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Chapter 4
Air Quality Monitoring Using Geospatial 
Technology and Field Sensors

Konika Sharma  and Shweta Yadav 

Abstract  Air quality management is a public health priority at the global scale. 
Accurate air quality monitoring along with understanding the sources of air pollu-
tion is the first step to adequate air quality management. Apart from sampler-assisted 
ground-based monitoring of air pollutants, the use of geospatial technologies and 
the deployment of field sensors have surfaced as a new hope for strengthening the 
air quality monitoring network. This review provides information on the types, 
characteristics, and robustness of field sensors and geospatial technologies that are 
used for air quality monitoring and management. The technology used in sensors 
and the methodology for geospatial technologies have been discussed. We conclude 
that the evolving network of field sensors and cutting-edge geospatial technologies 
will certainly lead to better air quality management in India. The efforts in this 
direction will not only provide a sustainable solution to the current crisis of air pol-
lution but also lead to the collection of highly time-resolved data from even remote 
and least studied hard areas where ground-based sampling is a limitation. The air-
shed approach in this context offers a sustainable solution by targeting and synergis-
ing air pollution management across administrative boundaries. The synergy 
between ground-based stations, geospatial technologies, and field sensors will lead 
to a hub of data resources that will help policymakers frame policies for air quality 
management. Additionally, this will be an asset to researchers working in the field 
of atmospheric chemistry and pollutant dynamics.
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4.1 � Introduction

Clean and healthy air is an essential requirement for every living thing, especially 
for humans (Juginović et al., 2021; Singh et al., 2021; World Health, 2006). Air pol-
lution is a global problem that has adverse effects on human well-being (in both 
urban and remote environments), crop productivity, a variety of animals and insects, 
and ecosystems in terms of the quality, applications, and services that they provide. 
This problem intensified with global industrialisation, which led to increased stress 
on natural assets, as well as greater irregularities in the allocation of economic 
resources. Air pollution gives rise to a substantial risk to human health and well-
being, but preventing it has historically been viewed as less of a priority because of 
the rapid recovery of the losses before industrialisation. Consequently, there is a 
growing need for sophisticated statistical and machine learning (ML) resources, as 
well as the emergence of environmental organisations, the enactment of laws and 
policies, the development of widespread sensor systems, and the advent of digital 
technologies to evaluate, oversee, and communicate with both the general public 
and those responsible for environmental management concerning the state of air 
quality (AQ). Organisations such as the Environment Protection Agency (EPA, 
founded in 1970), the Intergovernmental Panel on Climate Change (IPCC, founded 
in 1988), the World Meteorological Organisation (WMO, founded in 1950), and the 
Global Environment Facility (GEF, founded in 1991) are some of the landmark 
developments in Air Quality Assessment and Management (AQA&M). Scientists 
came up with air quality sensors (AQS) in 1940 but it was not until the 1980s that 
world organisations gave directions on how to set up AQS networks and monitoring 
systems all over the world to control the effects of air pollution on the well-being of 
the general public. Nevertheless, these AQA&M networks are not very commercial 
in developing nations, such as India, where approximately 703 station networks 
were set up; Pakistan, where no such network is known yet; Sri Lanka, where a 
VAAYU network equipped with 78 stations was set up; and Bangladesh, with an 
ensemble of 11 stations. With the passing of the Air (Prevention and Control of 
Pollution) Act of 1981, air pollution monitoring and management have gained some 
momentum in India. The National Air Quality Monitoring Programme (NAMP), 
initiated by the Government of India, is believed to have been one of the earliest 
programmes to employ wide networks of sensors, including 883 AQ stations in 379 
cities and towns, for the purpose of AQ monitoring. The programme was designed 
to monitor four major pollutants, namely, sulphur dioxide (SO2), nitrogen dioxide 
(NO2), and particulate matter (PM) with aerodynamic diameters ≤10 μm (PM10) 
and ≤2.5 μm (PM2.5).

To measure and monitor ambient air quality, two main categories of sensor sys-
tems—(a) the ensemble of human-operated sensors and (b) a computerised system 
of sensors—are deployed on the ground. The vital elements of such sensor networks 
include temperature, humidity, precipitation, and gas sensors. A gas sensor is a 
transducer that measures the concentration of a gas by converting the intensity of an 
electrical signal into a proportional value (Kumar et al., 2011, 2013; Yi et al., 2015). 
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Gas sensors can be electrochemical, catalytic, solid-state, nondispersive infrared, or 
photoionisation devices. Because of these sensor and geosensor technologies (sen-
sor networks that have been specifically developed to collect and analyse data per-
taining to geospatial information) (Jung et al., 2008), the collection, analysis, and 
integration of geospatial and pollutant data have undergone a large-scale transfor-
mation. In addition, although still constrained to stationary locations, the advent of 
cutting-edge sensor systems such as the Internet of Things (IoT) and wireless sensor 
networks (WSNs) has improved the feasibility of ongoing air pollution assessment 
over wider regions. Extensive sensor systems for worldwide AQ surveillance and 
predictions include the Environment Observation and Forecasting System (EOFS), 
Global Environmental Monitoring System (GEMS) Air, and World Air Quality 
Index (WAQI), among others (Nandakumar et al., 2011).

The purpose of this work is to review the availability and application of available 
sensors and geospatial technologies for managing air quality. This assessment has 
been conducted to shed light on currently used pollutant monitoring and control 
strategies, including those for PM, SO2, NO2, carbon monoxide (CO), and ozone 
(O3). For AQ parameters, the accessibility of satellite or sensor data sources, digital 
methods, and real-time dashboards is stated, which may aid scientists, researchers, 
policymakers, and others involved in formulating new policies and taking neces-
sary steps.

4.2 � Geospatial Technologies for Air Quality Monitoring

The scientific community has advanced quite far in terms of assessing Earth’s 
geographic information, from the time of hand-drawn maps to the present day of 
GPS mapping. There is now a whole new genre of cartography to explore. Credit 
goes to geospatial technology, precise measurements may be taken on an extremely 
small scale and with as little error as possible. Today, more than ever, we recognise 
the importance of geospatial technology due to its widespread application in fields 
as diverse as farming, medicine, disaster recovery, forest management, administra-
tive tasks, climate change investigation, military strategy, and resource management.

India’s ecosystem for remote sensing and geospatial data is among the most 
developed in the world. The proliferation of geospatial applications has resulted in 
a deluge of data and information that must be optimally handled and used for the 
benefit of humanity and the solution of new and existing problems. Some of the 
most frequently utilised geospatial technologies include remote sensing (which uses 
space or aerial cameras and sensor systems to analyse distant objects or surfaces. 
The sensor platforms’ data can help experts evaluate the target’s features); 
Geographic Information Systems (GIS collects, manages, maps, and analyses phys-
ical environment data for a specific location on Earth. GIS creates maps and 3D 
scenes from geographic data layers and can highlight patterns, links, and situations 
in data, helping users make better decisions); Global Positioning System (Satellites, 
a reception device, and software coordinate position, speed, and time for 
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atmospheric, marine, and terrestrial movement. GPS relies on trilateration. The 
technique shows that GPS devices need three satellites for precise positioning. One 
satellite’s data locate a spot inside a vast circular area on Earth. Another satellite 
helps the GPS pinpoint that place. A third satellite pinpoints that spot on Earth).

Making use of high-resolution satellite imagery for remote sensing purposes is a 
valuable technique that enables improved interpretation and analysis of air pollutant 
concentrations. Satellite imagery is a valuable tool for quantifying and mapping air 
pollution due to its ability to offer a synoptic view of vast regions. Satellite sensors 
of varying spatiotemporal-radiometric details provide the means to assess the levels 
of detrimental air contaminants, including CO, NO2, ammonia (NH3), SO2, volatile 
organic compounds, and PM. Spatial interpolation techniques are employed for the 
construction of a surface grid or contour chart. Such interpolation approaches are 
employed to estimate concentrations in the study area by utilising a limited number 
of known concentrations at specific points (Mishra & Parasar, 2021). GIS tech-
niques have also been employed by several researchers to examine the spatiotempo-
ral dispersion of pollutants in the air (JIA, 2019; Mohan & Kandya, 2015; Rohayu 
Haron Narashid & Wan Mohd Naim Wan Mohd, 2010; Singh et al., 2022).

Arabia (2019) conducted an analysis of diverse satellite remote sensing tech-
nologies to assess their potential for estimating air pollutants. Additionally, he eval-
uated the techniques employed for handling and retrieving satellite data to generate 
pollutant concentration maps. According to their findings, the diverse spectral reso-
lutions of space instruments facilitate the identification of distinct types of atmo-
spheric contaminants. The utilisation of air pollution measurements obtained from 
space is advantageous in the monitoring of air quality and the analysis of the 
extended-term trends of atmospheric pollutant concentrations. Rohayu Haron 
Narashid and Wan Mohd Naim Wan Mohd (2010) demonstrated the feasibility of 
leveraging a combination of remote sensing methodology and GIS strategies, spe-
cifically the kriging interpolation approach, for the purpose of monitoring air pollut-
ant concentrations. Satellite imagery offers a cost-effective approach for generating 
air quality maps for a given region, particularly at a microscale level. The results of 
their assessment indicated that the implementation of satellite remote sensing and 
GIS methods hold promise for environmental managers and local authorities in the 
ongoing surveillance of AQ (at a microscale) in cities. Taloor et al. (2022) analysed 
the in situ and satellite-derived NO2 emissions data pertaining to various urban cen-
tres in India, with the aim of evaluating the effects of the lockdown measures imple-
mented due to the COVID-19 pandemic in the country. Furthermore, an analysis 
was conducted on the NO2 database obtained using the Sentinel-5P TROPOMI sen-
sor system across several areas within Punjab and the NCR. The study underscores 
the potential benefits of integrating in situ and satellite-based methodologies for 
evaluating alterations in air quality across urban areas in India. This approach holds 
promise for future investigations in other nations as well.

Numerous researchers have effectively employed geospatial artificial intelli-
gence in disaster-related issues and agricultural investigations. Furthermore, it has 
been utilised in the cartographic representation and simulation of atmospheric con-
taminants within metropolitan areas. This approach comprises two methodologies, 
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Fig. 4.1  Overview of the geospatial methodology used for air quality monitoring

namely, geospatial technology and artificial intelligence. Geospatial technology has 
the potential to facilitate spatiotemporal mapping of air pollutants and subsequent 
prioritisation of locations based on the results of this analysis. Artificial intelligence 
techniques, including deep learning, artificial neural networks (ANNs), and convo-
lutional neural networks (CNNs), can be used to predict the concentration of pollut-
ants (Mishra & Parasar, 2021). A general overview of the followed methodology is 
mentioned below and illustrated in Fig. 4.1.

Mapping of Atmospheric Pollutants  The levels of atmospheric contaminants such 
as SO2, NO2, and suspended PM can be acquired through official governmental enti-
ties or by using image processing software to extract data from satellite imagery. 
The spatial distribution of air pollutants is analysed and represented through various 
GIS-based spatial interpolation techniques, such as kriging, splines, and inverse 
distance weighted (IDW) methods. The IDW method is employed in scenarios 
where the point density is significant, thereby enabling the derivation of a local 
surface variation for analytical purposes. The grid estimates of any arbitrary factor 
are calculated using a linearly weighted set of data. The feasibility of interpolation 
is contingent upon the spatial separation between the sampling sites and the target 
location for the interpolation. This technique is ideal for smoothly varying surfaces, 
as it employs a special kind of polynomial interpolation. It can predict valleys and 
ridges in the dataset, making it the ideal tool for portraying gradually altering terrain 
with tiny mistakes. Kriging is a method of spatial interpolation that models interpo-
lated values using a Gaussian procedure with known covariance. This stochastic 
method has applications in many fields, such as pollution modelling, geochemistry, 
and catastrophe preparedness. It is predicated on the assumption that variation on a 
surface can be inferred from the distance between a set of sample points. This struc-
ture helps lessen the impact of random noise. All values within a specified range are 
computed. Value predictions are made using an improved weighted average algo-
rithm in this method (Hadjimitsis et al., 2012; Mishra & Parasar, 2021).
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Forecasting Atmospheric Pollutants  Pollutants in the air can only be predicted 
with the help of photos taken across multiple dates. These pictures/images are then 
processed using numerous steps, including (1) image acquisition, which entails the 
procurement and retention of visual representations into a designated repository. 
Subsequently, the process involves converting it into a variable and generating load 
folders that contain images into arrays; (2) image resisting, which is a necessary 
step to address the discrepancy between the model’s requirements and the actual 
image captured; and (3) noise filtering in images to reduce unwanted image noise. 
The process of image smoothing is a necessary prerequisite for the enhancement of 
various scales of image structures, and (4) image splitting and morphological modi-
fications are necessary to effectively separate the foreground from the background, 
thereby facilitating the extraction of pertinent features. The implementation of mor-
phological changes necessitates the application of edge smoothing. Upon comple-
tion of processing steps, the images may be utilised to simulate a model for the 
purpose of predicting air pollutant concentrations through the implementation of 
artificial intelligence and machine learning methodologies. Deep learning, a sub-
field of machine learning, has experienced significant momentum in its application 
across various domains. The process of constructing a deep learning model is based 
upon five crucial steps, which are enumerated as follows:

Defining Architecture  To determine the architecture, it is necessary to conduct an 
analysis of the problem’s characteristics. CNNs are a widely adopted approach for 
conducting image segmentation and classification tasks, particularly those that 
require intricate predictive analysis, owing to the inherent characteristics of the 
problem domain. The overall deep learning architecture employs either sequential 
models, functional APIs, or custom architectures that are capable of being defined 
for model building.

Model Structuring  To prepare the model for the fitting or training process, it is 
necessary to perform model compilation. Some of the crucial elements of the train-
ing process are specified for the assessment process in the compilation phase. As a 
result of the inherent characteristics of the issue at hand, we will incur losses that 
must be determined at this stage. Additionally, we must make determinations 
regarding the optimisers and metrics to be employed, including precision and 
classification-related metrics.

Fitting of Model  The process of fitting the model on the training dataset is a crucial 
step. The model is trained for a predetermined number of epochs, which refers to 
the number of iterations performed on the dataset. Throughout the entire training 
process, it is imperative to consistently assess the fitting step. Ensuring that the 
model under training exhibits enhanced accuracies and a decrease in the overall loss 
is of utmost importance. The prevention of overfitting of the model is also a crucial 
consideration.
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Model Analysis and Forecasting  The assessment of the deep learning model’s 
efficacy in actual application instances is a crucial undertaking that will be 
executed. It is imperative to incorporate the predictions generated by our model on 
the test dataset, which was partitioned during the preprocessing phase, to validate 
the efficacy of the trained model. Additional randomised tests will provide further 
evidence of the efficacy of the method on untrained data.

Model Deployment  The actual implementation of the model is the very last step 
yet crucial in the building of any model.

4.3 � Application of Field Sensors for Air Quality Monitoring

Numerous techniques (as outlined in Fig. 4.2) can be used individually or in integra-
tion so as to get more comprehensive and cutting-edge observations for further AQ 
monitoring and assessment. The prevailing approach for monitoring air pollution 
involves the utilisation of advanced and established instruments. To ensure the pre-
cision and excellence of data, intricate measurement techniques are employed by 
these instruments, along with various auxiliary devices such as temperature regula-
tors (heaters and coolers), humidity regulators, air filters (for PM), and integrated 
calibrators. As a result, these devices are typically associated with elevated costs, 
significant power consumption, substantial physical dimensions, and considerable 
weight. Recent technological advancements have made ambient sensors readily 
available, possessing attributes such as affordability, compact area, and rapid recip-
rocation times. Nevertheless, it is worth noting that low-cost and portable AQ sen-
sors are unable to attain an equivalent level of data precision and quality as 
conventional assessment techniques and equipment. At present, air pollution infor-
mation pertaining to areas lacking observation facilities is acquired through air 
quality modelling approaches, as per the literature. Nevertheless, the air quality 
model data exhibit a dearth of comparison and confirmation (Kaur and Kelly, 2022). 
Affordable, cost-efficient mobile, and compact environmental sensors offer a sig-
nificant possibility to enhance the resolution (for both temporal and spatial scales) 
of atmospheric data. Furthermore, they have the potential to validate, refine, or 
enhance current ambient air quality models. The subsequent sections present an 
overview of the operational principles of low-cost and portable ambient sensors, 
which are extensively employed presently.

�Gas Sensors

Gas detection systems have come a long way in recent years, and each has its own 
set of benefits and drawbacks. Electrochemical, catalytic, solid-state semiconduc-
tor, nondispersive infrared radiation absorption (NDIR), and photoionisation 
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Fig. 4.2  Framework of categorisation of air quality monitoring approaches

detector (PID) sensors are the five types of inexpensive and conveniently movable 
gas sensors that have proven to be the most effective and popular to date. All of 
these sensors are cost-effective, lightweight (often under a hundred grams), and 
quick to respond (typically within tenths of a second to a few minutes). Although 
hundreds of potentially dangerous gases have been identified, there is currently no 
individual sensor technology that can accurately monitor them all. Various sensors 
can detect hazardous gases with varying degrees of sensitivity. However, no cur-
rently available portable gas sensor at a reasonable price has a similar level of data 
precision and reliability as stationary tracking equipment. In terms of accuracy and 
detection range, these low-cost gas sensors impart satisfactory performance 
(Aleixandre & Gerboles, 2012). In addition, it is necessary to calibrate every sensor 
prior to and following a certain period of operation.  The calibration is done by 
exposing the sensor to a known concentration of a particular pollutant gas and then 
adjusting the sensor's parameters to reduce the discrepancy between the known 
level and the sensor reading. There are primarily four categories of hazardous gases 
that are tracked viz., CO, NO2, O3, and SO2. It is established that for these four haz-
ardous pollutants, there are two optimal sensor types, namely, solid-state and elec-
trochemical sensor. To sum up, these are the most appropriate ones for sniffing out 
these four distinct classes of potentially dangerous gaseous pollutants in the context 
of air pollution monitoring. These two varieties of sensors form the backbone of the 
majority of the current efforts. The following is an explanation of how these two 
distinct kinds of sensors work.

Solid-State Gas Sensor  The discovery of the operational mechanism of solid-state 
ambient gas sensors was made during the course of semiconductor p–n junction 
research, wherein the sensitivity of said junctions to numerous gaseous pollutants 
was observed. A solid-state sensor comprises a heating element and single or 
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multiple metal oxides. The specific metal oxide utilised is dependent upon the 
intended ambient gas that the sensor is designed to detect. Metal oxides have the 
capability to undergo processing into a paste-like substance, commonly referred to 
as a bead-type sensor. Metal oxides may be deposited onto a silica chip through a 
process akin to semiconductor fabrication, resulting in a chip-type sensor. Upon 
exposure to ambient gases, metal oxides undergo dissociation to form charged par-
ticles or mixtures, which results in the amassing of electrons on the top layer of the 
metallic oxides. The conductivity of metal oxides is altered by this accumulation. 
Through the quantification of alterations in conductivity, scientists can infer the 
concentration of a particular type of surrounding gas. The solid-state gas sensor 
employs a heating source to enhance the reaction rate, leading to a robust electrical 
signal. The regulation of temperature is facilitated by the utilisation of the heating 
element, as the response of a particular type of ambient gas, characterised by a con-
ductivity change, varies across distinct temperature intervals.

Electrochemical Gas Sensor  Electrochemical gas sensors operate through electro-
chemical transformations, specifically redox reactions, occurring in the sensors. 
The electrical signal (current) initiated due to the interaction of the sensor with its 
surrounding gas molecules is directly proportional to the level of the gaseous pollut-
ants. The electrochemical sensor comprises two essential components, namely, the 
working electrode (WE) and the counter electrode (CE). In cases where sensors 
necessitate third-party controlling power, the utilisation of a reference electrode 
(RE) is imperative. Usually, 2–3 electrodes are individually inserted into the sen-
sor’s electrolyte. Various sensors may employ distinct kinds of filter screens, elec-
trolytes, and WEs to enhance the sensor’s sensitivity towards a particular type of 
gaseous pollutant. To facilitate an optimal reaction between the ambient gas and the 
sensor while simultaneously mitigating the risk of electrolyte loss by leaking, the 
surrounding gas is initially directed via a capillary-style aperture and a hydrophobic 
barrier (Yi et al., 2015).

Upon the arrival of the gaseous pollutant at the WE, the redox reaction takes 
place. The electrode that has been specifically designed for a particular ambient gas 
serves as a catalyst for the aforementioned reactions. The concentration of the target 
ambient gas can be inferred by researchers through the measurement of the current 
between the WE and the CE. Sensors equipped with an RE utilise them to regulate 
the redox reactions, thereby mitigating prospective fluctuations in WEs resulting 
from degradation, albeit with the caveat that this approach may prove ineffective in 
the presence of fouled electrodes. It should be noted that a significant proportion of 
electrochemical ambient gas sensors necessitate a minimal quantity of oxygen and 
moisture for optimal operation. The chemical equilibrium on the surface of the sen-
sor is impacted by wind velocity, which subsequently affects the readings of 
the sensor.
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�Particulate Matter Sensors

Quantification of PM is a complex process, with numerous methodologies for deter-
mining PM mass concentrations. The multifaceted characteristics of PM may lead 
to variations in outcomes across various measurement methodologies. Certain tra-
ditional monitoring devices employ a thermal component to mitigate the impact of 
fluctuating humidity and temperature. Nonetheless, the thermal component causes 
the semivolatile compounds to vaporise, and this poses a major limitation. Hence, 
certain instruments utilise a distinct drying mechanism in lieu of a heating compo-
nent. The concentration of PM can be measured using techniques that fall into two 
distinct categories: (1) a direct reading instrument is capable of providing continu-
ous measurements with a sampling interval of seconds or minutes, pertaining to the 
levels of PM in the surrounding atmosphere, and (2) another type of sampler is the 
filter paper-based gravimetric sampler, which utilises a filter to accumulate the par-
ticulate matter and necessitates periodic weighing in a laboratory setting. The pro-
cess of assigning weights is a labour-intensive and time-consuming task that results 
in a significant time lag (measured in days) between data collection and dissemina-
tion. The gravimetric technique based on filters is commonly employed as the stan-
dard method in government organisations. It is important to acknowledge that while 
reference methods are utilised, they are not infallible and are susceptible to various 
artefacts, such as fluctuations in temperature and humidity, as well as the presence 
of semivolatile compounds. The four most frequent methods used for the continu-
ous monitoring of PM levels in outdoor air are discussed below:

Tapered Element Oscillating Micro Balance Analysers (TEOM)  Classical air 
pollution tracking techniques frequently employ tapered element oscillating micro-
balance analyser (TEOM) analysers. The frequency of the curved glass tube’s vibra-
tions in TEOM is directly related to its mass. The load and vibration frequency of 
the tube could be affected by the aerosol collected on it. Scientists can determine the 
PM mass concentration (μg/m3) in the atmosphere by monitoring the frequency 
shift of the oscillating tube and the amount of air collected. The aerosols are col-
lected via a size-selective inlet. A heating component is used to counteract the result 
of a change in humidity (Greene, 2005; Li et al., 2012).

β-Attenuation Analysers  The β-attenuation analysers, also known as β-attenuation 
monitors (BAM), tend to serve as the primary PM estimation devices in classical air 
pollution assessment frameworks. Initially, the air is subjected to sampling via a 
size-selective inlet, which may be either PM10 or PM2.5 and may or may not incor-
porate a heater/dryer mechanism to mitigate the presence of moisture in the air. 
Subsequently, the air flows via a filter medium, thereby effectively capturing the 
particulate matter. The filter paper containing aerosols is subjected to β-attenuation 
radiation. Following the designated estimation period, scientists can infer the weight 
of particulate matter present on the filter paper by gauging the amount of radiation 
passing through. The beta gauge system comprises two fundamental constituents, 
namely, a radiation source and a detector, which are positioned on either side of the 
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sample under assessment. Furthermore, the data obtained from the detector are pro-
cessed and transformed into a quantifiable outcome. When beta particles interact 
with matter, a portion of them undergoes absorption, while the remainder passes 
through. The absorption of beta particles is directly proportional to the thickness of 
the material. The determination of substance width is based on the comparison 
between the beta counts that traverse via the substance in question to the counts 
obtained in the absence of any material (Shukla & Aggarwal, 2022).

Black Smoke Technique  Through a size-selective intake, the black smoke approach 
captures PM on a filter over the course of 24 h. The mass concentration of the PM 
is then calculated using a reflectometer’s measurement of the filter paper’s black-
ness. This type of monitoring apparatus is rather easy to use, reliable, and economi-
cal. The mass concentration is calculated by estimating the filter’s load, and the 
level of PM changes depending on the region. This causes the darkness-to-mass 
coefficient to vary spatially as well as temporally.

Optical Analyses  Optical analysers make use of the linkage of imaging, laser, or 
infrared light and ambient particulate matter. These analysers are battery-operated, 
portable, and compact. The three categories of optical analysers—direct imaging, 
light scattering, and light obscuration (nephelometer) analysers—can be divided 
based on the optical principle (Yi et al., 2015).

Light Scattering-Based Optical Sensors  High-energy lasers are used as the light 
source in this class of optical analysers. The particle scatters the laser light as it 
moves across the detecting space, which only permits individual particle sampling 
(one at a time). The scattering is picked up using a photodetector. Scientists can 
thereby determine the dimensions of the particle by measuring the scattered light 
intensity. Additionally, it is possible to determine the number of particle counts by 
calculating the number of illuminating lights on the photo sensor. This method has 
the advantage of simultaneously detecting particles of distinct diameters (i.e. PM2.5, 
PM5, and PM10) with a single analyser. However, the mass concentration must be 
calculated from the particle counts, which will lead to inaccuracies that impair the 
analysers’ reliability and exactness.

Direct Imaging Particle Analysers  Direct imaging particle analyser uses a halogen 
lamp to illuminate the molecules, casting their shadows onto a camera with a high 
resolution, high magnification, and high definition. Particles in the air are captured 
on film by the camera. After the video is captured, software analyses it to determine 
the PM’s qualities. The numbers of PM and their sizes in the air can be measured. 
In addition, the particle colours and shapes may also be identified.

Nephelometer (Light Obscuration-Based Optical Analyser)  A nephelometer is a 
light obscuration-based optical analyser used to determine the particle size and 
mass concentration in the air. It assesses particle concentration in a short amount of 
time, with a high degree of accuracy and a low detection limit. A silicon detector is 
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employed in a nephelometer to estimate the overall light scattered by the PM, pri-
marily liable for the overall reduction in light transmission. The light source is a 
near-infrared LED. Measurements of the scattered light magnitude and the scatter-
ing pattern can be used to immediately ascertain both the size variation and the 
loadings.

In regard to traditional air pollution monitoring systems, TEOMs and BAMs are 
often utilised due to their high data resolution and precision, huge size, significant 
mass, and high economic value. Despite the fact that the ratio of particle number to 
mass concentration varies spatially and temporally, light scattering and light obscu-
ration optical analysers are widely used due to their compact size, lightweight, low 
cost, and continuous evaluation capability.

�Airshed Concept

The airshed approach aims to address the problem of air pollution in a coherent 
manner across geographical and legislative borders. The delineation of an airshed 
holds paramount importance in the realm of managing air quality in urban areas. In 
academic discourse, an airshed is commonly understood as a geographical region 
where the dispersion of pollutants and emissions is predominantly impacted by 
local meteorological factors and topographical features (Abbots, 2014; Guttikunda 
et al., 2023). The demarcation of airsheds is typically delineated to encompass all 
significant sources of pollution within the immediate vicinity of a city’s administra-
tive limits. The determination of a city’s size is a subjective evaluation, albeit con-
tingent upon the incorporation of all significant contributing sources within its 
proximity. The objective is to encompass all the potential regions and point factors 
that are likely to add to the localised atmospheric pollution, regardless of the admin-
istrative jurisdiction, and to reduce the impact of long-distance regional transmis-
sion, which is referred to as boundary influence (Guttikunda et  al., 2023). The 
utilisation of mesoscale atmospheric numerical models facilitates the recognition of 
airsheds via the application of back-trajectories, which enables the identification of 
the routes traversed by air while accumulating pollutants and may have potential 
implications in conducting extended epidemiological investigations pertaining to 
human exposure to air pollution (Gaines Wilson & Zawar-Reza, 2006; Zawar-Reza 
& Sturman, 2008).

Boosting the ambient air quality observation system is of utmost importance in 
obtaining a thorough comprehension of an area’s pollution level and setting up a 
precise overview to facilitate source apportionment investigations (Beig et al., 2015; 
Ganguly et al., 2020; MOEF and CC, 2019). The expansion of said networks ought 
to take into account various factors, including but not limited to the size of the air-
shed, the necessary sampling size and frequency, as well as the process of site selec-
tion. In the context of ascertaining the optimal sample size and airshed locations, 
there exist numerous considerations that extend far from conventional heuristics 
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and scientific structures. Urban regions characterised by significant levels of pollu-
tion and an elevated amount of human and commercial endeavours could necessi-
tate a higher sample size and a wider airshed location compared to remote areas 
with less pollution and its originating sources. Periodic source apportionment inves-
tigations may need a larger than usual sample size to account for the effects of 
weather on air quality. Apart from the aforementioned factors, there exist distinct 
regulatory mandates that dictate the determination of an optimal monitoring net-
work magnitude (Guttikunda et al., 2023). Airshed management is yet to be for-
mally adopted for air quality management in India, despite the presence of 
preexisting systems and divisions that could potentially be leveraged for this pur-
pose (Singh, 2016). The nation is further divided into distinct climate zones, eco-
logical regions, hydrological basins, and land-use classifications, thereby 
emphasising heterogeneous regional attributes. Furthermore, the India 
Meteorological Department manages subdivisions that furnish regular updates on 
meteorological conditions. Despite the existence of such systems, the formal adop-
tion of airshed management has not yet been realised.

Guttikunda et al. (2023) categorised the NCAP areas into 104 airsheds, which 
accounts for 5.3% of the national area. These airsheds inclusively encompass 164 
cities and an overall population of 295 million, which represents 21% of the national 
population. Out of the total airsheds under consideration, 73 airsheds comprise a 
solitary city, 18 airsheds encompass two cities, and the remaining nine airsheds 
comprise three cities. There are four airsheds in India, namely, Delhi, Mumbai, 
Indore, and Chandigarh, which comprise 10, 8, 5, and 5 cities, respectively. A rec-
ommended approach for assessing and evaluating particulate matter pollution 
involves the utilisation of 2118 sampling sites across 104 airsheds. Urban areas may 
contemplate the implementation of hybrid monitoring systems, which entail the 
integration of a dense network of cheap, high-quality sensors with the already estab-
lished regulatory monitoring network. The optimisation of clean air efforts under 
NCAP necessitates the implementation of an airshed level AQ monitoring plan, an 
augmented management network, and the amalgamation of data pertaining to the 
origin of emissions.

4.4 � Ambient Air Quality Monitoring and Sensor Networks 
Currently in Use in India

In India, regulatory air quality monitoring is carried out beneath the purview of the 
Central Pollution Control Board (CPCB), which is a government agency that works 
in conjunction with the Ministry of Environment, Forest, and Climate Change 
(MoEFCC). This monitoring was made mandatory by the Air (Prevention and 
Control of Pollution) Act of 1981. The initial set of air quality standards in India 
was ratified in 1982, and subsequent changes took place in 1994 and 2009. Reference 
standards for TSP (total suspended particles), RSPM (respirable suspended 
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particulate matter) or PM10 were originally set to be different for residential, com-
mercial, and environmentally fragile areas. In 2009, the standards were updated, 
and one of the changes called for the establishment of a single norm for the PM2.5 
concentration at different kinds of locations (http://cpcb.nic.in/National_Ambient_
Air_Quality_Standards.php).

The following subsection offers a discussion of the most prominent monitoring 
programmes carried out by several agencies and academic institutions in the 
country:

National Air Quality Monitoring Programme (NAMP)  This is the most vital AQ 
monitoring initiative that the Indian government has ever undertaken. As of 
September 2022, there are a total of 379 cities and towns that have 883 air quality 
monitoring stations (https://cpcb.nic.in/uploads/Stations_NAMP.pdf). These oper-
ating stations monitor four primary pollutants: SO2, NO2, PM10, and PM2.5. The 
CPCB is responsible for managing the programme in collaboration with the State 
Pollution Control Boards (SPCBs) and the UT Pollution Control Committees 
(PCCs). Ground-based sample collection and analysis are also performed by 
regional and local educational institutions, in addition to national organisations such 
as the National Environmental Engineering Research Institute (NEERI) (https://
cpcb.nic.in/monitoring-network-3/). The majority of said stations, pertaining to 
both residential and industrial sectors, are situated within urban regions, while their 
presence in rural areas is limited, as evidenced by studies conducted by Balakrishnan 
et al. (2014) and Gordon et al. (2018). It is noteworthy that residential combustion 
emissions, which are commonly linked to the use of solid fuels, constitute a signifi-
cant contributor to air pollution nationwide (Balakrishnan et al., 2013; Venkataraman 
et al., 2018). To maintain consistency in sampling techniques among the various 
NAMP stations, standardised guidelines have been established at the national level 
for monitoring. These guidelines encompass a range of factors such as siting crite-
ria, quality assurance and quality control procedures, measurement methodologies, 
and protocols for data reporting (CPCB, 2003, 2011). Apart from the monitoring 
sites established under the National Ambient Monitoring Programme (NAMP), 
various states, such as Maharashtra, Gujarat, Kerala, Odisha, Karnataka, Telangana, 
and Andhra Pradesh, have implemented the State Ambient Air Quality Monitoring 
Programme (SAMP) to conduct ambient air quality monitoring at supplementary 
locations (Pant et al., 2019).

The CPCB has established an ensemble of Continuous Automatic Air Quality 
Monitoring Stations (CAAQMS) in prominent urban areas. These stations are 
equipped to measure a range of contaminants, including PM (PM2.5 and PM10), gas-
eous pollutants such as SO2, NO2, NH3, O3, CO, and BTEX (benzene, toluene, eth-
ylbenzene, and xylene), on a continuous basis throughout the year. CAAQMS are 
equipped with precise gas analysers and beta-attenuation monitors for air quality 
gauging and thereby offer exceptionally precise measurements (Malings et  al., 
2019; Sahu et  al., 2021; Snyder et  al., 2013). Nevertheless, the establishment of 
these networks incurs a significantly high setup cost, and their maintenance is chal-
lenging (Sahu et al., 2020), rendering robust CAAQMS networks impracticable. At 
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present, urban areas with a populace exceeding one million are accorded prece-
dence for the establishment of CAAQMS. It is anticipated that comparable stations 
will be established throughout all states and union territories. As of June 2023, there 
are 490 CAAQMS in approximately 260 cities all over India (https://app.cpcbccr.
com/ccr/#/caaqm-dashboard-all/caaqm-landing). The majority of stations are man-
aged through a collaborative effort between the CPCB and SPCB, wherein a finan-
cial agreement is established between the state and federal entities for cost sharing. 
The CAAQM station data is utilised for calculating the air quality index (AQI), 
which is accessible to the public through online platforms, smartphone applications, 
and the CPCB website archives historical data (CPCB, 2014).

System of Air Quality and Weather Forecasting and Research (SAFAR)  The 
Indian Institute of Tropical Meteorology (IITM, Pune) collaborated with the Indian 
Meteorological Department (IMD) and the National Centre for Medium-Range 
Weather Forecasting (NCMWRF) to establish the SAFAR network in Delhi in 2010 
under the Ministry of Earth Sciences (MoES) (http://safar.tropmet.res.in/) (Brauer 
et al., 2019). The SAFAR system of the network comprises air quality monitoring 
stations (AQMS) and automatic weather stations (AWS) that are set up amid the city 
boundaries. These stations have been strategically placed in various microenviron-
ments of the region such as industrial, residential, background, urban, and agricul-
tural regions, in accordance with global guidelines. This approach ensures that the 
urban environment is accurately represented.

Sophisticated online instruments are utilised to monitor air quality indicators at 
a height of approximately 3 metres from the ground. These equipments run continu-
ously, and the database is systematically captured and preserved at 5-min intervals 
for the purposes of quality control and subsequent scrutiny. The programme is pres-
ently operational in Delhi (11 AQMS locations), Pune (11 AQMS locations), 
Mumbai (10 AQMS locations), and Ahmedabad (10 AQMS locations), having been 
launched in 2010, 2013, 2015, and 2017, respectively. There are intentions to extend 
the programme’s reach to Bengaluru, Kolkata, and Chennai. The major pollutants 
monitored under the purview of this project include PM1, PM2.5, PM10, O3, CO, NO, 
NO2, SO2, black carbon, methane, nonmethane hydrocarbons, volatile organic com-
pounds, benzene, and mercury, and some meteorological parameters, including 
ultraviolet radiation, precipitation, temperature, solar radiation, wind speed, and 
direction. SAFAR offers a mobile application that distributes computed Air Quality 
Index (AQI) measurements for the criteria pollutants, based on city-wide averages, 
as well as projected AQI values for the upcoming 2-day period. The aforementioned 
data are also conveyed through instantaneous exhibit panels situated in every urban 
centre. It is noteworthy that the AQI methodology employed in this programme dif-
fers from the CPCB-endorsed national approach (Beig et al., 2015). The air quality 
database obtained from the system is subject to a 3-year embargo period, after 
which it may be made accessible for general public usage upon appeal and submis-
sion of an apt rationale to the IITM Pune.
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US Embassy Monitoring Stations  Within the framework of the AirNow initiative, 
the United States Department of State administers PM2.5 monitoring devices in five 
prominent urban centres in India, namely, Delhi, Mumbai, Kolkata, Hyderabad, and 
Chennai. These devices are situated on the premises of the respective Consulate/
Embassy in each city. The data can be accessed by the public in near real time via 
the AirNow website (https://www.airnow.gov/international/us-embassies-and-
consulates/#India). The website of the Consulate/Embassy also presents AQI val-
ues. Nevertheless, it is noteworthy that the AQI value reported is established on the 
air quality standards of the United States and employs a distinct formula. 
Consequently, it cannot be directly compared to the AQI values of India. The mea-
suring devices are functional within the embassy/consulate premises, which are 
comparatively secluded from high traffic or industrial activities. In the majority of 
instances, the instruments yield PM2.5 readings that are commensurate with those 
obtained from an urban site within the cities.

Chemical Transport Models  India now has access to a number of operational fore-
cast models. The Copernicus Atmosphere Monitoring Service (CAMS) delivers 
10 × 10 km 4-day predictions from a network of seven chemical transmission mod-
els, and the rear modification with ground observational datasets is accessible for 
various particulate and gaseous pollutants (https://atmosphere.copernicus.eu/charts/
packages/cams/). These projections are included in worldwide models that describe 
urban/regional baselines.

Using the 3D-WRF meteorological model and the GFS weather forecasts, along 
with pollutant levels generated by using the CAMx chemical modelling system and 
coupled to an active emissions tally, Urban Emissions supply 72-h (hourly and 
daily) average PM2.5 and various other air pollutant levels. As a component of the 
Air Pollution Knowledge Assessment (ApnA) Programme (Brauer et  al., 2019; 
Guttikunda et al., 2019), more precise (1 × 1 km) estimates are supplied for Delhi 
(http://urbanemissions.info/delhi-air-quality-forecasts/) and other regions in India, 
while the modelling domain spans the entire country at a spatial clarity of 25 × 25 km 
(http://urbanemissions.info/india-air-quality-forecasts/).

The Indian Institute of Technology Kanpur is involved in the Surface Particulate 
Matter Network (SPARTAN), a global initiative (having its origin in the United 
States) aimed at monitoring particulate matter. As a contributor to this network, IIT-
Kanpur handles a site in which the PM2.5 mass and several different chemical con-
tents are analysed from samples collected by this network over the course of 9 days 
(Snider et al., 2015, 2016). These incorporated filter samples could be fragmented 
to measure daily or hourly PM concentrations when aggregated with continuous 
monitoring of particle light scattering using a nephelometer (Brauer et al., 2019).

Satellite-Based Measurements  Estimates derived from satellites have also helped 
researchers to better comprehend India’s air quality. India-specific PM2.5 estimates 
(bias-corrected versus concomitant in situ data) were calculated using Multiangle 
Imaging Spectro Radiometer (MISR) aerosol products for the years 2001–2010 
(Dey et al., 2012). According to the findings of this investigation, approximately 
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half of India’s population is located in regions where ambient PM2.5 levels are above 
WHO’s intermediate goal I. Seventy per cent of the Indian subcontinent had yearly 
PM2.5 levels that were higher than the WHO’s limit. Forty to fifty per cent of clear 
days had daily PM2.5 levels in the Indo-Gangetic Plain and Mumbai that were higher 
than WHO intermediate target I.  In approximately 70% of India’s districts, PM10 
exposure was found to be higher than WHO Interim Target I [analysed by using 
Modern-Era Retrospective analysis for Research and Applications (MERRA) 
reanalysis and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
[CALIPSO] aerosol products] (Pande et al., 2018). The CPCB has begun imple-
menting historical and future satellite-derived concentration estimations under the 
NCAP (MOEF & CC, 2019). This step will lead to the augmentation of the existing 
ground-based surveillance network with more efficiency.

A brief description of the abovementioned aerosol products is given below:

MISR Aerosol Products  The Multiangle Imaging Spectro Radiometer (MISR) is a 
scientific instrument that is currently being utilised as one of the five instruments on 
board the National Aeronautics and Space Administration’s (NASA) Terra satellite. 
Its primary objective is to gather crucial data on the underlying factors and conse-
quences of worldwide climate change. The instrument employs a multiangle 
approach to observe the Earth from nine distinct angles, with the aim of enhancing 
the accuracy of atmospheric particle, cloud formation, and land surface cover analy-
ses (https://www.jpl.nasa.gov/missions/multi-angle-imaging-spectroradiometer-
misr). Throughout the duration of the Terra mission, MISR has played a crucial role 
in acquiring unique images of meteorological phenomena, including hurricanes and 
floods, and documenting the ramifications of atmospheric contamination on a global 
scale. The MISR stands out from other satellite instruments in the Earth Observation 
System (EOS) era due to its exceptional features, including a blend of high spatial 
resolution, a broad spectrum of along-track view angles, and precise radiometric 
validation and reliability (Diner et al., 1998). The MISR technique is capable of 
quantifying the shortwave radiance that emanates from the Earth’s surface in four 
distinct spectral bands, with central wavelengths of 446, 558, 672, and 866 nm. This 
is achieved by capturing data at nine different view angles, which are distributed in 
both the forward and rear directions along the flight path. These angles are situated 
at 70.5°, 60.0°, 45.6°, 26.1°, and nadir. During a span of 7 min, the spacecraft tra-
verses over the Earth, and MISR’s nine cameras sequentially capture images of a 
380 km wide area of the planet’s surface. The instrument is capable of sampling an 
extensive range of scattering angles, spanning from approximately 60° to 160° at 
mid-latitudes. This enables the acquisition of valuable data pertaining to the micro-
physical properties of aerosols. The aforementioned perspectives encompass a 
range of air-mass factors, spanning from 1 to 3 (Kahn et al., 2010). This range pro-
vides a level of sensitivity that enables the identification of optically thin aerosol 
layers. Additionally, it facilitates the differentiation between surface and atmo-
spheric contributions to the top-of-atmosphere (TOA) radiance, thereby aiding in 
the development of aerosol retrieval algorithms.
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MERRA Reanalysis  MERRA employs a 6-h update cycle for its variational data 
(3-DVAR) acquisition analysis algorithm, which is in accordance with the Gridpoint 
Statistical Interpolation scheme (GSI). The GSI has a number of improvements over 
the older 3D-VAR computations. In particular, the analysis solution’s balancing 
qualities are enhanced by computing the observation-minus-background deviations 
with higher temporal precision and by employing a dynamic limit on noise 
(Rienecker et al., 2011). MERRA depends substantially on satellite radiance data, 
which encompass information from hyperspectral tools such as the Atmospheric 
Infrared Sounder (AIRS) installed on Aqua. To assimilate radiance data, it is neces-
sary to employ a radiative transfer model (RTM) as the observation operator. GSI is 
integrated with the Community Radiative Transfer Model (CRTM) (Han et  al., 
2006). The principal objective of MERRA is to enhance the capacity of the reanaly-
sis to replicate the hydrological and energy cycles by leveraging the extensive data 
obtained from the satellite observations comprising NASA’s Earth Observing 
System (EOS). MERRA encompasses the entirety of the satellite era spanning from 
1979 to 2016. It boasts a spatial resolution of 1/2 degree latitude by 2/3 degree lon-
gitude and comprises 72 vertical layers. The MERRA datasets are produced employ-
ing the Goddard Earth Observing System (GEOS) atmospheric model version 5.2.0 
(Feng & Wang, 2019).

The MERRA-2 project was initiated with the purpose of offering a prompt sub-
stitute for MERRA and upholding the Global Modelling and Assimilation Office’s 
(GMAO) dedication to maintaining a continuous near-real-time evaluation of the 
climate. The MERRA-2 reanalysis is designed to serve as an intermediary solution 
that relies on the latest advancements in modelling and data assimilation at GMAO 
(Gelaro et al., 2017). Its primary objective is to overcome the known constraints of 
MERRA while simultaneously paving the way for GMAO’s ultimate objective of 
creating an integrated Earth system analysis (IESA) capability that integrates assim-
ilation systems for the atmosphere, ocean, land, and chemistry.

CALIPSO  The CALIPSO satellite was successfully deployed on April 28th, 2006, 
by NASA. It has contributed novel perspectives on the impact of clouds and atmo-
spheric aerosols on the regulation of Earth’s weather patterns, climate conditions, 
and air quality. The CALIPSO system integrates a dynamic lidar device with pas-
sive infrared and visible imaging tools to investigate the vertical arrangement and 
characteristics of slender clouds and aerosols across the entire globe (https://www.
nasa.gov/mission_pages/calipso/main/index.html). The CALIPSO system furnishes 
a comprehensive analysis of attenuated backscatter at wavelengths of 532 nm and 
1064 nm, along with the perpendicular polarisation segment specifically for 532 nm 
(Kar et al., 2010). The latest iteration (V.3.01) of CALIPSO data has been made 
available, featuring noteworthy enhancements to the cloud-aerosol screening mod-
ule, as well as the inclusion of extended profiles beneath layers exhibiting pro-
nounced attenuation. For the first time, the present iteration furnishes the integrated 
optical depth data for the column. The utilisation of the depolarisation ratio derived 
from the 532 nm channel is valuable in discerning the morphology of the aerosol 
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particles. Additionally, the backscatter colour ratio is informative in determining the 
magnitude of the aerosol particles (Liu et al., 2008).

Low-Cost Sensors  The exceptional ability of low-cost monitors has garnered much 
attention in recent years (Kumar et  al., 2023). When connected, such networks 
could enable individual monitors to pool data from throughout the network, allow-
ing for self-calibration, integrated network training, and the provision of high-
quality, highly resolved spatiotemporal air quality information. Such sensors allow 
continuous assessments of air quality throughout an urban region at a relatively 
modest cost. Given challenges with sensor accuracy and precision, maintenance and 
calibration, and the fulfilment of human resources expenses for network data man-
agement and maintenance, this goal has only been partially achieved thus far. 
Community groups have also used low-cost sensors when official measurement data 
are either unavailable or deemed inaccurate (e.g. due to the paucity of faithful rep-
resentation of certain hot spots). While there is no doubt that these types of initia-
tives have the potential to promote public knowledge and empowerment, some have 
voiced concerns that government air quality employees could be diverted away 
from their primary focus of air quality control to react to citizen enquiries based on 
erroneous or malfunctioning sensors. There are also concerns about a continuous 
and adequate supply of low-cost sensors because many of them have been devel-
oped by start-ups. As a result, several regional and national air quality control 
organisations have launched programmes to test and evaluate individual sensors and 
provide direction for how they should be used in networks (Agrawal et al., 2021; 
Nagendra et al., 2018; Prakash et al., 2022; Rai et al., 2017; Sahu et al., 2020, 2021; 
Tripathi et al., 2023; Zheng et al., 2018, 2019).

For instance, (Zheng et al., 2018) demonstrated that Plantower PM sensors reli-
ably measured PM2.5. They also showed how to validate PM sensors in the field 
using the Environmental Beta Attenuation Monitor (EBAM) as a standard for PM2.5 
readings in a wide range of environments. Employing high-resolution microsatellite 
imageries (PlanetScope, 3 m/pixel) and a low-cost sensor network, (Tripathi et al., 
2023) proposed a strategy for estimating and generating PM2.5 level visualisations at 
the subkkm level (500 m by 500 m). Chauhan et al. (2022) investigated the charac-
teristics of PM and AQ by installing a Microtop Sun photometer and low-cost sen-
sor at IIT Mandi and Dhampur (remote rural site) and further found that these 
inexpensive sensors provide reliable data and that a wide and dense sensor network 
is needed to gain insights into the variability in air pollutants (Sahu et al., 2021) 
presented findings from a study that involved the installation and validation of a 
network comprising six air quality monitoring systems that were constructed using 
Alphasense O3 (OX-B431) and NO2 (NO2-B43F) electrochemical gas sensors. In a 
study carried out by (Zheng et al., 2019), a novel approach was presented for the 
calibration of PM2.5 readings obtained from multiple low-cost PM sensors in the 
field. The proposed method involves a pipeline that combines simultaneous Gaussian 
process regression (GPR) and simple linear regression techniques. This approach 
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eliminates the need for predeployment collocation calibration and instead leverages 
all available reference monitors in the area to achieve accurate calibration on the fly.

In 2020, IIT Kanpur teamed up with Maharashtra PCB to validate PM sensors 
(financially assisted by Bloomberg Philanthropies). Overall, forty low-cost sensors 
were installed over 15 sites in the metropolitan region of Mumbai. These sensors 
included Plantower, Nova Fitness, and Telaire Dust Sensor (Kushwaha et al., 2022). 
Moreover, the precision and accuracy of Purple Air (PA) devices have been carried 
out by researchers from the University of California. They have tested two PA sen-
sors at the US Embassy, New Delhi, and have also deployed approximately 40 sen-
sors at different sites in Bengaluru. They have deduced that PA sensors are highly 
precise but their accuracy can change with time (Kushwaha et  al., 2022). 
Furthermore, under the Aakash project running under the Research Institute for 
Humanity and Nature (RIHN) centre, a compact useful particulate instrument 
(CUPI) sensor has been given to the Aryabhatta Research Institute of Observational 
Sciences (ARIES), Nainital to explore how aerosols disperse based on variations in 
altitude across different observation sites on the foothills of the Himalayas 
(Report, 2020).

4.5 � Challenges and Solutions

The preceding discussion lays out the current state of geospatial approaches and 
field sensors and the likely range of opportunities for the application of sensors, 
including ways in which sensors could be utilised to locate and reduce emissions 
from industrial pollution within and around their sources, as well as ways in which 
sensors could be applied at the community and individual levels to improve air 
monitoring networks. However, there are still several systemic technical and practi-
cal challenges associated with this burgeoning field of study. These include, but are 
not limited to, the creation of reliable sensors that generate high-quality data, the 
implementation of a thorough assessment of sensors, the incorporation of a data-
base from more than one sensor of varying quality acquired from various origins 
(government and citizens), and the public’s and government’s ability to visualise 
and make use of sensor data. Some major challenges include limited proficiency in 
obtaining three-dimensional data and the impracticability of active monitoring. 
Numerous community initiatives are going on a global scale to obtain air pollution 
measurements through crowdfunding. Although such sensors can be advantageous 
in the creation of citizen science projects and the production of innovative data, 
there remain several uncertainties regarding the precision of measurements obtained 
through low-cost sensors. To date, there is no conclusive evidence to support the 
long-term reliability and precision of these monitors in the absence of regular cali-
bration procedures. Current endeavours are being made to enhance the accuracy of 
these sensors, and recent analyses are reinforcing the argument for the implementa-
tion of meticulously crafted, low-cost sensors for the purpose of measuring air pol-
lution on a municipal scale. With careful design, such networks have the potential 
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to yield valuable information regarding the spatial distribution of pollutants and 
facilitate the identification of localised areas with high levels of pollution.

India has been in the international limelight because of the extremely high levels 
of air pollutants in many regions of the country; some cities in India have been 
ranked among the worst in the world for air quality, and there is growing public 
demand for action to be taken. It is challenging to use existing data for long-term 
trend analysis studies due to the lack of comprehensive databases on air quality, and 
even when the data are utilised, there exists high apprehension surrounding conclu-
sive observations or findings. Attempts made recently, for instance, making long-
term records from NAMP stations openly available, are encouraging and will likely 
encourage and facilitate further research on the problem. India’s air quality monitor-
ing has come a long way in the past 20  years, and there are currently ongoing 
attempts to develop a national air quality monitoring programme, with particular 
emphasis on establishing CAAQMS in India’s major areas. Air quality manage-
ment, higher-order scientific investigation, and epidemiological analytic activities 
would all benefit from increased support from more robust regulatory air quality 
monitoring networks in India, given the substantial health burden associated with 
exposure to degraded air quality in India.

Faster and higher-quality data in India might be possible with a hybrid monitor-
ing strategy. Recent progress in satellite-based management of AQ, as well as the 
advent of crucially placed ground-based monitoring sites that assess aerosol optical 
depth using sun photometers in conjunction with PM2.5 chemical content, suggest 
that this approach may help improve the accuracy of satellite-based estimates from 
both global and regional viewpoints. Additionally, the inputs required by receptor 
models for source allocation can be gleaned from the data collected at such strategi-
cally placed measurement sensors. Insights into source contributions such as this 
could improve air quality management predictions and programme evaluation.

4.6 � Conclusion

The alarming increase in the concentration of air pollutants in urban areas is the 
primary motivation for conducting research on air pollution monitoring. The satel-
lite remote sensing approach makes it possible to quantify the levels of air contami-
nants. Additionally, GIS-based spatial interpolation techniques can be used to rank 
the relative importance of different places. In addition, considering the disastrous 
consequences that air pollutants have on human health, it is essential to make pro-
jections regarding the concentrations of air pollutants through the use of model 
simulations. The purpose of this research is to provide a thorough review of the 
satellite remote sensing techniques that are used in mapping and prioritising the 
levels of air pollutants, as well as to predict the concentration of air pollutants. 
Because they provide comprehensive and synoptic views of wide areas in a single 
snapshot, sensor data gathered from suitable satellites are anticipated to be useful 
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for monitoring and mapping air pollution. Using a combination of GIS and remote 
sensing, air quality can be assessed over a considerable area.

Researchers are pushing the boundaries of the concept of the Next Generation 
Air Pollution Monitoring System (TNGAPMS) by using cutting-edge sensing tech-
nologies such as microelectromechanical systems (MEMSs) and wireless sensor 
networks (WSNs). Many innovative techniques for monitoring air pollution have 
been established and validated at this point. All these systems show that it is possi-
ble to create a monitoring system for air pollution that provides a high level of 
spatiotemporal detail, is cost- and energy-efficient, can be easily deployed and 
maintained and is easily accessible by both the general public and trained profes-
sionals. Such systems have the potential to be a ready-to-use, potent, and helpful 
tool by alerting end users to potentially excessive levels of pollutants and allowing 
them to take easy measures to reduce their impact. Because of its several benefits, 
including reduced prices, less noise, and lower electricity usage, the use of low-cost 
sensing technology to monitor air quality, both indoors and outdoors, is being advo-
cated. Furthermore, reference tools are still required for validation and calibration; 
therefore, their use is not yet completely decentralised.

4.7 � Recommendations

The following suggestions/recommendations can be adapted to enhance the effec-
tiveness of air quality monitoring networks related to geospatial technologies and 
field sensors in India:

	 (i)	 The potential for a hybrid approach is suggested by the improvements in 
satellite-based air quality monitoring and the strengthening comprehension of 
the significance of high-resolution spatial dynamics in urban regions. The 
option of an integrated framework, as presented in Fig. 4.3, can be perceived 
as a strategy for amalgamating existing, monitoring endeavours rather than a 
completely novel system. Therefore, we characterise this framework as a 
supplementary approach to current endeavours, which encompass the main-
tenance and improvement of the customary terrestrial surveillance system, 
with the aim of optimising the attainment of valuable data for the purpose of 
air quality governance.

	 (ii)	 Satellite-based methodologies do not serve as a substitute for ground-based 
surveillance. Instead, both techniques can be amalgamated to enhance the 
spatiotemporal range. Data feeds from geostationary satellites are used almost 
in real time with a focus on India and have the potential to offer additional 
information to improve communication among individuals, predictions, and 
source evaluation. This is in contrast to the current polar-orbiting satellites 
that only provide snapshots once or twice a day.

	 (iii)	 Large-scale deployment of monitors equipped with low-cost sensors can aid 
in the creation of emission inventories of pollutants, the identification of 
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pollution hotspots, and the conduct of real-time exposure assessments, all of 
which are necessary for the development of effective mitigation measures. To 
better attain the Sustainable Development Goals (SDGs) related to public 
well-being, minimising the negative environmental effects of urban areas and 
adapting to climate change, India’s smart cities initiative aspires to formulate 
recommendations for urban planning and land-use shifts.

	 (iv)	 To determine if a validation/calibration process can make low-cost sensors 
functional without the need for reference instruments, it is suggested to con-
duct more studies, specifically in different settings and with new sensors that 
are emerging regularly and for an extended measurement period.

	 (v)	 The potential of machine learning and data mining for analysing AQ data 
from sites in different areas and establishing airshed limits should be explored 
so that the geographical scope of air quality monitoring can be broadened, 
even with a limited number of monitoring stations.

	 (vi)	 Improvements in low-cost monitoring, prospective satellite missions, and 
focussed field initiatives are all promising developments for this network. 
This integrated network could be improved in the future to better estimate 
global exposure, which is crucial for large-scale studies such as the Global 
Burden of Disease and the United Nations’ SDGs.

	(vii)	 Data assessment can be carried out through the utilisation of third-party data 
evaluation, annual instrument intercomparisons, and calibration. Furthermore, 
it is crucial to gather and disseminate metadata, which refers to descriptive 
details about datasets, to facilitate improved cataloguing and contextually 
appropriate utilisation of data. Moreover, it is imperative to archive and dis-
seminate information pertaining to the efficacy of monitoring networks, 
including crucial metrics such as the annual data capture rate, as well as 
instrument calibration and performance evaluation.

Fig. 4.3  Framework for an integrated system of air quality monitoring
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	(viii)	 The integrated airshed framework presents a cost-effective solution for 
enhancing air quality statistics at both national and regional levels. This 
approach facilitates the linkage of local data to global satellite-based mea-
sures and a worldwide network, thereby addressing current information gaps. 
Moreover, it establishes a basis for enhancing the efficiency of routine con-
nections in the future.

	 (ix)	 Enhanced prospects for collaboration among the central and state pollution 
control boards, as well as regional academic and research institutions, have 
the potential to facilitate pollution mitigation endeavours. The integration of 
research and policymaking, along with the promotion of research and devel-
opment at PCBs, can effectively address existing gaps in the system. The 
airshed approach offers a sustainable solution by targeting and synergising air 
pollution management across administrative boundaries. Although this con-
cept is in the evolving stage in India, several states have already initiated air-
shed approache to tackle air pollution, and the emphasis on the focussed 
implementation of airshed approaches will certainly result in better air pollu-
tion management.
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