota-
tion, pref(Fn) corresponds to Ln and Fn can be represented by an LTLf formula
of polynomial length in the parameter n > 0. A natural choice would be to let
Fn to be the finite-word version of Ln. In other words, u · & · v ∈ Fn s.t. if
#w# appears in v then #w# must have appeared in u for all w ∈ {0, 1}n and
u, v ∈ {0, 1,#}∗. The issue is that Fn cannot be represented by a short LTLf
formula for the same reason why Ln cannot be expressed by a short LTL formula.

We need Fn to be a simpler language. The roadmap would be to leverage the
universal quantification over all prefixes to generate Ln. This is also where we
leverage the ability of LTLf to refer to the last k-th positions of a finite trace.
Keeping these goalposts, we define regular language Fn ⊆ Σ∗ as

u · & · v ∈ Fn s.t. if the last n + 2 characters of v are of the form #w#
then #w# also appears in u,

where w ∈ {0, 1}n and u, v ∈ {0, 1,#}∗. Intuitively, by applying universal quan-
tification on all finite-length prefixes, focusing on the last n + 2 characters of
words in Fn is sufficient to ensure that every occurrence of the form #w# after
the symbol “&” appears in the portion before the “&”.

There is one last caveat. There are infinitely many prefixes of words in Ln that
may not contain the symbol &. This issue can be easily remedied by including
words without symbol & to both languages. We overload the notation of pref(L)
to refer to the prefix language of a language over finite words L. Then,
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Lemma 1. Let Ln and Fn be as defined above. Then

Ln � {0, 1,#}ω = pref(Fn � {0, 1,#}∗).

Proof (Proof Sketch). To see why Ln�{0, 1,#}ω ⊆ pref(Fn�{0, 1,#}∗), observe
that the prefixes of a word w ∈ Ln � {0, 1,#}ω either contain the symbol & or
they don’t. If the prefix falls under the latter, then the prefix is contained in
{0, 1,#}∗. Otherwise, if the last n + 2 characters are not in the form #w# for
w ∈ {0, 1}n then the prefix is contained in Fn by definition of Fn. If the last
n + 2 characters are in form #w# for w ∈ {0, 1}n, then, by properties of words
in Ln, #w# must have appeared before &. Once again, the prefix is contained
in Fn. Thus, all prefixes of w are contained in Fn � {0, 1,#}∗.

The converse, i.e., pref(Fn � {0, 1,#}∗) ⊆ Ln � {0, 1,#}ω, can be proven by
a similar case-by-case analysis. Details can be found in the appendix of [3]. ��

The last piece is to show that the language Fn � {0, 1,#}∗ can be expressed
using an LTLf formula φn of length polynomial in n, as shown below:

Theorem 2 (Prefix automata: Lower bound). There exists an LTLf for-

mula ψ such that the number of states in all NBAs for pref(ψ) is 22
Ω(

√
|ψ|)

.

Proof. Let n ∈ N\{0} and Σ = {0, 1,#,&}. Let Ln and Fn be as defined above.
Since all NBAs of Ln are of size 22

Ω(n)
and Ln is disjoint from {0, 1,#}ω by

containing the “&” symbol, it is easy to show that all NBAs of Ln � {0, 1,#}ω

require 22
Ω(n)

states as well.
From Lemma 1, it is sufficient to show that Fn�{0, 1,#}∗ can be represented

by an LTLf formula of length O(n2). So, let us construct the desired LTLf formula
φn. By abuse of notation, let the propositions be given by Prop = {0, 1,#,&}
with the interpretation that the symbol holds when its proposition is true. Recall
that a letter σ in the finite alphabet Σ corresponds to a valuation over the
atomic propositions Prop. For instance, & ∈ Σ is interpreted as the valuation
¬0 ∧ ¬1 ∧ ¬# ∧ & over Prop. Then, the LTLf formula φn is a conjunction of the
following three:

(R1). At all times, only one proposition can be true.
(R2). If “&” holds at some place, it occurs exactly once.
(R3). If “&” holds at some place, then if the end of the word has the form #w#,

for w ∈ {0, 1}n, #w# must have appeared before “&”.

The LTLf formulation of (R1), denoted by OnlyOneProp, is quite straightforward
and has been deferred to the supplementary material of [3]. The formulation of
(R2) is F& → ExactOne&, where ExactOne& expresses that “&′′ occurs exactly
once:

ExactOne& := (¬&U(& ∧ (¬(Xtrue) ∨ X(G¬&)))).

Intuitively, the “&′′ symbol is not seen until it is seen somewhere, after which
either the trace terminates (i.e., ¬(Xtrue) holds) or the trace does not see
“&′′ globally (i.e., X(G¬&) holds). In fact, we also have ¬(Xtrue) ∨ X(G¬&) ≡
N(G¬&).
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To express (R3), we first introduce two formulas. The first is EndWith#w#
to express that the end of the word has the form #w#. The second is
End#w#AppearsBefore& to express that the word #w# must appear before
“&′′. So, (R3) is expressed by

F& → (EndWith#w# → End#w#AppearsBefore&)

For EndWith#w#, we introduce shorthands, namely Ends := Xn+1(¬(Xtrue)),
and Appear#w# := # ∧ Xn+1# ∧ ∧n

i=1 Xi(0 ∨ 1). Note that Ends is true only at
the (n + 2)-th last position of a trace and Appear#w# enforces that the current
and next n + 1 positions have the form #w# for w ∈ {0, 1}n. Then,

EndWith#w# := G(Ends → Appear#w#)

Also, End#w#AppearsBefore& :=

F
(
Appear#w# ∧ F& ∧

n∧

i=1

[(Xi0 ∧ G(Ends → Xi0)) ∨ (Xi1 ∧ G(Ends → Xi1))]
)

Intuitively, when defining End#w#AppearsBefore&, we assume that we are
standing at the first position of a word of the form #w# that appears before
“&′′. So, we require that Appear#w# holds and later F& holds. Next, we require
the same word w to appear at the end. So we require that if in the i-th position,
0 (resp. 1) holds, at the i-th position from where Ends holds, 0 (resp. 1) must
also hold. This is formulated as (Xi0∧G(Ends → Xi0))∨(Xi1∧G(Ends → Xi1)).

Finally, the whole formula φn is given as follows:

φn = OnlyOneProp

∧ (F& → (ExactOne& ∧ ((EndWith#w# → End#w#AppearsBefore&))))

Clearly, when F& does not hold, all words satisfying φn would be in
{0, 1,#}ω. If F& holds, then all words should meet (R2) and (R3). One can
easily verify that φn specifies the language Fn � {0, 1,#}∗. Thus, pref(φn) =
Ln � {0, 1,#}ω.

Last but not the least, the length of φn is in O(n2) since End#w#
AppearsBefore& has length of O(n2). ��

Note that the LTLf formulation makes heavy use of Ends, which in turn uses
the X modality. Essentially, Ends serves as a unique identifier of a specific position
at the end of all traces. This enables us to anchor at that location without any
artificial constructs and to express the desiderata accordingly. This is a crucial
difference between LTLf and LTL.

4.2 Prefix Automata for LTLf Fragment

In this section, we show that a singly exponential construction of NBAs is possi-
ble for a fragment of LTLf formulas. Through an exposition of the prefix language
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for fragments of LTLf, we highlight some of the peculiarities of the prefix lan-
guage. Consider the fragment of LTLf, denoted as LTLf\{R,∨}, which permits all
but the R (Release) modality and allows ¬ and ∨ on literals only, as defined
below:

ψ :=  | ¬ | ψ ∧ ψ | Xψ | Nψ | Fψ | Gψ | ψUψ

where  := a ∈ Prop | ¬a |  ∧  |  ∨ . We show that the prefix language of
this fragment is equivalently represented by an LTL formula of the same size,
hence its NBA is singly exponential in the size of the formula. The said LTL
formula can be obtained using the translation t : LTLf\{R,∨} → LTL described
below (Since LTL and LTLf share the same syntax, to avoid confusion, we add
the subscript ∞ to temporal operators in LTL, indicating that we have |ρ| = ∞.
For instance, Globally in LTL becomes G∞):

– t() = , t(¬) = ¬
– t(Xψ) = false, t(Nψ) = X∞t(ψ)
– t(ψ1 ∧ ψ2) = t(ψ1) ∧ t(ψ2)

– t(Fψ) = t(ψ)
– t(ψ1Uψ2) = t(ψ2)
– t(Gψ) = G∞(t(ψ))

The insight behind this translation is to identify that the criteria for a formula
to hold on all finite-length prefixes simplifies to the formula holding on a prefix
of length one. The proof is presented below:

Lemma 2. Let φ ∈ LTLf\{R,∨} and let LTL t(φ) be as defined above. Then,
L(t(φ)) = pref(φ) and O(|φ|) = O(|t(φ)|).
Proof. Trivially, O(|φ|) = O(|t(φ|) holds. We prove that L(t(φ)) = pref(φ) by
structural induction on φ. In the interest of space, we skip the base cases ( and
¬). We also skip the ∧ and G modalities, as they are intuitive. We present the
argument for X, N, F, and U. The full proof can be found in the appendix of [3].

We set up notations: for w = w0w1 · · · ∈ Σω, let w[i, j] = wi · · · wj−1 denote
subsequences of w for 0 ≤ i < j. So, w[0, n] is the n-length prefix of w for n > 0.
By inductive hypothesis (I.H.), we assume L(t(γ)) = pref(γ) for γ ∈ {ψ,ψ1, ψ2}.

Case Fψ: The critical observation is that for Fψ to hold on all finite pre-
fixes, Fψ must hold on the prefix of length 1, which in turn is possible only
if the first position of the word satisfies ψ. Formally, first we show that
pref(Fψ) ⊆ L(t(Fψ)). Let w ∈ pref(Fψ). Then, in particular w[0, 1] |= Fψ.
This is possible only if w[0, 1] |= ψ. Thus, for all n > 0, we get w[0, n] |= ψ. So,
w ∈ pref(ψ). By I.H., w ∈ L(t(ψ)). By translation, this means w ∈ L(t(Fψ)).
Next, we show L(t(Fψ)) ⊆ pref(Fψ). Let w ∈ L(t(Fψ)). By translation,
w ∈ L(t(ψ)). By I.H., w ∈ pref(ψ). Now, if ψ holds, then Fψ also holds for
all non-zero lengths. Hence, w ∈ pref(Fψ).

Case ψ1Uψ2: As earlier, the critical observation is for ψ1Uψ2 to hold on a prefix
of length one. For this, ψ2 must hold. The proof is similar to the earlier case.

Case Xψ: The issue is that Xψ can never be true on a word of length one, since
there does not exist a next position on length one words. Hence, pref(Xψ) =
∅ = L(False) = L(t(Xψ)).
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Case Nψ: N (Weak Next) doesn’t have the issue faced by X. If a word is of length
one, Nψ trivially holds. For words of all other lengths, it requires Xψ to hold.
Formally, first we show that pref(Nψ) ⊆ L(t(Nψ)). Let w ∈ pref(Nψ). Then,
by semantics of LTLf, it follows that the second position on w must satisfy ψ,
i.e., w[1, 2] |= ψ. In particular, for all i > 1, w[1, i] |= ψ. So, w[1,∞] ∈ pref(ψ).
By I.H., w[1,∞] ∈ L(t(ψ)). Hence, w ∈ L(X∞t(ψ)) = L(t(Nψ)). Conversely,
let w ∈ L(t(Nψ)). By translation, w ∈ L(X∞t(ψ)). Hence, by I.H., we get for
all i > 1, w[0, i] |= Xψ and w[0, 1] |= Nψ since w[1,∞] ∈ L(t(ψ)) = pref(ψ).
In other words, w ∈ pref(Nψ). ��
An immediate consequence of Lemma 2 is that the prefix automata for

LTLf\{R,∨} are singly exponential in the size of the formula [34]:

Corollary 1. Let φ ∈ LTLf\{R,∨}. The NBA for pref(φ) contains 2O(|φ|) states.

Note that, in all the cases above, every conjunct holds on all finite prefixes.
This may not be true if ∨ (or) is permitted in the formula. For example, consider
φ = Ga ∨ Fb. Now, the word w = {a}{b}{}ω ∈ pref(φ) since the prefix of
length one satisfies Ga and all other prefixes satisfy Fb. Hence, with disjunction,
different prefixes can satisfy different disjuncts. In fact, the LTL formula for
pref(φ) is aU∞b ∨ G∞a. However, such translations may increase the formula
length because of duplicating the formula under G∞ modality. An open problem
here is to identify the largest fragment for which the prefix automata have only
singly exponential blow-up. This goes hand-in-hand with uncovering the core
behind the doubly exponential blow-up for prefix automata.

5 Complexity of LTLf Model Checking

We present the complexity of LTLf model checking. Section 5.1 develops the
lower bound for model checking non-terminating systems and Sect. 5.2 presents
the completeness argument for both terminating and non-terminating systems.

5.1 EXPSPACE Lower Bound for Non-terminating Systems

We prove EXPSPACE-hardness of LTLf model checking of non-terminating
systems by a polynomial-time reduction from the problem of whether an
exponential-space Turing machine T = (Q,Γ, δ, q0, F ) accepts an input word
x = x1 . . . xn. The components of the Turing machine are defined as follows:

– Q is the set of states and q0 ∈ Q is the initial state.
– Γ is the tape alphabet, which is assumed to include the blank symbol ∅.
– δ : Q × Γ → Q × Γ × {←,→} is the transition function. δ(q, γ) = (q′, γ′, d)

means that if the machine is in state q and the head reads symbol γ, it moves
to state q′, writes symbol γ′, and moves the head in direction d.

– F ⊆ Q is the set of accepting states. The machine accepts if it reaches a state
in F .

Since T is an exponential-space Turing machine, we can assume that its tape
has 2cn cells, where n is the size of the input and c is a constant.
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High-Level Idea. Given a Turing machine T and an input x, our reduction
will construct a non-terminating system M and an LTLf formula ϕ s.t. T accepts
x iff every execution of M has a finite prefix that satisfies ϕ, i.e., M |= ϕ.

In this reduction, we will encode runs of the Turing machine as label
sequences of the system. A cell in the tape is encoded as a sequence of cn + 1
propositional assignments. The first assignment encodes the content of the cell,
which can be either a symbol γ ∈ Γ or a symbol γ along with a state q ∈ Q, the
latter indicating that the head is on that cell and is in state q. The remaining cn
assignments encode the position of the cell in the tape as a cn-bit number (since
the tape has 2cn cells). The concatenation of 2cn cells encodes a configuration
of the Turing machine. Therefore, each configuration is encoded by 2cn(cn + 1)
assignments in total. The concatenation of configurations encodes a run of the
Turing machine. Note, however, that for such a run to be consistent with the
run of T on x, certain consistency conditions must hold:

1. For every configuration, the encoding of the position of the first cell must be
0, and the encoding must increase by 1 for each successive cell.

2. The first configuration must start with x on the tape and the head on the
first cell and in the initial state q0.

3. Successive configurations must be consistent with the transition function δ.

One way is to enforce all consistency conditions through the system M . How-
ever, since each configuration consists of 2cn cells, this would require the system
to have an exponential number of states. Therefore, to allow for a polynomial
reduction, we enforce the consistency conditions through the formula ϕ.

For this, we construct an LTLf formula ϕ := ϕcons → ϕacc where ϕcons

expresses the the consistency conditions and ϕacc expresses the property of reach-
ing an accepting configuration. Therefore, every execution with a finite prefix
that satisfies ϕ is either inconsistent or an accepting run of T on x. Since T
is deterministic, there is exactly one execution of M that is consistent with T .
Every other execution will necessarily satisfy ¬ϕcons, and this execution will
satisfy ϕacc if and only if T accepts x. Therefore, if every execution of M has
a finite prefix that satisfies ϕ, then the run of T on input x is accepting, and
vice-versa.

We now provide the details of the system M and the formula ϕ.

Atomic Propositions. The propositions used by system M are the following:

– part0 indicates that the current assignment represents the first part of the
cell encoding, encoding the cell’s content.

– parti, for 1 ≤ i ≤ cn, indicates that the current assignment represents the
i-th bit of the encoding of the cell’s position. Only one of part0, . . . , partcn is
true at any given time.
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– cellλ, for λ ∈ Γ ∪ (Q × Γ ), indicates that the content of the cell is λ (a tape
symbol with or without the head). This proposition can only be true if part0
is true.

– bit gives the current bit of the cell’s position. This proposition can only be
true if part0 is false.

The Model. We define the transition system M = (Σ,S, T, ι, L) as follows:

– Σ = {part0, . . . , partcn} ∪ {cellλ | λ ∈ Γ ∪ (Q × Γ )} ∪ {bit}
– S = {(0, λ) | λ ∈ Γ ∪ (Q × Γ )} ∪ {(i, b) | 1 ≤ i ≤ cn, b ∈ {0, 1}}
– ι = (0, (q0, ∅))
– (s, s′) ∈ T if and only if one of the following is true (for some λ, b, b′):

• s = (0, λ) and s′ = (1, b).
• s = (i, b) for 1 ≤ i < cn, and s′ = (i + 1, b′).
• s = (cn, b) and s′ = (0, λ).

– L((0, λ)) = {part0, cellλ}
– L((i, b)) = {parti} ∪ {bit | b = 1}

The propositional alphabet Σ consists of the set of propositions described
above. The states of the M are either of the form (0, λ), where λ is the content
of a cell, or (i, b) for 1 ≤ i ≤ cn, where b is the current bit in the encoding of the
cell’s position. The initial state is (0, (q0, ∅)), indicating that a) this is the first
part of the cell’s encoding, b) the head is on this cell, c) the machine is in the
initial state q0, and d) the cell is blank (this should be the cell immediately to
the left of the input word x).

The transition relation ensures only that the system progresses consistently
from part 0 of the encoding to part 1, part 2, part 3, and so on until part cn,
after which it resets back to part 0 (of the next cell). Note that the values of λ
and b are unconstrained, as these will be handled by the formula ϕ. Observe the
three consistency conditions required for runs of T are not wired into the model.

Finally, the labeling function L simply converts the state into an appropriate
propositional representation.

The Formula. We now construct the LTLf formula ϕ over the propositional
alphabet Σ. As mentioned before, we want ϕ to be such that, if an execution of
the system M has a prefix that satisfies ϕ, then either that execution violates
a consistency condition or it is an accepting run. To achieve this, we construct
ϕ = ¬ϕcons ∨ ϕacc. ϕacc is defined as follows:

ϕacc =
∨

q∈F

∨

γ∈Γ

F cell(q,γ).

It is easy to see that an execution of M has a prefix that satisfies ϕacc iff that
execution reaches a state (0, (q, γ)) where q is an accepting state of T .

Meanwhile, we define ϕcons as a conjunction of formulas, such that if an
execution has a prefix that violates one of these formulas then the execution is
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inconsistent, and every inconsistent execution has a prefix that violates one of
these formulas. We classify these formulas into three groups, one for each of the
three consistency conditions described above:

(C1). Consistency within a configuration (the binary encoding of each cell’s posi-
tion is correct)

(C2). Consistency with the input word (the first configuration is correct)
(C3). Consistency with the transition function (every configuration follows from

the previous one)

The first two conditions (C1) and (C2) are relatively straightforward to
encode as formulas of polynomial size. For details, we refer to the appendix
of [3].

The third condition (C3) is where the biggest challenge lies. This condition
requires reasoning about changes from one configuration to the next. The dif-
ficulty lies in accessing the segment that represents the same cell in the next
configuration using a polynomial-sized formula. Recall that a cell is represented
by cn + 1 assignments in the trace and each configuration is composed of 2cn

cells. Since the size of each configuration is exponential, formulas may require
exponential size. For instance, if the segment representing a cell begins at assign-
ment i in the trace, then the same cell in the next configuration will start at
assignment i + 2cn(cn + 1). Referring to this assignment directly in the formula
would require 2cn(cn + 1) nested X operators. Alternatively, the cell in the next
configuration can be identified by being the first cell where the binary encoding
of its position on the tape is the same as the current cell. However, this may
require enumeration on all possible assignments of the cn + 1 bits.

To circumvent this problem and compare corresponding cells in two different
configurations using a formula of polynomial size, we take advantage of the fact
that we are dealing with finite prefixes of the trace. The insight is that we can use
the last position in the trace as an anchor, so that instead of having to find the
cell in the next configuration with the same position encoding, we can instead
look at the last cell in the trace and test if a) it is in the next configuration,
and b) it has the same position encoding. Since the formula is checked for every
prefix, eventually we will find a prefix where this holds. We can then check if the
contents of the cells are consistent with the transition function.

We now go into details of the formula for (C3). Consistency condition (C3)
says that every configuration follows from the previous one according to T ’s
transition function δ. As mentioned before, to ensure that we get a formula of
polynomial size, the formula that we construct actually expresses the following
condition: for all cells c in the prefix, if the last cell cLast of the prefix is in
the same position as c but in the next configuration, then cLast follows from c
based on the transition function. Since the formula must hold for all prefixes, its
satisfaction implies the original consistency condition.

We start by defining the useful shorthand L−iφ ≡ F(φ∧Xi−1¬X true), which
denotes that φ holds i positions before the end of the prefix (e.g. L−1φ means
that φ holds at the last position of the prefix). This is expressed by saying that
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at some point in the future φ holds, and i − 1 positions after that is the last
position of the prefix (by the semantics of LTLf, ¬X true only holds at the last
position). We then define the formula MatchLastCell, which checks if the cell c
in the current position corresponds to the last cell cLast of the prefix, as follows:

MatchLastCell ≡ part0 ∧ L−cnpart0 ∧
cn∧

i=1

(Xibit ↔ L−cnXibit)

∧ X
(
¬NewConfigU

(
NewConfig ∧ XG ¬NewConfig)

)

where NewConfig ≡ (part0 ∧∧cn
i=1(X

i¬bit)) denotes the start of a new configura-
tion (a cell whose position in the tape is encoded as 0). MatchLastCell expresses
that (a) we are at the start of a cell c (part0); (b) the last cn positions of the prefix
encode another cell cLast (L−cnpart0); (c) c and cLast are in the same tape posi-
tion (

∧cn
i=1(X

ibit ↔ L−cnXibit)); and (d) we start a new configuration exactly
once between c and cLast (X(¬NewConfigU (NewConfig∧ X G ¬NewConfig))). In
other words, c and cLast are the same cell in successive configurations. We can
then encode the consistency condition by the formula

G(MatchLastCell → ϕδ) ∧ G(MatchLastCell → ϕ←
δ )

∧ G(Xcn+1 MatchLastCell → ϕ→
δ ) ∧ G(Xcn+1 MatchLastCell → ϕ0

δ)

where each of ϕδ, ϕ←
δ , ϕ→

δ , and ϕ0
δ expresses one way in which the contents of

the cell c can change (or not change) in the next configuration:

– ϕδ expresses that if the head is on c (cell(q,γ)), then in cLast the head must
have moved to a different cell and written the appropriate symbol γ′ given
by the transition relation (L−cn cellγ′)

– ϕ←
δ expresses that if the head is on the cell to the right of c (Xcn+1 cell(q,γ2)),

and the transition relation requires it to move left, then in the next configu-
ration the head must have moved to cLast (L−cn cell(q′,γ1)))

– ϕ→
δ expresses that if the head is on the cell to the left of c (cell(q,γ1)), and the

transition relation requires it to move right, then in the next configuration
the head must have moved to cLast (L−cn cell(q′,γ2)))

– Finally, ϕ0
δ expresses that if the head is neither on c nor on the cells adjacent

to it (cellγ1 ∧Xcn+1 cellγ2 ∧X2(cn+1) cellγ3), then the contents of the cell don’t
change (L−cn cellγ2)

Note that in the latter two formulas c is the cell to the right of the current
cell (Xcn+1 MatchLastCell) this is necessary so that ϕ→

δ and ϕ0
δ can refer to the

cell to the left of c. Formula for ϕδ, ϕ←
δ , ϕ→

δ , and ϕ0
δ have been presented in

the appendix of [3]. The size of each formula is polynomial in the size of the
transition relation of the Turing Machine.

Theorem 3 (LTLf Model Checking. Lower bound). LTLf model checking
of non-terminating systems is EXPSPACE-hard.
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Proof. Let the non-terminating system M and LTLf formula ϕ = ¬ϕcons ∨ ϕacc

be as described above. We show that an exponential-space Turing machine T
accepts an input word x iff every execution of M has a finite prefix that satisfies
ϕ, i.e., M |= ϕ. Note that since T is deterministic, its execution on the input
word x is unique. Therefore, there is exactly one trace π of M that simulates
the execution of T on x. By construction, a trace has a finite prefix that satisfies
¬ϕcons iff that trace violates one of the consistency conditions. This holds for
every trace of M except π. So, because no finite prefix of π satisfies ¬ϕcons, M
model checks if and only if π has a prefix that satisfies ϕacc, which means that
π eventually reaches an accepting state. Since π simulates T on x, this happens
if and only if T accepts x. ��

5.2 Final Complexity Results

Finally, we present the complexity of model-checking non-terminating systems:

Theorem 4 (MC. Non-terminating. Complexity). LTLf model checking
of non-terminating systems is EXPSPACE-complete.

Proof. Recall, a non-terminating system M satisfies an LTLf formula φ iff
L(M) ∩ pref(¬φ) = ∅. A naive algorithm would explicitly construct pref(¬φ)
and require doubly exponential space in the size of φ. Instead, the approach is
to construct pref(φ) on-the-fly in exponential space and simultaneously evalu-
ate the emptiness of M ∩ pref(¬φ). Given all three steps in the construction
of pref(φ) are amenable to on-the-fly constructions, this procedure follows stan-
dard on-the-fly procedures [33]. Thus, LTLf model checking of non-terminating
models is in EXPSPACE. Theorem 3 establishes the matching lower bound. ��

This result is unexpected as it implies that LTLf model checking is exponen-
tially harder than LTL model checking for non-terminating systems, contrary to
the prior perception that problems in LTLf tend to be as hard if not easier than
their counterparts in LTL (See Table 1).

Next, we present the complexity of model-checking terminating systems:

Theorem 5 (MC. Terminating. Complexity). LTLf model checking of ter-
minating systems is PSPACE-complete.

Proof. Recall that a terminating system M satisfies an LTLf formula φ if every
execution of M satisfies φ. So, M |= φ iff L(M ∩ A¬φ) = ∅ where A¬φ is the
NFA for ¬φ. Since the NFA is exponential in the size of the LTLf formula [14], an
on-the-fly algorithm for non-emptiness checking of M ∩ A¬φ can be performed
in PSPACE. PSPACE-hardness can be proven by a trivial reduction from LTLf
satisfiability, which is PSPACE-complete [14]. ��

For LTLf synthesis, these results imply that it is much harder to verify a
non-terminating transducer than a terminating transducer. Hence, to test the
correctness of an LTLf synthesis tool by verifying its output strategy, it would
be better for LTLf synthesis tools to generate terminating transducers. This, to
the best of our knowledge, is the first theoretically sound evidence to use one
transducer over the other in LTLf synthesis.
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6 Concluding Remarks

Motivated by the recent surge in LTLf synthesis tools that are rarely verified
for result correctness, this work is the first to investigate the problem of LTLf
model checking. Noting that LTLf synthesis can generate both terminating and
non-terminating transducers, we examine LTLf model checking for both pos-
sibilities. Our central result is that LTLf model checking of non-terminating
models is exponentially harder than terminating models. Their complexities are
EXPSPACE-complete and PSPACE-complete, respectively. This is surprising at
first as it implies that LTLf model checking is harder than LTL model checking
for non-terminating models, contrary to the expectation from prior comparisons
between LTLf and LTL (See Table 1). In addition to being of independent interest,
our results immediately lend several broad impacts:

1. They present the first theoretical evidence for the use of terminating trans-
ducers to represent the synthesized strategies in LTLf synthesis, as it would
be easier to verify the correctness of the synthesized transducer.

2. Implementations of our LTLf model checking algorithms could be deployed in
large-scale competitions such as the LTLf track in SYNTCOMP 2023.

3. They invite further exploration into LTLf vs LTL, as it breaks the prior per-
ception that problems in LTLf are as hard if not simpler than their LTL
counterparts.

One may envision our results to be used to automatically verify the correct-
ness of synthesized models in the LTLf track in synthesis competitions. It would
be interesting to see how the practical implementations for LTLf model check-
ing compare under terminating and non-terminating semantics, even though
terminating models are preferred in theory. The development of practical tools
presents several new challenges, including efficient and scalable construction of
pref(φ) and its tractable fragments. Our results also inspire future work in the
development of LTLf model checking in more complex domains such as proba-
bilistic models or under asynchrony [4,5].
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Abstract. Smart contracts are small but highly error-prone programs
that implement agreements between multiple parties. We present a reac-
tive synthesis approach for the automatic construction of smart contract
state machines. Towards this end, we extend temporal stream logic (TSL)
with universally quantified parameters over infinite domains. Parameter-
ized TSL is a convenient logic to specify the temporal control flow, i.e.,
the correct order of transactions, as well as the data flow of the contract’s
fields. We develop a two-step approach that 1) synthesizes a finite rep-
resentation of the – in general – infinite-state system and 2) splits the
system into a compact hierarchical architecture that enables the imple-
mentation of the state machine in Solidity. We implement the approach
in our prototype tool SCSynt, which – within seconds – automatically
constructs Solidity code that realizes the specified control flow.

Keywords: Reactive Synthesis · Temporal Stream Logic ·
Parameterized Synthesis · Smart Contracts

1 Introduction

Smart contracts are small programs that implement digital contracts between
multiple parties. They are deployed on the blockchain and thereby remove the
need for a trusted third party that enforces a correct execution of the contract.
Recent history, however, has witnessed numerous bugs in smart contracts, some
of which led to substantial monetary losses. One critical aspect is the implicit
state machine of a contract: to justify the removal of a trusted third party – a
major selling point for smart contracts – all parties must trust that the contract
indeed enforces the agreed order of transactions.

Formal methods play a significant role in the efforts to improve the trustwor-
thiness of smart contracts. Indeed, the code is law paradigm is shifting towards
a specification is law paradigm [1]. Formal verification has been successfully
applied to prove the correctness of the implicit state machine of smart con-
tracts, for example, by verifying the contract against temporal logic specifica-
tions [31,33,34] or a given state machine [36]. Other approaches model the con-
trol flow with state machines and construct Solidity code from it [4,24,27,37].
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Synthesis, i.e., the automatic construction of Solidity code directly from a tem-
poral specification, has hardly been studied so far (except for a first step [35],
see related work).

In this paper, we study the synthesis of smart contracts state machines from
temporal stream logic (TSL), which we equip with universally quantified param-
eters. TSL extends linear-time temporal logic (LTL) with data cells and unin-
terpreted functions and predicates. These features enable us to reason about
the order of transactions as well as the data flow of the contract’s fields. To
distinguish method calls from different callers, we extend the logic with uni-
versally quantified parameters. For example, the following parameterized TSL
formula expresses that every voter can only vote once and that a field numVotes
is increased with every vote.

∀m. (vote(m) → �numVotes � numVotes+1 � ∧ ¬vote(m))

The above formula demonstrates the challenges associated with parameterized
TSL synthesis. First of all, a part of the formula restricts the allowed method
calls, which are inputs in the synthesis problem. To make specifications realiz-
able, we restrict ourselves to safety properties, which we express in the past-time
fragment of parameterized TSL. Second, as the contract might interact with arbi-
trarily many voters, the above formula ranges over an infinite domain. However,
we need to find a finite representation of the system that can be translated into
feasible Solidity code.

We tackle this challenge in two steps. First, we translate the parameterized
pastTSL formula to pastTSL to synthesize a finite representation of the system.
Unfortunately, we show that the realizability problem of pastTSL is undecidable,
even without parameters. As a remedy, we employ a sound approximation in
LTL [11] to make synthesis possible.

In a second step, we split the resulting state machine into a hierarchical struc-
ture of smaller, distributed state machines. This architecture can be interpreted
as an infinite-state system realizing the original formula. It also minimizes the
number of transactions needed to keep the system up to date at runtime.

We implement the approach in our prototype SCSynt, which, due to the
past-time fragment, leverages efficient symbolic algorithms. We specify ten dif-
ferent smart contract specifications and obtain an average synthesis time of two
seconds. Our largest specification is based on Avolab’s NFT auction [2] and
produces a state machine with 12 states in 12 s. To summarize, we

– show how to specify smart contract control flows in parameterized pastTSL,
– prove undecidability of the general realizability problem of pastTSL,
– and present a sound (but necessarily incomplete) synthesis approach for

parameterized pastTSL formulas that generates a hierarchy of state machines
to enable a compact representation of the system in Solidity.
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Related Work. Formal approaches for smart contracts range from the auto-
matic construction of contracts from state machines [27,28], over the verifica-
tion against temporal logics [31,33,34] and state machines [21,36], to deductive
verification approaches [6,16]. Closest to our work is a synthesis approach based
on LTL specifications [35]. The approach does not reason about the contract’s
data: neither about the current value of the fields, nor about parameters like the
method’s caller. To quote the authors of [35]: the main challenge in the synthesis
of smart contracts is “how to strike a balance between simplicity and expressiv-
ity [...] to allow effective synthesis of practical smart contracts”. In this paper,
we opt for a more expressive temporal logic and simultaneously aim to keep the
specifications readable.

TSL has been successfully applied to synthesize FPGA controllers [12] and
functional reactive programs [10]. To include domain-specific reasoning, TSL
has been extended with theories [8] and SMT solvers [25]. A recent approach
combines TSL reactive synthesis with SyGus to synthesize implementations for
TSL’s uninterpreted functions [3]. Parameterized synthesis has so far focused on
distributed architectures parameterized in the number of components [15,17,18,
26]. Orthogonal to this work, these approaches rely on a reduction to bounded
isomorphic synthesis [15,17,18] or apply a learning-based approach [26].

Overview. We first provide some brief preliminaries on state machines, reactive
synthesis, and TSL. In Sect. 3, we introduce parameterized TSL and demonstrate
how it can be used for specifying smart contract control flows. Subsequently, we
discuss the high-level idea and associated challenges of our synthesis approach in
Sect. 4 and discuss synthesis from plain pastTSL in Sect. 5. demonstrate how to
specify smart contracts using pure pastTSL and prove the undecidability of its
realizability problem. We proceed with the main part of the approach, a splitting
algorithm for state machines, in Sect. 6. Finally, we discuss the implementation
of SCSynt and its evaluation in Sect. 7.

2 Preliminaries

We assume familiarity with linear-time temporal logic (LTL). A definition with
past-time temporal operators can be found in [5,13]. We only assume basic
knowledge about smart contracts; for an introduction we refer to [7].

2.1 State Machines, Safety Properties and Reactive Synthesis

We give a brief introduction to Mealy machines, safety properties, and reactive
synthesis. In this work, we represent smart contract control flows as Mealy state
machines [30], which separate the alphabet into inputs I and outputs O. A
Mealy machine M is a tuple (S, s0, δ) of states S, initial state s0, and transition
relation δ ⊆ S × I ∪O ×S. For a compact representation, we attach the outputs
also to transitions, not to the states. We call M finite-state if both Σ = I ∪ O
and S are finite, and infinite-state otherwise. An infinite sequence t ∈ Σω is a
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trace of M if there is an infinite sequence of states r ∈ Sω such that r[0] = s0
and (r[i], t[i], r[i + 1]) ∈ δ for all points in time i ∈ N. A finite sequence of states
r ∈ S+ results in a finite trace t ∈ Σ+.

In this paper, we work with specifications that are safety properties(see, e.g.,
[20,22]). A safety property can be equivalently expressed as a Mealy machine
M that describes the set of traces that satisfy the property (M is called the
safety region of the property). For a safety specification, the reactive synthesis
problem is to determine the winning region, i.e., the maximal subset of its safety
region such that for every combination of state and input, there is a transition
into said subset. A strategy is a subset of the winning region such that in each
state, there is exactly one outgoing transition for every input.

2.2 Past-Time Temporal Stream Logic

PastTSL is the past-time variant of TSL [11], a logic that extends LTL with cells
that can hold data from a possibly infinite domain. To abstract from concrete
data, TSL includes uninterpreted functions and predicates. Function terms τf ∈
TF are recursively defined by

τf ::= s | f τ1
f . . . τn

f

where s is either a cell c ∈ C or an input i ∈ I, and f ∈ ΣF is a function symbol.
Constants Σ0

F ⊆ ΣF are 0-ary function symbols. Predicate terms τp ∈ TP are
obtained by applying a predicate symbol p ∈ ΣP with ΣP ⊆ ΣF to a tuple of
function terms. PastTSL formulas are built according to the following grammar:

ϕ,ψ ::= ¬ϕ | ϕ ∧ ψ | ϕ | ϕ S ψ | τp | �c � τf �

An update term �c � τf � ∈ TU denotes that cell c is overwritten with τf . The
temporal operators are called “Yesterday” and “Since” S. Inputs, function
symbols, and predicate symbols a purely syntactic objects. To assign meaning
to them, let V be the set of values with B ⊆ V. We denote by I : I → V the
evaluation of inputs. An assignment function 〈·〉 : ΣF → F assigns function
symbols to functions F =

⋃
n∈N

Vn → V.
The type C = C → TF describes an update of all cells. For every cell c ∈ C,

let initc be its initial value. The evaluation function η〈·〉 : Cω ×Iω ×N×TF → V
evaluates a function term at point in time i with respect to an input stream
ι ∈ Iω and a computation ς ∈ Cω:

η〈·〉(ς, ι, i, s) :=

⎧
⎪⎨

⎪⎩

ι i s if s ∈ I

inits if s ∈ C ∧ i = 0
η〈·〉(ς, ι, i − 1, ς (i − 1) s) if s ∈ C ∧ i > 0

η〈·〉(ς, ι, i, f τ0 . . . τm−1) := 〈f〉 η〈·〉(ς, ι, i, τ0) . . . η〈·〉(ς, ι, i, τm−1)

Note that ι i s denotes the value of s at position i according to ι. Likewise, ς i s is
the function term that ς assigns to s at position i. With the exception of update
and predicate terms, the semantics of pastTSL is similar to that of LTL.
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ς, ι, t |=〈·〉 ¬ϕ iff ς, ι, t 	|=〈·〉 ϕ

ς, ι, t |=〈·〉 ϕ ∧ ψ iff ς, ι, t |=〈·〉 ϕ and ς, ι, t |=〈·〉 ψ

ς, ι, t |=〈·〉 ϕ iff t > 0 ∧ ς, ι, t − 1 |=〈·〉 ϕ

ς, ι, t |=〈·〉 ϕ S ψ iff ∃ 0 ≤ t′ ≤ t. ς, ι, t′ |=〈·〉 ψ and
∀t′ < k ≤ t. ς, ι, k |=〈·〉 ϕ

ς, ι, t |=〈·〉 �v � τ� iff ς t v ≡ τ

ς, ι, t |=〈·〉 p τ0 . . . τm iff η〈·〉(ς, ι, t, p τ0 . . . τm−1)

We use ≡ to syntactically compare two terms. We derive three additional opera-
tors: ϕ := ¬ ¬ϕ, ϕ := true S ϕ, and ϕ := ¬ ¬ϕ. The difference between

and “Weak Yesterday” is that evaluates to false in the first step and
to true. We use pastTSL formulas to describe safety properties. Therefore, we
define that computation ς and an input stream ι satisfy a pastTSL formula ϕ,
written ς, ι |=〈·〉 ϕ, if ∀i ∈ N. ς, ι, i |=〈·〉 ψ.

The realizability problem of a pastTSL formula ψ asks whether there exists
a strategy that reacts to predicate evaluations with cell updates according to ψ.
Formally, a strategy is a function σ : (2TP )+ → C. For ι ∈ Iω, we write σ(ι) for
the computation obtained from σ:

σ(ι)(i) = σ({τp ∈ TP | η〈·〉(σ(ι), ι, 0, τp)} . . . {τp ∈ TP | η〈·〉(σ(ι), ι, i, τp)})

Note that in order to define σ(ι)(i), the definition uses σ(ι). This is well-defined
since the evaluation function η〈·〉(ς, ι, i, τ) only uses ς 0 . . . ς (i − 1).

Definition 1 ([11]). A pastTSL formula ψ is realizable if, and only if, there
exists a strategy σ : (2TP )+ → C such that for every input stream ι ∈ Iω and
every assignment function 〈·〉 : ΣF → F it holds that σ(ι), ι |=〈·〉 ψ.

3 Parameterized TSL for Smart Contract Specifications

In this section, we introduce parameterized pastTSL and show how the past-time
fragment of the logic can be used for specifying smart contract state machines.

3.1 Parameterized TSL

Parameterized TSL extends TSL with universally quantified parameters. Let P
be a set of parameters and CP a set of parameterized cells, where each cell is of
the form c(p1, . . . , pm) with p1, . . . , pm ∈ P . A parameterized TSL formula is a
formula ∀p1, . . . ,∀pn. ψ, where ψ is a TSL formula with cells from CP and which
may use parameters as base terms in function and predicate terms. We require
that the formula is closed, i.e., every parameter occurring in ψ is bound in the
quantifier prefix.

Parameterized TSL formulas are evaluated with respect to a domain P for
the parameters. We use a function μ : P → P to instantiate parameters. Given
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a parameterized TSL formula ∀p1, . . . ,∀pn. ψ, ψ[μ] is the formula obtained by
replacing all parameters according to μ. To simplify our constructions, we want
ψ[μ] to be a TSL formula. Therefore, we assume that P is a subset of the set of
constants and that c(μ(p1), . . . , μ(pm)) ∈ C, i.e., the instantiation of a param-
eterized cell refers to a normal, non-parameterized cell. Given a computation ς
and an input stream ι, we define ς, ι |= ∀p1, . . . ,∀pn. ψ iff ∀μ : P → P. ς, ι |= ψ[μ].

3.2 Example: ERC20 Contract

We illustrate how parameterized pastTSL can be used to specify the state
machine logic of smart contract with an ERC20 token system. An ERC20 token
system provides a platform to transfer tokens between different accounts. We
follow the Open Zeppelin documentation [32]. The special feature of the con-
tract is the possibility to transfer not only tokens from one’s own account
but, after approval, also from a different account. The core contract consists of
methods transfer, transferFrom, and approve. We do not model getters like
totalSupply or balanceOf as they are not relevant for the temporal behavior of
the contract. The Open Zeppelin ERC20 contract describes various extensions
to the core contract, one of which is the ability to pause transfers. We distin-
guish between pausing transfers globally (pause) and from one’s own account
(pause(m)).

Our specifications describe the temporal control flow of the contract’s method
calls and the data flow of its fields. We distinguish between requirements, obli-
gations, and assumptions. Requirements enforce the right order of method calls
with correct arguments. Obligations describe the data flow in the fields of the
contract. Assumptions restrict the space of possible predicate evaluations. For
this example, we do not need any assumptions. A typical assumption in other
specifications would be that x > y and y > x cannot hold at the same time.

To emphasize that all past-time formulas are required to hold globally, we add
a operator to formulas. We use two parameters m and n, where m always refers
to the address from which tokens are subtracted and parameter n, whenever
different from m, to the address that initiates the transfer. We start with the
requirements. First, any transfer from m must be backed by sufficient funds.

(transfer(m) ∨ transferFrom(m,n) → suffFunds(m, arg@amount))

Second, no method call can happen after pause until unpause is called:

(transferFrom(m,n) ∨ transfer(m) ∨ approve(m,n) ∨ localPause(m) ∨
localUnpause(m) → (¬pause S unpause) ∨ ¬pause)

In contrast, localPause(m) only stops method calls from m’s account:

(transferFrom(m,n) ∨ transfer(m) ∨ approve(m,n)

→ ((¬localPause(m)) S localUnpause(m)) ∨ ¬localPause(m))
Finally, pause and unpause can only be called by the owner of the contract.
Additionally, they cannot be called twice without the respective other in between
and unpause cannot be called if pause has not been called at least once.



254 B. Finkbeiner et al.

(unpause → msg.sender= owner () ∧ (¬unpause S pause))

(pause → msg.sender= owner () ∧ (¬pauseS unpause)∨ ¬pause)

mgs.sender is an input, whereas owner() is a constant. For the obligations, we
need to make sure that the approved field is updated correctly. We use TSL’s
cell mechanism to model fields and use parameterized cells for mappings.

(approve(m,n) → �approved(m,n) � arg@amount�)
(transferFrom(m,n) → �approved(m,n) � approved(m,n)-arg@amount�)
(¬(transferFrom(m)∨approve(m,n)) → �approved(m,n) � approved(m,n)�)

Transitions that do not change the content of a cell are indicated by self-updates
like �approved(m,n) � approved(m,n)�.

4 Synthesis Approach

The synthesis goal of this paper is to construct a state machine that satisfies
parameterized pastTSL specifications like the one given in the last section.

4.1 Problem Statement

Our specifications are split into assumptions ϕA, requirements ϕR, and obliga-
tions ϕO, all of which are parameterized pastTSL formulas. Each of them can be
given as invariant ϕinv or as initial formula ϕinit . For synthesis, we compose them
to the following formula, which, according to the definition of (parameterized)
pastTSL, is required to hold globally.

ϕ := ∀p1, . . . , pm.

( false → ϕinit
A ∧ ϕinit

R ) ∧ ( (ϕinv
A ∧ ϕinv

R )) → ( false → ϕinit
O ) ∧ ϕinv

O

Fig. 1. Sketch of the system syn-
thesized from ϕ. The dotted blue
area implements the contract.

Here, p1, . . . , pm are the parameters occurring
in the inner formulas ϕinit

A , ϕinit
R , ϕinit

O , ϕinv
A ,

ϕinv
R , and ϕinv

O . We use false to refer to the
first position of a trace.

It might seem counter-intuitive that we
include requirements on the left side of the
implication. The reason is that requirements
describe a monitor on the method calls,
which, from a synthesis perspective, consti-
tute system inputs. Thus, if we conjuncted
requirements with obligations, the specifica-
tion would be unrealizable. Instead, we lever-
age the fact that all specifications describe
safety properties. Thus, state machines sat-
isfying ϕ have a shape as depicted in Fig. 1.
Whenever an assumption or a requirement is violated, the machine enters an
accepting sink state. To obtain the desired result, we reject any method call
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Fig. 2. System W for the ERC20 contract. Irrelevant predicates and all cell updates
are omitted for readability. We also write a instead of arg@amount.

for which the system moves to the sink state. Like this, the remaining system
enforces the requirements on method calls and also satisfies the obligations. For
the rest of the paper, we depict state machines synthesized from ϕ without the
sink state.

On Safety Properties. We restrict ourselves to safety properties for three rea-
sons. First of all, as we consider the synthesis problem, our requirements can only
describe a monitor on the method calls. Liveness properties are known not to
be monitorable. For future work, one could consider model-checking the synthe-
sized state machine with regard to liveness properties like “eventually, method
X is callable”. Second, the restriction to safety automata enables the splitting
algorithm described in Sect. 6, which is essential for our approach in order to
efficiently implement the state machine in Solidity. Lastly, synthesis from safety
properties is less complex than full LTL synthesis (c.f. Section 7), which enables
us to synthesize non-trivial state machines within seconds.

4.2 High-Level Description of the Approach

Challenges. We need to address two major challenges. First, as parameters range
over an infinite domain P, parameterized pastTSL formulas describe (in general)
infinite-state systems. Second, even if we managed to synthesize some represen-
tation of the infinite-state system, we still need to translate it to Solidity code.
In Solidity, every computation costs gas. Therefore, we need to find a compact
representation of the system that minimizes the number of computation steps
needed to update the system after a method call.

Approach in a Nutshell. We address these challenges in two steps. First, we
interpret the specification as being unquantified, i.e., we remove all quantifiers
and tread the parameters as normal constants (e.g., in case of suffFunds(m,
arg@amount)) or as part of the cells’ name (e.g., in case of approved(m,n)).
Like that, we obtain a plain pastTSL formula that describes the finite-state
system representing the correct control flow for every parameter instantiation.
We synthesize the winning region from that formula, which we call W. For the
running ERC20 example, W can be found in Fig. 2.
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Of course, the contract can be in different states of W depending on the
parameter instantiation. In theory, we would therefore like to keep the necessary
number of copies of W. For example, if approve(m=1,n=2) is called, we would
execute the corresponding transition in system W(m=1,n=2). The problem with
this naive approach is that calling a method parameterized with only a subset
of the parameters would lead to updates of several systems. For example, if
localPause(m=1) is called, this would have to be recorded in all W(m=1,n=v) for
any value v of n observed so far. Updating all these state machines after each
method call would lead to a quick explosion of the gas consumption in Solidity.
Instead, addressing the second challenge, we split W into a hierarchical structure
of state machines, one for each subset of parameters. As a result, we only have
to update a single state machine per method call and still maintain the correct
state of each instance (we describe this approach in more detail in Sect. 6.1). To
summarize, we proceed as follows.

1. Interpret the parameterized pastTSL formula ϕ as a pastTSL formula ψ and
synthesize the winning region W from it.

2. Split W into a hierarchical structure W1, . . . ,Wn and show how these systems
can be interpreted as an infinite-state machine M satisfying ϕ.

3. Generate Solidity code that implements transitions according to W1, . . . ,Wn.

In the following sections, we discuss each of these steps in detail.

5 PastTSL Synthesis

Let ϕ be a parameterized pastTSL formula as described in Sect. 4.1. We first
translate ϕ to pastTSL. This is easy: just remove all quantifiers and interpret
parameters as constants (i.e., P ⊆ Σ0

F ) and parameterized cells as normal cells
(i.e., CP ⊆ C).

Unfortunately, even though past-time fragments usually simplify logical prob-
lems, we establish that the realizability problem of pastTSL is undecidable. We
obtain this result by a reduction from the universal halting problem of lossy
counter machines [29].

An n-counter machine (nCM) consists of a finite set of instructions l1, . . . , lm,
which modify n counters c1, . . . , cn. Each instruction li is of one of the following
forms, where 1 ≤ x ≤ n and 1 ≤ j, k ≤ m.

– li: cx := cx + 1; goto lj
– li: if cx = 0 then goto lj else cx := cx − 1; goto lk
– li: halt

A configuration of a nCM is a tuple (li, v1, . . . , vn), where li is the next instruc-
tion to be executed, and v1, . . . , vn denote the values of the counters. Compared
to non-lossy nCMs, the counters of a lossy nCM may spontaneously decrease.
We employ a version of lossiness where a counter can become zero if it is tested
for zero (see [29] for details). A lossy nCM halts from an initial configuration if
it eventually reaches a state with the halting instruction.
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Theorem 1. The pastTSL realizability problem is undecidable.

Proof. We reduce from the universal halting problem of lossy nCMs, which is
undecidable [29]. We spell out the main ideas. Our formulas consist of one con-
stant z(), one function f , and one predicate p. There are no inputs. Applying
an idea from [23], we use two cells for every counter cx: cincx to count increments
and cdecx to count decrements. Applying f to cincx increments the counter, apply-
ing f to cdecx decrements it. If the number of increments and decrements is equal,
the counter is zero. In TSL, we use the formula ψ0

x := p(cincx ) ↔ p(cdecx ) to test
if a counter is zero. Note that if the counter really is zero, then the test for zero
must evaluate to true by the TSL semantics. For all other cases, it may evaluate
to true. If the equivalence evaluates to true even though the counter is non-zero,
we interpret it as a spontaneous reset. Initially, the value of the counters need to
be arbitrary. We reflect this by making no assumptions on the first step, thereby
allowing the strategy to set the counter cells to any valid function term f∗(z()).
We use n cells l1, . . . , ln for encoding the instructions. Globally, all instruction
cells but the one indicating the next instruction, indicated by �li � f(li)�, need
to self-update. We spell out the encoding of an instruction of the second type.

( �li � f(li)� →(ψ0
x → �lj � f(lj)� ∧ �cincx � z()� ∧ �cdecx � z()�)

∧ (¬ψ0
x → �lk � f(lk)� ∧ �cincx � cincx � ∧ �cdecx � f(cdecx )�))

The formula tests if the instruction to be executed is li. If so, we test the counter
cx for zero and set the corresponding cell to z() if that is the case. Furthermore,
the correct next instruction is updated by applying f . Finally, we encode that we
never reach a halting state: ¬�lhalt � f(lhalt)�. The resulting pastTSL formula
is realizable if, and only if, there is an initial state such that the machine never
halts. Thus, undecidability of the pastTSL realizability problem follows.

5.1 PastTSL Synthesis via PastLTL Approximation

As pastTSL realizability is undecidable, we have to approximate the synthesis
problem. To do so, we employ a reduction proposed in [11], which approximates
TSL synthesis in LTL, for which realizability is decidable. The reduction replaces
all predicate terms and update terms of a TSL formula ψ with unique atomic
propositions, e.g., ap x for p(x) and ax to f x for �x � f(x)�. Additionally, the
reduction adds a formula that ensures that every cell is updated with exactly one
function term in each step. Given a pastTSL formula ψ, the reduction produces
an LTL approximation ψLTL that also falls into the past-time fragment. The
reduction is sound but not complete [11], i.e., ψ might be realizable even if ψLTL

is not. For the smart contract specifications we produced for our evaluation,
however, we never encountered spurious unrealizability.

Let AP be the set of atomic propositions of ψLTL. From every trace t over
AP , we can directly generate a computation comp(t) ∈ Cω as follows:

comp(t)(i)(c) = τf if ac to τf ∈ t(i)
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For the other direction, given a computation ς, an input stream ι, and an assign-
ment function 〈·〉, we write LTL(ι, ς, 〈·〉) for the corresponding trace over AP .

LTL(ι, ς, 〈·〉)(i) = {{aτp | η〈·〉(ς, ι, i, τp)}} ∪ {ac to τf | ς(i)(c) = τf}

The following proposition follows from the soundness of the approximation.

Proposition 1. For every assignment function 〈·〉, input stream ι, and compu-
tation ς, LTL(ι, ς, 〈·〉) |= ψLTL iff ς, ι |=〈·〉 ψ.

Parameterized Atomic Propositions. In our case, the pastTSL formula ψ is
obtained from a parameterized pastTSL formula ϕ. Thus, the atomic propo-
sitions of ψLTL contain parameters, e.g., atransferFrom m n. To enable correctness
reasoning in the next section, we lift the instantiation of parameters to the level
of atomic propositions and LTL formulas.

For a ∈ AP , we write a(p1, . . . , pm) if a contains parameters p1, . . . , pm. We
usually denote the sequence p1, . . . , pm with some Pi, for which we also use set
notation. We assume that every proposition occurs with only one sequence of
parameters, i.e., there are no a(Pi), a(Pj) ∈ AP with Pi 	= Pj .

Given μ : P → P, Pi[μ] denotes (μ(p1), . . . , μ(pm)) and a[μ] denotes a(Pi[μ]).
For example, for atransferFrom m n[m �→ 1, n �→ 2], we obtain atransferFrom 1 2.
We also write ψLTL[μ] for an LTL formula where every atomic proposition is
instantiated according to μ. We define APP = {a[μ] | a ∈ AP , μ : P → P}. As
there are no two a(Pi), a(Pj) ∈ AP with Pi 	= Pj , for any α ∈ APP, there is
exactly one a such that a[μ] = α for some μ.

6 Splitting Algorithm

In the last section, we discussed that we need to approximate the parameterized
pastTSL formula ϕ to an LTL formula ψLTL to synthesize W. Note that W alone
does not implement a strategy for ϕ as each parameter instance might be in a
different state of W (c.f. Section 4.2). In this section, we discuss how to split
up W to enable an efficient implementation in Solidity while at the same time
making sure that the generated traces realize the original formula ϕ.

6.1 Idea of the Algorithm

The idea of the algorithm is to split W into multiple subsystems W1, . . . ,Wn

such that each Wi contains the transitions for method calls with parameters Pi.
For the ERC20 example, we produce the three systems W∅, W{m}, and W{m,n}
depicted in Fig. 3. For each of these systems, at runtime, we create a copy for
every instantiation of their parameters.

If a method with parameters Pi is called and Wi is in state q, then the
transition from q labeled with that method call is the candidate transition to
be executed. This means that compared to the naive solution (c.f. Section 4.2) a
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Fig. 3. State machines for all non-empty parameter sets. For readability, we omit cell
updates and all predicates apart from method calls.

call to localPause(m=1) only has to be recorded in a single transition system
(namely W{m=1}).

Crucially, however, we now need to ensure that we only produce traces of
W. For example, if localPause(m=1) is called, we move from state q1 to q2 in
system W{m=1}. This corresponds to a transition from s1 to s2 in W. Now, for
instances with m=1, calls to all methods except localUnpause(m=1) and pause
need to be rejected (according to W), even though these would technically be
possible in systems W{m=1,n=v} (for any v). To do so, we synchronize the systems
with the help of transition guards in si and additional state labels K.

A guard in si indicates that the transition can only be taken in state si of
W. To check if this requirement is satisfied, the systems share their knowledge
about the state W would currently be in. A knowledge label K = {s1, s2} in
state q of Wi means that W could be in state s1 or state s2 if Wi is in state q.
Each system is a projection to some transitions of W and therefore has different
knowledge labels.

The systems share their knowledge in order to determine which state W
would be in for a trace of one parameter instantiation. For each method call,
the systems must come to a conclusion if that call would be allowed in the
current state of W. However, Wi may only use the knowledge of systems Wj

with Pj ⊆ Pi as these are the parameters for which there is currently a value
available. To guarantee that an unambiguous conclusion is always possible to
achieve, we formulate two simple requirements and an independence check.

6.2 Construction

Let ψLTL be given. The formula is the approximation of a pastTSL formula
and therefore ranges over AP = I ∪ O, where I are the atomic propositions
obtained from predicate terms and O are the ones obtained from update terms.
For A ⊆ AP , we write A|O instead of A ∩ O. We denote the set of atomic
propositions that correspond to some method call f(Pi) by Icall ⊆ I and the set
of output propositions that denote self-updates by Oself ⊆ O.

Let W = (SW , s0W , δW) be the finite-state machine over AP that constitutes
the winning region of ψLTL. δW its transition relation. We state two require-
ments on W, which are needed to enable a sound splitting of W and can be
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checked easily by inspecting all its transitions. First, we require that calls to a
method parameterized with parameter sequence Pi only result in cell updates
parameterized with the same parameter sequence.

Requirement 1 (Local Updates). For every transition (s,A, s′) ∈ δW , if
o(Pi) ∈ A|O and o(Pi) /∈ Oself , then there is a method call proposition
f(Pi) ∈ A.

Second, whether a method can be called at a given state must not depend
on predicates with parameters that are not included in the current method call.

Requirement 2 (Independence of Irrelevant Predicates). For every (s,A, s′) ∈
δW , if f(Pi) ∈ A, then for every a(Pj) ∈ I with Pj 	⊆ Pi and a(Pj) /∈ Icall , there
is a transition (s,A′, s′) with a(Pj) ∈ A iff a(Pj) /∈ A′ and A|O = A′

|O.

The above requirement is needed to unify software and state machine reasoning.
In state machines, the value of all propositions needs to be known to determine
the right transition. In software, however, if localPause(m) is called, the value
of n is undefined and we cannot evaluate predicates depending on n.

If W satisfies the above requirements, we construct W1, . . . ,Wn for each
parameter subset Pi. Each Wi projects W to the method calls with parame-
ters Pi. The algorithm to construct the projections combines several standard
automata-theoretic concepts:

1. Introduce a new guard proposition in s for every state s ∈ SW of W. For
every transition (s,A, s′) ∈ δW , replace A with A ∪ {in s}.

2. Label all transitions (s,A, s′) ∈ δW for which there is no f(Pi) ∈ A with ε.
The result is a nondeterministic safety automaton with ε-edges.

3. Wi is obtained by determinizing the safety automaton using the standard sub-
set construction. This removes all ε transitions. During the construction, we
label each state with the subset of SW it represents, these are the knowledge
labels K.

We use Si for the states of Wi, δi for its transition relation, and Ki : Si → 2SW

for the knowledge labels. Note that every transition in W is labeled with exactly
one method call proposition and is therefore present in exactly one Wi. The
following two propositions follow from the correctness of the subset construction
for the determinization of finite automata. The first proposition states that the
outgoing transitions of a state si ∈ Wi are exactly the outgoing transitions of
all states s ∈ Ki(si).

Proposition 2. For every state si ∈ Si, if s ∈ Ki(si), then for all s′ ∈ S and
A ⊆ AP, (s,A, s′) ∈ δW iff (si, A ∪ {in s}, s′

i) ∈ δi for some s′
i ∈ Si.

The second one states that the knowledge labels in Wi are consistent with
the transitions of W.

Proposition 3. Let (s,A, s′) ∈ δW with f(Pi) ∈ A. Then, for every state si ∈
Si with s ∈ Ki(si), and every transition (si, A ∪ {in s}, s′

i) ∈ δi, it holds that
s′ ∈ Ki(s′

i). Furthermore, for every sj of Wj with i 	= j, if s ∈ Kj(sj), then
s′ ∈ Kj(sj).
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6.3 Check for Independence

We now define the check if transitions in Wi can be taken independently of the
current state of all Wj with Pj 	⊆ Pi. If the check is positive, we can implement
the system efficiently in Solidity: when a method f(Pi) is called, we only need
to update the single system Wi and whether the transition can be taken only
depends on the available parameters.

Let si and s′
i be states in Wi and A ⊆ AP . Let G(si,A,s′

i)
= {s | (si, A ∪

{in s}, s′
i) ∈ δi} be the set of all guard propositions that occur on transitions

from si to s′
i with A. Let Pj1 , . . . Pjl be the maximum set of parameter subsets

such that Pjk ⊆ Pi for 1 ≤ k ≤ l. A transition (si, A, s′
i) is independent if for all

states sj1 , . . . , sjl with sjk ∈ Sjk either

(i) Ki(si) ∩
⋂

1≤k≤l Kjk(sjk) ⊆ G(si,A,s′
i)

or
(ii) (Ki(si) ∩

⋂
1≤k≤l Kjk(sjk)) ∩ G(si,A,s′

i)
= ∅.

The check combines the knowledge of Wi in state si with the knowledge of
each combination of states from Wj1 , . . . ,Wjl . For each potential combination,
it must be possible to determine whether transition (si, A, s′

i) can be taken. If
the first condition is satisfied, then the combined knowledge leads to the definite
conclusion that W is currently in a state where an A-transition can be taken.
If the second condition is satisfied, it definitely cannot be taken. If none of the
two is satisfied, then the combined knowledge of Pi and all Pjk is insufficient to
reach a definite answer.

Note that some state combinations si, sj1 , . . . , sjl might be impossible to
reach. But then, we have that Ki(si) ∩

⋂
1≤k≤l Kjk(sjk) = ∅ and the second

condition is satisfied. The check is successful if all transitions (si, A, s′
i) in all δi

are independent.

6.4 Interpretation as Infinite-State Machine

The goal of this section is to construct a state machine M from W1, . . . Wn

such that the original parameterized pastTSL formula ϕ is satisfied. To simplify
the presentation, we define M as a state machine over APP. Due to the direct
correspondence of atomic propositions in APP to predicate and update terms
TP ∪TU , a state machine for ϕ can easily be obtained from that. In the following,
we assume that W satisfies Requirements 1 and 2 and that W1, . . . ,Wn pass the
check for independence. We construct M as follows.

A state in M is a collection of n = |2P | functions f1, . . . , fn, where fi :
P

m → Si if Pi = (pi1 , . . . , pim). Each fi indicates in which state of Wi instance
μ currently is. The initial state is the collection of functions that all map to
the initial states of their respective Wi. For every state s = (f1, . . . , fn) of M,
every Pi ⊆ P , and every instance μ, we add a transition where Pi[μ] takes a
step and all other instances stay idle. Let fi(Pi[μ]) = si, s′

i ∈ Si, A ⊆ AP , and
G(si,A,s′

i)
= {s | (si, A ∪ {in s}, s′

i) ∈ δi}. Let Pj1 , . . . Pjl be all subsets of Pi. If
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Ki(si)∩
⋂

1≤k≤l Kjk(fjk(Pjk [μ])) ⊆ G(si,A,s′
i)

, we add the transition (s,A′, s′) to
M, where A′ and s′ are defined as follows.

A′ = {a[μ] | a ∈ A} ∪ {o[μ′] | o ∈ Oself , o[μ′] 	= o[μ]}
s′ = (f1, . . . , fi[Pi[μ] �→ s′

i], . . . , fn)

The label A′ sets all propositions of instance μ as in A and sets all other input
propositions to false. Of all other outputs propositions, it only sets those denot-
ing self-updates to true.

6.5 Correctness

Finally, we argue that M as defined above satisfies the original specification ϕ
for all instantiations of its parameters.

Trace Projection. To obtain a compact state machine, our specifications require
that in each step, exactly one method is called. Like that, the resulting spec-
ification describes the control flow projected on each instance. To argue that
M satisfies ϕ, we therefore need to project its traces to the steps relevant for
an instance μ. These are the steps that either include a method call to μ or a
non-self-update of one of μ’s cells.

For A ⊆ APP, we define Aμ as {α ∈ A | ∃a ∈ AP . α = a[μ]}. Let traces(M)
be the set of infinite traces produced by M. Given t ∈ traces(M), let t′ =
(t[0])μ(t[1])μ . . .. Now, we define tμ to be the trace obtained from t′ by deleting all
positions i such that (t[i]μ)|O ⊆ Oself and ¬∃f(Pi) ∈ Icall . f(Pi)[μ] ∈ t′[i]. Note
that tμ might be a finite trace even if t is infinite. Since tμ only deletes steps from t
that do not change the value of the cells, tμ still constitutes a sound computation
regarding the TSL semantics. We define tracesμ(M) = {tμ | t ∈ traces(M)}.

Correctness Proof. Most of the work is done in the following lemma. We define
Wμ as the state machine that replaces the transition labels of W with their
instantiations according to μ, i.e., if (s,A, s′) ∈ W, then (s,A[μ], s′) ∈ Wμ.
Not every infinite run of M corresponds to an infinite run in Wμ for every μ.
However, we show that if the run has infinitely many μ-transitions, then it can
be mapped to an infinite trace in Wμ. The proof of the lemma can be found in
the full version of this paper [9].

Lemma 1. For every instance μ, tracesμ(M) = traces(Wμ).

From the above lemma we directly obtain the desired correctness result.

Theorem 2. Let ϕ = ∀p1, . . . pm. ψ be a parameterized pastTSL formula and
ψLTL its LTL approximation. If W is the winning region of ψLTL, W satisfies
Requirements 1 and 2, and can be split into W1, . . . ,Wn such that the check for
independence is successful, then for every μ, M defines a strategy for ϕ[μ].
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Proof. Let μ : P → P be an instantiation of the parameters p1, . . . pm, ι ∈ Iω

be an input stream, and 〈·〉 be an assignment function. First, for any trace t ∈
tracesμ(M) with LTL(ι, comp(t), 〈·〉) = t (see Sect. 5.1 for the definition), we
have that t ∈ traces(Wμ) because of Lemma 1. As all traces of W satisfy ψLTL,
t |= ψLTL[μ] (since μ is only a renaming of atomic propositions on the LTL-level).
By Proposition 1, we obtain ι, comp(t) |= ψ[μ]. Second, as W implements the
set of all strategies satisfying ψLTL, with the same reasoning, there is at least
one t in M with LTL(ι, comp(t), 〈·〉) = t.

6.6 Extension to Existential Quantifiers

Currently, our approach cannot handle existential quantifiers. In the example of
the ERC20 contract, this forbids us to use a field funds(m) to store the balance of
all users of the contract. If we were to try, we could use an additional parameter
r for the recipient of the tokens and state the following.

∀m, n, r. (transferFrom(m,n,r) ∨ transfer(m,r)

→ �funds(m) � funds(m) − arg@amount�

∧ �funds(r) � funds(r) + arg@amount�)

However, for completeness, we would have to specify that the funds field does
not spuriously increase, which would require existential quantifiers.

∀r. (�funds(r) � funds(r) + arg@amount�

→ ∃m.∃n. transferFrom(m,n,r) ∨ transfer(m,r))

A similar limitation stems from Requirement 1, which requires that a field
parameterized with set Pi can only be updated by a method that is also param-
eterized with Pi. As for existential quantifiers, we would otherwise not be able
to distinguish spurious updates from intended updates of cells. While it might
be challenging to extend the approach with arbitrary existential quantification,
it should be possible for future work to include existential quantification that
prevents spurious updates. One could, for example, define some sort of “lazy
synthesis”, which only does a non-self-update when necessary.

7 Implementation and Evaluation

7.1 Implementation

We implemented our approach in a toolchain consisting of several steps. First, we
translate the pastTSL specification into a pastLTL formula using TSLtools [19],
which we adapted to handle past-time operators. We then synthesize a state
machine using BDD-based symbolic synthesis. To make our lives easier, we
implemented a simple analysis to detect free choices and deadlocks, which both
indicate potential specification errors. If the specification contains parameters,
we split the resulting state machine as described in Sect. 6. Lastly, the state
machines are translated to Solidity code. The toolchain is implemented in our
tool SCSynt consisting of approximately 3000 lines of Python code (excluding
TSLtools). From a user perspective, we obtain the workflow depicted in Fig. 4.
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Fig. 4. Workflow of our smart contract control flow synthesis.

Synthesis from PastLTL. The first part of our toolchain implements a symbolic
synthesis algorithm for pastLTL. As such, it can also be employed outside the
context of smart contract synthesis. We are not aware of any other tool that
implements pastLTL synthesis. We first build the safety automaton of the spec-
ification using a representation as BDDs. For pastLTL, a symbolic approach is
especially efficient due to the long-known fact that for evaluating a pastLTL
formula at time point i, it is sufficient to know the value of all subformulas at
point i − 1 [13]. Afterwards, we symbolically extract the winning region from
the safety region with a classic fixpoint attractor construction. Finally, we mini-
mize the resulting state machine using an explicit implementation of Hopcroft’s
minimization algorithm [14].

State Machine Analysis. We analyze the winning region for free choices and
potential deadlocks, which both usually indicate specification errors. A free
choice is a state which, for the same input, has multiple outgoing transitions
into the winning region. If there are free choices and the developer has no prefer-
ence which one is chosen, SCSynt nondeterministically commits to one option.
For the deadlock detection, we require the user to label determined predicate
terms. We call a predicate determined if either 1) it becomes a constant at some
time or 2) only method calls can change its value. An example of class 1 are
predicates over the time, e.g., time > cTime(): if it is true at some point, it
will never be false again. A class 2 example would be a predicate that counts
whether the number stored in a field has passed a fixed threshold. A predicate
like msg.sender = owner(), on the other hand, is not determined as the eval-
uation changes with the input msg.sender. SCSynt automatically detects if,
at some point, there is an evaluation of the determined predicate terms that is
allowed by the assumptions but for which there is no valid transition. It then
warns of a potential deadlock.

Translation to Solidity. For the translation, the developer needs to provide the
implementation of all predicates and functions, as they are uninterpreted (which
makes the synthesis feasible after all). Some of the most common functions and
predicates (e.g., equality and addition) are automatically replaced by SCSynt.
The owner and msg.sender keywords are translated automatically; the owner
is set in the constructor. Conceptually, the translation to Solidity is straightfor-
ward. For each method of the contract, we create a function that contains the
state machine logic for that particular method. For parameterized specifications,



Reactive Synthesis of Smart Contract Control Flows 265

Table 1. Sizes of the specifications and state machines as well as the average running
time of SCSynt. #Forms. is the number of individual past-time formulas, #Nodes is
the number of nodes of the AST. The state machine size is the sum of the states/transi-
tions of the split state machines. The synthesis and translation times are the respective
average on 10 runs of the same benchmark.

Contract Specification State Machine Avg. Time (s)

#Forms. #Nodes #States #Trans. Synth. Transl.

Asset Transfer 36 216 8 14 5.9996 0.0053

Blinded Auction 19 218 5 8 1.5446 0.0026

Coin Toss 27 154 5 7 1.6180 0.0029

Crowd Funding 17 100 4 8 0.2178 0.0026

ERC20 15 140 9 5 0.4812 0.0033

ERC20 Extended 19 244 10 7 1.9608 0.0040

NFT Auction 30 325 12 15 12.1853 0.0080

Simple Auction 15 83 4 7 0.1362 0.0026

Ticket System 13 97 4 6 0.1812 0.0028

Voting 17 98 6 5 0.1478 0.0023

the contract is augmented with a mapping recording the knowledge labels (c.f.
Section 6). The parameters other than the sender are included as arguments.
Following [27], we also add automatic protection against reentrancy attacks by
setting a Boolean flag if a method is currently executing.

7.2 Evaluation

The goal of our evaluation is to show that 1) parameterized pastTSL is indeed
a suitable logic for specifying smart contract state machines and 2) that our
implemented toolchain is efficient. To do so, we specified and synthesized ten
different smart contracts with a non-trivial temporal control flow using pastTSL
specifications with and without parameters. A detailed description of all bench-
marks is provided in the full version of this paper [9]. The most challenging
benchmark to specify was the NFT auction, a parameterized specification for
a contract actively maintained by Avolabs. Its reference implementation has
over 1400 lines of code. We manually extracted 30 past-time formulas from the
README of the contract provided on the GitHub of Avolabs [2].

All experiments were run on a 2020 Macbook with an Apple M1 chip, 16GB
RAM, running MacOS. The results are shown in Table 1. We report the size
of the specification and of the resulting state machine as well as the running
time of the synthesis procedure itself and the translation to Solidity code. Most
importantly, the evaluation shows that specifying and automatically generating
the non-trivial state machine logic of a smart contract is possible. We successfully
synthesized Solidity code for state machines of up to 12 states. The evaluation
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also shows that our toolchain is efficient: synthesis itself took up to 12 s; in
most cases, SCSynt synthesizes a state machine in less than two seconds. The
translation of the state machine into Solidity code is nearly instantaneous.

8 Conclusion

We have described the synthesis of Solidity code from specifications given in
pastTSL equipped with universally quantified parameters. Our approach is the
first that facilitates a comprehensive specification of the implicit state machine
of a smart contract, including the data flow of the contract’s fields and guards on
the methods’ arguments. The algorithm proceeds in two steps: first, we translate
the specification to pastTSL. While we have shown that pastTSL realizability
without parameters is undecidable in general, solutions can be obtained via a
sound reduction to LTL. In a second step, we split the resulting system into a
hierarchical structure of multiple systems, which constitutes a finite representa-
tion of a system implementing the original formula and also enables a feasible
handling when translated to Solidity. Our prototype tool SCSynt implements
the synthesis toolchain, including an analysis of the state machine regarding
potential specification errors.

For future work, we aim to extend our approach to specifications given in
pastTSL with alternating parameter quantifiers. There are also several excit-
ing possibilities to combine our work with other synthesis and verification tech-
niques. One avenue is to automatically prove necessary assumptions in deductive
verification tools [6], especially for assumptions that state invariants maintained
by method calls. Another possibility is to synthesize function and predicate
implementations in the spirit of [3]. Finally, now that we have developed the
algorithmic foundations and implemented a first prototype, we aim to conduct a
thorough evaluation of our approach in comparison to hand-written (non-formal)
approaches.
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Abstract. Synthesis of distributed protocols is a hard, often undecid-
able, problem. Completion techniques provide partial remedy by turning
the problem into a search problem. However, the space of candidate
completions is still massive. In this paper, we propose optimization tech-
niques to reduce the size of the search space by a factorial factor by
exploiting symmetries (isomorphisms) in functionally equivalent solu-
tions. We present both a theoretical analysis of this optimization as well
as empirical results that demonstrate its effectiveness in synthesizing
both the Alternating Bit Protocol and Two Phase Commit. Our experi-
ments show that the optimized tool achieves a speedup of approximately
2 to 10 times compared to its unoptimized counterpart.

1 Introduction

Distributed protocols are at the heart of the internet, data centers, cloud ser-
vices, and other types of infrastructure considered indispensable in a modern
society. Yet distributed protocols are also notoriously difficult to get right, and
have therefore been one of the primary application domains of formal verifica-
tion [15,19,20,22,31]. An even more attractive proposition is distributed protocol
synthesis: given a formal correctness specification ψ, automatically generate a
distributed protocol that satisfies ψ, i.e., that is correct-by-construction.

Synthesis is a hard problem in general, suffering, like formal verification,
from scalability and similar issues. Moreover, for distributed systems, synthesis is
generally undecidable [12,23,29,30]. Techniques such as program sketching [26,
27] remedy scalability and undecidability concerns essentially by turning the
synthesis problem into a completion problem [2,3]: given an incomplete system
M0 and a specification ψ, automatically synthesize a completion M of M0, such
that M satisfies ψ.

For example, the synthesis of the well-known alternating-bit protocol (ABP)
is considered in [4] as a completion problem: given an ABP system containing
the incomplete Sender0 and Receiver0 processes shown in Fig. 1, complete these
two processes (by adding but not removing any transitions, and not adding nor
removing any states), so that the system satisfies a given set of requirements.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In cases where the space of all possible completions is finite, completion turns
synthesis into a decidable problem.1 However, even then, the number of possible
completions can be prohibitively large, even for relatively simple protocols. For
instance, as explained in [4], the number of all possible completions in the ABP
example is 5124 · 36, i.e., approximately 2.5 trillion candidate completions.

Fig. 1. The incomplete ABP Sender and Receiver processes of [4]

Not only is the number of candidate completions typically huge, but it is
often also interesting to generate not just one correct completion, but many.
For instance, suppose both M1 and M2 are (functionally) correct solutions. We
may want to evaluate M1 and M2 also for efficiency (perhaps using a separate
method) [10]. In general, we may want to synthesize (and then evaluate w.r.t.
performance or other metrics) not just one, but in principle all correct comple-
tions. We call this problem the completion enumeration problem, which is the
main focus of this paper.

Enumeration is harder than 1-completion (synthesis of just one correct solu-
tion), since the number of correct solutions might be very large. For instance, in
the case of the ABP example described above, the number of correct completions
is 16384 and it takes 88 min to generate all of them [4].

The key idea in this paper is to exploit the notion of isomorphisms in order
to reduce the number of correct completions, as well as the search space of
candidate completions in general. To illustrate the idea, consider a different
incomplete Sender0 process, shown in Fig. 2. Two possible completions of this
Sender0 are shown in Fig. 3. Although these two completions are in principle
different, they are identical except that states s3 and s7 are swapped. Our goal
is to develop a technique which considers these two completions equivalent up to
isomorphism, and only explores (and returns) one of them.
1 We emphasize that no generality is lost in the sense that one can augment the search

for correct completions with an outer loop that keeps adding extra empty states
(with no incoming or outgoing transitions), which the inner completion procedure
then tries to complete. Thus, we can keep searching for progressively larger systems
(in terms of number of states) until a solution is found, if one exists.
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Fig. 2. An incomplete ABP Sender with permutable states s3, s7

Fig. 3. Two synthesized completions of the incomplete process of Fig. 2. Observe that
the two completions are identical except that states s3 and s7 are flipped.

To achieve this goal, we adopt the guess-check-generalize paradigm (GCG) [1,
2,13,26,27]. In a nutshell, GCG works as follows: (1) pick a candidate completion
M ; (2) check whether M satisfies ψ: if it does, M is one possible solution to
the synthesis problem; (3) if M violates ψ, prune the search space of possible
completions by excluding a generalization of M , and repeat from step (1). In
the most trivial case, the generalization of M contains only M itself. Ideally,
however, and in order to achieve a more significant pruning of the search space,
the generalization of M should contain many more “bad” completions which are
somehow “similar” (for instance, isomorphic) to M .
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A naive way to generalize based on isomorphism is to keep a list of com-
pletions encountered thus far and perform an isomorphism check against every
element of this list whenever a new candidate is picked. Our approach is smarter:
in fact, it does not involve any isomorphism checks whatsoever. Instead, our app-
roach guarantees that no isomorphic completions are ever picked to begin with
by pruning them from the search space. This is ultimately done using syntactic
transformations of completion representations. The details are left for Sect. 4.

Furthermore, our notion of “encountering” a completion is quite wide. Rather
than just pruning completions that are isomorphic to candidates, we also prune
completions that are isomorphic to any completion in the generalizations of the
candidates (with respect to some prior, unextended notion of generalization).
Between the trivial approach involving isomorphism checks and our own app-
roach are several other approaches which are good, but not excellent. Indeed, a
categorization of the subtle differences between such approaches is a key contri-
bution of this paper (see Sect. 4.3). These subtleties are easy to miss.

In summary, the main contributions of this paper are the following: (1) we
define the 1-completion and completion-enumeration problems modulo isomor-
phisms; (2) we examine new methods to solve these problems based on the GCG
paradigm; (3) we identify properties that an efficient GCG modulo isomorphisms
algorithm should have; (4) we propose two instances of such an algorithm, using
a naive and a sophisticated notion of generalization; (5) we evaluate our meth-
ods on the synthesis of two simple distributed protocols: the ABP and Two
Phase Commit (2PC) and demonstrate speedups with respect to the unopti-
mized method of approximately 2 to 10 times.

2 Preliminaries

Labeled Transition Systems. A (finite) labeled transition system (LTS) M
is a tuple 〈Σ,Q,Q0,Δ〉, where

– Σ is a finite set of transition labels
– Q is a finite set of states
– Q0 ⊆ Q is the set of initial states
– Δ ⊆ Q × Σ × Q is the transition relation.

We write the transition (p, a, q) ∈ Δ as p
a→ q.

A run of M is an infinite sequence q0
a0→ q1

a1→ q2
a2→ ..., where q0 ∈ Q0

and for each i we have (qi, ai, qi+1) ∈ Δ. The trace produced by this run is
a0a1a2 · · · . Semantically, an LTS M represents a set of infinite traces, denoted
[[M ]] ⊆ Σω. Specifically, a trace a0a1a2 · · · is in [[M ]] exactly when there exists a
run q0

a0→ q1
a1→ q2

a2→ ... of M .
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Correctness Specification. We will assume that we have some formal notion
of specification and some formal notion of satisfaction between an LTS M and
a specification ψ. We write M � ψ to denote that M satisfies ψ. Our work is
agnostic to what exactly ψ might be (e.g., a temporal logic formula, etc.).

Completions and Syntactic Constraints. Suppose that M and M0 are two
LTSs with the same set of labels Σ, the same set of states Q, the same set of
initial states Q0, and with transition relations Δ and Δ0, respectively. We say
that M is a completion of M0 exactly when Δ0 ⊆ Δ. That is, M completes M0

by adding more transitions to it (and not removing any). For example, each of
the two LTSs of Fig. 3 is a completion of the LTS shown in Fig. 2.

Often, we wish to impose some constraints on the kind of synthesized pro-
cesses that we want to obtain during automated synthesis, other than the global
constraints imposed on the system by the correctness specification. For example,
in the formal distributed protocol model proposed in [4], synthesized processes
such as the ABP Sender and Receiver are constrained to satisfy a number of
requirements, including absence of deadlocks, determinism of the transition rela-
tion, the constraint that each state is either an input state (i.e., it only receives
inputs) or an output state (i.e., it emits a unique output), the constraint that
input states are input-enabled (i.e., they do not block any inputs), and so on.
Such properties are often syntactic or structural and can be inferred statically
by observing the transition relation. The fact that an LTS is a completion of
another LTS can also be captured by such constraints.

Constraints like the above are application-specific, and our approach is agnos-
tic to their precise form and meaning. We will therefore abstract them away, and
assume that there is a propositional logic formula Φ which captures the set of
all syntactically well-formed candidate completions. The variable space of Φ and
its precise meaning is application-specific. We will give a detailed construction
of Φ for LTS in Sect. 3. We write M � Φ when LTS M satisfies the syntactic
constraints Φ. Let [[Φ]] = {M | M � Φ}.

We say that an LTS is correct if it satisfies both the syntactic constraints
imposed by Φ and the semantic constraints imposed by ψ.

Computational Problems

Problem 1 (Model-Checking). Given LTS M , specification ψ, and constraints Φ,
check whether M � ψ and M � Φ.

A solution to the model-checking problem is an algorithm, mc, such that for all
M,Φ,ψ, if M � Φ and M � ψ then mc(M,Φ,ψ) = 1; otherwise, mc(M,Φ,ψ) = 0.

Problem 2 (Synthesis). Given specification ψ and constraints Φ, find, if one
exists, LTS M such that M � ψ and M � Φ.

Problem 3 (Completion). Given LTS M0, specification ψ, and constraints Φ,
find, if one exists, a completion M of M0 such that M � ψ and M � Φ.

Problem 4 (Completion enumeration). Given LTS M0, specification ψ, and con-
straints Φ, find all completions M of M0 such that M � ψ and M � Φ.
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3 The Guess-Check-Generalize Paradigm

In this section we first propose a generic GCG algorithm and reason about its
correctness (Sect. 3.1). We then show how to instantiate this algorithm to solve
Problems 3 and 4 (Sect. 3.2).

3.1 A Generic GCG Algorithm and Its Correctness

Algorithm 1 is a formal description of a generic GCG algorithm. The algorithm
takes as input: (1) a set of syntactic constraints in the form of a propositional
formula Φ, as described in Sect. 2; (2) a specification ψ as described in Sect. 2;
and (3) a generalizer function γ, described below.

Algorithm 1: gcg[Φ,ψ, γ]
1 while Φ is satisfiable do
2 σ := sat(Φ);
3 if mc(Mσ, Φ, ψ) = 1 then
4 return σ;
5 Φ := Φ ∧ ¬σ;

6 else
7 Φ := Φ ∧ ¬γ(σ);

Φ is a propositional logic formula (over a certain set of boolean variables that
depends on the application domain at hand) encoding all possible syntactically
valid completions. Every satisfying assignment σ of Φ corresponds to one com-
pletion, which we denote as Mσ. Observe that gcg does not explicitly take an
initial (incomplete) model M0 as input: this omission is not a problem because
M0 can be encoded in Φ, as mentioned in Sect. 2. We explain specifically how to
do that in the case of LTS in Sect. 3.2.

The algorithm works as follows: while Φ is satisfiable: Line 2: pick a candidate
completion σ allowed by Φ by calling a SAT solver. Line 3: model-check the
corresponding model Mσ against ψ (by definition, Mσ satisfies Φ because σ
satisfies Φ). Line 4: if Mσ satisfies ψ then we have found a correct model: we can
return it and terminate if we are solving Problem 3, or return it and continue
our search for additional correct models if we are solving Problem 4. In the latter
case, in line 5 we exclude σ from Φ (slightly abusing notation, we treat σ as a
formula satisfied exactly and only by σ, so that ¬σ is the formula satisfied by
all assignments except σ). Line 7: if Mσ violates ψ, then we exclude from Φ the
generalization γ(σ) of σ, and continue our search.

Generalizers. A generalizer is a function γ which takes an assignment σ and
returns a propositional logic formula γ(σ) that encodes all “bad” assignments
that we wish to exclude from Φ. Ideally, however, γ(σ) will encode many more
assignments (and therefore candidate completions), so as to prune as large a
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part of the search space as possible. A concrete implementation of γ may require
additional information other than just σ. For example, γ may consult the specifi-
cation ψ, counter-examples returned by the model-checker (which are themselves
a function of ψ and σ), and so on. We avoid including all this information in
the inputs of γ to ease presentation. We note that ψ does not change during a
run of Algorithm 1 and therefore ψ can be “hardwired” into γ without loss of
generality.

A valid generalizer should include the assignment being generalized and it
should only include bad assignments (i.e., it should exclude correct completions).
Formally, a generalizer γ is said to be proper if for all σ such that σ � Φ and
Mσ � ψ, the following conditions hold: (1) Self-inclusion: σ � γ(σ), and (2)
Correct-exclusion: for any �, if � � Φ and M� � ψ then � � γ(σ).

The Correctness of GCG

Lemma 1. If γ is proper then gcg[Φ,ψ, γ] terminates.

Proof. If γ is proper then γ(σ) is guaranteed to include at least σ. Φ is a propo-
sitional logic formula, therefore it only has a finite set of satisfying assignments.
Every iteration of the loop removes at least one satisfying assignment from Φ,
therefore the algorithm terminates. ��

During a run, Algorithm 1 returns a (possibly empty) set of assignments
Sol = {σ1, σ2, ..., σn}, representing the solution to Problems 3 or 4. Also during
a run, the algorithm guesses candidate assignments by calling the subroutine
sat (line 2). Let Cand be the set of all these candidates. Note that Sol ⊆ Cand,
since every solution returned (line 4) has been first guessed in line 2.

Whenever the algorithm reassigns Φ := Φ ∧ ¬ϕ, we say that it prunes ϕ, i.e.,
the satisfying assignments of ϕ are now excluded from the search. We will need
to reason about the set of assignments that have been pruned after a certain
partial run of the program. In such cases we can imagine running the algorithm
for some amount of time and pausing it. Then the set Pruned denotes the set of
assignments that have been pruned up until that point. It is true that after the
program terminates Pruned = [[Φ]]\Cand, but this equality does not necessarily
hold for all partial runs.

Theorem 1. (1) gcg[Φ,ψ, γ] is sound, i.e., for all σ ∈ Sol, we have σ � Φ and
Mσ � ψ. (2) If γ is proper then gcg[Φ,ψ, γ] is complete, i.e., for all σ � Φ, if
Mσ � ψ then σ ∈ Sol.

Proof. Every σ ∈ Sol satisfies Φ (line 2) and the corresponding Mσ satisfies ψ
(line 3), therefore gcg[Φ,ψ, γ] is sound. Now, suppose that γ is proper, and take
� such that � � Φ and M� � ψ. To show completeness, it suffices to show that
� ∈ Cand. Then, we also have � ∈ Sol because M� passes the model-checking test
in line 3. Suppose, for a contradiction, that � 
∈ Cand, i.e., that � is pruned. Then
there must exist some σ such that � � γ(σ) (line 7). But σ � Φ (line 2), which
means that � violates the correct-exclusion property of γ. Contradiction. ��
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3.2 A Concrete Instance of GCG for LTS

Algorithm 1 is generic in the sense that depending on how exactly we instan-
tiate Φ, ψ, and γ, we can encode different completion enumeration (and more
generally model enumeration) problems, as well as solutions. We now show how
to instantiate Algorithm 1 to solve Problems 3 and 4 concretely for LTS.

Encoding LTSs and Completions in Propositional Logic. Let M0 =
〈Σ,Q,Q0,Δ0〉 be an incomplete LTS. Then we can define a set of boolean vari-
ables

V := {p �a q | p, q ∈ Q ∧ a ∈ Σ}
so that boolean variable p �a q encodes whether transition p

a→ q is present or
not (if p

a→ q is present, then p �a q is true, otherwise it is false). More formally,
let asgnV be the set of all assignments over V . An assignment σ ∈ asgnV

represents LTS Mσ with transition relation Δσ = {(p, a, q) | σ(p �a q) = 1}. To
enforce Mσ to be a completion of M0, we need to enforce that Δ0 ⊆ Δσ. We do
so by initializing our syntactic constraints Φ as Φ := ΦΔ0 , where

ΦΔ0 :=
∧

p
a→q∈Δ0

p �a q.

We can then add extra constraints to Φ such as determinism or absence of
deadlocks, as appropriate.

A Concrete Generalizer for LTS. Based on the principles of [4], we can
construct a concrete generalizer γLTS(σ) for LTS as γLTS(σ) := γsafe(σ)∨γlive(σ),
which we separate into a disjunction of a safety violation generalizer and a
liveness violation generalizer. The safety component γsafe works on the principle
that if LTS Mσ violates a safety property, then adding extra transitions will not
solve this violation. Thus:

γsafe(σ) :=
∧

{x∈V |σ(x)=1}
x.

The liveness component γlive can be defined based on a notion of reachable,
“bad” cycles that enable something to happen infinitely often. Thus, ¬γlive cap-
tures all LTSs that disable these bad cycles by breaking them or making them
unreachable.

It can be shown that the concrete generalizer γLTS is proper. Therefore, the
concrete instance gcg[Φ,ψ, γLTS] is sound, terminating, and complete, i.e., it
solves Problems 3 and 4.

Even though the concrete generalizer is correct, it is not very effective. In
particular, it does not immediately prune isomorphisms. There may be O(n!)
trivially equivalent completions up to state reordering, where n is the number of
states in the LTS. In the next section we present two optimizations exploiting
isomorphisms.
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4 Synthesis Modulo Isomorphisms

4.1 LTS Isomorphisms

Intuitively, two LTS are isomorphic if we can rearrange the states of one to obtain
the other. For synthesis purposes, we often wish to provide as a constraint a set
of permutable states A, so as to exclude rearrangements that move states outside
of A. If we can still rearrange the states of an LTS M1 to obtain another LTS M2

subject to this constraint, then we say that M1 and M2 are isomorphic up to A.
For example, the two LTSs of Fig. 3 are isomorphic up to the set of permutable
states A = {s3, s7}. Strictly speaking, they are permutable up to any set of their
states, but we choose A to reflect the fact that those two states have no incoming
or outgoing transitions in Fig. 2. Permuting any other states would yield an LTS
that is not a completion of Fig. 2.

We now define isomorphisms formally. Let M0, M1, and M2 be LTSs with
the same Σ,Q,Q0, and with transition relations Δ0, Δ1, and Δ2, respectively.
Suppose that M1 and M2 are both completions of M0. Let A ⊆ Q\Q0. Then we

say M1 and M2 are isomorphic up to A, denoted M1
A� M2, if and only if there

exists a bijection f : A → A (i.e., a permutation) such that

p
a→ q ∈ Δ1 if and only if f(p) a→ f(q) ∈ Δ2.

By default, we will assume that A is the set of non-initial states that have no
incoming or outgoing transitions in M0. In that case we will omit A and write
M1 � M2.

Lemma 2. LTS isomorphism is an equivalence relation, i.e., it is reflexive, sym-
metric, and transitive.

We use [M ] to denote the equivalence class of M , i.e., [M ] = {M ′ | M ′ � M}.

Lemma 3. If M1
A� M2 then [[M1]] = [[M2]].

Lemma 3 states that LTS isomorphism preserves traces. More generally, we will
assume that our notion of specification is preserved by LTS isomorphism, namely,

that if M1
A� M2 then for any specification ψ, M1 � ψ iff M2 � ψ.

Isomorphic Assignments. Two assignments σ and � are isomorphic if the
LTSs that they represent are isomorphic. Hence we write σ � � if and only if
Mσ � M�. We write [�] to denote the equivalence class of �, i.e., the set of all
assignments that are isomorphic to �. These equivalence classes partition Φ since
� is an equivalence relation.

4.2 Completion Enumeration Modulo Isomorphisms

Isomorphisms allow us to focus our attention to Problem 5 instead of Problem 4:



Synthesis of Distributed Protocols by Enumeration Modulo Isomorphisms 279

Problem 5 (Completion enumeration modulo isomorphisms). Given LTS M0,
specification ψ, and constraints Φ, find the set

{[M ] | M is a completion of M0 such that M � ψ and M � Φ}.

Problem 5 asks that only significantly different (i.e., non-isomorphic) comple-
tions are returned to the user. Problem 5 can be solved by a simple modification
to Algorithm 1, namely, to exclude the entire equivalence class [σ] of any dis-
covered solution σ, as shown in Algorithm 2, line 5.

Algorithm 2: gcg�[Φ,ψ, γ] solving Problem 5
1 while Φ is satisfiable do
2 σ := sat(Φ);
3 if mc(Mσ, Φ, ψ) = 1 then
4 return σ;
5 Φ := Φ ∧ ¬[σ];

6 else
7 Φ := Φ ∧ ¬γ(σ);

4.3 Properties of an Efficient GCG Algorithm

We begin by presenting a list of properties that an efficient instance of GCG
ought to satisfy. Except for Property 1, satisfaction of these properties generally
depends on the generalizer used.

Property 1. For all σ that satisfy Φ, [σ] ∩ Sol has 0 or 1 element(s). In other
words, we return at most one solution per equivalence class.

Property 1 asks that only significantly different (i.e., non-isomorphic) com-
pletions are returned to the user, thereby solving Problem 5, which is our main
goal. In addition, this property implies that the number of completions is kept
small, which is important when these are fed as inputs to some other routine
(e.g., one that selects a “highly fit” completion among all valid completions).

gcg� satisfies Property 1, regardless of the parameters. However, we can go
further, by ensuring that not only we do not return isomorphic completions, but
we do not even consider isomorphic candidate completions in the first place:

Property 2. For all σ that satisfy Φ, [σ] ∩ Cand has 0 or 1 element(s). In other
words, we consider at most one candidate per equivalence class.

Maintaining Property 2 now guarantees that we only call the most expensive
subroutines at most once for each equivalence class. Note that, since Sol ⊆ Cand,
Property 2 implies Property 1.

Property 2 is still not entirely satisfactory. For instance, suppose the algo-
rithm generates σ as a candidate and then prunes γ(σ). Now suppose that � � σ.
Property 2 implies that we cannot call/prune γ(�). Property 3 rectifies this:
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Property 3 (invariant). Suppose that gcg� invokes Φ := Φ ∧ ¬γ(σ). Then for
any � � σ, we should have [[γ(�)]] ⊆ Pruned. In other words, if we prune γ(σ),
we should also prune γ(�) for every � isomorphic to σ.

We note that, contrary to Properties 1 and 2 which need only hold after ter-
mination, Property 3 is an invariant: we want it to hold for all partial executions
of the algorithm.

Theorem 2. Suppose γ is proper. If gcg�[Φ,ψ, γ] maintains Property 3 as an
invariant, then gcg�[Φ,ψ, γ] also maintains Property 2.

Maintaining Property 3 increases the rate at which the search space is pruned,
but is still not enough. Suppose that τ � γ(σ) and that τ ′ � τ . If we prune the
members of γ(σ), then we will prune τ , but not necessarily τ ′. This possibility is
unsatisfactory, since τ and τ ′ should both be treated whenever one of them is.

Property 4 (invariant). Suppose τ ∈ Pruned and τ ′ � τ . Then τ ′ ∈ Pruned or
τ ′ ∈ Sol. In other words, if we prune τ we should also prune any isomorphic τ ′,
unless τ ′ happens to be a solution. (Note that Property 1 guarantees that this
exception applies to at most one τ ′).

Maintaining Property 4 as an invariant further accelerates pruning. Under
certain conditions, Property 3 implies Property 4. In particular, Property 3
implies Property 4 if γ is invertible, a concept that we define next.

Invertible Generalizers. Let γ be a generalizer and let τ be an assignment.
We define the inverse γ−1(τ), to be the propositional logic formula satisfied by
all σ such that τ � γ(σ). That is, σ � γ−1(τ) iff τ � γ(σ).

Let ϕ and ϕ′ be propositional logic formulas. Suppose that for every σ � ϕ,
there exists a σ′ � ϕ′ such that σ′ � σ. Then we say that ϕ subsumes ϕ′ up to
isomorphism. If ϕ and ϕ′ both subsume each other, then we say that they are
equivalent up to isomorphism.

A generalizer γ is invertible if for all assignments τ, τ ′ that satisfy Φ, if τ � τ ′

then γ−1(τ) and γ−1(τ ′) are equivalent up to isomorphism. Now if τ � γ(σ) and
τ ′ � τ , invertibility guarantees that we can point to a σ′ � σ such that τ ′ � γ(σ′).

Theorem 3. Suppose γ is proper and invertible. If gcg�[Φ,ψ, γ] maintains
Property 3 as an invariant, then gcg�[Φ,ψ, γ] also maintains Property 4 as
an invariant.

Proof. Let γ be a proper, invertible generalizer. We will proceed by contradiction.
Assume that we have run the algorithm for some amount of time and paused
its execution, freezing the state of Pruned. Suppose that gcg�[Φ,ψ, γ] satisfies
Property 3 at this point, but that it does not satisfy Property 4. From the
negation of Property 4, we have at this point in the execution two assignments
τ and τ ′ such that (1) τ � τ ′, (2) τ ∈ Pruned, (3) τ ′ /∈ Pruned, and (4) τ ′ /∈ Sol.
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There are two cases that fall out of (2). Either τ was pruned using a call to γ,
or exactly [τ ] was pruned. In the second case, we quickly reach a contradiction
since it implies that τ ′ ∈ Pruned, violating assumption (3).

So instead, we assume τ � γ(σ) for some σ and that this call to γ was invoked
at some point in the past. So σ � γ−1(τ). But then by invertibility and (1) there
exists σ′ � σ such that σ′ � γ−1(τ ′) and hence τ ′ � γ(σ′). Property 3 tells us
then that τ ′ ∈ Pruned, but this conclusion also violates assumption (3). ��

It can be shown that the generalizer γLTS is invertible. Essentially, this is
because γLTS does not depend on state names (for example, the structure of
cycles and paths is independent of state names). Still, gcg�[Φ,ψ, γLTS] satisfies
only Property 1 above. Therefore, we will next describe an optimized general-
ization method that exploits isomorphism to satisfy all properties.

4.4 Optimized Generalization

Equivalence Closure. If γ is a generalizer and � is an equivalence relation,
then let �

γ(�) :=
∨

σ∈[�]

γ(σ)

be the equivalence closure of γ. If γ(σ) ≡ �
γ(σ) for all σ, we say that γ is closed

under equivalence.
Note that

�
γ is itself a generalizer. An instance of gcg� that uses

�
γ is correct

and satisfies all the efficiency properties identified above:

Theorem 4. If γ is a proper generalizer, then gcg�[Φ,ψ,
�
γ] is sound, termi-

nating, and complete up to isomorphisms.

Theorem 5. If γ is proper, then gcg�[Φ,ψ,
�
γ] maintains Properties 1 and 2.

Furthermore, the algorithm maintains Property 3 as an invariant.

Theorem 6. If γ is both proper and invertible, then: (1)
�
γ is invertible; (2)

gcg�[Φ,ψ,
�
γ] maintains Property 4 as an invariant.

Computation Options for
�
γ. The naive way to compute

�
γ is to iterate over

all σ1, σ2, · · · , σk ∈ [�], compute each γ(σi), and then return the disjunction of
all γ(σi). We call this the naive generalization approach. The problem with this
approach is that we have to call γ as many as n! times, where n is the number of
permutable states. The experimental results in Sect. 5 indicate empirically that
this naive method does not scale well.

We thus propose a better approach, which is incremental, in the sense that
we only have to compute γ once, for γ(σ1); we can then perform simple syntactic
transformations on γ(σ1) to obtain γ(σ2), γ(σ3), and so on. As we will show,
these transformations are much more efficient than computing each γ(σi) from
scratch. So-called permuters formalize this idea:
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Permuters. A permuter is a function π that takes as input an assignment �
and the generalization γ(σ) for some σ � �, and returns a propositional logic
formula π(σ, γ(�)) such that ∀� � Φ,∀σ � � :: M� � ψ → π(�, γ(σ)) ≡ γ(�).
That is, assuming � is “bad” (M� � ψ), π(�, γ(σ)) is equivalent to γ(�). However,
contrary to γ, π can use the extra information γ(σ) to compute the generalization
of �. Then, instead of

�
γ(�), we can compute the logically equivalent formula

γπ(�) :=
∨

σ∈[�]

π(σ, γ(�)).

Theorem 7. Theorems 4, 5, and 6 also hold for gcg�[Φ,ψ, γπ].

Proof. Follows from the fact that for any �, γπ(�) ≡ �
γ(�). ��

A Concrete Permuter for LTS. We now explain how to compute π concretely
in our application domain, namely LTS. Let M0 be an incomplete LTS. Let
σ1, σ2 be two assignments encoding completions Mσ1 and Mσ2 of M0. Suppose

Mσ1

A� Mσ2 . Recall that A is the set of permutable states (the non-initial states
with no incoming/outgoing transitions by default). Then there is a permutation
f : A → A, such that applying f to the states of Mσ1 yields Mσ2 . f allows
us to transform one LTS to another, but it also allows us to transform the
generalization formula for σ1, namely γ(σ1), to the one for σ2, namely γ(σ2).

For example, let M0 be the leftmost LTS in Fig. 4, with alphabet Σ = {a},
states Q = {p0, p1, p2, p3}, initial state p0, and the empty transition relation.
Let Mσ1 and Mσ2 be the remaining LTSs shown in Fig. 4. Let A = {p1, p2, p3}
and let f be the permutation mapping p1 to p3, p3 to p2, and p2 to p1. Then

Mσ1

A� Mσ2 and f is the witness to this isomorphism.
Let γ(σ1) = (p0 �a p1) ∧ (p1 �a p2) ∧ (p2 �a p3). γ(σ1) captures the

four LTSs in Fig. 5. The key idea is that we can compute γ(σ2) by transforming
γ(σ1) purely syntactically. In particular, we apply the permutation f to all pi

appearing in the variables of the formula. Doing so, we obtain γ(σ2) = (p0 �a

p3) ∧ (p3 �a p1) ∧ (p1 �a p2). This formula in turn captures the four LTSs in
Fig. 6, which are exactly the permutations of those in Fig. 5 after applying f .

We now describe this transformation formally. Observe that Mσ1 and Mσ2

have the same set of states, say Q. We extend the permutation to f : Q → Q by
defining f(q) = q for all states q /∈ A. Now, we extend this permutation of states
to permutations of the set V (the set of boolean variables encoding transitions).
Specifically we extend f to permute V by defining: f(p �a q) := f(p) �a f(q)
and we extend it to propositional formulas by applying it to all variables in the
formula. Then we define πLTS(σ2, γ(σ1)) := f(γ(σ1)).

In essence, the permuter πLTS identifies the permutation f witnessing the
fact that σ1 � σ2. It then applies f to the variables of γ(σ1). Applying f to
γ(σ1) is equivalent to applying f to all assignments that satisfy γ(σ1).

It can be shown that πLTS is a permuter for LTS. It follows then that the
concrete instance gcg�[Φ,ψ, γπ] (where γ := γLTS and π := πLTS) satisfies
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Fig. 4. An incomplete LTS M0 and two possible completions, Mσ1 and Mσ2

Fig. 5. LTSs represented by (p0 �a p1) ∧ (p1 �a p2) ∧ (p2 �a p3)

Theorem 7, i.e., it is sound, terminating, complete up to isomorphisms, and
satisfies all Properties 1–4.

Fig. 6. LTSs represented by (p0 �a p3) ∧ (p3 �a p1) ∧ (p1 �a p2)

5 Implementation and Evaluation

Implementation and Experimental Setup. We evaluate the three algo-
rithms discussed so far: the unoptimized algorithm gcg[Φ,ψ, γLTS] of [2,4]
(Sect. 3.2); and the naive optimization gcg�[Φ,ψ,

�
γ] and permuter optimization

gcg�[Φ,ψ, γπ] algorithms of Sect. 4.4. These are respectively labeled ‘unopt.’,
‘naive opt.’, and ‘perm. opt.’ in the tables that follow.

In addition, we evaluate the unoptimized algorithm outfitted with an addi-
tional optimization, which we call the dead transition optimization. We say that
a transition of an LTS is dead if this transition is never taken in any run. If M
with states Q is correct and has k dead transitions, then there are |Q|k solutions
that are equivalent modulo dead transitions, since we can point a dead transi-
tion anywhere while maintaining correctness. The dead transition optimization
prunes all solutions which are equivalent modulo dead transitions. It is equiva-
lent to the unoptimized algorithm in cases where there are no solutions or where
we are looking for only one solution. Therefore, we evaluate the dead transition
optimization side-by-side with the unoptimized solution only when we are enu-
merating all correct completions. The naive and permuter optimizations both
include the dead transition optimization.
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We use [28], the Python implementation of gcg[Φ,ψ, γLTS] made publicly
available by the authors of [2,4], and we implement our optimizations on top
of [28] in order to keep the comparison fair. The tool can handle completion
of distributed systems, rather than of single LTSs. Distributed systems are rep-
resented as networks of communicating LTSs similar to those in [4]. Specifica-
tions are represented using safety and liveness (Büchi) monitors, again similar
to those in [4]. However, let us again mention that our approach is not specific
to any particular specification logic; it should allow for performance gains when-
ever the cost of model-checking is greater than the cost of the simple syntactic
transformations applied by the permuter. We use the SAT solver Z3 [7] to pick
candidates from the search space. Our experimental results can be reproduced
using a publicly available artifact [9].

For our experiments we use the ABP case study as presented in [4] as well
as our own two phase commit (2PC) case study. We consider three use cases:
(1) completion enumeration: enumerate all correct completions; (2) realizable 1-
completion: return the first correct completion and stop, where we ensure that
a correct completion exists; and (3) unrealizable 1-completion: return the first
correct completion, except that we ensure that none exists (and therefore the
tool has to explore the entire candidate space in vain).

We consider a many-process synthesis scenario, where the goal is to synthesize
two or more processes, and a 1-process synthesis scenario, where the goal is to
synthesize a single process. In both of these scenarios across both the ABP
and 2PC case studies, the synthesized processes are composed with additional
environment processes and safety and liveness monitors. The results of the many-
process synthesis scenario are presented shortly. Due to lack of space, the results
of the 1-process synthesis scenario are presented in Appendix A.2 of [11]. The
latter results do not add much additional insight, except that 1-process synthesis
tends to take less time.

Each experiment was run on a dedicated 2.40 GHz CPU core located on the
Northeastern Discovery Cluster. All times are in seconds, rounded up to the
second.

Many-Process Synthesis Experiments. In all these experiments, there are
multiple LTSs that must both be completed. In the case of ABP: (1) the incom-
plete ABP Receiver0 of Fig. 1 without further modification; (2) an incomplete
sender process, which is obtained by removing some set of transitions from pro-
cess Sender of Fig. 3. The set of transitions removed from Sender are all incoming
and all outgoing transitions from all states designated as permutable for that
experiment (column A in the tables that follow). For instance, in experiment
{s1, s2} of Table 1 we remove all incoming and outgoing transitions from states
s1 and s2 of Sender, and similarly for the other experiments. And in the case
of 2PC: (1) two incomplete 2PC database managers (see Fig. 8 in Appendix A.1
of [11]) (2) an incomplete transaction manager, which is obtained by remov-
ing some set of transitions from a complete transaction manager (see Fig. 7 in
Appendix A.1 of [11]).
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Table 1. Many-Process Synthesis, Completion Enumeration

Case Study; A unopt. dead opt. naive opt. perm. opt.

sol. iter. time sol. iter. time sol. iter. time sol. iter. time

2PC; {p1, p2} 4 536 47 4 536 46 2 274 34 2 274 28

2PC; {p2, p3} 48 1417 130 4 1352 124 2 735 93 2 735 77

2PC; {p3, p4} 336 2852 266 6 2600 231 3 1328 161 3 1328 134

2PC; {p4, p8} 576 1813 168 4 1237 112 2 575 75 2 648 66

ABP; {s1, s2} 64 628 27 8 574 21 4 289 18 4 304 12

ABP; {s2, s3} 64 1859 75 8 1832 70 4 946 55 4 943 37

ABP; {s3, s4} 32 374 18 4 353 13 2 188 12 2 192 8

ABP; {s4, s5} 32 3728 177 4 3638 170 2 1913 160 2 1833 93

ABP; {s5, s6} 64 449 27 8 412 21 4 199 18 4 201 11

ABP; {s6, s7} 64 1518 94 8 1481 87 4 769 80 4 752 47

2PC; {p2, p3, p4} 2016 17478 1896 36 15646 1677 6 2693 719 6 2693 466

2PC; {p3, p4, p8} 79391⁄- 101278 TO 36 23044 2498 6 4079 1064 6 3997 682

ABP; {s1, s2, s3} 192 5641 226 24 5499 207 4 968 155 4 937 49

ABP; {s2, s3, s4} 3072 23025 1470 48 19114 934 8 3639 722 8 3331 225

ABP; {s3, s4, s5} 96 14651 748 12 15108 760 2 2599 567 2 2520 172

ABP; {s4, s5, s6} 1536 14405 876 24 13269 686 4 2458 554 4 2215 151

ABP; {s5, s6, s7} 192 4686 287 24 4559 268 4 809 241 4 748 57

2PC; {p1, p2, p3, p4} 8064⁄- 70250 TO 144 62280 11915 6 2770 2844 6 2719 1564

ABP; {s1, s2, s3, s4} 12288 90031 8143 192 76591 5458 8 3704 2931 8 3271 628

ABP; {s3, s4, s5, s6} 6144 59838 4777 96 52935 3543 4 2896 2655 4 2351 431

ABP; {s4, s5, s6, s7} 1009⁄- 108929 TO 38⁄96 111834 TO 2⁄4 10443 TO 4 8639 7480

Completion Enumeration. Table 1 presents the results for the completion enu-
meration use case and many-process synthesis scenario. Columns labeled sol. and
iter. record the number of solutions (i.e., |Sol|) and loop iterations of Algorithm 2
(i.e., the number of candidates |Cand|, i.e., the number of times the SAT rou-
tine is called), respectively. Pilot experiments showed negligible variance across
random seeds, so reported times are for one seed. TO denotes a timeout of 4 h,
in which case p/q means the tool produced p out of the total q solutions. For
the dead opt. column, we know that q = 24 · n, where n is the number of solu-
tions/equivalence classes found by the permuter optimization and 24 = 4! is
the number of isomorphisms for 4 states. Since the naive optimization produces
equivalence classes, q = n for the naive opt. column.

The results in Table 1 are consistent with our theoretical analyses. When
there are 2 permutable states, the naive and permuter optimizations explore
about half the number of candidates as the dead transitions method. For 3
permutable states, the optimized methods explore about 3! = 6 times fewer can-
didates. For 4 permutable states, the optimized methods explore about 4! = 24
times fewer candidates than the dead transitions method in the only experi-
ment where the unoptimized method does not timeout. Notably, the permuter
optimization does not timeout on any of these experiments.
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Realizable 1-Completion. Table 2 presents the results for the realizable 1-
completion use case (return the first solution found and stop) and many-process
synthesis scenario. Our experiments and those of [4] suggest that there is more
time variability for this task depending on the random seed provided to Z3. Thus,
for Table 2 we run the tools for 10 different random seeds and report average
times and number of iterations, rounded up. In one case (last row of Table 2),
for a single seed out of the 10 seeds, the program timed out before finding a
solution. As the true average is unknown in this case, we report it as TO.

Table 2. Many-Process Synthesis, Realizable 1-Completion

Case Study; A unopt. naive opt. perm. opt.

iter. time iter. time iter. time

2PC; {p1, p2} 199 19 157 20 157 17

2PC; {p2, p3} 483 47 429 55 426 46

2PC; {p3, p4} 798 72 696 84 666 69

2PC; {p4, p8} 380 37 319 44 311 34

ABP; {s1, s2} 111 4 110 7 100 4

ABP; {s2, s3} 220 9 205 13 200 9

ABP; {s3, s4} 106 5 102 7 105 5

ABP; {s4, s5} 1669 75 909 73 1202 60

ABP; {s5, s6} 102 5 95 8 102 5

ABP; {s6, s7} 507 28 294 28 294 17

2PC; {p2, p3, p4} 440 48 590 147 561 89

2PC; {p3, p4, p8} 954 94 861 205 796 121

ABP; {s1, s2, s3} 332 12 225 36 240 13

ABP; {s2, s3, s4} 2462 108 904 170 1028 64

ABP; {s3, s4, s5} 2267 102 1040 219 819 52

ABP; {s4, s5, s6} 2735 130 1513 333 1327 92

ABP; {s5, s6, s7} 361 21 264 69 308 22

2PC; {p1, p2, p3, p4} 806 81 495 387 572 220

ABP; {s1, s2, s3, s4} 1957 85 1068 760 890 122

ABP; {s3, s4, s5, s6} 5425 261 1003 860 1601 234

ABP; {s4, s5, s6, s7} 16098 1088 TO TO 4159 1158

Unrealizable 1-Completion. Table 3 presents the results for the unrealizable 1-
completion use case and many-process synthesis scenario. For these experiments,
we artificially modify the ABP Sender by completely removing state s7, which
results in no correct completion existing. A similar change is applied to tx. man.
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in the case of 2PC. Thus, the tools explore the entire search space and ter-
minate without finding a solution. As can be seen, the permuter optimization
significantly prunes the search space and achieves considerable speedups.

Table 3. Many-Process Synthesis, Unrealizable 1-Completion

Case Study; A unopt. naive opt. perm. opt.

iter. time iter. time iter. time

2PC; {p1, p2} 3207 292 1658 206 1655 175

2PC; {p2, p3} 9792 978 4996 646 4982 552

2PC; {p3, p4} 14911 1527 7645 1053 7589 878

2PC; {p4, p8} 5123 494 2537 339 2555 282

ABP; {s1, s2} 1650 58 879 52 853 33

ABP; {s2, s3} 4300 173 2384 171 2374 106

ABP; {s3, s4} 327 13 173 11 164 7

ABP; {s4, s5} 3108 143 1592 130 1710 89

ABP; {s5, s6} 333 16 172 15 168 9

2PC; {p2, p3, p4} 66088 TO 19717 10867 19850 9610

2PC; {p3, p4, p8} 70586 TO 26343 TO 26516 14340

ABP; {s1, s2, s3} 20858 1022 3705 798 3668 253

ABP; {s2, s3, s4} 58974 4021 10516 2673 10496 1052

ABP; {s3, s4, s5} 12323 596 2231 504 2167 146

ABP; {s4, s5, s6} 11210 557 2104 491 1985 136

2PC; {p1, p2, p3, p4} 67659 TO 10365 TO 12308 TO

ABP; {s1, s2, s3, s4} 129264 TO 12096 TO 14739 TO

ABP; {s3, s4, s5, s6} 45056 2869 2466 2392 2004 339

6 Related Work

Synthesis of Distributed Protocols: Distributed system synthesis has been stud-
ied both in the reactive synthesis setting [23] and in the setting of discrete-
event systems [29,30]. More recently, synthesis of distributed protocols has been
studied using completion techniques in [2–4,17]. [2,4] study completion of finite-
state protocols such as ABP but they do not focus on enumeration. [3] considers
infinite-state protocols and focus on synthesis of symbolic expressions (guards
and assignments). None of [2–4] propose any reduction techniques. We propose
reduction modulo isomorphisms.

[17] studies synthesis for a class of parameterized distributed agreement-based
protocols for which verification is efficiently decidable. Another version of the
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paper [16] considers permutations of process indices. These are different from
our permutations over process states.

Synthesis of parameterized distributed systems is also studied in [21] using
the notion of cutoffs, which guarantee that if a property holds for all systems
up to a certain size (the cutoff size) then it also holds for systems of any size.
Cutoffs are different from our isomorphism reductions.

Bounded Synthesis: The bounded synthesis approach [12] limits the search space
of synthesis by setting an upper bound on certain system parameters, and
encodes the resulting problem into a satisfiability problem. Bounded synthesis
is applicable to many application domains, including distributed system syn-
thesis, and has been successfully used to synthesize systems such as distributed
arbiters and dining philosophers [12]. Symmetries have also been exploited in
bounded synthesis. Typically, such symmetries encode similarity of processes
(e.g., all processes having the same state-transition structure, as in the case of
dining philosophers). As such, these symmetries are similar to those exploited
in parameterized systems, and different from our LTS isomorphisms.

Symmetry Reductions in Model-Checking: Symmetries have been exploited in
model-checking [5]. The basic idea is to take a model M and construct a new
model MG which has a much smaller state space. This construction exploits the
fact that many states in M might be functionally equivalent, in the sense of
incoming and outgoing transitions. The key distinction between this work and
ours is that our symmetries are over the space of models rather than the space
of states of a fixed model. This distinction allows us to exploit symmetries for
completion enumeration rather than model-checking.

Symmetry-Breaking Predicates: Symmetry-breaking predicates have been used
to solve SAT [6], SMT [8], and even graph search problems [14], more efficiently.
Our work is related in the sense that we are also trying to prune a search space.
But our approach differs both in the notion of symmetry used (LTS isomorphism)
as well as the application domain (distributed protocols). Moreover, rather than
trying to eliminate all but one member of each equivalence class at the outset, say,
by somehow adding a global (and often prohibitively large) symmetry-breaking
formula Ξ to Φ, we do so on-the-fly for each candidate solution.

Canonical Forms: In program synthesis work [25], a candidate program is only
checked for correctness if it is in some normal form. [25] is not about synthesis
of distributed protocols, and as such the normal forms considered there are
very different from our LTS isomorphisms. In particular, as with symmetry-
breaking, the normal forms used in [25] are global, defined a-priori for the entire
program domain, whereas our generalizations are computed on-the-fly. Moreover,
the approach of [25] may still generate two equivalent programs as candidates
(prior to verification), i.e., it does not satisfy our Property 2.
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Sketching, CEGIS, OGIS, Sciduction: Completion algorithms such as GCG
belong to the same family of techniques as sketching [27], counter-example
guided inductive synthesis (CEGIS) [1,13,26,27], oracle-guided inductive syn-
thesis (OGIS) [18], and sciduction [24].

7 Conclusions

We proposed a novel distributed protocol synthesis approach based on comple-
tion enumeration modulo isomorphisms. Our approach follows the guess-check-
generalize synthesis paradigm, and relies on non-trivial optimizations of the gen-
eralization step that exploit state permutations. These optimizations allow to sig-
nificantly prune the search space of candidate completions, achieving speedups
of factors approximately 2 to 10 and in some cases completing experiments in
minutes instead of hours. To our knowledge, ours is the only work on distributed
protocol enumeration using reductions such as isomorphism.

As future work, we plan to employ this optimized enumeration approach
for the synthesis of distributed protocols that achieve not only correctness, but
also performance objectives. We also plan to address the question where do the
incomplete processes come from? If not provided by the user, such incomplete
processes might be automatically generated from example scenarios as in [2,4], or
might simply be “empty skeletons” of states, without any transitions. We also
plan to extend our approach to infinite-state protocols, as well as application
domains beyond protocols, as Algorithm 2 is generic and thus applicable to a
wide class of synthesis domains.
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Abstract. The problem of automated reactive synthesis has been well
studied by researchers. We consider a setting that is common in practice,
wherein there is a communication delay between the (synthesized) con-
troller and the (controlled) plant, such that symbols emitted by either
component reach the other component after a delay. We address the
problem of synthesizing a controller that can assure the given temporal
property at the remote plant despite delay. We consider two variants
of this setting, one where the delay is a constant over the entire trace,
and the other where the delay could increase over time (upto an upper
bound), and propose approaches for both these settings. We state and
prove soundness and completeness results for both our approaches. We
have implemented our approaches, and evaluated them on the standard
SYNTCOMP 2022 suite of temporal properties. The results provide evi-
dence for the robustness and practicality of our approaches.

1 Introduction

Reactive synthesis is the problem of automatically inferring a correct-by- con-
struction controller, that can control an environment or plant to ensure that all
runs of the plant satisfy a given temporal property. This is a classical problem,
that has been extensively studied over several decades. We cite a selection of
papers [5,6,10,13], and refer the interested reader to a recent book chapter [1]
for a comprehensive view.

The classical controller synthesis setting assumes instant (delay-free) commu-
nication of input and output symbols between the controller and the controlled
plant. However, delay in the flow of information between controller and plant is
common in real life settings, due to issues like distance between the plant and
controller, or network congestion. For instance, this is recognized in the Con-
troller Area Network (CAN) protocol for vehicular control [4,19], and in proto-
cols for the remote control of satellites [2,11]. Researchers often devise carefully
handcrafted solutions to account for delay in individual protocols [15,18], but
this can be complicated and error prone.

The formal methods research community has been aware of this issue, and
has proposed a few techniques that can synthesize controllers while accounting
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for communication delay [3,5,16]. Our work has the same broad objective, and
we address the scenario where we are given a Linear Temporal Logic (LTL)
property as specification. We make the following contributions in this paper:

– Previous researchers have focused on the setting where the delay between the
two sides is fixed and constant throughout the infinite trace (e.g., 2 time units
of delay). For the first time in the literature to the best of our knowledge, we
identify the issue of variable delay that can arise in real systems, formulate
this problem mathematically, and propose an approach to solve it.

– We propose a novel approach that reduces controller synthesis from LTL spec-
ifications in the presence of delay to the problem of LTL synthesis without
delay. We devise techniques (for fixed delay and variable delay) that emit
a delay-adjusted, translated LTL formula. This formula can be fed to any
classical (no-delay) LTL synthesis tool. This makes our approach efficient,
flexible, and capable of leveraging future advances in classical synthesis. Pre-
vious approaches [3,5], in contrast, involved extensions to specific synthesis
approaches. (Additionally, they did not address variable delay.)

– We implement our approach, and evaluate it on a standard set of 1075 bench-
marks. Our results show that our approach is more efficient than a baseline
approach [3] that targets fixed delay, and gives acceptable performance in the
more-complex variable delay setting.

The rest of this paper is organized as follows. Section 2 provides background
that is required in the rest of the paper. Section 3 presents our fixed-delay app-
roach, while Sect. 4 presents our variable-delay approach. Section 5 presents an
add-on feature to our approach – an unrealizability filter. Section 6 presents our
implementation and evaluation, Sect. 7 discusses related work, while Sect. 8 con-
cludes the paper and suggests future work directions.

2 Background

In this section we provide brief background on classical notions of plant, con-
troller, and controller synthesis, in the absence of delay.

We are concerned with synchronous, reactive systems. Such a system consists
of two players, the first player being the controller, while the second player being
the plant (or environment). A trace of the system is an infinite sequence of steps.
The plant observes a subset of signals from a given output set O in each step,
and emits a subset of signals from a given input set I in each step. Each subset
of I is called an input symbol while each subset of O is called an output symbol.

Definition 1 (Controller). A controller is a transducer C = (Q, 2I ,
2O, δ, ω, q0) where Q is the finite set of controller states, q0 is the initial controller
state, 2I is the input alphabet of the transducer, 2O is the output alphabet of the
transducer, δ : Q× 2I → Q is the state transition function, and ω : Q× 2I → 2O

is the output function.
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Definition 2 (Trace generated by a controller). A trace generated by a
controller (Q, 2I , 2O, δ, ω, q0) is a function t : N → 2I∪O, such that:

t[0] ∩ O = ω(q0, t[0] ∩ I),
∀i > 0. t[i] ∩ O = ω(δi(q0, t), t[i] ∩ I),
where δi(q0, t) = q0, if i = 0, and δi(q0, t) = δ(δi−1(q0, t), t[i − 1]), if i > 0

Note, we use t[i] to denote the symbols mapped to i ∈ N by the trace t, which
is intuitively the content of the trace t at step i. Intuitively, the controller, while
in a state q ∈ Q in step i of the current trace t, receives the input symbol t[i]∩ I
emitted by the plant in step i, and responds by emitting the output symbol
t[i]∩ O ≡ ω(q, t[i]∩ I) and by transitioning to the state δ(q, t[i]∩ I) in the same
step.

A linear temporal logic [12] (LTL) formula on symbol set I∪O is syntactically
defined using the following grammar:

Ψ = x | ¬Ψ | Ψ ∧ Ψ | Ψ ∨ Ψ | XΨ | FΨ | GΨ | ΨUΨ , where x ∈ I ∪ O.

Definition 3 (Trace satisfying LTL specification).
If t is a trace, then for any i ≥ 0, the suffix of t starting at step i, denoted

as t(i), is said to satisfy an LTL formula as defined below.

t(i) |=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if x ∈ t[i], x ∈ (I ∪ O)
¬Ψ if t(i) �|= Ψ

ψ ∧ ϕ if t(i) |= ψ and t(i) |= ϕ

ψ ∨ ϕ if t(i) |= ψ or t(i) |= ϕ

XΨ if t(i + 1) |= Ψ

FΨ if ∃k ≥ i. t(k) |= Ψ

GΨ if ∀k ≥ i. t(k) |= Ψ

ψUϕ if ∃k ≥ i. t(k) |= ϕ and ∀n ∈ [i . . . k). t(n) |= ψ

The trace t is said to satisfy a LTL formula Ψ if t(0) |= Ψ .

Definition 4 (Controller meeting a temporal specification). A controller
is said to meet a given temporal specification Ψ (Ψ being an LTL formula) if and
only if every trace generated by the controller satisfies Ψ .

Definition 5 (Realizable specification). A specification Ψ is said to be real-
izable (under no delay) if and only if there exist a controller that meets the
specification.

Figure 1(a) depicts a controller that meets the specification given in the cap-
tion of the figure. The part before the ‘/’ on each transition denotes an input
symbol, the part after the ‘/’ denotes the corresponding output symbol accord-
ing to the ω function, while the target state of the transition denotes the result
of the δ function. A “-” indicates that any symbol is ok. In this example, the set
I = {r} while the set O = {g}. In fact, in illustrations throughout this paper,
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Fig. 1. (a) Controller C1, meeting specification G((r ⇒ X(g∨X(g)))∧ (¬r ⇒ ¬X(g∧
(X(g))))), (b) A trace generated by the controller

we will assume this same input set I and output set O. We use the notation ‘¬x’
in a set to indicate that the signal x is not an element of the set.

Note that if a given plant provides certain guarantees on its behavior, e.g.,
that it will not emit signal r in two consecutive steps, such guarantees can be
encoded in LTL and treated as an assumption. The given specification can be
amended to the form assumption ⇒ specification, and a controller that meets
this amended specification can be constructed.

Automatically synthesizing a controller that meets a given LTL-formula spec-
ification is a theoretically and practically important problem. It is important
because it enables correctness by construction. It is a well-studied problem, and
many interesting approaches have been proposed in the literature [1]. Numerous
practical tools have been developed for this problem [7], and in fact our app-
roach, which we present in the subsequent sections, is designed to be able to use
any of these approaches as a blackbox.

3 Fixed Delay

The setting we address is that of delay between the plant and controller. That is,
the output symbol emitted by either player at a step will potentially reach the
other player at a later step. This effectively means the reactive system evolves
as a pair of traces tc, tp, where tc is the trace observed by the controller and
tp is the trace observed by the plant, rather than as a single trace t that is
commonly visible to both players. This notion of a trace pair has not been
proposed in closely related previous works. In this section and the next, we
consider the setting where delay is fixed in both directions; i.e., there exist a
pair of constants (dcp , dpc), both being non-negative integers, such that each
output symbol (resp. input symbol) from the controller (resp. plant) reaches the
plant (resp. controller) after dcp (resp. dpc) steps. This delay setting has been
considered by previous researchers [3,5] as well. It can be easily seen that in
this setting, it is enough to consider delay in one direction (any one direction).
That is, a controller that meets an LTL-formula specification in the presence of
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Fig. 2. Controller feasible under delay=2

delays (dcp , dpc) will also meet the same specification in the presence of delays
(d, 0) or (0, d), where d = dpc+dcp . Hence, in the remainder of our presentation,
we assume that the delays in the two directions are (0, d), where d is a given
constant.

3.1 Definitions

Definition 6 (Trace pair under delay). A trace pair (tc, tp) under delay d
is a pair of traces tc and tp such that: (1) The first d steps of tc have the special
εi in place of an input symbol, indicating that no input symbol has arrived so far
from the plant. Every other step in both traces has an input symbol and an output
symbol, similar to the no-delay setting, (2) For any step i, tc[i] ∩ O = tp[i] ∩ O,
meaning the symbol emitted by the controller reaches the plant without any delay,
and (3) For any step i, tc[i+ d]∩ I = tp[i]∩ I, meaning input symbols reach the
controller after d steps of delay.

Definition 7 (Trace pair satisfying a specification). A trace pair (tc, tp)
under delay d is said to satisfy a specification if tp satisfies the specification.

Definition 8 (Controller feasible under delay). A controller (see Defi-
nition 1) is said to be feasible under delay d if there is a path of d consecutive
transitions going out from the initial state q0 such that all transitions in this path
are labeled “-” for the input symbol. (Such edges can be traversed upon receiving
any input symbol or even upon εi.)

Definition 9 (Trace pair generated by a controller). A trace pair (tc, tp)
under delay d is said to be generated by a controller C if tc is generated by C
(see Definition 2).

Definition 10 (Controller meeting a specification under delay). A con-
troller is said to meet a given specification Ψ under delay d if and only if each
trace pair (tc, tp) under delay d that is generated by the controller is such that tp
satisfies Ψ .

Definition 11 (Realizable specification under delay). A specification Ψ
is said to be realizable under delay d if and only if there exists a controller that
meets the specification under delay d.
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Fig. 3. A sample trace pair (tc, tp) under delay=2. (tc, tp) satisfies the specification
G((r ⇒ X(g ∨ X(g))) ∧ (¬r ⇒ ¬X(g ∧ (X(g))))).

Figure 2 depicts a controller that is feasible under delay d = 2. This controller
can be seen to meet the specification given in the caption of Fig. 1 under delay
d = 2. The trace pair depicted in Fig. 3 is under delay = 2, and can be seen to be
generated by the controller in Fig. 2. This trace pair satisfies the specification.
The dashed arrows in Fig. 3 indicate of the flow of symbols in both directions.

3.2 Results on Control Under Delay

An specification that is realizable without delay may not be realizable in the
presence of delay. For instance, consider the specification G(r ⇔ g), where r
is an input signal and g is an output signal. A controller that emits g (resp.
∅ ∈ O) in the same step when it sees r (resp. ∅ ∈ I) meets the specification when
there is no delay. However, this specification is not realizable in the presence
of any delay d > 0, as whatever the controller emits in the first step (without
knowledge of the input), the plant could potentially emit a symbol in the first
step to violate the specification. Similarly, a specification that is realizable under
a certain delay may not remain realizable under higher values of delay.

Say a specification is realizable under delay d1 and under delay d2, d1 < d2.
A controller that meets the specification under delay d1 may not necessarily
meet the same specification under delay d2. For instance, the controller in Fig. 1
can meet the specification in the caption of that figure under no delay, but
not under delay = 2 because in the first two steps tc will neither satisfy r nor
¬r. As mentioned earlier, the controller in Fig. 2 meets this specification under
delay = 2.

A controller that meets a specification under delay d2 can be easily shown to
meet the same specification under any d1 such that d1 < d2 (and hence no delay
also). The input symbols emitted by the plant can be held in a buffer and delayed
by an extra d2 − d1 steps, and then any trace pair generated by the controller
will satisfy the specification. In other words, the set of realizable specifications
under (fixed) delay is a strict subset of realizable specifications under no delay.
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3.3 Controller Synthesis

It is natural for a user to specify a temporal formula Ψ that they require all
plant-side traces to satisfy. This is the because the plant is the main component
of interest to the user, and normally one requires all plant-side traces to satisfy
a specification that one requires irrespective of whether there is delay or not,
or what the amount of delay is. We hence address the problem of automatically
synthesizing a controller C that meets a given specification Ψ under a given
amount of delay d.

By the definitions given in Sect. 3.1, if the above-mentioned controller C
generates any trace pair (tc, tp), then tp will satisfy Ψ (as desired by the user).
However, tc may not satisfy Ψ . Our approach is to construct a transformed LTL
formula trf (Ψ), such that any such tc satisfies trf (Ψ). trf (Ψ) is obtained by
replacing every leaf x in the formula Ψ , where x is an element of the input set I,
with Xd(x), where Xd means d (nested) occurrences of the LTL “next” operator
X, and d is the given total delay. We then supply trf (Ψ) to any existing (no-
delay) controller synthesis approach, treating the approach as a blackbox, and
return the controller synthesized by the approach as the desired controller C
that meets Ψ under delay d.

To illustrate our approach, consider our running example specification Ψ =
G(( r ⇒ X(g∨X(g)))∧(¬ r ⇒ ¬X(g∧(X(g))))). The transformed LTL formula
trf (Ψ), with d = 2, is G(( X(X(r)) ⇒ X(g ∨ X(g))) ∧ (¬ X(X(r)) ⇒ ¬X(g ∧
(X(g))))). The to-be transformed leaves and the transformed portions have been
highlighted for clarity. The controller shown in Fig. 2 was obtained using the
synthesis tool Strix [10] by providing trf (Ψ) as input. We already discussed in
Sect. 3.1 that this controller meets the specification Ψ under delay = 2.

As another example, consider the specification Ψ = G(r ⇔ g). The trans-
formed specification in this case with d = 2 is G(X(X(r)) ⇔ g). This formula
is unrealizable in reality (and as per Strix ), and indeed this specification Ψ is
unrealizable under delay = 2 as we had discussed in Sect. 3.2.

3.4 Soundness and Completeness

Lemma 1. For any trace pair (tc, tp) under delay d, for any LTL formula Ψ ,
tp satisfies Ψ iff tc satisfies trf (Ψ).

Intuitively, the above property holds because tc is identical to tp except that
the input symbol in each step of tp has been shifted to the right by d steps in tc,
and that is the exact difference between Ψ and trf (Ψ) as well. We give a proof
for the above lemma in an appendix (the proof is by structural induction on Ψ).
The appendix is available in a long-term repository https://doi.org/10.6084/m9.
figshare.c.6608452 associated with this paper.

Theorem 1 (Soundness). Any controller C synthesized by our approach meets
the given specification Ψ under the given delay d.

https://doi.org/10.6084/m9.figshare.c.6608452
https://doi.org/10.6084/m9.figshare.c.6608452
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Proof: By construction of C, all traces generated by C satisfy trf (Ψ). This
means, for any trace pair (tc, tp) generated by C, tc satisfies trf (Ψ). Therefore,
by Lemma 1, for any trace pair (tc, tp) generated by C, tp satisfies Ψ . �

Theorem 2 (Completeness). Our approach returns a controller whenever the
given specification Ψ is realizable under the given delay d.

Proof: If Ψ is realizable under delay d, it means there exists a controller C ′

that is feasible under delay d and that meets the given property Ψ under delay
d. That is, every trace pair (tc, tp) under delay d that is generated by C ′ is such
that tp satisfies Ψ . It is easy to see that for any trace t′c that C ′ can generate,
there exists a (unique) trace t′p such that (t′c, t

′
p) is a trace pair under delay d.

Therefore, by Lemma 1, it follows that all traces generated by C ′ satisfy trf (Ψ).
This means that the controller synthesis approach that we invoke as a black box
with input specification trf (Ψ) will necessarily this declare this specification to
be realizable, and will necessarily return a controller C (which may or may not
be equal to C ′). �

4 Variable Delay

In this section we consider the more challenging setting of variable delay. Here,
as the trace (pair) evolves over time, the delay from each side to the other can
increase. At each step, the delay can be equal to or greater than the delay in
the previous step, subject to given minimum and maximum delays, dl and du,
applicable in each direction over the entire trace. Variable delay occurs in prac-
tice due to variations in environmental conditions (such as network congestion,
or interference) that cause delays. To our knowledge ours is the first paper to
propose, formulate, and solve the problem of controller synthesis in the presence
of variable delay.

4.1 Definitions

Definition 12 (Trace pair under variable delay). A trace pair under vari-
able delay (dl, du), where dl and du are non-negative integers such that du ≥ dl,
(we drop the word variable in the rest of this section for brevity), is a pair of
traces tc and tp such that:

1. There exist two infinite sequences dcp and dpc corresponding to this trace pair,
each one being a monotonically non-decreasing sequence of integers from the
interval [dl, du].

2. The output symbol emitted by tc at its step 0 will reach tp at its step 0. That
is, intuitively, the plant trace starts when it receives the first output symbol
from the controller. Subsequently, for each i > 0, the output symbol emitted
at the controller’s step i will reach the plant at its step i + dcp [i] − dcp [0]. In
other words, tc[i] ∩ O = tp[i + dcp [i] − dcp [0]] ∩ O, for all i ≥ 0.
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Fig. 4. (a) A sample trace pair (tc, tp) under variable delay (0, 1). (tc, tp) satisfies the
specification G((r ⇒ (g ∨X(g ∨Xg)))∧ (¬r ⇒ ¬(g ∧ (X(g ∧Xg))))). (b) A controller
that meets this specification under variable delay.

3. For any index k such that there exists no i such that i + dcp [i] − dcp [0] is
equal k, tp[k] ∩ O will be empty, and tp[k] will contain the special symbol εo
to indicate that no output symbol was received in this step (due to increase in
delay in the controller to plant direction). We assume that the communication
channel between the plant and controller is enhanced in a way that it assures
this behavior.

4. The input symbol emitted by tp at its ith step, for any i ≥ 0, reaches the plant
in its step corr(i), where corr(i) is equal to i+dcp [0]+dpc [i]. In other words,
tp[i] ∩ I = tc[corr(i)] ∩ I, for all i ≥ 0. (dcp [0] gets added to account for the
delayed start of tp relative to tc, as discussed in the previous point.)

5. Analogous to εo, the controller receives a special symbol εi in any step in which
it receives no input symbol from the plant due to increase in delay in the plant
to controller direction.

Intuitively, dcp [i] indicates the delay (in number of steps) from controller to plant
for the symbol emitted by the controller in its ith step. dpc has an analogous
meaning, but from the plant to the controller. Note, the transition from a lower
delay to a higher delay can happen anywhere in the (infinite) trace, or need not
happen at all, and a bounded number of delay transitions can occur in each
direction (at most du − dl, to be particular).

Figure 4(a) depicts a sample trace pair under delay (0, 1). Here, dcp [0] and
dcp [1] are zero, while the remaining entries in the dcp sequence are one. dpc [0]
to dpc [3] are zero, while dpc [4] onward are one. Notice the presence of εo and εi
at the delay transition points. The dashed arrows indicate the flow of symbols
visually.

We update the definition of a trace satisfying an LTL formula (see Defini-
tion 3), to say that if trace tc (resp. tp) has εi (resp. εo) in index tc[i] (resp. tp[i]),
then it is interpreted as tc[i] (resp. tp[i]) not satisfying x (and satisfying ¬x) for
any x ∈ I (resp. x ∈ O).
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The analogues of Definition 7 and Definitions 9–11 apply in the variable
delay setting as well, simply by substituting each occurrence of the wording
“under delay d” with “under delay (dl, du)”. Since εi’s can arrive at any point in
the controller-side trace tc (and not necessarily in the beginning), and since εi is
interpreted as all input signals being off, any controller (see Definition 1) is also
a feasible controller under variable delay.

Figure 4(b) depicts a controller that meets the specification shown in the
caption of the figure. Part (a) in the figure depicts one of the trace pairs generated
by this controller. Note that in tc[4], the controller interprets εi as ¬g and hence
emits ¬g.

4.2 Results on Control Under Variable Delay

A temporal property Ψ that is realizable under fixed delay d = du + du is not
necessarily realizable under variable delay (dl, du). In other words, the set of
realizable specifications under variable delay is a strict subset of realizable speci-
fications under fixed delay. As an example, consider the specification G(g), where
g is an output element. This specification is met by the controller that emits g
continuously, both under no delay and any amount of fixed delay. However, this
specification is not realizable under variable delay for any delay bound, because
tp can receive up to du εo’s, and the steps where it receives εo’s do not satisfy g.

Any controller C that meets any specification Ψ under variable delay (dl, du)
also necessarily meets the same specification under fixed delay du + du. This is
because any fixed-delay trace pair under delay du + du is also a trace pair under
variable delay, with all elements of dpc and dcp being equal to du.

4.3 Controller Synthesis

As in the fixed delay setting, we propose a LTL formula translation scheme trv.
The approach then is to use any (no-delay) synthesis approach as a blackbox to
synthesize a controller that realizes the property trv(Ψ), where Ψ is the given
LTL formula.

A Naive Proposal. A naive proposal would be to model the translation similar
to our fixed delay approach, and basically replace every leaf x ∈ I in Ψ with the
disjunction X2dlx ∨ X2dl+1x ∨ . . . ∨ X2dux (in place of Xdx in the fixed delay
setting). The intuitive reason for this proposal is that if (tc, tp) are a trace pair
under delay (dl, du), and if x and y are the input and output symbols at a plant
step tp[i], and if y was earlier emitted by the controller at step tc[k], then x
would be received by the controller in the range of steps tc[k+2dl] to tc[k+2du]
due to the properties of trace pairs under delay. Therefore, since we would like
tp to satisfy Ψ and tc to satisfy trv(Ψ), input symbol leaves in Ψ would need
to be moved forward by 2dl to 2du steps, and this is implemented using the
transformation proposed above.
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However, the proposal above is not sound. Consider the LTL specification
G(g). Its translation would be G(g) itself (as it does not refer to the input symbol
r). Now, G(g) is realizable under no-delay, but the controller that results from
synthesis, which emits g continuously, does not meet the specification in the
presence of variable delay as the steps of tp that receive εo do not satisfy g. This
motivates the need for a more sophisticated transformation scheme.

Our Proposed Scheme. In order to solve the issue above, we introduce a
set of reflected elements R = {o′ | o ∈ O} ∪ {ε′

o}. We also demand a (further)
enhancement to the communication medium such that if the plant emits x ∈ 2I

to the controller at any step tp[i], then the communication medium actually
sends out x ∪ {y′ | y is in O or y is εo, y ∈ tp[i]} to the controller at this step.
For instance, in Fig. 4, {r, g′} would be sent out at tp[0] and would reach the
controller at tc[0], with g′ being reflected back because g was received in tp[0].
Similarly, ε′

o would be reflected back from tp[2], and therefore {r, ε′
o} would reach

the controller at tc[2]. Only εi would reach tc[4], with no input or reflected
elements reaching. And tp[4] would not reflect g′ as g was not received in this
step. Intuitively, reflected elements give information to the controller on when
its (previously emitted) output symbols reached the plant.

trgv(Ψ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, if Ψ = x and x ∈ I

y′, if Ψ = y and y ∈ O

¬trgv(Ψ1), if Ψ = ¬Ψ1

trgv(Ψ1) ∧ trgv(Ψ2), if Ψ = Ψ1 ∧ Ψ2

trgv(Ψ1) ∨ trgv(Ψ2), if Ψ = Ψ1 ∨ Ψ2

X
(
εi U (¬εi ∧ trgv(Ψ1))

)
, if Ψ = XΨ1

F
(¬εi ∧ trgv(Ψ1)

)
, if Ψ = FΨ1

G
(
εi U (¬εi ∧ trgv(Ψ1))

)
, if Ψ = GΨ1

(εi U (¬εi ∧ trgv(Ψ1)))U (εi U (¬εi ∧ trgv(Ψ2))), if Ψ = Ψ1 U Ψ2

The translation function trgv defined above forms the core of our translation
scheme. We now illustrate it with a couple of examples. For now, treat trv(Ψ) as
being equal to εi U (¬εi∧trgv(Ψ)). trv(G(g)) yields εi U (¬εi∧(G(εi U (¬εi ∧ g′)))).
The intuition behind the translation is that if g is to occur in all steps of tp,
then the reflected g′ must occur infinitely often in tc (once corresponding to
each step in tp), and any steps of tc that do not have g′ must have received
nothing (i.e., εi) from the plant. The other cases in the definition above follow
the same intuition. Note, during controller synthesis from the translated formula,
the reflected elements as well as ε′

o (in addition to the elements in I) must be
treated as input elements, as they come from the plant to the controller.

A formula such as F (g) is realizable under variable delay. A controller that
continually emits g meets this specification under variable delay (for any (dl, du)).
However, trv(F (g)) = εi U (¬εi∧(F (¬εi ∧ g′))) is not realizable and will not yield
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a controller when fed to a blackbox synthesis tool, as g′ is technically an input
symbol and hence appears to be entirely in the hands of the (adversial) plant.
What is missing in the translation trgv is an assertion that the controller can at
any time force a g′ to appear later in its input by emitting a g at this time. We
therefore define trv(Ψ) to be equal to Ψas ⇒ εi U (¬εi ∧ (trgv(Ψ))), where:

Ψas =
∧

y∈O

G

⎛

⎝y ⇒
∨

i∈[2dl,2du]

Xiy′

⎞

⎠ ∧
∧

x∈I∪R

G (x ⇒ ¬εi) ∧
∧

y∈O

(GF (y′) ⇒ GF (y)) ∧
∧

y∈O

(GF (¬y′) ⇒ GF (¬y)) ∧ FG(¬εi)

We call Ψas a trace pair characterization, which is a formula that specifies
properties of any trace tc such that there exists a tp such that (tc, tp) is a trace
pair. The first conjunct in the definition above captures the assertion that we had
mentioned above, while the remaining four conjuncts capture other properties
of trace pairs under delay when reflection is employed. Coming back to the
example, it is easy to see that Ψas ⇒ εi U (¬εi ∧ (F (¬εi ∧ g′))) is realizable, and
is met by the controller that continually emits g. Intuitively, the last conjunct in
the definition of Ψas assures that at some point εi’s will stop appearing (reason:
there can be atmost du occurrences of εi’s in a trace), while the first conjunct
assures that after εi’s stop appearing each g emitted by the controller will cause
g′ to appear in a subsequent step.

4.4 Properties of Our Approach

Lemma 2. For any trace pair (tc, tp) under variable delay (dl, du), for any
LTL formula Ψ , and for any index i, tp(i) satisfies Ψ iff tc(corr(i)) satisfies
trgv(Ψ), where corr(i) equals the expression i+ dcp [0]+ dpc [i]. (Proof provided in
appendix.)

Theorem 3 (Soundness). Any controller C synthesized by our approach
meets the given specification Ψ under the given delay (dl, du).

Proof: Consider any trace pair (tc, tp) under delay (dl, du) generated by C.
C was constructed to realize the formula Ψas ⇒ εi U (¬εi ∧ (trgv(Ψ))). It can be
seen that by definition of Ψas , since (tc, tp) is a trace pair under delay (dl, du), tc
must satisfy Ψas . Since tc was generated by C, it then follows that tc also satisfies
εi U (¬εi ∧ (trgv(Ψ))). From this, and by the properties possessed by trace pairs
under delay, it follows that tc(corr(0)) satisfies trgv(Ψ). Therefore, by Lemma 2,
tp(0) (i.e., tp) satisfies Ψ . �

Unlike, in the fixed delay setting, our approach as presented above does
not offer a completeness guarantee. That is, a specification that is realiz-
able under delay may be declared as unrealizable. For example, consider the
property Ψ = G(¬g). This specification is in reality met by the controller
that continually emits ¬g. However, the translated formula trv(Ψ) = Ψas ⇒
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εi U (¬εi ∧ (G(εi U (¬εi ∧ (¬g′))))) will be declared as unrealizable when it is
fed to any no-delay controller synthesis tool. Intuitively, the reason is that Ψas

should ideally also assert that for any i, i+ 1, the steps of tc between tc[corr(i)]
and tc[corr(i + 1)] contain only εi’s, but it does not.

To summarize, the Ψas we have defined is a sound trace pair characterization,
but not a complete one. A trace pair characterization is sound if for any trace
pair (tc, tp) under delay (dl, du), tc is guaranteed to satisfy the characterization.
This soundness was invoked in the proof of Theorem 3 above. A trace pair
characterization can be called complete, if, for any trace tc that satisfies the
characterization, there exists a trace tp such that (tc, tp) is trace pair under delay
(dl, du). Our approach is basically parametric on the trace pair characterization
used, and our approach will be sound (resp. complete) if the characterization
is sound (resp. complete). It may be possible to devise a complete trace pair
characterization, but it is likely to lead to high synthesis complexity.

5 Unrealizability Filter

A lot practical properties tend to be unrealizable under delay, and the black-
box synthesis approach may expend a lot of time to detect unrealizability of
the transformed formula in such cases. We therefore propose a novel, efficient,
syntax-based heuristic that detects if a given formula is unrealizable under delay.
The heuristic is sound, in that it never mis-classifies a realizable property as unre-
alizable. The heuristic is not guaranteed to detect all unrealizable properties, so
whenever it does not give a classification, the synthesis blackbox will need to be
invoked.

We first introduce a pre-requisite function IOIS that is used by the filters. For
the given property Ψ , IOIS(Ψ) returns a logical formula in conjunctive normal
form. Any atomic fact in the formula is of the form (x, l), where x is an input
literal or an output literal. Input literals are input elements or their negations
(e.g., r, ¬r), while output literals are output elements or their negations (e.g.,
g, ¬g). l is in general a finite set of closed intervals in the non-negative integers
domain. Due to space limitations, we provide the full definition of IOIS in the
appendix. For illustration, if Ψ ≡ G((r ⇒ Xg) ∧ (¬r ⇒ X¬g)), then IOIS(Ψ)
happens to yield the following formula, which is a conjunction of two conjuncts:(
(¬r, [0, 0])∨ (g, [1, 1])

) ∧ (
(r, [0, 0])∨ (¬g, [1, 1])

)
. The intuition is that any plant

side trace tp can satisfy Ψ only if it satisfies IOIS(Ψ). An atomic fact (x, l) is
satisfied by a trace tp iff for some index i ∈ l, tp[i] satisfies x.

Two literals are said to be contradictory if one is a negation of the other. For
e.g., ¬r and r. For a given non-negative integer d, a conjunct Ci is said to be
d-bounded if it contains exactly one atomic fact with an output literal, contains
at least one atomic fact with an input literal, and max(W )−min(V ) < d, where
W is the interval-set associated with the output literal in the conjunct, and V is
the union of the interval sets associated with all input intervals in the conjunct.
A conjunct is said to be a tautology if it contains two contradictory input literals,
and the interval-sets associated with these two input literals are overlapping.
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We now define the fixed-delay filter for a given total delay d as follows:
It classifies the given Ψ as unrealizable if IOIS(Ψ) contains two conjuncts Ci

and Cj such that (a) both conjuncts contain exactly one output literal each,
(b) these two output literals are contradictory, (c) the interval sets associated
with both these output literals are the same, and each of these interval sets is a
unit-interval (i.e., of total width 1), (d) Ci or Cj (or both) are d-bounded, and
(e) neither conjunct is a tautology.

The intuition is that a d-bounded conjunct contains input literals and an
output literal close enough that the controller cannot use the input symbols in
tc to decide whether to emit the output literal or its negation in order to satisfy
the conjunct. Therefore, if two conjuncts have opposite output literals required
at the same step in the trace, whichever conjunct the controller tries to satisfy,
the other conjunct can be falsified by the adversarial plant.

The example provided earlier in this section indeed gets classified as unreal-
izable by our filter when d = 2. Intuitively, the property is unrealizable because
the controller has to send a g or a ¬g before it comes to know whether the step
in tp that precedes the step where this g or ¬g will be received emitted r or ¬r.

We now define two variable-delay filters. The first filter for the variable-
delay setting simply invokes the fixed-delay filter defined above with d = du+du
(see Sect. 4.2 for the justification). The second filter classifies the given Ψ as
unrealizable if IOIS(Ψ) contains a conjunct C such that (a) all output literals
in the conjunct are positive (i.e., not of the form ‘¬g’), (b) the total number of
positions in the union of the interval sets corresponding to the output literals
in the conjunct (i.e., not counting more than once the positions that occur in
multiple interval-sets) is less than or equal to du − dl, and (c) the conjunct is
not a tautology. The intuition is that such a conjunct becomes falsified if du −dl
εi’s happen to occur in all positions in the above-mentioned union.

6 Empirical Evaluation

We have implemented both our fixed delay and variable delay approaches. Our
approaches accept LTL specifications in the standard TLSF format. We use
Syfco [9] as a front-end to parse TLSF, and implement our formula translation
using Haskell (as that is Syfco’s supported language). Our filter implementa-
tions are also Syfco and Haskell based. We selected Strix [10] as the blackbox
tool to perform synthesis using our translated formulas. Strix was in Number 1
position among all competing synthesis tools in SYNTCOMP 2022 synthesis
competition [7,8]. SYNTCOMP is a pre-eminent annual contest for (no-delay)
synthesis tools. For our evaluations, we selected all 1075 TLSF benchmarks (i.e.,
LTL specifications) used in the SYNTCOMP 2022 contest.

We are not aware of any other tool that performs delay synthesis from given
LTL specifications. Therefore, to serve as a baseline, we obtained a recently
released tool by Chen et al. [3], from the web site mentioned in their paper.
This tool addresses strategy inference from safety games under fixed-delay. Since
they do not accept LTL as input directly, and only accept a game graph with a
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Table 1. Summary of results

Run # Realizable # Unrealizable # timeouts # Strix errors Time (s)

No delay 500 388 187 145404

FD d = 4 248 463 + 124 = 587 238 2 192952

FD d = 10 206 463 + 40 = 503 364 2 278480

VD (1,2) 39 542 + 25 = 567 82 387 107850

VD (1,5) 37 697 + 3 = 700 66 272 77190

Chen d = 4 90 170 618 197 460890

safety winning condition, we need to first translate LTL specifications to safety
game graphs. We do this using the “k-bounded safety approximation” feature
provided in Owl [14], which is a widely used library for analysis of automata and
LTL specifications. The bound specifies the maximum number of visits to final
states tolerated during safety game translation (as any finite number of visits is
winning). For any LTL property, there exists a (potentially exponentially high)
value of k at which the translation is guaranteed sound. To keep the translation
time tractable, we have specified an upper limit of k = 10. Therefore, Owl will
stop at this value of 10, or at a value less than 10 if it finds a sound safety
game for this lower value. In cases where Owl stops at value 10, the safety game
graph Owl returns may not be sound. However, we enforce the limit of k = 10 so
that Owl will finish within practical time limits. Empirically we observe a loss
of soundness in some cases (details of which we will provide later). The running
times comparison is hence the more interesting takeaway from this baseline study.

6.1 Our Results

Table 1 summarizes the results from our runs. Each row represents a run
of a tool or approach on all 1075 benchmarks. To keep the total time of the
runs tractable, and also to facilitate uniform comparisons, we use a timeout of
720 s per benchmark in each run. The columns indicate the name of the run,
number of benchmarks found realizable, number of benchmarks found unrealiz-
able, number of benchmarks on which analysis was stopped due to the timeout
being hit, number of benchmarks on which the corresponding tool encountered
errors/exceptions during processing, and finally the total wall clock time of the
run (on all 1075 benchmarks). All our runs were done on a server with an Intel
Xeon W-2295 processor and 256 GB of RAM. Our tool, and certain artifacts from
our runs, are available in our repository https://doi.org/10.6084/m9.figshare.c.
6608452.

The ‘No delay’ run is a baseline, and represents a run of Strix directly on
the given benchmarks, without any delay translation. 187 benchmarks hit the
timeout, while the rest were declared realizable (500 of them) or unrealizable
(388 of them). The average time to process a single benchmark is 136 s.

https://doi.org/10.6084/m9.figshare.c.6608452
https://doi.org/10.6084/m9.figshare.c.6608452
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Fixed Delay. We now discuss the next two rows, which depict information about
runs of our fixed-delay approach, with delay d = 4 and d = 10, respectively. For
each benchmark, out of the 720 s allotted, we use the first 20 s to run two separate
filters sequentially. The first filter is our filter, described in Sect. 5. The second
is a run of Strix on the untranslated formula, to see if declares unrealizability.
Recall that as per the discussion in Sect. 3.2, if a specification is unrealizable
with no-delay, it must be unrealizable with delay. Our run script kills each filter
after 10 s, and proceeds to run Strix on the translated formula of the benchmark
(with a budget of 700 s) if neither filter declares unrealizability.

The ‘# Realizable’ column indicates that 248 benchmarks (out of a maximum
possible 500) were found realizable with delay d = 4, while 206 were found
realizable when the delay is increased to d = 10. This is consistent with our
theoretical claims of higher-delay realizability implying lower-delay realizability
and delay realizability implying no-delay realizable. Note that what used to be
a realizable or unrealizable benchmark under no-delay could have migrated to
the timeouts category in the fixed-delay runs.

The ‘# Unrealizable’ column shows the break up of the number of bench-
marks found unrealizable by the filters (the number before the “+”) and the
number of benchmarks not removed by the filters but subsequently found to be
unrealizable by Strix when applied on the translated formula. It is notable that
the filters are very effective, and identify 463 benchmarks are unrealizable (under
both delay values). This is a major reason why the fixed-delay total wall-clocks
times are not very high. It only 33% higher than the no-delay wall-clock time at
d = 4, and 91% higher at the very high delay value of d = 10. It is notable that
since our fixed-delay approach is sound and complete, any benchmark that is
declared as realizable (resp. unrealizable) will necessarily belong to the declared
category. It is also notable that with d = 4, the number of timeout runs we
encounter is only a little more than with the no-delay run despite the complex-
ity of having to account for delay. We are very encouraged by this result about
the efficiency of our approach.

Variable Delay. In the variable-delay runs, we employ a total of four filters
sequentially, with a time budget of 10 s for each filter (per benchmark). The first
two filters were presented at the end of Sect. 5. The next two filters are (a) a
run of Strix on the original untranslated formula Ψ , and (b) a run of Strix on Ψ
after it is translated as per the fixed-delay translation, with d = du + du. The
reasoning behind these two applications of Strix as filters is provided in Sect. 4.2.
If none of the four filters detects a benchmark as unrealizable, then we proceed
to run Strix on the (variable-delay) translated formula, with a budget of 680 s.

The next two rows in Table 1 depict information about runs of our variable-
delay approach, with delay (1, 2) and (1, 5) respectively. Recall that if a specifi-
cation is realizable under variable delay (1, 2) (resp. (1, 5)), it must be realizable
under fixed-delay with d = 4 (resp. d = 10). The data indicates that a sub-
stantially smaller number of benchmarks were found to be realizable. Part of
the reason for this is that realizability indeed is less likely to hold with variable
delay than with fixed delay, based on manual analysis of real specifications. But
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the other reason is the substantial numbers of benchmarks on which Strix threw
exceptions when applied to the translated properties (even though they were
syntactically valid). Many of these exceptions contained a message such as “Too
many elements to create power set: 65 > 30”. We suspect that many of these
translated formulas may be too large for Strix. We have some future work ideas
to try to mitigate this effect, which we discuss at the end of the paper.

In the variable delay runs, the benchmarks found unrealizable by the filters
are guaranteed to be unrealizable. However, due to the incompleteness of our
trace pair characterization Ψas , some of the benchmarks that were declared unre-
alizable by Strix (25 in the (1, 2) run and 3 in the (1, 5) run) could potentially be
realizable. Despite the prevalence of Strix errors, we are encouraged that on 56%
to 69% of benchmarks, i.e., 567 + 39 with delay (1, 2) and 700 + 37 with delay
(1, 5), our approach gives definitive results. In all cases, our formula translation
is very fast (less than 1 s per benchmark).

Sample Properties. To give a taste for what kind of properties become unrealiz-
able under different settings, we manually extract core unrealizable portions from
real properties and present them here. Properties (FG(¬r0)) ⇔ (GF (g)) and
G(r0 ⇔ (Xr1)) are unrealizable even without delay. The property G(r ⇔ (Xg))
is realizable without delay but not realizable under fixed delay d = 2. The spec-
ification (G((r0) → (((r1) ↔ (X(g1))) U (g0)))) is realizable under fixed-delay
d = 2 but unrealizable under variable delay (1, 2). The design of our unrealiz-
ability filter gives a more principled feel for causes of unrealizability (applicable
in many, not all, benchmarks).

6.2 Comparison with Chen et al.’s Tool

The last row in Table 1 depicts information about our run of Chen et al.’s syn-
thesis tool. This row is to be compared with the “FD d = 4” row which is about
our corresponding approach. From the last row, it is seen that 618 benchmarks
faced a timeout. Among these, 524 faced the 720 s timeout during the LTL to
safety game translation within Owl itself, while the remaining 94 faced a time-
out within the synthesis tool. To ensure the uniform total 720 s budget, the time
budget we gave to the synthesis tool was 720 s minus the time taken during the
LTL to safety game translation. The 197 error cases were all encountered within
their synthesis tool.

Of the 90 benchmarks declared realizable, 17 were found unrealizable by our
tool. Additionally, 40 of the declared unrealizable specifications were declared
realizable by our tool. Since our fixed-delay tool is provably sound and complete,
and because their synthesis tool is also presumably correct, we suspect these mis-
classifications occur due to potential unsoundness in the initial LTL to safety
game translation, as discussed at the beginning of this section.

We cannot conclude about the efficiency of Chen et al.’s tool per-se from this
comparison. However, LTL to safety game conversion is inherently an expensive
operation. Whereas, LTL synthesis tools like Strix are heavily optimized using
heuristics. The takeaway is that when one’s input is an LTL specification, it is
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useful to have a way to synthesize directly than to have to go via a determinized
safety game construction.

7 Related Work

There is a rich literature in the classical LTL synthesis space, where the prob-
lem is to synthesize a controller from an LTL specification, with the controller
and plant communicating via input/output symbols, in the absence of delay.
Pnueli et al. [13] propose a seminal solution for this problem, based on deter-
minization of Buc̈hi automata. This approach has been extended with numerous
practical optimizations, and is in fact used in the tool Strix that we have used in
our evaluations. The time complexity of classical synthesis is in general double
exponential in the size of the LTL specification.

An early work that investigated controller synthesis in the presence of delay
was by Tripakis et al. [16]. They address the problem of supervisory control,
and not input/output symbol based control, which is our setting. In supervisory
control, the controller can block the plant from taking a transition by observing
the event associated with the proposed transition. They address a restricted class
of specifications of the form that every event a must eventually be followed by
an event b. They allow multiple controllers to simultaneously control the plant;
each controller can observe a subset of events without any delay, and observes
the events corresponding to the other controllers’ subsets with delay. There is
no empirical evaluation reported in this paper.

Finkbeiner et al. [5] studied various extended versions of the controller syn-
thesis for symbol-based control. Their approach is to construct an alternating
parity automaton from the given LTL specification, which accepts (infinite) run
trees that represent winning strategies for the controller. The authors describe
how the automaton can be transformed to handle distributed systems, where
there are multiple controllers, and environments where there is (fixed) delay.
There is no empirical evaluation in this paper. The practical tool Bosy [6] that
was introduced subsequently is based on this approach, and uses a SAT-solver
formulation to try to find a controller within a given size bound k whose unfold-
ings are accepted run trees. This tool does not appear to support delay.

Winter et al. [17] recently investigated a problem that they call delay games.
Their notion of delay is not similar to ours, and does not model communication
delay between plant and controller. Rather, the controller is allowed to skip
playing in its turns, while the plant keeps playing and emitting input symbols.
Effectively the controller gains a lookahead into the plant’s behavior before it
chooses to play, and hence this broadens the class of realizable specifications
beyond what is realizable under no-delay.

The closest related work to ours is by Chen et al. [3]. We have partially
described their work already in Sect. 6. They address fixed delay only, that too
on a given 2-player game graph with a safety winning condition. They first
present a naive proposal that reduces the strategy inference problem to delay-
free games by exploding the game graph by pairing each game graph state with
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a queue configuration. As this is expensive, they subsequently present an opti-
mized strategy that increases the queue lengths iteratively, pruning uncontrol-
lable states along the way, until the queue lengths reach the given delay d. They
do not explicitly address LTL specifications. LTL specifications would first need
to be determinized to obtain a game graph, and this incurs exponential cost.

8 Conclusions and Future Work

In conclusion, to the best of our knowledge, our work is the first one to identify
and address the problem of variable delay. We also investigate how variable delay
relates theoretically to fixed delay. Ours is also the first approach to solve delay
synthesis using LTL formula translation. The advantages of this approach are
its relative simplicity, flexibility in terms of being able to automatically leverage
efficiency improvements to classical (no-delay) synthesis approaches that may
emerge in the future, and substantial empirically observed performance gain
compared to a closely related and recent baseline approach [3].

In future work we plan to investigate if our variable delay translation can be
made more efficient, and can possibly be made complete. Both of these would
need (differing) changes to the trace pair characterization Ψas . We would like
to try blackbox synthesis tools other than Strix within our implementation.
Conceptually, we would like to extend our approach to distributed control, where
there are multiple controllers, with differing delays to the plant.
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Abstract. Correctness of controller implementations rely on real-time
guarantees that all control tasks finish execution by their prescribed
deadlines. However, with increased complexity and heterogeneity in hard-
ware, the worst-case execution time estimates are becoming very conser-
vative. Thus, for efficient usage of hardware resources, some control tasks
might have to miss their deadlines. Recent work has shown that a sys-
tem can still abide by its safety requirements even after missing some of
its deadlines. This paper investigates an approach to synthesize a sched-
uler for control tasks that miss some deadlines without compromising
its safety requirements. But given that the number of possible schedules
increase combinatorially with the number of tasks involved, our sched-
uler synthesis uses an efficient automata representation to search for the
appropriate schedule. We incorporate statistical verification techniques
to construct this automaton and accelerate the search process. Statistical
verification is advantageous compared to deterministic verification in the
synthesis process in two ways: first, it enables us to synthesize schedules
that would not be possible otherwise, and second, it drastically reduces
the time taken to synthesize such a schedule. We demonstrate both these
advantages through a case study with five controllers having different
safety specifications, but sharing the same computational resource.

1 Introduction

Modern-day cars (and other autonomous systems) have several millions of lines
of code deployed on various electronic control units (ECUs). Each ECU imple-
ments multiple feedback control software tasks managing important functions
such as engine control, brake control, suspension and vibration control. The typ-
ical workflow for implementing these control tasks in software is a two-step pro-
cess. In the first step, a control designer would design the feedback function using
principles of control design. In the second step, the embedded systems engineer
would schedule the control tasks such that each task would meet its prescribed
deadline. This separation of concerns allows for communication between control
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designers and software engineers through task deadlines and allows for parallel
development of software architecture and feedback control mechanisms.

However, the rapid increase in the volume of software being deployed in
autonomous systems to enable additional autonomous features poses a chal-
lenge to this design flow. First, due to increased complexity in hardware, safe
estimates of Worst-Case Execution Time (WCET) are overly conservative, and
thus, applying traditional design flow with the estimated WCET would result
in considerable waste of computational resources. Second, scheduling multiple
tasks on a shared computational resource with optimistic estimates of WCET
would risk missing task deadlines arbitrarily and the system not satisfying its
performance requirements. As a result, it is challenging to (a) ensure that none
of the control tasks miss their deadlines, and (b) synthesize a scheduler that
tolerates these deadline misses while satisfying performance requirements. Fur-
ther, automotive in-vehicle architectures are moving away from one function per
ECU or “federated”, to multiple functions sharing resources, or “integrated”
architectures. The clear trend is that future architectures will be less static than
before, as indicated by developments like AUTOSTAR Adaptive and service-
oriented paradigms [3,9]. Thus, it is necessary to rethink the design flows for
autonomous systems with new software and hardware architectures.

Schedule Synthesis Problem: Consider the setting where a shared compu-
tational resource is used to implement multiple controller tasks, but it is not
powerful enough to ensure that all tasks meet their deadlines all the time. i.e.,
the utilization of the tasks on this resource is greater than 1. Instead of hav-
ing to reduce the number of controller tasks or use more powerful and therefore
expensive hardware, this paper proposes a new correct-by-construction approach
for synthesizing control implementations. Our primary observation is that the
safety and performance specification can be satisfied even when some of the con-
trol jobs miss their deadlines. This is because the feedback control mechanisms
are often robust to delays in sensing and actuation. In particular, with some
delays, the dynamics of the closed-loop system deviates only slightly from the
dynamics when no tasks miss their deadlines. The question is: which deadline
misses cause acceptable deviation in the system dynamics, and can we synthesize
task schedules that exploit such deadline miss patterns? We leverage this obser-
vation for synthesizing the task scheduler that (a) incorporates deadline miss
patterns of control tasks—specified as weakly hard constraints [15,16,32], and
(b) the control performance, specified as deviation in system dynamics from the
dynamics under ideal timing behavior, when control tasks are scheduled with
these weakly hard constraints. The proposed approach thus has two steps. The
first step involves checking whether a set of weakly hard timing constraints sat-
isfy a control performance specification, viz., a maximum deviation in dynamics
from the system dynamics with no task deadline misses. The second step col-
lects such weakly hard constraints for all the control tasks to be implemented
and synthesizes a scheduler that is compatible with the weakly hard constraints
of all the tasks. This workflow is illustrated in Fig. 1, where for each control task,
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Fig. 1. Overview of the proposed method.

we first synthesize a collection of weakly hard constraints, and then a scheduler
for the task set is synthesized from these constraints.

Contributions: One of the important contributions of this paper is the use
of statistical model checking. In the literature, various deterministic techniques
have been proposed for ensuring that a controller implementation is compati-
ble with the scheduling of the underlying control tasks [8,17,19,36,42]. These
techniques either employ bounded model checking techniques, abstract inter-
pretation, or software model checking techniques. However, due to the non-
deterministic nature of the weakly hard constraints, deterministic techniques are
often overly conservative and suffer from scalability issues [18,39]. As a result,
the landscape of compatibility between feedback control design and schedul-
ing with weakly hard real-time constraints is poorly explored. To overcome this
challenge, we use statistical model checking approaches for exploring the com-
patibility between a given weakly hard constraint and the safety specification of
the controller. That is, instead of ensuring that a weakly hard constraint always
satisfies the performance specification, we check whether the constraint satis-
fies the specification with high probability. This begs the question: how can we
provide deterministic performance guarantees when the compatibility is checked
using statistical guarantees? We provide deterministic guarantees by checking
if the final schedule (that is deterministic) satisfies all the performance require-
ments of the individual controllers—a sanity check. If the final schedule does not
satisfy all the performance requirements, the schedule synthesizer would search
the space of other compatible weakly hard constraints and continue the search
process.

Using a statistical approach for listing all the compatible weakly hard con-
straints for a given controller and synthesizing the scheduler using a sanity check
has several advantages. First, statistical model checking approaches are highly
scalable as they only require opaque-box access to the plant and its corresponding
feedback controller. Second, statistical model checking techniques are less con-
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servative as the guarantees are based on the behaviors of the controller that are
sampled during the verification process. Finally, the scheduler synthesized using
statistical model checking is provably at least as good as the schedule synthesized
using traditional model checking approaches. We demonstrate the advantages of
our method to synthesize a schedule for various control tasks sharing the same
computational platform. To the best of the authors’ knowledge, this is the first
approach that leverages a statistical model checking approach for synthesizing a
deterministic scheduler.

1.1 Related Work

A number of papers have studied the characterization of deadline misses in real-
time settings. Notably, the work in [1] proposes a systematic method for char-
acterizing deadline hit/miss patterns. These so-called weakly hard constraints
have been studied in a number of settings, including schedulability analysis,
formal verification, and runtime monitoring, with [4,19,30] being some recent
examples. A significant body of recent research exists on checking control safety
properties, such as stability, under deadline misses [23,30,31]. These studies are
related to the general problem of ensuring control performance when software
tasks implementing feedback controllers experience timing uncertainties. Tech-
niques for isolating different tasks have been investigated in [25]. Joint scheduler
and control strategy design – to satisfy stability and other performance con-
straints – have been proposed [6,7,14]. On the other hand, timing analysis of
control software has also been studied [20,21] to provide tighter timing estimates
by exploiting the structure of the programs [5]. There has also been considerable
work on testing [37] and verification [22,24] of control software to ensure that
mathematical models of controllers are preserved in a software implementation
that is subjected to artifacts like delays, bounded precision arithmetic, and side
effects introduced by a compiler.

In particular, this work has been inspired by a number of recent works [12,17]
that relate quantitative safety properties—such as the maximum deviation of a
system’s trajectory from an ideal trajectory—with the maximum number of
consecutive deadline misses. These works use deterministic reachable set-based
methods, or rely on Statistical Hypothesis Testing (SHT), to provide a devia-
tion upper bound with a statistical guarantee. However, there has been consid-
erably less focus on the synthesis of task schedules that satisfy control safety
properties, particularly those beyond stability, which is the central topic of this
paper. The study in [41] explored scheduling to satisfy safety constraints, but its
deterministic deviation estimation suffers from a tradeoff between exponentially
growing execution time and large overestimation of the deviation, similar to [17].
At a philosophical level, the current work is also similar to program synthesis
using stochastic search [34] and neuro-symbolic synthesis [29]. In these program
synthesis approaches, the search for the correct program is conducted using a
stochastic process such as random search or generative neural network and the
final program returned is verified to satisfy the specification.
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2 Background

This section introduces the system formulation, its behavior under deadline
misses, and the characterization of deadline miss patterns that affect system
behavior. These concepts will be used throughout the rest of the paper.

2.1 System Formulation

Control systems are dynamic in nature and are often described using differential
equations. These are called state equations, and each one describes the relation-
ship between the time derivative of a single state variable with respect to other
state variables and the system’s inputs. For instance, an autonomous vehicle
system might be described with equations regarding its velocity, acceleration,
and steering angle. A state equation for it is of the form:

ẋ(t) = f(x, u, t), (1)

where x(t) ∈ R
n represents the states of the system and u(t) ∈ R

p the inputs
to the system. Certain characteristics of a control system can influence the rep-
resentational forms of its dynamics. If the differential equations describing the
system are time-invariant and linear, then the system dynamics can be expressed
by the state-space model

ẋ(t) = Ax(t) + Bu(t), (2)

where A ∈ R
n×n, and B ∈ R

n×p represent the constant continuous-time transi-
tion matrix and the input matrix, respectively. Equation (2) shows that the rate
of change of the system state ẋ(t) depends both on the current state x(t) and
the control input u(t). When the controller is implemented as a software task,
the state-space model needs to be discretized and assumes the form of

x[t + 1] = Adx[t] + Bdu[t]. (3)

where Ad and Bd represent the discrete counterparts of A and B respectively,
and are computed as:

Ad = eAP , Bd =
∫ P

0

eAτB dτ (4)

Here, P is the sampling period for sensing the environment and actuation. We
focus on closed-loop systems, where the state measurement is used to determine
the control input of the next actuation. In practice, this is done by a periodic
real-time task running on a processor and is assumed to be of the form

u[t] = Kx[t − 1], (5)

where K ∈ R
p×n is the feedback gain. We follow the logical execution time (LET)

paradigm, where the deadline equals the sampling period. A new control input
is always applied at the deadline of the control job, i.e., the system state is
sampled at time t − 1 and used to compute the control input for time t, where
the state and control input is computed according to Eqs. (3) and (5). This is
also in line with popular time-triggered implementations of control tasks [13].
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2.2 System Behavior Under Deadline Misses

The correct behavior of the control system described in Sect. 2.1 relies on the
timely computation of the control input u by the end of each period. If the
periodic real-time task computing the control input misses its deadline, then
Eq. (5) no longer holds, and the system may deviate from its ideal behavior
and become unsafe. However, the safety of the system depends on the amount of
deviation from its ideal behavior, and most systems can tolerate a certain degree
of deviation before it becomes unsafe. In this section, we quantify the deviation
from a system’s ideal behavior and define the set of safe trajectories.

We consider the behavior of the system only over a finite time horizon H.
Thus, the states of the system will be recorded at time points 0, 1, . . . ,H. For
ease of exposition, we also assume that the initial state of the system is z[0] ∈ R

n.
Setting the initial state as z[0], we define the nominal trajectory, denoted as τnom ,
of the system as the trajectory resulting from no deadline misses as follows.

Definition 1 (Nominal Trajectory). A nominal trajectory (τnom) of a sys-
tem is the sequence of states of length H + 1 of the form x[0], x[1] . . . , x[H],
where x[0] = z[0] is the initial state, x[t + 1] is computed with Eq. (3) and u[t]
is computed with Eq. (5).

Let T be the set of sequences of length H + 1 over R
n where the control

task has missed some deadlines. For each τ ∈ T , τ = τ [0], τ [1] . . . , τ [H] where
τ [i] ∈ R

n and τ [0] = z[0]. Intuitively, T denotes the set of all possible trajectories
of length H + 1 in the state space starting from the initial state z[0]. We wish
to find a subset of T that does not deviate from the nominal trajectory τnom
by more than a safety bound dsafe . This requires a way to quantify deviations
from the nominal trajectory. With a metric dis(·) defined between two points in
R

n, we define the distance between a pair of trajectories (τ, τ ′), also denoted as
dis(·), as follows:

dis(τ, τ ′) = max
0≤t≤H

dis(τ [t], τ ′[t]). (6)

We now fix a safety margin dsafe > 0. This leads to the set of safe trajecto-
ries Tsafe ⊂ T , defined as

Tsafe = {τ | dis(τ, τnom) ≤ dsafe}. (7)

This is the set of trajectories that do not exceed the safety margin around the
nominal trajectory, i.e., trajectories that do not deviate more than dsafe from
the nominal trajectory. Clearly, the nominal trajectory is also a member of Tsafe .

2.3 Characterizing Deadline Miss Patterns

We now characterize the pattern of deadline misses and its connection to devi-
ation in system behavior. The weakly hard constraints, proposed in [1], provide
an alternative to the traditional hard/soft classification of real-time systems and
have been studied in a number of settings including schedulability analysis and
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formal verification [4,19,30]. The
(

m
k

)
constraint is one of the four types of con-

straints proposed in [1] and states that out of any k consecutive deadlines of the
task, at least m of them must be met. A notable result from [1] is that weakly
hard constraints are regular languages over {0, 1}, provided that a deadline hit
is represented by 1 and miss by 0. We denote the regular language represent-
ing

(
m
k

)
as L(m,k).

Finally, suppose γ ∈ {0, 1}H is a sequence of length H representing a pattern
of deadline hits and misses. A unique trajectory τγ is defined for γ where τγ [0] =
z[0], τγ [t + 1] is computed with Eq. (3), and

u[t] =

{
Kτγ [t − 1], γ[t] = 1
u[t − 1], γ[t] = 0.

(8)

This leads to
T(m,k) = {τγ | γ ∈ L(m,k)}. (9)

In other words, T(m,k) is the set of all trajectories resulting from deadline hit/miss
patterns in the regular language L(m,k). We call the system safe under

(
m
k

)
if

and only if T(m,k) ⊆ Tsafe , which is equivalent to checking the following inequality

max
τ∈T(m,k)

dis(τ, τnom) ≤ dsafe . (10)

Intuitively, it means the system is safe under
(

m
k

)
if and only if the maximum

deviation of all trajectories τ ∈ T(m,k) is less than or equal to the safety margin
of the system.

3 Statistical Hypothesis Testing

Computing the exact maximum deviation pertaining to a given constraint (e.g.,
weakly hard constraints), in the worst case, might require computing deviation
of 2H trajectories, where H is the time horizon. This is clearly infeasible for
practical values of H. To address this issue, [17] proposed a deterministic tech-
nique that employs reachable sets to compute an upper bound on the maximum
deviation for a given constraint, rather than the exact maximum deviation. This
approach enables safe deviation bounds (i.e., an upper bound) to be computed
for large time bounds. However, this technique has two main issues. Firstly,
because it relies on reachable-set-based methods, the resulting upper bound is
often overly conservative, rendering it ineffective for the safety verification in
some instances. Secondly, because computing reachable sets can be computa-
tionally intensive, it was unable to compute a bound in a reasonable amount of
time (1 h) for some applications, limiting its applicability.

In contrast to deterministic methods, a novel method presented in [12] uses
statistical hypothesis testing (SHT) to compute a bound on the maximum devi-
ation with a high level of confidence that is determined by the user. This tech-
nique demonstrates better performance than the deterministic method proposed
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Fig. 2. Statistical hypothesis testing approach proposed in [12]. The
Hypothesizer module makes an initial guess for the upper bound on the maximum
deviation and sends it to the Verifier module for verification. If the verification fails,
the counterexample is generated and sent to the Refiner module, which refines the
guessed deviation based on the counterexample and sends it back to the Verifier

module. This iteration continues until a successful verification is achieved, at which
point the computed bound ̂d on the maximum deviation is returned.

in [17], both in terms of the tightness of the computed bound and computation
time. In the rest of this section, we briefly review the technique proposed in [12]
and present an illustrative example of the technique.

The proposed method in [12] employs a statistical hypothesis testing
framework—specifically, Jeffreys’s Bayes factor-based method—alongside a
counterexample-based refinement strategy to compute a deviation upper bound
with probabilistic guarantees. It comprises three main modules, namely the
Hypothesizer module, the Verifier module, and the Refiner module. First,
the inputs—the system model, the initial state, and the nominal trajectory of
the system—are provided to the Hypothesizer module, which then makes an
initial guess of the upper bound on the maximum deviation. Subsequently, the
guessed upper bound is forwarded to the Verifier module, which uses SHT to
verify its correctness. If the guessed deviation bound is incorrect, the Verifier
module generates a counterexample and passes it on to the Refiner module.
The Refiner module refines the guessed deviation based on the counterexam-
ple and sends it back to the Verifier module for re-verification. This iterative
process continues until a successful verification occurs, with the desired level
of confidence specified by the user. At this point, the computed bound on the
maximum deviation is returned. The method is illustrated in Fig. 2.

We now give a more detailed review of the statistical hypothesis testing pro-
cedure employed within the Verifier module. The purpose of the Verifier
module is to verify, using SHT, whether a given bound on the maximum devia-
tion d̂ is indeed correct with the specified confidence level. For a given value of
confidence c, the null and alternate hypotheses can be formulated as follows:



320 S. Xu et al.

Fig. 3. Steps to compute deviation using the SHT method [12]. The nominal
trajectory is the solid line in the center, while randomly generated trajectories are
shown as dashed lines. The light blue envelope represents the calculated upper bound
on deviation. (Color figure online)

H0 : Prob
[
T , x[0], τnom , d̂

]
< c (11)

H1 : Prob
[
T , x[0], τnom , d̂

]
≥ c (12)

where Prob
[
T , x[0], τnom , d̂

]
is the probability that a randomly selected tra-

jectory τ has a deviation that remains within the deviation upper bound d̂.
Intuitively, the null hypothesis H0 represents the rejection of d̂ as the cor-
rect deviation upper bound, while the alternative hypothesis H1 represents the
acceptance of d̂. The Verifier tests the two hypotheses by first generating
a set of K samples from the assumed distribution of executions, denoted by
X = {τ1, τ2, . . . , τK}. The sample size K is derived from the Bayes factor B and
confidence level c selected by the user. It then examines whether all members of
X satisfy the upper bound constraint of d̂ (i.e., the deviation of all the trajecto-
ries in X, from the nominal trajectory τnom , is less than d̂). If all members of X

satisfy this condition, we accept the alternative hypothesis H1 and report d̂ as
the estimated bound. However, if at least one counterexample exists, then the
Verifier rejects devub and send the counterexample to the Refiner module.

3.1 Example of Statistical Hypothesis Testing

In this section, we demonstrate how the SHT framework from [12] is used to
compute the upper bound on the deviation d̂ for a specific weakly hard con-
straint. Figure 3 illustrates the overall process. We use the linearized motion of
an F1Tenth [28] model car as an example, discretized with the period P = 20 ms:

x[t + 1] =
[
1.000 0.1300

0 1.0000

]
x[t] +

[
0.0256
0.3937

]
u[t]

In this example, we compute the deviation upper bound for the weakly hard
constraint

(
1
3

)
from a nominal trajectory with no deadline misses, starting with

the initial state x[0] = [1 1]T . We assume a time horizon of H = 5 periods.
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When a deadline is missed, the overrun job is killed and the control input from
the previous period is held, consistent with the Hold&Kill policy [23]. The SHT
framework compute the deviation upper bound d̂ with the following steps:

1. The Hypothesizer guesses an upper bound by considering a small sample of
random sequences of deadline hit/miss that satisfy the weakly hard constraint(
1
3

)
: 10110, 11001 (0 indicates miss, 1 indicates hit). The maximum deviation

from the two random samples, 0.0482, is used as the initial guess d̂0.
2. The guessed upper bound d̂0 = 0.0482 is verified by the Verifier, which

returns False. i.e., a counterexample is found whose deviation from nominal
trajectory d = 0.3157 exceeds the initial guess d̂0 = 0.0482.

3. Since the guessed bound d̂0 was not verified, the Refiner takes the coun-
terexample produced by the Verifier and updates the previous deviation
upper bound, d̂0 = 0.0482, to the deviation obtained from the counterexam-
ple, d̂1 = 0.3157.

4. The refined upper bound d̂1 = 0.3157 is again sent to the Verifier module
for re-checking. This time, the Verifier module accepts the d̂1 = 0.3157 as a
valid upper bound up to the desired probabilistic guarantees, and terminates
the procedure

We note that the d̂ = 0.3157 computed from the SHT is the same as the
deviation produced by the reachability analysis method used in [41] for this
example. This is because the small number of total deadline hit/miss sequences
(as a result of the small time horizon H = 5) enables both methods to find the
exact trajectory corresponding to the deviation upper bound. However, this is
no longer the case as H increases due to the exponentially growing number of
total deadline hit/miss sequences.

4 Proposed Schedule Synthesis

The schedule synthesis problem we wish to solve is as follows:

Problem 1 (Schedule Synthesis). Given a set of N controller tasks with the same
period, their respective safety margins dsafe , and an implementation platform
where at most J < N controllers can be scheduled in each period, determine
if a schedule over the time horizon H exists where all the controller tasks can
be scheduled without deviating more than their safety margin. Furthermore,
synthesize a schedule if one exists.

We propose an efficient solution to Problem 1, using the deviation upper
bound estimation methods proposed in [12]. Our approach involves three stages:
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1. Compute the collection of all weakly hard constraints that are statistically
safe.

2. Synthesize a candidate schedule using the list of safe constraints from each
task.

3. Verify the safety of the candidate schedule. If it is unsafe, go back to step 2;
if it is safe, exit with the safe schedule.

Our approach is similar to the two-stage schedule synthesis scheme proposed
by [41]. However, our method is different from theirs in two important aspects:
First, the method in [41] deploys a deterministic technique to determine a list of
safe constraints. This causes issues where lengthy execution time and substantial
overestimation of deviation upper bounds significantly restrict the pool of weakly
hard constraints available for schedule synthesis considerably. In contrast, our
scheduler synthesis method capitalizes on the speed and tightness advantages of
the SHT-based method proposed in [12]. Second, given that the deviation guar-
antee provided by the SHT-based method is probabilistic, our method incorpo-
rates an additional schedule verification phase. This step verifies the safety of
the schedule produced by the schedule synthesis step. It is important to note
that, because the exact deviations for the trajectories corresponding to the final
schedule can be exactly determined, the schedules generated by our method are
deterministically safe despite its reliance on a statistical method for constraint
checking. This is different from the [12], where the gain in performance and
tightness is at the price of only obtaining a probabilistic guarantee (e.g., with
confidence c = 0.99).

Constraint Checking. Given a control task Ti and its safety margin dsafei ,
constraint checking determines the set of weakly hard constraints under which
the system is safe. This amounts to checking if d(m, k) ≤ dsafei , where d(m, k) is
the maximum deviation of the trajectories in T(m,k) from the nominal trajectory
of Ti. More precisely,

d(m, k) = max
{
dis(τ, τnom)

∣∣ τ ∈ T(m,k)

}
. (13)

However, checking this directly is expensive, due to the exponential number of
hit/miss patterns of length H. To get around this, we compute an upper bound
d̂(m, k) on d(m, k) with confidence c using the SHT-based method in [12]. It
then suffices to check that d̂(m, k) ≤ dsafe to derive a probabilistic guarantee of
the safety of the system under

(
m
k

)
. We then iterate through all weakly hard

constraints (up to a maximum window size kmax � H) and compute d̂(m, k)
using the SHT-based method for each constraint

(
m
k

)
. If d̂(m, k) ≤ dsafei , we

conclude that the system is safe under
(

m
k

)
with confidence c and add

(
m
k

)
to

the set of safe constraints.

Schedule Synthesis. As introduced in Sect. 2.3, a weakly hard constraint
(

m
k

)
is a regular language L(m, k) over {0, 1}, where a string represents a hit/miss
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pattern satisfying
(

m
k

)
. We denote such an automaton for the control task Ti

by Ai = 〈Li, Σ, δi, F i, �i
0〉, where Li is a set of states, Σ = {0, 1} is the input

alphabet (miss/hit), δi = Li × Σ → Li is the transition function, F i is the
set of accepting states, and �i

0 is the initial state. With this construction, an
accepting run of Ai is a hit/miss pattern that satisfies at least one safe weakly
hard constraint for the corresponding controller task Ti. We use these individual
finite automata for each task i to construct a scheduler automaton as follows:

Definition 2 (Scheduler Automaton). A scheduler automaton A
S for

a set of N controllers whose constraints are represented by the automata of the
form Ai = 〈Li, Σ, δi, F i, �i

0〉, where at most J controllers can be scheduled in
each time slot, is defined as an automaton 〈LS , ΣS , δS , FS , �S

0 〉:

LS set of states, LS =
∏

i Li;
ΣS input alphabet, ΣS ⊂ {0, 1}N . A sequence σ ∈ {0, 1}N is in ΣS if and only

if
∑

i σi ≤ J ;
δS transition function, δS(�, σ) =

∏
i δi(�i, σi);

FS accepting states of the automaton, FS =
∏

i F i;
�S
0 initial state of the automaton, �S

0 =
∏

i �i
0.

The set of states LS is a Cartesian product of the controller automaton states:
LS = L1 × L2 × · · · × LN , where each state � ∈ LS is a tuple of individual states
from each controller: � = 〈�1, �2, . . . , �N 〉. The set of actions ΣS ⊂ {0, 1}N now
captures hits and misses for all controllers, and an action σ = 〈σ1, σ2, . . . , σN 〉
is valid if and only if

∑
i σi ≤ J . For example, N = 3, J = 1 results in ΣS =

{000, 001, 010, 100}, where σ = 010 indicates that only the second controller
is scheduled. The transition function δS is the Cartesian product of individual
transition functions

∏
i δi. Concretely, assuming σ ∈ ΣS is a valid action for the

scheduler automaton A
S , the transition function δS becomes:

δS(�, σ) = 〈δ1(�1, σ1), δ2(�2, σ2), . . . , δN (�N , σN )〉.

The set of accepting states F is the Cartesian product of the individual accepting
states. A state � = 〈�1, �2, . . . , �N 〉 is an accepting state if and only if �i ∈ F i

for all i ∈ [1, N ]. Intuitively, this means that the schedule is valid only if all the
controllers operate within their safety margin; if any of the controller automaton
Ai transition to a non-accepting (unsafe) state, the scheduler automaton will also
transition to a non-accepting state.

Under this formulation, an accepting run of length H + 1 of the scheduler
automaton is a schedule that satisfies at least one weakly hard constraint in
the set of safe constraints for each control task. The existence of safe schedules
can be checked by running emptiness checking on the scheduler automaton, and
schedules can be generated using breadth-first search (BFS).

Schedule Verification. Given a synthesized schedule, we verify if the actual
deviation of each system is within its safety margin. Toward this, we first cal-
culate the exact trajectory of each system τ i using the synthesized schedule for
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that system γi from the previous stage. The actual deviation of that system
can be then calculated using the with di = dis(τ i, τ i

nom). If di < dsafei for all
systems, the schedule is verified to be safe. Note that since the exact deviation
for each system is determined by the schedule, the schedule is deterministically
safe despite the probabilistic guarantee given by the SHT-based method in Con-
straint Synthesis. Otherwise, the verification fails and a different schedule must
be synthesized. If no schedule has passed the verification step and no more can-
didate schedules are available from schedule synthesis, the process terminates
and returns No Schedule.

Since the safety guarantee obtained for each system by SHT has a confidence
of at least c, the probability that a schedule produced by schedule synthesis is
safe for N controllers is at least cN . For N = 20 and c = 0.99, this translates to
a probability of at least 0.9920 ≈ 0.81 and an expected 1

0.81 = 1.23 repetitions
until a safe schedule is verified. We think this is reasonable and won’t become a
bottleneck for the scalability of the proposed approach.

4.1 Comparison with Deterministic Method Proposed in [41]

We now demonstrate that our scheduler synthesis technique that uses stochastic
hypothesis testing for generating all the weakly hard constraints is at least as
good as scheduler synthesis that uses deterministic verification process.

Lemma 1. Consider the controller Ti that is scheduled satisfying the weakly
hard constraint

(
m
k

)
leading to at most d(m, k) deviation from the nominal tra-

jectory. For such controller, if the SHT estimates the deviation d̂(m, k) and
a deterministic verification method provides an upper bound of d̃(m, k), then,
d̂(m, k) ≤ d(m, k) ≤ d̃(m, k).

Since the deterministic verification techniques would compute a conservative
overapproximation of all behaviors, d(m, k) ≤ d̃(m, k). Since the estimation of
the deviation during SHT is generated from one of the counterexamples, there
exists at least one behavior with deviation d̂(m, k) ≤ d(m, k).

Theorem 1. If the scheduler synthesis procedure using the deterministic verifi-
cation technique for collecting the set of all the safe weakly hard constraints suc-
cessfully generates a schedule, then the SHT-based constraint generation would
also eventually generate it.

Proof. Suppose that the deterministic verification method returned a safe sched-
ule where the weakly hard constraint for each task Ti is

(
m
k

)
i
. From Lemma 1,

we know that the same weakly hard constraint
(

m
k

)
i

would also be considered
safe using the SHT method. Therefore, the scheduler automaton generated using
constraints using SHT would either terminate early with a safe schedule or even-
tually construct the scheduler automaton with weakly hard constraints

(
m
k

)
i
for

the task i. Therefore, the scheduler automaton, in the worst case, returns the
same schedule obtained using deterministic verification.
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5 Evaluation

To evaluate the effectiveness of our approach in scheduler synthesis, we imple-
mented the proposed method in Julia [2] and conducted experiments on a system
where five different controllers share the same computational platform. Our goal
is to answer the following research questions:

1. Is our approach capable of synthesizing safe schedules where existing methods
cannot?

2. How does the execution time of our approach compare to existing methods?

5.1 Benchmarks

We use five dynamical system models from the automotive domain. All systems
are discretized with a period P = 20 ms, and controllers for each system are
computed with LQR using a one-period delay.

RC Network (RC). Our first model is a resistor-capacitor network [10] with
the following model:

ẋ(t) =
[
−6.0 1.0
0.2 −0.7

]
x(t) +

[
5.0
0.5

]
u(t).

F1Tenth Car (F1). Our second model is the linearized motion of an F1Tenth
model car [28]:

ẋ(t) =
[
0 6.5
0 0

]
x(t) +

[
0

19.685

]
u(t).

Our next three plant models are selected from [33] and also represent sub-
systems from the automotive domain.

DC Motor (DC). Our third model is the speed controller for a DC motor
adapted from [38]:

ẋ(t) =
[

−10 1
−0.02 −2

]
x(t) +

[
0
2

]
u(t).

Car Suspension (CS). Our fourth model is a suspension system adapted
from [35]:

ẋ(t) =

⎡
⎢⎢⎣

0 1 0 0
−8 −4 8 4
0 0 0 1
80 40 −160 −60

⎤
⎥⎥⎦ x(t) +

⎡
⎢⎢⎣

0
80
20

−1120

⎤
⎥⎥⎦u(t).
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Table 1. Initial states and safety margins of the five models used in experiments.

Initial State Safety Margin

RC Network [1 1]T 0.07

F1 Tenth Car [1 1]T 0.56

DC Motor [100 100]T 0.1

Car Suspension [100 100 100 100]T 0.8

Cruise Control [1 1 1]T 0.06

Cruise Control (CC). Our final model is a cruise control system adapted
from [27]:

ẋ(t) =

⎡
⎣ 0 1 0

0 0 1
−6.0476 −5.2856 −0.238

⎤
⎦ x(t) +

⎡
⎣ 0

0
2.4767

⎤
⎦u(t).

5.2 Experiments

We compared the effectiveness and performance of the proposed SHT-based
method with the existing deterministic method [41]. For each method, the five
models in Sect. 5.1 are used with a starting state x0 that is offset from the origin
in the state-space. The goal of all controllers is to bring the state x to the origin.
The starting states and safety margins for the five systems are shown in Table 1.
We assume that the controller tasks of the five systems are implemented on
the same processor. During each period of P = 20 ms, we also assume that
only two out of the five tasks can be run (i.e., J = 2). The limitation that at
most two tasks can be executed in each slot is very similar to the scheduling in
AUTOSTAR Adaptive, where several tasks with the same period are combined
together for scheduling purposes.

We used Julia 1.8 for all experiments. The parameters used in the experiments
are as follows: The maximum window size for weakly hard constraint kmax is
6; the Bayes factor B is 4.15 ∗ 105; the time horizon H is 100; the confidence
level c for statistical hypothesis testing is 0.99. We used Euclidean distance for
all deviation estimations.

We recognize that some of the parameters (e.g., kmax = 6 and N = 5) are
relatively small. These values are selected primarily for the ease of comparison
against the existing deterministic method. Additionally, as the majority of com-
putation effort is spent on the constraint synthesis phase, whose execution time
grows linearly with the number of controllers N , increasing N has a mostly lin-
ear effect on the overall execution time. On the other hand, as a max window
size of kmax = 6 already covers cases as extreme as only 1 deadline hit in every
6 consecutive invocations of the task, we believe that the potential benefit of
experimenting with even higher values of kmax is outweighed by the increased
computation.
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Table 2. Deviation upper bounds ̂d for each system and weakly hard constraint, com-
puted by the SHT-based method.

Window
Size (k)

Minimum Hits (m)

1 2 3 4 5 6

RC Network

dsafe = 0.07

1 0.0 – – – – –

2 0.036 0.0 – – – –

3 0.0656 0.036 0.0 – – –

4 0.0899 0.0656 0.036 0.0 – –

5 0.11 0.0899 0.0656 0.036 0.0 –

6 0.126 0.11 0.0899 0.0656 0.036 0.0

F1 Tenth Car

dsafe = 0.56

1 0.0 – – – – –

2 0.179 0.0 – – – –

3 0.364 0.179 0.0 – – –

4 0.557 0.364 0.179 0.0 – –

5 0.75 0.557 0.364 0.179 0.0 –

6 0.949 0.75 0.557 0.364 0.179 0.0

DC Motor

dsafe = 0.1

1 0.0 – – – – –

2 0.0546 0.0 – – – –

3 0.107 0.0546 0.0 – – –

4 0.156 0.107 0.0546 0.0 – –

5 0.204 0.157 0.107 0.0546 0.0 –

6 0.248 0.204 0.157 0.107 0.0546 0.0

Car Suspension

dsafe = 0.8

1 0.0 – – – – –

2 0.16 0.0 – – – –

3 0.34 0.16 0.0 – – –

4 0.53 0.34 0.159 0.0 – –

5 0.729 0.529 0.339 0.159 0.0 –

6 0.908 0.717 0.526 0.338 0.158 0.0

Cruise Control

dsafe = 0.06

1 0.0 – – – – –

2 0.0138 0.0 – – – –

3 0.0298 0.0115 0.0 – – –

4 0.0368 0.0212 0.0117 0.0 – –

5 0.0455 0.0323 0.0194 0.0115 0.0 –

6 0.0584 0.0423 0.0262 0.0201 0.0116 0.0

5.3 RQ1: Effectiveness of the Proposed Approach to Synthesize
Safe Schedules

To answer RQ1, we applied our SHT-based constraint and schedule synthesis
method to the systems in Sect. 5.1. We also ran the deterministic method in [41]
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Fig. 4. Schedule synthesized by the SHT-based method.

with iteration parameter n = 15. Result: the proposed SHT-based method
was able to synthesize a safe schedule, shown in Fig. 4, while the deterministic
method failed to find a safe schedule.

Detailed results of constraint and schedule synthesis are outlined in Table 2
and Table 3, respectively. In Table 2, the value at row k and column m in Table 2
represents the deviation upper bound d̂(m, k) associated with weakly hard con-
straint

(
m
k

)
, computed by the SHT-based method. If d̂(m, k) < dsafe , then

(
m
k

)
is added to the safe list of constraints for that system. The safe values are high-
lighted in Table 2, where values highlighted with are safe according to both
the SHT-based method and the deterministic method (d̂, d̃ < dsafe), and val-
ues highlighted with light green are safe according to the SHT-based only
and unsafe according to the deterministic method (d̂ ≤ dsafe ≤ d̃). As shown
in Lemma 1, any constraint deemed safe by the deterministic method is always
deemed safe by the SHT-based method too. We observe from Table 2 that while
the deterministic method and the SHT-based method performed similarly for
the RC Network and DC Motor systems, the SHT-based method is able to pro-
duce tighter estimates for the F1 Tenth Car, Car Suspension and Cruise Control
systems. The Car Suspension and Cruise Control systems especially see a large
increase in safe constraints.

Table 3 shows the exact deviation for each system under the schedule in Fig. 4,
per the schedule verification procedure described in Sect. 4. We observe that the
schedule for each individual system closely matches one of the safe constraints for
that system. For example, the schedule for RC Network matches the weakly hard
constraint

(
1
3

)
. We compared the actual deviation with the estimated d̂(m, k)

for that constraint. For two out of five systems, the deterministic method esti-
mates deviation upper bounds d̃ higher than the safety margin dsafe ; the SHT-
based method estimates values closer to the actual deviation that are all within
the safety margin. This matches the result in Table 2, where the deterministic
method greatly overestimates the deviation upper bound for the Car Suspen-
sion and Cruise Control systems. Finally, we note that the scheduler passed the
schedule verifier on the first try. This is expected, given the high confidence level
c = 0.99 used during the constraint synthesis step.
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Table 3. Exact deviation values for each system when scheduled according to Fig. 4. All
systems have deviation values within their respective safety margin, i.e., the schedule
is deterministically safe.

Safety

Margin

Closest

Constraint

Estimated
̂d(m, k)

Estimated

d̃(m, k)

Actual

Deviation

RC Network 0.07
(

1
3

)

0.0656 0.0656 0.0092

F1 Tenth Car 0.56
(

1
3

)

0.364 0.364 0.303

DC Motor 0.1
(

1
2

)

0.0546 0.0546 0.157

Car Suspension 0.8
(

1
3

)

0.34 1.04 0.13

Cruise Control 0.06
(

1
2

)

0.0138 0.0712 0.00578

These results suggest that our SHT-based approach effectively produces
deterministically safe schedules, even when the existing method fails to do so.

5.4 RQ2: Reduction of Execution Time Using the Proposed
Approach

In addition to the two configurations used in Sect. 5.3, we also ran an additional
configuration of the deterministic approach in [41] with parameter n = 18. We
ran this additional configuration because a higher n value correlates to a tighter
deviation estimation, and we incremented the n value progressively until the
deterministic method returns a valid schedule with n = 18. The execution times
for the constraint synthesis and schedule synthesis using the two methods are
outlined in Table 4.

We observe that the SHT-based method delivers a 30× to 600× speed up for
constraint synthesis of individual systems compared to the deterministic method.
In total, the SHT-based method is 55× and 394× faster than the deterministic
method with n = 15 and n = 18, respectively. Second, the procedure of schedule
synthesis and verification accounts for a relatively small fraction of the over-
all execution time. Third, our method takes roughly the same amount of time
for each system, whereas the deterministic method takes much more time to
compute the Car Suspension system than other systems. Finally, we note that
although the deterministic method is able to synthesize a safe schedule for the
benchmarks with parameter n = 18, it does so using exponentially more time
as n increases [17]. The SHT-based method eliminates the need for finding the
suitable n value, which in itself is a time-consuming process.

In summary, the deterministic method takes orders of magnitudes more time
than the SHT-based method to execute and requires a suitable n value to syn-
thesize a safe schedule. The SHT-based is able to synthesize a schedule much
faster while eliminating the need to find the n value through trial and error,
further reducing execution time.
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Table 4. Execution times for the SHT-based and deterministic methods.

SHT (c = 0.99) DET (n = 15) DET (n = 18)

RC Network 2.17 s 115.35 s 818.92 s

F1 Tenth Car 2.09 s 115.96 s 817.70 s

DC Motor 2.78 s 112.95 s 820.18 s

Car Suspension 3.10 s 292.35 s 2071.46 s

Cruise Control 3.33 s 111.65 s 799.89 s

Schedule Synthesis 0.017 s 0.106 s 0.012 s

Schedule Verification 0.008 s – –

Total 13.50 s 748.37 s 5328.16 s

Schedulable? Yes No Yes

6 Concluding Remarks

Ensuring traditional real-time guarantees that no task misses its deadline has
become increasingly challenging because of (a) the increased volume of software
being deployed in modern autonomous systems, and (b) the increased complexity
of the hardware in such systems. Consequently, some feedback control tasks may
miss their deadlines and their behavior would deviate from the nominal behavior.
This causes a divergence between the design and implementation of autonomous
systems, posing a major hurdle in their certification. Our approach to overcome
this hurdle is to synthesize a correct-by-construction control system implemen-
tation for all control tasks sharing computational resources. By allowing tasks
to miss their deadlines by design, the pessimism associated with software timing
analysis is partly mitigated. We demonstrated that incorporating probabilistic
model checking to collect a collection of weakly hard constraints in the sched-
uler synthesis (1) enables us to schedule tasks that could not be scheduled using
deterministic verification techniques, and (2) reduces the computational effort
required for synthesizing such schedules. We demonstrated these two advantages
by scheduling a task set on a system, where five controllers share the same com-
putational resource.

Currently, our work requires that all the controllers have the same period
and are scheduled on a uni-processor. While these restrictions are compatible
with the AUTOSTAR Dynamic framework of scheduling groups of processes
that share a control period, we plan to extend this work to controllers that have
different sampling periods as a part of future work.

There are a number of optimization and extensions of the work that we are
interested in exploring. For example, in addition to the

(
m
k

)
constraints used in

this work, several other types of weakly hard constraints exist and may be appli-
cable to the problem, such as the

〈
m

〉
constraint that specifies no more than

m consecutive misses can occur [39]. Finally, while this paper is on synthesizing
schedules by focusing on “system-level properties,” like control safety, instead of
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“secondary” properties like timing behavior, this idea is applicable more gener-
ally. For example, when messages are not fully encrypted or authenticated for
security [26,40], it might be shown that a safety property of the form studied in
this paper cannot be violated even if the system is under attack. Similar results
may also be established in the case of ensuring system reliability [11].
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Abstract. Over the last years, there has been growing interest in syn-
thesizing reactive systems from quantitative specifications, with the goal
of constructing correct and high-quality systems. Considering quantita-
tive requirements in systems consisting of multiple components is challeng-
ing not only because of scalability limitations but also due to the intricate
interplay between the different possibilities of satisfying a specification and
the required cooperation between components. Compositional synthesis
holds the promise of addressing these challenges.

We study the compositional synthesis of reactive systems consisting
of multiple components, from requirements specified in a fragment of the
logic LTL[F], which extends LTL with quality operators. We consider spec-
ifications that are combinations of local and shared quantitative require-
ments. We present a sound decomposition rule that allows for synthesizing
one component at a time. The decomposition requires assume-guarantee
contracts between the components, andweprovide amethod for iteratively
refining the assumptions and guarantees. We evaluate our approach with a
prototype implementation, demonstrating its advantages over monolithic
synthesis and ability to generate decompositions.

1 Introduction

Reactive synthesis can be used to automatically construct correct-by-design reac-
tive systems from high-level specifications. The correctness requirements are typ-
ically specified using temporal logics such as Linear Temporal Logic (LTL). How-
ever, logics like LTL have limited ability to capture preferences on the quality of
the synthesized system, such as resource requirements, efficiency, or prioritization
of tasks. Over the last decades, the study of quantitative specification formalisms
and the development of synthesis techniques for constructing high-quality imple-
mentations has attracted significant attention. Specification formalisms include
weighted automata [8] and temporal logics equipped with propositional quality
operators and discounting operators [1,2].

In the development of synthesis algorithms for quantitative specifications, the
focus has been predominantly on single-component synthesis. Extensions have
considered quantitative specifications in assume-guarantee form, for instance
expressed in the GR(1)[F ] fragment [4], as well as relaxations of the synthe-
sis problem, such as good-enough synthesis [3], where the system is required
to produce an output satisfying the specification with a certain value only if
the environment provides an input sequence for which such an output exists.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14215, pp. 334–354, 2023.
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While such extensions focus on the explicit or implicit assumptions made about
the environment, they do not study the interaction between cooperating com-
ponents within the synthesized system in the presence of quantitative specifica-
tions. It has been widely recognized that compositional approaches are necessary
in order to make reactive synthesis applicable to complex systems of multiple
components.

In this paper we propose a compositional method for good-enough synthe-
sis [3] for specifications expressed in a fragment of the logic LTL[F ] [2]. LTL[F ]
extends LTL with quality operators, and instead of true or false, the satisfac-
tion values of formulas are real values in [0, 1]. A higher value of satisfaction of
a formula by an execution trace corresponds to a higher quality. Good-enough
synthesis, introduced in [3], is a relaxation of the classical synthesis problem. For
specifications in LTL[F ] this means that for each input sequence the synthesized
system is required to ensure the highest value possible for this input sequence.

We study the problem of decomposing the good-enough synthesis task over
multiple components. To this end, we consider LTL[F ] specifications that are a
combination of local specifications for the individual components and a shared
specification. The local specification ϕc

local for a component c captures require-
ments that are local to c, while the shared specification Ψshared captures require-
ments pertaining to multiple components. We furthermore make some natural
assumptions about the specifications, which we make use of in order to provide
a sound decomposition of the synthesis problem. We assume for each local spec-
ification that it does not refer to the output variables of other components, and
that the shared specification is a safety property. These assumptions are mean-
ingful in a setting where components have their own individual objectives, but
must in addition jointly guarantee that some safety requirement is fulfilled.

The task we study is to synthesize in a compositional manner a system of
cooperating components that ensures for each input sequence the highest pos-
sible value for the combined specification. Our goal is to decompose this task
into synthesis tasks for the individual components, which for each component
c consider only ϕc

local and Ψshared , and in addition, assumptions on the other
components and additional guarantees that c provides to the other components
when necessary. We illustrate the problem on an example.

Example. Suppose that our goal is to synthesize a system consisting of two com-
ponents, where i is a Boolean variable input from the external environment, o1
is a Boolean output of component 1, and o2 is a Boolean output of component 2.
We assume that each component has full information, that is, observes all envi-
ronment inputs and outputs of other components. We consider implementations
in the form of Moore machines, i.e., the output of each component at a given
step can only depend on past inputs and outputs of other components.

The system must satisfy the specification Φ = ϕ1
local ∧ ϕ2

local ∧ Ψshared , where
ϕ1
local = ( o1) ⊕ 1

2
( (i ∧ ¬o1)) is the specification of component 1, and

ϕ2
local = o2 is the local specification of component 2, and

Ψshared = (o1 → ¬o2) is the shared specification.
Here, the local specification ϕ2

local , which requires that o2 is true infinitely
often, and the shared specification Ψshared , which requires that every time when
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o1 is true then o2 must be false in the next step, are both qualitative LTL
specifications. Hence, each has two possible values, 0 and 1.

The local specification ϕ1
local of component 1 uses the weighted sum operator

⊕ 1
2

with weight 1
2 for each of the subformulas. Hence, an execution of the sys-

tem where o1 is true infinitely often will result in value of at least 1
2 for ϕ1

local . If
additionally i ∧ ¬o1 is true infinitely often on that execution then the value of
ϕ1
local will be 1. If both are false, the value of ϕ1 is 0. Since Φ is the conjunction

of the three specifications, its value is the minimum of their values.
The task is then to synthesize a system S that satisfies the following: for any

value v and infinite sequence σI of values of i provided by the environment, if
there is a sequence of outputs σO , such that the value of Φ on σI ‖ σO is v, then,
for the output S(σI ) of S on σI , the value of Φ on σI ‖ S(σI ) must be at least v.

Consider the monolithic system that has three (global) states s1, s2, s3, and
such that in s1 the output is (o1 := true, o2 := true), and in the other two states
it is (o1 := false, o2 := false). From s1 the system always transitions to s2 and
from s3 it always transitions to s1. From s2 it goes to s1 if i is false and to s3
if i is true. Thus, if i is infinitely often true, then this system implementation
ensures value 1, since it also guarantees that each of o1 and o2 is true infinitely
often and Ψshared holds. If i is not true infinitely often, then the maximal value
of Φ that is possible is 1

2 , which is also what the implementation ensures.
Such a system can be synthesized by applying to Φ the algorithm presented

in [3] for good-enough synthesis for LTL[F ] specifications.
Our goal is to decompose the synthesis problem, such that we consider the

local specifications of the two components in isolation. That is, to synthesize an
implementation for component 1 considering ϕ1

local and Ψshared , and similarly for
component 2. Each component cannot on its own enforce the maximal possible
values for both the shared and its local specification. Thus, it needs to make
assumptions on the behavior of the other component. Here, component 1 needs
to make an assumption, A1, on the behavior of component 2, which in this case is
Ψshared itself. Component 2 also needs to make an assumption, A2, that requires
that o1 is false infinitely often, to be able to satisfy both ϕ2

local and Ψshared .
Component 1 can guarantee the assumption A2, while ensuring the maximal
possible value for ϕ1

local and Ψshared (under assumption A1). The components
obtained by projection from the system above satisfy these requirements.

An assume-guarantee contract between the components, like the one above,
allows for the decomposition of the synthesis task for Φ into local synthesis tasks
for the individual components. We study the problem of establishing such a
decomposition and automatically deriving assume guarantee contracts.

Contributions. We provide a decomposition rule that identifies conditions on
the LTL[F ] specifications of the above form, which guarantee that an assume-
guarantee decomposition is sound. In particular, we define the notion of good-
enough tuples of assumptions, and describe a method for automatically deriving
assume-guarantee contracts for quantitative specifications. We have implemented
the proposed approach in a prototype and demonstrate on a set of examples that
the compositional synthesis technique outperforms the monolithic one.
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Related Work. Compositional approaches for synthesis from qualitative spec-
ifications have been studied extensively. In assume-guarantee synthesis [9,11,18,
21] the synthesis problem is decomposed using an assume-guarantee contract
to capture the interface and dependencies between components. Other tech-
niques are based on a decomposition of the given specification into independent
specifications by analysis of the dependencies between components [17], or by
semantic analysis of the language descried by the specification [16]. None of these
approaches consider good-enough synthesis for quantitative specifications.

The notion of good-enough synthesis [3], where the system must only ensure
the satisfaction value made possible by the environment, is closely related to the
notions of dominant strategies [13], that is, strategies that perform as good as the
best alternative, as well as admissible strategies [10], which are strategies that
are not dominated by another strategy. Dominant strategies have been used for
compositional synthesis [13,17], by making use of the fact that implementations
must be dominant strategies and reducing the synthesis problem to a sequence
of synthesis tasks treating the processes in the system one at a time. These com-
positional techniques are only studied in the qualitative setting and when the
components have a common objective, while in our case we consider quantita-
tive specifications and components have both shared and local specifications. In
rational synthesis [20], the environment of the system being synthesized consists
of rational agents with their own objectives. In contrast, we consider cooperating
components as part of the system and aim to synthesize them compositionally.

The automatic generation of assumptions for qualitative specifications has
been studied extensively. [12] presents a game-based method for deriving envi-
ronment assumptions that turn an unrealizable specification into a realizable one.
[5,6] propose techniques for correcting unrealizable specifications in the form of
implications between assumptions and guarantees. In [21] the authors present an
iterative procedure, called negotiation, for deriving assumption-guarantee pairs.
Their assumption-generation method, similarly to ours, is based on [12]. Our
iterative strengthening of assumptions follows the idea of their negotiation pro-
cess. Neither of these works considers quantitative specifications.

A number of techniques have been developed for compositional synthesis
for conjunctions of multiple specifications. In [15] this is done for solving games
compositionally in the context of bounded synthesis, and [7] presents a technique
for compositional synthesis for conjunctions of Safety LTL specifications. The
method we use to treat the conjunctions of multiple combinations of values in
our good-enough synthesis procedure is similar to these techniques, but in the
context of the construction of the safety games in bounded synthesis.

2 Preliminaries

2.1 Languages and Automata over Infinite Words

Let Σ be a finite alphabet. The set of finite (infinite) words over Σ is denoted by
Σ∗ ( respectively Σω). For a word σ = σ0, σ1, . . . ∈ Σω, we denote with σ[i] = σi

the letter at position i, and with σ[i,∞) = σi, σi+1, . . . the suffix of σ starting at
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position i. For a finite word σ′ ∈ Σ∗ and a word σ′′ ∈ Σ∗ ∪ Σω, we denote with
σ′ · σ′′ the concatenation of the prefix σ′ and the suffix σ′′. A language L ⊆ Σω

is a safety language if and only if for every σ ∈ Σω \L there exists a finite prefix
σ′ of σ such that for every σ′′ ∈ Σω it holds that σ′ · σ′′ 
∈ L.

For a set X, we denote with 2X the powerset of X. For a word σ over alphabet
2X and a subset Y ⊆ X we denote with proj(σ, Y ) the projection of σ onto the
alphabet 2Y . Given disjoint sets X1, . . . , Xm and for each i ∈ {1, . . . , m} a word
σi over the alphabet 2Xi , we define the parallel composition ‖m

i=1 σi of the words
σ1, . . . , σm such that (‖m

i=1 σi)[j] =
⋃m

i=1 σi[j] for all j.
We will use several types of automata over infinite words, whose definitions

we recall in this subsection, together with some operations and properties.
A generalized nondeterministic Büchi automaton (GNBA) over an alphabet

Σ is a tuple A = (Σ,Q, δ,Q0, α), where Q is a finite set of states, Q0 ⊆ Q is a
set of initial states, δ : Q × Σ → 2Q is the transition function, and α ⊆ 2Q a
set of sets of accepting states. A run of A = (Σ,Q, δ,Q0, α) on an infinite word
σ ∈ Σω is an infinite sequence ρ ∈ Qω of states such that q0 ∈ Q0, and for every
i ∈ N it holds that ρ[i + 1] ∈ δ(ρ[i], σ[i + 1]). A run ρ of a GNBA is accepting if
and only if for every F ∈ α it holds that for every i ∈ N there exists j ≥ i such
that ρ[j] ∈ F , i.e., ρ visits each set in α infinitely often. An infinite word σ is
accepted by a GNBA A if there exists an accepting run of A on σ.

A nondeterministic Büchi automaton (NBA) is a GNBA A = (Σ,Q, δ,Q0, α)
with |α| = 1. When A is an NBA we will also write A = (Σ,Q, δ,Q0, F ) where
F ⊆ Q is the single set of accepting states. A safety automaton is a Büchi
automaton in which all states are accepting. Hence, for safety automata every
infinite run is accepting, and words that are not accepted have no infinite run.
An automaton is deterministic if |Q0| = 1 and |δ(q, a)| ≤ 1 for all q ∈ Q, a ∈ Σ.

A universal co-Büchi automaton (UCB) is a tuple A = (Σ,Q, δ,Q0, F ), where
Σ,Q, δ and Q0 are as in NBA, but now F ⊆ Q is a set of rejecting states. A run
ρ of a UCB is accepting if and only if there exists i ∈ N such that for every j ≥ i
it holds that ρ[j] 
∈ F , i.e., ρ visits the set F only finitely many times. A UCB
A accepts an infinite word σ if all infinite runs of A on σ are accepting.

For A over alphabet Σ, we define L(A) := {σ ∈ Σω | σ is accepted by A}.
For NBA A = (Σ,Q, δ,Q0, F ) it holds for the UCB U := (Σ,Q, δ,Q0, F ) that

L(U) = Σω \ L(A). Thus, a UCB for a language L ⊆ Σω can be obtained from
an NBA for the complement language. For GNBA Ai = (Σ,Qi, δi, Qi

0, α
i) for

i ∈ {1, 2}, the product automaton is defined as A1×A2 := (Σ,Q1×Q2, δ×, Q1
0×

Q2
0, α

1 ∪ α2) where (q′
1, q

′
2) ∈ δ×((q1, q2), a) if and only if q′

i ∈ δi(qi, a) for all
i ∈ {1, 2}. It holds that L(A1 × A2) = L(A1) ∩ L(A1). The union is defined as
A1∪A2 := (Σ,Q1 ∪ Q2, δ∪, Q1

0 ∪ Q2
0, {F1 ∪ Q2 | F1 ∈ α1} ∪ {F2 ∪ Q1 | F2 ∈ α2}),

where q′ ∈ δ∪(q, a) if and only if q′ ∈ δi(q, a) for some i ∈ {1, 2}. It holds that
L(A1 ∪ A2) = L(A1) ∪ L(A2).

For a GNBA A = (2AP , Q, δ,Q0, α) and AP ′ ⊆ AP , we define the exis-
tential projection of A with respect to AP ′ to be the GNBA proj∃(A,AP ′) def=
(2AP , Q, δ′, Q0, α) with δ′(q, a) =

⋃
b∈2AP′ δ(q, proj(a, 2AP\AP ′

) ∪ b). By defi-
nition, the projection automaton has the language L(proj∃(A,AP ′)) = {σ ∈
(2AP )ω | ∃σ′ ∈ (2AP ′

)ω. proj(σ, 2AP\AP ′
) ‖ σ′ ∈ L(A)}.
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2.2 The Temporal Logic LTL[F ]

In this section, we recall the temporal logic LTL[F ] introduced in [2]. Let AP
be a set of Boolean atomic propositions, and F ⊆ {f : [0, 1]k → [0, 1] | k ∈ N} a
set of functions. The LTL[F ] formulas are generated by the grammar ϕ ::= p |
true | false | f(ϕ1, . . . , ϕk) | ϕ | ϕ1 U ϕ2, where p ∈ AP , and f ∈ F .

We consider sets F that include functions that allow us to express the usual
Boolean operators, i.e., {f¬, f∧, f∨} ⊆ F , where f¬(x) def= 1 − x, f∧(x, y) def=
min{x, y} and f∨(x, y) def= max{x, y}. For ease of notation, we use the operators
¬,∧,∨ instead of the corresponding functions. As noted in [2], LTL coincides with
LTL[F ] when F = {¬,∧,∨}. One useful function is weighted average x ⊕λ y

def=
λ · x + (1 − λ) · y, where λ ∈ {0, 1}. We define the temporal operators finally

ϕ
def= trueU ϕ and globally ϕ

def= ¬( ¬ϕ).
For an LTL[F ] formula ϕ, we denote with Vars(ϕ) the set of atomic propo-

sitions occurring in ϕ, and with |ϕ| the description size of ϕ.
The semantics of LTL[F ] is defined with respect to words in (2AP )ω, and

maps an LTL[F ] formula ϕ and a word σ ∈ (2AP )ω, to a value �ϕ, σ� ∈ [0, 1]. For
f ∈ F , we define �f(ϕ1, . . . , ϕk), σ� := f(�ϕ1, σ�, . . . , �ϕk, σ�). The semantics of
until is �ϕ1 U ϕ2, σ� := maxi≥0{min{�ϕ2, σ[i,∞)�,min0≤j<i�ϕ1, σ[j,∞)�}}. We
refer the reader to [2] for the full formal definition of the semantics of LTL[F ].
We denote with Vals(ϕ) def= {�ϕ, σ� | σ ∈ (2AP )ω} the set of possible values of
an LTL[F ] formula ϕ. In [2] it was established that for every LTL[F ] formula
ϕ it holds that |Vals(ϕ)| ≤ 2|ϕ|. That is, each formula’s set of possible values is
finite, and its cardinality is at most exponential in the size of ϕ.

Theorem 1 ([2]). Let ϕ be an LTL[F ] formula over AP and V ⊆ [0, 1] be a set
of values. There exists an GNBA Aϕ,V such that for every σ ∈ (2AP )ω it holds
that �ϕ, σ� ∈ V if and only if σ ∈ L(Aϕ,V ). Furthermore, Aϕ,V has at most
2(|ϕ|2) states and at most |ϕ| sets of accepting states.

One relevant property of the construction in the proof of Theorem 1 for our
automata-based compositional synthesis procedure is that the set of values V
only plays a role in the construction of the set of initial states. In particular, one
can construct the automaton Aϕ,Vals(ϕ) = (2AP , Q, δ,Q, α) where every state is
initial. From Aϕ,Vals(ϕ) we can obtain the respective automaton Aϕ,V for every
V by instantiating the corresponding set of initial states based on V . Intuitively,
these are the states in Q where the formula ϕ has some value v ∈ V .

3 Good-Enough Assume-Guarantee Decomposition

We begin this section by formally introducing the problem we study in the
paper, namely, the synthesis of multi-component reactive systems from LTL[F ]
specifications. We first describe the system model we consider.



340 R. Dewes and R. Dimitrova

3.1 Multi-component Reactive Systems

We consider reactive systems with a finite set I of input atomic propositions and
a finite set O of output atomic propositions that are disjoint, i.e., I ∩O = ∅. We
call the words in (2AP )ω (execution) traces.

A reactive component is a Moore machine M = (IM ,OM , S, sinit , ρ,Out),
where IM and OM are M ’s sets of input and output propositions respectively,
S is a finite set of states, sinit ∈ S is the initial state, ρ : S × 2IM → S is the
transition function, and Out : S → 2OM is the output labeling function. Given
an input trace σIM ∈ (2IM )ω, M produces the output trace M(σIM ) ∈ (2OM )ω

such that M(σIM )[i] = Out(si), where the infinite sequence s0, s1, . . . of states
is such that s0 = sinit , and si+1 = ρ(si, σIM [i]) for every i ∈ N.

A multi-component reactive system is a tuple S = (I ,O ,M), where I and
O are the sets of input and output propositions respectively, M = 〈M1, . . . Mn〉
is a tuple of reactive components Mc = (Ic,Oc, Sc, s

init
c , ρc,Outc) such that

(1) for every c, c′ ∈ {1, . . . , n} with c 
= c′ it holds that Oc ∩ Oc′ = ∅, (2)⊎n
c=1 Oc = O , and (3) Ic = I ∪ (O \ Oc). Conditions (1) and (2) stipulate

that the sets of output propositions of the individual components partition O .
Condition (3) stipulates that each component can read all input propositions
I and all output propositions of the other components. We denote with Oc =⋃

c′∈{1,...,n}\{c} Oc′ the set of outputs of components different from c. Given an
input trace σI ∈ (2I )ω, a multi-component reactive system generates an output
trace σO ∈ (2O)ω, which we denote by (‖n

c=1 Mc)(σI ), such that proj(σO ,Oc) =
Mc(σI ‖ proj(σO ,Oc)) for all c. That is, (‖n

c=1 Mc)(σI ) is the composition of all
the output traces of the components in S.

3.2 Good-Enough Realizability and Synthesis from LTL[F ]

We study the problem of synthesizing multi-component reactive systems from
LTL[F ] specifications, precisely formulated below.

Problem 1. Given an LTL[F ] formula Φ over atomic propositions AP = I � O ,
and a partitioning O1, . . . ,On of the set of output propositions, decide whether
there exists a multi-component reactive system S such that S = (I ,O ,M) where
Oc is the set of output propositions of component c ∈ {1, . . . , n}, such that for
every σI ∈ (2I )ω and every v ∈ Vals(Φ) the following condition (1) holds.

If there exists σO ∈ (2O)ω with �Φ, σI ‖ σO� = v,

then �Φ, σI ‖ (‖n
c=1 Mc)(σI )� ≥ v.

(1)

Since our definition of multi-component reactive systems allows for compo-
nents to observe all inputs and outputs of other components, the above problem
can be solved by considering the monolithic synthesis problem for the composed
system. This problem is known to be 2EXPTIME-complete [3]. When a mono-
lithic system is synthesized, it can be easily decomposed using projection. How-
ever, this creates a dependency between the implementations of the individual
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components. Furthermore, for specifications that combine both local require-
ments on the components and shared system properties, a synthesis approach
that treats such specifications compositionally is desirable.

For the remaining sections, we consider the problem of synthesizing n com-
ponents, which we label with indices c ∈ {1, . . . , n}, and fix a corresponding
partitioning O1, . . . ,On of the set of output propositions.

3.3 Good-Enough Decomposition

As stated in Sect. 1, we consider specifications Φ expressed as a combina-
tion of local specifications for the individual components, as well as a shared
requirement. Formally, we assume that Φ = comb(ϕ1

local , . . . , ϕ
n
local , Ψshared ),

where the function comb : [0, 1]n+1 → [0, 1] is non-decreasing in each subset
of its arguments, that is, for every v1, . . . , vn+1 and v′

1, . . . , v
′
n+1, if we have

comb(v′
1, . . . , v

′
n+1) < comb(v1, . . . , vn+1), then, v′

i < vi for some i.
We refer to Ψshared as the shared specification and to each ϕc

local as the local
specification of component c. Below is an example of such a specification.

Example 1. Let I = {i},O1 = {o1},O2 = {o2} and consider the specification
Φ = (ϕ1

local ⊕ 1
3

(ϕ2
local ⊕ 1

2
Ψshared )), where the function comb is a weighted sum

in which each part is weighted 1
3 and the individual specifications are

ϕ1
local = o1 ⊕ 1

2
o1, ϕ2

local = o2 ⊕ 1
2

o2,

Ψshared = (i → ( ¬o1 ⊕ 1
2

¬o2)).

If for some σ ∈ (2AP )ω we have �ϕ1
local , σ� = 1, �ϕ2

local , σ� = 1
2 and �Ψshared , σ� =

0, then we have the value �Φ, σ� = 1
2 for the overall specification.

As mentioned in Sect. 1, we furthermore assume that the specification Φ
satisfies two additional conditions, under which we establish the soundness of
our compositional synthesis approach. The first condition restricts the shared
specifications, while the second condition restricts the local specifications.
Condition 1. The shared specifications Ψshared is a safety LTL[F ] specification.

Definition 1 (Safety LTL[F ] specifications). We say that an LTL[F ] for-
mula is a safety specification if and only if for every word σ ∈ (2AP )ω and every
value v ∈ Vals(ϕ), if �ϕ, σ� < v, then there exists a prefix σ′ of σ, such that for
every possible infinite continuation σ′′ ∈ (2AP )ω of σ′ we have �ϕ, σ′ · σ′′� < v.

If we consider the LTL fragment of LTL[F ], then the above notion coincides with
the notion of LTL-definable safety languages. To see this, note that for an LTL
formula ϕ we have Vals(ϕ) = {0, 1}. Thus, �ϕ, σ� < 1 corresponds to ϕ being
violated by σ, and the condition corresponds to the existence of a bad prefix.
In Example 1 above, the shared specification is a safety specification.

Condition 2. For each component c, the local specification ϕc
local refers only to

output propositions in Oc and input propositions in I, i.e., Vars(ϕc
local )∩O ⊆ Oc.

Note that Ψshared can refer to all the input and output signals.
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Under the above assumptions, we consider the synthesis problem for LTL[F ]
specifications of the above form in a compositional manner. We call a specifica-
tion that satisfies all of the conditions compositional.

Our compositional synthesis approach is based on assume-guarantee con-
tracts, which formalize the interface properties between the components.

Definition 2 (Assume-guarantee contract). An assume-guarantee con-
tract is a tuple 〈(Ac, Gc)〉n

c=1 where Ac ⊆ (2AP )ω is called the assumption of
component c, and Gc ⊆ (2AP )ω is called the guarantee of component c, where
each Ac and Gc are safety languages,

⋂
c′∈{1,...,n}\{c} Gc′ ⊆ Ac, and

– Let σ ∈ (2AP )∗ be a finite word such that there exists an infinite word σ′ ∈
(2AP )ω such that σ · σ′ ∈ Ac. Then, for every oc ∈ 2Oc , there exists σ′′ ∈
(2AP )ω such that σ · σ′′ ∈ Ac and proj(σ′′[0],Oc) = oc.

– Let σ ∈ (2AP )∗ be a finite word such that there exists an infinite word σ′ ∈
(2AP )ω such that σ · σ′ ∈ Gc. Then, for every oc ∈ 2Oc , there exists σ′′ ∈
(2AP )ω such that σ · σ′′ ∈ Gc and proj(σ′′[0],Oc) = oc.

The first condition ensures that component c cannot on its own violate its
assumption Ac by selecting a bad output oc. The second condition states that
the remaining components cannot violate the guarantee which c must provide,
by selecting some bad output oc. We will employ assume-guarantee contracts
to decompose the synthesis problem for Φ into local synthesis problems for the
individual components. To guarantee soundness, we impose a condition on the
assumptions, which we call good-enough assumptions. Intuitively, good-enough
assumptions do not “eliminate” possible values of Ψshared .

We are now ready to state our compositional synthesis problem.

Definition 3 (Good-enough assumptions). Let 〈A1, . . . An〉 be assumptions
for the components in {1, . . . , n}. We say that 〈A1, . . . An〉 is a good-enough tuple
of assumptions if and only if for all σI ∈ (2I )ω, for all v ∈ Vals(Ψshared ):

if there exists σO ∈ (2O)ω with �Ψshared , σI ‖ σO� = v,

then there exists σ′
O ∈ (2O)ω with �Ψshared , σI ‖ σ′

O� ≥ v

and (σI ‖ σ′
O) ∈

⋂

c∈{1,...,n}
Ac.

(2)

Problem 2. Given a compositional LTL[F ] specification Φ over atomic proposi-
tions AP = I �O with partitioning O1, . . . ,On of the set of output propositions,
decide whether there exists a multi-component reactive system S = (I ,O ,M)
where Oc is the set of output propositions of component c ∈ {1, . . . , n}, such
that for each component c ∈ {1, . . . , n} the conditions below are satisfied

∀σI ∈ (2I )ω,∀σOc
∈ (2Oc)ω,∀u ∈ Vals(ϕc

local),∀w ∈ Vals(Ψshared ) :
if there exists σOc

∈ (2Oc)ω, with �ϕc
local , σI ‖ σOc

‖ σOc� = u,
and �Ψshared , σI ‖ σOc

‖ σOc
� = w

and if (σI ‖ Mc(σI ‖ σOc
) ‖ σOc

) ∈ Ac,
then �ϕc

local , σI ‖ Mc(σI ‖ σOc) ‖ σOc� ≥ u and
�Ψshared , σI ‖ Mc(σI ‖ σOc

) ‖ σOc
� ≥ w

(3)
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∀σI ∈ (2I )ω,∀σOc
∈ (2Oc)ω : (σI ‖ Mc(σI ‖ σOc

) ‖ σOc
) ∈ Ac ∪ Gc, (4)

where 〈(A1, G1), . . . , (An, Gn)〉 is an assume-guarantee contract for components
{1, . . . , n} such that 〈A1, . . . An〉 is a good-enough tuple of assumptions.

Intuitively, in Problem 2 we consider only ϕc
local and Ψshared for each compo-

nent c, without the remaining context of Φ, that is, the function comb and the
local specifications of the other components. To ensure soundness of the decom-
position, we consider all possible pairs (u,w) of values of ϕc

local an Ψshared and
require that for each pair for values that is possible, the component’s strategy
ensures at least these values. In that way, an implementation for a component c
that satisfies condition (3) does not restrict the possible values of Ψshared unnec-
essarily. We will see below that this results in the decomposition rule being sound
but incomplete. But first, we show a simple example that demonstrates why we
imposed the two conditions on the individual specifications in Φ.

Example 2. Let I = {i},O1 = {o1},O2 = {o2} and Φ = true ∧ true ∧ Ψshared ,
where Ψshared = (( i) ↔ ( o1)) ∧ (( i) ↔ ( o2)). Here the shared speci-
fication Ψshared is not a safety property. While for any σI ∈ (2I )ω there exist
sequences of outputs that satisfy Φ, there is no system that satisfies Φ for every
σI , as it would have to make a correct guess about the future inputs.

Consider an implementation of component c ∈ {1, 2} that waits until the
other component outputs true, and then does so itself, and otherwise outputs
false. Such a pair of implementations satisfies condition (3), as it only requires
that Φ is satisfied if the environment and the other component made it possible.
However, the composition of these two implementations never sets any of o1 and
o2 to true, and thus does not satisfy the conditions in Problem 1.

If we allow local specifications to refer to outputs of other components we can
transform the above example into one with local specifications.

The next example shows a specification where the local synthesis problems
in Problem 2 are realizable without any extra assumptions.

Example 3. Let I = {i},O1 = {o1},O2 = {o2} and Φ = ϕ1
local ∧ ϕ2

local ∧ Ψshared ,
where ϕc

local = oc ⊕ 1
2

oc for each c and Ψshared = (¬i → (¬o1 ∧ ¬o2)).
A system in which each component c sets oc to true whenever i was true in

the step before satisfies condition (1) for each input sequence and value v of Φ.
Taking A1 = G1 = A2 = G2 = (2AP )ω we have that the same system satisfies

conditions (3) and (4) for each component. This is because condition (3) only
requires component c to ensure value 1 for Ψshared shared when i is false and oc

is false, and hence no explicit assumption is needed. This is in general not the
case, and in many cases, cooperation and assumptions are necessary.

The next theorem establishes the soundness of the decomposition.

Theorem 2 (Soundness of GE A/G decomposition). Let Φ be a com-
positional LTL[F ] specification with a partitioning {O1, . . . ,On} of the output
propositions. Let 〈(A1, G1), . . . , (An, Gn)〉 be an assume-guarantee contract for
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components {1, . . . , n} such that 〈A1, . . . An〉 is a good-enough tuple of assump-
tions. Then, every multi-component reactive system S = (I ,O ,M) that is a
solution to Problem 2 is also a solution to Problem 1.

The converse to the statement of Theorem 2 is not true, as the following exam-
ple demonstrates. That is, the decomposition rule is sound, but not complete.

Example 4 (Incompleteness of the Decomposition).
Let I = {i},O1 = {o1},O2 = {o2} and Φ = ϕ1

local ∧ ϕ2
local ∧ Ψshared , where

ϕ1
local = ((i → o1) ⊕ 1

2
o1), ϕ2

local = ((i → o2) ⊕ 2
3

o2)
Ψshared = (i ⊕ 1

2
¬(o1 ∧ o2))

For the input trace σI = {i}ω there exists σO such that �Φ, σI ‖ σO� = 1
2 ,

and this is the best value achievable by the system for this input sequence. The
system that outputs o1 = o2 = true if i held in the previous step, and alternates
between o1 and o2 otherwise, achieves this value and satisfies the conditions of
Problem 1. However, there exists no implementation that satisfies the conditions
of the decomposition in Problem 2. To see this, note that for each c we have that
for σI = {i}ω and σOc = {oc}ω there exists σOc

such that �ϕc
local , σI ‖ σOc

‖
σOc

� = 1 and there exists σOc
such that �Ψshared , σI ‖ σOc

‖ σOc
� = 1, but

there is no implementation for c that ensures both values, and hence there is no
implementation that satisfies (3).

4 Compositional Good-Enough Synthesis

We propose an approach to solving Problem 2 using bounded synthesis, which we
describe in this section. In a first step, our synthesis procedure constructs several
automata from the given specifications and assume-guarantee contract (if given).
In order to facilitate the generation of assumptions, we present a compositional
synthesis method based on bounded synthesis [19], where for a given bound on
the size of the implementations, a safety game is constructed from the automata
constructed in the first step. If the current set of assumptions is insufficient,
that is, the local synthesis problems for some component c has no solution, we
present a method for strengthening the assumption Ac of component c.

4.1 Automata Constructions

We begin by detailing the different automata constructed by our procedure.

Automata for the Specifications. Consider ϕc
local and Ψshared . Using the

construction from Theorem 1, we construct the automata

– Bc = Aϕc
local ,Vals(ϕc

local )
= (2AP , Qc, δc, Qc, αc), the GNBA for ϕc

local and
– Bs = AΨshared ,Vals(Ψshared ) = (2AP , Qs, δs, Qs, αs), the GNBA for Ψshared .

Both Bc and Bs are constructed for the respective full set of formula values.
We then construct the GNBA B′

cs = proj∃(Bc × Bs,Oc) and B′′
cs = Bc ∪ Bs,

which accept the existential projection of the product on Oc and the union.
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Assumptions as Automata. We consider assume-guarantee contracts repre-
sented as automata. The assumptions Ac and the complement languages 2AP \Gc

of the guarantees of all components are represented respectively as the NBA

– Ac = (2AP , Qc,a, δc,a, Qc,a
0 , αc,a) is the assumption of component c.

– Gc = (2AP , Qc,g, δc,g, Qc,g
0 , αc,g) is the complement of the guarantee of c.

Combining Specifications and Contract. From the automata Bc,Bs,Ac and
Gc, we construct the GNBA B = (2AP , Q̂, δ̂, Q̂0, α̂) := (B′

cs×Ac×B′′
cs)∪(Ac×Gc).

We will use the GNBA B to characterize the language of the traces that
violate at least one of conditions (3) and (4).

In the construction, we ensure that the states of B are of one of the forms
(1) (qc

∃, qs
∃, qca, qcs), where qc

∃ ∈ Qc, qs
∃ ∈ Qs, qca ∈ Qc,a, qcs ∈ (Qc ∪ Qs), or (2)

qcg ∈ Qc,a × Qc,g. The set of initial states in B is Q̂0 = Qc × Qs × Qc,a
0 × (Qc ∪

Qs) ∪ (Qc,a
0 × Qc,g

0 ). With that, the states of the first form assign values to the
formulas ϕc

local and Ψshared in the respective sub-states.
Let u ∈ Vals(ϕc

local) and w ∈ Vals(Ψshared ). The above property of B allows
us to devise from B an automaton B(u,w) as follows. First, for ∼ ∈ {<,≥,=}, let

Qc
∼u := {q ∈ Qc | q(ϕc

local) ∼ u} and Qs
∼w := {q ∈ Qs | q(Ψshared ) ∼ w}.

We define the set of initial states in B for the pair of values (u,w) as the set

Q̂
(u,w)
0 :=

(
Qc

≥u × Qs
≥w × Qc,a

0 × (Qc
<u ∪ Qs

<w)
) ∪ (Qc,a

0 × Qc,g
0 ).

With that, we define the automaton B(u,w) := (2AP , Q̂, δ̂, Q̂
(u,w)
0 , α̂).

Intuitively, the language of the automaton B(u,w) consists of the traces that
violate at least one of conditions (3) and (4) for the value pair (u,w).

Proposition 1. For the GNBA B(u,w) constructed above it holds that for σ ∈
(2AP )ω we have σ ∈ L(B(u,w)) iff σ 
∈ (Ac ∪ Gc) or all of the following hold:

– there exists σOc
∈ (2O)ω such that �ϕc

local , proj(σ, I ∪ Oc) ‖ σOc
� ≥ u and

�Ψshared , proj(σ, I ∪ Oc) ‖ σOc
� ≥ w, and σ ∈ Ac,

– �ϕc
local , σ� < u or �Ψshared , σ� < w.

Transformation to UCB. From the GNBA B constructed above, we obtain
an NBA, which we then interpret as a UCB for the complement language.

For ϕc
local , Ψshared , Ac and Gc, we denote with UCBc(Bc,Bs,Ac,Gc) the uni-

versal co-Büci automaton obtained in this way from the GNBA Bc and Bs.
Given U := UCBc(Bc,Bs,Ac,Gc), u ∈ Vals(ϕc

local) and w ∈ Vals(Ψshared ), we
denote with Instantiatec(U , u, w) the UCB obtained from the GNBA B(u,w).

Proposition 1 provides us with a basis for a solution to Problem 2 when
we are given an assume-guarantee contract. For a given component c, using
the product of the automata Instantiatec(Uc, u, w), for all u ∈ Vals(ϕc

local) and
w ∈ Vals(Ψshared ), we can apply any suitable reactive synthesis method.

However, in order to facilitate the generation of assumptions, we propose
a procedure based on bounded synthesis. In the next two subsections we first
describe our compositional synthesis procedure with given assumptions, and then
present the iterative generation of contracts.
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function CompSynt (〈ϕc
local〉n

c=1, Ψshared , Bs, 〈Bc〉n
c=1, 〈Ac, Gc〉n

c=1, binit , bmax )
1 if ¬GoodEnough(〈Ac〉n

c=1, Bs) then return ⊥
2 b := binit
3 while true do
4 done := true
5 for c = 1, . . . , n do

6 Uc := UCBc(Bc, Bs, Ac, Gc)
7 Mc := LocalSynt(Uc, I ,Oc,Oc,Vals(ϕ

c
local),Vals(Ψshared), b)

8 if Mc = ⊥ then done := false; break

9 if done then return 〈Mc〉n
c=1

10 if b < bmax then b := increment(b) else return unknown

Algorithm 1: Compositional bounded synthesis for a combined specifica-
tion Φ = comb(ϕ1

local , . . . , ϕ
n
local , Ψshared ), with a given assume-guarantee con-

tract consisting of assumptions 〈Ac〉n
c=1 and negated guarantees 〈Gc〉n

c=1. The
automata Bs = AΨshared ,Vals(Ψshared ) and Bc := Aϕc

local ,Vals(ϕc
local )

are given as
input.

function LocalSynt (Uc, I ,Oc,Oc, U, W, b)
1 let D be a deterministic safety automaton for the language (2AP )ω

2 for (u, w) ∈ U × W do
3 U(u,w) := Instantiatec(Uc, u, w); D := Safety(U(u,w), b, D)
4 (Win, strategy) := SolveSafetyGame(D, I � Oc,Oc)
5 if Win := ⊥ then return ⊥
6 D := PruneLosing(D,Win, I � Oc,Oc)

7 return ToMoore(strategy , I ,Oc,Oc)

Algorithm 2: Bounded synthesis for a single component c, with specification
given by the UCB Uc and sets of values U and W defining the initial states.
I is the set of inputs, Oc is the set of outputs c, Oc are the outputs of the
remaining components. b is the bound for the bounded synthesis algorithm.

4.2 Synthesis with a Given Assume-Guarantee Contract

For a given component c, our method, based on bounded synthesis, processes the
automata for the different value pairs incrementally in the construction of the
safety game for a given bound. The compositional synthesis procedure Comp-
Synt described below is detailed in Algorithm 1, and the incremental bounded
synthesis method LocalSynt for a single component in Algorithm 2.

The procedure CompSynt first verifies that the assumptions meet the good-
enough condition by calling the function GoodEnough (described later). If this
is the case, CompSynt iterates over the components, constructing the UCB
Uc := UCBc(Bc,Bs,Ac,Gc) and invoking LocalSynt (described later), which
performs incremental bounded synthesis for a component c. If an implementation
is found by LocalSynt for all c, then CompSynt returns a multi-component
reactive system. Otherwise, the bound is increased if the maximum (given as
parameter) is not reached. If the latter is the case, CompSynt returns unknown.
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Checking for Good-Enough Assumptions. The function GoodEnough veri-
fies that a tuple of assumptions represented as automata 〈Ac〉n

c=1 is good-enough.
It uses the GNBA Bs representing the shared specification Ψshared . For every
v ∈ Vals(Ψshared ) the procedure constructs the GNBA

– D=v
s obtained from proj∃(Bs,O) by setting the set of initial states to Qs

=v,
– D≥v

s obtained from proj∃(Bs ∩⋂
c∈{1,...,n} Ac,O) with init. states Qs

≥v ×Qc,a
0 .

Then, we verify that 〈Ac〉n
c=1 is good-enough by checking if the language inclusion

L(D=v
s ) ⊆ L(D≥v

s ), which directly corresponds to condition (2), holds.

Incremental Bounded Synthesis. The procedure LocalSynt iterates over
the pairs of values in the set U×W , where U := Vals(ϕc

local), W := Vals(Ψshared ).
For each (u,w), it constructs the UCB Instantiatec(Uc, u, w) instantiated from
Uc for this value pair. It then constructs and solves incrementally a safety game.

Function Safety constructs a deterministic safety automaton from the UCB
U(u,w) for bound b ∈ N. Different from the single automaton case, in Local-
Synt we are constructing a deterministic safety automaton for the product of all
Instantiatec(Uc, u, w) for (u,w) ∈ U ×W . We perform the construction incremen-
tally. LocalSynt maintains a deterministic safety automaton D which is the
product constructed thus far. D is passed as an argument to Safety and used in
an on-the-fly construction to prune losing choices from the deterministic safety
automaton constructed from the current U(u,w).

Function SolveSafetyGame applied to D performs the standard construction
of transforming a deterministic automaton into a two-player game by splitting
the input propositions I � Oc (note that here the output of other components
is treated as input) and the output propositions Oc. The safety game is solved
and SolveSafetyGame returns a pair (Win, strategy), where Win is either ⊥, in
the case when the initial state of D is not winning for the output player, or
otherwise Win is the set of states winning for the output player, and strategy is
the most permissive winning strategy for the output player. Function PruneLosing
takes as input the automaton D and the winning region Win 
= ⊥ computed by
SolveSafetyGame and prunes from D the choices of the output player that do not
lead to states in Win. Since the implementation must satisfy (3) for all (u,w),
all the calls to SolveSafetyGame must be successful to return an implementation.

4.3 Synthesis with Iterative Assumption Generation

Assume-guarantee contracts can be difficult to design, especially for the synthe-
sis of good-enough implementations of quantitative specifications. We present
a method for iterative generation of good-enough assumptions, inspired by the
notion of negotiation introduced in [21]. The idea is to consider the components
in turn, and, if the local synthesis problem is not realizable for a component,
to generate assumptions on the behavior on the other components. The gen-
erated assumption is added to the guarantees of the other components, which
can generate assumptions on their own. This process continues until finding an
assume-guarantee contract that makes all local synthesis problems realizable.
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function CompSyntAGen (〈ϕc
local〉n

c=1, Ψshared , Bs, 〈Bc〉n
c=1, binit , bmax )

1 let A0
c be a safety automaton for (2AP )ω for every c ∈ {1, . . . , n}

2 b := binit
3 while b ≤ bmax do
4 done := true
5 for c = 1, . . . , n do

6 Gc := Augment(
⋃

c∈{1,...,n}\{c} A0
c ,Oc); Uc := UCBc(Bc, Bs, Ac, Gc)

7 Mc := LocalSynt(Uc, I ,Oc,Oc,Vals(ϕ
c
local),Vals(Ψshared), b)

8 if Mc = ⊥ then
9 done := false

10 (A0
c , Ac) := GenAssumption(Uc, b, I ,Oc,Oc, 〈A0

c〉n
c=1, 〈Ac〉n

c=1)
11 if (A0

c , Ac) = (⊥, ⊥) then restart := true; break

12 if done then return 〈Mc〉n
c=1

13 if restart then b := increment(b)

14 return unknown

Algorithm 3: Compositional synthesis for a combined specification Φ =
comb(ϕ1

local , . . . , ϕ
n
local , Ψshared ) with iterative assumption generation.The

automata Bs = AΨshared ,Vals(Ψshared ) and Bc := Aϕc
local ,Vals(ϕc

local )
are given as

input.

Our compositional synthesis method with assumption generation is shown
in Algorithm 3. Similarly to Algorithm 1, the method is based on incremen-
tal bounded synthesis. Here the guarantees are obtained from the assumptions,
which initially permit any trace in (2AP )ω. When the current assumption is not
sufficient for the local synthesis problem for some component c to be realizable,
the procedure GenAssumption, shown in Algorithm 4 is invoked. We maintain
two automata for the assumption for each component: Ac is the actual assump-
tion, and the automaton A0

c is used to represent the combination of the languages
constructed from the assumption generation procedure before the transformation
to Ac. We explain this when we present the assumption generation.

Assumption Generation. To find an assumption for a locally unrealizable
(with the given bound) specification Uc for component c, GenAssumption con-
siders the synthesis problem where all the components collaborate on realizing
Uc. In the resulting safety game all the output propositions Oc�Oc are under the
control of the output player. If the initial state is winning for the output player,
then the winning region Win represents the most general cooperative strategy.
Function ExtractAssumption uses Win to generate a new assumption Anew , rep-
resented as a safety automaton. Anew must satisfy the following conditions:

(i) The local specification for component c constructed with the updated tuple
of assumptions must be realizable by component c alone.

(ii) The combined assumption of component c and the newly generated guar-
antees of the other components must satisfy the conditions of Definition 2.

(iii) The updated tuple of assumptions 〈A1, . . . ,Ac ∩ Anew, . . . ,An〉 must be
good-enough with respect to the shared specification Ψshared .
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function GenAssumption(Uc, b, I ,Oc,Oc, 〈A0
c〉n

c=1, 〈Ac〉n
c=1)

1 let D be a deterministic safety automaton for the language (2AP )ω

2 for (u, w) ∈ U × W do
3 U(u,w) := Instantiatec(Uc, u, w); D := Safety(U(u,w), b, D)
4 (Win, strategy) := SolveSafetyGame(D, I ,Oc � Oc)
5 if Win := ⊥ then return ⊥
6 D := PruneLosing(D,Win, I ,Oc � Oc)

7 Invalid := ∅
8 while true do
9 A0

new := ExtractAssumption(D,Win, I ,Oc,Oc, Invalid)
10 if GoodEnough(〈A1, . . . ,Augment(A0

c ∩ A0
new,Oc), . . . , An〉, Bs) then

11 return (A0
c ∩ A0

new,Augment(A0
c ∩ A0

new,Oc))

12 Invalid := Invalid ∪ {A0
new}

Algorithm 4: Generation of a good enough assumption for component c from
the winning region in the cooperative synthesis game for the specification Uc.

Additionally, we give preference to assumptions that do not unnecessarily
restrict the other components, although we do not give guarantees on minimality.

The function ExtractAssumption constructs an intermediate safety automaton
A0

new which is obtained from D and Win. It receives as additional input the
set Invalid , which consists of the previously extracted assumptions that violate
condition (iii) above. The extraction process checks against Invalid to avoid
repeating the failed assumptions. We now give the construction of A0

new .
Let D = (2AP , Q, δ,Q0, Q) be the deterministic safety automaton. Note that

since the output player wins the safety game defined by D, we have Q0 ⊆ Win.
First we define a function fc : (Q ∩ Win) × 2I → 2Oc such that for each

q ∈ Q ∩ Win, i ∈ 2I and all õ ∈ 2Oc it holds that: {oc ∈ 2Oc | ∃q′ ∈ Win. q′ ∈
δ(q, i ∪ fc(q, i)) ∪ oc)}| ≥ |{oc ∈ 2Oc | ∃q′ ∈ Win. q′ ∈ δ(q, i ∪ õ ∪ oc)}|.

That is, fc maps each q ∈ Q ∩ Win and i ∈ 2I to the output of component
c that allows for the maximal number of possible choices for the remaining
components from q ∈ Q ∩ Win and i ∈ 2I landing in Win. This choice ensures
local minimality of the restrictions on the other components.

Then, we define the function fc : (Q∩Win)×2I → 22
Oc such that fc(q, i) :=

{oc ∈ 2Oc | ∃q′ ∈ Win. q′ ∈ δ(q, i ∪ fc(q, i)) ∪ oc)}. Intuitively, fc maps q ∈
Q∩Win and i ∈ 2I to the outputs of the components other than c that together
with fc(q, i) lead to a state q′ ∈ Win. Thus, the outputs of the other components
are chosen such that they allow component c to realize Uc following fc.

The automaton A0
new is then constructed based on the function fc. We let

A0
new := (2AP , Q ∩ Win, δ0, Q0, Q ∩ Win), where for every q ∈ Q ∩ Win, i ∈ 2I ,

oc ∈ 2Oc , oc ∈ 2Oc and q′ ∈ Q ∩ Win we have q′ ∈ δ0(q, i ∪ oc ∪ oc) if and only
if oc ∈ fc(q, i). Thus, the transition function δ0 includes all transitions to states
in Q ∩ Win, where the output agrees with the function fc.

The automaton A0
new satisfies condition (i). It does not necessarily satisfy (ii),

since the outputs on the labels on the transitions in δ0 are defined based on the
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Fig. 1. Assume-guarantee contract computed for Example 5

function fc that depends on fc. Thus, it is possible that outputs of component
c disagreeing with fc could result in words rejected by A0

new , that is they will
be violating the new assumption. To this end, we augment A0

new by adding the
missing transitions, to ensure that such words are included in the language of the
assumption automaton. We denote with Augment(A0

c ∩ A0
new,Oc) the augmented

version of the new assumption, and with Augment(
⋃

c∈{1,...,n}\{c} A0

c ,Oc) the
augmented updated guarantee.

With that, the updated assumption automaton for component c is obtained
by constructing Augment(A0

c ∩ A0
new,Oc). What remains is to ensure condition

(iii). The procedure GenAssumption keeps generating candidate assumptions
until an updated assumption for c satisfies all the three conditions, or no more
new assumptions can be generated from the given winning region Win. In such
case it returns (⊥,⊥), upon which CompSyntAGen restarts with larger bound.

Theorem 3 (Soundness). Let Φ be a compositional LTL[F ] specification. If
CompSyntAGen returns a multi-component reactive system S = (I ,O ,M),
then S is a solution to Problem 1.

We illustrate the process of iterative assumption generation on an example.

Example 5. Let I = {i},O1 = {o1},O2 = {o2} and consider the specification
Φ = ϕ1

local ∧ ϕ2
local ∧ Ψshared , where the individual specifications are

ϕ1
local = ( o1) ⊕ 1

2
(i ∧ ¬o1), ϕ2

local = o2,

Ψshared = (o1 → ¬o2).

The first call to procedure LocalSynt for component 1 in CompSyntAGen
determines that there exists no implementation for component 1 that is a solu-
tion to the local synthesis problem with bound 2. The local synthesis problem
with specifications ϕ1

local and Ψshared is not good-enough realizable by compo-
nent 1 on its own, because the satisfaction of Ψshared depends on the future
values of variable o2, which is not under the control of component 1. In partic-
ular, since ϕ1

local requires setting o1 to true infinitely often in order to achieve a
good enough satisfaction value, component 1 is unable to avoid the requirement
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that Ψshared puts on o2. Thus, procedure GenAssumption is invoked to gener-
ate an assumption on the behavior of component 2. GenAssumption solves a
safety game in which o2 is controllable output. In this game, the system player
has a winning strategy, from which the assumption A1 made by component 1,
depicted in Fig. 1a, is extracted. This assumption is added to the guarantee G2

of component 2, after which procedure LocalSynt is applied to component 2.
Again, there exists no implementation for component 2 that is a solution to

the local good-enough synthesis problem with bound 2. The reason is that the
local specification ϕ2

local cannot be satisfied in conjunction with the guarantee
G2 in case o1 is always set to true. Following that, GenAssumption is invoked
to generate an assumption on the behavior of component 1. GenAssumption
solves the cooperative safety game constructed for bound 2, and generates the
assumption that component 1 does not set o1 to true twice in a row (as the
bound is 2). The generated safety automaton A2 is given in Fig. 1b. With the
assume-guarantee contract in Fig. 1, the subsequent calls to LocalSynt for
both components succeed, producing a multi-component reactive system.

5 Experimental Evaluation

We implemented our compositional synthesis procedure in a prototype. The tool
takes the compositional LTL[F ] specification as input. If realizable, it produces
a set of implementations, one for each component, that satisfy the conditions of
Problem 2. Should the specification require cooperation between the components,
the tool iteratively generates additional assumptions in the form of automata.
Our tool uses Spot [14] (v2.10.6) for the automata operations and for solving
the safety games in bounded synthesis.

We compare the compositional approach and the monolithic approach using
our prototype, demonstrating the benefits of compositional synthesis for the
same underlying implementation. We extract the UCB before starting the con-
struction of the safety game to apply sdf 1 for reference, which takes this UCB as
input and performs bounded synthesis. To our knowledge, there are currently no
other tools available that would apply to our setting or could easily be extended.

We performed experiments on several examples on a laptop with an Intel
Core i7 processor at 2.8 GHz and 16 GB of memory. Table 1 shows the results.

The first three examples are realizable without explicit assumptions. The
others need additional assumptions, which can be given or derived. Example
intro ex is the one described in Sect. 1.

The results show that the compositional synthesis scales better than the
monolithic approach on the considered benchmarks. In particular, most specifi-
cations can only be handled when treated in the decomposition. This is expected,
as the decomposed specifications are smaller, and in the monolithic case the
automata become prohibitively large. It should be noted that even in the cases
when assumptions are necessary and require multiple iterations to be generated,

1 https://github.com/5nizza/sdf-hoa.

https://github.com/5nizza/sdf-hoa
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Table 1. Experimental results, time in seconds, timeout of 30 min. Size is the size of
initial automata for (ϕ1

l , ϕ
2
l , . . . , Ψs), and largest final UCB. We differentiate between

compositional with iterative assumptions (iter.), predefined assumptions (pred.), or no
assumptions (none). In some cases (n/a.), there were no automata to execute sdf on.

Example n Autom. size Monolithic Compositional Using sdf

init UCB none iter. pred. mono. comp.

max use 2 13,7,7 108 335 25.73 – – TO 51.26

use if req2 2 17,17,17 671 TO 79.10 – – TO TO

use if req3 3 17,17,17,29 2612 TO 1074.81 – – TO TO

intro ex 2 9,5,7 1115 290.37 – 57.73 17.6 TO 11.4

color change 2 6,6,13 689 196.45 – 108.19 23.15 TO 34.8

two foll one 2 33,8,7 672 TO – 442.74 215.12 TO TO

perm to r3 3 7,7,8,13 3363 TO – 286.42 194.84 n/a TO

perm to r4 4 7,7,7,11,25 5558 TO – TO TO n/a TO

the compositional approach is still faster than the monolithic one. For example
color change, it takes half the time to complete and the size of the UCB in the
monolithic case is around the combined size for both components separately.

When increasing the number of components, the monolithic specification nec-
essarily increases in size, whereas, depending on the specification, it can remain
small for the individual components. Still, constructing the safety game from
the UCB is the most time-consuming step, and is performed for each compo-
nent once per iteration. As the local synthesis problems become more complex,
the timeout may be reached before iterating through all components, such as in
perm to r4.

Also apparent from these results is that our prototype implementation does
not scale well yet. Growing use if req2 to three components in use if req3
increases the runtime significantly. For perm to r3 and perm to r4, it runs into
the timeout going from three to four. It should be noted that for these bench-
marks sdf reaches the timeout as well, when executed with the resulting UCB.

As expected, with assumptions given a priori, the performance of the com-
positional approach improves as each component is considered only once. The
challenge here lies in manually finding suitable assumptions.

Lastly, when using sdf, we can only compare to the execution of our prototype
without assumption generation. Applicable cases are when assumptions are not
needed or are given, and the monolithic case. For larger automata, sdf was in
most cases unable to finish within the timeout. This is expected as the extracted
UCB encodes the behavior for all pairs of values.

6 Conclusion

We investigated the compositional synthesis problem for good-enough synthesis
from specifications in a fragment of LTL[F ], considering fully-informed compo-
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nents with shared and local specifications. We identified sufficient conditions on
the specifications that guarantee the soundness of the proposed decomposition
rule. One of the directions for future work is the development of a more sophis-
ticated analysis of the combination of local and shared specifications, to allow
taking weights and other factors into account in the local synthesis problem.
Another direction is the consideration of partial information. In order for the
technique to be viable, we plan to improve the scalability of our prototype.
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Abstract. We consider the problem of learning control policies in
discrete-time stochastic systems which guarantee that the system sta-
bilizes within some specified stabilization region with probability 1. Our
approach is based on the novel notion of stabilizing ranking supermartin-
gales (sRSMs) that we introduce in this work. Our sRSMs overcome the
limitation of methods proposed in previous works whose applicability is
restricted to systems in which the stabilizing region cannot be left once
entered under any control policy. We present a learning procedure that
learns a control policy together with an sRSM that formally certifies
probability 1 stability, both learned as neural networks. We show that
this procedure can also be adapted to formally verifying that, under a
given Lipschitz continuous control policy, the stochastic system stabilizes
within some stabilizing region with probability 1. Our experimental eval-
uation shows that our learning procedure can successfully learn provably
stabilizing policies in practice.

Keywords: Learning-based control · Stochastic systems ·
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1 Introduction

Machine learning based methods and in particular reinforcement learning (RL)
present a promising approach to solving highly non-linear control problems. This
has sparked interest in the deployment of learning-based control methods in
safety-critical autonomous systems such as self-driving cars or healthcare devices.
However, the key challenge for their deployment in real-world scenarios is that
they do not consider hard safety constraints. For instance, the main objective
of RL is to maximize expected reward [46], but doing so provides no guarantees
of the system’s safety. A more recent paradigm in safe RL considers constrained
Markov decision processes (cMDPs) [3,4,21,26,50], which are equiped with both
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a reward function and an auxiliary cost function. The goal of these works is then
to maximize expected reward while keeping expected cost below some tolerable
threshold. While these methods do enhance safety, they only ensure empirically
that the expected cost function is below the threshold and do not provide any
formal guarantees on constraint satisfaction.

This is particularly concerning for safety-critical applications, in which unsafe
behavior of the system might have fatal consequences. Thus, a fundamental
challenge for deploying learning-based methods in safety-critical autonomous
systems applications is formally certifying safety of learned control policies [5,25].

Stability is a fundamental safety constraint in control theory, which requires
the system to converge to and eventually stay within some specified stabilizing
region with probability 1, a.k.a. almost-sure (a.s.) asymptotic stability [31,33].
Most existing research on learning policies for a control system with formal
guarantees on stability considers deterministic systems and employs Lyapunov
functions [31] for certifying the system’s stability. In particular, a Lyapunov
function is learned jointly with the control policy [1,8,15,42]. Informally, a Lya-
punov function is a function that maps system states to nonnegative real num-
bers whose value decreases after every one-step evolution of the system until the
stabilizing region is reached. Recently, [37] proposed a learning procedure for
learning ranking supermartingales (RSMs) [11] for certifying a.s. asymptotic sta-
bility in discrete-time stochastic systems. RSMs generalize Lyapunov functions
to supermartingale processes in probability theory [54] and decrease in value in
expectation upon every one-step evolution of the system.

While these works present significant advances in learning control policies
with formal stability guarantees as well as formal stability verification, they are
either only applicable to deterministic systems or assume that the stabilizing set
is closed under system dynamics, i.e., the agent cannot leave it once entered. In
particular, the work of [37] reduces stability in stochastic systems to an a.s. reach-
ability condition by assuming that the agent cannot leave the stabilization set.
However, this assumption may not hold in real-world settings because the agent
may be able to leave the stabilizing set with some positive probability due to
the existence of stochastic disturbances, see Fig. 1. We illustrate the importance
of relaxing this assumption on the classical example of balancing a pendulum in
the upright position, which we also study in our experimental evaluation. The
closedness under system dynamics assumption implies that, once the pendulum
is in an upright position, it is ensured to stay upright and not move away. How-
ever, this is not a very realistic assumption due to possible existence of minor
disturbances which the controller needs to balance out. The closedness under
system dynamics assumption essentially assumes the existence of a balancing
control policy which takes care of this problem. In contrast, our method does
not assume such a balancing policy and learns a control policy which ensures that
both (1) the pendulum reaches the upright position and (2) that the pendulum
eventually stays upright with probability 1.

While the removal of the assumption that a stabilizing region cannot be left
may appear to be a small improvement, in formal methods this is well-understood
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to be a significant and difficult step. With the assumption, the desired controller
has an a.s. reachability objective. Without the assumption, the desired controller
has an a.s. persistence (or co-Büchi) objective, namely, to reach and stay in the
stabilizing region with probability 1. Verification or synthesis for reachability con-
ditions allow in general much simpler techniques than verification or synthesis for
persistence conditions. For example, in non-stochastic systems, reachability can
be expressed in alternation-free μ-calculus (i.e., fixpoint computation), whereas
persistence requires alternation (i.e., nested fixpoint computation). Technically,
reachability conditions are found on the first level of the Borel hierarchy, while
persistence conditions are found on the second level [13]. It is, therefore, not
surprising that also over continuous and stochastic state spaces, reachability
techniques are insufficient for solving persistence problems.

In this work, we present the following three contributions.

1. Theoretical Contributions. In this work, we introduce stabilizing ranking
supermartingales (sRSMs) and prove that they certify a.s. asymptotic stabil-
ity in discrete-time stochastic systems even when the stabilizing set is not
assumed to be closed under system dynamics. The key novelty of our sRSMs
compared to RSMs is that they also impose an expected decrease condition
within a part of the stabilizing region. The additional condition ensures that,
once entered, the agent leaves the stabilizing region with probability at most
p < 1. Thus, we show that the probability of the agent entering and leaving
the stabilizing region N times is at most pN , which by letting N → ∞ implies
that the agent eventually stabilizes within the region with probability 1. The
key conceptual novelty is that we combine the convergence results of RSMs
which were also exploited in [37] with a concentration bound on the supre-
mum value of a supermartingale process. This combined reasoning allows us
to formally guarantee a.s. asymptotic stability even for systems in which the
stabilizing region is not closed under system dynamics. We remark that our
proof that sRSMs certify a.s. asymptotic stability is not an immediate applica-
tion of results from martingale theory, but that it introduces a novel method
to reason about eventual stabilization within a set. We present this novel
method in the proof of Theorem 1. Finally, we show that sRSMs not only
present qualitative results to certify a.s. asymptotic stability but also present
quantitative upper bounds on the number of time steps that the system may
spend outside of the stabilization set prior to stabilization.

2. Algorithmic Contributions. Following our theoretical results on sRSMs,
we present an algorithm for learning a control policy jointly with an sRSM
that certifies a.s. asymptotic stability. The method parametrizes both the pol-
icy and the sRSM as neural networks and draws insight from established pro-
cedures for learning neural network Lyapunov functions [15] and RSMs [37].
It loops between a learner module that jointly trains a policy and an sRSM
candidate and a verifier module that certifies the learned sRSM candidate
by formally checking whether all sRSM conditions are satisfied. If the sRSM
candidate violates some sRSM conditions, the verifier module produces coun-
terexamples that are added to the learner module’s training set to guide the
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learner in the next loop iteration. Otherwise, if the verification is successful
and the algorithm outputs a policy, then the policy guarantees a.s. asymp-
totic stability. By fixing the control policy and only learning and verifying the
sRSM, our algorithm can also be used to verify that a given control policy
guarantees a.s. asymptotic stability. This verification procedure only requires
that the control policy is a Lipschitz continuous function.

3. Experimental Contributions. We experimentally evaluate our learning
procedure on 2 stochastic RL tasks in which the stabilizing region is not closed
under system dynamics and show that our learning procedure successfully
learns control policies with a.s. asymptotic stability guarantees for both tasks.

Organization. The rest of this work is organized as follows. Section 2 contains
preliminaries. In Sect. 3, we introduce our novel notion of stabilizing ranking
supermartingales and prove that they provide a sound certificate for a.s. asymp-
totic stability, which is the main theoretical contribution of our work. In Sect. 4,
we present the learner-verifier procedure for jointly learning a control policy
together with an sRSM that formally certifies a.s. asymptotic stability. In Sect. 5,
we experimentally evaluate our approach. We survey related work in Sect. 6.
Finally, we conclude in Sect. 7.

2 Preliminaries

We consider a discrete-time stochastic dynamical system of the form

xt+1 = f(xt, π(xt), ωt),

where f : X × U × N → X is a dynamics function, π : X → U is a control
policy and ωt ∈ N is a stochastic disturbance vector. Here, we use X ⊆ R

n to
denote the state space, U ⊆ R

m the action space and N ⊆ R
p the stochastic

disturbance space of the system. In each time step, ωt is sampled according to
a probability distribution d over N , independently from the previous samples.

A sequence (xt,ut, ωt)t∈N0 of state-action-disturbance triples is a trajectory
of the system, if ut = π(xt), ωt ∈ support(d) and xt+1 = f(xt,ut, ωt) hold for
each t ∈ N0. For each state x0 ∈ X , the system induces a Markov process and
defines a probability space over the set of all trajectories that start in x0 [41],
with the probability measure and the expectation operators Px0 and Ex0 .

Assumptions. The state space X ⊆ R
n, the action space U ⊆ R

m and the
stochastic disturbance space N ⊆ R

p are all assumed to be Borel-measurable.
Furthermore, we assume that the system has a bounded maximal step size under
any policy π, i.e. that there exists Δ > 0 such that for every x ∈ X , ω ∈ N
and policy π we have ||x − f(x, π(x), ω)||1 ≤ Δ. Note that this is a realistic
assumption that is satisfied in many real-world scenarios, e.g. a self-driving car
can only traverse a certain maximal distance within each time step whose bounds
depend on the maximal speed that the car can develop.
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For our learning procedure in Sect. 4, we assume that X ⊆ R
n is compact

and that f is Lipschitz continuous, which are common assumptions in control
theory. Given two metric spaces (X, dX) and (Y, dY ), a function g : X → Y
is said to be Lipschitz continuous if there exists a constant L > 0 such that
for every x1, x2 ∈ X we have dY (g(x1), g(x2)) ≤ L · dX(x1, x2). We say that
L is a Lipschitz constant of g. For the verification procedure when the control
policy π is given, we also assume that π is Lipschitz continuous. This is also
a common assumption in control theory and RL that allows for a rich class of
policies including neural network policies, as all standard activation functions
such as ReLU, sigmoid or tanh are Lipschitz continuous [47]. Finally, in Sect. 4
we assume that the stochastic disturbance space N is bounded or that d is a
product of independent univariate distributions, which is needed for efficient
sampling and expected value computation.

Almost-Sure Asymptotic Stability. There are several notions of stability in
stochastic systems. In this work, we consider the notion of almost-sure asymp-
totic stability [33], which requires the system to eventually converge and stay
within the stabilizing set. In order to define this formally, for each x ∈ X let
d(x,Xs) = infxs∈Xs

||x − xs||1, where || · ||1 is the l1-norm on R
m.

Definition 1. A Borel-measurable set Xs ⊆ X is almost-surely (a.s.) asymptot-
ically stable, if for each initial state x0 ∈ X we have

Px0

[
lim

t→∞ d(xt,Xs) = 0
]

= 1.

The above definition slightly differs from that of [33] which considers the
special case of a singleton Xs = {0}. The reason for this difference is that,
analogously to [37] and to the existing works on learning stabilizing policies in
deterministic systems [8,15,42], we need to consider stability with respect to an
open neighborhood of the origin for learning to be numerically stable.

3 Theoretical Results

We now introduce our novel notion of stabilizing ranking supermartingales
(sRSMs). We then show that sRSMs can be used to formally certify a.s. asymptotic
stability with respect to a fixed policy π without requiring that the stabilizing set
is closed under system dynamics. To that end, in this section we assume that the
policy π is fixed. In the next section, we will then present our learning procedure.

Prior Work – Ranking Supermartingales (RSMs). In order to motivate our
sRSMs and to explain their novelty, we first recall ranking supermartingales
(RSMs) [11] that were used in [37] for certifying a.s. asymptotic stability under
a given policy π, when the stabilizing set is assumed to be closed under system
dynamics. If the stabilizing set is assumed to be closed under system dynamics,
then a.s. asymptotic stability of Xs is equivalent to a.s. reachability since the
agent cannot leave Xs once entered.



362 M. Ansaripour et al.

Intuitively, an RSM is a non-negative continuous function V : X → R whose
value at each state in X\Xs strictly decreases in expected value by some ε > 0
upon every one-step evolution of the system under the policy π.

Definition 2 (Ranking supermartingales [11,37]). A continuous function
V : X → R is a ranking supermartingale (RSM) for Xs if V (x) ≥ 0 for each
x ∈ X and if there exists ε > 0 such that for each x ∈ X\Xs we have

Eω∼d

[
V (f(x, π(x), ω))

]
≤ V (x) − ε.

It was shown that, if a system under policy π admits an RSM and the
stabilizing set Xs is assumed to be closed under system dynamics, then Xs is
a.s. asymptotically stable. The intuition behind this result is that V needs to
strictly decrease in expected value until Xs is reached while remaining bounded
from below by 0. Results from martingale theory can then be used to prove
that the agent must eventually converge and reach Xs with probability 1, due
to a strict decrease in expected value by ε > 0 outside of Xs which prevents
convergence to any other state. However, apart from nonnegativity, the defining
conditions on RSMs do not impose any conditions on the RSM once the agent
reaches Xs. In particular, if the stabilizing set Xs is not closed under system
dynamics, then the defining conditions of RSMs do not prevent the agent from
leaving and reentering Xs infinitely many times and thus never stabilizing. In
order to formally ensure stability, the defining conditions of RSMs need to be
strengthened and in the rest of this section we solve this problem.

Our New Certificate – Stabilizing Ranking Supermartingales (sRSMs). We now
define our sRSMs, which certify a.s. asymptotic stability even when the stabiliz-
ing set is not assumed to be closed under system dynamics and thus overcome
the limitation of RSMs of [37] that was discussed above. Recall, we use Δ to
denote the maximal step size of the system.

Definition 3 (Stabilizing ranking supermartingales). Let ε,M, δ > 0. A
Lipschitz continuous function V : X → R is said to be an (ε,M, δ)-stabilizing
ranking supermartingale ((ε,M, δ)-sRSM) for Xs if the following conditions hold:

1. Nonnegativity. V (x) ≥ 0 holds for each x ∈ X .
2. Strict expected decrease if V ≥ M . For each x ∈ X , if V (x) ≥ M then

Eω∼d

[
V

(
f(x, π(x), ω)

)]
≤ V (x) − ε.

3. Lower bound outside Xs. V (x) ≥ M + LV · Δ + δ holds for each x ∈ X\Xs,
where LV is a Lipschitz constant of V .

An example of an sRSM for a 1-dimensional stochastic dynamical system is
shown in Fig. 1. The intuition behind our new conditions is as follows. Condi-
tion 2 in Definition 3 requires that, at each state in which V ≥ M , the value
of V decreases in expectation by ε > 0 upon one-step evolution of the system.
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Fig. 1. Example of a 1-dimensional stochastic dynamical system for which the stabiliz-
ing set Xs is not closed under system dynamics since from every system state any other
state is reachable with positive probability. a) System definition and an sRSM that it
admits. b) Illustration of a single time step evolution of the system. c) Visualization
of the sRSM and the corresponding level set used to bound the probability of leaving
the stabilizing region.

As we show below, this ensures probability 1 convergence to the set of states
S = {x ∈ X | V (x) ≤ M} from any other state of the system. On the other
hand, condition 3 in Definition 3 requires that V ≥ M + LV · Δ + δ outside of
the stabilizing set Xs, thus S ⊆ Xs. Moreover, if the agent is in a state where
V ≤ M , the value of V in the next state has to be ≤ M +LV ·Δ due to Lipschitz
continuity of V and Δ being the maximal step size of the system. Therefore, even
if the agent leaves S, for the agent to actually leave Xs the value of V has to
increase from a value ≤ M +LV ·Δ to a value ≥ M +LV ·Δ+ δ while satisfying
the strict expected decrease condition imposed by condition 2 in Definition 3 at
every intermediate state that is not contained in S. The following theorem is the
main result of this section.

Theorem 1. If there exist ε,M, δ > 0 and an (ε,M, δ)-sRSM for Xs, then Xs

is a.s. asymptotically stable.

Proof sketch, full proof in the extended version [6]. In order to prove Theorem 1,
we need to show that Px0 [limt→∞ d(xt,Xs) = 0] = 1 for every x0 ∈ X . We show
this by proving the following two claims. First, we show that, from each initial
state x0 ∈ X , the agent converges to and reaches S = {x ∈ X | V (x) ≤ M} with
probability 1. The set S is a subset of Xs by condition 3 in Definition 3 of sRSMs.
Second, we show that once the agent is in S it may leave Xs with probability at
most p = M+LV ·Δ

M+LV ·Δ+δ < 1. We then prove that the two claims imply Theorem 1.

Claim 1. For each initial state x0 ∈ X , the agent converges to and reaches
S = {x ∈ X | V (x) ≤ M} with probability 1.

To prove Claim 1, let x0 ∈ X . If x0 ∈ S, then the claim trivially holds. So
suppose w.l.o.g. that x0 �∈ S. We consider the probability space (Ωx0 ,Fx0 ,Px0)
of all system trajectories that start in x0, and define a stopping time TS : Ωx0 →
N0 ∪{∞} which to each trajectory assigns the first hitting time of the set S and
is equal to ∞ if the trajectory does not reach S. Furthermore, for each i ∈ N0,
we define a random variable Xi in this probability space via

Xi(ρ) =

{
V (xi), if i < TS(ρ)
V (xTS(ρ)), otherwise

(1)
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for each trajectory ρ = (xt,ut, ωt)t∈N0 ∈ Ωx0 . In words, Xi is equal to the
value of V at the i-th state along the trajectory until S is reached, upon which
it becomes constant and equal to the value of V upon first entry into S. We
prove that (Xi)∞

i=0 is an instance of the mathematical notion of ε-ranking super-
martingales (ε-RSMs) [11] for the stopping time TS . Intuitively, an ε-RSM for
TS is a stochastic process which is non-negative, decreases in expected value
upon every one-step evolution of the system and furthermore the decrease is
strict and by ε > 0 until the stopping time TS is exceeded. If ε is allowed to
be 0 as well, then the process is simply said to be a supermartingale [54]. It
is a known result in martingale theory that, if an ε-RSM exists for TS , then
Px0 [TS < ∞] = Px0 [Reach(S)] = 1. Thus, by proving that (Xi)∞

i=0 defined above
is an ε-RSM for TS , we also prove Claim 1. We provide an overview of martingale
theory results used in this proof in the extended version of the paper [6].

Claim 2. Px0 [∃ t ∈ N0 s.t. xt �∈ Xs] = p < 1 where p = M+LV ·Δ
M+LV ·Δ+δ , for each

x0 ∈ S.

To prove Claim 2, recall that S = {x ∈ X | V (x) ≤ M}. Thus, as V is Lipschitz
continuous with Lipschitz constant LV and Δ is the maximal step size of the
system, it follows that the value of V immediately upon the agent leaving the
set S is ≤ M + LV · Δ. Hence, for the agent to leave Xs from x0 ∈ S, it first
has to reach a state x1 with M < V (x1) ≤ M + LV · Δ and then to also reach
a state x2 �∈ Xs from x1 without reentering S. By condition 3 in Definition 3
of sRSMs, we have V (x2) ≥ M + LV · Δ + δ. We claim that this happens with
probability at most p = M+LV ·Δ

M+LV ·Δ+δ . To prove this, we use another result from
martingale theory which says that, if (Zi)∞

i=0 is a nonnegative supermartingale
and λ > 0, then P[supi≥0 Zi ≥ λ] ≤ E[Z0]

λ (see the extended version for full
proof [6]). We apply this theorem to the process (X ′

i)
∞
i=0 defined analogously as

in Eq. 1, but in the probability space of trajectories that start in x1. Then, since
in this probability space we have that X0 is equal to V (x1) ≤ M + LV · Δ, by
plugging in λ = M + LV · Δ + δ we conclude that the probability of the process
ever leaving Xs and thus reaching a state in which V ≥ M + LV · Δ + δ is

Px0 [∃ t ∈ N0 s.t. xt �∈ Xs]
≤Px0 [sup

i≥0
Xi ≥ M + LV · Δ + δ]

≤Px1 [sup
i≥0

X ′
i ≥ M + LV · Δ + δ]

≤ M + LV · Δ

M + LV · Δ + δ
= p < 1,

so Claim 2 follows. The above inequality is formally proved in the extended
version [6].

Claim 1 and Claim 2 Imply Theorem 1. Finally, we show that these two claims
imply the theorem statement. By Claim 1, the agent with probability 1 converges
to and reaches S ⊆ Xs from any initial state. On the other hand, by Claim 2,
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upon reaching a state in S the probability of leaving Xs is at most p < 1.
Furthermore, even if Xs is left, by Claim 1 the agent is guaranteed to again
converge to and reach S. Hence, due to the system dynamics under a fixed policy
satisfying Markov property, the probability of the agent leaving and reentering
S more than N times is bounded from above by pN . By letting N → ∞, we
conclude that the probability of the agent leaving Xs and reentering infinitely
many times is 0, so the agent with probability 1 eventually enters and S and
does not leave Xs after that. This implies that Xs is a.s. asymptotically stable. ��

Bounds on Stabilization Time. We conclude this section by showing that our
sRSMs not only certify a.s. asymptotic stability of Xs, but also provide bounds
on the number of time steps that the agent may spend outside of Xs. This is
particularly relevant for safety-critical applications in which the goal is not only
to ensure stabilization but also to ensure that the agent spends as little time
outside the stabilization set as possible. For each trajectory ρ = (xt,ut, ωt)t∈N0 ,
let OutXs

(ρ) = |{t ∈ N0 | xt �∈ Xs}| ∈ N0 ∪ {∞}.

Theorem 2 (Proof in the extended version [6]). Let ε,M, δ > 0 and sup-
pose that V : X → R is an (ε,M, δ)-sRSM for Xs. Let Γ = supx∈Xs

V (x) be
the supremum of all possible values that V can attain over the stabilizing set Xs.
Then, for each initial state x0 ∈ X , we have that

1. Ex0 [OutXs
] ≤ V (x0)

ε + (M+LV ·Δ)·(Γ+LV ·Δ)
δ·ε .

2. Px0 [OutXs
≥ t] ≤ V (x0)

t·ε + (M+LV ·Δ)·(Γ+LV ·Δ)
δ·ε·t , for any time t ∈ N.

4 Learning Stabilizing Policies and sRSMs on Compact
State Spaces

In this section, we present our method for learning a stabilizing policy together
with an sRSM that formally certifies a.s. asymptotic stability. As stated in Sect. 2,
our method assumes that the state space X ⊆ R

n is compact and that f is
Lipschitz continuous with Lipschitz constant Lf . We prove that, if the method
outputs a policy, then it guarantees a.s. asymptotic stability. After presenting
the method for learning control policies, we show that it can also be adapted
to a formal verification procedure that learns an sRSM for a given Lipschitz
continuous control policy π.

Outline of the Method. We parameterize the policy and the sRSM via two neural
networks πθ : X → U and Vν : X → R, where θ and ν are vectors of neural
network parameters. To enforce condition 1 in Definition 3, which requires the
sRSM to be a nonnegative function, our method applies the softplus activation
function x → log(exp(x) + 1) to the output of Vν . The remaining layers of πθ

and Vν apply ReLU activation functions, therefore πθ and Vν are also Lipschitz
continuous [47]. Our method draws insight from the algorithms of [15,55] for
learning policies together with Lyapunov functions or RSMs and it comprises
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Algorithm 1. Learner-verifier procedure
1: Input Dynamics function f , stochastic disturbance distribution d, stabilizing

region Xs ⊆ X , Lipschitz constant Lf

2: Parameters τ > 0, Ncond 2 ∈ N, Ncond 3 ∈ N, εtrain, δtrain
3: ˜X ← centers of cells of a discretization rectangular grid in X with mesh τ
4: B ← centers of grid cells of a subgrid of ˜X
5: πθ ← policy trained by using PPO [44]
6: M ← 1
7: while timeout not reached do
8: πθ, Vν ← jointly trained by minimizing the loss in (2) on dataset B

9: ˜X≥M ← centers of cells over which Vν(x) ≥ M
10: Lπ, LV ← Lipschitz constants of πθ, Vν

11: K ← LV · (Lf · (Lπ + 1) + 1)

12: ˜Xce ← counterexamples to condition 2 on ˜X≥M

13: if ˜Xce = {} then
14: CellsX\Xs ← grid cells that intersect X\Xs

15: Δθ ← max. step size of the system with policy π
16: if V ν(cell) > M + LV · Δθ for all cell ∈ CellsX\Xs then
17: return πθ, Vν , “Xs is a.s. asymptotically stable under πθ”
18: end if
19: else
20: B ← (B \ {x ∈ B|Vν(x) < M}) ∪ ˜Xce

21: end if
22: end while
23: Return Unknown

of a learner and a verifier module that are composed into a loop. In each loop
iteration, the learner module first trains both πθ and Vν on a training objective
in the form of a differentiable approximation of the sRSM conditions 2 and 3 in
Definition 3. Once the training has converged, the verifier module formally checks
whether the learned sRSM candidate satisfies conditions 2 and 3 in Definition
3. If both conditions are fulfilled, our method terminates and returns a policy
together with an sRSM that formally certifies a.s. asymptotic stability. If at least
one sRSM condition is violated, the verifier module enlarges the training set of
the learner by counterexample states that violate the condition in order to guide
the learner towards fixing the policy and the sRSM in the next learner iteration.
This loop is repeated until either the verifier successfully verifies the learned
sRSM and outputs the control policy and the sRSM, or until some specified
timeout is reached in which case no control policy is returned by the method.
The pseudocode of the algorithm is shown in Algorithm 1. In what follows, we
provide details on algorithm initialization (lines 3–6, Algorithm 1) and on the
learner and the verifier modules (lines 7–22, Algorithm 1).
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4.1 Initialization

State Space Discretization. The key challenge in verifying an sRSM candidate is
to check the expected decrease condition imposed by condition 2 in Definition 3.
To check this condition, following the idea of [8] and [37] our method first com-
putes a discretization of the state space X . A discretization X̃ of X with mesh
τ > 0 is a finite subset X̃ ⊆ X such that for every x ∈ X there exists x̃ ∈ X̃ with
||x̃ − x||1 < τ . Our method computes the discretization by considering centers
of cells of a rectangular grid of sufficiently small cell size (line 3, Algorithm 1).
The discretization will later be used by the verifier in order to reduce verification
of condition 2 to checking a slightly stricter condition at discretization vertices,
due to all involved functions being Lipschitz continuous (more details Sect. 4.3).

The algorithm also collects the set B of grid cell centers of a subgrid of X̃
of larger mesh (line 4, Algorithm 1). This set will be used as the initial training
set for the learner, and will then be gradually expanded by counterexamples
computed by the verifier.

Policy Initialization. We initialize parameters of the neural network policy πθ

by running several iterations of the proximal policy optimization (PPO) [44]
RL algorithm (line 5, Algorithm 1). In particular, we induce a Markov decision
process (MDP) from the given system by using the reward function r : X → R

defined via

r(x) =

{
1, if x ∈ Xs

0, otherwise

in order to learn an initial policy that drives the system toward the stabilizing
set. The practical importance of initialization for learning stabilizing policies in
deterministic systems was observed in [15].

Fix the Value M = 1. As the last initialization step, we observe that one may
always rescale the value of an sRSM by a strictly positive constant factor while
preserving all conditions in Definition 3. Therefore, without loss of generality,
we fix the value M = 1 in Definition 3 for our sRSM (line 6, Algorithm 1).

4.2 Learner

The policy and the sRSM candidate are learned by minimizing the loss

L(θ, ν) = Lcond 2(θ, ν) + Lcond 3(θ, ν) (2)

(line 8, Algorithm 1). The two loss terms guide the learner towards an sRSM
candidate that satisfies conditions 2 and 3 in Definition 3.

We define the loss term for condition 2 via

Lcond 2(θ, ν) =
1

|B|
∑
x∈B

(
max

{

∑
ω1,...,ωNcond 2∼d

Vν

(
f(x, πθ(x), ωi)

)
Ncond 2

− Vν(x) + εtrain, 0
})

.
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Intuitively, for each element x ∈ B of the training set, the corresponding term in
the sum incurs a loss whenever condition 2 is violated at x. Since the expected
value of Vν at a successor state of x does not admit a closed form expression
due to Vν being a neural network, we approximate it as the mean of values of
Vν at Ncond 2 independently sampled successor states of x, with Ncond 2 being
an algorithm parameter.

For condition 3, the loss term samples Ncond 3 system states from X\Xs with
Ncond 3 an algorithm parameter and incurs a loss whenever condition 3 is not
satisfied at some sampled state:

Lcond3(θ, ν) = max
{

M + LVν
+ Δθ + δtrain − min

x1,...xNcond 3∼X\Xs

Vν(xi), 0
}

.

Regularization Terms in the Implementation. In our implementation, we also
add two regularization terms to the loss function used by the learner. The first
term favors learning an sRSM candidate whose global minimum is within the
stabilizing set. The second term penalizes large Lipschitz bounds of the networks
πθ and Vν by adding a regularization term. While these two loss terms do not
directly enforce any particular condition in Definition 3, we observe that they
help the learning and the verification process and decrease the number of needed
learner-verifier iterations. See the extended version [6] for details on regulariza-
tion terms.

4.3 Verifier

The verifier formally checks whether the learned sRSM candidate satisfies condi-
tions 2 and 3 in Definition 3. Recall, condition 1 is satisfied due to the softplus
activation function applied to the output of Vν .

Formal Verification of Condition 2. The key challenge in checking the expected
decrease condition in condition 2 is that the expected value of a neural net-
work function does not admit a closed-form expression, so we cannot evaluate it
directly. Instead, we check condition 2 by first showing that it suffices to check a
slightly stricter condition at vertices of the discretization X̃ , due to all involved
functions being Lipschitz continuous. We then show how this stricter condition
is checked at each discretization vertex.

To verify condition 2, the verifier first collects the set X̃≥M of centers of all
grid cells that contain a state x with Vν(x) ≥ M (line 9, Algorithm 1). This
set is computed via interval arithmetic abstract interpretation (IA-AI) [22,27],
which for each grid cell propagates interval bounds across neural network layers
in order to bound from below the minimal value that Vν attains over that cell.
The center of the grid cell is added to X̃≥M whenever this lower bound is smaller
than M . We use the method of [27] to perform IA-AI with respect to a neural
network function Vν so we refer the reader to [27] for details on this step.

Once X̃≥M is computed, the verifier uses the method of [47, Section 4.3]
to compute the Lipschitz constants Lπ and LV of neural networks πθ and Vν ,
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respectively (line 10, Algorithm 1). It then sets K = LV · (Lf · (Lπ + 1) + 1)
(line 11, Algorithm 1). Finally, for each x̃ ∈ X̃≥M the verifier checks the following
stricter inequality

Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
< Vν(x̃) − τ · K, (3)

and collects the set X̃ce ⊆ X̃≥M of counterexamples at which this inequality is
violated (line 12, Algorithm 1). The reason behind checking this stronger con-
straint is that, due to Lipschitz continuity of all involved functions and due to
τ being the mesh of the discretization, we can show (formally done in the proof
of Theorem 3) that this condition being satisfied for each x̃ ∈ X̃≥M implies
that the expected decrease condition Eω∼d[Vν(f(x, πθ(x̃), ω))] < Vν(x) is sat-
isfied for all x ∈ X with V (x) ≥ M . Then, due to both sides of the inequal-
ity being continuous functions and {x ∈ X | Vν(x) ≥ M} being a compact
set, their difference admits a strictly positive global minimum ε > 0 so that
Eω∼d[Vν(f(x, πθ(x̃), ω))] ≤ Vν(x) − ε is satisfied for all x ∈ X with V (x) ≥ M .
We show in the paragraph below how our method formally checks whether the
inequality in (3) is satisfied at some x̃ ∈ X̃≥M .

If (3) is satisfied for each x̃ ∈ X̃≥M and so X̃ce = ∅, the verifier concludes
that Vν satisfies condition 2 in Definition 3 and proceeds to checking condition 3
in Definition 3 (lines 14–18, Algorithm 1). Otherwise, any computed counterex-
ample to this constraint is added to B to help the learner fine-tune an sRSM
candidate (line 20, Algorithm 1) and the algorithm proceeds to the start of the
next learner-verifier iteration (line 7, Algorithm 1).

Checking Inequality (3) and Expected Value Computation. To check (3) at some
x̃ ∈ X̃≥M , we need to compute the expected value Eω∼d[Vν(f(x̃, πθ(x̃), ω))].
Note that this expected value does not admit a closed form expression due to
Vν being a neural network function, so we cannot evaluate it directly. Instead,
we use the method of [37] in order to compute an upper bound on this expected
value and use this upper bound to formally check whether (3) is satisfied at
x̃. For completeness of our presentation, we briefly describe this expected value
bound computation below. Recall, in our assumptions in Sect. 2, we said that
our algorithm assumes that the stochastic disturbance space N is bounded or
that d is a product of independent univariate distributions.

First, consider the case when N is bounded. We partition the stochastic
disturbance space N ⊆ R

p into finitely many cells cell(N ) = {N1, . . . ,Nk}. We
denote by maxvol = maxNi∈cell(N ) vol(Ni) the maximal volume of any cell in the
partition with respect to the Lebesgue measure over Rp. The expected value can
then be bounded from above via

Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
≤

∑
Ni∈cell(N )

maxvol · sup
ω∈Ni

F (ω)

where F (ω) = Vν(f(x̃, πθ(x̃), ω). Each supremum on the right-hand-side is then
bounded from above by using the IA-AI-based method of [27].
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Second, consider the case when N is unbounded but d is a product of inde-
pendent univariate distributions. Note that in this case we cannot directly follow
the above approach since maxvol = maxNi∈cell(N ) vol(Ni) would be infinite. How-
ever, since d is a product of independent univariate distributions, we may first
apply the Probability Integral Transform [39] to each univariate distribution in
d to transform it into a finite support distribution and then proceed as above.

Formal Verification of Condition 3. To formally verify condition 3 in Definition 3,
the verifier collects the set CellsX\Xs

of all grid cells that intersect X\Xs (line
14, Algorithm 1). Then, for each cell ∈ CellsX\Xs

, it uses IA-AI to check

V ν(cell) > M + LV · Δθ, (4)

with V ν(cell) denoting the lower bound on Vν over the cell computed by IA-
AI (lines 15–16, Algorithm 1). If this holds, then the verifier concludes that Vν

satisfies condition 3 in Definition 3 with δ = mincell∈CellsX\Xs
{V ν(cell)−M −LV ·

Δθ}. Hence, as conditions 2 and 3 have both been formally verified to be satisfied,
the method returns the policy πθ and the sRSM Vν which formally proves that
Xs is a.s. asymptotically stable under πθ (line 17, Algorithm 1). Otherwise, the
method proceeds to the next learner-verifier loop iteration (line 7, Algorithm 1).

Algorithm Correctness. The following theorem establishes the correctness of
Algorithm 1. In particular, it shows that if the verifier confirms that conditions 2
and 3 in Definition 3 are satisfied and therefore Algorithm 1 returns a control
policy πθ and an sRSM Vν , then it holds that Vν is indeed an sRSM and that
Xs is a.s. asymptotically stable under πθ.

Theorem 3 (Algorithm correctness, proof in the extended version [6]).
Suppose that the verifier shows that Vν satisfies (3) for each x̃ ∈ X̃≥M and (4)
for each cell ∈ CellsX\Xs

, so Algorithm 1 returns πθ and Vν . Then Vν is an
sRSM and Xs is a.s. asymptotically stable under πθ.

4.4 Adaptation into a Formal Verification Procedure

To conclude this section, we show that Algorithm 1 can be easily adapted into
a formal verification procedure for showing that Xs is a.s. asymptotically stable
under some given control policy π. This adaptation only assumes that π is Lip-
schitz continuous with a given Lipschitz constant Lπ, or alternatively that it is
a neural network policy with Lipschitz continuous activation functions in which
case we use the method of [47] to compute its Lipschitz constant Lπ.

Instead of jointly learning the control policy and the sRSM, the formal veri-
fication procedure now only learns a neural network sRSM Vν . This is done by
executing the analogous learner-verifier loop described in Algorithm 1. The only
difference happens in the learner module, where now only the parameters ν of
the sRSM neural network are learned. Hence, the loss function in (2) that is used
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Fig. 2. Visualization of the sRSM candidate after 1 and 4 iterations of our algorithm
for the inverted pendulum task. The candidate after 1 iteration does not satisfy all
sRSM conditions, while the candidate after 4 iterations is an sRSM.

Fig. 3. Visualization of the learned stabilizing sets in green, in which the system will
remain with probability 1. (Color figure online)

in (line 8, Algorithm 1) has the same form as in Sect. 4.2, but now it only takes
parameters ν as input:

L(ν) = Lcond 2(ν) + Lcond 3(ν).

Additionally, the control policy initialization in (line 5, Algorithm 1) becomes
redundant because the control policy π is given. Apart from these two changes,
the formal verification procedure remains identical to Algorithm 1 and its cor-
rectness follows from Theorem 3.

5 Experimental Results

In this section, we experimentally evaluate the effectiveness of our method1. We
consider the same experimental setting and the two benchmarks studied in [37].
However, in contrast to [37], we do not assume that the stabilization sets are
1 Our implementation is available at https://github.com/mlech26l/

neural_martingales/tree/ATVA2023.

https://github.com/mlech26l/neural_martingales/tree/ATVA2023
https://github.com/mlech26l/neural_martingales/tree/ATVA2023
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Table 1. Results of our experimental evaluation. The first column shows benchmark
names. The second column shows the numer of learner-verifier loop iterations needed
to successfully learn and verify a control policy and an sRSM. The third column shows
the mesh of the used discretization grid. The fourth column shows runtime in seconds.

Benchmark Iters. Mesh (τ) Runtime

2D system 5 0.0007 3660 s
Pendulum 4 0.003 2619 s

closed under system dynamics and that the system stabilizes immediately upon
reaching the stabilization set. In our evaluation, we modify both environments
so that this assumption is violated. The goal of our evaluation is to confirm
that our method based on sRSMs can in practice learn policies that formally
guarantee a.s. asymptotic stability even when the stabilization set is not closed
under system dynamics.

We parameterize both πθ and Vν by two fully-connected neural networks
with 2 hidden ReLU layers, each with 128 neurons. Below we describe both
benchmarks considered in our evaluation, and refer the reader to the extended
version of the paper [6] for further details and formal definitions of environment
dynamics.

The first benchmark is a two-dimensional linear dynamical system with non-
linear control bounds and is of the form xt+1 = Axt + Bg(ut) + ω, where ω is a
stochastic disturbance vector sampled from a zero-mean triangular distribution.
The function g clips the action to stay within the interval [1, -1]. The state
space is X = {x | |x1| ≤ 0.7, |x2| ≤ 0.7} and we want to learn a policy for the
stabilizing set

Xs = X\
(
{x | −0.7 ≤ x1 ≤ −0.6,−0.7 ≤ x2 ≤ −0.4}
⋃

{x | 0.6 ≤ x1 ≤ 0.7, 0.4 ≤ x2 ≤ 0.7}
)
.

The second benchmark is a modified version of the inverted pendulum prob-
lem adapted from the OpenAI gym [9]. Note that this benchmark has non-
polynomial dynamics, as its dynamics function involves a sine function (see the
extended version [6]). The system is expressed by two state variables that rep-
resent the angle and the angular velocity of the pendulum. Contrary to the
original task, the problem considered here introduces triangular-shaped ran-
dom noise to the state after each update step. The state space is define as
X = {x | |x1| ≤ 3, |x2| ≤ 3}, and objective of the agent is to stabilize the
pendulum within the stabilizing set

Xs = X\
(
{x | −3 ≤ x1 ≤ −2.9,−3 ≤ x2 ≤ 0}
⋃

{x | 2.9 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3}
)
.
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Fig. 4. Contour lines of the expected stabilization time implied by Theorem 2 for the
2D system task on the left and the inverted pendulum task on the right.

For both tasks, our algorithm could find valid sRSMs and prove stability. The
runtime characteristics, such as the number of iterations and total runtime, is
shown in Table 1. In Fig. 2 we plot the sRSM found by our algorithm for the
inverted pendulum task. We also visualize for both tasks in Fig. 3 in green the
subset of Xs implied by the learned sRSM in which the system stabilizes. Finally,
in Fig. 4 we show the contour lines of the expected stabilization time bounds that
are obtained by applying Theorem 2 to the learned sRSMs.

Limitations. We conclude by discussing limitations of our approach. Verification
of neural networks is inherently a computationally difficult problem [8,30,43].
Our method is subject to this barrier as well. In particular, the complexity of
the grid decomposition routine for checking the expected decrease condition is
exponential in the dimension of the system state space. Consideration of dif-
ferent grid decomposition strategies and in particular non-uniform grids that
incorporate properties of the state space is an interesting direction of future
work towards improving the scalability of our method. However, a key advan-
tage of our approach is that the complexity is only linear in the size of the
neural network policy. Consequently, our approach allows learning and verifying
networks that are of the size of typical networks used in reinforcement learning
[44]. Moreover, our grid decomposition procedure runs entirely on accelerator
devices, including CPUs, GPUs, and TPUs, thus leveraging future advances in
these computing devices. A technical limitation of our learning procedure is that
it is restricted to compact state spaces. Our theoretical results are applicable to
arbitrary (potentially unbounded) state spaces, as shown in Fig. 1.

6 Related Work

Stability for Deterministic Systems. Most early works on control with stability
constraints rely either on hand-designed certificates or their computation via
sum-of-squares (SOS) programming [28,40]. Automation via SOS programming
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is restricted to problems with polynomial dynamics and does not scale well with
dimension. Learning-based methods present a promising approach to overcome
these limitations [14,29,42]. In particular, the methods of [1,15] also learn a
control policy and a Lyapunov function as neural networks by using a learner-
verifier framework that our method builds on and extends to stochastic systems.

Stability for Stochastic Systems. While the theory behind stochastic system sta-
bility is well studied [33,34], only a few works consider automated controller
synthesis with formal stability guarantees for stochastic systems with continu-
ous dynamics. The methods of [23,51] are numerical and certify weaker notions of
stability. Recently, [37,55] used RSMs and learn a stabilizing policy together with
an RSM that certifies a.s. asymptotic stability. However, this method assumes
closedness under system dynamics and essentially considers the stability prob-
lem as a reachability problem. In contrast, our proof in Sect. 3 introduces a new
type of reasoning about supermartingales which allows us to handle stabilization
without prior knowledge of a set that is closed under the system dynamics.

Reachability and Safety for Stochastic Systems. Comparatively more works
have studied controller synthesis in stochastic systems with formal reachabil-
ity and safety guarantees. A number of methods abstract the system as a
finite-state Markov decision process (MDP) and synthesize a controller for the
MDP to provide formal reachability or safety guarantees over finite time hori-
zon [10,35,45,53]. An abstraction based method for obtaining infinite time hori-
zon PAC-style guarantees on the probability of reach-avoidance in linear stochas-
tic systems was proposed in [7]. A method for formal controller synthesis in
infinite time horizon non-linear stochastic systems with guarantees on the prob-
ability of co-safety properties was proposed in [52]. A learning-based approach
for learning a control policy that provides formal reachability and avoidance
infinite time horizon guarantees was proposed in [56].

Safe Exploration RL. Safe exploration RL restricts exploration of RL algorithms
in a way that a given safety constraint is satisfied. This is typically ensured
by learning the system dynamics’ uncertainty and limiting exploratory actions
within a high probability safe region via Gaussian Processes [32,49], linearized
models [24], deep robust regression [38] and Bayesian neural networks [36].

Probabilistic Program Analysis. Ranking supermartingales were originally pro-
posed for proving a.s. termination in probabilistic programs (PPs) [11]. Since
then, martingale-based methods have been used for termination [2,16,17,19]
safety [18,20,48] and recurrence and persistence [12] analysis in PPs, with the lat-
ter being equivalent to stability. However, the persistence certificate of [12] is sub-
stantially different from ours. In particular, the certificate of [12] requires strict
expected decrease outside the stabilizing set and non-strict expected decrease
within the stabilizing set. In contrast, our sRSMs require strict expected decrease
outside and only within a small part of the stabilizing set (see Definition 3). We
also note that the certificate of [12] cannot be combined with our learner-verifier



Learning Provably Stabilizing Neural Controllers 375

procedure. Indeed, since our verifier module discretizes the state space and veri-
fies a stricter condition at discretization vertices, if we tried to verify an instance
of the certificate of [12] then we would be verifying the strict expected decrease
condition over the whole state space. But this condition is not satisfiable over
compact state spaces, as any continuous function must admit a global minimum.

7 Conclusion

In this work, we developed a method for learning control policies for stochas-
tic systems with formal guarantees about the systems’ a.s. asymptotic stability.
Compared to the existing literature, which assumes that the stabilizing set is
closed under system dynamics and cannot be left once entered, our approach
does not impose this assumption. Our method is based on the novel notion of
stabilizing ranking supermartingales (sRSMs) that serve as a formal certificate of
a.s. asymptotic stability. We experimentally showed that our learning procedure
is able to learn stabilizing policies and stability certificates in practice.
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Abstract. Deep neural networks, (DNNs, a.k.a. NNs), have been widely
used in various tasks and have been proven to be successful. However, the
accompanied expensive computing and storage costs make the deploy-
ments in resource-constrained devices a significant concern. To solve this
issue, quantization has emerged as an effective way to reduce the costs of
DNNs with little accuracy degradation by quantizing floating-point num-
bers to low-width fixed-point representations. Quantized neural networks
(QNNs) have been developed, with binarized neural networks (BNNs)
restricted to binary values as a special case. Another concern about neu-
ral networks is their vulnerability and lack of interpretability. Despite the
active research on trustworthy of DNNs, few approaches have been pro-
posed to QNNs. To this end, this paper presents an automata-theoretic
approach to synthesizing BNNs that meet designated properties. More
specifically, we define a temporal logic, called BLTL, as the specification
language. We show that each BLTL formula can be transformed into an
automaton on finite words. To deal with the state-explosion problem, we
provide a tableau-based approach in real implementation. For the synthe-
sis procedure, we utilize SMT solvers to detect the existence of a model
(i.e., a BNN) in the construction process. Notably, synthesis provides a
way to determine the hyper-parameters of the network before training.
Moreover, we experimentally evaluate our approach and demonstrate its
effectiveness in improving the individual fairness and local robustness of
BNNs while maintaining accuracy to a great extent.
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É. André and J. Sun (Eds.): ATVA 2023, LNCS 14215, pp. 380–400, 2023.
https://doi.org/10.1007/978-3-031-45329-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45329-8_18&domain=pdf
http://orcid.org/0009-0007-1478-9144
http://orcid.org/0000-0002-2315-1704
http://orcid.org/0000-0002-0581-2679
http://orcid.org/0000-0002-1171-7061
http://orcid.org/0000-0003-0637-8744
https://doi.org/10.1007/978-3-031-45329-8_18


Synthesizing BNNs 381

1 Introduction

Deep Neural Networks (DNNs) are increasingly used in a variety of applications,
from image recognition to autonomous driving, due to their high accuracy in clas-
sification and prediction tasks [27,30]. However, two critical challenges emerge,
high-cost and a lack of trustworthiness, that impede their further development.

On the one hand, a modern DNN typically contains a large number of param-
eters which are typically stored as 32-bit floating-point numbers (e.g., GPT-4
contains about 100 trillion parameters [14]), thus an inference often demands
more than a billion floating-point operations. As a result, deploying a modern
DNN requires huge computing and storage resources, thus it is challenging for
resource-constrained embedding devices. To tackle this issue, quantization has
been introduced, which compresses a network by converting floating-point num-
bers to low-width fixed-point representations, so that it can significantly reduce
both memory and computing costs using fixed-point arithmetic with a relatively
small side-effect on the network’s accuracy [23].

On the other hand, neural networks are known to be vulnerable to input
perturbations, namely, slight input disturbance may dramatically change their
output [3–7,12,28,36]. In addition, NNs are often treated as black box [17],
and we are truly dearth of understanding of the decision-making process inside
the “box”. As a result, a natural concern is whether NNs can be trustwor-
thy, especially in some safety-critical scenarios, where erroneous behaviors might
lead to serious consequences. One promising way to tackle this problem is for-
mal verification, which defines properties that we expect the network to sat-
isfy and rigorously checks whether the network meets our expectations. Numer-
ous verification approaches have been proposed recently aiming at this pur-
pose [17]. Nevertheless, these approaches in general ignore rounding errors in
quantized computations, making them unable to apply for quantized neural
networks (QNNs). It has been demonstrated that specifications that hold for
a floating-point numbered DNN may not necessarily hold after quantizing the
inputs and/or parameters of the DNN [3,13]. For instance, a DNN that is robust
to given input perturbations might become non-robust after quantization. Com-
pared to DNN verification [15,17–21,37], verifying QNN is truly a more challeng-
ing and less explored problem. Evidences show that the verification problem for
QNNs is harder than DNNs [16], and only few works are specialized for verifying
QNNs [1,8,13,16,24,26,32–35].

In this paper, we concentrate on BNNs (i.e., binarized neural networks), a
special type of QNN. Although formal verification has been the primary explored
approach to verifying (quantized) neural networks, we pursue another promis-
ing line, synthesizing the expected binarized neural networks directly. In other
words, we aim to construct a neural network that satisfies the expected prop-
erties we specify, rather than verifying an existing network’s compliance with
those properties. To achieve this, we first propose, BLTL, an extension of LTLf

(namely, LTL defined on finite words), as the specification language. This logic
can conveniently describe data-related properties of BNNs. We then provide an
approach to converting a BLTL formula to an equivalent automaton. The syn-
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thesis task is then boiled down to find a path from an initial state to an accepting
state in the automaton.

Unfortunately, such a method suffers from the state-exploration problem.
To mitigate this issue, we observe that it is not necessary to synthesize the
entire BNN since the desired properties are only related to some specific hyper-
parameters of the network. To this end, we propose a tableau-based approach:
To judge whether a path is successfully detected, we check the satisfiability of
the associated BLTL formulas, and convert the problem into an IDL-solving
problem, which can be efficiently solved. Besides, we prove the existence of a
tracing-back threshold, which allows us to do backtracking earlier to avoid doing
trace searching that is unlikely to lead to a solution. The solution given by
the solver provides the hyper-parameters of the BNN, including the length of
the network and crucial input-output relations of blocks. Afterwards, one can
perform a block-wise training to obtain a desired BNN.

We implement a prototype synthesizing tool and evaluate our approach on
local robustness and individual fairness. The experiments demonstrate that our
approach can effectively improve the network’s reliability compared to the base-
line, especially for individual fairness.

The main contributions of this work are summarized as follows:

– We present a new temporal logic, called BLTL, for describing properties of
BNNs, and provide an approach to transforming BLTL formulas into equiv-
alent finite-state automata.

– We propose an automata-theoretic synthesis approach that determines the
hyper-parameters of a BNN model before training.

– We implement a prototype synthesis tool and evaluate the effectiveness on
two concerning properties, demonstrating the feasibility of our method.

Related Work. For BNNs, several verification approaches have been proposed.
Earlier work reduces the BNN verification problem to hardware verification (i.e.,
verifying combinatorial circuits), for which SAT solvers are harnessed [8]. Follow-
ing this line, [24] proposes a direct encoding from the BNN verification problem
into the SAT problem. [25] studies the effect of BNN architectures on the per-
formance of SAT solvers and uses this information to train SAT-friendly BNNs.
[1] provides a framework for approximately quantitative verification of BNNs
with PAC-style guarantees via approximate SAT model counting. Another line
of BNN verification encodes a BNN and its input region into a binary decision
diagram (BDD), and then one can verify some properties of the network by
analyzing BDD. [26] proposes an Angluin-style learning algorithm to compile a
BNN on a given input region into a BDD, and utilize a SAT solver as an equiva-
lence oracle to query. [33] has developed a more efficient BDD-based quantitative
verification framework by exploiting the internal structure of BNNs. Few work
has been dedicated to QNN verification so far. [13] shows that the properties
guaranteed by the DNN are not preserved after quantization. To resolve this
issue, they introduce an approach to verifying QNNs by using SMT solvers in
bit-vector theory. Later, [16] proves that verifying QNN with bit-vector specifica-
tions is PSPACE-Hard. More recently, [32,35] reduce the verification problem
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into integer linear constraint solving which are significantly more efficient than
the SMT-based one.

Outline. The rest of the paper is organized as follows: In Sect. 2, we introduce
preliminaries. We present the specification language BLTL in Sect. 3. In Sect. 4,
we show how to translate a BLTL formula into an equivalent automaton, which is
the basic of tableau-based approach for synthesis, and technical details are given
in Sect. 5. The proposed approach is implemented and evaluated in Sect. 6. We
conclude the paper in Sect. 7.

2 Preliminaries

We denote by R, N, and B the set of real numbers, natural numbers, and Boolean
domain {0, 1}, respectively. We use R

n and B
n to denote the set of real number

vectors and binary vectors with n elements, respectively. For n ∈ N, let [n] be the
set {0, 1, 2, . . . , n − 1}. We will interchangeably use the terminologies 0–1 vector
and binary vector in this paper. For a binary vector b, we use dec(b) to denote its
corresponding decimal number, and conversely let bin(d) be the corresponding
binary vector which encodes the number d. For example, let b = (0, 1, 1)T,
then we have dec(b) = 3. Note that bin(dec(b)) = b and dec(bin(d)) = d. For
two binary vectors a = (a0, . . . , an−1)

T and b = (b0, . . . , bn−1)
T with the same

length, we denote by a ∼ b if ai ∼ bi for all i ∈ [n], otherwise a �∼ b, where
∼∈ {>,≥, <,≤,=}. Note that a �= b if ai �= bi for some i ∈ [n].

A (vectorized) Boolean function takes a 0-1 vector as input and returns
another 0-1 vector. Hence, it is essentially a mapping from integers to integers
when each 0-1 vector b is viewed as an integer dec(b). We denote by In the
identity function such that In (b) = b, for any b ∈ B

n, where the subscript n
may be dropped when it is clear from the context. We use composition operation
◦ to represent the function composition among Boolean functions.

A binarized neural network (BNN) is a feed-forward neural network, com-
posed of several internal blocks and one output block [26,33]. Each internal
block is comprised of 3 layers and can be viewed as a mapping f : {−1, 1}n →
{−1, 1}m. Slightly different from internal blocks, the output block outputs the
classification label to which the highest activation corresponds, thus, can be seen
as a mapping out : {−1, 1}n → R

p, where p is the number of classification labels
of the network.

Since the binary values −1 and +1 can be represented as their Boolean
counterparts 0 and 1 respectively, each internal block can be viewed as a Boolean
function f : Bn → B

m [33]. Therefore, ignoring the slight difference in the output
block, an n-block BNN N can be encoded via a series of Boolean functions
fi : B�i → B

�i+1 (i = 0, 1, . . . , n − 1), and N works as the combination of these
Boolean functions, namely, it corresponds to the function,

fN = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0.

Integer difference logic (IDL) is a fragment of linear integer arithmetic, in
which atomic formulas must be of the form x − y ∼ c where x and y are integer
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variables, and c is an integer constant, ∼∈ {≤,≥, <,>,=, �=}. All these atomic
formulas can be transformed into constraints of the form x − y ≤ c [2]. For
example, x − y = c can be transformed into x − y ≤ c ∧ x − y ≥ c.

The task of an IDL-problem is to check the satisfiability of an IDL formula
in conjunctive normal form (CNF)

(x1 − y1 ≤ c1) ∧ · · · ∧ (xn − yn ≤ cn),

which can be in general converted into the cycle detection problem in a weighted,
directed graph with O(n) nodes and O(n) edges, and solved by e.g., Bellman-
Ford or Dijkstra’s algorithm, in O(n2) time [22]. IDL can be generalized to
Boolean combinations of atomic formulas of the form x − y ∼ c.

3 The Temporal Logic BLTL

3.1 Syntax and Semantics of BLTL

Let us fix a signature Σ, consisting of a set of desired Boolean functions and 0-1
vectors. Particularly, let ΣV be the subset of Σ containing only 0-1 vectors.

Terms of BLTL are described via BNF as follows:

t::= b | f (t) | �kt

where b ∈ ΣV is a 0-1 vector, called vector constant, f ∈ Σ \ ΣV is a Boolean
function, and k ∈ N is a constant, and �k in �kt denotes k placeholders for k
consecutive blocks of a BNN (i.e., k Boolean functions) to be applied onto the
term t. We remark that �0t = t.

BLTL formulas are given via the following grammar:

ψ::= 
 | t ∼ t | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where ∼∈ {≤,≥, <,>,=}, X is the Next operator and U is the Until operator.
We define the following derived Boolean operators, quantifiers with finite

domain, and temporal operators:

ψ1 ∧ ψ2
def= ¬(¬ψ1 ∨ ¬ψ2) Fψ

def= 
Uψ Gψ
def= ¬F¬ψ

ψ1 → ψ2
def= (¬ψ1) ∨ ψ2 ψ1Rψ2

def= ¬(¬ψ1U¬ψ2) Xψ
def= ¬X¬ψ

∀x ∈ B
k.ψ

def=
∧

b∈Bk∩ΣV
ψ[x/b] ∃x ∈ B

k.ψ
def= ¬∀x ∈ B

k.¬ψ

where ψ[x/b] denotes the BLTL formula obtained from ψ by replacing each
occurrence of x with b.

The semantics of BLTL formulas is defined w.r.t. a BNN N given by the
composition of Boolean functions fN = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0, and a position
i ∈ N. We first define the semantics of terms, which is given by the function
�•�N ,i, inductively:

– �b�N ,i = b for each vector constant b;
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– �f (t)�N ,i = f (�t�N ,i);

– ��kt�N ,i =
{

(fi+slen(t)+k−1 ◦ · · · ◦ fi+slen(t))(�t�N ,i), if k ≥ 1;
�t�N ,i, if k = 0;

where fi is the identity Boolean function I if i ≥ n, slen(b) = 0, slen(f(t)) =
slen(t) + 1 and slen(�kt) = slen(t) + k.

Note that we assume the widths of Boolean functions and their argument
vectors are compatible.

Proposition 1. We have: ��k �k′
t�N ,i = ��k+k′

t�N ,i.

Subsequently, the semantics of BLTL formulas is characterized via the satis-
faction relation |=, inductively:

– N , i |= 
 always holds;
– N , i |= t1 ∼ t2 iff �t1�N ,i ∼ �t2�N ,i;
– N , i |= ¬ϕ iff N , i �|= ϕ;
– N , i |= ϕ1 ∨ ϕ2 iff N , i |= ϕ1 or N , i |= ϕ1;
– N , i |= Xψ iff i < n − 1 and N , i + 1 |= ψ;
– N , i |= ψ1Uψ2 iff there is j such that i ≤ j < n, N , j |= ψ2 and N , k |= ψ1

for each i ≤ k < j;

We may write N |= ψ in the case of i = 0. In the sequel, we denote by L (ψ)
the set of BNNs {N | N |= ϕ} for each formula ϕ, and denote by ψ1 ≡ ψ2 if
N , i |= ψ1 ⇔ N , i |= ψ2 for every BNN N and i.

Proposition 2. The following statements hold:

1. Gψ ≡ ⊥Rψ;
2. Fψ ≡ ψ ∨ XFψ;
3. Gψ ≡ ψ ∧ XGψ;
4. ψ1Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2));
5. ψ1Rψ2 ≡ ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)).

For a BLTL formula ϕ and a BNN N , the model checking problem w.r.t. ϕ
and N is to decide whether N |= ϕ holds.

With the above derived operators, together with the patterns ¬¬ψ ≡ ψ
and ¬(t1 ∼ t2) ≡ t1 �∼ t2, BLTL formulas can be transformed into negation
normal form (NNF) by pushing the negations (¬) inward, till no the negations
are involved. Given two sets of formulas Γ and Γ ′ in NNF, we say that Γ ′ is a
proper closure of Γ , if the following conditions hold:

– Γ ⊆ Γ ′.
– ψ1 ∧ ψ2 ∈ Γ ′ implies that both ψ1 ∈ Γ ′ and ψ2 ∈ Γ ′.
– ψ1 ∨ ψ2 ∈ Γ ′ implies that either ψ1 ∈ Γ ′ or ψ2 ∈ Γ ′.
– ψ1Uψ2 ∈ Γ ′ implies ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)) ∈ Γ ′.
– ψ1Rψ2 ∈ Γ ′ implies ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)) ∈ Γ ′.

We denote by Cl(Γ ) the set consisting of all proper closures of Γ (note that
Cl(Γ ) is a family of formula sets.) We also denote by Sub(ψ) the set of the
subformulas of ψ except that

– if ψ1Uψ2 ∈ Sub(ψ), then ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)) ∈ Sub(ψ);
– if ψ1Rψ2 ∈ Sub(ψ), then ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)) ∈ Sub(ψ).
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3.2 Illustrating Properties Expressed by BLTL

In this section, we demonstrate the expressiveness of BLTL. Since BLTL has the
ability to express Boolean logic and arithmetic operations, we can see that many
concerning properties can be specified using BLTL.

We can partition a vector into segments of varying widths, and then define
a Boolean function, denoted by ei, to extract the i-th segment with width of n,
namely, ei : Bm → B

n, where m is the width of vector b. We use b[i] to refer to
ei (b) in the case that ei (b) ∈ B.

Local Robustness. Given a BNN N and a n-width input u, N is robust w.r.t.
u, if all inputs in the region B (u, ε), are classified into the same class as u [1].
Here, we consider B (u, ε) as the set of vectors that differ from u in at most ε
positions, where ε is the maximum number of positions at which the values differ
from those of u. The local robustness can be described as follows:

∀x ∈ B
n.

|u |∑

i=1

(x[i] ⊕ u[i]) ≤ ε → N (x) = N (u)

Individual Fairness. In the context of a BNN N with an input of t attributes
and n-width, where the s-th attribute is considered sensitive, N is fair w.r.t the
s-th attribute, when no two input vectors in its domain differ only in the value
of the s-th attribute and yield different outputs [31,38]. The individual fairness
can be formulated as:

∀a, b ∈ B
n. (¬ (es(a) = es(b)) ∧ ∀i ∈ [t] − {s}.ei(a) = ei(b)) → N (a) = N (b)

where ei denotes the extraction of the i-th attribute, Bn is the domain of N ,
and a, b are input vectors.

In practice, it is possible to select inputs in the B
n, and modify the sensitive

attribute to obtain the proper pairs, which only differ in the sensitive attribute.
For any such pair (b, b′),we formulate the specification as N (b) = N (b′).

Specification for Internal Blocks. BLTL can specify block-level properties. For
instance, the formula

∀x ∈ B
4.F (x ≥ a → �x = a)

states that there exists a block in the network that behaves as follows: for any
4-bit input whose value is greater than or equal to a, the corresponding output
is equal to a.

4 From BLTL to Automata

In this section, we present both an explicit and an implicit construction that
translate a BLTL formula into an equivalent finite-state automaton. We first
show how to eliminate the placeholders �k in terms �kt and atomic formulas
t1 ∼ t2.
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4.1 Eliminating Placeholders

To eliminate the placeholders �k in terms �kt, we define the apply operator
[ ] : T × Σ \ ΣV → T , where T denotes the set of terms. [t, f ], written as t[f ],
is called the application of the term t w.r.t. the Boolean function f ∈ Σ, which
instantiates the innermost placeholder of the term t by the Boolean function f .
Below, we give a formal description of the application.

Let us fix a term t. According to Proposition 1, t can be equivalently trans-
formed into the following canonical form

��kgk−1

(
��k−1gk−2

(
· · · g0

(
��0b

)
· · ·

))

where b is a vector constant, �0 ≥ 0 and �i > 0 for each i > 0. Hereafter, we
assume that t is in the canonical form, and let len(t) =

∑k
i=0 �i.

When t is �-free, i.e., len(t) = 0, we let t[f ] = t. When len(t) > 0, we say
that the Boolean function f ∈ Σ is applicable w.r.t. the term t, if:

1. b ∈ dom f ;
2. if �0 = 1, then ran f = dom g0.

Intuitively, the above two conditions ensure that f (b) and g0◦f are well-defined.
If f ∈ Σ is applicable w.r.t. the term t, we let t[f ] be the term:

t[f ] =

{
��kgk−1

(
��k−1gk−2

(
· · · g0

(
��0−1b′) · · ·

))
, if �0 > 1

��kgk−1

(
��k−1gk−2

(
· · · g1

(
��1b′′) · · ·

))
, if �0 = 1

where b′ = f (b) and b′′ = (g0 ◦ f) (b).
It can be seen that len(t[f ]) = len(t)−1. By iteratively applying this operator,

the placeholders �k in the term t can be eliminated. For convenience, we write
t[f0, f1, . . . , fi] for the shorthand of

t[f0][f1] · · · [fi],

provided that each Boolean function fi is applicable w.r.t. t[f0][f1] · · · [fi]. Like-
wise, we call t[f0, f1, . . . , fi] the application of t w.r.t. the Boolean functions
f0, f1, · · · , fi.

In particular, the collapsion of term t, denoted by t ↓, is the term t[I, . . . , I
︸ ︷︷ ︸

len(t)

],

namely, t ↓ is obtained from t w.r.t. len(t) identity functions.
We hereafter denote by Cons(Σ) the set of constraints t1 ∼ t2 over the

signature Σ and lift the apply operator [ ] from terms to atomic formulas t1 ∼ t2.
For a constraint γ = t1 ∼ t2 ∈ Cons(Σ), we denote by γ[f ] the constraint t1[f ] ∼
t2[f ]; and by γ ↓ the constraint t1 ↓ ∼ t2 ↓. Note that the former implicitly
assumes that the Boolean function f is applicable w.r.t. both terms t1 and t2
(in this case, we call that f is applicable w.r.t. γ), whereas the latter requires
that the terms t1 ↓ and t2 ↓ have the same width (we call that t1 and t2 are
compatible w.r.t. collapsion). In addition, we let len(γ) = max(len(t1), len(t2)),
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and in the case that len(γ) = 0, we let γ[f ] = 
 (resp. γ[f ] = ⊥) for any Boolean
function f if γ is evaluated to true (resp. false).

We subsequently extend the above notations to constraint sets. Suppose that
Γ ⊆ Cons(Σ), we let Γ [f ] def= {γ[f ] | γ ∈ Γ}, and let Γ ↓ def= {γ ↓ | γ ∈ Γ}.
Remind that the notation Γ [f ] makes sense only if the Boolean function f is
applicable w.r.t. Γ , namely f is applicable w.r.t. each constraint γ ∈ Γ . Likewise,
the notation Γ ↓ indicates that t1 and t2 is compatible w.r.t. collapsion for each
constraint t1 ∼ t2 ∈ Γ .

Theorem 1. For a BNN N given by fN = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0, and a
constraint γ ∈ Cons(Σ), we have:

1. N , i |= γ iff N , i + 1 |= γ[fi] for each i < n.
2. N , i |= γ iff N , i |= γ ↓ for each i ≥ n.

Indeed, since γ ↓ must have the form b1 ∼ b2, where both b1 and b2 are Boolean
constants, then the truth value of γ ↓ can always be directly evaluated.

4.2 Automata Construction

Given a BLTL formula ϕ in NNF, we can construct a finite-state automaton
Aϕ = (Qϕ,Σ, δϕ, Iϕ, Fϕ), where:

– Qϕ =
⋃

Γ⊆Sub(ϕ) Cl(Γ ). Recall that Cl(Γ ) ⊆ 2Sub(ϕ) if Γ ⊆ Sub(ϕ), thus each
state must be a subset of Sub(ϕ).

– For each q ∈ Qϕ, let Cons(q) def= q ∩ Cons(Σ), let q′ = {ψ | Xψ ∈ q} and let
q′′ = {ψ | Xψ ∈ q}. Then, for each Boolean function f ∈ Σ, we have

δϕ(q, f) =

{
∅, ⊥ ∈ q

Cl(q′ ∪ q′′ ∪ Cons(q)[f ]), ⊥ �∈ q
.

– Iϕ = {q ∈ Qϕ | ϕ ∈ q} is the set of initial states.
– Fϕ is the set of accepting states such that for every state q ∈ Qϕ, q ∈ Fϕ only

if {ψ | Xψ ∈ q} = ∅, ⊥ �∈ q and Cons(q) ↓ is evaluated true.

For a BNN N given by fN = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0, we denote by
N ∈ L (Aϕ) if the sequence of the Boolean functions f0, f1, · · · , fn−1, regarded
as a finite word, is accepted by the automaton Aϕ.

Intuitively, N accepts an input word iff it has an accepting run q0, q1 · · · , qn,
where qi is constituted with a set of formulas that make the specification ϕ
valid at the position i. In this situation, Iϕ refers to the states involving ϕ and

q0 ∈ Iϕ. For the transition qi
fi−→ qi+1, q′

i and q′′
i indicate the sets of formulas

which should be satisfied in the next position i + 1 according to the semantics
of next (X) and weak next (X). Additionally, Cons(qi+1) is obtained by applying
the Boolean function fi to the constraints in qi.

The following theorem reveals the relationship between ϕ and Aϕ.
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Theorem 2. Let N be a BNN given by a sequence of Boolean functions for a
BLTL formula ϕ, we have:

N |= ϕ if and only if N ∈ L (Aϕ).

The proof and an example of the construction refer to [29].

4.3 Tableau-Based Construction

We have successfully provided a process for converting an BLTL formula into
an automaton on finite words. At first glance, it seems that the model checking
problem w.r.t. BNN can be immediately boiled down to a word-problem of finite
automata. Nevertheless, a careful analysis shows that this would result in a
prohibitively high cost. Actually, for a BLTL formula ϕ, the state set of Aϕ is⋃

Γ⊆Sub(ϕ) Cl(Γ ) ⊆ 2Sub(ϕ), thus the number of states is exponential in the size
of the length of ϕ. To avoid explicit construction, we provide an “on-the-fly”
approach when performing synthesis.

Suppose the BLTL ϕ is given in NNF and the BNN N is given as a sequence
of Boolean functions f0, f1, . . . , fn−1, using the following approach, we may con-
struct a tree Tϕ,N which fulfills the followings:

– Tϕ,N is rooted at 〈0, {ϕ}〉;
– For an internal node 〈i, Γ 〉 with i < n − 1, it has a child 〈j, Γ ′〉 only if there

is a tableau rule
i Γ
j Γ ′

where j is either i or i + 1.
– A leaf 〈i, Γ 〉 of Tϕ,N is a (Modal)-node with i = n−1, where nodes to which

only the rule (Modal) can be applied are called (Modal)-nodes.

Fig. 1. Tableau rules for Automata Construction
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Tableau rules are listed in Fig. 1. For the rule (Modal), we require that Γ
consists of atomic formulas being of the form t1 ∼ t2. In the rules (True) and
(False), we require that len(t1 ∼ t2) = 0 and it is evaluated to true and false,
respectively.

Suppose 〈n, Γ ∪ {Xψ1, . . . ,Xψm} ∪ {Xϕ1, . . . ,Xϕk}〉 is a leaf of Tϕ,N . We say
it is successful if m = 0 and Γ ↓ is evaluated to true. In addition, we say a path
of Tϕ,N is successful if it ends with a successful leaf, and no node along this path
contains ⊥.

In the process of the on-the-fly construction, we start by creating the root
node, then apply the tableau rules to rewrite the formulas in the subsequent
nodes. In addition, before the rule (Modal) or (Or-j) is applied, we preserve
the set of formulas, which allows us to trace back and construct other parts of
the automaton afterward. We exemplify how to achieve the synthesis task via
the construction in Sect. 5.

Theorem 3. N |= ϕ if and only if Tϕ,N has a successful path.

Proof. Let Aϕ be the automaton corresponding to ϕ. According to Theorem 2,
it suffices to show that N ∈ L (Aϕ) iff Tϕ,N has a successful path.

Suppose, N is accepted by Aϕ with the run q0, q1, . . . , qn, we also create the
root node 〈0, Γ0 = {ϕ}〉. Inductively, we have the followings statements for each
node 〈i, Γj〉 which is already constructed:

1) Γj ⊆ qi;
2) N , i |= ψ for each ψ ∈ qi (see the proof of Theorem 2)

Then, if 〈i, Γj〉 is not a leaf, we create a new node 〈i′, Γ ′
j〉 in the following way:

– i′ = i if 〈i, Γj〉 is not a (Modal)-node, otherwise i′ = i + 1;
– if rule (Or-k) (k = 1, 2) is applied to 〈i, Γj〉 to some ϕ1 ∨ϕ2 ∈ Γj , we require

that ϕk ∈ Γj ; for other cases, Γ ′
j is uniquely determined by Γj and the tableau

rule which is applied.

It can be checked that both Items 1) and 2) still hold at 〈i′, Γ ′
j〉. Then, we can

see that the path we constructed is successful since qn is an accepting state of
Aϕ.

For the other way round, suppose that Tϕ,N involves a successful path

〈0, Γ0,0〉, 〈0, Γ0,1〉, . . . , 〈0, Γ0,�0〉, 〈1, Γ1,0〉, 〈1, Γ1,1〉, . . . , 〈1, Γ1,�1〉, . . . ,
〈i, Γi,0〉, 〈i, Γi,1〉, . . . , 〈i, Γi,�i〉, . . . , 〈n, Γn,0〉, 〈n, Γn,1〉, . . . , 〈n, Γn,�n〉

then, the state sequence q0, q1, . . . , . . . , qn yields an accepting run of Aϕ on N ,
where qi =

⋃�i
j=0 Γi,j . ��

5 BNN Synthesis

Let us now consider a more challenging task: Given a BLTL specification ϕ, to
find some BNN N such that N |= ϕ. In the synthesis task, the parameters of
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the desired BNN are not given, even, we are not aware of the length (i.e., the
number of blocks) of the network. To address this challenge, we leverage the
tableau-based method (cf. Sect. 4.3) to construct the automaton for the given
specification ϕ and check the existence of the desired BNN at the same time.
But when performing the tableau-based rewriting, we need to view each block
(i.e., a Boolean function) fi as an unknown variable (called block variable in
what follows).

The construction of the tableau-tree starts from the root node 〈0, ϕ〉 in a
depth-first search manner. During the construction, for each internal node 〈i, Γ 〉,
the following steps are taken: Firstly, rules other than (Or-1) and (Modal) are
applied to Γ until no further changes occur. Then rule (Or-j) is applied to
the disjunctions in the formula set, and we always first try rule (Or-1) when
the rewriting is performed. Lastly, rule (Modal) is applied to generate node
〈i + 1, Γ ′〉, which becomes the next node in the path, and the Boolean function
fi used in the rewriting is just a block variable. Particularly, we retain a stack
of nodes on which either rule (Or-j) or (Modal) is applied for backtracing. A
node is called a (Or-j) node if rule (Or-j) is applied onto it. Once an X-free
(Modal)-node is reached, we verify the success of the path. However, since now
the blocks are no longer concrete in this setting, an atomic formula of the form
γ[fi, . . . , fi+k] cannot be immediately evaluated even if it is �-free. As a result,
whether a path is successful cannot be evaluated directly.

To address this issue, we invoke an integer different logic (IDL) solver to
examine the satisfiability of the atomic formulas in the (Modal)-nodes along
the path, and we declare success if all of them are satisfiable and in addition, it
ends up with an X-free (Modal)-node. Meanwhile, the model given by the solver
would reveal hyper-parameters of the BNN, which then we adopt to obtain the
expected BNN. For a node 〈i, Γ 〉, we call i to be the depth counter. Once the
infeasibility is reported by the IDL solver, or some specific depth counter (call
it the threshold) is reached, a trace-back to the nearest (Or-1) node is required:
all the nodes under the nearest (Or-1) node (including itself) are popped from
the stack and then apply rule (Or-2) to that node (it becomes a (Or-2) node),
but this time we do not push anything into the stack, because both choices for
the disjunctive formula have been tried so far. If no (Or-1) nodes remains in the
stack when doing trace-back, we declare the failure of the synthesis.

Now, there are two issues to deal with during that process. The first is, how
to determine if the aforementioned ‘threshold’ is reached; second, how can we
convert the satisfiability testing into IDL-solving.

5.1 The Threshold

There exists a näıve bound for the first problem, which is just the state number
of Aϕ. However, this bound is in general not compact (i.e., doubly exponential
in the size of the formula ϕ), and thus we provide a tighter bound.

We first introduce the following notion. Two modal nodes 〈i, Γ 〉 and 〈j, Γ ′〉
are isomorphic, denoted by 〈i, Γ 〉 ∼= 〈j, Γ ′〉, if Γ can be transformed into Γ ′
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under a (block) variable bijection. The following lemma about isomorphic model
nodes is straightforward.

Lemma 1. If 〈i, Γ 〉 ∼= 〈j, Γ ′〉 and the node 〈i, Γ 〉 could lead to a successful leaf
(i.e., satisfiable leaf), then so does the node 〈j, Γ ′〉.

Thus, given ϕ, the threshold can be the number of equivalence classes w.r.t.
∼=. To make the analysis clearer, we here introduce some auxiliary notions.

– We call an atomic constraint γ occurring in ϕ to be an original constraint
(or, non-padded constraint); and call a formula being of the form γ[fi, . . . , fj ]
padded constraint, where fi, . . . , fj are block variables.

– A (padded or non-padded) constraint with length 0 (i.e., �-free) is called sat-
urated. In general, such a constraint is obtained from a non-padded constraint
γ via applying k layer variables, where k = len(γ).

Theorem 4. Let ϕ be a closed BLTL formula, and let

– c = #(Cons(Σ)∩Sub(ϕ)), i.e., the number of (non-padded) constraints occur-
ring in ϕ;

– k = max{len(γ) | γ ∈ Cons(Σ) ∩ Sub(ϕ)}, i.e., the maximum length of non-
padded constraints occurring in ϕ;

– p be the number of temporal operators in ϕ

then, 2(k+1)c+p + 1 is a threshold for synthesis.

The proof refers to [29].

5.2 Encoding with IDL Problem

Another problem is how to convert the satisfiability testing into IDL-solving. To
tackle this problem, we present a method that transforms BLTL atomic formulas
to IDL constraints.

We may temporarily view a Boolean function g : Bm → B
n as a (partial)

integer function with domain [2m], namely, we equivalently view g maps dec(b)
to dec(g(b)).

For a �-free term t = (fk ◦fk−1◦· · ·◦f0)(b), we say that (fi◦fi−1◦· · ·◦f0)(b)
is an intermediate term of t where i ≤ k. In what follows, we denote by T the set
of all intermediate terms that may occur in the process of IDL-solving, which is
a part of synthesis that check the satisfiability of atomic formulas in successful
leaves.

Remind that in a term or an intermediate term, a symbol g may either be a
fixed function or a variable that needs to be determined by the IDL-solver (i.e.,
block variables). To make it clearer, we in general use g0, g1, . . . to designate the
former functions, whereas use f0, f1, etc. for the latter cases.

The theory of IDL is limited to handling the Boolean combinations of the
form x − y ∼ c, where x, y are integer variables and c is an integer constant.
However, since functions occur in the terms, they cannot be expressed using IDL.
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To this end, we note that we merely care about partial input-output relations of
the functions, which consist of mappings among T , and then the finite mappings
can be expressed by integer constraints. Thus, for each intermediate term t ∈ T ,
we introduce an integer variable vt .

Then, all constraints describing the synthesis task are listed as follows.

(1) For each BLTL constraint t1 ∼ t2, we have a conjunct vt1 ∼ vt2 .
(2) For each block variable f : Bn → B

m and each f(t) ∈ T , we add the bound
constraints 0 ≤ vf(t) and vf(t) ≤ 2m.

(3) For each block variable f and every pair of terms t1, t2 ∈ T , we have the
constraint: vt1 = vt2 → vf(v1) = vf(v2), which guarantees f to be a mapping.

(4) For every fixed function g, we impose the constraint vg(t) = dec(g(bin(vt)))
for every t ∈ T .

Once the satisfiability is reported by the IDL-solver, we extract partial map-
ping information of fi’s from the solver’s model, by analyzing equations of the
form vt = c, where c is an integer called the value of t. We iterate over the model
and record the value of terms, when we encounter an equation in the form of
vfi(t) = c, we query the value of t, and obtain one input-output relation of fi.
Eventually, we get partial essential mapping information of such fi’s.

5.3 Utilize the Synthesis

A BNN that satisfies the specification can be obtained via block-wise training,
namely, training each block independently to fulfill its generated input-output
mapping relation, which is extracted by the IDL-solver during the synthesis
process. Indeed, such training is not only in general lightweight but also able to
reuse the pre-trained blocks.

Let us now consider a more general requirement that we have both high-level
temporal specification (such as fairness, robustness) and data constraints (i.e.,
labels on a dataset), and is asked to obtain a BNN to meet all these obligations.

A straightforward idea is to express all data constraints with BLTL, and
then perform a monolithic synthesis. However, such a solution seems to be infea-
sible, because the large amount of data constraints usually produces a rather
complicated formula, and it makes the synthesis extremely difficult.

An alternative approach is to first perform the synthesis w.r.t. the high-level
specification, then do a retraining upon the dataset. However, the second phase
may distort the result of the first phase. In general, one need to conduct an
iterative cycle composed of synthesis-training-verification, yet the convergence
of such process cannot be guaranteed. Thus, we need make a trade-off between
these two types of specifications.

More practically, synthesis can be used as an “enhancement” procedure. Sup-
pose, we already have some BNN trained with the given dataset, then we are
aware the hyper-parameters of that. This time, we have more information when
doing synthesis, e.g., the threshold is replaced by the length of the network, and
the shape (i.e., the width of input and output) of each block are also given. With
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this, we may perform a more effective IDL-solving process, and then retrain each
block individually. Definitely, this might affect the accuracy of network, and some
compromise also should be done.

6 Experimental Evaluation

We implement a prototype tool in Python, which uses Z3 [9] as the off-the-shelf
IDL solver and PyTorch to train blocks and BNNs. To the best of our knowl-
edge, few existing work on synthesizing BNN has been done so far. Hence, we
mainly investigate the feasibility of our approach by exploring how much the
trustworthiness of BNN can be enhanced, and the corresponding trade-off on
accuracy degradation. The first two experiments focus on evaluating the effec-
tiveness of synthesis in enhancing the properties of BNNs. We set BNNs with
diverse architectures as baselines, and synthesize models via the “enhancement”
procedure, wherein the threshold matches the length of the baselines, and the
shape of blocks are constrained to maintain the same architecture as the base-
lines. Eventually, the blocks are retrained to fulfill the partial mapping, and the
synthesized model is obtained through retraining on the dataset. We compare
the synthesized models and their baselines on two properties: local robustness
and individual fairness. Moreover, we also study the potential of our approach
to assist in determining the network architecture.

Datasets. We train models and evaluate our approach over two classical datasets,
MNIST [10] and UCI Adult [11]. MNIST is a dataset of handwritten digits, which
contains 70,000 gray-scale images with 10 classes, and each image has 28 × 28
pixels. In the experiments, we downscale the images to 10 × 10, and binarize
the normalized images, and then transform them into 100-width vectors. UCI
Adult contains 48,842 entries with 14 attributes, such as age, gender, workclass
and occupation. The classification task on the dataset UCI Adult is to pre-
dict whether an individual’s annual salary is greater than 50K. We first remove
unusable data, retain 45,221 entries, and then transform the real-value data into
66-dimension binarized vectors as input.

Experimental Setup. In the block-wise training, different loss functions are
employed for internal and output blocks: the MSE loss function for internal
blocks and the cross-entropy loss function for output blocks. The training pro-
cess entails a fixed number of epochs, with 150 epochs for internal blocks and
30 epochs for output blocks. The experiments are conducted on a 3.6G HZ CPU

Table 1. BNN baselines.

Name Arch Acc Name Arch Acc

R1 100-32-10 82.62% F1 66-32-2 80.12%

R2 100-50-10 84.28% F2 66-20-2 79.88%

R3 100-50-32-10 83.50% F3 66-32-20-2 78.13%
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with 12 cores and 32 GB RAM, and the blocks and BNNs are trained using a
single GeForce RTX 3070 Ti GPU.

Baseline. We use six neural networks with different architectures as baselines,
where three models R1–R3 are trained on the MNIST for 10 epochs with a
learning rate of 10−4 to study local robustness. For individual fairness, we train
3 models (F1–F3) on the UCI Adult for 10 epochs, with a learning rate of 10−3,
and split the dataset into a training set and a test set in a 4:1 ratio. The detailed
information is listed in Table 1, Column (Name) indicates the name of BNNs, and
Column (Arch) presents their architectures. The architecture of each network is
described as by a sequence {ni}s

i=0, where s is the number of the blocks in the
network, and ni and ni+1 indicate the input and output dimensions of the i-
th block. For instance, 100-32-10 indicates that the BNN has two blocks, the
input dimensions of these blocks are 100 and 32 respectively, and the number
of classification labels is 10. Column (Acc) shows the accuracy of the models on
the test set.

6.1 Local Robustness

In this section, we evaluate the effectiveness of our approach for enhancing the
robustness of models in different cases. We use the metric, called Adversar-
ial Attack Success Rate (ASR), to measure a model’s resistance to adversarial
attacks. ASR is calculated as the proportion of perturbed inputs that leads to a
different prediction result compared to the original input.

We choose 30 image vectors from the training set, and set the maximum
perturbation to four levels, ε ∈ {1, 2, 3, 4}. The value of ε indicates the maximum
number of positions that can be modified in one image vector. One selected input
vector, one maximum perturbation ε and one baseline model constitute a case,
resulting in a total of 360 cases.

For each of the 360 cases, we make a synthesized model individually and com-
pare its ASR with the corresponding baseline. For the local robustness property
(cf. Sect. 3.2), since the input space is too large to enumerate, we need to sample
inputs within B (u, ε) when describing the specification, which is formulated as
∧k

i=1 (N (u) = N (bi)), where each bi is a sample and k is the number of sam-
ples. We here sample 100 points within the maximum perturbation limit ε. The
specification is written as

∧k
i=1 (�nu = �nbi), where n is the number of the

block of the baseline. Subsequently, we use the block constraint (cf. Sect. 5.2),
0 ≤ vfi(t) ≤ 2m, to specify the range of output of each block. To make the bound
tighter, we retain the maximal and minimal activations of each block using cal-
ibration data run on the baseline, and then take the recorded values as bounds.
Eventually, the generated mappings are used in the block-wise training, and then
the enhanced BNN is obtained through retraining on the MNIST dataset.

We also take 100 samples for each case and compare the ASR for baselines
and their synthesized counterparts. The results are shown in Fig. 2, where blue
bars represent the baselines, while green bars represent synthesized models. We
use the sign + to denote the synthesized models. Figure 2(a) (resp. Fig. 2(b) and
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Fig. 2. Results of local robustness.

Fig. 2(c)) depicts the percentage of average ASR of R1 (resp. R2 and R3) and
the counterpart R1+ (resp. R2+ and R3+) (the vertical axis), with different
ε (1, 2, 3, 4) (the horizontal axis). The results demonstrate a decrease in ASR
by an average of 43.45%, 22.12%, and 16.95% for R1, R2 and R3, respectively.

Whilst the models’ robustness are enhanced, their accuracy are slightly
decreased. Table 2 shows the results of the accuracy of the models, where Acc+
represents the average accuracy for synthesized models with the same architec-
tures.

Table 2. The average accuracy of R1–R3 and their synthesized models.

R1 R2 R3

Acc 82.62% 84.28% 83.50%

Acc+ 81.33% 81.72% 78.75%

6.2 Individual Fairness

In this section, we investigate the individual fairness w.r.t two sensitive features,
namely, sex (Male and Female) and race (White and Black) on the UCI Adult
dataset.

We consider F1–F3 as baselines, and randomly select 1000 entries for both
F1 and F2, and 200 entries for F3 from the training dataset, and then generate
proper pairs by modifying the value of the sensitive attribute while keeping all
other attributes the same. For example, we modify the value of Male to Female.
After forming specifications using the approach mentioned in Sect. 3.2 with the
pairs, we proceed with the “enhancement” procedure and retraining to obtain
the synthesized models. We then evaluate the models on the test dataset by
measuring the fairness score. We count the number of the fair pairs (i.e., the
pairs only differ in the sensitive attribute, and yield the same predication result):
fair num, and compute the fairness score, fair num

test size , where test size is the size of
the test set.

The results are listed in Table 3, where the baselines and the sensitive
attributes are shown in Columns 1,2. Columns 3,4 (Acc/Acc+) demonstrate the
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Table 3. Results of individual fairness.

Model Feature Acc Acc+ Fair Fair+ Synthesis Time(s)

F1 sex 80.12% 74.53% 92.91% 99.94% 241.67

F1 race 80.12% 74.54% 92.92% 100% 216.46

F2 sex 79.88% 75.71% 95.68% 97.83% 215.61

F2 race 79.88% 75.18% 94.64% 98.47% 212.46

F3 sex 78.13% 74.48% 89.67% 99.83% 90.39

F3 race 79.88% 74.09% 89.16% 98.27% 95.75

Table 4. The synthesized models whose architectures are given by our tool.

Attr Arch Len #Mapping Acc Fair

sex 66-10-10-2 3 1117 74.38% 99.51%

sex 66-8-2 2 559 74.69% 99.72%

race 66-9-8-2 3 952 74.38% 94.59%

race 66-8-2 2 567 74.13% 99.71%

accuracy of baselines and synthesized models, and Columns 5,6 (Fair/Fair+)
show their fairness scores. The results show that all the models’ individual fair-
ness is significantly improved, some of which even reach 100% (e.g., Row 2,
the fairness score increase from 92.92% to 100%). However, the enhancement
is accompanied by the accuracy loss, Columns 3,4 show that all models suffer
from a certain degree of accuracy decrease. Our tool efficiently synthesized the
hyper-parameters within a few minutes, as shown in Column 7.

Furthermore, we examine the ability of our approach on helping determine
the architecture of the BNNs. For both sex and race, we sample 200 entries in
the training dataset to generate proper pairs, and formulate the specification
without using the bound constraints or fixing the number of block, as follows,

F(
k∧

i

(xi = yi)) ∧ (
k∧

i

(xi = �2ai ∧ yi = �2bi) ∨ (
k∧

i

(xi = �3ai ∧ yi = �3bi)))

where (ai, bi) is the proper pair, and k is the number of samples. The formula
indicates the presence of consecutive blocks in the model, with a length of either
2 or 3. For each proper pair (ai, bi), their respective outputs (xi,yi) must be
equal.

After synthesizing the partial input-output relation of block functions fi’s,
we determine the length of the network by selecting the maximum i among the
block functions fi’s. The dimensions of the blocks are set to the maximum input
and output dimensions in the partial relation obtained for the corresponding fi.

We make a slight adjustment to the synthesis framework, when finding a
group of hyper-parameters, we continue searching for one more feasible group,
resulting in two groups of hyper-parameters for sex and race. We showcase the
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synthesized models in Table 4. Column 1 indicates the sensitive attribute of
interest, and Columns 2,3 give the architecture and the length of the BNNs
respectively. Column 4 shows the number of partial mappings we obtained in the
synthesis task. Our tool successfully generates models with varying architectures
and high individual fairness, which are presented in Columns 5,6 respectively.

7 Conclusion

In this paper, we have presented an automata-based approach to synthesizing
binarized neural networks. Specifying BNNs’ properties with the designed logic
BLTL, the synthesis framework uses the tableau-based construction approach
and the IDL-solver to determine hyper-parameters of BNNs and relations among
some parameters. Subsequently, we may perform a block-wise training. We imple-
mented a prototype tool and the experiments demonstrate the effectiveness of
our approach in enhancing the local robustness and individual fairness of BNNs.
Although our approach shows the feasibility of synthesizing trustworthy BNNs,
there is still a need to further explore this line of work. In the future, beyond
the input-output relation of BNNs, we plan to focus on specifying properties
between the intermediate blocks. Additionally, we aim to extend the approach
to handle the synthesis task of multi-bits QNNs.
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Calvin Chau1 , Jan Křet́ınský2,3 , and Stefanie Mohr2(B)

1 Technische Universität Dresden, Dresden, Germany
calvin.chau@tu-dresden.de

2 Technical University of Munich, Munich, Germany
{kretinsky,mohr}@in.tum.de

3 Masaryk University, Brno, Czech Republic

Abstract. Abstraction is a key verification technique to improve scal-
ability. However, its use for neural networks is so far extremely limited.
Previous approaches for abstracting classification networks replace sev-
eral neurons with one of them that is similar enough. We can classify the
similarity as defined either syntactically (using quantities on the con-
nections between neurons) or semantically (on the activation values of
neurons for various inputs). Unfortunately, the previous approaches only
achieve moderate reductions, when implemented at all. In this work,
we provide a more flexible framework, where a neuron can be replaced
with a linear combination of other neurons, improving the reduction.
We apply this approach both on syntactic and semantic abstractions,
and implement and evaluate them experimentally. Further, we introduce
a refinement method for our abstractions, allowing for finding a better
balance between reduction and precision.

Keywords: Neural network · Abstraction · Machine learning

1 Introduction

Neural Network Abstractions. Abstraction is a key instrument for under-
standing complex systems and analyzing complex problems across all disciplines,
including computer science. Abstraction of complex systems, such as neural net-
works (NN), results in smaller systems, which are not only producing equivalent
outputs (such as in distillation [13]), but additionally can be mapped to the
original system, providing a strong link between the individual parts of the
two systems. Consequently, abstraction find various applications. For instance,
the smaller (abstract) networks are more understandable and the strong link
between the behaviours of the abstract and the original network allows for better
explainability of the original behaviour, too; smaller networks are more efficient
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in resource usage during runtime; smaller networks are easier to verify. Again,
with no formal link between the original network and, say, a distilled or pruned
one, verifying the smaller one is of no use to verifying the original one. In con-
trast, for abstractions, the verification guarantee can be in principle transfered to
the original network, be it via lifting a counterexample or a proof of correctness.

Altogether, abstractions of neural networks are a key concept worth inves-
tigating eo ipso, subsequently offering various applications. However, currently
it is still very under-developed. For defining an abstraction, we need a transfor-
mation linking the original neurons to those in the abstraction. Equivalently, we
need a notion of the similarity of neurons, to identify a good representative of a
group of neurons. The difficulty in contrast to, e.g., predicate abstraction of pro-
grams is that neurons have no inner structure such as values of variables stored
in a state. On the one hand, approaches based on bisimilarity [22] offer a solution
focusing on the “syntax” of neurons: the weights of the incoming connections.
The quantities give rise to an equivalence akin to probabilistic bisimulation. On
the other hand, in search of a stronger tool, approaches such as [2] try to identify
“semantics” of the neurons. For instance, given a vector of inputs to the network,
the I/O semantics of a neuron [2] is the vector of activation values of this neuron
obtained on these inputs. This represents a finite-dimensional approximation of
the actual semantics of a neuron as a computational device. Either way, replac-
ing several neurons with one that is very similar yields only moderate savings
on size if the abstract network is supposed to be similar, i.e., yield mostly the
same predictions and ensure a tight connection between the similar neurons.

Our Contribution. We focus on studying abstraction irrespective of the use
case (verification, smaller networks, explainability), to establish a better princi-
pal understanding of this crucial, yet in this context underdeveloped technique.
First, we explore a richer abstraction scheme, where a group of neurons can
be represented not only by a chosen neuron but also by a linear combination
of neurons. Thus instead of keeping exactly one representative per group, we
can “reuse” the chosen representatives in many linear combinations; in other
words, the representatives can attain many roles, partially representing many
groups, which reduces their required count. We provide several algorithms to do
so, ranging from resource-intensive algorithms aiming to show the limits of the
approach to efficient heuristics approximating the former ones quite closely. We
apply these algorithms to the semantic approach of [2] as well as to the syntactic,
bisimulation-like approach similar to [22] not implemented previously. Experi-
mental results confirm the greater power of this linear-combination approach;
further, they provide insight into the advantages of semantic similarity over the
syntactic one, pointing out the more advantageous future research directions.

Further, we provide a formal link between the concrete and abstract neurons
by proving an error bound induced by the abstraction, showing the abstraction
is valid and (approximately) simulates the original network. We show the bound
is better than the one based on bisimulation. While still not very practical, the
experiments show that even on unseen data, the error is always closely bounded
by the error on the data used for generating the abstraction, and mostly even
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a lot smaller. This empirical version of the concept of error could thus enable
the transfer of reasoning about the abstraction to the original network in a yet
much tighter way.

In addition, we suggest abstraction-refinement procedures to better fine-tune
the trade-off between the precision and the size of the abstraction. The experi-
ments reveal that a more aggressive abstraction followed by a refinement provides
better results than a direct, moderate abstraction. Hence involving our refine-
ment in the abstraction process improves the resulting quality, opening new lines
of attack on efficient neural network abstractions.

Summary. Our contribution can be summarized as follows:

– We define abstractions of neural networks with (approximate) equivalences
being linear equations over semantics of neurons. We provide a theoretical
bound on the induced error, see Theorem 1. We reflect this idea also on the
syntactic, bisimulation-based abstraction.

– We implement both approaches and compare them mutually as well as to
their previous, special cases with equivalences being (approximate) identities.
We perform the experiments on a number of standard benchmarks, such as
MNIST, CIFAR, or FashionMNIST, concluding advantages of semantic over
syntactic approaches and of linear over identity-based ones.

– We introduce an abstraction-refinement procedure and also evaluate its ben-
efits experimentally.

Related Work. There are various approaches for verification of NN, however,
we are not presenting another verifier. Instead, we introduce an approach that
is orthogonal to verification and could be integrated with an existing verifier.
Therefore, we do not compare our approach to any verification tool and refer
the interested reader to the Verification of Neural Networks Competition [4] for
an overview of existing approaches [16,26,31,33].

Network compression techniques share many similarities with abstraction
[7] and either focus on reducing the memory footprint [14,15] or computation
time of the model [12], but in contrast, do not provide any formal relation to
the original network, rendering them inappropriate for understanding redundan-
cies or verification. Knowledge distillation is a prominent technique, which can
reduce networks by a significant amount, but completely loses any connection
to the original network [13], and can thus not be used in verification. There is
some progress in using abstract domains for scalable verification, like [26,27,29],
but they do not produce an abstracted NN for verification. Instead, they apply
abstraction only tightly entangled together with the verification algorithm. These
approaches also try to generate a more scalable verification, however, the key
difference is that they do not return an actual abstracted network that could be
reused or manually inspected. Katz et al. [8] introduce an abstraction scheme for
NN, in which they decompose neurons into several parts, before merging them
again to obtain an over-approximation of the original network. However, their
approach is limited to networks with one output neuron. For networks with
more output neurons, the property to be verified needs to be baked into the
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network, making the approach significantly less flexible. Additionally, this tight
entanglement of specification and neural network does not allow for retrieving
the abstraction later and reusing it for anything else than to verify that specific
property. This strongly contrasts our generic and usage-agnostic abstraction and
their property-restricted abstractions.

Some other works use abstraction after representing a neural network as an
interval neural network [23], or more generally, by using more complex abstract
domains [28]. While theoretically interesting, the practicality of these works has
not been investigated. There are two approaches that we consider to be the
closest to our work: a bisimulation-based approach [22], and DeepAbstract [2],
which we will more closely introduce in the preliminaries, and compare to in the
experiments.

2 Preliminaries

In this work, we focus on classification feedforward neural networks. Such a
neural network N consists of several layers 1, 2, . . . , L, with 1 being the input
layer, L being the output layer and 2, . . . , L − 1 being the hidden layers. Each
layer � contains n� neurons. Neurons of one layer are connected to neurons
of the previous and next layers by means of weighted connections. Associ-
ated with every layer � that is not an output layer is a weight matrix W (�) =
(w(�)(i, j)) ∈ R

n�+1×n� where w(�)(i, j) gives the weights of the connections to
the ith neuron in layer � + 1 from the jth neuron in layer �. We use the nota-
tion W

(�)
i,∗ = [w(�)(i, 1), . . . , w(�)(i, n�)] to denote the incoming weights of neuron

i in layer � + 1 and W
(�)
∗,j = [w(�)(1, j), . . . , w(�)(n�+1, j)]ᵀ to denote the outgoing

weights of neuron j in layer �. Note that W
(�)
i,∗ and W

(�)
∗,j correspond to the ith row

and jth column of W (�) respectively. A vector b(�) = [b(�)1 , . . . , b
(�)
n� ] ∈ R

n� called
bias is also associated with each hidden layer �. The input and output of a neuron
i in layer � is denoted by h

(�)
i and z

(�)
i respectively. We call h� = [h(�)

1 , . . . , h
(�)
n� ]ᵀ

the vector of pre-activations and z� = [z(�)1 , . . . , z
(�)
n� ]ᵀ the vector of activations

of layer �. The neuron takes the input h�, and applies an activation function
φ : R → R element-wise on it. The output is then calculated as z� = φ(h�), where
standard activation functions include tanh, sigmoid, or ReLU [21]. We assume
that the activation function is Lipschitz continuous, which in particular holds
for the aforementioned functions [30]. In a feedforward neural network, informa-
tion flows strictly in one direction: from layer �m to layer �n where �m < �n.
For an n1-dimensional input x ∈ X from some input space X ⊆ R

n1 , the out-
put y ∈ R

nL of the neural network N , also written as y = N(x) is iteratively
computed as:

h(0) = z(0) = x

h(�+1) = W (�)z(�) + b(�+1) (1)

z(�+1) = φ(h(�+1)) (2)

y = z(L)
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where φ(x) is the column vector obtained by applying φ component-wise to x.
We abuse the notation and write z(�)(x), when we want to specify that the
output of layer � is computed by starting with x as input to the network.

2.1 Syntactic and Semantic Abstractions

We are interested in a general abstraction scheme that is not only useful for
verification, but also for revealing redundancies, while keeping a formal link to
the original network. We distinguish between two types of abstraction: semantic
and syntactic. Syntactic abstraction makes use of the weights of the network,
the syntactic information, and allows for overapproximation guarantees that are
not restricted to specific inputs. However, as we shall see in the experiments, the
semantic abstraction can capture the behavior of the original network on typical
input data much more accurately than its syntactic counterpart. This comes at
the cost of a more challenging error analysis.

Semantic Information. In line with DeepAbstract [2], we will create the seman-
tic information based on a set of inputs, the I/O set, X = {x1, . . . ,xn} ⊆ X ,
which is typically a subset of the training dataset. We use the inputs xj ∈ X,
feed them to the network and store the output values {z(�)(xj)}xj∈X of a layer
� in a matrix Z(�) = (z(�)i (xj))i,j . Note that the columns are the z(�)(xj) and
the rows, denoted as Z(�)

i,∗, correspond to the values one neuron i produces for

all inputs xj . We refer to the vector Z(�)
j,∗ as the semantics of neuron i. This

collection of matrices Z(�) for all layers contains the semantic information of the
network.

DeepAbstract. Since we will compare our approach to DeepAbstract [2], we
will give a concise description of the idea of their work. First, it generates the
semantic information Z. For one layer �, it clusters the rows of the matrix by
using standard clustering techniques, e.g. k-means clustering [3]. Each cluster
is considered to be a group of neurons that have similar semantics and similar
behavior. Thus, only one group representative is chosen to remain and the rest
is replaced by the representatives.

Bisimulation. The idea of [22] is to apply the notion of bisimulation to NN. A
bisimulation declares two neurons as equivalent if they agree on their incoming
weights, biases, and activation functions. Additionally, the paper introduces a
δ-bisimulation that allows neurons to be equivalent only up to δ, i.e. two neurons
i, j of layer � with the same activation function are considered to be δ-bisimilar,
if for all k : |w(�−1)(i, k) − w(�−1)(j, k)| ≤ δ and |b(�)i − b

(�)
j | ≤ δ.

3 Linear Abstraction

Our abstraction of a NN is based on the idea that huge NN in their practical
application are usually trained with more neurons than necessary. Since there
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Fig. 1. Linear Abstraction - On the left, the original network with the basis B in blue.
On the right, the abstracted network with the removed neuron n1

1 and the changed
output weights of the basis neurons n1

2, n
1
3, where we assume that n1

1 can be simulated
by α

(1)
1,1 · n1

2 + α
(1)
1,2 · n1

3. (Color figure online)

are techniques to avoid “overfitting”, users of machine learning tend to use NN
that are bigger than necessary for their task [19]. Intuitively, such networks thus
contain redundancies. We want to remove these redundancies to decrease the
size of the network and make it more scalable for verification.

Existing approaches group together similar neurons, and then choose a rep-
resentative. Instead, we propose to replace a neuron with a linear combination
of other neurons. More specifically, we want to replace a neuron i of layer �, not
by one single neuron j, but rather by a clever combination of several neurons,
called the basis, B(�) ⊂ {1, . . . , n�}\{i}, which is a subset of all neurons of this
layer and in this case given as their indices. We assume that the behavior of a
neuron can be simulated by a linear combination of the behavior of the basis
neurons, i.e. by

∑
j∈B(�) α

(�)
i,j · Z(�)

j,∗ for some α
(�)
i,j ∈ R.

Example. Consider the neural network in Fig. 1. It has an input layer with
two neurons n0

1, n
0
2, one hidden layer with three neurons n1

1, n
1
2, n

1
3, and an

output layer with two neurons n2
1, n

2
2. We assume that we are given the basis

B(1) = {n1
2, n

1
3}, marked with blue color in the figure, and the linear coefficients

α
(1)
1,1, α

(1)
1,2. That is, we assume that n1

1 can be simulated by the linear combination

α
(1)
1,1 ·n1

2+α
(1)
1,2 ·n1

3. We can remove neuron n1
1 and its outgoing weights [1, 2]ᵀ, and

add the outgoing weights scaled by the linear coefficients to the basis neurons
instead. We add α

(1)
1,1 · [1, 2]ᵀ to the outgoing weights of neuron n1

2, so we get

[−1, 3]ᵀ + α
(1)
1,1 · [1, 2]ᵀ = [−1 + α

(1)
1,1 · 1, 3 + α

(1)
1,1 · 2]ᵀ, and respectively, we get

[−2 + α
(1)
1,2 · 1, 1 + α

(1)
1,2 · 2]ᵀ as the outgoing weights of neuron n1

3.
The computational overhead to compute a linear combination compared to

finding a representative is negligible, as we will see in our experiments (see
Sect. 5.2). On the other hand, they provide more expressive power, subsuming
the aforementioned clustering-based approach [2]. In particular, we can detect
scaled weights that previous approaches failed to identify.

Please note that although it is possible to replace a neuron with a linear
combination of any other neurons in the network, we will only use neurons
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from the same layer due to more efficient support by modern neural network
frameworks.

In the following sections, we will answer three questions: How can one find a
set of neurons that serves as a basis (Sect. 3.1)? How to find the coefficients for the
linear combination (Sect. 3.2)? How to replace a neuron, once its representation
as a linear combination is given (Sect. 3.3)?

3.1 Finding the Basis

Our approach is meant to find a sufficient smaller subset of neurons in one layer,
which is enough to represent the behavior of the whole layer. We will make use of
the semantic information of a layer �, given as Z(�) = (z(�)i (xj))i,j (see Sect. 2.1).
Based on this, we try to find a basis of neurons, i.e. a set of indices for neurons
in this layer {j1, . . . jk�

} = B(�) ⊂ {1, . . . , n�}, which can represent the whole
space as well as possible. To this end we want to find a subset of size k = |B(�)|
such that ‖∑

j∈B(�) α
(�)
i,j · Z(�)

j,∗ − Zi,∗‖ is minimized. We denote with

AB =

⎡

⎢
⎣

| |
Z(�)

j1,∗ . . . Z(�)
jk�

,∗
| |

⎤

⎥
⎦ (3)

the matrix containing the activations Z(�)
j,∗ of the neurons in the basis as columns.

Greedy Algorithm. The problem of finding an optimal basis of size k w.r.t.
L2 distance can be seen as a variation of the column subset selection problem
which is known to be NP-complete [25]. As a consequence, we use a variant of a
greedy algorithm [1]. While it does not always yield the optimal solution, it has
been observed to work reasonably well in practice [9,10].

It has already been observed that layers closer to the output usually contain
more condensed information and more redundancies, and can, thus, be com-
pressed more aggressively [2]. We present a greedy algorithm that chooses which
layer contains more information and needs a larger basis instead of decreasing
the basis sizes equally fast in each layer.

In Algorithm 1, we see that the procedure iteratively removes neurons from
the basis. To this end, it iterates over all layers l ∈ {1, . . . , L} in the network.
It tries to remove one neuron at a time from the basis. Then it computes the
projection error of the smaller basis, which is defined as ‖Z(�)ᵀ − ΠAB

Z(�)ᵀ‖,
where ΠAB

is the matrix that projects the columns of Z(�)ᵀ
onto the column

space of AB . The columns of AB are the rows of Z(�) whose neurons belong to
B. It greedily evaluates all neurons in all layers and selects the best neuron of
the best layer to be removed. After checking every layer, the algorithm decides
on the best layer and neuron to be removed, i.e. the one with the smallest error.

Since the approach thoroughly evaluates all possibilities, its runtime depends
on both the number of layers and neurons. A natural alternative would be a
heuristic that guides us similarly well through the search space. We provide our
choice of heuristic below.
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Algorithm 1. Greedy algorithm over all layers
1: Given: k neurons to be removed
2: ∀l ∈ {1, . . . , L} : B(�) ← {1, . . . , nl}
3: errormin ← ∞, lbest ← −1, nbest ← −1
4: for i ∈ 1, . . . , k do
5: for l ∈ 1, . . . , L do
6: for j ∈ 0, . . . , nl do
7: Compute the projection error errorj of AB(�)\{j}
8: if errorj < errormin then
9: lbest ← l

10: nbest ← j
11: errormin ← errorj

12: Blbest ← Blbest \ {nbest}
13: return B1, . . . , BL

Variance-Based Heuristic. Instead of a step-wise decision that takes a lot of
computation time, we propose to use a variance-based heuristic. We define the
variance of a vector v ∈ R

n in the usual way by Var(v) =
∑n

i=0(vi − Mean(v))2

where Mean(v) is the mean of the vector values. W.l.o.g. let the neurons be
numbered in such a way that Var(z(�)1 ) ≥ · · · ≥ Var(z(�)n� ). We then choose the
basis to contain the neurons with the k� largest variances, i.e. B = {1, . . . , k}.
We assume that neurons with a higher variance in their output values carry
more information, and are, therefore, more relevant. Indeed, we can see in our
experiments, i.e. Fig. 2, that the heuristic-based approach can achieve similar
results, but in far less time.

3.2 Finding the Coefficients

Given a basis B(�) for some layer �, computed with the before-mentioned app-
roach, we want to find the coefficients that can be used to replace the remaining
neurons which are not part of the basis. We fix a neuron i in layer � that we
want to replace and whose values are stored in Z(�)

i,∗, and we want to minimize

‖∑
j∈B(�) α

(�)
i,j · Z(�)

j,∗ − Zi,∗‖ for α
(�)
i,j .

Since we want to find a linear combination of vectors, a natural choice is
linear programming. The linear program is straightforward and can be found
in [6, Appendix C]. Note that with the linear program, we are minimizing the
L1-distance between the neuron’s values and its replacement, i.e. ‖∑

j∈B(�) α
(�)
i,j ·

Z(�)
j,∗ − Zi,∗‖1.

In a different way, we can also consider the vectors Z(�)
j,∗ for j ∈ B(�) to span a

vector space. If we are given a subset {Z(�)
j,∗|j ∈ B(�) ⊂ {1, . . . , n�}} that forms a

basis for this space, i.e. span((Z(�)
j,∗)j∈B(�)) = span((Z(�)

j,∗)j∈{1,...,n�}), we can repre-

sent any other vector z(�)i in terms of this basis. However, we usually cannot rep-
resent one neuron perfectly by a linear combination of other neurons. Orthogo-
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nal projection gives us the closest point in the subspace span((Z(�)
j,∗)j∈B(�))

for any vector, in terms of L2-distance. Then, α = [α(�)
i,j1

, . . . , α
(�)
i,jk�

]ᵀ :=

(A�
BAB)−1A�

BZ(�)
i,∗ gives us the coefficients for the orthogonal projection of Z(�)

i,∗
on the linear space spanned by the columns of AB . For a more detailed descrip-
tion of orthogonal projection see e.g. [17, Chapter 6.8]. Note that we assume
that the columns of AB are linearly independent. If not we can simply replace
the respective neurons directly.

3.3 Replacement

Assuming, we have a basis B(�) of this layer and we already know the coefficients
α
(�)
i,j ∈ R for j ∈ B(�) that we need to simulate the behavior of neuron i. This

means, we have a linear combination
∑

j∈B(�) α
(�)
i,j · Z(�)

j,∗, which we want to use
instead of neuron i itself. We will replace the outgoing weights W (�) of this layer,
such that for all j ∈ B(�)

W̃
(�)
∗,j = [w(�)(1, j) + α

(�)
i,j w(�)(1, i), . . . , w(�)(n�+1, j) + α

(�)
i,j w(�)(n�+1, i)]ᵀ (4)

= W
(�)
∗,j + α

(�)
i,j W

(�)
∗,i (5)

Furthermore, we set W̃
(�)
∗,i = [0, . . . , 0]ᵀ, and W̃

(�)
i,∗ = [0, . . . , 0]ᵀ. This means that

we will not use the output of neuron i anymore, but rather a weighted sum of
the outputs of neurons in B(�), and that we will not even compute the value of i.
Additionally, we keep track of the changes we apply to the different neurons with
a matrix D(�) = (d(�)j,i ) ∈ R

n�×n�+1 . Initially, D(�) is 0 and after each replacement,

we add α
(�)
i,j ·w(�)(i, i′) to d

(�)
j,i′ for j ∈ B(�) and i′ ∈ {1, . . . , n�+1}. This is necessary

for restoring neurons at a later point.
In the optimal case, the replacement will not change the overall behavior of

the neural network. We can derive a the same semantic equivalence from [22]
incorporated into our setting:

Proposition 1 (Semantic Equivalence). Let N be a neural network with L
layers, � a layer of N , i a neuron of this layer, and B(�) ⊂ {1, . . . , n�}\{i} a
chosen basis. Let Ñ be the NN after replacing neuron i by a linear combination
of basis vectors with coefficients α

(�)
i,j , with the procedure as described above.

If for all inputs x ∈ X ⊂ X , z
(�)
i (x) =

∑
j∈B(�) α

(�)
i,j z

(�)
j (x), then N and Ñ

are semantically equal, i.e. for all inputs x ∈ X, Ñ(x) = N(x).

It is easy to see that this proposition is true, for a full proof see [6, Appendix A].
However, the proposition assumes equality of z

(�)
i (x) and

∑
j∈B(�) α

(�)
i,j z

(�)
j (x) for

x ∈ X, which virtually never holds for real-world neural networks. Therefore,
we want to minimize the difference |z(�)i (x)−∑

j∈B(�) α
(�)
i,j z

(�)
j (x)|, which will not

yield a semantically equivalent abstraction, but an abstraction with very similar
behavior. We can then quantify the difference between the output of the
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original network and the abstraction, i.e. the induced error with the following
Theorem.

Theorem 1 (Over-approximation Guarantee). Let N be an NN with L
layers. For each layer �, we have a basis of neurons B(�), and a set of replaced
neurons I(�). Then, let Ñ be the network after replacing neurons in I(�) as
described above.

We can over-approximate the error between the output of the original network
NL and the output of the abstraction ÑL for x ∈ X ⊂ X by

‖ÑL(x) − NL(x)‖ ≤ b(1 − aL−1)/(1 − a)

with a = λ(‖W‖ + η), b = λ‖W‖ε, with λ(�) being the Lipschitz-constant of
the activation function in layer �, λ = max� λ(�), ‖W‖ = max� ‖W (�)‖1, η =
max� η(�), and ε = max� ε(�), assuming that for all layers � ∈ {1, . . . , L} and for
all inputs x ∈ X, we have

– for i ∈ I(�) : |z(�)i (x) − ∑
j∈B(�) α

(�)
i,j z

(�)
j (x)| ≤ ε(�)

– |∑i∈I(�) W
(�)
∗,i

∑
t∈B(�) α

(�)
i,t | ≤ η(�)

In other words, we can over-approximate the difference in the output of the
original and the abstracted network by a value that depends on the weight
matrices, the activation function and the tightness of the abstracted neurons to
their replacements. The proof can be found in [6, Appendix B]. This Theorem
provides us with the theoretical guarantee that, given our abstraction, we
can provide a valid over-approximation of the output of the original network.

Comparison to the δ-Bisimulation. Let us recap the error definition from
[22]. The difference of the bisimulation and the original network is bounded by
[(2a)k − 1]b/(2a − 1), where a = λ|S|‖W‖ and b = λ(|P |L(N )‖x‖ + 1)δ1. In this
notation, |S| is the maximum number of neurons per layer in the whole network,
|P | the maximum number of neurons in the bisimulation (can be understood
as the number of neurons in an abstraction), L(N ) is the maximum Lipschitz-
constant of all layers, and δ is the maximum absolute difference of the bias and
sum of the incoming weights.

The drawbacks of that approach are twofold: (i) the error is based on one spe-
cific input, and (ii) it makes use of the Lipschitz-constant of the whole network.
Calculating the Lipschitz constant of an NN is still part of ongoing research [11]
and not a trivial problem. In contrast, we improve on both. Our error calculation
generalizes over a set of inputs. Additionally, we use local information, stored in
the weight-matrices, to circumvent using the Lipschitz-constant of the NN.

4 Refinement

For certain inputs the abstraction might not reflect the behavior of the original
network. For these inputs, so-called counterexamples, we may want to refine the
1 Please note that this statement is slightly different from the paper ((2a)k instead of

(2/a)k), which we believe to be a typo in the paper.
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abstraction, as opposed to starting the abstraction from the original network
again. We consider an input to be a counterexample whenever the abstraction
assigns it a different label than the original network. However, a counterexample
can be any input that does not align with the specifications.

We propose to refine the abstraction by restoring some of the replaced neu-
rons. To do this, we need to know which neurons should be replaced and how. We
first briefly mention three heuristics to choose a neuron for restoration. After-
ward, we explain how to restore a neuron. Note that the refinement offers more
than a “roll-back” of the most recent step of the abstraction since it picks the
step-to-be-rolled-back in retrospect reflecting all other steps, leading to a more
informed choice. This could in principle be done directly in the abstraction phase,
but at an infeasible cost of a huge look-ahead.

Refinement Heuristics. We propose three different heuristics: difference-
guided, gradient-guided, and look-ahead.
– The difference-guided refinement looks at the difference of a neuron in the

original and its representation as a linear combination in the abstraction. It
replaces the neuron with the largest difference.

– The gradient-guided refinement additionally takes the gradient of the NN
into account, that is computed as in the training phase of the NN. This
takes into account how the whole network would need to change to fix the
counterexample.

– The look-ahead is the most greedy method and would try out every replaced
neuron. It would check how much the network would improve if the neuron
was replaced and then chooses the neuron with the highest improvement.

More details on the approaches can be found in [6, Appendix D].

Restoration of a Neuron. The restoration principle can be seen as the coun-
terpart of the replacement. Let ˜̃N be the network obtained by replacing several
neurons in the original network N , where we want to restore a deleted neuron i
of layer �. To do this, we need not only to get the original neuron back, including
its incoming and outgoing weights but also to remove the additional outgoing
weights from the basis neurons. Intuitively, the restoration removes the linear
combination, ensures that the original outgoing weights for the neuron are used,
and adjusts the incoming weights of the neuron. We may have changed layer
� − 1, and thus we cannot restore the original incoming weights of neuron i, but
we have to adapt it to changes in the basis B(�−1). This can be done with the
following changes:

– ∀j ∈ B(�): W̃
(�)
∗,j = ˜̃W (�)

∗,j − αjW
(�)
∗,j

– W̃
(�)
∗,i = W

(�)
∗,i

– ∀j ∈ B(�−1): w̃(�−1)(i, j) = w(�−1)(i, j) + d
(�−1)
j,i

Afterward, we subtract αj ·w(�)(i, i′) from d
(�)
j,i′ for i′ ∈ {1, . . . , n�+1} and j ∈ B(�).
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5 Experimental Results

Our experimental section is divided into several parts: The first one covers how
the different methods for finding a basis and the coefficients compare, as described
in Sect. 3.2 and Sect. 3.1. The second part shows experiments on our approach in
comparison to existing works, namely DeepAbstract [2] and our implementation of
bisimulation [22] (which was not implemented before). The third part contains the
comparison between the abstraction based on syntactic and semantic information.
The fourth part describes our experiments on abstraction refinement. Finally, the
last part contains experiments on the error induced by our abstraction. Note that
supplemental experiments can be found in the Appendix.

Lastly, the work of Katz et al. [8] tightly couples the abstraction with the
subsequent particular verification, by integrating the specification as layers into
the network. It is, thus, not clear how an abstraction from [8] could be extracted
from the tool and reused for another purpose. Additionally, our abstraction
would have to be connected with some verification algorithm (DeepPoly, as done
by DeepAbstract, or some other) to compare. Any comparison of the two works
would then mostly compare the different verification tools, not really the abstrac-
tions. Although a comparison of different verifiers linked to our LiNNA is an
interesting next step into one of the possible applications, it is out of the scope
of this paper, which examines the abstraction itself (see Introduction).

Implementation. We implemented the approach in our tool LiNNA (Linear
N eural N etwork Abstraction)2. We used networks that were trained on MNIST
[20], CIFAR-10 [18], and FashionMNIST [32] for our experiments. In the fol-
lowing, we refer to the corresponding trained networks with “L × n”, where L
denotes the number of hidden layers and n is the number of neurons in these
hidden layers. All experiments were conducted on a computer with Ubuntu 22.04
LTS with 2.6 GHz Intel c© CoreTM i7 processors, and 32 GB of RAM.

Performance Measures. We will compare the approaches mostly on (i) the
reduction rate and (ii) the accuracy on a test set. Intuitively, the reduction rate
describes how much the NN was reduced by abstraction. If an NN N has in total
n neurons, but after reduction, there are m neurons left, then the reduction rate
is then defined as RR(N) = 1− m

n . The accuracy of a NN on a test set is defined
as the ratio of how many inputs are predicted with the correct label. This is the
key performance indicator in machine learning and shows how well a network
generalizes to unseen data. In evaluating our abstraction, we follow the same
principle since we want to know how well the NN generalizes after abstraction.
Note that this test set was not used for training or computing the abstraction.

5.1 Abstraction

Finding the Basis. We have given two different methods in Sect. 3.1 to find a
good basis B. While the orthogonal projection yields an equally good abstraction

2 https://github.com/cxlvinchau/LiNNA.

https://github.com/cxlvinchau/LiNNA
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Fig. 2. Finding the basis for replacement - Evaluation on different datasets. The plots
contain a comparison of LiNNA while using the greedy variant (solid) and the variance-
based heuristic (dashed) for finding a basis with orthogonal projection. Comparison of
accuracy (blue) in percent and computation time (red) in seconds. (Color figure online)

compared to linear programming, it outperforms the latter in terms of runtime
by magnitudes. Hence, we conducted the rest of the experiments with orthog-
onal projection. The full comparison between orthogonal projection and linear
programming can be found in [6, Fig. 14, Appendix E].

When we compare the greedy and the heuristic-based approach, shown in
Fig. 2, we see that the former outperforms the latter in terms of accuracy
on MNIST and FashionMNIST. On CIFAR-10, the variance-based approach is
slightly better. However, the variance-based approach is always faster than the
greedy approach and scales better, as can be seen for all datasets. Unsurpris-
ingly, the greedy approach takes more time for higher reduction rates, because it
needs to evaluate many candidates. The variance-based approach just takes the
best neurons according to their variance, which has to be calculated only once.
Therefore, the calculation is constant in terms of removed neurons.

The plots show one more difference in the behavior: On MNIST and Fashion-
MNIST, we see a quite stable accuracy until a reduction rate of 60%. We cannot
see the same behavior on CIFAR-10. We believe this is due to the accuracy and
size of the networks. Whereas it is fairly easy to train a feedforward network
for MNIST and FashionMNIST on a regular computer, this is more challenging
for CIFAR-10. We plan to include more extensive experiments including more
involved NN architectures in future work. Finally, our abstraction relies on the
assumption that NNs contain a lot of redundant information.

We want to emphasize, that in machine learning, it is common to train a
huge network that contains many more neurons than necessary to solve the task
[34]. After the introduction of regularization techniques (e.g. [24]), the problem
of over-fitting (e.g. [5]) has become often negligible. Therefore, the automatic
response to a bad neural network is often to increase its size, either in depth or
in width. Our approach can detect these cases and abstract away the redundant
information.

Finding the Coefficients. We have in total four different approaches to find-
ing the coefficients: greedy or heuristic-based linear programming, and greedy
or heuristic-based orthogonal projection. All four have similar accuracies for the
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Fig. 3. Comparison of LiNNA to
related work - LiNNA (greedy and
heuristic-based variant), DeepAbstract
[2], and our implementation of the
bisimulation [22] is evaluated in terms
of accuracy on the test set for a cer-
tain reduction rate. The experiment
was conducted on an MNIST 3 × 100
network.

Fig. 4. Scalability of LiNNA - Average
runtime for 20 different reduction rates
on one network. The plot at the top
depicts the runtime for MNIST net-
works with 4 layers, w.r.t. number of
neurons. The plot at the bottom shows
the runtime for MNIST networks with
100 neurons per layer, w.r.t. number of
layers.

same reduction rate, whereas the heuristic ones are mostly just slightly worse
than the greedy ones. For a more detailed evaluation, please refer to [6, Appendix
G]. The runtimes of the four approaches, however, differ a lot. Take for example
an MNIST 3 × 100 network. We assume that the abstraction is performed by
starting with the full network and reducing up to a certain reduction rate. Thus,
we have runtimes for each of the approaches for each reduction rate. We take
the average over all the reductions and get 47 s for the greedy orthogonal projec-
tion, 5130 s for the greedy linear programming, 1 s for the heuristic orthogonal
projection, and 2 s for the heuristic linear programming. Linear programming
takes a lot more time than orthogonal projection, and, as already seen before,
the heuristic approaches are much faster than the greedy ones. Please refer to
[6, Appendix J] for more experiments on the runtime. Therefore, we propose to
use the heuristic approach and the orthogonal projection.

Scalability. We evaluate how our approach scales to networks of different sizes.
We evaluate (1) how our approach scales with an increasing number of layers,
and (2) how it scales with a fixed number of layers but an increasing number of
neurons. We show our experiments in Fig. 4. The runtime is the average runtime
over 20 different reduction rates on the same network. One can imagine this as
averaging the runtimes shown in Fig. 2. We can see that the variance-based app-
roach has almost constant runtime, whereas the runtime of the greedy approach
is increasing for both a higher number of layers and neurons.

Final Assessment. We have four possibilities on how to abstract an NN: greedy
orthogonal projection, greedy linear programming, heuristic-based orthogonal
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Fig. 5. Evolution of the accuracy on the test set for different reduction rates, for an
increasing number of layers, or neurons. We show LiNNA (blue-green) for semantic
abstraction, and for syntactic abstraction, bisimulation (red-yellow). The networks were
trained on MNIST and have a fixed number of neurons (100) on the left, and a fixed
number of layers (4) on the right.

projection, and heuristic-based linear programming. Given that the orthogonal
projection outperforms linear programming in terms of accuracy and computa-
tion time, we propose to use orthogonal projection. We believe that it is sufficient
to use the heuristic-based approach, thereby gaining faster runtimes and only
barely sacrificing any accuracy. Whenever we refer to LiNNA from now on with-
out any additions, it will be the heuristic-based orthogonal projection.

5.2 Comparison to Existing Work

We want to show how our approach compares to existing works, i.e. DeepAbstract
and the bisimulation. Since there is no implementation available for the latter,
we implemented it ourselves. Please refer to [6, Appendix F] for the details.
The results of the comparison are shown in Fig. 3. It is evident that DeepAb-
stract achieves higher accuracies than the bisimulation, but LiNNA outperforms
DeepAbstract and the bisimulation in terms of accuracy for all reduction rates.

Concerning the runtime, we measure the runtime of each approach for a cer-
tain reduction rate, starting from the full network. We find that (in the median)
LiNNA (greedy) needs 55 s up to 199 s, LiNNA (heuristic) 2 s up to 3 s, DeepAb-
stract 187 s up to 2420 s, and the bisimulation 1 s up to 2 s, on MNIST networks
of different sizes (starting from 4 × 50 up to 11 × 100). The details can be found
in [6, Appendix J]. The bisimulation performs best, however just slightly ahead
of the heuristic-based LiNNA. The greedy LiNNA, as well as DeepAbstract both
have a much higher computation time.

However, in terms of accuracy, greedy LiNNA seems to be the best-
performing approach, given sufficient time. Due to efficiency, we suggest using
heuristic-based LiNNA, as it is as fast as the bisimulation, but its accuracy is a
lot better and even close to greedy LiNNA.

Since we are interested in the general behavior of the abstraction, we want
to see how the methods work for varying sizes of networks, but not only in
terms of scalability. In Fig. 5, we show the trend for bisimulation and LiNNA for
an increasing number of layers resp. neurons per layer. On the left, we fix the
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Fig. 6. Syntactic VS. Semantic - This
plot shows the difference between using
semantic resp. syntactic information
for the abstraction on an MNIST
5 × 100 network. Semantic: LiNNA
(semantic) and DeepAbstract. Syntac-
tic: LiNNA (syntactic) and the bisimu-
lation.

Fig. 7. Refinement - This plot shows
the accuracy of an MNIST 5×100 net-
work that was abstracted and refined to
a certain reduction rate R. There is also
a plot for an abstraction to the same
reduction rate as after the refinement
but without refining.

number of neurons per layer to 100 and incrementally increase the number of
layers. On the right, we fix the number of layers to four and increase the number
of neurons.

We can see that the performance of the networks from the bisimulation varies
a lot and gets slightly worse when there are more layers, whereas LiNNA has a
very small variation and the performance of the abstractions increases slightly
for more layers. Both approaches compute abstractions that perform better the
more neurons are in a layer, but LiNNA converges to a much steeper curve at
high reduction rates.

For NNs with 400 or more neurons, LiNNA can reduce 80% of the neurons
without a significant loss in accuracy, whereas the bisimulation can do the same
only for up to a reduction rate of 55%.

5.3 Semantic vs Syntactic

In the following, we want to show the differences between semantic and syntactic
abstractions. Recall that syntactic abstraction makes use of the weights of the
network, the syntactic information, with no consideration of the actual behavior
of the NN on the inputs. Semantic abstraction, on the other hand, focuses on the
values of the neurons on an input dataset, which also incorporates information
about the weights. DeepAbstract and LiNNA, both use semantic information,
whereas bisimulation uses syntactic information. We additionally evaluate the
performance of LiNNA on syntactic information.

Which type of information is better for abstraction: semantic or syntactic?
Note that both DeepAbstract and the bisimulation represent a group of neurons
by one single representative, whereas LiNNA makes use of a linear combination.

We summarize our results in Fig. 6. For smaller reduction rates, the bisimula-
tion performs better than LiNNA on syntactic information; for higher reduction
rates it is reversed. In general, the approaches based on semantics (DeepAbstract
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Fig. 8. Comparison of refinement tech-
niques on different architectures for
MNIST. The respective networks were
abstracted with a reduction rate of
50%. The lines show the variance, the
box represents 50% of the data, the line
in the box shows the median.

Fig. 9. Refinement on different layers
- We considered abstractions that were
obtained with a 50% reduction rate
and fixed 1000 counterexamples. The
plots depict the percentage of restored
neurons in the layers of the different
MNIST networks.

and LiNNA - semantic) outperform the other two approaches w.r.t. accuracy.
While abstraction based on syntactic information can provide global guarantees
for any input, abstraction based on semantic information relies on the fact that
its inputs during abstraction are similar to the ones it will be evaluated on later.
However, we see that still the semantic information is more appropriate for pre-
serving accuracy because it combines the knowledge about possible inputs with
the knowledge about the weights.

5.4 Refining the Network

We propose refinement of the abstraction in cases where it does not capture all
the behavior anymore, instead of restarting the abstraction process. We consider
networks that are abstracted up to certain reduction rates, i.e. 20%, 30%, . . . ,
90%, and use the refinement to regain 10% of the neurons. For example, we
reduce the network by 90% and then use refinement to get back to a reduction
rate of 80%. We evaluate this refined network on the test dataset and plot its
accuracy. Additionally, we show the accuracy of the same NN which is directly
reduced to an 80% reduction rate, without refinement. This plot is shown in
Fig. 7 for a 5 × 100 network, trained on MNIST.

The gradient and look-ahead refinement have a similar performance. How-
ever, the difference-based approach even outperforms the direct reduction itself.
This behavior can be explained by the fact that the refinement and the abstrac-
tion look at different metrics for removing/restoring neurons. The refinement can
focus directly on optimizing for the inputs at hand, whereas the abstraction was
generated on the training set. In conclusion, the refinement can even improve
the abstraction and it is beneficial to abstract slightly more than required, and
refine for the relevant inputs, rather than having a finer abstraction directly.
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Comparison of theDifferent Approaches. We collect images that are labeled
differently by the abstraction and observe the number of neurons that are restored
in order to fix the classification of each image. We ran the experiment on differ-
ent networks that were abstracted with a 50% reduction rate and considered 1000
counterexamples for each network. The results are summarized in Fig. 8, where
we have boxplots for each refinement method on four different network architec-
tures. The look-ahead approach is the most effective technique since it requires
the smallest number of restored neurons. In the median, it only requires 1 to 2
operations. The gradient-based approach performs noticeably worse but outper-
forms the difference-based approach on all networks. The computation time, how-
ever, gives a different perspective: Repairing one counterexample takes on aver-
age <1 s for the difference-based approach, 1 s for the gradient-based, but the
look-ahead approach takes on average 4 s. Interestingly, the look-ahead approach
restores fewer neurons but performs worse in accuracy. The difference-based per-
forms better in terms of accuracy while restoring more neurons.

Insight on the Relevance of Layers. We also investigated in which layers
the different refinement techniques tend to restore the neurons. The plots in
Fig. 9 illustrate the percentage of restored neurons in each layer. Notably, the
look-ahead approach restores most neurons in the first layer, and very few or
none in the later layers, whereas the other approaches have a more uniform
behavior. However, the more layers the network has, the more the gradient- and
difference-based approaches tend to restore more neurons in the first layer. As
reported already by [2], the first layers seem to have a larger influence on the
network’s output and hence should be focused on during refinement. It is even
more interesting that the difference-based approach does not focus on the first
layers as much as the look-ahead approach, but it is better in terms of accuracy.

5.5 Error Calculation

We want to show how the abstraction simulates the original network on unseen
data not only w.r.t. the output but on every single neuron. In other words, is
the discrepancy between the concrete and abstract network higher on the test
data than on the training data that generate the abstraction, or does the link
between the neuron and its linear abstraction generalize well?

In Fig. 10, we look at this ratio (“relative error of the abstraction”), i.e. the
absolute difference of (activation values of) a simulated abstract neuron to the
original neuron, once on the test dataset divided by the maximum value on the
training dataset. We can see that there are cases where the error can be greater
than one (meaning “larger than on the training set”), see the first row of the

plot. However, the geometric mean, defined as
(
ΠN

i=1ai

) 1
N , calculated over all

images is very small. Note that more experiments can be found in [6, Appendix
L]. In conclusion, we can say that our abstraction is close to the original also on
the test dataset, although the theoretical error calculation does not guarantee so
tight a simulation. Future work should reveal how to further utilize the empirical
proximity in transferring the reasoning from the abstraction to the original.
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Fig. 10. Histograms of the relative error of the values of the neurons in an MNIST
3×100 network and its abstraction (reduced by 30%). The first row shows the maximum
relative error of each neuron in the NN, that occurred for some input from the test set.
The second row shows the geometric mean of the relative error of each neuron over 100
images of the test set.

6 Conclusions

The focus of this work was to examine abstraction not as a part of a verification
procedure, but rather as a stand-alone transformation, which can later be used in
different ways: as a preprocessing step for verification, as means of obtaining an
equivalent smaller network, or to gain insights about the network and its training,
such as identifying where redundancies arise in trained neural networks. (This is
analogous to the situation of bisimulation, which has been largely investigated
on its own not necessarily as a part of a verification procedure, and its use in
verification is only one of the applications.)

We have introduced LiNNA, which abstracts a network by replacing neurons
with linear combinations of other neurons and also equip it with a refinement
method. We bound the error and thus the difference between the abstraction
and the original network in Theorem1. The theorem yields a lower and an upper
bound on the network’s output, thereby providing its over-approximation.

We showed that the linear extension provides better performance than exist-
ing work on abstraction for classification networks, both DeepAbstract, and the
bisimulation-based approach. We focused our experimental evaluation on accu-
racy, since the aim of the abstraction is to faithfully mimic the whole classifica-
tion process in the smaller, abstract network, not just one concrete property to
be verified, which describes only a very specific aspect of the network. Interest-
ingly, the practical error is dramatically smaller than the worst-case bounds. We
hope this first, experimental step will stimulate interest in research that could
utilize this actual advantage, which is currently not supported by any respective
theory.

Furthermore, we show that the use of semantic information should be pre-
ferred over syntactic information because it allows for higher reductions while
preserving similar behavior and being cheap since the I/O sets can be quite
small. Bringing back semantics could take us closer to the efficiency of classical
software abstraction, where the semantics of states is the very key, going way
beyond bisimulation.
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Abstract. Given the pervasive use of neural networks in safety-critical
systems it is important to ensure that they are robust. Recent research
has focused on the question of verifying whether networks do not alter
their behavior under small perturbations in inputs. Most successful meth-
ods are based on the paradigm of branch-and-bound, an abstraction-
refinement technique. However, despite tremendous improvements in the
last five years, there are still several benchmarks where these methods
fail. One reason for this is that many methods use off-the-shelf methods
to find the cause of imprecisions.

In this paper, our goal is to develop an approach to identify the precise
source of imprecision during abstraction. We present a novel counterex-
ample guided approach that can be applied alongside many abstrac-
tion techniques. As a specific case, we implement our technique on top
of a basic abstraction framework provided by the tool DeepPoly and
demonstrate how we can remove imprecisions in a targetted manner.
This allows us to go past DeepPoly’s performance as well as outper-
form other refinement approaches in literature. Surprisingly, we are also
able to verify several benchmark instances on which all leading tools fail.

Keywords: Neural Networks · Abstraction Refinement · Robustness
verification · Counterexample guided approaches

1 Introduction

Neural networks are being increasingly used in safety-critical systems such as
autonomous vehicles, medical diagnosis, and speech recognition [1–3]. It is impor-
tant not only that such systems behave correctly in theory but also that they
are robust in practice. Unfortunately, it is often the case (see e.g., Goodfellow
[4]) that a slight change/perturbation in the input can often fool the neural
networks into an error. Such errors can be hard to find/analyze/debug as these
neural networks contain hundreds of thousands of non-linear nodes.

To address this problem, an entire line of research has emerged focussing
on automatically proving (or disproving) the robustness of such networks. Since
automatic verification of neural networks is NP-hard [5], researchers use approx-
imations in their methods. Classically, we may divide the methods into two
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classes, namely complete and incomplete. The methods [6–16] are complete.
Since complete methods explore exact state space, they suffer from scalabil-
ity issues on large-scale networks. On the other hand, abstraction based meth-
ods e.g., [17–23] are sound and incomplete, because they over-approximate the
state space, but they scale extremely well to large benchmarks. A representative
method DeepPoly [24] maintains and propagates upper and lower bound con-
straints using the so-called triangle approximation (also see Sect. 3.1). This is
also sometimes called bound-propagation. Unsurprisingly, DeepPoly and other
abstraction based methods suffer from imprecision. Hence, the methods [25–29]
refine the over-approximated state space to achieve completeness. In [25,26,29]
the authors eliminate the spurious information (i.e., imprecision introduced by
abstraction) by bisecting the input space on the guided dimension. In [28], which
also works on top of DeepPoly [24], the authors remove the spurious region
by conjuncting each neuron’s constraints with the negation of the robustness
property and using an MILP (mixed integer linear programming) optimizer
Gurobi [30] to refine the bounds of neurons. Another work that refines Deep-

Poly is kPoly [31] which considers a group of neurons at once to generate
the constraints and compute the bounds of neurons. One issue with all these
approaches is that refinement is not guided by previous information/runs and
hence they suffer from scalability issues.

In this paper, we consider the basic abstraction framework provided by Deep-

Poly and develop a novel refinement technique that is counterexample guided,
i.e., we use counterexamples generated from imprecisions during abstraction to
guide the refinement process. Our main contributions are the following:

– We introduce a new maxsat-based technique to find the cause of imprecision
and spuriousness. Starting with an input where the abstraction does not get
verified (we use a MILP solver to obtain this), we check whether the input
generates a real counterexample of falsification of the property or if it is
spurious, by executing the neural net. If it is a spurious counterexample, we
identify the neuron or the set of neurons that caused it.

– We use these specially identified or marked neurons to split and refine. This
ensures that, unlike earlier refinement methods, our method progresses at
each iteration and eliminates spurious counterexamples.

– We adapt the existing refinement framework built on ideas from MILP-
methods and implement this as a counterexample guided abstraction refine-
ment algorithm on top of DeepPoly.

– We show that our technique outperforms to-the-best-of-our-knowledge all
existing refinement strategies based on DeepPoly.

– We also identify a class of benchmarks coming from adversarially trained
networks, where these state-of-the-art tools do not work well, because of the
ineffectiveness of certain preprocessing steps (e.g., PGD attack [32])

– Incorporating such preprocessing techniques in our tool allows us to obtain
a significant improvement in the overall performance of our tool. Our imple-
mentation is able to verify several benchmarks that are beyond the reach of
state-of-the-art tools such as αβ-CROWN [33] and Oval [34].
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Related Work. A different but very successful line of research has been to revisit
the branching heuristics for refinement and use ideas from convex optimization
instead of linear or mixed integer linear programming. Starting from a slightly
different abstraction/bound propagation method CROWN [23], the work in [14]
adopts this approach. This is amenable to parallelizing and hence good for GPU
implementations [15]. Recently, techniques based on cutting planes have been
used to further improve the refinement analysis, solving more benchmarks at
the cost of speed [16]. The success of this line of research can be seen by the fact
that the state-of-the-art tool αβ-CROWN [33] (a highly optimized solver that
uses a collection of different parametrized algorithms) has won the 2nd and 3rd
international Verification of Neural Networks Competition (VNNCOMP’21, ’22)
in a field of leading tools for robustness verification. Oval [34], another leading
tool, uses multiple optimized techniques, which at its core perform an effective
branch and bound on the ReLU activation function. They attempt to compute
the rough estimate on the improvement on objective function by splitting a
particular neuron, and split neurons with the highest estimated improvement.
Finally, in marabou [11], another leading complete tool, the authors search for
an assignment that satisfies the constraints. They treat the non-linear constraints
lazily with the hope that some non-linear constraints will not be needed to
satisfy. Despite the enormous progress made by these tools in just the last 2–3
years, there still many benchmarks that are out of their reach. Our focus in this
paper is orthogonal to these approaches, as we use counterexamples to guide the
identification the source of imprecision. In our experiments in Sect. 5, we show
that this allows us to solve many benchmarks which these cannot. Integrating
our counterexample guided approach for imprecision-identification with these
optimized tools (e.g., αβ-CROWN’s branch and bound strategy) would be the
next step towards wider coverage and performance. The constraints solved by
αβ-CROWN, which also uses branch-and-bound, are from a dual space, and it
is a priori unclear how to derive our maxSAT query from the failure of a run.

As mentioned earlier, deepSRGR [28] and kPoly [31] use refinement of
DeepPoly, but they are not counterexample guided. Elboher et al. [27] does
perform counterexample guided abstraction refinement, but their abstraction
technique is orthogonal to DeepPoly. They reduce the network size by merging
similar neurons with over-approximation, while DeepPoly maintains the linear
constraints for each neuron without changing the structure of the network. These
approaches also suffer from scalability issues on large-scale networks.

Structure of the Paper. We start with a motivating example in the next Sect. 2.
We define the notions and definitions in Sect. 3. Section 4 contains the algorithmic
procedure of our approach as well as proofs of progress and termination. Section 5
contains our experimental results and we conclude in Sect. 6.
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Fig. 1. Hypothetical example of neural network

2 A Motivating Example

Consider the neural network depicted in Fig. 1, which comprises one input layer,
one hidden layer, and one output layer. The hidden layer is divided into two
sub-layers: Affine and ReLU, resulting in a total of four layers shown in Fig. 1.
Every layer contains two neurons. The neuron x8 has a bias of 1, and all the
other neurons have a bias of 0. Our goal is to verify for all input x1, x2 ∈
[−1, 1] the outputs satisfy x7 ≤ x8. Our approach extends DeepPoly [24].
DeepPoly maintains one upper and one lower constraint and an upper and
lower bound for each neuron. For a neuron of the affine layer, the upper and lower
constraint is the same, which is the weighted sum of the input neurons i.e. x3’s
upper and lower constraint is x1 + x2. For an activation neuron, the upper and
lower expression is computed using triangle approximation [24], which is briefly
explained in Sect. 3.1. To verify the property x7 ≤ x8, DeepPoly creates a new
expression x9 = x7 −x8 and computes the upper bound of x9. The upper bound
of x9 should not be greater than 0. DeepPoly computes the upper bound of x9

by back substituting the expression of x7 and x8 from the previous layer. They
continue back substituting until only input layer variables are left. The process
of back substitution is shown in Eq. 1. After back substitution, the upper bound
of x9 is computed as 1, which is greater than 0, hence, the DeepPoly fails to
verify the property.

x9 ≤x7 − x8

x9 ≤x5 − x6 − 1
x9 ≤0.5x3 + 1 − 1
x9 ≤0.5(x1 + x2)
x9 ≤1

(1)
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−1 ≤x1 ≤ 1 −1 ≤x2 ≤ 1
x1 + x2 ≤x3 ≤ x1 + x2 x1 + x2 ≤x4 ≤ x1 + x2

0 ≤x5 ≤ 0.5x3 + 1 0 ≤x6 ≤ 0.5x4 + 1
x5 ≤x7 ≤ x5 x6 + 1 ≤x8 ≤ x6 + 1

x7 > x8 (negation of property)

(2)

There are two main reasons for the failure of DeepPoly. First, it cannot
maintain the complete correlation between the neurons. In this example, neu-
rons x3 and x4 have the same expression x1 + x2, so they always get the same
value. However, in the DeepPoly analysis process, it may fail to get the same
value. Second, it uses triangle approximation on ReLU neurons. We take the
conjunction of upper and lower expressions of each neuron with the negation of
the property as shown in Eq. 2, and use the MILP solver to check satisfiability,
thus addressing the first issue. The second issue can be resolved either by split-
ting the bound at zero of the affine node or by using the exact encoding (Eq. 6)
instead of triangle approximation. But both solutions increase the problem size
exponentially in terms of ReLU neurons and this results in a huge blowup if we
repair every neuron of the network.

So, the main hurdle toward efficiency is to find the set of important neurons
(we call these marked neurons), and only repair these. For this, we crucially
use the satisfying assignment obtained from the MILP solver. For instance, a
possible satisfying assignment of Eq. 2 is in Eq. 3. We execute the neural network
with the inputs x1 = 1, x2 = 1 and get the values on each neuron as shown in
Eq. 4. Then we observe that the output values x′

7 = 2, x′
8 = 3 satisfy the property,

so, the input x1 = 1, x2 = 1 is a spurious counterexample. The question is to
identify the neuron whose abstraction lead to this imprecision.

x1 = 1, x2 = 1, x3 = 2, x4 = 2, x5 = 2, x6 = 0, x7 = 2, x8 = 1 (3)
x′
1 = 1, x′

2 = 1, x′
3 = 2, x′

4 = 2, x′
5 = 2, x′

6 = 2, x′
7 = 2, x′

8 = 3 (4)

Maxsat Based Approach to Identify Marked Neurons
To identify the neurons whose abstraction leads to imprecision, let us refer to
Fig. 2. In the figure, pi represents the abstract constraint space in layer li, while
the solid black line denotes the spurious counterexample depicted in Eq. 3. On
the other hand, the dashed green line represents the exact execution of the input
point of the spurious counterexample, as denoted by Eq. 4.

The objective is to make the solid black line as close as possible to the dashed
green line from the first layer to the last layer while keeping the first and last
points the same, i.e., x1 = 1, x2 = 1, and x7 = 2, x8 = 1. The closest line
to achieving this goal is represented by the dotted blue line, which is also the
abstract execution but exhibits the highest closeness to the exact execution of
the spurious counterexample. In this context, vi refers to the vector of values of
neurons in layer li of the solid black line, while v′

i and v′′
i represent the vectors

of the dashed green and dotted blue lines, respectively.
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Fig. 2. Pictorial representation of our approach on example in Fig. 1 (Color figure
online)

The green and black points are the same for the input layer, i.e., [1, 1]. On the
first affine layer, l1 also, the black point v1 is the same as the green point v′

1 since
the affine layer does not introduce any spurious information. For l2, we try to
make v′′

2 close to v′
2, such that v′′

2 reaches to the v3. We do that by encoding them
as soft constraints (i.e., {x5 = 2, x6 = 2}) while maintaining that the rest of the
hard constraints are satisfied (see Eq. 5) e.g., input points v0 = v′′

0 and output
points v3 = v′′

3 remain same. We mark the neurons of the layer where the dotted
blue line starts diverging from the dashed green line, i.e., l2. The divergence we
find by the maxSat query. If maxSat returns all the soft constraints as satisfied,
it means the blue point becomes equal to the green point. If maxSat returns
partial soft constraints as satisfied, we mark the neurons whose soft constraints
are not satisfied. In our example, maxSat returns soft constraints {x5 = 2} as
satisfied, it means soft constraint of x6 could not satisfied, so, we mark x6. The
dotted blue and solid black lines are the same for our motivating example since
it contains only one ReLU layer. However, in general, it may or may not be the
same. We optimize the dotted blue line to be close to the dashed green line while
also resulting in as few marked neurons as possible.

x1 = 1 ∧ x2 = 1
x3 = x1 + x2 ∧ x4 = x1 + x2

0 ≤ x5 = 0.5x3 + 1 ∧ 0 ≤ x6 ≤ 0.5x4 + 1
x7 = x5 ∧ x8 = x6 + 1
x7 = 2 ∧ x8 = 1

(5)

Once we have x6 as the marked
neuron, we use an MILP based
approach, and add the exact
encoding of the marked neuron
(x6) in addition to the con-
straints in Equation (2) and check
the satisfiability, now it becomes
UNSAT, hence, the property ver-
ified (see Eq. 6 for more details).

3 Preliminaries

In this section, we present some basic definitions, starting with a neural network.

Definition 1. A neural network N = (Neurons, Layers,Edges,W,B, Type) is
a 6-tuple, where
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– Neurons is the set of neurons in N ,
– Layers = {l0, ..., lk} is an indexed partition of Neurons,
– Edges ⊆ ⋃k

i=1li−1 × li is a set of edges linking neurons on consecutive layers,
– W : Edges �→ R is a weight function on edges,
– B : Neurons �→ R is a bias function on neurons,
– Type : Layers �→ {Affine,ReLU} defines type of neurons on each layer.

A neural network is a collection of layers l0, l1, l2, ...lk, where k represents the
number of layers. Each layer contains neurons that are also indexed, with nij

denoting the jth neuron of layer li. We call l0 and lk the input and output layers
respectively, and all other layers as hidden layers. In our presentation, we assume
separate layers for the activation functions. Though there are different kinds of
activations, we focus only on ReLU, hence each layer can either be Affine

or ReLU layer. The definition of W and B applies only to the Affine layer.
Without loss of generality, we assume that the output layer is an Affine layer
(we can always append an identity Affine layer), and layers l1, l3, l5, ..., lk to
be the Affine layers, layers l2, l4, l6, ..., lk−1 to be the ReLU layers. If Typei =
ReLU, then |li−1| = |li|. We extend the weight function from edges to layers
using matrix Wi ∈ R

|li|×|li−1| that represents the weight for layer li, s.t.,

Wi[t1, t2] =

{
W (e) e = (n(i−1)t2 , nit1) ∈ Edges,

0 otherwise.

We also write matrix Bi ∈ R
|li|×1 to denote the bias matrix for layer li. The

entry Bi[t, 0] = B(nit), where nit ∈ Neurons.
To define the semantics of N , we will use vectors vali = [vali1, vali2, ...vali|li|]

that represent the values of each neuron in the layer li. Let fi be a function that
computes the output vector of values at layer i using the values at layer i − 1 as
vali = fi(vali−1). For each type the layer the functions are defined as follows: if
Typei = Affine, then fi(vali−1) = Wi ∗ vali−1 + Bi; if Typei = ReLU, then
fi(vali−1)j = max(val(i−1)j , 0). Then, the semantics of a neural network N is a
function (we abuse notation and also denote this function as N) which takes an
input, an |l0|-dimensional vector of reals and gives as output an |lk|-dimensional
vector of reals, as a composition of functions fk ◦ ... ◦ f1. Thus, for an input
v ∈ R

|l0|, we write its value computed by N at layer i as valvi = fi ◦ ... ◦ f1(v).
Let us define LinExpr = {w0 +

∑
i wixi|wi ∈ R and xi is a real variable}

and LinConstr = {expr op 0|expr ∈ LinExpr ∧ op ∈ {≤,=}}. A predicate is a
Boolean combination of LinConstr. We use real variable xij to represent values
of nij in the predicates. Let P and Q be predicates over input and output layers
respectively. A verification query is a triple 〈N,P,Q〉. We need to prove that for
each input v, if v |= P , N(v) |= Q. We assume P has the form

∧|l0|
i=1 lb0i ≤ x0i ≤

ub0i, where lb0i, ub0i are lower and upper bounds respectively for a neuron n0i.

3.1 DeepPoly

We develop our abstract refinement approaches on top of abstraction based
method DeepPoly [24], which uses a combination of well-understood polyhe-
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dra [35] and box [36] abstract domain. The abstraction maintains upper and
lower linear expressions as well as upper and lower bounds for each neuron. The
variables appearing in upper and lower expressions are only from the predecessor
layer. Formally, we define the abstraction as follows.

Definition 2. For a neuron n, an abstract constraint A(n) = (lb, ub, lexpr,
uexpr) is a tuple, where lb ∈ R is lower bound on the value of n, ub ∈ R is
the upper bound on the value of n, lexpr ∈ LinExpr is the expression for the
lower bound, and uexpr ∈ LinExpr is the expression for the upper bound.

In DeepPoly, we compute the abstraction A as follows.

– If Typei = Affine, we set A(xij).lexpr := A(xij).uexpr :=
∑|li−1|

t=1 Wi[j, t] ∗
x(i−1)t + Bi[j, 0]. We compute A(xij).lb and A(xij).ub by back substituting
the variables in A(xij).lexpr and A(xij).uexpr respectively up to input layer.
Since P of the verification query has lower and upper bounds of the input
layer, we can compute the bounds for xij . Consider the neuron x3 in Fig. 1.
Both its upper and lower constraints are same, represented by the expression
x1 + x2. To compute the upper bound of x3, we substitute the upper bounds
of x1 and x2, which are both 1. Consequently, the upper bound is calculated
as 2(1 + 1). Similarly, for the lower bound of x3, we substitute the lower
bounds of x1 and x2, which are both −1. Thus, the lower bound is computed
as −2(−1 + −1).

– If Typei = ReLU and y = ReLU(x), where x is a neuron in li−1 and y is a
neuron in li, we consider the following three cases:
1. If A(x).lb ≥ 0 then ReLU is in active phase and A(y).lexpr :=

A(y).uexpr := x, and A(y).lb := A(x).lb and A(y).ub := A(x).ub
2. If A(x).ub ≤ 0 then ReLU is in passive phase and A(y).lexpr :=

A(y).uexpr := 0, and A(y).lb := A(y).ub := 0.
3. If A(x).lb < 0 and A(x).ub > 0, the behavior of ReLU is uncertain,

and we need to apply over-approximation. We set A(y).uexpr := u(x −
l)/(u − l), where u = A(x).ub and l = A(x).lb. And A(y).lexpr := λ.x,
where λ ∈ {0, 1}. We can choose any value of λ dynamically. We compute
A(y).lb and A(y).ub by doing the back-subtitution similar to the Affine

layer’s neuron. Consider the neuron x5 in Fig. 1, whose input is x3. Since
x3’s upper bound is positive and lower bound is negative, the behavior of
x5 becomes uncertain. The upper expression of x5 is computed using the
above method as 0.5∗x3+1. By backsubstituting the upper expression of
x3, it becomes 0.5(x1+x2)+1. Using the upper bounds of x1 and x2, x5’s
upper bound is computed as 2. On the other hand, the lower expression
of x5 remains 0, by taking the value of λ as 0.

The constraints for an Affine neuron are exact because it is just an Affine

transformation of input neurons. The constraints for a ReLU neuron are also
exact if the ReLU is either in the active or passive phase. The constraints for
ReLU are over-approximated if the behavior of ReLU is uncertain. Although we
may compute exact constraints for this case, but the constraints will be arbitrary
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polyhedron, which are expensive to compute. The DeepPoly abstraction finds
a balance between precision and efficiency.

For the verification query 〈N,P,Q〉, we check if ¬Q ∧ ∧|lk|
j=1 lbkj ≤ xkj ≤

ubkj are satisfiable. If the formula is unsatisfied then we have proven the query
successfully. Otherwise, DeepPoly fails to prove the query.

3.2 Solver

In our algorithms, we use two major calls checkSAT and maxSat. The func-
tion checkSAT in Algorithm 2, takes a quantifier-free formula as input and
returns SAT or UNSAT. The function maxSat in the Algorithm 3 takes two
arguments as input hardConstr and softConstr. The hardConstr is a
Boolean formula of constraints, and softConstr is a set of constraints. The
function maxSat satisfies the maximum number of constraints in softConstr

while satisfying the hardConstr. The function maxSat returns SAT with the
set of constraints satisfied in softConstr, or returns UNSAT if hardConstr

fails to satisfy. We are using Gurobi(v9.1) [30] to implement both checkSAT

and maxSat functions. Furthermore, Algorithm 2 includes a function called
getModel, which serves as a mapping from variables to satisfying values.
The getModel function is utilized in cases where checkSAT returns SAT

to retrieve the satisfying assignment for the variables.

4 Algorithm

In this section, we present our method to refine DeepPoly. DeepPoly is a
sound and incomplete technique because it does over-approximations. If Deep-

Poly verifies the property then the property is guaranteed to be verified, other-
wise, its result is unknown. We overcome this limitation by using a CEGAR-like
technique, which is complete. In our refinement approach, we mark some ReLU

neurons to have exact behavior on top of DeepPoly constraints, similar to the
strategy of refinement in the most complete state-of-the-art techniques [14,15].
We add the encoding of the exact behavior to the DeepPoly constraints and
use an MILP solver on the extended constraints to check if the extra constraints
rule out all spurious counterexamples. The calls to MILP solvers are expensive,
therefore we use the spurious counterexamples discovered to identify as small as
possible set of marked neurons which suffice to be repaired.

4.1 The Top Level Algorithm

We start by describing Algorithm 1, where we present the top-level flow of our
approach. The algorithm takes a verification query 〈N,P,Q〉 as input, where
N is a neural network and P,Q are predicates over input and output layers
respectively, and returns success if the verification is successful. Otherwise it
returns a counterexample to the query. The algorithm uses supporting algorithms
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Algorithm 1. A CEGAR based approach of neural network verification
Input: A verification problem 〈N, P, Q〉
Output: Verified or Counterexample
1: cex, bounds = preprocessing(N, P, Q)
2: if cex is not None then
3: return Failed(cex) � cex is a counter example
4: A := DeepPoly(N, P, bounds) � use DeepPoly to generate abstract constraints.
5: marked := {}
6: while True do
7: result = isVerified(〈N, P, Q〉, A, marked)
8: if result = CEX(v0, v1...vk) then
9: if N(v0) |= ¬Q then

10: return Failed(v0) � v0 is a counter example
11: else
12: markedNt := getMarkedNeurons(N , A, marked, v0, v1...vk)
13: marked := marked ∪ markedNt
14: else
15: return verified

getMarkedNeurons and isVerified (described subsequently) to get more
marked neurons to refine and check the validity of the verification query after
refinement.

The first line of the algorithm performs preprocessing steps similar to state-
of-the-art tools (e.g. αβ-CROWN). These preprocessing steps are optional and
are explained in more detail in Sect. 5, where they are used to compare our
results with those of state-of-the-art tools. The fourth line of Algorithm 1
generates all the abstract constraints by using DeepPoly, as described in
Sect. 3.1. For a node nij ∈ N.neurons, the abstract constraints consist of
the lower and upper constraints as well as the lower and upper bounds. Let
A.lci =

∧|li|
j=1 A(nij).lexpr ≤ xij ≤ A(nij).uexpr, which is a conjunction of

upper and lower constraints of each neuron of layer li with respect to abstract
constraint A. The lexpr and uexpr for any neuron of a layer contain variables
only from the previous layer’s neurons, hence A.lci contains the variables from
layers li−1 and li. If the preprocessing steps in line 1 are applied, then DeepPoly

generates the lexpr and uexpr for ReLU neurons as per the triangle approx-
imation. In this case, we may return a counter-example and stop or use these
bounds without performing any back-substitution.

At line 5, we initialize the variable marked to the empty set of neurons.
At the next line, we iterate in a while loop until either we verify the query or
find a counterexample. At line 7, we call isVerified with the verification query,
abstraction A, and the set of marked neurons. In this verification step, the behav-
ior of the marked neurons is encoded exactly, as detailed in Sect. 4.2. The call
either returns that the query is verified or returns an abstract counterexample,
which is defined as follows.
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Algorithm 2. Verify 〈N,P,Q〉 with abstraction A
Name: isVerified

Input: Verification query 〈N, P, Q〉, abstract constraints A, marked ⊆ N.neurons
Output: verified or an abstract counterexample.
1: constr := P ∧ (

∧k
i=1 A.lci) ∧ ¬Q

2: constr := constr ∧ (
∧

n∈marked exactConstr(n)) � as in Equation 6
3: isSat = checkSat(constr)
4: if isSat then
5: m := getModel(constr)
6: return CEX(m(x0), ...., m(xk)) � Abstract counter example where xi is a

vector of variables in layer li
7: else
8: return verified

Definition 3. A sequence of value vectors v0, v1, ..., vk is an abstract execution
of abstract constraint A if v0 |= lc0 and vi−1, vi |= A.lci for each i ∈ [1, k]. An
abstract execution v0, ..., vk is an abstract counterexample if vk |= ¬Q.

If these algorithms return verified, we are done, otherwise we analyze
the abstract counterexample CEX(v0, ..., vk). The abstract counterexample
CEX(v0, ..., vk) may or may not be a real counterexample, so, we first check
at line 8, if executing the neural network N on input v0 violates the predicate Q.
If yes, we report input v0 as a counterexample, for which the verification query
is not true. Otherwise, we declare the abstract counterexample to be spurious.
We call getMarkedNeurons to analyze the counterexample and return the
cause of spuriousness, which is a set of neurons markedNt. We add the new
set markedNt to the old set marked and iterate our loop with the new set of
marked neurons. Now let us present isVerified and getMarkedNeurons in
detail.

4.2 Verifying Query Under Marked Neurons

In Algorithm 2, we present the implementation of isVerified, which takes the
verification query, the DeepPoly abstraction A, and a set of marked neurons
as input. At line 1, we construct constraints contr that encodes the executions
that satisfy abstraction A at every step. At line 2, we also include constraints in
constr that encodes the exact behavior of the marked neurons. The following is
the encoding of the exact behavior [37] of neuron nij .

exactConstr(nij) := x(i−1)j ≤ xij ≤ x(i−1)j − A(n(i−1)j).lb ∗ (1 − a) ∧
0 ≤ xij ≤ A(n(i−1)j).ub ∗ a ∧ a ∈ {0, 1} (6)

where a is a fresh variable for each neuron.
At line 3, we call a solver to find a satisfying assignment of the constraints.

If constr is satisfiable, we get a model m. From the model m, we extract an
abstract counterexample and return it. If constr is unsatisfiable, we return that
the query is verified.
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Algorithm 3. Marked neurons from counterexample
Name: getMarkedNeurons

Input: Neural network N , DeepPoly abstraction A, marked ⊆ N.neurons, and
abstract counterexample (v0, v1...vk)
Output: New marked neurons.
1: Let valv0ij be the value of nij , when v0 is input of N .
2: for i = 1 to k do � inputLayer excluded
3: if li is ReLU layer then
4: constr :=

∧k
t=i A.lct

5: constr := constr ∧ (
∧

n∈marked exactConstr(n)) � as in Equation 6
6: constr := constr ∧ ∧|li−1|

j=1 (x(i−1)j = valv0(i−1)j)

7: constr := constr ∧ ∧|lk|
j=1(xkj = vkj)

8: softConstrs := ∪|li|
j=1(xij = valv0ij )

9: res, softsatSet = maxSat(constr, softConstrs) � res always SAT

10: newMarked := {nij |1 ≤ j ≤ |li| ∧ (xij = vali(j)) /∈ softsatSet}
11: if newMarked is empty then
12: continue
13: else
14: return newMarked

4.3 Maxsat Based Approach to Find the Marked Neurons

In Algorithm 3, we present getMarkedNeurons which analyzes an abstract
spurious counterexample. In our abstract constraints, we encode Affine neu-
rons exactly, but over-approximate ReLU neurons. We identify a set of marked
neurons whose exact encoding will eliminate the counterexample in the future
analysis. As we defined earlier, let valv0

i represent the value vector on layer li, if
we execute the neural network on input v0. Let us say v0, v1, ..., vk is an abstract
spurious counterexample. We iteratively modify the counterexample such that
its values coincides with valv0

i . Initially, valv0
0 is equal to v0. Since we encode the

affine layer exactly in A.lci, the following theorem follows.

Theorem 1. Let v0, v1, ...vk be an abstract execution. For all 1 ≤ i ≤ k, if
Typei = Affine and valv0

i−1 = vi−1, then valv0
i = vi.

By the above theorem, v1 and valv1
1 are also equal. The core idea of our

algorithm is to find v′
2 as close as possible to valv0

2 , such that v0, v1, v
′
2, ...v

′
k−1, vk

becomes an abstract spurious counterexample. We measure closeness by the
number of elements of v′

2 are equal to the corresponding element of vector valv0
2 .

1. If v′
2 is equal to valv0

2 then v′
3 will also become equal to valv0

3 due to Theorem 1.
Now we move on to the next ReLU layer l4 and try to find the similar point v′

4,
such that v0, v1, v2, v3, v

′′
4 ...v′′

k−1, vk is an abstract spurious counterexample.
We repeat this process until the following case occurs.

2. If at some i, we can not make v′
i equal to valv0

i then we collect the neurons
whose values are different in v′

i and valv0
i . We call them marked neurons.
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In the algorithm, the above description is implemented using maxSat solver.
The loop at line 2 iterates over ReLU layers. Line 4 builds the abstract con-
straints generated by DeepPoly from layer i onwards. Line 5 encodes the exact
encoding of marked neurons, i.e. x6 is identified as a marked neuron in our moti-
vating example. Line 6 and 7 ensure layer li−1’s neurons have value equal to
valv0

i−1, and the execution finishes at vk. The first and last line of Eq. 5 repre-
sents the constrains of line 6 and line 7, in our motivating example. At Line 8, we
construct soft constraints, which encodes xij is equal to valv0

i . In our motivating
example, the set {x5 = 2, x6 = 2} represents the soft constraints. At line 9,
we call maxSat solver. This call to maxSat solver will always find a satisfying
assignment because our hard constraints are always satisfiable. The solver will
also return a subset softsatSet of the soft constraints. At line 10, we check which
soft constraints are missing in softsatSet. The corresponding neurons are added
in newMarked. If newMarked is empty, we have managed to find a spurious
abstract counterexample from valv0

i and we go to the next layer. Otherwise, we
return the new set of marked neurons.

4.4 Proofs of Progress and Termination

Our refinement strategy ensures progress, i.e., the spurious counterexample does
not repeat in the future iterations of Algorithm 1. Let us suppose the algorithm
getMarkedNeurons gets the abstract spurious counterexample v0, v1, ...vk
and returns marked neurons in some iteration of the while loop, say ith-iteration.
The call to maxSat at line 10 declares that constr ∧ softsatSet is satisfiable.
We can extract an abstract spurious counterexample from a model of constr ∧
softsatSet. Let m be the model. Let the abstract spurious counterexample be
cex = valv0

0 , ...., valv0
i−1, v

′
i, ..., v

′
k−1, vk. Before the iteration i, cex follows the

execution of N on input v0. After the iteration i, we use the model to construct
cex, i.e., m(xi) = v′

i.

Lemma 1. In the rest of run of Algorithm 1, i.e., future iterations of the while
loop, IsVerified will not return the abstract spurious counterexample cex again.

Proof. For nij ∈ newMarked, the maxSat query ensures that valv0
ij = v′

ij . If
we have the same counterexample again in the future then input of nij will be
valv0

(i−1)j . Since we will have exact encoding for nij , the output will be valv0
ij ,

which contradicts the earlier inequality.

Next, we turn to termination of the algorithm. We have two lemmmas.

Lemma 2. In every refinement iteration getMarkedNeurons returns a non-
empty set of marked neurons.

Proof. By the definition of abstract spurious counterexample, vk |= ¬Q. By the
check at line 6 of Algorithm 1 valv0

k |= Q. If the set of returned new marked
neurons is empty, newMarked = ∅ for each layer. Therefore, all the neurons in
any layer li become equal to valv0

i , which implies vk equals to valv0
k , but vk |= ¬Q

and valv0
k |= Q, which is a contradiction.



Using Counterexamples to Improve Robustness Verification in NNs 435

Lemma 3. In every refinement iteration getMarkedNeurons returns
marked neurons, which were not marked in previous iterations.

Proof. We will show that if a neuron nij got marked in tth iteration then nij

will not be marked again in any iteration greater than t. Consider an iteration
t′ > t, if we get the marked neurons from layer other than li then nij can not
be part of it because nij is in layer li. Consider the case where marked neurons
are from the layer li in t′th iteration. Since we have made nij exact in line 6 of
Algorithm 3, its behavior while optimizing constraints will be same as the exact
ReLU. Moreover, v′

ij = valv0
ij , which implies the soft constraint for neuron nij

will always be satisfied. Hence it will not occur as a marked neuron as per the
criteria of new marked neurons in line 10 of Algorithm 3.

Lemmas 2 and 3 imply that in every iteration getMarkedNeurons returns
a nonempty set of unmarked neurons, which will now be marked. In worst case,
the algorithm will mark all the neurons of the network, and encode them in the
exact behavior. Thus, we conclude,

Theorem 2. Algorithm 1 always terminates.

5 Experiments

We have implemented our approach in a prototype and compared it to three
types of approaches (i) DeepPoly [24] and its refinements kPoly [31], deep-
SRGR [28], (ii) other cegar based approaches, and (iii) state-of-the-art tools αβ-
CROWN [14,15,23,37,38], Oval [34,39–43], and marabou [11]. Furthermore,
we conducted a comparison of performance across different epsilon values for all
the tools employed. We extended this analysis to focus specifically on adversar-
ially trained networks and observed a significant improvement in performance.
Moreover, we conducted a detailed comparison with αβ-CROWN, utilizing the
same preprocessing steps employed by the αβ-CROWN tool.

The tools αβ-CROWN and Oval use a set/portfolio of different algorithms
and optimizations. αβ-CROWN achieved the first rank consistently in both
VNN-COMP’21 and VNN-COMP’22 (International Verification of Neural Net-
works Competitions)1. We use the same configuration to run αβ-CROWN and
Oval, which these tools used in VNN-COMP.

Implementation. We have implemented our techniques in a tool, which we
call drefine, in C++ programming language. The tool drefine is available at
https://github.com/afzalmohd/VeriNN/tree/atva2023. Our approach relies on
DeepPoly, so we also have implemented DeepPoly in C++. We are using a

1 We could not compare with VeriNet, which is the 2nd and 3rd of VNNCOMP 2021
and VNNCOMP 2022 respectively, as we had difficulties with its external solver’s
(Xpress) license. We also could not compare with MN-BaB since it required GPU
to run. Also, since we are comparing with DeepPoly and kPoly, and ERAN uses
these techniques internally, we skipped a direct comparison with ERAN.

https://github.com/afzalmohd/VeriNN/tree/atva2023
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Fig. 3. (a) Neural networks details (b) Cactus plot [46] with related techniques: The
x-axis represents the number of benchmarks solved, sorted in increasing order based
on the time taken to solve them. The y-axis represents the cumulative sum of the time
taken to solve the benchmarks up to a certain point on the x-axis.

C++ interface of the tool Gurobi [30] to check the satisfiability as well as solve
maxSat queries.

Benchmarks. We use the MNIST [44] dataset to check the effectiveness of our
tool and comparisons. We use 11 different fully connected feedforward neural
networks with ReLU activation, as shown in Fig. 3(a). These benchmarks are
taken from the DeepPoly’s paper [24]. The input and output dimensions of each
network are 784 and 10, respectively. The authors of DeepPoly used projected
gradient descent (PGD) [32] and DiffAI [45] for adversarial training. Figure 3(a)
contains the defended network i.e. trained with adversarial training, as well as
the undefended network. The last column of Fig. 3(a) shows how the defended
networks were trained.

The predicate P on the input layer is created using the input image im and
user-defined parameter ε. We first normalize each pixel of im between 0 and 1,
then create P =

∧|l0|
i=1 im(i)− ε ≤ x0i ≤ im(i)+ ε, such that the lower and upper

bound of each pixel should not exceed 0 and 1, respectively. The predicate Q on
the output layer is created using the network’s output. Suppose the predicted
label of im on network N is y, then Q =

∧|lk|
i=1 xki < y, where i = y. One

query instance 〈N,P,Q〉 is created for one network, one image, and one epsilon
value. In our evaluation, we took 11 different networks, 8 different epsilons, and
100 different images. The total number of instances is 8800. However, there are
304 instances for which the network’s predicted label differs from the image’s
actual label. We avoided such instances and consider a total of 8496 benchmark
instances.
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5.1 Results

We conducted the experiments on a machine with 64 GB RAM, 2.20GHz

Intel(R) Xeon(R) CPU E5-2660 v2 processor with CentOS Linux 7 operat-
ing system. To make a fair comparison between the tools, we provide only a single
CPU, and 2000 seconds timeout for each instance for each tool. We use vanilla
DeepPoly (i.e., DeepPoly without preprocessing in line 1 of Algorithm 1)
to generate the abstract constraints of benchmarks instances. Figure 3(b) repre-
sents the cactus plot of (log of) time taken vs the number of benchmarks solved
for the most related techniques. Table 1 and 2 represent a pairwise comparison
of the number of instances that a tool could solve which another couldn’t (more
precisely, the (i, j)-entry of the table is the number of instances which could
be verified by tool i but not by tool j), and Fig. 4, compares wrt epsilon, the
robustness parameter.

Comparison with the Most Related Techniques: In this subsection, we consider
the techniques DeepPoly, kPoly, and deepSRGR to compare with ours. We
consider DeepPoly because it is at the base of our technique, and the techniques
kPoly and deepSRGR refine DeepPoly just as we do. These tools only report
verified instances, while our tool can report verified and counter-example.
Hence, we compare these techniques with only verified instances of our tech-
nique in the line of drefine_verified in cactus plot Fig. 3(b).

Our technique outperforms the others in terms of the verified number of
instances. One can also see that when they do verify, DeepPoly and kPoly are
often more efficient, which is not surprising, while our tool is more efficient than
deepSRGR. From Table 1, we also see that our tool solves all the benchmark
instances which are solved by these three techniques (and in fact around ∼700
more), except 14 instances where kPoly succeeds and our tool times out.

Comparison with Cegar Based Techniques: cegar_nn [27] is a tool that also
uses counter example guided refinement. But the abstraction used is quite dif-
ferent from DeepPoly. This tool reduces the size of the network by merging
similar neurons, such that they maintain the overapproximation and split back
in the refinement process. We can conclude from Table 1 that cegar_nn ver-
ified only 18.88%, while our tool verified 61.42% of the total number of bench-
mark instances. Although, in total cegar_nn solves significantly fewer bench-
marks, it is pertinent to note that this technique solves many unique benchmark
instances as can be inferred from Table 1.

Comparison with State-of-the-Art Solvers: The tools αβ-CROWN and Oval

use several algorithms that are highly optimized and use several techniques.
The authors of αβ-CROWN implement the techniques [14,15,23,37,38], and
the authors of Oval implement [34,39–43]. The authors of marabou imple-
ment the technique [11]. Table 1 shows that all three tools indeed solve about
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Table 1. Pairwise comparison of tools, e.g. entry on row kPoly and column DeepPoly

represents 156 benchmark instances on which kPoly verified but DeepPoly fails. The
green row highlights the number of solved benchmark instances by drefine and not
others while the red column is the opposite.

Verified

Unverified
DeepPoly kPoly deepSRGR cegar_nn αβ-CROWN Oval marabou drefine total

DeepPoly 0 0 0 3708 63 66 383 0 4633
kPoly 156 0 114 3760 63 66 389 14 4789

deepSRGR 54 2 0 3736 63 66 401 0 4687
cegar_nn 713 609 687 0 217 238 87 417 1624

αβ-CROWN 1672 1516 1618 4821 0 84 944 1095 6242
Oval 1622 1466 1568 4789 31 0 902 1052 6189

marabou 2042 1892 2006 4741 994 1005 0 1624 6292
drefine 694 552 640 4106 180 190 655 0 5327

1000 (out of 8496) more than we do2. However, we found around 180 benchmarks
instances where αβ-CROWN fails, and our tool works, and around 190 bench-
marks on which Oval fails and our tool works. Also, around 655 benchmarks
where marabou fails and our tool works; see Table 1 for more details. In total,
we are solving 59 unique benchmarks where all three tools fail to solve. Thus
we believe that these tools are truly orthogonal in their strengths and could
potentially be combined.

Epsilon vs. Performance: As a sanity check, we analyzed the effect of pertur-
bation size and the performance of the tools. In Fig. 4, we present the compar-
ison of fractional success rate of tools as epsilon grows from 0.005 to 0.05. At
ε = 0.005, the performance of all the tools is almost the same except cegar_nn

and marabou. As epsilon increases, the success rate of tools drops consistently
except cegar_nn and marabou. Here also, we perform better than Deep-

Poly, kPoly, deepSRGR, and cegar_nn, while αβ-CROWN and Oval per-
form better. We are performing better compared to marabou only when ε is
less than 0.015.

Comparison with Adversarially Trained Networks: The networks considered for
evaluation in this study are the ones corresponding to the 4st, 9th, and 10th
rows of Fig. 3(a). These networks have been trained using adversarial tech-
niques, where adversarial examples were generated using standard methods such
as PGD/DiffAI, and the network was subsequently trained on these adversar-
ial examples to enhance its robustness. Table 2 presents a pairwise compari-
son of verifiers on these adversarially trained networks, encompassing a total
of 2223 benchmark instances. Our approach demonstrates significant superior-
ity over DeepPoly, kPoly, and deepSRGR in terms of performance on these
benchmarks. While αβ-CROWN and Oval outperform our approach by approx-
imately 135 benchmarks, we are still able to solve 75 unique benchmarks that
2 αβ-CROWN outperforms marabou in VNN-COMP’22, while in our experiments
marabou performs better; potential reasons could be difference in benchmarks and
that αβ-CROWN uses GPU, while marabou uses CPU in VNN-COMP’22.
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Fig. 4. Size of input perturbation (epsilon) vs. percentage of solved instances

Table 2. Pairwise comparison of tools on adversarially trained networks

Verified

Unverified
DeepPoly kPoly deepSRGR αβ-CROWN Oval drefine total

DeepPoly 0 0 0 3 3 0 1626
kPoly 9 0 9 5 4 2 1635

deepSRGR 2 2 0 3 3 0 1628
αβ-CROWN 302 295 302 0 1 205 1925

Oval 312 304 310 11 0 214 1935
drefine 170 163 168 76 75 0 1796

remain unsolved by both of these tools. Considering the total number of bench-
marks is 2223, this indicates a notable number of benchmarks that our approach
successfully addresses.

Detailed Comparison with αβ-CROWN with Same Preprocessing: To evaluate
the effectiveness of our approach, we conducted a benchmark analysis on the
instances where refinement was applied. We applied the same preprocessing steps
used by αβ-CROWN to filter the benchmarks.

The preprocessing steps include the so-called PGD (Projected Gradient
Descent) attack, followed by CROWN [23] which is an incomplete technique.
The PGD attack is a method that can generate counter examples. It works by
iteratively updating the perturbation in the direction of the gradient of the loss
function with respect to the input data, while constraining the magnitude of the
perturbation to be within a predefined limit. If PGD fails, then CROWN runs
to generate the over-approximated bounds.

After preprocessing, the total number of benchmarks was reduced to 2362,
which were the benchmarks that were not solved by preprocessing steps. Out of
these benchmarks, αβ-CROWN was able to verify 626, while our approach ver-
ified 570 benchmarks. Notably, our approach was able to solve 311 benchmarks
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that were not solved by αβ-CROWN , while αβ-CROWN solved 366 benchmarks
that were not solved by our approach. All 311 benchmarks solved by our approach
were from adversarially trained networks, while not a single benchmark out of
366 solved by αβ-CROWN were from adversarially trained networks, suggesting
that our approach performs well for such networks, as PGD attack is not very
effective on these benchmarks. These results indicate that the majority of the
benchmarks (1095) solved by αβ-CROWN and not by our approach, as shown
in Table 1, are likely solved by preprocessing steps rather than the refinement
procedure. Further, the union of benchmarks solved by both tools results in a
total of 937 benchmarks, demonstrating a clear improvement over the number of
benchmarks solved by αβ-CROWN alone. This highlights the significant contri-
bution of our technique in the context of portfolio verifiers, as it complements
and enhances the overall performance when integrated with other verification
tools.

Subroutine Time: We also conducted measurements to determine the average
time required by the getmarkneuron subroutine and the refinement sub-
routine. The getmarkneuron subroutine exhibited an average execution time
of 15.66 seconds, whereas the refinement subroutine took 89.69 seconds on
average. In comparison, the getmarkneuron subroutine accounted for only
14.86% of the total time, which represents a small proportion. Furthermore, we
measured the average number of marked neurons, which amounted to 14.81,
and the average refinement iteration count, which stood at 3.19. These values
also indicate a relatively small magnitude. These findings suggest that integrat-
ing our getmarkneuron method with an efficient refinement procedure could
yield further improvements in overall performance.

6 Conclusion

We have presented a novel cegar-based approach. Our approach comprises two
parts. One part finds the causes of spuriousness, while the other part refine
the information found in the first part. Experimental evaluation shows that we
outperform related refinement techniques, in terms of efficiency and effectivity.
We also are able to verify several benchmarks that are beyond state of the art
solvers, highly optimized solvers. Our experiments indicate when our technique
can be useful and valuable as part of the portfolio of techniques for scalability of
robustness verification. As futurework, we plan to extend our technique/tool to
make it independent of DeepPoly and applicable with other abstraction based
techniques and tools.
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