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Preface

Environmental Pollution may threaten the prospects of environmental sustainabil-
ity. This issue needs to be addressed comprehensively as India’s economic develop-
ment is moving at a very fast pace. It is therefore important to perform investigations 
for mitigating environmental risks. Hence, in recent years, effective control of envi-
ronmental pollution such as water, air, soil, and noise has become one of the top 
work priorities at global level. This may help coming generations in addressing the 
challenges of environmental deterioration. Industrialization, urbanization, agricul-
ture, forest fires, desert dust, and inadequate waste management have intensified 
environmental health risks and pollution, especially in developing countries.

Pollution is the largest environmental cause of disease and premature death. 
Pollution causes more than nine million premature deaths (16% of all deaths world-
wide). That’s three times more deaths than from AIDS, tuberculosis, and malaria 
combined and 15 times more than from all wars and other forms of violence. Global 
health crises, such as the COVID-19 pandemic, further highlight the need for con-
tinued action in addressing environmental pollution. For instance, water, an essen-
tial resource for all life on Earth, if contaminated due to pollution can lead to health 
issues in humans such as cholera, diarrhoea, dysentery, hepatitis A, typhoid, polio, 
cancer, or cardiovascular conditions. On the other hand, contamination of soil with 
anomalous concentrations of toxic substances harbours a broad spectrum of nega-
tive consequences that affect plants, animals, humans, and the ecosystem as a whole. 
Examples of health hazards related to contaminated soil includes diseases of the 
central nervous system, immune system diseases, cancer, and birth defects. Not 
only water and soil, air pollution, exposure to lead and other chemicals, and hazard-
ous wastes including exposure to improper e-waste disposal cause debilitating and 
fatal illnesses, create harmful living conditions, and destroy ecosystems. Noise pol-
lution impacts millions of people on a daily basis. The most common health prob-
lem it causes is noise-induced hearing loss (NIHL). Exposure to loud noise can also 
cause high blood pressure, heart disease, sleep disturbances, and stress. These health 
problems can affect all age groups, especially children.

Pollution stunts economic growth and exacerbates poverty and inequality in both 
urban and rural areas. Poor people, who cannot afford to protect themselves from 
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the negative impacts of pollution, end up suffering the most. It is critical to address 
pollution because of its unacceptable toll on health and human capital, as well as 
associated GDP losses. Pollution management can also make substantial contribu-
tions to climate change mitigation through actions, such as reduction of black car-
bon emissions, which contribute to both air pollution and climate change.

This book demonstrates the geospatial technology approach to data sampling, 
analysis, modelling, assessment, visualization, impacts of pollution, laws, legisla-
tions, and strategies in different aspects of environmental pollution. The book has 
15 chapters that aim to provide a comprehensive study on construing various aspects 
of environmental pollution dynamics. Especially, the utility of geospatial technol-
ogy would be demonstrated for accurate and effective study on environmental pol-
lution, as space and location are very important for effective environmental health 
surveillance. The application of geospatial technology in environmental health 
investigations is a practice for decades and recently WHO also suggested that GIS 
technology is well suited in the above-mentioned field. Moreover, different types of 
pollution are explained in detail and its relationship with space-time aspects is also 
discussed in detail.

We express our gratitude to all the authors who have diligently contributed to this 
publication, completing their documents in a short time frame and making it an 
enlightening and valuable resource. We believe that this book will serve as a valu-
able reference for professionals and researchers in various fields, including 
Ecologists, Environmental Scientists, Hydrologists, Geospatial Scientists, Remote 
Sensing and GIS experts, and those studying environmental pollution and its man-
agement. Additionally, we anticipate that this publication will be beneficial to 
research scholars, environmentalists, and policymakers.

Srinagar, Jammu and Kashmir, India� Fayma Mushtaq
Srinagar, Jammu and Kashmir, India� Majid Farooq  
Noida, Uttar Pradesh, India� Alok Bhushan Mukherjee
Ranchi, Jharkhand, India� Mili Ghosh Nee Lala 
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Chapter 1
Types of Environmental Pollution and Its 
Effects on the Environment and Society

Rasiq Ahmad Mir , Afaan Gulzar Mantoo , Zubair Ahmad Sofi , 
Darakshan Ayub Bhat , Affreen Bashir , and Saba Bashir 

Abstract  Environmental pollution from human activities such as urbanization, 
industrialization, mining, and exploration is a severe worldwide problem posing a 
threat to the well-being of the general population and the natural surroundings. 
Despite stringent regulations for protecting the environment, both developed and 
developing nations contribute to pollution. Pollutants can be found in air, water, 
soil, and other sources, such as chemical substances, noise, heat, and light. There 
are seven types of pollution, namely, air pollution, water pollution, soil pollution, 
noise pollution, thermal pollution, light pollution, and radiation pollution. Pollution 
has a significant impact on morbidity and mortality rates globally. To combat pollu-
tion, comprehensive strategies are needed, including addressing the causes and 
effects of pollution, reducing greenhouse gas emissions, enhancing energy effi-
ciency, and advocating for the adoption of renewable energy sources. Different sec-
tors, such as governments, industries, and individuals, must collaborate for the 
lasting success of pollution control. It is essential to prioritize efforts to reduce 
pollution and promote a sustainable future for generations to come.
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1.1 � Introduction

The term “pollution” may be described as “infiltration of vitality or substances into 
the environment by either natural or anthropogenic means that may compromise 
human health, decimate ecosystems and living beings, wreak havoc on social ame-
nities, or interfere with the environment’s ability to be utilized for its intended pur-
poses” (Holdgate, 1979). These harmful substances are referred to as pollutants or 
contaminants. Two primary categories of pollutants exist, namely, primary pollut-
ants and secondary pollutants. Primary pollutants are harmful in their original form, 
while secondary pollutants are generated through chemical reactions of relatively 
benign precursor substances present in the environment (Alloway & Ayres, 1997; 
Daughton, 2005). Although highly toxic substances are responsible for a significant 
portion of environmental pollution (Baudouin et al., 2002), sometimes even seem-
ingly harmless materials can cause pollution if they exist in excessive quantities or 
are located at inappropriate spatial–temporal conjunction, which can create difficul-
ties in defining pollution (Dales, 2002; Siddiqua et al., 2022).

Pollution is a global problem (Wilkinson et al., 2022). Even though urban regions 
are usually more polluted than rural areas, the impact of pollution can reach far-off 
places where no human habitation exists (Fenger, 1999; Mihai et al., 2022; Nicholls 
et al., 2020; Satterthwaite, 2003). Pollution not only hinders economic development 
(Bastola & Sapkota, 2015) but also worsens poverty and inequality in both urban 
and rural regions (Liu et al., 2020). Moreover, pollution significantly contributes to 
climate change (Eguiluz-Gracia et al., 2020). Individuals living in poverty, who lack 
the financial means to safeguard themselves from the detrimental effects of pollu-
tion, often bear the brunt of its consequences (Denton, 2002).

Environmental pollution is the primary cause of illnesses and untimely fatalities, 
resulting in over nine million early mortalities every year (Fuller et  al., 2022; 
Landrigan et al., 2018; Lelieveld et al., 2015). The majority of pollution types are 
imperceptible to the naked eye and manifest in various ways (Boyes et al., 1999). 
There are essentially seven types of pollution: air pollution, water pollution, soil 
pollution, noise pollution, thermal pollution, light pollution, and radiation pollution 
(Khopkar, 2007; Lindop & Rotblat, 1971; Narisada & Schreuder, 2013). These 
types of pollution are discussed in this chapter.

1.2 � Air Pollution

Air pollution (also known as atmospheric pollution) refers to the exceeding of pre-
determined concentrations of certain substances in the atmosphere that result in a 
harmful phenomenon for the ecological system and disrupt normal conditions for 
human existence and development (Bai et al., 2018). The substance responsible for 
this contamination is referred to as an atmospheric pollutant/contaminant that can 
be any gaseous or particulate matter that, when present in sufficiently elevated 
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concentrations, has the potential to cause harm to living organisms, natural sur-
roundings, and/or physical assets (Brusseau et al., 2019). The source of this con-
taminant can be either natural or anthropogenic or both (Lee et al., 2018). Currently, 
the main contaminants recognized as posing a risk to health primarily include par-
ticulate matter (PM) that is dispersed in the air and gaseous impurities such as sulfur 
dioxide (SO2), ozone (O3), carbon monoxide (CO), as well as nitrogen oxides such 
as nitrogen dioxide (NO2) and NOx (Okokpujie et al., 2018). The unit of measure-
ment for the concentration of atmospheric contaminants is parts per million (ppm) 
or μg/m3. A contaminant may be primary or secondary, depending on the source of 
its release. Primary contaminants are released directly into the atmosphere, while 
secondary contaminants are produced when the primary contaminant reacts with 
other atmospheric chemicals (Tiotiu et al., 2020). Numerous natural origins, such as 
wildfires or volcanic eruptions, contribute to atmospheric pollution; however, the 
industrialization period caused atmospheric contamination to become a worldwide 
issue (Mayer, 1999). The expansion of urban areas coupled with changes in land use 
patterns resulting from growing urban populations are likely significant factors con-
tributing to atmospheric pollution issues (Harlan & Ruddell, 2011; Mayer, 1999).

Air pollution has a significant impact on the atmosphere through its emission of 
various anthropogenic compounds (such as PM, NOx, and SO2) (Kampa & Castanas, 
2008; Manisalidis et al., 2020). These pollutants are known to alter the atmospheric 
composition and radiative balance, leading to changes in atmospheric stability and 
circulation patterns (Ramanathan et al., 2005). Air pollutants can interact with cloud 
formations, leading to changes in cloud albedo and precipitation patterns, ultimately 
impacting the hydrological cycle (Tao et al., 2012). Furthermore, these emissions 
contribute to acid rain and ground-level ozone formation (Shammas et al., 2020). As 
per the United States Environmental Protection Agency (US EPA) (2020), the air 
quality in developed nations has shown a positive trend, whereas the levels of air 
pollution in developing nations have been increasing gradually. The World Health 
Organization (WHO) established standards for measuring air pollution by creating 
air quality guidelines for various pollutants. As per the statistics provided by the 
WHO, the majority of the global population, i.e., 90%, is subjected to atmospheric 
contamination above permissible thresholds. Among the population residing in 
urban settlements, which are closely monitored for air pollution levels, over 80% of 
them experience air quality below the recommended limits specified by the 
WHO. Figure 1.1 represents the global average concentrations of major air pollut-
ants as reported by the WHO and highlights the concerning extent of air quality 
issues faced by urban populations. Furthermore, approximately 3 billion individuals 
face severe indoor air pollution issues due to the usage of biomass, kerosene, and 
coal as fuel for cooking and heating purposes, leading to a substantial occurrence of 
respiratory disorders.

The WHO reports that in 2012, 6.5 million individuals across the globe died as a 
result of air pollution. Approximately three million of these fatalities were caused 
by outdoor air pollution; however, the incidence of air pollution-related deaths var-
ied considerably across different regions. The Democratic People’s Republic of 
Korea recorded the highest rate of air pollution-induced fatalities, at 238.4 deaths 

1  Types of Environmental Pollution and Its Effects on the Environment and Society
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Fig. 1.1  Global average NO2, PM2.5, and PM10 concentrations. (Source: WHO. https://cdn.who.
int/media/docs/default-source/air-pollution-documents/air-quality-and-health/who-air-quality-
database-2022%2D%2D-v7.pdf?sfvrsn=c6d52e7b_7anddownload=true)

R. A. Mir et al.
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Table 1.1  Major air pollutants, their emission sources, and health impacts

Pollutant Emission sources Health effects

Carbon monoxide 
(CO) and nitrogen 
oxides (NOx)

Combustion of fossil fuels, 
industrial processes, vehicle 
exhaust

Headaches, dizziness, nausea, 
impaired vision and cognitive 
function, respiratory problems, and 
increased risk of heart disease

Sulfur dioxide (SO2) Burning of fossil fuels, mining and 
smelting operations

Respiratory problems and increased 
risk of heart disease

Particulate matter 
(PM)

Dust and debris generated by 
construction, industrial processes, 
transportation, and natural sources 
such as wildfires

Respiratory and cardiovascular 
problems, and lung cancer

Ozone (O3) The photochemical reactions 
occurring in the presence of 
sunlight between nitrogen oxides 
and volatile organic compounds

Respiratory problems and decreased 
lung function

Lead (Pb) Lead-based paint, industrial 
processes, gasoline

Neurotoxicity, decreased cognitive 
function, and increased risk of heart 
disease

Volatile organic 
compounds (VOCs)

Solvents, paints, cleaning products, 
and industrial processes, vehicle 
exhaust

Respiratory problems and cancer

Polycyclic aromatic 
hydrocarbons 
(PAHs)

Combustion of fossil fuels, 
industrial processes, and wildfires

Cancer and DNA damage

Sources: Abdel-Shafy and Mansour (2016), Afroz et al. (2003), Das (2022), Gregoris et al. 
(2014), Huang et al. (2014), Manisalidis et al. (2020), Thepanondh et al. (2011) and WHO (2006, 
2021)

per 100,000 individuals, while Brunei had the lowest recorded rate (0.2 per 100,000 
population). In low- and middle-income countries of Southeast Asia, Central Africa, 
and Western Pacific regions, where exposure to outdoor (ambient) air pollution is 
more severe, a disproportionate burden of premature deaths, accounting for 91% of 
the 4.2 million deaths in 2016, has been observed (WHO, 2020). Numerous studies 
have established a correlation between air pollution and a significant number of 
cardiovascular fatalities occurring before their expected time, reaching tens of thou-
sands each year (Anderson, 2009; Makri & Stilianakis, 2008; Schwartz, 2001). The 
respiratory systems of children and individuals with weakened immune systems are 
at a heightened risk of being adversely affected by air pollution, owing to their lung 
developmental stage and potentially compromised endogenous mechanisms for 
combating inhaled contaminants (Kulkarni & Grigg, 2008). Table 1.1 showcases 
the key air pollutants, their origins, and their detrimental effects.

Air pollution can be mitigated through the adoption of proper measures. Some 
important action points for controlling air pollution include the following:

	 (i)	 Implement strict emission standards for industries and transportation, such as 
those set by organizations such as the US EPA and the European Commission.
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	 (ii)	 To lessen reliance on non-renewable energy sources, such as fossil fuels, 
encourage the adoption of sustainable energy alternatives, including wind, 
solar, and hydropower.

	 (iii)	 Encourage public transportation, cycling, and walking through investments in 
infrastructure and incentives for individuals.

	 (iv)	 Increase energy efficiency in buildings through measures such as insulation 
and the use of sustainable energy-efficient heating and cooling systems.

	 (v)	 Foster the development and adoption of clean technologies, such as electric 
vehicles and carbon capture and storage systems.

	 (vi)	 Implement regulations on agricultural practices to minimize ammonia emis-
sions from fertilizer and manure application.

	(vii)	 Control open burning and ensure proper waste management to reduce emis-
sions of particulate matter and hazardous air pollutants.

	(viii)	 Implement early warning systems and contingency plans to mitigate the 
impacts of air pollution episodes, such as heat waves and bushfires.

	 (ix)	 Encourage active public participation in air quality monitoring and manage-
ment through initiatives such as citizen science programs.

	 (x)	 Strengthen international cooperation and coordination on air pollution con-
trol through mechanisms such as the United Nations convention on long-
range transboundary air pollution.

1.3 � Water Pollution

Water pollution is defined as the presence of substances in water bodies that change 
their chemical, physical, or biological properties and can have adverse effects on 
living organisms and their environment (Bilotta & Brazier, 2008; Verma & Ratan, 
2020). It occurs when contaminants, such as chemicals, microorganisms, or waste 
are introduced into water systems beyond a level that is safe for consumption by 
humans and the health of any ecosystem (Kim & Aga, 2007). Water pollution is 
caused by various contaminants, such as chemical pollutants (pesticides and heavy 
metals) (Jayasiri et  al., 2022), microbiological pollutants (bacteria and viruses) 
(Akpor et al., 2014), nutrient pollutants (nitrogen and phosphorus) (Puckett, 1995), 
thermal pollution and waste products (sewage and industrial waste) (Singh & Gupta, 
2016). The measurement of water pollution is typically expressed as the concentra-
tion of the contaminant in milligrams per litre (mg/L) or parts per million (ppm) 
(Weiner, 2010). Water pollution can have both natural and anthropogenic causes. 
Natural causes include algae blooms and runoff from agricultural fields (Hudnell, 
2008; Mushtaq & Nee Lala, 2017; Mushtaq et  al., 2022), while anthropogenic 
causes include discharge from factories and sewage treatment plants, as well as 
waste products such as sewage and industrial waste (Pang & Abdullah, 2013). These 
pollutants can harm aquatic species, disrupt food webs, and cause harm to human 
health (Ali et al., 2019).
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Water pollution has far-reaching impacts on the environment and ecosystems, 
affecting not only water quality but also the health and survival of plants and ani-
mals (Barnes et  al., 2019). Water pollution can disrupt the food web and cause 
declines in the populations of species that depend on healthy water ecosystems for 
survival (Ali et al., 2019; Henley et al., 2000). An overabundance of nutrients, par-
ticularly nitrogen and phosphorus, may infiltrate aquatic ecosystems and cause 
excessive growth of algae and plants, leading to eutrophication. This can deplete the 
oxygen in the water, causing significant harm to aquatic life (Carpenter et al., 1998; 
Lushchak, 2011). In addition, water pollution can also have significant economic 
impacts, as it can lead to a decrease in the accessibility of potable water, as well as 
water for agricultural and other purposes (Goel, 2006). This can increase the cost of 
providing clean water and harm the economies of communities that rely on water 
for their livelihoods (Nicol, 2000).

Water, as a universal solvent, presents a significant risk for infection transmis-
sion. According to the WHO, 80% of diseases are waterborne and a significant por-
tion of the potable water available worldwide fails to comply with the regulations 
and guidelines set forth by the WHO (Khan et al., 2013). Approximately 3.1% of 
deaths occur annually due to poor water quality and unhygienic conditions (Pawari 
& Gawande, 2015). Several health agencies, such as the Indian Council of Medical 
Research (ICMR) (1962), US Public Health Service Drinking Water Standards 
(USPHS) (1962), and WHO (1992) have established water quality standards (Lester, 
1969). Water pollution can have serious impacts on human health. Contaminants, 
including heavy metals, toxic organic compounds, and pathogens, can enter the 
water supply, causing a range of health problems, including gastrointestinal ill-
nesses, skin infections, and damage to the nervous, immune, and reproductive sys-
tems (Afroz et  al., 2003; Das, 2022; Gregoris et  al., 2014; Huang et  al., 2014; 
Manisalidis et al., 2020).

Nearly 2.2 billion individuals lack access to improved sources of fresh water for 
proper usage, including drinking. According to the WHO, contaminated water is 
responsible for more than 500,000 deaths each year, primarily in developing coun-
tries. The most common waterborne diseases that cause death are cholera, typhoid, 
and diarrhoea, which are all caused by consuming water contaminated with fecal 
matter (Qadri & Faiq, 2020). Moreover, exposure to toxic chemicals such as lead, 
mercury, and arsenic in contaminated water leads to serious health issues and even 
death in some cases. In underdeveloped nations, where there is limited availability 
of hygienic water and rudimentary sanitation facilities, water contamination has an 
especially detrimental effect on human health (Järup, 2003). Table 1.2 summarizes 
the key water pollutants, their origins, and their detrimental effects. Figure 1.2 pro-
vides insights into the state of water quality across various regions based on a global 
water quality risk map prepared by analyzing the biochemical oxygen demand, 
nitrogen content, and salinity measurements spanning from 2000 to 2010.

The adoption of appropriate measures can help reduce water pollution. To con-
trol water pollution, the following measures can be implemented:
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Table 1.2  Major water pollutants, their contamination source and health impacts

Pollutant Contamination sources Health effects

Nitrogen and 
phosphorus

Agriculture, human and 
animal waste, and fertilizers

Algae blooms, low oxygen levels, and 
fish kills

Bacteria and viruses Human and animal waste, 
agricultural runoff, and 
malfunctioning septic systems

Gastrointestinal illness, infections, and 
sepsis

Heavy metals (lead, 
mercury, and 
cadmium)

Industrial and mining 
operations, agricultural runoff, 
and sewage disposal

Damage to the nervous system, 
kidneys, reproductive system, and 
increased risk of cancer

Oil and petroleum Oil spills, urban runoff, 
agricultural runoff, and 
industrial discharges

Smothered aquatic life, suffocation, 
damage to fur and feathers of birds and 
mammals, and disrupts the food chain

Chlorine Industrial discharges, runoff 
from cleaning agents, and 
sewage

Irritation of eyes and skin, respiratory 
problems, and damage to aquatic life

Pesticides Agricultural operations, urban 
runoff, and industrial 
discharges

Damage to aquatic life, contamination 
of fish and other seafood, potential 
human health risks

Detergents Urban runoff, residential, and 
commercial use

Damage to aquatic life and decreased 
water clarity

Pharmaceuticals Human and animal waste, 
agricultural runoff

Endocrine disruption and development 
problems

Polychlorinated 
biphenyls (PCBs)

Industrial discharges and 
leakage from landfills

Cancer and damage to reproductive 
and immune systems

Sources: Abdel-Shafy and Mansour (2016), Afroz et al. (2003), Das (2022), Gregoris et al. (2014), 
Huang et al. (2014), Manisalidis et al. (2020), Thepanondh et al. (2011) and WHO (2006, 2021)

Fig. 1.2  Global water quality risk map determined by analyzing biochemical oxygen demand, 
nitrogen content, and salinity measurements spanning from 2000 to 2010. (Source: World Bank. 
https://www.globalwaterintel.com/news/2019/34/agencies-plead-for-global-action-on- 
water-pollution)
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	 (i)	 Implement best management practices (BMPs) in agriculture: This can 
include planting cover crops, constructing filter strips, and implementing pre-
cision agriculture techniques to reduce the amount of agricultural chemicals 
and nutrients entering water bodies.

	 (ii)	 Enhance the wastewater treatment facilities: Augmenting the functionality of 
the prevailing wastewater treatment facilities and erecting novel facilities to 
guarantee compliance with the prescribed water quality benchmarks for dis-
charging effluent.

	 (iii)	 Control industrial discharge: Regulating industrial discharge through the 
implementation of discharge permits, which specify limits on the amount and 
type of pollutants that can be released into water bodies.

	 (iv)	 Developing and enforcing water quality standards: Developing water quality 
standards for pollutants and enforcing them to safeguard human health and 
the environment, is imperative to shield against deleterious agents, which 
include heavy metals, organic chemicals, and bacterial entities, commonly 
referred to as pollutants.

	 (v)	 Monitor and manage stormwater runoff: Implementing stormwater manage-
ment techniques such as green roofs, permeable pavements, and bioretention 
systems to reduce the number of pollutants and sediment that enter water 
bodies during storms.

	 (vi)	 Implement land use planning: Encouraging sustainable land use practices, 
such as preserving wetlands and floodplains, and managing development to 
mitigate the effects of alterations in land utilization on the quality of water, 
measures are taken to reduce the extent of damage caused.

	(vii)	 Promote conservation practices: Encouraging conservation practices, such as 
reducing water usage and managing groundwater resources to minimize 
water withdrawals and protect water quality.

	(viii)	 Increase public education and outreach: Disseminating information to the 
general public regarding the origins and ramifications of water contamination 
and encouraging them to take action to prevent it, such as reducing the use of 
household chemicals and properly disposing of hazardous waste.

	 (ix)	 Use of innovative technologies: Adopting innovative technologies, such as 
constructed wetlands and other natural treatment systems, to treat contami-
nated water and restore degraded water bodies.

	 (x)	 Enforce penalties for noncompliance: Enforcing penalties for noncompliance 
with water quality regulations, such as fines and criminal penalties for inten-
tional pollution, to deter illegal activities that contribute to water pollution.

1.4 � Soil Pollution

Soil pollution pertains to the infiltration of noxious substances into the composition 
of the soil, leading to detrimental consequences on the environment and human 
health (Cachada et al., 2018; Yong, 2000). This phenomenon is typically initiated by 
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anthropogenic activities such as industrial processes, agricultural practices, and 
improper disposal of hazardous waste materials (Barbieri, 2016). The presence of 
contaminants in the soil can result in significant soil degradation and decreased 
fertility, negatively affecting the growth and viability of vegetation, fauna, and 
microorganisms (Pimentel, 2006). Additionally, soil pollution may result in leach-
ing of contaminants into the underlying groundwater aquifers, leading to wide-
spread contamination and posing a potential hazard to human and animal well-being 
through the transmission of adverse effects along the food chain (Abrahams, 2002; 
Mishra et al., 2019).

Soil pollution has a detrimental impact on the environment as well as the atmo-
sphere. The presence of hazardous contaminants in the soil can result in decreased 
soil fertility, degradation of soil structure, and alterations to the soil–plant–atmo-
sphere continuum (Lehmann & Joseph, 2015; Nieder & Benbi, 2003). The release 
of VOCs and other pollutants from contaminated soil can contribute to air pollution 
and the formation of harmful atmospheric species such as ozone and particulate 
matter (Kampa & Castanas, 2008; Manisalidis et al., 2020). Furthermore, soil con-
tamination can lead to the percolation of pollutants into adjacent water bodies, lead-
ing to water pollution and negatively impacting aquatic ecosystems (Tiwary, 2001). 
Soil contamination possesses the capacity to perturb the soil-microbial consortium 
and modify the dynamics of nutrient cycling and greenhouse gas emissions (Bisht 
& Chauhan, 2020). Contaminants present in polluted soil can leach into groundwa-
ter, leading to widespread contamination of drinking water sources and affecting 
human health (Azizullah et  al., 2011; Evanko & Dzombak, 1997; Holt, 2000). 
Additionally, the presence of pollutants in the soil can give rise to the build-up of 
hazardous compounds in agricultural produce and livestock, thereby inducing con-
tamination within the food chain and presenting a potential hazard to human well-
being (Khan et al., 2015). According to the WHO, soil pollution is linked to various 
human health impacts, including cancer, neurological disorders, and respiratory 
problems. The presence of toxic substances in soil can also result in decreased bio-
diversity, as contaminated soil can significantly impede the growth and viability of 
plants, animals, and microbes (Geisen et al., 2019). The United Nations Environment 
Programme (UNEP) has estimated that soil pollution affects over 33% of global 
croplands, leading to decreased agricultural productivity and food security. Soil pol-
lution also results in significant economic losses, with the United Nations estimat-
ing the cost of soil degradation and pollution at US $400 billion per year. In addition, 
the remediation of contaminated soil can be complex and expensive, requiring sig-
nificant investment in technology and resources. Quantifying or measuring soil pol-
lution is a multidisciplinary task that employs diverse analytical methodologies to 
ascertain the existence and abundance of pollutants within soil specimens (Garrett 
et al., 2008). The methods used for quantifying soil pollution include chemical and 
physical analysis techniques, such as X-ray fluorescence (XRF), gas chromatogra-
phy–mass spectrometry (GC–MS) and inductively coupled plasma–mass spectrom-
etry (ICP–MS) (Ali & Jain, 2004). Additionally, bioassay techniques can also be 
used to determine the toxicity of soil and the impact of contaminants on soil biota 
(Terekhova, 2011). To accurately measure soil pollution, it is necessary to consider 
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Table 1.3  Major soil pollutants, their contamination source and health impacts

Pollutant Contamination sources Health effects

Lead Industrial activities, batteries, 
and fuel additives

Neurological disorders, decreased IQ in 
children, anaemia, and kidney damage

Cadmium Fertilizer application, 
industrial activities, and 
sewage sludge

Kidney damage, anemia, weakened 
bones, and decreased reproductive 
capacity

Mercury Industrial activities and 
coal-fired power plants

Neurological disorders, developmental 
problems in children, and decreased 
immune system function

Arsenic Agricultural activities, wood 
preservatives, and pesticide 
application

Skin lesions, cancer, cardiovascular 
disease, and developmental problems in 
children

Polychlorinated 
biphenyls (PCBs)

Industrial activities and 
improper disposal of 
electrical equipment

Cancer, developmental problems in 
children, hormonal imbalances, and 
decreased immune system function

Dioxins Industrial processes and 
burning of waste materials

Cancer, developmental problems in 
children, decreased immune system 
function, and hormonal imbalances

Polycyclic aromatic 
hydrocarbons (PAHs)

Improper disposal of 
petroleum products and 
burning of fossil fuels

Cancer, developmental problems in 
children, and decreased immune system 
function

Sources: Fisher (1999), Genchi et al. (2020), Khan et al. (2021), Papanikolaou et al. (2005), WHO 
(2019), Xu et al. (2015) and Zahir et al. (2005)

the spatiotemporal variability of soil characteristics, in addition to the nature and 
concentration of the contaminants present. The measurement of soil pollution 
should also be conducted in accordance with established protocols and quality 
assurance/quality control procedures to ensure accurate and reliable results 
(Brookes, 1995; Kowalska et al., 2018). Table 1.3 summarizes the major soil pollut-
ants, their origins, and their detrimental effects, and Fig. 1.3 shows the soil contami-
nation status across the globe.

The control and mitigation of soil pollution require a multifaceted approach 
incorporating both preventative and remedial measures. Some key strategies for 
controlling soil pollution include the following:

	 (i)	 Regulating hazardous waste management: Effective regulation and enforce-
ment of hazardous waste management practices is critical in preventing soil 
pollution. This includes implementing strict regulations for the disposal of haz-
ardous waste, ensuring the proper management of underground storage tanks, 
and enforcing regulations regarding the storage and handling of hazardous 
substances.

	(ii)	 Implementing best management practices in agriculture: Agricultural activities 
can contribute significantly to soil pollution, and implementing best manage-
ment practices, such as reducing pesticide and fertilizer use and promoting 
conservation tillage, can help minimize soil contamination.

1  Types of Environmental Pollution and Its Effects on the Environment and Society



12

Fig. 1.3  Global map of soil contamination. (Source: FAO. https://www.fao.org/3/cb4894en/
online/src/html/chapter-03-6.html)

	(iii)	 Promoting sustainable industrial practices: Industries have the potential to 
incorporate sustainable methodologies aimed at mitigating soil pollution, 
including the curtailment of hazardous chemical usage and the establishment 
of efficient wastewater management systems.

	(iv)	 Implementing soil remediation technologies: In cases where soil pollution has 
already occurred, various remediation technologies can be employed to miti-
gate the effects and restore soil quality. These include physical, chemical, and 
biological methods such as soil washing, bioremediation, and 
phytoremediation.

	(v)	 Conducting regular soil monitoring and assessment: Regular monitoring and 
assessment of soil quality can help identify contamination hotspots and inform 
targeted remediation efforts. This can include using geospatial technologies, 
such as remote sensing and GIS, to identify areas of concern and prioritize 
remediation efforts.

	(vi)	 Encouraging public education and awareness: Raising public awareness and 
education about the dangers of soil pollution and promoting best practices for 
minimizing soil contamination is critical in reducing the risk of soil pollution 
and promoting environmental sustainability.
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1.5 � Noise Pollution

Noise pollution, also known as anthropogenic noise, pertains to the amplification of 
inherent background noise levels caused by human activities that produce sound. 
This auditory disturbance can have adverse effects on both humans and animals, 
potentially leading to detrimental consequences (Slabbekoorn, 2019; Tripathy, 
2008; Weilgart, 2018). Certain auditory stimuli are intentionally generated and 
desired, such as melodic compositions, emergency sirens, seismic investigation 
acoustics, or military echolocation systems. Conversely, the majority of anthropo-
genic acoustic disturbances are unintended side effects, including the clamour of 
vehicular traffic or the resonances emitted by power generators, as well as abrupt 
sonic emissions originating from pile driving activities and explosive detonations, 
among others (Potter, 2007; Spiga et al., 2012).

Noise pollution, characterized by excessive sound levels that disrupt normal 
activities, has severe negative impacts on both human beings and various species 
(Basner et al., 2014; Passchier-Vermeer & Passchier, 2000). According to the WHO, 
being subjected to noise pollution can give rise to a range of health complications, 
including hypertension, sleep disruption, and cardiovascular ailments. Specifically, 
prolonged exposure to noise levels surpassing 55 decibels (dB) is linked to an aug-
mented susceptibility to heart disease (Münzel et  al., 2020). Rapidly escalating, 
noise pollution has become a pressing issue in urban centres globally, with a visual 
representation (Fig. 1.4) highlighting countries grappling with the most severe noise 

Fig. 1.4  Map depicting countries with the worst noise pollution. (https://knops.co/magazine/
noise-pollution-worst-countries/)
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Table 1.4  Major sources of noise pollution and their health impacts

Pollutant Contamination sources Health effects

Transportation 
noise

Road, air, and railway traffic Sleep disturbance, stress, 
cardiovascular disease, and 
hearing loss

Industrial noise Manufacturing processes, construction 
sites, and heavy machinery

Sleep disturbance, stress, hearing 
loss, and decreased cognitive 
function

Recreational 
noise

Loud music, fireworks, and sporting 
events

Sleep disturbance, stress, and 
hearing loss

Residential 
noise

Neighbourhood and urban noise, such as 
barking dogs, traffic, and air conditioning 
units

Sleep disturbance, stress, and 
hearing loss

Sources: Basner et al. (2014), Berglund et al. (1999), Gupta et al. (2018), Münzel et al. (2021) and 
WHO (2015)

pollution levels. In the United States, the US EPA estimates that the number of indi-
viduals subjected to noise levels, posing a threat to their well-being, exceeds 100 
million. Additionally, research conducted by the European Environment Agency 
(EEA) reveals that over 50% of European Union (EU) residents experience road 
traffic noise levels surpassing 55 dB.

Studies by the UNEP reveal that noise pollution not only affects humans but also 
has adverse effects on animals. It can disrupt communication, feeding patterns, and 
mating habits of various species (Francis et  al., 2009; Lowry et  al., 2013). For 
instance, cetaceans such as whales and dolphins depend on acoustic signals for the 
purposes of orientation, social interaction, and sustenance acquisition. Anthropogenic 
noise such as ship noise and sonar can cause acoustic trauma to these mammals and 
lead to mass strandings and deaths (Cox et al., 2006; Hildebrand, 2005). Table 1.4 
summarizes the major causes of noise pollution, their origin, and their detrimental 
effects.

Controlling noise pollution can be achieved through various strategies, some of 
which are as follows:

	 (i)	 The use of noise barriers and sound insulation materials can significantly 
reduce the transmission of noise from the source to the surrounding environ-
ment. These materials include double-glazed windows, acoustic panels, and 
concrete barriers.

	(ii)	 Urban planners and policymakers can implement noise control measures, such 
as zoning regulations, to limit the creation of noise in residential areas. This 
includes reducing the number of sources of noise, such as highways, airports, 
and industrial sites in close proximity to residential areas.

	(iii)	 The development of quieter technologies and machinery can significantly 
reduce noise pollution from various sources, such as transportation, construc-
tion, and industrial activities. For instance, electric vehicles and hybrid engines 
produce lower levels of noise than traditional internal combustion engines.
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	(iv)	 Disseminating knowledge to the general population regarding the deleterious 
repercussions of noise pollution and advocating for the adoption of noise miti-
gation measures can effectively mitigate the extent of noise pollution exposure. 
This includes encouraging the use of headphones or earplugs in noisy environ-
ments and reducing unnecessary noise such as loud music in public spaces.

	(v)	 The enforcement of noise pollution regulations and guidelines by authorities 
can deter businesses and individuals from generating excessive noise. This 
includes imposing fines and penalties for noise violations and setting up moni-
toring systems to measure noise levels.

	(vi)	 Technological advancements, including the utilization of artificial intelligence 
(AI) and machine learning, have the potential to facilitate the detection and 
mitigation of noise pollution. For example, AI-powered noise sensors can 
detect and locate sources of noise pollution, while machine learning algorithms 
can optimize noise reduction strategies based on real-time data.

1.6 � Thermal Pollution

Thermal pollution is the harmful alteration of water or air temperature caused by 
human activities, such as the discharge of heated water from industrial processes or 
the use of cooling systems in power plants (McMichael et al., 2006; Verones et al., 
2010). This temperature variation can have detrimental effects on the natural eco-
system by inducing a reduction in dissolved oxygen concentrations, an elevation in 
the metabolic rates of aquatic organisms, and modifications in the dynamics of the 
overall ecosystem (Altieri & Gedan, 2015; Ficke et al., 2007; Sheridan & Bickford, 
2011). Particularly, thermoelectric power plants play a pivotal role in aggravating 
global river thermal pollution, intensifying concerns about elevated water tempera-
tures and environmental ramifications (Fig. 1.5).

Thermal pollution possesses the potential to engender adverse impacts on the 
well-being of both human and animal populations, as it alters the natural environ-
ment in which they live (Anju et al., 2010). According to the US EPA, exposure to 
water temperatures above 90 °F can lead to heat exhaustion, heatstroke, and other 
heat-related illnesses in humans. In addition, elevated water temperatures can affect 
the growth and survival of fish, causing declines in fish populations and disrupting 
food webs (Breitburg, 2002; Yamamuro et  al., 2019). The National Oceanic and 
Atmospheric Administration (NOAA) reports that thermal pollution can also trigger 
harmful algal blooms capable of generating toxins that present a substantial peril to 
both human beings and wildlife. Furthermore, elevated water temperatures can 
reduce the solubility of oxygen in water, leading to hypoxic (low oxygen) condi-
tions that can cause fish and other aquatic organisms to suffocate (Hobbs & 
McDonald, 2010; Shepherd et  al., 2017). A study by the US Fish and Wildlife 
Service found that the emission of excess heat generated by power plants can result 
in substantial reductions in populations of thermally vulnerable fish species, includ-
ing salmon and trout, and can also alter their behaviour, reproduction, and migration 
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Fig. 1.5  Contribution of thermoelectric power plants to the global thermal pollution of rivers. 
(Source: Raptis et al., 2016. https://iopscience.iop.org/article/10.1088/1748-9326/11/10/104011)

patterns. Additionally, investigations have revealed that thermal pollution exerts a 
detrimental influence on the biodiversity and population density of various aquatic 
taxa, including insects, and amphibians (Swer & Singh, 2004; Van Dijk et al., 2013). 
Table 1.5 summarizes the major causes of thermal pollution, their origin, and their 
detrimental effects.

Managing thermal pollution necessitates the deployment of efficient and envi-
ronmentally sound measures that can alleviate the adverse ramifications arising 
from excessive heat transfer in water or air systems. Some technical methods that 
can be implemented to control thermal pollution are as follows:

	 (i)	 Use alternative cooling systems: One of the most efficacious methodologies to 
control thermal pollution is by using alternative cooling systems that do not 
rely on the discharge of heated water. For example, dry cooling systems, which 
use air instead of water to cool industrial processes, can significantly reduce 
thermal pollution. In addition, closed-loop cooling systems, which recycle 
water instead of discharging it, can also help to mitigate thermal pollution.

	(ii)	 Implement regulations and guidelines: Governments possess the capacity to 
exert substantial influence and impact in controlling thermal pollution by 
implementing regulations and guidelines that limit the amount of heated water 
that can be discharged into the environment. For example, the Clean Water Act 
in the United States establishes standards for the temperature of water dis-
charged from power plants and other industrial facilities.

	(iii)	 Increase efficiency of industrial processes: Another approach to controlling 
thermal pollution is to enhance the operational efficacy of industrial procedures, 
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Table 1.5  Major causes of thermal pollution, their source of origination and associated 
health impacts

Pollutant Contamination sources Effects

Heavy industries 
(water as a 
coolant)

Power, chemical, nuclear, 
and manufacturing 
industries

Plants and animals can suffocate due to low 
oxygen levels giving rise to anaerobic 
conditions. The density and viscosity of water 
increase affecting food supplies. Nuclear power 
plants release water that is slightly radioactive 
into natural systems causing an increase in 
toxicity

Domestic and 
industrial 
effluents

Drainage from hospitals, 
research institutions with 
minimum, or no treatment

Reduction in fish population and drop-in 
reproduction rate

Urban 
stormwater 
runoff due to 
paved surface

Pavements hinder 
groundwater recharge as 
less amount goes into the 
soil

Negative impact on the growth of vegetation 
and food supplies

Deforestation Removal of forests/trees 
resulting in lack of shade 
and sunlight falling 
directly on rivers, canals 
and ponds

Spread of zoonotic diseases

Soil erosion Soil erosion and 
sedimentation make it 
directly exposed to 
sunlight

Loss of biodiversity

Geothermal 
activities

Geothermal activities and 
volcanoes

Suffocation; infectious diseases, such as 
conjunctivitis; acute and chronic respiratory 
diseases from falling ash and breathing gases 
and fumes; burns and traumatic injuries, such as 
lacerations from falling rock; eye and skin 
irritations from acid rain

Sources: Chowdhary et al. (2020), Costa (1997), Fosmire (1990), Gade (2015), Haefliger et al. 
(2009), Kravchenko and Lyerly (2018) and WHO (2019)

which can reduce the amount of heat generated in the first place. This can be 
achieved through the use of energy-efficient technologies, process optimiza-
tion, and waste heat recovery systems.

	(iv)	 Improve wastewater treatment: Effective wastewater treatment can also help to 
control thermal pollution, as it can reduce the temperature of water before it is 
discharged into the environment. Advanced treatment technologies, such as 
membrane filtration and reverse osmosis, can effectively remove heat from 
wastewater while also reducing the levels of pollutants.

	(v)	 Encourage conservation and awareness: Finally, controlling thermal pollution 
also requires the participation of individuals and organizations in conserving 
energy and raising awareness about the issue. Encouraging energy conserva-
tion through initiatives such as green building design and energy-efficient 
appliances can help to reduce the demand for energy and, consequently, the 
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amount of heat generated. Similarly, educating the public about the impacts of 
thermal pollution and ways to mitigate it can increase awareness and encour-
age action.

1.7 � Light Pollution

Light pollution refers to the human-caused modification of the ambient light levels 
present in the natural environment caused by the excessive and poorly designed use 
of artificial light sources (Gaston et al., 2013; Riegel, 1973) (Fig. 1.6). This results 
in the over-illumination of the night sky and the surrounding landscape, causing a 
variety of negative effects on the astronomical, ecological, physiological, and socio-
logical aspects of the environment (Chepesiuk, 2009; Pothukuchi, 2021). The three 
main components of light pollution are skyglow, glare, and light trespass, which 
collectively contribute to the deterioration of the ecological integrity of the noctur-
nal habitat and the perturbation of the circadian rhythms of organisms (Cleary-
Gaffney, 2022; Elsahragty & Kim, 2015; Gaston et al., 2012; Mizon, 2012).

The phenomenon of light pollution has been scientifically demonstrated to exert 
diverse detrimental impacts on both human beings and various biological species 
(Gaston et al., 2012). Studies by the WHO and the American Medical Association 
have linked exposure to artificial light at night with disruptions in circadian rhythms, 
which can increase the risk of chronic diseases such as cancer, diabetes, and cardio-
vascular disease. Additionally, exposure to light at night has been linked to sleep 
disorders, depression, and impaired cognitive function in humans (Crowley, 2011; 
Xie et al., 2017). In terms of species, light pollution can disrupt the behaviour and 
physiology of animals, leading to changes in migration, foraging, and reproduction 

Fig. 1.6  The contemporary global compendium on artificial nocturnal sky luminance. (Source: 
Falchi et al., 2016. https://www.science.org/doi/10.1126/sciadv.1600377)
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Table 1.6  Major causes of light pollution, their source of origination and associated health impacts

Pollutant
Contamination 
sources Health effects

Skyglow Artificial lighting 
from cities and towns

Circadian rhythm disturbances, heightened susceptibility 
to chronic conditions such as malignancies, diabetes, 
cardiovascular disorders, sleep dysregulation, depressive 
symptoms, and compromised cognitive capabilities

Glare Poorly shielded light 
fixtures

Decreased visibility, increased risk of accidents, 
discomfort, and headaches

Light 
trespass

Excessive or 
misplaced outdoor 
lighting

Disruption of circadian rhythms, sleep disorders, reduced 
visibility, disturbance to wildlife, and increased energy 
waste

Over-
illumination

Excessive lighting for 
aesthetic or security 
purposes

Wasted energy, light pollution, increased greenhouse gas 
emissions, and increased costs for lighting and 
maintenance

Flicker Inconsistent lighting 
sources

Migraine headaches, photosensitive epilepsy, visual 
discomfort, and decreased visual performance

Sources: Conlon et al. (2001), Kabir et al. (2022), Kumar et al. (2019), Rajkhowa (2014), Zielinska-
Dabkowska and Bobkowska (2022)

(Lennox et  al., 2016; Longcore & Rich, 2004). The International Dark-Sky 
Association reports that up to 1 billion birds are killed annually in North America 
alone due to collisions with artificial light sources, while sea turtle hatchlings are 
often disoriented by beachfront lighting, causing them to head in the wrong direc-
tion and reducing their chances of survival. Furthermore, the disruption of natural 
light cycles caused by light pollution can also have cascading effects on ecosystems, 
such as changes in predator–prey interactions and altered plant growth patterns 
(Grubisic et al., 2018; Horváth et al., 2009; Oro et al., 2013). Therefore, it is crucial 
to tackle the problem of light pollution by enacting efficient lighting regulations and 
advocating for conscientious lighting practices to safeguard the well-being of both 
human populations and biodiversity. Table 1.6 summarizes the major causes of light 
pollution, their origin, and their detrimental effects.

Light pollution is a complex problem that requires a multidisciplinary approach 
to mitigate its effects and preserve the natural darkness of the environment. Some of 
the points that can be followed to control light pollution are as follows:

	 (i)	 Implementing lighting regulations: Governments can create and enforce regu-
lations on outdoor lighting to limit light pollution. These regulations can 
include guidelines on light fixture design, light colour, and intensity, as well as 
curfews and restrictions on the use of certain types of lighting.

	(ii)	 Using energy-efficient lighting: Replacing traditional lighting sources with 
energy-efficient options such as LEDs can help reduce light pollution and 
energy consumption. These technologies often offer better colour rendering 
and directional lighting, reducing light trespass, and skyglow.

	(iii)	 Promoting responsible lighting practices: Disseminating information to the 
general populace regarding the adverse effects of light pollution and the 
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advantageous outcomes resulting from adopting conscientious lighting meth-
odologies can effectively heighten consciousness and instigate modifications 
in conduct. This can include encouraging the use of motion sensors, timers, 
and dimmer switches, as well as proper light fixture installation and 
maintenance.

	(iv)	 Encouraging the use of shields and filters: Shields and filters can be used to 
direct light downwards, reducing glare and light trespass. Additionally, spe-
cialized filters can be used to reduce the amount of blue light emitted by out-
door lighting, which can disrupt circadian rhythms and impact wildlife.

	(v)	 Supporting dark sky preservation: Maintaining the integrity of natural dark-
ness in regions characterized by minimal levels of light pollution can yield 
advantageous outcomes for human well-being, biodiversity conservation, and 
the field of astronomy. This can be achieved through the establishment of dark 
sky parks and reserves, as well as the use of responsible lighting practices in 
rural and remote areas.

1.8 � Radiation Pollution

Radiation pollution refers to the existence of ionizing or nonionizing radiation 
within the surrounding environment surpassing naturally occurring background lev-
els due to anthropogenic activities such as nuclear power generation, medical pro-
cedures, and industrial processes (Hatra, 2018; Musa, 2019; Zakariya & Kahn, 
2014). The distribution of active nuclear power plants as of 2020 can be seen in 
Fig. 1.7. These power plants are potential sources of radiation pollution, as they 
involve the operation of nuclear reactors that generate ionizing radiation. Ionizing 
radiation, encompassing electromagnetic waves such as gamma rays and X-rays, 
possesses sufficient energy to dislodge electrons from atomic structures, thereby 
instigating chemical alterations within biological tissues. Consequently, this phe-
nomenon amplifies the likelihood of cancer, genetic mutations, and other detrimen-
tal health outcomes (Chaturvedi & Jain, 2019; National Research Council, 2006). 
Nonionizing radiation, such as radio waves and microwaves, can cause thermal 
effects on living tissue and may lead to biological effects at high intensities 
(Belpomme et al., 2018; Ng, 2003). The phenomenon of radiation pollution exhibits 
an enduring presence within the environment, spanning extended durations, thereby 
yielding substantial repercussions on both human health and the ecosystem, requir-
ing careful monitoring, regulation, and management (Harrison, 2001; Nwachukwu 
et al., 2013).

Radiation pollution can have significant negative impacts on both humans and 
species. Exposure to ionizing radiation, even at low doses, has been associated with 
an amplified risk of cancer, genetic mutations, and other health effects (Prasad et al., 
2004; National Research Council, 2006). The International Atomic Energy Agency 
(IAEA) reports that globally, an estimated 1 out of 20 cancer cases is attributable to 
radiation exposure. Additionally, radiation pollution can have direct impacts on 
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Fig. 1.7  Active nuclear power plants as of 2020. (https://www.nuclear-free.com/uranium-article/
articles/nuclear-disasters-from-mayak-to-church-rock-to-fukushima-2.html)

wildlife and ecosystems, including genetic mutations, reproductive failure, and 
increased mortality rates (Bickham et  al., 2000; Geras’kin, 2016; Møller & 
Mousseau, 2006). The United Nations Scientific Committee on the Effects of atomic 
radiation reports that marine organisms in the vicinity of the Fukushima Daiichi 
nuclear power plant in Japan have shown signs of physiological stress and genetic 
damage due to exposure to ionizing radiation. Furthermore, radiation pollution can 
have indirect impacts on ecosystems by altering food webs, causing population 
declines and affecting ecosystem services (Clements & Rohr, 2009; Reid et  al., 
2019). For example, many studies have shown that the release of radioactive mate-
rial from the Chernobyl nuclear disaster in 1986 led to a decline in pollinator popu-
lations, which can have cascading effects on plant reproduction and ecosystem 
stability. Table 1.7 summarizes the major causes of radiation pollution, their origin, 
and their detrimental effects.

Given the serious health and ecological risks associated with radiation pollution, 
it is critical to develop effective regulatory frameworks and mitigation strategies to 
prevent or minimize exposure. Some important steps that can be taken are as 
follows:
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Table 1.7  Major causes of radiation pollution, their source of origination and associated 
health impacts

Pollutant Contamination sources Health effects

Alpha 
particles

Inhalation or ingestion of 
radioactive materials

Damage to lung tissue, increased risk of lung 
cancer, and bone marrow damage

Beta 
particles

Inhalation or ingestion of 
radioactive materials

Skin burns, eye damage, and increased risk 
of cancer

Gamma 
rays

Nuclear power plants, medical 
procedures, and nuclear accidents

Increased risk of cancer, genetic mutations, 
cell damage, and immune system 
suppression

Neutrons Nuclear reactors and nuclear 
weapons

Damage to DNA, increased risk of cancer, 
cataracts, and sterility

X-rays Medical and dental procedures, 
industrial processes

Increased risk of cancer, genetic mutations, 
and cell damage

Sources: Christensen et al. (2014), Manisalidis et al. (2020), Narendran et al. (2019), Scott (2007), 
Tang et al. (2017) and Wall et al. (2006)

	 (i)	 Implementing regulatory measures: Governments can create and enforce regu-
lations on radiation protection and safety, such as limits on radioactive emis-
sions and exposure levels. This can include licensing and inspection of nuclear 
facilities, as well as waste management and disposal guidelines.

	(ii)	 Developing radiation monitoring and detection systems: Continuous monitor-
ing and early detection of radiation levels can help prevent or minimize expo-
sure. This can include the use of radiation detectors, air and water monitoring 
systems, and remote sensing technologies.

	(iii)	 Implementing emergency response plans: In the event of a radiation incident or 
accident, emergency response plans and procedures can help minimize expo-
sure and prevent further contamination. This can include evacuation plans, 
decontamination procedures, and medical treatment protocols.

	(iv)	 Encouraging the use of radiation-safe practices: Education and training on 
radiation safety practices can help prevent exposure and contamination. This 
can include proper handling, storage, and transportation of radioactive materi-
als, as well as personal protective equipment and hygiene measures.

	(v)	 Developing and promoting alternative technologies: Developing and promot-
ing alternative technologies that do not rely on radioactive materials can help 
reduce the risk of radiation pollution. This can include renewable energy 
sources, non-destructive testing methods, and medical imaging technologies 
that use lower levels of radiation.

1.9 � Conclusion

Pollution, as a broad concept, constitutes a significant ecological apprehension 
stemming from anthropogenic actions, including transportation, industrial pro-
cesses, energy generation, and inadequate management of waste materials. The 
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adverse effects of pollution include respiratory illnesses, cardiovascular diseases, 
genetic mutations, cancer, and other health issues. Pollution also affects natural 
ecosystems, including aquatic life and soil quality, leading to the destruction of 
biodiversity. Environmental pollution is a significant issue that negatively impacts 
the natural and human-made environment, affecting human health, animal life, and 
plant life. A comprehensive understanding of the various origins of pollution and its 
ramifications on the ecosystem and human society is imperative in formulating effi-
cacious approaches to attenuate their repercussions.

Environmental pollution is a global issue that requires collective efforts from all 
stakeholders to mitigate its effects. By taking proactive measures and implementing 
effective solutions, we can build the capability to implement measures aimed at 
preserving the ecological system and ensuring the preservation of human health and 
overall welfare. We must recognize the importance of a clean environment and pro-
mote sustainable practices to ensure a healthier and brighter future for generations 
to come. To achieve a pollution-free environment, it is crucial to address the root 
causes of pollution and adopt a holistic approach. Governments, corporations, and 
individuals each bear responsibility for mitigating pollution levels. It is necessary to 
invest in research and development to create innovative solutions that can tackle 
pollution effectively. To combat pollution, we need to adopt sustainable practices, 
promote cleaner energy sources, and technologies, implement effective policies, 
and regulate waste disposal practices. We need to regulate the use of harmful sub-
stances and promote awareness of the issue to reduce pollution levels. It is crucial to 
monitor pollution levels and take corrective actions to prevent further damage to the 
environment. Moreover, individuals can also contribute to the cause by adopting 
eco-friendly practices such as reducing energy consumption, practicing proper 
waste disposal techniques, and advocating for the adoption and utilization of public 
transit systems. Educating people about the impacts of pollution and the benefits of 
sustainable practices is also essential in creating a culture of responsibility toward 
the environment.

In conclusion, environmental pollution is a complex issue that requires collective 
efforts from all stakeholders to mitigate its effects. By taking proactive measures, 
implementing effective solutions, and promoting awareness, we can work towards 
achieving a pollution-free environment. We must act now to protect the environment 
for future generations and ensure a sustainable future.
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Chapter 2
Geostatistical Methods and Framework 
for Pollution Modelling

Zaiema Rouf Khan  and Arshid Jehangir 

Abstract  In recent years, pollution has become an important global issue due to its 
impact on people’s lives and the environment and has caused severe problems for 
humans. Geospatial methods are techniques and tools used to collect, analyse, and 
visualize spatial data in various fields, such as geography, geology, ecology, urban 
planning, and public health. These methods allow researchers and practitioners to 
understand the spatial relationships and patterns of natural and human-made phe-
nomena, which can aid in decision-making, policy development, and resource allo-
cation. Geospatial methods involve the use of remote sensing, geographic 
information systems (GIS), and spatial statistics to collect, analyse, and visualize 
spatial data. These methods provide valuable information on the location, distribu-
tion, and intensity of pollution sources and their potential impact on human health 
and the environment. GIS can possibly be used to map the spatial distribution of 
pollution sources, such as factories, traffic, and agriculture, while remote sensing 
can be used to detect changes in land use and vegetation cover that may affect the 
quality of the environment. Remote sensing can be used to collect data on air quality 
and pollution sources. Satellite and aerial imagery can be used to map the spatial 
distribution of pollutants and provide information on the location and extent of pol-
lution sources. This information can be used to identify areas of high pollution 
concentrations and develop mitigation strategies. Spatial statistics can be used to 
analyse the spatial distribution of pollutants and assess the spatial relationship 
between pollution sources and environmental variables. This can help to identify the 
factors that contribute to high pollution concentrations and assess the effectiveness 
of pollution control measures. In addition to geospatial methods, a variety of frame-
works have been developed to facilitate pollution modelling. These frameworks 
provide a structured approach to model development and can help ensure consis-
tency and accuracy in the modelling process. Overall, geospatial methods and 
frameworks provide a powerful tool for pollution modelling and can be used to 
inform policy and management decisions related to air and water quality. However, 
the accuracy and effectiveness of these methods depend on the quality and 
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availability of spatial data and the selection of appropriate modelling techniques. 
Thus, the application of geospatial methods in the framework of pollution model-
ling has proven to be an effective tool in assessing the impact of pollution on human 
health and the environment. The integration of spatial data using geospatial methods 
provides valuable information on the spatial distribution of pollutants, pollution 
sources, and environmental variables, which can be used to develop effective miti-
gation strategies.

Keywords  Environment ·  Geospatial models ·  GIS ·  Geo-visualization ·  
Pollution ·  Remote sensing

2.1 � Introduction

The term “geospatial technology” is used to designate a variety of contemporary 
techniques that contribute to the geographic mapping and analysis of the Earth and 
human society (McCoy, 2021). Since the earliest maps were created in ancient 
times, these technologies have seen some evolution (Chase et al., 2011). Numerous 
kinds of geospatial technology are currently available and may be used, which 
include the following (Fig. 2.1):

Remote Sensing  Remote sensing involves the acquisition of information about the 
Earth’s surface without physical contact (Pei et  al., 2021; Rott, 2000). Satellite 
imagery and aerial photographs are primary sources of remote sensing data (Harvey 

Remote sensing

Geospatial Analysis

Geo-visualization

Geographic information system

Global Positioning System (GPS)

Internet mapping technologies

Geospatial technology

Fig. 2.1  Geospatial methods
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& Hill, 2001; Ullah et al., 2020). This technology provides detailed and up-to-date 
information about land cover, vegetation, urban development, and environmental 
changes (Fonte et al., 2017). Remote sensing techniques are widely used to protect 
and preserve the environment by providing information that may be used in decision-
making to save the environment (Gandhi et al., 2015).

Geospatial Analysis  Geospatial technology facilitates the analysis of spatial pat-
terns, relationships, and trends (Guo et al., 2012; Jing et al., 2018). It enables profes-
sionals in various fields, such as urban planning, natural resource management, 
emergency response, and logistics, to make informed decisions based on spatial 
data analysis (Greenough & Nelson, 2019). Geospatial analysis helps identify spa-
tial clusters, perform proximity analysis, and assess the impact of factors on specific 
locations (Kang et al., 2019).

Geo-visualization  Geospatial technology provides advanced visualization tech-
niques to represent and communicate spatial information effectively (Tao, 2013). 
Interactive maps, 3D visualizations, and virtual reality (VR) applications enhance 
the understanding of complex geospatial data (Moran et al., 2015). Geo-visualization 
enables users to explore data from different perspectives, uncover patterns, and con-
vey information to a wide range of audiences (Orland et al., 2001).

Geographic Information Systems (GIS)  GIS is a fundamental component of geo-
spatial technology. It allows for the creation, analysis, management, and visualiza-
tion of spatial data (Al-Ansari et  al., 2014; Velasco et  al., 2013). GIS software 
enables users to overlay different layers of information, perform spatial analysis, 
and generate maps and reports (Chang, 2006). It serves as a framework for accumu-
lating, organizing, charting, and analysing physical environment data at a particular 
spot on Earth’s surface (Ali et al., 2020; Sherrouse et al., 2011). GIS creates geo-
graphical analyses, derived maps, and three-dimensional scenarios using layers of 
geographic data. This special power thus provides deeper insights into the data 
(Harris & Hodza, 2011).

Global Positioning System (GPS)  GPS is a navigation system that synchronizes 
location, velocity, and time data for land, sea, and air travel by utilizing satellites, a 
receiver, and algorithms (Kaewket & Sukvichai, 2022; Noureldin et al., 2012). GPS 
uses a network of satellites to determine precise locations on Earth. It is widely used 
in navigation, surveying, and mapping applications (Shi et al., 2012). GPS receivers 
enable users to collect accurate positional data, which can be integrated with other 
geospatial data for analysis and visualization (Kanjo et al., 2008).

Internet Mapping Technologies  The process of viewing, analysing, or sharing a 
visual representation of geospatial data in map form via the Internet is known as 
web mapping (Haklay et al., 2008).

2  Geostatistical Methods and Framework for Pollution Modelling



36

Define the environment

Describe the influences of environment

Assess the threats and hazards

Develop analytical conclusion

Step 1

Step 4

Step 3

Step 2

Fig. 2.2  Geospatial preparation process according to the NGA

Geospatial Preparation of the Environment (GPE)
The intelligence cycle and process are the foundation of the geospatial intelligence 
preparation of the environment (GPE) analytical method. According to the National 
Geospatial-Intelligence Agency (NGA), the steps are as follows (Fig. 2.2):

2.2 � Geospatial Modelling of Air Pollution

Air quality is a significant factor in determining health, and numerous studies have 
shown the vast variety of harmful impacts of ambient air pollution on human health 
around the world. In particular, emissions that contribute to outdoor air pollution 
come from both artificial and natural sources. In many places, monitoring stations 
or systems have been put in place by policymakers (Jerrett et al., 2005; Kanaroglou 
et al., 2005) for legislative purposes. Researchers have also installed pollution sen-
sors to measure individual exposure to air pollution in areas of interest (Steinle 
et al., 2015), such as busy highways, commercial and residential areas, and impor-
tant thoroughfares (Steinle et al., 2013). The air pollution level in that area or neigh-
bouring small areas can only be determined by the recorded measurements at these 
stations or sites (Gupta et al., 2006). Researchers have proposed a number of tech-
niques, such as spatial averaging, nearest neighbour, inverse distance weighting 
(IDW), kriging, land-use regression (LUR) modelling, dispersion modelling, and 
neural networks, to estimate the concentrations of air pollutants in unmonitored 
areas using the measurements that are currently available (Karroum et al., 2020; 
Xingzhe et al., 2017). Air pollution modelling involves the use of remote sensing 
(Alvarez-Mendoza, 2023) and geospatial methods (Jumaah et  al., 2019) and 
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Table 2.1  Models used in air pollution monitoring

S.No Models Full name Used for References

1. AERMOD AMS/EPA 
Regulatory Model

Steady-state plume air 
dispersion model

Hallaji et al. 
(2023), 
Josimović et al. 
(2023)

2. CALINE-4 California Line 
Source Model

Line source air quality 
dispersion model

Goyal et al. 
(2010), Wang 
et al. (2016)

3. OSPM Operational Street 
Pollution Model

Street pollution dispersion 
model

Hertel et al. 
(1991), 
Rzeszutek et al. 
(2019)

4. CALPUFF California Puff 
Model

Non-steady-state meteorological 
and air quality modelling 
system

Xue et al. 
(2023), Li et al. 
(2023b)

5. CALGRID California Grid 
Model

Photochemical pollution Yamartino et al. 
(1992), Xie et al. 
(2014)

7. ADMS Atmospheric 
Dispersion 
Modelling System

Atmospheric dispersion 
(pollutant emitted both 
continuously from point, line, 
volume and area source, or 
discretely from point sources)

Kalhor and 
Bajoghli (2017), 
Murana (2023)

8. CTDMPLUS Complex Terrain 
Dispersion Model

Complex terrain dispersion Rzeszutek 
(2019), Khan 
and Hassan 
(2020)

9. OCD Offshore and Coastal 
Dispersion

Offshore emissions from point, 
area, or line sources on the air 
quality of coastal regions

Hanna and 
Drivas (1993), 
Huang (2015)

(continued)

AQM
EPA, 2017

Dispersion Modelling 

–CTDMPLUS

–AERMOD

–OCD

Photochemical Modelling

–CMAQ

–CAM

–REMSAD

–UAM–V

Receptor modelling

–CMB

–PMF

Fig. 2.3  Air quality models  (AQM) recommended by Environmental Protection Agency 
(US-EPA, 2017)
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Table 2.1  (continued)

S.No Models Full name Used for References

10. CMAQ Community 
Multiscale Air 
Quality

Estimation of ozone, 
particulates, toxics, and acid 
deposition

Onwukwe and 
Jackson (2020), 
Kukkonen et al. 
(2023)

11.. CAM Comprehensive Air 
Quality Model

Multiple air quality issues, 
including tropospheric ozone, 
fine particles, toxics, acid 
deposition, and visibility 
degradation

Fernandez et al. 
(2019), Soni 
et al. (2022)

12. REMSAD Regional Modelling 
System for Aerosols 
and Deposition

Calculate the concentrations of 
both inert and chemically 
reactive pollutants

Kuhns et al. 
(2005), Nguyen 
et al. (2020)

13. UAM-V Urban Air-shed 
Model

To study air quality, especially 
ozone

Qin et al. (2019), 
Nguyen et al. 
(2020)

14. CMB Chemical Mass 
Balance

Localized nonattainment 
problems; also where steady-
state Gaussian plume models 
are inappropriate

Feng et al. 
(2019), Zhang 
et al. (2021)

15. PMF Positive Matrix 
Factorization

Multivariate factor analysis Feng et al. 
(2019), Song 
et al. (2019)

frameworks to simulate (Marquez & Smith, 1999) and analyse the distribution, 
transport, and dispersion of air pollutants in the atmosphere. According to the 
US-EPA, the most commonly used air quality models include the following 
(Fig. 2.3) and (Table 2.1):

Dispersion Modelling  These models are employed in the permitting procedure to 
calculate the pollutant concentration at designated ground-level receptors close to 
an emissions source (Teggi et al., 2018). To describe the atmospheric mechanisms 
that disperse a pollutant emitted by a source, dispersion modelling uses mathemati-
cal formulations (Kakosimos et al., 2011). A dispersion model can be used to fore-
cast concentrations at specific downwind receptor locations based on emissions and 
meteorological inputs (Awasthi et al., 2006). These air quality models are used to 
determine compliance with National Ambient Air Quality Standards (NAAQS) 
(Macpherson et al., 2017) and other regulatory requirements, such as Prevention of 
Significant Deterioration (PSD) and New Source Review (NSR) regulations.

Photochemical Modelling  These photochemical models, which represent the 
large-scale chemical and physical processes in the atmosphere through a series of 
mathematical equations, simulate variations in pollutant concentrations in the atmo-
sphere (Ibrahim, 2019). These models are applied at multiple spatial scales, includ-
ing local, regional, national, and global scales (Daly & Zannetti, 2007). 
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Three-dimensional Eulerian grid modelling is currently used in the majority of 
operational photochemical air quality models (Fountoukis et al., 2022), mostly due 
to its capacity to characterize physical processes more accurately in the atmosphere 
and forecast species concentrations across the whole model domain (Ramacher 
et al., 2021).

Receptor Modelling  Receptor models are statistical or mathematical methods for 
locating and calculating the sources of air contaminants at a receptor site (Salim 
et al., 2019). Contrary to photochemical and dispersion air quality models, receptor 
models do not calculate the contribution of sources to receptor concentrations using 
pollutant emissions, meteorological information, or chemical transformation mech-
anisms (Li et al., 2021). These models are based on observational techniques (Kim 
et al., 2021) that use the physical and chemical characteristics of particles and gases 
measured at receptors and sources (O’Reilly et al., 2023) to both detect and measure 
source contributions to receptor concentrations (Jain et al., 2021).

Vehicular Pollution Modelling  Geospatial models are commonly used to predict 
and assess air pollution in urban areas (Matějíček et al., 2006). By using GIS, spatial 
data are analysed to identify where pollution hotspots are most likely to occur and 
to estimate the concentration of pollutants in areas affected by traffic (Wang et al., 
2008). These models take into account several factors, such as traffic density, emis-
sion factors, meteorological conditions, and topography, to predict air pollution lev-
els (Zhang et al., 2013). One comprehensive example of a GIS-based model for air 
pollution is the one presented by Gualtieri and Tartaglia (1997). This model evalu-
ates air pollution due to road traffic in urban areas, depending on the geometric and 
environmental characteristics of the area studied (Gualtieri & Tartaglia, 1998). 
More recent examples in spatial modelling of air pollution in urban areas with GIS 
include analyses of environmental and social factors affecting exposure to pollution, 
as well as, mapping of air pollution sources (Moreno-Jimenez et al., 2016). Another 
approach is utilizing geospatial artificial intelligence (AI) to develop models for 

Table 2.2  Key studies on vehicle emission modelling

S.No Models Visualization References

1. MOVES emission 
model

Display grid emission; using Python-based 
ArcGIS technology

Wohlstadter et al. 
(2016)

2. Line source dispersion 
model

Display link-based concentrations; using 
Python-based ArcGIS technology

Barzyk et al. 
(2015)

3. PARAMICS; CMEM; 
AERMOD

Model software view output Misra et al. 
(2013)

4. CMEM; MOVES Display link-based emissions using Google 
map

Morris et al. 
(2012)

5. VSP-based Display the bus emissions by certain trips; 
Using Google map API system

Li et al. (2009)

6. ADMS Display the bus emissions by certain trips; 
Using Google map API system

Namdeo et al. 
(2002)
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mapping and prioritizing the concentration of air pollutants (Liang et  al., 2023). 
Overall, geospatial models and GIS technology offer an effective and efficient way 
to analyse air pollution data in urban areas, pinpointing pollution hotspots and pro-
viding valuable insights for environmental policymakers and urban planners. The 
research carried out on vehicle emission modelling is presented in Table 2.2.

Vehicle characteristics, road traffic circumstances, geography, weather, and other 
environmental factors all have an impact on vehicle emissions and how they affect 
air quality; this complexity makes it more difficult to regulate (Pinto et al., 2020). 
The best method to fulfil the aforementioned demands is via a real-time system 
(Reddy et al., 2018). A sufficient amount of real-time traffic information, including 
precise vehicle data, is required (Vigos et al., 2008) (e.g. fuel, type, and emission 
standard), traffic detection information (e.g. vehicle fleet composition, traffic vol-
ume, and traffic speed), road information (e.g. location, length, type, and direction), 
weather information (e.g. humidity, wind, temperature, clouds, and pressure) and 
additional details in urban settings (Ding et al., 2021) (Fig. 2.4).

Even though geospatial modelling has many benefits, it is not without drawbacks 
in regard to monitoring automobile pollution. There are a number of obstacles, such 
as the requirement for expertise in model construction and calibration, the necessity 
for accurate and readily available input data, and the uncertainty surrounding emis-
sion factors and model parameterization. Additionally, it might be difficult to ade-
quately capture spatiotemporal fluctuations in pollution because of how complex 
metropolitan landscapes are and how dynamic traffic patterns are.

PM2.5 Pollution Modelling  The discipline of environmental research has recently 
undergone a revolution because GIS (Rahman et al., 2010), including PM2.5 pollu-
tion modelling by integrating geospatial data with pollution measurements 
(Hvidtfeldt et al., 2018), makes it possible to locate pollution hotspots, make pollu-
tion maps, and see pollution patterns (Zhang et al., 2008) (Fig. 2.5). On the other 
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Fig. 2.4  Real-time vehicle emission calculation and mapping (Ding et al., 2021)
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Fig. 2.5  Geospatial modelling for estimation of PM2.5 (Lavanyaa et al., 2022)

hand, by gathering information about the Earth’s surface, remote sensing methods 
that make use of satellite or airborne sensors have significantly improved PM2.5 
models (Sorek-Hamer et al., 2020) and thus can estimate PM2.5 concentrations over 
large areas (Chen et al., 2021). These data, combined with ground-based measure-
ments, enable the development of accurate spatiotemporal models (Von Holdt et al., 
2019). However, challenges persist, such as sensor limitations and the need for 
validation with ground truth data (Shirmard et al., 2022). Researchers have demon-
strated land-use regression (LUR), a statistical modelling strategy that links PM2.5 
concentrations to land use and other pertinent variables (Chen et al., 2021). By con-
sidering factors such as traffic density, land cover, and proximity to pollution 
sources, LUR models can predict PM2.5 concentrations at unsampled locations 
(Song et al., 2021). LUR is particularly useful in urban areas where fine-scale spa-
tial variability exists. However, the reliance on monitoring data for model calibra-
tion can limit its applicability in data-scarce regions (Li et al., 2023a, b).

Furthermore, chemical transport models (CTMs) help to simulate the transport 
and transformation of pollutants in the atmosphere, providing insights into the 
sources and distribution of PM2.5 pollution (Li et al., 2019). By considering emis-
sion inventories, meteorological conditions, and chemical reactions, CTMs offer a 
comprehensive understanding of pollutant behaviour (Chen et al., 2020). They also 
allow for scenario testing and evaluation of mitigation strategies (Fallmann et al., 
2016). However, CTMs require extensive computational resources and detailed 
input data, making them more suitable for regional-scale studies (Kukkonen et al., 
2012). Machine learning algorithms have gained popularity in PM2.5 pollution mod-
elling due to their ability to handle complex relationships between pollution and 
environmental factors (Ma et al., 2022).
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2.3 � Geospatial Modelling of Groundwater Pollution

The problem of groundwater contamination has increased alarmingly in recent 
years (Dutta Gupta et al., 2018) because of extensive and rapid population growth 
(Zhang et al., 2020), irregular planning, random expansion of cities (Singha et al., 
2019), different land use-land class patterns, and erroneous sewage systems, includ-
ing wastewater disposal from agricultural industries and urban areas (Berhe Zenebe 
et al., 2020). Remedial measures and treatment techniques for groundwater con-
tamination are very expensive and often complex (Brusseau, 2019). Monitoring this 
precious resource is crucial for its protection but determining the extent of contami-
nation on a regional scale and drawing boundaries around it is a difficult process 
(Singha et al., 2019).

Aquifer hazard assessments are now being conducted around the world using a 
variety of models that use different processes and procedures. More than 30 
approaches have been developed by researchers to determine the vulnerability of 
groundwater. Three main approaches are available for aquifer vulnerability 

Table 2.3  Geospatial models used for monitoring groundwater contamination

S.No. Model Full name Used for References

1. DRASTIC Depth to groundwater, recharge 
rate, aquifer, soil, topography 
Vadose zones’ impact hydraulic 
conductivity

To evaluate the 
groundwater 
vulnerability mapping

Rajput et al. 
(2020), Alamne 
et al. (2022)

2. AVI Aquifer vulnerability index Groundwater pollution 
vulnerability

Ghanbarian and 
Ahmadi 
Nadoushan 
(2019), George 
(2021)

3. SINTACS Water table depth (S), effective 
infiltration (I), unsaturated zone 
(N), soil media (T), aquifer 
media (A), hydraulic 
conductivity zone (C), and 
topographic slope (S)

Identifying the area 
where groundwater 
supplies are most 
vulnerable to 
contamination

Kumar et al. 
(2013), Noori 
et al. (2019)

4. EPIK Epikarst parameter, protective 
cover, infiltration, and karstic 
network

Vulnerability mapping 
of karst aquifers

Ghadimi et al. 
(2022), Kazakis 
et al. (2015)

5. GOD Groundwater index, overall 
lithology, and depth to 
groundwater

To determine 
groundwater 
vulnerability

Ghazavi and 
Ebrahimi (2015), 
Fannakh and 
Farsang (2022)

6. GALDIT Groundwater occurrence, 
aquifer hydraulic conductivity, 
height of groundwater, distance 
inland perpendicular from 
shoreline, impact of seawater, 
and thickness of aquifer

To assess groundwater 
vulnerability to 
seawater intrusion

Hu et al. (2018), 
Sujitha et al. 
(2020)
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assessment: index-overlay, statistical, and process-based (National Research 
Council, 1993; Shrestha et al., 2017). Overlay-index models are the most popular 
models found in the literature (Table 2.3), namely, AVI (Stempvoort et al., 1993), 
DRASTIC (Aller & Thornhill, 1987), EPIK (Doerfliger & Zwahlen, 1997), 
SINTACS (Vrba & Zaporozec, 1994), GOD (Foster et al., 2002), IRISH (Daly & 
Drew, 1999), and GALDIT (Mitra, 2011).

Despite its many benefits, geospatial modelling for groundwater pollution moni-
toring has some limitations. These include the need for high-quality spatial data, the 
inherent uncertainty of predictions, and the challenge of integrating temporal varia-
tions (Rajitha et al., 2007). In addition, the complex nature of groundwater systems 
and the diversity of pollutants require careful consideration during model develop-
ment and calibration (Brunner et al., 2017).

2.4 � Monitoring of Soil Pollution

Soil pollution, which is the contamination of soil by various contaminants, includ-
ing heavy metals, pesticides, industrial pollutants, and radioactive materials, poses 
serious threats to ecosystems, agricultural productivity, and human health (Gautam 
et al., 2023). Because plants absorb every nutrient from the soil, soil contamination 
has recently gained importance (Artiola et al., 2019). A significant amount of waste 
is produced as a result of rapid urbanization, industrialization, and population 
growth (Hossain et al., 2014), and the waste from industry and sewage is released 
into the soil (Murtaza et al., 2010) when used as a source of irrigation without suf-
ficient treatment, hazardous heavy metals, persistent organic pollutants, microplas-
tics, and high salt levels build up, which lowers the soil’s quality. Similarly, the 
effluents discharged by sectors including tanning, textiles, and distilleries contain 
various sources of heavy metals, salts, and organic compounds (Bahuguna 
et al., 2022).

To effectively address soil pollution, accurate assessment and modelling of pol-
lution patterns and processes are crucial. Geospatial methods and frameworks have 
emerged as powerful tools in soil pollution modelling, enabling the integration of 
spatial data, environmental factors, and advanced analytical techniques, thus 
enabling the quantification and visualization of soil pollution at various scales 
(Table 2.4).

2.5 � Monitoring of River Pollution

Urban rivers become choked with municipal and industrial sewage due to unprece-
dented growth and human activity, among other factors (Sekharan et  al., 2022). 
Micro, small, medium, and large industrial catchments and their surrounding resi-
dential areas are densely clustered in urban ecosystems around the world, 
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Table 2.4  Some geospatial models for monitoring soil contamination

S.No. Model Used for References

1. Kriging To estimate pollution values at unsampled 
locations

Lin et al. (2011), Sun 
et al. (2019)

2. MCDA To assess soil pollution risks, prioritize, 
contaminated sites, and guide the decision-making 
process

Cartwright et al. 
(2022), Kazemi and 
Akinci (2018)

3. SWAT To simulate the transport of pollutants in soil 
systems

Lam et al. (2010), 
Zhang et al. (2013)

4. EDSS To aid in soil pollution management and 
mitigation

Van Der Perk et al. 
(2001), Oprea (2018)

5. SoilGrids To provide high-resolution global soil property 
maps, including soil pollution indicators

Liang et al. (2019), 
Chen et al. (2019)

6. CART To assess soil pollution risks, analyse pollution 
sources, and support decision-making in soil 
pollution management and remediation

Cheng et al. (2009), 
Wang et al. (2020)

7. Soil 
landscape

To map soil properties and identify areas 
susceptible to soil pollution

Kang and Lin (2009), 
Xiong et al. (2014)

particularly in low- and middle-income nations (LMICs), as a result of mostly unre-
strained development expansion and urbanization (Elmqvist et al., 2013; Sun et al., 
2022). Urban rivers continue to be contaminated and choked by municipal and 
industrial waste as an apparently inevitable result, which opens the door to their 
extinction (Chandrashekhar, 2018; Strokal et  al., 2021). Due to the existence of 
industrial clusters, the pollution situation along river sections in urban India is sig-
nificantly worse than that in rural India (Panda et al., 2018). Changes in anthropo-
genic land use and cover (LULC) within a watershed have a detrimental effect on 
river water quantity (Samal & Gedam, 2021), and quality is a well-researched and 
widely accepted phenomenon in the literature (Santy et al., 2020). Geospatial mod-
els used for river pollution monitoring are given in Table 2.5.

If properly implemented, GIS-based monitoring will allow the extraction of 
information on the status of the river’s water quality in close to real-time at any loca-
tion along the river stretch (Glasgow et  al., 2004), which shall help track the 
impaired river stretch (Mondal & Patel, 2018). This can help with analyses of trans-
parent source apportionment. Examining LULC patterns and spatiotemporal fluc-
tuations in river water quality helps to identify the origins of pollution in urban 
rivers (Yang et al., 2021), and GIS will help achieve this goal. Additionally, it will 
assist in tracking how frequently river segments have impairment (Sekharan 
et al., 2022).
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Table 2.5  Geospatial models used for river pollution monitoring

S.No. Model Used for References

1. SPARROW To estimate and map the source and 
transport of contaminants in rivers and 
streams

Xu et al. (2021), Wetherbee 
et al. (2022)

2. SWAT To assess river water quality and pollution 
impacts

Bui et al. (2019), Chen et al. 
(2022)

3. AQUATOX To assess the effect of contaminants in 
rivers and their associated impacts on 
aquatic organisms

Yeom et al. (2020), Çevirgen 
et al. (2020)

4. MIKE To assess river pollution and predict 
impacts

Nguyen et al. (2021), Lai 
et al. (2022)

5. RiverWARE To manage water resources, assess river 
pollution, and optimize pollutant load

Zagona et al. (2001), Yang 
et al. (2020)

6. MATLAB To simulate river water quality Ning (2012), Ostad-Ali-
Askari et al. (2017)

7. COMSOL To monitor river water quality Al-Mansori et al. (2020), 
Mahmood and Mohammad 
(2021)

8. QUASAR To study water quality parameters in the 
river system

Whitehead et al. (1997), 
Mullai et al. (2012)

9. QUAL2K To assess changes in pollutant load and 
other pollution problems

Cho and Ha (2010), Bui et al. 
(2019)

10. WASP 6 To interpret and predict water quality 
responses to natural phenomena and 
manmade pollution

Palmeri et al. (2005), Mbuh 
et al. (2019)

11. HEC-RAS To study contaminant transport and river 
water quality

Fan et al. (2009), Kim et al. 
(2023)

12. QUAL2EU To determine the pollution load and river 
water quality

Ranjith et al. (2019), Nada 
et al. (2021)

13. SIMCAT To study the fate and transport of pollutants 
in rivers

Ejigu (2021), Abed et al. 
(2021)

2.6 � Conclusion

Geospatial approaches and frameworks have proven to be valuable tools in the field 
of pollution modelling. The combination of spatial data, environmental parameters, 
and pollution indicators enables comprehensive knowledge of the patterns, causes, 
and impacts of pollution. Geospatial models enable the visualization of geographi-
cal trends, the identification of hotspots, and the prediction of pollution dynamics, 
enabling the making of well-informed decisions about how to manage and analyse 
pollution. Geospatial modelling is very useful for evaluating pollution. These mod-
els offer high-resolution spatial analyses that enable the identification of pollution 
sources and vulnerable areas. The integration of numerous data sources helps to 
provide detailed risk assessments and accurate pollution estimations. Geospatial 
models aid in the simulation and forecasting of pollutant transit and fate, which is 
necessary to develop effective pollution management strategies. However, the 
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limitations of geospatial approaches in pollution modelling must be understood. 
There are issues that need to be resolved regarding data accessibility and quality, 
model parameter uncertainties, and the complexity of environmental systems. 
Future technological and data availability developments will have a significant 
impact on how geospatial approaches for pollution modelling are developed. The 
effectiveness and precision of pollution assessments can be improved by the inte-
gration of cutting-edge remote sensing technologies, real-time monitoring systems, 
and machine learning algorithms.

In conclusion, by exposing the patterns, causes, and effects of pollution, geospa-
tial approaches and frameworks have transformed pollution modelling. Due to 
ongoing advancements and interdisciplinary collaboration, geospatial modelling 
will continue to be crucial in addressing pollution concerns and guiding effective 
pollution control approaches. Geospatial approaches and cutting-edge technologies 
will surely be combined to produce assessments that are more precise and timely, 
promoting environmentally responsible behaviour and preserving ecosystems and 
human health.
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Chapter 3
GIS-Based Modelling for Estimation 
of Water Quality Parameters: A Review

Jaber Bin Abdul Bari , Surya Prakash Tiwari , Bijoy Mitra , 
Alaeldeen Ibrahim Elhaj , Abdurrahman Siddiqui ,  
Omer Rehman Reshi , and Syed Masiur Rahman 

Abstract  This chapter offers a comprehensive review of geographic information 
system (GIS)-based approaches for estimating water quality parameters. It high-
lights the advantages of using GIS such as integrating satellite imagery and spatial 
data and conducting spatial analysis. The chapter emphasizes the significance of 
water quality monitoring and the limitations of traditional analysis methods. It 
explores various types of GIS-based models, including empirical, process-based, 
and hybrid models. Additionally, it suggests the use of remote sensing and machine 
learning techniques, such as deep learning, for more accurate and timely water qual-
ity forecasting. The chapter covers the estimation of both optically active and inac-
tive parameters through remote sensing. It summarizes previous studies utilizing 
GIS-based approaches, including machine learning, for water quality estimation. 
The limitations and challenges, such as uncertainty and validation, are discussed, 
along with recommendations for future research. The chapter highlights the poten-
tial of GIS-based modelling in improving water quality management and stresses 
the importance of interdisciplinary collaboration.
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3.1 � Introduction

Water is an essential natural resource that sustains life and provides numerous ben-
efits to society. However, the quality of water has been deteriorating at local and 
global scales due to natural and human factors, which have significant implications 
for human health and the environment. Hence, there is a growing need for effective 
water quality management strategies that can address the complex and dynamic 
nature of water quality. The changes in the water can typically be monitored using 
biophysico-chemical parameters such as chlorophyll-a (Chl-a), coloured dissolved 
organic matter (CDOM), pH, conductivity, turbidity, etc. Water quality monitoring 
has traditionally relied on field monitoring, involving the collection of water sam-
ples from various water bodies at regular intervals. This method has been the pri-
mary source of information for assessing water quality. However, conducting 
large-scale spatiotemporal studies on freshwater systems using this approach raises 
concerns due to the significant time and costs involved in the process. Despite its 
effectiveness, the conventional practice of field monitoring, which includes frequent 
sampling from different locations, proves to be both time-consuming and expensive. 
When undertaking extensive studies to monitor water quality over broader geo-
graphical and temporal scales in freshwater systems, these factors become signifi-
cant issues. One approach to improve water quality management is by using 
geographic information system (GIS)-based modelling. GIS-based modelling 
allows for the integration of spatial and nonspatial data to identify patterns and rela-
tionships that can be used to estimate water quality parameters. GIS-based model-
ling has gained popularity in recent years due to its ability to provide accurate and 
timely information for decision-making.

�Motivation for GIS-Based Modelling for Water Quality

The significance of water quality evaluation and management has significantly 
grown over time, primarily due to increased awareness of environmental impacts 
and health implications. Despite efforts to mitigate water pollution, global water 
bodies continue to suffer from untreated pollutants discharged into them. Existing 
measures may lack coordination and effectiveness. The consumption of poor-quality 
water poses risks to human health, soil quality, and crop growth (Shammaa & Zhu, 
2001). However, conventional methods of measuring water quality only provide 
general information about the water body and may not be directly applicable to 
models that assume complete mixing with other sources. Moreover, assessing water 
quality through physical sampling programs has been both costly and time-
consuming for many decades. In this context, GIS-based modelling has emerged as 
a valuable tool for parameterizing input data in hydrologic and water quality mod-
els. By incorporating geographical and temporal characteristics of influencing fac-
tors, GIS allows for a better representation of hydrologic components and pollutant 
generation. The integration of remotely sensed data and GIS visualization 
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capabilities, along with various models, enhances decision-making for water 
resource management (Abayazid & El-Adawy, 2019). Pollution mapping tech-
niques using GIS aid in identifying the extent of pollution, while overlaying the-
matic layers helps pinpoint pollution sources (Bahrami & Zarei, 2023). Furthermore, 
GIS facilitates evaluating and managing nonpoint sources to enhance water 
resources. As a result, GIS-based modelling of water quality parameters has become 
indispensable in environmental management (Ruhela et al., 2022). The use of GIS 
offers the advantage of incorporating diverse data sources and creating spatially 
explicit models, providing valuable insights into water resource conditions. Making 
informed decisions becomes more accessible as data are visualised and analysed 
within a spatial context, aiding in identifying areas that require intervention to 
improve water quality. The motivation behind using GIS-based modelling lies in the 
necessity for more efficient water resource management, ensuring their sustainabil-
ity for future generations.

�Geospatial Data Sources

There are several geospatial data sources available for water quality. Here are some 
examples:

USGS National Water Information System (NWIS)  This is a comprehensive data 
source for water resources data in the United States, including water quality data. It 
provides access to data from over 1.5 million sites across the country. Over the last 
few years, scientists have been trying to determine how humans affect the water 
cycle. To do this, they need a better way to access the huge amount of hydrological 
data. We now have sizable mission-oriented data repositories such as the EPA 
STORET and the National Water Information System (NWIS) of the USGS, which 
have helped to cover a sizable portion of the nation. However, their coverage 
(parameters) and geospatial data density vary from region to region. Their web 
interfaces can be used to obtain the data. The NWIS systems have approximately 
1.7 million stations spread over the whole country.

National Centers for Environmental Information (NCEI)  NCEI is in charge of 
one of the most comprehensive data collections in the world with regard to the 
atmosphere, coasts, geophysics, and oceans. This archive has information about 
many different things, from the sun’s surface to the centre of the earth. In addition, 
it contains records obtained from very old tree rings and ice cores, as well as, images 
captured by satellites either in real-time or very close to it. Not only does NCEI 
store data, but it also makes products and provides services that make it simple for 
scientists, government officials, academics, nongovernmental organizations, and 
members of the general public to make use of the data. NCEI provides access to a 
variety of environmental data, including water quality data. It includes data from a 
variety of sources, including federal agencies, state agencies, and academic 
institutions.
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Environmental Protection Agency (EPA) Water Quality Data Portal  The US 
Geological Survey, The US Environmental Protection Agency, and the National 
Water Quality Monitoring Council all worked together to make the water quality 
portal. To date, this site includes more than 297,000,000 records about the quality of 
water for 50 states. Data on water quality gathered by the EPA and its partners are 
accessible through this portal. It includes data from rivers, lakes, streams, and other 
water bodies across the United States.

Global Lake Ecological Observatory Network (GLEON)  GLEON is mostly a 
group of lake ecosystems linked together. GLEON has collected data from 50 dif-
ferent countries with more than 100 sites. GLEON is a network of scientists and 
researchers who work together to collect and share information about lakes all over 
the world. The GLEON database contains information that includes the quality of 
the water, temperature, and other environmental factors.

European Environment Agency (EEA) Waterbase  Following the recommenda-
tions of the UN, the European Environment Agency has begun implementing the 
program for land use and ecosystem accounts. Its primary objective is to evaluate 
Europe’s sustainable water use. The European Environment Agency (EEA) 
Waterbase includes data on rivers, lakes, and coastal waters across the continent.

World Water Quality Portal (WWQP)  This is a global database of water quality 
data maintained by the United Nations Environment Program (UNEP). It includes 
data from over 12,000 monitoring stations across the world.

3.2 � Models of Water Quality

Around the world, models of water quality are becoming more prevalent to report 
on water quality, assess risks, find, and assess the origin of water quality elements, 
and evaluate the results of various climate, hydrological, and management factors. 
Water quality modelling is the practice of utilizing mathematical models to simulate 
water quality conditions in a body of water. These models are used to forecast the 
concentration and movement of contaminants in bodies of water, as well as, to 
assess the efficacy of various management measures for improving water quality. 
Here are some examples of common water quality models:

Mass Balance Models  These models replicate the origins, movement, and fate of 
contaminants in a water body using mass balance equations (Fig. 3.1). They are 
frequently employed to assess the consequences of pollution from small-scale 
sources, such as wastewater treatment facilities.

Empirical Models  These models rely on statistical correlations between the param-
eters governing water quality and variables affecting the environment, including 
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Fig. 3.1  Flow diagram showing the mass balance for components of the river system in reach i. 
(Source: Zhang et al., 2012)

temperature, pH and dissolved oxygen (Zhang et al., 2012). When there is a lack of 
comprehensive knowledge on the sources and distribution of pollutants, they can be 
useful for predicting water quality situations.

Process-Based Models  These simulations represent the physical, chemical, and 
biological processes that have an impact on a body of water’s quality. They can offer 
more specific information on pollution sources, transit, and destiny despite often 
being more sophisticated than empirical models.

Hydrodynamic Models  These models represent how water flows and contaminants 
are transported in response to hydrodynamic factors such as currents and tides. They 
are utilized to evaluate the spatial and temporal distribution of contaminants in a 
body of water (Fig. 3.2).

Integrated Models  These models blend different types of models to simulate how 
water quality parameters, hydrodynamics, and other environmental factors interact 
in a complicated way. They are beneficial for evaluating the efficacy of various 
water quality improvement management strategies.

Numerous water quality parameters, including nutrients, dissolved oxygen, pH, 
temperature, and pollutants, can be simulated using water quality models. They are 
helpful tools for comprehending how human activity affects water quality and for 
creating effective management plans to safeguard and replenish water resources.

�Water Quality Data

Water quality data refer to information gathered about the biological, physical, and 
chemical properties of water at a specific location. These data are used to assess the 
health of aquatic ecosystems, as well as to identify and manage pollution sources 
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Fig. 3.2  Example of the hydrodynamics water quality modelling process used for the prediction 
of chlorophyll-a. EFDC: environmental fluid dynamics code, WASP: water quality analysis simu-
lation program. (Source: Seo et al., 2012)

that may affect water quality. Water quality data can be gathered from numerous 
sources, including the following:

Monitoring Stations  These are actual places where regular measurements of water 
quality metrics are taken. Rivers, lakes, streams, and other bodies of water are all 
potential locations for monitoring stations.

Laboratory Testing  Water samples from a specific site can be collected and sent to 
a laboratory for analysis. Laboratory testing can provide us with more particular 
information on water quality characteristics such as nutrient content, pH, and dis-
solved oxygen.

Remote Sensing  Water quality parameters, including water temperature, turbidity, 
and chlorophyll concentrations, can be gathered using remote sensing technologies 
such as satellites and airborne sensors (Ritchie et al., 2003).

Citizen Science  Citizen science initiatives include the general public in gathering 
information on water quality (Capdevila et al.,2015). Participants may take water 
samples, gauge the temperature of the water, or note aquatic life observations.

Water quality data can be used to assess aquatic ecosystem health, identify pol-
lution sources, and design management strategies to conserve and restore water 
resources. Water quality data must be collected and analyzed regularly to ensure 
that changes in water quality over time are appropriately recognized and managed.
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3.3 � GIS-Based Water Quality Modelling Approaches

GIS-based water quality modelling approaches leverage geographic information 
systems (GIS) to seamlessly integrate spatial data with water quality parameters, 
facilitating the simulation and assessment of pollutant movement in water bodies. 
These models play a vital role in predicting water quality conditions, identifying 
pollution sources, and supporting decision-making for effective water resource 
management. The integration of mathematical simulations or techniques into GIS 
enhances its inherent ability to analyze geographical trends and water quality prop-
erties (Vogiatzakis, 2003). Moreover, when combined with ecological modelling, 
GIS offers a compelling opportunity to comprehensively monitor and study envi-
ronmental resources, demonstrating promising potential for widespread application 
in nature conservation (Lu et  al., 2020). The adaptability, efficiency, and user-
friendliness of GIS-based modelling approaches make them well-suited for simulat-
ing water quality parameters and conducting essential calculations, as mentioned by 
Rawat and Singh in 2018. The growing utilization of water quality models in tack-
ling real-world challenges, as demonstrated by Gaafar et al. in 2020, further under-
scores the significance of integrating GIS in this field. By fusing spatial data, 
mathematical simulations, and ecological insights, GIS-based water quality model-
ling emerges as a valuable tool to understand, manage, and protect water resources 
in an increasingly complex and interconnected world. The Streeter–Phelps model 
(S–P model), developed by Streeter and Phelps in 1925, was the world’s first GIS-
based water quality model. Since this model’s fundamental principle became 
acceptable, the concept and its altered form continue to be utilized in the present day 
(Wang et al., 2004). In contrast to approaches based on mathematical programming, 
the S–P model uses graphs to establish relationships between variables (Zhang 
et al., 2011). Several GIS-based water quality modelling approaches exist, and here 
are some commonly used ones:

Hydrological Models  These models simulate the movement of water through 
catchments and river systems, considering factors such as flow rates, runoff, and 
erosion (Fig.  3.3). By incorporating water quality parameters into the model, it 
becomes possible to track pollutant transport and estimate their concentrations 
downstream.

Water Quality Index (WQI) Models  WQI models use multiple water quality 
parameters to generate an index that represents the overall quality of a water body. 
GIS is used to spatially map the WQI, highlighting areas with different water qual-
ity levels and identifying potential pollution hotspots.

Pollutant Load Models  These models estimate the amounts of pollutants entering 
a water body from different sources, such as point sources (e.g. wastewater treat-
ment plants) and nonpoint sources (e.g. agricultural runoff) (Fig. 3.3). GIS helps in 
identifying the locations of these sources and quantifying their contributions to 
water pollution.
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Fig. 3.3  Simulating nonpoint source pollutant loading in a karst basin: A SWAT modelling appli-
cation. (Source: Zeiger et al., 2021)

Distributed Hydrological Models  These models take into account the spatial dis-
tribution of hydrological and water quality parameters within a watershed. They 
consider variations in land use, soil types, and topography to better understand pol-
lutant behaviour across the landscape.

3D Water Quality Models  These models use GIS data to create three-dimensional 
representations of water bodies, allowing for a more accurate simulation of water 
quality dynamics. This is particularly useful in reservoirs or estuaries, where strati-
fication and mixing of water layers play a crucial role in water quality.

Eutrophication Models  Eutrophication is a process where excessive nutrients, par-
ticularly nitrogen and phosphorus, lead to algal blooms and water quality degrada-
tion. GIS-based eutrophication models help identify areas at risk and support 
nutrient management strategies.

Sediment Transport Models  GIS is used to analyze erosion and sedimentation pro-
cesses, which can transport pollutants and degrade water quality. Sediment transport 
models help predict sediment deposition patterns and their impact on water bodies.
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Scenario-Based Models  GIS-based scenario modelling allows for the evaluation 
of various management strategies and their potential effects on water quality. 
Decision-makers can use this approach to identify the most effective measures for 
pollution control and restoration.

Some examples of GIS-based water quality modelling approaches, along with 
brief descriptions, are presented in Table 3.1:

�Geospatial and Artificial Intelligence–Based Approach

With the rapid advancement of computing and artificial intelligence (AI), water 
quality analysis has witnessed significant improvements in both descriptive and pre-
dictive capabilities (Tiwari et  al., 2018). Utilizing IoT devices equipped with AI 
models, real-time detection of harmful bacteria and classification of contaminants 
has become achievable. This marks a departure from the traditional laborious and 
time-consuming process of manually collecting and analyzing water samples, which 
has historically hindered prompt decision-making during critical events. To address 
this issue, combining deep learning techniques with remote sensing data, particu-
larly utilizing regression models such as RNN (recurrent neural networks) and 
LSTM (long short-term memory) models, enables proactive water quality estima-
tion (Ahmed, 2022). By employing these powerful models, it becomes feasible to 
make multivariate and multioutput predictions displayed in a time-series format. 
Wang et al., (2019) identified the characteristics of water pollutants and trace indus-
trial point sources of pollutants in Shandong Province, China, using an artificial 
intelligence system called the integrated long short-term memory network (LSTM), 
cross-correlation, and association rules (apriori). Zhang et al., 2022 applied a novel 
deep learning architecture (ConvLSTM) to retrieve 6-year changes in water quality 
variables, at Dongping Lake, an impounded lake located in the Yellow River in 
China and observed good estimation accuracy across optically active and inactive 
parameters with R2 greater than 0.77 for all water constituents (Fig. 3.4).

Over the past decades, numerous academic researchers have sought high-
accuracy predictions of water quality using various models. These models can be 
broadly classified into two main types: conventional models, including multiple 
linear regression (MLR) and autoregressive integrated moving averages (ARIMA), 
which predict future values linearly, and artificial intelligence-based models. In 
real-world water quality scenarios, nonlinearity is often present, especially in river 
water quality modelling. Recognizing the limitations of linear models, researchers 
have turned to nonlinear models such as Gaussian processes (GP), support vector 
machines (SVM), artificial neural networks (ANN), and fuzzy models. These non-
linear models have been proposed in the last two decades to address the demand for 
accurate predictions in the presence of nonlinearity (Rajaee et al., 2020). In a study 
conducted by Aldhyani et al. (2020), the accuracy and utility of AI models in fore-
casting the water quality index (WQI) were evaluated. They employed “Nonlinear 
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Table 3.1  Examples of GIS-based water quality models

GIS-based models Description

SWAT (soil and 
water assessment 
tool)

SWAT is a widely used hydrological model that integrates GIS data to 
simulate water quality processes at the watershed scale (Grunwald & Qi, 
2006). It considers land use, soil properties, climate, and topography to 
predict nutrient and sediment transport in rivers and streams. SWAT has 
been applied in various studies to assess the impacts of land use changes 
on water quality and to develop management strategies for reducing 
pollution.

CE-QUAL-W2 This three-dimensional water quality model is often applied to large 
water bodies, such as lakes and reservoirs. It uses GIS-based spatial data 
to simulate hydrodynamics and water quality parameters, including 
temperature, dissolved oxygen, and nutrient concentrations. 
CE-QUAL-W2 helps understand stratification patterns and predict the 
effects of nutrient loading on eutrophication.

HSPF (hydrological 
simulation 
program-fortran)

HSPF is a comprehensive hydrological and water quality model that uses 
GIS data to represent catchment characteristics, land use, and hydrologic 
processes. It simulates the fate and transport of various pollutants, such as 
nutrients and sediments, in streams and rivers. HSPF has been applied in 
watershed studies for pollutant source identification and assessment of 
best management practices (BMPs).

QUAL2K This water quality model is widely used for rivers and streams, simulating 
various water quality parameters, including dissolved oxygen, nutrients, 
and organic matter. GIS data is employed to represent stream segments, 
flow rates, and pollutant sources. QUAL2K has been utilized in studies 
related to point and nonpoint source pollution management and to support 
total maximum daily load (TMDL) calculations.

SPARROW 
(spatially referenced 
regression on 
watershed attributes)

SPARROW is a statistical modelling approach that incorporates GIS data 
to estimate nutrient (e.g. nitrogen and phosphorus) loads in rivers and 
their spatial distribution. It considers land use, hydrology, and other 
watershed attributes to identify areas with high nutrient contributions and 
assess their impacts on downstream water quality.

SWMM (storm 
water management 
model)

SWMM is commonly used for urban water quality modelling, 
particularly in stormwater management. It utilizes GIS data to represent 
urban infrastructure, such as drainage networks, impervious surfaces, and 
green spaces. SWMM helps assess the effects of urbanization on water 
quality and to design stormwater management systems to mitigate 
pollution.

DRASTIC model The DRASTIC model is a widely used method for assessing the 
vulnerability of groundwater to contamination from various pollutants. 
The model provides a qualitative assessment of the intrinsic groundwater 
vulnerability based on a combination of seven hydrogeological 
parameters viz. depth to water (D), recharge (R), aquifer media (A), soil 
media (S), topography (T), impact of vadose zone (I), and conductivity of 
the aquifer (C).

(continued)
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Table 3.1  (continued)

GIS-based models Description

Generalized 
watershed loading 
function (GWLF)

GWLF is a widely used model for predicting nonpoint source pollution in 
watersheds (Lehning et al., 2002). Nonpoint source pollution refers to the 
pollution that originates from diffuse sources, such as agricultural runoff, 
urban stormwater, and atmospheric deposition, rather than specific point 
sources like industrial discharges.
The GWLF model was developed to estimate the loading of pollutants, 
such as sediments, nutrients (e.g. nitrogen and phosphorus), and other 
contaminants, into water bodies from various land uses within a 
watershed. It is a GIS-based model that takes advantage of spatial data, 
including land use, soil types, slope, weather, and other relevant 
parameters, to simulate the generation and transport of pollutants from 
different parts of the landscape.

WRASTIC model WRASTIC model stands for ‘Water-Resources Appraisal for Sinkholes 
and Springs in a Terrane of Inefficient Conduit. ’ It was developed by the 
US Geological Survey (USGS) and is designed to assess the vulnerability 
of karst aquifers to contamination (Jenifer & Jha, 2022; Niculae et al., 
2021). Karst aquifers are unique geological formations characterized by 
soluble bedrock (e.g. limestone) that can create sinkholes, caves, and 
conduits, making them highly susceptible to rapid groundwater flow and 
potential contamination.
The WRASTIC model incorporates a series of parameters to evaluate the 
vulnerability of a karst aquifer viz. water-table depth, recharge 
characteristics, aquifer media and material, soil/overburden 
characteristics, terrane or karst landscape features, inetic features (flow 
path characteristics), and conduit flow characteristics.

Autoregressive Neural Network Models (NARNET) and Long Short-Term Memory 
(LSTM) Deep Learning Algorithm” for WQI forecasting using datasets comprising 
water quality samples and their corresponding indices from various locations in 
India. The dataset consisted of seven distinct parameters, namely, dissolved oxygen, 
pH, conductivity, biological oxygen demand, nitrate, fecal coliform, and total coli-
form. The NARNET and LSTM models were trained and validated to predict the 
WQI using Pearson’s correlation coefficient (R) to assess the relationship between 
important data characteristics for forecasting WQI values. The results indicated that 
the NARNET model outperformed the LSTM model in predicting the WQI based 
on the estimated R-value. Furthermore, for the “Water Quality Classification” 
(WQC) prediction, three models – support vector machines (SVM), Naive Bayes, 
and K-nearest neighbor (KNN) – were used. Among these, the SVM approach dem-
onstrated a high degree of accuracy in WQC predictions. The study highlighted the 
efficacy of the NARNET model for WQI forecasting and emphasized the SVM 
model’s superior performance in WQC predictions when compared to the Naive 
Bayes and KNN algorithms.

Tiwari et al. (2018) estimated the water quality index using two different cluster-
ing techniques: fuzzy C-means and subtractive clustering-based ANFIS for the 
Satluj River in northern India. The integration of nonlinear models in water quality 
prediction has expanded the scope and accuracy of these analyses. By leveraging 
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the power of AI and embracing nonlinearity, researchers and decision-makers are 
better equipped to understand and manage water quality, contributing to more effec-
tive environmental conservation and water resource management.

3.4 � Groundwater Quality Monitoring Using GWQI

The groundwater quality index (GWQI) model is widely used to assess groundwater 
purity and consider management techniques. It utilizes various water quality indica-
tors, condensing multidimensional groundwater data into a single numerical value 
(Mohammed et al., 2022). GWQI creation involves phases such as sample collec-
tion, weight selection, parameter standardization, and aggregation (Stigter et  al., 
2006). Significantly influential parameters such as NO3– and F– receive higher 
weights than Na + and K+ due to their vital role in determining groundwater quality 
(Adimalla & Taloor, 2020). Computation of relative weight (Wi): For the computa-
tion of Wi, the equation mentioned below is used:

	

Wi
wi

wi
i

n
�

�
	 (3.1)

Here,

Wi  =  relative weight, wi  =  individual parameter weight, n  =  total number of 
parameters.

Quality Rating (Qi)  Qi is a scale that depicts the quality rating of a parameter. It is 
obtained by considering the parameter’s concentration in every sample of water 
(Ci), dividing it by the applicable WHO standardized constant (Si) and then multi-
plying by 100. The Qi calculation is as follows:

	
Qi

Ci

Si
� �100

	 (3.2)

The subindex (SIi) calculation is as follows:

	 Sli Wi Qi� � 	 (3.3)

Finally,
GWQI is calculated by factoring in SIi:

	
GWQi �

�
�
i

n

SIi
0 	 (3.4)
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Here, SIi = ith parameter’s subindex, Qi = concentration-based rating, n = the total 
number of parameters.

3.5 � Estimation of Surface Water Quality (SWQ)

In the past few decades, the combination of remote sensing and GIS has proven to 
be highly effective in monitoring surface water quality. Limnologists studying 
inland and coastal water bodies have extensively utilized satellite images from 
ERTS-1/Landsat 1, which was launched in 1972 (Bukata, 2013). To conduct such 
studies, an integrated research framework that encompasses spatial features, col-
lected data, and a computational database has become a crucial component, as 
emphasized by Ritchie et al. in 2003. This integrated approach allows researchers to 
leverage the power of remote sensing and GIS technologies, enabling comprehen-
sive and informed assessments of surface water quality in various environments. 
Satellites and airplanes are equipped with sensors that measure the radiation 
reflected from the surface of water bodies at different wavelengths. These measure-
ments are then translated into various water quality indicators. Over time, the field 
of remote sensing has seen significant advancements, allowing for the effective 
monitoring of optical and nonoptical parameters (KC et  al., 2019), such as total 
suspended solids (TSS), chlorophyll-a (chl-a), turbidity, Secchi disk depth (SDD), 
pH, and dissolved oxygen (DO). These advancements have greatly improved the 
accuracy and reliability of water quality assessments through remote sensing 
techniques.

�Optically Active Water Quality Parameters

Optically active environmental parameters alter the interaction of visible light with 
water. The productivity and pollution of the aquatic body may be measured by 
retrieving these indicators from satellite imagery, which becomes a realistic 
approach for identifying disturbance in aquatic ecosystems. It sheds light on eco-
logic conditions, plant growth, and the effects of pollution from both natural and 
artificial causes, and it enhances the chance of determining water quality (Arora 
et al., 2022). Pollutants, as well as, the trophic conditions and health of aquatic eco-
systems, might all be determined by these parameters.

Chlorophyll-a  Chlorophyll-a (chl-a) is a common parameter used to assess the 
ecological condition of both freshwater and marine water. It serves as an indicator 
of productivity and is present in various algae throughout the algal community. 
Hence, developing models with maximum chl-a sensitivity is crucial for estimating 
chl-a concentrations through GIS-based modelling (Gurlin et al., 2011). Algae con-
tain different plant pigments, such as chlorophyll-s (green) and carotenoids (yellow), 
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contributing to their colour variations. Chlorophyll-a is the most prevalent chloro-
phyll pigment found but other types of algae, such as yellow-brown algae and blue-
green algae, may have additional chlorophyll pigments (Gorde & Jadhav, 2013). 
While this diversity of pigments could lead to underestimating the output of algae 
with multiple colorus, chlorophyll-a is still commonly used for direct eutrophica-
tion measurement, impacting water quality assessment. Chlorophyll-a is a crucial 
parameter in evaluating water quality and ecological conditions, despite potential 
limitations related to pigment diversity in different algae. GIS-based modelling 
techniques help estimate chl-a concentrations and contribute to effective water qual-
ity monitoring and management efforts.

Colored Dissolved Organic Matter (CDOM)  CDOM plays a significant role in 
biogeochemistry due to its impact on light transmission and the generation of reac-
tive oxygen species. It also offers protection to organisms against the damaging 
effects of light (Guéguen et  al., 2005). As a crucial parameter indicating trophic 
status, CDOM significantly influences drinking water quality. However, it hampers 
algal biomass growth by reducing accessible light intensity and impeding biological 
processes such as photosynthesis (Slonecker et al., 2016). In nearshore areas, where 
runoff interacts with saltwater, CDOM from river runoff becomes the primary natu-
ral source of CDOM in the seas. This presence of CDOM can lead to an overestima-
tion of chlorophyll-a (Chl-a) by satellite sensors. The strong UV-ray absorption by 
both CDOM and Chl-a makes it challenging to accurately predict Chl-a through 
satellite imagery (Chen et al., 2007). To enhance the monitoring of water quality, it 
becomes crucial to consider the origins and distribution of the optical characteristics 
of water, especially when CDOM is present. Understanding the dynamics of CDOM 
and its interaction with Chl-a can contribute to more accurate assessments of water 
quality and the ecological condition of aquatic environments.

Turbidity  Turbidity is a key parameter frequently used to describe the purity of 
water and is influenced by factors such as temperature, biological compounds, sus-
pended particles, and nutrients (Ghanbari et al., 2012). In turbid water, light dis-
perses and is absorbed instead of travelling in straight lines due to various elements, 
such as silt, clay, plankton, fine substances, and small organisms (Lloyd, 1987). 
Turbidity is primarily impacted by algae and suspended particles. Both runoff and 
sediments from the bottom can introduce particles, such as dirt or dead leaves, into 
the water. Factors such as erosion from construction sites, agricultural areas, and 
riverbanks contribute to increased sediment flow. Additionally, in shallow lakes, 
turbidity can be raised by motorboats, strong winds, or bottom-feeding species such 
as carp disturbing bottom sediments. Increased turbidity can lead to decreased pri-
mary and secondary production and reduced overall productivity. It also impairs 
light penetration, affecting aquatic ecosystems.

Total Suspended Solids (TSS)  Total suspended solids (TSS) refers to the quantity 
of solid particles present in a liquid, typically water, and includes organic matter, 
minerals, and other contaminants. Monitoring TSS is crucial for assessing the 
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condition of aquatic ecosystems and managing drinking water quality. High levels 
of TSS can have adverse effects on both human health and aquatic environments, 
serving as indicators of pollution and environmental degradation. The presence of 
TSS in runoff can cause water to become turbid, reducing its overall quality 
(Shammaa & Zhu, 2001). Various factors influence the TSS value of water, includ-
ing sewage, household waste, and effluents from industrial and agricultural activi-
ties. Excessive TSS levels can lead to the clogging of water channels, ultimately 
shortening the lifespan of reservoirs and dams (Tamene et al., 2006). Monitoring 
and controlling TSS levels are essential to safeguard water quality and maintain the 
health of aquatic ecosystems.

�Optically Inactive Water Quality Parameters (pH, DO)

Optically inactive water quality indicators refer to parameters that do not alter the 
path of light through water and, as a result, do not affect the colour or transparency 
of the liquid. Despite their lack of direct impact on light, these factors remain cru-
cial in determining the condition of water bodies due to their significant effects on 
aquatic life and human health. To indirectly estimate nonoptically active parame-
ters, a significant correlation between nonoptically and optically active parameters 
has been commonly used (Mathew et al., 2017; Wu et al., 2010). In a recent study 
by Guo et al. (2021), the recovery of nonoptically active characteristics of small 
watersheds was investigated using Sentinel-2 images. The researchers presented 
and compared different machine-learning models to find suitable approaches for 
recovering water quality parameters. By exploring indirect relationships and lever-
aging machine learning, this research contributes to advancing the assessment of 
water quality and understanding the impact of optically inactive indicators on 
aquatic ecosystems.

pH  The pH scale is a measure of how acidic or basic a water solution is (Gorde & 
Jadhav, 2013). Monitoring water pH is crucial for assessing water quality and ensur-
ing the reliability and purity of water for consumption, as it can impact human 
health. Water with a pH below 7.0 is considered acidic, while water with a pH above 
7.0 is considered basic or alkaline. Most biological life can thrive in environments 
with a pH ranging from six to nine. During summer months, high temperatures can 
cause a rise in pH levels in water reservoirs (Patil et al., 2012). This can lead to 
slower photosynthesis and reduced absorption of CO2, affecting the dissolved oxy-
gen level in water bodies. Anthropogenic activities can also influence pH levels in 
water, and areas with naturally low pH levels may be more susceptible to pollution 
inputs and subsequent deterioration (Ringwood & Keppler, 2002). Monitoring 
water pH is essential for understanding its impact on both human health and aquatic 
ecosystems. Proper regulation and management of pH levels are vital for ensuring 
safe and sustainable water resources.
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Dissolved Oxygen (DO)  Dissolved oxygen (DO) is a critical indicator of the water 
system’s condition and its capacity for recovery. It reflects the rate at which oxygen 
is demanded and released in water, making it essential in assessing water quality 
(Abayazid & El-Adawy, 2019). A typical reading of 6.5 mg/l is considered indica-
tive of moderate water quality (APHA, 1995). However, low DO levels can lead to 
an imbalanced system and aesthetically undesirable signs in the water body (Alam 
et al., 2007). DO levels can be affected by various parameters, such as temperature, 
salinity, and air pressure. Additionally, inputs of organic matter, fertilizers, and 
human activities such as wastewater discharges and agricultural runoff can impact 
DO concentrations. Low DO levels in water can create favourable conditions for the 
growth of hazardous bacteria, including those causing botulism, which can be fatal 
if ingested. Moreover, water with low DO concentrations may have unpleasant 
tastes and odours, discouraging people from consuming sufficient water for good 
health. Monitoring and maintaining adequate DO levels in water bodies is crucial 
for supporting aquatic life and ensuring safe and pleasant drinking water for human 
consumption.

�Eutrophication and Algal Blooms

�Prediction of Eutrophication

Eutrophication is characterized by the excessive presence of organic compounds, 
primarily nutrients, in water bodies, leading to uncontrolled growth and decomposi-
tion of organic matter, bacteria, and algal populations (Fig. 3.5) (Xu et al., 2001). As 
these species die, oxygen depletion (hypoxia) occurs, hindering the growth of fish 
and other organisms. Eutrophication events can reduce the values of reservoirs and 
compromise drinking water treatment (Landsberg, 2002). The process of eutrophi-
cation involves an overabundance of nutrients nourishing aquatic ecosystems, 
resulting in degraded water quality (Donia & Hussein, 2004). This excessive nutri-
ent input negatively impacts the biological stability of aquatic ecosystems, leading 
to ecological, social, and economic consequences for human usage of limited water 
resources. The yearly cost of repairing the damage from eutrophication in the United 
States alone is projected to be approximately $2.2 billion (Dodds et al., 2009).

The eutrophication process in aquatic ecosystems is complex and multidimen-
sional, making it challenging to rely on a single variable to accurately describe the 
eutrophic level (Presented et al., 2015). To assess eutrophication, consideration of 
numerous variables is necessary, but each variable’s function and dynamics may 
lead to different eutrophication tendencies, complicating the spatial measurement of 
eutrophication levels. To address this complexity, suitable approaches and instru-
ments are needed to spatially synthesize the eutrophication trends provided by mul-
tiple metrics. Here, a geographic information system (GIS) offers a simple solution, 
enabling the creation of thematic maps that display the location of eutrophication. 
Over the past three decades, coastal water eutrophication has been recognized as a 
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Fig. 3.5  Eutrophication process

significant risk to aquatic environments, leading to the development of various tech-
niques for classifying waters into distinct categories and quantitatively assessing 
coastal water trophic conditions.

The Maryland Automated Geographic Information System, the first commercial 
GIS system, was developed by ESRI in 1973. Over the years, ESRI continued to 
advance their technology, eventually leading to the creation of ArcGIS in 1999 
(Hiscock et al., 2003). GIS software has become a powerful tool for analyzing and 
visualizing spatial data, making it invaluable in various fields, including environ-
mental research. A study conducted by Hiscock et al. (2003) used GIS-based mod-
elling to investigate how phosphorus loading varied in Florida basins based on soil 
type, land use, and rainfall. Their research revealed a significant association between 
developmental activities and eutrophication.

Several studies have utilized GIS analysis to study water quality and trophic 
conditions in various water bodies. Hameed (2010) classified fifty reservoirs based 
on data from monitoring water pH and/or alkalinity using GIS analysis. Gupta et al. 
(2012) assessed nutrient levels in the Rönne River in 2011 and predicted potential 
runoff in watersheds using GIS. In Turkey’s shallow Uluabat Lake, Akdeniz created 
trophic state index (TSI) maps using the IDW (inverse distance weighted) approach 
of ArcGIS. Similarly, Anoh et al. (2012) investigated the trophic condition of the 
Taabo River in the Ivory Coast, highlighting areas with the highest contamination 
through multicriteria analysis of water quality metrics. Recently, Mushtaq et  al. 
(2022), derived the trophic state index (TSI) for the freshwater Himalayan Lake 
using Landsat 8 satellite data and a regression analysis approach in Kashmir, India. 
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GIS-based modelling has proven valuable in monitoring eutrophication in water 
bodies, allowing for a comprehensive understanding of this complex process.

�Prediction of Harmful Algal Bloom (HABs)

The influx of nutrients from agricultural activities can have far-reaching conse-
quences on water quality and ecosystem health, particularly when it leads to the 
proliferation of harmful algal blooms (Fig. 3.6). Increased nutrient input, especially 
from nitrogen-based fertilizers, fuels the rapid growth of harmful algae, leading to 
the production of excessive toxic compounds in the water body that can detrimen-
tally impact the overall ecosystem (Glibert et  al., 2006; Howartw et  al., 1996; 
Landsberg, 2002; Fleming et al., 2011). The Gulf of Mexico serves as an example 
where nitrogenous compounds from fertilizers have been identified as the main 
sources of total nitrogen in the water (Howartw et al., 1996). However, one of the 
major challenges for academics studying algal bloom models is the lack of suffi-
cient geographical and temporal datasets in many vulnerable regions worldwide 
(Anderson, 2009). In these areas, comprehensive field-based measurements needed 
to monitor algal blooms are often absent.

Recent advancements in remote sensing and GIS-based modelling approaches 
offer promising solutions to address these limitations. The complexity of aquatic 
ecosystems, characterized by the diversity and interconnectedness of their constitu-
ent parts, poses a significant challenge to accurately modelling algal blooms 
(Recknagel et al., 1997). Despite substantial research efforts, including observation-
based studies (Izadi et  al., 2021) and incorporation into physical-based models 
(Skogen et  al., 1995), the underlying mechanisms and causality of algal blooms 
remain incompletely understood (Lee et  al., 2003; Donaghay & Osborn, 1997). 
Data-driven approaches, such as those increasingly utilized in combination with or 
as alternatives to physical-based models (Karul et al., 2000; Lee et al., 2003), offer 
an avenue to overcome these complexities.

Earlier attempts to simulate harmful algal blooms (HABs) through GIS-based 
modelling examined numerous causal factors, including temperature (Cha et  al., 
2014), hydrologic fluxes (Raine et al., 2010), ocean currents (McGillicuddy et al., 
2005), and hydrodynamic variables (current, flow, upwelling, and downwelling) 
(Cusack et al., 2016). These parameters were then utilized for mapping, modelling, 
and predicting seasonal bloom formations (Aleynik et al., 2016), providing early 
signs of disturbance. While GIS has been used to identify and map HABs based on 
a few ecological factors in earlier studies, such as chlorophyll-a concentration 
(Balch et al., 1989; Gower et al., 2004; Hu et al., 2005; Stumpf et al., 2003), or a 
combination of two (Ahn et al., 2006; Ecol et al., 1999; Raine et al., 2001; Stumpf 
and Tomlinson, 2005) or three parameters (Tang et al., 2004), most GIS-based HAB 
detection strategies have limitations due to various factors (Shen et  al., 2012). 
Despite efforts to incorporate more variables in ecosystem models, few regions have 
effective monitoring and warning approaches that encompass all relevant factors 
(Cusack et al., 2016), leaving gaps in HAB detection and response in various areas. 

3  GIS-Based Modelling for Estimation of Water Quality Parameters: A Review
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Fig. 3.6  Chlorophyll concentrations and the algal bloom index near the coast in California, United 
States, and Mexico. (Source: https://www.esri.com/en-us/industries/blog/articles/
sdg-14-and-life-below-water-what-space-can-tell-us-about-the-slimy-stuff-at-the-beach/)

Enhancing GIS-based modelling by considering a broader range of ecological 
parameters may offer more comprehensive insights into HAB dynamics and con-
tribute to better management and mitigation strategies.

Case Studies
The use of GIS-based simulations is crucial for investigating variations in water 
quality over space and time, leading to the creation of reliable water quality predic-
tion models. These models can forecast important parameters such as pH, water 
surface temperature, dissolved oxygen (DO) concentration, nitrogen, and phospho-
rus levels (Mushtaq & Nee Lala, 2017; Mushtaq et al., 2022; Rudd et al., 2018; Van 
Soesbergen & Mulligan, 2014). Furthermore, GIS assists climatic modellers in uti-
lizing extensive climatic data to develop effective mitigation policies (Farjad et al., 
2016). It enables researchers to study the impacts of climate fluctuations on 
groundwater-dependent areas and visualize climate change using remote sensing 
data (Jakeman et al., 2016). The visualization and mapping capabilities of GIS plat-
forms such as ArcGIS, QGIS, and Redlands-California are invaluable for communi-
cating spatial information to policy and decision-makers. Through GIS, 2D, 3D, and 
4D water quality status maps based on chemical concentrations can be stored and 
generated.

Numerous researchers have made significant progress in connecting GIS-based 
analysis to water quality parameters. For instance, Demlie (2015) and Troudi et al. 
(2020) studied surface salinity in wetlands, highlighting the influence of climate on 
the hydrological cycle. Van Soesbergen and Mulligan (2014) investigated ground-
water distribution considering climatic inconsistencies using general circulation 
models (GCMs). Farjad et al. (2016) demonstrated the challenges in understanding 

J. B. A. Bari et al.

https://www.esri.com/en-us/industries/blog/articles/sdg-14-and-life-below-water-what-space-can-tell-us-about-the-slimy-stuff-at-the-beach/
https://www.esri.com/en-us/industries/blog/articles/sdg-14-and-life-below-water-what-space-can-tell-us-about-the-slimy-stuff-at-the-beach/


77

the effects of meteorological changes on water resource management through glob-
ally dispersed modelling techniques. Moreover, researchers such as Sheng (2013) 
utilized integrated GIS and hydrological modelling software to examine the impacts 
of climate variability on groundwater contamination and treatment in the Rio 
Grande Basin. GIS has proven valuable in groundwater quality mapping as well 
(Singh et al., 2013). Demlie (2015) and Jakeman et al. (2016) suggested that an 
approach to groundwater preservation and sustainable utilization requires improved 
knowledge, and GIS plays a key role in achieving this. Currently, various GIS 
plugins and modules are utilized to test and simulate water quality parameters, pro-
viding researchers with powerful tools for studying and managing water resources 
effectively. Some of them are summarized in Table 3.2.

3.6 � Challenges, Future Directions, and Recommendations

GIS-based modelling for water quality faces various challenges and has several 
future directions for improvement. One of the main challenges is the uncertainty 
associated with the modelling process due to limitations in data quality and model-
ling assumptions. Advancements in remote sensing and GIS techniques have pro-
vided significant benefits to water quality modelling, although the limitations of the 
study still need to be addressed. Moreover, the current models still have limitations, 
including the lack of consideration for the spatial and temporal variability of water 
quality parameters. Future research in this field should focus on incorporating opti-
cally active water quality parameters and developing more accurate modelling tech-
niques. The potential for GIS-based modelling to improve water quality management 
and monitoring is significant, and its proper implementation could have a significant 
impact on the environment.

Uncertainty Assessment and Validation  Uncertainty assessment and validation are 
critical components of GIS-based modelling for water quality parameters. 
Uncertainty in modelling results can arise due to data quality, model assumptions, 
parameter estimation, and the choice of modelling techniques. It is important to 
assess and validate the uncertainty associated with GIS-based water quality model-
ling to ensure the reliability and accuracy of model predictions. Sensitivity analysis, 
Monte Carlo simulation, and error propagation analysis are some of the methods 
used for uncertainty assessment in GIS-based water quality modelling. Sensitivity 
analysis involves examining the model’s response to changes in input parameters, 
while Monte Carlo simulation involves generating random input parameters to sim-
ulate model outputs. Error propagation analysis quantifies the impact of errors in 
input data on model outputs.

Validation is another critical step in GIS-based water quality modelling. It 
involves comparing the model’s predictions with observed data to assess its accu-
racy. Validation methods include statistical measures such as the correlation coeffi-
cient, root mean square error, and coefficient of determination. The validation 
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process often includes dividing data into training and validation sets, where the 
training set is used for model calibration and the validation set for model accuracy 
testing. It is important to note that uncertainty and validation are not one-time activ-
ities but ongoing processes that should be repeated periodically to ensure the mod-
el’s reliability. Additionally, it is crucial to validate the model using independent 
datasets to avoid overfitting. By using proper uncertainty assessment and validation 
techniques, GIS-based water quality modelling can improve water quality manage-
ment and monitoring.

Limitations  Existing GIS-based water quality modelling approaches have several 
limitations that need to be considered to improve the accuracy and reliability of 
model predictions. One major limitation is the availability and quality of input data. 
Inaccurate or incomplete data can lead to incorrect model predictions, and the use 
of data from different sources can introduce inconsistencies and errors. Another 
limitation is the simplification of complex physical and chemical processes in water 
systems in model parameterization. The use of empirical relationships or assump-
tions to represent these processes can introduce errors in the model predictions. 
Furthermore, the use of constant parameters for dynamic systems can also lead to 
errors. Additionally, the spatial and temporal scales of the model can impact its 
accuracy. Smaller-scale models may not capture the variability in water quality 
parameters over larger areas, and vice versa. Moreover, temporal variability in water 
quality parameters, such as seasonal changes or short-term fluctuations, may not be 
adequately captured by models that use static inputs.

Furthermore, model calibration and validation can also be a limitation, as it is 
often difficult to obtain accurate and representative validation data, particularly for 
less commonly measured parameters. Inadequate validation data can lead to overfit-
ting of the model, which may result in unreliable predictions. Overall, addressing 
these limitations is crucial for improving the accuracy and reliability of GIS-based 
water quality modelling approaches. This can be achieved through the use of high-
quality input data, more advanced parameterization techniques, and the develop-
ment of models that are appropriately scaled and validated.

Recommendations and Future Directions:  GIS-based modelling for water quality 
parameters has shown promise but requires further development and improvement. 
Future research should focus on understanding the factors influencing water quality 
parameters, standardizing data collection methods, enhancing spatial resolution, 
promoting collaboration and data sharing, and integrating citizen science. The 
potential benefits of GIS-based modelling for water quality management are signifi-
cant. It can offer valuable insights into the complex interactions affecting water 
quality and facilitate effective monitoring and mitigation strategies. By addressing 
the above-mentioned recommendations, GIS-based modelling can become an even 
more powerful tool for advancing water quality management and environmental 
conservation.

	 (i)	 Early Detection of Water Quality Issues: GIS-based modelling can provide 
early detection of emerging water quality issues, enabling proactive manage-
ment and prevention of negative impacts.

3  GIS-Based Modelling for Estimation of Water Quality Parameters: A Review
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	(ii)	 Identification of Hotspots: GIS-based modelling can identify water quality 
hotspots and sources of pollution, enabling targeted management strategies 
and resource allocation.

	(iii)	 Real-Time Water Quality Monitoring: GIS-based modelling can facilitate real-
time water quality monitoring, enabling a rapid response to changes in water 
quality.

	(iv)	 Integration of Multiple Data Sources: GIS-based modelling enables the inte-
gration of multiple data sources, providing a more comprehensive understand-
ing of water quality parameters and their spatial distribution.

Generally, GIS-based modelling has great potential to improve water quality 
management and monitoring by providing timely and accurate information for 
decision-making. However, there are opportunities for further research and develop-
ment, including the inclusion of machine learning, the development of standardized 
data collection methods, and the improvement of spatial resolution. By addressing 
these areas, GIS-based modelling can become an even more powerful tool for water 
quality management and monitoring.

3.7 � Conclusions

Geographic information systems (GIS) have become indispensable tools for water 
quality assessment and management. Through the integration of GIS with various 
modelling approaches, they offer a comprehensive understanding of spatial patterns 
and the impacts of human activities on water quality. Utilizing geospatial data 
sources, remote sensing imagery, and water quality data, GIS-based modelling pro-
vides critical insights for environmental management and decision-making. To fur-
ther improve the accuracy and effectiveness of these models, researchers are 
exploring advancements in artificial intelligence algorithms and data analysis meth-
ods, particularly for estimating optically inactive parameters. This progress prom-
ises a more comprehensive understanding of water quality, benefiting management 
and decision-making processes. One specific environmental issue where GIS-based 
modelling excels is addressing eutrophication caused by excess nutrients. 
Researchers are using these techniques to monitor eutrophication and predict harm-
ful algal blooms spatially. By employing remote sensing and GIS technologies, data 
scarcity and ecosystem complexity challenges are addressed, enabling large-scale 
eutrophication management worldwide.

Moreover, GIS-based modelling has demonstrated its versatility in analyzing 
various water quality parameters and investigating links between climate change 
and water resources. Forecasting pH, water surface temperature, dissolved oxygen 
concentration, and nitrogen and phosphorus columns simplifies climate data for 
climate change mitigation. GIS has played a vital role in connecting water quality 
analysis to climate effects on groundwater-dependent areas, facilitating visual rep-
resentation of climate change. Various GIS plugins and modules, including WASP, 

J. B. A. Bari et al.



83

SWAT, CE-QUAL-W2, EFDC, and AQUATOX, are used to test and simulate water 
quality parameters, contributing to sustainable water resource management. In con-
clusion, GIS integration in water quality management and monitoring significantly 
enhances the sustainability and health of global water resources. By continually 
advancing GIS-based modelling techniques, researchers can continue to address 
environmental challenges and support informed decision-making for water quality 
and resource conservation.
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Chapter 4
Air Quality Monitoring Using Geospatial 
Technology and Field Sensors

Konika Sharma  and Shweta Yadav 

Abstract  Air quality management is a public health priority at the global scale. 
Accurate air quality monitoring along with understanding the sources of air pollu-
tion is the first step to adequate air quality management. Apart from sampler-assisted 
ground-based monitoring of air pollutants, the use of geospatial technologies and 
the deployment of field sensors have surfaced as a new hope for strengthening the 
air quality monitoring network. This review provides information on the types, 
characteristics, and robustness of field sensors and geospatial technologies that are 
used for air quality monitoring and management. The technology used in sensors 
and the methodology for geospatial technologies have been discussed. We conclude 
that the evolving network of field sensors and cutting-edge geospatial technologies 
will certainly lead to better air quality management in India. The efforts in this 
direction will not only provide a sustainable solution to the current crisis of air pol-
lution but also lead to the collection of highly time-resolved data from even remote 
and least studied hard areas where ground-based sampling is a limitation. The air-
shed approach in this context offers a sustainable solution by targeting and synergis-
ing air pollution management across administrative boundaries. The synergy 
between ground-based stations, geospatial technologies, and field sensors will lead 
to a hub of data resources that will help policymakers frame policies for air quality 
management. Additionally, this will be an asset to researchers working in the field 
of atmospheric chemistry and pollutant dynamics.
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4.1 � Introduction

Clean and healthy air is an essential requirement for every living thing, especially 
for humans (Juginović et al., 2021; Singh et al., 2021; World Health, 2006). Air pol-
lution is a global problem that has adverse effects on human well-being (in both 
urban and remote environments), crop productivity, a variety of animals and insects, 
and ecosystems in terms of the quality, applications, and services that they provide. 
This problem intensified with global industrialisation, which led to increased stress 
on natural assets, as well as greater irregularities in the allocation of economic 
resources. Air pollution gives rise to a substantial risk to human health and well-
being, but preventing it has historically been viewed as less of a priority because of 
the rapid recovery of the losses before industrialisation. Consequently, there is a 
growing need for sophisticated statistical and machine learning (ML) resources, as 
well as the emergence of environmental organisations, the enactment of laws and 
policies, the development of widespread sensor systems, and the advent of digital 
technologies to evaluate, oversee, and communicate with both the general public 
and those responsible for environmental management concerning the state of air 
quality (AQ). Organisations such as the Environment Protection Agency (EPA, 
founded in 1970), the Intergovernmental Panel on Climate Change (IPCC, founded 
in 1988), the World Meteorological Organisation (WMO, founded in 1950), and the 
Global Environment Facility (GEF, founded in 1991) are some of the landmark 
developments in Air Quality Assessment and Management (AQA&M). Scientists 
came up with air quality sensors (AQS) in 1940 but it was not until the 1980s that 
world organisations gave directions on how to set up AQS networks and monitoring 
systems all over the world to control the effects of air pollution on the well-being of 
the general public. Nevertheless, these AQA&M networks are not very commercial 
in developing nations, such as India, where approximately 703 station networks 
were set up; Pakistan, where no such network is known yet; Sri Lanka, where a 
VAAYU network equipped with 78 stations was set up; and Bangladesh, with an 
ensemble of 11 stations. With the passing of the Air (Prevention and Control of 
Pollution) Act of 1981, air pollution monitoring and management have gained some 
momentum in India. The National Air Quality Monitoring Programme (NAMP), 
initiated by the Government of India, is believed to have been one of the earliest 
programmes to employ wide networks of sensors, including 883 AQ stations in 379 
cities and towns, for the purpose of AQ monitoring. The programme was designed 
to monitor four major pollutants, namely, sulphur dioxide (SO2), nitrogen dioxide 
(NO2), and particulate matter (PM) with aerodynamic diameters ≤10 μm (PM10) 
and ≤2.5 μm (PM2.5).

To measure and monitor ambient air quality, two main categories of sensor sys-
tems—(a) the ensemble of human-operated sensors and (b) a computerised system 
of sensors—are deployed on the ground. The vital elements of such sensor networks 
include temperature, humidity, precipitation, and gas sensors. A gas sensor is a 
transducer that measures the concentration of a gas by converting the intensity of an 
electrical signal into a proportional value (Kumar et al., 2011, 2013; Yi et al., 2015). 
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Gas sensors can be electrochemical, catalytic, solid-state, nondispersive infrared, or 
photoionisation devices. Because of these sensor and geosensor technologies (sen-
sor networks that have been specifically developed to collect and analyse data per-
taining to geospatial information) (Jung et al., 2008), the collection, analysis, and 
integration of geospatial and pollutant data have undergone a large-scale transfor-
mation. In addition, although still constrained to stationary locations, the advent of 
cutting-edge sensor systems such as the Internet of Things (IoT) and wireless sensor 
networks (WSNs) has improved the feasibility of ongoing air pollution assessment 
over wider regions. Extensive sensor systems for worldwide AQ surveillance and 
predictions include the Environment Observation and Forecasting System (EOFS), 
Global Environmental Monitoring System (GEMS) Air, and World Air Quality 
Index (WAQI), among others (Nandakumar et al., 2011).

The purpose of this work is to review the availability and application of available 
sensors and geospatial technologies for managing air quality. This assessment has 
been conducted to shed light on currently used pollutant monitoring and control 
strategies, including those for PM, SO2, NO2, carbon monoxide (CO), and ozone 
(O3). For AQ parameters, the accessibility of satellite or sensor data sources, digital 
methods, and real-time dashboards is stated, which may aid scientists, researchers, 
policymakers, and others involved in formulating new policies and taking neces-
sary steps.

4.2 � Geospatial Technologies for Air Quality Monitoring

The scientific community has advanced quite far in terms of assessing Earth’s 
geographic information, from the time of hand-drawn maps to the present day of 
GPS mapping. There is now a whole new genre of cartography to explore. Credit 
goes to geospatial technology, precise measurements may be taken on an extremely 
small scale and with as little error as possible. Today, more than ever, we recognise 
the importance of geospatial technology due to its widespread application in fields 
as diverse as farming, medicine, disaster recovery, forest management, administra-
tive tasks, climate change investigation, military strategy, and resource management.

India’s ecosystem for remote sensing and geospatial data is among the most 
developed in the world. The proliferation of geospatial applications has resulted in 
a deluge of data and information that must be optimally handled and used for the 
benefit of humanity and the solution of new and existing problems. Some of the 
most frequently utilised geospatial technologies include remote sensing (which uses 
space or aerial cameras and sensor systems to analyse distant objects or surfaces. 
The sensor platforms’ data can help experts evaluate the target’s features); 
Geographic Information Systems (GIS collects, manages, maps, and analyses phys-
ical environment data for a specific location on Earth. GIS creates maps and 3D 
scenes from geographic data layers and can highlight patterns, links, and situations 
in data, helping users make better decisions); Global Positioning System (Satellites, 
a reception device, and software coordinate position, speed, and time for 
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atmospheric, marine, and terrestrial movement. GPS relies on trilateration. The 
technique shows that GPS devices need three satellites for precise positioning. One 
satellite’s data locate a spot inside a vast circular area on Earth. Another satellite 
helps the GPS pinpoint that place. A third satellite pinpoints that spot on Earth).

Making use of high-resolution satellite imagery for remote sensing purposes is a 
valuable technique that enables improved interpretation and analysis of air pollutant 
concentrations. Satellite imagery is a valuable tool for quantifying and mapping air 
pollution due to its ability to offer a synoptic view of vast regions. Satellite sensors 
of varying spatiotemporal-radiometric details provide the means to assess the levels 
of detrimental air contaminants, including CO, NO2, ammonia (NH3), SO2, volatile 
organic compounds, and PM. Spatial interpolation techniques are employed for the 
construction of a surface grid or contour chart. Such interpolation approaches are 
employed to estimate concentrations in the study area by utilising a limited number 
of known concentrations at specific points (Mishra & Parasar, 2021). GIS tech-
niques have also been employed by several researchers to examine the spatiotempo-
ral dispersion of pollutants in the air (JIA, 2019; Mohan & Kandya, 2015; Rohayu 
Haron Narashid & Wan Mohd Naim Wan Mohd, 2010; Singh et al., 2022).

Arabia (2019) conducted an analysis of diverse satellite remote sensing tech-
nologies to assess their potential for estimating air pollutants. Additionally, he eval-
uated the techniques employed for handling and retrieving satellite data to generate 
pollutant concentration maps. According to their findings, the diverse spectral reso-
lutions of space instruments facilitate the identification of distinct types of atmo-
spheric contaminants. The utilisation of air pollution measurements obtained from 
space is advantageous in the monitoring of air quality and the analysis of the 
extended-term trends of atmospheric pollutant concentrations. Rohayu Haron 
Narashid and Wan Mohd Naim Wan Mohd (2010) demonstrated the feasibility of 
leveraging a combination of remote sensing methodology and GIS strategies, spe-
cifically the kriging interpolation approach, for the purpose of monitoring air pollut-
ant concentrations. Satellite imagery offers a cost-effective approach for generating 
air quality maps for a given region, particularly at a microscale level. The results of 
their assessment indicated that the implementation of satellite remote sensing and 
GIS methods hold promise for environmental managers and local authorities in the 
ongoing surveillance of AQ (at a microscale) in cities. Taloor et al. (2022) analysed 
the in situ and satellite-derived NO2 emissions data pertaining to various urban cen-
tres in India, with the aim of evaluating the effects of the lockdown measures imple-
mented due to the COVID-19 pandemic in the country. Furthermore, an analysis 
was conducted on the NO2 database obtained using the Sentinel-5P TROPOMI sen-
sor system across several areas within Punjab and the NCR. The study underscores 
the potential benefits of integrating in situ and satellite-based methodologies for 
evaluating alterations in air quality across urban areas in India. This approach holds 
promise for future investigations in other nations as well.

Numerous researchers have effectively employed geospatial artificial intelli-
gence in disaster-related issues and agricultural investigations. Furthermore, it has 
been utilised in the cartographic representation and simulation of atmospheric con-
taminants within metropolitan areas. This approach comprises two methodologies, 
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Fig. 4.1  Overview of the geospatial methodology used for air quality monitoring

namely, geospatial technology and artificial intelligence. Geospatial technology has 
the potential to facilitate spatiotemporal mapping of air pollutants and subsequent 
prioritisation of locations based on the results of this analysis. Artificial intelligence 
techniques, including deep learning, artificial neural networks (ANNs), and convo-
lutional neural networks (CNNs), can be used to predict the concentration of pollut-
ants (Mishra & Parasar, 2021). A general overview of the followed methodology is 
mentioned below and illustrated in Fig. 4.1.

Mapping of Atmospheric Pollutants  The levels of atmospheric contaminants such 
as SO2, NO2, and suspended PM can be acquired through official governmental enti-
ties or by using image processing software to extract data from satellite imagery. 
The spatial distribution of air pollutants is analysed and represented through various 
GIS-based spatial interpolation techniques, such as kriging, splines, and inverse 
distance weighted (IDW) methods. The IDW method is employed in scenarios 
where the point density is significant, thereby enabling the derivation of a local 
surface variation for analytical purposes. The grid estimates of any arbitrary factor 
are calculated using a linearly weighted set of data. The feasibility of interpolation 
is contingent upon the spatial separation between the sampling sites and the target 
location for the interpolation. This technique is ideal for smoothly varying surfaces, 
as it employs a special kind of polynomial interpolation. It can predict valleys and 
ridges in the dataset, making it the ideal tool for portraying gradually altering terrain 
with tiny mistakes. Kriging is a method of spatial interpolation that models interpo-
lated values using a Gaussian procedure with known covariance. This stochastic 
method has applications in many fields, such as pollution modelling, geochemistry, 
and catastrophe preparedness. It is predicated on the assumption that variation on a 
surface can be inferred from the distance between a set of sample points. This struc-
ture helps lessen the impact of random noise. All values within a specified range are 
computed. Value predictions are made using an improved weighted average algo-
rithm in this method (Hadjimitsis et al., 2012; Mishra & Parasar, 2021).
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Forecasting Atmospheric Pollutants  Pollutants in the air can only be predicted 
with the help of photos taken across multiple dates. These pictures/images are then 
processed using numerous steps, including (1) image acquisition, which entails the 
procurement and retention of visual representations into a designated repository. 
Subsequently, the process involves converting it into a variable and generating load 
folders that contain images into arrays; (2) image resisting, which is a necessary 
step to address the discrepancy between the model’s requirements and the actual 
image captured; and (3) noise filtering in images to reduce unwanted image noise. 
The process of image smoothing is a necessary prerequisite for the enhancement of 
various scales of image structures, and (4) image splitting and morphological modi-
fications are necessary to effectively separate the foreground from the background, 
thereby facilitating the extraction of pertinent features. The implementation of mor-
phological changes necessitates the application of edge smoothing. Upon comple-
tion of processing steps, the images may be utilised to simulate a model for the 
purpose of predicting air pollutant concentrations through the implementation of 
artificial intelligence and machine learning methodologies. Deep learning, a sub-
field of machine learning, has experienced significant momentum in its application 
across various domains. The process of constructing a deep learning model is based 
upon five crucial steps, which are enumerated as follows:

Defining Architecture  To determine the architecture, it is necessary to conduct an 
analysis of the problem’s characteristics. CNNs are a widely adopted approach for 
conducting image segmentation and classification tasks, particularly those that 
require intricate predictive analysis, owing to the inherent characteristics of the 
problem domain. The overall deep learning architecture employs either sequential 
models, functional APIs, or custom architectures that are capable of being defined 
for model building.

Model Structuring  To prepare the model for the fitting or training process, it is 
necessary to perform model compilation. Some of the crucial elements of the train-
ing process are specified for the assessment process in the compilation phase. As a 
result of the inherent characteristics of the issue at hand, we will incur losses that 
must be determined at this stage. Additionally, we must make determinations 
regarding the optimisers and metrics to be employed, including precision and 
classification-related metrics.

Fitting of Model  The process of fitting the model on the training dataset is a crucial 
step. The model is trained for a predetermined number of epochs, which refers to 
the number of iterations performed on the dataset. Throughout the entire training 
process, it is imperative to consistently assess the fitting step. Ensuring that the 
model under training exhibits enhanced accuracies and a decrease in the overall loss 
is of utmost importance. The prevention of overfitting of the model is also a crucial 
consideration.
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Model Analysis and Forecasting  The assessment of the deep learning model’s 
efficacy in actual application instances is a crucial undertaking that will be 
executed. It is imperative to incorporate the predictions generated by our model on 
the test dataset, which was partitioned during the preprocessing phase, to validate 
the efficacy of the trained model. Additional randomised tests will provide further 
evidence of the efficacy of the method on untrained data.

Model Deployment  The actual implementation of the model is the very last step 
yet crucial in the building of any model.

4.3 � Application of Field Sensors for Air Quality Monitoring

Numerous techniques (as outlined in Fig. 4.2) can be used individually or in integra-
tion so as to get more comprehensive and cutting-edge observations for further AQ 
monitoring and assessment. The prevailing approach for monitoring air pollution 
involves the utilisation of advanced and established instruments. To ensure the pre-
cision and excellence of data, intricate measurement techniques are employed by 
these instruments, along with various auxiliary devices such as temperature regula-
tors (heaters and coolers), humidity regulators, air filters (for PM), and integrated 
calibrators. As a result, these devices are typically associated with elevated costs, 
significant power consumption, substantial physical dimensions, and considerable 
weight. Recent technological advancements have made ambient sensors readily 
available, possessing attributes such as affordability, compact area, and rapid recip-
rocation times. Nevertheless, it is worth noting that low-cost and portable AQ sen-
sors are unable to attain an equivalent level of data precision and quality as 
conventional assessment techniques and equipment. At present, air pollution infor-
mation pertaining to areas lacking observation facilities is acquired through air 
quality modelling approaches, as per the literature. Nevertheless, the air quality 
model data exhibit a dearth of comparison and confirmation (Kaur and Kelly, 2022). 
Affordable, cost-efficient mobile, and compact environmental sensors offer a sig-
nificant possibility to enhance the resolution (for both temporal and spatial scales) 
of atmospheric data. Furthermore, they have the potential to validate, refine, or 
enhance current ambient air quality models. The subsequent sections present an 
overview of the operational principles of low-cost and portable ambient sensors, 
which are extensively employed presently.

�Gas Sensors

Gas detection systems have come a long way in recent years, and each has its own 
set of benefits and drawbacks. Electrochemical, catalytic, solid-state semiconduc-
tor, nondispersive infrared radiation absorption (NDIR), and photoionisation 
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Fig. 4.2  Framework of categorisation of air quality monitoring approaches

detector (PID) sensors are the five types of inexpensive and conveniently movable 
gas sensors that have proven to be the most effective and popular to date. All of 
these sensors are cost-effective, lightweight (often under a hundred grams), and 
quick to respond (typically within tenths of a second to a few minutes). Although 
hundreds of potentially dangerous gases have been identified, there is currently no 
individual sensor technology that can accurately monitor them all. Various sensors 
can detect hazardous gases with varying degrees of sensitivity. However, no cur-
rently available portable gas sensor at a reasonable price has a similar level of data 
precision and reliability as stationary tracking equipment. In terms of accuracy and 
detection range, these low-cost gas sensors impart satisfactory performance 
(Aleixandre & Gerboles, 2012). In addition, it is necessary to calibrate every sensor 
prior to and following a certain period of operation.  The calibration is done by 
exposing the sensor to a known concentration of a particular pollutant gas and then 
adjusting the sensor's parameters to reduce the discrepancy between the known 
level and the sensor reading. There are primarily four categories of hazardous gases 
that are tracked viz., CO, NO2, O3, and SO2. It is established that for these four haz-
ardous pollutants, there are two optimal sensor types, namely, solid-state and elec-
trochemical sensor. To sum up, these are the most appropriate ones for sniffing out 
these four distinct classes of potentially dangerous gaseous pollutants in the context 
of air pollution monitoring. These two varieties of sensors form the backbone of the 
majority of the current efforts. The following is an explanation of how these two 
distinct kinds of sensors work.

Solid-State Gas Sensor  The discovery of the operational mechanism of solid-state 
ambient gas sensors was made during the course of semiconductor p–n junction 
research, wherein the sensitivity of said junctions to numerous gaseous pollutants 
was observed. A solid-state sensor comprises a heating element and single or 
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multiple metal oxides. The specific metal oxide utilised is dependent upon the 
intended ambient gas that the sensor is designed to detect. Metal oxides have the 
capability to undergo processing into a paste-like substance, commonly referred to 
as a bead-type sensor. Metal oxides may be deposited onto a silica chip through a 
process akin to semiconductor fabrication, resulting in a chip-type sensor. Upon 
exposure to ambient gases, metal oxides undergo dissociation to form charged par-
ticles or mixtures, which results in the amassing of electrons on the top layer of the 
metallic oxides. The conductivity of metal oxides is altered by this accumulation. 
Through the quantification of alterations in conductivity, scientists can infer the 
concentration of a particular type of surrounding gas. The solid-state gas sensor 
employs a heating source to enhance the reaction rate, leading to a robust electrical 
signal. The regulation of temperature is facilitated by the utilisation of the heating 
element, as the response of a particular type of ambient gas, characterised by a con-
ductivity change, varies across distinct temperature intervals.

Electrochemical Gas Sensor  Electrochemical gas sensors operate through electro-
chemical transformations, specifically redox reactions, occurring in the sensors. 
The electrical signal (current) initiated due to the interaction of the sensor with its 
surrounding gas molecules is directly proportional to the level of the gaseous pollut-
ants. The electrochemical sensor comprises two essential components, namely, the 
working electrode (WE) and the counter electrode (CE). In cases where sensors 
necessitate third-party controlling power, the utilisation of a reference electrode 
(RE) is imperative. Usually, 2–3 electrodes are individually inserted into the sen-
sor’s electrolyte. Various sensors may employ distinct kinds of filter screens, elec-
trolytes, and WEs to enhance the sensor’s sensitivity towards a particular type of 
gaseous pollutant. To facilitate an optimal reaction between the ambient gas and the 
sensor while simultaneously mitigating the risk of electrolyte loss by leaking, the 
surrounding gas is initially directed via a capillary-style aperture and a hydrophobic 
barrier (Yi et al., 2015).

Upon the arrival of the gaseous pollutant at the WE, the redox reaction takes 
place. The electrode that has been specifically designed for a particular ambient gas 
serves as a catalyst for the aforementioned reactions. The concentration of the target 
ambient gas can be inferred by researchers through the measurement of the current 
between the WE and the CE. Sensors equipped with an RE utilise them to regulate 
the redox reactions, thereby mitigating prospective fluctuations in WEs resulting 
from degradation, albeit with the caveat that this approach may prove ineffective in 
the presence of fouled electrodes. It should be noted that a significant proportion of 
electrochemical ambient gas sensors necessitate a minimal quantity of oxygen and 
moisture for optimal operation. The chemical equilibrium on the surface of the sen-
sor is impacted by wind velocity, which subsequently affects the readings of 
the sensor.
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�Particulate Matter Sensors

Quantification of PM is a complex process, with numerous methodologies for deter-
mining PM mass concentrations. The multifaceted characteristics of PM may lead 
to variations in outcomes across various measurement methodologies. Certain tra-
ditional monitoring devices employ a thermal component to mitigate the impact of 
fluctuating humidity and temperature. Nonetheless, the thermal component causes 
the semivolatile compounds to vaporise, and this poses a major limitation. Hence, 
certain instruments utilise a distinct drying mechanism in lieu of a heating compo-
nent. The concentration of PM can be measured using techniques that fall into two 
distinct categories: (1) a direct reading instrument is capable of providing continu-
ous measurements with a sampling interval of seconds or minutes, pertaining to the 
levels of PM in the surrounding atmosphere, and (2) another type of sampler is the 
filter paper-based gravimetric sampler, which utilises a filter to accumulate the par-
ticulate matter and necessitates periodic weighing in a laboratory setting. The pro-
cess of assigning weights is a labour-intensive and time-consuming task that results 
in a significant time lag (measured in days) between data collection and dissemina-
tion. The gravimetric technique based on filters is commonly employed as the stan-
dard method in government organisations. It is important to acknowledge that while 
reference methods are utilised, they are not infallible and are susceptible to various 
artefacts, such as fluctuations in temperature and humidity, as well as the presence 
of semivolatile compounds. The four most frequent methods used for the continu-
ous monitoring of PM levels in outdoor air are discussed below:

Tapered Element Oscillating Micro Balance Analysers (TEOM)  Classical air 
pollution tracking techniques frequently employ tapered element oscillating micro-
balance analyser (TEOM) analysers. The frequency of the curved glass tube’s vibra-
tions in TEOM is directly related to its mass. The load and vibration frequency of 
the tube could be affected by the aerosol collected on it. Scientists can determine the 
PM mass concentration (μg/m3) in the atmosphere by monitoring the frequency 
shift of the oscillating tube and the amount of air collected. The aerosols are col-
lected via a size-selective inlet. A heating component is used to counteract the result 
of a change in humidity (Greene, 2005; Li et al., 2012).

β-Attenuation Analysers  The β-attenuation analysers, also known as β-attenuation 
monitors (BAM), tend to serve as the primary PM estimation devices in classical air 
pollution assessment frameworks. Initially, the air is subjected to sampling via a 
size-selective inlet, which may be either PM10 or PM2.5 and may or may not incor-
porate a heater/dryer mechanism to mitigate the presence of moisture in the air. 
Subsequently, the air flows via a filter medium, thereby effectively capturing the 
particulate matter. The filter paper containing aerosols is subjected to β-attenuation 
radiation. Following the designated estimation period, scientists can infer the weight 
of particulate matter present on the filter paper by gauging the amount of radiation 
passing through. The beta gauge system comprises two fundamental constituents, 
namely, a radiation source and a detector, which are positioned on either side of the 
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sample under assessment. Furthermore, the data obtained from the detector are pro-
cessed and transformed into a quantifiable outcome. When beta particles interact 
with matter, a portion of them undergoes absorption, while the remainder passes 
through. The absorption of beta particles is directly proportional to the thickness of 
the material. The determination of substance width is based on the comparison 
between the beta counts that traverse via the substance in question to the counts 
obtained in the absence of any material (Shukla & Aggarwal, 2022).

Black Smoke Technique  Through a size-selective intake, the black smoke approach 
captures PM on a filter over the course of 24 h. The mass concentration of the PM 
is then calculated using a reflectometer’s measurement of the filter paper’s black-
ness. This type of monitoring apparatus is rather easy to use, reliable, and economi-
cal. The mass concentration is calculated by estimating the filter’s load, and the 
level of PM changes depending on the region. This causes the darkness-to-mass 
coefficient to vary spatially as well as temporally.

Optical Analyses  Optical analysers make use of the linkage of imaging, laser, or 
infrared light and ambient particulate matter. These analysers are battery-operated, 
portable, and compact. The three categories of optical analysers—direct imaging, 
light scattering, and light obscuration (nephelometer) analysers—can be divided 
based on the optical principle (Yi et al., 2015).

Light Scattering-Based Optical Sensors  High-energy lasers are used as the light 
source in this class of optical analysers. The particle scatters the laser light as it 
moves across the detecting space, which only permits individual particle sampling 
(one at a time). The scattering is picked up using a photodetector. Scientists can 
thereby determine the dimensions of the particle by measuring the scattered light 
intensity. Additionally, it is possible to determine the number of particle counts by 
calculating the number of illuminating lights on the photo sensor. This method has 
the advantage of simultaneously detecting particles of distinct diameters (i.e. PM2.5, 
PM5, and PM10) with a single analyser. However, the mass concentration must be 
calculated from the particle counts, which will lead to inaccuracies that impair the 
analysers’ reliability and exactness.

Direct Imaging Particle Analysers  Direct imaging particle analyser uses a halogen 
lamp to illuminate the molecules, casting their shadows onto a camera with a high 
resolution, high magnification, and high definition. Particles in the air are captured 
on film by the camera. After the video is captured, software analyses it to determine 
the PM’s qualities. The numbers of PM and their sizes in the air can be measured. 
In addition, the particle colours and shapes may also be identified.

Nephelometer (Light Obscuration-Based Optical Analyser)  A nephelometer is a 
light obscuration-based optical analyser used to determine the particle size and 
mass concentration in the air. It assesses particle concentration in a short amount of 
time, with a high degree of accuracy and a low detection limit. A silicon detector is 
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employed in a nephelometer to estimate the overall light scattered by the PM, pri-
marily liable for the overall reduction in light transmission. The light source is a 
near-infrared LED. Measurements of the scattered light magnitude and the scatter-
ing pattern can be used to immediately ascertain both the size variation and the 
loadings.

In regard to traditional air pollution monitoring systems, TEOMs and BAMs are 
often utilised due to their high data resolution and precision, huge size, significant 
mass, and high economic value. Despite the fact that the ratio of particle number to 
mass concentration varies spatially and temporally, light scattering and light obscu-
ration optical analysers are widely used due to their compact size, lightweight, low 
cost, and continuous evaluation capability.

�Airshed Concept

The airshed approach aims to address the problem of air pollution in a coherent 
manner across geographical and legislative borders. The delineation of an airshed 
holds paramount importance in the realm of managing air quality in urban areas. In 
academic discourse, an airshed is commonly understood as a geographical region 
where the dispersion of pollutants and emissions is predominantly impacted by 
local meteorological factors and topographical features (Abbots, 2014; Guttikunda 
et al., 2023). The demarcation of airsheds is typically delineated to encompass all 
significant sources of pollution within the immediate vicinity of a city’s administra-
tive limits. The determination of a city’s size is a subjective evaluation, albeit con-
tingent upon the incorporation of all significant contributing sources within its 
proximity. The objective is to encompass all the potential regions and point factors 
that are likely to add to the localised atmospheric pollution, regardless of the admin-
istrative jurisdiction, and to reduce the impact of long-distance regional transmis-
sion, which is referred to as boundary influence (Guttikunda et  al., 2023). The 
utilisation of mesoscale atmospheric numerical models facilitates the recognition of 
airsheds via the application of back-trajectories, which enables the identification of 
the routes traversed by air while accumulating pollutants and may have potential 
implications in conducting extended epidemiological investigations pertaining to 
human exposure to air pollution (Gaines Wilson & Zawar-Reza, 2006; Zawar-Reza 
& Sturman, 2008).

Boosting the ambient air quality observation system is of utmost importance in 
obtaining a thorough comprehension of an area’s pollution level and setting up a 
precise overview to facilitate source apportionment investigations (Beig et al., 2015; 
Ganguly et al., 2020; MOEF and CC, 2019). The expansion of said networks ought 
to take into account various factors, including but not limited to the size of the air-
shed, the necessary sampling size and frequency, as well as the process of site selec-
tion. In the context of ascertaining the optimal sample size and airshed locations, 
there exist numerous considerations that extend far from conventional heuristics 
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and scientific structures. Urban regions characterised by significant levels of pollu-
tion and an elevated amount of human and commercial endeavours could necessi-
tate a higher sample size and a wider airshed location compared to remote areas 
with less pollution and its originating sources. Periodic source apportionment inves-
tigations may need a larger than usual sample size to account for the effects of 
weather on air quality. Apart from the aforementioned factors, there exist distinct 
regulatory mandates that dictate the determination of an optimal monitoring net-
work magnitude (Guttikunda et al., 2023). Airshed management is yet to be for-
mally adopted for air quality management in India, despite the presence of 
preexisting systems and divisions that could potentially be leveraged for this pur-
pose (Singh, 2016). The nation is further divided into distinct climate zones, eco-
logical regions, hydrological basins, and land-use classifications, thereby 
emphasising heterogeneous regional attributes. Furthermore, the India 
Meteorological Department manages subdivisions that furnish regular updates on 
meteorological conditions. Despite the existence of such systems, the formal adop-
tion of airshed management has not yet been realised.

Guttikunda et al. (2023) categorised the NCAP areas into 104 airsheds, which 
accounts for 5.3% of the national area. These airsheds inclusively encompass 164 
cities and an overall population of 295 million, which represents 21% of the national 
population. Out of the total airsheds under consideration, 73 airsheds comprise a 
solitary city, 18 airsheds encompass two cities, and the remaining nine airsheds 
comprise three cities. There are four airsheds in India, namely, Delhi, Mumbai, 
Indore, and Chandigarh, which comprise 10, 8, 5, and 5 cities, respectively. A rec-
ommended approach for assessing and evaluating particulate matter pollution 
involves the utilisation of 2118 sampling sites across 104 airsheds. Urban areas may 
contemplate the implementation of hybrid monitoring systems, which entail the 
integration of a dense network of cheap, high-quality sensors with the already estab-
lished regulatory monitoring network. The optimisation of clean air efforts under 
NCAP necessitates the implementation of an airshed level AQ monitoring plan, an 
augmented management network, and the amalgamation of data pertaining to the 
origin of emissions.

4.4 � Ambient Air Quality Monitoring and Sensor Networks 
Currently in Use in India

In India, regulatory air quality monitoring is carried out beneath the purview of the 
Central Pollution Control Board (CPCB), which is a government agency that works 
in conjunction with the Ministry of Environment, Forest, and Climate Change 
(MoEFCC). This monitoring was made mandatory by the Air (Prevention and 
Control of Pollution) Act of 1981. The initial set of air quality standards in India 
was ratified in 1982, and subsequent changes took place in 1994 and 2009. Reference 
standards for TSP (total suspended particles), RSPM (respirable suspended 
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particulate matter) or PM10 were originally set to be different for residential, com-
mercial, and environmentally fragile areas. In 2009, the standards were updated, 
and one of the changes called for the establishment of a single norm for the PM2.5 
concentration at different kinds of locations (http://cpcb.nic.in/National_Ambient_
Air_Quality_Standards.php).

The following subsection offers a discussion of the most prominent monitoring 
programmes carried out by several agencies and academic institutions in the 
country:

National Air Quality Monitoring Programme (NAMP)  This is the most vital AQ 
monitoring initiative that the Indian government has ever undertaken. As of 
September 2022, there are a total of 379 cities and towns that have 883 air quality 
monitoring stations (https://cpcb.nic.in/uploads/Stations_NAMP.pdf). These oper-
ating stations monitor four primary pollutants: SO2, NO2, PM10, and PM2.5. The 
CPCB is responsible for managing the programme in collaboration with the State 
Pollution Control Boards (SPCBs) and the UT Pollution Control Committees 
(PCCs). Ground-based sample collection and analysis are also performed by 
regional and local educational institutions, in addition to national organisations such 
as the National Environmental Engineering Research Institute (NEERI) (https://
cpcb.nic.in/monitoring-network-3/). The majority of said stations, pertaining to 
both residential and industrial sectors, are situated within urban regions, while their 
presence in rural areas is limited, as evidenced by studies conducted by Balakrishnan 
et al. (2014) and Gordon et al. (2018). It is noteworthy that residential combustion 
emissions, which are commonly linked to the use of solid fuels, constitute a signifi-
cant contributor to air pollution nationwide (Balakrishnan et al., 2013; Venkataraman 
et al., 2018). To maintain consistency in sampling techniques among the various 
NAMP stations, standardised guidelines have been established at the national level 
for monitoring. These guidelines encompass a range of factors such as siting crite-
ria, quality assurance and quality control procedures, measurement methodologies, 
and protocols for data reporting (CPCB, 2003, 2011). Apart from the monitoring 
sites established under the National Ambient Monitoring Programme (NAMP), 
various states, such as Maharashtra, Gujarat, Kerala, Odisha, Karnataka, Telangana, 
and Andhra Pradesh, have implemented the State Ambient Air Quality Monitoring 
Programme (SAMP) to conduct ambient air quality monitoring at supplementary 
locations (Pant et al., 2019).

The CPCB has established an ensemble of Continuous Automatic Air Quality 
Monitoring Stations (CAAQMS) in prominent urban areas. These stations are 
equipped to measure a range of contaminants, including PM (PM2.5 and PM10), gas-
eous pollutants such as SO2, NO2, NH3, O3, CO, and BTEX (benzene, toluene, eth-
ylbenzene, and xylene), on a continuous basis throughout the year. CAAQMS are 
equipped with precise gas analysers and beta-attenuation monitors for air quality 
gauging and thereby offer exceptionally precise measurements (Malings et  al., 
2019; Sahu et  al., 2021; Snyder et  al., 2013). Nevertheless, the establishment of 
these networks incurs a significantly high setup cost, and their maintenance is chal-
lenging (Sahu et al., 2020), rendering robust CAAQMS networks impracticable. At 
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present, urban areas with a populace exceeding one million are accorded prece-
dence for the establishment of CAAQMS. It is anticipated that comparable stations 
will be established throughout all states and union territories. As of June 2023, there 
are 490 CAAQMS in approximately 260 cities all over India (https://app.cpcbccr.
com/ccr/#/caaqm-dashboard-all/caaqm-landing). The majority of stations are man-
aged through a collaborative effort between the CPCB and SPCB, wherein a finan-
cial agreement is established between the state and federal entities for cost sharing. 
The CAAQM station data is utilised for calculating the air quality index (AQI), 
which is accessible to the public through online platforms, smartphone applications, 
and the CPCB website archives historical data (CPCB, 2014).

System of Air Quality and Weather Forecasting and Research (SAFAR)  The 
Indian Institute of Tropical Meteorology (IITM, Pune) collaborated with the Indian 
Meteorological Department (IMD) and the National Centre for Medium-Range 
Weather Forecasting (NCMWRF) to establish the SAFAR network in Delhi in 2010 
under the Ministry of Earth Sciences (MoES) (http://safar.tropmet.res.in/) (Brauer 
et al., 2019). The SAFAR system of the network comprises air quality monitoring 
stations (AQMS) and automatic weather stations (AWS) that are set up amid the city 
boundaries. These stations have been strategically placed in various microenviron-
ments of the region such as industrial, residential, background, urban, and agricul-
tural regions, in accordance with global guidelines. This approach ensures that the 
urban environment is accurately represented.

Sophisticated online instruments are utilised to monitor air quality indicators at 
a height of approximately 3 metres from the ground. These equipments run continu-
ously, and the database is systematically captured and preserved at 5-min intervals 
for the purposes of quality control and subsequent scrutiny. The programme is pres-
ently operational in Delhi (11 AQMS locations), Pune (11 AQMS locations), 
Mumbai (10 AQMS locations), and Ahmedabad (10 AQMS locations), having been 
launched in 2010, 2013, 2015, and 2017, respectively. There are intentions to extend 
the programme’s reach to Bengaluru, Kolkata, and Chennai. The major pollutants 
monitored under the purview of this project include PM1, PM2.5, PM10, O3, CO, NO, 
NO2, SO2, black carbon, methane, nonmethane hydrocarbons, volatile organic com-
pounds, benzene, and mercury, and some meteorological parameters, including 
ultraviolet radiation, precipitation, temperature, solar radiation, wind speed, and 
direction. SAFAR offers a mobile application that distributes computed Air Quality 
Index (AQI) measurements for the criteria pollutants, based on city-wide averages, 
as well as projected AQI values for the upcoming 2-day period. The aforementioned 
data are also conveyed through instantaneous exhibit panels situated in every urban 
centre. It is noteworthy that the AQI methodology employed in this programme dif-
fers from the CPCB-endorsed national approach (Beig et al., 2015). The air quality 
database obtained from the system is subject to a 3-year embargo period, after 
which it may be made accessible for general public usage upon appeal and submis-
sion of an apt rationale to the IITM Pune.
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US Embassy Monitoring Stations  Within the framework of the AirNow initiative, 
the United States Department of State administers PM2.5 monitoring devices in five 
prominent urban centres in India, namely, Delhi, Mumbai, Kolkata, Hyderabad, and 
Chennai. These devices are situated on the premises of the respective Consulate/
Embassy in each city. The data can be accessed by the public in near real time via 
the AirNow website (https://www.airnow.gov/international/us-embassies-and-
consulates/#India). The website of the Consulate/Embassy also presents AQI val-
ues. Nevertheless, it is noteworthy that the AQI value reported is established on the 
air quality standards of the United States and employs a distinct formula. 
Consequently, it cannot be directly compared to the AQI values of India. The mea-
suring devices are functional within the embassy/consulate premises, which are 
comparatively secluded from high traffic or industrial activities. In the majority of 
instances, the instruments yield PM2.5 readings that are commensurate with those 
obtained from an urban site within the cities.

Chemical Transport Models  India now has access to a number of operational fore-
cast models. The Copernicus Atmosphere Monitoring Service (CAMS) delivers 
10 × 10 km 4-day predictions from a network of seven chemical transmission mod-
els, and the rear modification with ground observational datasets is accessible for 
various particulate and gaseous pollutants (https://atmosphere.copernicus.eu/charts/
packages/cams/). These projections are included in worldwide models that describe 
urban/regional baselines.

Using the 3D-WRF meteorological model and the GFS weather forecasts, along 
with pollutant levels generated by using the CAMx chemical modelling system and 
coupled to an active emissions tally, Urban Emissions supply 72-h (hourly and 
daily) average PM2.5 and various other air pollutant levels. As a component of the 
Air Pollution Knowledge Assessment (ApnA) Programme (Brauer et  al., 2019; 
Guttikunda et al., 2019), more precise (1 × 1 km) estimates are supplied for Delhi 
(http://urbanemissions.info/delhi-air-quality-forecasts/) and other regions in India, 
while the modelling domain spans the entire country at a spatial clarity of 25 × 25 km 
(http://urbanemissions.info/india-air-quality-forecasts/).

The Indian Institute of Technology Kanpur is involved in the Surface Particulate 
Matter Network (SPARTAN), a global initiative (having its origin in the United 
States) aimed at monitoring particulate matter. As a contributor to this network, IIT-
Kanpur handles a site in which the PM2.5 mass and several different chemical con-
tents are analysed from samples collected by this network over the course of 9 days 
(Snider et al., 2015, 2016). These incorporated filter samples could be fragmented 
to measure daily or hourly PM concentrations when aggregated with continuous 
monitoring of particle light scattering using a nephelometer (Brauer et al., 2019).

Satellite-Based Measurements  Estimates derived from satellites have also helped 
researchers to better comprehend India’s air quality. India-specific PM2.5 estimates 
(bias-corrected versus concomitant in situ data) were calculated using Multiangle 
Imaging Spectro Radiometer (MISR) aerosol products for the years 2001–2010 
(Dey et al., 2012). According to the findings of this investigation, approximately 
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half of India’s population is located in regions where ambient PM2.5 levels are above 
WHO’s intermediate goal I. Seventy per cent of the Indian subcontinent had yearly 
PM2.5 levels that were higher than the WHO’s limit. Forty to fifty per cent of clear 
days had daily PM2.5 levels in the Indo-Gangetic Plain and Mumbai that were higher 
than WHO intermediate target I.  In approximately 70% of India’s districts, PM10 
exposure was found to be higher than WHO Interim Target I [analysed by using 
Modern-Era Retrospective analysis for Research and Applications (MERRA) 
reanalysis and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
[CALIPSO] aerosol products] (Pande et al., 2018). The CPCB has begun imple-
menting historical and future satellite-derived concentration estimations under the 
NCAP (MOEF & CC, 2019). This step will lead to the augmentation of the existing 
ground-based surveillance network with more efficiency.

A brief description of the abovementioned aerosol products is given below:

MISR Aerosol Products  The Multiangle Imaging Spectro Radiometer (MISR) is a 
scientific instrument that is currently being utilised as one of the five instruments on 
board the National Aeronautics and Space Administration’s (NASA) Terra satellite. 
Its primary objective is to gather crucial data on the underlying factors and conse-
quences of worldwide climate change. The instrument employs a multiangle 
approach to observe the Earth from nine distinct angles, with the aim of enhancing 
the accuracy of atmospheric particle, cloud formation, and land surface cover analy-
ses (https://www.jpl.nasa.gov/missions/multi-angle-imaging-spectroradiometer-
misr). Throughout the duration of the Terra mission, MISR has played a crucial role 
in acquiring unique images of meteorological phenomena, including hurricanes and 
floods, and documenting the ramifications of atmospheric contamination on a global 
scale. The MISR stands out from other satellite instruments in the Earth Observation 
System (EOS) era due to its exceptional features, including a blend of high spatial 
resolution, a broad spectrum of along-track view angles, and precise radiometric 
validation and reliability (Diner et al., 1998). The MISR technique is capable of 
quantifying the shortwave radiance that emanates from the Earth’s surface in four 
distinct spectral bands, with central wavelengths of 446, 558, 672, and 866 nm. This 
is achieved by capturing data at nine different view angles, which are distributed in 
both the forward and rear directions along the flight path. These angles are situated 
at 70.5°, 60.0°, 45.6°, 26.1°, and nadir. During a span of 7 min, the spacecraft tra-
verses over the Earth, and MISR’s nine cameras sequentially capture images of a 
380 km wide area of the planet’s surface. The instrument is capable of sampling an 
extensive range of scattering angles, spanning from approximately 60° to 160° at 
mid-latitudes. This enables the acquisition of valuable data pertaining to the micro-
physical properties of aerosols. The aforementioned perspectives encompass a 
range of air-mass factors, spanning from 1 to 3 (Kahn et al., 2010). This range pro-
vides a level of sensitivity that enables the identification of optically thin aerosol 
layers. Additionally, it facilitates the differentiation between surface and atmo-
spheric contributions to the top-of-atmosphere (TOA) radiance, thereby aiding in 
the development of aerosol retrieval algorithms.
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MERRA Reanalysis  MERRA employs a 6-h update cycle for its variational data 
(3-DVAR) acquisition analysis algorithm, which is in accordance with the Gridpoint 
Statistical Interpolation scheme (GSI). The GSI has a number of improvements over 
the older 3D-VAR computations. In particular, the analysis solution’s balancing 
qualities are enhanced by computing the observation-minus-background deviations 
with higher temporal precision and by employing a dynamic limit on noise 
(Rienecker et al., 2011). MERRA depends substantially on satellite radiance data, 
which encompass information from hyperspectral tools such as the Atmospheric 
Infrared Sounder (AIRS) installed on Aqua. To assimilate radiance data, it is neces-
sary to employ a radiative transfer model (RTM) as the observation operator. GSI is 
integrated with the Community Radiative Transfer Model (CRTM) (Han et  al., 
2006). The principal objective of MERRA is to enhance the capacity of the reanaly-
sis to replicate the hydrological and energy cycles by leveraging the extensive data 
obtained from the satellite observations comprising NASA’s Earth Observing 
System (EOS). MERRA encompasses the entirety of the satellite era spanning from 
1979 to 2016. It boasts a spatial resolution of 1/2 degree latitude by 2/3 degree lon-
gitude and comprises 72 vertical layers. The MERRA datasets are produced employ-
ing the Goddard Earth Observing System (GEOS) atmospheric model version 5.2.0 
(Feng & Wang, 2019).

The MERRA-2 project was initiated with the purpose of offering a prompt sub-
stitute for MERRA and upholding the Global Modelling and Assimilation Office’s 
(GMAO) dedication to maintaining a continuous near-real-time evaluation of the 
climate. The MERRA-2 reanalysis is designed to serve as an intermediary solution 
that relies on the latest advancements in modelling and data assimilation at GMAO 
(Gelaro et al., 2017). Its primary objective is to overcome the known constraints of 
MERRA while simultaneously paving the way for GMAO’s ultimate objective of 
creating an integrated Earth system analysis (IESA) capability that integrates assim-
ilation systems for the atmosphere, ocean, land, and chemistry.

CALIPSO  The CALIPSO satellite was successfully deployed on April 28th, 2006, 
by NASA. It has contributed novel perspectives on the impact of clouds and atmo-
spheric aerosols on the regulation of Earth’s weather patterns, climate conditions, 
and air quality. The CALIPSO system integrates a dynamic lidar device with pas-
sive infrared and visible imaging tools to investigate the vertical arrangement and 
characteristics of slender clouds and aerosols across the entire globe (https://www.
nasa.gov/mission_pages/calipso/main/index.html). The CALIPSO system furnishes 
a comprehensive analysis of attenuated backscatter at wavelengths of 532 nm and 
1064 nm, along with the perpendicular polarisation segment specifically for 532 nm 
(Kar et al., 2010). The latest iteration (V.3.01) of CALIPSO data has been made 
available, featuring noteworthy enhancements to the cloud-aerosol screening mod-
ule, as well as the inclusion of extended profiles beneath layers exhibiting pro-
nounced attenuation. For the first time, the present iteration furnishes the integrated 
optical depth data for the column. The utilisation of the depolarisation ratio derived 
from the 532 nm channel is valuable in discerning the morphology of the aerosol 
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particles. Additionally, the backscatter colour ratio is informative in determining the 
magnitude of the aerosol particles (Liu et al., 2008).

Low-Cost Sensors  The exceptional ability of low-cost monitors has garnered much 
attention in recent years (Kumar et  al., 2023). When connected, such networks 
could enable individual monitors to pool data from throughout the network, allow-
ing for self-calibration, integrated network training, and the provision of high-
quality, highly resolved spatiotemporal air quality information. Such sensors allow 
continuous assessments of air quality throughout an urban region at a relatively 
modest cost. Given challenges with sensor accuracy and precision, maintenance and 
calibration, and the fulfilment of human resources expenses for network data man-
agement and maintenance, this goal has only been partially achieved thus far. 
Community groups have also used low-cost sensors when official measurement data 
are either unavailable or deemed inaccurate (e.g. due to the paucity of faithful rep-
resentation of certain hot spots). While there is no doubt that these types of initia-
tives have the potential to promote public knowledge and empowerment, some have 
voiced concerns that government air quality employees could be diverted away 
from their primary focus of air quality control to react to citizen enquiries based on 
erroneous or malfunctioning sensors. There are also concerns about a continuous 
and adequate supply of low-cost sensors because many of them have been devel-
oped by start-ups. As a result, several regional and national air quality control 
organisations have launched programmes to test and evaluate individual sensors and 
provide direction for how they should be used in networks (Agrawal et al., 2021; 
Nagendra et al., 2018; Prakash et al., 2022; Rai et al., 2017; Sahu et al., 2020, 2021; 
Tripathi et al., 2023; Zheng et al., 2018, 2019).

For instance, (Zheng et al., 2018) demonstrated that Plantower PM sensors reli-
ably measured PM2.5. They also showed how to validate PM sensors in the field 
using the Environmental Beta Attenuation Monitor (EBAM) as a standard for PM2.5 
readings in a wide range of environments. Employing high-resolution microsatellite 
imageries (PlanetScope, 3 m/pixel) and a low-cost sensor network, (Tripathi et al., 
2023) proposed a strategy for estimating and generating PM2.5 level visualisations at 
the subkkm level (500 m by 500 m). Chauhan et al. (2022) investigated the charac-
teristics of PM and AQ by installing a Microtop Sun photometer and low-cost sen-
sor at IIT Mandi and Dhampur (remote rural site) and further found that these 
inexpensive sensors provide reliable data and that a wide and dense sensor network 
is needed to gain insights into the variability in air pollutants (Sahu et al., 2021) 
presented findings from a study that involved the installation and validation of a 
network comprising six air quality monitoring systems that were constructed using 
Alphasense O3 (OX-B431) and NO2 (NO2-B43F) electrochemical gas sensors. In a 
study carried out by (Zheng et al., 2019), a novel approach was presented for the 
calibration of PM2.5 readings obtained from multiple low-cost PM sensors in the 
field. The proposed method involves a pipeline that combines simultaneous Gaussian 
process regression (GPR) and simple linear regression techniques. This approach 
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eliminates the need for predeployment collocation calibration and instead leverages 
all available reference monitors in the area to achieve accurate calibration on the fly.

In 2020, IIT Kanpur teamed up with Maharashtra PCB to validate PM sensors 
(financially assisted by Bloomberg Philanthropies). Overall, forty low-cost sensors 
were installed over 15 sites in the metropolitan region of Mumbai. These sensors 
included Plantower, Nova Fitness, and Telaire Dust Sensor (Kushwaha et al., 2022). 
Moreover, the precision and accuracy of Purple Air (PA) devices have been carried 
out by researchers from the University of California. They have tested two PA sen-
sors at the US Embassy, New Delhi, and have also deployed approximately 40 sen-
sors at different sites in Bengaluru. They have deduced that PA sensors are highly 
precise but their accuracy can change with time (Kushwaha et  al., 2022). 
Furthermore, under the Aakash project running under the Research Institute for 
Humanity and Nature (RIHN) centre, a compact useful particulate instrument 
(CUPI) sensor has been given to the Aryabhatta Research Institute of Observational 
Sciences (ARIES), Nainital to explore how aerosols disperse based on variations in 
altitude across different observation sites on the foothills of the Himalayas 
(Report, 2020).

4.5 � Challenges and Solutions

The preceding discussion lays out the current state of geospatial approaches and 
field sensors and the likely range of opportunities for the application of sensors, 
including ways in which sensors could be utilised to locate and reduce emissions 
from industrial pollution within and around their sources, as well as ways in which 
sensors could be applied at the community and individual levels to improve air 
monitoring networks. However, there are still several systemic technical and practi-
cal challenges associated with this burgeoning field of study. These include, but are 
not limited to, the creation of reliable sensors that generate high-quality data, the 
implementation of a thorough assessment of sensors, the incorporation of a data-
base from more than one sensor of varying quality acquired from various origins 
(government and citizens), and the public’s and government’s ability to visualise 
and make use of sensor data. Some major challenges include limited proficiency in 
obtaining three-dimensional data and the impracticability of active monitoring. 
Numerous community initiatives are going on a global scale to obtain air pollution 
measurements through crowdfunding. Although such sensors can be advantageous 
in the creation of citizen science projects and the production of innovative data, 
there remain several uncertainties regarding the precision of measurements obtained 
through low-cost sensors. To date, there is no conclusive evidence to support the 
long-term reliability and precision of these monitors in the absence of regular cali-
bration procedures. Current endeavours are being made to enhance the accuracy of 
these sensors, and recent analyses are reinforcing the argument for the implementa-
tion of meticulously crafted, low-cost sensors for the purpose of measuring air pol-
lution on a municipal scale. With careful design, such networks have the potential 
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to yield valuable information regarding the spatial distribution of pollutants and 
facilitate the identification of localised areas with high levels of pollution.

India has been in the international limelight because of the extremely high levels 
of air pollutants in many regions of the country; some cities in India have been 
ranked among the worst in the world for air quality, and there is growing public 
demand for action to be taken. It is challenging to use existing data for long-term 
trend analysis studies due to the lack of comprehensive databases on air quality, and 
even when the data are utilised, there exists high apprehension surrounding conclu-
sive observations or findings. Attempts made recently, for instance, making long-
term records from NAMP stations openly available, are encouraging and will likely 
encourage and facilitate further research on the problem. India’s air quality monitor-
ing has come a long way in the past 20  years, and there are currently ongoing 
attempts to develop a national air quality monitoring programme, with particular 
emphasis on establishing CAAQMS in India’s major areas. Air quality manage-
ment, higher-order scientific investigation, and epidemiological analytic activities 
would all benefit from increased support from more robust regulatory air quality 
monitoring networks in India, given the substantial health burden associated with 
exposure to degraded air quality in India.

Faster and higher-quality data in India might be possible with a hybrid monitor-
ing strategy. Recent progress in satellite-based management of AQ, as well as the 
advent of crucially placed ground-based monitoring sites that assess aerosol optical 
depth using sun photometers in conjunction with PM2.5 chemical content, suggest 
that this approach may help improve the accuracy of satellite-based estimates from 
both global and regional viewpoints. Additionally, the inputs required by receptor 
models for source allocation can be gleaned from the data collected at such strategi-
cally placed measurement sensors. Insights into source contributions such as this 
could improve air quality management predictions and programme evaluation.

4.6 � Conclusion

The alarming increase in the concentration of air pollutants in urban areas is the 
primary motivation for conducting research on air pollution monitoring. The satel-
lite remote sensing approach makes it possible to quantify the levels of air contami-
nants. Additionally, GIS-based spatial interpolation techniques can be used to rank 
the relative importance of different places. In addition, considering the disastrous 
consequences that air pollutants have on human health, it is essential to make pro-
jections regarding the concentrations of air pollutants through the use of model 
simulations. The purpose of this research is to provide a thorough review of the 
satellite remote sensing techniques that are used in mapping and prioritising the 
levels of air pollutants, as well as to predict the concentration of air pollutants. 
Because they provide comprehensive and synoptic views of wide areas in a single 
snapshot, sensor data gathered from suitable satellites are anticipated to be useful 
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for monitoring and mapping air pollution. Using a combination of GIS and remote 
sensing, air quality can be assessed over a considerable area.

Researchers are pushing the boundaries of the concept of the Next Generation 
Air Pollution Monitoring System (TNGAPMS) by using cutting-edge sensing tech-
nologies such as microelectromechanical systems (MEMSs) and wireless sensor 
networks (WSNs). Many innovative techniques for monitoring air pollution have 
been established and validated at this point. All these systems show that it is possi-
ble to create a monitoring system for air pollution that provides a high level of 
spatiotemporal detail, is cost- and energy-efficient, can be easily deployed and 
maintained and is easily accessible by both the general public and trained profes-
sionals. Such systems have the potential to be a ready-to-use, potent, and helpful 
tool by alerting end users to potentially excessive levels of pollutants and allowing 
them to take easy measures to reduce their impact. Because of its several benefits, 
including reduced prices, less noise, and lower electricity usage, the use of low-cost 
sensing technology to monitor air quality, both indoors and outdoors, is being advo-
cated. Furthermore, reference tools are still required for validation and calibration; 
therefore, their use is not yet completely decentralised.

4.7 � Recommendations

The following suggestions/recommendations can be adapted to enhance the effec-
tiveness of air quality monitoring networks related to geospatial technologies and 
field sensors in India:

	 (i)	 The potential for a hybrid approach is suggested by the improvements in 
satellite-based air quality monitoring and the strengthening comprehension of 
the significance of high-resolution spatial dynamics in urban regions. The 
option of an integrated framework, as presented in Fig. 4.3, can be perceived 
as a strategy for amalgamating existing, monitoring endeavours rather than a 
completely novel system. Therefore, we characterise this framework as a 
supplementary approach to current endeavours, which encompass the main-
tenance and improvement of the customary terrestrial surveillance system, 
with the aim of optimising the attainment of valuable data for the purpose of 
air quality governance.

	 (ii)	 Satellite-based methodologies do not serve as a substitute for ground-based 
surveillance. Instead, both techniques can be amalgamated to enhance the 
spatiotemporal range. Data feeds from geostationary satellites are used almost 
in real time with a focus on India and have the potential to offer additional 
information to improve communication among individuals, predictions, and 
source evaluation. This is in contrast to the current polar-orbiting satellites 
that only provide snapshots once or twice a day.

	 (iii)	 Large-scale deployment of monitors equipped with low-cost sensors can aid 
in the creation of emission inventories of pollutants, the identification of 
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pollution hotspots, and the conduct of real-time exposure assessments, all of 
which are necessary for the development of effective mitigation measures. To 
better attain the Sustainable Development Goals (SDGs) related to public 
well-being, minimising the negative environmental effects of urban areas and 
adapting to climate change, India’s smart cities initiative aspires to formulate 
recommendations for urban planning and land-use shifts.

	 (iv)	 To determine if a validation/calibration process can make low-cost sensors 
functional without the need for reference instruments, it is suggested to con-
duct more studies, specifically in different settings and with new sensors that 
are emerging regularly and for an extended measurement period.

	 (v)	 The potential of machine learning and data mining for analysing AQ data 
from sites in different areas and establishing airshed limits should be explored 
so that the geographical scope of air quality monitoring can be broadened, 
even with a limited number of monitoring stations.

	 (vi)	 Improvements in low-cost monitoring, prospective satellite missions, and 
focussed field initiatives are all promising developments for this network. 
This integrated network could be improved in the future to better estimate 
global exposure, which is crucial for large-scale studies such as the Global 
Burden of Disease and the United Nations’ SDGs.

	(vii)	 Data assessment can be carried out through the utilisation of third-party data 
evaluation, annual instrument intercomparisons, and calibration. Furthermore, 
it is crucial to gather and disseminate metadata, which refers to descriptive 
details about datasets, to facilitate improved cataloguing and contextually 
appropriate utilisation of data. Moreover, it is imperative to archive and dis-
seminate information pertaining to the efficacy of monitoring networks, 
including crucial metrics such as the annual data capture rate, as well as 
instrument calibration and performance evaluation.

Fig. 4.3  Framework for an integrated system of air quality monitoring
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	(viii)	 The integrated airshed framework presents a cost-effective solution for 
enhancing air quality statistics at both national and regional levels. This 
approach facilitates the linkage of local data to global satellite-based mea-
sures and a worldwide network, thereby addressing current information gaps. 
Moreover, it establishes a basis for enhancing the efficiency of routine con-
nections in the future.

	 (ix)	 Enhanced prospects for collaboration among the central and state pollution 
control boards, as well as regional academic and research institutions, have 
the potential to facilitate pollution mitigation endeavours. The integration of 
research and policymaking, along with the promotion of research and devel-
opment at PCBs, can effectively address existing gaps in the system. The 
airshed approach offers a sustainable solution by targeting and synergising air 
pollution management across administrative boundaries. Although this con-
cept is in the evolving stage in India, several states have already initiated air-
shed approache to tackle air pollution, and the emphasis on the focussed 
implementation of airshed approaches will certainly result in better air pollu-
tion management.
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Chapter 5
Geospatial Techniques and Methods 
for Monitoring and Assessment of Soil 
Contaminants

Amar Kumar Kathwas , Pranata Hazra , Rakesh Saur , Barnali Saha, 
Loveraj Singh, Leela Gariya, Shruti Kumari, and Harshita

Abstract  Soil is the medium that is fundamental for thriving life on earth, as it 
provides support to flora and fauna. Soil contamination is a prime source of health 
hazards for humans as well as animals. The use of soil extravagantly as a sink for 
dumping toxic and solid waste coupled with the use of enormous quantities of 
chemical fertilizers significantly alters the biological, physical, and chemical state 
of soil. This alteration causes depletion of the organic and biotic elements from the 
soil, leading to land degradation and desertification. The contaminants entering soil 
leach and percolate soil layers and are transported to surface and underground water 
sources, while some are absorbed by plants, which further enter the food chain, seri-
ously affecting biotic life on earth. Currently, human interventions with the soil in 
terms of mining, industrialization, agriculture, and management result in the dete-
rioration of the existing soil state. In India, nearly two-thirds of the land is under 
degradation. Soil contamination is a serious worldwide problem that requires quick 
and stern measures to constrain and reverse the process of land degradation. This 
study aims to highlight some of the geospatial methods and techniques that are used 
worldwide for the assessment and monitoring of soil contaminant dynamics. 
Moreover, the study also highlights the various effects of different soil contaminants 
on humans and the earth’s environment.

Keywords  Effects · Geospatial techniques · Monitoring · Soil contamination
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5.1 � Introduction

Soil, a mixture of finely divided mineral particles (sand, silt, and clay) along with 
organic matter, water, gas, and living organisms, covers the majority of Earth’s land 
mass and is a fundamental component for thriving and sustaining flora and fauna in 
an ecosystem. In its original form, it is uncontaminated; however, any addendum 
caused by xenobiotics intentionally and unintentionally by human beings results in 
the alteration of the original physical, chemical, and biological state and levels of 
the soil, causing contamination (Abrahim & Robin, 2008; Martinez-Mera et  al., 
2019; Sutherland, 2000). The exponential growth of the human population in the 
last few decades has led to increased demands for energy, transportation, healthcare, 
housing, water, and food, causing transitions in land use/land cover (LULC), 
destruction of natural vegetation and wetlands and expansion of croplands. The 
unprecedented transitions of LULC in combination with industrialization and com-
bustion of fossil fuels significantly increased the level of greenhouse gases, namely, 
carbon dioxide, lead, and nitrogen oxides along with other harmful gases, which in 
turn led to the increased temperature of Earth’s atmosphere (Chabukdhara & Arvind, 
2012; Han et al., 2006; Kayiranga et al., 2023; Li et al., 2004; Wuana & Felix, 2011; 
Zhang & Liu, 2002). This transition in the earth’s atmospheric status negatively 
impacted crop health, causing decreased crop yields and making crops prone to 
diseases and infestation by pests and fungi. To overcome adversaries and meet food 
demands, the use of a large proportion of chemical fertilizers, pesticides, fungi-
cides, nematicides, and herbicides for increased crop productivity has become the 
new norm. The use of such chemicals not only leads to decreased nutritional values 
of crops but also increases the exposure of humans and animals to numerous harm-
ful compounds and health disorders. The effects of some of the fungicides, insecti-
cides, and herbicides are presented in Table 5.1.

The introduction of such chemicals in an ecosystem not only contaminates soil 
but also affects its biochemical properties; moreover, these compounds/elements 
leach and are translocated, contaminating the local source of fresh waters such as 
ponds, rivers, and aquifers. Long-term use of such chemicals results in alteration of 
soil biomass and structure, resulting in land degradation and desertification. 
Furthermore, soil contamination caused by organic compounds such as polycyclic 
aromatic hydrocarbons (PAHs), a by-product produced due to incomplete combus-
tion of organic compounds, fossil fuels, and spillage of petroleum products due to 
natural disasters or industrial and domestic activity, has dire and long-lasting 
impacts. Since PAHs are hydrophobic in nature, soil is one of the major sinks in 
nature. These PAHs are then transported from soil to crops and surface and ground-
water sources through precipitation and surface runoff. A large number of PAHs are 
mutagenic and carcinogenic in nature, raising concerns about their intrusion and 
occurrence in the food chain and human ecosystem. Since petroleum is one of the 
major sources of PAHs and is easily released into the environment during the pro-
cess of extraction, transportation, and storage, it entails a large amount of caution 
owing to its impact on the environment and human health.
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Table 5.1  Effects of 
fungicides, insecticides, and 
herbicides on the human body

Types of chemicals Effect on body

Fungicides
Benomly Cirrhosis
Metaram Thyroid gland
Nabam Nerve damage
Zineb Diarrhea
Dichloran Kidney
Insecticides
DDT Carcinogenic
Dieldrin Dizziness
Endosulfan Diarrhea
Dicofol Headache
Methoxychlor Nervous system
Herbicides
Glyphosate Nervous system
Metribuzin Organ weight
Dacthal Liver damage
Sethoxydim Tremors
Trifluralin Dermal irritation

Other forms of soil contaminants include Cd (cadmium), lead, Ni (nickel), As 
(arsenic), Tl (thallium), Cu (copper), Hg (mercury), Zn (zinc), and Cr (chromium), 
which are characterized as heavy metals with atomic weights and densities more 
than five times those of water. Some of these naturally occurring elements are gen-
erally found in areas close to industrial, mining, milling sites or metal, paint, and 
petrochemical plants. Moreover, chemical fertilizers used as supplements to increase 
the soil metal content in plant growth areas are also a major source of heavy metal 
contamination. Since these are complex compounds and do not degrade chemically 
or microbially easily, unlike organic compounds, they persist in soil for a much 
longer duration, posing health risks to humans and animals and ecological life under 
direct contact, ingestion, or through induction in the food chain.

With the advancement and development of human civilization, the risk of heavy 
metal contamination in soil poses a great threat to the earth and environment (Liu 
et al., 2016). In developing countries, rising anthropogenic activities and industrial-
ization, coupled with a lack of waste management processes, have become a major 
source of carcinogenic soil pollution (Al-Farraj et al., 2013). This study presents a 
review of the various types of soil contamination and geospatial methods and tech-
niques for their assessment and monitoring. Soil pollution or soil contamination is 
directly related to soil fertility and food security and is an important issue for 
decision-makers across the globe (Hammam et al., 2022).
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5.2 � Literature Review

Stalin et  al. (2010) analyzed the level of chemical contamination of Tambaram 
Taluk in Pammal Panchayat near Chennai, where more than 145 tannery industries 
were functional over a long time period. To assess the level of contamination, they 
assigned ranking and weightage to the pollutants. Parameters such as pH, Ec, and 
TDS were selected, and soil samples were collected at three different depths. 
Interpolation techniques such as inverse distance weighting (IDW), spline, kriging, 
and trend were used to prepare the spatial distribution layers of various parameters 
in the geographical information system (GIS) environment. The weights against 
each parameter were computed using the analytical hierarchical process (AHP), and 
subsequently, using the overlay operation on the respective layers, the severity of 
the contaminated areas was assessed.

Manii (2014) performed an analysis of soil contamination based on data from 26 
soil samples in Babylon, Iraq. The focus of the study was primarily on three ele-
ments, namely, chromium (Cr), nickel (Ni), and lead (Pb). The collected soil sam-
ples were chemically analyzed, and thereafter, using the spatial interpolation 
technique kriging, the spatial distribution map of the soil contaminants was pre-
pared. Kwiatkowska-Malina et al. (2020) used geostatistical methods to assess the 
degree of soil contamination in the context of Ni, cadmium (Cd), As, and Pb in the 
province of Poland. The study also focused on assessing its relation with dry/wet 
deposition from atmospheric air (Kowalska et al., 2018). The objective of the study 
was to identify the degraded areas and the emitters of contamination. Web Map 
Services (WMS) was used for the generation of maps in the GIS domain. Using the 
interpolation technique, maps of contamination for Silecia were prepared.

In the context of soil pollution, in a mining district named Nakhlak of Central 
Iran, Moore et  al. (2016) performed an investigation for potentially toxic metals 
such as As, Co, Mo, Ni, Pb, Cd, Sb, Ag, Cu, Cr, and Zn. They identified 26 sampling 
locations using GPS for data collection and spatial representation. An integrated 
method comprising geostatistical techniques, chemical analysis, and various pollu-
tion indices was used to evaluate the potential of different toxic metal contamina-
tions in soil samples (Paustenbach et al., 1993; Oumenskou et al., 2018a, b). Hou 
et al. (2017) focused on the application of GIS techniques and multivariate statisti-
cal methods to understand the primary aspects of this domain. The study considers 
different aspects related to the dynamics of heavy metal soil contamination in the 
spatial domain. Soil sampling was accomplished using grid and composite sam-
pling techniques. Several programs have been implemented to differentiate different 
land use/landcover and soil types (Bonelli & Manni, 2019). The commonly used 
spatial interpolators were IDW interpolation, ordinary kriging, multivariate statisti-
cal assessment methods, principal component analysis (PCA), and cluster analysis. 
The review also focused on various decisive and conforming parameters in the spa-
tial domain of HM contamination in soils. The results of the examination revealed 
contamination related to heavy metals (HMs) and their potential sources. The study 
also provided insight into how HMs are highly heterogeneous and may exist in par-
ticular localities at elevated concentrations in soil (Kahangwa, 2022).
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Balamurugan (2014) assessed soil contamination using GIS techniques in 
Pammal Panchayat at Tambaram taluk, Chennai. The analysis was carried out to 
assess the level of soil contamination and chemical properties such as pH, sulfate, 
chromium, chlorides, electrical conductivity, and total dissolved solids, and organic 
matter. To accomplish the task, approximately 33 samples were collected at differ-
ent depths (0.3 m, 0.9 m, and 1.5 m). Based on geo-tagged points and sample prop-
erties, a continuous layer for each depth was prepared using interpolation techniques. 
Furthermore, different reclassification methods (manual, defined, equal, quantile 
and neural, and standard deviation) were used to generate continuous maps. By the 
cross-validation process of various interpolated continuous layer maps with the 
chemical characteristics of the field data, the best interpolation method was 
identified.

EL-Rawy et  al. (2020) assessed the arable land of the Nile Valley (Minia 
Governorate) for heavy metal contamination, namely, essential trace constituents 
(B, Cu, Fe, Zn, and Mn) and toxic heavy elements (Se, As, Cr, Co, Pb, Ni, and Cd). 
A systematic sampling technique was used for the collection of soil samples at vari-
ous depths: 0–30, 30–60, 60–90, and 90–120 cm. Using atomic absorption spectro-
photometry, the contents of As, Se, Cr, Cd, Pb, Ni, Co, and Cu were determined. 
The metal pollution index (MPI) was incorporated to assess the various degrees of 
heavy metal content hazards.

Jiang et al. (2019) performed an investigation to determine mercury contamina-
tion and its spatial dynamics. The objective was achieved by collecting approxi-
mately 104 soil samples under three subclasses, that is, croplands comprising farms 
carrying out vegetable, paddy, and orchard cultivation in the southeast portion of 
China. A multiple linear regression technique was used in the context of the spatial 
domain to identify the factors responsible for mercury contamination. Subsequently, 
the extent of mercury concentration was assessed using geographic information sys-
tem (GIS) and spatial analysis in the various croplands. GIS methods and tech-
niques, comprising proximity assessment, buffer assessment, and morphology 
analysis, were used in geospatial data processing for extracting geographical influ-
encing parameters of the soil Hg concentration variance in arable areas. Proximity 
assessment was used to determine the distances between the sample location and 
distance from roads, distance from rivers, and distance from chimneys. The buffer 
investigation was performed to compute the distribution of construction sites in all 
different types of land by generating a buffer distance around the sampling location 
to a particular distance (Gholizadeh et al., 2018; Gholizadeh & Kopačková, 2019). 
Statistical methods (mean, maximum, and standard deviation) of soil Hg content 
were also computed to assess the basic status of soil Hg contamination.

Li et al. (2004) showed an elaborate survey using systematic sampling methods 
and techniques for identifying metal contamination in urban soils. Geochemical 
maps of total metals in land surface soils produced on the basis of GIS technology. 
Different hot spot regions of metal contamination were recognized from the com-
posite metal geochemical map, especially in the old industrial and residential 
regions. The kriging geostatistical technique was utilized for the interpolation of 
geospatial data types. The variogram was also adopted to deliver mathematical 
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changes in the variation of contamination property over the surface area on the basis 
of the direction and distance of two sampling locations (D’Or et al., 2009).

Another study by Al-Khuzaie and Maulud (2022) focused on the precise deter-
mination of the concentration of trace elements in the soil. Twenty-eight representa-
tive soil sample profiles were collected from Al-Shamiyah city. Using the 
geoaccumulation index (I-geo) and pollutant load index (PLI), they analyzed the 
concentration of elements present in soil with reference to standard concentrations. 
Finally, the spatial or geographical distribution of the heavy metal pollutant ele-
ments was mapped using the inverse distance weighted technique in the GIS domain. 
Similarly, Oumenskou et al. (2018a, b) studied agricultural soils to identify heavy 
metal contamination since with increasing agricultural activities, soil pollution is 
becoming a major concern worldwide. This study examines heavy metal contami-
nation in the Tadla Plain of Morocco with the utilization of different geoaccumula-
tion indices and GIS. In their assessment, the geoaccumulation indices, enrichment 
factors, contamination factors, and load pollution index (LPI) clearly indicated the 
influence of anthropogenic activities as a major source of heavy metals.

Shaheen et  al. (2019) used autocorrelation Moran’s I and empirical Bayesian 
kriging techniques to analyze the concentration of heavy metals. Pollutants such as 
cadmium, chromium, lead, and physiochemical parameters were assessed at three 
different soil depths in the industrial area of Sheikhpura (Pakistan) (Fig. 5.1). The 
severity of contamination was evaluated using the geoaccumulation index and 
Nemerow integrated pollution index for the delineation of contaminated areas.

Yang et al. (2019) developed a diverse approach to estimate unknown soil pollu-
tion concentrations in soil in response to the spatial regression or interpolation 

Fig. 5.1  The techniques used by Shaheen et al. (2019) for geospatial modeling of soil contamina-
tion by selected heavy metals in the industrial area of Sheikhupura, Pakistan. (Source: Shaheen 
et al., 2019)
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method for heavy metal concentrations. They utilized the spatial outlier detection 
method for identifying anomalous soil collection points, and later, the investigation 
segregated between normal and outlier point areas. Spatial regression and interpola-
tion techniques were considered for analyzing the normal and outlier datasets, 
respectively. Finally, prediction-based soil pollution mapping was generated from 
the hybrid combination of spatial regression and interpolation techniques. Jin et al. 
(2019) analyzed the risk of residents toward the exposure to contaminated soils 
directly or indirectly related to public open spaces. They incorporated principal 
component analysis to investigate the dominant variables that help in regulating the 
heavy metal variables and echo potential sources. Moreover, cluster analysis was 
also applied to categorize datasets with similar patterns in certain groups automati-
cally by an algorithm to reduce intragroup variability and increase intergroup vari-
ability (Young & Hammer, 2000). The main parameters considered were then 
subjected to geostatistical analysis. Finally, the systematic combination of GIS with 
multivariate statistical assessment proved valuable for elucidating anthropogenic 
and natural sources.

Khalil et al. (2013) assessed waste materials from mines as various sources of 
soil contamination. Climate factors such as high rainfall give rise to metal disper-
sion in semiarid areas, as soils are scarcely vegetated. Therefore, in this review, the 
researchers assessed the nature and magnitude of soil contaminants from the Kettara 
mine in Morocco with the help of geochemical and geostatistical techniques. Wastes 
from mines were sampled, and assessments were carried out for the 41 chemical 
elements. The statistical methods, namely, minimum, maximum, mean, and median 
for the central tendency, standard deviation, and variation coefficient were consid-
ered for the assessment of the dispersion of the datasets.

Darwish et al. (2014) performed an investigation in the southern region of the 
El-Hussinia Plain of the El-Sharkaiya Governorate, Egypt. The study was primarily 
focused on salt-affected soils, as the concentration of salts is significantly related to 
crop growth. Soil parameters such as EC, pH, SAR, ESP, CaCO3, OM, and soil 
texture along the longitudinal slope were measured. Landsat 7 ETM+ data along 
with ground control points from the toposheet were used for geo-registration. Linear 
interpolation was used to generate a 30 m spatial resolution digital elevation model. 
They used supervised classification to obtain the land-use map. Geostatistical tech-
niques such as kriging and simple regressions were also used. The linear spectral 
technique was also applied to predict the soil salinity. Multiple linear regression was 
used to generate the salinity map based on the best-correlated indices. Miletić et al. 
(2022) determined soil contamination by analyzing ten different potential toxic con-
tents and evaluated its associated ecological risk by using different indices. They 
collected agricultural surface soil samples from 200 sites. In terms of the field sur-
vey, cadastral parcels were identified, and the locations of the sampling points were 
collected using a GPS system to locate the exact geographical locations of the 
points. Another study by Hammam et al. (2022) focused on soil contamination anal-
ysis for the nearby area of El-Moheet drainage in Egypt. Six heavy metals were 
considered for analysis. They used LANDSAT-8 (OLI) images for the study area 
and performed supervised classification to derive the land-use map. Sixty random 
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locations were selected for soil sample collection near the El-Moheet drainage, and 
their geographical locations were collected. Methods such as principal component 
analysis and contamination factors were used to measure the soil contamination 
levels. Ordinary kriging was used to generate the degree of contamination map. 
Furthermore, along with the land-use map and degree of contamination map, a spa-
tial pattern map of soil contamination was prepared.

Alam et al. (2015) studied soils from various land-use regions in Lahore City, 
Pakistan, to assess the concentrations of heavy metals such as cadmium, chromium, 
nickel, and lead. More than 100 samples were collected randomly from the six land-
use regions, which were classified into park, commercial, agricultural, residential, 
urban, and industrial. Every sample was assessed in the lab with the help of the tri-
acid digestion technique. The statistical methods of analyzing variance, correlation, 
and cluster analysis were used to assess all data and information. However, in addi-
tion to kriging, a geostatistical technique was performed in the GIS domain to 
develop a model and to predict the spatial concentrations of the four heavy metals, 
namely, Ni, Cr, Cd, and Pb. Therefore, the results showed a significant correlation 
among the heavy metals in the urban region and industrial areas. Wu et al. (2014) 
also presented a study on various soil contaminations. In the analysis, they assessed 
the levels of several trace elements with the help of the enrichment factor, geoac-
cumulation index, pollution index, and principal component analysis. Three soil 
contamination indices in combination with the PCA technique were used to analyze 
the concentration and proportion of soil contamination in that area. PCA merged 
with GIS was successfully used to differentiate trace metals present in natural and 
anthropogenic forms.

5.3 � Geospatial Techniques for Monitoring Soil Contaminants

Soil contamination refers to any soil substance that exceeds natural occurrence and 
negatively affects the ecosystem. When heavy metal and salt concentrations increase 
in the soil and cross the tolerance limit, they start appearing in crops, also affecting 
the food chain and human health. Accurate heavy metal spatial distribution maps 
are an important key to mitigating their impacts on ecosystems (Hammam et al., 
2022; Yu et al., 2020). Some common chemicals contaminating the soil are hydro-
carbons, solvents, pesticides, poly-nuclear aromatic hydrocarbons such as naphtha-
lene, and HMs such as manganese, cadmium, nickel, chromium, zinc, lead, and 
copper (Mohammed et al., 2016). With the development of space technology for 
monitoring and assessing earth system processes and anomalies, the use of geospa-
tial technologies, namely, remote sensing, GIS, and GPS globally expanded signifi-
cantly. Since it is easy to use, environmentally friendly, and cost-efficient, it provides 
many essential advantages over traditional techniques, such as speed, portability, 
range of elemental quantification, sample preparation, and simplicity in identifying 
contaminants for prevention and remediation. Remote sensing techniques allow the 
collection of data over large areas and a comprehensive outlook on soil 
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Fig. 5.2  Jia et al. (2021) studied soil pollution using drone image recognition and machine learn-
ing in arsenic-contaminated agricultural fields in China. (Source: Jia et al., 2021)

contamination (Caeiro et al., 2005; Wang et al., 2023; Wulf et al., 2015). Satellite 
imagery and aerial surveys can cover immense territories, allowing the identifica-
tion and plotting of contaminated sites on a zonal or even intercontinental scale. 
This broad coverage acts as a helping hand in identifying the hotspots and interpret-
ing the extent of contamination across different regions. Geospatial techniques help 
in the early detection of potential soil contamination before it spreads widely, and 
by monitoring the variations in land-use patterns, vegetation health, and soil mois-
ture content, remote sensing can provide evidence of contamination risks or root 
causes (IAEA, 2004). This early detection helps with timely mediation and protec-
tive measures to alleviate the impacts of contamination. With more advancement of 
the technology soil contamination are studied by combining high-resolution aerial 
imaging (HRAI) with machine learning algorithms (Jia et al., 2021) (Fig. 5.2). In 
the literature, numerous methods and techniques are available for monitoring soil 
contaminants. Some of the methods for investigating the presence and extent of soil 
contaminants in an area are discussed below:
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�Inverse Distance Weighted Interpolation

It is a deterministic mathematical method that assumes that the values closer are 
highly correlated compared to the values that are distant from its function. 
Mathematically, it can be represented as:
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Where, zi is the control value of the ith sample point, dx,y,i is the space between Zx,y 
and zi, and b is user-defined. The algorithm provides weights to points based on the 
inverse distance of power, agreeing with logical intuition. The accuracy and preci-
sion of the algorithm can be significantly improved by considering a significant 
number of neighboring point samples (n) and the exponent (b) to yield an optimal 
agreement between the predicted and measured values.
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Where, z(B), area and λi, weights value, respectively.

�Creating a Soil Contamination Map
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Z∗ is the estimated Kriging method value, which is the unsampled point, zi is the 
known value of dispersed data spatially in the sample point, λi is the weight of 
each data point, and N is the total number of data in the Kriging estimation.
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Where, bz* bias indicator of z*, data used in Kriging sum weights must be 1. The 
following equation is the kriging equation for unbiased estimation:
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Apart from the abovementioned techniques, some of the simple and complex indi-
ces were developed by several researchers that help in the accurate monitoring and 
assessment of the severity of soil contamination in the soil and are discussed below.
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�Simple Indices

The group comprises simple index contaminants with specific HMs (heavy metals).

Geoaccumulation Index (Igeo)  The index is used for the assessment of soils for 
HM contamination. The assessment is based on the HM contents in the amount of 
HM in the O and A horizons of soil with respect to specified GB (Muller, 1969). The 
values of the index help in categorizing the soil into several categories based on the 
extent and severity of contamination.
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Where, Cn represents each heavy metal concentration; the geochemical background 
is GB, and 1.5 is constant.

Single Pollution Index (PI)  The present index is used for determining the heavy 
metals that pose the highest threat to soil in an area. The output of the index is used 
as input for certain complex indices, such as the PINemerow Index (Guan et al., 
2014; Varol, 2011). The mathematical representation of the index is presented below:
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Where, Cn signifies the amount of HM in soil, and GB represents the value corre-
sponding to the geochemical background.

Enrichment Factor (EF)  The index quantifies the influence of human-driven 
activity on soil in terms of HM concentration. To measure and assess the anthropo-
genic influence, the amount of HM content with high consistency is considered as a 
reference point in both the GB and analyzed sample. The elements used as refer-
ences can be assessed using the equation below (Sutherland, 2000):
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considered as references of the analyzed heavy metal (Cn). If the EF value ranges 
from 0.5 to 1.5, it can be quantified as a particular present soil heavy metal caused 
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by natural occurrence, and if exceeds 1.5 EF, caused by anthropogenic activities 
(Elias & Gbadegesin, 2011).

Contamination Factor (Cf)  The index assesses the soil contamination in consider-
ation of the HM content from the upper part of the soil, and the amount of HM 
observed during the preindustrial period is used as a reference, which is given by 
Hakanson (1980). Mathematically, it can be computed using the formula given below:
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Where, Cm – mean concentration of heavy metal, Cp−i – preindustrial substance value.

Biogeochemical Index (BGI)  There exists no universal index for evaluating the 
intensity of HM concentration in soils under land use such as grassland and forest, 
and the Biogeochemical Index (BGI) bridges the gap (Mazurek et al., 2017). For the 
computation of the index, the amount of HM in the O horizon and the underlying A 
horizon of soil is absolutely essential. The computation of the BGI can be carried 
out using the following formula:
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Where, CnO is the amount of certain HMs in the O horizon and CnA denotes the HM 
content in the A horizon. The index is helpful in determining the capability of the O 
horizon to absorb contaminants. An index value higher than 1 signifies a higher 
absorption capability of the O horizon. Moreover, the index does not consider the O 
and A horizon soil particle density; therefore, the output of the index is merely an 
assumption (Mazurek et al., 2017).

�Complex Indices

This group of indices allows us to assess the data in a comprehensive way. For the 
computation of each index, the total concentrations of each HM and, in some cases, 
the calculated values of the individual indices are also used.

Sum of Contamination (PIsum)  PIsum is the most common index for measuring 
HM contamination in soil. The index can be defined as the totality of all HM con-
tents and can be given mathematically as:
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Where, PI is the single pollution index and n represents the number of total heavy 
metals analyzed.

Pollution Load Index (PLI)  The PLI is used for the overall analysis of the degree 
of contamination in soil. The index provides a means for presenting soil deteriora-
tion due to heavy metal accumulation (Varol, 2011). The index signifies the geomet-
ric mean of PI considering the equation given below:
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Where, n represents the considerate quantity of HM, whereas PI signifies the com-
puted values for the Single Pollution Index.

Average Single Pollution Index (PIavg)  The index developed by Gong et al. (2008) 
and Inengite et  al. (2015) is primarily used for the computation of soil quality. 
Mathematically, it can be represented as:
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Where, n is the considered HM and PI is the single pollution index value. Index 
values higher than 1 signify low quality of the soil, signifying a higher degree of 
contamination (Inengite et al., 2015).

Multielement Contamination (MEC)  This index is used for assessing the pollu-
tion of HMs considering their concentration in the various horizons of the soil 
(Adamu & Nganje, 2010; Kloke, 1979). Index values higher than 1 signify the exis-
tence of anthropogenic activity on the HM concentration in soil and can be com-
puted using the following formula:
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Where, C is the HM concentration, T is the bearable level and n is the type of HM.

Contamination Security Index (CSI)  Basically, CSI is an informative index that 
signifies the intensity of HM content in the soil (Pejman et al., 2015). For the com-
putation of the CSI index, the low range effect and median range effect values are 
taken into consideration (Long et  al., 1995). The index is also proven helpful in 
determining the toxicity edge exceeding which the adverse effects of contamination 
are observed on soil and the environment. The index can be computed using the 
equation given below:
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Where, w signifies the computed weight of each HM component (Pejman et  al., 
2015) and C denotes the concentration of HM.

Degree of Contamination (Cdeg)  The computation of the degree of contamination 
by HM can be assessed utilizing this index (Hakanson, 1980), and its mathematical 
representation is presented below:
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where Cf signifies the contamination factor and n is the number of analyzed HMs.
Furthermore, multivariate methods are also considered for assessing soil con-

tamination using geospatial techniques. In this study, we will discuss two multivari-
ate analysis methods, namely, multicriteria decision-making (MCDM) and principal 
component analysis (PCA).

�Multicriteria Decision-Making

Multicriteria decision-making (MCDM) eases the decision-making process 
(Fig. 5.3). It is useful for solving numerous complex problems that can be accu-
rately modeled using it. The MCDM technique can be divided into two parts: multi-
attribute decision-making (MADM) and multi-objective decision-making (MODM). 
MCDM and MADM are commonly used for the assessment or selection of many 
alternatives in limited quantities. Decision-making systems play an important role 
in providing support for important analysis.

Fig. 5.3  Main steps of multicriteria decision-making. (Source: Taherdoost & Madanchian, 2023)
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Analytic Hierarchy Process (AHP)  The multicriteria method was developed by 
Saaty in the 1970s. Globally, the method is widely used and trusted for multicriteria 
studies making the best decisions (Cahyapratama & Sarno, 2018). The computa-
tional process of AHP is accomplished in various stages, in stage one, we determine 
the problem followed by the set of solutions, and the later stage involves the compi-
lation of the problem hierarchy. Then, the weights corresponding to each influenc-
ing parameter are computed by comparing the parameter importance toward the 
problem in pairs.
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Furthermore, the computation of the eigenvalues is carried out by multiplying 
each column of the paired matrix in the same row and then being lifted by an exist-
ing criterion number.
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Measures of consistency are very important to ensure that result accuracy.
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Where, CI stands for consistency index, λmax stands for maximum eigenvalue, and n 
stands for number of elements.

To assess the hierarchy consistency, it is necessary that the consistency ratio (CI/
IR) is <= 0.1.

	
CR

CI

IR
=

	 (5.21)

where CR stands for consistency ratio, CI stands for consistency index, and IR 
stands for index random consistency.

Principal Component Analysis (PCA)  PCA is a statistical technique to reduce the 
dimension of the parent dataset by converting it into a new set of variables known 
as principal components (PCs) (Zhiyuan et al., 2011). Reducing the large number of 
parent datasets yields faster computation with a higher rate of accuracy. The various 
PCs generated are uncorrelated and ordered in such a way that the kth PC has the kth 
largest variance among all the newly generated PCs. Therefore, the maximum vari-
ance is found in the first principal component. In this way, the generated compo-
nents extensively explain smaller portions of the variance that are uncorrelated with 
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each other. The computation of the principal components involves certain steps, 
which are described below.

Standardization  The range of variables is computed and standardized to analyze 
each variable’s contribution equally. To transform the variables at the same scale, 
the following formula can be used:

	
Z �

�VALUE MEAN

STANDARD DEVIATION 	 (5.22)

where

	
Mean

Sum of the Terms

Total number of terms
=

	 (5.23)

	
Standard Deviation

mean
� �

�� �x

n

2

	 (5.24)

X = dataset value and n = total number of values in the dataset.

Covariance Matrix Computation  In this step, we understand the dynamics of the 
variables of the data in reference to the calculated mean value. To separate the high 
covariance matrix, interrelated variables are calculated using the given equation:

The covariance matrix is given as follows:

	

Covariance Matrix
COV , COV ,

COV , COV ,
�

� � � �
� � � �

�

�
�

�

�
�

X X X Y

Y X Y Y
	 (5.25)

where

	
Conariance

Sum Mean of Mean of

Number of data po
�

� � � � � �� �(X X Y Y

iints 	 (5.26)

Feature Vector  To assess the variables’ principal components, define the eigen 
value and eigen vectors. A is any square matrix. A stands for nonzero vector, v 
stands for eigenvector of an if:

	 Av V� � 	 (5.27)

λ is the corresponding eigenvalue.
The above-described methods and techniques are some of the easiest yet efficient 

methods used by researchers worldwide to assess the spatial extent, location, and 
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severity of soil contamination. Apart from the methods presented above, there also 
exist several other methods that are widely used; however, they require a large num-
ber of datasets and more time.

5.4 � Conclusion

This study focuses on developing insights into the needs and methods for assessing 
soil contamination. Since the soil in its original state is pure, explicit human inter-
ventions, and developments are leading precious soil resources toward contamina-
tion by unmanageable elements and chemicals, which take many decades and 
centuries for decomposition and have detrimental impacts on living organisms when 
in contact or ingested. The prime sources of these elements and compounds are the 
sites where human activities such as industrialization, mining, and agriculture are 
prominent; however, there are much larger impacts in terms of space and time. With 
the realization of the soil contamination problem, the development of multiple mea-
sures came into light to monitor and assess the extent of contamination. With the 
advancement of geospatial technology, the assessment and monitoring of contami-
nants have become significantly easier in nature. The use of GIS techniques coupled 
with statistical methods not only provides the location and extent to which contami-
nation is spread spatially but also provides the location of suitable sites where toxic 
materials and metals can be dumped. Human civilization is growing at an exponen-
tial rate, and we must realize that soil is a very precious resource for the sustenance 
of life on the surface of the earth. Therefore, it is of vital importance for humans to 
restrain the process of soil contamination. Here, we tried to present some of the 
most effective measures for monitoring and assessing soil contaminants using geo-
spatial and statistical measures. We believe the methods will be useful for the iden-
tification of probable soil contamination locations and the development of measures 
to constrain the impact of various contaminants on living organisms.
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Chapter 6
Geospatial Modelling and Framework 
for the Detection and Mapping of Noise 
Pollution

Rakesh Saur , Amar Kumar Kathwas , Pranata Hazra , 
and Barnali Saha

Abstract  With advancing human civilization, the migration of people to urban city 
centres and its expansion in terms of spatial extent has seen unprecedented growth 
in the last couple of decades. This resulted in the expansion of urban infrastructures 
and transportation networks. Owing to the huge crowd of humans in city centres, 
the issue of noise pollution has widely expanded, resulting in poor quality of life 
due to overexposure to high-intensity sound from transportation vehicles. Studies 
around the globe reveal numerous methods and attempt to monitor noise pollution 
and restrain its impact on human ecology and the environment by taking necessary 
steps. In this study, an attempt has been made to discuss the efficient and potent 
methodological framework for noise prediction modelling. Primarily, three methods 
have been discussed considering the pros and cons of each model and its efficiency 
in the various landscape structures. Based on the framework, datasets incorporated 
for computation and generation of noise maps, integration in GIS domain and the 
probable efficacy of the models were predicted.

Keywords  Geospatial ·  GIS ·  Modelling ·  Noise pollution ·  Traffic ·  Urban

6.1 � Introduction

With the advancement of human civilization, humans unknowingly created numer-
ous problems for themselves. One of the major human-induced problems during the 
current time period is environmental pollution, namely, water, air and noise, which 
is intensifying exponentially and significantly affecting both the health of humans 
and the environment (Farooqi et  al., 2020; Firdaus & Ahmad, 2010; Geravandi 
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et al., 2015; Mohamed et al., 2021; Ukaogo et al., 2020; Vinay Kurakula & Kuffer, 
2014). Among the various types of pollution, noise is a major concern for the qual-
ity of life (Flanagan et al., 2023; Jamrah et al., 2006; Martín et al., 2006; Mehdi 
et al., 2011; Pathak et al., 2008a; Singh et al., 2018; Yang et al., 2020). Derived from 
the Latin word ‘nausea’, noise signifies any excessive, undesirable sound induced 
by human activity that disrupts human and animal life. Humans perceive sound 
between 16 Hz and 20 kHz, above which sound is uncomfortable and disrupts nor-
mal life. With the unceasing development of infrastructure and the progression of 
transportation modes, the intensity of noise pollution is inclined to increase daily 
(Bluhm et al., 2004; Garg et al., 2013; Griffiths & Langdon, 1968; Lu et al., 2019; 
Öhrström et al., 2006; Parris & Schneider, 2009; Vijay et al., 2015).

Principally, noise generated from traffic, transport, industries, factories, domes-
tic sources and neighbourhoods is a major source of environmental noise pollution 
(Baffoe et al., 2022; Bunn & Zannin, 2016; Cai et al., 2018, 2019; Chowdhury et al., 
2012; Farooqi et  al., 2020; Michali et  al., 2021; Ming Cai et  al., 2019; Montes 
González et al., 2020; Pathak et al., 2008b; Alam et al., 2020a). According to vari-
ous studies, noise levels of higher levels tend to cause serious illness in humans both 
emotionally and psychologically, which includes impairment of health, hyperten-
sion, change of heart-beat, elevated blood pressure, poor performance, annoyance 
and hearing impairment causing effects on residential, social and working perfor-
mance (Cabrera & Lee, 2000; Gupta et al., 2018; Hammer et al., 2014; Ma et al., 
2018; Oguntunde et  al., 2019; Stansfeld & Matheson, 2003). According to the 
guidelines listed by the Environment (Protection) Act, 1986, the permissible levels 
of noise in the various areas are presented in Table 6.1.

Currently, noise pollution in large urban centres is regarded as one of the major 
problems for communities (Horonjeff, 2022; King & Davis, 2003; Korfali & 
Massoud, 2003; Picaut et al., 2019; Weinstein, 1982; Yukawa & Matsubara, 2019). 
The noise level in some Indian cities is much higher than the prescribed standard by 
the CPCB, Central Pollution Control Board and MoEF, Ministry of Environment 
and Forest, Govt. of India (Kalawapudi et  al., 2020; Sahlathasneem & Surinder, 
2023; Alam et al., 2020b, c; Ranjan et al., 2023; Ranpise & Tandel, 2022; Yadav 
et al., 2023). According to the latest report from the United Nations Environment 
Programme (UNEP), globally, Dhaka (the capital of Bangladesh) is the noisiest city 
in the world, followed by Moradabad (Uttar Pradesh, India) and Islamabad 
(Pakistan). Moradabad recorded 114 dB of noise. Delhi, Kolkata and Asansol in 
West Bengal and Jaipur are a few other Indian cities where a high level of noise pol-
lution has been recorded (Dubey et  al., 2020a; Kamble, 2019; Lokhande et  al., 
2021; Mishra et al., 2019; Yadav et al., 2021). To reduce the impact of noise, steps 

Table 6.1  Permitted noise 
levels in various areas

Type of area Day time Night Time

Industrial area 75 70
Commercial area 65 55
Residential area 55 45
Silence zone 50 40

R. Saur et al.
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need to be taken during the planning phase; otherwise, the measures can be less 
viable and overpriced.

Various studies have been performed regarding the measurement of noise levels 
in urban areas. The results of these studies reveal the overexposure of urban areas to 
noise pollution (Filipponi et  al., 2008; Hachem et  al., 2015; Laxmi et  al., 2019; 
Martí et al., 2012; Masum et al., 2021; Morillas et al., 2018; Santini et al., 2008). 
Karthik and Raju (2015) emphasized in their investigation the importance of dataset 
quality and the model used for the generation of noise maps. The findings of the 
study revealed that the noise at the hotspots was significantly higher than the per-
missible limits issued by the pollution control board of Tamil Nadu. Moreover, it 
was also observed that the impact of noise from traffic is inversely proportional to 
the height of the building. Banerjee et al. (2008) evaluated the impact of various 
factors impacting the traffic noise level. Using statistical methods, they delineated 
factors responsible for elevated levels of noise. The findings reveal that the traffic 
variables, namely, traffic volume, types of vehicles, width of road, time along with 
land use and land cover variables, significantly influence the intensity and duration 
of noise in a location. Various researchers have argued that noise, which is primarily 
sound, propagates in all directions; therefore, conventional 2D mapping and moni-
toring of noise pollution might not present the overall severity of noise and requires 
2.5 D or 3D assessment at the hot spots (Mandjoupa et al., 2022; Tang et al., 2022; 
Kurakula et al., 2007). Kurakula and Kuffer (2014) demonstrated the application of 
a 3D urban model developed using laser-scanned data to study the extent of noise 
pollution in a local scenario in Delft, the Netherlands (Fig. 6.1). The study focused 
on the incorporation of noise barriers in the model to mitigate the impact of noise 
from hotspots.

According to studies conducted by researchers around the globe, the detrimental 
impact of noise pollution is not limited to humans but also induces significant dis-
ruption in the behaviour, sleep cycle, communication ability and habitat of animals 
Bar, 2021; Berger-Tal et al., 2019; Ditchkoff et al., 2006; Domer et al., 2021; Rabat, 

Fig. 6.1  Noise contour lines developed by Kurakula and Kuffer (2014) in combination with 3D 
city model of Delft, the Netherlands. (Source: Kurakula & Kuffer, 2014)

6  Geospatial Modelling and Framework for the Detection and Mapping of Noise…
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2007; Rutz et al., 2020; Senzaki et al., 2020). Moreover, a large number of studies 
conducted by marine environmentalists, especially during the COVID-19 pandemic, 
uncovered the negative impact of noise from boats and ships on marine life forms in 
terms of mating behaviour, habitat selection, migration, detection of prey and preda-
tors and orientation (Chahouri et al., 2022; Erbe et al., 2019; Mortensen et al., 2021; 
Popper & Hawkins, 2019; Tidau & Briffa, 2019). Kaplan and Mooney (2015) per-
formed an investigation to track the vessel noise on the three reefs in the US Virgin 
Islands National Park over a period of four months. The findings of the study 
revealed that boat and vessel noise overlap with the sound produced by reef organ-
isms, which largely influences the communication ability of aquatic animals.

Owing to the effects of noise pollution on humans, numerous noise propagation 
models have been developed to date. The earliest road traffic noise model was pre-
sented in the 1952 Handbook of Acoustic Noise control, which was later modified 
by some researchers and was offered for speeds of 35–45 mph. Comparatively, a 
newer model named the FHWA traffic noise prediction model was developed by 
Barry and Reagan of the United States of America’s Department of Transportation 
Federal Highway Administration. The highlight of the model was the assumption 
that the point source is travelling at a constant speed. The average errors reported 
were −0.05, −0.95 and −1.3 dBA at 15, 30 and 60 m, respectively (Steele, 2001). 
Modelling noise using the empirically derived physical and empirical relationships 
between traffic, road networks and land use is an efficient method for areas with 
small spatial extents, such as the municipal level. The CNOSSOS-EU (Common 
Noise Assessment Methods) model was developed for all of Europe so that the 
results from different countries can be compared. The model framework was formu-
lated to model road, rail, industrial and air noise levels (Bąkowski, 2019; Morley 
et al., 2015; Kephalopoulos et al., 2012, 2014).

Hamad et al. (2017) employed an artificial neural network (ANN) to model road 
traffic noise in Sharjah City in the United Arab Emirates. The results were com-
pared with the two conventional models, namely, the Basic Statistical Traffic Noise 
model (BSTN) and the Ontario Ministry of Transport Road Traffic Noise model 
(ORNAMENT). The ANN model outperformed both the conventional models, and 
the findings reveal that the distance from the edge of the road was the most signifi-
cant factor, whereas traffic volume was the least significant. Aguilera et al. (2015) 
explored the application of the land use regression (LUR) model for the assessment 
of the long-term spatial variability of road noise in three European cities. The results 
obtained were compared with the standard noise models developed for each city. 
The findings of the study revealed that the LUR does not show any systematic dif-
ference and can be used as a promising tool for noise monitoring.

The noise maps can be used not only for the identification and quantification of 
noise problems at local and regional scales but also for the development of proper 
measures for the planning and management of towns and sources of noise (De 
Carvalho & Szlafsztein, 2019; Hedblom et al., 2019; Klompmaker et al., 2019; Liu 
et  al., 2019; Nieuwenhuijsen, 2020; Paiva et  al., 2019; Rivkin et  al., 2019). The 
monitoring and assessment of noise can be significantly upscaled with the integra-
tion of spatial datasets, improved mathematical models and advanced mapping 
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Fig. 6.2  Open-source noise contour map developed by Bocher et  al. (2019). (Source: Bocher 
et al., 2019)

techniques in geographical information system (GIS) environments (Ameen et al., 
2021; Cinderby et al., 2008; Gheibi et al., 2022; Khan et al., 2018; Wawa & Mulaku, 
2015). Dubey et al. (2020b) performed a study to monitor and model noise levels in 
Lucknow, India, using smartphones and web GIS. The noise levels predicted were 
verified from readings obtained from a standard noise meter for similar locations. 
The findings of the study reveal that the predicted noise levels on the maps were 
significantly accurate with an error of ±4.5 dB.

Similarly, the study conducted by Bocher et al. (2019) describes an open-source 
noise mapping tool in a GIS environment (Fig. 6.2). The tool was implemented for 
a French city, and its integration with cartographic and population datasets was 
significantly easier. The model performed significantly well and produced noise 
maps in real time. The various set of tools offered by GIS helps in cataloguing, 
conversion, visualizing and handling spatial datasets of the real world to obtain 
requisite variations, interpretations and interpolation of data required for obtaining 
desired results and for the assessment of its impact on the flora and fauna of the 
region. Owing to all the facilities provided by GIS, GIS can be considered a vital 
tool that aids in the precise development of strategy and mitigation measures for 
curbing the impact of noise on humans, animals and their environment.

6.2 � Methodology for Noise Modelling

The literature shows that there exist numerous noise prediction models varying 
from simplistic to complex, such as NMPB-08, Calixto, multiple regression and 
multipoint equivalence (Dutilleux et al., 2010; Kuldeep et al., 2021; Okumura & 
Kuno, 1992; Pal & Gauri, 2010; Soni et al., 2022; To et al., 2002). This chapter’s 
primary focus is on models to monitor and predict noise in an urban environment. 
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Therefore, we discuss some of the efficient methodological frameworks (MFs) 
working in urban environments, namely, Nordic (Chang et al., 2012; Electronics, 
2002), and the road noise prediction model (Bocher et al., 2019).

MF I – The Nordic Noise Model
The Nordic prediction model is designed based on two prime assumptions: first, 
beyond 300 meters from the road, the noise is not significantly annoying, and sec-
ond, the model performs in neutral to moderate wind and temperature environments. 
The major dataset required for the model comprises the following:

	 (i)	 Traffic volume of light and heavy vehicles
	 (ii)	 Speed of the vehicles
	(iii)	 Distance between the receiver sensor and the centreline of the road
	(iv)	 Relative height of road from its surrounding
	 (v)	 Location of height and barriers
	(vi)	 Location of the receiver in comparison with the surrounding ground, 

road surface
	(vii)	 Type of ground (soft or hard)

According to the model, the energy equivalent continuous sound pressure level 
(LAeq,24) over a period of 24  hours is used and is calculated using the equation 
given below:

	
L L L L L LAeq � � � � �1 2 3 4 5� � � �

	 (6.1)

The computation is carried out by dividing the length of the road into multiple 
exons, and the (LAeq,24) for each section is computed separately. Furthermore, the 
computed (LAeq,24) of each road section is integrated for the cumulative (LAeq,24) com-
putation. The integration is carried out using the equation given below:

	
L g i

n L

Aeq
Aeqi� �� ��101 101

10/

	 (6.2)

The computation of the L delta coefficients used in Eq. 6.1 is carried out in multiple 
stages and is described in the following sections.

Stage I – Basic noise level (L1)
It is a function of the number of light and heavy vehicles and their speed v. The 
amount of noise is computed at a distance of 10 meters from the centreline of the 
road for a specified period of 24 hours. The noise levels from the light vehicle are 
categorized into two parts:

	(a)	 LAE,10 m(light) = 71 db(A) for vehicle 30 ≤ v < 40 km/h(6.3)
	(b)	 LAE,10 m(light) = 73.5 + 25lg(v/50) v ≥ 40 km/h(6.4)

The cumulative Leq, 10 m from the light vehicle at variable speed is computed utilizing 
the equation below:
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The second part computes the sound pressure level from the heavy vehicle consider-
ing the variable speed of the vehicles, and the computation can be mathematically 
represented by the equations below:

	(a)	 LAE,10 m(heavy) = 80.5 + 30lg(v/50) for vehicle 50 ≥ v ≤ 90 km/h(6.6)
	(b)	 LAE,10 m(heavy) = 80.5db(A) for vehicle 30 ≤ v < 40 km/h(6.7)

The computed LAE,10 m from the vehicle is then combined using Eq. 6.4:
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Finally, the computed LAeq,24 from light and heavy vehicles is combined to yield the 
final basic noise level, signified mathematically as
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	 (6.9)

Stage II – Distance correction (ΔL2)
Since the sound is energy that propagates in all directions and is inversely propor-
tional to the distance from the perspective of the source and receiver, the noise tends 
to fade away with respect to distance, and this decrease in energy in terms of dis-
tance correction is then computed using the equation provided below:
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where a represents the distance from the receiver normal to the road.
hb signifies the height of the road (meters).
hm denotes the height of the receiver sensor.

Stage III – Ground and barrier correction (ΔL3)
Here, in the present stage of noise computation, the distance between the source and 
the receiver is often hindered by objects such as buildings, which are considered 
screens. The computation of stage 3 is carried out in two parts, where part one cal-
culates the effect of screening, whereas part two involves the influence of the 
ground. The absorption of sound energy by the ground surface between the road and 
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the receiver is primarily based on two types of surfaces, that is, soft or hard. The soft 
ground is signified by areas covered with grass, normal soil, and river and lake sur-
faces, whereas the hard ground is denoted by surfaces covered with asphalt, con-
crete and soil with no vegetation. The equations below present the computation 
steps for screen correction:

	 � � �L L LMS S m� � 	 (6.11)
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	 Z L� � �0 5 � S 	 (6.20)

Part two of the section involves ground correction, and the coefficient σ, which is 
used for computation of ground correction, is a function of coefficients involved in 
screen correction, that is, distance to road, height of the road and height of the 
receiver. It can be computed as
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Therefore, from the above equation, one can easily conclude that the position of the 
source and receiver in accordance with the ground is largely significant. For the soft 
ground surface, the computation of corrections is carried out using the listed 
equations:
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For the hard ground surface, the computation can be made using the following 
equations:

	
� L z z g s sm � � � � � �2 3 1 0 2 10.

	 (6.28)

	 � L z sm � �5 10 	

	 � L sm � �0 0 2. 	

Stage IV – View correction angle (ΔL4)
The different view angles of the receiver towards the road section contribute signifi-
cantly to the sound pressure level received and can be computed using the equation 
delineated below:
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Stage V – Façade correction (ΔL5)
The correction is quite complex and requires multifaceted calculations such as:
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	(a)	 Correction due to vegetation cover
	(b)	 Correction due to road gradient
	(c)	 Correction due to single reflection from vertical surfaces
	(d)	 Correction due to multiple reflections in crowded environments
	(e)	 Correction due to scattering from detached objects

The computation of Stage V is largely significant when we are focused on assess-
ing the noise in a small area or a specific area. Its application in large areas is not 
viable since it requires large sets of data, time and computational hardware.

MF II – System for Prediction of Acoustic Detectability (SPreAD)
The framework of SPreAD was conceptualized and developed nearly 30 years ago 
by U.S. Forest Service (USFS) and Environmental Protection Agency (EPA) for the 
prediction of acoustic impact on the wild land environment. It was developed to 
assess noise propagation in natural ecosystems, such as vegetation cover areas. The 
model incorporated a large number of environmental factors, such as wind, tem-
perature, land use/land cover, humidity, seasonal conditions and noise source char-
acteristics. Unlike other models that compute noise in a single frequency concerning 
humans, SPreAD computes sound propagation in multiple frequencies (400, 500, 
630, 800, 1000, 1250, 1600 and 2000 Hz), which helps in understanding the impacts 
of noise on different wildlife animal responses at different sound frequencies. The 
model is flexible for observing noise from point, line or polygon sources. The 
framework of the model can be categorized into six sections that need to be assessed 
in sequential order as the output of the first module is used in the succeeding module 
for computation. The six sections are as follows:

Spherical Spreading Loss: The section computes the decrease in the sound energy 
with respect to distance from the sound source

Atmospheric Absorption Loss: This section discusses the computation of loss in the 
sound pressure due to the absorption caused by atmospheric variables such as 
wind, humidity, air temperature and elevation.

Foliage and Ground Cover Loss: Here, the decline in the sound level due to the 
effects of ground is taken into consideration. The loss in energy is due to ground 
cover and propagation due to vegetation cover. Primarily, it is the function of the 
type of land use/landcover (water, urban, cropland, vegetation, barren, fallow, 
shrubs) of the area under investigation with respect to the distance from 
the source.

Downwind and Upwind Loss: the section addresses the change in sound level caused 
by the direction and velocity of wind. The sound energy declines rapidly in the 
upwind and crosswind situations compared to the downwind situation and the 
seasonal conditions.

Terrain Effects: This computes the changes in the sound level due to barriers from 
hills or ridges. The section determines the location and areas of the landscape 
that are largely influenced by the ground, barrier and atmospheric effects.

Predicted Noise Propagation: Finally, the computation of sound propagation in all 
eight frequency bands.
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It is noteworthy that the SPreAD model is a static model that yields spatial pat-
terns and potential disturbances caused by sound. The flexibility of the model is that 
it can be integrated with traffic, recreational and other dynamic models to predict 
different noise disturbance scenarios.

The manual computation of each of the six sections of the model was converted 
to a Python script and integrated into the GIS platform as a toolbox in ArcGIS soft-
ware. The toolbox is open source and is freely available.

MF III – Road Noise Prediction Model
The model predicts equivalent long-term noise caused by traffic volume from the 
perspective of point location in an infrastructural vicinity. The method predicts both 
in the existing and future scenarios. The output of the method makes it largely suit-
able for the planning and management of road projects and their impact assessment 
analysis. The method comprises six different successive stages (S):

S1 – segmenting the road into homogeneous acoustic sections of the line source.
S2 – determination of sound energy per meter for each section, individually.
S3 – discretizing every homogeneous road section into point sources.
S4 – determining the power of sound per meter for each point source.
S5  – estimation of diminution in propagation between each point source and 

receiver.
S6 – summing up the sound energy contribution from the various sections of road to 

yield the overall sound level at the receiver’s end.

Since the emission of noise largely depends on the type of vehicle, namely, light 
and heavy vehicles, the implementation of the method breaks down the road sec-
tions into a series of point sources Si (I = 1 to Ns).

The emission of sound from a point source is determined for a particular fre-
quency j in accordance with the acoustic power level Lw/m of a line source and can 
be represented as

	
L L dw i w m i
i i

, / log� �10 10 	 (6.30)

where di is the distance between two sources. The distance is selected in a way that 
it follows the rules mentioned below:

	
d di i� �0 5. min, 	

and

	 di ≤ 20m, 	

where dmin,i is the orthogonal distance between the point source Si and the nearest 
receiver point Rnearest,i.

The energy level Lj
w/m for each point source is computed for each vehicle 

category as
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Concerning road vehicles, the emission of power per meter of road lance is com-
puted by the breaking contribution of rolling noise (Lj

r,W/m,RV) and mechanical noise 
(Lj

m,W/m,RV), which is largely dependent on the velocity and pace of the vehicle and is 
represented as
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, ,
� �
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The sound level (LjRk,i) at a receiver (Rk) from a point source (Si) is characterized by 
a power level (LiW,i) and can be evaluated using the equation given below:

	
L L A A A AR i w i R i

j
R i

j
R i

j
R ik k k k k

i i
div atm dif grd, , , , , ,� � � � �

	 (6.34)

where the attenuation refers to geometrical spreading (Adiv), atmospheric absorption 
(Aatm), horizontal diffraction around the vertical edges of obstacles (Adif) and the 
ground effect (Agrd).

The natural attenuation of noise during propagation over a distance di can be 
expressed as

	
A dR i ikdiv , log� � � �20 1110 	 (6.35)

The atmospheric absorption (Aatm) is a function of the frequency-dependent absorp-
tion coefficient αair, signified as

	
Aj

R i
i

katm air

d
., ��

1000 	 (6.36)

The horizontal diffraction Adiff around vertical structures relies on the path length 
difference δ (in meters) and is given by the equation given below:

	

{
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�
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�
�C Cif

otherwise, 	 (6.37)

where λ represents the wavelength of the centre frequency and C is a coefficient for 
multiple diffractions, such as
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where denotes the distance between the first and last diffractive edge. The path dif-
ference δ is computed as a corner-to-corner propagation method with an offset of a 
few centimeters in relation to the wall.

In addition to potential specular reflections from vertical surfaces, the corrected 
power level of the sound source according to the absorption coefficient is given as

	
L L nW

n
W
n

Si Si

ref ref

ref vert .� � �� �� � � �� �1
1010 1log �

	 (6.39)

6.3 � Anticipated Results

The results of the methodological frameworks discussed above yield the identifica-
tion of locations with different levels of noise pollution. Their integration with the 
GIS domain helps in the identification and visualization of different noise level 
scenarios in real time, and their integration also helps in the development of mitiga-
tion and planning measurements. Since the models yield similar results, the effi-
ciency and efficacy of the model rely on their methodological framework.

The Nordic model yields the noise pollution scenario up to 300 meters, beyond 
which it does not work. One of the strengths of the model is its inclusion of atmo-
spheric variables such as wind direction, speed and temperature as inputs, which 
significantly affect the intensity and magnitude of the sound energy. Primarily 
developed for monitoring noise in urban centres along roads, it is not in other land-
scape environments. Moreover, the prediction is primarily made based on the single 
sound frequency oriented towards the human environment. The model is quite com-
plex and utilizes a large number of datasets, which is its strength and weakness.

In contrast, the SPreAD model is a wholesome model that is very flexible and 
can be integrated into any environmental landscape, that is, grasslands, forest, urban 
and agriculture, to study the impact and effects of noise. It also assesses sound 
power in eight different frequencies used by humans to animals. Another power of 
the model is that it utilizes a number of multifaceted factors affecting sound, such as 
wind, temperature, humidity, land use/land cover, elevation and sources of noise. 
Moreover, the model has been successfully integrated into GIS software (ArcGIS) 
as a toolbox and is very easy to use. Compared to the other noise prediction models 
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where assessment is made based on the point source, the SPreAD model uses points, 
lines and polygons as noise sources, making it a widely usable and efficient model.

Furthermore, the road noise prediction model is a good model for the assessment 
of point source noise pollution in an urban landscape. The major pros of the model 
are its capacity to predict the noise level scenario both in the existing time periods 
and in the future. The efficient output of the model makes it viable and can be 
largely utilized for the planning of transport infrastructures in an urban landscape 
and for the development of mitigation measures to curb the impact of noise in vari-
ous areas. The major cons of the model are that it does not take into consideration 
the land use/land cover categories that have a significant impact on sound propaga-
tion and attenuation.

6.4 � Conclusion

This study focuses on the impact of noise on the ecology and environment. Currently, 
with the advancement of human civilization, various human-induced problems have 
upstretched with detrimental effects on humans, animals and the environment. 
Among them, pollution is considered one of the major problems that affect the qual-
ity of life on the surface of the earth, be it humans or animals on land or water. 
Among the various pollution types, noise pollution is one of the major problems for 
humans, primarily for those residing in urban centres and the other forms of life in 
their vicinity. Numerous methods and models have been developed in the last five to 
six decades for monitoring and predicting noise levels. In this study, we have dis-
cussed three different mathematical noise prediction models that are efficient and 
yield promising results in terms of noise level prediction in urban landscape ecosys-
tems. With the integration of these noise models with GIS, their strength has signifi-
cantly improved as the models provide the spatial distribution of noise levels in an 
area and help in the identification of areas that require attention in terms of mitiga-
tion measures. However, the framework and quality along with the type of datasets 
utilized play a significant role in the generation of precise noise level maps.

From the methodological point of view, it can be inferred that the SPreAD model 
might provide comparatively much better results, as it considers all parameters that 
influence the sound energy in a landscape. This is due to its multifaceted data set 
utilization; it is viable in multiple environments and is flexible in terms of usage 
integration. On the other hand, Nordic might be another potent model; however, its 
complexity and computation are time-consuming and require hardware to process a 
huge set of information. Finally, the road noise prediction model is efficient and 
easy to use with fewer dataset requirements. Additionally, its ability to predict the 
levels of noise in future scenarios makes it promising for the planning of the infra-
structure and growth of urban centres. Finally, it can be advised that there exist 
numerous noise monitoring models that can be utilized owing to the availability of 
datasets and resources, which is significant in the study of noise prediction. Here, 
we discussed some of the promising noise prediction models regardless of data 
availability and resources.
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Chapter 7
Urban Areas and Air Pollution: Causes, 
Concerns, and Mitigation

Shivali Gupta and Rakesh Kumar 

Abstract  Urbanization has proven to be a catalyst for global economic growth. 
However, the concomitant progress in economic development has led to a degrada-
tion in air quality within urban settlements, primarily attributable to copious anthro-
pogenic sources of pollutant emissions. Air pollution has numerous negative impacts 
on the well-being of humans and the environment. This includes the deleterious 
impacts on climate change as well as the emergence of serious cardiovascular and 
respiratory diseases. This chapter, therefore, discusses urban air pollution, encom-
passing the causal factors, associated concerns, and various strategies employed to 
mitigate its adverse effects. These strategies involve regulatory, technological, and 
behavioural responses, which are imperative to effectively address the issue of air 
pollution. Therefore, the examination of the complex interplay between urbaniza-
tion across varying stages of development and air pollution is integral in attaining 
ambient air quality targets with respect to upcoming economic advancement and 
sustainable progression.

Keywords  Anthropogenic Sources ·  Air pollution ·  Climate change ·  Human 
health ·  Sustainable development ·  Urbanization

7.1 � Introduction

Rapid industrialization has facilitated a significant surge in both urbanization and 
economic expansion, especially in the developing world. “Urbanization refers to the 
process of population growth in urban areas, accompanied by a multitude of trans-
formations that entail moving away from rural lifestyles. Such changes impact vari-
ous aspects of industry structure, living standards, employment opportunities, and 
public services in the urban context”. The process of urbanization is the result of 
population growth, which leads to modifications in the size, structure, and growth of 
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cities (Liang & Gong, 2020). Urban areas or agglomerations exhibit a high degree 
of population density and are characterized by a comprehensive network of built 
environment infrastructure. The elevated rates of economic growth within metro-
politan regions serve as a driving force attracting individuals on account of the 
heightened availability of employment prospects, educational resources, and an 
improved standard of living (Ho, 2012). Approximately fifty per cent of the global 
populace currently dwells in metropolitan regions, with a projected substantial 
upsurge in this figure in the upcoming years (World Bank, 2022). Although urban-
ization has contributed significantly to the global economy, it has also resulted in 
various challenges to environmental sustainability. One of the most critical chal-
lenges is the degradation of air quality in rapidly expanding urban areas (Wang 
et al., 2020). The United Nations Environment Programme et al. (2002) estimated 
that approximately 1.1 billion individuals worldwide are exposed to air that fails to 
meet health standards. Urban air pollution is a critical issue leading to a substantial 
number of fatalities annually, with Chen et al. (2022) reporting that over two million 
individuals succumb to its deleterious effects. Air pollution arises from the accumu-
lation and sustained presence of specific substances, commonly known as air pollut-
ants, within the ambient air, resulting in detrimental consequences on both the 
health of humans and the natural environment. Air pollution has become a signifi-
cant concern due to its contribution to social inequality, health conditions, and envi-
ronmental degradation, which includes the occurrence of acid rain, eutrophication, 
urban smog, and possibly even climate change (Ahmad et  al., 2015). Numerous 
sources, such as the manufacturing segment, combustion engines, biomass combus-
tion, and other related sources of particulate emissions, have led to an exponential 
increase in anthropogenic air pollutants. The matter of significant concern pertains 
to the issue (Leung, 2015).

Any airborne physical, chemical, or biological substance of natural or anthropo-
genic origin that negatively alters the atmosphere's natural properties and results in 
adverse impacts on the health of human beings or other biosphere components is 
referred to as an air pollutant. Air pollutants can be gaseous pollutants [nitrogen 
dioxide (NO2), volatile organic compounds (VOCs), sulphur dioxide (SO2), ozone 
(O3), and carbon monoxide (CO)], particulate matter (PM), that is, PM10 (aerody-
namic diameter ≤10 μm) and PM2.5 (aerodynamic diameter ≤2.5 μm), persistent 
organic pollutants (dioxins), or heavy metals (lead, mercury) (Agarwal et al., 2019). 
The dissimilarities among various categories of atmospheric pollutants are mani-
fested through their unique chemical composition, distinct emission patterns, reac-
tion dynamics, levels of environmental persistence, transportation capabilities over 
short or prolonged distances, and disparate impacts on the natural surroundings 
(Fino, 2018). The effects of aerosols on both human health and climate change are 
well documented in the academic literature. These particulate matter substances 
serve as critical radiative forcing agents, possessing the ability to generate either 
positive (warming effect) or negative (cooling effect) radiative forcing. The degree 
to which aerosols influence radiative forcing is dependent upon their microphysical 
properties, such as optics and size, as well as their specific composition. The impact 
of aerosols on circulation systems and the consequent deterioration of 

S. Gupta and R. Kumar



165

environmental quality have been extensively studied and documented in the scien-
tific literature (Banerjee & Srivastava, 2011; Ramanathan & Carmichael, 2008). 
Some gaseous air pollutants have the capacity to absorb long-wave radiation, 
thereby making a significant contribution to climate change. The transport of air 
pollutants through the atmosphere can extend over considerable distances and tra-
verse across continents, thereby increasing the complexity of regional air quality. 
Consequently, the investigation of the origins and ultimate occurrence of these 
gases within the atmosphere holds paramount significance (Agarwal et al., 2019; 
Mhawish et al., 2017). As reported by Bikis and Pandey (2021), the adverse effects 
of transportation-related air pollution are experienced by 40% of urban residents in 
Addis Ababa. Various sources, traversing route, and ramifications of airborne con-
taminants have been represented in Fig. 7.1.

There are multiple causes of intricate air pollution in urban areas, including 
emission sources, such as traffic or industrial processes, along with meteorological 
phenomena, such as insolation, wind patterns, temperature, and relative humidity. 
Furthermore, chemical transformations contribute significantly to the generation 
and evolution of air pollution through the occurrence of various chemical reactions 
and dry depositions (Ho, 2012). Pollution processes are inherently dependent upon 
the prevailing meteorological conditions as well as physical and chemical character-
istics of contaminants, which together are vital in shaping overall pollution dynam-
ics  as well as  the transportation, dispersion and eventual sink of air pollutants 
(Vallero, 2014b).

Henceforth, to mitigate air pollution and preserve human health and ecological 
balance, it is imperative that priority is given to the management of urban air quality. 

Fig. 7.1  Sources, pathways, and effects of air pollutants
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An imperative requirement for rigorous scientific  assessment pertaining  to the 
assessment of the ramifications that urbanization on the quality of atmospheric 
composition. This chapter provides an overview of urban air pollution, encompass-
ing factors causing such pollution, adverse effects pertaining to health and the envi-
ronment, and possible remedial actions to reduce air pollution and counter the 
detrimental association between urbanization and pollution for the promotion of 
sustainable urban developmental practices.

7.2 � Air Pollutant Types

The effects of air pollutants are subject to differential impacts on individuals, con-
tingent upon factors such as concentration, toxicity, and duration of exposure 
(Leung, 2015). Air pollutants are categorized into two types, namely, primary pol-
lutants and secondary pollutants, depending on their source of origin. Primary pol-
lutants refer to the contaminants emitted directly from their source into the 
environment, specifically into the atmosphere. Examples of these primary pollut-
ants include SO2, CO, and CO2. The term “secondary pollutants” pertains to parti-
cles generated because of chemical interactions between materials in a mixed gas 
phase that are exposed to solar radiation or due to reactions between primary pollut-
ants (Agarwal et al., 2019; Banerjee et al., 2015; Kumar et al., 2016), for instance, 
the formation of ozone, which is a secondary pollutant (Ahmad et al., 2015).

The air pollutants are further divided into outdoor pollutants and indoor air pol-
lutants (Fig. 7.2). Outdoor air pollutants are composed predominantly of NOx, SO2, 
O3, CO, PM, and hydrocarbons (HCs). In metropolitan regions, these emissions 
originate predominantly from motor vehicles, with additional contributions stem-
ming from power generation facilities, industrial boilers, incineration operations, 
petrochemical manufacturing plants, aviation, marine transportation, and related 
sources. The variability in atmospheric conditions depends upon geographical loca-
tion and the directionality of prevalent air currents. Urban areas exhibit reduced 
significance in the contribution of  long range sources of pollution owing to the 
extended distance from such sources (Leung, 2015). The reduction in air dispersion 
in the urban environments can be attributed to the presence of densely located build-
ings which inhibits air circulation (Cheng et al., 2009; Li et al., 2009). Conversely, 
proficient urban planning can mitigate the challenges related to the accumulation of 
air pollution by means of the wide  dispersion of pollutants (Leung, 2015; Li 
et al., 2009).

Indoor air pollutants mainly include CO, O3, SO2, NOx, radon, PM, VOCs, semi-
volatile organic compounds, and microorganisms. The presence of these contami-
nants is prevalent in both interior and exterior environments, and certain sources of 
origin for these pollutants may exist in external contexts (Leung, 2015). Sick build-
ing syndrome (SBS) is a prevailing adverse effect that triggers acute health symp-
toms, including irritation, allergies, and other related conditions. The aetiology of 
the syndrome remains largely unknown, albeit it may exhibit a time-limited 
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Fig. 7.2  Indoor and outdoor air pollution and its sources. (Source: Rosário Filho et al., 2021)

propensity in which cessation of exposure to the occupational or environmental set-
ting could lead to its resolution. According to Wargocki et  al. (2000), enhanced 
ventilation can reduce SBS and improve indoor air quality. Radon is a radioactive, 
odourless, and colourless gas that is known to be a significant contributor to the 
incidence of lung cancer in numerous countries. It is considered an indoor air pol-
lutant that is commonly found in stony construction materials or inadequately ven-
tilated basements of residential homes. The quality of indoor air is contingent upon 
specific indoor activities, including smoking, cleaning, and employing wood burn-
ing for the purposes of heating and cooking (He et  al., 2004; Leung, 2015). He 
et al. (2004) assessed the concentrations and emission rates of particulates in indoor 
environments resulting from various indoor activities and sources. The findings of 
the study revealed that cooking-related activities could increase the PM number 
concentration by a factor ranging between 1.5 and 27 times. Additionally, the urban 
heat island effect has been observed to create numerous challenges for individuals 
especially residing in tropical regions with high atmospheric temperatures (Memon 
et  al., 2009). The urban heat island phenomenon is exacerbated in metropolitan 
regions as a consequence of global climate change, resulting in prolonged periods 
of indoor occupancy and escalated reliance on air conditioning systems. 
Consequently, increased exposure of humans to indoor biological and chemical pol-
lutants may potentially generate deleterious consequences on public health 
(Leung, 2015).

Air pollutants are further classified as hazardous air pollutants and criteria air 
pollutants, although both types of pollutants are “hazardous” (Vallero, 2014a).

Hazardous Air Pollutants
Hazardous air pollutants, commonly called “air toxics”, are the chemical substances 
recognized to induce cancer and other chronic illnesses in individuals, including 
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reproductive complications and birth abnormalities, even at very minimal concen-
trations. Hazardous air pollutants typically exhibit spatial limitations within local-
ized regions, commonly referred to as “hot spots”. These regions are predominantly 
found in industrial and urban areas, which may exhibit high concentration of haz-
ardous pollutant like benzene or other chemical associated with a specific industrial 
activity (Vallero, 2014a).

Ecotoxicity, which is alternatively referred to as ecosystem toxicity, character-
izes the potential threat that a substance may impose on divergent organisms inhab-
iting an ecosystem. Chemical hazards encompass several potential harms, including 
the risk of fire, chemical reactivity, and corrosivity. Hazards may potentially have 
biological attributes, such as biohazards, and physical attributes, including radioac-
tivity. Biohazards are a category of biological agents that comprise various microor-
ganisms, such as bacteria and viruses, as well as fragments of larger organisms, 
such as pollen and spores. Physical hazards can also be a consequence of air pollu-
tion, for example, an increase in melanoma cases because of increased exposure to 
UV radiation brought on by air pollutants that reach the stratosphere and react with 
ozone. The critical determinants of a compound's potential hazard are its intrinsic 
toxicity, mobility within environmental media and tissues, durability, and tendency 
to amass in living tissue (Vallero, 2014a).

Criteria Pollutants
The criteria pollutants are those that are used to determine the quality of air in a 
region based on common standards. The criteria pollutants refers to prevalent air 
pollutants that possess the potential to adversely impact the health or well-being of 
the general public (Vallero, 2014a). The National Ambient Air Quality Standards 
(NAAQS) have been set up for each of the criteria air pollutants. In general, for the 
criteria air pollutants, the acceptable levels of exposure can be determined and for 
which an ambient air quality standard has been established e.g. particulate matter, 
ground-level ozone, sulphur dioxide, nitrogen dioxide,  carbon monoxide and 
lead.  Particulate matter (PM) refers to solid or liquid particles suspended in air 
and is one of the most important criteria pollutants monitored throughout the world. 
Particulate matter is further classified based on their aerodynamic diameter, as fine 
(PM2.5) or coarse (PM10) particles. PM is notorious for its propensity to induce 
severe health impacts, reduce visibility, and exacerbate climatic perturbations 
through radiative forcing.

Ground-level ozone (O3) is a colourless gas known to provoke deleterious effects 
on both the environment and human well-being, specifically on vegetation and wild-
life. Exposure to this pollutant can result in short-term effects such as respiratory 
distress, whereas long-term issues may arise, including chronic respiratory condi-
tions such as asthma, bronchitis, and emphysema (Vallero, 2014a). Ground-level O3 
is also a primary ingredient of smog, another important air pollutant in the urban 
regions.

NO2 is generated by numerous sources during the combustion process of fuel at 
elevated temperatures. NO2 exhibits reactivity with various atmospheric constitu-
ents, resulting in the generation of a number of hazardous pollutants. Specifically, 
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in the presence of water vapour, NOx undergoes reaction with ammonia and other 
relevant compounds, it forms fine particulates and favors the formation of ground-
level O3 upon reaction with VOCs. Studies have shown that even short term expo-
sure to NO2 can be detrimental to human health. For instance, an exposure for a 
duration of less than 24 hours has been documented to contribute to negative respi-
ratory consequences, including the exacerbation of asthma episodes and inflamma-
tion of the airways among individuals without pre-existing respiratory conditions 
(Vallero, 2014a).

SO2 is another important air pollutant which possesses the capacity to induce 
respiratory irritation, inflict damage upon crops through foliar stress, and cause deg-
radation of materials when it encounters acidic aerosols. Additionally, atmo-
spheric  SO2 has been found to be responsible for reduction in 
atmospheric visibility affecting road, rail and air traffic. Sulphur dioxide and other 
sulphur oxides undergo chemical reactions within the atmosphere, resulting in the 
formation of acids, with sulphuric acid (H2SO4) being a prominent constituent of 
acid rain.

Carbon monoxide (CO) is a by-product of inefficient or incomplete combustion 
processes. Carbon monoxide has been shown to elicit diverse health effects by bind-
ing to haemoglobin, resulting in the formation of carboxyhaemoglobin (COHb). 
The accumulation of COHb in the bloodstream leads to a reduction in the availabil-
ity of oxygen (i.e. hypoxia) due to the increased concentrations of COHb in the 
blood (Vallero, 2014a). Furthermore, the respiratory system, the central nervous 
system, and the development of the foetus may also experience additional 
effects from its exposure. 

Lead, a metallic element, is utilized in a plethora of industries, and it is primarily 
procured through mining activities, smelting operations, battery recycling proce-
dures, and waste incineration facilities. The detrimental impacts of lead exposure in 
the atmospheric environment on human health include the manifestation of lead 
poisoning, neurotoxicity, and numerous other deleterious effects.

7.3 � Status in Cities

Air pollution is a grave environmental concern, particularly in urbanized regions 
where a large population is exposed to air quality levels that exceed the established 
emission thresholds. It has been projected that by 2025, urban areas will be inhab-
ited by approximately 60% of the global populace. As per projections, the over-
whelming majority (93%) of urban expansion will be observed in emerging nations, 
especially Asia and Africa which are projected to exhibit high growth rates (80%) 
(Sofia et al., 2020). Urban areas occupy <5% of the Earth's surface, yet they are 
accountable for generating as much as 80% of global CO2 emissions (Ghosh & 
Maji, 2011). According to estimates from the World Health Organization (WHO), 
the inhalation of PM2.5 particles contributed to the premature deaths of 4.2 million 
people worldwide as of 2016 caused by ambient air pollution (Fino, 2018).
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Urban form, which pertains to the spatial configuration, composition, and com-
pactness of urban land uses, will experience significant  transformations in the 
future as a result of the extensive urbanization (Liang & Gong, 2020). Small cities 
having  high residential density promotes  the usage of public transportation and 
walking (Liang & Gong, 2020; Rodriguez et al., 2016). According to a study of 83 
urban regions around the world, those with closely spaced built-up areas release less 
NO2 (Bechle, 2011) and are thus effective at reducing air pollution, while dispersed 
cities can decentralize industrial polluters, enhance the efficiency of fuel and reduce 
transportation congestion (Glaeser & Kahn, 2003), enabling the decentralization of 
jobs, which reduces pollution emissions. A dispersed city's greater open spaces pro-
mote air dilution. However, compact cities are frequently associated with greater 
urban heat island effects influencing the availability and advection of air pollutants 
(Liang & Gong, 2020). The behavioural aspects of the people residing in compact 
cities appear to be an important factor in determining air pollution levels (Piracha & 
Chaudhary, 2022). Indicators of urbanization included population and development 
level and scale of the city, which have direct effects on the prevalence of air pollu-
tion. Increased building construction in cities led to a decrease in vegetation areas 
as well as reduced plant adsorption capacity for air pollutants, along with higher 
concentrations of particulate matter and dust in the air (Chen et al., 2022). Thus, the 
conflicting findings reveal the intricate interaction between air pollution and urban 
form, suggesting that an erratic association may be present in cities at various levels 
of urbanization and at different times. As a result, any planning strategy intended to 
reduce air pollution should take into account the current state of development and 
adapt its future plan accordingly (Liang & Gong, 2020).

Although air pollution is a global problem, as it affects all places, considerable 
variation in air pollution levels is observed in different regions. For illustration, the 
PM2.5 annual average concentration in the most polluted cities was approximately 
20 times higher than that in the cleanest metropolis in a survey of 499 global cities 
(Liang & Gong, 2020). The average total number of O3 and PM2.5 days from 2008 
to 2012 ranged from 3.81 days and 0.95 days in non-core counties to 47.54 days and 
11.21 days in large central metropolitan counties, respectively (Strosnider et  al., 
2017). Therefore, to estimate variations in air quality caused by urbanization, more 
thorough analyses with improved modelling techniques may be needed.

7.4 � Monitoring of Air Pollutants

Ambient air monitoring is the systematic and long-term measurement of air pollu-
tion levels and specific pollutant types in ambient air. The ambient air quality moni-
toring network entails the selection of locations, pollutant types, infrastructural 
facilities, duration, frequency and procedures of sampling, operation, and man-
power (Haque & Singh, 2017). In 1984, India’s Central Pollution Control Board 
(CPCB) launched National Ambient Air Quality Monitoring (NAAQM), later 
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renamed the National Air Monitoring Programme (NAAQP), for the continual mon-
itoring of air quality in major cities and industrial towns of the country.

To monitor air pollution, different methods, such as automatic, semiautomatic, 
and manual methods, are used. Automatic methods involve the use of equipment 
that directly measures pollution, allowing for real-time monitoring of air pollution. 
Semiautomatic approaches involve the collection of air quality samples from equip-
ment at specific locations and then transporting and analysing these samples in the 
laboratory. Manual methods involve collecting samples manually, for example, CO 
monitoring. Developing an emission inventory (EI) is critical for describing pollut-
ant emissions and regulating air quality. For modelling air pollution, many different 
scales are available, including microscales (street canyons), mesoscales (country, 
city), and global, regional, or continental scales. Numerous mesoscale models, 
including CHIMERE, METPOMOD, CMAQ, and TAPOM, are used to simulate 
the air quality of urban areas. EIs, land use, meteorological conditions, terrain, and 
borders are all input parameters into these air quality models (Ho, 2012).

GIS Tools in Air Pollution Studies
Geographical Information System (GIS) is a computer assisted program that maps 
and analyses the Earth and other geographical data. GIS applications combine dis-
tinct visualizations with databases that enable data acquisition, collection, storage, 
manipulation, modelling, analysis, retrieval, and display of georeferenced data 
(Ahmad et al., 2015). Information from sources such as remote sensing, including 
satellite and aerial images, earthbound surveys, and cartography, that is, maps, is 
used by GIS to construct overlapping layers that may be accessed and edited inter-
actively in one spatial structure (Kamińska et al., 2004).

GIS can be used to analyse trends and environmental effects brought on by 
human activities, as well as to help predict potential outcomes and plans at various 
governmental levels. GIS applications include creating dynamic databases and 
developing spatial correlations with the temporal distribution of epidemiological 
data. The application of GIS tools in monitoring, analysing, and modelling pesticide 
migration in the environment and its ultimate health impacts has increased. Studies 
related to public health and the environment using GIS analysis have produced sig-
nificant findings that may ultimately aid in preventing excessive or uncontrolled 
exposure to xenobiotics. Such studies, however, still rarely employ GIS technology, 
especially in developing nations where there is little awareness of the technology's 
availability and advantages (Kamińska et al., 2004).

There are numerous ways to use data from real-world GIS database models for 
environmental investigations. Data inputs, database transformation (data query and 
data analysis), and data output are the three basic GIS components. Input data 
include points (e.g. for soil pit locations), linear features (e.g. for depicting net-
works of roads), aerial polygons (e.g. for depicting forest areas), and other sources, 
such as information from traditional maps and ground surveys (registered by GPS), 
provided they provide spatial information. Input data are typically in vector or raster 
format. GIS provides output as digital or analogue maps, tabular data, and reports 
that contain records on the outcomes and a list of the processes followed throughout 
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database analysis. Primarily, GIS enables transforming the coordinate system of 
input data, converting raster images into vector images, and extracting, overlaying, 
and managing data (Kamińska et al., 2004).

GIS has wide applications in air pollution studies, including air quality assess-
ments, pollution data visualization, and decision-making processes, and thus, regu-
lates pollution and air quality (Sówka et  al., 2020; Tecer & Tagil, 2013). GIS 
applications can be used to monitor air pollutant emissions from various sources, 
manage spatial and statistical data, and facilitate visualization of the relationship 
between environmental health and the number of times human activities result in 
poor air quality. GIS modelling and statistical analysis can be used to study and 
predict the effects of climatic factors on air pollution. Air pollution mapping helps 
identify sources of pollution, determine the concentration of pollutants, and control 
emissions. A number of GIS-based air pollution studies have been undertaken. For 
environmental modelling with GIS applications, air quality management systems 
(AQMSs) are used to locate monitoring stations, develop geospatial models, and 
support spatial decision-support systems. GIS applications can be used to create 
three-dimensional spatial records of pollutants in AQMSs (Ahmad et  al., 2015). 
Bozyazi et al. (2000) performed GIS spatial analysis to determine Istanbul's air pol-
lution levels in connection to land use, and their findings revealed that the city's air 
pollution levels were closely associated with land use type.

Surface modelling using spatial interpolation is an advanced GIS tool for 
location-oriented analysis. Sówka et  al. (2020) found that the ordinary kriging 
method, which is a widely used technique for geospatial interpolation and estima-
tion, enabled accurate spatial presentation of variation in PM2.5 concentrations at 
sites not covered by measuring systems. According to Ung et al. (2002), “virtual 
stations” are also generated using GIS statistical interpolations. The thin plate spline 
approach of geographic databases and remotely sensed data from the LANDSAT 
Thematic Mapper sensor are combined to carry out this process. Additional mea-
surements from virtual stations serve as input data for additional extrapolation and 
interpolation techniques. The method of “virtual measuring stations” has also been 
used in a study by Beaulant et al. (2008) to virtually densify the network of perma-
nent measuring stations. The quality of interpolation is intended to be improved by 
increasing the amount of pollutant concentration data.

Geostatistics uses spatial correlation to solve estimation problems, presented 
using variogram models (Bozyazi et al., 2000). These methods have been applied to 
several issues, including mapping. By using GIS geostatistical analysis, the rela-
tionship between long-term exposure to air pollution and illness incidence rates 
(such as cancer and bronchitis) can be determined. Geostatistics finds application in 
providing predictions for unsampled locations, as exhaustive studies are costly and 
time-consuming (Pandey et al., 2013). GIS facilitates decision-making by preparing 
thematic maps of variations in pollutants, which also helps in analysing the cause of 
decreases or increases in value, determining the most afflicted localities and subse-
quently taking the appropriate remedial measures by decision makers 
(Vaddiraju, 2020).
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GIS is useful in creating health risk maps, as it assists in establishing relation-
ships between population density, distribution of air quality, and health risk. Spatial 
interpolation techniques can be used to create a health risk map that depicts the 
spatial distribution of respiratory symptoms and disorders (Pandey et  al., 2013). 
Thus, GIS tools have various applications in monitoring pollutant emissions and 
serve as a powerful tool for conserving the quality of air.

7.5 � Causes of Air Pollution

Air pollution can result from both natural and anthropogenic sources. Natural 
sources polluting air include dust storms, volcanic eruptions (emitting S, Cl, ash 
particulates), sea salt spray, wildfires (releasing smoke, CO), pollen dispersal, veg-
etation (giving off VOCs), and natural radioactivity (e.g. radon gas formed from 
radium decay). Population density, housing, traffic, and industry accumulation are 
anthropogenic causes that intensify air pollution in urban areas (Martínez-Bravo 
and Martínez-del-Río, 2019). Anthropogenic activities causing air pollution include 
transport, power plants, waste treatment, industrial processes, households, agricul-
ture, construction, mining, and warfare that are associated with the combustion of 
fuels of different kinds (Ahmad et al., 2015).

Sources of air pollution are also divided into point sources and non-point sources. 
Sources involving the emission of pollutants from a single place are referred to as 
point sources. It typically involves a combustion or mechanical process. 
Anthropogenic examples of point sources include power plants with smokestacks, 
and natural examples include the eruption of a volcano. Non-point sources involve 
the release of pollutants over a wide area and are classified as linear and area sources. 
A linear source corresponds to the main communication pathways, for example, 
roads and railways. An area source involves the release of pollutants within a defined 
geographic area. Human examples include a sizable port complex or oil refinery run 
by several different enterprises. Natural examples are a large agricultural field and a 
forest with a variety of coniferous and deciduous trees (Shendell, 2019).

Furthermore, pollution sources can be stationary (fixed or a preset pollutant 
emitter, e.g. refineries and power plants) or mobile (non-stationary, e.g. vehicles) 
sources (Ahmad et al., 2015). Different fuels are used to operate mobile sources, 
such as compressed natural gas, unleaded gasoline, and diesel (high or low sulphur 
content). Mobile sources of air pollution are further divided into two categories: 
on-road and off-road mobile sources. A few examples of on-road mobile sources 
related to human activity include automobiles, and off-road mobile sources include 
construction and farming equipment such as tractors and trains (on-land); aircraft 
carriers, motor-driven boats, cargo vessels, and submarines (on-water); and helicop-
ters and aeroplanes (in-air). A “mobile line source” is a highway or main primary 
road that runs through suburban or urban areas (Shendell, 2019).
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7.6 � Concerns of Air Pollution in Urban Areas

Health Effects
Air pollution is linked to a plethora of negative health effects, such as cardiovascular 
and respiratory disorders, diabetes, infertility issues, cancer, and neurological dis-
eases. Thus, the estimation of pollution cost is an economic assessment of the prob-
ability of becoming ill or premature death (Ferrante et al., 2015). Human beings are 
subjected to airborne pollutants through inhalation via the nose or mouth, ingestion 
of food that has been found to be contaminated, exposure to ocular pollutants via the 
eyes, and contact with environmental pollutants through the dermal or skin layers, 
regardless of whether the skin is intact or has open cuts (Shendell, 2019). Research 
by the United States Environmental Protection Agency (USEPA) finds that certain 
health conditions, such as the respiratory effects of air pollution exposure, can be 
directly linked to their economic consequences, such as the costs associated with 
doctor visits, lost school and work days, hospital visits, and, ultimately, deaths 
(Fig. 7.3).

The presence of airborne contaminants is accountable for the onset and persis-
tence of acute or chronic respiratory illnesses. Acute illnesses encompass a spec-
trum of conditions, ranging from minor irritations to inflammatory responses, 
allergic reactions, compromised lung function, and even eventual respiratory col-
lapse, contingent upon the exposure extent. Chronic diseases, which encompass 
cardiovascular diseases, chronic obstructive pulmonary diseases, and various types 
of cancers such as lung cancer are prevalent health concerns worldwide. The phe-
nomenon of oxidative stress, stemming from air pollutant exposure, has been estab-
lished to substantially contribute to chronic diseases, as postulated by Vallero 
(2014c). Current research suggests that chronic exposure to air pollution may induce 
neurological disturbances through the processes of atherosclerosis and oxidative 
stress (Manisalidis et al., 2020). The critical factors pertaining to particulates are 
their size, soluble fraction, and density. One example may be seen in the case of 
ultrafine particles, whose aerodynamic diameter measures less than 100 nm. These 
minute particles possess the ability to infiltrate deep into the lungs, as their penetra-
tion depth is inversely proportional to their size. Vapour pressure, density, and solu-
bility are significant variables in assessing gaseous pollutants. High vapour pressure 
air pollutants are more prone to remain suspended in the atmosphere due to their 
propensity to exist in a vaporous state compared to those compounds that exhibit 
lower vapour pressures. The respiratory system may be subjected to detrimental 
impacts by several principal air pollutants in the vapour phase, including sulphur 
oxides, CO, NOx, O3, and PM (Vallero, 2014c).

Particulate matter in diverse manifestations has been linked to the development 
of cancer, particularly concerning the organic portion of aerosols. Chemical sub-
stances, such as polycyclic aromatic hydrocarbons (PAHs), are associated with the 
occurrence of respiratory system cancers, specifically lung cancer. For instance, the 
compound benzo(a)pyrene has been found to be a causative agent in these cancers 
(Ferrante et  al., 2015). Additional PM-related alterations include genotoxicity, 
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infertility, and low birth weight (Fortoul-van der Goes et al., 2015). Inhaling acute 
NO2 concentrations causes respiratory distress, which has been linked to increased 
hospital emergency visits (Vallero, 2014a). Higher tropospheric O3 concentrations 
are especially harmful to children, older adults, people doing heavy exercise or 
work who have elevated ventilation rates and therefore respiratory exposure dos-
ages, and people already suffering from asthma or lung conditions. Since infants’ 
lungs continue to develop postbirth and have prolific tissue that is more susceptible 
to environmental contaminants, infants are also vulnerable to higher ground-level 
O3 concentrations (Vallero, 2014c). Black lung disease or pneumoconiosis is caused 
by coal dust. Silicosis is caused by rock dust from silica-containing rocks. Brown 
lung illness, also known as Byssinosis, has been linked to textile fibre exposure and 
may be caused by bacteria in cotton, making it a combination physical-chemical-
biological air pollutants (Vallero, 2014c). Skin ageing, atopic dermatitis, eczema, 
urticaria, acne, dyschromia, and psoriasis may be caused by the absorption of air 
pollutants by human skin and are typically brought on by PM, oxides, and photo-
chemical smoke upon exposure. Skin cancer has also been linked to pollutants 
(Eleni et  al., 2014; Manisalidis et  al., 2020). Suspended pollutant exposure also 
affects eyes, causing asymptomatic eye outcomes, irritation (Weisskopf et  al., 
2015), dry eye syndrome, or retinopathy (Manisalidis et al., 2020; Mo et al., 2019).
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Air pollutants can harm the respiratory system's fluid dynamics directly (for 
example, by inflammation of airways) or indirectly (for example, by changing the 
immunological response). Air pollutants can cause lungs to become rigid by affect-
ing surfactant chemistry and thus hindering inflation (Vallero, 2014c). Urban resi-
dents are more vulnerable to harmful health impacts caused by air pollutants due to 
extremely degraded air quality in urban areas produced mainly by heavy road emis-
sions and myriad of other pollution sources. There is always a potential risk of 
industrial accidents that can lead to the spread of toxic fog and can prove devastat-
ing to the local populace. Overpopulation and unregulated urbanization, combined 
with industrialization, exacerbate the problem in emerging countries. 
Epidemiological studies have been carried out to verify the existence and quantifi-
cation of adverse health consequences produced by air pollution, as well as to esti-
mate dose–response relationships (Manisalidis et al., 2020). Statistical evaluations 
of monitoring and biomonitoring data also demonstrate a link between air pollution 
levels and morbidity and mortality rates. Furthermore, indoor, urban, and high-risk 
site outdoor pollution has different characteristics due to poor ventilation of houses, 
which permits the accumulation of different biological and chemical pollutants not 
found in comparable outdoor concentrations in severe pollution events. The concen-
tration of heavy metals, which are often more prevalent and have a wide range of 
species in urban and industrial air pollution, is a significant difference between 
indoor and outdoor air pollution. In places with significant urban agglomerations, 
the incidence of neoplastic disorders is higher (Ferrante et al., 2015).

Metals that enter the respiratory system by direct interaction with DNA may 
result in chromosome abnormalities or gene mutations; these changes may promote 
cell proliferation and lead to the development of cancer (Cope et  al., 2004). 
Depending on the amount absorbed, heavy metals such as lead can cause acute poi-
soning or chronic intoxication in humans (Manisalidis et al., 2020). Manganism, an 
extrapyramidal neurological condition that is characterized by bradykinesia, rigid-
ity action tremor, and cognitive failure, may develop in workers exposed to airborne 
Mn. Cadmium affects the cardiovascular system and causes hypertension and ath-
erosclerosis. Very low concentrations of mercury cause cardiovascular diseases and 
promote atherosclerosis. Mercury is also associated with neurotoxic effects (Alissa 
& Ferns, 2011). Even though these elements have serious harmful consequences, 
very scant knowledge is available specifically regarding the relationship between 
inhalation exposure and certain diseases (Fortoul-van der Goes et al., 2015). More 
research is needed to fully understand the damage mechanisms caused by pollutants 
to human health and to reduce exposure and mitigate its negative consequences.

Environmental Effects
Air pollution has adverse effects on the environment, including acid rain, smog, 
eutrophication, and damage to agriculture and ultimately ecosystems. According to 
Ashmore (2013), air pollutant problems may vary spatially, including regional 
problems such as acid deposition and tropospheric ozone caused by long-range pol-
lutant transport or local environmental impacts of pollution, such as being limited to 
the area in the vicinity of a factory or a road.
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Climate change, a consequence of environmental pollution, affects the geograph-
ical distribution of several infectious diseases (Manisalidis et al., 2020). Black car-
bon and ozone (short-lived climate pollutants) can exacerbate climate change, 
altering the frequency and duration of heat waves and cold spells, ultraviolet radia-
tion exposure, precipitation patterns, etc. These changes can indirectly threaten 
urban lives and livelihoods (Mitchell et  al., 2016). A warmer climate can affect 
surface pollutant concentrations by affecting the rate of atmospheric chemical reac-
tions, biogenic VOC emissions, and atmospheric boundary layer height (Heal et al., 
2013). Pollutant impacts may also vary temporally, for instance, the release of large 
pollutant concentrations accidentally, therefore causing immediate effects on biodi-
versity, which may further result in a delayed and gradual recovery, whereas other 
impacts may be the outcome of pollutant accumulation over years (Ashmore, 2013). 
Therefore, it is imperative to consider city pollution, regional pollution, and hot spot 
occurrences, which are defined by higher-than-average pollutant peaks followed by 
gradual restoration of normal limits while evaluating urban pollution (Ferrante 
et al., 2015).

The pathways followed by pollutants to enter ecosystems may be directly related 
to their impacts. Pollutants enter ecosystems as gases, particles, or both. Gaseous 
pollutants can be taken up through stomata or inhaled directly by animals. Pollutants 
may infiltrate ecosystems by rainfall, mist, or as particles in other instances. Gaseous 
pollutants such as NOx, SO2, and NH3 are also deposited as particulates, that is, 
nitrate, sulphate, and ammonium, through wet deposition and can not only impact 
organisms directly but also cause eutrophication and acidification of the environ-
ment over longer periods. Photochemical oxidants, such as O3, are secondary pol-
lutants formed in the presence of sunlight from chemical reactions involving VOCs 
and NOx. Direct uptake of O3 by leaf tissue damages plant cells and reduces overall 
plant productivity. O3 also causes substantial damage to a variety of materials, such 
as metals, paint, plastics, rubber, and fabrics. Metal deposition mainly occurs via 
rainfall or as particulate matter. Metals on deposition accumulate in soils or leach 
into freshwaters, which results in deleterious effects on soil organisms or plant roots 
at toxic concentrations. Persistent organic pollutants (POPs), another group of 
chemicals, raise concerns due to their possibility of large bioaccumulation in the 
food chain. The process of “global distillation”, in which compounds volatilize in 
warmer portions of the Earth at ambient temperatures and become redeposited at 
cooler latitudes, provides evidence that the atmosphere can operate as a conduit to 
disperse these compounds. Their bioaccumulation in polar areas is therefore of con-
siderable concern. For instance, it has been observed that fish from Antarctica, 
which is far from any immediate sources of pollution, have POP concentrations that 
are comparable to those found in fish from the North Sea (Ashmore, 2013).

Pollutant effects on organisms are intricate and dependent on a variety of vari-
ables. The amount of pollution, that is, dose ingested, is the most crucial of these 
variables. This will depend on pollutant concentration in the air and exposure dura-
tion to it. Acute toxicity is a short-term consequence of exposure to air pollution at 
higher concentrations, characterized by direct damage to exposed tissue and leaf 
damage. In contrast, chronic toxicity, which may be caused by exposure to air 
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pollution over an extended period and at much lower concentrations, is typically 
characterized by changes in reproduction, growth, and physiology (Ashmore, 2013). 
Air pollutants rarely occur alone, and responses to mixtures of pollutants can result 
in synergistic or antagonistic effects. When the combined effect of two pollutants is 
larger than their individual effects, it is referred to as a synergistic response. For 
instance, when NO2 and SO2 are taken up together, they often have synergistic 
effects on vegetation. When the impact of a pollutant mixture is the same as that of 
individual pollutants or even has a lessened impact, it is called an antagonistic inter-
action. Furthermore, the deposition of one pollutant can affect the uptake and 
impacts of another pollutant over time. For instance, increased bioaccumulation of 
metals such as cadmium, mercury, and lead in fish and birds can be caused by fresh-
water acidification brought on by the deposition of nitrate and sulphate 
(Ashmore, 2013).

Therefore, estimating how much pollutant emissions should be reduced to ensure 
an acceptable degree of biodiversity protection is crucial. Not only are higher con-
centrations of air pollutants of concern but so are widely distributed contaminants 
with lesser quantities, the effects of which become apparent over many years. It is 
also essential to fully understand how pollution interacts with climatic, biological, 
and soil variables to precisely analyse the effects of pollution within an ecological 
context.

7.7 � Challenges and Solutions

Challenges
Considerable challenges are posed to future urban resilience and public health pro-
tection by the climate change caused by air pollution, as urban populations would 
be subjected to greater temperatures than experienced at present (Milner et  al., 
2019). The physical and sociological characteristics of urban environments con-
stantly change, which makes the intricate linkages between air pollution, metropoli-
tan climate, and public health more difficult to understand and anticipate. Climatic 
conditions are further modified by emissions from vehicular traffic, vegetation, and 
urban structures, resulting in significant spatial gradients of heat and air pollution, 
which may eventually exacerbate health risks and social disparities in time and 
space. Changes in demographics or the built environment, whether planned or 
unplanned, may alter patterns of exposure to air pollution, temperature extremes, or 
other environmental hazards and may also aggravate deleterious impacts on the 
health of the urban population.

The growing population in urban centres is another cause creating complexities 
for city dwellers, such as housing shortages, lack of open spaces, traffic problems, 
slums, waste accumulation, and air pollution (Haque & Singh, 2017; Kumar & 
Singh, 2003; Singh et al., 1972). Urban air pollution impacts the urban poor more 
than the general population due to their greater susceptibility to diseases, as their 
health is below average, their housing quality is low, they lack knowledge about 
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pollution, and they have less awareness of indoor pollution due to fuel burning for 
heating and cooking purposes, as is the case with slum dwellers, the most vulnera-
ble section of urban society.

Inadequate monitoring and enforcement of regulations could result in more tox-
icity and higher emissions (Shendell, 2019). Additionally, little research has been 
undertaken to determine air pollution reduction caused by smart growth and other 
compact city design concepts (Piracha & Chaudhary, 2022). Therefore, to resolve 
the problems and conflicts among various economic, social, and environmental con-
cerns at various levels, it is necessary to effectively regulate urban air pollution 
(Salmond et al., 2018).

Solutions or Mitigation Strategies
Reducing air pollution is essential for human health and environmental protection. 
Air pollution mitigation helps tackle climate change and forms the basis of sustain-
able development. The mitigation measures or solutions to curb air pollution and its 
consequent effects can be broadly grouped as regulatory measures, technological 
solutions, and behavioural changes.

Various regulatory steps or measures taken to mitigate air pollution include 
defining air quality legislation, various WHO air quality guidelines (AQGs) based 
on health-effect evidence, air quality standards, and the environmental policies 
established at the international level; for example, measures limiting emissions 
from vehicles, industries, and other sources, such as imposition of emission stan-
dards for vehicles such as limiting NOx emissions (Fino, 2018).

To regulate air quality, a number of laws have been enacted to govern air pollut-
ant emissions in the atmosphere, such as the Clean Air Act 1956 introduced by the 
British Parliament in the aftermath of the Great Smog of London (1952), the 
U.S. Clean Air Act (CAA, 1963), administered by the United States Environment 
Protection Act (EPA), and the Air (Prevention and Control of Pollution) Act, 1981, 
in India to control and prevent air pollution nationwide. Ambient air quality stan-
dards (AAQS) have been adopted by the WHO (Table  7.1), many industrialized 
nations, and certain rapidly expanding economies (such as China and India) 
(Shendell, 2019). An air quality standard is defined as a specific level of air pollu-
tion adopted as enforceable by a regulatory authority. Standard formulation includes 
elements such as monitoring and measurement strategies, data handling processes, 
statistics, and quality control and assurance (Fino, 2018). The primary and second-
ary AAQS have been specified in the United States Federal Clean Air Act 
Amendments of 1990. The primary and secondary AAQS are given for certain pol-
lutants, which vary depending on the emphasis placed on protecting human or eco-
logical health as well as the quality of the environment. Primary AAQS is based on 
research related to human health (epidemiology, exposure assessments, toxicology, 
etc.). Secondary AAQS is established based on an emphasis on factors such as 
resource degradation, aesthetics, and visibility. Air quality standards are defined for 
specific time intervals, with specific measurement units and statistics (Shendell, 
2019). As per resolution WHA68.8 adopted by the World Health Assembly, when 
using the WHO AQGs to develop standards, regulatory bodies and policy-makers 
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must take social, cultural, and economic factors into consideration (Fino, 2018). 
The shipping industry and marine traffic contribute a significant proportion of 
global anthropogenic emissions. Shipping is intrinsically international; therefore, it 
is necessary to strictly implement uniform regulations at the global scale. Various 
measures have been taken, including the adoption of the MARPOL Convention and 
Emission Control Areas (ECAs) designation by the International Maritime 
Organization (Komar & Lalić, 2015). Furthermore, efforts that target transboundary 
air pollution need to be intensified and coordinated at local, national, and interna-
tional levels. The Convention on Long-range Transboundary Air Pollution 
(CLTRAP) marked the beginning of a legally binding framework for addressing air 
pollution on a regional basis, adopted in 1979 by the UNECE (Fino, 2018).

Technological solutions to combat air pollution may include the usage of cleaner 
technologies in industries, renewable energy (energy generation), promoting hybrid 
vehicles with much less pollutant emissions, and growing urban vegetation that fil-
ters airborne PM. To reduce pollution emissions from automobiles, electric vehicles 
and hydrogen cell vehicles with no emissions (at tailpipe) must be used (Piracha & 
Chaudhary, 2022). The concept of a “smart city” is another important step that 
responds to the needs of inhabitants in a more efficient and sustainable manner 
(Cariolet et al., 2018).

The green infrastructure approach for cities such as growing plants can be used 
as barriers between people and air pollution from automobiles as well as to absorb 
air pollution (Piracha & Chaudhary, 2022). Barwise and Kumar (2020) discovered 
that certain biological characteristics of plants can effectively minimize transport-
related air pollution and developed a framework for selecting plants to lessen expo-
sure to air pollution. Overall, small leaf size, ideal vegetation height and density, 
and high leaf complexity are all factors in the elimination of transport-related air 
pollution, with taller vegetative barriers (between humans and traffic) being more 
beneficial in cases of open roads and shorter ones in cases of street canyons.

Table 7.1  Recommended 2021 AQG levels and 2005 air quality guidelines (WHO, 2021)

Pollutant Averaging time 2005 AQGS 2021 AQGS

PM2.5, μg/m3 Annual 10 5
24-houra 25 15

PM10, μg/m3 Annual 20 15
24-houra 50 45

O3, μg/m3 Peak seasonb – 60
8-houra 100 100

NO2, μg/m3 Annual 40 10
24-houra – 25

SO2, μg/m3 24-houra 20 40
CO, mg/m3 24-houra – 4

Source: https://www.ncbi.nlm.nih.gov/books/NBK574591/table/ch3.tab 26/
a99th percentile (i.e. 3–4 exceedance days per year)
bAverage of daily maximum 8-hour mean O3 concentration in the six consecutive months with the 
highest 6-month running-average O3 concentration
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Building materials and design also have a significant influence on decreasing air 
pollution by using light-sensitive titanium dioxide to make buildings serve as a pho-
tocatalyst that reacts with and neutralizes air pollutants in the presence of oxygen 
and water vapours, converting harmful nitrogen oxide into nitrates. Strategies to 
mitigate the negative health effects of the urban heat island effect include increasing 
the solar reflectance and emittance of roofs and pavements by light-coloured roofs 
and increasing green areas to reduce heat capture (Piracha & Chaudhary, 2022). 
Minimizing emissions and increasing natural sinks of air pollutants is another solu-
tion to meet environmental challenges. Eco-friendly and sustainable practices are 
needed to reduce air pollution. According to Weyens et al. (2015), phytoremediation 
is an effective plant-based, economical, soil-stabilizing, sustainable, and environ-
mentally friendly process to reduce air pollutants attributable to the gas-exchange 
mechanism in plants exchanging gases with ambient air. Through various mecha-
nisms, plants and allied microbes absorb contaminants, both organic and inorganic, 
from the surrounding air and break down or detoxify them. However, uncertainties 
regarding the suitability and potential of particular species for specific pollutants 
still prevail, which necessitates future research in this field. Additionally, the slow 
removal process of phytoremediation, allowing the build-up of pollutants over a 
confined area, is another barrier to its widespread use (Agarwal et al., 2019).

Lifestyle changes such as the use of energy-efficient appliances, and public 
transport or bicycles for shorter distances are some behavioural responses to the 
mitigation of air pollution. Various governments and non-governmental organiza-
tions around the world have implemented low-carbon measures to direct sustainable 
urbanization practices towards improved health, such as the Istanbul Declaration of 
the North Atlantic Treaty Organization and the UN’s Millennium Declaration. 
Urbanization had positive effects on global health in general. However, the health 
benefits of urbanization could be reversed by air pollution. To promote sustainable 
growth, the government should strike a balance between air pollution regulation and 
urbanization (Wang, 2018). Environmental governance should be processed concur-
rently with economic and urban development. It is necessary to raise public aware-
ness along with the multidisciplinary approach by scientific professionals. More 
research on air pollution, including forecasting air pollutant quantities, especially 
the impacts of air quality indicators and long-term monitoring in different weather 
conditions, is required for sustainable development and formulation of government 
policies.

7.8 � Conclusions

Urban populations experience multiple exposures to air pollution, resulting in 
severe health effects in terms of morbidity and premature deaths. The ever-increasing 
size of the population; lack of knowledge and awareness about air pollution; low 
housing quality in poor sections of urban society; indoor pollution, which has 
emerged as a major issue; and inadequate monitoring of emissions are some of the 
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challenges that exacerbate urban air pollution problems. Deleterious environmental 
and health concerns due to urban air pollution must be addressed by adopting vari-
ous mitigation strategies, such as renewable energy, green infrastructure, and low-
carbon emissions, and by the introduction and stringent implementation of policies 
and air quality legislation. Understanding the perplexing relationship between air 
pollution and urban forms and tackling air pollution in conjunction with climate and 
public health issues can result in substantial progress towards sustainable 
urbanization.
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Abstract  Water quality assessment is a critical aspect of maintaining the health of 
aquatic ecosystem. The escalating issue of water pollution poses a significant threat 
to human well-being, necessitating the need for water quality evaluation. Geospatial 
technology, particularly GIS tools, plays a vital role in monitoring and mapping 
water quality over larger spatial and temporal scales. This chapter explores the inte-
gration of geospatial technology and in situ observations to enhance the understand-
ing of water quality dynamics in aquatic ecosystems. Geospatial technology, 
including remote sensing from satellites, offers broad-scale coverage and continu-
ous monitoring, providing data on various optical and thermal properties of water 
bodies. In situ observations involve direct measurements taken at specific locations, 
providing ground truth data for calibration and validation. This chapter delves into 
the potential of machine learning and artificial intelligence (AI) techniques to pro-
cess and analyze vast and diverse data sets, improving predictive modelling and 
parameter retrievals. It discusses challenges such as spatial and temporal resolu-
tions, atmospheric interference, and data integration, along with solutions for data 
assimilation, sensor network optimization, and real-time monitoring. Overall, this 
chapter provides valuable insights into the integration of geospatial technology and 
in situ observations, offering practical guidance for researchers and water resource 
managers seeking to construct accurate and comprehensive water quality dynamics 
in aquatic ecosystems.
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8.1 � Introduction

Water quality assessment is of utmost importance for various reasons. It is crucial 
for the protection of human health. Clean and safe water is essential for drinking, 
cooking, and personal hygiene (Dinka, 2018). Assessing water quality helps iden-
tify potential contaminants, such as bacteria, viruses, and chemical pollutants, 
ensuring the provision of safe drinking water to communities and reducing the 
spread of waterborne diseases (Liang et al., 2006). In addition, water quality assess-
ment plays a vital role in environmental conservation. Healthy water ecosystems are 
essential for supporting biodiversity, sustaining aquatic life, and maintaining eco-
logical balance. By monitoring and managing water quality, we can identify pollut-
ants, excess nutrients, and other stressors that can harm aquatic organisms, destroy 
habitats, and disrupt the delicate balance of ecosystems (Crain et al., 2009; Peters 
et  al., 1997). This helps protect vulnerable species and preserve biodiversity. 
Additionally, water quality assessment is essential for the protection of recreational 
areas. Many water bodies serve as popular recreational areas where people engage 
in swimming, boating, fishing, and other water-based activities. Assessing water 
quality in these areas ensures the safety and enjoyment of individuals by identifying 
potential risks, such as high bacterial contamination or toxic algal blooms, and 
enabling timely warnings or appropriate management actions (Chorus & Welker, 
2021; WHO, 2021). Moreover, water quality assessment is crucial for agricultural 
and irrigation management. Agriculture relies heavily on water resources for irriga-
tion and livestock needs. Assessing water quality helps ensure that water used in 
agriculture is free from contaminants that may affect crop growth, livestock health, 
or soil quality (Molden, 2013; Saad & Gamatié, 2020). Assessments also aid in 
identifying and managing nutrient runoff from agricultural activities, minimizing 
the impacts on downstream water bodies. Industries and commercial establishments 
also benefit from water quality assessment (Kneese & Bower, 2013). Many indus-
tries require water for their operations, and monitoring water quality is essential to 
ensure compliance with environmental regulations and prevent the release of pollut-
ants into water bodies.

By assessing water quality, industries can implement appropriate treatment mea-
sures and reduce their environmental footprint. Groundwater resources are also pro-
tected through water quality assessment. Groundwater serves as a vital source of 
drinking water and irrigation for many regions. Assessing water quality helps iden-
tify potential contaminants and pollutants that can infiltrate groundwater sources 
(Schmoll, 2006). By monitoring and managing water quality at the surface and sub-
surface levels, we can protect and sustain the quality of groundwater resources. 
Additionally, water quality assessment plays a crucial role in climate change adap-
tation (Taylor et al., 2013). Climate change can have significant impacts on water 
quality, including alterations in temperature, precipitation patterns, and the fre-
quency of extreme weather events. Water quality assessment helps understand the 
impacts of climate change on water bodies and enables adaptive management 
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strategies to mitigate adverse effects and ensure the resilience of aquatic ecosystems 
(Creighton et al., 2016). Finally, water quality assessment provides valuable data 
and information for policymakers, water resource managers, and stakeholders. This 
information assists in the development of effective regulations, policies, and man-
agement strategies to address pollution sources, prioritize water quality improve-
ment efforts, and allocate resources efficiently. In conclusion, water quality 
assessment is vital for protecting human health, preserving ecosystems, and ensur-
ing sustainable water resource management. It serves as a foundation for effective 
water management, environmental conservation, and public health protection.

8.2 � Role of Geospatial Technology In Situ Observations 
in Understanding Water Quality Dynamics

The role of geospatial technology and in situ observations is paramount in under-
standing the dynamics of water quality. Geospatial technology, which encompasses 
geographic information systems (GIS), remote sensing, and spatial analysis, pro-
vides powerful tools for capturing, analysing, and visualizing spatial data related to 
water quality (Ritchie et al., 2003; Thakur et al., 2017; Yang et al., 2022). In situ 
observations, on the other hand, involve direct measurements and sampling at spe-
cific locations, providing ground truth data. Together, these approaches offer valu-
able insights into the complex dynamics of water quality and contribute to effective 
monitoring and management strategies.

Geospatial technology plays a crucial role in water quality assessment by inte-
grating various data sources and enabling comprehensive spatial analysis (Griffith, 
2002; Usali & Ismail, 2010). Remote sensing, using satellite or airborne sensors, 
provides large-scale and frequent measurements of water quality parameters (Topp 
et al., 2020). It allows for the collection of spectral data, capturing the reflectance of 
light from water bodies, which can be correlated with specific water quality indica-
tors. By analysing remote sensing data, such as imagery and derived indices, pat-
terns and trends in water quality can be identified over extensive areas and multiple 
time periods (Bierman et al., 2011). This helps in detecting changes, locating pollu-
tion hotspots, and understanding the spatial distribution of water quality parameters. 
Additionally, GIS facilitates the integration and visualization of diverse data sets, 
such as water quality measurements, hydrological information, land use patterns, 
and pollutant sources (Volk et al., 2008). Through spatial analysis, GIS enables the 
identification of relationships and correlations between water quality parameters 
and environmental factors. By overlaying and analysing different layers of informa-
tion, GIS can identify potential sources of pollution, model pollutant transport, and 
assist in decision-making for water resource management.

In situ observations complement remote sensing data by providing detailed, 
localized information on water quality parameters (Becker et  al., 2019). These 
observations involve field measurements and sample collection at specific sites.  
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In situ data collection enables the calibration and validation of remote sensing 
measurements, improving the accuracy and reliability of water quality assessments. 
In situ observations provide precise measurements of physical, chemical, and bio-
logical parameters, such as temperature, dissolved oxygen, nutrient concentrations, 
and the presence of specific organisms (Gholizadeh et al., 2016). These direct mea-
surements help validate remote sensing data and provide ground truth information 
for accurate interpretation.

Combining geospatial technology with in situ observations allows for a more 
comprehensive understanding of water quality dynamics (Park et  al., 2020). The 
integration of remote sensing data and in situ measurements helps overcome the 
limitations of individual approaches, providing a holistic view of water quality 
parameters at different spatial and temporal scales. It enhances the accuracy of 
water quality models and predictions, enabling better decision-making and resource 
allocation. Furthermore, geospatial technology and in situ observations are valuable 
tools in assessing the impacts of human activities, climate change, and land use on 
water quality. By monitoring changes in water quality over time, it is possible to 
identify trends and assess the effectiveness of pollution control measures. This 
information assists in the development of targeted strategies for mitigating pollution 
sources, protecting ecosystems, and ensuring sustainable water resource 
management.

8.3 � Objective of This Chapter

The objective of this chapter is to provide a comprehensive overview of the con-
struction of water quality dynamics using geospatial technology and in situ observa-
tions. It aims to highlight the significance of integrating these approaches for a 
better understanding of water quality parameters, their spatial and temporal varia-
tions, and their implications for environmental management and decision-making.

8.4 � Fundamentals of Water Quality Parameters, Their 
Significance, and Implications

Water quality refers to the chemical, physical, and biological characteristics of 
water that determine its suitability for various uses and its impact on ecosystems 
and human health (Carr & Neary, 2008). Assessing water quality involves analysing 
different parameters that provide insights into the overall condition of the water 
body. These parameters can vary depending on the specific context and purpose of 
the assessment.
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�Physical Parameters

Temperature  Water temperature plays a crucial role in determining the metabolic 
rates, behavior, and distribution of aquatic organisms. It affects dissolved oxygen 
levels, nutrient availability, and overall ecosystem dynamics. Changes in water tem-
perature can disrupt the delicate balance of aquatic ecosystems, affecting the growth 
and reproduction of aquatic species. Temperature variations may lead to shifts in 
species composition, changes in habitat suitability, and altered ecological processes.

Turbidity  Turbidity refers to the clarity or cloudiness of water caused by suspended 
particles. It provides insights into the presence of sediments, organic matter, or pol-
lutants. High turbidity can indicate erosion, sedimentation, or runoff from construc-
tion sites, agriculture, or land development. It affects light penetration, which can 
inhibit aquatic plant growth and disrupt aquatic food chains. Monitoring turbidity 
helps identify sediment sources, assess water quality degradation, and mitigate 
impacts on aquatic ecosystems.

�Chemical Parameters

pH  pH measures the acidity or alkalinity of water. It influences chemical reactions, 
nutrient availability, and the physiology of aquatic organisms. Extreme pH levels 
can be harmful to aquatic life. Acidic conditions (low pH) can result from acid mine 
drainage or industrial discharges, while alkaline conditions (high pH) can occur in 
areas with limestone geology or excessive algal activity. Monitoring pH levels helps 
detect acidification or alkalization, assess impacts on aquatic life, and guide water 
treatment processes.

Dissolved Oxygen (DO)  Dissolved oxygen is vital for the survival of aquatic 
organisms, as it supports their respiration and metabolism. Adequate DO levels are 
necessary for maintaining healthy aquatic ecosystems. Insufficient DO levels can 
lead to hypoxia or anoxia, causing stress or death to aquatic organisms. Low DO can 
result from pollution, eutrophication (excessive nutrient enrichment), or tempera-
ture changes. Monitoring DO levels helps identify water bodies at risk and assess 
the impacts of pollution or excessive nutrient input.

Nutrients  Nutrients, including nitrogen and phosphorus, are essential for aquatic 
plant growth and ecosystem productivity. However, excessive nutrient input can 
lead to eutrophication, an overgrowth of algae and aquatic plants, which negatively 
impacts water quality. High nutrient levels can result from agricultural runoff, 
wastewater discharge, or improper fertilizer use. Eutrophication can lead to algal 
blooms, oxygen depletion, and the degradation of aquatic habitats. Monitoring 
nutrient levels helps identify nutrient sources, manage agricultural practices, and 
implement nutrient reduction strategies.
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Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand 
(BOD)  COD and BOD indicate the amount of oxygen required for the degradation 
of organic matter, representing the pollution level. Higher COD and BOD values 
suggest the presence of high concentrations of organic compounds, such as sewage, 
industrial effluents, or agricultural runoff. Elevated levels of organic pollutants can 
lead to oxygen depletion in water bodies and negatively impact aquatic ecosystems. 
Oxygen depletion can be harmful to aquatic organisms, leading to hypoxic or anoxic 
conditions, which can result in fish kills and the disruption of the entire aquatic 
food chain.

�Biological Parameters

Biotic Index  Biotic indices use the presence and abundance of specific organisms 
to assess water quality and ecosystem health. By analysing the composition of bio-
logical communities, the impact of pollution and environmental conditions on 
aquatic ecosystems can be evaluated.

Presence of Indicator Species  Certain species can indicate pollution levels or spe-
cific environmental conditions. The identification and monitoring of these indicator 
species allow for the detection and assessment of pollution levels, helping to target 
and prioritize management actions to improve water quality and protect ecosystem 
integrity.

�Microbiological Parameters

Microbiological parameters, such as coliform bacteria and pathogens, indicate the 
presence of microbial contaminants and potential health risks. High levels of coli-
form bacteria or the presence of pathogens in water can indicate faecal contamina-
tion from sewage or animal waste (Cabral, 2010). This poses a risk to human health, 
causing waterborne diseases. Monitoring microbiological parameters helps ensure 
the safety of drinking water sources and recreational waters.

�Toxic Substances

Heavy Metals  Monitoring heavy metal concentrations (e.g., lead and mercury) is 
crucial due to their toxicity and persistence in water. Continuous exposure to ele-
vated levels of heavy metals through drinking water or the consumption of contami-
nated fish and seafood can lead to various health issues, including neurological 
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disorders, kidney damage, respiratory problems, developmental issues in children, 
and even cancer. Once in water, heavy metals can contaminate sediments, disrupt 
aquatic ecosystems, and bioaccumulate in organisms, leading to harmful effects on 
aquatic plants, animals, and microorganisms (Sonone et al., 2020).

Pesticides and Herbicides  Monitoring agricultural runoff for the presence of these 
chemicals helps assess potential water contamination. Long-term exposure to these 
chemicals may have adverse health effects, such as developmental issues, reproduc-
tive problems, and increased cancer risks.

�Radiological Parameters

Radionuclides  Monitoring radioactive elements in water is important to ensure 
compliance with safety standards. Radionuclides in water can pose significant 
health risks to humans if ingested or absorbed through the skin (Naja & Volesky, 
2017). Some radionuclides emit ionizing radiation, which can damage cells and 
increase the risk of cancer and other health effects.

Water quality parameters are measured through field sampling and laboratory 
analysis. Regular monitoring of these parameters provides data on trends, identifies 
pollution sources, and guides water resource management and pollution control 
efforts. Advances in technology, such as remote sensing and sensor networks, enable 
continuous monitoring and real-time data collection, enhancing water quality 
assessment and management. It is important to note that acceptable water quality 
standards and guidelines may vary depending on the intended use of water, such as 
drinking water, recreational activities, or ecosystem preservation.

8.5 � Importance of In Situ Observations in Understanding 
Water Quality Dynamics

In situ observations play a crucial role in understanding water quality dynamics due 
to their direct and real-time nature. They provide valuable data obtained directly 
from the water body, offering a comprehensive and accurate assessment of water 
quality parameters (Glasgow et al., 2004). The importance of in situ observations in 
understanding water quality dynamics can be summarized as follows:

Accurate and Reliable Data  In situ observations provide precise and reliable data, 
as measurements are taken directly at the location of interest. This eliminates uncer-
tainties associated with data interpretation and ensures accurate assessments of 
water quality conditions.
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Real-Time Monitoring  In situ observations enable real-time monitoring of water 
quality, allowing for immediate detection of changes and variations. These real-time 
data can be crucial in identifying short-term fluctuations and understanding dynamic 
processes within the water body.

Spatial Variability  Water quality can vary significantly across different locations 
and depths within a water body. In situ observations capture spatial variability, pro-
viding insights into the heterogeneity of water quality parameters. This information 
is essential for understanding local impacts and designing targeted management 
strategies.

Validation of Remote Sensing Data  In situ observations serve as ground truth data 
for remote sensing measurements. By validating remote sensing data with in situ 
data, the accuracy and reliability of remote sensing-based water quality assessments 
can be enhanced.

Impact Assessment  In situ observations allow for the assessment of the immediate 
impacts of pollution events or changes in environmental conditions. This rapid 
response capability is valuable in identifying potential pollution sources and 
promptly addressing water quality issues.

Long-Term Trends  In situ observations can be conducted over extended periods, 
enabling the monitoring of long-term trends in water quality parameters. These lon-
gitudinal data help identify gradual changes or trends in water quality and support 
the evaluation of the effectiveness of management measures over time.

Water Resource Management  In situ observations provide critical information for 
water resource management and decision-making. Understanding water quality 
dynamics helps in formulating effective strategies for pollution control, ecosystem 
conservation, and sustainable water use.

8.6 � Sampling and Measurement of In Situ Data

In situ data collection for water quality assessment involves various sampling tech-
niques and measurements to obtain accurate and representative information about 
the condition of water bodies. Grab sampling entails collecting discrete water sam-
ples at specific locations, providing instantaneous data for various parameters. 
Integrated sampling, on the other hand, involves continuous measurements as 
instruments are lowered through the water column, offering insights into variations 
with depth. Composite sampling combines multiple grab samples from different 
locations to create a representative sample, allowing for a comprehensive assess-
ment of overall water quality. Passive sampling employs specialized devices or 
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materials to absorb pollutants over time and is suitable for monitoring contaminants 
with low concentrations or for long-term studies. Continuous monitoring systems 
use automated instruments or data loggers to continuously measure parameters in 
real time, enabling the identification of short-term fluctuations and trends. Vertical 
profiling involves taking multiple grab samples at different depths, which is useful 
for studying changes in water quality with depth in stratified water bodies.

Measurements of key water quality parameters include physical (temperature, 
turbidity), chemical (pH, dissolved oxygen, nutrients), biological (biomass, algal 
blooms), and microbiological (coliform bacteria, pathogens) aspects. Temperature 
and turbidity are measured using thermometers and turbidimeters, respectively. For 
chemical parameters, pH meters, dissolved oxygen meters, and colorimetric meth-
ods for nutrients are employed. Biological parameters are assessed through field 
observations, plankton nets, or fluorometers for chlorophyll-a content. 
Microbiological parameters, such as coliform bacteria and pathogens, are measured 
using specialized testing kits to detect microbial contamination. By employing 
these techniques and measurements, in situ observations provide valuable insights 
into water quality dynamics, supporting effective water resource management and 
ensuring the protection of aquatic ecosystems and human health.

8.7 � Geospatial Technology for Water Quality Assessment

Remote sensing plays a crucial role in water quality assessment by providing valu-
able information about water bodies from a distance without direct contact or physi-
cal sampling (Chawla et  al., 2020). This technology uses sensors mounted on 
satellites, aircraft, drones, or other platforms to capture and measure various proper-
ties of water, allowing for continuous monitoring, spatial coverage, and temporal 
analysis. Remote sensing provides a powerful and cost-effective tool for water qual-
ity assessment, enabling timely and informed decision-making for sustainable man-
agement of water resources and protection of aquatic ecosystems. Some of the key 
roles of remote sensing in water quality assessment are given below.

Spatial and Temporal Monitoring  Remote sensing allows for frequent and wide-
area monitoring of water bodies, enabling the assessment of water quality over large 
geographic regions and across different time intervals. This helps in identifying 
long-term trends and seasonal variations and detecting sudden changes in water 
quality.

Detection of Pollutants  Remote sensing can identify and quantify various pollut-
ants, such as suspended sediments, chlorophyll-a (an indicator of algae and phyto-
plankton abundance), dissolved organic matter, and nutrients such as nitrogen and 
phosphorus. Monitoring these pollutants helps assess the overall health of aquatic 
ecosystems and potential impacts on human health.
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Algal Bloom Monitoring  Harmful algal blooms (HABs) can have detrimental 
effects on water quality and marine life. Remote sensing helps in the early detection 
and tracking of algal blooms, allowing authorities to take timely measures to protect 
public health and aquatic ecosystems.

Bathymetry and Bottom Characterization  Remote sensing can measure the depth 
of water bodies (bathymetry) and provide information about the bottom composi-
tion. These data are essential for understanding habitat suitability, sediment distri-
bution, and erosion patterns.

Identification of Land–Water Interactions  Remote sensing can analyze the inter-
action between land and water, such as identifying sediment runoff from land-based 
activities and urban runoff and identifying potential pollution sources.

Water Temperature Estimation  Remote sensing can provide data on water surface 
temperature, which is vital for understanding the thermal dynamics of water bodies, 
as temperature affects water quality and ecosystem dynamics.

Identification of Turbidity and Sediment Transport  Remote sensing can estimate 
water turbidity, which is an essential parameter for understanding sediment trans-
port, erosion, and the impact of land-use changes on water quality.

Emergency Response and Disaster Management  Remote sensing can be used 
during environmental disasters such as oil spills or industrial accidents to assess the 
extent of contamination and guide response efforts.

Data Integration and Modelling  Remote sensing data can be integrated with other 
environmental data, such as meteorological information, river flow data, and water 
quality measurements from field surveys, to create comprehensive models for water 
quality prediction and management.

8.8 � Satellite Sensors and Their Capabilities for Water 
Quality Monitoring

Satellite sensors are essential tools for water quality monitoring due to their ability 
to capture large-scale, continuous data over vast areas. They can measure various 
optical and thermal properties of water bodies, providing valuable information for 
assessing water quality (Gholizadeh et al., 2016; Mushtaq et al., 2015, 2021). Some 
of the commonly used satellite sensors and their capabilities for water quality moni-
toring are presented below. These satellite sensors, among others, contribute to a 
comprehensive understanding of water quality by providing data on various 
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parameters, such as chlorophyll-a, suspended sediments, turbidity, temperature, and 
water surface properties. Integrating data from different sensors enhances the accu-
racy of water quality assessments and supports effective management and conserva-
tion efforts for water resources. Table  8.1 presents the commonly used satellite 
sensors.

Moderate Resolution Imaging Spectroradiometer (MODIS)  MODIS is onboard 
both the Aqua and Terra satellites and provides data at moderate spatial resolutions 
(250 m, 500 m, and 1 km). It measures ocean color, including chlorophyll-a concen-
tration, which indicates the presence of phytoplankton and algae and thus the level 
of primary productivity and potential harmful algal blooms. MODIS can also esti-
mate the concentration of suspended sediments and colored dissolved organic mat-
ter, providing insights into water clarity and turbidity.

Visible Infrared Imaging Radiometer Suite (VIIRS)  VIIRS is mounted on the 
Suomi NPP and NOAA-20 satellites, offering similar capabilities to MODIS.  It 
measures ocean color, chlorophyll-a, and suspended sediment concentrations, con-
tributing to water quality assessment.

Sentinel-2  Part of the European Space Agency’s Copernicus program, Sentinel-2 
provides high-resolution (10–60  m) multispectral data. Its red-edge and near-
infrared bands allow for accurate estimation of chlorophyll-a and other water qual-
ity parameters, even in coastal and turbid waters.

Landsat  Landsat satellites provide moderate to high spatial resolution (30 m) mul-
tispectral data. Although not specifically designed for water quality, Landsat data 
can be used to assess water quality parameters such as chlorophyll-a, suspended 
sediments, and turbidity.

Hyperspectral Sensors  Hyperspectral sensors, such as the airborne visible/infrared 
imaging spectrometer (AVIRIS), can provide high-resolution data with hundreds of 
narrow spectral bands. These sensors offer more detailed information on water con-
stituents, allowing for improved identification and quantification of various water 
quality parameters.

Advanced Very High-Resolution Radiometer (AVHRR)  AVHRR provides ther-
mal infrared data that can be used to estimate water surface temperature essential 
for understanding thermal dynamics, which influence aquatic ecosystems and water 
quality.

Synthetic Aperture Radar (SAR)  SAR sensors, such as those on Sentinel-1, can be 
used to monitor water surface roughness, detect oil spills, and track changes in 
coastal zones.
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8.9 � Retrieval Algorithms for Deriving Water Quality 
Parameters from Remote Sensing Data

Retrieval algorithms for deriving water quality parameters from remote sensing data 
are mathematical procedures that convert the radiometric measurements obtained 
by satellite sensors into meaningful and quantifiable information about the constitu-
ents and properties of water bodies. These algorithms use the relationship between 
the observed electromagnetic radiation (reflectance or radiance) and the inherent 
optical properties of water to estimate various water quality parameters (Mouw 
et al., 2015). The retrieval process can be complex due to the influence of atmo-
spheric effects, sensor characteristics, and inherent variability in water constituents. 
The retrieval algorithms can vary based on the sensor used, water body type (e.g., 
coastal, open ocean, inland waters), and environmental conditions (Mushtaq & Nee 
Lala, 2017). Validation of the retrieved water quality data through in situ measure-
ments and intercomparison with other sensors or retrieval methods is crucial to 
ensure accuracy and reliability (Bailey & Werdell, 2006). Additionally, as technol-
ogy advances, more sophisticated algorithms and machine learning approaches are 
continuously being developed to improve water quality parameter retrieval from 
remote sensing data. An overview of the retrieval process and some commonly used 
algorithms for specific water quality parameters are given below:

Water-Leaving Radiance and Atmospheric Correction  The first step in water 
quality retrieval is to remove the atmospheric effects from the satellite-measured 
radiance to obtain the water-leaving radiance, which only represents the contribu-
tion of water and its constituents. Atmospheric correction methods, such as the 
dark-object subtraction (DOS) method, atmospheric correction using a model (e.g., 
6S, MODTRAN), and empirical line methods, are commonly used for this purpose.

Chlorophyll-a Concentration  Chlorophyll-a is a pigment found in algae and phy-
toplankton, and its concentration is an essential indicator of water quality and eco-
system health. Common algorithms for chlorophyll-a retrieval include the blue–green 
algorithm, OC3 (Ocean Color 3), and OC4 (Ocean Color 4). These algorithms use 
specific bands in the blue and green regions of the electromagnetic spectrum to 
estimate chlorophyll-a concentrations (Fig. 8.1a, b).

Suspended Sediments and Turbidity  Suspended sediments and turbidity affect 
water clarity and light penetration. Since suspended matter is the primary cause of 
water turbidity, fluvial suspended sediment concentrations have frequently been 
determined using turbidity measurements. The suspended particulate matter (SPM) 
concentration can be estimated using algorithms such as the NIR-red band ratio, the 
NIR-green band ratio, or the turbidity index. These algorithms leverage the relation-
ship between the spectral reflectance and the concentration of suspended particles 
in water. In a turbidity study in an ice-marginal lake at the Bering Glacier, Alaska, 
simple and multiple linear regression analyzes were performed using various bands, 
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such as Landsat 7 ETM-F (Enhanced Thematic Mapper), which is used to find the 
best turbidity predictor in glacial lakes. The red portion of the electromagnetic spec-
trum, such as Landsat 7 ETM+ Band 3, and the near-infrared portion of the electro-
magnetic spectrum, such as Band 4, were used in the final algorithm to predict 
turbidity concentration (Liversedge, 2007). Maps based on algorithms that show 
turbidity are used in inter- and intraannual sediment analysis. Various researchers 
can use this information in the prediction of important glacial events for ex-surge 
events or outburst floods.

Colored Dissolved Organic Matter (CDOM)  CDOM refers to the fraction of 
organic matter in water that absorbs light and imparts a brownish or yellowish color. 
Heterogeneous organic compounds that are naturally water soluble make up colored 
dissolved organic matter (CDOM). It absorbs visible and ultraviolet light. In situ 
folic acid production from the decomposition of seaweed is a primary production 
byproduct. The addition of industrial and domestic effluents contributes to an 
increase in CDOM concentrations in coastal waters. Due to seawater mixing and 
photodegradation, the optical characteristics of CDOM are altered in coastal envi-
ronments. Algorithms for CDOM retrieval, such as the CDOM absorption model, 
use the relationship between the absorption of light by CDOM at specific wave-
lengths and its concentration.

Water Temperature  Water temperature can be estimated using thermal infrared 
bands from sensors such as MODIS, VIIRS, or Landsat. Planck’s law-based algo-
rithm relates the radiance measured at specific thermal infrared wavelengths to 
water temperature.

Secchi Disk Depth  The Secchi disk depth is a simple and widely used measure of 
water transparency. It can be estimated using algorithms that relate the Secchi disk 
depth to the water-leaving radiance or to the inherent optical properties of water, 
such as absorption and scattering coefficients (Fig. 8.1).

Total Suspended Matter (TSM)  TSM includes both organic and inorganic particles 
suspended in water. Suspended matter is connected to total primary output by green 
plants, heavy metal input, and micropollutants. Researchers have discussed the con-
nection between reflectance and suspended sediment. Suspended sediments cause 
surface water to radiate more in the visible and near-infrared ranges of the electro-
magnetic spectrum. Surface water radiance is influenced by sediment type, texture, 
color, sensor view, and sun angles, as well as water depth. The amount of suspended 
matter in inland water can be estimated and mapped using remote sensing tech-
niques, which also provide temporal data. Algorithms for TSM retrieval often use a 
combination of reflectance bands from different parts of the spectrum and incorpo-
rate information on the specific absorption and scattering properties of the sus-
pended matter (Mao et  al., 2012). Many satellite platforms, including Landsat, 
SPOT (Satellite Pour Observation de la Terre), IRS (Indian Remote Sensing), CZCS 
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Fig. 8.1  Chlorophyll-a (a) and Secchi disk depth map (b) developed by Mushtaq et al., 2022 for 
Wular Lake using satellite and in situ derived algorithm. (Source: Mushtaq et al., 2022)

(Coastal Zone Color Scanner), and Sea-viewing Wide Field of View Sensor, have 
been used for remote sensing studies of suspended materials (SeaWiFS) (McKinna 
et  al., 2011). These investigations have demonstrated a significant correlation 
between brightness and reflectance from a single band or a combination of bands in 
satellite or aerial platforms and suspended materials.

Phytoplankton Functional Types (PFTs)  Eutrophication in a water body can be 
measured in terms of the amount of chlorophyll present in the algal plankton cells. 
One of the photosynthetic substances that affect the color of water is chlorophyll. 
There is a wealth of information available on employing remote sensing to map 
chlorophyll-a, a crucial measure for determining the quality of water and an indica-
tor of algal concentration. Phytoplankton density has important implications for 
primary production and carbon cycle models. It also helps in the monitoring of the 
state of water bodies. During cyanobacterial blooms, large uncertainty persists in 
the detection of the amount of chlorophyll. Various assessments of chlorophyll in 
water are based on correlations between radiance and the narrow-band ratio. The 
various methodologies used for chlorophyll measurement are aircraft, Landsat, 
SPOT (Satellite Pour Observation de la Terre), SeaWiFS (Sea-viewing Wide Field-
of-view Sensor) and CZCS (Coastal Zone Color Scanner) (Usali & Ismail, 2010). 
These methods use a variety of algorithms and wavelengths to map chlorophyll in 
oceans, estuaries, and freshwater. Advanced algorithms, such as the phytoplankton 
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absorption and backscattering properties (PABP) algorithm, use hyperspectral data 
and models to distinguish different phytoplankton functional types based on their 
absorption and scattering properties.

�Hyperspectral Imaging in Water Quality Monitoring

Hyperspectral imaging uses hyperspectral sensors. These are advantageous when 
high-precision and accurate concentrations of water quality parameters are required 
without any contact with the water. Accurate nonpoint pollution source detection is 
a difficult engineering problem. This technology has applications in various water-
related analyses or imaging, such as from surface to water and from air to ground-
water quality monitoring. Currently, hyperspectral images can be obtained by using 
DJI ground flight control software, and one such study has considered the range of 
500–900 nm. There were 11 types of water quality parameter bands selected for the 
best combinations (Liu et al., 2021). Remote sensing helps in identifying the major 
parameters using their optical properties. Optical water indicators help in monitor-
ing water quality parameters in a profitable manner. The data accumulated from 
water bodies determine the application of optical indicators.

8.10 � Integration of In Situ Observations with Remote 
Sensing Data

Integration of in situ observations with remote sensing data is a powerful approach 
that combines the strengths of both methods to improve the accuracy and reliability 
of water quality assessments. In situ observations involve direct measurements 
taken at specific locations within a water body, while remote sensing provides 
broader coverage and continuous monitoring over large areas. By integrating these 
two sources of data, researchers and water resource managers can obtain a more 
comprehensive understanding of water quality dynamics (Ali et  al., 2022; Yuan 
et al., 2022; Zhao et al., 2022) (Fig. 8.2).

Here are some key aspects of how in situ observations and remote sensing data 
can be integrated:

Calibration and Validation  In situ observations play a crucial role in calibrating 
and validating remote sensing data. Calibration involves establishing the relation-
ship between the satellite sensor’s measurements (e.g., radiance or reflectance) and 
the actual water quality parameters measured in the field (e.g., chlorophyll-a con-
centration, turbidity, or suspended sediments). Validation involves comparing the 
remotely sensed data with in situ measurements to assess the accuracy of the 
retrieval algorithms and to identify potential biases or uncertainties.
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Fig. 8.2  The retrieval of water quality parameters based on near-surface remote sensing and the 
machine learning algorithm by Zhao et al., 2022 (Source: Zhao et al., 2022) 

Training Data for Machine Learning  Machine learning algorithms can be trained 
using in situ data to develop more accurate and robust water quality retrieval models 
from remote sensing data. By incorporating in situ measurements as training data, 
machine learning models can learn from the ground truth and improve their perfor-
mance in estimating water quality parameters over a broader area.

Site-Specific Information  In situ observations provide site-specific information, 
such as water quality data at specific locations or during particular events (e.g., algal 
blooms, storm events). This information can be used to validate and refine remote 
sensing-based water quality estimates for those specific areas or time periods.

Identifying Spatial and Temporal Patterns  Remote sensing data offer extensive 
spatial and temporal coverage, allowing the identification of water quality patterns 
over large regions and across different time scales. By integrating in situ observa-
tions, researchers can validate these patterns and gain a deeper understanding of the 
spatial distribution and temporal variability of water quality parameters.
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Data Assimilation in Models  In hydrodynamic and water quality models, in situ 
data can be assimilated with remote sensing data to improve model accuracy and 
reliability. Data assimilation techniques merge both data sources, optimizing the 
model simulations and providing more realistic representations of water quality 
dynamics.

Monitoring Network Optimization  Integrating in situ observations with remote 
sensing data can help optimize the design of in situ monitoring networks. By iden-
tifying critical areas or regions where in situ measurements are most needed, 
resources can be allocated more efficiently to enhance water quality monitoring 
efforts.

Emergency Response and Management  During environmental emergencies (e.g., 
oil spills, harmful algal blooms), in situ observations can provide real-time, ground-
truth data to validate and complement remote sensing data, supporting timely and 
effective response and management actions.

By integrating in situ observations with remote sensing data, water quality 
assessments can benefit from a more comprehensive and accurate understanding of 
aquatic ecosystems, leading to improved decision-making for sustainable water 
resource management and conservation.

8.11 � Potential for Integrating Machine Learning 
and Artificial Intelligence in Water Quality Modelling

Integrating machine learning and artificial intelligence (AI) in water quality model-
ling has the potential to revolutionize the field and greatly improve the accuracy and 
efficiency of water quality assessments and predictions. Machine learning algo-
rithms can learn from data and identify complex patterns, making them well-suited 
for handling the vast and diverse data sets involved in water quality monitoring 
(Xiao et al., 2022) (Fig. 8.3).

Enhanced Predictive Modelling  Machine learning algorithms can analyze histori-
cal water quality data, along with other environmental variables (e.g., meteorologi-
cal data, land use, and hydrological parameters), to build predictive models. These 
models can forecast future water quality conditions, helping water resource manag-
ers and policymakers make informed decisions and implement proactive measures.

Improved Retrieval of Water Quality Parameters from Remote Sensing 
Data  Machine learning can be used to develop more robust retrieval algorithms 
that leverage the spectral information from remote sensing data to accurately esti-
mate water quality parameters, such as chlorophyll-a concentration, turbidity, and 
suspended sediment levels.
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Fig. 8.3  Overview of UAV multispectral image-based water quality monitoring using stacked 
ensemble machine learning algorithms by Xiao et al., 2022. (Source: Xiao et al., 2022)

Data assimilation and Model Calibration  AI techniques can assimilate data from 
multiple sources, including in situ observations, remote sensing data, and model 
simulations, to optimize model parameters and improve model accuracy. This data 
assimilation process helps to incorporate real-time observations and reduces uncer-
tainties in water quality predictions.

Detection of Anomalies and Event Detection  Machine learning algorithms can be 
used to identify anomalies or unusual events in water quality data, such as harmful 
algal blooms or pollution incidents. By detecting these events early, appropriate 
management actions can be taken promptly to mitigate potential impacts.

Sensor Network Optimization  AI can optimize the design and deployment of in 
situ sensor networks. Machine learning algorithms can determine the optimal loca-
tions for sensors based on water quality patterns, reducing the number of required 
sensors while maintaining adequate coverage.

Real-Time Monitoring and Decision Support  Integrating AI with sensor networks 
enables real-time data analysis, allowing for prompt response to changing water 
quality conditions. AI-driven decision support systems can aid in adaptive manage-
ment and emergency response.

Automatic Data Quality Control  Machine learning algorithms can automatically 
detect and correct errors in water quality data, ensuring the reliability and consis-
tency of the data sets used in modelling.
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Uncertainty Analysis  AI can be utilized to quantify and manage uncertainties 
associated with water quality models. By understanding the uncertainty in predic-
tions, decision-makers can make more informed choices when managing water 
resources.

Autonomous Water Quality Monitoring  AI-powered autonomous platforms, such 
as drones or autonomous underwater vehicles, can be deployed to collect water 
quality data in remote or hazardous areas, providing valuable information for mod-
elling and monitoring efforts.

Integrating machine learning and AI in water quality modelling offers tremen-
dous potential for advancing our understanding of water systems and supporting 
effective water resource management (Sit et al., 2020). However, it is essential to 
ensure the availability of high-quality and diverse data sets, address ethical con-
cerns, and maintain human oversight in decision-making to responsibly harness the 
full benefits of these technologies.

8.12 � Limitations and Challenges in Constructing Water 
Quality Dynamics Using Geospatial Technology and In 
Situ Observations

Constructing water quality dynamics using geospatial technology and in situ obser-
vations comes with several limitations and challenges that need to be carefully 
addressed to ensure accurate and reliable assessments. One of the main limitations 
is the spatial and temporal resolution of geospatial technology, such as remote sens-
ing. Satellite sensors with moderate to coarse spatial resolutions may not fully cap-
ture the spatial variability of certain water quality parameters at smaller scales, 
while short-term water quality events or processes can be missed due to limited 
temporal resolution. Additionally, remote sensing data are susceptible to atmo-
spheric interference, which can introduce errors in the retrieved water quality 
parameters despite applying atmospheric correction methods. In situ observations 
also have limitations, including sensor drift, calibration issues, and spatial coverage 
constraints, which can impact the accuracy and representativeness of measured data.

Furthermore, validating remote sensing data with in situ observations poses chal-
lenges, as in situ data may not always coincide in time and location with satellite 
overpasses, leading to temporal and spatial discrepancies. The complex and dynamic 
nature of water bodies and their constituents presents another challenge, as interac-
tions between different water constituents can lead to nonlinear relationships, mak-
ing accurate parameter retrievals difficult. Moreover, data integration and 
harmonization from multiple sources can be challenging due to differences in spa-
tial and temporal resolutions, data formats, and measurement units.

Financial and logistical challenges also arise in maintaining and operating both 
geospatial technology and in situ monitoring networks. The costs associated with 
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establishing and maintaining in situ observations, especially in remote or hard-to-
reach areas, can be substantial. Similarly, accessing and processing remote sensing 
data may require specialized infrastructure and expertise. Last, data accessibility 
and sharing can be hindered by factors such as data ownership, privacy concerns, 
and data format compatibility. Overcoming these challenges requires collaborative 
efforts among researchers, governments, and organizations. Advances in sensor 
technology, calibration techniques, and data integration methods will further 
improve our ability to construct accurate water quality dynamics using geospatial 
technology and in situ observations. Continuous research and innovation in this 
field are crucial for sustainable water resource management and the preservation of 
aquatic ecosystems. By addressing these limitations and challenges, we can make 
significant strides in understanding and managing water quality for the benefit of 
both humans and the environment.

8.13 � Conclusion

Water quality is a very important factor that affects the health of aquatic ecosystems 
as well as human health. The most concerning environmental issue is the rising level 
of water pollution because it has a direct or indirect impact on flora and fauna health. 
Therefore, water quality assessment is now a top priority. The integration of geospa-
tial technology and in situ observations is a powerful approach that holds significant 
promise in advancing our understanding of water quality dynamics in aquatic eco-
systems. The combination of remote sensing data with ground truth measurements 
from in situ observations enables comprehensive and accurate assessments of water 
quality parameters. GIS tools play a vital role in monitoring and mapping water 
quality across different spatial and temporal scales. With the assistance of GIS tech-
nology, water quality parameters such as suspended matter, turbidity, phytoplank-
ton, chlorophyll, and dissolved organic matter can be effectively tracked and 
analyzed. Additionally, GIS, in conjunction with remote sensing technology, allows 
for the creation of thematic maps that aid in determining groundwater potential 
zones. Spectral reflectance values from in situ water quality measurements provide 
valuable insights into the specific bands or wavelengths corresponding to various 
water quality parameters. The integration of hyperspectral imaging and ground 
truthing data further enhances water quality monitoring, enabling a comprehensive 
and accurate assessment of water quality dynamics. By leveraging GIS tools and 
remote sensing data, researchers and water resource managers can make informed 
decisions and implement effective strategies to ensure the sustainable management 
of water resources and the preservation of aquatic ecosystems. The integration of 
geospatial technology and in situ observations is a transformative step toward 
achieving our common goal of safeguarding the health and vitality of our water 
systems in an increasingly complex and interconnected world.
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Chapter 9
Urban Air Quality Monitoring 
and Modelling Using Ground Monitoring, 
Remote Sensing, and GIS

Sunita Verma , Tanu Gangwar, Janhavi Singh , Divya Prakash , 
and Swagata Payra 

Abstract  This chapter explores the advancements in urban air quality studies, 
focusing on the utilization of ground monitoring systems, remote sensing, and GIS 
techniques in urban air quality monitoring and modelling. It provides an overview 
of the importance of monitoring urban air quality, the challenges associated with it, 
and the need for comprehensive and integrated approaches to address this issue. 
This chapter highlights the role of ground monitoring stations, remote sensing tech-
nologies, and GIS in assessing and managing urban air pollution. It also discusses 
the application of these techniques in modelling air quality and predicting air pol-
lutant concentrations. By integrating these techniques, researchers and practitioners 
can enhance their understanding of air pollution patterns, develop effective pollu-
tion control strategies, and promote sustainable urban development. The case stud-
ies and applications discussed in this chapter serve as valuable examples for 
decision-makers and environmental managers looking to improve air quality in 
urban areas.
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9.1 � Introduction

Urban air quality is a vast subject with different socioeconomic aspects in different 
parts of the world – and even within a specific region. Urban air pollution (UAP) is 
a significant global concern in developed and developing countries. The swelling 
urban population and increased motorized city traffic have resulted in severe air pol-
lution affecting the surrounding environment and human health. The WHO has esti-
mated more than two million deaths per  annum along with various respiratory 
illnesses due to increasing UAP in developing countries (WHO, 2014). Originally, 
outdoor air pollution remained, by and large, a purely urban process, and historical 
records and literature testify that the difficulties were extensive. One of the signifi-
cant sources of UAP is the road transport sector. In addition, industrial, commercial, 
and domestic activities likewise contribute to UAP. Over 70–80% of pollution in 
megacities in emerging nations is credited to vehicular emissions triggered by many 
older vehicles united with poor vehicle upkeep, inadequate road infrastructure, and 
low fuel quality (Wang et al., 2010). The criteria pollutants accountable for worsen-
ing urban air quality are oxides of sulphur dioxide (SO2), nitrogen oxides (NOx), 
particulate matter (PM), carbon monoxide (CO), and volatile organic compounds 
(VOCs). Resuspension of road dust due to traffic movement and tire and brake wear 
is also significant sources of ambient PM concentrations in urban areas (Amato 
et al., 2014).

Pollutants in ambient air have concentrations that are distributed heterogeneously 
in urban areas, fashioning hot spots in the dominant business district, signalized 
roadways, and traffic intersections. Additionally, meteorological and topographical 
variations in urban areas lead to complex temporal and spatial variations in pollutant 
concentrations. The spatial measure of urban air quality mapping differs from 
micro, medium to macrolevels. The hurdles in the source-control process of air 
quality management recommended developing a combined, risk supervision effect-
based urban air quality management process. The data from traditional monitoring 
stations are vital because they can be used for law enforcement purposes and are 
accepted by the courts. However, the construction and upkeep of reference air qual-
ity monitoring stations are costly. Moreover, these large structures are often hard to 
locate and require the authorization of the local authority. It should be noted that 
they only provide air quality data from a fixed location, which may not represent 
local air quality. Urban air quality maps, therefore, depend heavily on air quality 
modelling with only a few valid data points. Spatial density monitors allow us to 
better understand the state of quality air of a place beyond a better granularity of 
the data.
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This can be accomplished with the use of remote sensing and geographic infor-
mation systems (GIS) in air quality modelling, as it offers significant advantages in 
understanding and visualizing the state of air quality in urban areas. Remote sensing 
technologies, such as satellite imagery and aerial sensors, provide a wide coverage 
area, allowing for the monitoring of air quality over expansive urban regions. 
Remote sensing provides the capability for real-time or near-real-time air quality 
monitoring. This continuous data collection is crucial for promptly identifying sud-
den changes or pollution events, aiding in timely responses to mitigate potential 
health and environmental impacts. On the other hand, geographic information sys-
tems (GIS) play a crucial role in air quality modelling by facilitating the spatial 
analysis and visualization of data. GIS platforms can combine data from various 
sources, such as remote sensing, ground monitors, meteorological data, and land-
use information, to create detailed air quality maps and models. These models can 
be used to simulate potential scenarios and evaluate the effectiveness of different 
mitigation strategies.

9.2 � Ground Monitoring Techniques

Determining and controlling atmospheric pollutant emissions, comprehending pol-
lutant dispersion, and monitoring emission levels or concentrations in ambient air 
are necessary for protecting the atmosphere. Therefore, ground-based air quality 
monitoring networks are essential. These networks are made up of monitoring sta-
tions that are judiciously positioned throughout various regions to provide real-time 
data on air pollutant concentrations, meteorological, and other parameters. The pri-
mary goal of these networks is to record the concentration levels of atmospheric 
pollutants to define air quality limits and mitigation plans in the event where high 
amounts of contamination are identified. Table 9.1 presents an overview of mea-
surement techniques and permissible limits of criteria pollutants (CPCB: 
NAAQMS/36/2012–13) along with major emission sources and health impacts. 
Criteria pollutants are a set of common air pollutants that are regulated by environ-
mental agencies due to their detrimental effects on human health and the environ-
ment (US EPA, 2015). The six primary criteria pollutants, as defined by the United 
States Environmental Protection Agency (EPA), include carbon monoxide (CO), 
nitrogen dioxide (NO2), sulphur dioxide (SO2), particulate matter (PM), lead (Pb), 
and ground-level ozone (O3) (US EPA, 2022). These pollutants are continuously 
measured and monitored by thousands of monitoring stations spread across specific 
countries or regions. These monitoring stations are maintained by various govern-
mental and nongovernmental organizations that further collect, archive, and distrib-
ute the air quality dataset (Fig.  9.1). The system gathers data from a variety of 
monitoring stations, including federal, state, local, and tribal authorities, as well as 
industry sources, to provide a comprehensive picture of air quality across the 
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Table 9.1  Criteria pollutants and monitoring techniques

S.No. Pollutants Sources

Ambient 
concentration

Methods of 
measurement Health effects

Time 
weighted 
average

NAAQS 
standarda

1. Sulphur 
dioxide 
(SO2) in 
μg/m3

Primary 
emission (fossil 
fuel burning)

Annualb 50 1. Improved West 
and Gaeke
2. Ultraviolet 
fluorescence

Respiratory 
diseases
Cardiovascular 
problems
Premature 
death

24 hoursc 80

2. Nitrogen 
dioxide 
(NO2) in 
μg/m3

Primary 
emission (fossil 
fuel burning)
Secondary 
formation

Annualb 40 1. Modified Jacob 
and Hochheiser
2. 
Chemiluminescence

Respiratory 
problems
Increased risk 
of respiratory 
infections
Aggravation of 
asthma 
symptoms

24 hoursc 80

3. Particulate 
matter 
(PM2.5) in 
μg/m3

Primary 
emission 
(anthropogenic 
sources)

Annualb 40 1. Gravimetry
2. TEOM
3. Beta attenuation

Respiratory 
and 
cardiovascular 
problems

24 hoursc 60

Particulate 
matter 
(PM10) in 
μg/m3

Primary 
emission 
(natural 
sources)

Annualb 60
24 hoursc 100

4. Ozone 
(O3) in μg/
m3

Photochemical 
formation

8 hoursc 100 1. UV photometry
2. 
Chemiluminescence
3. Chemical method

Respiratory 
issues
Skin cancer

1 hourc 180

5. Lead (Pb) 
in μg/m3

Primary 
emission (fossil 
fuel burning 
and waste 
incineration)

Annualb 0.50 1. AAS/ICP method
2. ED – XRF

Neurological 
and 
developmental 
issues

24 hoursc 1.0

6. Carbon 
monoxide 
(CO) in 
mg/m3

Primary 
emission 
(incomplete 
combustion)

8 hoursc 02 Non-dispersive 
infra-red (NDIR) 
spectroscopy

Carbon 
monoxide 
poisoning and 
death

1 hourc 04

Source: NAAQMS/36/2012–13
aPermissible limit for industrial, residential, rural, and other areas (except ecologically sensi-
tive areas)
bAnnual arithmetic mean of a minimum of 104 measurements in a year at a particular site taken 
twice a week 24 hours at uniform intervals
c24 hourly, 8 hourly, or 1 hourly monitored values, as applicable, shall be complied with 98% of 
the time in a year. 2% of the time, they may exceed the limits but not on 2 consecutive days of 
monitoring
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GROUND-BASED AIR 
QUALITY MONITORING 

NETWORKS

World Air Quality 
Index (WAQI)

Air Quality System 
(AQS) of the United 

States 
Environmental 

Protection Agency 
(EPA)

European 
Environment Agency 

(EEA) Air Quality 
Monitoring Network

China Nationwide 
Environmental 

Monitoring Centre 
(CNEMC)

National Ambient Air 
Quality Monitoring 

Programme (NAMP), 
INDIA

Fig. 9.1  Various ground-based air quality network across the globe

country or region. The information gathered is widely used by researchers, policy-
makers, and the general public to access and analyse data on air pollution and its 
effects on human health and the environment. Furthermore, the air quality index 
(AQI) is utilized by government agencies, environmental organizations, and 
researchers to convey the air quality status to local communities (Table 9.2). The 
AQI serves as a measure of air pollution levels and the corresponding health hazards 
within a particular region.

�Data Analysis and Interpretation

In air pollutant studies, data analysis methods are crucial for interpreting and under-
standing the collected data. A few of the common data analysis methods used in air 
studies are:

Descriptive Statistics  Descriptive statistics provide a summary of the data col-
lected in a clear and concise manner. This includes measures such as the mean, 
median, mode, standard deviation, and range (Table 9.3). Descriptive statistics help 
in understanding the central tendency, dispersion, distribution, and shape of the air 
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Table 9.3  An example of a statistical table of the air quality dataset

PM2.5 PM10 NO2 CO O3 SO2

Count 290,621 227,747 292,359 268,197 290,539 292,462
Mean 58.78 88.05 45.79 0.96 55.69 8.98
Std 66.11 89.29 32.06 1.00 53.82 11.70
Min 2.0 5.0 1.0 0.1 1.0 1.0
25% 16.0 37.0 20.0 0.4 2912.0 2.0
50% 39.0 70.0 39.0 0.7 45.0 5.0
75% 77.0 113.0 66.0 1.2 79.0 11.0
Max 1004 3000 300 15 504 307

Source: Zhang et al. (2019)

Table 9.2  Air quality index scale

Index 
values Category Cautionary statements

PM2.5 
(μg/m3)

PM10 
(μg/m3)

0–50 Good None. 0–15.4 0–54
51–100 Moderate Unusually sensitive people should consider 

reducing prolonged or heavy exertion.
15.5–
40.4

55–154

101–
150

Unhealthy for 
sensitive groups

Sensitive groups should reduce prolonged or 
heavy exertion.

40.5–
65.4

155–
254

151–
200

Unhealthy Sensitive groups should avoid prolonged or 
heavy exertion; everyone else should reduce 
prolonged or heavy exertion.

65.5–
150.4

255–
354

201–
300

Very unhealthy Sensitive groups should avoid all physical 
activity outdoors; everyone else should avoid 
prolonged or heavy exertion.

150.5–
250.4

355–
424

Source: US EPA (2022)

pollutant dataset. It aims to uncover patterns, trends, and relationships within a data-
set, providing valuable insights into the underlying phenomena.

Time Series Analysis  Time series analysis is used to study the variation in air pol-
lutant concentrations over time. It involves analysing patterns, trends, and seasonal-
ity in the data. Techniques such as autocorrelation analysis, moving averages, and 
decomposition methods can be employed to identify long-term trends and cyclic 
patterns. This technique reveals how the frequency content of pollutant concentra-
tions changes over time and can help identify short-duration pollution events 
(Fig. 9.2).

Spatial Analysis  Spatial analysis is used to examine the spatial distribution of air 
pollutants. This involves analysing data collected from different monitoring stations 
or using modelling techniques to interpolate and visualize pollutant concentrations 
across a geographic area. Geographic information systems (GIS) and spatial inter-
polation methods such as kriging or inverse distance weighting are commonly used 
for spatial analysis. An example of spatial analysis is presented in Fig. 9.3. From 
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Fig. 9.2  Time series of meteorological and air quality data for the winter period (December 1, 
2017–March 1, 2018) for a site in Europe. (Source: Glojek et al., 2022)

Fig. 9.3  Map depicting the likelihood of PM2.5 exceeding the permissible limit set by the World 
Health Organization (WHO) across Europe for 2006 and 2019. (Source: Beloconi 
& Vounatsou, 2021)

2006 to 2019, the spatial plots exhibit a noticeable reduction in the likelihood of 
PM2.5 levels surpassing the acceptable threshold established by the World Health 
Organization throughout Europe (Beloconi & Vounatsou, 2021).

Regression Analysis  Regression analysis is employed to understand the relation-
ships between pollutants and various influencing factors, such as meteorological 
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Fig. 9.4  The scatter distributions for the fitting and cross-validation of Beijing City PM2.5 data 
predicted via multivariate linear regression model for 2015. (Source: Zhao et al., 2018)

variables, traffic density, or industrial emissions. Multiple regression analysis can 
help identify the significant predictors and quantify their impact on pollutant con-
centrations. Researchers use regression analysis to predict a targeted pollutant con-
centration and validate the results with an observational dataset (Fig. 9.4).

Principal Component Analysis (PCA)  PCA is a multivariate statistical technique 
used to identify underlying patterns and correlations among a large number of air 
pollutant variables. It reduces the dimensionality of the data by transforming the 
variables into a new set of uncorrelated variables called principal components. PCA 
aids in identifying major pollutant sources and understanding their contributions to 
overall pollution.

Cluster Analysis  Cluster analysis is used to group similar air pollution data points 
together based on their characteristics (Fig. 9.5). It helps identify distinct pollution 
patterns or sources that can assist in developing pollution control strategies. Various 
clustering algorithms, such as k-means, hierarchical clustering, or self-organizing 
maps (SOM), can be applied in this analysis.

Source Apportionment  Source apportionment methods aim to identify and quan-
tify the contributions of different pollution sources to the overall air pollutant con-
centrations. Techniques such as chemical mass balance (CMB) and positive matrix 
factorization (PMF) can be used to determine the source profiles and estimate source 
contributions. An example of source apportionment analysis is presented in Fig. 9.6. 
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Fig. 9.5  Census tracts in continental US counties with public housing by annual average particu-
late matter (PM2.5) concentration in micrograms per cubic meter (μg/m3), 2011–2015. (Source: 
Chakraborty et al., 2022)

This research collected PM2.5 samples from six locations in Delhi during both sum-
mer and winter seasons, spanning a period of 40 days at each site. The collected 
samples underwent chemical speciation analysis, including ions, metals, organic 
compounds, and elemental carbons. To determine the sources of pollution, the 
researchers applied the chemical mass balance technique. The results of the source 
apportionment analysis revealed that secondary aerosols, biomass burning (BMB), 
vehicles, fugitive dust, coal and fly ash, and municipal solid waste burning were 
identified as significant contributors to the observed pollution levels (Nagar 
et al., 2017).

�Application of Observational Air Quality Dataset in Research

Ground monitoring data of air quality play a crucial role in research related to envi-
ronmental science, public health, and policy development. Here are some key uses 
of ground monitoring data in research.

Identifying Pollution Sources  By analysing pollutant concentrations and their spa-
tial distribution, researchers can identify specific pollution sources. For this, instru-
ments are strategically placed all over the area of interest. A handful of techniques 
employed for identifying pollutant emission sources using observational datasets 
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are source apportionment (Argyropoulos et al., 2012; Liu et al., 2017), correlation 
and regression analysis (Slezakova et  al., 2013), backwards trajectory analysis 
(Singh et al., 2020), and dispersion modelling. Of the aforementioned techniques, 
the most widely used is the “source apportionment technique.” This technique is 

Fig. 9.6  Chemical composition and source apportionment of PM2.5 in (a) Delhi during winter and 
summer at the six sites and (b) National Capital Region at three sites during winter. (Source: Nagar 
et al., 2017)
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used not only to identify but also to quantify the contributions of different pollution 
sources to a particular environmental pollutant using observational datasets coupled 
with source receptor models such as chemical mass balance (CMB) or positive 
matrix factorization (PMF). For instance, Argyropoulos et  al. (2012) performed 
source apportionment for PM10 at two sites located on Rhodes Island (Greece) in the 
Eastern Mediterranean utilizing chemical mass balance (CMB) receptor modelling. 
The results indicated that vehicular emissions were the primary contributors to 
PM10, accounting for 40.9% and 39.2% during the warm season and 36.8% and 
31.7% during the cold season at the two monitoring sites, respectively. Another 
significant source of ambient PM10 was secondary sulphates, predominantly com-
posed of ammonium and calcium sulphates (18% and 16.5%, respectively, at the 
two sites). Another example is the source apportionment of atmospheric pollutants 
by using PMF and ME2 models at Tianjin (Liu et al., 2017). Five source categories 
were identified with secondary sources, contributing approximately 25.4–26.1% of 
the pollution. Vehicle exhaust accounted for approximately 23.3–25.4% of the pol-
lution, while coal combustion contributed approximately 16.5–18.2%. Crustal dust 
was responsible for approximately 13.2–14.0% of the pollution, and biomass burn-
ing accounted for approximately 9.1–10.2% of the pollution. Ground monitoring 
data allow researchers to identify and track the sources of air pollution in a specific 
area. This information is crucial for developing targeted mitigation strategies and 
policies.

Model Validation and Improvement  Ground monitoring data play a crucial role in 
the validation and enhancement of air quality models. It enables researchers to 
assess and fine-tune their models by comparing them to actual measurements, 
ensuring that the predicted pollutant concentrations align with the observed values. 
This iterative process is vital for enhancing the precision and dependability of air 
quality models, as they are fundamental in predicting future levels of air pollution 
and evaluating the potential consequences of different scenarios.

Studying Spatial and Temporal Trends  Ground monitoring data collected over 
extended periods allow researchers to analyse long-term trends in air quality. This 
includes studying seasonal variations, year-to-year changes, and spatial patterns in 
pollution levels. Such studies provide insights into the underlying causes and driv-
ers of air pollution, facilitating targeted interventions and policy development. For 
example, during the global pandemic (COVID-19) outbreak, large-scale lockdown 
implementation resulted in cleaner air quality in many parts of the world. This fact 
came into limelight due to the spatiotemporal trend analysis of different air pollut-
ants in countries such as Italy (Deng et al., 2022), China (Bhatti et al., 2022), and 
India (Pal et al., 2022). Another example is the long trend analysis of air pollutants, 
which provides a comprehensive idea of how much the “air pollutant” has increased 
or decreased in a certain time frame or over a region of interest. One such study was 
conducted to analyse the trends of particulate matter in a southern Indian industrial 
area, and there was a clear and consistent upwards trend in the 24-hour average 
PM2.5 concentrations, showing an annual increase of 0.43 μg/m3 (Peter et al., 2023).
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Health Impact Assessments and Economic Losses  The link between air pollution 
and a variety of unfavourable health consequences and effects on the economy is 
increasingly broad in the Indian states. Ground monitoring data combined with 
health data and demographic information enable researchers to conduct health and 
economic impact assessments. As part of the Global Burden of Disease Study 
(GBD) 2019, exposure to ambient particulate matter pollution, home air pollution, 
and ambient ozone pollution, as well as their associated deaths and disability-
adjusted life years in each state of India, were calculated. Using the cost-of-illness 
technique, the economic effect of air pollution as the cost of lost productivity owing 
to premature mortality and morbidity attributed to air pollution for every state in 
India was examined (Pandey et  al., 2021). In 2019, air pollution in India was 
responsible for 167 million (confidence interval: 1.42–1.92) or 17.8% (15.8–19.5) 
of all fatalities in the nation. The bulk of these fatalities, 98 million (0.77–1.19), 
and household air pollution, 61 million (0.39–0.86), were caused by ambient par-
ticulate matter pollution. From 1990 to 2019, the mortality rate from home air pol-
lution fell by 64.2% (52.2–74.2), but the death rate from ambient particulate matter 
and ozone pollution increased by 115.3% (28.3–344.4) and 139.2% (96.5–258.2), 
respectively. In India, economic losses due to premature mortality and illness 
caused by air pollution totalled US $28.8  billion (21.4–67.34) and $8.0  billion 
(5.9–10.3), respectively, in 2019. The overall loss, $368 billion (27.4–47.7), was 
13.6% of India’s GDP. The economic loss as a percentage of the state gross domes-
tic price (GDP) among various states is 3.2 times, ranging from 0.67% (0.47–0.91) 
to 2.15% (1.60–2.77), with the lowest per capita GDP, i.e. Uttar Pradesh, followed 
by Bihar, Rajasthan, and Madhya Pradesh, had the largest losses. In 2019,  
Delhi, followed by Haryana, was the state with the largest per capita economic 
losses associated with air pollution, with a variation of 5.4 times among all states 
(Pandey et al., 2021).

Filling the Policy Gaps  Delhi, the nation’s capital, felt the most severe air pollution 
among all of India’s cities. The negative effects are severe, which results in a decline 
in life expectancy (health) and high expenses to the government to address the envi-
ronmental crisis (Sharma et al., 2018). To overcome all the losses, laws and legisla-
tion must be modified with each passing day. As a result, multiple ground-based 
(CPCB) analyses along with satellite-based earth observations were performed to 
study the air quality index (AQI) of Delhi. Due to poor AQI, “Anti-pollution policy 
measures” were framed, which included the Graded Response Action Plan (GRAP), 
Odd-Even Scheme, and National Clean Air Program (Chatterji, 2021).

Overall, ground monitoring data on air quality provide a solid foundation for 
research, enabling scientists to investigate the causes and effects of air pollution, 
evaluate interventions, and guide policy decisions to protect public health and the 
environment.
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Fig. 9.7  A schematic representation of atmospheric data acquisition using the remote sensing 
technique

9.3 � Remote Sensing and Satellite/Sensors for Air Quality 
Monitoring and Assessment

Remote sensing is a valuable tool for assessing air quality, allowing us to gather 
information about the composition and condition of the Earth’s atmosphere from a 
distance (Fig. 9.7). It involves the use of various sensors and instruments mounted 
on satellites, aircraft, or ground-based platforms to collect data on different aspects 
of the atmosphere, such as pollutant concentrations, aerosol properties, and meteo-
rological parameters. Satellite-based remote sensing is particularly useful for air 
quality assessment on a regional or global scale. Satellites equipped with special-
ized sensors can provide continuous and wide-ranging observations of the Earth’s 
atmosphere and thus are capable of filling the spatial gaps of ground monitoring 
resources (The California Air Resources Board, 2023). Remote sensing data are 
often combined with other sources of information, such as meteorological data and 
air quality models, to provide a comprehensive assessment of air quality. This inte-
gration allows for a better understanding of pollutant sources, transport patterns, 
and their impacts on human health and the environment. Additionally, remote sens-
ing can help in the identification of air pollution hotspots, monitoring long-term 
trends, and assessment of the effectiveness of air quality management strategies.

There are several satellites that provide air pollutant datasets by measuring vari-
ous atmospheric parameters. The selection of satellite data to address specific air 
quality issues depends on data accuracy and spatial and temporal resolution, among 
other factors. Here are some notable sensors/satellites known for their air pollutant 
monitoring capabilities (summarized in Table 9.4).
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Table 9.4  Satellite/sensors providing continuous measurements for air quality assessment

Sensor/satellite
Agency 
name Spatial resolution

Approximate 
repeat time Parameters measured

CALIPSO NASA 30 m × 30 m 16 days Cloud & aerosol
Aqua satellite 
{AIRS}

NASA 13.5  km Daily CO, CO2, O3, CH4

Aura satellite 
{OMI}

NASA 13 × 24  km2 Daily O3, HCHO, NO2, SO2

Aura satellite {TES} NASA 5 × 8  km2 6 days O3, CH4, CO
Envisat satellite 
{SCIAMACHY}

ESA 30 × 60  km2 6 days O3, HCHO, NO2, SO2, 
CO, CO2, CH4

MetOp satellite 
{IASI}

ESA 12  km 12 hours O3, CO, CH4, BrO, SO2

GOME-2 ESA 40 × 80  km2 Daily O3, HCHO, NO2, BrO, 
SO2

Terra {MOPITT} NASA 22 × 22  km2 3 days CO
Terra+Aqua 
{MODIS}

NASA 1 × 1 km2 Daily AOD, O3

GOME ESA 40 × 320  km2 3 days O3, HCHO, NO2, BrO, 
SO2

GOSAT (2008) JAXA 10  km 3 days CO2, CH4

Sentinel 5 
{TROPOMI}

ESA Up to 
5.5 km × 3.5 km

1 day Total columns of O3, So2, 
NO2, CO, HCHO, vertical 
profiles of O3, cloud & 
aerosol

Nimbus-4 (BUV) NASA 11.3° × 11.3° 10 days TCO

Source: (Palmer, 2008; Abad et al., 2019)

TES (Tropospheric Emission Spectrometer)  The TES instrument is an infrared 
Fourier transform spectrometer that is installed on the NASA Aura satellite, which 
was launched on 15 July 2004. It has a spectral resolution of 0.06 cm−1. The satellite 
passes over specific locations at approximately 13:30 and 01:30 local time 
(Schoeberl et al., 2006). The TES instrument conducts a global survey with a repeat-
ing cycle of 16 days. Its measurements cover a footprint of 5 km × 8 km at nadir, 
allowing for approximately 180 daytime retrievals per month over North America 
after eliminating cloud contamination (optical depths <1.0) and applying TES 
retrieval quality control flags. Due to its high spectral resolution and reliable signal-
to-noise ratio (Shephard et al., 2008), the TES instrument successfully detected tro-
pospheric ammonia from space, providing measurements over Southern California 
and China for the first time (Beer et al., 2008).

MOPITT (Measurement of Pollution in the Troposphere)  The MOPITT remote 
sensing instrument was launched on the EOS Terra satellite in December 1999, with 
the purpose of quantifying and monitoring the movement of pollution in the tropo-
sphere (Deeter et  al., 2003). Operational since March 2000, MOPITT has nadir-
viewing channels that enable the monitoring of carbon monoxide and methane. The 
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instrument has an instantaneous field of view of 22 by 22  km when observing 
from nadir.

OMI (Ozone Monitoring Instrument)  The Ozone Monitoring Instrument (OMI) is 
carried by the Aura satellite, part of the Earth Observing System launched by the 
National Aeronautics and Space Administration (NASA) in July 2004 (Levelt et al., 
2006). OMI operates as a solar backscatter spectrometer specifically designed for 
ultraviolet/visible (UV/VIS) measurements in the nadir direction. It offers nearly 
worldwide coverage within a single day, achieving a spatial resolution of approxi-
mately 13 km by 24 km. The instrument is capable of detecting various trace gases, 
such as ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2), formaldehyde 
(HCHO), bromine monoxide (BrO), and chlorine dioxide (OClO), as well as aero-
sol characteristics. Its unique features include the ability to measure essential trace 
gases on a global scale daily with a compact footprint.

AIRS (Atmospheric Infrared Sounder)  The AIRS instrument, launched on the 
EOS Aqua spacecraft in May 2002, is a cross-track scanning infrared spectrometer 
(Pagano et al., 2003). Positioned in a polar orbit at an altitude of 705 km, the satel-
lite provides global coverage twice a day as it crosses the equator at approximately 
1:30 am and 1:30 pm local time (Xiong et al., 2008). With 2378 channels spanning 
649–1136, 1217–1613, and 2169–2674 cm−1, AIRS offers high spectral resolution. 
Its field of view (FOV) is 1.1°, corresponding to a nadir footprint of 13.5 km on the 
Earth’s surface, while the scan angles span ±48.95° (Aumann et al., 2003). In con-
junction with AMSU, AIRS is utilized in the current retrieval system to obtain atmo-
spheric temperature-humidity profiles, cloud and surface properties, and minor 
gases within a 45 km FOV (Susskind et al., 2003). While it is feasible to utilize 
AIRS alone for these retrievals, the presence of clouds can have a stronger impact 
on the results (Susskind et al., 2006).

MODIS (Moderate Resolution Imaging Spectroradiometer)  MODIS was 
launched by NASA (National Aeronautics and Space Administration) on 18 
December 1999. Subsequently, on 4 May 2002, it was installed on the Earth 
Observing System (EOS) satellites, Terra and Aqua (Barnes et al., 2003). Comprising 
36 spectral bands, MODIS offers spatial resolutions ranging from 250 m to 1 km, 
and it revisits the same location every 1–2 days (Payra et al., 2023). The Terra and 
Aqua satellites follow polar orbital paths, with both passing over the equator at 
specific local times. Terra passes at 10:30 am, moving from north to south, while 
Aqua passes at 01:30 pm, moving from south to north (Sandu et al., 2010).

VIIRS (Visible Infrared Imaging Radiometer Suite)  VIIRS is a sensor incorpo-
rated in the joint mission of NASA and NOAA called Soumi NPP, which was suc-
cessfully launched on 28 October 2011. Its purpose is to orbit the Earth in a 
sun-synchronous, polar orbit (Xiong et al., 2013). The VIIRS sensor employs a total 
of 22 spectral channels, spanning from 0.412 to 12 μm (Moyer et al., 2018). With a 
spatial resolution ranging from 375 to 750 m, it provides complete coverage of the 
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Earth twice daily (Oudrari et al., 2014). The equatorial crossings of the Soumi NPP 
occur at both 1:30 am (nighttime overpass) and 1:30 pm (daytime overpass) at the 
same local time (Miller et al., 2012).

TROPOMI (TROPOspheric Monitoring Instrument)  TROPOMI, launched on 13 
October 2017 as part of the Sentinel-5 Precursor (S5P) satellite, is a passive-sensing 
hyperspectral nadir-viewing imager. S5P operates in a near-polar sun-synchronous 
orbit at an altitude of 817  km, passing over the same location at approximately 
13:30 local time every 17 days (KNMI, 2017). TROPOMI uses a nonscanning push 
broom configuration, with a 108-degree instantaneous field of view and a measure-
ment period of approximately 1 second. This configuration enables a swath width of 
approximately 2600 km, an along-track resolution of 7 km, and global coverage on 
a daily basis (KNMI, 2017). TROPOMI’s spectrometers include ultraviolet (UV), 
UV–visible (UV–VIS), near-infrared (NIR), and shortwavelength infrared (SWIR) 
bands (Ialongo et al., 2020). The addition of NIR and SWIR bands in TROPOMI 
distinguishes it from its predecessor, OMI (Veefkind et al., 2012).

�Application of Remotely Sensed Dataset in Research: 
A Case Study

The rise in anthropogenic activities and industrialization decreased the air quality of 
a place and impacted biotic and abiotic components directly or indirectly. For the 
assessment of harmful elements in the ambient area over spatial and temporal 
extents, satellite data proved to be a good source of dataset along with site measure-
ments to check the reliability and validity of the dataset. For example, here, a case 
of ozone variability is analysed over Indian land mass by using Copernicus 
Atmosphere Monitoring Service Reanalysis (CAMSRA). The observation was dur-
ing the premonsoon and monsoon months, and the spatial distribution of surface 
ozone displays greater (lower) concentrations of approximately 40–60  ppb 
(15–20 ppb) over northern and western India. During May, there is a noticeable rise 
across the northern area, particularly over the Indo-Gangetic Plains (IGP), which is 
due to solar radiation (SR), temperature, low-level circulation, and boundary layer 
height (BLH) fluctuations. CAMSRA-based surface ozone showed increasing 
trends in all four areas (north, east, west, and south India) as well as in India overall 
(0.069  ppb/year), with the eastern region showing the strongest increases. 
Furthermore, to develop more understanding of the analysis tool used, principal 
component analysis (PCA) demonstrates that a large proportion of the variation 
ranges from 30% to 50%. The findings show that changes in precursors or climatic 
circumstances have a considerable impact on surface ozone concentrations in India 
(Kunchala et al., 2022). Therefore, satellite data or modelled data are proven to be 
crucial tool for understanding and managing global air pollution because they pro-
vide broad coverage, continuous monitoring, spatial information, multispectral 
data, integration with models, and policy assistance for air quality management.
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9.4 � Geographic Information Systems (GIS) in Air 
Quality Monitoring

Geographic information systems (GIS) have revolutionized the understanding and 
analysis of spatial data. By combining location-based information with powerful 
analytical tools, GIS provides a framework for capturing, storing, manipulating, 
analysing, and presenting geographic data. The integration of air quality data with 
geographic information systems (GIS) has become a crucial aspect of environmen-
tal monitoring and management. Researchers have studied the concentration and 
spatial distribution of air contaminants using spatial simulations. The combination 
of these two powerful technologies enables a comprehensive understanding of the 
spatial distribution of air pollutants, their sources, and their impact on human health 
and the environment. This section explores the significance of integrating air quality 
data with GIS and the challenges associated with this integration.

�Significance of Integrating Air Quality Data with GIS

Integrating air quality data with geographic information systems (GIS) offers sev-
eral significant benefits. Here are some of the key advantages of this integration.

Spatial Analysis  GIS has primarily offered effective techniques that evaluate the 
geographical point pattern of air contaminants, identify the connection between air 
quality and health risk, and improve visualization and analysis possibilities. By 
incorporating air quality data into GIS platforms, it becomes possible to visualize, 
query, and analyse the distribution and trends of pollutants across different geo-
graphical regions. This integration allows for a better understanding of the spatial 
patterns and hotspots of pollution sources, facilitating effective decision-making 
and targeted interventions. Although monitoring stations depict the air quality in a 
certain area, managing air quality requires spatial variation (Kumar et al., 2016). 
Therefore, with the aid of GIS tools, the most appropriate approach can be chosen 
from interpolation techniques such as the inverse distance weighting (IDW) method, 
kriging, nearest-neighbour, and splitting, based on the data that are available and the 
accuracy of the forecast of the concentration of the unknown points.

Data Visualization  GIS offers powerful visualization techniques to represent air 
quality data in the form of maps, charts, and graphs. By presenting data in a visual 
format, GIS enables efficient communication of air quality issues and supports the 
development of effective mitigation strategies. For example, Lee and Bae (2021) 
presented a new approach that integrates ground-based observation of recorded air 
quality data with a dispersion model to determine the PM2.5 level and a GIS platform 
to display results to evaluate the effects of emissions from a local primary emission 
source in a local rural village.
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Data Integration  Integration of air quality data with GIS allows for the incorpora-
tion of various data sources, including meteorological data, land use data, and popu-
lation density data. By combining these datasets, analysts can identify correlations 
between air quality and other spatial variables. For instance, by overlaying air qual-
ity data with land use data, it is possible to identify areas with high pollution levels 
due to industrial or residential activities. Maantay et al. (2008) created novel meth-
ods to simulate air dispersion from stationary sources for five pollutants, PM10, 
PM2.5, NOx, CO, and SO2, using an air dispersion model, AREMOD, and a GIS 
program called ArcGIS.

�Challenges and Limitations

The integration of air quality data with GIS offers numerous benefits for under-
standing and managing air pollution. By leveraging the spatial analysis capabilities 
of GIS, policymakers, researchers, and the general public can gain valuable insights 
into air quality patterns, identify pollution sources, and develop effective strategies 
for mitigating the adverse impacts of poor air quality. Overcoming challenges 
related to data quality, standardization, and accessibility will be crucial for maxi-
mizing the potential of this integration and fostering sustainable environmental 
management.

Data Quality and Standardization  Integration of air quality data from different 
monitoring sources requires ensuring data quality and standardization. Variations in 
monitoring methods, equipment, and calibration can introduce inconsistencies and 
hinder accurate analysis. Establishing standardized protocols for data collection, 
validation, and sharing is crucial to maintain data integrity and facilitate meaningful 
integration with GIS.

Data Accessibility and Interoperability  Air quality data are often collected by 
multiple agencies and organizations, resulting in data fragmentation and limited 
accessibility. Integrating these disparate datasets with GIS requires efforts to pro-
mote data sharing, standardize formats, and develop interoperable systems. 
Collaborative initiatives and open data policies can help overcome these challenges 
and enable comprehensive integration of air quality data with GIS.

�GIS-Based Decision Support Systems for Air 
Quality Management

Air quality management is a complex task that requires the integration of various 
data sources, analytical tools, and decision-making processes. Geographic informa-
tion systems (GIS) provide a powerful framework for developing decision support 
systems (DSS) that facilitate effective air quality management (Diah, 1997). In 
Fig. 9.8, the benefits of GIS-based DSS for air quality management are depicted.
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Fig. 9.8  Benefits of GIS-based DSS for air quality management

These GIS-based DSSs combine spatial data, modelling techniques, and visual-
ization tools to support decision-making processes, policy development, and the 
implementation of targeted interventions. The integration of air quality monitoring, 
emission inventory, modelling, mapping, and the impact of air quality impact 
assessment of several control strategies plays an important role in decision support 
systems. Decision support systems support the evaluation of action plans by using 
information to the public about past and present air quality levels. The local authori-
ties of major European cities, i.e. Lisbon, Stockholm, Geneva, Vienna, Milano, 
Peris, Berlin, and Oslo, used the decision support system (SMHI, 2009). Similarly, 
the decision support system is used in different parts of the world, i.e. the Austrian 
AirWare (Fedra & Haurie, 1999), Norwegian AirQUIS (Bøhler et al., 2002), and 
Swedish EnviMan (Tarodo, 2003) systems. The key components and benefits of 
GIS-based DSS for air quality management are discussed below.

Spatial Data Integration  GIS-based DSS integrates diverse spatial data sources, 
such as satellite imagery, ground-based monitoring stations, meteorological data, 
emission inventories, and population data, into a unified system. In the context of air 
quality management, integrating these datasets within a GIS-based DSS offers sev-
eral advantages, such as comprehensive data analysis, improved spatial analysis, 
enhanced modelling capabilities, powerful data visualization, and effective com-
munication of complex air quality information. By combining and analysing these 
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data layers, DSS can identify spatial patterns, hotspots, and correlations between air 
pollution and other environmental factors.

Modelling and Analysis Tools  GIS-based DSS employs various air quality models, 
such as the Gaussian plume model or the Community Multiscale Air Quality 
(CMAQ) model, to predict pollutant concentrations at different locations (Byun & 
Schere, 2006). These models may include dispersion models that estimate pollutant 
dispersion patterns, emission models that calculate pollutant emissions from differ-
ent sources, and health impact models that assess the effects of air pollution on 
human health. These models utilize spatial data, including emission inventories, 
meteorological conditions, and topographical features, to simulate pollutant disper-
sion patterns. Integration of these models within GIS allows for dynamic visualiza-
tion and analysis of model outputs.

Decision-Making and Scenario Analysis  GIS-based DSS provides decision-
makers with tools to evaluate different scenarios and assess the potential impacts of 
interventions. DSS can incorporate policy guidelines, regulatory standards, and air 
quality objectives to help stakeholders make informed decisions. Decision support 
tools, such as multicriteria analysis and scenario analysis, allow for the evaluation 
of trade-offs and the selection of optimal strategies. Decision-makers can simulate 
and compare the effects of emission reductions, land use changes, or traffic manage-
ment interventions on air quality indicators. They can also evaluate the potential 
outcomes of different air quality management strategies, which helps in selecting 
the most effective and sustainable measures for air quality improvement.

Visualization and Communication  GIS-based DSS offers powerful visualization 
capabilities for examining the relationship between air quality and various factors, 
such as land use patterns, traffic emissions, and population density, and for present-
ing air quality data and model outputs in a user-friendly manner. Through spatial 
analysis techniques such as interpolation, overlay analysis, and hotspot detection, 
GIS-based DSS can identify pollution hotspots, assess the impact of emission 
sources, and evaluate the effectiveness of mitigation strategies. Maps, charts, graphs, 
and interactive dashboards enable stakeholders to visualize spatial patterns, trends, 
and the potential impacts of interventions. Effective visualization and communica-
tion of air quality information facilitate stakeholder engagement, public awareness, 
and informed decision-making.

Public Participation and Communication  Engaging the public in air quality man-
agement is crucial for the successful implementation and acceptance of measures. 
GIS-based DSS can incorporate public participation tools, such as online mapping 
platforms and mobile applications, allowing citizens to contribute data, report pol-
lution incidents, and provide feedback. This fosters a participatory approach and 
enhances communication between authorities, researchers, and the public.
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9.5 � Urban Air Quality Modelling

Air quality modelling refers to the simulation of the relationship between air pollut-
ant emissions and atmospheric concentrations with physical and chemical atmo-
spheric processes, meteorology, and other factors. These simulations are performed 
by a consortium of mathematical and numerical techniques. The need for modelling 
techniques in the field of air pollution and air quality studies developed from the 
limitations of ground monitoring systems and remote sensing techniques. 
Measurements of atmospheric pollution offer significant quantitative data regarding 
the levels of pollutants present and their deposition. However, such measurements 
are limited to describe the air quality at specific locations and specific points in time. 
On the other hand, modelling techniques offer a comprehensive deterministic por-
trayal of the air quality issue, encompassing an examination of various factors and 
origins such as emission sources, meteorological processes, and physical and chem-
ical alterations (Daly & Zannetti, 2007). For the representation of real-world condi-
tions, these models rely on extensive data collection and analysis, which are 
integrated with governing equations. The crucial input parameters for modelling the 
dispersion, transport, and chemical transformation of air pollutants along with urban 
air quality are meteorological factors (wind speed, temperature, atmospheric stabil-
ity, etc.) and emission-related terms (potential sources, emission rates, stack height, 
etc.). Based on the inputs provided, these models are developed to analyse the pri-
mary pollutants released directly into the atmosphere, as well as the secondary pol-
lutants formed through intricate chemical reactions within the atmosphere (US EPA, 
2023). In 1990, Paolo Zannetti categorized air quality models into two types:

Physical models: Scaled-down representations of phenomena created in laborato-
ries such as wind tunnels and water tanks.

Mathematical models: Analytical and numerical algorithms that describe the physi-
cal and chemical aspects of a problem.

Apart from the general category of the models mentioned above, several other 
types of air quality models are widely applied in research and policy development. 
Ranging from simple dispersion models to complex chemical transport models, 
there are numerous options available. Therefore, the appropriate selection and 
model application is a very crucial task. The assessment of models and their appli-
cations can be performed by a variety of factors, including the fundamental govern-
ing physical principles, the temporal and spatial coverage, the sources utilized, the 
components included, and the specific purpose they serve (European Environment 
Agency, 2020). These models play an important role in air quality management 
systems because they are widely used by agencies for controlling air pollution by 
identifying the source contributions to air quality problems and supporting the 
design of effective approaches to reduce harmful air pollutants. In addition, air qual-
ity models can also be used to forecast air pollutant concentrations from numerous 
sources after the implementation of a new regulatory program to estimate the 
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effectiveness of the program in reducing harmful exposures to humans and the 
environment.

�Modelling Approaches and Techniques

Typically, urban air quality models have a spatial scale that ranges from local to 
regional levels. These models serve as an effective tool to comprehend the issues in 
understanding the sources of urban air pollution and effective management of air 
quality by evaluating the relationship between air pollutant emissions and the result-
ing concentration in ambient air (Srivastava & Rao, 2011). The most commonly 
used air quality models are (1) conceptual models, (2) emission models, (3) meteo-
rological models, (4) chemical models, (5) source-oriented models, and (6) receptor 
models. Below is an outline of various modelling methodologies and techniques 
commonly used in air quality modelling.

Eulerian and Lagrangian Models  Eulerian models divide the atmosphere into a 
grid of cells or computational domains. They solve a set of mathematical equa-
tions that describe the conservation of mass, momentum, and energy within each 
cell. Eulerian models are widely used in air quality modelling and can simulate the 
complex interactions between emission sources, meteorology, chemistry, and dis-
persion processes. These models provide detailed spatial and temporal informa-
tion about pollutant concentrations and are suitable for regional or urban-scale air 
quality assessments. Lagrangian models track individual air particles or “parcels” 
as they move through the atmosphere. These models simulate the movement of 
parcels based on the prevailing wind patterns, turbulence, and other factors. 
Lagrangian models are useful for studying the long-range transport of pollutants, 
including transboundary pollution and the transport of pollutants from distant 
sources. They can also incorporate the effects of complex terrain and atmospheric 
processes.

Box Models  Box models are simple models that conceptualize the atmosphere by 
separating it into discrete “boxes,” compartments, or cells. These models comply 
with mass conservation principles and assume uniform mixing conditions. Each 
box represents a different urban area component, such as roadways, buildings, and 
open areas. The transport of air pollutants into and out of the boxes, as well as their 
emission, is considered. Furthermore, box models integrate a variety of physical 
and chemical processes to simulate the behaviour of air pollutants, such as emis-
sions, advection, dispersion, chemical reactions, deposition, and removal mecha-
nisms. Box models’ capacity to capture fluctuations in air pollution within 
metropolitan regions is a key advantage. Another advantage of these models is that 
they can simulate situations based on basic meteorological input while providing 
high spatial resolution and accounting for chemical interactions and numerous 
emission sources. However, it is critical to thoroughly consider the constraints and 
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Fig. 9.9  A buoyant Gaussian air pollutant dispersion plume. (Source: Beychok, 2005)

uncertainties of box models to achieve dependable and accurate results when ana-
lysing urban air quality.

Gaussian Plume Models  Gaussian plume models are widely used for simulating 
the dispersion of air pollutants from point sources. They consider the physical char-
acteristics of the plume, such as buoyancy, wind speed, and atmospheric stability, to 
estimate the pollutant concentration downwind from the source. By considering 
these factors, the model can estimate the concentration of pollutants at various dis-
tances and heights from the source. Gaussian models assume that the plume dis-
perses in a Gaussian-shaped pattern, with the highest concentration along the 
centreline and decreasing concentrations towards the edges. The Gaussian plume 
model assumes that the atmosphere is horizontally homogeneous and that the pol-
lutant behaves as a passive scalar, meaning it does not affect the airflow. It also 
assumes that the pollutant is released continuously over a finite period and that the 
emissions are well mixed before reaching the receptor point. While these assump-
tions simplify the model, they provide reasonable estimates for many real-world 
scenarios. Figure 9.9 shows a buoyant Gaussian air pollutant dispersion plume. The 
width of the plume is determined by σy and σz, which are defined by stability classes 
(Pasquill, 1961; Gifford Jr., 1976).

The spatial dynamics of pollution dispersion are described by the following type 
of equation in a Gaussian model:
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where

C (x, y, z): pollutant concentration at. point (x, y, z);
U: wind speed (in the x “downwind” direction, m/s);
Σ: represents the standard deviation of the concentration in the x and y directions, 

i.e. in the wind direction and cross-wind, in meters;
Q is the emission strength (g/s);
He: the effective stack height, see below.

Plume rise equations have been developed by Briggs (1975). The effective stack 
height (physical stack height plus plume rise) depends on the exit velocity of gas, 
stack diameter, average ambient velocity, stack gas temperature, and stability of the 
atmosphere.

Statistical Models  Statistical models employ statistical techniques to establish 
relationships between air pollution concentrations and various influencing factors, 
such as meteorological variables, emission sources, and land use characteristics. By 
utilizing historical data, these models develop regression equations or statistical 
algorithms that can predict pollutant concentrations based on the input variables. 
These models are data-driven, and therefore, appropriate selection and quality 
assurance of the dataset is a crucial step. One commonly used statistical model in air 
quality analysis is the linear regression model. By fitting a regression model to the 
data, the contribution of each variable can be estimated, and their significance in 
explaining variations in air quality can be assessed. Another important statistical 
tool in air quality modelling is time series models, such as autoregressive integrated 
moving average (ARIMA) models. In recent years, the field of air quality modelling 
has witnessed advancements in the use of machine learning techniques. Machine 
learning algorithms, such as random forests, gradient boosting, support vector 
machines, and neural networks, have shown promising results in predicting air qual-
ity and identifying the key contributors to pollution. These models can handle com-
plex interactions between variables and provide more accurate predictions than 
traditional statistical methods. Furthermore, ensemble modelling techniques have 
gained popularity in air quality research. Ensemble models combine multiple indi-
vidual models, each with its own strengths and weaknesses, to obtain a more robust 
and accurate prediction. By incorporating different statistical models or machine 
learning algorithms within an ensemble framework, researchers can account for 
uncertainties and improve the reliability of air quality forecasts.

Receptor Models  These models are observational techniques that use the chemical 
and physical characteristics of gases and particles measured at the source and recep-
tor to both identify the presence of and quantify source contributions to receptor 
concentrations without considering the dispersion pattern of the pollutants 
(Srivastava & Rao, 2011). The fundamental principle behind receptor models is that 
different emission sources have unique signatures or profiles in terms of the chemi-
cal composition of the pollutants they release into the atmosphere. By analysing the 
chemical composition of the pollutants measured at monitoring sites, receptor 
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models can attribute the contributions of different sources to the observed air pollu-
tion. Some examples of receptor models are CMB, PMF, PCA, MLR, UNMIX, etc.

Mathematically, the receptor model can be generally expressed in terms of the 
contribution from “n” independent sources to “p” chemical species in “m” samples 
as follows:

 

Chemical Transport Models  Chemical transport models (CTMs) are advanced 
Eulerian models that incorporate detailed atmospheric chemistry mechanisms. The 
primary objective of CTMs is to simulate the behaviour of various chemical species 
in the atmosphere, including gases and aerosols, as they are emitted into the air, 
transported by wind patterns, and undergo chemical reactions and deposition pro-
cesses. These models incorporate a range of physical and chemical processes, 
including meteorology, emission inventories, atmospheric chemistry, and deposi-
tion mechanisms, to simulate the complex behaviour of pollutants. Meteorological 
data, such as wind speed, direction, and temperature, and emission inventories are 
essential inputs for CTMs. By integrating these components, CTMs generate spatial 
and temporal distributions of pollutants, allowing for the assessment of air quality 
on various scales, ranging from local to regional and even global. These models can 
be used to estimate pollutant concentrations at specific locations, identify pollution 
hotspots, and evaluate the effectiveness of emission reduction strategies and control 
measures. CTMs also enable the exploration of “what-if” scenarios to assess the 
potential impacts of changes in emissions, land use, and climate on air quality. 
However, it is important to note that CTMs are complex and rely on a significant 
amount of data, including accurate meteorological information, emission invento-
ries, and chemical reaction rates. Uncertainties in these inputs can affect the accu-
racy of the model predictions. Therefore, CTMs are continuously refined and 
evaluated using observational data from air quality monitoring networks, satellite 
measurements, and field campaigns to improve their performance and reliability.

Coupled Models  Coupled models integrate air quality models with other environ-
mental or earth system models to capture the complex interactions between the 
atmosphere, land, and oceans. For example, coupling air quality models with mete-
orological models allows for the two-way interactions between meteorology and air 
pollution, providing more accurate predictions. Coupled models help understand 
the feedback mechanisms between air quality, climate change, and other environ-
mental factors.
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�Calibration and Validation of Air Quality Models

Calibration and validation are crucial steps in the development and application of air 
quality models. These processes help ensure the accuracy and reliability of the mod-
els, allowing researchers and policymakers to make informed decisions regarding 
air pollution mitigation strategies and public health.

Calibration  Calibration is the process of adjusting the model’s parameters to 
improve its agreement with observed data. It involves comparing model predictions 
with measured pollutant concentrations or other relevant atmospheric variables. The 
goal is to minimize the differences between the model outputs and the observed data 
by adjusting the model’s inputs or internal parameters. Calibration is typically per-
formed using statistical optimization techniques, such as least squares or maximum-
likelihood estimation. During calibration, modellers may adjust parameters related 
to emissions, atmospheric processes, or numerical algorithms used by the model. 
Emission factors, which quantify the amount of pollutant released per unit of activ-
ity, can be refined based on field measurements or detailed source testing. The rep-
resentation of physical and chemical processes, such as atmospheric dispersion, 
chemical reactions, and deposition, may also be improved to better capture the 
observed pollutant behaviour. Therefore, to ensure accurate predictions, air quality 
models must be properly calibrated using empirical data. Various calibration tech-
niques employed in air quality modelling are listed below.

	(a)	 Statistical Calibration Techniques

•	 Ordinary least squares (OLS) regression
•	 Weighted least squares (WLS) regression.
•	 Maximum-likelihood estimation (MLE)

	(b)	 Bayesian Calibration Techniques

•	 Markov Chain Monte Carlo (MCMC)
•	 Sequential Monte Carlo (SMC)

	(c)	 Parameter Estimation and Optimization Methods

•	 Levenberg–Marquardt algorithm (Marquardt, 1963)
•	 Genetic algorithms (Goldberg, 1989)

	(d)	 Sensitivity Analysis

•	 One-at-a-time sensitivity analysis (Saltelli et al., 2008)
•	 Morris method (Morris, 1991)

	(e)	 Data Assimilation Techniques

•	 Kalman filtering (Kalman, 1960)
•	 Ensemble Kalman Filter or EnKF (Evensen, 2003)

S. Verma et al.



239

By employing these calibration techniques, air quality models can be better 
equipped to inform policy decisions, assess environmental impacts, and mitigate the 
adverse effects of air pollution. The appropriate choice of calibration technique 
depends on the model’s complexity, data availability, and computational resources. 
Implementing robust calibration practices enhances the reliability of air quality mod-
els and facilitates informed decision-making for effective air quality management.

Validation  Once the calibration process is complete, the next step is validation. 
Validation aims to assess the model’s performance by comparing its predictions 
against independent sets of observed data that were not used in the calibration process. 
This helps evaluate the model’s ability to generalize and make accurate predictions for 
new scenarios or locations. Validation provides an important measure of confidence in 
the model’s predictive capabilities. Validation datasets may include measurements 
from different monitoring networks, field campaigns, or satellite observations. Model 
evaluation metrics, such as correlation coefficients, mean error, or root mean square 
error, are commonly used to quantify the agreement between model predictions and 
observed data. Spatial and temporal analyses are performed to assess the model’s 
performance across different locations, seasons, and time scales. A few validation 
techniques employed for assessing the accuracy of air quality models are listed below.

	 (i)	 Observational data comparison
	(ii)	 Statistical Analysis
	(iii)	 Sensitivity analysis
	(iv)	 Ensemble modelling

Overall, the calibration and validation of air quality models are iterative pro-
cesses that involve continuous refinement and improvement. They contribute to 
advancing our understanding of atmospheric processes, enhancing the accuracy of 
air quality predictions, and ultimately supporting evidence-based decision-making 
to protect public health and the environment.

9.6 � Case Studies: Application of Modelling Approach for Air 
Quality Assessment

Case Study 1 – (Numerical Model)  Gunwani et al. (2023) conducted an assess-
ment of the weather research and forecasting model with chemistry (WRF/Chem) 
to determine its ability to simulate PM2.5 using various meteorological initial/bound-
ary conditions datasets and PBL parameterization schemes. The study focused on 
the Indo-Gangetic Plain during the winter period from December 2017 to January 
2018. The model’s simulations were performed with a horizontal grid resolution of 
10 km and 47 vertical levels ranging from the surface up to 50 hPa. To drive the 
simulation, 21 class MODIS land-use data from previous studies were utilized 
(Ghude et al., 2020, 2022; Kumar et al., 2020; Jena et al., 2021; Sengupta et al., 
2022). Datasets used for initial/boundary conditions were acquired from the 
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Fig. 9.10  Spatial distribution of averaged PM2.5 concentrations at 400 m horizontal grid spacing 
(from day 1 forecast) overlaid with mean PM2.5 observed at different monitoring stations across 
Delhi from 21 October 2019 to 1 February 2020 (Source: Jena et al., 2021)

National Centers for Environmental Prediction Final Analysis (NCEP-FNL), ERA-
Interim, GDAS-GFS, and National Centre for Medium Range Weather Forecasting 
(NCMRWF), while the major PBL parameterization schemes applied were YSU – 
Yonsei University (Hong et al., 2006), MYJ – Mellor-Yamada-Janjić (Janjić, 1994), 
MYNN – Mellor-Yamada-Nakanishi-Niino (Nakanishi & Niino, 2004), ACM2 – 
Asymmetric Convective Model version 2 (Pleim, 2007) and Boulac (Bougeault & 
Lacarrere, 1989). The most favourable outcomes were observed when using initial/
boundary conditions from ERA and GDAS datasets combined with local PBL 
parameterization schemes (MYJ and MYNN). Interestingly, the study found that 
PM2.5 concentrations exhibited relatively less sensitivity to changes in initial/bound-
ary conditions while showing a stronger sensitivity to variations in the PBL scheme.

Jena et al. (2021) introduced a novel and highly advanced air quality forecasting 
system with an unprecedented level of resolution (400 m grid spacing) (Fig. 9.10). 
The primary purpose of this system was to provide timely alerts to residents of 
Delhi and the National Capital Region (NCR) about potential acute air pollution 
episodes. This high-resolution system, evaluated during the period of October 2019 
to February 2020, marks the first of its kind and showcases promising results. The 
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forecasting system integrates near real-time aerosol observations from both ground-
based and satellite platforms into the Weather Research and Forecasting model 
coupled with chemistry (WRF-Chem). This dynamic downscaling framework gen-
erates a 72-hour daily forecast for various air quality parameters. The assimilation 
of aerosol optical depth and surface PM2.5 observations significantly enhances the 
accuracy of the initial conditions for surface PM2.5, leading to an impressive 
improvement of approximately 45 μg/m3 (approximately 50%). While the forecast 
accuracy shows a slight degradation over time, with the mean bias increasing from 
+2.5 μg/m3 on the first day to −17 μg/m3 on the third day, it remains notably skilful. 
The system excels in predicting both PM2.5 concentrations and air quality index 
categories associated with unhealthy and very unhealthy conditions. The forecast’s 
effectiveness has proven to be invaluable for decision-makers in Delhi, enabling 
them to make well-informed choices and implement necessary measures in response 
to potential air quality challenges. This pioneering high-resolution air quality fore-
casting system has demonstrated remarkable accuracy and skill in predicting PM2.5 
concentrations and air quality conditions. By assimilating real-time aerosol obser-
vations, it provides timely alerts to residents and supports decision-makers in effec-
tively addressing air pollution issues in Delhi and the surrounding regions.

Case Study 2 – (Statistical Model)  To estimate the daily concentration of ground-
level PM2.5 at a regional scale coinciding with satellite overpasses, a geographically 
weighted regression (GWR) model based on satellite data was developed by Song 
et al. in 2014. The dataset utilized for this study consisted of aerosol optical depth 
(AOD) measurements at a wavelength of 550 nm from the Collection 5.1 MODIS 
Dark Target level 2 aerosol retrievals over land product, obtained from the NASA 
LAADS Web. Ground-measured PM2.5 data in the PRD region spanning from May 
2012 to September 2013 were acquired from the Chinese Guangdong Environment 
Information Issuing Platform. Meteorological data, including boundary layer 
height, relative humidity, temperature, wind, and land use, were downloaded from 
the China Meteorological Data Sharing Service System (CMDSSS). External fac-
tors that can influence the relationship between PM2.5 and AOD, such as those men-
tioned in the works of Gupta et al. (2006), Koelemeijer et al. (2006), Liu et al. (2007, 
2009), Barman et al. (2008), and Schaap et al. (2008), were taken into consider-
ation. The model’s performance was assessed and validated using PM2.5 data col-
lected over the Pearl River Delta (PRD) region in China from May 2012 to September 
2013. The evaluation demonstrated that the GWR model, with assimilated meteoro-
logical parameters, accounted for 73.8% of the variation in ground-level PM2.5 con-
centration, outperforming two conventional statistical models: Model-I, a general 
linear regression model (56.4%), and Model-II, a semiempirical model (52.6%). 
The inclusion of vertical correction on satellite-derived AOD and relative humidity 
significantly enhanced the correlation between AOD and PM2.5.

Case Study 3 – (Prediction Model)  Chen et al. (2021) developed two random 
forest models to estimate daily PM2.5 concentrations in Guangdong Province, 
China. Due to a significant portion of missing AOD data (over 80%), one model 
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was created without using AOD as a predictor (referred to as the non-AOD model), 
while the other model incorporated AOD data (the AOD-based model). The study 
compared the predictive abilities of these two models and assessed whether AOD 
inclusion improved PM2.5 predictions. Daily ground-based PM2.5 measurements 
were collected from 148 monitoring sites within a 60 km buffer in Guangdong 
from January 2016 to December 2018. Additionally, daily MODIS MAIAC AOD 
data from NASA, providing a spatial resolution of approximately 1  km, were 
downloaded. Both random forest models were developed using the same dataset 
and underwent tenfold cross-validation to evaluate their performance. Surprisingly, 
the results showed that the non-AOD model and the AOD-based model demon-
strated similar performance. The cross-validation R2 (coefficient of determination) 
and RMSE (root mean square error) for the non-AOD model during 2016–2018 
were 0.82 (8.4 μg/m3), 0.81 (9.5 μg/m3), and 0.78 (9.4 μg/m3), respectively. For the 
AOD-based model, the corresponding values were 0.83 (8.2 μg/m3), 0.82 (9.2 μg/
m3), and 0.80 (9.0 μg/m3). The models demonstrated higher consistency in estimat-
ing PM2.5 concentrations in areas close to monitoring sites compared to locations 
farther away and in southern coastal areas compared to northern regions. The non-
AOD random forest model offers an advantage in that it is not affected by the 
missingness of AOD data. As a result, it can be reliably used for epidemiological 
studies to estimate individual-level exposure to PM2.5 at a high spatial resolution, 
avoiding spatial or temporal gaps in the dataset. In conclusion, the study demon-
strates that the non-AOD random forest model can be a valuable tool for accurately 
estimating PM2.5 concentrations, especially in regions with limited AOD data 
availability. This approach holds great potential for enhancing individual-level 
exposure assessments and supporting epidemiological research on the health 
impacts of PM2.5 pollution.

9.7 � Conclusion

In conclusion, the integration of ground monitoring systems, remote sensing tech-
nologies, and Geographic Information Systems (GIS) techniques marks a signifi-
cant advancement in urban air quality research. This combined approach offers 
multifaceted advantages spanning environmental science, public health, and poli-
cymaking. Ground monitoring data are pivotal for tracing pollution sources, vali-
dating models, and discerning spatial and temporal trends. Meanwhile, remote 
sensing and satellite sensors provide a comprehensive view of air quality, address-
ing gaps in coverage that ground-based methods might encounter. Sensors like 
TES, MOPITT, OMI, and others offer diverse capabilities for monitoring pollut-
ants and meteorological parameters from a global perspective. GIS enhances spa-
tial analysis, identifying pollution hotspots and enabling dynamic data visualization. 
Through data integration, including meteorological conditions and land use pat-
terns, we gain insight into complex pollution-source interactions. Furthermore, 
GIS-based Decision Support Systems (DSS) utilize modelling tools to predict 

S. Verma et al.



243

pollutant concentrations and intervention effects, facilitating informed decision-
making. Case studies underscore diverse modelling approaches for air quality 
assessment. From numerical models like WRF/Chem to high-resolution forecast-
ing systems and statistical models like GWR, each contributes to understanding 
pollution dynamics. These studies emphasize region-specific models, such as for 
the Indo-Gangetic Plain and Guangdong Province. Bridging scientific understand-
ing with actionable insights empowers effective air pollution management. Overall, 
the fusion of ground monitoring, remote sensing, and GIS signifies a paradigm 
shift, enhancing our ability to analyse and mitigate urban air pollution. This holis-
tic approach aids in identifying pollution sources, trends, and strategies for a 
healthier, sustainable future.
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Chapter 10
Assessment of Soil Contamination Using 
Remote Sensing and Spatial Techniques

Anayat Hussain, Shabir Ahmad Bangroo , and Mohammad Muslim 

Abstract  Soil contamination poses an enormous challenge to environmental and 
human health, necessitating effective assessment and management. Assessing the 
contamination of soil using remote sensing and spatial techniques has become an 
important area, as it provides rapid and accurate information about the extent and 
distribution of contaminants in soil. This chapter aims to present some of the current 
state of knowledge and advancements in this field. Remote sensing techniques, 
including hyperspectral remote sensing, thermal remote sensing, and radar remote 
sensing, offer valuable tools for mapping and monitoring soil contamination over 
large areas, enabling efficient decision-making and resource allocation. Spatial 
techniques usually involve the analysis and integration of spatially referenced data 
to assess and visualize soil contamination patterns and include geographic informa-
tion systems, geostatistics, geospatial modelling techniques, machine learning, and 
data mining. Advancements in remote sensing and spatial techniques have enhanced 
the accuracy and efficiency of soil contamination assessment and include the devel-
opment of high-resolution satellite sensors, advanced image processing algorithms, 
and the integration of multisource data. However, several challenges persist in the 
form of spectral unmixing, the scale of mapping, the resolution of data, ground vali-
dation, and data integration. Remote sensing and spatial techniques thus provide 
valuable tools for assessing soil contamination by offering the ability to map con-
tamination patterns over large areas, identify hotspots, and support decision-making 
processes. Recent advancements in the assessment of soil contamination using 
remote sensing and spatial techniques have contributed to improved accuracy, effi-
ciency, and applicability of these methods.
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10.1 � Introduction

Soil pollution is a significant environmental issue caused by human activities such 
as industrialization, agriculture, and urbanization. Contaminants found in the soil, 
such as heavy metals, organic compounds, and radioactive substances, can pose 
serious health risks to humans and animals. Soil degradation can occur through 
physical and chemical processes. As per the Soil Science Society of America 
(SSSA), contaminants are substances in the soil that exceed natural levels and 
threaten human health. Soil contamination, referred to as one of the contributing 
factors to soil degradation, refers to the accumulation of non-native components in 
the soil, unrelated to its natural formation, which negatively impacts plant growth 
and the health of animals and humans (Okrent, 1999). Physical processes involve 
changes in soil depth, particle size, structure, and compaction, while chemical pro-
cesses involve alterations in soil properties, including its chemical constituents and 
reactions (Chuncai et  al., 2014; Sahoo et  al., 2012). Soil degradation primarily 
arises from deforestation, leading to increased CO2 emissions, reduced storage of 
carbon above and below ground, and disruptions to soil-vegetation-atmosphere 
transfer (SVAT) processes (Cao et al., 2001). It impairs crucial ecosystem services 
and has implications for climate change (Vågen et al., 2016). Various sources con-
tribute to soil pollution, including agrochemicals (fertilizers, pesticides, and herbi-
cides), natural gas, petroleum hydrocarbons, and potentially toxic elements (PTEs). 
Between 2000 and 2017, there has been a steady rise in pesticide usage worldwide, 
with varying increases across different regions (Table 10.1), ranging from approxi-
mately 8% in Europe to 84% and 104% in Oceania and South America, respectively 
(FAO, 2019).

Table 10.1  Global use of pesticides between 2000 and 2017 (Source: FAO, 2019)

Region
Annual pesticide use (tonnes)

Increase (percentage)2000 2017

Africa 61,698 79,787 29.3
Asia 1,621,207 2,159,990 33.2
Caribbean 6776 11,451 69.0
Central America 75,423 101,256 34.3
Europe 440,881 476,138 8.0
North America 469,672 498,618 6.2
Oceania 37,773 69,669 84.4
South America 349,710 71,682 104.9
World 3,063,140 4,113,591 34.3

Source: FAOSTAT, 2019
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In the post-industrial era, there has been notable progress in economic growth 
and intensive industrial operations. Consequently, there is a persistent release of 
significant amounts of natural gas, petroleum hydrocarbons, and persistent toxic 
elements (PTEs) into various soil environments, including agricultural soils. The 
seepage of natural hydrocarbon leaks from fuel pipelines, and tank leakages are 
often sources of hydrocarbon and obnoxious gases in the soil (Noomen et al., 2006). 
Anthropogenic activities, including open-cast mining, contribute to the formation of 
spoil dumps containing acidic substances and PTEs. These deposits have a signifi-
cant impact on hydrological, geological, and vegetation features, leading to altera-
tions in their characteristics (Götze et al., 2016). The conventional techniques for 
the assessment of soil contamination are based on sampling and require several 
samples to be collected, and intricate laboratory procedures such as separation and 
preconcentration make them impractical for the purpose of mapping contaminated 
soil over extensive regions (Xian-Li et al., 2012). The emergence of geospatial tech-
nological approaches such as remote sensing and other spatial techniques has been 
recognized as an alternative and efficient method for mapping and monitoring vari-
ous soil contaminants (Choe et al., 2008; Wu et al., 2005). The utilization of remote 
sensing, in conjunction with various geospatial techniques, has emerged as a vital 
tool for detecting pollution at different stages (Saghatelyan & Sahakyan, 2009; Wu 
et  al., 2007) and ecological risk monitoring (Asmaryan et  al., 2014), and these 
approaches aid in achieving a significant reduction in pollution levels across both 
natural and human-modified landscapes (Asmaryan et  al., 2014; Saghatelyan & 
Sahakyan, 2009). Furthermore, the efficacy of proximal and airborne sensors, along 
with unmanned aerial vehicles (UAVs), has been demonstrated in accurately and 
quantitatively estimating the presence of contaminants (Choe et al., 2008; Vågen 
et al., 2016). The deployment of satellite-based hyperspectral and multispectral sen-
sors has been expanded, and new sensors are being developed, promising a substan-
tial increase in the availability of data for land monitoring purposes. This will result 
in the generation of extensive databases at a large scale (Buckingham & Staenz, 
2008; Malenovský et  al., 2012; Sánchez et  al., 2015). This chapter provides an 
extensive compilation of knowledge and information acquired from diverse sources 
spanning several decades. Our focus will be on the utilization of remote sensing and 
spatial techniques in various domains to address soil contamination. Additionally, 
we will discuss the limitations and challenges associated with remote sensing of soil 
contamination, along with potential solutions to overcome them.

10.2 � Remote Sensing

Assessment of soil contamination using remote sensing and spatial techniques has 
contributed to improved accuracy, efficiency, and applicability. These advance-
ments have contributed to a more precise and comprehensive understanding of soil 
contamination, enabling better decision-making processes, effective land manage-
ment, and targeted remediation efforts. However, continued research is necessary to 
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address challenges such as data availability, scale mismatch, and validation proce-
dures, ensuring the reliability and widespread adoption of these techniques in soil 
contamination studies. Some notable advancements include the following:

High-Resolution Satellite Sensors: The availability of high-resolution satellite sen-
sors, such as WorldView, GeoEye, and Pleiades, has increased the spatial detail 
and precision of soil contamination assessments. These sensors provide imagery 
with pixel sizes as small as 30 cm, allowing for the detection of small-scale vari-
ations in contamination.

Hyperspectral Imaging: Hyperspectral sensors with increased spectral resolution 
have facilitated the identification and characterization of contaminants in soil. 
By capturing hundreds of narrow and contiguous spectral bands, hyperspectral 
imaging enables the detection of subtle differences in reflectance related to spe-
cific contaminants.

Unmixing Techniques: Spectral unmixing algorithms have advanced the analysis of 
hyperspectral data for soil contamination assessment. These algorithms can 
identify and quantify the contribution of different materials in a pixel, including 
contaminants and soil components, improving the accuracy of contamination 
mapping.

LiDAR (Light Detection and Ranging): The integration of LiDAR technology, 
which employs laser pulses to measure the distance between a sensor and the 
Earth’s surface, has been utilized in conjunction with remote sensing to improve 
soil contamination assessment. By utilizing LiDAR data, it becomes possible to 
obtain precise details regarding terrain elevation, vegetation structure, and sur-
face roughness. This information proves valuable in identifying potential sources 
of contamination and pathways.

Fusion of Multi-source Data: The integration of data from multiple sources, such as 
remote sensing, GIS, and ground-based measurements, has been increasingly 
used to improve soil contamination assessments. Combining information from 
different sensors and platforms enables a more comprehensive understanding of 
contamination patterns and their spatial relationships with environmental 
variables.

Machine Learning and Artificial Intelligence: Remotely sensed data have been lev-
eraged in conjunction with machine learning algorithms, including random for-
ests, support vector machines, and deep learning models, to automate the 
classification of contaminated areas. These algorithms possess the capability to 
learn intricate patterns and correlations among spectral data, soil properties, and 
contamination. As a result, they enable efficient and precise mapping of 
contamination.

Open Data and Citizen Science: The availability of open-access remote sensing 
data, such as those from NASA and ESA, has democratized soil contamination 
assessment. Citizen science initiatives have also emerged, where volunteers con-
tribute ground-based measurements and observations for the validation and cali-
bration of contamination maps.
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Improved Data Processing and Analysis Software: The development of advanced 
data processing and analysis software, such as ENVI, ERDAS Imagine, and 
QGIS, has facilitated the integration, visualization, and interpretation of multidi-
mensional remote sensing and spatial data. These tools provide a user-friendly 
interface for researchers and practitioners to conduct soil contamination 
assessments.

10.3 � Spatial Techniques

Spatial techniques involve the analysis and integration of spatially referenced data 
to assess and visualize soil contamination patterns. These techniques include the 
following:

Geographic Information System (GIS): GIS integrates various spatial data, such as 
remote sensing imagery, soil sampling points, land use/land cover data, and con-
taminant concentration measurements. GIS enables the creation of contamina-
tion maps, identification of hotspots, and spatial analysis of relationships between 
contaminants and environmental variables.

Geostatistics: Geostatistical methods, such as kriging, provide a framework for spa-
tial interpolation and estimation of contaminant concentrations at unobserved 
locations based on sampled data. Geostatistics can account for spatial autocor-
relation and variability, enhancing the accuracy of contamination mapping.

Machine Learning and Data Mining: Machine learning algorithms and data mining 
techniques can be applied to large datasets to identify patterns, classify contami-
nated areas, and predict contaminant concentrations based on a combination of 
remote sensing, soil, and environmental variables.

10.4 � Applications of Remote Sensing and Spatial Techniques 
in Mapping and Modelling Soil Contamination

�Geostatistical Spatial Interpolation Techniques for Soil 
Contamination Mapping

By utilizing spatial interpolation techniques and geostatistical methods, it is possi-
ble to generate soil contamination maps at the grid cell level. These maps facilitate 
the examination of spatial variations in heavy metal pollution. They provide visual 
representations that help distinguish between natural background levels and areas 
significantly enriched due to anthropogenic activities. Consequently, these maps aid 
in identifying regions with contaminated topsoil, guiding the implementation of 
necessary remedial measures. Previous studies have utilized geostatistical spatial 
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interpolation techniques to map contamination and determine its sources. For exam-
ple, Nakayama et al. (2011) assessed metal concentrations in roadside soils near a 
Pb–Zn mine in Kabwe, Zambia, and Lusaka using mapping and spatial interpola-
tion to identify mining and smelting activities as the source of metal pollution. Dong 
et  al. (2011) modelled the distribution of heavy metals in reclaimed agricultural 
lands using geostatistical analyses and evaluated the ecological safety of these 
lands. Khalil et al. (2013) assessed soil contamination around an abandoned mine 
using geochemistry and simple kriging. A combination of GIS and stochastic simu-
lation techniques was employed to estimate the spatial distribution of lead (Pb) 
within a mine in Portugal and classify soil quality (Reis et al., 2005). Other studies 
(Acosta et al., 2011; Kim et al., 2017; Yan et al., 2015; Bangroo et al., 2020; Suh 
et al., 2016) have also utilized geospatial techniques to investigate and map heavy 
metal contamination in various contexts. In the agricultural landscape of district 
Kulgam, Kashmir, geostatistical spatial interpolation techniques were utilized to 
map various soil properties. These properties, including pH, electrical conductivity 
(EC), organic carbon (OC), available nitrogen (N), available phosphorus (P), and 
available potassium (K), were analysed and subjected to Box–Cox transformation 
for data normalization (Table 10.2) (Bangroo et al., 2023). Ordinary kriging (OK) 
and universal kriging (UK) were used to interpolate the soil parameters and gener-
ate respective maps (Figs.  10.1, 10.2, and 10.3). The study also assessed spatial 
autocorrelation using experimental variograms and cross-validation techniques, 
demonstrating moderate to strong spatial dependency (Table  10.3). The analysis 
showed that UK performed better than OK in predicting soil parameters, except for 
pH (Table  10.4). The spatial structure of soil chemical properties was analysed 
using the Global Moran’s I Index, indicating random distribution patterns for the 
selected soil parameters (Table 10.5).

Overall, the use of geostatistical spatial interpolation and geospatial techniques 
enables the mapping and examination of soil properties, facilitating more efficient 
management decisions and ensuring productivity and sustainability in soil resource 
management, particularly in ecologically fragile regions such as the Kashmir 
Himalayas.

Table 10.2  Statistical overview of selected soil chemical properties within the study area

Parameter Min Median Mean Max
Kolmogorov 
test Skewness Kurtosis CV SD

pH (1:2.5) 5.73 6.52 6.52 7.42 0.0630 1.282 2.49 6.05 0.39
EC (dS 
m−1)

0.10 0.53 0.54 0.98 0.0710 1.285 2.56 38.18 0.21

OC (%) 0.43 1.78 1.63 3.03 0.0630 1.159 2.07 42.47 0.69
N (kg ha−1) 169.4 324.5 331.4 556.2 0.0059 0.259 1.96 27.28 90.4
P (kg ha−1) 2.66 17.71 20.56 56.10 0.0708 1.516 5.04 51.52 10.5
K (kg ha−1) 123.8 247.9 269.1 528.2 0.0020 0.654 1.51 38.25 10.9

Min minimum, Max maximum, CV coefficient of variation, SD standard deviation
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Fig. 10.1  Soil spatial variability of chemical properties by OK and UK (pH and EC) 
(Source: Bangroo et al., 2023)

�Pollutant Transport Modelling Based on Hydrological Analysis

Local hydrological characteristics play a significant role in the movement of pollut-
ants within the soil. The spatial disparities in heavy metal enrichment can be attrib-
uted to natural dispersion mechanisms such as leaching through rainwater infiltration 
or mechanical transportation via runoff. Several studies have dedicated their efforts 
to hydrological analyses to understand the distribution patterns of pollution within 
catchment areas. GIS tools were employed to evaluate pollution levels at an aban-
doned coal mine site. This assessment involved analysing the spatial distribution of 
pollutant concentrations in relation to surface runoff pathways and potential sources 
of contamination, including open pits, coal storage areas, and dump sites, and the 
spatial distribution of pollutant concentrations in relation to surface runoff pathways 
and potential contamination sources, such as open pits, coal storage areas, and 
dump sites (Yenilmez et al., 2011). The findings demonstrated that regions closer to 
contamination sources and along surface runoff pathways exhibited higher pollutant 
concentrations. GIS proved to be a valuable tool in accurately identifying areas with 
elevated pollutant levels, preventing the oversight of highly contaminated locations 
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Fig. 10.2  Soil spatial variability of chemical properties by OK and UK (OC and N) 
(Source: Bangroo et al., 2023)

situated far from pollution sources. Moreover, by focusing on areas near surface 
runoff pathways, fewer samples were needed, resulting in reduced sampling costs. 
Investigating areas far from contamination sources became unnecessary. Suh et al. 
(2016) conducted a study that utilized hydrological analysis based on digital eleva-
tion models (DEMs) to assess the impact of the single-flow direction of surface 
runoff on the dispersion of copper (Cu). The study examined the flow direction of 
rainwater throughout the entire study area, considering local topographic relief, and 
compared it with the distribution of Cu concentration at sampling points. The find-
ings revealed that the dispersion pattern of soil contaminants was influenced by the 
single-flow direction of rainwater, despite the inability to identify specific high-
level pollution sources within the study area. This discovery can assist in the selec-
tion of additional sampling points for further investigation or validation purposes.

Overall, hydrological analysis plays a significant role in understanding the move-
ment and distribution of pollutants in soil, particularly regarding the influence of 
runoff and dispersion processes. Incorporating GIS tools and DEM-based assess-
ments provides valuable insights for identifying contamination sources, determin-
ing sampling locations, and optimizing resources in pollution investigation and 
monitoring.
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Fig. 10.3  Soil spatial variability of chemical properties by OK and UK (P and K) (Source: Bangroo 
et al., 2023)

�Soil Erosion and Sediment Yield

Soil is a crucial ecosystem that sustains human life and prosperity, and ensuring its 
sustainability is vital for human well-being and global food security (Fei et  al., 
2019; Fei et al., 2020; He et al., 2019). The issue of soil pollution, especially con-
tamination and deposition of heavy metals, has become a significant environmental 
concern, attracting widespread attention due to its societal implications (Azizi et al., 
2022; Huang et al., 1997; Karimi et al., 2017; Mushtaq & Lala, 2017; Yang et al., 
2018). Various geospatial modelling approaches have proven effective in quantify-
ing erosion and sediment yield. The combination of geographic information sys-
tems (GIS) with the universal soil loss equation (USLE) and Revised Universal soil 
loss equation (RUSLE) model allows for the estimation of soil erosion from mine 
tailing dumps in specific mining regions (Wischmeier et al., 1971). The ArcMine 
waste erosion tool, a GIS extension developed by Kim et al. (2012), facilitates the 
efficient evaluation of erosion in abandoned mining regions. This software utilizes 
USLE (Universal Soil Loss Equation) factors to calculate and provide estimates of 
soil erosion throughout the designated area. Soil-related concerns in mining areas 
are typically divided into three primary aspects: pollutant transport analysis based 
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Table 10.3  Ordinary kriging and universal kriging semivariance analysis of spatial structure in 
soil chemical properties

Property Ordinary kriging Universal kriging

Model Range Nugget Sill
Nugget/
sill Model Range Nugget Sill

Nugget/
sill

(N) (S)
(N/S) 
(%) (N) (S)

(N/S) 
(%)

pH 
(1:2.5)

Sph 3229.6 0.085 0.217 39.17 Sph 3235.1 0.085 0.218 38.99

EC (dS 
m−1)

Exp 7237.4 0.014 0.050 28.00 Sph 5102.6 0.014 0.030 46.66

OC (%) Exp 1834.9 0.071 0.507 14.00 Sph 3262.1 0.092 0.431 21.34
Available 
N 
(kg ha−1)

Exp 1830.6 0.167 0.796 20.97 Exp 1728.2 0.174 0.755 23.04

Available 
P 
(kg ha−1)

Exp 6186.1 0.063 0.640 09.84 Exp 5547.1 0.061 0.596 10.23

Available 
K 
(kg ha−1)

Sph 4613.8 0.113 0.272 41.54 Sph 4336.6 0.116 0.237 48.94

Sph spherical, Exp exponential model

Table 10.4  Prediction accuracy comparison between ordinary kriging and universal kriging

Property Ordinary kriging
ME MAE RMSE MSDR ME MAE RMSE MSDR

pH (1:2.5) −0.010 0.331 0.435 1.165 −0.009 0.345 0.452 1.233
EC (dS m−1) −0.005 0.123 0.171 1.325 0.001 0.106 0.156 1.091
OC (%) 0.011 0.403 0.543 1.143 −0.008 0.395 0.532 1.102
N (kg ha−1) 0.046 0.559 0.713 1.117 0.003 0.535 0.693 1.076
P (kg ha−1) 0.032 0.312 0.510 1.632 0.012 0.294 0.479 1.486
K (kg ha−1) 0.002 0.354 0.473 1.197 −0.003 0.330 0.462 1.188

ME mean error, MAE mean absolute error, RMSE root mean square error, MSDR mean squared 
deviation ratio

on hydrological assessment, geostatistical spatial interpolation for soil contamina-
tion mapping, and assessment of sediment yield originating from mine tail-
ing dumps.

�Heavy Metal Contamination

Heavy metals pose a significant threat to soil contamination, leading to detrimental 
health effects on living organisms. Geospatial technology offers a valuable approach 
to monitor and assess heavy metal contamination in soil, providing a comprehensive 
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Table 10.5  Test of significance of pattern analysis for selected soil chemical properties

Property Moran’s index Variance z score p value

pH (1:2.5) 0.290 0.003 5.234 0.0000
EC (dS m−1) 0.094 0.003 1.816 0.0692
OC (%) 0.198 0.003 3.633 0.0002
Available N (kg ha−1) 0.161 0.003 2.988 0.0028
Available P (kg ha−1) 0.239 0.003 4.409 0.0000
Available K (kg ha−1) 0.094 0.003 1.817 0.0691

overview of the extent of contamination and identifying areas with high concentra-
tions, known as hotspots (Su et al., 2022a, b; Zhang et al., 2018a, b). By employing 
geographic information systems (GIS), it becomes possible to analyse and map 
heavy metal contamination in soil, enabling more targeted and effective remediation 
strategies. Various techniques, including GIS-based interpolation methods, positive 
matrix factorization (PMF), and principal component analysis (PCA), are utilized to 
investigate the distribution patterns and sources of metal contamination in soils. 
Standard procedures such as PCA and PMF, along with contamination indices 
(González-Macías et al., 2014; Li et al., 2022; Xu et al., 2021; Wang et al., 2022; Yu 
et al., 2021) and ecological risk factors, are commonly employed to identify source 
contributions and estimate the risk associated with metal contamination in soils (Li 
et al., 2021; Proshad et al., 2022; Shi et al., 2022; Wang et al., 2020). Moreover, 
systematic utilization of contamination indices, including the geo-accumulation 
index (Igeo), contamination factor (Cf), pollution load index (PLI), and degree of 
contamination (Cd), is employed to assess heavy metal contamination in soils. 
Furthermore, human health risk assessment analysis is conducted to comprehen-
sively evaluate the potential risks associated with such contamination (Maurya & 
Kumari, 2021; Qi et  al., 2020; Saha et  al., 2022). It is essential to distinguish 
between natural and anthropogenic sources of metal contamination to safeguard the 
soil ecosystem (Agyeman et al., 2021; Ayoubi et al., 2014; Ma et al., 2021; Luo 
et  al., 2021a, b; Wu et  al., 2020). Receptor models that incorporate multivariate 
analysis techniques, including partition computing-based positive matrix factoriza-
tion (PC-PMF), absolute principal component score-multiple linear regression 
(APCS-MLR), GeogDetector models, and multivariate curve resolution-weighted 
alternating least squares (MCR-WALS), are commonly employed for source identi-
fication of metal contamination in soils (Chen et al., 2016; Fei et al., 2020; Kim 
et al., 2004; Ma et al., 2018; Schaefer & Einax, 2016; Wu et al., 2020). However, 
receptor models may not always fulfil certain key assumptions and may have limita-
tions in accurately identifying contamination sources (Adgate et al., 1998; Ahmed 
et al., 2016; Jorquera & Barraza, 2013; Lv & Liu, 2019; Su et al., 2022a, b). The 
positive matrix factorization (PMF) model, despite being widely used, is an empiri-
cal approach that assumes a linear contaminant spread (Feng et al., 2020; Lv & Liu, 
2019), potentially disregarding important spatial correlation information between 
soil samples and introducing uncertainties in source apportionment results (Chai 
et al., 2021).
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�Organic Compound Loading

Organic compounds, including polycyclic aromatic hydrocarbons (PAHs) and poly-
chlorinated biphenyls (PCBs), are a significant source of soil contamination. The 
geospatial technology approach, which combines remote sensing and chemical 
analysis, is commonly used to monitor the presence of organic compound contami-
nation in soil. Remote sensing data enable a comprehensive view of soil contamina-
tion on a large scale, identifying hotspots where concentrations of organic 
compounds are high. On the other hand, chemical analysis of soil samples provides 
more detailed information about the specific types and concentrations of organic 
compounds present in the soil. In a study conducted by Bangroo et al. (2021) in the 
apple orchards of Kashmir, the authors investigated the spatial distribution of differ-
ent soil properties using classical and ordinary kriging techniques. They collected 
soil samples based on topography and land management zones and analysed proper-
ties such as pH, electrical conductivity (EC), organic carbon (OC), and available 
nutrients. The research findings unveiled notable variations in soil properties, as 
indicated by different coefficients of variation (CV) spanning from 9.0% for pH to 
30.0% for organic carbon (OC). Furthermore, the study determined the average 
values of soil properties, including organic carbon (OC), nitrogen (N), available 
phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). By utilizing 
semivariogram analysis and ordinary kriging (OK) based on different models, they 
plotted the spatial distribution of soil parameters, highlighting the degree of spatial 
dependence and variations in different regions. Similarly, Sánchez-Nilda et  al. 
(2019) used remote sensing and chemical analysis to assess the distribution of PAHs 
in soil near a landfill in Costa Rica. Their findings indicated higher concentrations 
of PAHs in soil samples collected in proximity to the landfill compared to those col-
lected farther away. This information can guide remediation efforts and help miti-
gate exposure to PAH-contaminated soil. In addition, Farooq et al. (2022) utilized 
digital soil mapping (DSM) techniques to forecast and assess the spatial patterns of 
soil organic carbon stock (SOCS) in the Himalayan region of Jammu and Kashmir, 
India. The results and related data are presented in Table  10.6. Geostatistical 

Table 10.6  Soil organic 
carbon stocks under different 
land uses

Land use SOCS (Mg/ha)

Mean 46.26
Horticulture 95% C.I. 26.69–62.83

Mean 13.12
Maize 95% C.I. 4.80–21.45

Mean 30.23
Forest 95% C.I. 26.83–33.60

Mean 5.48
Wasteland 95% C.I. 2.84–8.12

Mean 33.01
95% C.I. 23.12–42.90
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Fig. 10.4  Semivariogram of SOCS by ordinary krigingKriging (OK) and regression krigingKrig-
ing (RK) (Source: Farooq et al., 2022)

techniques, including ordinary kriging (OK) and regression kriging (RK), along 
with a machine learning algorithm called random forest (RF), were employed by 
Farooq et al. (2022) to analyse the spatial variations in soil organic carbon stock 
(SOCS). This assessment involved incorporating auxiliary variables derived from 
satellite data (as depicted in Fig. 10.4). The study found that RF performed better in 
terms of prediction performance and accuracy compared to OK and RK. However, 
the accuracy of RK predictions could be improved with further selection and choice 
of auxiliary variables and increased soil sampling density. Overall, geospatial tech-
nology, in conjunction with chemical analysis, plays a crucial role in monitoring 
and understanding the spatial distribution of organic compound contamination and 
soil properties, thereby aiding in the implementation of appropriate management 
practices for sustainable land use and remediation efforts.

�Radioactive Contamination

Soil contamination by radioactive substances, such as radium and uranium, poses 
significant health risks. The application of geospatial technology allows the moni-
toring of radioactive substance contamination in soil through the utilization of 
remote sensing and gamma-ray spectrometry. Remote sensing data provide a com-
prehensive overview of the extent of soil contamination, enabling the identification 
of hotspots with high concentrations of radioactive substances. Meanwhile, gamma-
ray spectrometry is employed to quantify the levels of radioactive substances in soil 
samples. For instance, Pourghasemi et al. (2017) conducted a study utilizing geo-
spatial technology to monitor the distribution of radium in soil surrounding a ura-
nium mine in Iran. The approach involved the integration of remote sensing data 
and gamma-ray spectrometry to assess the contamination levels. The study revealed 
that soil samples collected in close proximity to the mine exhibited elevated radium 
levels compared to samples collected at greater distances. These findings played  
a crucial role in remediation efforts aimed at reducing exposure to 
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radium-contaminated soil. In summary, geospatial technology, combined with 
remote sensing and gamma-ray spectrometry, offers an effective means of monitor-
ing and evaluating radioactive substance contamination in soil. By accurately iden-
tifying areas of contamination, remediation measures can be implemented to 
minimize the risks associated with exposure to radioactive substances in the soil.

10.5 � Conclusion

In this chapter, the significant role of geospatial technology in assessing and moni-
toring soil contaminants using remote sensing and spatial technology is empha-
sized. The combination of remote sensing and geospatial technology provides a 
powerful tool for monitoring and mapping soil contamination. Various studies have 
showcased successful applications of remote sensing and geospatial technology in 
identifying hotspots of heavy metal and organic compound contamination. 
Additionally, gamma-ray spectrometry has been employed to measure the levels of 
radioactive substances. The integration of remote sensing, GIS, GPS, and geostatis-
tical techniques with traditional soil sampling and laboratory analysis methods has 
yielded promising results in enhancing the spatial resolution and accuracy of con-
taminant mapping. However, certain challenges, such as limitations in accuracy, 
considerations of cost, and issues related to data integration, must be addressed for 
wider adoption and improved risk assessment. To ensure effective management of 
soil contamination, future research should focus on advancing geospatial tech-
niques, integrating emerging technologies, and improving decision-making pro-
cesses. This will facilitate more precise and comprehensive approaches to addressing 
soil contamination issues.
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Chapter 11
Noise Pollution Modelling Using GIS 
Techniques in Srinagar City

Ankit Khajuria, Majid Farooq , Fayma Mushtaq , and Priyanka Solan

Abstract  Due to swift urbanization and shifts in lifestyle, loud noise has perme-
ated every aspect of our lives, becoming an inescapable element. Extensive research 
has demonstrated that both indoor and outdoor environmental noise pollution pose 
significant health risks, particularly impacting the well-being of fetuses, infants, 
children, adolescents, and adults. The detrimental effects of noise pollution encom-
pass not only noise-induced hearing loss but also a wide range of nonauditory health 
issues. The diagnosis of these adverse effects, attributable to noise pollution, is 
steadily rising across all age groups. This chapter presents a comprehensive 
approach utilized for evaluating and delineating the levels of noise pollution in 
Srinagar city. The assessment and mapping processes were carried out utilizing geo-
spatial techniques. At each selected location, noise measurements were conducted 
using a sound level meter for 5 days at the same location for morning, afternoon, 
evening, and nighttime. The resulting noise map was constructed based on the aver-
age calculated values using the interpolation technique, which showed that the noise 
levels in the morning ranged from 44.23 to 78.00 dB, with the outskirts having the 
lowest values and the city center, Pantha Chowk, and Hazratbal registering the high-
est levels. Afternoon noise increases from 53.00 to 80.15 dB, and most of the city 
falls into the medium to high range. In the evening, noise decreases (36.00–79.75 dB), 
while during the night, levels vary from 36.00 to 60.96 dB, with higher levels in Lal 
Chowk, Rajbagh, Pantha Chowk, and Khonmoh due to vehicle movements. The 
findings of this study serve as valuable references and guidelines for future urban 
planning endeavors and the formulation of noise regulations in areas similar to 
Srinagar city. These results offer crucial insights into establishing appropriate noise 
limits to be implemented for the betterment of urban environments.
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11.1 � Introduction

Noise, which is characterized as sound caused by undesired human activities, is 
widely recognized as an environmental stressor and a source of annoyance (Stansfeld 
& Matheson, 2003). The rapid urbanization of numerous regions has led to the 
emergence of noise pollution as a prominent environmental concern (Oyedepo, 
2013). Noise pollution poses a genuine problem in all developed and developing 
countries and plays a significant role in deteriorating the overall health of the popu-
lation, acting as a catalyst for various stress-related ailments (Vladimir & Madalina, 
2019). It has been noted that prolonged exposure to high-intensity sound waves has 
adverse effects on human health (Gupta et al., 2018; Mehdi et al., 2018). The expan-
sion of transportation networks, increasing number of motor vehicles, widespread 
mechanization, and inadequate protection of densely populated residential areas 
from noise due to unplanned rapid urbanization contribute to numerous challenges 
concerning public health (Esmeray & Eren, 2021). Numerous studies have demon-
strated that both short-term and long-term exposure to noise not only diminishes 
human hearing capabilities but also raises the risk of conditions such as high blood 
pressure, cardiovascular disease, anxiety, and insomnia (Jariwala et  al., 2017; 
Münzel et al., 2021).

Despite noise pollution being a silent and gradual threat to human well-being, 
there has been a notable lack of concerted efforts to mitigate this issue (Singh & 
Davar, 2004). Elevated levels of environmental noise have a detrimental impact on 
quality of life, necessitating the need to address this issue. However, before taking 
action, it is crucial to analyze the problem, which involves measuring the levels of 
noise pollution (Arokoyu et al., 2016). Environmental noise monitoring faces the 
challenge of achieving comprehensive measurements that encompass both temporal 
and spatial domains (Maijala et  al., 2018). A single-point noise measurement is 
seldom indicative of an entire neighborhood, necessitating multiple sensor locations.

However, due to the expenses involved in equipment and human resources, the 
reliability, validity, and representativeness of environmental data often fall short of 
satisfactory standards. Therefore, the utilization of geographic information systems 
(GIS) holds significant value in methodological and scientific pursuits, as it enhances 
workflow efficiency and automates specific calculations, thereby streamlining the 
user’s tasks (Fig. 11.1) (Bilaşco et al., 2017; Garg et al., 2021). The effectiveness of 
geographic information systems lies in their ability to enable the acquisition, man-
agement, analysis, modeling, and precise mapping of results (Sheng & Tang, 2011). 
One of the notable advantages is the capability to populate the georeferenced data-
base with attributes, allowing for the inclusion of noise sources. Additionally, the 
utilization of spatial analysis is another significant benefit offered by geographic 
information systems (Garg & Maji, 2014; Haq et al., 2012).

The current research endeavors to utilize geospatial techniques to map and iden-
tify the areas most susceptible to noise pollution. The study aims to emphasize both 
high sound intensity zones and quiet areas within Srinagar city, where traffic and its 
associated environmental noise are steadily escalating. Moreover, through GIS 
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Fig. 11.1  Integrating GIS in noise mapping. (Source: Garg et al., 2021)

analysis, the study elucidates the variations in noise pollution across different rep-
resentative time periods. In addition, the outcomes of the study can be utilized by 
local authorities in formulating policies to enhance public awareness regarding the 
risks associated with noise pollution and to contribute to the scientific literature by 
proposing potential measures to mitigate noise pollution.

11.2 � Study Area

Srinagar, the summer capital of the Union Territory of Jammu and Kashmir, is situ-
ated at an elevation of 5200  feet above sea level, within the latitudinal range of 
34°00′–34°14′ N and the longitudinal range of 74°43′–74°52′ E (Fig.  11.2). 
Extending along the Jhelum River, the city spans approximately 29 km in length and 
has an average width of approximately 6 km on both sides. Excluding the canton-
ment area dedicated to defense purposes, the current total area of Srinagar city is 
278.1 km2. As of 2023, the estimated population of Srinagar city is 1,627,000, while 
the Srinagar metro population is estimated at 1,742,000. With a population of over 
one million, Srinagar is undergoing rapid development. However, this growth has 
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Fig. 11.2  Location map of Srinagar city with ward boundary

led to an escalation in noise pollution, adversely affecting the health and well-being 
of its residents.

11.3 � Materials and Methods

Noise pollution modeling has been carried out for Srinagar city using the method-
ological framework presented in various studies (Esmeray & Eren, 2021; Farooq 
et al., 2017; Oguntunde et al., 2019). The noise level measurements were carried out 
during rush hours of the morning, afternoon, evening, and nighttime. Noise levels 
were assessed in four distinct categories of zones, namely, residential, commercial, 
industrial, and silence zones.

To achieve a comprehensive representation of all area types, a survey sampling 
strategy is implemented by dividing the city into multiple grid areas. This grid-
based division facilitates a systematic assessment of noise levels across various 
regions of the city, ensuring the inclusion of all categories of areas in the evaluation 
process. An SLM 100 Type II sound meter was used to measure the noise levels, and 
a Trimble hand-held GPS device was used to obtain the exact coordinates of each 
location where noise level readings were recorded. The monitoring was carried out 
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consistently for a duration of 5 consecutive days during 2019–2020, maintaining the 
same locations throughout the entire monitoring period.

The collected data from the sampling sites underwent further processing to 
enable its utilization within a GIS environment for the creation of noise level maps 
across different zones within Srinagar city. This was accomplished by employing 
the inverse distance weighting (IDW) interpolation technique, which predicts 
unknown noise values for specific geographic points based on surrounding data 
points. The acquired data were superimposed onto the Srinagar ward boundary and 
road layer, resulting in the creation of noise pollution maps. Through a comparison 
of the calculated noise levels with the noise standards set by the Central Pollution 
Control Board (CPCB), it becomes feasible to assess the level of compliance with 
the established guidelines (Table 11.1).

11.4 � Results and Discussion

�Monitored Noise Levels

Industrial Area  The industrial zone comprises Sanatnagar, Baghi-Alimardan, and 
Shalteng. In the Sanatnagar industrial estate, the average noise levels were mea-
sured at 68 dB in the morning, 71.6 dB in the afternoon, and 68.8 dB in the evening 
(Table  11.2). The overall average noise level for the entire day was recorded as 
69.67  dB, which was reduced to 39.5  dB during the night hours. In the Baghi-
Alimardan industrial estate, noise levels ranged from 60  dB in the morning of 
December 28 to 76 dB in the afternoon of the same day. The average noise levels 
throughout the monitoring period were 69.25 dB in the morning, 73.2 dB in the 
afternoon, and 67  dB in the evening. The overall daily average noise level was 

Table 11.1  Ambient air quality standards with respect to noise

Area code Category of area/zone Day time limits in dB (A) Night time limits in dB (A)

(A) Industrial area 75 70
(B) Commercial area 65 55
(C) Residential area 55 45
(D) Silence zone 50 40

Table 11.2  Five-day average noise levels for selected industrial locations

Five-day 
average

Morning 
(dB)

Afternoon 
(dB)

Evening 
(dB)

Daily average 
(dB)

Night hours 
(dB)

Sanatnagar 68 71.6 68.8 69.67 39.5
Baghi-
Alimardan

69.25 73.2 67 71.00 37.75

Shalteng 66 70 66.2 66.00 40.5
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71.00 dB, which decreased to 37.75 dB during the night hours. Similarly, in the 
Shalteng industrial estate, noise levels varied from 62 dB in the morning to 77 dB in 
the afternoon during the monitoring period. The average noise levels were 66 dB in 
the morning, 70 dB in the afternoon, and 66.2 dB in the evening. The overall aver-
age noise level for the day was 66.00 dB, with a slight increase to 40.5 dB during 
the night hours.

In the Sanatnagar industrial estate, the highest noise level of 79 dB occurred dur-
ing the afternoon of December 30, 2019, while the lowest recorded noise level of 
65 dB was observed in the evening of December 28, 2019, indicating a relatively 
quieter period at that time (Fig. 11.3). Similarly, in the Baghi-Alimardan industrial 
estate, the highest noise level of 76 dB was observed in the afternoon of December 
28, 2019, while the lowest recorded noise level of 60 dB occurred in the morning of 
the same day, implying a quieter start to the day in terms of noise levels. The 
Shalteng industrial estate experienced its highest noise level of 77 dB during the 
afternoon of December 30, 2019, suggesting a significant presence of noise sources 
or activities during that specific time. Conversely, the lowest recorded noise level of 
62 dB was observed in the morning of December 28, 2019.

Commercial Area  The commercial zone, which includes Rajbagh, Batamaloo, 
Bemina Crossing, Hawal Chowk, Jahangir Chowk, Exchange Road, Ghantaghar 
Lal Chowk, T.R. C, Batwara Chowk, and Lasjan exhibited noise levels higher than 
the ambient air quality standards with respect to noise, which was 65 dB during the 
daytime (Fig. 11.4). The average noise levels recorded during morning hours were 
found to be higher for all the sites: 70.25 dB (Rajbagh), 76.25 dB (Batamaloo), 
75.5 dB (Bemina Crossing), 72.25 dB (Hawal Chowk), 77 dB (Jahangir Chowk), 
75.75  dB (Ghantaghar Lal Chowk), 75.75  dB (T.R.  C), and 67.75  dB (Batwara 
Chowk) (Table 11.3). Among all the sites, the noise level during morning hours was 
found to be within limits for Exchange Road (59.5 dB) and Lasjan (64 dB). During 
the afternoon hours, the average noise recorded for Rajbagh, Batamaloo, Bemina 
Crossing, Hawal Chowk, Jahangir Chowk, Exchange Road, Ghantaghar Lal Chowk, 
T.R. C, and Batwara Chowk were recorded on the higher side except for Lasjan at 
74.4 dB, 80.2 dB, 79.6 dB, 74.8 dB, 78.8 dB, 76.2 dB, 73.4 dB, 75.8 dB, 72 dB, and 
58.8 dB, respectively. The highest recorded noise levels were observed during after-
noon hours and were 77  dB (Rajbagh), 85  dB (Batamaloo), 86  dB (Bemina 
Crossing), 76  dB (Hawal Chowk), 86  dB (Jahangir Chowk), 79  dB (Exchange 
Road), 81 dB (Ghantaghar Lal Chowk), 91 dB (T.R. C), 78 dB (Batwara Chowk), 
and 76 dB (Lasjan).

Residential Area  For residential areas, the locations selected for the record of noise 
level are those that experience the highest footfall in Srinagar city, that is, Jawahar 
Nagar, Mehjoor Nagar, Chanapora, Hyderpora, Dalgate, Habbakadal, and Tankipora 
(Fig. 11.5). Among these areas, the highest average noise level was recorded for 
Chanapora and Dalgate at 64 dB and 62 dB, respectively, during morning hours. 
This is followed by Jawahar Nagar (59 dB) and Mehjoor Nagar (58 dB). During 
morning hours on average, the lowest noise was recorded for Habbakadal (43.5 dB) 
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Fig. 11.3  Noise levels recorded for selected industrial locations
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Fig. 11.4  Noise levels recorded for selected commercial locations
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Table 11.3  Five-day average noise levels for selected commercial locations

Five-day average
Morning 
(dB)

Afternoon 
(dB)

Evening 
(dB)

Daily average 
(dB)

Night hours 
(dB)

Rajbagh 70.25 74.4 70.2 70 36.25
Batamaloo 76.25 80.2 77.6 75 36.75
Bemina Crossing 75.5 79.6 77.8 74 39.75
Hawal Chowk 72.25 74.8 69.4 72 38
Jahangir Chowk 77 78.8 80.2 78 56.5
Exchange Road 59.5 76.2 70.8 74 46.5
Ghantaghar Lal 
Chowk

75.75 73.4 76.4 73 53

T.R.C 75.75 75.8 78 70 59.5
Batwara Chowk 67.75 72 73.8 63 51
Lasjan 64 58.8 69.8 65 43.5

and Tankipora (46 dB), which is within the limits of the standards for residential 
areas (Table 11.4). During nighttime, the noise levels for all seven locations were 
found to be under limits. On a daily average basis, it exceeds 62 dB for Chanapora 
and 60 dB for Jawahar Nagar, Mehjoor Nagar and Dalgate.

The growing body of research emphasizes the significant influence of interac-
tions with nature on people’s physical health and psychological well-being, both 
directly and by moderating various processes. To create health-promoting urban 
environments, residential areas should be carefully planned to provide easy access 
to nearby green spaces, offering relief from environmental stress and opportunities 
for rest and relaxation, while also striving for lower sound levels from road traffic. 
In their study, Gidlöf-Gunnarsson and Öhrström (2007) investigated the impact of 
the perceived availability of nearby green areas on well-being among groups living 
in different noise conditions. The results revealed that improved accessibility to 
green spaces positively affected the well-being and daily behavior of both groups, 
leading to reduced long-term noise annoyances and a lower prevalence of stress-
related psychosocial symptoms, along with increased outdoor space utilization.

Silence Zone  Silence zones are areas encompassing a distance of no less than 
100  m around hospitals, educational institutions, and courts (Sahlathasneem & 
Deswal, 2023). Within these zones, the permissible noise level should not surpass 
50 dB during the day and 40 dB at night. For silence zones, fourteen educational 
institutes were selected for recording the noise level, which includes lower and high 
courts as well (Table 11.5). In addition, the noise level was recorded at eight major 
hospitals in Srinagar City. It was observed that the noise level exceeded the permis-
sible limit of 50 dB during the day for all educational institutes. The daily average 
was recorded for Gandhi Memorial College, Presentation Convent School, Higher 
Secondary School Amira Kadal, Amar Singh College, and Govt. Girls Higher 
Secondary School Khanyar were 54.96 dB, 71.53 dB, 71.87 dB, 73.668 dB, and 
72.36  dB, respectively (Fig.  11.6). During the afternoon, the Higher Secondary 
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Fig. 11.5  Noise levels recorded for selected residential locations

School Amira Kadal and Amar Singh College recorded the highest noise level, 
reaching 84 dB. These locations stood out as having louder environments compared 
to others. The higher noise levels around educational institutes make children vul-
nerable in regard to the nonauditory health effects of noise. Due to their limited 
cognitive capacity to comprehend and cope with stressors, they are more suscepti-
ble to its impacts (Stansfeld & Matheson, 2003). Additionally, as children are still 
in the developmental stage, exposure to environmental stressors such as noise could 
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Table 11.4  Five-day average noise levels for selected residential locations

Five-day 
average

Morning 
(dB)

Afternoon 
(dB)

Evening 
(dB)

Daily average 
(dB)

Night hours 
(dB)

Jawahar Nagar 59 57 58 60 42
Mehjoor Nagar 58 59 61 60 37.25
Chanapora 64 63 60 62 41.5
Hyderpora 56 54 58 57 37.25
Dalgate 62 59 60 60 38.75
Habbakadal 43.5 57.6 54 51 37.5
Tankipora 46 57 51.2 50 37.5

potentially lead to irreversible negative consequences for their physical and cogni-
tive well-being (Stansfeld & Clark, 2015).

Conversely, Gandhi Memorial College displayed the lowest noise level of 50 dB 
in both the morning and evening, indicating relatively quieter surroundings during 
those time periods. In addition, the Higher Secondary School Amira Kadal sur-
passed the average noise levels during nighttime to 46.75 dB. Likewise, the noise 
levels at major hospitals in Srinagar City exceed the permissible limit during the 
whole day (Fig. 11.7). During the morning hours, the JLNM Rainawari registered 
the highest recorded noise level, reaching 75.5 dB, followed by L. hospital (74.5 dB), 
SKIMS Soura, and JVC (72  dB). The situation is even more concerning during 
nighttime, as noise levels surpass the permissible limits of 40 dB for all hospitals, 
except for Gousia Hospital Khanyar and the Institute of Mental Health and Neuro 
Sciences.

Noise pollution in and around hospitals poses a serious health hazard, as recog-
nized by Khaiwal et  al. (2016). The World Health Organization (WHO) recom-
mends maintaining continuous background noise levels in hospital rooms below 
35 dB, with nighttime peaks inward not exceeding 40 dB (Berglund et al., 1999). 
High noise levels in hospitals can lead to issues concerning patient safety and recov-
ery. Jue and Nathan-Roberts (2019) found that exposure to elevated noise levels 
significantly affects various aspects, including patients’ sleep quality, speech pro-
cessing, and various physiological functions. Additionally, it may also contribute to 
stress and burnout among hospital workers. Grumet (1993) reported a significant 
correlation between increasing noise levels and extended length of hospital stay, 
emphasizing the importance of noise control in healthcare settings as a high priority.

�Spatial Distribution of Noise Pollution in Srinagar City

Figure 11.8  (a–d) displays noise pollution maps generated using the inverse dis-
tance weighting (IDW) technique in ArcGIS.  These maps represent the average 
noise levels during morning, afternoon, evening, and nighttime. Focusing on the 
interpolated map for morning hours, it becomes evident that the noise levels range 
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Table 11.5  Five-day average noise levels for selected silence zones (educational institutes and 
hospitals)

Five-day average
Morning 
(dB)

Afternoon 
(dB)

Evening 
(dB)

Daily 
average (dB)

Night 
hours (dB)

Educational institutes

Gandhi Memorial College 54 59.6 50.8 54.96 37.5
Presentation convent school 70.25 74 69.8 71.53 37.25
Higher Secondary school 
Amira kadal

71.25 73.8 71 71.87 46.75

Amar Singh College 71.75 75 73.8 73.668 41.5
Govt. Girls Higher 
Secondary Khanyar

72 75.2 69.6 72.36 41

NIT Hazratbal 72.5 76 70.4 72.9 39.5
University of Kashmir 
Hazratbal (Rumi Gate)

72.5 75.8 69.6 72.69 39.75

University of Kashmir 
Hazratbal (Sir Syed Gate)

70.5 74.2 67.2 70.76 39.5

Govt Women’s College 
Nawakadal

64.25 68 68.8 64 39

High court 73.75 76.6 74.4 75.3 37.5
Lower Court 72.75 75.8 72.2 73.69 38
Govt. Women’s College M.A 
Road

56 70 66.4 65.36 52.75

S.P. College 60 73.6 74.6 71.36 52.5
Delhi Public School Pantha 
Chowk

77.5 76 75.6 76.33 49.5

Hospitals

Gousia Hospital Khanyar 68.25 73.2 67.4 69.4 40.5
JLNM Rainawari 75.5 77.6 73.8 75.6 41.25
Institute of Mental Health 
and Neuro Sciences

59 60.2 55.8 58.27 38.25

L.D Hospital 74.5 75.6 72.8 74.27 42.5
SKIMS Soura 72 76.8 70.2 73.03 41.25
JVC 72 75.4 71.6 72.26 37.5
G.B. Panth Hospital 70.5 75.2 72.4 72.67 61
Chest Disease Hospital 67 73.2 70.8 71.07 51

from 44.23 to 78.00 dB. On the outskirts of the city, particularly toward the north-
east and northwest, the average noise levels are observed to be the lowest. This may 
be attributed to the positive impact of green spaces on mitigating traffic noise pollu-
tion at the local scale; however, their effects on a broader urban level remain unex-
plored (Margaritis & Kang, 2017). Conversely, the highest noise values are 
concentrated in the main city center, with Pantha Chowk toward the east and 
Hazratbal located in the middle experiencing notably high noise pollution, exceed-
ing the permissible limits. The remaining areas generally exhibit low to medium 
noise values.
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Fig. 11.6  Noise levels recorded for selected silence zones (educational institutes)
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During the afternoon, there was a noticeable increase in the average noise level 
compared to the morning hours, ranging from 53.00 to 80.15 dB. The lowest value 
of 53.00 dB was limited to specific locations such as Nishat, Dalgate, Nowshera, 
and Baghat-I-Barzulla. However, the majority of the city experienced medium to 
high noise levels during this time. Similar to the morning hours, the highest noise 
pollution during the afternoon was observed in Lal Chowk and its adjacent areas, 
which serve as the primary commercial zones and major hubs of the city. The com-
mercial areas are exceeding the noise levels as per the standards. On the other hand, 
areas situated in the north and north-western outskirts of the city had noise levels 
mostly falling within the medium range.

During the evening, the average noise level map indicates a reduction in noise 
compared to the afternoon hours, ranging from 36.00 to 79.75  dB.  Despite this 
decrease, the noise levels in commercial areas remain on the higher side, even as 
day activities wind down. Similar to the morning and afternoon, the main city center 
continues to exhibit the highest noise values during the evening. Interestingly, 
Pantha Chowk, which had the highest noise level in the morning, experienced a 
decrease during the afternoon but showed a surge again in the evening hours. This 
could be attributed to the traffic flow transitioning from the main city to other dis-
tricts. Overall, while there is a slight reduction in noise during the evening, it is still 
important to consider and adhere to the established noise limits, especially in com-
mercial zones, to mitigate potential disturbances during this time.

Throughout the night, the average noise level displayed variations ranging from 
36.00 to 60.96 dB. The majority of the city areas maintained noise levels within 
permissible limits, registering lower values. However, specific areas such as Lal 

Fig. 11.6  (continued)
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Fig. 11.7  Noise levels recorded for selected silence zones (hospitals)

Chowk, Rajbagh, and their connecting regions, along with Pantha Chowk and 
Khonmoh, recorded higher noise levels, reaching 60.96 dB during the night. This 
increase in noise can be attributed to the movement of vehicles, particularly heavy 
ones, using routes that pass through Pantha Chowk and Khonmoh, leading to the 
Jammu highway. In their study, Banerjee et al. (2009) also observed a similar pat-
tern of significantly elevated noise levels during nighttime, which was attributed to 
the movement of heavy trucks. Despite these localized higher noise levels, the 
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Fig. 11.8  Spatial distribution of noise level in Srinagar city developed using IDW
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Fig. 11.8  (continued)
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overall noise situation in the city during the night remained generally within accept-
able limits, contributing to a quieter and more peaceful environment during night-
time hours.

11.5 � Conclusion

In conclusion, the noise pollution maps derived using the IDW technique in ArcGIS 
provide valuable insights into the spatial distribution of average noise levels across 
the city during different time periods. The noise level findings indicate that the 
acoustic environment in our study area is generally classified as medium to high. 
This suggests that prolonged exposure to these noise levels could potentially impact 
human health and overall quality of life. Noise levels vary throughout the day in the 
city, with mornings ranging from 44.23 to 78.00 dB and higher levels in the city 
center. Afternoons see an increase from 53.00 to 80.15 dB, while evenings show a 
reduction from 36.00 to 79.75 dB, and nights vary from 36.00 to 60.96 dB, with 
higher levels in specific areas due to vehicle movements. This study’s findings high-
light the presence of moderate to high noise zones, with significant variations based 
on both location and time of day. The primary factors contributing to these varia-
tions are related to traffic characteristics, such as traffic volume, vehicle horns, 
vehicle-mounted speakers, and the presence of unmuffled vehicles at road junc-
tions, major roads, and commercial centers. Monitoring selected residential and 
commercial areas consistently revealed noise levels exceeding acceptable thresh-
olds. Overall, the noise pollution analysis indicates that the city’s outskirts generally 
enjoy quieter environments, while noise levels tend to be higher in the city center 
and major commercial zones. To maintain a healthier and more sustainable sound-
scape, it is crucial for urban planners and policymakers to address noise hotspots 
and implement suitable mitigation measures, especially in areas with consistently 
high noise levels. Such efforts can contribute to a more pleasant living environment 
for the city’s residents and promote overall well-being and quality of life.

11.6 � Recommendations

The installation of smart sensors in cities for noise monitoring is highly recom-
mended. These advanced sensors can provide real-time data on noise levels across 
different areas, helping authorities identify noise hotspots and patterns (Fig. 11.9). 
With this information, effective noise mitigation strategies can be developed to 
improve the overall acoustic environment, enhance public health, and ensure a bet-
ter quality of life for residents. Smart sensors offer a cost-effective and efficient way 
to monitor and manage noise pollution in urban areas, making them an essential tool 
for modern urban planning and environmental management.

A. Khajuria et al.



285

Fig. 11.9  Schematics showing the working flow of smart sensors for noise monitoring along with 
a web-based visualization interface. (Source: Maijala et al., 2018)

Furthermore, integrating a web-based interface for data visualization would sig-
nificantly enhance the accessibility and usability of the noise monitoring system. By 
offering a user-friendly web platform, the general public, researchers, and policy-
makers can easily access and interpret noise data, fostering greater awareness and 
engagement in noise pollution management efforts. This interactive visualization 
plays a crucial role in empowering communities to actively participate in creating a 
quieter and more sustainable urban environment.
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Chapter 12
Geostatistics Interceded Groundwater 
Quality Study with Emphasis on Kriging 
Across the Andhra Pradesh State of India

Jagadish Kumar Mogaraju 

Abstract  This work aims to use geostatistical tools to understand the spread of 
groundwater quality variables across the state. Ordinary kriging, simple kriging, 
and universal kriging techniques were used in this study with root mean square error 
(RMSE), mean square error (MSE), root mean square standardized error (RMSSE), 
and averaged standard error (ASE) metrics. Groundwater quality variables such as 
bicarbonate, chloride, electrical conductivity, fluoride, potassium, magnesium, 
sodium, nitrate, pH, SAR, and sulfate were tested in this study over a GIS work-
space. A correlation map was generated to show the strong correlation between the 
variables. Principal component analysis was performed to extract principal compo-
nents from the dataset. Cluster analysis was performed, and 9 clusters were obtained. 
The size of the first cluster is 904, with an explained proportion of within-cluster 
heterogeneity of 0.979 and a silhouette score of 0.629. The total sum of squares for 
all the clusters is 13,740, and the sum of squares value is 3697.

Keywords  Clustering · Geostatistics · GIS · Groundwater · Interpolation · Kriging

12.1 � Introduction

Geospatial products have always helped in our understanding of our natural 
resources, leading to the improvement of our lives (McCall & Minang, 2005). The 
breadth of geospatial applications is always being extended across diverse areas of 
our society, seldom with limited drawbacks (Karan & Irizarry, 2015). The conven-
tional methods of mapping and interpretation have been laborious and expensive 
processes that lead to coarse errors in some cases (Langford & Bell, 1997). The 
errors presented by GIS products are always in the form of a puzzle hidden in plain 
sight (Audet & Abegg, 1996). The advancement of computer-aided processing in 
cartography and allied disciplines has limited the ingress of faults or errors in the 
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interpretation process (Golz et al., 2015). The fundamental concepts of mathemat-
ics, geography, physics, and computer programming, along with various areas of 
geo-intelligence, were combined to obtain the best results on several occasions 
(Kune et al., 2016). The main idea of surveying in the GIS sense is to portray the 
objects or living entities integrated with factors presented by nature onto the com-
puter interface so that we can perform certain operations to ease our daily activities 
(Zhong et al., 2012). The role played by geospatial tools in the mapping of water 
resources can be considered a capstone achievement we have witnessed for three 
decades (Vadjunec et al., 2022). Starting from investigating the quality of surface 
waters to groundwater, GIS has always aided researchers across domains. Kriging 
and other geostatistical tools can be used in various GIS operations (Goyal et al., 
2021). This method aids us in estimation and is based on a non-discrete model of 
spatial variation that is random. It also considers the value variations across space 
via a variogram model (Cressie, 1990). In a simple sense, we can say that the kriged 
estimate is a weighted average of the attribute values or a linear sum of the data in 
the vicinity (Kleijnen, 2009). Kriging has been used to solve complicated problems 
in fields that are not limited to public health and pollution (Oliver & Webster, 1990). 
We consider linear combinations (weighted) of the estimates in linear kriging. 
These weights are assigned to the data samples in the vicinity. We can minimize the 
variance and bias in the kriging method. This technique relies on LS methods or 
least-squares methods for spatial prediction. Ordinary kriging (OK) can be per-
formed using a single variable, and it can be categorized as a robust method due to 
its far and wide applications (Wackernagel, 2003). As we might not know the mean 
of the simple kriging (SK) method, its application is limited (Webster & McBratney, 
1987). We can use this method in alternative forms, such as disjunctive and indica-
tor kriging. This is possible, as the data will be transformed to yield means. Log-
normal kriging is a variant of ordinary kriging in which we can use the logarithms 
of measured values (Ro & Yoo, 2022). This method can be used on data that are 
positively skewed (excess). Universal kriging (UK) is also called kriging with drift 
(Zimmerman et al., 1999). It detects random constituents and deterministic compo-
nents that are not stationary in a variable. It gives us trends and variograms based on 
the components that the data falls into. This method integrates both trends and var-
iograms in making the prediction. We can expect an RML, or residual maximum 
likelihood, while using this method, which is an enhancement of the kriging process 
(Reyes et al., 2015). Kriging analysis is also called factorial kriging, and it can be 
employed if the variation observed is in nested form. The nested form means that 
there are more scales of variation. This method estimates the singular components 
of variation distinctly, and this will be included in a single analysis. Ordinary cokrig-
ing (OCK) can be classified as an extended variant of OK that considers more than 
one variable in the prediction process (Goovaerts, 1998). It is important to check 
whether there is a proportion of coregionalization that exists within the variables 
while using this method and yielding meaningful results. This method is used if 
some attribute is easily measured in the field with limited expense across many 
points and if there is a spatial correlation existing with the attribute measured at a 
few points with high expense. In this method, we can use the spatial information 
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generated using the attribute values collected from several sites to estimate the attri-
bute values that are sporadically collected due to budget constraints. Indicator krig-
ing (IK) can be classified as a nonparametric and nonlinear method of kriging 
(Solow, 1986). In this method, continuous variables can be systematically changed 
into binary values or indicators. It can use any type of distribution, and we can com-
pute the empirical cumulative distributions. This method also offers us confidence 
limits and is hence used across several applications. We can also integrate qualita-
tive data to enhance prediction accuracy. Another extension of kriging is disjunctive 
kriging (DK), which can be classified as a nonlinear and parametric method 
(Matheron, 1976). We can use this method in decision-making protocols, which can 
be attributed to the probabilities defined by the user threshold. Probability kriging 
(PK) can use rank order for an attribute value and is often normalized to 1 (Sullivan, 
1984). Bayesian kriging invariably shares some of the characteristics of SK and UK 
but is based on drift conditions (Pilz & Spöck, 2008). The main aim of the kriging 
process is to predict the value of the variable that is random at unsampled points. 
Kriging is often based on the assumption that we are blinded to know the mean.

Most of the equations used in kriging can be used to determine the weights. It 
assigns large weights to the points that are in the vicinity of the block or points that 
are to be kriged. We can assume that the closest points (4–5) can define 80% of the 
weight. These weights can be based on the sampling configurations. It is obvious 
that the points that are closer can have more weight than the points that are far away. 
We can investigate the relative proportions based on the positions of the points that 
can be visible on the variogram. If the nugget variance is large, the weights of the 
points that are closest to the block or target point can be small. The relative weights 
can be based on the size of the block. If there is an increase in the size of the block, 
then the weights of the points in the vicinity decrease. This also implies that the 
weights of the far-away or distance points increase relatively. This process contin-
ues or iterates until the weights are equal. The points that are clustered have minimal 
weights compared to the points that are in isolation. The nugget variance is propor-
tional to the kriging variance, and it is important to define this as a minimum limit 
rather than a variance. The model should be fitted using various tools to obtain the 
best results. Our target lies in the fact that the nugget effect must be clearly reflected 
in the experiment and is always dependent on the nugget variance and kriging 
variances.

12.2 � Study Area

Andhra Pradesh State, with a land area of 1,63,000 km2, is the seventh-largest state 
in India. It is located between EL 76° 45′ and 84° 47′ and NL 12° 37′ and 19° 09′. 
The state borders Telangana, Chhattisgarh, and Orissa states to the north, Tamil 
Nadu and Karnataka to the south, Karnataka to the west, and the Bay of Bengal to 
the east (970 km) (Kamaraju et al., 1996). The historical groundwater level monitor-
ing data help prepare the state’s sustainable development plan as well as analyze 
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changes in the groundwater regime across time and space. To examine seasonal and 
long-term variations, these stations are observed four times a year in May, August, 
November, and January. For a chemical examination, water samples are taken in 
May. Thirteen districts serve as administrative hubs for the 1.63 lakh sq. km. state 
of Andhra Pradesh. With a decadal growth rate of 9.2%, the state has a total popula-
tion of 4.96 crore. The Godavari, Krishna, Pennar, Vamsadhara, Nagavalli, and 
Gundlakamma Rivers drain the state primarily. The majority of the state is covered 
by a gneissic complex, which has sedimentary formations as structural fill and 
metasedimentary formations and metasediments as basin fill. The task of groundwa-
ter management, development, augmentation, protection, and regime monitoring in 
terms of both quality and quantity in the state has been undertaken by the Central 
Groundwater Board. This is done to arrive at proper parametric indices of evalua-
tion and prudent development of groundwater resources (Murthy, 2000).

Since 1969, a historical database on groundwater levels and water quality has 
been developed. The majority of the dug wells that tap unconfined aquifers are 
located inside the boundaries of a settlement and are utilized for domestic purposes. 
Some of these are public wells, while others are private wells. Four times a year, 
manual inspections are performed on the piezometers that the department installed 
to tap confined and unconfined aquifers as part of various projects and exploration 
programs. The state is administered by 670 revenue mandals with 17,398 revenue 
villages, and it is divided into 13 districts (Srikakulam, Vizianagaram, 
Vishakhapatnam, East Godavari, West Godavari, Krishna, Guntur, Prakasam, SPS 
Nellore, YSR Kadapa, Kurnool, Anantapur, and Chittoor). According to the 2011 
census, the state has a total population of 4.96 crore (with a male-to-female ratio of 
997), of which 90% live in rural areas and 10% in urban areas. Population density 
ranges from 188 people per km2 in YSR Kadapa to 518 people per km2 in Krishna 
district (average density: 304 people per km2). According to the DES and the gov-
ernment of Andhra Pradesh (2015), the total population increased by 9.2% during 
the course of the decade (2001–2011 census) (Mutheneni et al., 2018).

The state of Andhra Pradesh can be split physiographically into three main 
zones: the coastal plains, the Eastern Ghats, and the western pediplains. The first 
two zones are located in a small strip that runs from northeast to southwest, and the 
third zone takes up the remaining space. It is between 0 and 600 m above mean sea 
level. The coastal plains are a small strip that widens in the middle along the 
Godavari-Krishna deltas, running from Kalingapatnam (Srikakulam district) in the 
north to Pulicat (Nellore district) in the south (up to 80 km2). The sea level at the 
shore rises to 150–200 m AMSL in the western coastal lowlands. Due to the two 
deltas, the area has great agricultural land. The Eastern Ghats tightly encircle the 
Coastal Plains, except for the region between the Godavari and Krishna rivers. The 
hill ranges rise to an altitude of 600–1200 m AMSL and follow NE–SW and N–S 
directions in the north and south, respectively. The Southern Ghats are covered by 
the Rayalaseema region’s Nallamala, Erramala, Seshachalam, Velikonda, and 
Palakonda hills (Etikala et al., 2019).

This category includes a significant portion of the state, which includes the 
Kurnool and Anantapur districts in the Rayalaseema area. The pediplains have tracts 
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that are flat to undulating and have rolling topography. Except for a few locations 
where the elevation ranges from 600 to 900 m AMSL, this plateau in the state’s 
heartland usually lies between heights of 150 and 600 m AMSL. The northern/cen-
tral portions of the state are drained by the Godavari, Krishna, and their tributaries, 
while the southern portion is drained by the Pennar before it joins the Bay of Bengal. 
In the state, there are 11 medium river basins and three major basins. The three main 
river basins are the Godavari, Krishna, and Pennar, while the minor drainages 
between the Musi and Gundlakamma rivers are located in the medium basins of 
Vamsadhara, Nagavali, Sarada, Yeleru, Gundlakamma, Paleru (A), Manneru, and 
Uppateru. In the western peniplain, the drainage pattern is typically dendritic with 
large valleys. With steep and small valleys, the drainage of the Eastern Ghats is 
coarse and dendritic. The eastern coastal tract is marked by young streams and val-
leys and is cut through by an extensive network of feeder and distributary canals. 
Deltas and coastal plains are covered by the mature river courses of the Godavari, 
Krishna, and Pennar Rivers as they meander through the enormous expanses. River 
deltas are particularly large and distinguished by a significant thickness of alluvial 
material (Nageswara Rao et al., 2017).

Along with its tributaries, Chitravati, Papaghni, Kundu, Sagileru, and Cheyyeru, 
the River Penna traverses the southern portion of the state and drains a sizable por-
tion of the Rayalaseema region and the Nellore district in the coastal region. The 
geography of the drainage basins is undulating and consists of a network of ridges 
and valleys accentuated by hill ranges. The northeastern region of the state, in the 
Srikakulam district, is drained by the Vamsadhara and Nagavalli rivers and their 
tributaries. Local rivulets such as Sarada are the main drainage systems for the 
Visakhapatnam district. Most of the East Godavari district is drained by the River 
Yeleru, whereas the West Godavari district is drained by Yerrakalava and Tammileru. 
The Pennar, Swarnamukhi, and Araniar rivers drain the district of Nellore. The state 
features a wide range of soil types, including saline, red, laterite, black cotton, and 
deltaic alluvium soils. Most of the coastal region’s red clayey soils are found in the 
Srikakulam, Visakhapatnam, East Godavari, and West Godavari districts. In the dis-
tricts of Guntur and Krishna, black cotton soil is typical. Both Prakasam and Nellore 
districts have laterite soils, together with red earths with loamy subsoil and red 
sandy loamy soil. A portion of the Kadapa, Kurnool, and Anantapur districts has 
black cotton soil, and a portion of the Chittoor and Kadapa districts has red loamy 
soil. In the district of Anantapur, red earths predominate (Govil et al., 2001).

The state’s tropical climate is affected by geographical changes as well as mari-
time impacts. In comparison to the coastal zone, the Deccan Plateau maintains more 
temperate weather. During the southwestern monsoon, Vishakhapatnam and its sur-
rounding area’s Eastern Ghats, which function as a barrier to easterly winds in con-
junction with depression from the Bay of Bengal, play a key role. Andhra Pradesh 
State is home to a vast range of geological formations, from the most recent allu-
vium to the oldest Archaean crystalline formations. The predominant rock types in 
the Rayalaseema region of the state are peninsular gneisses. Dharwars, which are 
composed of amphibolites, gneisses, schists, and quartzites, are found in the dis-
tricts of Chittoor, Anantapur, Kurnool, Kadapa, Nellore, and Prakasam as small, 
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isolated bands inside granites. The districts of Srikakulam, Vizianagaram, and 
Visakhapatnam, as well as the highland regions of the East Godavari and West 
Godavari districts, contain a substantial belt of Charnockites and Khondalites. In the 
districts of Krishna, Guntur, and Prakasam, the Charnockite bands can also be found 
as small patches next to coastal alluvium. The horizontally oriented lava flows 
known as Deccan traps are limited to small outcrops in Rajahmundry on each side 
of the Godavari River.

Individual flows can range in thickness from a few meters to 30  m. Near 
Rajahmundry, there are intertrappean beds made up of sandstones, cherts, and lime-
stones that are between trap flows. The trap flows are supported by infra-trappean 
beds, which are composed of deposits of limestone and sandstone. From Pangidi in 
the West Godavari district to Kateru in the East Godavari district, a 6 km strip of 
land is exposed. Locally, this group’s formation is referred to as the Rajahmundry 
formation. It is primarily made up of sandstones, which are found as isolated out-
crops gradually sloping toward the shore from Eluru to Rajahmundry. Along the 
southern shore, sandstones of comparable age can be found in the districts of 
Chittoor, Prakasam, and Nellore. This category includes laterite soils, alluvium, and 
beach sands, among others. Except for the area close to Visakhapatnam, the coast-
line is covered in beds of clay, sand, gravel, and rocks. This distribution is not only 
restricted to deltas but even deep inside the interior, in isolated pockets along the 
Godavari, Krishna, Pennar, and Vamsadhara river systems. In the sloping East and 
West Godavari districts, the alluvial deposits reach a thickness of more than 600 m. 
The thickness varies up to 20 m in the districts of Srikakulam and Visakhapatnam 
(Banerji, 1990; Raju, 2007; Rao et al., 1998; Suresh et al., 2010).

A scientific surveillance system called groundwater level monitoring is used to 
identify both short-term and long-term changes in the groundwater regime. 
Information on changes in groundwater levels with progressive groundwater devel-
opment by natural and artificial recharge/surface water irrigation systems is pro-
vided by water level data throughout time. The monthly information on the 
groundwater regime scenario in the various hydrogeological environments in the 
area is provided with a good amount of accuracy by the monitoring of a network of 
groundwater monitoring wells. These strata make up approximately 83% of the area 
and comprise basalt lava flows from the Deccan traps, metasedimentary rocks from 
Kadapa and Kurnool, and crystalline rocks from the Archaean era. These rocks typi-
cally do not have primary porosity, and secondary porosity develops as a result of 
weathering, fracture, the formation of solution channels and cavities, and vesicle 
connectivity. The depth of weathering in these rocks ranges from 5 to 10 m bgl (and, 
on rare occasions, up to 20 m), and the bulk of fractures are found within a depth of 
100 m. Bore wells, dug wells, and dug cum bore wells are the most common abstrac-
tion structures in these rocks. The output of groundwater from these rocks ranges 
from 0.1 to 3 lps. The weathering depth in the Khondalite deposits ranges from 10 
to 40 mbgl with yields of 0.5–2 lps. Consolidated metasedimentary strata, including 
the rocks of Kadapa and Kurnool, have undergone extensive compaction and meta-
morphism, which has reduced their initial porosity. Structural characteristics such 
as folds, faults, lineaments, fractures, fissures, solution cavities, and channels are 
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the only places where groundwater may be found in these formations. These forma-
tions weather to a depth of 5–10 m bgl, with yields ranging from 0.01 to 19 lps 
(generally 1–5 lps). Compared to other Kadapas, the Kurnool group of rocks has a 
higher promise (general yield 5–10 lps). Sandstones from the Gondwana formations 
and Rajahmundry sandstones are examples of semiconsolidated formations. These 
structures’ yields range from 10 to 70 lps. Coastal, deltaic, and inland river alluvium 
are examples of unconsolidated formations. Under high water tables and in limited 
spaces, groundwater occurs. Poor water quality can be found in deeper aquifers. 
Godavari deltas and Krishna and Pennar deltas have yields that range from 0.7 to 30 
lps. In prehistoric channels, the quality of the groundwater is potable (Rajesh et al., 
2012; Rao et al., 1997; Subba Rao, 2002; Sujatha & Reddy, 2003).

This work aims to determine the prediction capabilities of ordinary kriging and 
error propagation while using this process.

12.3 � Materials and Methods

�Data

The datasets needed for this study are collected from the Central Pollution Control 
Board, Government of India. The timeframe of the datasets is from 2000 to 2010. 
The state of Andhra Pradesh is chosen for this study. It is one of the southern states 
of India. The datasets contain groundwater quality variables such as carbonate 
(CO3), calcium (Ca), chloride (Cl), electrical conductivity (EC), fluoride (F), bicar-
bonate (HCO3), potassium (K), magnesium (Mg), nitrate (NO3), SAR, sulfate (SO4), 
and pH. Because hydrogen ions participate in the majority of chemical events that 
change the composition of water, hydrogen ion activity is a key variable in the 
groundwater system. The pH value in the majority of natural fluids depends on the 
balance between carbon dioxide, carbonate, and bicarbonate. The pH of a solution 
is equal to the −ve logarithm of the hydrogen ion concentration (H+) in moles/liter. 
Pure water includes an equal amount of H+ and OH− (hydroxyl) ions at pH 7 (at 
25 °C). When the H+ ions outnumber the OH− ions, the pH value is less than 7, and 
it is greater than 7 when the OH− ions outnumber the H+ ions. An electrolyte’s elec-
trical conductance (EC), which is measured in microS/cm and is the reciprocal of 
the specific resistance. Electrical conductivity typically rises with flow and time 
(resident time) in the aquifer, and its measurement reveals the degree of groundwa-
ter mineralization. The EC value (microS/cm at 25 °C) in the research region ranges 
from 50 to 25,430. Kadapa district’s Jammalamadugu has the highest EC. A portion 
of the Kurnool, Kadapa, Krishna, Guntur, East, and West Godavari districts have 
high ECs, which is indicative of an overall (85.3%) EC that is in the best range of 
500–3000 microS/cm. The primary sources of dissolved CO2 and HCO3 ions in 
groundwater are raindrops. More CO2 from the soil’s organic matter that has decom-
posed is dissolved when this precipitation enters the soil. The solubility of CO2 in 
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groundwater is decreased by an increase in temperature or a drop in pressure. As 
water and carbon dioxide flow through soil, the carbonate minerals are dissolved, 
and bicarbonate is produced. The pH of groundwater has a significant impact on the 
presence of carbonates in it. In groundwater, carbonates are often present when the 
pH is over 8.3, and they are only in trace amounts or missing when the pH is below 
8.3. Groundwater has a bicarbonate content that typically ranges from 100 to 
800 mg/L. The levels of bicarbonate in the state’s groundwater range from 9.2 to 
2837 mg/L, with an average concentration of 467 mg/L and the maximum concen-
tration found in Donkapallisatram in the Kadapa district. One of the main inorganic 
anions found in water and wastewater is chloride, which is represented by the sym-
bol Cl−. Groundwater contamination from sewage wastes and the cultivation of 
coconut plants may lead to an abnormal concentration of Cl−. The primary sources 
of fluoride in groundwater include fluoride-bearing minerals found in rocks such as 
fluorite (CaF2), apophyllite, fluorapatite, cryolite, and villumite. Locally high F con-
centrations in groundwater can be explained by ion exchange, evaporative concen-
tration, and the dissolution of F-bearing minerals. Instead of the existence of 
fluoride-bearing minerals in bulk rocks or soils, the weathering of rocks and leach-
able fluoride in a region is more crucial in determining the presence of fluoride in 
groundwater. The weathering of silicate minerals such as orthoclase, microcline, 
nepheline, biotite, and leucite is a frequent source of K+ in groundwater. Some of the 
sources of K+ in the ground fluids are the dissolution of evaporites in sedimentary 
rocks that contain highly soluble sylvite and nitre. Other anthropogenic sources of 
K+ in ground fluids include fertilizers, manure, human and animal waste, and the 
intrusion of salty waters as a result of over-pumping. The primary sources of mag-
nesium (Mg2+) in groundwater are the weathering of basic igneous rocks such as 
dunites and pyroxenites, volcanic rocks such as basalt, metamorphic rocks such as 
amphibolites, talc, and tremolite-schists, and sedimentary rocks such as dolomite 
and gypsum. The usage of surface water for irrigation is another source of Mg2+ in 
groundwater. The magnesium concentration in the state is substantially lower than 
the calcium concentration, as it is in most natural water. Rainwater and atmospheric 
nitrogen react to produce nitrate and ammonium ions. High levels of nitrate in 
groundwater have been reported as a result of anthropogenic pollution, particularly 
leaching from septic tanks and sewage systems. The content of sulfate (SO4

2−), 
which ranges from a few to several thousand mg/L in natural waters, is widely dis-
persed in native ecosystems (APHA, 1998). Sulfide minerals found in sedimentary 
rocks, such as pyrite, gypsum, and anhydrite, are the principal sources of SO4

2− in 
groundwater.

�Methodology

Geostatistics  A category of statistics called geostatistics is employed to examine 
and forecast the values connected to spatial or spatiotemporal occurrences. The 
analyses include the spatial (and, in some cases, temporal) coordinates of the data. 
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Initially designed as a useful way to characterize spatial patterns and extrapolate 
values for areas where samples were not gathered, many geostatistical tools were 
created. Since then, these instruments and techniques have been developed to offer 
not only interpolated values but also measurements of uncertainty for those values. 
For well-informed decision-making, uncertainty assessment is essential because it 
offers details on the potential outcomes (values) for each place rather than simply a 
single interpolated value. A (potentially sparse) primary variable of interest can now 
be supplemented by secondary datasets using mechanisms provided by geostatisti-
cal analysis, which has progressed from uni- to multivariate analysis and allows for 
the creation of more precise interpolation and uncertainty models. The dataset and 
the model, once fully described, can be used to provide interpolated values for all 
unsampled locations within a region of interest. Typically, a map displaying the 
values of the modeled variable serves as the output. At this point, the impact of 
outliers can be studied because they are likely to alter the interpolated map’s inter-
polated parameter values (ESRI).

The same model can also be used to produce metrics of uncertainty for the interpo-
lated values, depending on the interpolation technique. The data are subjected to 
ordinary kriging, simple kriging, and universal kriging. The prediction maps and 
prediction standard error (SE) maps were prepared. The models were optimized in 
this process. The evaluation metrics considered in this study are the root mean 
square error (RMSE), mean standardized error (MSE), root mean square standard-
ized error (RMSSE), and average standard error (ASE). Correlation analysis was 
performed to determine the interrelationships among the variables. Although cor-
relation cannot always mean causation, we prepared correlation plots to represent 
whether there are any variables that are positively or negatively correlated.

PCA  The information in a dataset containing variables/observations described by 
numerous intercorrelated quantitative variables can be condensed and visualized 
using principal component analysis (PCA). It is possible to think of each variable as 
a different dimension. It could be exceedingly challenging to depict a multidimen-
sional hyperspace if your datasets contain more than three variables. A multivariate 
data table’s key information is extracted using principal component analysis and 
expressed as a set of a few new variables known as principal components. The origi-
nals and these extra variables are a linear combination. There are fewer or the same 
number of primary components as there were original variables. A given dataset’s 
information reflects the entire variance it includes. Finding the principal compo-
nents along which the data vary most is the aim of PCA. PCA minimizes informa-
tion loss while reducing the dimensionality of multivariate data to two or three 
principal components that can be visually represented. When the variables in the 
dataset are highly connected, the PCA approach is especially helpful. The presence 
of correlation suggests that the data are redundant. Because of this duplication, PCA 
can be used to transform the original variables into fewer new variables that account 
for the majority of their variance.
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Fig. 12.1  Methodology

Cluster Analysis  A key problem in partitioning clustering, such as k-means clus-
tering, which needs the user to define the number of clusters k to be formed, is 
determining the best number of clusters in a dataset. In direct approaches, a criterion 
is optimized, such as the average silhouette or the within-cluster sums of squares. 
Elbow and silhouette methods are related techniques. The main goal of k-means 
clustering is to form clusters with the least amount of overall intra-cluster variation, 
also known as the overall within-cluster sum of squares (WSS). We need the total 
WSS, which quantifies how compact the clustering is, to be as minute as possible. 
The elbow technique examines the relationship between the total WSS and the num-
ber of clusters. To prevent the total WSS from being significantly improved by add-
ing another cluster, one should select a number of clusters.

The detailed methodology is given in Fig. 12.1.

12.4 � Results and Discussion

Statistics  The summary statistics show that there are 917 valid observations with 
65 missing observations (Table  12.1). The SO4 variable had a high skewness of 
10.482 and a kurtosis of 168.028.
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Table 12.1  Summary statistics

Valid Missing Mean Std. deviation Maximum Skewness Kurtosis

CO3 917 65 7.506 14.697 168 3.563 21.283
Ca 917 65 40.62 47.781 384.333 1.786 5.577
Cl 917 65 198.656 335.579 4231.6 5.488 48.82
Ec 917 65 1201.276 1641.723 20,870 4.331 35.31
F 917 65 0.509 0.705 7.294 3.208 18.74
HCO3 917 65 205.596 211.578 1299 0.781 0.225
K 917 65 23.98 63.699 640 5.213 33.721
Mg 917 65 33.185 44.047 469.465 2.997 17.035
NO3 917 65 61.103 108.534 1732.5 5.909 68.642
Na 917 65 144.585 265.674 4120.5 6.341 67.856
SAR 917 65 3.087 4.468 42.255 3.256 17.597
SO4 917 65 75.591 183.071 3620 10.482 168.028
TH 917 65 235.051 275.985 2385 2.265 10.541
TA 917 65 164.445 179.089 1064.8 0.815 0.076
pH 917 65 5.058 3.929 9.445 −0.504 −1.732

Kriging  Ordinary kriging (OK), simple kriging (SK), and universal kriging (UK) 
were conducted on the datasets, and the following information was obtained:

	 (i)	 For bicarbonate, an RMSE of 207.10, an MSE of 0.006, an RMSSE of 1.02, 
and an ASE of 201.2 were obtained using ordinary kriging. The prediction 
standard error (PSE) maps and OK maps are given in Fig. 12.2.

	 (ii)	 For calcium, an RMSE of 46, an MSE of −0.005, an RMSSE of 1.04, and an 
ASE of 43.9 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.3.

	 (iii)	 For chloride, an RMSE of 321, an MSE of −0.002, an RMSSE of 0.96, and 
an ASE of 336 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.4.

	 (iv)	 For electrical conductivity, an RMSE of 1601, an MSE of 0.007, an RMSSE 
of 0.968, and an ASE of 1658 were obtained using ordinary kriging. The pre-
diction standard error (PSE) maps and OK maps are given in Fig. 12.5.

	 (v)	 For fluoride, an RMSE of 0.63, an MSE of 0.004, an RMSSE of 1.15, and an 
ASE of 0.5 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.6.

	 (vi)	 For potassium, an RMSE of 61, an MSE of −0.001, an RMSSE of 1.115, and 
an ASE of 54.8 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.7.

	(vii)	 For magnesium, an RMSE of 43, an MSE of −0.001, an RMSSE of 1, and an 
ASE of 42.8 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.8.
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Fig. 12.2  Bicarbonate-OK, SK, and UK maps and plots (RMSE: 207.10, MSE: 0.006, RMSSE: 
1.02, ASE: 201.2)
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Fig. 12.3  Calcium-OK, SK, and UK maps and plots (RMSE: 46, MSE: −0.005, RMSSE: 1.04, 
ASE: 43.9)
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Fig. 12.4  Chloride-OK, SK, and UK maps and plots (RMSE: 321, MSE: −0.002, RMSSE: 0.96, 
ASE: 336)
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Fig. 12.5  Electrical conductivity-OK, SK, and UK maps and plots (RMSE: 1601, MSE: 0.007, 
RMSSE: 0.968, ASE: 1658)
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Fig. 12.6  Fluoride-OK, SK, and UK maps and plots (RMSE: 0.63, MSE: 0.004, RMSSE: 1.15, 
ASE: 0.5)
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Fig. 12.7  Potassium-OK, SK, and UK maps and plots (RMSE: 61, MSE: −0.001, RMSSE: 
1.115, ASE: 54.8)
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Fig. 12.8  Magnesium-OK, SK, and UK maps and plots (RMSE: 43, MSE: −0.001, RMSSE: 
1.008, ASE: 42.8)

	(viii)	 For sodium, an RMSE of 256, an MSE of −0.002, an RMSSE of 0.99, and an 
ASE of 260.2 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.9.

	 (ix)	 For nitrate, an RMSE of 99.6, an MSE of −0.005, an RMSSE of 1.179, and 
an ASE of 83.7 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.10.

	 (x)	 For pH, an RMSE of 3.96, an MSE of 0.003, an RMSSE of 0.974, and an 
ASE of 4.06 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.11.
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Fig. 12.9  Sodium-OK, SK, and UK maps and plots (RMSE: 256, MSE: −0.002, RMSSE: 0.99, 
ASE: 260.2)

	 (xi)	 For SAR, an RMSE of 4.39, an MSE of 0.0020, an RMSSE of 1.03, and an 
ASE of 4.24 were obtained using ordinary kriging. The prediction standard 
error (PSE) maps and OK maps are given in Fig. 12.12.

	(xii)	 For sulfate, an RMSE of 174, an MSE of −0.0008, an RMSSE of 1.006, and 
an ASE of 174.16 were obtained using ordinary kriging. The prediction stan-
dard error (PSE) maps and OK maps are given in Fig. 12.13.
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Fig. 12.10  Nitrate-OK, SK, and UK maps and plots (RMSE: 99.6, MSE: −0.005, RMSSE: 
1.179, ASE: 83.7)
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Fig. 12.11  pH-OK, SK, and UK maps and plots (RMSE: 3.96, MSE: 0.003, RMSSE: 0.974, 
ASE: 4.06)
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Fig. 12.12  SAR-OK, SK, and UK maps and plots (RMSE: 4.39, MSE: 0.0020, RMSSE: 1.03, 
ASE: 4.24)
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Fig. 12.13  Sulfate-OK, SK, and UK maps and plots (RMSE: 174, MSE: −0.0008, RMSSE: 
1.006, ASE: 174.16)
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Fig. 12.14  Correlation heatmap

Correlation Analysis  pH is strongly correlated with bicarbonate (0.754) and total 
alkalinity (0.71). Total alkalinity is strongly correlated with bicarbonate (0.91) and 
pH (0.71). Total hardness is strongly correlated with Ca, Cl, EC, Mg, and Na. The 
other strong correlations (thick blue) can be observed in the correlation heatmap 
given in Fig. 12.14.

PCA  The principal components were extracted from the dataset. We obtained three 
principal components with Na, sulfate, and chloride dominating PC1, bicarbonate, 
total alkalinity, and pH dominating PC2, and TH and Mg dominating PC3. Sodium 
exhibited low uniqueness and hence high commonality, with F having high unique-
ness with low commonality. The varimax rotation method was applied (Table 12.2).

Clustering Analysis  Cluster analysis was performed with the dataset, and nine 
clusters were obtained. The size of the first cluster is 904, with an explained 
proportion of within-cluster heterogeneity of 0.979 and a silhouette score of 0.629. 
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Table 12.2  Component loadings

PC1 PC2 PC3 Uniqueness

Na 0.902 0.025
SO4 0.87 0.156
Cl 0.784 0.496 0.108
SAR 0.763 0.539 0.102
Ec 0.712 0.486 0.132
Mg 0.51 0.702 0.165
TH 0.426 0.829 0.054
HCO3 0.824 0.118
TA 0.819 0.158
pH 0.717 0.529 0.203
CO3 0.687 0.51
F 0.686 0.476
Ca 0.852 0.159
NO3 0.719 0.378
K 0.801

Note. Applied rotation method is varimax

Table 12.3  Clusters

Cluster information

Cluster 1 2 3 4 5 6 7 8 9
Size 904 5 1 2 1 1 1 1 1
Explained proportion within-cluster 
heterogeneity

0.979 0.015 0 0.005 0 0 0 0 0

Within sum of squares 9836.031 154.151 0 52.033 0 0 0 0 0
Silhouette score 0.629 0.275 0 0.161 0 0 0 0 0

Note. The between sum of squares of the 9 cluster model is 3697.79
Note. The total sum of squares of the 9 cluster model is 13,740

Evaluation metrics
Value

Maximum diameter 14.647
Minimum separation 4.643
Pearson’s γ 0.618
Dunn index 0.317
Entropy 0.1
Calinski–Harabasz index 41.793

Table 12.4  Evaluation metrics

Clusters 1, 2, and 4 have values that can be considered. The total sum of squares of 
all the clusters is 13,740, and the sum of squares value is 3697 (Table 12.3). The 
evaluation metrics and hierarchical clustering are shown in Tables 12.4 and 12.5. 
The number of clusters with the lowest BIC, WSS, and AIC is given in Fig. 12.15.
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Table 12.5  Hierarchical clustering

Hierarchical clustering
Clusters N R2 AIC BIC Silhouette

9 917 0.269 10312.21 10963.06 0.62

Note. The model is optimized with respect to the BIC value

Fig. 12.15  Representation 
of clusters

12.5 � Challenges and Solutions

The availability of datasets across all time frames is not possible with groundwater 
surveys, as they are very expensive. The appropriate solution is to apply geostatisti-
cal tools such as kriging and perform cross-validation at random points to keep the 
expenditures as low as possible. There is a need to share data among the borewell 
companies and groundwater agencies belonging to the private and public sectors so 
that the cost of digging sampling wells can be reduced and the quality and quantity 
of groundwater can be updated frequently.

12.6 � Conclusions

This study illustrates the need for geostatistical tools such as kriging to obtain 
important insights into the spread of groundwater quality in the region or state of 
Andhra Pradesh. This can be a valuable tool in groundwater studies where the funds 
for surveying are limited.

12.7 � Limitations of This Study

The limitation of this study is the data availability, and there was no continuous 
update of the data across the state earlier.
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12.8 � Recommendations

The following recommendations are proposed:

	 (i)	 Geostatistical tools should be widely used in groundwater studies to obtain 
appropriate insights.

	(ii)	 Cross-validation in the field is to be conducted regularly to optimize the model.
	(iii)	 Excess dependence on geostatistical tools with no accurate data from the field 

should be avoided.
	(iv)	 Data sharing among bore well companies and government departments must 

be made mandatory.
	(v)	 The groundwater samples should be collected by the bore well companies and 

deposited with the local authorities regularly.
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Chapter 13
Air Quality and Human Health

Janhavi Singh , Swagata Payra , and Sunita Verma 

Abstract  Air quality is a measurement that describes how good or poor air is pres-
ent within the atmosphere. Good air contains a barely low amount of solid particles 
and chemical pollutants. Poor air consists of a high concentration of solid suspended 
particles along with gaseous pollutants, resulting in low visibility and damage to 
living organisms as well as the environment. Air pollutants, such as particulate mat-
ter and chemical pollutants (primarily ozone), disturb the energy balance of the 
planet, which directly influences or impacts climate in the worst ways. From an 
extremely local to the global level, the problem of degrading air quality has man-
aged to leave its footprints all over the earth. As new epidemiological research 
became available, the consequences of air quality on human health became recog-
nizable and rose to the top of the priority list by 2000. In 2019, the degradation of 
global air quality caused massive destruction over East Asia, Europe, and North 
America, taking away the lives of seven million people, extensive damage to crops, 
and a rapid reduction in biodiversity. Therefore, strong technical solutions and poli-
cies are needed to reduce the adverse effects of climate change. Policies developed 
for sustainable development of the environment globally as well as regionally can 
improve the condition of human health, vegetation quality and agriculture yield, 
which is degrading due to exposure to harmful pollutants. Recently, the clean air 
events at COP-27 also addressed the crucial role of air quality in climate change and 
human health and focused on the urgency of tackling air pollution in a global 
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partnership. For all of these efforts to work, the enlightenment of the general public 
regarding degrading air quality and its impact is necessary.

Keywords  Air pollution · Air quality index · Airborne particulate matter · PM2.5 · 
PM10 · Human health · Lung cancer

13.1 � Introduction

Currently, one of the major health drivers is air quality over the region of interest, 
and its accurate assessment and forecasting are important in densely populated 
urban spaces (Bohnenstengel et al., 2015). With the growth in the human popula-
tion, the upgradation in the standard of living and the necessity to provide for such 
a lifestyle resulted in rapid urbanization and industrialization. Furthermore, these 
two necessary evils gave rise to a broad spectrum of problems, out of which the 
dominant one is degraded air quality across the globe. It became apparent with the 
first-ever reporting of higher concentrations of carbon monoxide (CO) over South 
America, Africa, and Asia measured via Measurement of Air Pollution from Satellite 
(MAPS) onboard Columbia in 1981 that the issue of air pollution is a matter of 
international concern (Marsh et  al., 1988). Additionally, satellite-borne observa-
tions of tropospheric air pollutants such as NO2, SO2, and HCHO by TROPspheric 
Ozone Monitoring Instrument (TROPOMI), Ozone Monitoring Instrument (OMI), 
Scanning Imaging Absorption Spetro-Meter for Atmospheric ChartographY 
(SCHIAMACHY), and Global Ozone Monitoring Experiment (GOME), CO by 
TROPspheric Ozone Monitoring Instrument (TROPOMI) and Measurement of 
Pollution in the Troposphere (MOPITT), and Aerosol Optical Depth (AOD) by 
TROPspheric Ozone Monitoring Instrument (TROPOMI), Ozone Monitoring 
Instrument (OMI), and Moderate Resolution Imaging Spectrometer (MODIS) have 
revealed air pollution on global to national scales (Akimoto, 2003; Vellalassery 
et al., 2021).

Ambient air quality is generally governed by atmospheric gaseous constituents 
(e.g., carbon monoxide, ozone, and nitrogen dioxide), particulate matter (primarily 
PM10 and PM2.5), chemical species such as volatile organic compounds (VOCs) and 
biological particles (Cincinelli & Martellini, 2017). Additionally, the sources and 
processes leading to high concentrations of these major pollutants in complex urban 
areas are not fully understood, thereby limiting our ability to accurately assess and 
forecast air quality (Baklanov et al., 2016). Degrading air quality on a global scale 
is a problem that can be attributed to air pollutants having a longer lifetime (typi-
cally on the order of 1 week), as they will either resist atmospheric dissociation 
processes or at least be translocated to another continent (Akimoto, 2003). The 
intercontinental translocation of pollutants made it inevitable for the human popula-
tion residing in underdeveloped and rapidly industrializing developing countries to 
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remain unaffected by air pollution generated elsewhere (Akimoto, 2003). Another 
important aspect of degrading global air quality is the impact of aerosol or particu-
late matter (terms that are used synonymously by the scientific community but have 
slightly different meanings). Among all the pollutants, atmospheric particulate mat-
ter (particles of variable but very small diameter) is found to be the culprit of a wide 
range of detrimental effects from their direct and indirect effects on climatic sys-
tems and radiative forcing to their hazardous impacts on human health (Satheesh & 
Ramanathan, 2000; Wang et al., 2014). These particles are spread across the globe 
but exhibit spatiotemporal variability and strong regional imbalance, which makes 
it difficult for the scientific community to accurately quantify their ambient concen-
tration and the related impacts (Ramanathan et al., 2001).

Degrading air quality impacts all spheres negatively from climate to biodiversity, 
but its impact on public and individual health has gained much attention due to 
increased morbidity and mortality (Mangia et al., 2011). Exposure to higher con-
centrations of air pollutants damages the health of all the species living in the sur-
roundings. Keeping the aspect of damage to health, one of the major groups exposed 
to and affected by degrading air quality is the human population residing in urban 
environments. This human population is unavoidably exposed to stressful environ-
mental circumstances, such as pollutant emissions from local and nonlocal sources 
(Mayer, 1999). There are numerous air pollutants that play a negative role in damag-
ing human health. One such example is PM, which is capable of infiltrating the 
human respiratory system through inhalation, central nervous and reproductive sys-
tem dysfunctions, cardiovascular and respiratory diseases and cancer (Gao et al., 
2014; Zhou et al., 2014). It is made very clear from all the aforementioned facts that 
degrading air quality poses a major threat to both the climatic system of the earth 
and human beings. The evolution of air pollution as a global threat to the climatic 
system and human health is summarized in Fig. 13.1. The only way to tackle this 

Fig. 13.1  Important milestones in the evolutionary history of air pollution. (Data adopted from: 
Fowler et al., 2020)
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problem is through a multidisciplinary approach by scientific experts coupled with 
public awareness programs. Finally, international and national organizations and 
governing agencies must address the emergence and seriousness of this issue and 
propose sustainable solutions.

�Fundamental Elements and Scales of the Air Pollution Problem

A complex mixture of particulate matter and harmful gases with variations in their 
source and composition both spatially and temporally is termed air pollution 
(Seinfeld & Pandis, 2016), an emerging global health threat. For example, vehicular 
and industrial emissions along with construction activities are the major cause of air 
pollution in urban and suburban areas, contributing to particulate matter and ambi-
ent smoke. The increased concentration of these pollutants results in the formation 
of smog, haze, and dense fog throughout the winter season, resulting in bad weather 
and less visibility, which is a hazard to human health (Prakash et al., 2013; Sharma 
et al., 2014). These negative impacts of air pollution, particularly on human health, 
make it a serious threat in need of urgent attention.
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Fig. 13.2  Various sources of air pollution
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13.2 � Sources of Air Pollutants

The sources of air pollution are numerous. One could classify the source of air pol-
lution as natural, implying that such pollutants were present before the term itself 
came into existence. Natural forms of air pollution can be defined as pollution 
caused by natural phenomena. Major sources of air pollution are presented in 
Fig. 13.2. Few classifications of sources of air pollutants that are generally used 
while studying air pollution are addressed below.

Based on the source of origin or of the precursors, there are two sources of air 
pollution (Kaushik & Kaushik, 2014):
Natural sources: Air pollution via forest fires, biological decay, pollen grains of 
flowers, spores, volcanic eruptions, sea salt sprays, naturally occurring radioactive 
minerals present in the earth, photochemical oxidation of terpenes, marshes, etc., 
are all natural sources.

Anthropogenic sources: The anthropogenic sources are agricultural activities, 
vehicular emissions, industrial units, thermal power plants, and fossil fuel burning.

Based on processes involved in the formation of pollutants:
Primary sources: Air pollutants that are injected directly into the atmosphere from 
an identifiable source are classified as primary pollutants. A few examples of pri-
mary air pollutants are radioactive substances, carbon monoxide (CO), oxides of 
sulfur (SOx), and oxides of nitrogen (NOx), hydrocarbons.

Secondary sources: When pollutants are manifested in the atmosphere via micro-
physical processes or chemical reactions among already existing atmospheric con-
stituents, they are categorized as secondary pollutants. Peroxyacetyl nitrate (PAN), 
tropospheric ozone (O3), and photochemical smog are a few examples of secondary 
air pollutants.

Based on the mobility of the sources emitting pollutants:
Stationary sources: Sources that are immovable are classified as stationary sources 
of air pollution. These are further subdivided into two categories:

Point sources: A single facility or specific place, producing a significant amount 
of pollutants and often characterized by the presence of smoke stalk, is classified as 
a point source. A few examples are industrial units, municipal incinerators, and 
petroleum storage.

Area sources: Area sources can be defined as numerous small stationary sources 
emitting pollutants when combined to form a significant source of pollution. For 
example, stationary sources when fuel combustion takes place—wood-burning fur-
naces, fireplaces, waste management activities, and crop burning.

Mobile sources: Sources that are movable are classified as mobile sources of air 
pollution. Emissions from these sources are the major cause of air pollution in urban 
areas. These are subdivided into two categories:

	(i)	 On-road sources—(also called Highway sources) include automobiles fueled 
with diesel fuel, petrol, gasoline, or other alternative fuels.
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	(ii)	 Nonroad sources—(also called off-road sources) include emissions from equip-
ment utilized in agricultural and construction activities, recreation, and many 
other purposes.

13.3 � Major Air Pollutants

Key air pollutants include carbon monoxide (CO), particulate matter (PM10 and 
PM2.5), oxides of sulfur (SOx), oxides of nitrogen (NOx), ozone (O3), ammonia 
(NH3), lead (Pb) and several oxidized volatile organic compounds (VOCs). Of 
these, eight pollutants (PM10, PM2.5, NO2, SO2, CO, O3 NH3, and Pb) are used to 
calculate the air quality index (AQI) over the Indian region. Additionally, short-term 
(up to 24 h) National Ambient Air Quality Standards are prescribed for this set of 
pollutants.

Particulate Matter (PM)  Small solid particles and liquid droplets are collectively 
termed particulates. These are present in the atmosphere in fairly large numbers and 
pose a serious threat to ambient air quality. These particles have a diameter ranging 
from 0.0002 μ to 500 μ and atmospheric lifetimes varying from a few seconds to 
several months. Airborne particulates are broadly classified into two categories:

	(i)	 Coarse particulate matter
	(ii)	 Fine particulate matter

There are numerous processes through which particulate matter is continuously 
injected into the atmosphere. Of all the sources, physical processes, including agri-
cultural tilling, fugitive dust emissions from industrial sectors, vehicular abrasion 
(i.e., brake and tire wear), and road dust resuspension are dominant contributors to 
coarse particulate matter (aerodynamic diameters between 2.5 μm and 10 μm). On 
the other hand, fine particulate matter (aerodynamic diameters less than 2.5 μm) is 
primarily manifested in the atmosphere via secondary formation.

Carbon Monoxide  Carbon monoxide is a colorless, tasteless, and odorless gas that 
is insoluble in water and 96.5% as heavy as air. The formation of this gas is largely 
attributed to the poor mixing of combustion fuel and combustion air. In urban 
regions, major sources contributing to outdoor concentrations of CO are biomass-
burning activities, industrial processes, on-road transportation (diesel-powered 
engines and gasoline-powered engines), off-road engines, and agricultural burning 
in the surrounding suburban and rural areas. Likewise, forest fires, volcanic erup-
tions, marsh gas production, natural gas emissions, and controlled burns of vegeta-
tion are significant sources of CO.

Sulfur Dioxide  Sulfur dioxide is a pungent and colorless gas produced primarily 
from the combustion of sulfur-containing materials. Sources of sulfur dioxide 
include volcanic eruptions, fuel combustion (mostly coal), coal-fired industrial 
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plants and transportation facilities. However, the dominant effect of natural sources 
or anthropogenic sources will be largely influenced by the region of interest.

Nitrogen Oxides  Nitric oxide (NO) and nitrogen dioxide (NO2) are the two nitro-
gen oxides that are primarily involved in air pollution. On the global scale, domi-
nant sources emitting NOx are lighting and oxidation of N2O in the stratosphere, 
biomass burning, microbial activity in the lithosphere and combustion of fossil fuel. 
Of these, gasoline and diesel engines and stationary power plants are significant 
sources in urban spaces. The most damaging effect of NOx is that it aids in the for-
mation of surface-level ozone and other photochemical oxidants while being con-
verted from NO to NO2 via a photochemical chain of reactions.

Ground-Level Ozone  Ground-level ozone is a “secondary pollutant,” as it is pro-
duced in the atmosphere via photochemical reactions between volatile organic com-
pounds (VOCs) and nitrogen oxides (NOx). This particular pollutant is known to 
have significant effects on human health, including a range of morbidity health end-
points, such as hospital admissions, asthma symptom days and premature mortality. 
In addition, ozone is also known to significantly decrease the yield of certain crops, 
damage vegetation, and even affect non-living materials, such as synthetic materi-
als, acetate, nylon, cotton, polyester, and other textiles.

Ammonia  With a peculiar pungent odor, ammonia is a colorless gas that can be 
easily dissolved in water and is corrosive in nature. It is a naturally occurring con-
stituent in the Earth’s atmosphere and falls back on the surfaces of water, land, and 
plants via dry and wet deposition processes. Popular as a primary air pollutant, 
ammonia also acts as a precursor in secondary particle formation processes. 
Chemically reacting with nitric and sulfuric acids in the atmosphere, ammonia gives 
rise to ammonium salts—a damaging type of particulate matter.

Although the sources of lead emissions change when we shift from one location 
to another, some of the major sources emitting lead into the atmosphere are metal 
and ore processing industries, leaded aviation fuels, lead-acid battery manufactur-
ers, and waste incinerators. The highest ambient concentration of lead is reported in 
the close vicinity of lead smelters (Xing et al., 2020). Airborne lead exhibits a wide 
range of detrimental effects on ecosystems and human health.

13.4 � Scales of the Air Pollution Problem

From an extremely local to the global level, the problem of air pollution has man-
aged to leave its footprints all over the earth. This particular section addresses five 
different levels of air pollution that are studied in general. These levels are local (up 
to approximately 5  km), urban (extending up to an order of 50  km), regional 
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(ranging from 50 to 500 km), continental (extending 500 km to several thousand 
kilometers) and global (extending worldwide).

Local-Level Air Pollution  Usually, characterized by numerous small emitters or a 
few large emitters, local air pollution has a greater potential impact for a given 
release as the height of release of pollutants from sources is lower. Under stable 
atmospheric conditions, these pollutants remain entrapped near the Earth’s surface, 
resulting in a dome of air pollutants just above the point of release. Sources that are 
major contributors to the local-level problem of air pollution include vehicular 
emissions, industrial units and power plants. An example of local air pollution is 
carbon monoxide (CO) from automobiles, which will allow higher concentrations 
of CO to exist near roadways and ultimately be brought to the earth’s surface.

Urban-Level Air Pollution  The problem of air pollution over urban regions can be 
further classified into two subcategories. The first is the emission of 1 pollutants 
(directly released from the source), while the second is the formation of 2 pollutants 
(formed via chemical reactions between atmospheric precursors) in the atmosphere 
above. Urban-scale air pollution problems can result from sources emitting at the 
same scale as well as those emitting at the local level. Nonetheless, the problem of 
urban levels of air pollution is primarily a manifestation of secondary pollutant 
formation (Boubel et al., 2013). Pollutants that are relatively nonreactive or slightly 
reactive will result in higher concentrations, impart their detrimental effects and 
ultimately either become dispersed or deposited. In contrast, secondary formations 
of pollutants such as ozone will not only aggravate air pollution but will also have 
much more hazardous effects than their chemical precursors.

Regional-Level Air Pollution  There are three specific scenarios that contribute to 
the problem of air pollution at the regional scale. The first is the production of oxi-
dants at the urban scale. These atmospheric oxidants are further carried over and 
impact air quality at a regional level. This type of condition develops when a major 
metropolitan region exists in close vicinity, containing secondary pollutants in its 
immediate atmosphere. Pollutants from these regions are transported to the sur-
rounding area, thereby increasing the level of air pollution over a large region. The 
second scenario develops as a result of the transportation of relatively slow-reacting 
primary air pollutants that are capable of undergoing chemical transformations over 
long-range transportation. Provided favorable meteorological conditions, these pol-
lutants impart their detrimental effects not only on the emission region but also on 
part of the world where they get carried away and hence contribute to regional-level 
air pollution. The final category of difficulty is the reduced visibility at a regional 
scale attributable to the formation of fine nitrate and sulfate particles. This problem 
negatively impacts the aesthetic value of a region.

Continental-Level Air Pollution  The continental scale of air pollution is indistin-
guishable from that of the regional scale for relatively smaller continents such as 
Australia or Europe. The separation in both scales becomes clearer with respect to 
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the national policies of one country that will significantly impact the neighboring 
estates. Perhaps this is one of the greatest concerns in regard to the problem of air 
pollution at the continental level.

Global-Level Air Pollution  Global air quality is usually affected by air pollutants 
having a relatively longer atmospheric lifetime, air pollutants that are resistant to 
tropospheric decomposition processes and pollutants that are involved in the 
tropospheric-stratospheric exchange processes. Understanding the global scale of 
air pollution requires a much clearer knowledge of the exchange processes between 
the stratosphere and troposphere and the hemispherical transport phenomenon.

13.5 � Air Quality Indexing System

The U.S. Environmental Protection Agency (EPA) was the first to set standards for 
national air quality in 1971. It would be an incomplete assessment of regional air 
quality if only the tonnage of pollutants is taken into consideration. The relative 
toxicity of a pollutant, although qualitative, is an essential parameter for the assess-
ment of how clean the atmosphere of a certain region is. Therefore, several units for 
expressing air pollutants and air quality parameters are as follows (De, 2010):

•	 Gases and vapors, μg/m3 (also ppm by volume)
•	 Weight of particulate matter, μg/m3

•	 Particulate matter count, no. per cubic meter
•	 Visibility, km
•	 Emission and sampling rates, m3/min
•	 Pressure, mm of Hg
•	 Temperature, °C

The problem arises while conveying and explaining these parameters and their 
related datasets to the non-scientific community. A huge database created from the 
aforementioned parameters, which in general is incapable of delivering the status of 
air quality to the decision makers, government officials and particularly to the com-
moners. This gave birth to the need for a common index that can be easily perceived 
by the public, commonly known as the AQI. The air quality index (AQI) can be 
defined as an effective tool that combines and transforms complex air quality data 
of various pollutants into a single nomenclature, number (index value), and color. It 
is generally used by government organizations to communicate the present or pre-
dicted air quality to the general public.

Basic Criteria for an Air Quality Index  An ideal air quality index must be capa-
ble of reflecting the measured air quality over a region for a given time period in a 
publicly perceivable way. In pursuit of achieving these desired characteristics, air 
quality indexing systems often aim to standardize and synthesize air constituent 
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concentration datasets that allow quick comparisons (Kanchan et  al., 2015). To 
design, select, or formulate an air quality index, the following points should be 
taken into consideration (Kanchan et al., 2015):

	 (i)	 Should be able to convey a correct and readily understandable estimate of air 
pollution level to the public.

	(ii)	 Should be inclusive of the primary criteria pollutants and their synergistic 
effects.

	(iii)	 The formula should be so designed that it can include or disregard other pollut-
ant datasets and the averaging time, if needed.

	(iv)	 Must be related to the National Ambient Air Quality Standards of the respec-
tive country or estate.

	(v)	 Should be able to negate ambiguity (occurs when the index gives false alarm 
of poor air quality over a region) and eclipsing (occurs when the index fails to 
indicate deteriorating air quality over a region).

	(vi)	 Should be based on a reliable dataset of air pollutants obtained from monitor-
ing stations that can effectively provide an appropriate representative for the 
region of interest.

�Air Quality Indices and Related Standards Around the World

AQI System in the USA  The U.S. Environment Protection Agency has established 
AQIs for five primary criteria air pollutants (ground-level ozone (O3), particulate 
matter (including both PM2.5 and PM10), CO, SO2 and NO2). The agency mandates 
the reporting of AQI for at least 5 days in a week for all metropolitan statistical areas 
(MSAs) with a human population of more than 320,000. The AQI under this system 
is determined from individual pollutant concentrations after appropriate selection 
(the highest concentration among all the monitors within each reporting area) and 
truncation. The breakpoints and the AQI corresponding to the selected concentra-
tion are noted in Table 13.1 and designed by the agency. The individual pollutant 
index is calculated from Eq. 13.1 by incorporating the pollutant concentration data 
and the corresponding information from Table 13.1. Finally, after rounding off the 
index to the nearest integer, the individual pollutant index having the highest value 
represents the AQI for the given region:

	
I

I I

BP BP
C BP IHI LO

HI LO
LO LOp P�

�� �
�

�� � �
	 (13.1)

where

IP = Index for pollutant P
CP = Rounded concentration of pollutant P
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BPHI = Break point that is greater than or equal to CP.

BPLO = Break point that is less than or equal to CP

IHI = AQI value corresponding to BPHI

ILO = AQI value corresponding to BPLO

A revised EPA air quality index (RAQI) was introduced later by Cheng et al., 2004. 
In this, an extra term for entropy has been added to the AQI formula (Kanchan et al., 
2015). The determination of RAQI is achieved by Eq. 13.2:
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AQI System in European Cities  The Common Air Quality Index (CAQI) is used to 
present the ambient air quality in the cities of Europe developed under the project 
Citeair (revised under Citeair II). By integrating and transforming all comprehen-
sive measurements into a singular relative figure, the CAQI offers a readily under-
standable way to represent air quality in European cities. Additionally, this indexing 
system differentiates between traffic and city background conditions. To provide a 
comparative perspective between the cities, three indices with different time scales 
are made available: an hourly index, a daily index and an annual index. The CAQI 
is calculated by linear interpolation between the class borders, presented in the grid 
system (Table 13.2). Ranging from 0 (very low) to >100 (very high), there are in 
total five levels in which the air quality can be presented. The selection of the classes 
for indexing is influenced by EU legislation; nonetheless, the final CAQI is the 
maximum value of the subindices for each pollutant.

AQI System in Russia  By normalizing the pollutant concentrations to MPC 
(Maximum Permissible Concentrations—established for over 400 pollutants), the 
subindex of individual pollutants can be calculated, which is then added to give the 
Integral Air Pollution Index (IAPI). This method was suggested for representing air 
quality over Russian cities by Bezuglaya et al. (1993). The subindices of individual 
pollutants in the IAPI can be determined by the following Eq. 13.3:

	
I

X

MPCli
i

i

=
	 (13.3)

where

Xi = Concentration of ith pollutant
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Ii = Subindex of ith pollutant
ci = Degree of exponent
MPCi = Maximum permissible concentration of ith pollutant

Furthermore, the degree of pollutant caused by an air pollutant can be expressed 
by comparing it with that of sulfur dioxide (Eq. 13.4):

	

I
X

MPCi
i

i

Ci

2 �
�

�
�

�

�
�

	 (13.4)

Swamee and Tyagi (1999) criticized this method, suggesting ambiguity in the nature 
of the subindices, which might lead to a false alarm situation. They further proposed 
a non-linear aggregation of the subindices.

API System in South Africa  In the Dynamic Air Pollution Prediction System 
(DAPPS) project led by four South African partners, an Air Pollution Index (API) 
system was developed (Cairncross et al., 2007). Inclusive of PM10, PM2.5, O3, CO, 
SO2, and NO2, this API system is based on the relative risk of excess daily mortality 
linked with short-term exposure to air pollutants. Exposure levels corresponding to 
the same relative risk are allotted the same subindex value, and the incremental risk 
values for every pollutant are considered to be constant. The final API is calculated 
using Eq. 13.5:

	 API PS a Ci� � � �I · 	 (13.5)

This proposed system was tested using a pollutant concentration dataset collected in 
Cape Town, and a scale of 0–10 was utilized for assessment.

Table 13.3  Pollutant concentration range and their corresponding AQI value and categories as per 
NAAQS, India

AQI category AQI
Concentration rangea

PM10 PM2.5 NO2 O3 CO SO2 NH3 Pb

Good 0–50 0–50 0–30 0–40 0–50 0–1.0 0–40 0–200 0–0.5
Satisfactory 51–

100
51–
100

31–60 41–80 51–
100

1.1–
2.0

41–80 201–400 0.5–
1.0

Moderately 
polluted

101–
200

101–
250

61–90 81–
180

101–
168

2.1–
10

81–380 401–800 1.1–
2.0

Poor 201–
300

251–
350

91–
120

181–
280

169–
208

10–17 381–
800

801–
1200

2.1–
3.0

Very poor 301–
400

351–
430

121–
250

281–
400

209–
748a

17–34 801–
1600

1200–
1800

3.1–
3.5

Severe 401–
500

430 + 250 + 400 + 748 +a 34 + 1600 + 1800 + 3.5 +

Source: (CPCB, 2021)
aCO in mg/m3 and other pollutants in μg/m3; 2 h-hourly average values for PM10, PM2.5, NO2, SO2, 
NH3, and Pb, and 8-h values for CO and O3
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API System in China  The Chinese Air Pollution Indexing System follows a similar 
method for the calculation of AQI with the exception being that the health definition 
parallel to each class of AQI is different. The State Pollution Control Board of China 
is the regulatory body responsible for monitoring air pollution levels across the 
entire province. The API is based on five criteria pollutants: PM10, 

NO2
−

, SO2, CO, 
and ground-level ozone (O3).

AQI System in India  The Indian AQI system has six categories (good, satisfactory, 
moderately polluted, poor, very poor and severe) and a scale ranging from 0 to 500. 
Based on the ambient concentration of pollutants, the subindex is calculated, which 
is developed and evolved for eight pollutants, namely, PM2.5, PM10, CO, O3, NO2, 
SO2, NH3, and Pb. The final Indian Air Quality Index can be calculated using 
Eq. 13.7 (Report, 2022):

	
AQI I I In� ��� �max , , ..1 2 	 (13.6)

where

I = Subindex for individual pollutant.

Additionally, health breakpoints are also available along with the AQI categories 
(Table 13.3 taken from CPCB (2021)). Finally, the worst subindex determines the 
overall AQI of a particular region.

Fuzzy Air Quality Index (FAQI)  Based on fuzzy aggregation, a method for pre-
dicting AQI was developed by Mandal et al. (2012). When the output values of AQI 
were compared with those calculated via traditional methods, it was revealed that 
using a fuzzy inference system improves tolerance for impression data. The math-
ematical relation between the output parameter (FAQI) and air pollutants is given in 
Eq. 13.7:

	
FAQI SO NOx� � �f SPM RPM, , ,2 	 (13.7)

Later, a fuzzy pattern recognition model for AQI computation was developed con-
sidering five atmospheric pollutants (PM10, CO, O3, NO2, and SO2) for the assess-
ment of air quality in Agra, India (Gorai et  al., 2014). Using the analytical 
hierarchical process (AHP), weights were assigned to each pollutant based on the 
degree of health impacts. These weights were also considered during AQI determi-
nation. The AQI ranged from 1 to 6, and although the calculation is complex in 
nature, it can be easily programmed. The methodologies for air quality indexing 
developed all around the world are presented in Fig. 13.3.
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Fig. 13.3  Different air quality indexing methods around the world. (Data adopted from: Kanchan 
et al., 2015)

13.6 � Status of AQI

Since the time of Hippocrates in approximately 400 BC, air pollution has been rec-
ognized as a threat to human health. Throughout the next two millennia, succes-
sively written accounts of air pollution appearing in various countries can be found 
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until measurements, beginning in the eighteenth century, reveal the growing scale of 
poor air quality in urban centers and close to industry, as well as the chemical char-
acteristics of the gases and particulate matter. As severely polluted cities became the 
defining issue, the industrial revolution boosted both the amount of primary pollut-
ant emissions and the geographical spread of contributing countries, culminating in 
the Great Smog of London in 1952. Until the latter decades of the twentieth century, 
when transboundary issues such as acid rain, forest decline, and ground-level ozone 
were the principal environmental and political air quality challenges, Europe and 
North America dominated emissions and suffered the majority of harmful conse-
quences. As curbs on sulfur and nitrogen oxide (SO2 and NOx) emissions began to 
take effect in Europe and North America, emissions in East and South Asia expanded 
rapidly, and by the early years of the twenty-first century, these estates had sur-
passed global emissions. By 2000, fresh epidemiological evidence had pushed the 
consequences of air quality on human health back to the top of the priority list. 
Global measurements of both primary and secondary pollutants were available by 
this time, thanks to vast networks of surface measurements and satellite remote 
sensing, which rendered the assessment of air quality and related detrimental 
impacts a rather feasible task.

�Air Quality over the Globe: The Complete Picture

With the subject area being vast, the focus here is on the chronology of human-
caused air pollution, identifying the major challenges, their origins, and regional 
and worldwide trends. During the early stages of the industrial revolution, which 
began in the late eighteenth century in the United Kingdom and extended across 
Europe and North America, fast increases in coal burning in growing towns signifi-
cantly boosted SO2, NO2, NH3, and smoke emissions. During this time, the issue of 
air pollution was primarily concerned with human health. Domestic emissions from 
the rapidly rising urban population were also a source of additional pollution. It is 
also worth noting that NH3 emissions from the large urban population of horses 
used for transportation would have added to the NH3 emitted by coal combustion 
(Sutton et al., 2020). Due to a scarcity of observations and a focus on pollutants 
from combustion sources, little attention has been given to the combination of SO2, 
NOx, and NH3 in the nineteenth-century urban chemical climate. However, signifi-
cant NH3 emissions would have favored the generation of particulate (NH4)2SO4 and 
fast SO2 deposition to terrestrial surfaces (Fowler et al., 2001). From 1750 to the 
twentieth century, air quality deteriorated mostly in metropolitan areas or around 
significant industrial point sources. The 1952 London haze, which resulted in the 
untimely deaths of approximately 12,000 people, shifted this viewpoint. The efforts 
to limit air pollution in the 1950s and 1960s were targeted at safeguarding human 
health, with a concentration on urban air quality, notwithstanding prior worries 
about ecological implications. There were rainfall analyses in the seventeenth cen-
tury, presumably the first by Ole Borch in Denmark. Agriculturalists began to use 
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them more frequently in the 1800s (Brimblecombe, 1987), and they are now widely 
used internationally (Miller, 1905), providing early evidence of intercountry pollu-
tion trade from observations of contaminated snowfall. By 1980, acid rain, or more 
accurately acid deposition, enabled the relevance of both wet depositon and dry 
deposition to the overall input to the ground (Fowler, 1984) to become a global 
issue, with all industrial countries doing research and many developing control 
measures.

A significant advance was the expansion of the ecological focus from freshwa-
ters to forests, as well as the number of contaminants implicated in consequences. 
In the early 1970s, this proved the occurrence of ozone quantities that posed a threat 
to vegetation and human health over Europe (Derwent et al., 1978). Since preindus-
trial times, the background concentration of ozone in Europe has increased by a 
factor of 2 (Volz & Kley, 1988). Furthermore, the importance of nitrogen com-
pounds expanded as our understanding of acid deposition grew, and ground-level 
ozone was identified as an additional regional-scale air pollution issue. At the turn 
of the twenty-first century, a study of the effects of pollutants on ecosystems revealed 
that 24% of the world’s forests were subjected to phytotoxic ozone exposure (Fowler 
et al., 1999). In the Netherlands, the United Kingdom, North America, and China, 
negative impacts were discovered (Fowler et  al., 2020). Studies exploring the 
impacts of pollutants on human health, based on comparable epidemiological meth-
odologies, demonstrated the magnitude of the consequences on human health in 
both developed and developing countries. According to current estimates, outdoor 
PM2.5 concentrations are responsible for 4.2 million premature deaths and 100 mil-
lion disability-adjusted life-years lost globally each year (Cohen et al., 2017). These 
studies established air pollution as one of the leading causes of premature death 
worldwide, and they highlighted the human health impacts of contaminants at far 
lower concentrations than those implicated in the 1952 London haze.

PM is mentioned in the first descriptions of air pollution, although nomenclature 
has been uneven and often ill-defined, with names such as smoke, soot, fume, haze, 
and dust being used haphazardly across the literature. PM refers to the sum of all 
solid and liquid particles suspended in air and is a complex mixture of size spanning 
at least four orders of magnitude (1–10,000 nm) and a wide variety of chemical 
makeup (Harrison, 2020). By a wide margin, PM is the most significant contributor 
to human health consequences, and it is also the form in which the majority of sulfur 
and nitrogen-containing pollutants are transported across long distances. By absorp-
tion (e.g., black carbon) as well as dispersion and reflection of radiation, PM con-
tributes to changes in the Earth’s energy balance. Consequently, many of the 
linkages between air quality and climate change are attributable to interactions 
between PM and the radiative balance and thus climate (Von Schneidemesser et al., 
2015). Smog contains both particle and gaseous components, although PM has the 
greatest impact on visibility. Many of the consequences of pollutants on ecosystems 
are caused by PM deposition, which occurs either directly on foliar surfaces or indi-
rectly by occult or moist deposition (Stevens et al., 2020).

From the 1990s to the present, most primary pollutant emissions have fallen in 
Europe, North America, and Japan, with SO2 emissions showing the most success, 
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Fig. 13.4  World’s air pollution: real-time air quality index (Accessed on: 30/12/2021). (Source: 
https://waqi.info/#/c/7.915/8.792/2.4)

while NO2 and VOC emissions have also decreased by more than half in these 
regions. In contrast, emissions in East and South Asia, as well as elsewhere, grew 
from 1990 to 2010, resulting in moderate decreases in worldwide total emissions, 
even for SO2, with a reduction of 15% from the peak in 1990 (Hoesly et al., 2018). 
The global total NOx emissions have continued to rise, with all decreases in emis-
sions in Europe, North America, and elsewhere being offset by increases elsewhere, 
primarily in Asia. The situation is similar for NH3 and VOC to that of NOx, with the 
global total constantly growing (Hoesly et al., 2018). Zheng et al., 2020 extensively 
reported and described the huge increases in emissions of all principal pollutants in 
South and East Asia. In Asian megacities, levels of PM, SO2, and NO2 are compa-
rable to London’s highly polluted environment during smog episodes in the 1950s, 
such as the Beijing ‘haze’ occurrences in January 2012. As a result, the worldwide 
load of air pollution has increased in the first two decades of the twenty-first cen-
tury. The distribution of ambient PM2.5 concentrations experienced by different 
regional populations shows that rather than the countries that were afflicted in the 
early phases of the Industrial Revolution, the current global air pollution health 
burden is borne disproportionately by countries in East and South Asia (Fowler 
et al., 2020). Despite this, the vast majority of the world’s population lives in areas 
where ambient PM2.5 levels exceed the WHO guideline limit. It is worth noting that 
this focus on human health diverts attention away from the fact that pollution effects 
on managed and natural ecosystems continue to exceed criteria (Emberson, 2020). 
Furthermore, satellite data found that emissions increased in Asia while decreasing 
in Europe and North America from 1996 to 2004 (Richter et al., 2005).

Sulfur emissions have decreased globally from their peak in 2000, with recent 
trends in China indicating a reduction of nearly 50% in emissions since 2012 
(Fowler et  al., 2020). Although surface ozone levels have continued to rise (Lu 
et al., 2020), China’s NOx emissions have decreased by approximately 25% in the 
last 8 years (Zheng et al., 2018). However, there are solid reasons to be cautious 
because ammonia emissions, which are a major contributor to PM and 
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Fig. 13.5  PM2.5 concentration and use of solid fuels in the states of India, 2017. (a) Population-
weighted mean ambient air PM2.5 (b) Proportion of the population using solid fuels. (Source: 
Balakrishnan et al., 2019)

eutrophication, are continuing to grow, and putative feedbacks between these gases 
and climate change could drive overall emissions higher (Fowler et al., 2013). World 
emissions of CH4 and VOC are also increasing. Despite the worldwide high levels 
of PM2.5, statistics from the global burden of disease study suggest that death rates 
from outdoor PM2.5 and ground-level ozone may be on the decline globally. As a 
result, given the current magnitude of air pollution’s effects on human health and 
ecosystems, as well as measurement and modeling limitations, it is premature to 
rejoice about a reduction in global emissions of two of the most critical air pollut-
ants (SO2 and NOx). To conclude, the current status of the global AQI is shown in 
Fig. 13.4 (WAQI.Info: World Air Quality Index).

�Air Quality Status over the Indian Region

India, a growing country, heavily reliant on its cities for growth; confronts signifi-
cant issues in preserving good air quality in cities. According to the Press Trust of 
India, by 2030, 40% of India’s population will be living in cities (PTI, 2018). 
Because of a huge number of emission sources, pollutant transportation, high emis-
sion rates, and unfavorable emission sources, Indian cities are experiencing the 
world’s worst type of atmospheric pollution (Guttikunda et al., 2014). Furthermore, 
in emerging countries such as India, the lack of effective enforcement of environ-
mental legislation has only exacerbated pollution problems. With the rising of pol-
lutants such as PM, CO, NOx, O3, and SO2 in Indian cities, air quality is becoming 
a major problem. Ten Indian cities were on the list of cities with the worst PM2.5 
pollution levels (WHO, 2018). In Fig.  13.5, the population-weighted average 
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ambient PM2.5 and the proportion of the population using solid fuels in 2017 are 
presented to give an idea of human-induced particle pollution in India.

The Central Pollution Control Board (CPCB) has set up 591 monitoring stations 
around the country to track air pollution trends (CPCB, 2008). In 2015, for example, 
typical SO2 and NO2 concentrations in major cities in India did not exceed the 
NAAQS in any of the country’s main cities. Even the 8-h O3 and CO concentrations 
in major cities in northern (47.8 and 1.26 mg/m3), eastern (48.1 and 1.73 mg/m3), 
western (58.6 and 1.27 mg/m3), and southern (58.6 and 0.94 mg/m3) India were 
lower than the NAAQS requirements (100 and 2 mg/m3) (CPCB, 2015). Dust emis-
sions, automobile emissions, biomass burning, and other sources of pollution con-
centrations are mostly to blame for the exceedance of air pollutant concentrations 
(CPCB, 2016). In 2015, India was responsible for 25.7% of global PM2.5-related 
premature mortality (IHME, 2017). Excess mortality in the Indian capital was 6.5% 
due to PM2.5 concentrations that exceeded WHO guidelines (Sahu & Kota, 2017).

Another matter of concern is the rising levels of air pollution in megacities (with 
a population of greater than ten million), also known as urban air pollution. The 
level of pollution surpasses national and international ambient air quality require-
ments as well as health-based air quality standards (Gurjar et  al., 2008; Marlier 
et al., 2016). The increase in urban population and the resulting increase in motor-
ized traffic in cities are the primary causes of severe air pollution (Singh et al., 2007; 
Wang et al., 2010; Kumar et al., 2017). The movement of vehicles is non-uniform 
across cities as a result of the heterogeneous and uncontrolled growth of cities in 
developing nations, resulting in substantial spatial fluctuations in pollutant emis-
sions and the formation of urban hot spots. Due to high source activity, bad climatic 
circumstances, or both, an urban hotspot is a site in the city where air pollution 
levels are already failing or expected to fail to satisfy national ambient air quality 
standards (NAAQS). The majority of urban hotspots are key commercial centers, 
busy traffic crossroads, and heavily frequented congested roadways (Gokhale & 
Khare, 2007; Tiwari et al., 2012), experiencing extreme air pollution episodes due 
to a sudden increase in vehicle exhaust emissions during peak traffic periods 
(Chelani, 2013; Pant et al., 2015). Furthermore, in metropolitan settings, topograph-
ical and meteorological fluctuations cause complicated spatial and temporal varia-
tions in pollution concentrations (Gokhale & Khare, 2007).

Generally, poor air quality and atmospheric pollution plague the northern por-
tions of India, owing to emissions from automobiles, industries, brick kilns, coal-
fired power stations, and agricultural residue burning (Singh et  al., 2004; 
Venkataraman et al., 2018). For example, New Delhi, India’s capital, has consis-
tently poor air quality, with pollution levels higher than those in Beijing (Zheng 
et al., 2017). In recent years, China’s air quality and atmospheric pollution have 
improved; however, in India, poor air quality has steadily worsened over the previ-
ous several decades as a result of increasing anthropogenic activity (Chauhan & 
Singh, 2017; Sarkar et al., 2018). Since the early 1990s, air pollution levels in the 
Indian National Capital Territory of Delhi (NCT-Delhi) have exceeded those in 
most other developing countries. Many distinct factors influence air pollution levels 
in NCT-Delhi, including unrestrained emission sources in the surrounding area 
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where city regulations are either not applicable or not strictly enforced, a large num-
ber of uncontrolled sources within the city, unfavorable local meteorological condi-
tions such as extreme summers and extreme winters, which govern particle 
suspension in the air, and periodic agricultural pollutant transport from the outskirts 
(Guttikunda & Gurjar, 2012).

Motorized vehicles have emerged as one of the biggest contributors to growing 
levels of urban air pollution in India, out of all the sources of air pollution (Sharma 
& Dikshit, 2015; Dhyani et al., 2017; Kumar et al., 2017). According to figures from 
2012 to 2013, India’s total diesel and petrol consumption was 69.74 million tonnes 
and 15.7 million tonnes, respectively, with the transportation sector accounting for 
almost 70% of diesel and 99.6% of petrol use (MoPNG, 2013). Ambient PM con-
centrations in Indian metropolises (Delhi, Mumbai, Kolkata, and Chennai) routinely 
exceed NAAQS and WHO guideline standards (Gupta & Kumar, 2006; Singh et al., 
2007; CPCB, 2010a, 2010b; Gupta et al., 2010). According to Ramachandra, 2009, 
India’s transportation sector produces 258.10 Tg of CO2, with motorized road trans-
port accounting for 94.5%. According to the Central Pollution Control Board 
(CPCB) of Delhi, automobile emissions contribute approximately 76–90% of CO, 
66–74% of NOx, 5–12% of SO2, and 3–12% of PM to overall urban air pollution in 
Delhi and Mumbai (CPCB, 2010a). Sharma and Dikshit (2015) calculated that in-
use road cars in Delhi emit approximately 12.9 Ton/day, 11.6 Ton/day, 113.4 Ton/
day, 1.2 Ton/day, and 322.4 Ton/day of PM10, PM2.5, NOx, SO2, and CO, respec-
tively. This suggests that poor urban air quality in developing countries is a result of 
increased motor activity and accompanying ineffective management strategies. The 
next paragraphs describe the sources of air pollution and other related difficulties in 
two Indian megacities, Delhi and Chennai, which have also been used as case stud-
ies for air quality in Indian megacities.

Regardless of the type of site, Delhi, India’s national capital, has significant PM10 
and PM2.5 concentrations in its ambient air (Sharma et al., 2013; Mandal et al., 2014; 
Pant et al., 2015; Tiwari et al., 2014). Delhi is the “worst” polluted city in the world, 
based on an environmental performance index (Hsu & Zomer, 2014). The increase 
in air pollution levels is mostly due to increasing emissions of pollutants such as 
PM2.5, PM10, and NOx (nitrogen oxides) as a result of significant traffic congestion 
and a drop in vehicular speed on the roads (CPCB, 2010a; Dhyani et al., 2017). 
Mohan & Kandya, 2007 collected data from seven distinct places in Delhi for 9 
years (1996–2004) and generated an air quality index (AQI). During the period 
from 1996 to 2004, the annual average NO2 concentrations at one ITO crossing 
were found to be in the range of 50–90 μg/m3. Between 1997 and 2016, PM and 
gaseous pollutant concentrations in ambient air surpassed the NAAQS, according to 
reports. It is further reported that a rise in particulate matter (PM) concentrations in 
Delhi city cause tens of thousands of premature deaths and six million asthma epi-
sodes each year (Guttikunda & Goel, 2013; Lelieveld et al., 2015). PM10-related 
mortality increased by 1.6 and 2.5 times in 2015 in Mumbai and Delhi, respectively, 
compared to 1995 (Maji et al., 2017).

Compared to other Indian cities, Chennai had a vehicle population of approxi-
mately 3.7 million in 2015, with the highest vehicle density of 2093 per kilometer 
road length (Gupta, 2015). PM levels surpass the NAAQS at selected urban places in 
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Fig. 13.6  Effect of lockdown on surface PM2.5 concentrations. (Source: Giani et al., 2020)

Chennai city where vehicular movement was found to be highest, according to 
Sivaramasundaram & Muthusubramanian, 2010 and Srimuruganandam & Nagendra, 
2011. Furthermore, at one of the curb sites in Chennai city, diesel exhausts (43–52% 
in PM10 and 44–65% in PM2.5) and gasoline exhausts (6–16% in PM10 and 3–8% in 
PM2.5) are shown to be significant source contributors (Srimuruganandam & 
Nagendra, 2012). Madala et al., 2016 used a Lagrangian particle dispersion model 
(LPDM) to simulate NOx levels at seven different locations in Chennai city, taking 
into account all point, area, and line sources, and showed considerable seasonal fluc-
tuation in NOx concentration at all locations. Finally, in 2015, yearly average mortal-
ity attributable to PM2.5 was found to be 10,880 and 10,900 in Mumbai and Delhi, 
respectively. They also projected that the total economic impact of rising PM10 con-
centrations increased from US$ 2680.87 million to US$ 4269.60 million for Mumbai 
and US$ 2714.10 million to US$ 6394.74 million for Delhi from 1995 to 2015. As a 
result, there is a need to reduce air pollution-related health effects, which can be 
accomplished by controlling/managing increasing urban air pollution loads through 
an integrated management plan that is efficient and effective.

�The Brighter Side of COVID-19

With the first case of SARS-COVID-19 reported in China on the 17th of November, 
376,000 people had died as a result of 6.3 million illnesses reported in 188 countries 
and territories by June 2020. Lockdown procedures have had a significant impact on 
industrial and transportation activity, as well as a reduction in emissions of many of 
the key pollutants that cause poor air quality. While it is too early for a full analysis, 
there are a number of preliminary reports available, including surface data from 
monitoring networks and satellite remote sensing. CO2 flux measurements in major 
cities reveal lower combustion-related emissions, including a 55% drop in central 
London (Jenkins et al., 2020). The 20–30% reductions in urban NO2 in the UK dur-
ing the first weeks of lockdown (Jenkins et al., 2020) are comparable to reductions 
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in other large cities across the world. Certain COVID-19-affected cities in China 
reported decreases in PM10 on a scale equivalent to NO2 reductions but for a shorter 
length of time (Cole et al., 2020). Personal exposure to PM2.5 in London during the 
lockdown was reduced by 5–25% depending on the mode of transport, according to 
the analysis, while effects on ambient PM were minimal and varied. A reduction in 
PM2.5 concentrations was also observed in parts of China and Europe during the 
COVID-19 lockdown duration (Fig.  13.6). The pandemic’s global scope had a 
noticeable impact on global emissions of combustion-related pollutants, with pro-
jected health and environmental advantages owing mostly to lower NOx emissions. 
It is unclear whether these gains will result in longer-term emissions savings, as 
transportation and industry emissions have increased as a result of the extensive 
population lockdown. As transportation and combustion emissions are reduced, 
COVID-19 is likely to lower net acidity and increase the gaseous alkaline percent-
age (Sutton et al., 2020), with a minimal expected reduction in NH3 emissions from 
agriculture. While this may have health benefits, it is equally important to consider 
the negative impacts of ‘alkaline air’ on ecosystems.

13.7 � Impact of Degrading Air Quality on Human Health

Regardless of how wealthy a region is, air pollution is difficult to avoid. It can be 
found everywhere around us. Airborne pollutants can get past our bodies’ defenses, 
penetrating deep into our respiratory and circulatory systems and causing damage 
to our lungs, heart, and brain. Climate change and air pollution are inextricably 
linked; the main driver of climate change is fossil fuel combustion, which is also a 
major source of air pollution, and efforts to mitigate one can help the other. The UN 
Intergovernmental Panel on Climate Change cautioned that coal-fired electricity 
must be phased out by 2050 if global warming is to be kept below 1.5 °C. In 2019, 
global air quality caused massive destruction in East Asia, Europe, and North 
America, taking away the lives of seven million people, extensive damage to crops, 
and a rapid reduction in biodiversity (Fowler et al., 2020). Approximately 4.3 mil-
lion people die from household air pollution and 3.7 million from ambient air pol-
lution, most of whom (3.3 and 2.6 million, respectively) live in Asia (Lancet, 2016). 
Within India, 1.24 million total deaths were recorded due to air pollution in 2017, 
among which 0.67 million deaths were recorded due to exposure to hazardous 
ambient particle concentrations (Balakrishnan et al., 2019).

�Exposure to Air Pollutants

There are two types of air pollution: outdoor (or ambient) pollution and indoor (or 
household) pollution. Household combustion of fuels using open fires or basic 
stoves in poorly ventilated buildings causes pollution. Because air travels from 
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within buildings to the outside and vice versa, both indoor and outdoor air pollution 
can contribute to each other. Indoor pollution kills four million people every year, 
mostly in Africa and Asia, where polluting fuels and technologies are used on a 
daily basis, especially at home for cooking, heating, and lighting (WHO, 2021). 
Women and children, who spend more time indoors, are the most vulnerable.

As per the World Health Organization’s (WHO) air pollution program, 91% of 
the world’s population breathes contaminated air, and 4.2 million people die each 
year as a result. It shows that air pollution is responsible for more than one-third of 
all deaths due to lung cancer, strokes, and chronic respiratory problems. PM2.5 can 
get through the lungs and into the bloodstream. Furthermore, air pollution has a 
negative impact on young people. Air pollution-induced asthma affects up to 14% 
of children aged 5–18 years worldwide. Pregnant women are exposed to pollutants, 
which might influence the development of the unborn brain. Older people, children, 
and people with diabetes and predisposing heart or lung disease, particularly asthma, 
are vulnerable groups. People who are exposed to high levels of air pollutants 
develop disease symptoms and states of varying severity. These health impacts are 
divided into two categories: short term and long term. The relative magnitudes of 
the short- and long-term effects have not been completely clarified (Kloog et al., 
2013) due to different epidemiological methodologies and exposure errors, accord-
ing to a recent epidemiological study from the Harvard School of Public Health. 
New models are presented for more effectively analyzing short- and long-term 
human exposure data (Kloog et al., 2013). As a result, this section discusses the 
more prevalent short- and long-term health consequences, as well as general con-
cerns about both types of impacts because these are typically reliant on environmen-
tal factors, dose, and individual sensitivity.

Short-term effects are temporary in nature and range from minor irritation of the 
eyes, nose, skin, and throat to more serious conditions such as asthma, pneumonia, 
bronchitis, and lung and heart problems. However, long-term exposure to pollutants 
can exacerbate these issues by harming the neurological, reproductive, and respira-
tory systems, as well as causing cancer and, in rare cases, death. The consequences 
are chronic, lasting up to several years or even a lifetime. Furthermore, the long-
term toxicity of various air contaminants may cause a variety of malignancies 
(Nakano & Otsuki, 2013). Country, region, season, and time all have an impact on 
one’s health. In connection with the foregoing criteria, prolonged exposure to the 
pollutant should predispose individuals to long-term health impacts.

�Health Hazards

The human respiratory, cardiovascular, ophthalmologic, dermatologic, neuropsy-
chiatric, hematologic, immunologic, and reproductive systems are the most affected 
by air pollution. However, long-term molecular and cell toxicity may result in a 
variety of cancers (Kampa & Castanas, 2008; Nakano & Otsuki, 2013). However, 
even small amounts of air toxicants are harmful to vulnerable groups such as 
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children and elderly individuals, as well as patients with respiratory and cardiovas-
cular diseases.

Respiratory Disorders  The respiratory system is the first line of defense in the 
onset and progression of diseases caused by air pollutants because most pollutants 
enter the body through the airways. Inhaled pollutants produce varied levels of harm 
inside the respiratory system. The initial consequence in the upper respiratory sys-
tem is inflammation, particularly in the trachea. Some respiratory disorders, such as 
asthma and lung cancer, are linked to air pollution as a key environmental risk factor 
(Brunekreef et al., 2009). The respiratory tract is severely harmed by air pollutants, 
particularly PM and other respirable chemicals such as dust, O3, and benzene (Tam 
et al., 2012; Valavanidis et al., 2013; Bahadar et al., 2014; Johannson et al., 2014). 
People with a predisposed illness state are more likely to experience long-term 
repercussions. When contaminants poison the trachea, voice changes can occur 
after a short period of time. Some research has found links between traffic-related 
and/or industrial air pollution and an increased risk of chronic obstructive pulmo-
nary disease (COPD) (Chung et al., 2011; Zeng et al., 2012). COPD can be caused 
by air pollution, which increases morbidity and mortality (Jiang et al., 2016). COPD 
risk is mostly influenced by long-term consequences from traffic, industrial air pol-
lution, and fuel combustion (Jiang et al., 2016).

Cardiovascular Dysfunctions  A direct link between air pollution exposure and 
cardiac-related disorders has been demonstrated in several experimental and epide-
miologic investigations (Brook, 2008; Andersen et  al., 2012). Changes in blood 
cells as a result of long-term exposure may have an impact on cardiac function. 
Long-term exposure to traffic emissions has been linked to coronary arteriosclerosis 
(Hoffmann et al., 2007), while short-term exposure has been linked to hypertension, 
stroke, myocardial infarction, and heart failure. Right and left ventricular hypertro-
phy are linked to traffic-related air pollution, particularly long-term exposure to 
high levels of NO2 (Leary et al., 2014; Van Hee et al., 2009). Aside from antidote 
therapy, which is only available for a few cardio-toxic chemicals such as CO, stan-
dard cardiovascular disease treatment should be carried out.

Neuropsychiatric Complications  Long-term exposure to air pollution has been 
linked to neurological consequences in both adults and children. The link between 
exposure to toxic materials suspended in the air and the nervous system has long 
been debated. These toxic substances, however, are now thought to have negative 
effects on the nervous system. Neurological problems and psychiatric diseases are 
among the damaging effects of air pollution on the nervous system. Neurological 
disability, especially in babies, can have fatal effects. Air pollution has been linked 
to neurobehavioral hyperactivity, criminal activity, and age-inappropriate behaviors 
in recent studies (Newman et al., 2013; Haynes et al., 2011) and an increased risk of 
neuroinflammation, Alzheimer’s disease, and Parkinson’s disease (Calderón-
Garcidueñas et al., 2008). According to some studies, high levels of air pollutants 
are linked to aggression and anxiety in megacities (Evans, 2003; Jones & 
Bogat, 1978).
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Damage to Exterior Organs  As the most external layer of our body, the skin serves 
as protection against ultraviolet radiation (UVR) and other contaminants. Pollutants 
from traffic, such as PAHs, VOCs, oxides, and PM, can produce pigmentation on 
our skin (Drakaki et al., 2014). Skin aging, psoriasis, acne, urticaria, eczema, and 
atopic dermatitis (Drakaki et al., 2014) are usually caused by exposure to oxides and 
photochemical smoke via dermal contact (Drakaki et  al., 2014). Acting as skin-
aging agents, PM and cigarette smoke cause spots, dyschromia, and wrinkles 
(Manisalidis et al., 2020). The eye is another external organ that can be damaged via 
air pollutants. The clinical impact of air pollution on the eyes might range from 
asymptomatic eye issues to dry eye syndrome. Contamination is most commonly 
caused by suspended contaminants, which might cause asymptomatic eye results, 
irritation (Weisskopf et  al., 2015), retinopathy or dry eye syndrome (Mo et  al., 
2019). Furthermore, there is now evidence that there is a link between air pollution 
and eye irritation, dry eye syndrome, and even serious blindness (West et al., 2013). 
Air pollution is associated with short-term increases in the number of patients 
attending the ophthalmological emergency room, according to data (Chang 
et al., 2012).

Other Long-Term Complications  Toxic air pollutants, when inhaled or absorbed 
through the skin, can theoretically cause organ damage (Potera, 2007). 
Hepatocarcinogen compounds are present in several of these contaminants (Ito 
et al., 2011). There is some evidence that air pollutants, particularly traffic-associated 
air pollution, play a role in the occurrence of autism and related diseases in fetuses 
and children (Becerra et al., 2013; Roberts et al., 2013; Volk et al., 2013). The dis-
ruption of endocrine function by chemical pollutants has been proposed as a possi-
ble mechanism for autism and other neurological disorders (Calderón-Garcidueñas 
et  al., 2008; De Cock et  al., 2012). Through rigorous research, links have been 
established between air pollution exposure and fetal head size in late pregnancy, 
fetal growth (Liu et al., 2007), and low birth weight (Yucra et al., 2014). Several 
environmental factors, such as poor air quality, can affect many of the diseases 
linked to immune system dysfunction (Behrendt et al., 2014; Vawda et al., 2014). 
Finally, pollution has been linked to skin cancer (Drakaki et al., 2014). When fetuses 
and children are exposed to the risks listed above, they have a higher rate of morbid-
ity. There have been reports of fetal growth problems, low birth weight, and autism 
(Weisskopf et al., 2015).

�Overall Health Effects

Even healthy people can be harmed by polluted air, which can cause respiratory 
irritation or breathing difficulties while exercising or participating in outdoor activi-
ties. The real risk of negative impacts is determined by the existing health status of 
a person, the type and concentration of pollutants, and the length of time for which 
a person was exposed to polluted air.
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Fig. 13.7  Detrimental effects imparted by degrading air quality on human health

Those most susceptible to severe health problems from air pollution are as fol-
lows (Spare the Air, 2021):

•	 Individuals with heart disease, coronary artery disease or congestive heart failure
•	 Individuals with lung diseases such as asthma, emphysema, or chronic obstruc-

tive pulmonary disease (COPD)
•	 Pregnant women
•	 Outdoor workers
•	 Older adults and the elderly
•	 Children under the age of 14
•	 Athletes who exercise vigorously outdoors

People belonging to these population groups may have health problems at lower 
levels of air pollution exposure, or their health effects may be more severe. 
Particulate matter is a complicated mixture that includes soot, smoke, metals, 
nitrates, sulfates, and dust. The potential for particles to cause health problems is 
directly proportional to their size. Small particles (also known as PM2.5 or fine par-
ticulate matter) are the most dangerous because they circumvent the body’s natural 
defenses and can penetrate deep into the lungs and possibly into the circulatory 
system. Such particles can harm both the lungs and heart if exposed to them. To 
provide an overall perspective, the detrimental effects imparted by degrading air 
quality on human health are summarized in Fig. 13.7.
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13.8 � Conclusion

To convey a timeline of what has become a very large and complex field, the story 
recounted in this chapter has to be selective. It gives a complete and up-to-date picture 
of air quality and its effects on human health. It covers everything from discussing the 
AQI determination factor, various indexing systems, and air quality status to the nega-
tive effects of poor air quality on human health, including allergic reactions and respi-
ratory, cardiovascular, and related problems. It has extensive international coverage, 
with sections on air pollution sources, criteria for selecting the best air quality index, 
and air quality improvement during the COVID-19 lockdown. This chapter is an 
essential read for anybody interested in air pollution monitoring and regulation, as 
well as those worried about its influence on human health. It takes a multidisciplinary 
approach and covers a wide range of topics. The claim that the world’s air pollution 
problems have reached a trough is bold, and it could be proven incorrect. PM2.5, haze, 
winter pollution, heat-related mortality, and aerosols are only a few examples from 
around the world. Current research and laboratory-based, observation-based, and 
modeling-based analyses are used to solve these difficulties.

Concerns about the effects of air pollution have prompted governments and locals 
all over the world to impose restrictions on the burning of fossil fuels, industrial efflu-
ent, cigarette smoke, and aerosols, among other things. This legislation has frequently 
been enacted in response to shocking findings concerning the impact of pollution on 
health. Simultaneously, there have been considerable advancements in our ability to 
identify and quantify pollutants, as well as an increase in the number of urban and 
rural air pollution networks that monitor levels of contamination in the atmosphere. 
This chapter combines current knowledge of air pollution, climate change, and human 
health to present a complete review of these concerns, allowing readers to better grasp 
how they interact and affect air quality and public health. This is an additional essen-
tial resource for anyone researching the effects of climate change or air pollution on 
human health, as well as those developing policies to address the problem.
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Chapter 14
Significance of Geo-Visualization Tools 
for Pollution Monitoring

Fayma Mushtaq  and Majid Farooq 

Abstract  Geo-visualization tools have become of paramount significance in pollu-
tion monitoring, revolutionizing the way to comprehend and combat environmental 
challenges. By seamlessly integrating geographic information systems (GIS) with 
interactive mapping technologies, these tools provide real-time visualization of pol-
lution data, offering valuable insights into the spatial patterns and trends of pollut-
ants across various regions. Such accessibility and immediacy empower researchers, 
policymakers, and the public to make well-informed decisions and undertake tar-
geted actions to address pollution effectively. Through the overlaying of diverse 
data layers encompassing meteorological information, industrial zones, population 
density, and more, geo-visualization facilitates a comprehensive understanding of 
the multifaceted factors influencing pollution levels. By identifying pollution 
hotspots and tracking changes over time, these tools aid in developing evidence-
based environmental policies and formulating strategic pollution control measures. 
As technology continues to advance, the future of geo-visualization in pollution 
monitoring holds tremendous promise. The integration of cutting-edge technolo-
gies, such as artificial intelligence and machine learning, can enhance predictive 
capabilities, enabling proactive responses to potential environmental threats. 
Moreover, the widespread adoption of geo-visualization tools promotes transpar-
ency, citizen engagement, and a sense of collective responsibility in safeguarding 
the environment. Hence, these developments can lead to a healthier, more sustain-
able world to combat pollution and preserve the planet for future generations.

Keywords  Geo-visualization tools · Pollution monitoring · Real-time 
visualization · Spatial data
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14.1 � Introduction

Pollution monitoring refers to the systematic and continuous collection, analysis, 
and evaluation of various pollutants in the environment to assess their concentra-
tions, distribution, and impacts on human health, ecosystems, and natural resources. 
This process involves the measurement and tracking of pollutants, such as air pol-
lutants (e.g. particulate matter (PM), nitrogen dioxide, and sulphur dioxide), water 
pollutants (e.g. heavy metals, nutrients, and organic contaminants), and soil pollut-
ants (e.g. pesticides and industrial chemicals) (Chrabąszcz & Mróz, 2017; 
Manisalidis et al., 2020; Khan & Ali, 2018). The primary goal of pollution monitor-
ing is to provide reliable and up-to-date data that inform environmental policies, 
regulatory measures, and pollution control strategies. Timely and accurate data col-
lection, analysis, and visualization are essential for understanding the scope and 
impact of pollution on our planet (Blaschke et al., 2011; Pellerin et al., 2016).

�Importance of Real-Time Data and Spatial Analysis 
in Pollution Monitoring

	 (i)	 Timely Decision-Making: Real-time data allow for immediate identification 
of pollution spikes or incidents, enabling prompt responses to mitigate poten-
tial hazards. For instance, in the case of air pollution, real-time data can help 
trigger alerts for vulnerable populations or initiate measures to curb emis-
sions during adverse air quality events.

	 (ii)	 Early Detection of Pollution Sources: Real-time monitoring helps detect pol-
lution sources and patterns as they emerge, allowing authorities to investigate 
and address the root causes promptly. This is particularly crucial in the case 
of industrial accidents or spills that can have immediate and severe conse-
quences on the environment.

	 (iii)	 Understanding Pollution Transport and Dispersion: Spatial analysis of pollu-
tion data helps to model the transport and dispersion of pollutants in the envi-
ronment. This information is valuable for assessing the potential impacts of 
pollution on nearby communities and ecosystems, as well as predicting the 
spread of pollution over larger areas.

	 (iv)	 Identifying Pollution Hotspots: Geo-visualization tools and spatial analysis 
techniques assist in identifying pollution hotspots and areas with elevated 
pollutant concentrations. This knowledge enables targeted pollution control 
measures and resource allocation to areas that need immediate attention.

	 (v)	 Assessing Environmental Impact: Real-time data, combined with spatial anal-
ysis, allows for a comprehensive assessment of pollution’s impact on the 
environment. This assessment helps in evaluating the effectiveness of pollu-
tion control measures and identifying areas where further actions are needed.
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	 (vi)	 Public Awareness and Engagement: Accessible real-time pollution data 
empower the public to stay informed about environmental conditions in their 
surroundings. This awareness can lead to greater public engagement and 
advocacy for pollution reduction efforts.

	(vii)	 Integrating Diverse Data Sources: Spatial analysis facilitates the integration 
of data from various sources, such as ground-based monitoring stations, satel-
lite observations, and citizen science initiatives. This integration provides a 
more comprehensive and accurate view of pollution dynamics.

	(viii)	 Improving Environmental Modelling: Real-time data aid in refining environ-
mental models used to predict pollution trends and future scenarios. Such 
models are crucial for formulating long-term pollution control strategies and 
policies.

	 (ix)	 Emergency Response and Disaster Management: In the event of pollution-
related emergencies, real-time data and spatial analysis play a crucial role in 
coordinating emergency responses, evacuations, and containment efforts.

14.2 � Geo-Visualization Tools

Geo-visualization tools, also known as geospatial visualization tools, refer to a class 
of software applications and techniques that combine geographical data with visu-
alization methods to represent and display spatial information in a visual format 
(Nöllenburg, 2007). These tools aim to enhance the understanding, analysis, and 
communication of spatial patterns, relationships, and trends by presenting data on 
interactive maps, charts, graphs, and 3D models (MacEachren et al., 2004). Geo-
visualization tools are used in various fields, including geography, environmental 
sciences, urban planning, public health, transportation, and natural resource man-
agement (Tao, 2013). They play a crucial role in harnessing the power of geographi-
cal information and aiding decision-making processes related to location-based data 
(Wu et  al., 2013). These tools typically rely on geographic information system 
(GIS) technology, which allows for the integration, storage, analysis, and visualiza-
tion of spatial data from different sources. Geospatial visualization tools can work 
with diverse datasets, including satellite imagery, aerial photographs, topographic 
maps, geographic databases, GPS data, and real-time sensor data. Figure 14.1 shows 
various key features and functionalities of geo-visualization tools (Chen, 2019; 
Deng et al., 2019; Liao et al., 2016; Taştan & Gökozan, 2019; Zhao et al., 2020):

	 (i)	 Data Visualization: Presenting spatial data using maps, charts, graphs, and 
other graphical representations.

	 (ii)	 Interactive Mapping: Allowing users to interact with the data and maps, zoom 
in/out, pan, and click on map features to access detailed information.

	 (iii)	 Spatial Analysis: Conduct various spatial analyses, such as proximity analy-
sis, overlay analysis, and spatial statistics, to derive meaningful insights.
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Fig. 14.1  Key features and functionalities of geo-visualization tools: (a)  data visualization, 
(b) interactive mapping, (c) spatial analysis, and (d) data mashups

	 (iv)	 3D Visualization: Creating three-dimensional representations of landscapes, 
buildings, and terrain for immersive experiences. 3D visualization in pollu-
tion monitoring is a cutting-edge approach that leverages the power of three-
dimensional representation to enhance the understanding, analysis, and 
communication of pollution data (Liu et al., 2019; Wang et al., 2013).

	 (v)	 Real-Time Data Integration: Handling real-time data feeds and updating 
visualizations in real-time for dynamic and up-to-date information.

	 (vi)	 Web-Based and Mobile Platforms: Enabling access to geo-visualizations 
through web-based applications and mobile devices, making it accessible to a 
wider audience.

	(vii)	 Storytelling and Presentation: Supporting the creation of interactive and 
engaging visual narratives to convey complex spatial information effectively.

	(viii)	 Data Mashups: Integrating spatial data with non-spatial datasets from other 
sources to create comprehensive visualizations.
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Fig. 14.2  (a) 3D visualization, (b) web-mapping platforms, (c) virtual reality, and (d) aug-
mented reality

�Types of Geo-Visualization Tools

Geo-visualization tools encompass a variety of technologies and techniques that 
integrate geographical data with visualization methods (Kwan, 2004). Some of the 
main types of geo-visualization tools (Fig. 14.2) (Bwambale et al., 2022; Kulawiak 
et al., 2010; La Guardia et al., 2022) include the following:

Geographic Information Systems (GIS)  GIS is one of the foundational geo-
visualization tools. It is a software system designed to capture, store, manipulate, 
analyse, and present spatial and geographic data. GIS allows users to create, edit, 
and analyse digital maps, enabling them to gain insights into spatial relationships, 
perform spatial queries, and conduct spatial analysis.

Remote Sensing  Remote sensing involves the use of satellites, aircraft, drones, or 
other platforms to capture data about the Earth’s surface from a distance. The data 
collected through remote sensing, such as satellite imagery and aerial photographs, 
are crucial for creating maps, monitoring environmental changes, and conducting 
land-use studies.
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Web-Based Mapping Platforms  Web-based mapping platforms, also known as 
online mapping tools, provide users with the ability to create and share interactive 
maps over the Internet. These platforms typically offer a user-friendly interface, 
making it easy for individuals and organizations to visualize spatial data without the 
need for advanced GIS skills. Examples include Google Maps, OpenStreetMap, 
Leaflet, and Mapbox.

3D Visualization Tools  3D visualization tools enable the creation of three-
dimensional representations of landscapes, buildings, and terrain. These tools are 
used in urban planning, architecture, and environmental modelling to create immer-
sive and realistic visualizations. Applications such as Google Earth and CityEngine 
are examples of 3D visualization tools.

Data Visualization Libraries and Software  Various data visualization libraries and 
software, such as D3.js, Matplotlib, Tableau, and Microsoft Power BI, provide func-
tionalities to create interactive and static visualizations using spatial data. These 
tools can be integrated with GIS and other data sources to produce dynamic and 
informative visualizations.

Augmented Reality (AR) and Virtual Reality (VR)  AR and VR technologies are 
emerging as powerful geo-visualization tools that overlay digital information onto 
the real world or create entirely virtual environments. They are being used in fields 
such as urban planning, cultural heritage preservation, and environmental education 
to offer immersive and interactive experiences.

Earth Observation and Sensor Networks  Earth observation systems and sensor 
networks gather data from various environmental sensors, such as air quality moni-
tors, weather stations, and water quality sensors. The data collected from these sys-
tems are visualized on maps and used for real-time monitoring, early warning 
systems, and environmental research.

Story Maps  Story maps are a form of geo-visualization that combines maps with 
multimedia content such as images, videos, and text to tell engaging and informa-
tive stories. These narrative-driven maps are commonly used for educational pur-
poses, storytelling, and public awareness campaigns.

14.3 � Integration of Spatial Data with Pollution Monitoring 
via Geo-Visualization Tools

Geo-visualization tools play a pivotal role in pollution monitoring by seamlessly 
integrating spatial data and pollution-related information. These tools serve as a 
fundamental framework, allowing for the storage, management, and analysis of 

F. Mushtaq and M. Farooq



359

diverse datasets from various sources, including remote sensing satellites, ground-
based sensors, weather stations, and mobile devices. Pollution-related data, such as 
air quality measurements, water quality samples, and soil contamination levels, are 
georeferenced and organized in geographic information system (GIS) databases. 
This spatial integration enables the creation of interactive and dynamic pollution 
maps, where pollution concentration levels are represented using colour gradients, 
symbols, or choropleth maps, providing a clear spatial representation of pollution 
distribution. Moreover, geo-visualization tools facilitate temporal visualization, ani-
mating pollution data to observe changes over time, identify seasonal variations, 
and track long-term trends. Spatial analysis techniques, such as interpolation meth-
ods and clustering algorithms, are employed to estimate pollution levels at unsam-
pled locations and identify pollution hotspots with elevated pollutant concentrations 
(Çöltekin et al., 2020). Additionally, some tools handle real-time data feeds from 
sensors, enabling continuous monitoring of pollution levels and prompt responses 
to sudden pollution spikes or incidents. By integrating multiple layers of spatial 
data, such as land use, population density, and transportation networks, with pollu-
tion data, these tools create multilayered maps that help identify potential pollution 
sources, vulnerable populations, and areas of concern (Badach et al., 2020). With 
their interactive features, users can explore pollution data dynamically, zoom in/out, 
click on map features, and filter data based on specific criteria, gaining deeper 
insights into pollution patterns. Geo-visualization tools go beyond data analysis and 
visualization, empowering stakeholders, policymakers, and the public through sto-
rytelling and communication. By creating interactive story maps and dashboards, 
these tools combine pollution data with multimedia content to effectively commu-
nicate pollution-related information. This communication enhances public aware-
ness, fosters engagement, and promotes informed decision-making in environmental 
management and policy formulation. The significance of geo-visualization tools in 
pollution monitoring lies in their ability to seamlessly integrate spatial data, provide 
real-time monitoring, facilitate interactive exploration, and create comprehensive 
visualizations (Brovelli et al., 2017; Xu et al., 2011). By harnessing the power of 
geographical information, these tools enable researchers, environmentalists, and 
policymakers to understand pollution distribution, identify sources, and develop tar-
geted pollution control strategies for a sustainable and healthier environment.

14.4 � Real-Time Data Collection and Visualization

Real-time data collection and visualization are essential components of modern pol-
lution monitoring systems. With the advent of advanced sensors and Internet of 
Things (IoT) devices (Fig.  14.3), environmental data can now be collected and 
transmitted in real time, allowing for immediate analysis and visualization 
(Montanaro et al., 2022). This capability enables researchers, policymakers, and the 
public to stay informed about pollution levels and respond promptly to changing 
environmental conditions. Sensors and IoT devices for pollution data collection 
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Fig. 14.3  Layered structure of the Internet of Things (IoT). (Source: Dhingra et al., 2019)

(Cloete et al., 2016; Pau & Arena, 2022; Rollo et al., 2021; Yin et al., 2021) are 
described below:

Air Quality Sensors  These sensors measure various air pollutants, such as particu-
late matter (PM), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), carbon 
monoxide (CO), and volatile organic compounds (VOCs). They are commonly 
deployed in urban areas and industrial zones to monitor air quality.

Water Quality Sensors  Water quality sensors (Fig. 14.4) assess parameters such as 
pH, dissolved oxygen, turbidity, temperature, and concentrations of contaminants 
such as heavy metals, nutrients, and organic pollutants. They are used in rivers, 
lakes, and coastal regions to monitor water pollution.

Soil Sensors  Soil sensors measure soil moisture, temperature, and nutrient levels. 
They are used to assess soil health, nutrient content, and potential contamination.

Weather Stations  Weather stations collect meteorological data, including tempera-
ture, humidity, wind speed, and direction. Weather conditions can influence pollu-
tion levels and need to be considered in pollution monitoring.

Remote Sensing Satellites  Satellites equipped with remote sensing instruments 
capture data on a global scale. They provide valuable information for large-scale 
pollution monitoring and environmental assessment.

�Advantages of Real-Time Data for Pollution Monitoring

Real-time data collection and visualization have revolutionized pollution monitor-
ing, providing critical advantages in addressing environmental challenges. One of 
the key benefits is the prompt detection of pollution events and incidents. Real-time 
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Fig. 14.4  In situ sensor-based real-time mapping and monitoring of water quality

data enable rapid identification of sudden spikes in pollution levels, which is crucial 
during emergencies to initiate swift responses and minimize the impact on human 
health and the environment. Additionally, this capability facilitates the development 
of early warning systems for pollution. Alerts can be generated when pollution lev-
els surpass predetermined thresholds, empowering authorities to take preventive 
actions or issue public advisories, further enhancing preparedness and response 
measures. Continuous monitoring is another significant advantage of real-time data 
collection. The ability to monitor pollution levels continuously offers a more com-
prehensive and accurate understanding of pollution patterns over time (Dias & 
Tchepel, 2018). This continuous stream of data provides researchers, policymakers, 
and environmentalists with a real-time view of pollution dynamics, enabling them 
to detect trends, identify potential pollution sources, and assess the effectiveness of 
pollution control measures. The power of real-time data lies in its ability to drive 
data-driven decision-making. Decision-makers are empowered with up-to-date 
information to make informed choices regarding pollution control measures, 
resource allocation, and the formulation of environmental policies. With access to 
real-time data, stakeholders can respond more effectively to changing pollution 
conditions and prioritize actions that have the most significant impact on pollution 
reduction (Tang et al., 2022). Moreover, real-time data can be made accessible to the 
public through interactive web platforms and mobile applications, fostering public 
awareness about pollution issues. This increased awareness encourages community 
engagement in environmental protection efforts, as citizens become actively 
involved in understanding pollution trends, reporting incidents, and supporting pol-
lution reduction initiatives. Furthermore, real-time data play a crucial role in vali-
dating pollution models and predictions. By comparing real-time data with model 
outputs, researchers can ensure the accuracy and reliability of their predictive 

14  Significance of Geo-Visualization Tools for Pollution Monitoring



362

models, enhancing their ability to forecast future pollution trends and potential sce-
narios accurately (Nourani et al., 2014). Real-time data serve as a valuable resource 
for conducting scientific research and studies on pollution’s short-term and long-
term impacts. Researchers can analyse real-time data to assess the environmental 
and health implications of pollution, aiding in the development of evidence-based 
strategies for pollution mitigation and sustainable environmental management. 
Real-time data collection and visualization offer a range of interconnected advan-
tages, from prompt detection and early warning systems to continuous monitoring, 
data-driven decision-making, public engagement, model validation, and scientific 
research. These benefits underscore the critical role of real-time data in addressing 
pollution challenges and advancing environmental protection efforts.

14.5 � Spatial Analysis and Data Integration

Spatial analysis and data integration are two essential components of the geo-
visualization process that enhance our understanding of spatial patterns, relation-
ships, and trends in various environmental phenomena, including pollution. These 
methodologies are used to analyse and interpret spatial data, allowing researchers 
and decision-makers to gain valuable insights and make informed decisions. 
Common spatial analysis techniques (Janssen et al., 2008; Lawson & Waller, 1996; 
Liu et al., 2013, 2022; Zhang, 2006) used for pollution data are described below:

Spatial Interpolation  Spatial interpolation methods estimate pollution values at 
unsampled locations based on measured data from nearby sampling points. 
Techniques such as inverse distance weighting (IDW), kriging, and radial basis 
functions are commonly used for this purpose. Spatial interpolation helps create 
continuous pollution maps, providing a more comprehensive view of pollution dis-
tribution across the study area (Fig. 14.5).

Spatial Clustering  Spatial clustering techniques identify clusters or groups of 
locations with similar pollution characteristics. Clustering algorithms, such as 
K-means clustering and hierarchical clustering, are employed to group spatially 
related pollution data. Identifying pollution hotspots through clustering is crucial 
for prioritizing pollution control measures in areas with elevated pollutant concen-
trations (Fig. 14.6).

Buffer Analysis  Buffer analysis involves creating proximity zones, or buffers, 
around specific points or features, such as pollution sources or sensitive areas. This 
technique assesses the influence of pollution sources on nearby regions and helps 
identify potential areas at risk of pollution exposure.

Spatial Autocorrelation  Spatial autocorrelation measures the degree of similarity 
between pollution values at different locations. Positive spatial autocorrelation 
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Fig. 14.5  IDW-based spatial interpolation and distribution of influence on air pollution, social, 
and geo-meteorological parameters. (Source: Hassan et al., 2021)

indicates that similar pollution levels tend to occur near each other, while negative 
spatial autocorrelation suggests dissimilar values are adjacent (Fig.  14.7). 
Understanding spatial autocorrelation helps identify spatial trends and patterns in 
pollution data.

Point Pattern Analysis  Point pattern analysis evaluates the distribution of pollution 
data points in space to detect clusters, regular patterns, or random arrangements. It 
is particularly useful for studying the spatial distribution of pollution sources and 
understanding their potential impact on the surrounding environment.

Overlay Analysis  Overlay analysis involves overlaying multiple spatial datasets to 
identify areas with overlapping attributes. By combining pollution data with other 
environmental factors, such as land use, vegetation, or hydrological features, 
researchers can identify areas of potential concern or areas where pollution sources 
coincide with vulnerable populations.

Spatial Statistics  Spatial statistics techniques, including spatial correlation, spatial 
regression, and geographically weighted regression (GWR), are used to analyse the 
relationship between pollution and other spatial variables. These methods help 
researchers uncover spatially varying relationships and assess the influence of envi-
ronmental factors on pollution levels.

Spatial Join and Aggregation  Spatial join and aggregation techniques link pollu-
tion data to specific geographic areas, such as administrative boundaries or grid 
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Fig. 14.6  The global Moran scatter plot displayed spatial clustering in different years. (Source: 
Peng et al., 2023)

cells. This allows for data aggregation and analysis at different spatial scales, facili-
tating comparisons and identifying regional variations in pollution levels.

14.6 � Creating Pollution Maps Using Geo-Visualization Tools

Creating pollution maps using geo-visualization tools is a powerful and effective 
way to visualize and communicate pollution data in a spatial context (Balla et al., 
2022; Xu et al., 2011). These maps provide a clear and intuitive representation of 
pollution patterns, trends, and hotspots, enabling researchers, policymakers, and the 
public to understand the distribution of pollutants across a specific area. A step-by-
step guide to creating pollution maps using geo-visualization tools is described in 
Table 14.1.
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Fig. 14.7  Spatial autocorrelation of air pollution in China. (Source: Qi et al., 2022)

14.7 � Visualization Techniques for Different Types 
of Pollution (Air, Water, Soil, and Noise)

Visualization techniques for different types of pollution (air, water, soil, and noise) 
are essential for effectively communicating the complex spatial patterns and varia-
tions of pollutants in the environment. Different types of pollution require specific 
visualization methods to showcase their unique characteristics. The visualization 
techniques for each type of pollution are described below:

�Air Pollution Visualization

Heatmaps  Heatmaps (Fig. 14.8) are commonly used to visualize air pollution data 
(Li et al., 2016). They use colour gradients to represent pollution concentration lev-
els, with hotter colours (e.g. red) indicating higher pollutant levels and cooler 
colours (e.g. blue) representing lower concentrations. Heatmaps provide an intuitive 
representation of pollution hotspots and spatial patterns.
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Table 14.1  Steps to prepare pollution maps using geo-visualization tools

Steps Description

Step 1: Data 
Collection and 
Preparation

Collect pollution data from various sources, such as air quality monitors, 
water quality sensors, and other environmental monitoring devices. Ensure 
that the data are properly formatted and georeferenced with latitude and 
longitude coordinates. If needed, transform and standardize the data to 
ensure consistency.

Step 2: Choose a 
Geo-Visualization 
Tool

Select a geo-visualization tool that best suits your needs and proficiency 
level. Popular tools include ArcGIS, QGIS, Carto, Mapbox, and Google 
Earth, among others. Some tools are more user-friendly, while others offer 
advanced capabilities for spatial analysis and data visualization.

Step 3: Import 
Data into the 
Geo-Visualization 
Tool

Import the pollution data into the chosen geo-visualization tool. Most tools 
support various data formats, such as CSV, Excel, shapefile, or 
GeoJSON. Georeferenced data will be automatically plotted on the map.

Step 4: Styling and 
Symbology

Customize the appearance of the pollution data on the map using styling 
and symbology options. Choose a suitable colour scheme or gradient to 
represent pollution levels. For example, use a colour ramp to display 
varying levels of pollution concentration, with red indicating high levels 
and green indicating low levels.

Step 5: Spatial 
Interpolation 
(Optional)

If pollution data are sparse or have missing values at specific locations, 
consider using spatial interpolation techniques provided by the geo-
visualization tool. Spatial interpolation will estimate pollution values at 
unsampled locations, creating a continuous and smooth pollution surface 
for the map.

Step 6: Overlay 
with Basemaps and 
Other Data

Overlay the pollution data with relevant basemaps, such as satellite 
imagery or street maps, to provide geographical context. Additionally, 
consider overlaying other spatial datasets, such as land use, population 
density, or transportation networks, to understand potential correlations 
between pollution and environmental factors.

Step 7: Add 
Interactive 
Elements 
(Optional)

Enhance the map’s interactivity by adding elements like tooltips or pop-ups 
that display detailed information about pollution levels when users click on 
data points. This helps users gain more insights into specific pollution 
measurements.

Step 8: Time Series 
Visualization 
(Optional)

If pollution data have a temporal component, create time series 
visualizations to show how pollution levels change over time. Animating 
the map or using a time slider allows users to see temporal trends and 
seasonal variations in pollution.

Step 9: Publish and 
Share

Once the pollution map have been created, consider publishing it on 
interactive web platforms or embedding it in presentations or reports. 
Web-based maps are easily shareable and allow others to explore the 
pollution data and its spatial patterns.

Contour Maps  Contour maps (Fig.  14.9) show lines connecting areas with the 
same pollutant concentration (Sivaraman et al., 2013). These lines, called contour 
lines, help visualize the elevation of pollution levels across the study area, providing 
insights into the spatial distribution of pollutants.
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Animated Time Series Maps  For air pollution data with a temporal component, 
animated time series maps are useful. These maps display changes in pollution lev-
els over time, helping to identify temporal trends and seasonal variations in air qual-
ity (Rolph et al., 2017).

�Water Pollution Visualization

Chloropleth Maps  Chloropleth maps use colour shades to depict different levels of 
water pollution at various locations (Trombadore et al., 2020). This visualization 
technique allows users to quickly understand the spatial distribution of pollutants in 
water bodies.

Water Quality Index Maps  Water quality index maps combine multiple water 
quality parameters into a single index, allowing for an overall assessment of water 
pollution (Wang et al., 2019). The index is then visualized on maps to indicate areas 
with good or poor water quality (Fig. 14.10).

Water Flow Animation  In the case of river or stream pollution, water flow anima-
tion can show how pollutants disperse and move over time. This technique helps 
identify potential sources of pollution and how they affect downstream areas (Zhang 
et al., 2011).

�Soil Pollution Visualization

3D Surface Visualization  Soil pollution data can be visualized in 3D to represent 
the depth and distribution of contaminants within the soil profile. 3D surface visu-
alizations provide a clear understanding of the extent of soil contamination 
(Fig. 14.11) (Seignez et al., 2010).

Contamination Plume Mapping  Contamination plume maps illustrate the spatial 
distribution of soil contaminants from a specific source (Brahmi et al., 2021). These 
maps help identify the direction and extent of pollutant migration within the soil.

Risk Maps  Soil risk maps combine soil contamination data with information about 
potential exposure pathways (e.g. agricultural activities and residential areas) to 
assess the risk of exposure to pollutants (Lourenço et al., 2010). These maps help 
prioritize areas for remediation efforts (Fig. 14.12).
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Fig. 14.8  A new air quality heatmap by the World Health Organization

Fig. 14.9  Ambient air quality interpolated contour map. (Source: UEPPCB Data)
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Fig. 14.10  Water quality index map showing different levels of pollution. (Source: Mushtaq 
et al., 2015)

�Noise Pollution Visualization

Noise Contour Maps  Noise contour maps use contour lines to depict areas with the 
same noise level (Merchan & Diaz-Balteiro, 2013). These lines connect locations 
with equal noise decibel (dB) values, allowing viewers to identify areas of high- and 
low-noise intensity. This visualization technique helps in understanding noise prop-
agation and identifying noise hotspots near busy roads, airports, or industrial zones.

Heatmaps  Similar to air pollution heatmaps, noise pollution heatmaps use colour 
gradients to represent noise levels. Hotter colours represent higher noise levels, 
while cooler colours indicate lower noise levels. Heatmaps provide an intuitive 
visual representation of noise distribution and help identify areas with excessive 
noise (Berger-Tal et al., 2019).

Time-Lapse Noise Maps  Time-lapse noise maps show how noise levels change 
over time in a specific area. By animating noise data at different time intervals, 
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Fig. 14.11  3D representation of predicted distribution of heavy metals in reclaimed soil based on 
kriging and Mkriging method by Zhang et al., 2018 (Source: Zhang et al., 2018)

viewers can observe noise patterns during various hours of the day or days of the 
week. Time-lapse noise maps are valuable for understanding noise variations, espe-
cially in urban environments with fluctuating noise levels (Darbyshire et al., 2019).

Interactive Noise Monitoring Platforms  Interactive web-based platforms allow 
users to access real-time noise data and explore noise levels in different locations. 
These platforms often provide interactive features, such as map zooming and filter-
ing by time, enabling users to analyse noise data at specific locations and periods 
(Berti Suman & Van Geenhuizen, 2020).

Noise Source Mapping  Noise source mapping involves plotting the locations of 
major noise sources, such as highways, railways, airports, and industrial facilities, 
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Fig. 14.12  Pollution risk map (Source: Amin Al Manmi et al., 2019)

on a map. By visualizing noise sources along with noise levels, decision-makers can 
assess the contribution of different sources to overall noise pollution.

Noise Pollution Severity Index (NPSI) Maps  NPSI maps combine multiple noise 
indicators to create an overall index that represents the severity of noise pollution in 
an area. These maps provide a concise visualization of noise pollution levels across 
regions and help prioritize noise control measures (Fig. 14.13).

Noise Monitoring Network Visualization  For cities or regions with a network of 
noise monitoring stations, visualizing these stations on a map helps to assess the 
spatial coverage of noise data collection. It also aids in identifying gaps in the moni-
toring network and the need for additional monitoring stations.

14.8 � Empowering the Public Through 
Geo-Visualization Tools

Geo-visualization tools have become powerful instruments for empowering the 
public with valuable information and insights about their surroundings (Table 14.2). 
By making spatial data accessible and easy to understand, these tools bridge the gap 
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Fig. 14.13  Noise maps of Seoul, South Korea. (Source: Shim et al., 2016)

between complex data and public awareness, enabling individuals to actively engage 
in environmental, social, and civic matters.

14.9 � Crowdsourced Pollution Data and Their Reliability

Crowdsourced pollution data refer to environmental information collected and con-
tributed by the public through various means, such as mobile applications, online 
platforms, or community-based monitoring initiatives. While crowdsourcing offers 
many advantages, such as increased data coverage and real-time monitoring capa-
bilities, the reliability of crowdsourcing pollution data can vary based on several 
factors:

Data Quality and Accuracy  The reliability of crowdsourced pollution data heavily 
depends on the quality and accuracy of the information submitted by the public. 
Since crowdsourcing involves nonexperts, there is a risk of data errors, misinterpre-
tations, or inconsistencies, which could affect the overall reliability of the data.
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Table 14.2  Geo-visualization tools for empowering the public

Empowering the public with geo-visualization tools for pollution monitoring

Accessible 
information

Geo-visualization tools provide a user-friendly interface that allows the 
public to access a wide range of geographic information. By presenting data 
through interactive maps and visualizations, complex datasets, such as 
environmental pollution levels, land use patterns, or transportation 
networks, become easily comprehensible to nonexperts.

Environmental 
awareness

With geo-visualization tools, the public can explore real-time environmental 
data, such as air quality, water pollution, and climate trends. This increased 
awareness empowers individuals to understand the environmental 
challenges faced by their communities, inspiring them to take action to 
protect and preserve their local ecosystems.

Community 
engagement

Geo-visualization tools encourage community engagement by enabling 
users to contribute data and share their observations. Citizen science 
initiatives and community mapping projects allow the public to participate 
actively in environmental monitoring, helping to identify pollution sources, 
track changes, and advocate for positive change.

Informed 
decision-making

Public access to spatial data through geo-visualization tools promotes 
informed decision-making. Whether it is choosing an eco-friendly 
transportation route, making land use planning decisions, or participating in 
community development projects, individuals armed with relevant spatial 
information can make more sustainable choices.

Disaster 
preparedness and 
response

During emergencies and natural disasters, geo-visualization tools play a 
crucial role in empowering the public with real-time information. By 
visualizing disaster-related data, such as flood maps, evacuation routes, or 
wildfire spread, individuals can take appropriate measures to protect their 
safety and assets.

Advocacy and 
policy support

The visual impact of geo-visualization tools can bolster advocacy efforts for 
environmental and social causes. By creating compelling maps and 
visualizations, individuals and organizations can communicate their 
concerns to policymakers and support evidence-based policy development.

Environmental 
education

Geo-visualization tools enhance environmental education by providing 
interactive learning experiences. Students can explore environmental 
phenomena, ecological systems, and climate change effects on a global 
scale, fostering a deeper connection with nature and encouraging a sense of 
responsibility for the planet

Transparent 
governance

Governments and public agencies can use geo-visualization tools to enhance 
transparency and citizen engagement. By sharing spatial data on 
infrastructure projects, public spending, or urban planning, governments 
foster public trust and encourage collaboration in decision-making 
processes.

Calibration and Standardization  Ensuring consistency in data collection methods 
and units of measurement is crucial for reliable crowdsourced pollution data. Lack 
of calibration and standardization across different contributors may result in dis-
crepancies and make data integration challenging.

Data Validation and Verification  The absence of formal validation processes can 
raise concerns about the reliability of crowdsourced pollution data. Verification 
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mechanisms, such as cross-referencing with official monitoring stations or compar-
ing crowdsourced data with established datasets, can enhance data reliability.

Bias and Representation  Crowdsourced data may exhibit geographical bias, as 
certain areas with a higher density of contributors may be overrepresented, while 
remote or less populated regions may be underrepresented. This bias can impact the 
accuracy and completeness of pollution data across different locations.

User Engagement and Participation  Maintaining consistent user engagement and 
participation is essential for the reliability of crowdsourced data. If contributors lose 
interest or stop actively providing data, the coverage and continuity of pollution 
monitoring could be compromised.

Data Privacy and Security  Ensuring data privacy and security is crucial for build-
ing trust and encouraging public participation. Inadequate measures to protect user 
data could deter people from contributing, potentially affecting data reliability.

Data Aggregation and Analysis  Effectively aggregating and analysing crowd-
sourced pollution data requires robust methodologies. Without appropriate data pro-
cessing techniques, the overall reliability and usefulness of the collected data could 
be limited.

14.10 � Citizen Science Projects for Pollution Monitoring 
in India

Citizen science projects for pollution monitoring in India have gained momentum in 
recent years, empowering individuals to actively participate in environmental moni-
toring and contribute to data-driven decision-making. These initiatives leverage the 
power of public engagement and collaboration to collect pollution data from diverse 
locations across the country. Some notable citizen science projects for pollution 
monitoring in India are presented in Table 14.3.

14.11 � Examples of Real-Time Monitoring/Visualization 
of Pollution

�World’s Air Pollution: Real-Time Air Quality Index (https://
waqi.info/#/c/6.475/8.915/1.9z)

The “World Air Quality Index” (WAQI) website, a real-time air quality monitoring 
platform, offers air pollution data for locations worldwide (Fig. 14.14). The website 
displays an interactive map with a pin at the specified coordinates. Clicking on the 
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Table 14.3  Citizen science projects

Citizen science projects for pollution monitoring in India

IndiaSpend Air 
Quality Project

IndiaSpend, a data-driven journalism platform, initiated the IndiaSpend Air 
Quality Project to engage citizens in monitoring air pollution. Through the 
use of low-cost, portable air quality monitors, volunteers collect real-time 
data on air quality parameters such as particulate matter (PM2.5 and PM10), 
nitrogen dioxide (NO2), and ozone (O3). The collected data are then shared on 
a public platform to raise awareness about air pollution and advocate for 
cleaner air.

Care for Air 
Project (CAP)

Care for Air Project, initiated by the Centre for Environmental Health, 
monitors air pollution levels in various Indian cities. Citizen volunteers use 
portable air quality monitors to measure PM2.5 levels at different locations. 
The data are aggregated and analysed to provide real-time air quality updates 
and identify pollution hotspots.

India 
Biodiversity 
Portal

The India Biodiversity Portal encourages citizen scientists to document and 
monitor various aspects of biodiversity, including pollution indicators. Users 
can report observations of pollution-affected flora and fauna, as well as 
document changes in ecosystems due to pollution stress.

Marine Debris 
Tracker

The Marine Debris Tracker app, although not specific to India, enables 
citizens to report and track marine litter and debris, which can include plastic 
pollution, on coastlines and beaches. This project helps raise awareness about 
marine pollution and its impact on coastal ecosystems.

Citizen Water 
Monitoring 
Network 
(CWMN)

The Citizen Water Monitoring Network, led by the Central Pollution Control 
Board (CPCB) in collaboration with various state pollution control boards, 
involves citizens in monitoring water quality across India. Volunteers collect 
water samples from rivers, lakes, and other water bodies, and the data are 
integrated into the national water quality database.

Water Warriors 
Project

The Water Warriors Project, initiated by the Wildlife Trust of India, engages 
local communities and volunteers in monitoring and conserving water 
resources, including assessing pollution levels in rivers and wetlands.

Fig. 14.14  Real-time air quality index (https://waqi.info/#/c/6.475/8.915/1.9z)
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pin reveals air quality data for the corresponding location. The information typically 
includes the following:

	 (i)	 Air Quality Index (AQI): The AQI value provides an overall assessment of air 
quality at a specific location. It is calculated based on the concentrations of 
various air pollutants, such as PM2.5, PM10, NO2, SO2, O3, CO, and VOCs.

	(ii)	 Pollutant Concentrations: The website shows the current concentrations of 
individual air pollutants contributing to the AQI value. This information helps 
users understand the major contributors to air pollution at that particular 
location.

	(iii)	 AQI Colour Code: The AQI value is colour-coded to indicate the level of air 
quality. Common colour categories are “Good” (Green), “Moderate” (Yellow), 
“Unhealthy for Sensitive Groups” (Orange), “Unhealthy” (Red), “Very 
Unhealthy” (Purple), and “Hazardous” (Maroon).

	(iv)	 Health Impacts: The website provides descriptions of potential health impacts 
associated with each AQI level. This information helps individuals understand 
the health risks of exposure to varying air quality conditions.

	(v)	 Time and Date: The time and date of the latest air quality data update are usu-
ally displayed, ensuring that users are aware of the data’s freshness.

�Bhuvan Ganga Geoportal (https://bhuvan-app1.nrsc.gov.in/
mowr_ganga/)

The Bhuvan Ganga Geoportal is an initiative by the National Remote Sensing 
Centre (NRSC) under the Ministry of Water Resources, Government of India 
(Fig. 14.15). The Bhuvan Ganga Geoportal aims to provide comprehensive geospa-
tial information related to the Ganga River Basin in India. This portal serves as a 

Fig. 14.15  Bhuvan Ganga Geoportal (https://bhuvan-app1.nrsc.gov.in/mowr_ganga/)
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valuable resource for tracking water pollution and understanding various aspects of 
the Ganga River’s hydrology and environment. Key features of the Bhuvan Ganga 
Geoportal include the following:

	 (i)	 Ganga River Basin Information: The portal offers detailed information about 
the Ganga River Basin, including its geographical extent, drainage patterns, 
and major river systems.

	 (ii)	 Water Quality Monitoring: The Bhuvan Ganga Geoportal provides access to 
water quality monitoring data for various stretches of the Ganga River and its 
tributaries. These data include measurements of key water quality parameters, 
such as dissolved oxygen (DO), biochemical oxygen demand (BOD), total 
coliforms, and other pollutants.

	(iii)	 River Morphology and Geomorphology: The portal offers data on the mor-
phology and geomorphology of the Ganga River, providing insights into river 
channel dynamics and sediment transport processes.

	(iv)	 Flood Monitoring and Management: The Bhuvan Ganga Geoportal provides 
real-time flood monitoring information, including flood extent mapping and 
flood risk assessment for the Ganga River Basin.

	 (v)	 Satellite Imagery and Remote Sensing Data: The portal offers satellite imag-
ery and remote sensing data, allowing users to analyse land cover, land use 
changes, and other environmental parameters within the Ganga River Basin.

	(vi)	 Data Visualization: The portal provides interactive maps and data visualiza-
tion tools to facilitate the exploration and analysis of various geospatial data-
sets related to the Ganga River.

	(vii)	 Stakeholder Engagement: The Bhuvan Ganga Geoportal aims to engage vari-
ous stakeholders, including researchers, policymakers, and the public, in 
understanding and managing the Ganga River Basin’s water resources and 
environmental health.

SDG 6  – Hydrology Thematic Exploitation Platform (TEP) (http://sdg6-
hydrology-tep.eu/)  This is an online platform developed as part of the European 
Space Agency’s (ESA) Earth Observation (EO) science for society program 
(Fig. 14.16). The main objective of this platform is to support the United Nations 
Sustainable Development Goal 6 (SDG 6), which focuses on ensuring the availabil-
ity and sustainable management of water and sanitation for all. SDG 6 – Hydrology 
TEP leverages Earth observation data and advanced hydrological models to provide 
valuable information and tools for water resource monitoring, assessment, and man-
agement. It offers a range of features and services, including access to satellite 
imagery, hydrological models, and data processing capabilities. By providing a 
wealth of hydrological data and analysis tools, SDG 6 – Hydrology TEP contributes 
to sustainable water management practices and helps address water-related chal-
lenges on a global scale.
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Fig. 14.16  SDG 6  – Hydrology Thematic Exploitation Platform (TEP) (http://sdg6-
hydrology-tep.eu/)

Fig. 14.17  Real time, 3D animated air pollution map (https://www.iqair.com/earth?nav=)

IQAir Earth (https://www.iqair.com/earth?nav=)  This online platform provides 
real-time air quality data and information about air pollution on a global scale 
(Fig. 14.17). IQAir’s Earth website offers a comprehensive platform for users to 
access real-time air quality data from locations worldwide. This data includes infor-
mation on current air quality levels, types of pollutants present, and health recom-
mendations derived from data collected by air quality monitoring stations. 
Additionally, the website employs interactive 3D maps, allowing users to visually 
analyze air quality information, including pollution levels, trends, and patterns 
across various regions. IQAir also provides valuable insights and educational 
resources regarding air quality, pollution sources, and the health consequences of 
poor air quality. Furthermore, IQAir is recognized for its air purification solutions, 
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including air purifiers, designed to enhance indoor air quality, and information 
about these products and related solutions may be available on the website. The site 
likely utilizes the Air Quality Index (AQI) to categorize and assess air quality, 
simplifying users’ comprehension of the potential health impacts associated with 
the air in their respective areas. For convenient access to real-time air quality data, 
IQAir may also offer mobile apps that users can install on their smartphones or 
tablets. 

Groundwater Assessment Platform (GAP Maps) (https://www.gapmaps.org/
Home/Public#)  Groundwater Assessment Platform (GAP) website hosts the infor-
mation concerning geogenic groundwater contamination (Fig. 14.18). The platform 
offers opportunities for data sharing, sharing of case studies and field experiences, 
user interaction, and the ability to craft probabilistic maps for any global region. 
Within GAP Maps, users have the capability to visualize and print existing data and 
models, manipulate and model their own data, and produce hazard maps. 
Furthermore, the GAP Wiki encompasses a wide range of information pertaining to 
geogenic contamination.

14.12 � Potential of AI and Machine Learning in Pollution 
Data Analysis and Visualization

In recent years, the field of pollution monitoring has seen remarkable advancements 
in geo-visualization technology, revolutionizing the way we perceive and  
analyse environmental data. Geo-visualization technology leverages geographic 

Fig. 14.18  Global arsenic concentration (https://www.gapmaps.org/Home/Public#)
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information systems (GIS) and interactive mapping tools to create dynamic, real-
time visual representations of pollution levels across various regions. These 
advancements have enabled researchers, policymakers, and the general public to 
gain a deeper understanding of the spatial distribution and trends of pollution, mak-
ing it easier to identify pollution hotspots and devise targeted interventions.

In addition, the potential of AI and machine learning in pollution data analysis 
and visualization has been a game-changer. AI algorithms can process vast amounts 
of pollution data quickly and efficiently, extracting valuable insights and patterns 
that were once difficult to discern. Machine learning models can predict pollution 
levels based on historical data and various environmental factors, aiding in the for-
mulation of proactive strategies to combat pollution and minimize its adverse 
effects. The integration of AI and machine learning with geo-visualization technol-
ogy has led to the development of sophisticated pollution monitoring systems that 
offer real-time updates and predictive capabilities. By combining data from multi-
ple sources, such as satellite imagery, ground sensors, and citizen science contribu-
tions, these systems can generate comprehensive pollution maps with high accuracy 
and granularity. Furthermore, AI-powered pollution visualization tools have made 
environmental information more accessible to the public. Interactive dashboards 
and mobile applications allow individuals to explore pollution data in a user-friendly 
manner, empowering them to make informed decisions about their daily activities 
and lifestyle choices that can contribute to pollution reduction. The synergy between 
geo-visualization technology and AI-driven pollution data analysis has ushered in a 
new era of environmental awareness and action. With more precise monitoring, pre-
dictive capabilities, and user-friendly interfaces, these advancements hold tremen-
dous potential in helping us address the global challenge of pollution and pave the 
way for a more sustainable future.

14.13 � Conclusion

Geo-visualization tools have proven to be of paramount importance in pollution 
monitoring efforts. By integrating geographic information systems (GIS) and inter-
active mapping technologies, these tools enable us to gain valuable insights into the 
spatial distribution and trends of pollution. Real-time visualization of pollution data 
empowers researchers, policymakers, and the public to identify pollution hotspots, 
track changes over time, and assess the effectiveness of pollution control measures. 
The ability to overlay various data layers, such as industrial zones, population den-
sity, and weather patterns, enhances our understanding of the complex factors influ-
encing pollution levels. This comprehensive approach to pollution monitoring 
fosters data-driven decision-making and supports targeted interventions to address 
environmental challenges.

The integration of geo-visualization tools in pollution monitoring has significant 
implications for environmental policies and decision-making. Access to real-time 
and easily accessible pollution data allows policymakers to develop more informed 
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and evidence-based strategies for pollution control and environmental protection. 
By visualizing pollution data on interactive maps, policymakers can identify areas 
with high pollution concentrations, understand the sources of pollution, and priori-
tize interventions accordingly. Moreover, these tools facilitate cross-sectoral col-
laboration by providing a common platform for various stakeholders to share 
information and coordinate efforts. The insights gained from geo-visualization con-
tribute to the formulation of effective policies that can lead to a healthier and more 
sustainable environment for present and future generations.

Looking ahead, the future of pollution monitoring through geo-visualization 
tools appears promising and transformative. Advancements in technology, such as 
the Internet of Things (IoT), 5G connectivity, and improved data processing capa-
bilities, will enable more extensive data collection and faster dissemination. As sen-
sor networks and satellite technology continue to evolve, we can expect even 
higher-resolution data, providing more detailed and accurate pollution maps. 
Furthermore, the integration of artificial intelligence and machine learning in pollu-
tion data analysis will enhance predictive capabilities, allowing us to anticipate pol-
lution trends and proactively respond to potential environmental threats.

In the future, the widespread adoption of geo-visualization tools in pollution 
monitoring will democratize access to environmental information, enabling indi-
viduals and communities to actively participate in environmental stewardship. 
Citizen science initiatives will become more prevalent, with citizens contributing 
data and observations through mobile applications and other platforms. These col-
lective efforts will not only strengthen pollution monitoring networks but also foster 
a sense of responsibility and ownership in safeguarding the environment. Geo-
visualization tools have become indispensable in pollution monitoring, transform-
ing the way we perceive, analyse, and respond to environmental challenges. The 
ongoing advancements in technology and the increasing awareness of environmen-
tal issues will continue to drive innovation in pollution monitoring and inspire col-
laborative efforts towards a more sustainable and ecologically balanced future.
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Chapter 15
Environmental Pollution Control Measures 
and Strategies: An Overview of Recent 
Developments

Zeba Khanam , Fatma Mehar Sultana, and Fayma Mushtaq 

Abstract  Environmental pollution continues to be a pressing global issue, posing 
significant threats to the health of ecosystems and human well-being. Urbanization, 
industrialization, and various other economic activities caused by human interven-
tion contribute significantly to the overall environmental pollution experienced in 
the present day. In recent years, substantial progress has been made in understand-
ing the complexities of pollution and developing innovative strategies for effective 
control and mitigation. This chapter provides an overview of the latest develop-
ments in environmental pollution control measures and strategies. It also delves into 
the significant strides made in adopting cleaner technologies, renewable energy 
sources, and water pollution control measures, where the latest innovations in 
wastewater treatment technologies are explored. The enforcement of stringent emis-
sion standards for industries and vehicles, in addition to the pivotal role of carbon 
capture and storage in combating climate change, is highlighted, underscoring its 
potential in curbing greenhouse gas emissions. Furthermore, this chapter addresses 
the importance of integrated water resource management strategies, which ensure 
sustainable water usage and minimize the environmental impact of pollution. 
Advancements in soil and land pollution control are also outlined, such as novel 
remediation methods, such as phytoremediation and bioremediation, which offer 
eco-friendly solutions for rehabilitating contaminated sites. The integration of 
cleaner technologies, innovative treatment methods, and advanced monitoring tech-
niques holds great promise in safeguarding the environment and ecosystems and 
ultimately enhancing the quality of life for all inhabitants of our planet.
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15.1 � Introduction

Environmental pollution is a multifaceted global challenge that has been escalating 
over the past few decades due to industrialization, urbanization, population growth, 
and unsustainable practices. The adverse effects of pollution on human health, bio-
diversity, and ecosystems have raised concerns worldwide and spurred the need for 
effective pollution control measures and strategies (Tietenberg and Wheeler, 2001). 
Air pollution, resulting from the release of harmful gases and particulate matter into 
the atmosphere, has been a prominent issue in urban areas and industrial regions 
(Anjum et al., 2021). The combustion of fossil fuels in power plants, vehicles, and 
industries has been a significant contributor to air pollution, leading to respiratory 
diseases, acid rain, and climate change (Manisalidis et al., 2020). To address this 
concern, international agreements such as the Paris Agreement have aimed to curb 
greenhouse gas emissions and promote the adoption of renewable energy sources 
(Sovacool et al., 2021).

Water pollution, on the other hand, arises from the discharge of untreated or 
inadequately treated wastewater, industrial effluents, and agricultural runoff into 
water bodies (Häder et al., 2020). This pollution not only threatens aquatic life but 
also jeopardizes the availability of clean drinking water, essential for human sur-
vival. Recent developments in wastewater treatment technologies have focused on 
advanced processes to efficiently remove pollutants and protect aquatic ecosystems 
(Gogoi et al., 2018). Soil and land pollution have emerged as significant environ-
mental issues, with activities such as improper waste disposal, industrial contamina-
tion, and urbanization causing soil degradation and the loss of fertile land. Soil 
pollution adversely impacts agriculture and biodiversity, necessitating innovative 
methods such as phytoremediation and bioremediation to restore contaminated sites 
to a healthy state (Mani & Kumar, 2014).

As technological advancements continue, the integration of advanced monitor-
ing systems, data analytics, and artificial intelligence has proven instrumental in 
pollution control efforts (Fig. 15.1) (Park et al., 2020). Real-time tracking and fore-
casting of pollution levels enable proactive responses and the formulation of 
evidence-based policies to combat pollution effectively (Adams & Kanaroglou, 
2016; Xiaojun et al., 2015). Understanding the complex nature of environmental 
pollution and its far-reaching consequences is essential in devising appropriate mea-
sures and strategies. Recent developments have shown promise in mitigating pollu-
tion across air, water, and soil domains, while data-driven approaches offer a path 
towards sustainable environmental management and the preservation of our planet’s 
delicate ecological balance (Bibri, 2022). Efforts in pollution control will continue 
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Fig. 15.1  Integrated solution that combines real-time monitoring, seamless transmission, and 
advanced data management to facilitate intelligent water and wastewater treatment and enhance 
their efficient management. (Source: Park et al., 2020)

to play a crucial role in ensuring a cleaner and healthier environment for present and 
future generations.

15.2 � Significance of Pollution Control Measures

The significance of pollution control measures cannot be overstated in today’s 
world. These measures play a crucial role in safeguarding the environment, protect-
ing human health, and preserving the delicate balance of ecosystems. Several key 
reasons highlight the importance of pollution control measures:

Environmental Protection: Pollution control measures are essential in minimizing 
the release of harmful pollutants into the air, water, and soil. By reducing pollu-
tion levels, the negative impacts on natural habitats, wildlife, and plant life can 
be mitigated, thereby preserving biodiversity.

Human Health: Many pollutants have adverse effects on human health, leading to 
respiratory issues, cardiovascular diseases, and other illnesses. Implementing 
pollution control measures helps create cleaner and healthier living environ-
ments, enhancing the well-being of individuals and communities.

Climate Change Mitigation: Pollution, particularly greenhouse gas emissions, con-
tributes significantly to climate change. By curbing these emissions and 
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promoting cleaner technologies, pollution control measures are instrumental in 
mitigating global warming and its associated consequences.

Sustainable Development: Pollution control measures are integral to sustainable 
development. They enable economic growth and industrial progress without 
causing irreversible damage to the environment, ensuring that future generations 
can meet their needs as well.

Resource Conservation: Effective pollution control measures often involve recy-
cling and responsible waste management, leading to the conservation of valuable 
resources and reducing the strain on natural ecosystems.

Compliance with Regulations: Many countries have established environmental reg-
ulations and standards to limit pollution levels. By adhering to these regulations, 
industries and individuals contribute to a cleaner environment and avoid poten-
tial legal repercussions.

International Cooperation: Pollution knows no boundaries, and its impacts can 
cross borders. Encouraging pollution control fosters international cooperation in 
tackling global environmental challenges as nations work together to address 
shared concerns.

Improved Quality of Life: Cleaner air, water, and surroundings directly translate to 
an improved quality of life. Pollution control measures create more pleasant liv-
ing conditions, fostering a sense of well-being and pride in communities.

Protection of Ecosystem Services: Healthy ecosystems provide essential services 
such as water purification, pollination, and climate regulation. Pollution control 
measures safeguard these services, ensuring the continued resilience of 
ecosystems.

Long-term Economic Benefits: Although implementing pollution control measures 
may require initial investments, the long-term economic benefits outweigh the 
costs. Reduced healthcare expenses, enhanced productivity, and a sustainable 
environment contribute positively to economic growth.

15.3 � Objectives

This chapter aims to provide a comprehensive overview of the latest advancements 
in pollution control technologies and strategies, focusing on cleaner technologies, 
renewable energy, and emerging techniques such as carbon capture and storage. 
Integrated water resource management and sustainable land use planning are dis-
cussed for effective water and soil pollution control. This chapter also highlights the 
role of advanced monitoring systems, data analytics, and international cooperation 
in pollution tracking and policy implementation.
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15.4 � Air Pollution Control Measures

Air pollution control measures play a crucial role in combating the harmful effects 
of air pollution on human health and the environment (Megahed & Ghoneim, 2021). 
These measures are designed to reduce the emissions of hazardous pollutants into 
the atmosphere, thereby promoting cleaner air quality. Governments enforce strict 
emission standards for industries, vehicles, and other pollution sources, pushing for 
the adoption of cleaner technologies and practices. Additionally, promoting the use 
of cleaner fuels, such as low-sulfur diesel and natural gas, helps to minimize the 
release of harmful pollutants such as sulfur dioxide and particulate matter. The tran-
sition from fossil fuels to renewable energy sources, such as solar, wind, and hydro-
electric power, is encouraged to reduce greenhouse gas emissions and air pollution 
from power generation (Tripathi et al., 2016). Energy efficiency measures are also 
implemented in industries and buildings to decrease energy consumption and, con-
sequently, air pollution. Furthermore, promoting the use of electric and hybrid vehi-
cles, along with implementing regular vehicle inspections, helps to curb vehicular 
emissions and improve air quality in urban areas. Other essential measures include 
green transportation promotion, industrial upgrades, and best practices to minimize 
emissions (Chan & Lee, 2008). Proper urban planning can also contribute to reduc-
ing air pollution by optimizing traffic flow, creating green spaces, and controlling 
industrial activities in densely populated areas (Kumar et  al., 2019; Sharifi & 
Khavarian-Garmsir, 2020; Yang et  al., 2020). Addressing indoor air pollution 
through proper ventilation, air purifiers, and reduced use of indoor pollutants is 
essential for improving overall air quality. Finally, public awareness and education 
initiatives are vital in fostering responsible behavior and encouraging citizens to 
actively participate in air pollution reduction efforts. By implementing these air pol-
lution control measures, societies can effectively mitigate the impact of air pollu-
tion, protect public health, and preserve the environment for the well-being of future 
generations.

National Clean Air Program (NCAP)  The National Clean Air Program (NCAP) is 
an ambitious initiative launched by the Government of India in January 2019 
(Ganguly et al., 2020) to address the growing problem of air pollution in the country 
(Fig.  15.2). The program aims to improve air quality in 102 cities across India, 
which were identified as having poor air quality based on their ambient air quality 
data. The primary objective of the NCAP is to reduce particulate matter (PM10 and 
PM2.5) concentrations by 20–30% in target cities by 2024 compared to 2017 levels 
(Singh et al., 2021). The program focuses on collaborative efforts between central 
and state governments, local authorities, and various stakeholders to implement 
effective air pollution control measures. Some of the key strategies and initiatives 
under the NCAP include the following:

	 (i)	 City-Specific Action Plans: Each target city develops its own comprehensive 
action plan to tackle air pollution, considering the local sources of pollution 
and regional meteorology.
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Fig. 15.2  India’s NCAP cities. (Source: Urban emissions. Info, 2021)

	 (ii)	 Strengthening Monitoring and Data Management: The program aims to 
enhance air quality monitoring infrastructure to gather real-time data and 
improve data dissemination for public awareness.

	(iii)	 Source Apportionment Studies: Identifying major sources of pollution in each 
city through source apportionment studies to formulate targeted mitigation 
measures.

	(iv)	 Promotion of Cleaner Technologies: Encouraging the use of cleaner technolo-
gies and fuels in industries, transportation, and household activities to reduce 
emissions.

	 (v)	 Strengthening Enforcement Mechanisms: Improving compliance and enforce-
ment of emission standards for industries, vehicles, and construction activities.

	(vi)	 Public Participation: Involving citizens and civil society in creating aware-
ness, encouraging public participation, and promoting behavioral changes to 
reduce pollution.
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	(vii)	 Research and Innovation: Supporting research and innovation in the field of 
air pollution control to develop cost-effective and sustainable solutions.

NCAP emphasizes a multisectoral approach to air quality management and recog-
nizes the importance of cooperation between various levels of governance to achieve 
the desired air quality improvements. By implementing these measures, the National 
Clean Air Program aims to significantly reduce air pollution levels in target cities, 
leading to improved public health and a cleaner environment for the citizens of India.

Industrial Emission Standards and Regulations  Industrial emission standards 
and regulations are essential tools used by governments to control and manage air 
pollution originating from industrial activities. These standards are designed to limit 
the release of harmful pollutants into the atmosphere, ensuring that industries oper-
ate in an environmentally responsible and sustainable manner. The components of 
industrial emission standards and regulations include the following:

	 (i)	 Pollutant Limitations: Industrial emission standards set specific limits on the 
amount of pollutants that industries are allowed to release into the air. These 
pollutants may include sulfur dioxide (SO2), nitrogen oxides (NOx), particu-
late matter (PM), volatile organic compounds (VOCs), and other hazardous 
substances.

	 (ii)	 Compliance Monitoring: Industries are required to install monitoring systems 
to track and report their emissions regularly. This allows regulatory authori-
ties to ensure that companies are adhering to the prescribed emission limits.

	 (iii)	 Technology Requirements: Industrial emission standards often mandate the 
use of specific pollution control technologies to reduce emissions. Companies 
may be required to implement technologies such as scrubbers, catalytic con-
verters, and particulate control devices to achieve compliance.

	 (iv)	 Best Available Techniques (BAT): Some regulations incorporate the concept 
of Best Available Techniques (BAT), which refers to the most effective and 
advanced pollution control measures that industries should adopt to minimize 
their environmental impact.

	 (v)	 Sector-Specific Regulations: Emission standards may vary according to the 
industry sector. Different industries have unique emissions profiles and chal-
lenges, and regulations are tailored to address their specific characteristics.

	 (vi)	 Permitting and Compliance Mechanisms: Industries typically require permits 
to operate, and compliance with emission standards is a prerequisite for 
obtaining and renewing these permits. Noncompliance can lead to penalties, 
fines, or even the suspension of operations.

	(vii)	 Continuous Improvement: Emission standards are periodically reviewed and 
updated to reflect advancements in pollution control technologies and scien-
tific knowledge. This ensures that industries continually strive to improve 
their environmental performance.

	(viii)	 International Commitments: Many countries align their emission standards 
with international agreements and protocols, such as the Kyoto Protocol and 
the Paris Agreement, to fulfill their global commitments to reducing green-
house gas emissions.
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Urban Air Quality Management  Urban air quality management is a multifaceted 
and crucial approach to address the pressing issue of air pollution in cities and urban 
areas (Pacione, 2003). As urbanization and industrialization continue to grow, cities 
face significant challenges in maintaining clean and healthy air for their residents. 
Urban air quality management encompasses a range of strategies aimed at improv-
ing air quality and reducing air pollution in urban areas (Gulia et al., 2015). These 
strategies are implemented by governments and local authorities to safeguard public 
health, enhance environmental sustainability, and create livable urban environ-
ments. By implementing these strategies, cities can significantly improve air qual-
ity, promote sustainable urban development, and create healthier living environments 
for their residents. Effective urban air quality management is crucial for achieving 
environmental sustainability and ensuring the well-being of urban populations. 
Some key urban air quality management strategies include the following:

	 (i)	 Emission Standards and Regulations: Governments set and enforce strict 
emission standards for industries, vehicles, and other pollution sources. These 
regulations limit the release of harmful pollutants into the atmosphere, 
encouraging the adoption of cleaner technologies and practices.

	 (ii)	 Air Quality Monitoring: Establishing and maintaining air quality monitoring 
networks allows continuous tracking of pollutant levels. Real-time data help 
identify pollution sources and assess the effectiveness of control measures.

	 (iii)	 Source Apportionment Studies: Governments conduct source apportionment 
studies to determine the contributions of different pollution sources to overall 
air pollution. This information aids in formulating effective pollution control 
strategies by targeting the significant contributors.

	 (iv)	 Low-Emission Zones (LEZ): Establishing low-emission zones in congested 
urban areas restricts the entry of high-polluting vehicles. Only vehicles meet-
ing specific emission standards are allowed to operate within these zones, 
reducing vehicular emissions in highly populated areas.

	 (v)	 Public Transportation Promotion: Governments prioritize and enhance pub-
lic transportation systems to encourage citizens to use buses, trains, and other 
mass transit options. By reducing the reliance on private vehicles, this strat-
egy lowers traffic-related emissions.

	 (vi)	 Active Transportation Infrastructure: Creating pedestrian-friendly sidewalks, 
bike lanes, and dedicated cycling paths promotes walking and cycling as eco-
friendly transportation alternatives.

	(vii)	 Green Infrastructure: Investing in green spaces, urban parks, and green belts 
helps absorb pollutants and improve air quality. Green infrastructure also 
mitigates the urban heat island effect and enhances the aesthetic value of 
the city.

	(viii)	 Clean Energy Initiatives: Governments encourage the adoption of clean and 
renewable energy sources for power generation and heating. Incentives and 
subsidies are provided to promote solar, wind, and other sustainable energy 
technologies.
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	 (ix)	 Waste Management and Control: Effective waste management practices, such 
as proper waste disposal and recycling, reduce the release of pollutants from 
open burning and uncontrolled waste.

	 (x)	 Industrial Upgrades and Best Practices: Industries are encouraged to adopt 
pollution control technologies and best practices to minimize emissions. 
Regular inspections ensure compliance with emission standards.

	 (xi)	 Public Awareness and Education: Governments conduct public awareness 
campaigns to educate citizens about air quality issues, the health impacts of 
pollution, and individual actions they can take to reduce emissions.

	(xii)	 Research and Innovation: Supporting research and innovation in pollution 
control technologies and sustainable urban planning leads to the development 
of more effective and efficient solutions.

Renewable Energy Promotion and Energy Efficiency Measures  Renewable 
energy promotion and energy efficiency measures are two crucial components of 
sustainable energy transition and environmental protection (Del Río, 2010; Marques 
& Fuinhas, 2011). These strategies aim to reduce greenhouse gas emissions, enhance 
energy security, and mitigate the adverse effects of climate change.

Renewable Energy Promotion: Renewable energy sources, such as solar, wind, 
hydroelectric, geothermal, and biomass, are abundant and have a significantly 
lower carbon footprint than fossil fuels (Rahman et al., 2022). Promoting renew-
able energy involves various initiatives and policies to increase the share of 
renewable sources in the energy mix described in Table 15.1.

Energy Efficiency Measures: Energy efficiency measures focus on optimizing 
energy use to reduce consumption and waste (Nižetić et al., 2019). These mea-
sures are critical in lowering greenhouse gas emissions and reducing dependence 
on energy-intensive resources. The details are presented in Table 15.2.

Air Quality Standards in India  In India, air quality standards are set and regulated 
by the Central Pollution Control Board (CPCB) under the Air (Prevention and 
Control of Pollution) Act, 1981 (Mahato et al., 2020). These standards define the 
permissible limits of various air pollutants to safeguard public health and the envi-
ronment. India follows ambient air quality standards, which specify the maximum 
allowable concentration of pollutants in the outdoor air. The National Ambient Air 
Quality Standards (NAAQS) in India cover a range of pollutants, including particu-
late matter (PM10 and PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone 
(O3), carbon monoxide (CO), ammonia (NH3), lead (Pb), and benzene (Agrawal 
et al., 2021; Singh et al., 2010). The NAAQS in India is based on the World Health 
Organization (WHO) guidelines and takes into account the health impacts of air 
pollution (Beig et  al., 2010). The standards are divided into different categories, 
such as industrial, residential, rural, and ecologically sensitive areas, with varying 
permissible limits depending on the severity of pollution and the sensitivity of the 
location. The National Ambient Air Quality Standards (NAAQS) followed in India 
are given in Table 15.3. The timeline of air quality regulations in India is presented 
in Fig. 15.3.
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Table 15.1  Description of initiatives and policies to promote renewable energy

Renewable energy 
promotion Description

Incentives and 
subsidies

Governments provide financial incentives, tax breaks, and subsidies to 
encourage investments in renewable energy projects. These measures make 
renewable energy more economically viable and attract private-sector 
participation

Renewable 
portfolio standards 
(RPS)

RPS mandates require utilities to generate a certain percentage of their 
electricity from renewable sources. Compliance with RPS regulations 
ensures a steady growth of renewable energy in the energy portfolio

Feed-in tariffs 
(FIT)

FIT programs provide fixed, premium prices for renewable energy 
producers, guaranteeing a stable revenue stream and encouraging the 
development of renewable energy projects

Net metering Net metering allows renewable energy producers, such as rooftop solar 
panel owners, to sell excess electricity back to the grid, incentivizing 
small-scale renewable energy generation

Public–private 
partnerships

Collaborative efforts between governments, private companies, and 
nongovernmental organizations accelerate the deployment of renewable 
energy projects and share resources and expertise

Table 15.2  Details of energy efficiency measures

Energy efficiency 
measures Description

Energy-efficient 
building codes

Governments establish energy-efficient building standards that mandate 
the use of energy-saving technologies and materials in construction, 
promoting sustainable infrastructure

Energy audits Conducting energy audits in industries, buildings, and institutions helps 
identify energy inefficiencies and implement energy-saving measures

Energy-efficient 
appliances and 
lighting

Encouraging the use of energy-efficient appliances, LED lighting, and 
smart technologies reduces energy consumption in households and 
commercial establishments

Industrial process 
optimization

Implementing energy-efficient practices and upgrading industrial 
processes reduces energy waste and enhances productivity

Demand-side 
management

Demand-side management programs encourage consumers to shift 
energy usage during off-peak hours or curtail consumption during 
periods of high demand, reducing strain on the grid

Energy-efficient 
transportation

Promoting fuel-efficient vehicles, public transportation, and electric 
mobility reduces energy consumption and air pollution from 
transportation

Training and capacity 
building

Educating consumers, businesses, and industries about energy-efficient 
practices fosters a culture of energy conservation
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15.5 � Water Pollution Control Measures

Water pollution control measures are crucial for preserving freshwater sources, pro-
tecting aquatic ecosystems, and ensuring access to clean drinking water (Gleick, 
1998). Governments and communities worldwide implement a range of strategies to 
prevent, reduce, and remove pollutants from water bodies. Wastewater treatment 
plays a central role in this effort, utilizing advanced processes such as biological 
treatment and membrane filtration to remove organic matter and harmful substances 
before discharge (Gunatilake, 2015). Managing nutrient runoff, particularly nitro-
gen and phosphorus, is vital to combat algal blooms and eutrophication (Zhang 
et al., 2008). Industrial regulations ensure that industries treat their effluents and 
adhere to strict discharge standards, limiting the release of harmful chemicals and 
heavy metals. Additionally, stormwater management with green infrastructure 
reduces urban runoff pollution. Source water protection efforts, such as riparian 
zone management, safeguard water quality at its origin, while comprehensive water-
shed management addresses nonpoint source pollution (Shepard, 2006). 
Groundwater protection involves managing land use in recharge areas and regular 
monitoring to detect contamination. Educating the public about the impact of water 
pollution and individual responsibilities is essential for long-term sustainable water 
management. International cooperation is necessary to address transboundary water 
pollution issues effectively (Uitto & Duda, 2002). Investing in research and inno
ation supports the development of advanced water treatment technologies and 
sustainable management practices. By implementing these comprehensive water 

Table 15.3  National 
Ambient Air Quality 
Standards (NAAQS) followed 
in India

Air quality parameter Permissible limits

Particulate matter (PM10) Annual average: 60 μg/m3

24-h average: 100 μg/m3

Particulate matter (PM2.5) Annual average: 40 μg/m3

24-h average: 60 μg/m3

Sulfur dioxide (SO2) Annual average: 20 μg/m3

24-h average: 50 μg/m3

Nitrogen dioxide (NO2) Annual average: 40 μg/m3

24-h average: 80 μg/m3

Ozone (O3) 8-h average: 100 μg/m3

Carbon monoxide (CO) 8-h average: 2 mg/m3 (1.7 ppm)
1-h average: 4 mg/m3 (3.4 ppm)

Ammonia (NH3) Annual average: 100 μg/m3

24-h average: 400 μg/m3

Lead (Pb) Annual average: 0.5 μg/m3

24-h average: 1 μg/m3

Benzene Annual average: 5 μg/m3

24-h average: 10 μg/m3
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Fig. 15.3  A timeline of air 
quality regulation in India. 
(Source: Urban emissions. 
Info, 2021)
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pollution control measures, societies can secure clean and healthy water resources, 
ensuring a sustainable future for all.

Clean Ganga Mission (Namami Gange): The Clean Ganga Mission, also known as 
Namami Gange, is a flagship program launched by the Government of India in 
2014 with the aim of rejuvenating the river Ganga (Ganges) (Simon & Joshi, 
2022). The mission’s primary objective is to restore and conserve the ecological 
and cultural significance of the Ganga River basin, promote sustainable water 
resource management, and improve the overall quality of river water. Namami 
Gange has witnessed significant progress in its efforts to clean and rejuvenate the 
Ganga River (Sharma & Shekhar, 2021). However, it remains an ongoing and 
challenging task due to the complex nature of river pollution and the need for 
long-term sustainable management. The mission reflects the government’s com-
mitment to conserving one of India’s most revered rivers, ensuring that its cul-
tural heritage and ecological significance are preserved for future generations. 
The components and strategies of the Namami Gange program include the 
following:

	 (i)	 Wastewater Treatment: One of the primary focuses of the mission is to set 
up and upgrade sewage treatment infrastructure in cities and towns along 
the Ganga River. This helps in treating domestic and industrial wastewater 
before it is discharged into the river, significantly reducing pollution levels.

	 (ii)	 Riverfront Development: The mission includes plans for the beautification 
and development of riverfronts to enhance public access and promote tour-
ism while ensuring ecological sustainability.

	 (iii)	 Afforestation and Biodiversity Conservation: Plantation drives and biodi-
versity conservation efforts are undertaken to restore and protect the natu-
ral habitats along riverbanks, promoting the ecological health of the 
river basin.

	 (iv)	 Industrial Effluent Control: Strict regulations and standards are enforced 
on industries located near the Ganga River to ensure proper treatment of 
their effluents, preventing industrial pollution.

	 (v)	 Public Awareness and Participation: The Clean Ganga Mission involves 
public awareness campaigns to engage citizens in conservation efforts and 
encourage responsible behavior toward the river.

	 (vi)	 River Surface Cleaning: The mission includes regular cleaning drives to 
remove floating debris and solid waste from the river surface to improve its 
visual appeal and environmental condition.

	(vii)	 Geospatial Monitoring: The use of geospatial technology and real-time 
data monitoring is employed to track pollution sources and assess the 
progress of the mission.

	(viii)	 Innovation and Research: Research and innovation are promoted to 
develop sustainable solutions and technologies for river conservation.

	 (ix)	 International Collaboration: To address transboundary pollution chal-
lenges, the Clean Ganga Mission collaborates with neighboring countries 
sharing the Ganga River basin.
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Industrial Effluent Treatment and Discharge Standards: Industrial effluent treat-
ment and discharge standards are crucial regulations set by governments to man-
age the release of industrial wastewater into the environment. These standards 
are designed to protect water bodies, prevent water pollution, and ensure the 
well-being of human health and the ecosystem. The specific standards may vary 
from country to country or regionally based on local environmental conditions 
and industrial activities. However, common components of these standards 
include limits on various pollutants, such as suspended solids, biochemical oxy-
gen demand (BOD), chemical oxygen demand (COD), nitrogen compounds, 
phosphorus, heavy metals, and toxic substances. pH and temperature ranges are 
also specified to prevent drastic changes in water quality due to effluent dis-
charge (Kanu & Achi, 2011). Controlling the amount of oxygen-consuming 
organic matter and total suspended solids in effluents helps maintain dissolved 
oxygen levels in water bodies, which are vital for aquatic life. To prevent exces-
sive dilution of pollutants, some standards may set dilution ratios relative to the 
volume of receiving water bodies.

In India, industrial effluent treatment and discharge standards are regulated by 
the Central Pollution Control Board (CPCB) and State Pollution Control Boards 
(SPCBs) under the Water (Prevention and Control of Pollution) Act, 1974, and the 
Environment (Protection) Act, 1986 (Rajaram & Das, 2008). These standards aim to 
control and manage the release of industrial wastewater to protect water quality, 
aquatic ecosystems, and public health. The industrial effluent treatment and dis-
charge standards in India cover various parameters, including the physical, chemi-
cal, and biological characteristics of the effluents. The CPCB and SPCBs regularly 
monitor industrial discharges and enforce compliance with the effluent treatment 
and discharge standards. Noncompliance may lead to penalties, closure of facilities, 
or legal actions.

Some key parameters and their permissible limits for industrial effluents in India 
are described in Table 15.4.

Municipal Wastewater Management  Municipal wastewater management is a cru-
cial process that involves the collection, treatment, and disposal of wastewater gen-
erated from residential, commercial, and institutional sources within a city or 
municipality. This comprehensive management approach is essential to protect pub-
lic health, prevent water pollution, and maintain the ecological balance of natural 
water bodies. The process starts with the collection system, which gathers wastewa-
ter through a network of underground pipes and sewer systems and transports it to 
treatment plants. At these plants, the collected sewage undergoes a series of treat-
ment processes, including physical, chemical, and biological methods, to remove 
contaminants and pollutants (Elbeshbishy & Okoye, 2019) (Fig.  15.4). Primary 
treatment separates large solids and debris, while secondary treatment employs 
microorganisms to breakdown organic pollutants, significantly reducing harmful 
substances. Some advanced plants implement tertiary treatment to further enhance 
effluent quality. Sludge generated during treatment is also managed, reducing its 
volume and stabilizing it for safe disposal or beneficial reuse (Ahmad et al., 2016). 
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Table 15.4  Parameters and their permissible limits for industrial effluents in India

Parameters Limits

pH The permissible pH range for industrial effluents is generally between 
6.0 and 9.0

Total suspended 
solids (TSS)

The maximum limit for TSS in industrial effluents varies depending on 
the industry but is generally in the range of 100–600 milligrams per liter 
(mg/L)

Biological oxygen 
demand (BOD)

The BOD limit varies depending on the type of industry but typically 
ranges from 30 to 350 mg/L

Chemical oxygen 
demand (COD)

The COD limit also varies for different industries and is typically 
between 250 and 2500 mg/L

Temperature The maximum permissible temperature of industrial effluents for 
discharge varies depending on the receiving water body but is generally 
approximately 40 °C

Oil and grease The permissible limit for oil and grease in industrial effluents is generally 
in the range of 10–50 mg/L

Heavy metals Specific limits are set for various heavy metals such as lead, cadmium, 
chromium, mercury, and arsenic, depending on the industry and type of 
effluent

The treated effluent is either discharged into nearby water bodies in compliance 
with water quality standards or reused for nonpotable purposes such as irrigation 
and industrial processes. Additionally, municipal wastewater management focuses 
on resource recovery, harnessing nutrients and biogas for agricultural use, and 
energy production. Regular monitoring ensures compliance with discharge stan-
dards and tracks treatment effectiveness. Integrated planning is crucial to address 
future challenges, promote sustainability, and optimize resource utilization, making 
municipal wastewater management an indispensable component of responsible 
urban development.

Rainwater Harvesting and Water Conservation Initiatives in India  In India, rain-
water harvesting and water conservation initiatives (Glendenning et al., 2012) have 
gained significant importance due to the country’s water scarcity challenges and 
increasing demand for water resources (Pani et al., 2021). The government, along 
with various organizations and communities, has been actively promoting these ini-
tiatives to address water shortages and ensure sustainable water management. 
Rainwater harvesting and water conservation initiatives carried out in India are pre-
sented in Table 15.5. In addition, various rainwater harvesting and water conserva-
tion initiatives have been implemented to address water scarcity and promote 
sustainable water management. Community-driven rainwater harvesting projects 
have gained momentum, encouraging collective efforts toward water conservation 
and efficient water resource management. Additionally, industries are adopting 
water recycling and reuse systems to reduce freshwater consumption and minimize 
wastewater discharge. In urban areas, cities are implementing rainwater harvesting 
policies and offering incentives to promote rainwater harvesting in buildings and 
public spaces. To raise awareness about water conservation practices, public 
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Fig. 15.4  Wastewater treatment process. (Source: Elbeshbishy & Okoye, 2019)

awareness campaigns, workshops, and seminars are regularly conducted, educating 
citizens about the significance of sustainable water use. The government has played 
a significant role by introducing regulations and incentives to encourage rainwater 
harvesting and water conservation in residential, commercial, and industrial sectors. 
Educational institutions also actively participate in fostering responsible water use 
by incorporating water conservation into their curriculum and organizing awareness 
activities for students. In some regions, water budgeting systems have been adopted 
to manage water allocation and consumption based on available resources and 
needs. These combined efforts are essential for achieving water security and envi-
ronmental sustainability and ensuring a more water-resilient future for India.

15.6 � Soil Pollution Control Measures

Soil pollution control measures are essential to prevent and mitigate the contamina-
tion of soil by pollutants and hazardous substances. Regular soil testing and moni-
toring are conducted to identify the presence of pollutants. Source control measures 
focus on reducing or eliminating the use of hazardous chemicals in various activi-
ties. Proper hazardous waste management and secure landfill design help prevent 
soil contamination from improper waste disposal. Additionally, adopting sustain-
able agricultural practices and promoting soil conservation techniques contribute to 
maintaining soil health and fertility, safeguarding ecosystems, and ensuring a 
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Table 15.5  Rainwater harvesting and water conservation initiatives in India

Rainwater harvesting and water conservation initiatives

Jal Shakti 
Abhiyan

Launched by the Government of India, the Jal Shakti Abhiyan is a 
nationwide campaign to raise awareness about water conservation and 
promote water-saving practices. The campaign emphasizes rainwater 
harvesting, groundwater recharge, and water resource management at the 
community level

Traditional water 
harvesting 
methods

India has a rich history of traditional water harvesting techniques like 
“Johads” in Rajasthan, “Kunds” in Gujarat, and “Bawdis” in Karnataka. 
These ancient practices have been revitalized and incorporated into modern 
water conservation efforts

Water 
conservation in 
agriculture

The “Per Drop More Crop” initiative promotes water-efficient agricultural 
practices, such as drip and sprinkler irrigation, and encourages farmers to 
adopt water-saving technologies

Watershed 
development 
projects

Government and nongovernmental organizations undertake watershed 
development projects to enhance rainwater infiltration, soil moisture 
conservation, and groundwater recharge

Roof rainwater 
harvesting

Many urban and rural households in India have adopted rooftop rainwater 
harvesting systems, which involve capturing rainwater from rooftops and 
storing it in tanks for domestic use and groundwater recharge

healthy environment for future generations (Montanarella & Vargas, 2012; Ronchi 
et al., 2019).

Soil Contamination Sources and Prevention Measures
Soil contamination can arise from various sources, including industrial activities, 
agricultural practices, improper waste disposal, and urban development (Havugimana 
et al., 2017; Zwolak et al., 2019). Industrial processes, such as mining, manufactur-
ing, and chemical production, may release harmful chemicals and heavy metals into 
the soil (Wuana & Okieimen, 2011). Agricultural activities, such as the use of pes-
ticides, fertilizers, and livestock waste, can also contribute to soil pollution. Improper 
disposal of hazardous waste and sewage sludge, as well as urban runoff containing 
pollutants, are additional sources of soil contamination.

Prevention measures for soil contamination involve a combination of regulatory 
actions, best practices, and public awareness. Implementing strict regulations and 
monitoring systems to control industrial emissions, waste disposal, and agricultural 
chemical use is crucial. Encouraging the adoption of sustainable agricultural prac-
tices, such as organic farming and integrated pest management, reduces the use of 
harmful chemicals and their impact on soil (Lefebvre et al., 2015). Proper manage-
ment and treatment of hazardous waste, along with the promotion of recycling and 
safe disposal methods, prevent soil pollution. Additionally, urban planning that 
includes green spaces, permeable surfaces, and stormwater management systems 
helps mitigate urban runoff and its potential impact on soil quality. Public aware-
ness and education campaigns play a vital role in fostering responsible waste man-
agement and soil conservation practices, contributing to the prevention of soil 
contamination. Addressing soil pollution necessitates more than just a firm stance 
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Fig. 15.5  Prevention and control measures of soil pollution by Guo et al., 2020. (Source: Guo 
et al., 2020)

from the government; it also calls for public awareness and concern regarding the 
issue of soil pollution (Guo et al., 2020) (Fig. 15.5).

Soil Remediation Technologies and Best Practices
Soil remediation technologies and best practices are essential for restoring and 
improving soil quality in areas affected by contamination (Azhar et al., 2022). Soil 
remediation is often a complex and site-specific process that requires careful plan-
ning, assessment, and implementation. A combination of remediation technologies 
and best practices tailored to specific contaminants and site conditions is crucial for 
successful soil restoration and sustainable land use. Various techniques are employed 
to remove, reduce, or neutralize pollutants, depending on the type and extent of 
contamination. Some common soil remediation technologies and best practices 
include the following (Ma et al., 2016):

	 (i)	 Bioremediation: This process uses microorganisms to breakdown or trans-
form contaminants into less harmful substances. Bioremediation can be per-
formed in situ (in the soil) or ex situ (outside the soil), depending on the 
specific situation.

	 (ii)	 Phytoremediation: Phytoremediation involves using plants to remove, stabi-
lize, or degrade contaminants. Certain plants can absorb and accumulate pol-
lutants, which can then be harvested and properly disposed of.

	 (iii)	 Soil Vapor Extraction (SVE): SVE is a technique used to remove volatile 
organic compounds (VOCs) from the soil by applying a vacuum to extract the 
vapors from the soil.
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	 (iv)	 Soil Washing: Soil washing is a physical separation process that uses water or 
other solutions to wash and separate contaminants from soil particles.

	 (v)	 Thermal Desorption: This method applies heat to the contaminated soil to 
volatilize the contaminants, which are then collected and treated.

	 (vi)	 In Situ Chemical Oxidation (ISCO): ISCO involves injecting chemical oxi-
dants into the soil to chemically degrade contaminants.

	(vii)	 Stabilization/Solidification: This method involves adding materials to the 
contaminated soil to stabilize or solidify the pollutants, reducing their mobil-
ity and toxicity.

	(viii)	 Electrokinetic Remediation: Electrokinetic remediation uses an electric field 
to move contaminants in the soil toward specific electrodes, where they can 
be collected for treatment.

	 (ix)	 Encapsulation: Encapsulation involves covering the contaminated soil with 
impermeable materials to prevent the spread of pollutants.

	 (x)	 Soil Amendments: Adding soil amendments, such as organic matter, lime, or 
activated carbon, can help improve soil structure and reduce the availability 
of contaminants.

	 (xi)	 Proper Waste Management: Implementing proper waste management prac-
tices prevents further soil contamination by ensuring safe disposal of hazard-
ous materials.

	(xii)	 Environmental Site Assessment (ESA): Conducting an ESA before remedia-
tion helps identify the extent and nature of soil contamination, guiding the 
selection of appropriate remediation technologies.

	(xiii)	 Monitoring and Post-remediation Assessment: Regular monitoring during 
and after remediation ensures the effectiveness of the chosen techniques and 
verifies that the soil meets acceptable cleanup standards.

Agricultural Practices for Soil Health Improvement  Improving soil health is vital 
for sustainable agriculture and ensuring the long-term productivity of farmland. 
Several agricultural practices can help enhance soil health and fertility, such as crop 
rotation, cover cropping, reduced tillage or no-tillage farming, organic matter man-
agement, green manure, mulching, nutrient management, integrated pest manage-
ment (IPM), agroforestry (Fig. 15.6), soil pH management, irrigation management, 
crop residue management, soil testing and monitoring, and livestock integration 
(Balota et al., 2003; Ehler, 2006; Wade & Sanchez, 1983; Zikeli & Gruber, 2017). 
Several agricultural practices to enhance soil health and promote sustainable farm-
ing practices are described in Table 15.6.

In India, improving soil health is of utmost importance due to the country’s 
heavy reliance on agriculture for food security and livelihoods. Several schemes and 
initiatives have been introduced by the government of India to promote agricultural 
practices for soil health improvement. These schemes aim to enhance soil fertility, 
water retention, and overall soil health. Some of the notable schemes for agricul-
tural practices for soil health improvement in India are as follows:
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	 (i)	 Soil Health Card Scheme (SHCS): Launched in 2015, this scheme provides 
farmers with personalized soil health cards that contain information about the 
nutrient status of their soil and recommendations for appropriate nutrient 
management practices. It helps farmers make informed decisions regarding 
fertilizers and soil amendments, leading to improved soil health.

	 (ii)	 Paramparagat Krishi Vikas Yojana (PKVY): This scheme encourages farmers 
to adopt organic farming practices and traditional agricultural methods. It 
promotes the use of organic manures, green manure, and biofertilizers to 
enhance soil fertility and reduce chemical input usage.

	 (iii)	 Rashtriya Krishi Vikas Yojana (RKVY): Under this scheme, financial assis-
tance is provided to states and union territories to support various agricultural 
development projects, including those aimed at improving soil health through 
sustainable practices.

	 (iv)	 National Mission on Sustainable Agriculture (NMSA): NMSA focuses on 
promoting climate-resilient and sustainable agricultural practices. It encour-
ages the adoption of integrated nutrient management, crop residue manage-
ment, and organic farming to improve soil health.

	 (v)	 Sub-Mission on Agricultural Mechanization (SMAM): This scheme aims to 
increase farm mechanization and implement the practice of residue manage-
ment. It helps retain crop residues on the field, which enriches soil organic 
matter and enhances soil health.

	 (vi)	 Pradhan Mantri Krishi Sinchayee Yojana (PMKSY): PMKSY promotes effi-
cient water management practices, such as drip irrigation and sprinkler irriga-
tion, to prevent waterlogging and soil degradation.

	(vii)	 National Food Security Mission (NFSM): While primarily focused on increas-
ing food grain production, NFSM also encourages the adoption of improved 
agricultural practices that positively impact soil health.

Fig. 15.6  Smart agroforestry model presenting an integrated approach to address both energy and 
food security concerns. (Source: Sharma et al., 2016)

Z. Khanam et al.



405

Table 15.6  Agricultural practices to enhance soil health and promote sustainable farming practices

Practice Description

Organic farming Organic farming methods, which avoid the use of synthetic 
chemicals, focus on enhancing soil fertility through the application of 
organic matter, compost, and green manure

Crop rotation Farmers in India practice crop rotation to break pest and disease 
cycles, improve soil structure, and maintain soil health

Cover cropping Planting cover crops, such as legumes and grasses, during fallow 
periods or after main crops helps protect the soil from erosion and 
add nutrients through biomass incorporation

Vermicomposting Vermicomposting, the use of earthworms to decompose organic 
waste, is widely used in India to produce nutrient-rich compost for 
soil enrichment

Integrated nutrient 
management

A balanced approach to nutrient management is followed, combining 
chemical fertilizers, organic manures, and biofertilizers to improve 
soil fertility

Integrated Pest 
Management (IPM)

IPM practices are employed to reduce reliance on chemical 
pesticides, promote natural pest control, and preserve soil health

Water management Efficient irrigation techniques, such as drip irrigation and sprinklers, 
are adopted to prevent waterlogging and soil degradation

Sustainable rice-wheat 
cropping system

In regions with rice-wheat cropping systems, sustainable practices 
like direct-seeding of rice and residue retention are encouraged to 
improve soil health

Microbial inoculants Biofertilizers and microbial inoculants are used to introduce 
beneficial microorganisms into the soil, promoting nutrient cycling 
and organic matter decomposition

Nutrient recycling Farmers in India utilize crop residues, animal manure, and other 
organic waste to recycle nutrients back into the soil

Zero-tillage or reduced 
tillage

Adopting zero-tillage or reduced-tillage practices minimizes soil 
disturbance, reduces erosion, and conserves soil moisture

Mulching Applying organic mulch or crop residues as mulch helps retain soil 
moisture, suppress weed growth, and enhance soil health

Agroforestry Agroforestry systems, combining trees or shrubs with agricultural 
crops, are practiced to improve soil structure, conserve water, and 
enhance biodiversity

Soil testing and balanced 
fertilization

Soil testing is done to assess nutrient levels, and balanced fertilization 
is practiced to optimize nutrient application based on crop 
requirements

	(viii)	 National Mission on Oilseeds and Oil Palm (NMOOP): NMOOP promotes 
oilseed cultivation using sustainable agricultural practices, including organic 
farming and integrated nutrient management.

Land Reclamation and Restoration Approaches  In India, several land reclamation 
and restoration approaches are implemented to rehabilitate degraded land and 
restore ecosystems. Afforestation and reforestation initiatives involve massive tree-
planting drives to combat deforestation and enhance biodiversity. Watershed devel-
opment projects aim to conserve degraded land by implementing soil and water 
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conservation measures and rainwater harvesting. Wetland conservation and restora-
tion efforts protect important wetlands and rejuvenate damaged areas. Soil and land 
remediation techniques, such as bioremediation and phytoremediation, are used to 
clean up contaminated land. Coastal erosion control measures include beach nour-
ishment and mangrove restoration to protect shorelines and preserve coastal ecosys-
tems. Regenerative agriculture practices, urban green spaces, and river restoration 
are also adopted to improve soil health, preserve urban biodiversity, and protect 
aquatic habitats. Community participation plays a crucial role in these initiatives, 
ensuring the success of land reclamation and restoration projects across the country. 
In India, several land reclamation and restoration schemes have been implemented 
by the government to rehabilitate degraded land and restore ecosystems (Dhyani 
et al., 2023; Shanwad et al., 2008). Some notable schemes include the following:

	 (i)	 Green India Mission (GIM): Launched as part of the National Action Plan on 
Climate Change, GIM aims to increase forest cover, improve ecosystem ser-
vices, and enhance carbon sequestration through afforestation and reforesta-
tion activities.

	 (ii)	 National Afforestation Programme (NAP): This scheme focuses on afforesta-
tion and reforestation efforts on degraded forest and nonforest lands to 
increase green cover and support sustainable forest management.

	 (iii)	 Watershed Development Programme: Various watershed development 
schemes are implemented to conserve soil and water resources, enhance agri-
cultural productivity, and promote ecological restoration in rain-fed areas.

	 (iv)	 National Mission for a Green India (GIM-Ganga): This mission targets the 
rejuvenation of the Ganga River basin through afforestation and soil conser-
vation activities to reduce soil erosion and improve water quality.

	 (v)	 National Mission for Sustainable Agriculture (NMSA): NMSA promotes 
climate-resilient and sustainable agricultural practices, including soil health 
management and organic farming, to enhance agricultural productivity and 
soil fertility.

	 (vi)	 National Mission on Himalayan Studies (NMHS): This mission focuses on 
restoring degraded lands and conserving biodiversity in the Himalayan 
region, which is prone to ecological fragility and environmental 
degradation.

	(vii)	 National Coastal Zone Management Programme (NCZMP): NCZMP aims to 
conserve and restore coastal ecosystems, including mangroves and wetlands, 
to protect coastlines and preserve marine biodiversity.

	(viii)	 Integrated Coastal Zone Management (ICZM) Projects: ICZM projects are 
implemented in specific coastal areas to address coastal erosion, restore 
degraded coastal habitats, and promote sustainable coastal development.

	 (ix)	 National River Conservation Plan (NRCP): The NRCP focuses on restoring 
the water quality of major rivers by implementing pollution control measures 
and ecosystem restoration activities.

	 (x)	 Mahatma Gandhi National Rural Employment Guarantee Scheme 
(MGNREGS): While not exclusively a land reclamation scheme, MGNREGS 
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provides employment opportunities to rural communities through various 
activities, including afforestation, soil and water conservation, and land 
development.

15.7 � Noise Pollution Control Measures

Noise pollution control measures are essential to mitigate excessive and harmful 
noise levels in the environment, promoting public health and overall well-being 
(Fig. 15.7). To achieve this, governments set noise regulations and standards for 
various sources, such as industries, vehicles, construction sites, and commercial 
establishments, aiming to limit noise emissions to acceptable levels. Proper urban 
planning and zoning play a vital role in segregating noisy activities from residential 
areas and sensitive locations such as hospitals and schools. Constructing noise bar-
riers, such as sound walls or berms, along highways or busy roads helps shield 
nearby communities from traffic noise, while sound insulation in buildings reduces 
indoor noise levels. Traffic management measures, such as speed limits, the use of 
quieter pavement materials, and traffic flow optimization, help reduce noise from 
vehicles. Public awareness campaigns and educational programs inform people 
about the harmful effects of noise pollution and promote responsible noise behavior 
(Garg et  al., 2021). Technological advancements have led to the development of 
quieter machinery and equipment for industrial and commercial use, contributing to 
noise abatement efforts. Regular noise monitoring ensures compliance with regula-
tions, and strict enforcement measures, including penalties for violators, discourage 
noise pollution. By incorporating these noise pollution control measures, communi-
ties can create a quieter and more peaceful environment, enhancing the quality of 
life for residents and protecting public health.

Noise Standards and Regulations  Noise standards and regulations are essential 
tools used by governments to manage and control noise pollution in various settings 
(Chauhan et al., 2021). These guidelines aim to protect public health, preserve envi-
ronmental quality, and ensure a harmonious living environment for residents. Noise 
standards encompass a wide range of aspects, including ambient noise limits, indus-
trial noise emission standards, vehicle noise regulations, and construction site noise 
limits. Additionally, they address noise levels from commercial establishments, rec-
reational activities, and aircraft operations. Community noise assessment and map-
ping help identify high-noise areas, enabling targeted noise reduction efforts. Noise 
monitoring and enforcement mechanisms are implemented to ensure compliance 
with the set standards and regulations (Hunashal & Patil, 2012). By adhering to 
these guidelines, industries, businesses, and individuals can actively contribute to 
reducing noise pollution, enhancing overall well-being, and fostering a more tran-
quil and peaceful society.

In India, noise standards and regulations are formulated and enforced by various 
government authorities to address noise pollution and its impact on public health 
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Fig. 15.7  Steps to control noise pollution. (Source: Garg et al., 2021)

and the environment. The key noise standards and regulations in India include the 
following:

	 (i)	 The Environment (Protection) Rules, 1986: These rules, under the Environment 
(Protection) Act, set ambient air quality standards, including permissible 
noise levels for different zones, such as industrial, commercial, residential, 
and silence zones. Silence zones are areas near hospitals, educational institu-
tions, and courts where strict noise limits are maintained to ensure a peaceful 
environment.

	 (ii)	 Motor Vehicle Rules: India has regulations governing vehicle noise emissions 
to curb excessive noise from motor vehicles. Vehicle manufacturers must 
adhere to prescribed noise limits during the design and manufacturing 
process.

	 (iii)	 Construction and Demolition Activities: The Central Pollution Control Board 
(CPCB) issued guidelines for noise levels at construction sites and during 
demolition activities. These guidelines aim to reduce noise disturbances for 
nearby residents.

	 (iv)	 Firecracker Regulations: During festivals and celebrations, noise pollution 
from firecrackers can become a significant concern. Some states and cities 
have imposed restrictions on the use of loud or high-decibel firecrackers to 
limit noise pollution.

	 (v)	 Aircraft Noise Regulations: The Directorate General of Civil Aviation 
(DGCA) has guidelines to control aircraft noise during take-off, landing, and 
taxiing. These measures help reduce the impact of aircraft noise on communi-
ties near airports.
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	 (vi)	 Indian Standards for Machinery and Equipment: The Bureau of Indian 
Standards (BIS) sets noise emission standards for various machinery and 
equipment used in industries and construction activities.

	(vii)	 Noise Pollution (Regulation and Control) Rules, 2000: These rules were for-
mulated to regulate and control noise pollution in specific areas, including 
residential, commercial, and industrial zones, as well as silence zones. The 
rules specify permissible noise levels during different times of the day.

	(viii)	 State-Specific Regulations: Some states have their own specific noise regula-
tions to address local noise pollution issues, which may be more stringent 
than national regulations.

International Cooperation and Knowledge Sharing
The preservation of the environment has become a paramount concern for nations 
worldwide due to increasing population, industrialization, air pollution, deteriorat-
ing water quality, and environmental degradation. Countries, including India, 
actively participate in  local and global environmental protection initiatives to 
address these pressing issues at various levels. At the national and regional levels, 
India collaborates with institutions such as the Asia-Pacific Network for 
Environmental Compliance and Enforcement (AECEN) to promote adherence to 
environmental legal standards and share innovative policies and practices. 
Additionally, India engages in dialogues facilitated by organizations such as the 
OECD and AECEN to develop cost-effective enforcement strategies and tools for 
environmental compliance. The World Bank and the US Environmental Protection 
Agency (EPA) have also conducted extensive studies evaluating India’s environ-
mental compliance, enforcement, and institutional reforms. These efforts aim to 
enhance effective environmental compliance and enforcement, ensuring a sustain-
able and greener future for the nation and the world.

15.8 � Challenges and Future Prospects

Enforcement and Compliance  Enforcement and compliance issues are significant 
challenges in the realm of environmental pollution control. Despite the existence of 
regulations and standards, ensuring that industries, businesses, and individuals 
adhere to these measures can be complex. Inadequate enforcement mechanisms, 
lack of resources, and bureaucratic hurdles can hinder effective implementation. 
Noncompliance may result from a variety of factors, such as cost considerations, 
limited awareness, or a lack of motivation to change established practices. 
Additionally, the presence of informal or unregulated sectors can further complicate 
enforcement efforts. To address these challenges, governments need to strengthen 
enforcement capacities, increase transparency, and streamline regulatory processes. 
Public awareness campaigns can play a crucial role in educating communities about 
the importance of pollution control and the consequences of noncompliance. 
Furthermore, incentivizing compliance through rewards or penalties and fostering 
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collaboration between regulatory agencies, industries, and the public can foster a 
culture of environmental responsibility and ultimately lead to better enforcement 
and compliance outcomes.

Technological Advancements and Innovation  Technological advancements and 
innovation hold immense potential for revolutionizing environmental pollution con-
trol measures. Rapid developments in various fields, such as renewable energy, 
waste management, and pollution monitoring, offer promising solutions to address 
environmental challenges. The integration of cleaner technologies, such as solar and 
wind energy, can reduce reliance on fossil fuels and mitigate greenhouse gas emis-
sions. Advanced waste treatment technologies, including recycling and waste-to-
energy processes, contribute to waste reduction and resource conservation. Smart 
sensors, drones, and satellite imaging enable real-time pollution monitoring, facili-
tating data-driven decision-making for better pollution control strategies. Artificial 
intelligence and machine learning applications can analyze vast amounts of envi-
ronmental data, providing valuable insights for targeted interventions. Moreover, 
innovations in green building materials and energy-efficient designs enhance sus-
tainability in construction and urban development. Embracing technology-driven 
solutions not only improves pollution control efficiency but also boosts economic 
growth by fostering a green and sustainable industry. Collaboration between gov-
ernments, research institutions, and the private sector is essential to foster techno-
logical advancements and harness innovation for effective environmental protection 
and sustainable development.

Integration of Pollution Control with Sustainable Development  The integration 
of pollution control with sustainable development is a fundamental approach to 
achieving long-term environmental protection and balanced socioeconomic growth. 
Sustainable development aims to meet the needs of the present generation without 
compromising the ability of future generations to meet their own needs. By integrat-
ing pollution control measures into sustainable development strategies, we can 
address environmental challenges while promoting social equity and economic 
prosperity. This integration involves adopting environmentally friendly practices 
across various sectors, such as energy, transportation, agriculture, and industry. For 
instance, transitioning to renewable energy sources reduces greenhouse gas emis-
sions and air pollution, contributing to both environmental and economic sustain-
ability. Sustainable urban planning emphasizes eco-friendly infrastructure, green 
spaces, and efficient public transport, creating cities that are less polluted, more 
livable, and economically vibrant. In agriculture, promoting sustainable farming 
practices, such as organic farming, agroforestry, and water-efficient irrigation, 
reduces soil and water pollution, conserves biodiversity, and ensures food security. 
Integrating waste management with sustainable practices, such as recycling and 
waste-to-energy technologies, minimizes landfill usage, conserves resources, and 
reduces pollution. The integration of pollution control with sustainable develop-
ment also considers the social dimension, ensuring that environmental benefits are 
equitably distributed among communities. Environmental justice and inclusivity 
become crucial considerations in the decision-making process. To achieve success-
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ful integration, policy coherence and cross-sectoral collaboration are essential. 
Governments, businesses, civil society, and academia must work together to develop 
and implement comprehensive strategies that prioritize environmental protection 
and social well-being while fostering economic growth. Public awareness and edu-
cation play a vital role in promoting sustainable practices and garnering public sup-
port for pollution control efforts. By embracing this holistic approach, societies can 
create a more resilient and sustainable future where environmental protection, social 
equity, and economic prosperity go hand in hand, safeguarding the planet for pres-
ent and future generations.

15.9 � Conclusion

In conclusion, environmental pollution control measures are vital for safeguarding 
the health of our planet and its inhabitants. Recent advancements in technology and 
innovative approaches offer promising solutions to combat pollution effectively. 
However, enforcement and compliance issues remain significant challenges that 
need to be addressed through stronger regulatory measures and public awareness 
campaigns. Integrating pollution control with sustainable development is a key 
aspect of creating a harmonious balance between environmental protection, social 
equity, and economic progress. By adopting cleaner technologies, promoting renew-
able energy, and implementing sustainable practices in various sectors, we can pave 
the way for a greener and more sustainable future. International cooperation and 
knowledge sharing further strengthen global efforts to address environmental chal-
lenges and create a healthier planet for all. It is essential that governments, indus-
tries, communities, and individuals work together, taking decisive actions to 
preserve the environment, conserve natural resources, and ensure the well-being of 
current and future generations. Through collective efforts and a commitment to 
responsible environmental stewardship, we can create a world where pollution is 
minimized, ecosystems thrive, and the beauty of our planet endures for generations 
to come.

The implications of effective environmental pollution control measures extend 
far beyond immediate benefits. By curbing pollution and adopting sustainable prac-
tices, we promote environmental sustainability on multiple fronts. Reduced emis-
sions and pollution lead to improved air and water quality, benefiting human health 
and biodiversity. Preservation of natural habitats and ecosystems helps maintain 
ecological balance and protect endangered species. Sustainable land and water 
management practices contribute to soil health, water conservation, and enhanced 
agricultural productivity. Moreover, the integration of pollution control with sus-
tainable development fosters economic resilience by promoting green industries 
and creating green jobs. Embracing environmental sustainability not only secures 
the well-being of current generations but also ensures a viable and thriving planet 
for future generations. The commitment to environmental sustainability is a shared 
responsibility that transcends borders, requiring collective action and collaboration 
to protect our precious planet and secure a sustainable and prosperous future.
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Chapter 16
Environmental Legislation and Global 
Initiatives

Aabid Hussain Naqash  and Bilal Bashir Bhat 

Abstract  The environment is comprised of air, water, and land, and it is crucial to 
ensure that human activities do not pose a threat to the environment from which we 
derive our food. With the advent of globalization, environmental issues have tran-
scended national boundaries and become transnational in nature. Consequently, the 
importance of protecting the natural environment has grown significantly in recent 
decades. Environmental law encompasses a collection of regulations and legal prin-
ciples that tackle various aspects of the environment, including air and water qual-
ity, the preservation of endangered species, and other related matters. At the national 
level, environmental laws are formulated in the form of acts, rules, and regulations, 
while at the international level, they take the shape of treaties, protocols, and con-
ventions. Multilateral environmental agreements (MEAs) specifically incorporate 
or rely on data and information obtained through space-based technologies. Remote 
sensing, without infringing on legal provisions or violating national sovereignty, 
can offer a comprehensive range of relevant information synoptically.

Keywords  Environmental law · Globalization · Transnational environmental 
issues · Multilateral environmental agreements · Space-based technologies · 
Remote sensing

16.1 � Introduction

Air, water, and land together form the environment as well as their interaction with 
one another, with people, with other living beings, and with physical objects. We 
must ensure that the environment from which we obtain our food is not threatened by 
human demands that exceed its capacity to sustain both the present and the coming 
generations. An environmental catastrophe that endangers life on earth has been 
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brought on by environmental deterioration, population explosion, extensive urbaniza-
tion, indiscriminate exploitation of natural resources, etc. Today, key global chal-
lenges include conservation, improvement, and protection of the human environment 
(Kanga et al., 2022). Additionally, environmental issues are becoming transnational 
as a result of globalization. The global environment is also impacted when the envi-
ronment of one nation deteriorates. Therefore, it is imperative to think about the pos-
sible effects before they turn into absolute problems. The urge to protect the natural 
environment has increased during the past few decades (Christmann & Taylor, 2002).

16.2 � Types of Environmental Legislation 
and International Agreements

National environmental laws are in the form of acts, rules, regulations, etc. At the 
international level, it is in the form of treaties, protocols, conventions, etc. 
Environmental law is a body of rules and laws that address issues including air qual-
ity, water quality, threatened and endangered species, and several other aspects of 
the environment. Environmental legislation aims to control human-nature interac-
tions to lessen environmental dangers and enhance public health. The two pillars of 
environmental law are management and conservation. The way environmental laws 
are put into practice largely determines their effectiveness (Gunningham, 2009). An 
agreement between many governments or enterprises of several countries is known 
as international law and differs from national laws passed by the government of a 
single nation, whether they are referred to as treaties, conventions, accords, or vari-
ants of these arrangements. Agreements are the written records of legally binding 
agreements reached between two or more nations (Mitchell, 2003). A treaty, as 
defined, “is an intercontinental agreement settled between governments in writing 
and administered by global law” as per the Vienna Convention on the Treaties of 
Law of 1969. In an agreement, governments affirm their “approval to be bound.” A 
sort of treaty that is legally required under transnational law and that enables us to 
accomplish conservation goals is an international environmental accord, commonly 
referred to as an environmental protocol. A convention is a conference or gathering 
intended to create or consider a generally accepted concept, a framework in which 
the parties select the key elements. Since the convention’s outcome document is 
given during the conference, the line between a conference and a convention can 
occasionally be blurred, and the terms are frequently used interchangeably.

�United Nations Conference on the Human Environment

It was the first significant conference on global environmental concerns held by 
the UN and signaled a turning point in the evolution of global environmental poli-
tics, known as the Stockholm Conference informally, which took place in June 
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1972 in Stockholm, Sweden. The Stockholm Assertion, which set forth 26 princi-
ples, raised environmental apprehensions to the topmost transnational agenda and 
motioned the launch of a dialogue between technologically advanced and emerg-
ing states regarding the connection between inclusive financial development, con-
tamination of the water and air, and human well-being (Caldwell & Weiland, 
1996). The establishment of the UNEP was among the key outcomes of the 
Stockholm conference.

�National Environmental Legislation

Some remarkable efforts at the national level have been made by incorporating 
amendments into the Indian constitution for the protection and improvement of the 
environment. Initially, the Indian constitution did not directly provide for the pro-
tection of the natural environment. However, after the 1972 United Nations 
Conference on the Human Environment in Stockholm, the Indian constitution was 
amended to include environmental protection as a constitutional mandate (Niyati, 
2015). After the Stockholm Conference, the Department of Science and Technology 
established the National Council for Environmental Policy and Planning in 1972 as 
a regulatory agency to handle environment-related concerns. Following this, the 
Ministry of Environment and Forest (MoEF) was established in India in 1980. The 
Ministry of Environment and Forest (MoEF) has overall responsibility for the man-
agement and implementation of environmental legislation and policies. The consti-
tutional provisions are backed by several laws, acts, rules, and notifications 
(Fig. 16.1), and some are as follows:

�The Water (Prevention and Control of Pollution) Act, 1974

The Water Prevention and Control of Pollution Act, 1974, was enacted to provide 
for the following:

	 (i)	 Prevention and control of water pollution.
	(ii)	 Maintain or restore the wholesomeness of water purity in the various sources 

of water.
	(iii)	 It further provides for the establishment of the Centre Pollution Control Board 

(CPCB) and State Pollution Control Board (SPCB) for the prevention and con-
trol of water pollution.

	(iv)	 It empowers CPCB and SPCB authorities to lay down effluent standards for 
factories discharging pollutants into water bodies.

	(v)	 CPCB and SPCB control sewage and industrial effluent discharge by approv-
ing, rejecting, and granting consent to discharge (Yadav, 2016).
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Fig. 16.1  Laws, acts, rules, and notifications for regulation of environmental pollution in India

�The Air (Prevention and Control of Pollution) Act, 1981

The act was passed to control air pollution and was subsequently amended in 1987. 
The Act is an outcome of the Stockholm Conference of 1972. Its main objec-
tives are to:

	 (i)	 Prevent, control, and abatement of air pollution.
	(ii)	 Prohibit the use of polluting substances and regulate the appliances that give 

rise to air pollution.
	(iii)	 Provide for the establishment of CPCB and SPCB to implement the provisions 

of the act.
	(iv)	 As per the act, the CPCB and SPCB were given the responsibility to:
	(v)	 Stipulate that the sources of air pollution, such as industries and power plants, 

are not permitted to release particulate matter, CO, CO2, lead, volatile organic 
compounds (VOCs), sulfur dioxide, nitrogen oxides, or other toxic substances 
beyond the permissible limit.

	(vi)	 Allow the state government to identify air pollution areas (Chand, 2018).
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�The Environment (Protection) Act, 1986

The EPA of 1986 was passed under Article 253 of the Indian Constitution. After the 
Bhopal gas tragedy in December 1984, this law was passed. It was implemented to 
achieve the goals of the UN conference on the human environment of the 1972 
Stockholm Declaration. Under the EPA of 1986, which mandates a 10 km buffer 
zone around protected sites, the Ministry of Environment, Forest and Climate 
change (MoEF&CC) notifies eco-sensitive zones or environmentally vulnerable 
areas (Agarwal, 2005).

The statutory bodies under the EPA of 1986 are as follows:

	(i)	 Genetic Engineering Appraisal Committee
	(ii)	 National Coastal Zone Management Authority (now National Ganga Council)

�The Ozone-Depleting Substances (Regulation and Control) 
Rules, 2000

The Ozone-Depleting Substances (Regulation and Control) Rules, 2000, and their 
amendments have been published by the Central Government in the Gazette of India 
under the Environment Protection Act, 1986. These rules forbid the use of ozone-
depleting substances (ODS), such as carbon tetrachloride and methyl chloroform, 
SFC, CFCs, and halons, except for metered-dose inhalers and other medical pur-
poses. The Act sets timelines for the phase-out of several ozone-depleting sub-
stances (ODS) and controls the manufacturing, commercial import, and export of 
goods containing ODS (Weatherhead & Andersen, 2006).

�The Noise Pollution (Regulation and Control) Amendment 
Rules, 2010

Key features of the amendment are as follows:

	 (i)	 Loudspeakers, sound systems, or amplifiers should not be used at night except 
in enclosed spaces such as auditoriums, meeting rooms, community halls, and 
banquet halls, or during public emergencies (Mangalekar et al., 2012).

	(ii)	 Noise levels in public spaces where loudspeakers or public address systems are 
being used should not exceed 10 dB or 75 dB of the area’s ambient noise stan-
dard, whichever is less.

	(iii)	 No horn should be used in the residential area except during an emergency.
	(iv)	 Sound emitted from construction-related equipment shall not be used at night.

16  Environmental Legislation and Global Initiatives
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�The National Green Tribunal Act, 2010

Following the NGT Act of 2010, the National Green Tribunal (NGT) was estab-
lished on October 18, 2010 as a specialized body for addressing any environmental 
disputes, including multidisciplinary concerns. It also draws inspiration from Article 
21 of the Indian Constitution, which assures a healthy environment for the citizens 
of India (Shrotria, 2015). Some of the major objectives of the National Green 
Tribunal (NGT) are as follows:

	 (i)	 Effective and expeditious disposal of cases related to the protection and con-
servation of the environment, forests, and other natural resources.

	(ii)	 To give relief and compensation for any damage caused to persons and 
properties.

	(iii)	 To handle various environmental disputes that involve multidisciplinary issues.

�Plastic Waste Management Rules, 2016

The Plastic Waste Management Rules, 2016, have been published by the govern-
ment through the MoEF&CC, replacing the preceding Plastic Waste (Management 
and Handling) Rules, 2011.

	(i)	 Every day, 15,000 tonnes of plastic waste are generated, of which 9000 tonnes 
are collected and processed, but 6000 tonnes are not collected.

	(ii)	 The updated Waste Management Rules, which will aid in accomplishing the 
goals of Swacch Bharat and cleanliness as a necessity for health and tourism, 
include the new Plastic Waste Management Rules.

�Solid Waste Management Rules, 2016

The Municipal Solid Waste (Management and Handling) Rules, 2000, have been 
replaced by these regulations. Its key characteristics consist of the following:

	 (i)	 The restrictions now apply to urban agglomerations, census towns, notified 
industrial townships, and other locations outside of municipal boundaries.

	(ii)	 Waste source segregation has been made mandatory.
	(iii)	 The generator will be required to pay the garbage collection “User Fee” and 

“Spot Fine” for littering and improper segregation.
	(iv)	 The Ministry of Urban Development (MoUD) is responsible for developing 

the nation’s solid waste management policy and strategy.
	(v)	 The Ministry of Chemicals, Department of Fertilizers, shall support compost 

commercialization and use.
	(vi)	 They also encourage building waste-to-energy facilities (Sudha, 2008).
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�E-Waste Management Rules, 2016

	 (i)	 The term “electronic waste” refers to old, obsolete, or abandoned electronic 
appliances.

	(ii)	 The Ministry of Environment, Forests, and Climate Change issued the E-Waste 
Management Rules, 2016, which replaced the E-Waste (Management & 
Handling) Rules, 2011.

	(iii)	 Every year, 17 lakh tonnes of e-waste are generated, with an annual increase of 
5% in e-waste generation.

	(iv)	 The revised rules provide stricter standards and reflect the government’s greater 
commitment to environmental control.

�Biomedical Waste Management Rules, 2016

Important elements of the rules include the following:

	 (v)	 The scope of the regulations has been widened to cover any healthcare-related 
activity, including immunization camps, blood donation camps, and sur-
gery camps.

	 (vi)	 Within 2 years, the usage of chlorinated plastic bags, gloves, and blood bags 
is to be phased out.

	(vii)	 For the purpose of disposal, it aims to create a bar-code system for bags or 
containers carrying biomedical waste.

	(viii)	 According to the regulations, biomedical wastes are divided into four groups: 
soiled trash, biotechnology waste, animal anatomical waste, and untreated 
human anatomical waste.

	 (ix)	 The state government is required by law to provide land for the construction 
of a facility for the treatment and disposal of biomedical waste (Pandey 
et al., 2016).

�Coastal Regulation Zone Notification, 2018

The Ministry of Environment, Forest and Climate change (MOEF&CC) under the 
Environment Protection Act of 1986 constituted the Shailesh Nayak Committee in 
June 2014, and based on the committee, CRZ notification 2018 was notified. While 
the CRZ Rules are made by the union environment ministry, implementation is to 
be ensured by state governments through their Coastal Zone Management 
Authorities (Chinnasamy & Parikh, 2021).

The CRZs have been classified into four zones for regulation:
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	 (i)	 CRZ I – includes ecologically sensitive areas such as mangroves, coral reefs, 
salt marshes, turtle nesting ground, and the intertidal zone.

	(ii)	 CRZ II – includes areas close to the shoreline that have been developed.
	(iii)	 CRZ III – includes coastal areas that are not substantially built up, including 

rural coastal areas.
	(iv)	 CRZ IV– includes the water area from the Low Tide Line (LTL) to the limit of 

the territorial waters of India.

16.3 � Global Environmental Initiatives

In order to address global environmental issues, world leaders have signed 
Multilateral Environmental Agreements (MEAs) (Fig. 16.2) between three or more 
countries that assist with addressing specific environmental problems at national, 
regional, and global levels. Examples include the pollution of rivers and seas that 
are part of several countries (e.g. the Mediterranean Sea or the Great Lakes in the 
United States and Canada) and air pollution dispersed from one or more countries 
over several other countries (e.g. sulfur dioxide and dust from power plants in 
Europe).

These kinds of environmental issues require multilateral action in order to be 
effective, and MEAs set out the rules describing what each country is expected to do.

The best-known MEAs are those that deal with global problems, such as the 
United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto 
Protocol, and the Convention on Biological Diversity.

Key features of MEAs include the following:

•	 A primary objective is to address one or more clearly defined environmental 
problems. An MEA may also have a secondary objective, such as poverty reduc-
tion or sustainable development.

•	 They are expressed in written form in a document that is approved by each coun-
try’s parliament (or similar).

•	 They are governed by international law.

Some of the global initiatives have been touched upon in the blow sections.

�Initiatives Related to Abating the Effects of Climate Change

Rio Earth Summit  The Rio Summit, sometimes referred to as the Earth Summit, 
was a notable UN conference that transpired in Rio de Janeiro, Brazil, in June 1992. 
The Earth Summit’s main motive was to create an inclusive program and worldwide 
action plan on environmental and development challenges (Conca & Dabelko, 2018). 
The summit concluded that everyone on earth could achieve knowledge of sustain-
able development. This summit resulted in the creation of the following documents:
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Fig. 16.2  Key multilateral environmental agreements

	 (i)	 The United Nations Framework Convention on Climate Change (UNFCCC)
	(ii)	 The Convention on Biological Diversity (CBD)
	(iii)	 The Statement on Forest Principles
	(iv)	 The Rio Declaration
	(v)	 Agenda 21

United Nations Framework Convention on Climate Change (UNFCCC)  The 
UNFCCC was established in Rio de Janeiro, Brazil, in 1992 as a result of the first 
multinational meeting on climate change, which transpired in Stockholm, Sweden, 
in 1972. The Earth Summit took place in 1992, and that year witnessed the ratifica-
tion of the UNFCCC, which was the chief multinational pact and controlling step to 
contest climate change through its creativities of vindication and adaptation, which 
aimed at a decrease in the release of greenhouse gases (GHGs), contributing to 
global warming (Najam & Cleveland, 2005). A total of 197 countries accepted the 
UNFCCC, which entered into power in 1994. India endorsed the UNFCCC in 1993.

Kyoto Protocol  It is an intercontinental pact to diminish the release of greenhouse 
gases. Nitrous oxide, methane, carbon dioxide, perfluorocarbons, sulfur hexafluo-
ride, and hydrofluorocarbons are greenhouse gases that are covered by the Kyoto 
Protocol. Industrialized countries are chiefly held responsible for the elevated val-
ues of GHG emissions in the Earth’s atmosphere (Iwata & Okada, 2014). The Kyoto 
Protocol was ratified in 2005 after being signed in Kyoto, Japan, in 1997. Phase 1 of 
the Kyoto Protocol (2005–12) specified an emission reduction target of 5% from 
1990 levels, whereas Phase 2 (2013–20) set an emission reduction objective of at 
least 18% for industrialized countries.
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Paris Agreement  The Paris Agreement, sometimes referred to as COP 21, is an 
international climate change treaty that was enacted to diminish and alleviate green-
house gas emissions. It replaced the earlier climate change pact known as the Kyoto 
Protocol (Ourbak & Magnan, 2018). It attempts to keep a check on the global aver-
age temperature for the current century to considerably less than 2 °C over prein-
dustrial scales by reducing GHG emissions on a worldwide scale. 196 Parties 
ratified it in Paris on December 12, 2015, and on November 4, 2016, it entered 
into power.

Ramsar Convention  The Ramsar Convention took place in the Iranian city of 
Ramsar to protect wetlands and their resources. It was ultimately put into operation 
in 1975. At least 2453 Ramsar sites have been designated globally as of August 
2022, covering 255,792,244 hectares, with participation from 171 national govern-
ments (Gardner & Davidson, 2011). On February 1st, 1981, the Ramsar Convention 
entered into force in the country. There are 75 Ramsar sites in India. These wetlands 
are deemed to be of “international significance” by the Ramsar Convention.

The Ramsar Convention was created with three pillars as its foundation:

	 (i)	 Work to ensure that all wetlands are used wisely
	(ii)	 Designate appropriate wetlands on the Ramsar List to manage those wetlands 

efficiently
	(iii)	 To promote international cooperation for common species, shared wetland sys-

tems, and transboundary wetlands

�Initiatives Related to the Abatement of Air Quality

Vienna Convention  To stop the ozone layer from being destroyed, this convention 
was established. The ozone layer of the planet is protected by the said Convention 
and its Montreal Protocol on materials that diminish the ozone layer. The Convention 
aims to encourage international collaboration by exchanging data on how human 
activity affects the ozone layer (Sand, 1985). This convention entered into force in 
1988 and was completely ratified in 2009. On March 22nd, 1985, 28 nations 
approved the pact for the first time. India also signed the Vienna Convention. It rati-
fied the agreement in 1991.

Montreal Protocol  The said Protocol is a significant global pact that regulates the 
manufacture, use, and emissions of chemicals that harm the ozone layer. Scientists 
were able to demonstrate in the late 1970s that chemicals used in air conditioners, 
refrigerators, and aerosol cans were harming the ozone layer (Levy, 1997). Member 
states of the UN agreed to avoid ozone layer depletion when they ratified the Vienna 
Convention in 1985. The Protocol was retained in 1987 and came into power in 
January 1989.
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�Initiatives Related to the Protection of Freshwater Resources

Convention on the protection and use of transboundary watercourses and inter-
national lakes (ECE water convention)  A worldwide environmental agreement, 
also known as the Water Convention, is one of the five environmental treaties that 
the UNECE has negotiated. The management and protection of transboundary sur-
face waters and groundwaters are the goals of this convention, which seeks to rein-
force national efforts and legislation in these areas. The convention has provisions 
on information sharing as well as research, monitoring, consultations, development, 
alarm systems and warning, mutual aid, and access (Contartese, 2017). It became 
formally enforceable on October 6, 1996, and was made available for signature in 
Helsinki on March 17, 1992.

�Initiatives Related to Protection from Land Degradation/Nature 
Conservation and Terrestrial Living Resources

UN Convention to Combat Desertification (UNCCD)  Its purpose is to lessen the 
detrimental effects of desertification and drought. The drylands, which are made up 
of barren, semibarren, and dry submoist regions and are home to some of the most 
vulnerable ecosystems and inhabitants, are the core focus of the UNCCD (Stringer, 
2008). The draft of the convention was made available for signing in 1994. It became 
effective in 1996 after receiving 50 ratifications. India adopted the Convention to 
Combat Desertification in December 1996. A comprehensive worldwide commit-
ment to accomplish land degradation neutrality (LDN) is made in the convention’s 
2018–2030 tactical structure, which aims to:

	 (i)	 Reinstate the efficiency of degraded land
	(ii)	 Improving the standard of living for those who depend on them
	(iii)	 Minimizing the effects of droughts on population groups at risk

�Initiatives Related to the Management of Hazardous Wastes

Basel Convention  The meeting of delegates authorized the Basel Convention on 
the Control of Transboundary Movements of Hazardous Wastes and the Disposal of 
Such Wastes in 1989. It aims to guard people and the ecology from the detrimental 
effects of hazardous waste that is created, managed, and disposed of on a worldwide 
scale (Kohler, 2017). Legislation was enacted in 1992. The Basel Convention secre-
tariat is headquartered in Geneva, Switzerland. India is a member of the Basel 
Convention.
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Stockholm Convention  The meeting of delegates approved the Stockholm 
Convention in 2001, and the convention entered into force in 2004. It is a global 
agreement to safeguard substances (persistent organic pollutants) from damaging 
the health of humans or the environment by remaining in the atmosphere for an 
extended length of period, becoming largely dispersed in nature, and building up in 
the fatty tissues of both people and animals. Pesticides, industrial chemicals, and 
inadvertently created POPs are the three categories of POPs for which worldwide 
action is required (Hagen & Walls, 2005). India ratified the international agreement 
in May 2002, and it came into effect in January 2006.

Minamata Convention  This convention on Mercury is a global environmental 
accord that targets protecting human health and the environment from the detrimen-
tal effects of mercury and its derivatives. The infamous Minamata disease, which 
first manifested in the Japanese city of Minamata in the 1950s, was due to industrial 
wastewater from a chemical factory containing methylmercury (Selin, 2014). 
Mercury is one of the top ten elements that the World Health Organization (WHO) 
lists as being of significant public health concern. The pact was executed in 2013 
and entered into power in 2017. India ratified the Minamata Convention in 2018 and 
is a party to it.

�Initiatives Related to the Oceans and Seas

London Convention  The convention’s primary goal is to prohibit careless dump-
ing at sea of waste that might endanger human health and destroy living things and 
marine life. It includes the deliberate discharge of waste or other materials from 
ships and platforms into the ocean (Verlaan, 2011). Releases from sources based on 
land, such as pipelines and channels, are not covered under the convention. It 
became effective on August 30, 1975, after 15 countries approved it.

International Convention for the Prevention of Pollution of the Sea by Oil  A 
global agreement was reached in London on May 12, 1954. It was amended in 1962, 
1969, and 1971. The OILPOL Convention recognized that day-to-day shipboard 
activities, such as cargo tank washing, were the main contributors to the majority of 
oil pollution. The discharge of oily waste to the nearby land and in the locality 
where the surroundings are particularly at risk was prohibited by OILPOL 54 
(Cremean & Techera, 2012).

�Initiatives Related to Nuclear Safety

Comprehensive Nuclear-Test-Bans Treaty  A universal treaty known as the CTBT 
prohibits the testing of atomic weapons and supplementary nuclear detonations for 
both armed and unarmed purposes in every condition. It was approved on September 
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10, 1996, but has not taken effect since eight specific nations have not ratified it 
(Ghosh, 1996).

Convention on Nuclear Safety  The 1994 Convention on Nuclear Safety is a con-
vention that defines safety standards for nuclear power facilities in governments that 
have accepted it. These include a selection of the location, design and construction, 
use and safety assurance, and emergency readiness (Kamminga, 1995). The pact 
was agreed on June 17, 1994, during an IAEA diplomatic meeting in Vienna, 
Austria. On September 20, 1994, it became available for signature.

16.4 � National and International Environmental 
Organizations and Institutional Framework

�At the National Level

The Ministry of Environment and Forest & Climate Change (MoEF&CC)  The 
Ministry of Environment, Forest & Climate Change (MoEF&CC) is the nodal body 
in the Central Government’s administrative structure responsible for organizing, 
coordinating, and monitoring the execution of the nation’s environmental and for-
estry programs. The ministry’s primary initiatives include the preservation and sur-
vey of India’s flora and wildlife, forests and other wilderness regions, pollution 
prevention and management, afforestation, and minimizing land degradation 
(Officer, 2016). Additionally, the Ministry serves as the nation’s focal point for the 
UN Environment Programme (UNEP).

Central Pollution Control Board  The Water (Prevention and Control of Pollution) 
Act of 1974 created the Central Pollution Control Board (CPCB), a governmental 
organization, in September of that year. Additionally, the CPCB was given authority 
and responsibilities under the Air (Prevention and Control of Pollution) Act of 1981 
(Chand, 2018). It performs the functions of a field formation and offers technical 
assistance to the Ministry of Environment and Forests on the guidelines set forth in 
the Environment (Protection) Act of 1986.

�At the International Level

Intergovernmental Panel on Climate Change (IPCC)  It operates under UN super-
vision. It was initially recognized in 1988 by the World Meteorological Organization 
(WMO) and the United Nations Environment Programme (UNEP). The UNFCCC 
is supported by reports from the IPCC. The IPCC reports provide all the informa-
tion required to understand the threat posed by man-induced environmental changes, 
their possible repercussions, and methods for vindication and adaptation 
(Agrawala, 1998).
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United Nations Environment Programme (UNEP)  The UN General Assembly 
founded the UNEP as a result of the UN Conference on the Human Environment, 
which took place in Sweden. Its main office is in Nairobi (Kenya). UNEP is primar-
ily responsible for coordinating the development of environmental policy, which is 
used to monitor the status of the environment across the globe (Ivanova, 2010).

World Health Organization (WHO)  The WHO’s goal is to ensure that every per-
son has the greatest possible level of health. Fighting illness, especially deadly 
infectious diseases, is its key objective (Jong-Wook, 2003). One of the earliest orga-
nizations established by the United Nations, its charter was adopted by the 26th 
member state on April 7, 1948, the inaugural World Health Day. The WHO has 193 
member nations.

International Union for Conservation of Nature (IUCN)  The principal universal 
environmental network in the world is the IUCN. It is an independent membership 
organization with members exceeding 1000 from government and nongovernmental 
organizations, together with over 11,000 volunteer researchers from over 160 
nations (Haas, 1990). The Union’s main office is in Gland, Switzerland. IUCN aims 
to discover real-world resolutions to the most significant environmental issues.

Worldwide Fund for Nature (WWF)  The WWF, previously known as the World 
Wildlife Fund, is an intercontinental NGO that deals with matters pertaining to 
environmental protection, research, and restoration (Curry-Lindahl, 1978). It oper-
ates in over 90 countries and is backing over 1300 environmental and preservation 
activities on a worldwide scale, making it the largest independent conservation 
organization in the world.

Food and Agriculture Organization of the United Nations (FAO)  It is a UN orga-
nization with member countries that coordinates worldwide efforts to eliminate 
hunger. The FAO is a way of expertise and knowledge that assists emerging and 
transitional countries in technologizing and advancing their farming, forestry, etc., 
ensuring that everyone has access to a nutritious diet and food security (Ruane & 
Sonnino, 2011).

Global Environment Facility (GEF)  The GEF supports national sustainable devel-
opment initiatives while working with international organizations and the corporate 
segment to tackle global environmental issues. (GEF) is an organization with com-
plete financial independence and provides funding for programs addressing persis-
tent organic pollutants, international waterways, ozone depletion, land degradation, 
and biodiversity (Jordan, 1994).

Commission on Sustainable Development (CSD)  It was recognized by the General 
Assembly Resolution in December 1992 to implement an endorsement in Chapter 
38 of Agenda 21. It promotes sustainable development via capacity building and 
technical assistance at the regional, national, and global levels. The historic global 
agreement was reached at the Rio de Janeiro Earth Summit (Kaasa, 2007).
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16.5 � Remote Sensing & GIS in Relevance to National  
& Multinational Environmental Legislation/
Agreements

An unrivaled source of data that conveys environmental changes in a visually 
appealing manner is the use of remote sensing and GIS. As a result, it is very helpful 
for increasing awareness and building the political support required to enhance 
MEAs and environmental legislation. Spatial data on the earth’s biophysical sys-
tems are becoming necessary as a result of the growth of environmental accords 
(Peter, 2004). Environmental legislation has a physical connection to space. Much 
environmental legislation effectively safeguards entire ecosystems, such as protect-
ing endangered species by identifying their habitats or those that require permits for 
the dredging and filling of wetlands. Multilateral environmental accords (MEAs) 
specifically include or rely on data and information from space-based technologies, 
even though over 200 MEAs addressing a wide variety of environmental issues and 
concerns have been created over the previous few decades.

The use of remotely sensed information for many elements of MEAs has been 
emphasized by the American Institute of Aeronautics and Astronautics. Earth obser-
vation tools can be used for a variety of purposes to assist MEAs, including the 
detection of new environmental issues, their evaluation and monitoring of confor-
mity testing, and eventual enforcement. Various projects specifically aim to use 
remote sensing data for environmental treaty needs. The Meso-American Biological 
Corridor, the Millennium Ecosystem Assessment (MEA) and the Global Monitoring 
for Environment and Security (GMES) of the European Commission are a few of 
the more significant (Kuriyama, 2005). At the national level, environmental remote 
sensing focuses on cutting-edge techniques, tools, and high-impact applications in 
practical, real-world contexts. It contains sensors for monitoring coastal subsidence, 
UAV-based data for assessing disaster damage and recovery, high-resolution multi-
spectral data for assessing ecosystem vulnerability and rehabilitation, and hyper-
spectral data for evaluating and mapping biodiversity. On a modest scale, efforts are 
being made to investigate remote sensing uses in connection to MEAs, such as 
tracking carbon sequestration under the Kyoto Protocol (Perez et al., 2007). MEAs 
can be assisted by Earth observation (EO) information in a variety of ways, includ-
ing state forest surveys and the use of GIS services. Remote sensing can help with 
global environmental assessments in support of MEAs by providing timely infor-
mation on environmental concerns, including carbon-monoxide plumes and the car-
bon density of ecosystems.

Any effort to track trends in land degradation and desertification must include 
remote sensing images because it is crucial for understanding how land cover is 
changing. Estimates of land degradation based on remote sensing data are now pres-
ent in many country reports submitted to the UN Convention to Combat 
Desertification. The information generated from satellites may be pertinent to the 
requirements of biodiversity-related accords such as the CBD and CITES 
(Huberman, 2009). The main reasons for the decline in biodiversity are loss of 
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habitat and fragmentation. Satellite imagery may be used to properly monitor these 
factors. The incorporation of satellite data into maps of the appropriateness of ani-
mal habitats is another widely used application. The adequacy of habitats for black 
bears, moose, and waterfowl was assessed using satellite data. Generating vegeta-
tion maps employing spatial information and assessing habitat choices and circum-
stances of animal species utilizing field data are typical approaches for such an 
undertaking.

The frequent use of satellite data is for the mapping and surveillance of wetlands. 
Remotely sensed information may therefore be relevant to:

	(i)	 Specify the migratory species habitat and migration path.
	(ii)	 Regular assessments of the migratory species conservation status and the iden-

tification of potential threats to that status.

A range of GHG measures that can be entirely or partially acquired using remote 
sensing are required for the Kyoto Protocol. These include the emissions of nitrous 
oxide and methane, which are influenced by aspects of the land cover, such as soil 
moisture, rice paddies, and temperature. The type of land cover, aboveground bio-
mass, and height are all important (Rosenqvist et al., 2003). Since tillage methods 
and crop varieties can be distinguished from one another by optical vision alone, 
current RS technology may be more easily used in calculating carbon sequestration 
in agricultural fields than in forested fields. The main marine aspects of remote sens-
ing are ocean color (and therefore primary productivity) by spectrometers, sea-
surface level by altimeters, sea-surface heat by infrared radiometers, and surface 
roughness by passive and active microwave systems. These in turn pertain to differ-
ent aspects of maritime agreements that are important. The Global Ocean Observing 
System (GOOS) is an international tool for utilizing remote sensing to monitor the 
health of marine ecosystems (Barrerra et al., 2008). Monitoring protocols have been 
established in accordance with the Bonn Agreement to trace oil spills. SAR pictures 
have been shown to be helpful for spill assessment because oil slicks alter the rough-
ness of water bodies. SAR has the benefit of being able to cover a large area of the 
ocean, and it allows for the targeted use of limited surveillance resources in areas 
where a spill is most definitely suspected to have occurred.

Without breaking the law and without violating national sovereignty, remote 
sensing may offer a wide variety of pertinent facts synoptically. In the context of 
agreements such as MEAs that need data on both human behavior and environmen-
tal change, remote sensing data have numerous advantageous characteristics.

16.6 � Limitations and Problems

At the national level, the lack of coordination among government agencies, poor 
institutional capacity, lack of information access, corruption, and suppressed citizen 
involvement are the main causes of the ineffectiveness and inadequate execution of 
environmental rules. More than two-thirds of the states and union territories in the 
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nation have not bothered to follow the Supreme Court’s rulings or the Ministry of 
Environment, Forests and Climate Change’s (MoEF&CC) directives. The efficacy 
of national and international environmental legislation has been weakened by the 
complexity of domestic and international affairs. Many aspects of multinational 
law, especially global environmental law, have a soft status due to concerns about 
sovereignty (Elliott, 2004). In general, governments are reluctant to hand over con-
trol of their internal affairs, inhabitants, and territories to unbiased international 
organizations. Even after joining international agreements, several nations have 
included reservations to preserve their right to reject particular clauses. When this 
ability is exercised, many international agreements suffer a small reduction in over-
all effectiveness (Gamble, 1980). In January 2019, the UN released a research 
report, a global assessment of the environmental rule of law. What they witnessed 
was that, despite a large increase in environmental protection organizations and 
laws, the global attempt to address a number of environmental challenges has been 
impeded by a general failure to successfully apply regulations.

16.7 � Future Prospects

Environmental preservation and sustainability must become commonplace and an 
essential component of everything we do if we are going to rescue the earth, nature, 
and human civilization. It is obvious that we have made less progress toward these 
objectives in recent years than we did even a decade ago (Ruckelshaus, 1989). More 
species are on the endangered or extinct list with each passing year. Nature is being 
altered at an alarming rate by human consumption, and plastics, other waste, and 
pollutants are overtaking fish in our oceans. Environmental change poses a danger 
to the ability of the planet to support both humans and natural systems. Fundamentally, 
we are mismanaging our interaction with the natural world. Since we are all only the 
property of nature, it is our responsibility to safeguard the environment from harm 
(Bera et al., 2022). Overall, there is little question that strengthened environmental 
legislation will be crucial in protecting people and society from the environmental 
problems that we have caused.

You should keep in mind that there is not a “Planet B” in the entire cosmos, 
unless you fervently believe in Elon Musk’s ambition to make Mars another liv-
able planet.
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