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Chapter 8 
Observer-based Feedback Linearization 
Control of a Quadrotor Subjected to Sensor 
Noise 

Ahmet Ermeydan and Aziz Kaba 

Acronyms 

GSA Gravitational search algorithm 
H H-infinity 
LQR Linear quadratic regulator 
PD Proportional derivative 
PID Proportional, integral, derivative 
SNR Signal-to-noise ratio 
UAV Unmanned aerial vehicle 
VAR Variance 

8.1 Introduction 

Nowadays, there are many application fields for unmanned aerial vehicles (UAVs) 
and drones such as surveillance, emergency operations, military applications, and 
package transportation (Metin and Aygün 2019). In particular, quadrotor becomes 
popular among researchers due to its hovering capacity and high maneuverability. 
Quadrotor is a highly nonlinear system and hard to control with linear control 
methods that operate around an equilibrium point (Zuo 2010). Although linear 
control techniques such as proportional derivative (PD) (Kıyak 2016), proportional 
integral derivative (PID) (Ermeydan and Kiyak 2017), linear quadratic regulator 
(LQR) (Khatoon et al. 2014), and H-infinity (H1) (Araar and Aouf 2014) are applied
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to the quadrotor successfully, these control approaches may experience a perfor-
mance drop when deviating from the equilibrium point (Kendoul 2012).
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Recently, nonlinear control techniques have become widespread when it comes to 
the quadrotor. A PID-like speed controller is proposed by Yazar et al. (2018) for a 
nonlinear small-scale turbojet engine. Ai and Yu (2019) proposed a flatness-based 
sliding mode control is proposed for the trajectory tracking problem in a quadrotor in 
the presence of external disturbances. A backstepping-like feedback linearization 
method is suggested by Choi and Ahn (2014) for controlling the quadrotor. Köksal 
et al. (2016) presented a two-level nonlinear control design. An incremental sliding 
mode fault-tolerant flight controller is proposed by Wang et al. (2019). Xuan-Mung 
and Hong (2019) presented a new altitude algorithm that consists of nonlinear and 
linear controllers for quadrotors. A nonlinear PID controller is suggested by Najm 
and Ibraheem (2019) to stabilize a quadrotor system. To track the position and 
attitude of a quadrotor, a new control method is proposed by Razmi and Afshinfar 
(2019). A neural network is used to tune sliding mode controllers in the suggested 
method. The proposed method obtained better results for both attitude and position 
tracking in comparison to (Zheng et al. 2014) and (Xiong and Zhang 2017). A robust 
nonlinear control method is utilized to control the quadrotor’s position and orienta-
tion (Labbadi and Cherkaoui 2019). A dynamic inversion based nonlinear controller 
is suggested for quadrotors by Prabhakaran et al. (2015). Nonlinear optimal 
backstepping control is applied to a quadrotor (Basri et al. 2015). 

Literature survey showed that the control of the quadrotor can be insufficient 
when the dynamics are considered linear. Recent research efforts are shifting toward 
the nonlinear dynamics and control. Feedback linearization technique as one of the 
nonlinear controllers can transform the nonlinear plant dynamics to a linear dynam-
ical form by using a proper feedback law (Özbek et al. 2016). In difference to linear 
controllers, feedback linearization control law is obtained through the exact state 
transformation rather than the state approximation approach (Gee et al. 1998). So, 
the nonlinear model of the plant can be converted into a fully or partly linear model 
with the cancellation of nonlinearities. The application of the feedback linearization 
control technique into the quadrotor control problem can be found in many research 
papers. Voos (2009) proposed the nonlinear control of a micro-quadrotor platform 
by using a feedback linearization technique. Saif (2017) proposed a feedback 
linearization control law for a tiltable quadrotor under wind gusts scenario. Bonna 
and Camino (2015) proposed the trajectory tracking control of a quadrotor with 
feedback linearization technique. Fault-tolerant control application of the feedback 
linearization approach is proposed by Ghandour et al. (2014) to a quadrotor testbed. 
Position-tracking control of the quadrotor is proposed by Kuantama et al. (2018) 
using the feedback linearization linear quadratic regulator (LQR) technique. 
Quadrotor control using feedback linearization with dynamic extension is proposed 
by Al-Hiddabi (2009). Attitude and altitude control of a quadrotor with feedback 
linearization technique is presented by Eltayeb et al. (2019). 

Despite the advantages of the feedback linearization technique, the controller 
operates if all the state parameters are well-defined and do not have any uncertainties 
(Chen et al. 2016). It is a challenging but an essential task to control the quadrotor in



full degree-of-freedom space since quadrotors are both subjected to internal and 
external noise sources such as modeling inaccuracies, assumptions, wind gusts, 
measurement noises, and sensor errors. To overcome these disturbances, the feed-
back linearization control technique is enhanced with an observer to handle the 
control of the quadrotor subjected to internal and external disturbances. 
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Several disturbance-observer-based control techniques are available in the liter-
ature Chen et al. (2016). In this chapter, the enhancement of the feedback lineariza-
tion control method is ensured by particle filter–based observer. The particle filter is 
a Monte Carlo–based suboptimal algorithm that deals with closed-loop integral 
problems of the recursive Bayesian estimation (Oh and Kim 2019). Unlike linear 
observers and simple robust controller structures, the particle filter can handle 
system nonlinearities and noise with both Gaussian and non-Gaussian distributions 
(Daroogheh et al. 2018). 

Based on the given discussion, the originality of this manuscript is to propose a 
nonlinear observer–based feedback linearization control method of a quadrotor that 
solves the integration problems, overcomes the uncertainty issue of the feedback 
linearization technique, and not only reduces disturbance errors and minimizes 
sensor errors but also controls the quadrotor with nonlinear dynamics in a wide 
range of operation regions. 

The organization of the chapter is as follows: Nonlinear kinematic and dynamic 
equations of the quadrotor are derived in Sect. 8.2. The proposed method and 
theoretical background are given in Sect. 8.3. The main results are covered in 
Sect. 8.4. Conclusions and discussions are given in Sect. 8.5. 

8.2 Quadrotor 

Quadrotor is a multirotor that consists of four motors and propellers. The two 
opposite propeller turn in the same direction and the other two turn in the opposite 
direction. The speeds of the rotors are equal in a balanced flight (Kose and Oktay 
2019). 

8.2.1 Euler Transformation 

There are different methods for expressing a vector in one axis set in another axis set. 
Euler transformation is one of these methods. In this transformation, one set of axes 
is rotated three times to overlap the other. Here, the order of rotation of the axis 
assembly is important; since the rotation order changes, it leads to a different result 
(Pamadi 2015). 

The inertial reference system is I = (xi, yi, zi) and the body reference system is 
B = (xb, yb, zb). So the following is obtained if I reference system is rotated around 
B reference system with angles ψ , θ, and ϕ sequentially as shown in Fig. 8.1.
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Fig. 8.1 Quadrotor coordinate system 

R3 ψð Þ= cosψ sinψ 0- sinψ cosψ 0 0 0 1½ 8:1Þ 
R2 θ = cos θ 0- sin θ 0 1 0  sin θ 0 cos θ 8:2 

R1 ϕ = 1 0 0 0  cosϕ sinϕ 0- sinϕ cosϕ 8:3 

Tb 
i =R1 ϕð ÞR2 θð ÞR3 ψð Þ ð8:4Þ 

These matrices are orthogonal matrices and multiplication of the matrices form 
the following transformation matrix, which moves any vector from I reference 
system to B reference system. 

Tb 
i ¼ cos θ cosψ cos θ sinψ− sin θ sin θ sinϕ cosψ½ 

− sinψ cosϕ sinψ sin θ sinϕþ cosψ cosϕ sinϕ cos θ sin θ cosϕ cosψ 

þ sinψ sinϕ sinψ sin θ cosϕ− cosψ sinϕ cosϕ cos θ]
8:5 

It is not possible to measure Euler angles directly in the flight control system. 
However, P, Q, and R, which are the angular velocities around three axes in the body 
reference system, can be measured. It is possible to obtain Euler angular velocities 
by applying a transformation to these angular velocities (Corke 2013). 

To move Euler angular velocities from I reference system to B reference system, 
the following matrix calculations are performed. 

P  Q  R½ ]=R1 ϕð  ÞR2 θð  Þ  0  0  _ψ½ ] þ  R1 ϕð  Þ  0 _θ 0 þ _ϕ 0  0 ð8:6Þ
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P Q R½ ]
= cos θ 0- sin θ sinϕ sin θ cosϕ sinϕ cos θ cosϕ sin θ- sinϕ cosϕ cos θ½
x 0 0  _ψ½ ] þ  1 0 0 0  cosϕ sinϕ 0- sinϕ cosϕ½ 0 _θ 0 þ _ϕ 0 0  

8:7 

P Q  R  = 1 0- sin θ 0 cosϕ sinϕ cos θ 0- sinϕ cosϕ cos θ _ϕ _θ _ψ 8:8 

However, P, Q, and R are generally given, and Euler angular velocities are 
desired. Therefore, L matrix is defined, and Euler angular velocities can be found 
using its inverse. 

L= 1 0- sin θ 0 cosϕ sinϕ cos θ 0- sinϕ cosϕ cos θ½ 8:9Þ 
_ϕ _θ _ψ = L- 1 P Q  R½ ] 8:10 

_ϕ _θ _ψ 
= 1 sinϕ tan θ cosϕ tan θ 0 cosϕ- sinϕ 0 sinϕ sec θ cosϕ sec θ½  

P Q R 8:11 

8.2.2 Equations of Motion 

The following assumptions are made while gathering the equations of motion of the 
quadrotor (Musa 2017).

. Quadrotor is a rigid body.

. The center of gravity of the quadrotor is coincident with the center of the body 
reference frame.

. The ground effect of the quadrotor is neglected.

. Earth is an inertial reference. 

To derive equations of motion according to the Newton–Euler method, it is 
essential to define forces and torques acting on a quadrotor (He and Zhao 2014). 
There are four control inputs of a quadrotor, which has six degrees of freedom. 

uϕ = l F4 -F2ð Þ 8:12Þ 
uθ = l F3 -F1 8:13 

uψ = d F1 -F2 F3 -F4 8:14 

where l is the distance (m) between the center of gravity of the quadrotor and the 
center of the propeller, and d is the ratio between the drag and the thrust coefficients 
of the propeller.
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The net moment on the quadrotor is the sum of the moments resulting from the 
speed differences of the propellers and rotational drag. 

Mnet =Mquad þ Mk ð8:15Þ 

The net moment acting on the quadrotor is equal to the change in angular 
momentum. 

Mnet = I 
d 
dt 

wð Þ þ  w× Iwð Þ ð8:16Þ 

Ix, Iy, and Iz are moments of inertia, and since the quadrotor is symmetrical along 
the x and y axes, the product of inertia is zero. 

Mnet = Ix _P Iy _Q Iz _R þ Iz - Iy QR Ix - Izð ÞRP Iy - Ix PQ ð8:17Þ 

Roll, pitch, and yaw inputs are part of the moments on the quadrotor. 

Mk = l F4 -F2ð Þ  l F3 -F1ð Þ  d F1 -F2 þ F3 -F4ð Þ½ = uϕ uθ uψ ð8:18Þ 

If Mquad and Mk are summed and arranged, the following equation is obtained: 

_P _Q _R = 
Iy - Iz 
Ix 

QR 
Iz - Ixð Þ  
Iy 

RP 
Ix - Iy 
Iz 

PQ þ uϕ 
Ix 

uθ 
Iy 

uψ 
Iz

-
krP 
Ix 

krQ 
Iy 

krR 
Iz 

ð8:19Þ 

where kr is the rotational drag coefficient. 
A summary of the equations of motion for the rotational subsystem of the 

quadrotor is given below: 

_P= 
1 
Ix 

Iy - Iz QRþ uϕ - krP ð8:20Þ 

_Q= 
1 
Iy 

Iz - Ixð ÞRPþ uθ - krQ½ ] 8:21Þ 

_R= 
1 
Iz 

Ix - Iy PQþ uψ - krR ð8:22Þ 

_ϕ=P Q sinϕ tan θ R cosϕ tan θ 8:23 

_θ=Q cosϕ-R sinϕ 8:24 

_ψ =Q sinϕ sec θ R cosϕ sec θ 8:25



ð Þ ð Þ½ ] ð Þ
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8.3 Scheme of the Proposed Method 

8.3.1 Input–Output Linearization 

We consider the following nonlinear system with n states, m inputs, and m outputs 
(Freddi 2012): 

_x= f xð Þ þ  g xð Þu= f xð Þ þ  m 

i= 1 
gjxuj ð8:26Þ 

y= h1 x , . . . , hm x 
T 8:27 

where x E Rn is the state vector, u E Rm is the control input, y E Rm is the output vector, 
and f(x), g1(x),. . .,gm(x), y are smooth vector fields described on an open subset of 
Rm . 

If the system is single input single output (SISO) (m = 1), it has a relative degree 
ρ, 1  ≤ ρ ≤ n in a region D0 ⊂ D if 

LgL
i- 1 
f h xð Þ= 0, i= 1, 2, . . . , ρ- 1, LgL

ρ- 1 
f h xð Þ≠ 0 for all xED0 ð8:28Þ 

If the system is multiple input multiple output (MIMO) (m ≠ 1), the relative 
degree definition changes, and the system is said to have a vector relative degree 
{r1,. . .,rm} at a point x

0 if:

. The following condition holds for all 1 ≤ j ≤ m, for all k ≤ ri- 1, for all 1 ≤ i ≤ m, 
and for all x in the neighborhood of x0 (Freddi 2012) 

Lgj L
k 
f hi xð Þ= 0 ð8:29Þ

. The following matrix is nonsingular at x = x0 : 

M xð Þ ¼  Lg1 Lr1−1 f h1 xð Þ⋯Lgm L
r1−1 
f h1 xð ÞLg1 Lr2−1 f h2 xð Þ…Lgm L

r2−1 
f h2 xð Þ⋮…⋮Lg1 L

rm−1 
f hm xð Þ⋯Lgm 

Lrm−1 
f hm xð Þ  

ð8:30Þ 

The nonlinear system above must hold the conditions below:

. Sum of elements of the vector relative degree {r1,. . .,rm} must be equal to n.

. The matrix M(x) is invertible. 

If these conditions are satisfied, a linearizing control law can be found as follows: 

uc x,wð Þ= αc xð Þ þ  βc xð Þw ð8:31Þ



ð Þ ð Þ

ð
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αc xð Þ= -M - 1 xð Þ  Lr1 f h1 xð Þ . . . Lrm f hm xð Þ  
T 

ð8:32Þ 

βc =M - 1 x 8:33 

A diffeomorphism can also be defined as: 

xc =ϕc xð Þ ð8:34Þ 

where 

ϕT 
c = ϕT 

c1 
xð Þ . . .ϕT 

cm 
xð Þ ð8:35Þ 

ϕT 
ci 
= hi xð Þ  Lf hi xð Þ . . . Lri - 1 

f hi xð Þ ð8:36Þ 

A linear system can be obtained if the diffeomorphism is applied to the nonlinear 
system. 

_x=Acxc þ Bcw ð8:37Þ 

where w is linear control law and Ac and Bc represent the canonical Brunowski form. 

Ac = diag A1 . . .Amð Þ 8:38Þ 
Bc = diag b1 . . . bm 8:39 

where 

Ai = 0 1 0⋯0 0 0 1 . . . 0 . . .⋯:0 0 0 . . . 1  0 0 0 . . . 0½ 8:40Þ 
bi = 0 . . . 1 8:41 

8.3.2 Control System Structure 

Control system consists of two control loops: the inner loop is feedback lineariza-
tion, and the outer loop is LQR. State variables are selected as follows: 

x= x1 x2 x3 x4 x5 x6½ ]= ϕ θ  ψ  P Q  R½ ] 8:42Þ 

x1, x2, x3, x4, x5, and x6 are chosen for feedback linearization. The nonlinear 
system is represented by:



ð
½ ] ½ ] ð Þ
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x= x1 x2 x3 x4 x5 x6½ ]= ϕ θ  ψ  P Q  R½ ] 8:43Þ 
y= h1 h2 h3 

T = x1 x2 x3 
T 8:44 

where 

f xð Þ  

= 

x4 þ x5sinsin x1 tantan x2 þ x6coscos x1 tantan x2 x5coscos x1½
- x6sinsin x1 x5sinsin x1 þ x6coscos x1ð Þ=coscos x2 - krx4 - x5x6 Iz - Iy 
=Ix - krx5 - x4x6 Ix - Izð Þð Þ=Iy - krx6ð Þ=Iz]

ð8:45Þ 

and 

g xð Þ= 0 0 0 0 0 0 0 0 0  
1 
Ix 

0 0 0  
1 
Iy 

0 0 0  
1 
Iz 

ð8:46Þ 

The summation of relative degrees (r1 = 2, r2= 2, and r3 = 2) equals to the vector 
relative degree (r = 6) that is equal to the number of states. The matrix M(x) that is 
nonsingular is calculated as follows: 

M xð Þ= 
1 
Ix 

sinsin x1 tantan x2 
Iy 

coscos x1 tantan x2 
Iz 

0 
coscos x1 

Iy
- sinsin x1 

Iz 
0 

sinsin x1 
Iycoscos x2 

coscos x1 
Izcoscos x2 

ð8:47Þ 

So, two conditions required for feedback linearization are satisfied. 
Diffeomorphism converts the state variables in the nonlinear system into the state 
variables of the new system that is linearized in the feedback linearization method. 

ϕc xð Þ  

= 
x1 x4 þ x6coscos x1 tantan x2 þ x5sinsin x1 tantan x2 x2 x5coscos x1½
- x6sinsin x1 x3 

x5coscos x1 þ x5sinsin x1ð Þ  
coscos x2

] ð8:48Þ 

The feedback linearizing law is computed as: 

uc x,wð Þ= αc xð Þ þ  βc xð Þw ð8:49Þ



þ ð Þ

]

]

½ ] ð Þ
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αc xð Þ ¼  krx4 þ Izx5x6− Ixx
2 
5sinsin 2x1 

2
þ Ixx

2 
6sinsin 2x1 

2 

− 2Ixx5x6coscos x1 
2 krx5coscos x2−Iyx

2 
5coscos x1 sinsin x2 þ 2Iy cos x2 6 cos x1 sinsin x2 þ Ixx4x6coscos x2 þ a 

coscos x2 

− Izx2 5sinsin x1 sinsin x2−krx6coscos x2 þ Izx4x5coscos x2 þ b 
coscos x2 

ð8:50Þ 
a= Iyx4x6coscos x2 - Izx4x6coscos x2 þ Iyx2 5coscos x1 3 sinsin x2

- Iyx
2 
6coscos x1 

3 sinsin x2 ð8:51Þ 
b= Izx

2 
5coscos x1 

2 sinsin x1 sinsin x2 - Izx
2 
6coscos x1 

2 sinsin x1 sinsin x2 

2Izx5x6coscos x1 
3 sinsin x2 8:52 

βc xð Þ= 
Ix 0- Ixsinsin x2 0 Iycoscos x1 Iycoscos x2 sinsin x1 0

- Izsinsin x1 Izcoscos x1 coscos x2 
ð8:53Þ 

If the control law is applied, the following linearized system is obtained: 

_xc =Acxc þ Bcw 
= 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0½ xc 
þ 0 0 0 1 0 0 0 0 0 0 1 0  0 0 0 0 0 1½ ]w 

ð8:54Þ 

Since the system is now linear, a linear control method can be applied. Therefore, 
linear quadratic regulator (LQR) is preferred because it has easy design and appli-
cation for linear control of the system. A control law: 

w= -Kxc ð8:55Þ 

is designed by selecting an appropriate K value. This is achieved by choosing Q and 
R matrices and using MATLAB command lqr, where Q and R matrices are given as 
follows: 

Q= 100  0  0 0 0 0  0 100  0  0 0 0 0  0 100  0 0 0 0  0 0 100  0 0 0  0 0 0 100  0 0 0  0 0 0  100½ ]
ð8:56Þ 

R= 0:01  0 0  0 0:01  0 0 0 0:01 8:57 

In the SISO case, if the dimension of the nonlinear system is not equal to the 
relative degree, zero dynamics appear. So, the stability of the system depends on the



stability of the zero dynamics, but this condition is not valid for MIMO systems. In 
addition, there are no zero dynamics that appear into the system since relative degree 
is equal to the dimension of the system. So, since our model is MIMO, it is globally 
asymptotically stable. Sufficient conditions for the system to be stable can be found 
in (Seborg and Henson 1996). 
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Fig. 8.2 General diagram of the proposed scheme 

Fig. 8.3 Block diagram of the controller structure 

The general diagram of the proposed observer-based feedback controller is given 
in Fig. 8.2. {ϕref, θref, ψref} is the reference attitude input. The proposed scheme is 
based on the quadrotor attitude dynamics given in Eqs. (8.20) and (8.25). The 
internal disturbance Di is added to the model since the physical and mathematical 
modeling of the quadrotor contains unknown errors and uncertainty. The external 
disturbance De is also added due to environmental disturbances and sensor errors. 
{ϕ, θ, ψ} is the set of outputs that contain noise terms. Lastly, {~ϕ, ~θ, ~ψ} is the set of 
estimated attitude signals of the quadrotor. 

The sub-diagram of the dynamics and controller block is given in Fig. 8.3. 
Nonlinear dynamics are linearized by the feedback linearization controller. Then, 
LQR controller is designed using the linearized dynamics. The sensor produces 
noisy {ϕ, θ, ψ} states, and reference states are subtracted from these noisy states. 
The error signal is fed to the LQR controller, which computes the control signal of 
the linearized system. The feedback linearization controller calculates roll, pitch, and 
yaw inputs according to LQR output. Nonlinear dynamics generate a state vector 
that goes to feedback linearization and observer.
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Fig. 8.4 Flowchart of the 
proposed controller 

The observer employed in this method is chosen as particle filter. Particle filter is 
a Monte Carlo–based iterative importance sampling method. Particle filter finds a 
suboptimal solution to the Bayesian estimation. This suboptimal solution is based on 
the approximation of the integral terms in the probability density functions. The 
density functions mentioned before are represented by a vector of random particles 
and weights. If the number of particle size increases, representation converges to the 
optimal solution. Particle filter–based scheme is chosen as observer since particle 
filter has nonlinear framework and can deal with both Gaussian and non-Gaussian 
distributed noises. Thus, the performance of the proposed controller can be increased 
and enhanced in real-world scenarios. 

The flowchart shown in Fig. 8.4 demonstrates the flow of the proposed controller. 
First, controller parameters are initialized. Then the loop starts with LQR controller 
gain. The output of the diffeomorphism is multiplied by LQR gain, and the gain is 
fed to feedback linearization law. The control mixer produces motor (1–4) inputs 
from roll, pitch, and yaw inputs. Motor dynamics consist of motor saturation and 
motor rate limiter. The motor saturation limits motor thrust between 0 N and 
5 N. The motor rate limiter restricts the motor rate of thrust by ±50 N/s. Nonlinear



quadrotor dynamics generate a derivative of the states using motor (1–4) outputs. 
The integrator integrates the derivative of the state vector to obtain the states to be 
used in the control system. Diffeomorphism calculates the linearized system state 
vector that is observed and fed to LQR gain. The loop continues during the 
simulation time in this way. 
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8.4 Results and Discussion 

The proposed observer-based nonlinear control of the quadrotor is implemented in 
both MATLAB and Simulink environments. Simulations are carried out for 
20 [s] with a discrete time step of 0.1 [s]. The parameters of the nonlinear quadrotor 
model are given in Table 8.1 (Lanzon et al. 2014), where m is the weight, g is the 
gravity, (Ix, Iy, Iz) are the moments of inertia, l is the length of the arm, d is the drag 
coefficient of the propellers, and (kr, kt) are rotational and translational drag coeffi-
cients. The attitude response of the feedback controller is tested from negative initial 
angles to positive reference angles for each attitude angle. The initial state vectors are 
set as [0, 0, 0], [-π/4, -π/8, -π/12] and reference vectors are set as [π/6, π/4, π/3], 
[0, 0, 0] for first and second scenarios where states are [ϕ, θ, ψ] in [rad], respectively. 

8.4.1 Noisy Reference Tracking 

Since quadrotors are prone to low-cost and unstable sensor errors, it is an essential 
task to support the controller with an observer/estimator block. Thus, sensor errors 
can be eliminated through the observer scheme. To evaluate the sensor noise 
performance of the proposed method, an internal noise source with a variance of 
0.01 [rad2 ] and an external sensor noise with a variance of 0.02 [rad2 ] are injected to 
the attitude states of the quadrotor as disturbances. The disturbances are modeled as 
Gaussian random variable with zero mean and a total of 0.03 [rad2 ] variance 
component. The measured overall variance values of the states are 0.0302 for ϕ,

Table 8.1 Quadrotor 
parameters 

Variable Value Unit 

m 0.5 [kg] 

g 9.81 [m/s2 ] 

Ix 5.90E-03 [kg.m2 ] 

Iy 5.90E-03 [kg.m2 ] 

Iz 1.16E-03 [kg.m2 ] 

l 2.55E-01 [m] 

d 2.40E-03 [kg.m2 ] 

kr 1.00E-02 [kg.m2 /s] 

kt 1.00E-02 [kg/s]



0.0327 for θ, and 0.0283 for ψ . The responses of the controller for the first scenario 
are given in Fig. 8.5 and the error plot is given in Fig. 8.6. The responses of the 
controller for the second trajectory is given in Fig. 8.7 and the error plot is given in 
Fig. 8.8. In Fig. 8.5, green points show the measurement of the states subjected to 
sensor noise, the blue line shows the ideal controller response without any noise 
component, and, lastly, the red line shows the response of the proposed method 
under the sensor noise. A comparative analysis of the performance of the proposed 
method and total noise is seen in Fig. 8.6 where the magenta line denotes the error of 
the method and blue points show the total error of internal and external disturbances.
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Fig. 8.5 Noisy response of the proposed controller: from 0 [rad] to arbitrary states 

Fig. 8.6 A comparison of sensor noise and error of the proposed method: from 0 [rad] to arbitrary 
states



The statistical analyses of the proposed method under sensor noise are given in
Tables 8.2, 8.3, and 8.4 for standard deviation, signal-to-noise ratio (SNR), and
absolute error, respectively. The performance of the proposed method is compared
against the total noise to show the enhancements of the algorithm. Standard devia-
tions of the errors for all states are seen in Table 8.2 for both trajectories. The

The notation is similar for Fig. 8.7 and Fig. 8.8 except sensor noise is given with 
cyan points for the second scenario. It can be clearly deduced from Figs. 8.5, 8.6, 8.7 
and 8.8 that the proposed method is well performed and tracks the reference 
trajectory even under the sensor noise with a low error ratio for all states.
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Fig. 8.7 Noisy response of the proposed controller: from arbitrary states to 0 [rad] 

Fig. 8.8 A comparison of sensor noise and error of the proposed method: from arbitrary states to 
0 [rad]
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Table 8.2 Standard deviation analysis of the proposed method 

Noise Method 

First trajectory 0.173971 0.181029 0.168277 0.046902 0.055575 0.049403 

Second trajectory 0.173971 0.181029 0.168277 0.054185 0.054281 0.054268 

Table 8.3 Signal-to-noise ratio analysis of the proposed method 

Noise Method 

Θ ψ 

First trajectory 9.6586 12.5690 15.5428 20.6373 22.6393 25.5759 

Second trajectory 1.3092 0.3413 0.4372 5.7035 1.1488 3.3781 

Table 8.4 Absolute error analysis of the proposed method 

Noise Method 

Θ ψ 

First trajectory 0.6141 0.5173 0.6012 0.1573 0.1710 0.1452 

Second trajectory 0.6141 0.5173 0.6012 0.3421 0.2534 0.2428 

proposed method is capable of controlling and reducing sensor errors. The standard 
deviation of the error for the attitude angles are reduced from nearly 0.17 [rad] to 
nearly 0.05 [rad]. The standard deviation performance of the proposed method is no 
more than 0.056 [rad], which is approximately reduced three times with respect to 
the total error. The signal-to-noise ratio analysis of the algorithm is given in 
Table 8.3. The method is capable of increasing the SNR for all states and trajectories. 
The SNR is increased as high as 25.5 with the lowest increment of 0.34 to 1.14. 
Lastly, the absolute error performance of the algorithm is given in Table 8.4. 
According to the results, the length of the error is reduced from nearly 0.6 [rad] up 
to 0.145 [rad] with a reduction of four times. 

8.5 Conclusion 

In this work, an observer-based feedback linearization controller for a quadrotor is 
proposed to control the nonlinear attitude dynamics subjected to sensor noise. The 
proposed method is tested for noisy references. Two scenarios are considered: from 
0 [rad] to any arbitrary state and from any arbitrary state to 0 [rad] to cover more 
circumstances. According to the results, the proposed method is capable of tracking 
the given trajectories for noisy references. Numerical analysis showed that the 
maximum standard deviation of the error of the proposed method is reduced by 
three times, signal-to-noise ratio is increased by seven times, and the absolute error is 
reduced by four times.
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The SNR is increased from 0.34 to 1.14, absolute error is reduced from 0.6 [rad] 
up to 0.145 [rad], and standard deviation is reduced from 0.17 [rad] to 0.05 [rad]. 
According to the abovementioned results, it can be easily concluded that the 
proposed controller has good control, estimation, and reference tracking responses 
regarding internal and external noise sources with a low standard deviation of error, 
absolute error, and high signal-to-noise ratio statistics, respectively. 
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