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Preface

This volumecontains thepapers presented at the 17th InternationalConferenceonReach-
ability Problems (RP 2023), organized by the Laboratoire d’Informatique, Signaux et
Systèmes de Sophia Antipolis (I3S) of the Université Côte d’Azur (France) and the Lab-
oratoire d’Informatique de l’École Polytechnique (LIX), Paris-Saclay (France). Previous
events in the series were located at the University of Kaiserslautern, Germany (2022);
the University of Liverpool, UK (2021); Université Paris Cité, France (2020); Univer-
sité Libre de Bruxelles, Belgium (2019); Aix-Marseille University, France (2018); Royal
Holloway, University of London, UK (2017); Aalborg University, Denmark (2016); the
University of Warsaw, Poland (2015); the University of Oxford, UK (2014); Uppsala
University, Sweden (2013); the University of Bordeaux, France (2012); the University of
Genoa, Italy (2011); Masaryk University, Czech Republic (2010); École Polytechnique,
France (2009); the University of Liverpool, UK (2008); and Turku University, Finland
(2007).

The aim of the conference is to bring together scholars from diverse fields with
a shared interest in reachability problems, and to promote the exploration of new
approaches for the modeling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include (but
are not limited to) reachability for infinite state systems; rewriting systems; reachability
analysis in counter/timed/cellular/communicating automata; Petri nets; computational
game theory; computational aspects of semigroups, groups, and rings; reachability in
dynamical and hybrid systems; frontiers between decidable and undecidable reachabil-
ity problems; complexity and decidability aspects; predictability in iterative maps; and
new computational paradigms.

We are very grateful to our invited speakers, who gave the following talks:

Nathalie Aubrun (CNRS, Paris-Saclay, France)
“The Domino problem extended to groups”
Jarkko Kari (University of Turku, Finland)
“Low complexity colorings of the two-dimensional grid”
Bruno Martin (Université Côte d’Azur, France)
“Randomness quality and trade-offs for random number generators”
Shinnosuke Seki (University of Electro-Communications, Japan)
“How complex shapes can RNA fold into?”
Dmitry Zaitsev (Odessa State Environmental University, Ukraine)
“Sleptsov net computing resolves modern supercomputing problem”

The conference received 33 submissions (19 regular, one invited paper and 13
presentation-only submissions) from which two regular papers were withdrawn by their
authors. Each submission was carefully single reviewed by at least three Program Com-
mittee (PC) members. Based on these reviews, the PC decided to accept 13 regular
papers and 13 presentation-only submissions, in addition to the five invited speakers’
contributions. The members of the PC and the list of external reviewers can be found at
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the end of this preface. We are grateful for the high-quality work produced by the PC
and the external reviewers. Overall this volume contains 13 contributed papers and two
abstracts from invited speakers which cover their talks.

The conference also provided the opportunity to other young and established
researchers to present work in progress or work already published elsewhere. This year
in addition to the thirteen regular submissions, the PC accepted 13 high-quality informal
presentations on various reachability aspects in theoretical computer science. A list of
accepted presentation-only submissions is given later in this front matter. So overall,
the conference program consisted of five invited talks, 13 presentations of contributed
papers, and 13 informal presentations in the area of reachability problems, stretch-
ing from results on fundamental questions in mathematics and computer science up to
efficient solutions of practical problems.

It is a pleasure to thank the team behind the EasyChair system and the Lecture Notes
in Computer Science team at Springer, who together made the production of this volume
possible in time for the conference. Finally, we thank all the authors and invited speakers
for their high-quality contributions, and the participants for making RP 2023 a success.
We are also very grateful to Springer for their financial sponsorship.

October 2023 Olivier Bournez
Enrico Formenti

Igor Potapov
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Low Complexity Colorings of the Two-Dimensional Grid

Jarkko Kari

Department of Mathematics and Statistics, University of Turku, Finland
jkari@utu.fi

Abstract. A two-dimensional configuration is a coloring of the infinite
grid Z

2 using a finite number of colors. For a finite subset D of Z2, the
D-patterns of a configuration are the patterns of shape D that appear in
the configuration. The number of distinctD-patterns of a configuration is
a natural measure of its complexity. We consider low-complexity config-
urations where the number of distinct D-patterns is at most |D|, the size
of the shape. We use algebraic tools to study periodicity of such config-
urations [3]. We show, for an arbitrary shape D, that a low-complexity
configuration must be periodic if it comes from the well-known Ledrap-
pier subshift, or from a wide family of other similar algebraic subshifts
[1].We also discuss connections to the well-knownNivat’s conjecture: In
the case D is a rectangle – or in fact any convex shape – we establish that
a uniformly recurrent configuration that has low-complexity with respect
to shape D must be periodic [2]. This implies an algorithm to determine
if a given collection of mn rectangular patterns of sizem× n admit a con-
figuration containing only these patterns. Without the complexity bound
the question is the well-known undecidable domino problem.

References

1. Kari, J., Moutot, E.: Nivat’s conjecture and pattern complexity in algebraic subshifts.
Theor. Comput. Sci. 777, 379–386 (2019)

2. Kari, J., Moutot, E.: Decidability and periodicity of low complexity tilings. In: Paul,
C., Bläser, M. (eds.) STACS 2020, 10–13 March 2020, Montpellier, France. LIPIcs,
vol. 154, pp. 14:1–14:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

3. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. Inf.
Comput. 271, 104481 (2020)

https://orcid.org/0000-0003-0670-6138


How Complex Shapes Can RNA Fold Into?

Shinnosuke Seki

University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 1828585
Japan

s.seki@uec.ac.jp

Fig. 1. RNA co-transcriptional folding.

Transcription is a process in which an RNA sequence of nucleotides (A,C,G, andU),
colored in blue in Fig. 1, is synthesized from its DNA template sequence (gray) by a
molecular Xerox called polymerase (orange), which scans the template uni-directionally
and maps it nucleotide by nucleotide according to the rule A → U, C → G, G → C, and
T → A, While being thus synthesized (transcribed), the product sequence, or transcript,
folds upon itself into a structure by stabilizing via hydrogen bonds primarily of the
types A−U,C−G, and G−U, but also by having RNA helices be stacked coaxially. This
phenomenon termed co-transcriptional folding has proven programmable in-vitro for
assembling an RNA rectangular tile structure; indeed, Geary, Rothemund, and Andersen
demonstrated how to design a DNA template sequence such that the corresponding RNA
transcript co-transcriptionally folds into the tile structure highly probably [2].

Oritatami is a model of computation by RNA co-transcriptional folding [1]. In this
model, a system folds a sequence of abstract molecules, called beads, of finitely many
types co-transcriptionally over the 2-dimensional triangular grid into a non-self-crossing
directed path. Let � be a finite alphabet of bead types. A configuration in oritatami, or
conformation, is a triple (w,P,H) of a sequence w over �, a self-avoiding directed
path over the triangular grid that is as long as w, and a set H of pairs of integers (see
Fig. 2); it is to be interpreted that w is folded along P, that is, the i-th bead of w is at
the i-th vertex of P, and (j, k) ∈ H means that k ≥ j+2, P[j] is adjacent to P[k], and
a hydrogen bond forms between the beads at these adjacent points, that is, w[ j] and
w[k]. A conformation is of arity α if each of its beads forms at most α hydrogen bonds;

His work is supported in part by the JSPS KAKENHI Grant-in-Aids for Scientific Research (B)
No. 20H04141 and (C) No. 20K11672.
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for instance, the conformation in Fig. 2 is of arity 3. An oritatami system is a tuple
(�, δ, α, σ,w,♥) of two integer parameters δ and α called delay and arity, respectively,
an initial conformation, or seed, σ of arity α, a transcript w over the alphabet �, and
a symmetric affinity relation ♥ ⊆ � × �, which determines what types of beads are
allowed to bind, being placed at unit distance. It has the transcript w elongate at the
end of the seed one bead per step (oritatami is a discrete-time model), and fold co-
transcriptionally in the sense that only the most nascent δ beads are allowed to move,
and the oldest among these δ beads is stabilized according to the conformations that
form the largest number of hydrogen bonds. For instance, in Fig. 2, the bead H7 is going
to stabilize at delay δ = 3. If either the arity of the system is set to 3 or it is set to 4 or
larger but there is no other way to fold the suffix H7-H8-H9 so as to form 4 or more new
bonds, then H7 can be stabilized along with its bond with H4 as illustrated there. On the
other hand, if the arity is 2 or smaller, then the conformation illustrated left in Fig. 2 is
not valid, and hence, not taken into account in the stabilization.

Reachability problems of practical significance in oritatami include those asking
whether a given oritatami system reaches a given grid point, conformation, and shape,
that is, a set of grid points. This talk shall demonstrate how the point reachability has
been proved undecidable for the class of deterministic oritatami systems at delay 3 in
[3] by simulating Turedos, a novel class of self-avoiding 2D Turing machines.

Fig. 2. A conformation and stabilization of a bead (H7 here) in oritatami

References

1. Geary, C., Meunier, P., Schweabanel, N., Seki, S.: Programming biomolecules that
fold greedily during transcription. In: Proceedings of the MFCS 2016. LIPIcs, vol.
58, pp. 43:1–43:14 (2016)

2. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for
cotranscriptional folding of RNA structures. Science 345(6198), 799–804 (2014)

3. Pchelina, D., Schabanel, N., Seki, S., Theyssier, G.: Oritatami systems assemble
shapes no less complex than tile assembly model (aTAM). In: Proceedings of the
STACS 2022. LIPIcs, vol. 219, pp. 51:1–51:23 (2022)



Sleptsov Net Computing Resolves Modern
Supercomputing Problems

Dmitry Zaitsev

Odessa State Environmental University, St. Lvivska 15, Odessa, 65016 Ukraine
daze@acm.org

http://daze.ho.ua

ModernHPCProblems. In his Turing Award Lecture, Jack Dongarra revealed a drastic
problem of modern HPC: low efficiency on real-life task mixtures, 0.8% for the best
supercomputer Frontier [1]. For dozens of years, HPC architecture designwas influenced
by LINPACK benchmarks based on dense computations, filling-in cache perfectly and
reusing its content with matrix arithmetic. Real-life tasks are often sparse, decreasing
computer efficiency considerably.

Sleptsov Net. It was proven that a Sleptsov net (SN), which fires a transition in a
multiple number of copies at a step, runs exponentially faster than a Petri net [2]. SNs are
Turing-complete [3]. That opens the prospect of SNs application as a general-purpose
concurrent programming language. An example of the SN program is shown in Fig. 1.

Fig. 1. SN program for linear control in 2 time cycles capable of hypersonic object control.

Computability vs Reachability. Reachability problems are transformed into com-
putability problems when the system in question becomes Turing-complete. In spite
of Rice’s theorem, the formal verification of programs succeeds in proving some pro-
gram properties, including the program function, which, in essence, represents a sym-
bolic specification of a reachable set of states. Concurrent programs induce additional

Partially supported by Fulbright for the OLF talk on October 10, 2017 at Stony Brook University,
New York, USA.

https://orcid.org/0000-0001-5698-7324
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aspects of reachability by reaching a terminal state, usually the only one, invariant with
respect to the transitions’ firing sequence, which represents a definite implementation
of concurrency.

Verifying SNPrograms.The reachability of a symbolic terminal state and its invari-
ance with respect to the transitions’ firing sequence become basic criteria for conven-
tional formal verification of programs. Conservativeness means the absence of over-
flow. Liveness, and liveness enforcement, are central concepts for debugging concurrent
programs.

Drawing SN Programs. Graphical programming was a serious alternative to con-
ventional textual programming in a series of real-life projects. R-technology of program-
ming is a convincing example. UML uses a graphical approach and Petri net notation.
There are approaches that combine a Petri net graph with a programming language to
load a graph’s elements, for example, CPN Tools. SN Computing (SNC) represents a
purely graphical approach that uses text as comments only; the hierarchical structure of
a program is implemented via transition substitution by a subnet. SNC’s homogeneous
structure simplifies concurrent programming and provides fine granulation of parallel
processes starting from the arithmetic and logic operations level. We can use either con-
trol or data flow, or a combined approach. For compatibility, traditional operators of
programming languages, such as branching and loops, are easily implemented. Transi-
tions are concurrent initially; a graph restricts this concurrency onlywhen the application
domain requires it.

Running SN Programs on Dedicated Hardware. SNC hardware is foreseen as a
re-configurable sparsemultidimensionalmatrix of computingmemorywith primordially
concurrent transitions and conflicts resolved by locks and arbiters. It allows us to get rid
of the traditional processor-memory bottleneck.

Prototype Implementation of SNC.Recently, a prototype implementation of SNC,
including IDE andVM,was uploaded to GitHub for public use and described in a journal
paper [4].

SNC Prospects.When France is investing more than half a billion euros into a con-
ventional exascale computer (with 0.8% efficiency), we present our prototype imple-
mentation of SNC and invite investing one tenth of the sum into technology that brings
efficiency to HPC. The project involves: SNC hardware design, system and application
SNC software design, and teaching programming in SNs.

References

1. Zaitsev, D.: Sleptsov net computing resolves problems of modern supercomputing
revealed by Jack Dongarra in his turing award talk in November 2022. Int. J. Parallel,
Emergent Distrib. Syst. 38(4), 275–279 (2023)

2. Zaitsev, D.: Sleptsov nets run fast, IEEE Trans. Syst. Man Cybern. Syst. 46(5), 682–
693 (2016)

3. Zaitsev, D.: Strong Sleptsov nets are turing complete. Inf. Sci. 621, 172–182 (2023)
4. Zaitsev, D., Shmeleva, T.R., Zhang, Q., Zhao, H.: Virtual machine and integrated

developer environment for Sleptsov net computing. Parallel Process. Lett. (2023)
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Sleptsov Nets Are Turing-Complete

Dmitry Zaitsev and Bernard Berthomieu

Abstract. The present paper proves that a Sleptsov net (SN) is Turing-
complete, which considerably improves, with a brief construct, the pre-
vious result that a strong SN is Turing-complete. Recall that, unlike Petri
nets, an SN always fires enabled transitions at their maximal firing mul-
tiplicity, as a single step, leaving a nondeterministic choice of which
fireable transitions to fire. A strong SN restricts nondeterministic choice
to firing only the transitions having the highest firing multiplicity.



On Computing Optimal Temporal Branchings

Daniela Bubboloni, Costanza Catalano, Andrea Marino, and Ana Silva

Abstract. A spanning out-branching (in-branching), also called directed
spanning tree, is the smallest subgraph of a digraph that makes every
node reachable from a root (the root reachable from any node). The
computation of spanning branchings is a central problem in theoretical
computer science due to its application in reliable network design. This
concept can be extended to temporal graphs, which are digraphs where
arcs are available only at prescribed times and pathsmake sense only if the
availability of the arcs they traverse is non-decreasing. In this context, the
paths of the out-branching from the root to the spanned vertices must be
valid temporal paths. While the literature has focused only on minimum
weight temporal out-branchings or the ones realizing the earliest arrival
times to the vertices, the problem is still open for other optimization
criteria. In this work we define four different types of optimal temporal
out-branchings (TOB)basedon the optimization of the traveling time (ST-
TOB), of the travel duration (FT-TOB), of the number of transfers (MT-
TOB) or of the departure time (LD-TOB). For d in ST,MT,LD,we provide
necessary and sufficient conditions for the existence of spanning d-TOBs;
when those do not exist, we characterize the maximum vertex set that a d-
TOBcan span.Moreover,weprovide a log linear algorithm for computing
such d-TOBs. Oppositely, we show that deciding the existence of an FT-
TOB spanning all the vertices is NP-complete. This is quite surprising,
as all the above distances, including FT, can be computed in polynomial
time, meaning that computing temporal distances is inherently different
from computing d-TOBs. Finally, we show that the same results hold for
optimal temporal in-branchings.



Positivity Problems for Reversible Linear Recurrence
Sequences

George Kenison, Joris Nieuwveld, Joel Ouaknine, and James Worrell

Abstract. It is a longstanding open problemwhether there is an algorithm
to decide the Positivity Problem for linear recurrence sequences (LRS)
over the integers, namely whether given such a sequence, all its terms are
non-negative. Decidability is known for LRS of order 5 or less, i.e., for
those sequences inwhich every new termdepends linearly on the previous
five (or fewer) terms. For simple LRS (i.e., those whose characteristic
polynomial has no repeated roots), decidability of Positivity is known up
to order 9.

In this paper, we focus on the important subclass of reversible LRS,
i.e., those integer LRS 〈un〉∞n=0 whose bi-infinite completion 〈un〉∞n=−∞
also takes exclusively integer values; a typical example is the classical
Fibonacci (bi-)sequence 〈. . . , 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .〉. Our
main results are that Positivity is decidable for reversible LRS of order
11 or less, and for simple reversible LRS of order 17 or less.



Discontinuous IVPs with Unique Solutions

Riccardo Gozzi and Olivier Bournez

Abstract.Motivated by discussing the hardness of reachability questions
for dynamical systems, we develop a theory for initial value problems
(involving ordinary differential equations) with a discontinuous right-
hand side, in the case one knows that the solution is unique. We first
discuss our results and our obtained theory. We will then review some
consequences on the hardness of reachability questions, in particular,
related to the questions of measuring hardness by a rank similar to the
Denjoy hierarchy or Kechris and Woodin’s rank for differentiability.

The study of ordinary differential equations (ODEs) and initial value problems (IVPs)
with discontinuous right-hand terms has many applications to a wide range of problems
inmechanics, electrical engineering and theory of authomatic control. Broadly speaking,
discontinuous ODEs of the form y′(t) = f (t, y) can be divided into two main categories
[5]: one in which f is continuous in y for almost all t and one in which f is discontinuous
on an arbitrary subset of its domain. In the first case, existence and unicity for solutions
of the IVPs can be discussed under specific requirements on f , such as the Carathéodory
conditions [1]. In the second case, the most common approach is to study the dynamic
using differential inclusions of the form y′(t) ∈ F(t, y) by identifying the correct defini-
tion of F on the set of discontinuity points. In both cases, the solution, when unique, is an
absolutely continuous function y such that y′(t) = f (t, y) is defined almost everywhere
in an interval I.

We choose to analyze a different scenario: discontinuous IVPs for which the solution
is necessarily unique and the equation y′(t) = f (t, y) is defined everywhere on I. In other
words, we assume existence and unicity and we focus on finding an analytical procedure
to obtain such a solution from f and the initial condition. In this sense, the point of view is
similar to the one in [2], where it is shown that when y is unique, then it is computable if
the IVP is. Nonetheless, unicity when f is discontinuous might imply noncomputability
of y even when the set of discontinuity points is trivial.

We first demonstrate the difficulty by means of an example: we construct a bidi-
mensional IVP such that, despite having computable initial condition and f computable
everywhere except a straight line, has a solution that assumes a noncomputable value
at a fixed integer time. This demonstrates the capability of these dynamical systems of
generating highly complicated solutions even when the structure of the discontinuity
points in the domain is particularly simple. Therefore, our goal is to characterize the
definability of y, generalizing the result obtained in [2] for computability to a wider
class of IVPs with unique solutions.

Our approach is close in spirit to that of A. Denjoy, who providedwith his totalization
method an extension to the Lebesgue integral in order to generalize the operation of
antidifferentiation to a wider class of derivatives [3]. This perspective fits within a wider
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research field that explores set theoretical descriptions of the complexity of operations
such as differentiation and integration. For example, [12] makes use of the notion of
differentiable rank from [7] to present a precise lightface classification of differentiable
functions based on how complex their derivative can be. In [4, 11] instead the authors
conduct similar treatments for antidifferentiation.

More formally, the dynamical systems we are considering are IVPs of the form:
given an interval [a, b], a closed domain E ⊂ R

r for some r ∈ N, a point y0 ∈ E and a
function f : E → E we have: {

y′(t) = f (y(t))

y(a) = y0
(1)

for some y : [a, b] → R
r with y([a, b]) ⊂ E. Under the assumption of unicity of y

we show that two conditions on the right-hand term f are sufficient for obtaining the
solution via transfinite recursion up to a countable ordinal. In order to do so we make
use of a construction inspired by the Cantor-Bendixson analysis where the set derivative
operator is replaced by the action of excluding the set of discontinuity points of f . More
precisely, we define:

Definition 1. Consider a closed domain E ⊂ R
r for some r ∈ N and a function

f : E → R
r . Let {Eα}α<ω1 and {fα}α<ω1 be transfinite sequences such that fα =

f �Eα : Eα → R
r defined as following: let E0 = E; for all α = β + 1 let Eα ={

x ∈ Eβ : fβ is discontinuous in x
}
; for all α limit ordinal let Eα be Eα = ∩βEβ with

β < α. We call {Eα}α<ω1 the sequence of f -removed sets on E.
Studying the structure of the sequence of f -removed sets on E allows us to prove that

the two following conditions on f are sufficient for obtaining the solution. The conditions
are: 1) f is a function of class Baire one 2) For all closed K ⊆ E the set of discontinuity
points of f �K is a closed set. This result is obtained with our main theorem:

Theorem 1. Consider a closed interval, a closed domain E ⊂ R
r for some r ∈ N

and a function f : E → E such that, given an initial condition, the IVP of the form of
Equation 1 with right-hand term f has a unique solution on the interval. If f is a function
of class Baire one such that for every closed K ⊆ E the set of discontinuity points of
f �K is closed, then we can obtain the solution analytically via transfinite recursion up
to an ordinal α such that α < ω1.

This result expresses the analogy between this context and the totalization method
in [3], leaving open the possibility of defining a rank for the IVPs related to con-
structible ordinals in order to populate a hierarchy similar to the one presented in [12]
for differentiable functions.

The process of associatingwith each of these discontinuous IVPs a correspective rank
is deeply connectedwith evaluating an upper bound for the complexity of the reachability
problem within each domain of definition. Indeed, for a generic dynamical system in
a given initial state, the reachability problem is defined as the problem of determining
which sets of states that dynamical system can reach. In the context of bounded IVPswith
a unique solution, which are continuous dynamical systems, the reachability problem is
then expressed as the problem of verifying whether the solution has reached a specific
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target area in the domain. Hence, reachability analysis of continuous systems of ODEs
involves the study of attractors, fixed points, and periodic trajectories and has had huge
relevance in the last century. To cite just one example, it is enough to mention the
investigation over the existence of a strange attractor for the Lorenz system [8], included
by Smale in his list of problems of the century in [9], and later answered affirmatively
in [10]. As long as the solution is always unique, the method we introduced for proving
the above theorem satisfies the property of being uniform with respect to the choice
of the initial condition within E. Indeed, it performs a careful, controlled exploration
of the whole search space E by subdividing it into a transfinite number of adequate
rational boxes. This implies that the number of maximum transfinite steps required to
obtain the solution from any initial state can be interpreted as a good upper bound for
the complexity of the reachability problem for the whole domain E.

For the case of computable, unbounded IVPs involving ODEs with unique solu-
tions, it has been proved in [6] that the reachability problem is not computable, since
the time required for the solution to reach its maximal interval of definition can be a
noncomputable real number. As mentioned above, we have constructed an example that
demonstrates that, once we allow simple discontinuities in the right-hand term f , the
solution can be noncomputable also for the case of bounded domains with the maximum
interval of definition being a closed interval. Indeed, in our example, the noncomputable
real is no longer expressed by the time variable but instead by the actual value assumed by
the solution at a given integer time. Consequently, this result establishes a lower bound
for the complexity of the reachability problem of these types of continuous dynamical
systems.
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Geometry of Reachability Sets of Vector Addition Systems

Roland Guttenberg, Michael Raskin, and Javier Esparza

Abstract. Vector Addition Systems (VAS), aka Petri nets, are a popu-
lar model of concurrency. The reachability set of a VAS is the set of
configurations reachable from the initial configuration. Leroux has stud-
ied the geometric properties of VAS reachability sets, and used them
to derive decision procedures for important analysis problems. In this
paper we continue the geometric study of reachability sets. We show that
every reachability set admits a finite decomposition into disjoint almost
hybridlinear sets enjoying nice geometric properties. Further, we prove
that the decomposition of the reachability set of a givenVAS is effectively
computable. As a corollary, we derive a new proof of Hauschildt’s 1990
result showing the decidability of the question whether the reachability
set of a given VAS is semilinear. As a second corollary, we prove that
the complement of a reachability set, if it is infinite, always contains an
infinite linear set.



Semënov Arithmetic, Affine VASS, and String Constraints

Andrei Draghici, Christoph Haase, and Florin Manea

Abstract. We study extensions of Semënov arithmetic, the first-order
theory of the structure . It is well-known that this theory
becomes undecidable when extended with regular predicates over tuples
of number strings, such as the Büchi V2-predicate. We therefore restrict
ourselves to the existential theory of Semënov arithmetic and show that
this theory is decidable in EXPSPACE when extended with arbitrary
regular predicates over tuples of number strings. Our approach relies on
a reduction to the language emptiness problem for a restricted class of
affine vector addition systems with states, which we show decidable in
EXPSPACE. As an application of our result, we settle an open problem
from the literature and show decidability of a class of string constraints
involving length constraints.



Multiplicity Problems on Algebraic Series
and Context-Free Grammars

Nikhil Balaji, Lorenzo Clemente, Klara Nosan, Mahsa Shirmohammadi,
and James Worrell

Abstract. In this paper we obtain complexity bounds for computational
problems on algebraic power series over several commuting variables.
The power series are specified by systems of polynomial equations: a
formalism closely related to weighted context-free grammars. We focus
on three problems—decide whether a given algebraic series is identically
zero, determine whether all but finitely many coefficients are zero, and
compute the coefficient of a specific monomial. We relate these questions
towell-known computational problems on arithmetic circuits and thereby
show that all three problems lie in the counting hierarchy. Our main result
improves the best known complexity bound on deciding zeroness of an
algebraic series. This problem is known to lie in PSPACE by reduction
to the decision problem for the existential fragment of the theory of real
closed fields. Here we show that the problem lies in the counting hierar-
chy by reduction to the problem of computing the degree of a polynomial
given by an arithmetic circuit. As a corollary we obtain new complexity
bounds on multiplicity equivalence of context-free grammars restricted
to a bounded language, language inclusion of a non-deterministic finite
automaton in an unambiguous context-free grammar, and language inclu-
sion of a non-deterministic context-free grammar in an unambiguous
finite automaton.



Linear Loop Synthesis for Polynomial Invariants

George Kenison, Laura Kovács, and Anton Varonka

Abstract. A loop invariant is a formal property specifying a relationship
between variables that holds before and after every iteration of a program
loop. Invariants provide inductive arguments that are key in automating
the verification of loops. In this line of work, we advocate an alternative
solution to invariant generation. Rather than inferring invariants from
loops, we generate loops satisfying a given set of invariants. As such,
the correctness of synthesised loops is guaranteed by construction. From
the reachability perspective, the objective of loop synthesis is to gener-
ate non-trivial behaviours that never reach a “bad state”. We show that
already loops with linear updates (or linear dynamical systems) exhibit
behaviours specified by arbitrary polynomial invariants from a broad
class: e.g., quadratic equations or conjunctions of pure difference bino-
mial equalities. We introduce an algorithmic approach that constructs
linear loops from such polynomial invariants, by generating linear recur-
rence sequences that have given algebraic relations amongst their terms.
This work extends the paper presented at ISSAC’23.



Higher-Dimensional Automata Theory

Uli Fahrenberg

Abstract. I will give a gentle introduction to higher-dimensional
automata (HDAs) and their language theory. HDAs have been intro-
duced some 30 years ago as a model for non-interleaving concurrency
which generalizes, for example, Petri netswhile retaining some automata-
theoretic intuition. They have been studied mostly for their operational
and geometric aspects and are one of the original motivations for directed
algebraic topology. In a series of papers we have recently started to work
on the language theory of HDAs: we have introduced languages of HDAs
as weak sets of interval pomsets with interfaces [1, 2] and shown that they
satisfy Kleene and Myhill-Nerode type theorems [3, 4]. Further, HDAs
are not generally determinable nor complementable, but language inclu-
sion is decidable [4, 5]. The picture which emerges is that, even though
things can sometimes get hairy in proofs, HDAs have a rather pleasant
language theory, a fact which should be useful in the theory of non-
interleaving concurrency and its applications. Joint work with Amazigh
Amrane, Hugo Bazille, Christian Johansen, Georg Struth, and Krzysztof
Ziemiański.
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Universality and Forall-Exactness of Cost Register
Automata with Few Registers

Laure Daviaud and Andrew Ryzhikov

Abstract. The universality problem asks whether a given finite state
automaton accepts all the input words. For quantitative models of
automata, where input words are mapped to real values, this is naturally
extended to ask whether all the words are mapped to values above (or
below) a given threshold. This is known to be undecidable for commonly
studied examples such as weighted automata over the positive rational
(plus-times) or the integer tropical (min-plus) semirings, or equivalently
cost register automata (CRAs) over these semirings. In this paper, we
prove that when restricted to CRAs with only three registers, the univer-
sality problem is still undecidable, even with additional restrictions for
the CRAs to be copyless linear with resets.

In contrast, we show that, assuming the unary encoding of updates,
the ∀-exact problem (does the CRA output zero on all the words?) for
integer min-plus linear CRAs can be decided in polynomial time if the
number of registers is constant. Without the restriction on the number of
registers this problem is known to be PSPACE-complete.

This paper was published at MFCS 2023.



History-Determinism vs. Simulation

Karoliina Lehtinen

Abstract. Language inclusion between automata is a key problem in
verification: given an automaton representing a program and another one
representing a specification, language inclusion of the former in the lat-
ter captures precisely whether all executions of the program satisfy the
specification. Unfortunately, in the presence of nondeterminism, inclu-
sion is algorithmically hard. (Fair) Simulation, which implies language
inclusion—but is, in general, strictly stronger—is easier to check. There-
fore, automata for which language inclusion and simulation coincide are
particularly well-suited for model-checking.We call such automata guid-
able, after a similar notion used previously by Colcombet and Löding for
tree automata.

Guidability, however, is not an easy property to decide, since it is
contingent on an automaton simulating a potentially infinite number
of language-included automata. Hence we would like to have, when-
ever possible, a characterisation that is more amenable to algorithmic
detection.

Deterministic automata are of course always guidable, and so
are history-deterministic automata. These are mildly nondeterministic
automata, in which nondeterministic choices are permitted, but theymust
only depend on the word read so far, rather than the future of the word.
Such automata are guidable. In fact, the connection between guidability
and history-determinism seems profound: for several classes of automata,
including the class of all labelled transition systems, guidability and
history-determinism coincide. In these cases, history-determinism,which
can in many cases be efficiently decided, is a convenient characterisation
of guidability. However, the two notions do not always coincide.

In this joint work in progress with Udi Boker, Tom Henzinger and
Aditya Prakash, we study underwhat conditions history-determinism and
guidability coincide.



Energy Büchi Problems

Sven Dziadek, Uli Fahrenberg and Philipp Schlehuber

Abstract. We show how to efficiently solve energy Büchi problems in
finite weighted automata and in one-clock weighted timed automata.
Solving the former problem is our main contribution and is handled by
a modified version of Bellman-Ford interleaved with Couvreur’s algo-
rithm. The latter problem is handled via a reduction to the former relying
on the corner-point abstraction. All our algorithms are freely available
and implemented in a tool based on the open-source platforms TChecker
and Spot.

In a recent extension to theFMpaperwe also investigate the extraction
of an actual witness for the energy feasibility. We discuss why this is a
non-trivial task and how it can be solved efficiently.



Reenterable Colored Petri Net Model of Ebola Virus
Dynamics

Tatiana Shmeleva

Abstract. Early developed technique for modeling cellular automata by
colored Petri nets has been further refined with regard to the model trans-
formation into the reenterable form. Reenterable model contains each
component in a single copy that makes it invariant to the actual con-
nection of components, definite topology of modeled system. Cellular
automaton of Burkhead and Hawkins for modeling Ebola virus dynam-
ics possesses a regular topology given by a square plain lattice. Within
reenterable model, each token is supplied with topology tag that speci-
fies the token location within the lattice using a pair of indexes. Check of
neighbors regarding to a definite neighborhood, Moore for the automaton
in question, is implemented via check of tokens having the corresponding
value of indexes with respect to the index difference specified by set {−
1, 1}. Reenterable model is rather convenient for simulation and model-
driven development of treatment prescriptions because it does not require
graphical editing, supposing modification of the model parameters only,
represented by constants of the model declarations section. This espe-
cially concerns the lattice size which can be rather big corresponding to
the number of cells in deceased organ. A series of simulations acknowl-
edges that the model behavior closely corresponds to the behavior of
either source cellular automata or conventional colored Petri net model
with respect to statistical error of 2–3%. Thus, the reenterable format is
recommended as a reference one for modeling viruses by Petri nets.
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Randomness Quality and Trade-Offs
for CA Random String Generators

Bruno Martin(B)

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France

Bruno.Martin@univ-cotedazur.fr

Abstract. We present classical theories for randomness, starting from
mathematical ones to others focusing on randomness testing, more useful
in computer science. Those characterisations are made by bounding the
computational resources required for testing. Next, we present some suit-
able practical randomness testing suites designed to measure the qual-
ity of random strings that can be efficiently generated. Finally, random
string generation by binary uniform cellular automata of increasing qual-
ity illustrates the improvements of the randomness testing suites.

Keywords: Randomness · pseudo-randomness · random number
generation · Boolean functions

1 Introduction

We present the theories of randomness that are suitable in computer science
together with the practice of random number generators although, as von Neu-
mann said: Anyone who considers arithmetical methods of producing random
numbers is, of course, in a state of sin.

We begin with the three theories of randomness that were developed in the
last half of the XX -th Century.

The first, initiated by Shannon comes from the theory of probability and
considers distributions that are not perfectly random. Shannon’s information
theory characterises perfect randomness as the extreme case where the informa-
tion content is maximised.

The second theory due to Solomonov, Kolmogorov [9], Chaitin and Martin-
Löf is rooted in computability theory. Intuitively, it combines randomness with
incompressibility. Unfortunately, Kolmogorov’s approach is not computable and
limits its use in generating randomness.

To get a more effective view of randomness, we turn our attention to the
theory of pseudo-randomness which comes from complexity theory. This notion is
due to Blum, Goldwasser, Micali and Yao [1,6]. This approach aims at providing
a theory that allows the generation of perfect random strings. Perhaps one of the
most important consequences of this theory is an effective construction of pseudo-
random generators from cryptographic one-way functions [5]. But it generates
the pseudo-random sequence bit after bit at the cost of some computational cost

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Bournez et al. (Eds.): RP 2023, LNCS 14235, pp. 3–12, 2023.
https://doi.org/10.1007/978-3-031-45286-4_1
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(the computation of the image of a cryptographic one-way function is required
to generate a single bit).

In practice, random number generators took a different route. The history of
random number generators begins with von Neumann in 1946. To do this, one
can use a random set of numbers, although if the initial seed value is the same,
it will produce an identical sequence. However, this has been improved, as have
methods for measuring randomness. In the light of the above theories, we aim
to present various random cellular automata string generators with their advan-
tages and with their disadvantages depending on their use. This string genera-
tion by cellular automata was initiated by Wolfram [23] and further investigated
in [14]. This last approach combines cellular automata with the Boolean func-
tions which also yields interesting random number generators. Recent works [16]
add an evolutionary approach, initiated in [17], to improve the quality of ran-
domness.

Section 2 presents the definitions and notation that are used in the paper,
including the definition of cellular automata and some basic properties of
Boolean functions. In Sect. 3, we introduce Martin-Löf randomness, the pseudo-
randomness introduced by Blum, Golwasser, Micali and Yao. Both character-
isations of randomness strongly use the notion of testing but are not suitable
to efficiently generate long random strings. To that end, we recall some classing
testing suites of increasing quality. Finally, Sect. 4 illustrates the improvements
in the generation of random strings by uniform binary cellular automata in the
light of the successive testing suites.

2 Definition and Notation

We denote by Σ a finite alphabet and by Σ� the free monoid generated by Σ
whose elements are called strings. Σω denotes the set of infinite strings over Σ.

A probability distribution is a mathematical function that gives the prob-
abilities of occurrence of different possible outcomes for an experiment. As a
special case, the discrete uniform distribution is a symmetric probability dis-
tribution wherein a finite number of values are equally likely to be observed.
The Bernoulli distribution is the discrete probability distribution of a binary
random variable which takes the value 1 with probability p and the value 0 with
probability 1 − p.

When dealing with Boolean functions, we will use the finite field F2 as a
special alphabet with the classical field operations.

2.1 Cellular Automata

One-dimensional binary cellular automata (CA for short) consist of a (finite for
practical purposes) line of cells taking their states among binary values. A CA
has periodic boundary conditions if the cells are arranged in a ring and null
boundary conditions when both extreme cells are continuously fixed to zero.
All the cells are finite state machines with an updating function which gives the
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new state of the cell according to its current state and the current state of its
nearest neighbors. For a presentation of CAs, see [7].

Binary CAs with l cells (l = 2N + 1 for N ∈ N) are considered. For a
CA, the values of the cells at time t ≥ 0 are updated synchronously by a
Boolean function f with n = r1 + r2 + 1 variables by the rule xi(t + 1) =
f(xi−r1(t), . . . , xi(t), . . . , xi+r2(t)). Elementary CAs are such that r1 = r2 = 1.
For a fixed t, the sequence of the values xi(t) for 1 ≤ i ≤ 2N + 1, is the config-
uration at time t. It is a mapping c : [[1, l]] → F2 which assigns a Boolean state
to each cell. The initial configuration (at t = 0) x1(0), . . . , xl(0) is the seed, the
sequence (xN (t))t is the output sequence and, when r1 = r2 = r, the number r is
the radius of the rule. The Wolfram numbering associates a rule number to any
one of the 256 elementary CA; it takes the binary expansion of a rule number as
the truth table of a 3-variable Boolean function in ascending numerical order.

2.2 Boolean Functions

A Boolean function is a mapping from F
n
2 into F2. In the sequel, additions in Z

(resp. F2) will be denoted by + and Σ (resp. ⊕ and
⊕

), products by × and
∏

(resp. · and
∏

). When there is no ambiguity, + will denote the addition of binary
vectors. If x and y are binary vectors, their inner product is x · y =

∑n
i=1 xiyi.

The classical representation for a Boolean function is the algebraic normal form:

Definition 1 (ANF). A Boolean function f with n variables is represented by
a unique binary polynomial in n variables, called algebraic normal form: f(x) =⊕

u∈F
n
2

au(
∏n

i=1 xui
i ) au ∈ F2, ui is the i-th projection of u.

The degree of the ANF or algebraic degree of f corresponds to the number
of variables in the longest term xu1

1 . . . xun
n in its ANF. The Hamming weight

wH(f) of f counts the x ∈ F
n
2 such that f(x)=1. The Hamming weight wH(x)

of x ∈ F
n
2 counts the number of 1-valued coordinates in x. f is balanced if

wH(f) = wH(1 ⊕ f) = 2n−1.

Definition 2. f and g Boolean functions in n variables are equivalent iff

f(x) = g ((x · A) ⊕ a) ⊕ (
x · BT

) ⊕ b, ∀x ∈ F
n
2 (1)

where A is a non-singular binary n×n matrix, b a binary constant, a and B ∈ F
n
2 .

An important tool in the study of Boolean functions is the Fourier-Hadamard
transform, a linear mapping which maps a Boolean function f to the real-valued
function f̂(u) =

∑
x∈F

n
2

f(x)(−1)u·x, which describes the spectrum of the latter.
When applied to the sign function fχ(x) = (−1)f(x), the Fourier-Hadamard
transform is the Walsh transform: f̂χ(u) =

∑
x∈F

n
2
(−1)f(x)⊕u·x . Since fχ(u) =

1 − 2f(u), the Fourier-Hadamard transform is:

f̂(u) =
1
2

∑

x∈F
n
2

(−1)u·x − 1
2
f̂χ(u) , (2)
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Using Eq. (2), we obtain that f̂χ(u) = 2nδ0 − 2f̂(u), where δ0 denotes the Dirac
symbol defined by δ0(u) = 1 if u is the null vector and δ0(u) = 0 otherwise [2].

If f and g are two equivalent Boolean functions in n variables, it holds that:

f̂χ(u) = (−1)a·A−1(ut+BT )+b ĝχ((u ⊕ B)(A−1)T ) . (3)

The Walsh transform allows to study the correlation-immunity of a function.

Definition 3. A Boolean function f in n variables is k-correlation-immune
(0 < k < n) if, given any n independent and identically distributed binary ran-
dom variables x1, · · · , xn according to a uniform Bernoulli distribution, then
the random variable Z = f(x1, . . . , xn) is independent from any random vector
(xi1 , xi2 , . . . , xik), 1 ≤ i1 < · · · < ik < n. When f is k-correlation immune and
balanced, it is k-resilient.

In [24], a spectral characterization of resilient functions was given and it
concerns both transforms (refer to [2] for further details):

Theorem 1. A Boolean function f in n variables is k-resilient iff it is balanced
and f̂(u)=0 for all u ∈ F

n
2 s.t. 0<wH(u)≤ k. Equivalently, f is k-resilient iff

f̂χ(u)=0 for all u ∈ F
n
2 s.t. wH(u)≤k.

Theorem 2 (Siegenthaler Bound). For a k-resilient (0 ≤ k < n−1) Boolean
function in n variables, there is an upper bound for its algebraic degree d: d ≤
n − k − 1 if k < n − 1 and d = 1 if k = n − 1.

3 Theories of Randomness

In this paper, we focus on theories of randomness that are suitable for computer
science and, more specifically, that make use of testing. But let us start with
a first theory, initiated by Shannon (cf. [19]) in the second half of the XX -th
Century, which is rooted in probability theory and focused on distributions that
are not perfectly random. Shannon’s information theory characterizes perfect
randomness as the extreme case in which the information content is maximized
(and there is no redundancy at all). Thus, perfect randomness is associated
with the uniform distribution. And, by definition, it is not possible to generate
such perfect random strings from shorter ones. This approach is not suitable for
computer science.

Almost at the same time than Shannon’s information theory, Solomonov,
Kolmogorov and Chaitin [10] proposed another way to characterise randomness.
Their work is strongly connected with computability theory and, more specifi-
cally with the existence of a universal machine. It measures the complexity of
objects in terms of the shortest machine (given a fixed universal machine) that
prints out the object on its standard output. Chaitin-Kolmogorov complexity is
quantitative, and perfect random objects appear as an extreme case. Intuitively,
it expresses that a string is random if it is uncompressible. Interestingly, one
may say that a single object, rather than a distribution over objects, is perfectly
random. Still, Chaitin-Kolmogorov’s approach is inherently uncomputable. As a
consequence, one cannot generate strings of high Chaitin-Kolmogorov complex-
ity from short random strings.
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3.1 Martin-Löf Randomness

The Martin-Löf tests [15] give a statistical interpretation of the Chaitin-
Kolmogorov theoretic notion of randomness. He defined a set of sequences of
measure one, called Martin-Löf random sequences, which satisfies all of the prob-
ability laws. These sequences are defined as those satisfying all Martin-Löf tests,
which can be described as follows ( [3]).

Definition 4 (Martin-Löf test (ML test)). Let φ be an algorithm which
generates a sequence of sets Om, m ∈ N. Each Oi is a computably enumerable
set of binary strings x interpreted as the dyadic interval [0.x, 0.x+2−|x|). When
φ receives as an input (m, k) it returns the k-th interval (binary string) in the
enumeration of Om. Also assume that μ(Oi) < 2−i and Oi ⊃ Oi+1.

Definition 4 defines a decreasing sequence of sets Oi of intervals such that the
Lebesgue measure upper-bounds Oi by 2−i. If one wants to test the randomness
of the infinite string x ∈ Σω, it can be either rejected as non-random or accepted
as being random. x is rejected at order n if x ∈ On for some n ≥ 1. We say that
x is ML-random if it passes all the ML tests.

It has been proved that ML randomness corresponds to Chaitin-
Kolmogorov’s as stated in Theorem 3, due to Schnorr.

Theorem 3. A real number is Kolmogorov-Chaitin random if and only if it is
Martin-Löf random.

Martin-Löf approach introduced the notion of testing to characterise ran-
domness. This notion is of great theoretical interest but needs to be adapted to
be useful in practice. In some sense (at least in the writer’s opinion), this is what
has been done by restricting the resources used by the model (switching from
computability to complexity). This is basically the notion of pseudo-randomness
described in the next section.

3.2 Pseudo-randomness

The approach of pseudo-randomness (see [4]) aimed at providing a theory of
perfect randomness that nevertheless allows the efficient generation of perfect
random strings from shorter random strings. It strongly relies on the notion
of indistinguishability that claims that two strings are equal if they cannot be
distinguished as stated in Definition 5

Definition 5 (Computational Indistinguishability). Two probability dis-
tributions, {Xn}n∈N and {Yn}n∈N are called indistinguishable if for any proba-
bilistic polynomial time algorithm A, any polynomial p and all sufficiently large
n,

|Prx∼Xn
[A(x) = 1] − Pry∼Yn

[A(y) = 1]| <
1

p(n)

The probability is taken over Xn (resp. Yn) as wall as over the coin tosses of
algorithm A.
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In Definition 5, the probabilistic algorithm A is called a distinguisher. In our
case, the probabilistic distinguisher tries to determine if its input follows the
distribution Xn or the distribution Yn. If its output is close to one half, it means
intuitively that it cannot decide (its outcome is close to tossing a fair coin to get
the answer).

Technically, no fixed string can be said to be “pseudo-random”. Rather,
pseudo-randomness actually refers to a distribution on strings, and when we
say that a distribution D over strings of length l is pseudo-random this
means that D is indistinguishable from the uniform distribution over strings of
length l.

Yao [25] provides a definition of pseudo-random number generator which is
based on computational complexity, and proposes a definition of “perfect”-in
current terminology, “pseudo-random”-probability distribution. (A distribution
is perfect if it cannot be distinguished from a truly random distribution in the
sense of Definition 5). Yao relates his notion of pseudo-randomness to the idea
of a statistical test, a notion already used in the study of pseudo-random num-
ber generators, and shows that one particular test, known as the next-bit test,
is adequate for characterizing pseudo-randomness. Having defined perfect dis-
tributions, Yao then defined a pseudo-random number generator as an efficient
probabilistic algorithm which uses a limited number of truly random bits in
order to output a sample from a perfect distribution whose size is polynomial in
the number of random bits used.

If we continue to decrease the resources given to define randomness, we obtain
the following series of tests presented in decreasing quality in the next three
sections.

3.3 FIPS-140-2 and 140-3 Tests

The National Institute of Standards and Technology (NIST) issued the FIPS
140 Publication Series to coordinate the requirements and standards for cryp-
tography modules that include both hardware and software components. Federal
agencies and departments can validate that the module in use is covered by an
existing FIPS 140 certificate that specifies the exact module name, hardware,
software, firmware, and/or applet version numbers. Its Annex C provides a list of
approved random number generators as well as a linux utility named rngtest
which implements the series of statistical tests to conduct against a random
number generator.

3.4 Marsaglia’s Tests

Marsaglia from the Florida State University has proposed in 1985 a lower bat-
tery of tests packaged in the Diehard test suite, a widely used tool. It consists
of 17 different tests which have become something which could be considered as
a “benchmarking tool” for random sequences generators (see [11]). It is meant
to evaluate if a stream of numbers is a good generator. We will not explain how
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Diehard really works and we refer the reader to [12] for further details. Basi-
cally, Diehard uses Kolmogorov-Smirnov normality test to quantify the distance
between the distribution of a given data set and the uniform distribution; and
as the documentation says:

Each Diehard test is able to provide probability values (p-value) which
should be uniformly distributed on [0, 1) if the sequence is made of truly
independent bits. Those p-values are obtained by p = F (X) where F is
the assumed distribution of the sample random variable X–often normal.
But that assumed F is just an asymptotic approximation, for which the
fit will be worse in the tail of the distribution. Thus, we should not be
surprised with occasional p-values close to 0 or 1. When a stream really
fails, one gets p-values of 0 or 1 to six or more places. Otherwise, for each
test, its p-value should lie in the interval (0.025, 0.975).

3.5 Knuth’s Tests

In order to evaluate whether pseudo-random numbers are independent and
unpredictable, Knuth [8] proposed 11 randomness test methods in 1968 such
as frequency test, run-length test, poker test, etc., and became the pioneer of
systematic randomness testing. The Knuth test suite was one of the statistical
randomness suites, but the suite is mainly used for real number sequences, and
the test parameters are not explicitly given.

4 Pseudo-random Strings Generation

4.1 Radius One CA Rules

In 1985, Wolfram [22] proposed to use CA rule 30 as random strings generator
still in use in Mathematica

TM
. He justified the quality of the pseudo-random

sequence by the use of the tests of Knuth (see Sect. 3.5).
But if we consider the CA rule as a Boolean function, by Theorem 1 and an

exhaustive search of 3-variable Boolean update function [13], we can state that:

Theorem 4. There is no non-linear correlation-immune elementary CA.

The same result can be obtained by applying the Siegenthaler bound (Theo-
rem 2) with n = 3 variables and testing for k = 1-resiliency. It tells that the
algebraic degree is d ≤ n−k −1 = 1. Thus, only linear functions can be resilient
but providing rules that are not interesting for generating randomness.

Despite this, CA may be used for generating random strings by increasing
the number of variables in the Boolean function which is used as a local CA rule.
In the next section, we present a way to gather radius 2 CA rules for generating
better random strings.
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4.2 Radius Two CA Rules

In [14], we considered radius two CA rules as five variable Boolean functions and
select CA rules that satisfy the criteria of Theorem 1. We used those rules as a
random string generator as in [18].

We set up two rings of cells. Although Wolfram used a ring of 127 cells
and Preneel (1993) suggested a ring of 1024 cells to ensure a better quality
(both used a slightly different mechanisms for random bit extraction), we use
perimeters 64 and 65 as done in [18]. The initial configuration of these rings is
of Hamming weight 1. We let the CA iterate about 2 million times. Then, from
each configuration obtained, we extract two 32-bits words: the “even” (resp.
“odd”), word is built with the state of the first 32 “even” (resp. “odd”) cells. The
sequences of these “even” (resp. “odd”) words constitute two different sequences
of 16 Mbytes.

Then, we use Diehard test suite to produce p-values for each test. We were
able to find some CAs (like the one with rule Ox69999999). This suggests that
it may be possible to obtain a good random string generator from such a CA.

With such “good rules” selected, we tried to extend them. We consider those
rules as five variable Boolean functions, and extend them to Boolean functions
in 9 variables (or radius 4 CA rules) simply by making two iterations of the local
CA rule. We proved that 1-resiliency is preserved upon iteration only when we
negate the truth table of the Boolean function or when we take the mirror image
of its truth table. This means that, in general, resiliency is not preserved upon
iteration. And so, we obtain CA rules to generate random strings that pass the
Marsaglia’s tests.

In a more recent paper, Wang et al. [20] use a novel particle swarm cellular
automata (PSCA). They apply PSCA to generate pseudo-random strings that
pass all tests of diehard and FIPS 140-2.

Conclusion

From the theory to the practice, testing is used to characterise or to measure
randomness, depending on the resource we allow to a model of computation.
Theories come from the mid of the XX -th Century and testing suites started in
the last 30 years of the same Century. The testing suites are still under strong
improvements using the theory and the random string generators follow this
evolution.

We have given an illustration with the generation of random strings with
cellular automata which follows the evolution of testing suites. And as long as
we give more resources to testing, we tend to the definition of pseudo-random
strings as defined by Yao.

Today’s best current testing suite (given by FIPS 140-2) is not an end and
already faces controversy (see [21] for instance) and also needs improvements
that will probably be achieved soon. This will lead to new advances in random
sequence generation.
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Abstract. In this paper we investigate formal verification problems for
NeuralNetwork computations.Various reachability problemswill be in the
focus, such as: Given symbolic specifications of allowed inputs and outputs
in form of Linear Programming instances, one question is whether valid
inputs exist such that the given network computes a valid output? Does
this property hold for all valid inputs? The former question’s complexity
has been investigated recently in [20] by Sälzer and Lange for nets using
the Rectified Linear Unit and the identity function as their activation func-
tions. We complement their achievements by showing that the problem is
NP-complete for piecewise linear functions with rational coefficients that
are not linear, NP-hard for almost all suitable activation functions includ-
ing non-linear ones that are continuous on an interval, complete for the
Existential Theory of the Reals ∃R for every non-linear polynomial and
∃R-hard for the exponential function and various sigmoidal functions. For
the completeness results, linking the verification tasks with the theory of
Constraint Satisfaction Problems turns out helpful.

1 Introduction

GiventhehugesuccessofutilizingNeuralNetworks,NNfor short, in the lastdecade,
such nets are nowadays widely used in all kind of data processing, including tasks
of varying difficulty. There is a wide range of applications, the following exemplary
references (mostly taken from [20]) just collect non-exclusively some areas for fur-
ther reading: Image recognition [15], natural language processing [9], autonomous
driving [8], applications in medicine [16], and prediction of stock markets [7], just
to mention a few. Khan et al. [14] provide a survey of such applications, a math-
ematically oriented textbook concerning structural issues related to Deep Neural
Networks is provided by [4]. Among the many different aspects of areas where the
use ofNeuralNetworks seems appropriate, some also involve safety-critical systems
likeautonomousdrivingorpowergridmanagement. In suchasetting,whensecurity
issues become important, aspects of certification come into play [10].

In the present paper we are interested in studying certain verification prob-
lems for NNs in form of particular reachability problems. Starting point is the
work by Sälzer and Lange [20] being based on [13,18]. The authors of these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Bournez et al. (Eds.): RP 2023, LNCS 14235, pp. 15–27, 2023.
https://doi.org/10.1007/978-3-031-45286-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45286-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-45286-4_2
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papers analyze the computational complexity of one particular such verification
task. It deals with a reachability problem in networks using the Rectified Linear
Unit together with the identity function as its activation function. In such a
net, specifications describe the set of valid inputs and outputs in form of two
Linear Programming instances. The question then is to decide whether a valid
input exists such that the network’s result on that input is a valid output, i.e.,
whether the set of valid outputs is reachable from that of valid inputs. In the
above references the problem is shown to be NP-complete, even for one hidden
layer and output dimension one, or some restricted set of weights being used [20].
Note that the network in principle is allowed to compute with real numbers, so
the valid inputs we are looking for belong to some space R

n, but the network
itself is specified by its discrete structure and rational weights defining the linear
combinations computed by its single neurons.

Obviously, one can consider a huge variety of networks created by changing
the underlying activation functions. There are of course many activations fre-
quently used in NN frameworks, and in addition we could extend reachability
questions to nets using all kinds of activation. One issue to be discussed is the
computational model in which one argues. If, for example, the typical sigmoid
activation f(x) = 1/(1 + e−x) is used, it has to be specified in which sense it is
computed by the net: For example exactly or approximately, and at which costs
these operations are being performed.

In the present work we study the reachability problem for commonly used
activation functions and show that for most of them it will be complete either in
(classical) NP or in the presumably larger class ∃R, which captures the so-called
existential theory of the reals. Our main results are as follows: The reachability
problem is in P for linear activations, in NP for semilinear activations, NP-
hard for all non-linear activations that are continuous on an interval, and ETR-
hard for several commonly used activations such as arctan and the exponential
function. These results imply, for example, NP-completeness for frequently used
activations such as (Leaky) ReLU, Heaviside and Signum.

A most helpful tool for establishing these results is linking the problems under
consideration to the area of constraint satisfaction problem CSP and known
complexity results for special instances of the latter. This connection will provide
us with a classification of a vast set of activation functions in the complexity
classes between P and ∃R. We also consider a variant of the reachability problem
asking whether for all valid inputs the computed output is necessarily valid and
establish several complexity results as well.

The paper is organized as follows: In Sect. 2 we collect basic notions, recall
the definition of feedforward neural nets as used in this paper as well as useful
facts about Constraint Satisfaction Problems. Section 3 studies various activation
functions and their impact on the complexity of reachability problems. We show
that the reachability problem is basically the same as the CSP containing the
graphs of the activation functions together with relations necessary to express
linear programming instances. We show that adding the identity as activation
does not change the complexity of the reachability problem in several cases, for
example when either ReLU is used as activation or if a network connection is
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allowed to skip a layer. We show that the problem is NP-hard for every sensible
non-linear activation and finally discuss problems that are hard or complete for
∃R. The paper ends with some open questions. Lacking proofs are given in the
full version.

2 Preliminaries and Network Reachability Problems

We start by defining the problems we are interested in; here, we follow the
definitions and notions of [20] for everything related to neural networks. The
networks considered are exclusively feedforward. In their most general form,
they can process real numbers and contain rational weights.

Definition 1. A (feedforward) neural network N is a layered graph that rep-
resents a function of format R

n → R
m, for some n,m ∈ N. The first layer

with label � = 0 is called the input layer and consists of n nodes called
input nodes. The input value xi of the i-th node is also taken as its out-
put y0i := xi. A layer 1 ≤ � ≤ L − 2 is called hidden and consists of k(�)
nodes called computation nodes. The i-th node of layer � computes the output
y�i = σ�i(

∑

j

c
(�−1)
ji y(�−1)j +b�i). Here, the σ�i are (typically nonlinear) activation

functions (to be specified later on) and the sum runs over all output neurons of
the previous layer. The c

(�−1)
ji are real constants which are called weights, and b�i

is a real constant called bias. The outputs of all nodes of layer � combined gives
the output (y�0, ..., y�(k−1)) of the hidden layer. The final layer L − 1 is called
output layer and consists of m nodes called output nodes. The i-th node com-
putes an output y(L−1)i in the same way as a node in a hidden layer. The output
(y(L−1)0, ..., y(L−1)(m−1)) of the output layer is considered the output N(x) of the
network N .

Note that above, as in [20], we allow several different activation functions
in a single network. This basically is because for some results technically the
identity is necessary as a second activation function beside the ’main’ activation
function used. We next recall from [20] the definition of the reachability problem
NNReach. Since we want to study its complexity in the Turing model, we
restrict all weights and biases in a NN to the rational numbers. The problem
involves two Linear Programming LP instances in a decision version, recall that
such an instance consists of a system of (componentwise) linear inequalities
A · x ≤ b for a rational matrix A and vector b of suitable dimensions. The
decision problem asks for the existence of a real solution vector x.

Definition 2. a) Let F be a set of activation functions from R to R. An instance
of the reachability problem for neural networks NNReach(F ) consists of an
n ∈ N, a (feedforward) neural network N with n inputs and all its activation
functions belonging to F , rational data as weights and biases, and two instances
of LP in decision version with rational data, one with the input variables of N
as variables, and the other with the output variables of N as variables. These
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instances are also called input and output specification, respectively. The prob-
lem is to decide if there exists an x ∈ R

n that satisfies the input specification
such that the output N(x) satisfies the output specification.

b) The problem verification of interval property VIP(F) consists of the same
instances, except for the output specification being the open polyhedron, meaning
the interior of the solution space. This is due to technical reasons that will later
on simplify the reductions. The question is whether for all x ∈ R

n satisfying the
input specification, N(x) will satisfy the output specification (cf. [10]).

As for NNReach, we denote by (A,B,N) such an instance, assuming n is
obvious from the context.

c) Let F = {f1, ..., fn} be a set of activation functions. Then the Network
Equivalence problem NE(F ) is the decision problem whether two F -networks
describe the same function or not.

d) The size of an instance is given as the sum of the (usual) bit-sizes of the
two LP instances and T · L; here, T denotes the number of neurons in the net
N and L is the maximal bit-size of any of the weights and biases.

As usual for neural networks, we consider different choices for the activa-
tion functions used. Typical activation functions are ReLU(x) = max{0, x},
the Heaviside function or sigmoidal functions like σ(x) = 1

1+e−x . By techni-
cal reasons, in some situations the identity function σ(x) = x is also allowed,
Sälzer and Lange [20], for example, examined NNReach(id,ReLU). We name
nodes according to their internal activation function, so we call nodes with
activation function σ(x) = x identity nodes and nodes with activation func-
tion σ(x) = ReLU(x) ReLU-nodes etc. Note that the terminology of the LP-
specifications has its origin in software verification.

2.1 Basics on Constraint Satisfaction Problems CSP

As we shall see, analyzing the complexity of the above reachability problems is
closely related to suitable questions in the framework of Constraint Satisfaction
Problems CSP. This is a well established area in complexity, see for example
the survey [6]. Here, we collect the basic notions and results necessary for our
purposes.

Informally, a CSP deals with the question whether values from a set A can be
assigned to a set of variables so that given conditions (constraints) hold. These
conditions are taken from a set of relations over A that, together with the set
A, define the CSP. This can be formalized as follows:

Definition 3. A (relational) signature is a pair τ = (R, a), where R is a finite
set of relation symbols and a : R → N is a function called the arity.

A (relational) τ -structure is a tuple A = (A,RA), where A is a set called the
domain and RA is a set containing precisely one relation RA ⊆ Aa(R) for each
relation symbol R ∈ R.

An instance of a CSP over a given τ -structure is a conjunction of constraints,
where a single constraint restricts a variable tuple to belong to a particular
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relation of the structure under a suitable assignment of values from the domain
to the variables. For the entire instance one then asks for the existence of an
assignment satisfying all its constraints.

Definition 4. Let τ be a signature and A a τ -structure with domain A and
relations R. We always assume equality to be among the structure’s relations.
Let X = {x1, x2, . . .} be a countable set of variables.

a) A constraint for A is an expression R(y1, ..., ya(R)), where R ∈ R, a(R) its
arity and all yi ∈ X. For z ∈ Aa(R) we say that R(z) is true over A iff z ∈ RA.

b) A formula ψ is called primitive positive if it is of the form

∃xn+1, ...,∃xt : ψ1 ∧ ... ∧ ψk,

where each ψi either is a constraint, � (true), or ⊥ (false).
A formula with no free variables is a sentence.
c) The decision problem CSP(A) is the following: Let n ∈ N and a primitive

positive τ -sentence over X, i.e., a finite collection of constraints involving vari-
ables {x1, . . . , xn} ⊂ X be given. The question then is, whether there exists an
assignment f : {x1, . . . , xn} → A for the variables such that each given constraint
is true under the assignment f , i.e., all R(f(y1), ..., f(ya(R))) are true.

The size of an instance is n+m, where m denotes the number of constraints.

Example 1 (folklore). Consider as domain the real numbers R, together with
the binary order relation ≤, the ternary relation R+ defined via R+(x, y, z) ⇔
x + y = z, and the unary relation R=1(x) ⇔ x = 1. Then CSP(R;≤, R+, R=1)
is polynomial time equivalent to the Linear Programming problem in feasibility
form with rational input data. Reducing the former to the latter is obvious, for
the reverse direction first multiply all inequalities with a sufficiently large nat-
ural number to obtain integer coefficients only. Now observe that any natural
number n can be expressed as (one component of) a solution of a set of con-
straints involving a = 1 and doubling a number via c = b + b. This way, the
binary expansion of n can be constructed with O(log n) constraints. Apply this
construction similarly to a variable x of an instance of LP to obtain the term
n · x; now adding as constraint the equation nx = 1 similarly allows to express
rational numbers as coefficients. Clearly the size of the resulting CSP instance
is polynomially bounded in the (bit-)size of the given LP instance. Note that
due to the theory of Linear Programming an instance with rational data has the
same answer, independently of whether the considered domain is R or Q.

Definition 5. A relation R is called primitive positive definable (pp-definable)
over A, iff it can be defined by a primitive positive formula ψ over A, i.e.,

R(x1, ..., xn) ⇔ ∃xn+1, ...,∃xt : ψ(x1, . . . , xt).

It was shown by Jeavons, Bulatov and Krokhin [3] that CSP(A) and CSP(A′),
where the latter structure arises from the former by attaching finitely many
relations being pp-definable over A, are linear-time equivalent. The obvious idea
of replacing every occurrence of the new relation suffices to prove the statement.
This argument will be used below once in a while.
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Definition 6. a) A set R ⊆ R
n is called semilinear, iff it is a boolean combina-

tion of half-spaces1.
b) A set R ⊆ R

n is called essentially convex, iff for any two points x, y ∈ R
n

the intersection of the line segment [x, y] contains only finitely many points that
are not in R. If R ⊆ R

n is not essentially convex, any two points for which the
property fails are called witnesses for the set not being essentially convex.

This gives us access to the following results of Bodirsky, Jonsson and von
Oertzen:

Theorem 1 ([2]). a) Let R1, ..., Rn be semilinear relations. Then
CSP(Q;≤, R+, R=1, R1, ..., Rn) is in P if R1, ..., Rn are essentially convex and
is NP-complete otherwise.

b) Let R1, ..., Rn be relations such that at least one of them is not essentially
convex witnessed by two rational points. Then CSP(R;≤, R+, R=1, R1, ..., Rn) is
NP-hard.2

3 Complexity Results for Reachability

We shall now study the complexity of the reachability problem for various sets
of activation functions used by the neural network under consideration. Starting
point will be the result from [13,20] that NNReach(id,ReLU) is NP-complete.
We analyze the problem for a larger repertoire of activation functions. To do
so, in a first step it will be very helpful to relate these problems to instances
of certain CSP problems which can be attached to a network canonically. This
relation is made precise in the following theorem. The fact that input and out-
put specifications are LP instances causes, that the structures below naturally
contain the relations R=1, R+, and ≤. Further relations then will be determined
by the activation functions used.

Theorem 2. For any set of unary real functions F = {f1, ..., fs}, interpreted
as relations via their graphs, CSP(R;≤, R+, R=1, f1, ..., fs) and
NNReach(id, f1, ..., fs) are linear-time equivalent.

Proof. We prove both directions explicitly for the case s = 1, then the conclusion
for s > 1 is immediate. For reducing NNReach(id, f) to CSP(R;≤, R+, R=1, f),
let N be a network using id and f as activation functions. The weights and
biases of N are assumed to be rational numbers. The variable set of the CSP
we construct contains one variable for each input and output node of N . For
each node v in a hidden layer we introduce two variables vsum and vf . Note
that according to Example 1 any linear inequality with rational coefficients can
be expressed as an instance of CSP(R;≤, R+, R=1) of linear size. Thus, the

1 i.e., finite unions, intersections and complements of sets of the form Ax ≤ b.
2 Note that we can not switch between the domains Q and R at will any more after

dropping semilinearity with rational coefficients, for it could in this case change
solvability.
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input and output specifications of N can be expressed as a set of constraints
in CSP(R;≤, R+, R=1) using the corresponding variables, which is of linear size
with respect to the size of those specifications. For the nodes in the hidden

layers, we proceed similarly. If node v receives a linear sum
k∑

i=1

ci · ui + b as

its input, where ci, b are the rational weights and bias and the ui represent
the outputs of the previous layer, then as in Example 1 we add the constraint

vsum =
k∑

i=1

ci·ui,f +b to the constructed instance. In case v has f as activation, we

add the constraint vf = f(vsum) and if v was an id-node we add the constraint
vf = vsum. Obviously, the size of the CSP instance is linearly bounded in that
of the given net. Moreover, NNReach(id, f) is solvable for N if and only if the
above CSP has a solution.

For the reverse direction, we translate an instance of CSP(R;≤, R+, R=1, f)
into an instance of NNReach(id, f) with only one hidden layer. For each variable
in the instance we introduce a node in the input layer and encode all constraints
of the form ≤, R+ and R=1 into the input specification. For every constraint
y = f(x) we introduce a new f -node x̄ in the hidden layer connected only to x
with bias 0 and weight 1. Next, we allocate an identity-node ȳ in the hidden layer
connected only to y also with bias 0 and weight 1 for the connections. Finally,
we require both nodes x̄ and ȳ to be equal by adding the equation x̄ = ȳ to the
output-specification.

It is obvious that both reductions can be performed inductively for all the
functions in F , so the statement holds for the entire set. �

Note that the proof does not depend on formalizing the specifications as LP
instances. It would similarly hold if the specifications would be given by (in-)
equality systems involving polynomials and adding a relation for multiplication
on the CSP-side. However, in this case checking feasibility of the specifications
is already difficult, see below.

Before studying NNReach for different activations, we briefly discuss a more
technical issue, namely the necessity of adding id as activation.

The above proof implies that using an injective activation allows to omit id,
if we drop the condition that the network has to be layered, meaning that a
connection can skip layers:

Lemma 1. For f injective, NNReach(id, f) and NNReach(f) are linear-time
equivalent.

Proof. Given the proof of Theorem 2 it only remains to avoid id-nodes when
reducing an instance of CSP(R;≤, R+, R=1, f) to one of NNReach(f). Identity
nodes were used to propagate the value of a node y in order to include a con-
straint y = f(x) in the output specification. Instead, if f is injective one can
use a network node for f(x) and one for y and connect them with biases 0 and
weights 1 and −1, respectively, to an f -activation node computing f(f(x) − y).
Use another f -node to compute f(0). This is possible by demanding a further
input node to have value 0. Finally, in the output specification we add the
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equality between these two nodes with values f(f(x) − y) and f(0); injectivity
provides the equivalence of this condition with f(x) = y. �

For example, for nets using sigmoidal activation functions identity activations
are not necessary.

Sälzer and Lange [20] asked whether for the NP-completeness result involving
id and ReLU as activations one can avoid id as activation. Though ReLU is not
injective, this in fact holds as well, even when we do not allow connections to
skip layers:

Proposition 1. The following problems are linear-time equivalent:

i) CSP(R;≤, R+, R=1, ReLU),
ii) NNReach(id,ReLU) and
iii) NNReach(ReLU) with only one hidden layer.

As consequence, all three are NP-complete.

Proof. Given the NP-completeness of NNReach(id,ReLU) and Theorem 2
above, it remains to reduce NNReach(id,ReLU) to NNReach(ReLU) in linear
time. Towards this goal, we show that an identity node can be replaced by two
ReLU-nodes in the following way: In the neural net to be constructed use two
copies of the identity node and let both have the same incoming and outgoing
connections as the original node. Replace the identity map by the ReLU map
in both and invert all incoming and outgoing weights as well as the bias in the
second one. Delete the initial identity node. This does not change the computed
function of the network, because

n∑

i=1

aixi + b = max{0,
n∑

i=1

aixi + b} + min{0,
n∑

i=1

aixi + b}

= max{0,

n∑

i=1

aixi + b} − max{0,−(
n∑

i=1

aixi + b)}

= ReLU(
n∑

i=1

aixi + b) − ReLU(−(
n∑

i=1

aixi + b))

= ReLU(
n∑

i=1

aixi + b) − ReLU(
n∑

i=1

(−ai)xi − b)

Applying this to every node gives us at most twice as many nodes with at most
four times as many connections, thus the construction runs in linear time. �

Theorem 2 enables us treating network reachability complexity questions by
using the rich fund of complexity results for CSP problems of various types.

As an easy warm up, convince yourself that NNReach(id) is by the previous
theorem equivalent to CSP(R;≤, R+, R=1, id) which in turn is equivalent to LP
by Example 1, a problem well known to belong to P in Turing model complexity
[12].
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In [20] it was shown that NNReach(id,ReLU) is NP-complete, the link
to CSPs however provides us with a much shorter proof. We will make use of
Theorem 1 and apply Theorem 2:

Corollary 1. Let f1, ..., fs be unary real functions. If their graphs g1, ..., gs are
semilinear with rational coefficients, then NNReach(id, f1, ..., fs) is in P if and
only if g1, ..., gs, interpreted as binary relations, are essentially convex, and NP-
complete otherwise. If at least one of the graphs g1, ..., gs is not essentially convex
witnessed by two rational points, then NNReach(id, f1, ..., fs) is NP-hard.

Though Corollary 1 certainly is not that surprising from the CSP point of view,
it gives an elegant way to argue about the complexity of reachability problems for
neural networks. Of interest now is to investigate the latter for many more activa-
tion functions. NP-hardness is for example the case for f(x) = nx, n ∈ N, n > 1,
the witnesses are f(0) = 1 and f(1) = n, but not necessarily for f(x) = ex for it
lacks a second rational point. Other activation functions that immediately give
us NP-hardness this way are all non-linear rational functions (including poly-
nomials) with rational coefficients, the square-root, all other rational roots, and
the binary logarithm. Reasonable non-linear functions that lack rational points
can be compressed to do so, such as f(x) = sin( x

π ) instead of f(x) = sin(x).
Moreover, if we use the strong version that requires semilinearity, we get that

NNReach(id, f) is NP-complete for f being either the absolute value, the floor
or ceiling function on a bounded domain, the sign or the Heaviside function,

piecewise linear functions such as fα(x) =

⎧
⎨

⎩

−1 if x ≤ −α
x
α if − α < x < α
1 if x ≥ α

, the ReLU

function, Leaky ReLU given via Rα(x) =
{

x if x ≥ 0
αx if x < 0 , α ∈ Q as well as all

their scalar generalizations and any other non-trivial rational step function such
as the indicator function on an interval.

We will now see a much more powerful version of the NP-hardness part of
Corollary 1:

Theorem 3. NNReach(id, f) is NP-hard for any non-linear function f : R →
R that is continuous on an interval [a, b] ⊆ R, including f(x) = x

1+e−x and all
sigmoidal functions such as f(x) = 1

1+e−x , f(x) = x√
1+x2 and f(x) = tanh(x)

the hyperbolic tangent.

Proof. By the previous Corollary, it suffices to show that with such a function
f we can pp-define a new function f̄ that excludes an interval witnessed by two
rational points. The construction of f̄ proceeds in several steps.
First, by density of Q there exist ā, b̄ ∈ [a, b]∩Q, ā < b̄ so that f |[ā,b̄] is still non-
linear and continuous, we apply a linear transformation on the argument of f so
that we can assume ā = 0 and b̄ = 1. This is pp-definable for rational ā, b̄ and
neither changes non-linearity nor continuity. There must exist c, d ∈ [0, 1] ∩ Q,
such that

f

(
c + d

2

)

�= f(c) + f(d)
2

,
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for f would otherwise fulfill Cauchy’s functional equation and therefore be linear.
Apply again a linear transformation on the argument that maps c to 0 and

d to 1 and call the resulting function f̂ . By construction,

f̂

(
1
2

)

�= f̂(0) + f̂(1)
2

Define the function f̄ : R → R by f̄(x) = f̂(x) + f̂(1 − x) − f̂(0) − f̂(1),
this is primitive positive, for addition, affine transformation and the constants
0 and 1 are pp-definable in (R;≤, R+, R=1). It also matches the requirements
for Corollary 1 part 2: The rational points are f̄(0) = 0 and f̄(1) = 0 and the
function must exclude an interval because

f̄

(
1
2

)

= f̂

(
1
2

)

+ f̂

(
1
2

)

− f̂(0) − f̂(1) = 2(f̂
(

1
2

)

− f̂(0) + f̂(1)
2

) �= 0

and by continuity. �

Note that any sensible/common activation function is either linear or of this
type. We have shown that in the latter case, together with the identity as acti-
vation function, we have an NP-hard reachability problem. Theorem 3 however
only states NP-hardness for this vast set of reachability problems. One might
wonder about membership in NP. Our next main result will show that member-
ship in NP and thus NP-completeness is unlikely for many of the activations,
because reachability becomes complete for a complexity class conjectured to be
much larger than NP.

Definition 7 (cf. [19]). The problem of deciding whether a system of polynomial
equations with integer coefficients is solvable over R is called the Existential
Theory of the Reals ETR. The complexity class ∃R is defined as the set of all
decision problems that reduce to ETR in polynomial time. A problem is called
∃R-complete if it is in ∃R and ETR reduces to the problem in polynomial time.

It was shown by Canny [5] that ETR is in PSPACE and it is easily seen that
ETR is NP-hard. These are currently the best known bounds and it is widely
believed that NP� ∃R �PSPACE.

ETR can be formulated as CSP(R, E), where E is the set of all polynomial
relations Rp := {x ∈ R

n | p(x)∇0,∇ ∈ {=, <,≤}, p ∈ Z[x1, ..., xn]} and inequal-
ities. Note that E does not have finite signature any more, this issue has to
be resolved before talking about algorithms and complexities of the CSP, for
the encoding into Turing Machines is only possible for finite sets of relations.
However, E is a first-order reduct of (R; 1,+, ·), any integer polynomial can be
described by the integers, addition, multiplication and logical combinations of
these like we did for LP in Example 1. It thus suffices to represent the rela-
tions by their first-order definition. The integer coefficients can be assumed to
be encoded in binary by the same ongoing that we used in Example 1.

The following Theorem will provide us with NNReach problems that are
hard or even complete for ∃R.
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Theorem 4. a) NNReach(id, f) is ∃R-complete for f any non-linear polyno-
mial and ∃R-hard for f any function that coincides with a non-linear polynomial
on an interval.
b) NNReach(id, f) is ∃R-hard in the following cases:

i) for any function f that allows to pp-define a function that coincides with
the exponential function on an interval, especially the exponential function itself,

ELU(x) :=
{

x if x ≥ 0
λ(ex − 1) if x ≤ 0 where λ ∈ Q, and f(x) = e−|x|

ii) for the Gaussian function f(x) = e−x2

iii) for the arctan function f(x) = arctan(x) and

iv) for the Gallant-White cosine-smasher f(x) =

⎧
⎨

⎩

0 x ≤ −π
2

1+cos( 3
2π)

2 x ∈ [−π
2 , π

2 ]
0 x ≥ π

2

.

Remark 1. Note that NNReach(id, e(·)) is equivalent to CSP(R;R+, R·, 1, e(·)),
also known as Tarski’s exponential function problem. It is not even known
whether this problem is decidable or not (cf. [17]). Similar approaches have
recently been made in [11].

4 Network Equivalence and Verification of Interval
Property

In this section, we study the complexity of the remaining decision problems
VIP and NE introduced in Definition 2. We will see that in a lot of cases these
problems are essentially the same.

Theorem 5. Let F be a set of activation functions such that sign, id ∈ F .
a) NE(F ) one-one reduces to the complement of NNReach(F ) in linear

time. Consequently, NE(id) is in P.
b) NNReach(F ) one-one reduces to the complement of NE(F ) in linear

time. Consequently, NE(ReLU) is co-NP-complete and NE(f) is co-NP-hard
for any non-linear f that is continuous on an interval.

c) NE truth-table reduces to NE with just one output dimension in linear
time independent of the set of activation functions.

The same holds for Heaviside or a similar step function instead of sign, id
can independently be replaced by ReLU.

Theorem 6. Let F be a set of activation functions.
a) VIP(F ) truth-table reduces to the complement of NNReach(F ) in linear

time. Consequently, VIP(id) is in P and VIP(ReLU) is in co-NP.
b) Let F contain at least one among the functions H (the Heaviside func-

tion), sign or ReLU . Then NNReach(F ) one-one reduces to the complement
of VIP(F ) in linear time.

c) VIP(F ) truth-table reduces to VIP(F ) with just one output condition in
linear time, meaning the output constraint is just one strict inequality.
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Theorem 7. Let F be a set of activation functions containing id or ReLU and
H or sign.

a) NE(F ) one-one reduces to VIP(F ) in linear time.
b) VIP(F ) one-one reduces to NE(F ) in linear time.

5 Conclusion and Further Questions

We examined the computational complexity of the reachability problem for neu-
ral networks in dependence of the activation functions used. We provided condi-
tions for includedness and hardness for NP, translated a dichotomy result for
certain CSPs into the language of reachability problems, and showed ETR-
hardness of the reachability problems for several typical activation functions.
We also showed that NE and VIP are in many cases the same problem which
is essentially “co-NNReach”. Further open questions are:

1.) Do there exist activation functions that are not semilinear but still lead to a
reachability problem in NP?

2.) Can the reachability problem for the sigmoid function f(x) = 1/(1 + e−x),
one oft the most frequently used activations, be classified any better than just
as NP-hard? Can it be related to ETR?

3.) Can the discussed ETR-hard problems be classified with respect to (poten-
tially) larger complexity classes such as PSPACE, EXP-Time, decidable,...?

4.) Can reductions between VIP, NE and NNReach be found that do not rely
on certain functions to be included in the set of activations?

5.) How do these problems behave when the deciding algorithm is considered as
a computation model with reals as entities? For example of which complexity
are the respective problems in a model of real computations like the Blum-
Shub-Smale model [1]? What if the underlying neural net may have any real
weights and biases instead of just rational ones?

Acknowledgment. I want to thank Klaus Meer for helpful discussion and the anony-
mous referees for several hints improving the writing.
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Abstract. Communicating finite-state machines (CFMs) are a Turing
powerful model of asynchronous message-passing distributed systems.
In weakly synchronous systems, processes communicate through phases
in which messages are first sent and then received, for each process.
Such systems enjoy a limited form of synchronization, and for some com-
munication models, this restriction is enough to make the reachability
problem decidable. In particular, we explore the intriguing case of p2p
(FIFO) communication, for which the reachability problem is known to
be undecidable for four processes, but decidable for two. We show that
the configuration reachability problem for weakly synchronous systems
of three processes is undecidable. This result is heavily inspired by our
study on the treewidth of the Message Sequence Charts (MSCs) that
might be generated by such systems. In this sense, the main contribu-
tion of this work is a weakly synchronous system with three processes
that generates MSCs of arbitrarily large treewidth.

Keywords: Distributed Systems · Message-Passing · Treewidth

1 Introduction

Systems of communicating finite-state machines (CFMs) are a simple, yet expres-
sive, model of asynchronous message-passing distributed systems. In this model,
each machine performs a sequence of send and receive actions, where a send
action can be matched by a receive action of another machine. For instance, the
system in Fig. 1 (left), models a protocol between three processes a, b, and r.

A computation of such a system can be represented graphically by a Message
Sequence Chart (MSC), a simplified version of the ITU recommendation [17].
Each machine of the system has its own “timeline” on the MSC, where actions
are listed in the order in which they are executed, and message arrows link a
send action to its matching receive action. For instance, the MSC of Fig. 1 (right)
represents one of the many computations of the system in Fig. 1 (left). The set
of all MSCs that the system may generate is determined both by the machines,
since the sequence of actions of each timeline must be a sequence of action in the
corresponding CFM, and by the “transport layer” or “communication model”
employed by the machines. Roughly speaking, a communication model is a class
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Fig. 1. Example of a system of 3 CFMs (left) and of an MSC generated by it (right).
a!b(m1) (resp., b?a(m1)) denotes the sending (reception) of message m1 from (by)
process a to (from) process b.

of MSCs that are considered “realizable” within that model of communications.
For instance, for rendezvous synchronization, an MSC is considered to be real-
izable with synchronous communication if the only path between a sending and
its matching receipt is the direct one through the message arrow that relates
them. Among the various communication models that have been considered,
we can cite p2p (or FIFO) model, where each ordered pair of machines defines
a dedicated FIFO queue; causal ordering (CO), where a message cannot over-
take the messages that were sent causally before it; the mailbox model, where
each machine holds a unique FIFO queue for all incoming messages; the bag (or
simply asynchronous) model, where a message can overtake any other message
(see [3,9,10] for various presentations of these communication models).

The configuration reachability problem for a system of CFMs consists in
checking whether a control state, together with a given content of the queues,
is reachable from the initial state. This problem is decidable for synchronous
communication, as the state space of the system is finite, and also for bag com-
munication, by reduction to Petri nets [19]. For other communication models,
as soon as two machines are allowed to exchange messages through two FIFO
queues, reachability becomes undecidable [8]. Due to this strong limitation, there
has been a wealth of work that tried to recover decidability of reachability by
considering systems of CFMs that are “almost synchronous”.

In weakly synchronous systems, processes communicate through phases in
which messages are first sent and then received, for each process; graphically,
the MSCs of such systems are the concatenation of smaller, independent MSCs,
within which no send happens after a receive. For instance, the MSC in Fig. 1
(right) is weakly synchronous, as it is the concatenation of three “blocks”
(namely {m1}, {m2}, and {m2,m3,m4}), within which all sends of a given
machine happen before all the receives of this same machine. It is known that
reachability is decidable for mailbox weakly synchronous systems [6], whereas it
is undecidable for either p2p or CO weakly synchronous systems with at least
four machines. On the other hand, reachability is decidable for two machines
(since any p2p MSC with two machines is also mailbox). In this work, we deal
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with weakly synchronous systems with three machines, and conclude that reach-
ability is undecidable for these systems. Our result is based on a study of the
unboundedness of the treewidth for MSCs that may be generated by these sys-
tems. The first contribution of this work is a weakly synchronous system with
only three machines that is “treewidth universal”, in the sense that it may gen-
erate MSCs of arbitrarily large treewidth. The second contribution, strongly
inspired by the treewidth universal system, is showing that weakly synchronous
systems with three processes are Turing powerful. To do so, we establish a one-
to-one correspondence between the computations of a FIFO automaton (a finite
state machine that may push and pop from a FIFO queue, which is known to be
a Turing powerful computational model) on the one hand, and a subset of the
MSCs of the treewidth universal system on the other hand.

Related Work. Beyond weakly synchronous systems, several similar notions
have been considered to try to capture the intuition of an “almost synchronous”
system. Reachability of existentially bounded systems [14,18] is decidable for
FIFO, CO, p2p, or bag communications. Synchronizable systems [2] were an
attempt to define a class of systems with good decidability properties, however
reachability for such systems with FIFO communications is undecidable [12].
The status of reachability for k-stable systems [1] is unknown. Finally, reach-
ability for k-synchronous systems [7] is decidable for FIFO, CO, p2p, or bag
communications.

Another form of under-approximation of the full behaviour of a system of
CFMs is the bounded context-switch reachability problem, which is known to be
decidable for systems of CFMs, even with a controlled form of function call [15,
20].

Finally, weak synchronisability share some similarities with reversal-bounded
counter machines [13,16]: in the context of bag communications, a send is a
counter increment, a receive a decrement, and weak synchronisability is a form
of bounding the number of reversals of increment and decrement phases.

Outline. Section 2 introduces the necessary terminology. Section 3 presents the
weakly synchronous system with three machines that may generate MSCs of
arbitrarily large treewidth. Then, Sect. 4 discusses the undecidability of the
configuration reachability problem for weakly-synchronous systems with three
machines. Finally, Sect. 5 concludes with some final remarks. Proofs and addi-
tional material can be found in [11].

2 MSCs and Communicating Automata

We recall here concepts and definitions related to MSCs and communicating
automata. Assume a finite set of processes P and a finite set of messages M. A
send action is of the form p!q(m) where p, q ∈ P and m ∈ M; it is executed by p
and sends message m to process q. The corresponding receive action, executed by
q, is p?q(m). Let Send(p, q, ) = {p!q(m) | m ∈ M} and Rec(p, q, ) = {p?q(m) |
m ∈ M}. For p ∈ P, we set Send(p, , ) = {p!q(m) | q ∈ P \ {p} and m ∈ M},
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etc. Moreover, Σp = Send(p, , ) ∪ Rec( , p, ) ∪ {ε} will denote the set of all
actions that are executed by p. Finally, Σ =

⋃
p∈P

Σp is the set of all the actions.

Definition 1 (p2p MSC). A (p2p ) MSC M over P and M is a tuple M =
(E ,→,�, λ) where E is a finite (possibly empty) set of events and λ : E → Σ is
a labeling function. For p ∈ P, let Ep = {e ∈ E | λ(e) ∈ Σp} be the set of events
that are executed by p. → (the process relation) is the disjoint union

⋃
p∈P

→p

of relations →p ⊆ Ep ×Ep such that →p is the direct successor relation of a total
order on Ep. � ⊆ E × E (the message relation) satisfies the following:

(1) for every pair (s, r) ∈ �, there is a send action p!q(m) ∈ Σ such that
λ(s) = p!q(m), λ(r) = p?q(m), and p �= q;

(2) for all r ∈ E with λ(r) = p?q(m), there is a unique s ∈ E such that s � r;
(3) letting ≤M = (→ ∪ �)∗, we require that ≤M is a partial order;
(4) for every s1 ∈ E and pair (s2, r2) ∈ � with λ(s1) = p!q(m1) and λ(s2) =

p!q(m2), if s1 →+
p s2, then there exists r1 such that (s1, r1) ∈ � and r1 →+

q

r2.

Condition (1) above ensures that message arrows relate a send event to a
receive event on a distinct machine. By Condition (2), every receive event has a
matching send event. Note that, however, there may be unmatched send events in
an MSC. An MSC is called orphan free if all send events are matched. Condition
(3) ensures that there exists at least one scheduling of all events such that each
receive event happens after its matching send event. Condition (4) captures the
p2p communication model: a message cannot overtake another message that has
the same sender and same receiver as itself.

Let M = (E ,→,�, λ) be an MSC, then SendEv(M) = {e ∈ E | λ(e) is a send
action}, RecEv(M) = {e ∈ E | λ(e) is a receive action}, Matched(M) = {e ∈ E |
there is f ∈ E such that e�f}, and Unm(M) = {e ∈ E | λ(e) is a send action and
there is no f ∈ E such that e� f}. We do not distinguish isomorphic MSCs. Let
E ⊆ E such that E is ≤M -downward-closed, i.e., for all (e, f) ∈ ≤M such that f ∈
E, we also have e ∈ E. Then the MSC M ′ = (E,→,�, λ) obtained by restriction
to E is called a prefix of M . If M1 = (E1,→1,�1, λ1) and M2 = (E2,→2,�2, λ2)
are two MSCs, their concatenation M1 · M2 = (E ,→,�, λ) is as expected: E is
the disjoint union of E1 and E2, � = �1 ∪ �2, λ is the “union” of λ1 and λ2,
and → = →1 ∪→2 ∪R. Here, R contains, for all p ∈ P such that (E1)p and (E2)p

are non-empty, the pair (e1, e2), where e1 and e2 are the last and the first event
executed by p in M1 and M2, respectively. Due to condition (4), concatenation is
a partially defined operation: M1 ·M2 is defined if for all s1 ∈ Unm(M1) and s2 ∈
SendEv(M2) that have the same sender and destination (λ(s1) ∈ Send(p, q, )
and λ(s2) ∈ Send(p, q, )), we have s2 ∈ Unm(M2). In particular, M1 · M2 is
defined when M1 is orphan-free. Concatenation is associative.

We recall from [5] the definition of weakly synchronous MSC. We say that
an MSC is weakly synchronous if it can be broken into phases where all sends
are scheduled before all receives.

Definition 2 (weakly synchronous). We say that M ∈ MSC is weakly
synchronous if it is of the form M = M1 · M2 · · · Mn such that for every Mi =
(E ,→,�, λ) SendEv(Mi) is a ≤Mi

-downward-closed set.
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We now recall the definition of communicating system, which consists of
finite-state machines Ap (one per process p ∈ P) that can exchange messages.

Definition 3 (communicating system). A (communicating) system over
P and M is a tuple S = ((Ap)p∈P). For each p ∈ P, Ap = (Locp, δp, �

0
p, �

acc
p )

is a finite transition system where: Locp is the finite set of (local) states of p,
δp ⊆ Locp × Σp × Locp (also denoted �

a−−→
Ap

�′) is the transition relation of p,

�acc
p ∈ Locp is the final state of p.

Given p ∈ P and a transition t = (�, a, �′) ∈ δp, we let source(t) = �,
target(t) = �′, action(t) = a, and msg(t) = m if a ∈ Send( , ,m) ∪
Rec( , ,m).

An accepting run of S on an MSC M is a mapping ρ : E → ⋃
p∈P

δp that
assigns to every event e the transition ρ(e) that is executed at e by Ap. Thus, we
require that (i) for all e ∈ E , we have action(ρ(e)) = λ(e), (ii) for all (e, f) ∈ →,
target(ρ(e)) ε−−→

Ap

∗
source(ρ(f)), (iii) for all (e, f) ∈ �, msg(ρ(e)) = msg(ρ(f)),

(iv) for all p ∈ P and e ∈ Ep such that there is no f ∈ E with f → e, we have
source(ρ(e)) = �0p, (v) for all p ∈ P and e ∈ Ep such that there is no f ∈ E with
e → f , we have target(ρ(e)) = �acc

p and, (vi) Unm(M) = ∅.
Essentially, in an accepting run of S every Ap takes a sequence of transitions

that lead to its final state �acc
p , and such that each send action will have a

matching receive action (i.e., there are no unmatched messages). The language
of S is L(S) = {M ∈ MSC | there is an accepting run of S on M}. We say that
S is weakly synchronous if for all M ∈ L(S), M is weakly synchronous.

The emptiness problem is the decision problem that takes as input a system
S and addresses the question “is L(S) empty?”. This problem is a configuration
reachability problem, and under several circumstances, its decidability is closely
related to the one of the control state reachability problem. In this work, we will
study the emptiness problem with the additional hypothesis that S is a weakly
synchronous system with three machines only.

Finally, we recall the less known notion of “FIFO automaton”, a finite state
machine that can push into and pop from a FIFO queue. This is a system of
communicating machines with just one machine, whose semantics is a set of
MSCs with a single timeline, for which we exceptionally relax condition (1) of
Definition 1, so to allow a send event and its matching receive event to occur on
the same machine. The following result is proved in [12, Lemma 4].

Lemma 1 ([12]). The emptiness problem for FIFO automata is undecidable.

3 Treewidth of Weakly Synchronous p2p MSCs

There is a strong correlation between MSCs and graphs. An MSC is a directed
graph (digraph in the following) where the nodes are the events of the MSC
and the arcs are represented by the → and the � relations. We are, therefore,
able to use some tools and techniques from graph theory to possibly derive
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some interesting results about MSCs. A graph parameter which is particularly
important in this context is the treewidth [4] mostly due to Courcelle’s theorem
that, roughly, states that many properties can be checked in classes of MSCs
with bounded treewidth1. For instance, in [5], it is shown that the class of weakly
synchronous mailbox MSCs has bounded treewidth. Interestingly enough, it is
also shown that the bigger class of weakly synchronous p2p MSCs has unbounded
treewidth, by means of a reduction to the Post correspondence problem. Here
we give a more direct proof, for all weakly synchronous systems that have at
least three processes. We begin with some terminology:

Definition 4. To contract an arc (u, v) in a (di)graph G means replacing u and
v by a single vertex whose neighborhood is the union of the neighborhoods of u
and v. A (di)graph H is a minor of a (di)graph G if H can be obtained from a
subgraph of G by contracting some edges/arcs.

Next, we show how to build a family of weakly synchronous MSCs with three
processes (a, b and c) and unbounded treewidth. We want to find a class of MSCs
that admit grids of unbounded size as a minor. The idea is illustrated in Fig. 2,
and it consists in bouncing groups of messages between processes so to obtain the
depicted shape. The class of MSCs is indexed by two non-zero natural numbers:
h and �. Intuitively, h represents the number of consecutive events in a group,
and � is the number of groups per process, divided by 2. The graph depicted
on the top left of Fig. 2 is not an MSC, because it is undirected and there are
multiple actions associated to the same event. Nonetheless, the connection with
MSCs is quite intuitive, and formalized in Lemma 2.

We, now, specify how to build a digraph Gh,� = (V (Gh,�), E(Gh,�)), from
which our MSC G∗

h,� will be obtained. The set of vertices V (Gh,�) = A ∪ B ∪ C
contains all the events of each process: A = {si,j

a , ri,j
a | 1 ≤ i ≤ h, 1 ≤ j ≤ �},

B = {si,j
b , ri,j

b | 1 ≤ i ≤ h, 1 ≤ j ≤ �}, and C = {si,j
c , ri,j

c | 1 ≤ i ≤ h, 1 ≤ j ≤ �}.
For x ∈ {a, b, c} and y ∈ {r, s}, we add the following arcs to E(Gh,�), which

will represent the “timelines” connecting events of each process:

1. for each group of h events/messages and 1 ≤ j ≤ �, Colx,y,j = {(yi,j
x , yi+1,j

x ) |
1 ≤ i < h};

2. then, to link groups together {(yh,j
x , y1,j+1

x ) | 1 ≤ j < �};
3. and finally, to link the phase of sendings with the one of receptions: (sh,�

x , r1,1
x ).

It remains to add the arcs that correspond to the messages exchanged by the
processes. Intuitively, each vertex si,j

x corresponds to two messages sent by pro-
cess x to the other two processes (except for j = 1 and x = a, in which case it
will correspond to a single message), and each vertex ri,j

x will correspond to two
messages received by process x from the other two processes (except for j = �
and x = c, in which case it will correspond to a single message). Formally:

EM ={(si,j
a , ri,j

b ), (si,j
c , ri,j

b ), (si,j
c , ri,j

a ), (si,j
b , ri,j

a ), (si,j
b , ri,j

c ) | 1 ≤ i ≤ h, 1 ≤ j ≤ �}
∪ {(si,j+1

a , ri,j
c ) | 1 ≤ i ≤ h, 1 ≤ j < �}. (1)

1 We do not explicitly use tree-decompositions, we refer to [4] for their formal defini-
tions.
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Fig. 2. The undirected graph of G4,2 (top left) with a 4×12 grid as a minor (top right
and bottom). All arcs go from top to bottom.

Lemma 2. For any h, � ∈ N
+, Gh,� is the minor of a graph arising from a

weakly synchronous p2p MSC G∗
h,� with 3 processes and a single phase.

Proof. Fig. 3 exemplifies the transformation below. Note that some vertices of
Gh,� have degree 4 while any MSC is a subcubic graph (i.e., every vertex has
degree at most 3). For every si,j

x with degree 4, let α (resp., β) be the in-
neighbor (resp., out-neighbor) of si,j

x in Px and let γ and δ be the other two
neighbors of si,j

x . Replace si,j
x by two vertices sui,j

x and sdi,j
x , with the 5 arcs

(α, sui,j
x ), (sui,j

x , sdi,j
x ), (sdi,j

x , β), (sui,j
x , γ) and (sdi,j

x , δ). Do a similar transfor-
mation for every ri,j

x with degree 4. A similar transformation is done for the four
vertices (with degree 3) s1,1

b , s1,1
c , rh,�

a and rh,�
b . Let G∗

h,� be the obtained digraph.
It is clear that G∗

h,� is an MSC and that Gh,� is a minor of G∗
h,�.

Note that for any x ∈ {a, b, c}, X ∈ {A,B, C} induces a directed path Px

with first the vertices si,j
x (in increasing lexicographical order of (j, i)) and then

the vertices ri,j
x (in increasing lexicographical order of (j, i)). The fact that G∗

h,�

is weakly synchronous with one phase directly follows the fact that, for every
x ∈ {a, b, c}, the vertices s, su and sd (corresponding to sendings) appear before
the vertices r, ru and rd (corresponding to receptions) in the directed path Px.

Moreover, for every x, y ∈ {a, b, c}, x �= y, the arcs from Px to Py are all
parallel (i.e., for every arc (u, v) and (u′, v′) from Px to Py, if u is a predecessor
of u′ in Px, then v is a predecessor of v′ in Py). This implies that G∗

h,� is p2p. 	


Note that, for fixed i ≤ h and j < �, Pi,j = (si,j
a , ri,j

b , si,j
c , ri,j

a , si,j
b , ri,j

c , si+1,j
a )

is a (undirected) path with 6 arcs linking si,j
a to si,j+1

a . From this, it is not
difficult to see that Gh,� admits a grid of size h × 6� as a minor, which is the
content of next lemma (see Fig. 2 for an example).
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Fig. 3. Transformation of
Lemma 2.

Let tw(Gh,�) be the treewidth of the underlying
undirected graph of Gh,�.

Lemma 3. For any h, � ∈ N
∗, tw(Gh,�) ≥ min{h, 6�}.

Proof. The subgraph obtained from Gh,� by keeping
the arcs in item 1 and Eq. 1: G′

h,� = (V (Gh,�), EM ∪⋃
x∈{a,b,c},y∈{r,s},1≤j≤� Colx,y,j), is a h×6� grid. From

[4], we know that tw(G′
h,�) ≥ min{h, 6�} and, since

treewidth is closed under subgraphs [4], tw(Gh,�) ≥
tw(G′

h,�) ≥ min{h, 6�}. 	

We can then easily derive the main result for this

section.

Theorem 1. The class of weakly synchronous p2p
MSCs with three processes (and a single phase) has
unbounded treewidth.

Proof. From Lemma 2, G∗
h,� is a weakly synchronous p2p MSC with 3 processes

and Gh,� is a minor of G∗
h,�. Hence, from Lemma 3 and the fact that the treewidth

is minor-closed [4], we get that tw(G∗
h,�) ≥ min{h, 6�}. 	


Notice that, a similar technique, this time exploiting four processes instead
of three, can be used to show that we can build a weakly synchronous p2p MSC
that can be contracted to whatever graph.

Theorem 2. Let H be any graph. There exists a weakly synchronous p2p MSCs
with four processes that admits H as minor.

Proof. Let V (H) = {v1, · · · , vh} and E(H) = {e1, · · · , e�}. Take graph Gh,�

defined above. Add a new directed path (d1, · · · , d�) (which corresponds to the
fourth process). Finally, for every 1 ≤ j ≤ �, and edge ej = {vi, vi′} ∈ E(H),
add two arcs (ri,j

a , dj) and (ri′,j
a , dj). Let G be the obtained graph.

Using similar arguments as in the proof of Lemma 2, G arises from a weakly
synchronous p2p MSC with 4 processes. Now, to see that H is a minor of G,
first remove all “vertical” arcs from G. Then, for every 1 ≤ i ≤ h, contract the
path

⋃
1≤j≤� Pi,j into a single vertex (corresponding to vi), and finally contract

the arc (ri′,j
a , dj) for every edge ej = {vi, vi′}. These operations lead to H. 	


4 Reachability for Weakly Synchronous p2p Systems
with 3 Machines

In [5], it is shown that the control state reachability problem for weakly p2p syn-
chronous systems with at least 4 processes is undecidable. The result is obtained
via a reduction of the Post correspondence problem. In the same paper, following
from the boundedness of treewidth, it is also shown that reachability is decid-
able for systems with 2 processes. The arguments easily adapt to show the same
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�0b �?b �acc
b

�m
b0

�m
b?

ε

b!a(m) b!c(m)

ε

a?b(m)c?b(m)

Ab �0c �?c �acc
c

�m
c0

�m
c?

ε

c!b(m) c!a(m)

ε

b?c(m)a?c(m)

Ac

Fig. 4. Sketch of Ab and Ac of S3 (only a single message m is considered).

results for the emptiness problem instead. The decidability of reachability, or
emptiness, remained open for systems with 3 processes. We already showed that
the treewidth of weakly synchronous p2p MSCs is unbounded for 3 processes.
But, this result alone is not enough to prove undecidability, still it gives us a hint
on how to conduct the proof. Indeed, inspired by the proof of the unboundedness
of the treewidth, we provide a reduction from the emptiness problem for a FIFO
automaton S1 (undecidable, Lemma 1) to the emptiness problem for a weakly
synchronous system S3 with 3 machines. The reduction makes sure that there is
an accepting run of S1 if and only if there is one for S3.

Let S1 = (A), with A = (Loc, δ, �0, �acc) be a communicating system with a
single process over M. We will consider only automata that, from any state, have
at most one non-epsilon outgoing transition, and no self loops (i.e., transitions
that start and land in the same state). More precisely, we prove that any system
can be encoded into one that satisfies this additional property while accepting
the same language.

We provide an encoding of the FIFO automaton S1 into the system S3 =
(Aa, Ab, Ac) over M ∪ {D}, where D is an additional special message called the
dummy message. We show that S3 is weakly synchronous, and that L(S1) �= ∅
if and only if L(S3) �= ∅. Processes b and c (see Fig. 4) are used as forwarders so
that messages circulate as in Fig. 2. Basically, process b (resp., process c) goes
through two phases, the first one in which messages are sent to a and c (resp., a
and b), and the second in which messages can be received. In Fig. 4, there should
be one state �m

b0
(resp., �m

b?
), which is the in and out-neighbor of �0b (resp., �?b),

per message m ∈ M ∪ {D}. Formally, Ab = (Locb, δb, �
0
b , �

acc
b ) where

Locb ={�0b , �
?
b, �

acc
b } ∪ {�m

b0 , �
m
b?

| m ∈ M ∪ {D}}
δb ={(�0b , ε, �

?
b), (�

?
b, ε, �

acc
b )} ∪ {(�0b , b!a(m), �m

b0), (�
m
b0 , b!c(m), �0b),

(�?b, b?a(m), �m
b?

), (�m
b?

, b?c(m), �?b) | m ∈ M ∪ {D}}
and symmetrically Ac = (Locc, δc, �

0
c , �

acc
c ) where

Locc ={�0c , �
?
c, �

acc
c } ∪ {�m

c0 , �
m
c?

| m ∈ M ∪ {D}}
δc ={(�0c , ε, �

?
c), (�

?
c, ε, �

acc
c )} ∪ {(�0c , c!b(m), �m

c0), (�
m
c0 , c!a(m), �0c),

(�?c, c?b(m), �m
c?

), (�m
c?

, c?a(m), �?c) | m ∈ M ∪ {D}}.



Weakly Synchronous Systems with Three Machines Are Turing Powerful 37

Fig. 5. The automaton Aa for the system S3, built from the automaton A of S1. Arcs
without actions represent ε transitions.

Process a mimics the behavior of A. Figure 5 shows an example of how Aa

is built, starting from A. At a high level, Aa is composed of two parts: the first
simulates A, and the second (after state �D

a ) receives all messages sent by b and
c. In the first part of Aa, each send action of A is replaced by a send action
addressed to process b, and each reception of A is replaced by a send action
to process c. We then use some dummy messages to ensure that our encoding
works properly. Roughly, we force Aa to send a dummy message to b after each
message sent to c, and we let Aa send any number of dummy messages to c right
before each message sent to b, or right before entering the”receiving phase” of Aa,
where messages from b and c are received. Similarly, after Aa sends a dummy
message to b, it is also allowed to send two other dummy messages (the first
one to c and the second one to b) an unbounded number of times. Formally,
Aa = (Loca, δa, �0, �acc

a ), where:

Loca =Loc ∪ {�t1 , �t2 | t = (�, ?m, �′) ∈ δ} ∪ {�D
a , �?a, �acc

a } ∪ {�m
a?

| m ∈ M ∪ {D}}
δa ={(�, a!b(m), �′), (�, a!b(D), �) | (�, !m, �′) ∈ δ}∪

{(�, a!c(m), �t1), (�t1 , a!b(D), �t2),
(�t2 , a!c(D), �t1), (�t2 , ε, �

′) | t = (�, ?m, �′) ∈ δ}∪
{(�, ε, �′) | (�, ε, �′) ∈ δ} ∪ {(�acc, ε, �D

a ), (�D
a , a!c(D), �D

a )}∪
{(�D

a , ε, �?a), (�?a, ε, �acc
a )}∪

{(�?a, a?c(m), �m
a?

), (�m
a?

, a?b(m), �?a) | m ∈ M ∪ {D}}

In Fig. 5, colors show the mapping of states from an instance of A to the cor-
responding automaton Aa. Figure 6 illustrates an accepting run of some system
S1 and one of the corresponding accepting runs of the associated S3.

Given a sequence of actions !m and ?m, where m can be any message, we
call it a FIFO sequence if (i) all messages are received in the order in which they
are sent, and (ii) no message is received before being sent.

We relax this definition to talk about sequences of send actions a!b(m) and
a!c(m) taken by a (in the first part of the automaton Aa); in particular, we say
that such a sequence γ′ is FIFO if, when interpreting each a!b(m) and a!c(m)
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Fig. 6. Above, a run with two messages for some system S1 with a single process
(timeline drawn horizontally). Below, one possible corresponding MSC realized by the
associated S3. Gray lines correspond to dummy messages. (Color figure online)

action as !m and ?m, respectively, γ′ is a FIFO sequence. Dummy messages are
used to enforce that the sequence of send actions taken by Aa in an accepting
run of S3 is FIFO.

Theorem 3. There is an accepting run of S1 if and only if there is an accepting
run of S3.

Sketch of proof. We only provide a sketch of the proof, which is quite convoluted
and requires several intermediate lemmata. The full proof is in [11].
(⇒) We design Algorithm 1, which takes an accepting run σ of S1, and returns
an accepting run μ for S3. At a high level, Algorithm 1 takes the sequence of
actions taken by A in σ, rewrites each !m and ?m action as a!b(m) and a!c(m),
and then adds some actions related to dummy messages. We first show that the
sequence of actions γ′ returned by Algorithm 1 is a sequence of send actions
that takes Aa of S3 from state �0 to �acc (note that this is not the final state of
Aa, see Fig. 5 for an example). We then show that γ′ is a FIFO sequence, and
prove that there exists an accepting run of S3 in which Aa starts by executing
exactly the sequence of actions in γ′. Finally, we show that Algorithm 1 always
terminates.
(⇐) Let μ be an accepting run of S3, from which we show that it is easy to
build a sequence of actions γ taken by A in an accepting run of S1. Let γ′ be the
sequence of send actions taken by Aa in the accepting run μ. The first step is to
show that γ′ is a FIFO sequence. The three automata Aa, Ab, and Ac are built
so to ensure that γ′ is always a FIFO sequence. This is closely related to the
shape of the MSCs associated to accepting runs of S3; these MSCs exploit the
same kind of pattern seen in Sect. 3 to bounce messages back and forth between
the three processes. We then prove that, if we ignore actions related to dummy
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Algorithm 1. Let σ be an accepting run of S1, and ασ be the sequence of n
actions taken by A in σ. We use ασ(i) to denote the i-th action of ασ.

1: γ′ ← empty list
2: Queue ← empty queue
3: for i from 1 to n do
4: action ← ασ(i)
5: if action =!x then
6: while first(Queue) = D do
7: add a!c(D) to γ′

8: dequeue D from Queue
9: end while

10: add a!b(x) to γ′

11: enqueue x in Queue
12: else if action =?x then
13: add a!c(x) to γ′

14: dequeue x from Queue
15: add a!b(D) to γ′

16: enqueue D in Queue

17: if Queue does not contain only
D then

18: while first(Queue) = D do
19: add a!c(D) to γ′

20: dequeue D from Queue
21: add a!b(D) to γ′

22: enqueue D in Queue
23: end while
24: end if
25: end if
26: end for
27: while first(Queue) = D do
28: add a!c(D) to γ′

29: dequeue D from Queue
30: end while
31: return γ′;

messages in γ′ and interpret each a!b(m) and a!c(m) action as !m and ?m, we
get a sequence of actions γ that takes A from its initial state �0 to its final state
�acc in an accepting run of S1.

The following result immediately follows from Lemma 1 and Theorem 3.

Theorem 4. The emptiness problem for weakly synchronous communicating
systems with three processes is undecidable.

Notice that our results extend to causally ordered (CO) communication, since
an MSC is weakly synchronous if and only if it is weakly synchronous CO.

Corollary 1. The emptiness problem for causal order communicating systems
with three processes is undecidable.

5 Conclusion

We showed the undecidability of the reachability of a configuration for weakly
synchronous systems with three processes or more. The main contribution lies in
the technique used to achieve this result. We first show that the treewidth of the
class of weakly synchronous MSCs is unbounded, by proving that it is always
possible to build such an MSC with an arbitrarily large grid as minor. Then, a
similar construction is employed to provide an encoding of a FIFO automaton
into a weakly synchronous system with three processes, allowing to show that
reachability of a configuration is undecidable.
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passing communication models. Proc. ACM Program. Lang. 7(POPL), 1601–1627
(2023). https://doi.org/10.1145/3571248
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Abstract. We study the Identity Problem, the problem of determining
if a finitely generated semigroup of matrices contains the identity matrix;
see Problem 3 (Chapter 10.3) in “Unsolved Problems in Mathematical
Systems and Control Theory” by Blondel and Megretski (2004). This
fundamental problem is known to be undecidable for Z4×4 and decidable
for Z

2×2. The Identity Problem has been recently shown to be in poly-
nomial time by Dong for the Heisenberg group over complex numbers in
any fixed dimension with the use of Lie algebra and the Baker-Campbell-
Hausdorff formula. We develop alternative proof techniques for the prob-
lem making a step forward towards more general problems such as the
Membership Problem. We extend our techniques to show that the fun-
damental problem of determining if a given set of Heisenberg matrices
generates a group, can also be decided in polynomial time.

1 Introduction

Matrices and matrix products can represent dynamics in many systems, from
computational applications in linear algebra and engineering to natural sci-
ence applications in quantum mechanics, population dynamics and statistics,
among others [4,5,10,11,15,19,24,28,29]. The analysis of various evolving sys-
tems requires solutions of reachability questions in linear systems, which form
the essential part of verification procedures, control theory questions, biological
systems predictability, security analysis etc.

Reachability problems for matrix products are challenging due to the com-
plexity of this mathematical object and a lack of effective algorithmic techniques.
The significant challenge in the analysis of matrix semigroups was initially illus-
trated by Markov (1947), [27] and later highlighted by Paterson (1970) [30],
Blondel and Megretski (2004) [5], and Harju (2009) [21]. The central reacha-
bility question is the Membership Problem: Decide whether or not a given
matrix M belongs to the matrix semigroup S generated by a set of square matri-
ces G. By restricting M to be the identity matrix, the problem is known as the
Identity Problem.
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Problem 1 (Identity Problem). Let S be a matrix semigroup generated by a
finite set of n×n matrices over K = Z,Q,A,Q(i), . . . Is the identity matrix I in
the semigroup, i.e., does I ∈ S hold?

The Membership Problem is known to be undecidable for integer matrices
from dimension three, but the decidability status of the Identity Problem was
unknown for a long time for matrix semigroups of any dimension, see Problem
10.3 in “Unsolved Problems in Mathematical Systems and Control Theory” [5].
The Identity Problem was shown to be undecidable for 48 matrices from Z

4×4

in [3] and for a generator of eight matrices in [23]. This implies that the Group
Problem (decide whether a finitely generated semigroup is a group) is also unde-
cidable. The Identity Problem and the Group Problem are open for Z

3×3.
The Identity Problem for a semigroup generated by 2×2 matrices was shown

to be EXPSPACE decidable in [9] and later improved by showing to be NP-
complete in [2]. The only decidability beyond integer 2×2 matrices were shown
in [14] for flat rational subsets of GL(2,Q).

Similarly to [8], the work [23] initiated consideration of matrix decision prob-
lems in the Special Linear Group SL(3,Z), by showing that there is no embed-
ding from pairs of words into matrices from SL(3,Z). Beyond the 2×2 case, the
Identity Problem was shown to be decidable for the discrete Heisenberg group
H(3,Z) which is a subgroup of SL(3,Z).

The Heisenberg group is widely used in mathematics and physics. This is in
some sense the simplest non-commutative group, and has close connections to
quantum mechanical systems [6,20,25], harmonic analysis, and number theory
[7,13]. It also makes appearances in complexity theory, e.g., the analysis and
geometry of the Heiseberg group have been used to disprove the Goemans-Linial
conjecture in complexity theory [26]. Matrices in physics and engineering are
ordinarily defined with values over R or C. In this context, we formulate our
decision problems and algorithmic solutions over the field of complex numbers
with a finite representation, Gaussian rationals Q(i).

The Identity Problem was recently shown to be decidable in polynomial time
for complex Heisenberg matrices in a paper by Dong [18]. They first prove the
result for upper-triangular matrices with rational entries and ones on the main
diagonal, UT(Q) and then use a known embedding of the Heisenberg group over
algebraic numbers into UT(Q). Their approach is different from our techniques;
the main difference being that [18] uses tools from Lie algebra, and in particular,
matrix logarithms and the Baker-Campbell-Hausdorff formula, to reason about
matrix products and their properties. In contrast, our approach first characterises
matrices which are ‘close to’ the identity matrix, which we denote Ω-matrices.
Such matrices are close to the identity matrix in that they differ only in a single
position in the top-right corner. We then argue about the commutator angle of
matrices within this set in order to determine whether zero can be reached, in
which case the identity matrix is reachable. We believe that these techniques
take a step towards proving the decidability of the more general membership
problem, which we discuss towards the end of the paper. A careful analysis then
follows to ensure that all steps require only Polynomial time, and we extend our



44 P. C. Bell et al.

techniques to show that determining if a given set of matrices forms a group (the
group problem) is also decidable in P (this result is shown in [16] using different
techniques). We thus present polynomial time algorithms for both these problems
for Heisenberg matrices over Q(i) in any dimension n.

These new techniques allow us to extend previous results for the discrete
Heisenberg group H(n,Z) and H(n,Q) [12,17,23,24] and make a step forward
towards proving the decidability of the membership problem for complex Heisen-
berg matrices.

2 Roadmap

We will give a brief overview of our approach here. Given a Heisenberg matrix

M =

⎛
⎝

1 mT
1 m3

0 In−2 m2

0 0T 1

⎞
⎠ ∈ H(n,Q(i)), denote by ψ(M) the triple (m1,m2,m3) ∈

Q(i)2n−3. We define the set Ω ⊆ H(n,Q(i)) as those matrices where m1 and m2

are zero vectors, i.e., matrices in Ω look like In except allowing any element of
Q(i) in the top right element. Such matrices play a crucial role in our analysis.

In particular, given a set of matrices G = {G1, . . . , Gt} ⊆ H(n,Q(i)) generat-
ing a semigroup 〈G〉, we can find a description of Ω〈G〉 = 〈G〉 ∩ Ω. Since I ∈ Ω,
the Identity Problem reduces to determining if I ∈ Ω〈G〉.

Several problems present themselves, particularly if we wish to solve the prob-
lem in Polynomial time (P). The set Ω〈G〉 is described by a linear set S ⊆ N

t,
which is the solution set of a homogeneous system of linear Diophantine equa-
tions induced by matrices in G. This is due to the observation that the ele-
ments (m1,m2) ∈ Q(i)2n−4 behave in an additive fashion under multiplication
of Heisenberg matrices. The main issue is that the size of the basis of S is expo-
nential in the description size of G. Nevertheless, we can determine if a solution
exists to such a system in P (Lemma 1), and this proves sufficient.

The second issue is that reasoning about the element m3 ∈ Q(i) (i.e., the top
right element) in a product of Heisenberg matrices is much more involved than
for elements (m1,m2) ∈ Q(i)2n−4. Techniques to determine if m3 = 0 for an
Ω-matrix within Ω〈G〉 take up the bulk of this paper.

The key to our approach is to consider commutators of pairs of matrices
within G, which in our case can be described by a single complex number. That
is, for M1,M2 ∈ G, the commutator is [M1,M2] ∈ Q(i). After removing all
redundant matrices (those never reaching an Ω-matrix), we have two cases to
consider. Either every pair of matrices from G has the same angle in the polar
form of the commutator or else there are at least two commutators with different
angles.

The latter case is used in Lemma 5. It states that the identity matrix can
always be constructed using a solution that contains four particular matrices.
Let M1, M2, M3 and M4 be such that [M1,M2] = r exp(iγ) and [M3,M4] =
r′ exp(iγ′), where γ �= γ′ so that pairs M1,M2 and M3,M4 have different com-
mutator angles. We may then define four matrix products using the same gener-
ators but matrices M1, M2, M3 and M4 are in a different order. This difference
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in order and the commutator angles being different, ensures that we can control
the top right corner elements in order to construct the identity matrix. Lemma 3
provides details on how to calculate the top right element in these products. We
then prove that these top right elements in the four matrices are not contained
in an open half-plane and this is sufficient for us to construct the identity matrix.

The above construction does not work when all commutators have the same
angle, and indeed in this case the identity may or may not be present. Hence,
we need to consider various possible shuffles of matrices in these products. To
this end, we extend the result of Lemma 3 to derive a formula for the top right
element for any shuffle and prove it as Lemma 4. We observe that there is a
shuffle invariant part of the product that does not depend on the shuffle, and
that shuffles add or subtract commutators. Furthermore, this shuffle invariant
component can be calculated from the generators used in the product. As we
assume that all commutators have the same angle, γ, different shuffles move the
value along the line in the complex plane defined by the common commutator
angle which we call the γ-line.

It is straightforward to see that if it is not possible to reach the γ-line using the
additive semigroup of shuffle invariants, then the identity cannot be generated.
Indeed, since different shuffles move the value along the γ-line but the shuffle
invariant part never reaches it, then the possible values are never on the γ-line,
which includes the origin.

We show that if it is possible to reach the γ-line using shuffle invariants and
there are at least two non-commuting matrices in the used solution, then the
identity matrix is in the semigroup (Lemma 6). Testing this property requires
determining the solvability of a polynomially-sized set of non-homogeneous sys-
tems of linear Diophantine equations, which can be done in polynomial time by
Lemma 1.

If the γ-line can be reached only using commuting matrices, we can construct
another system of linear Diophantine equations since the top right element has
an explicit formula in terms of generators used (see Lemma 6).

3 Preliminaries

The sets of rational numbers, real numbers and complex numbers are denoted by
Q, R and C. The set of rational complex numbers is denoted by Q(i) = {a + bi |
a, b ∈ Q}. The set Q(i) is often called the Gaussian rationals in the literature. A
complex number can be written in polar form a + bi = r exp(iϕ), where r ∈ R

and ϕ ∈ [0, π). We denote the angle of the polar form ϕ by arg(a + bi). We
also denote Re(a + bi) = a and Im(a + bi) = b. It is worth highlighting that
commonly the polar form is defined for a positive real r and an angle between
[0, 2π). These two definitions are obviously equivalent.

The identity matrix is denoted by In or, if the dimension n is clear from
the context, by I. The Heisenberg group H(n,K) is formed by n × n matrices

of the form M =

⎛
⎝

1 mT
1 m3

0 In−2 m2

0 0T 1

⎞
⎠, where m1,m2 ∈ K

n−2, m3 ∈ K and 0 =



46 P. C. Bell et al.

(0, 0, . . . , 0)T ∈ K
n−2 is the zero vector. It is easy to see that the Heisenberg

group is a non-commutative subgroup of SL(n,K) = {M ∈ K
n×n | det(M) = 1}.

We will be interested in subsemigroups of H(n,Q(i)) which are finitely gen-
erated. Given a set of matrices G = {G1, . . . , Gt} ⊆ H(n,Q(i)), we denote the
matrix semigroup generated by G as 〈G〉.

Let M =

⎛
⎝

1 mT
1 m3

0 In−2 m2

0 0T 1

⎞
⎠, then (M)1,n = m3 is the top right element. To

improve readability, by ψ(M) we denote the triple (m1,m2,m3) ∈ Q(i)2n−3.
The vectors m1,m2 play a crucial role in our considerations. We define

the set Ω ⊆ H(n,Q(i)) as those matrices where m1 and m2 are zero vec-
tors, i.e., matrices in Ω look like In except allowing any element of Q(i) in

the top right element. That is, Ω =

⎧⎨
⎩

⎛
⎝

1 0T m3

0 In−2 0
0 0T 1

⎞
⎠ | m3 ∈ Q(i)

⎫⎬
⎭, where

0 = (0, 0, . . . , 0)T ∈ Q(i)n−2 is the zero vector.
Let us define a shuffling of a product of matrices. Let M1, . . . ,Mk ∈

G. The set of permutations of a product of these matrices is denoted by
shuffle(M1, . . . ,Mk) = {Mσ(1) · · · Mσ(k) | σ ∈ Sk}, where Sk is the set of
permutations on k elements. If some matrix appears multiple times in the
list, say M1 appears x times, we write shuffle(Mx

1 ,M2, . . . ,Mk) instead of
shuffle(M1, . . . ,M1︸ ︷︷ ︸

x times

,M2, . . . ,Mk).

Let M1 =

⎛
⎝

1 aT
1 c1

0 In−2 b1

0 0T 1

⎞
⎠ and M2 =

⎛
⎝

1 aT
2 c2

0 In−2 b2

0 0T 1

⎞
⎠. By an abuse of notation,

we define the commutator [M1,M2] of M1 and M2 by [M1,M2] = aT
1 b2−aT

2 b1 ∈
Q(i). Note that the commutator of two arbitrary matrices A,B is ordinarily
defined as [A,B] = AB − BA, i.e., a matrix. However, for matrices M1,M2 ∈

H(n,Q(i)), it is clear that M1M2 − M2M1 =

⎛
⎝

0 0T aT
1 b2 − aT

2 b1

0 O 0
0 0T 0

⎞
⎠, where O

is the (n − 2) × (n − 2) zero matrix, thus justifying our notation which will
be used extensively. Observe that the matrices M1,M2 commute if and only if
[M1,M2] = 0.

Note that the commutator is antisymmetric, i.e., [M1,M2] = −[M2,M1].
We further say that γ is the angle of the commutator if [M1,M2] = r exp(iγ)
for some r ∈ R and γ ∈ [0, π). If two commutators [M1,M2], [M3,M4] have
the same angles, that is, [M1,M2] = r exp(iγ) and [M3,M4] = r′ exp(iγ) for
some r, r′ ∈ R, then we denote this property by [M1,M2]

γ
= [M3,M4]. If they

have different angles, then we write [M1,M2] � γ= [M3,M4]. By convention, if
[M1,M2] = 0, then [M1,M2]

γ
= [M3,M4] for every M3,M4 ∈ H(n,Q(i)).

To show that our algorithms run in polynomial time, we will need the fol-
lowing lemma.
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Lemma 1. (i) Let A ∈ Q
n×m be a rational matrix, and b ∈ Q

n be an n-
dimensional rational vector with non-negative coefficients. Then we can
decide in polynomial time whether the system of inequalities Ax ≥ b has
an integer solution x ∈ Z

m.
(ii) Let A1 ∈ Q

n1×m and A2 ∈ Q
n2×m be a rational matrices. Then we can

decide in polynomial time whether the system of inequalities A1x ≥ 0n1 and
A2x > 0n2 has an integer solution x ∈ Z

m.

4 Properties of Ω-Matrices

To solve the Identity Problem for subsemigroups of H(n,Q(i)) (Problem 1), we
will be analysing matrices in Ω (matrices with all zero elements, except possibly
the top-right corner value). Let us first discuss how to construct Ω-matrices from
a given set of generators G ⊆ H(n,Q(i)).

As observed earlier, when multiplying Heisenberg matrices of the form⎛
⎝

1 mT
1 m3

0 In−2 m2

0 0T 1

⎞
⎠, elements m1 and m2 are additive. We can thus construct a

homogeneous system of linear Diophantine equations (SLDEs) induced by matri-
ces in G. Each Ω-matrix then corresponds to a solution to this system.

Let G = {G1, . . . , Gt}, where ψ(Gi) = (ai, bi, ci). For a vector a ∈ Q(i)n−2,
define Re(a) = (Re(a(1)), . . . ,Re(a(n − 2))) (similarly for Im(a)). We consider
system Ax = 0, where

A =

⎛
⎜⎜⎝

Re(a1) Re(a2) · · · Re(at)
Im(a1) Im(a2) · · · Im(at)
Re(b1) Re(b2) · · · Re(bt)
Im(b1) Im(b2) · · · Im(bt)

⎞
⎟⎟⎠ , (1)

x ∈ N
t and 0 is the 4(n−2)-dimensional zero vector; noting that A ∈ Q

4(n−2)×t.
Let S = {s1, . . . , sp} be the set of minimal solutions to the system. Recall that
elements of S are irreducible. That is, a minimal solution cannot be written as a
sum of two nonzero solutions. The set S is always finite and constructable [31].

A matrix Mi ∈ G is redundant if the ith component is 0 in every minimal
solution s ∈ S. Non-redundant matrices can be recognized by checking whether
a non-homogeneous SLDE has a solution. More precisely, to check whether Mi

is non-redundant, we consider the system Ax = 0 together with the constraint
that x(i) ≥ 1, where x(i) is the ith component of x. Using Lemma 1, we can
determine in polynomial time whether such a system has an integer solution.

For the remainder of the paper, we assume that G is the set of non-redundant
matrices. This implicitly assumes that for this G, the set S �= ∅. Indeed, if there
are no solutions to the corresponding SLDEs, then all matrices are redundant.
Hence G = ∅ and I �∈ 〈G〉 holds trivially.

Let M1, . . . ,Mk ∈ G be such that X = M1 · · · Mk ∈ Ω. The Parikh vector
of occurrences of each matrix from G in product X may be written as x =
(m1, . . . ,mt) ∈ N

t. This Parikh vector x is a linear combination of elements of
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S, i.e., x =
∑p

j=1 yjsj , with yj ∈ N, because x is a solution to the SLDEs. Each
element of shuffle(M1, . . . ,Mk) has the same Parikh vector, but their product is
not necessarily the same matrix; potentially differing in the top right element.

Let us state some properties of Ω-matrices.

Lemma 2. The Ω-matrices are closed under matrix product; the top right ele-
ment is additive under the product of two matrices; and Ω-matrices commute
with Heisenberg matrices. In other words, let A,B ∈ Ω and M ∈ H(n,Q(i)),
then

(i) AB ∈ Ω; (ii) (AB)1,n = A1,n + B1,n; (iii) AM = MA.

Furthermore, if N = M1M2 · · · Mk−1Mk ∈ Ω for some M1, . . . ,Mk ∈ H(n,Q(i)),
then every cyclic permutation of matrices results in the same matrix, N . That
is, N = M2M3 · · · MkM1 = · · · = MkM1 · · · Mk−2Mk−1.

We require the following technical lemma that allows us to calculate the
value in top right corner for particular products. The claim is proven by a direct
computation.

Lemma 3. Let M1,M2, . . . ,Mk ∈ H(n,Q(i)) such that M1M2 · · · Mk ∈ Ω and
let � ≥ 1. Then,

(M �
1M

�
2 · · · M �

k)1,n = �

k∑
i=1

(
ci − 1

2
aT

i bi

)
+

�2

2

∑
1≤i<j≤k−1

[Mi,Mj ],

where ψ(Mi) = (ai, bi, ci) for each i = 1, . . . , k.

If we further assume that the matrices from the previous lemma commute,
then for every M ∈ shuffle(M �

1 ,M
�
2 , . . . ,M

�
k):

M1,n = �

k∑
i=1

(
ci − 1

2
aT

i bi

)
+

�2

2

∑
1≤i<j≤k−1

[Mi,Mj ] = �

k∑
i=1

(
ci − 1

2
aT

i bi

)
, (2)

noting that [Mi,Mj ] = 0 when matrices Mi and Mj commute.
In Lemma 3, the matrix product has an ordering which yielded a simple

presentation of the value in the top right corner. In the next lemma, we consider
an arbitrary shuffle of the product and show that the commutators are important
when expressing the top right corner element.

Lemma 4. Let M1,M2, . . . ,Mk ∈ H(n,Q(i)) such that M1M2 · · · Mk ∈ Ω and
let � ≥ 1. Let M be a shuffle of the product M �

1M
�
2 · · · M �

k by a permutation σ
that acts on k� elements. Then

(M)1,n = �

k∑
i=1

(
ci − 1

2
aT

i bi

)
+

�2

2

∑
1≤i<j≤k−1

[Mi,Mj ] −
∑

1≤i<j≤k

zji[Mi,Mj ],

where ψ(Mi) = (ai, bi, ci) for i = 1, . . . , k, and zji is the number of times Mj

appears before Mi in the product; so zji is the number of inversions of i, j in σ.
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The crucial observation is that regardless of the shuffle, the top right cor-
ner element has a common term, namely

∑k
i=1(ci − 1

2aT
i bi), plus some linear

combination of commutators. We call the common term the shuffle invariant.
Note that the previous lemmas apply to any Heisenberg matrices, even those in
H(n,C). For the remainder of the section, we restrict considerations to matrices
in G.

Definition 1 (Shuffle Invariant). Let M1, . . . ,Mk ∈ G be such that X =
M1 · · · Mk ∈ Ω. The Parikh vector of occurrences of each matrix from G in
product X may be written as x = (m1, . . . ,mt) ∈ N

t where t = |G| as before.
Define Λx =

∑t
i=1 mi(ci − 1

2aT
i bi) as the shuffle invariant of Parikh vector x.

Note that the shuffle invariant is dependant only on the generators used in
the product and the Parikh vector x.

Let S = {s1, . . . , sp} ⊆ N
k be the set of minimal solutions to the system

of linear Diophantine equations for G giving an Ω-matrix, as described in the
beginning of the section. Each sj thus induces a shuffle invariant that we denote
Λsj

∈ Q(i) as shown in Definition 1. The Parikh vector of any X = M1M2 · · · Mk

with X ∈ Ω, denoted x, is a linear combination of elements of S, i.e., x =∑p
j=1 yjsj . We then note that the shuffle invariant Λx of x is Λx =

∑p
j=1 yjΛsj

,
i.e., a linear combination of shuffle invariants of S.

Finally, it follows from Lemma 4 that for any X ∈ shuffle(M1,M2, . . . ,Mk),
where as before M1M2 · · · Mk ∈ Ω and whose Parikh vector is x =

∑p
j=1 yjsj ,

the top right entry of X is equal to

X1,n = Λx +
∑

1≤i<j≤k

αij [Mi,Mj ] =
p∑

j=1

yjΛsj
+

∑
1≤i<j≤k

αij [Mi,Mj ], (3)

where each αij ∈ Q depends on the shuffle.
Furthermore, if a product of Heisenberg matrices is an Ω-matrix and all

matrix pairs share a common angle γ for their commutators, then shuffling the
matrix product only modifies the top right element of the matrix by a real
multiple of exp(iγ). This drastically simplifies our later analysis.

5 The Identity Problem for Subsemigroups of H(n,Q(i))

In this section, we prove our main result.

Theorem 1. Let G ⊆ H(n,Q(i)) be a finite set of matrices. Then it is decidable
in polynomial time if I ∈ 〈G〉.

The proof relies on analysing generators used in a product that results in
an Ω-matrix. There are two distinct cases to consider: either there is a pair of
commutators with distinct angles, or else all commutators have the same angle.
The former case is considered in Lemma 5 and the latter in Lemma 6. More
precisely, we will prove that in the former case, the identity matrix is always in
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the generated semigroup and that the latter case reduces to deciding whether
shuffle invariants reach the line defined by the angle of the commutator.

The two cases are illustrated in Fig. 1. On the left, is a depiction of the case
where there are at least two commutators with different angles, γ1 and γ2. We will
construct a sequence of products where the top right element tends to r1 exp(iγ1)
with positive r1 and another product that tends to r2 exp(iγ1) with negative
r2. This is achieved by changing the order of matrices whose commutator has
angle γ1. Similarly, we construct two sequences of products where the top right
elements tend to r3 exp(iγ2) and r4 exp(iγ2), where r3 and r4 have the opposite
signs. Together these sequences ensure, that eventually, the top right elements
do not lie in the same open half-planes. On the right, is a depiction of the other
case, where all commutators lie on γ-line. In this case, the shuffle invariants of
products need to be used to reach the line.

Im

Re

γγ + Λ1γ + 2Λ1

Λ1

Λ2Λ1 + Λ2

r1

r2

r3

H1 H2

Im

Re

γ1

γ2

r1,1

r1,2

r1,3

r2,1

r2,2r2,3

r3,1

r3,2

r3,3

Fig. 1. Illustrations of Lemma 5 and Lemma 6. Left shows two lines defined by two
different commutators and how the values r1,� and r2,� tend to γ1-line in opposite
directions, while r3,� tends to γ2-line (r4,� is omitted for clarity). Eventually, they are
not all within the same closed half-plane. Right shows that if there is only one shuffle
invariant, say Λ1, then all reachable values are on lines parallel to the γ-line, namely,
γ + kΛ1 for k > 0. But if there exists Λ2 in the opposite half-plane, then the γ-line
itself is reachable.

Lemma 5. Let G = {G1, . . . , Gt} ⊆ H(n,Q(i)), where each Gi is non-
redundant. Suppose there exist M1,M2,M3,M4 ∈ G such that [M1,M2] � γ=
[M3,M4]. Then I ∈ 〈G〉.

It remains to consider the case when the angles of commutators coincide for
each pair of non-redundant matrices. Our aim is to prove that, under this con-
dition, it is decidable whether the identity matrix is in the generated semigroup.

Lemma 6. Let G = {G1, . . . , Gt} ⊆ H(n,Q(i)) be a set of non-redundant matri-
ces such that the angle of commutator [Gi, Gi′ ] is γ for all 1 ≤ i, i′ ≤ t, then we
can determine in polynomial time if I ∈ 〈G〉.
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Proof. Let {s1, . . . , sp} ⊆ N
t be the set of minimal solutions to the SLDEs for G

giving zeros in a and b elements. Each sj induces a shuffle invariant Λsj
∈ Q(i)

as explained in Definition 1.
Consider a product X = M1 · · · Mk ∈ Ω, where each Mi ∈ G. Let x =

(m1,m2, . . . ,mt) ∈ N
t be the Parikh vector of the number of occurrences of

each matrix from G in product X. Since X ∈ Ω, we have x =
∑p

j=1 yjsj , where
each yj ∈ N. Notice that X ∈ shuffle(Gm1

1 , . . . , Gmt
t ). Hence, by Eq. (3), we have

X1,n = Λx +
∑

1≤i<j≤k

αij [Mi,Mj ] =
p∑

j=1

yjΛsj
+ r exp(iγ), (4)

where αij ∈ Q and r ∈ R depend on the shuffle. In other words, any shuffle of
the product X will change the top right entry X1,n by a real multiple of exp(iγ).

Let H1,H2 be the two open half-planes of the complex plane induced by
exp(iγ), that is, the union H1 ∪ H2 is the complement of the γ-line; thus 0 �∈
H1 ∪ H2. We now prove that if {Λs1 , . . . , Λsp

} ⊆ H1 or {Λs1 , . . . , Λsp
} ⊆ H2

then we cannot reach the identity matrix.
Assume that {Λs1 , . . . , Λsp

} ⊆ H1, renaming H1,H2 if necessary. Assume
that there exists some product X = X1X2 · · · Xk equal to the identity matrix,
where k > 0 and Xj ∈ G. Then since X ∈ Ω, we see from Eq. (4) that X1,n =∑p

j=1 yjΛsj
+ r exp(iγ), where r ∈ R.

Clearly,
∑p

j=1 yjΛsj
∈ H1, and since yj �= 0 for at least one i, we have∑p

j=1 yjΛsj
�= 0. Now, since r exp(iγ) is on the γ-line, which is the boundary of

H1, the value X1,n belongs to H1 and cannot equal zero. This contradicts the
assumption that X is the identity matrix.

If {Λs1 , . . . , Λsp
} is not fully contained in either H1 or H2, then there are

two possibilities. Either there exists some Λsj
∈ Q(i) such that the angle of Λsj

is equal to γ (in which case such a Λsj
lies on the line defined by exp(iγ)), or

else there exist Λsi
, Λsj

such that 1 ≤ i < j ≤ p and Λsi
and Λsj

lie in different
open half-planes, say Λsi

∈ H1 and Λsj
∈ H2.

In the latter case, note that there exists x, y ∈ N such that xΛsi
+ yΛsj

=
r exp(iγ) for some r ∈ R since Λsi

, Λsj
and the commutators that define the γ-

line have rational components. It means that in both cases there exist z1, . . . , zp ∈
N such that

∑p
j=1 zjΛsj

= r exp(iγ) for some r ∈ R.
Consider a product T = T1 · · · Tk ∈ Ω, where each Tj ∈ G and whose Parikh

vector is equal to
∑p

j=1 zjsj , where z1, . . . , zp ∈ N are as above. It follows from
Eq. (4) that T1,n =

∑p
j=1 zjΛsj

+ r′ exp(iγ) = r exp(iγ) + r′ exp(iγ), where
r, r′ ∈ R and shuffles of such a product change only r′.

We have two possibilities. Either T = T1 · · · Tk is a product only consisting of
commuting matrices from G, or else two of the matrices in the product of T do
not commute. In the latter case, let us write T ′ = N1N2X

′ ∈ shuffle(T1, . . . , Tk),
where N1 ∈ G and N2 ∈ G do not commute and X ′ is the product of the
remaining matrices in any order. We observe that Lemma 3 implies
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(N �1
1 N �1

2 X ′�1)1,n = �1r exp(iγ) +
�21
2

[N1, N2] = �1r exp(iγ) +
�21
2

r′ exp(iγ) and

(N �2
2 N �2

1 X ′�2)1,n = �2r exp(iγ) +
�22
2

[N2, N1] = �2r exp(iγ) − �22
2

r′ exp(iγ),

for
some 0 �= r′ ∈ R. We then notice that

(
(N �1

1 N �1
2 X ′�1)d1(N �2

2 N �2
1 X ′�2)d2

)
1,n

=

d1

(
�1r exp(iγ) + �21

2 r′ exp(iγ)
)

+ d2

(
�2r exp(iγ) − �22

2 r′ exp(iγ)
)
. Now,

d1

(
�1r exp(iγ) +

�21
2

r′ exp(iγ)
)

+ d2

(
�2r exp(iγ) − �22

2
r′ exp(iγ)

)
= 0

⇐⇒ d1(2�1r + �21r
′) + d2(2�2r − �22r

′) = 0

⇐⇒ d1(2
r

r′ �1 + �21) + d2(2
r

r′ �2 − �22) = 0.

By our assumption, the vectors r exp(iγ) and r′ exp(iγ) have rational coordinates
and the same angle γ. It follows that r

r′ ∈ Q. Hence we may choose sufficiently
large �1, �2 > 1 such that 2 r

r′ �1 + �21 and 2 r
r′ �2 − �22 have different signs, and then

integers d1, d2 > 1 can be chosen that satisfy the above equation. This choice of
�1, �2, d1, d2 is then such that (N �1

1 N �1
2 X ′�1)d1(N �2

2 N �2
1 X ′�2)d2 = I as required.

Thus if such non-commuting matrices are present, we can reach the identity.
Otherwise, our final case is that only commuting matrices can be used to

reach the γ-line. In this case we can compute in polynomial time a subset C ⊆ G
of these matrices. Then we can check if the identity matrix is in 〈C〉 in polynomial
time as follows.

Since C consists only of commuting matrices, by Eq. (2), the top corner
value M1,n of any M ∈ 〈C〉 ∩ Ω can be expressed as a linear combination of
ci − 1

2aT
i bi, where Gi ∈ C. We now construct a new homogeneous system of

linear Diophantine equations. Let C = {G1, . . . , Gt′}, and let A ∈ Q
4(n−2)×t′

be defined as in Eq. (1) using only matrices present in C. Also, let A2 = (c1 −
1
2aT

1 b1, . . . , ct′ − 1
2aT

t′bt′). Now construct a system
(

A
A2

)
x = 0, where x ∈ N

t′

and 0 is the (4(n − 2) + 1)-dimensional zero vector. Note that if this system has
a solution x, then G

x(1)
1 G

x(2)
2 · · · Gx(t′)

t′ = I. By Lemma 1 (see also [22]), we can
decide if such a system has a non-zero solution in polynomial time.1

The proof is concluded by showing that the whole procedure is in P. Namely,
we first decide if there is a pair Gi, Gj of non-commuting matrices such that
the γ-line can be reached using Gi and Gj , in which case I ∈ 〈G〉 by the
above argument. This requires constructing a polynomially sized set of non-
homogeneous systems of linear Diophantine equations and deciding whether they
have solutions. This can be done in polynomial time.

1 Note by a result of [1], the Membership Problem is decidable in polynomial time for
commuting matrices. However, the authors prefer to have a self-contained proof.
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If the γ-line can be reached only using commuting matrices, then we can com-
pute the set C ⊆ G of these matrices and check whether I ∈ 〈C〉 in polynomial
time. ��

Lemmata 5 and 6 allow us to prove the main result, Theorem 1.
The decidability of the Identity Problem implies that the Subgroup Problem

is also decidable. That is, whether the semigroup generated by the generators G
contains a non-trivial subgroup. However, the decidability of the Group Problem,
i.e., whether 〈G〉 is a group, does not immediately follow. Our result can be
extended to show decidability of the Group Problem.

Corollary 1. It is decidable in polynomial time whether a finite set of matrices
G ⊆ H(n,Q(i)) forms a group.

Proof. We give a brief overview of the proof. For 〈G〉 to be a group, each element
of G must have a multiplicative inverse in 〈G〉. If I ∈ 〈G〉, then each element
used in a factorization of I has such an inverse. E.g., if M1 · · · Mk = I, then
M−1

1 = M2 · · · Mk etc. The difficulty is that perhaps I ∈ 〈G〉, but this does not
imply that every matrix in G has a multiplicative inverse (since not every matrix
may be used within a product equal to I).

We therefore proceed by first ensuring there are no redundant matrices (car-
ried out in P) since a redundant matrix cannot even be used to reach an Ω-
matrix. Assuming all matrices are non-redundant, we then adapt the proofs of
Lemmata 5 and 6 to ensure that not only can we reach the identity matrix, but
we can do so with a product that uses every matrix from G. Both lemmata use
Ω-matrices as part of their proofs, and we know there is a product containing
all matrices giving an Ω-matrix since all matrices are non-redundant. Lemma 5
can then be adapted to say that if two pairs have different commutator angles,
then we can reach the identity matrix using all matrices within the product. If
all commutator angles of pairs of matrices in G are identical, then we can adapt
the non-homogeneous system of linear Diophantine equations from the proof of
Lemma 6 to enforce that all matrices are used at least once. This gives us a
polynomial time algorithm for deciding whether 〈G〉 is a group. ��

6 Future Research

We believe that the techniques, and the general approach, presented in the pre-
vious chapters can act as stepping stones for related problems. In particular,
consider the Membership Problem, i.e., where the target matrix can be any

matrix rather than the identity matrix. Let M =

⎛
⎝

1 mT
1 m3

0 In−2 m2

0 0T 1

⎞
⎠ be the target

matrix and let G = {G1, . . . , Gt}, where ψ(Gi) = (ai, bi, ci). Following the idea
of Sect. 4, we can consider system Ax = (m1,m2), where x ∈ N

t. This system is
a non-homogeneous system of linear Diophantine equations that can be solved
in NP. The solution set is a union of two finite solution sets, S0 and S1. The
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set S0 being the solutions to the corresponding homogeneous system that can
be repeated any number of times as they add up to 0 on the right-hand side.
The other set, S1, corresponds to reaching the vector (m1,m2). The matrices
corresponding to the solutions in S1 have to be used exactly this number of
times.

The techniques developed in Sect. 4 allow us to manipulate matrices corre-
sponding to solutions in S0 in order to obtain the desired value in the top right
corner. However, this is not enough as the main technique relies on repeated
use of Ω-matrices. These can be interspersed with matrices corresponding to a
solution in S1 affecting the top right corner in uncontrollable ways.
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Birkhäuser (1993)

7. Bump, D., Diaconis, P., Hicks, A., Miclo, L., Widom, H.: An exercise(?) in Fourier
analysis on the Heisenberg group. Ann. Fac. Sci. Toulouse Math. (6) 26(2), 263–288
(2017). https://doi.org/10.5802/afst.1533
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Abstract. In this work, we study the reachability analysis method of a
class of hybrid systems called HGRN which is a special case of hybrid
automata. The reachability problem concerned in this work is, given a
singular state and a region (a set of states), to determine whether the
trajectory from this singular state can reach this region. This problem
is undecidable for general hybrid automata, and is decidable only for a
restricted class of hybrid automata, but this restricted class does not
include HGRNs. A priori, reachability in HGRNs is not decidable; how-
ever, we show in this paper that it is decidable in certain cases, more
precisely if there is no chaos. Based on this fact, the main idea of this
work is that if the decidable cases can be determined automatically, then
the reachability problem can be solved partially. The two major contri-
butions are the following: firstly, we classify trajectories into different
classes and provide theoretical results about decidability; then based on
these theoretical results, we propose a reachability analysis algorithm
which always stops in finite time and answers the reachability problem
partially (meaning that it can stop with the inconclusive result, for exam-
ple with the presence of chaos).

Keywords: Reachability · Hybrid system · Decidability · Gene
regulatory networks · Limit cycle

1 Introduction

Reachability problem of dynamical system has been investigated on different
formalisms, majorly on discrete systems [6,14,23] and hybrid systems [2,3,8,
15,19,25]. In this work, we study a reachability analysis method on a class of
hybrid system called hybrid gene regulatory network (HGRN) [4,7], which is an
extension of Thomas’ discrete modeling framework [27,28]. This hybrid system
is proposed to model gene regulatory networks, which are networks of genes
describing the regulation relations between genes.

Supported by China Scholarship Council.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Bournez et al. (Eds.): RP 2023, LNCS 14235, pp. 56–69, 2023.
https://doi.org/10.1007/978-3-031-45286-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45286-4_5&domain=pdf
http://orcid.org/0000-0002-8265-0984
http://orcid.org/0000-0002-3727-2320
http://orcid.org/0000-0001-5443-0506
https://doi.org/10.1007/978-3-031-45286-4_5


Reachability Analysis of a Class of Hybrid Gene Regulatory Networks 57

HGRNs are similar to piecewise-constant derivative systems (PCD systems)
[2] which is a special case of hybrid automata [1]. The major difference between
HGRNs and PCD systems of the works [2,3,25] is the existence of sliding mode,
which means that when a trajectory reaches a black wall (a boundary of the
discrete state which can be reached but cannot be crossed by trajectories), it
is forced to move along the black wall. There exist other methods to define
behaviors of trajectories on a black wall [17,24] which are different from the
sliding mode in HGRNs.

The reachability problem concerned in this work is to determine whether
the trajectory from certain state can reach a certain region (a set of states).
We mainly focus on the decidability problem, that is, whether we can find an
algorithm to determine the reachability problem such that this algorithm always
stops in finite time and gives a correct answer.

The decidability problem among hybrid systems that are close to HGRNs
is already studied in the literature. It has been proved that, for PCD systems,
it is decidable in 2 dimensions [21] but it is undecidable in 3 dimensions [2].
For general hybrid automata, there exists a restricted class called initialized
rectangular automata which is decidable in any dimension [19], but this class
does not include HGRNs.

Up to now, there is no theoretical results of the decidability of this problem
on HGRNs. A priori, we can expect that it is not decidable because of the
existence of chaos. However, if we can show that it is decidable in certain cases,
for example, when the trajectory considered in a reachability problem converges
asymptotically to a n-dimensional limit cycle, and if these cases can be identified
automatically, then the reachability problem can be answered partially, which is
the main idea of this work. In order to prove the existence of chaos in HGRNs,
we exhibit a HGRN with a chaotic attractor based on a different pre-existing
hybrid system [18]. This work has the following contributions:

– We classify trajectories of HGRNs into three classes: trajectories halting in
finite time, trajectories attracted by regularly oscillating cycles and chaotic
trajectories. For the first two classes, we prove that the reachability problem is
decidable and we provide methods to determine automatically their classes.
For the third class, a priori, it is undecidable, and we provide a necessary
condition for that a trajectory is chaotic.

– Based on the above theoretical results, we propose a reachability analysis
algorithm for HGRNs which always stops in finite time and once it stops, it
returns whether the set of target states is reached, not reached or if the result
is unknown. The unknown result is related to the existence of chaos. To our
knowledge, this is the first reachability analysis algorithm for HGRNs and it
can be applied to HGRNs in any dimension.

This paper is organized as follows. In Sect. 2, we introduce basic notions
of HGRNs. In Sect. 3, we present our reachability analysis method, including
theoretical results and the reachability analysis algorithm. And finally in Sect. 4,
we make a conclusion by discussing the merits and limits of this method and our
future work.
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2 Preliminary Definitions

In this section, we present HGRNs and its basic notions. Consider a gene regu-
latory network with N genes; the set of genes is denoted G = {G1, G2, ..., GN}.
A discrete state is an integer vector of length N , noted by ds, which assigns the
discrete level di

s to gene Gi, where i ∈ {1, 2, 3, ..., N} and di
s is the ith component

of ds. The set of all discrete states is denoted by Ed.
A hybrid gene regulatory network (HGRN) is noted H = (Ed, c). c is a func-

tion from Ed to R
N . For each ds ∈ Ed, c(s), also noted cs, is called the celerity

of discrete state ds and describes the temporal derivative of the system in ds. A
2-dimensional HGRN is shown in Fig. 1. In this system, each of these two genes
(A = G1, B = G2) has two discrete levels: 0 and 1, so there are 4 discrete states:
00, 01, 10, 11. Black arrows represent the celerities (temporal derivatives) of each
discrete state.

In HGRNs, a state is also called a hybrid state, which is a couple h = (π, ds)
containing a fractional part π, which is a real vector [0, 1]N , and a discrete state
ds. The set of all hybrid states is denoted by Eh.

A (hybrid) trajectory τ of HGRN is a function from a time interval [0, t0]
to Eτ = Eh ∪ Esh, where t0 ∈ R

+ ∪ {∞}, and Esh is the set of all finite or
infinite sequences of states: Esh =

{
(h0, h1, ..., hm) ∈ (Eh)m+1 | m ∈ N ∪ {∞}

}
.

A trajectory τ is called a closed trajectory if it is defined on [0,∞[ and ∃T >
0,∀t ∈ [0,∞[, τ(t) = τ(t+T ). In Fig. 1, red arrows represent a possible trajectory
of this system, which happens, in this particular case, to be a closed trajectory.

A boundary in a discrete state ds is a set of states defined by e(Gi, π0, ds) ={
(π, ds) ∈ Eh | πi = π0,

}
, where i ∈ {1, 2, ..., N} , ds ∈ Ed and π0 ∈ {0, 1}. In

the rest of this paper, we simply use e to represent a boundary.
In Fig. 1, the state hM = ((π1

M , 1), (1, 1)) of point M belongs to e1 =
(B, 1, (1, 1)), that is, the upper boundary in the second dimension (the dimension
of gene B) of the discrete state 11. Since there is no other discrete state on the

A B CA CB

0 0 0.6 −0.7
0 1 −0.7 −0.9
1 0 0.7 0.8
1 1 −0.6 0.9

Fig. 1. Example of a HGRN in 2 dimensions. Left: Influence graph (negative feedback
loop with 2 genes). Middle: Example of corresponding parameters (celerities). Right:
Corresponding example of dynamics; abscissa represents gene A and ordinate represents
gene B.
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other side of e1, the trajectory from hM cannot cross e1 and has to slide along e1
(e1 can be called a black wall). The existence of such sliding mode is a speciality
of HGRNs. Boundaries like e1, which can be reached by trajectories but cannot
be crossed, are defined as attractive boundaries. The state hP = ((π1

P , 0), (0, 1))
of point P belongs to e2 = (B, 0, (0, 1)), the lower boundary in the second
dimension of the discrete state 01. The trajectory from hP reaches instantly
hQ = ((π1

Q, 1), (0, 0)), which belongs to e3 = (B, 1, (0, 0)), the upper boundary
in the second dimension of discrete state 00, because the celerities on both sides
allow this (instant) discrete transition. e2 is called an output boundary of 01 and
e3 is called an input boundary of 00.

When a trajectory reaches several output boundaries at the same time (Fig. 2
left), it can cross any of them but can only cross one boundary at a time, which
causes non-deterministic behaviors. The simulation of HGRNs is presented more
formally in the Appendix.

Fig. 2. Left: Illustration of a non-deterministic behavior. Right: Illustration of all dis-
crete domains of state 11, and a sequence of discrete domains in the other states.

In order to analyze dynamical properties of HGRNs, the concepts of discrete
domain, transition matrix and compatible zone are introduced in [26]. A discrete
domain D(ds, S−, S+) is a set of states inside one discrete state ds, defined by:

D(ds, S−, S+) = {(π, ds) | ∀i ∈ {1, 2, ..., N}, πi ∈

⎧
⎨

⎩

{1} if i ∈ S+

{0} if i ∈ S−
]0, 1[ if i �∈ S− ∪ S+

}

where S+ and S− are power sets of {1, 2, ..., N} such that S+ ∩ S− = ∅ and
S+ ∪ S− �= ∅. In fact, S+ (S−) represents the dimensions in which the upper
(lower) boundaries are reached by any state h ∈ D(ds, S−, S+). In the rest of
this paper, we simply use D to represent a discrete domain when there is no
ambiguity.

Some discrete domains are illustrated in Fig. 2 right. For example, 11+

denotes the discrete domain inside discrete state 11 where the upper boundary is
reached for the second dimension and no boundary is reached for the first dimen-
sion, that is: D((1, 1), ∅, {2}) =

{
(π, (1, 1)) | π1 ∈ ]0, 1[ ∧ π2 = 1

}
. The state D
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in this figure belongs to the discrete domain 1−0. The discrete state 11 contains
8 discrete domains: 1−1−, 11−, 1+1−, 1−1+, 11+, 1+1+, 1−1 and 1+1, which are
depicted in Fig. 2 right. Note that, for instance, 1+1+ is represented by a small
red rectangle for readability, but in fact it only contains one singular hybrid state
((1, 1), (1, 1)).

To order to introduce the concepts of transition matrix and compatible zone,
consider a sequence of discrete domains T = (Di,Di+1,Di+2, ...,Dj) in the rest
of this section and assume that there is a trajectory τ which starts from hi =
(πi, dsi

) ∈ Di, reaches all discrete domains of T in order without reaching any
other discrete domain, and finally reaches hj = (πj , dsj

) ∈ Dj . In this case, we
say that τ is inside T . For example, in Fig. 2 right, the red trajectory is inside
the sequence of discrete domains (01−, 00+, 0+0, 1−0, 10+).

The relation between πi and πj can be described by a transition matrix M :
πj = s−1(Ms(πi)), where s is a function that adds an extra dimension and the
value in the extra dimension is always 1: s((a1, a2, ..., aN )) = (a1, a2, ..., aN , 1).
The transition matrix M only depends on T . The transition πj = s−1(Ms(πi))
can be reformulated by another affine application xj = Axi + b, where xi (resp.
xj) is the short version of πi (resp. πj) by only considering the dimensions where
boundaries are not reached in Di (resp. Dj). The matrix A is called the reduction
matrix of T , b is called the constant vector of T and the vector xi is called the
reduction vector of hi, which is noted by xi = r(hi). For example, for the state
hM = ((π1

M , 1), (1, 1)) in Fig. 1, r(hM ) = (π1
M ) which is a 1-dimensional vector.

A priori, not all trajectories from Di stay inside T . The maximal sub-
set of Di from which the trajectories stay inside T is called the compati-
ble zone of T , noted by S. The compatible zone can also be described by
S = {(π, dsi

) ∈ Di | r(π) ∈ Sr} where Sr is a set of reduction vectors of states
in Di and Sr is called the reduction compatible zone.

3 Reachability Analysis Method

In this section, we firstly define the reachability problem concerned in this work.

Problem 1 (Reachability). Consider a hybrid state h1 = (π1, ds1) and a region
R2 =

{
(π, ds2) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}

}
, where ai, bi ∈ R and 0 ≤ ai ≤

bi ≤ 1,∀i ∈ {1, 2, ..., N}. Does the trajectory τ from h1 enter the region R2? In
other words, does there exist t0 such that τ(t0) ∈ R2?

Problem 1 is illustrated in the examples of Fig. 3, where the initial state of
the trajectory (red arrows) is h1 and the blue rectangle represents R2.

The following assumptions are made in this work.

Assumption 1. For any sequence of discrete domains T of which the compati-
ble zone is not empty, we assume that all eigenvalues of the reduction matrix of
T are real.

For now, we have not found such reduction matrix with complex eigenvalues.
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Assumption 2. The trajectory from h1 has no non-deterministic behavior.

Generally, trajectories with non-deterministic behaviors exist, but among state-
of-the-art HGRNs of gene regulatory networks, the probability of a randomly
chosen initial state that leads to non-deterministic behaviors is almost 0. There-
fore, we ignore this kind of trajectory in this work. In fact, the method of this
work could also be adapted for non-deterministic trajectories (each time when a
non-deterministic state is reached, the current trajectory splits into two or sev-
eral trajectories, and same method is applied on each of these new trajectories).

Assumption 3. Any non-instant transition on a limit cycle does not reach more
than one new boundary at the same time.

In real-life systems, it is indeed very unlikely for parameters to be that con-
strained due to the existence of noise.

3.1 Different Classes of Hybrid Trajectories

In this section, we classify trajectories of HGRNs into three classes: trajecto-
ries halting in finite time, trajectories attracted by cycles of discrete domains
and chaotic trajectories. And we provide some theoretical results regarding this
reachability problem.

Trajectories Halting in Finite Time. A trajectory τ is a trajectory halting in
finite time if ∃t0 such that the derivative of τ(t0) is 0 in any dimension, in other
words τ(t0) is a fixed point. The trajectory in Fig. 3 left is a trajectory halting
in finite time. We can easily see that Problem 1 is decidable if the trajectory
from h1 is a trajectory halting in finite time, because, in this case, the trajectory
is a composition of a finite number of n-dimensional “straight lines”; to verify if
this trajectory reaches R2, we only need to verify if any of these “straight lines”
cross R2, which can be verified in finite time.

Fig. 3. Left: Illustration of Problem 1 and trajectory halting in finite time. Blue rectan-
gle represents R2 of Problem 1. Middle and right: Illustration of trajectories attracted
by cycles of discrete domains and predecessor in the same discrete state. Blues rectan-
gles represent R2 of Problem 1 and blue boxes represent their predecessors in the same
discrete state.
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Trajectories Attracted by Cycles of Discrete Domains. A trajectory τ
is a trajectory attracted by a cycle of discrete domains if ∃t0 such that after t0,
τ always stays inside a cycle of discrete domains CT = (D0,D1,D2, ...,Dp,D0),
meaning that τ crosses this cycle an infinite number of times without leaving it.
Intuitively, if a trajectory τ is attracted by a cycle of discrete domains, then τ
converges to or reaches a limit cycle. In Fig. 3 middle and right, both trajectories
are attracted by a cycle of discrete domains: indeed, these trajectories converge
to the limit cycle in the center of the figure (which only has instant transitions).

To prove the decidability of trajectories attracted by cycles of discrete
domains, we introduce the notion of predecessor in the same discrete state:
for any set of hybrid states in the same discrete state defined by R =
{(π, ds) | π ∈ E} where E ⊆ [0, 1]N is a closed set, the predecessor of R in
the same discrete state, noted by Preds

(R), is the union of sets of hybrid states:
Preds

(R) =
⋃

i∈{1,2,...,q} Zi, such that: 1) each Zi belongs to a different discrete
domain on an input boundary of ds, 2) any trajectory from Preds

(R) reaches R
directly (“reach R directly” means that reach R before reaching a new discrete
state), 3) any trajectory from an input boundary of dS but not from Preds

(R)
does not reach directly R. For Problem 1, we can see that if the trajectory τ from
h1 has already crossed at least one discrete state (we say τ has already crossed
a discrete state at t0 if there exists t < t0 such that τ(t0) and τ(t) do not belong
to the same discrete state) without reaching the region R2, then Problem 1 is
equivalent to “Does τ reach Preds2

(R2)?”.
Examples of predecessors in the same discrete state are illustrated in Fig. 3

middle and right where blues rectangles represent R2 and blue boxes present
their predecessors in the same discrete state.

Theorem 1. Problem 1 is decidable if the trajectory from h1 is a trajectory
attracted by a cycle of discrete domains.

The proof of Theorem 1 is given in the Appendix. The idea of this proof
can be explained intuitively by 2-dimensional examples in Fig. 3 middle and
right. In Fig. 3 middle, the trajectory which reaches state A, noted by τ , can be
considered as two trajectories: the first one is the part of τ before reaching A and
the second one is the part of τ after reaching A. This first one can be considered
as a trajectory halting in finite time so whether it reaches R2 is decidable, and
in this example it does not reach R2. For the second one, these two following
statements can be verified: 1. The intersection points between this trajectory
and the “right” boundary of discrete state 01 must be located in the line segment
AB. 2. The line segment AB does not intersect with the predecessor of R2 in
the same discrete state. Based on these two statements, we can prove that this
second part cannot reach R2 either. In this way, we prove theoretically that R2

is not reached by τ , and since this process can be done automatically in finite
time, the problem is decidable. Note that in the general case, this “line segment
AB” is a (n−1)-dimensional region such that the trajectory always returns to
this region and this region does not intersect the predecessor of R2 in the same
discrete state. In Fig. 3 right, it can be verified automatically in finite time that
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the limit cycle with only instant transitions (at the center) reaches R2, and that
τ converges to this limit cycle, so we can prove that τ finally reaches R2, and
this case is thus decidable too.

We also develop the following theorem to determine if a trajectory is attracted
by a cycle of discrete domains. In order to simplify this theorem, for the cycle
of discrete domains CT = (D0,D1,D2, ...,Dp,D0) and the hybrid state h0 ∈ D0

considered in this theorem, we note that:

– The reduction matrix and the constant vector of CT are A and b respectively.
– The reduction compatible zone of CT is described by linear constraints

{x | Wx > c} where c is a vector and W is a matrix. W is of size n0 × n1,
where n1 is the number of dimensions of r(h0). Wi is the ith line of matrix
W (Wi is of size 1 × n1) and ci is the ith component of vector c.

– r∞ = limn→∞ fn(r(h0)) where f(x) = Ax + b.
– The eigenvalues and eigenvectors of A are {λi | i ∈ {1, 2, ..., n1}} and {vi | i ∈

{1, 2, ..., n1}} respectively. λ1 is chosen as the eigenvalue with the maximum
absolute value among the eigenvalues that differ from 1.

– The decomposition of r(h0) − r∞ in the directions of eigenvectors of the
reduction matrix A is noted as r(h0) − r∞ =

∑n1
i=1 αivi.

Theorem 2. A trajectory τ is attracted by a cycle of discrete domains if and
only if τ reaches h0 which belongs to the compatible zone of a cycle of dis-
crete domains CT = (D0,D1,D2, ...,Dp,D0) such that D0 has no free dimension
(meaning that, in D0, boundaries are reached in all dimensions) or the following
conditions are satisfied.

– D0 has at least one free dimension.
– ∀i ∈ {1, 2, ..., n1}, |λi| ≤ 1 ∧ λi �= −1.
– ∀i ∈ {1, 2, ..., n0}, we have either Wir∞ = ci or Wir∞ > ci. We use Ie to

represent the maximum set of integers such that ∀i ∈ Ie,Wir∞ = ci and we
use In to represent the maximum set of integers such that ∀i ∈ In,Wir∞ > ci.

– If λ1 �= 0 (we assume that λ1 is unique if λ1 �= 0) and Ie is not empty, then
λ1 is positive.

– If λ1 �= 0, then ∀i ∈ Ie,∀j ∈ {2, ..., n1} , |Wiv1α1| > n1|Wivjαj | (we ignore
the case that ∃i ∈ Ie,Wiv1 = 0).

– If λ1 �= 0, then ∀i ∈ In,maxβ∈{−1,1}n1 ‖
∑n1

j=1 βjαjvj‖2< Wir∞−ci
‖Wi‖2

.

The proof of Theorem 2 is given in the Appendix. The main idea of The-
orem 2 is illustrated in Fig. 4 where the huge rectangle represents a discrete
domain D which has two free dimensions and the zone surrounded by dashed
lines represents the compatible zone S (which is a open set) of a certain cycle
of discrete domains CT . Each dashed line lci represents a linear constraint of the
form wT x > c where w, x are vectors and c is a real number. The fact that a
trajectory τ is attracted by CT is equivalent to the fact that the intersection
points between τ and D, noted by the sequence (h1, h2, ...), always stay inside
S and converge to (λ1 �= 0) or reach (λ1 = 0) h∞, which belongs to the closure
of S. Need to mention that this idea of using the intersection points between a
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trajectory and a hyperplan to study the properties of this trajectory is based on
the idea of Poincaré map. Similar ideas have been widely used in the literature to
study limit cycles of other hybrid systems [5,10–13,16,20,22,29] and also have
been applied to analyze the stability of limit cycles of HGRNs in [26].

Whether h∞ belongs to the closure of S or not can be easily verified by using
these linear constraints. A necessary condition for this sequence to always satisfy
these linear constraints is that the absolute values of all eigenvalues of the reduc-
tion matrix of CT are less than or equal to 1. In case that these eigenvalues satisfy
this necessary condition, to verify if this sequence always satisfies these linear
constraints, we separate these constraints on two classes: the first class contains
all constraints which are not reached by h∞: lc2, lc3, lc4, the second class contains
all constraints which are reached by h∞: lc1, lc5. To verify if lc2, lc3, lc4 are always
satisfied, we can verify if this sequence enters and stays in a circle centered by h∞
which only contains states satisfying constraints lc2, lc3, lc4 (this is related to the
condition: if λ1 �= 0, then ∀i ∈ In,maxβ∈{−1,1}n1 ‖

∑n1
j=1 βjαjvj‖2< Wir∞−ci

‖Wi‖2
),

such circle can always be found if it is sufficiently small, for example, the circle
in Fig. 4. To verify if lc1, lc5 are always satisfied, we can verify if this sequence
is sufficiently “close” to v1 which is the eigenvector related to the eigenvalue
with the maximum absolute value among the eigenvalues that differ from 1 and
which also “points into” S (this is related to the condition: if λ1 �= 0, then
∀i ∈ Ie,∀j ∈ {2, ..., n1} , |Wiv1α1| > n1|Wivjαj |). Here, sufficiently “close” to v1

means intuitively that the angle between
−−−→
h∞hi and v1 is sufficiently small.

Fig. 4. Illustration of the idea of Theorem 2.

Chaotic Trajectories. In this work, a trajectory of HGRN is called a chaotic
trajectory if it does not reach a fixed point and it is not attracted by a cycle of
discrete domains. So all trajectories which are not included in the previous two
classes are chaotic trajectories. Need to mention that the dynamics of chaotic
trajectories, a priori, can be different from the chaotic dynamics of classic non-
linear dynamical systems. The reason why we still use the terminology “chaotic”
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is that similar concept of chaos has been used in some pre-existing works of other
hybrid systems [9,18].

To prove such chaotic trajectories exist, we have constructed a HGRN with
chaotic trajectories based on a pre-existing model of circuit with a chaotic attrac-
tor [18]. Parameters of this HGRN are given in the code of our work.

In our work, we have not yet found a method to check reachability for chaotic
trajectories, which, a priori, can be undecidable. So, in this subsection, we only
introduce a method to predict whether a trajectory is chaotic, based on a nec-
essary condition.

For a chaotic trajectory τ , there exist t0 and a finite set of discrete domains
LD, such that after t0, τ cannot reach any discrete domain which does not
belong to LD, and for any discrete domain D0 ∈ LD, D0 is reached by τ an
infinite number of times. This is a result of the fact that the number of discrete
domains is finite and the trajectory does not stay in a particular discrete domain.

For any D0 ∈ LD, we can find t1 > t0 such that, from t1, τ returns to D0

an infinite number of times, and each time it stays inside a sequence of discrete
domains of the form (D0, ...,D0). The set of all such sequences of discrete domains
is noted by LT . We assume that LT is a finite set, which is based on the fact
that the number of discrete domains is limited and the dynamics in the discrete
states is simple (a constant vector). Based on this, if t1 is sufficiently big, then
we can derive that from t1, ∀T ∈ LT is crossed by τ an infinite number of times.

Now the sequence of discrete domains crossed by τ from t1 can be described
by the infinite sequence (T1, T2, T3, ...), where ∀i ∈ N, Ti ∈ LT . And we can
get the following property of chaotic trajectories, which is used in the following
section to predict whether a trajectory is chaotic.

Property 1. ∃i ∈ N,∃k ∈ N, k �= 1, such that Ti �= Ti+1 and Ti = Ti+k.

Proof. This can be derived from the two facts: 1) ∃i ∈ N, such that Ti �= Ti+1;
2) ∀i ∈ N,∃k ∈ N, such that Ti = Ti+k. The first one is a direct result of the fact
that all elements of LT must appear in the sequence (T1, T2, T3, ...) and LT has
at least two elements. If the second one is not true, then Ti is crossed by τ for
finite times, which contradicts with the result that ∀T ∈ LT is crossed by τ an
infinite number of times. ��

3.2 Reachability Analysis Algorithm

In this section, we present our reachability analysis algorithm, see Algorithm 1,
where we call a transition from h to h′, noted h → h′, a minimal trajectory from
state h that reaches a new boundary in state h′. In other words, h → h′ can be
considered an atomic step of simulation, either instant (change of discrete state)
or not (with continuous time elapsed).
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Algorithm 1. Reachability analysis algorithm
Input 1: A hybrid state h1 = (π1, ds1)
Input 2: A region R2 =

{
(π, ds2) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}}

Output: “R2 is reached”, “R2 is not reached” or “unknown result”
1: Current state h := h1

2: while h is not a fixed point do
3: h′ := next state so that h → h′ is a transition
4: if Transition h → h′ reaches R2 then
5: return “R2 is reached”
6: else
7: h := h′

8: if Current simulation is attracted by a cycle of discrete domains then
9: if Stop_condition(Cycleh, CycleD, R2) returns Yes then

10: return “R2 is not reached”
11: else if Stop_condition(Cycleh, CycleD, R2) returns Reached then
12: return “R2 is reached”
13: end if
14: else if Current simulation is probably a chaotic trajectory then
15: return “unknown result”
16: end if
17: end if
18: end while
19: return “R2 is not reached”

To determine if the current simulation is attracted by a cycle of discrete
domains (line 8) or if the current simulation is probably a chaotic trajectory
(line 14), we use Theorem 2 or Property 1 respectively.

The objective of the function Stop_condition is, knowing that this trajectory
is attracted by a cycle of discrete domains, to determine if the trajectory can
reach R2 after an infinite number of transitions (see Fig. 3 right). If it is the case,
the function returns “Reached”. Otherwise, if from the current state, there is no
more chance to reach R2 (see Fig. 3 middle), then the function returns “Yes”. For
both cases, this function can give the right answer in finite time, and the result
stops the algorithm. However, if both cases do not apply, the function returns
“No” and the algorithm continues. The idea of the function Stop_condition is
similar to the proof of Theorem 1. Details about the function Stop_condition
are given in the Appendix.

It can be proved that Algorithm 1 always stops in finite time. Firstly, if the
trajectory from h1 is a trajectory halting in finite time, then the algorithm stops
after a finite number of transitions. Secondly, if the trajectory is a chaotic tra-
jectory, then Property 1 will be satisfied after a finite number of transitions, and
once it is satisfied, the algorithm stops. Thirdly, if the trajectory is attracted by
a cycle of discrete domains, then there are three cases: 1. The trajectory reaches
R2 in finite time; 2. The trajectory reaches R2 after an infinite number of transi-
tions; 3 The trajectory does not reach R2. We assume here that Property 1 is not
satisfied before the trajectory reaching the attractive cycle of discrete domains
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(the cycle of discrete domains which attracts the trajectory from h1). For case 1,
the algorithm must stop in finite time, as the trajectory will eventually reach R2.
For case 2, the function Stop_condition returns “Reached” in finite time. For
case 3, the function Stop_condition returns “Yes” in finite time. Need to mention
that, since Property 1 is a necessary condition for that a trajectory is chaotic,
the algorithm might return inconclusive results (“unknown result”) even in the
cases that are decidable (trajectories are non-chaotic). In fact, among HGRNs
of gene regulatory networks, the cases that satisfy this necessary condition are
likely to be very rare: there is no identified HGRN of a gene regulatory network
with either chaos or non-chaotic trajectory that satisfies this condition. So, for
now, this algorithm is sufficient for checking reachability in practice.

4 Conclusion

In this work, we propose a reachability analysis method for HGRNs. In the first
part of this work, we classify trajectories of HGRNs into different classes: trajec-
tories halting in finite time, trajectories attracted by cycles of discrete domains
and chaotic trajectories, and provide some theoretical results about these tra-
jectories regarding the reachability problem. Then, based on these theoretical
results, we provide the first reachability analysis algorithm for HGRNs.

This algorithm always stops, and it returns the correct answer to the reacha-
bility problem if it does not stop with the inconclusive result (“unknown result”).
In the presence of chaos, the algorithm always stops with this inconclusive result.
However, so far, no model with such chaotic behavior has been identified in the
model repositories we use from real-life case studies. But the fact that a HGRN
with a chaotic trajectory has been identified is a motivation to investigate more.

In our future work, we will try to find other applications of this reachability
analysis method and mainly focus on the development of control strategies of
gene regulatory networks. Moreover, we are interested in improving the current
method to analyze reachability problems in chaotic trajectories.

Additional Information. Link to the code: https://github.com/Honglu42/Reachabi
lity_HGRN/. Link to the Appendix: https://hal.science/hal-04182253.
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Abstract. In this paper, we deepen the study of two-player Stackel-
berg games played on graphs in which Player 0 announces a strategy
and Player 1, having several objectives, responds rationally by following
plays providing him Pareto-optimal payoffs given the strategy of Player 0.
The Stackelberg-Pareto synthesis problem, asking whether Player 0 can
announce a strategy which satisfies his objective, whatever the rational
response of Player 1, has been recently investigated for ω-regular objec-
tives. We solve this problem for weighted graph games and quantitative
reachability objectives such that Player 0 wants to reach his target set
with a total cost less than some given upper bound. We show that it is
NEXPTIME-complete, as for Boolean reachability objectives.

Keywords: Two-player Stackelberg games played on graphs · Strategy
synthesis · Quantitative reachability objectives · Pareto-optimal costs

1 Introduction

Formal verification, and more specifically model-checking, is a branch of com-
puter science which offers techniques to check automatically whether a system
is correct [3,18]. This is essential for systems responsible for critical tasks like
air traffic management or control of nuclear power plants. Much progress has
been made in model-checking both theoretically and in tool development, and
the technique is now widely used in industry.

Nowadays, it is common to face more complex systems, called multi-agent sys-
tems, that are composed of heterogeneous components, ranging from traditional
pieces of reactive code, to wholly autonomous robots or human users. Modelling
and verifying such systems is a challenging problem that is far from being solved.
One possible approach is to rely on game theory, a branch of mathematics that
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studies mathematical models of interaction between agents and the understand-
ing of their decisions assuming that they are rational [32,33]. Typically, each
agent (i.e. player) composing the system has his own objectives or preferences,
and the way he manages to achieve them is influenced by the behavior of the
other agents.

Rationality can be formalized in several ways. A famous model of agents’
rational behavior is the concept of Nash equilibrium (NE) [31] in a multiplayer
non-zero sum game graph that represents the possible interactions between the
players [38]. Another model is the one of Stackelberg games [35], in which one
designated player – the leader, announces a strategy to achieve his goal, and
the other players – the followers, respond rationally with an optimal response
depending on their goals (e.g. with an NE). This framework is well-suited for the
verification of correctness of a controller intending to enforce a given property,
while interacting with an environment composed of several agents each having
his own objective. In practical applications, a strategy for interacting with the
environment is committed before the interaction actually happens.
Our contribution. In this paper, we investigate the recent concept of two-
player Stackelberg games, where the environment is composed of one player
aiming at satisfying several objectives, and its related Stackelberg-Pareto synthe-
sis (SPS) problem [13,14]. In this framework, for Boolean objectives, given the
strategy announced by the leader, the follower responses rationally with a strat-
egy that ensures him a vector of Boolean payoffs that is Pareto-optimal, that is,
with a maximal number of satisfied objectives. This setting encompasses scenar-
ios where, for instance, several components of the environment can collaborate
and agree on trade-offs. The SPS problem is to decide whether the leader can
announce a strategy that guarantees him to satisfy his own objective, whatever
the rational response of the follower.

The SPS problem is solved in [14] for ω-regular objectives. We here solve this
problem for weighted game graphs and quantitative reachability objectives for
both players. Given a target of vertices, the goal is to reach this target with a
cost as small as possible. In this quantitative context, the follower responds to
the strategy of the leader with a strategy that ensures him a Pareto-optimal cost
vector given his series of targets. The aim of the leader is to announce a strategy
in a way to reach his target with a total cost less than some given upper bound,
whatever the rational response of the follower. We show that the SPS problem is
NEXPTIME-complete (Theorem 1), as for Boolean reachability objectives. The
proofs of our results are available in the long version of this paper [11].

It is well-known that moving from Boolean objectives to quantitative ones
allows to model richer properties. This paper is a first step in this direction for
the SPS problem for two-player Stackelberg games with multiple objectives for
the follower. Our proof follows the same pattern as for Boolean reachability [14]:
if there is a solution to the SPS problem, then there is one that is finite-memory
whose memory size is at most exponential. The non-deterministic algorithm thus
guesses such a strategy and checks whether it is a solution. However, a crucial
intermediate step is to prove that if there exists a solution, then there exists one
whose Pareto-optimal costs for the follower are exponential in the size of the
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instance (Theorem 2). The proof of this non trivial step (which is meaningless
in the Boolean case) is the main contribution of the paper. Given a solution, we
first present some hypotheses and techniques that allow to locally modify it into
a solution with smaller Pareto-optimal cost vectors. We then conduct a proof
by induction on the number of follower’s targets, to globally decrease the cost
vectors and to get an exponential number of Pareto-optimal cost vectors. The
NEXPTIME-hardness of the SPS problem is trivially obtained by reduction from
this problem for Boolean reachability. Indeed, the Boolean version is equivalent
to the quantitative one with all weights put to zero and with the given upper
bound equal to zero. Notice that the two versions differ: we exhibit an example
of game that has a solution to the SPS problem for quantitative reachability,
but none for Boolean reachability.
Related Work. During the last decade, multiplayer non-zero sum games and
their applications to reactive synthesis have raised a growing attention, see for
instance the surveys [4,12,24]. When several players (like the followers) play
with the aim to satisfy their objectives, several solution concepts exist such as
NE, subgame perfect equilibrium (SPE) [34], secure equilibria [16,17], or admis-
sibility [2,5]. Several results have been obtained, for Boolean and quantitative
objectives, about the constrained existence problem which consists in deciding
whether there exists a solution concept such that the payoff obtained by each
player is larger than some given threshold. Let us mention [19,38,39] for results
on the constrained existence for NEs and [7,8,10,37] for SPEs. Some of them
rely on a recent elegant characterization of SPE outcomes [6,22].

Stackelberg games with several followers have been recently studied in the
context of rational synthesis: in [21] in a setting where the followers are coop-
erative with the leader, and later in [29] where they are adversarial. Rational
responses of the followers are, for instance, to play an NE or an SPE. The ratio-
nal synthesis problem and the SPS problem are incomparable, as illustrated
in [36, Section 4.3.2]: in rational synthesis, each component of the environment
acts selfishly, whereas in SPS, the components cooperate in a way to obtain a
Pareto-optimal cost. In [30], the authors solve the rational synthesis problem
that consists in deciding whether the leader can announce a strategy satisfying
his objective, when the objectives of the players are specified by LTL formu-
las. Complexity classes for various ω-regular objectives are established in [19]
for both cooperative and adversarial settings. Extension to quantitative pay-
offs, like mean-payoff or discounted sum, is studied in [25,26] in the cooperative
setting and in [1,20] in the adversarial setting.

The concept of rational verification has been introduced in [27], where instead
of deciding the existence of a strategy for the leader, one verifies that some
given leader’s strategy satisfies his objective, whatever the NE responses of the
followers. An algorithm and its implementation in the EVE system are presented
in [27] for objectives specified by LTL formulas. This verification problem is
studied in [28] for mean-payoff objectives for the followers and an omega-regular
objective for the leader, and it is solved in [9] for both NE and SPE responses
of the followers and for a variety of objectives including quantitative objectives.
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The Stackelberg-Pareto verification problem is solved in [15] for some ω-regular
or LTL objectives.

2 Preliminaries and Studied Problem

We introduce the concept of Stackelberg-Pareto games with quantitative reach-
ability costs. We present the related Stackelberg-Pareto synthesis problem and
state our main result.

2.1 Graph Games

Game Arenas. A game arena is a tuple A = (V, V0, V1, E, v0, w) where: (1)
(V,E) is a finite directed graph with V as set of vertices and E as set of edges
(it is supposed that every vertex has a successor), (2) V is partitioned as V0 ∪V1

such that V0 (resp. V1) represents the vertices controlled by Player 0 (resp.
Player 1), (3) v0 ∈ V is the initial vertex, and (4) w : E → N is a weight function
that assigns a non-negative integer1 to each edge, such that W = maxe∈E w(e)
denotes the maximum weight. An arena is binary if w(e) ∈ {0, 1} for all e ∈ E.

Plays and Histories. A play in an arena A is an infinite sequence of vertices
ρ = ρ0ρ1 . . . ∈ V ω such that ρ0 = v0 and (ρk, ρk+1) ∈ E for all k ∈ N. Histories
are finite sequences h = h0 . . . hk ∈ V + defined similarly. We denote last(h) the
last vertex hk of the history h and by |h| its length (equal to k). Let PlayA denote
the set of all plays in A, HistA the set of all histories in A, and HistiA the set of
all histories in A ending on a vertex in Vi, i = 0, 1. The mention of the arena
will be omitted when it is clear from the context. If a history h is prefix of a play
ρ, we denote it by hρ. Given a play ρ = ρ0ρ1 . . ., we denote by ρ≤k the prefix
ρ0 . . . ρk of ρ, and by ρ≥k its suffix ρkρk+1 . . .. We also write ρ[k,�] for ρk . . . ρ�.
The weight of ρ[k,�] is equal to w(ρ[k,�]) = Σ�−1

j=kw(ρj , ρj+1).

Strategies. Let i ∈ {0, 1}, a strategy for Player i is a function σi : Histi → V
assigning to each history h ∈ Histi a vertex v = σi(h) such that (last(h), v) ∈ E.
We denote by Σi the set of all strategies for Player i. We say that a strategy σi

is memoryless if for all h, h′ ∈ Histi, if last(h) = last(h′), then σi(h) = σi(h′). A
strategy is considered finite-memory if it can be encoded by a Mealy machine
and its memory size is the number of states of the machine [23].

A play ρ is consistent with a strategy σi if for all k ∈ N, ρk ∈ Vi implies
that ρk+1 = σi(ρ≤k). Consistency is extended to histories as expected. We denote
Playσi

(resp. Histσi
) the set of all plays (resp. histories) consistent with σi. Given

a couple of strategies (σ0, σ1) for Players 0 and 1, there exists a single play that is
consistent with both of them, that we denote by out(σ0, σ1) and call the outcome
of (σ0, σ1).

Reachability Costs. Given an arena A, let us consider a subset T ⊆ V of
vertices called target. We say that a play ρ = ρ0ρ1 . . . visits the target T , if ρk ∈ T

1 Notice that null weights are allowed.
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for some k. We define a cost function costT : Play → N, where N = N∪{∞}, that
assigns to every play ρ the quantity costT (ρ) = min{w(ρ≤k) | ρk ∈ T}, that is,
the weight to the first visit of T if ρ visits T , and ∞ otherwise. The cost function
is extended to histories in the expected way.

2.2 Stackelberg-Pareto Synthesis Problem

Stackelberg-Pareto Games. Let t ∈ N\{0}, a Stackelberg-Pareto reachability
game (SP game) is a tuple G = (A, T0, T1, . . . , Tt) where A is a game arena and
Ti are targets for all i ∈ {0, . . . , t}, such that T0 is Player 0’s target and T1, . . . , Tt

are the t targets of Player 1. When A is binary, we say that G is binary. The
dimension t of G is the number of Player 1’s targets, and we denote by Gamest
(resp. BinGamest) the set of all (resp. binary) SP games with dimension t. The
notations PlayG and HistG may be used instead of PlayA and HistA.

To distinguish the two players with respect to their targets, we introduce
the following terminology. The cost of a play ρ is the tuple cost(ρ) ∈ N

t
such

that cost(ρ) = (costT1(ρ), . . . , costTt
(ρ)). The value of a play ρ is a non-negative

integer or ∞ defined by val(ρ) = costT0(ρ). The value can be viewed as the score
of Player 0 and the cost as the score of Player 1. Both functions are extended to
histories in the expected way. In the sequel, given a cost c ∈ N

t
, we denote by ci

the i-th component of c and by cmin the component of c that is minimum, i.e.
cmin = min{ci | i ∈ {1, . . . , t}}.

In an SP game, Player 0 wishes to minimize the value of a play with respect
to the usual order < on N extended to N such that n < ∞ for all n ∈ N. To
compare the costs of Player 1, the following component-wise order is introduced.
Let c, c′ ∈ N

t
be two costs, we say that c ≤ c′ if ci ≤ c′

i for all i ∈ {1, . . . , t}.
Moreover, we write c < c′ if c ≤ c′ and c �= c′. Notice that the order defined on
costs is not total. Given two plays with respective costs c and c′, if c < c′, then
Player 1 prefers the play with lower cost c.

Stackelberg-Pareto Synthesis Problem. Given an SP game and a strategy
σ0 for Player 0, we consider the set Cσ0 of costs of plays consistent with σ0 that
are Pareto-optimal for Player 1, i.e., minimal with respect to the order ≤ on
costs. Hence, Cσ0 = min{cost(ρ) | ρ ∈ Playσ0

}. Notice that Cσ0 is an antichain.
A cost c is said to be σ0-fixed Pareto-optimal if c ∈ Cσ0 . Similarly, a play is said
to be σ0-fixed Pareto-optimal if its cost is σ0-fixed Pareto-optimal. We will omit
the mention of σ0 when it is clear from context.

The problem we study is the following one: given an SP game G and a
bound B ∈ N, is there a strategy σ0 for Player 0 such that, for all strategies σ1

for Player 1, if the outcome out(σ0, σ1) is Pareto-optimal, then the value of the
outcome is below B. It is equivalent to say that for all ρ ∈ Playσ0

, if cost(ρ) is
σ0-fixed Pareto-optimal, then val(ρ) is below B.

Problem 1. The Stackelberg-Pareto Synthesis problem (SPS problem) is to
decide, given an SP game G and a bound B, whether

∃σ0 ∈ Σ0,∀σ1 ∈ Σ1, cost(out(σ0, σ1)) ∈ Cσ0 ⇒ val(out(σ0, σ1)) ≤ B. (1)
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Fig. 1. Arena A (on the left) – Witness tree (on the right)

Any strategy σ0 satisfying (1) is called a solution and we denote it by σ0 ∈
SPS(G,B). Our main result is the following theorem.

Theorem 1. The SPS problem is NEXPTIME-complete.

The non-deterministic algorithm is exponential in the number of targets t
and in the size of the binary encoding of the maximum weight W and the bound
B. The general approach to obtain NEXPTIME-membership is to show that
when there is a solution σ0 ∈ SPS(G,B), then there exists one that is finite-
memory and whose memory size is exponential. An important part of this paper
is devoted to this proof. Then we show that such a strategy can be guessed and
checked to be a solution in exponential time.

Example. To provide a better understanding of the SPS problem, let us solve
it on a specific example. The arena A is displayed on Fig. 1 where the vertices
controlled by Player 0 (resp. Player 1) are represented as circles (resp. squares).
The weights are indicated only if they are different from 1 (e.g., the edge (v0, v6)
has a weight of 1). The initial vertex is v0. The target of Player 0 is T0 = {v3, v9}
and is represented by doubled vertices. Player 1 has three targets: T1 = {v1, v8},
T2 = {v9} and T3 = {v2, v4}, that are represented using colors (green for T1, red
for T2, blue for T3). Let us exhibit a solution σ0 in SPS(G, 5).

We define σ0 as the strategy that always moves from v3 to v4, and that
loops once on v6 and then moves to v7. The plays consistent with σ0 are v0v1v

ω
2 ,

v0v1(v3v4)ω, v0v6v6v7v
ω
8 , and v0v6v6v7v

ω
9 . The Pareto-optimal plays are the plays

v0v1(v3v4)ω and v0v6v6v7v
ω
9 with respective costs (4,∞, 7) and (∞, 4,∞), and

they both yield a value less than or equal to 5. Notice that σ0 has to loop once
on v6, i.e., it is not memoryless2, otherwise the consistent play v0v6v7v

ω
8 has a

Pareto-optimal cost of (3,∞,∞) and an infinite value.
Interestingly, the Boolean version of this game does not admit any solution. In

this case, given a target, the player’s goal is simply to visit it (and not to minimize
the cost to reach it). That is, the Boolean version is equivalent to the quantitative

2 One can prove that there exists no memoryless solution.
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one with all weights and the bound B put to zero. In the example, the play v0v1v
ω
2

is Pareto-optimal (with visits to T1 and T3), whatever the strategy of Player 0,
and this play does not visit Player 0’s target.

Witnesses. An important tool for solving the SPS problem is the concept of
witness [14]. Given a solution σ0, for all c ∈ Cσ0 , we can choose arbitrarily a
play ρ called witness of the cost c such that cost(ρ) = c. The set of all chosen
witnesses is denoted by Witσ0 , whose size is the size of Cσ0 . Since σ0 is a solution,
the value of each witness is below B. We define the length of a witness ρ as the
length length(ρ) = min{|h| | hρ ∧ cost(h) = cost(ρ) ∧ val(h) = val(ρ)}.

It is useful to see the set Witσ0 as a tree composed of |Witσ0 | branches.
Moreover, given h ∈ Histσ0 , we write Witσ0(h) the set of witnesses for which h is
a prefix, i.e., Witσ0(h) = {ρ ∈ Witσ0 | hρ}. Notice that Witσ0(h) = Witσ0 when
h = v0, and that the size of Witσ0(h) decreases as the size of h increases, until
it contains a single play or becomes empty.

The following notions about the tree Witσ0 will be useful. We say that a
history h is a branching point if there are two witnesses whose greatest com-
mon prefix is h, that is, there exists v ∈ V such that 0 < |Witσ0(hv)| <
|Witσ0(h)|. We define the following equivalence relations ∼ on histories that
are prefixes of a witness: h ∼ h′ if and only if (val(h), cost(h),Witσ0(h)) =
(val(h′), cost(h′),Witσ0(h

′)). Notice that if h ∼ h′, then either hh′ or h′h and no
new target is visited and no branching point is crossed from the shortest history
to the longest one. We call region of h its equivalence class. This leads to a region
decomposition of each witness, such that the first region is the region of the ini-
tial state v0 and the last region is the region of hρ such that |h| = length(ρ). A
deviation is a history hv with h ∈ Hist1, v ∈ V , such that h is prefix of some
witness, but hv is prefix of no witness.

We illustrate these notions on the previous example and its solution σ0. A set
of witnesses is Witσ0 = {v0v1(v3v4)ω, v0v6v6v7v

ω
9 } depicted on Fig. 1. We have

that length(v0v6v6v7vω
9 ) = |v0v6v6v7v9| = 4, v0 is a branching point, v0v1v2 is

a deviation, and the region decomposition of the witness v0v6v6v7v
ω
9 is {v0},

{v0v6, v0v6v6, v0v6v6v7}, {v0v6v6v7v
k
9 | k ≥ 1}.

Reduction to Binary Arenas. Working with general arenas requires to deal
with the parameter W in most of the proofs. To simplify the arguments, we
reduce the SPS problem to binary arenas, by replacing each edge with a weight
w ≥ 2 by a path of w edges of weight 1. This (standard) reduction is exponential,
but only in the size of the binary encoding of W .

Lemma 1. Let G = (A, T0, . . . , Tt) be an SP game and B ∈ N. Then one can
construct in exponential time an SP game G′ = (A′, T0, . . . , Tt) with a binary
arena A′ such that

– the set of vertices V ′ of A′ contains V and has size |V ′| ≤ |V | · W ,
– there exists a solution in SPS(G,B) if and only if there exists a solution in

SPS(G′, B).
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The transformation of the arena A into a binary arena A′ has consequences
on the size of the SPS problem instance. Since the weights are encoded in binary,
the size |V ′| could be exponential in the size |V | of the original instance. However,
this will have no impact on our main result because |V | never appears in the
exponent in our calculations.

3 Bounding Pareto-Optimal Payoffs

In this section, we show that if there exists a solution to the SPS problem,
then there exists one whose Pareto-optimal costs are exponential in the size of
the instance (see Theorem 2 below). It is a crucial step to prove that the SPS
problem is in NEXPTIME. This is the main contribution of this paper.

3.1 Improving a Solution

We begin by presenting some techniques that allow to modify a solution to the
SPS problem into a solution with smaller Pareto-optimal costs.

Order on Strategies and Subgames. Given two strategies σ0, σ
′
0 for Player 0,

we say that σ′
0 ≤ σ0 if for all c ∈ Cσ0 , there exists c′ ∈ Cσ′

0
such that c′ ≤ c. This

relation ≤ on strategies is a preorder (it is reflexive and transitive). We define
σ′
0 < σ0 when σ′

0 ≤ σ0 and Cσ′
0

�= Cσ0 , and we say that σ′
0 is better than σ0

whenever σ′
0 ≤ σ0. In the sequel, we modify solutions σ0 to the SPS problem to

get better solutions σ′
0 ≤ σ0, and we say that σ′

0 improves the given solution σ0.
A subgame of an SP game G is a couple (G,h), denoted G|h, where h ∈ Hist.

In the same way that G can be seen as the set of its plays, G|h is seen as the
restriction of G to plays with prefix h. In particular, we have G|v0 = G where
v0 is the initial vertex of G. The value and cost of a play ρ in G|h are the same
as those of ρ as a play in G. The dimension of G|h is the dimension of G minus
the number of targets visited3 by h′ such that h′last(h) = h.

A strategy for Player 0 on G|h is a strategy τ0 that is only defined for the
histories h′ ∈ Hist such that hh′. We denote Σ0|h the set of those strategies.
Given a strategy σ0 for Player 0 in G and h ∈ Histσ0 , we denote the restriction
of σ0 to G|h by the strategy σ0|h. Moreover, given τ0 ∈ Σ0|h, we can define a
new strategy σ0[h → τ0] from σ0 as the strategy on G which consists in playing
the strategy σ0 everywhere, except in the subgame G|h where τ0 is played. That
is, σ0[h → τ0](h′) = σ0(h′) if h � h′, and σ0[h → τ0](h′) = τ0(h′) otherwise.

As done with SPS(G,B), we denote by SPS(G|h, B) the set of all solutions
τ0 ∈ Σ0|h to the SPS problem for the subgame G|h and the bound B.

Improving a Solution. A natural way to improve a strategy is to improve
it on a subgame. Moreover, if it is a solution to the SPS problem, it is also the
case for the improved strategy.

3 Notice that we do not include last(h) in h′, as it can be seen as the initial vertex of
G|h.
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Lemma 2. Let G be a binary SP game, B ∈ N, and σ0 ∈ SPS(G,B) be a
solution. Consider a history h ∈ Histσ0 and a strategy τ0 ∈ Σ0|h in the subgame
G|h such that τ0 < σ0|h and τ0 ∈ SPS(G|h, B). Then the strategy σ′

0 = σ0[h → τ0]
is a solution in SPS(G,B) and σ′

0 < σ0.

Another way to improve solutions to the SPS problem is to delete some
particular cycles occurring in witnesses as explained in the next lemma.

Lemma 3. Let G be a binary SP game, B ∈ N, and σ0 ∈ SPS(G,B) be a
solution. Suppose that in a witness ρ = ρ0ρ1 . . . ∈ Witσ0 , there exist m,n ∈ N

such that

– m < n < length(ρ) and ρm = ρn,
– ρ≤m and ρ≤n belong to the same region, and
– if val(ρ≤m) = ∞, then the weight w(ρ[m,n]) is null.

Then the strategy σ′
0 = σ0[ρ≤m → σ0|ρ≤n

] is a solution in SPS(G,B) such that
σ′
0 ≤ σ0.

The first condition means that ρ[m,n] is a cycle and that it appears before
the last visit of a target by ρ. The second one says that ρ≤m ∼ ρ≤n, i.e., no new
target is visited and no branching point is crossed from history ρ≤m to history
ρ≤n. The third one says that if ρ≤m does not visit Player 0’s target, then the
cycle ρ[m,n] must have a null weight. The new strategy σ′

0 is obtained from σ0

by playing after ρ≤m as playing after ρ≤n (thus deleting the cycle ρ[m,n]).
From now on, we say that we can eliminate cycles according to this lemma4

without explicitly building the new strategy. We also say that a solution σ0 is
without cycles if it does not satisfy the hypotheses of Lemma 3, i.e., if it is
impossible to eliminate cycles to get a better solution.

3.2 Crucial Step

We can now state the theorem announced at the beginning of Sect. 3 and provide
some ideas about its proof.

Theorem 2. Let G ∈ BinGamest be a binary SP game with dimension t, B ∈ N,
and σ0 ∈ SPS(G,B) be a solution. Then there exists a solution σ′

0 ∈ SPS(G,B)
without cycles such that σ′

0 ≤ σ0, and

∀c′ ∈ Cσ′
0
,∀i ∈ {1, . . . , t} : c′

i ≤ 2Θ(t2) · |V |Θ(t) · (B + 3) ∨ c′
i = ∞ (2)

In case of any general SP game G ∈ Gamest, the same result holds with |V |
replaced by |V | · W in the inequality.

4 These are the cycles satisfying the lemma, and not just any cycle.
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In view of this result, a solution to the SPS problem is said to be bounded
when its Pareto-optimal costs are bounded as stated in the theorem.

Theorem 2 is proved by induction on the dimension t, with the calculation
of a function f(B, t) depending on both B and t, that bounds the components
c′
i �= ∞. This function is defined by induction on t through the proofs, and

afterwards made explicit and upper bounded by the bound given in Theorem 2.
Notice that the function f can be considered as increasing in t.5 The proof of
Theorem 2 is sketched in the next lemmas for binary SP games; it is then easily
adapted to any SP games by Lemma 1.

The base case is dimension t = 1. In this case, the order on costs is total and
we have the next lemma (notice that Cσ0 is a singleton).

Lemma 4. Let G ∈ BinGames1 be a binary SP game with dimension 1, B ∈ N,
and σ0 ∈ SPS(G,B) be a solution. Then there exists a solution σ′

0 ∈ SPS(G,B)
without cycles such that σ′

0 ≤ σ0 and

∀c′ ∈ Cσ′
0
: c′ ≤ f(B, 1) = B + |V | ∨ c′ = ∞. (3)

Notice that f(B, 1) respects the bound given in Theorem 2 when t = 1.
Lemma 4 is proved by showing that if the unique Pareto-optimal cost of σ0

is finite but greater than B + |V |, then we can eliminate a cycle according to
Lemma 3 and get a better solution.

The next lemma considers the case of dimension t+1, with t ≥ 1. It is proved
by using the induction hypothesis. Recall that cmin is the minimum component
of the cost c.

Lemma 5. Let G ∈ BinGamest+1 be a binary SP game with dimension t + 1,
B ∈ N, and σ0 ∈ SPS(G,B) be a solution. Then there exists a solution σ′

0 ∈
SPS(G,B) without cycles such that σ′

0 ≤ σ0, and

∀c′ ∈ Cσ′
0
,∀i ∈ {1, . . . , t + 1} : c′

i ≤ max{c′
min, B} + 1 + f(0, t) ∨ c′

i = ∞.(4)

The idea of the proof is as follows. If there exists c ∈ Cσ0 such that for
some i ∈ {1, . . . , t + 1}, ci does not satisfy (4), then we consider a witness ρ
with cost(ρ) = c and the history h of minimal length such that hρ and w(h) =
max{cmin, B}+ 1. It follows that the subgame G|h has dimension k ≤ t and we
can thus apply the induction hypothesis in G|h with B = 0 as h has already
visited Player 0’s target. Hence, by Theorem 2, we get a better solution in the
subgame G|h, and then a better solution in the whole game G by Lemma 2.

To prove Theorem 2, in view of Lemma 5, our last step is to provide a bound
on cmin, the minimum component of each Pareto-optimal cost c ∈ Cσ0 . Notice
that if cmin = ∞, then all the components of c are equal to ∞. In this case,
Cσ0 = {(∞, . . . ,∞)}, i.e., there is no play in Playσ0

visiting Player 1’s targets.
The bound on cmin is provided in the next lemma, when Cσ0 �= {(∞, . . . ,∞)}.
It depends on |Cσ0 |, a bound of which is also given in this lemma.

5 We could artificially duplicate some targets in a way to increase the dimension.
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Lemma 6. Let G ∈ BinGamest+1 be a binary SP game with dimension t + 1,
B ∈ N, and σ0 ∈ SPS(G,B) be a solution satisfying (4). Suppose that Cσ0 �=
{(∞, . . . ,∞)}. Then

|Cσ0 | ≤ (
f(0, t) + B + 3

)t+1 (5)

∀c ∈ Cσ0 : cmin ≤ B + 2t+1
(|V | · log2(|Cσ0 |) + 1 + f(0, t)

)
(6)

While (5) is a corollary of Lemma 5, the proof of (6) is rather technical.
Finally, thanks to Lemmas 4–6, calculations can be done in a way to have an

explicit formula for f(B, t) and a bound on its value. This completes the proof of
Theorem 2. Moreover, with Lemmas 1, 6 and Theorem 2, we easily get a bound
for |Cσ0 | depending on G and B, as stated in the next proposition.

Proposition 1. For all games G ∈ Gamest and for all bounded6 solutions σ0 ∈
SPS(G,B), the size |Cσ0 | is either equal to 1 or bounded exponentially by 2Θ(t3) ·
(|V | · W )Θ(t2) · (B + 3)Θ(t).

4 Complexity of the SPS Problem

In this section, we sketch the proof that the SPS problem is NEXPTIME-complete
(Theorem 1). It follows the same pattern as for Boolean reachability [14], however
it requires the results of Sect. 3 (which are meaningless in the Boolean case) and
some modifications to handle quantitative reachability.

Finite-Memory Solutions. We first show that if there exists a solution to the
SPS problem, then there is one that is finite-memory and whose memory size is
bounded exponentially.

Proposition 2. Let G be an SP game, B ∈ N, and σ0 ∈ SPS(G,B) be a solu-
tion. Then there exists a bounded solution σ′

0 ∈ SPS(G,B) such that σ′
0 is finite-

memory and its memory size is bounded exponentially.

When Cσ0 �= {(∞, . . . ,∞)}, the proof of this proposition is based on the fol-
lowing ideas (the case Cσ0 = {(∞, . . . ,∞)} is easier to handle and not detailed).

– We first transform the arena of G into a binary arena and adapt the given
solution σ0 ∈ SPS(G,B) to the new game. We keep the same notations G
and σ0. We can suppose that σ0 is bounded by Theorem 2. We consider a set
of witnesses Witσ0 for which we thus know that the costs ci, i ∈ {1, . . . , t},
are either infinite or exponentially bounded by f(B, t). We also know that
the size of Cσ0 is exponentially bounded by Proposition 1.

– We show that at any deviation7, Player 0 can switch to a punishing strategy
that imposes that the consistent plays π either satisfy val(π) ≤ B or cost(π) is

6 The notion of bounded solution has been defined below Theorem 2.
7 We recall that a deviation is a history hv with h ∈ Hist1, v ∈ V , such that h is prefix

of some witness, but hv is prefix of no witness.
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not Pareto-optimal. One can prove that this punishing strategy is a winning
strategy in a two-player zero-sum game H with an exponential arena and
an ω-regular objective. The arena of H is the initial arena extended with
information that keeps track of the weight, value and cost of the current
history (truncated to f(B, t)) and the objective of H is the disjunction of a
reachability objective and a safety objective. It follows that this punishing
strategy is finite-memory with an exponential memory.

– We then show how to transform the witnesses into lassos. Recall that as the
solution σ0 is bounded, it is impossible to eliminate cycles in any witness
ρ. In view of Lemma 3 and by considering the region decomposition of ρ,
this means that after the visit by ρ of Player 0’s target, each of its regions
contains no cycle, except in the last one. In the last region, as soon as a vertex
is repeated, we replace the suffix of ρ by the infinite repetition of this cycle.
As each resulting lasso traverses an exponential number of regions thanks to
Proposition 1, all of them can be produced by a finite-memory strategy with
exponential memory. We also show that we need at most exponentially many
different punishing strategies.

NEXPTIME-Completeness. We now briefly explain the proof of Theorem 1.
For the NEXPTIME-membership, let G be an SP game and B ∈ N. Proposition 2
states the existence of a solution σ0 that uses a finite memory bounded expo-
nentially. We can guess such a strategy σ0 as a Mealy machine M. To verify in
exponential time that the guessed strategy σ0 is a solution to the SPS problem,
we proceed as follows. We construct H as the cartesian product G×M extended
with information that keeps track of the current weight, value, and cost. It can
be proved that this information can be truncated to max{B, |V | · |M | ·t ·W} with
|M | the memory size of M. We then compute the set Cσ0 of Pareto-optimal costs
by testing for the existence of plays in H with a given cost c, beginning with
the smallest possible cost c = (0, . . . , 0), and finishing with the largest possible
one c = (∞, . . . ,∞). As there is at most an exponential number of costs c to
consider, the set Cσ0 can be computed in exponential time. Finally, we check
whether σ0 is not a solution, i.e., there exists a play ρ in H with a cost c ∈ Cσ0

such that val(ρ) > B. This can be done in deterministic exponential time.
Let us now comment on the NEXPTIME-hardness. In [14], the Boolean variant

of the SPS problem is proved to be NEXPTIME-complete. It can be reduced to
its quantitative variant by labeling each edge with a weight equal to 0 and
by considering a bound B equal to 0. Hence the value and cost components
are either equal to 0 or ∞. It follows that the (quantitative) SPS problem is
NEXPTIME-hard.

5 Conclusion and Future Work

In [14], the SPS problem is proved to be NEXPTIME-complete for Boolean reach-
ability. In this paper, we proved that the same result holds for quantitative reach-
ability (with non-negative weights). The difficult part was to show that when
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there exists a solution to the SPS problem, there is one whose Pareto-optimal
costs are exponentially bounded.

Considering negative weights is a non-trivial extension that is deferred to
future work. It will require to study how cycles with a negative cost are useful to
improve a solution. Considering multiple objectives for Player 0 (instead of one)
is also a non-trivial problem. The order on the tuples of values becomes partial
and we could consider several weight functions.

It is well-known that quantitative objectives make it possible to model richer
properties than with Boolean objectives. This paper studied quantitative reach-
ability. It would be very interesting to investigate the SPS problem for other
quantitative payoffs, like mean-payoff or discounted sum.
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Abstract. We study two-player multi-weighted reachability games
played on a finite directed graph, where an agent, called P1, has several
quantitative reachability objectives that he wants to optimize against an
antagonistic environment, called P2. In this setting, we ask what cost
profiles P1 can ensure regardless of the opponent’s behavior. Cost pro-
files are compared thanks to: (i) a lexicographic order that ensures the
unicity of an upper value and (ii) a componentwise order for which we
consider the Pareto frontier. We synthesize (i) lexico-optimal strategies
and (ii) Pareto-optimal strategies. The strategies are obtained thanks
to a fixpoint algorithm which also computes the upper value in poly-
nomial time and the Pareto frontier in exponential time. Finally, the
constrained existence problem is proved in PTime for the lexicographic
order and PSpace-complete for the componentwise order.

Keywords: two-player games on graphs · multi-weighted reachability
games · Pareto-optimal strategies · lexico-optimal strategies

1 Introduction

Two-player zero-sum games played on graphs are commonly used in the endeavor
to synthesize systems that are correct by construction. In the two-player zero-
sum setting the system wants to achieve a given objective whatever the behavior
of the environment. This situation is modeled by a two-player game in which P1

(resp. P2) represents the system (resp. the environment). Each vertex of the
graph is owned by one player and they take turn by moving a token from vertex
to vertex by following the graph edges. This behavior leads to an infinite sequence
of vertices called a play. The choice of a player’s next move is dictated by its
strategy. In a quantitative setting, edges are equipped with a weight function and
a cost function assigns a cost to each play. This cost depends on the weights of the
edges along the play. With this quantitative perspective, P1 wants to minimize
the cost function. We say that P1 can ensure a cost of x if there exists a strategy
of P1 such that, whatever the strategy followed by P2, the corresponding cost
is less than or equal to x. An interesting question is thus to determine what are

T. Brihaye—Partly supported by the F.R.S.- FNRS under grant n◦T.0027.21.
A. Goeminne—F.R.S.-FNRS postdoctoral researcher.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Bournez et al. (Eds.): RP 2023, LNCS 14235, pp. 85–97, 2023.
https://doi.org/10.1007/978-3-031-45286-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45286-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-45286-4_7


86 T. Brihaye and A. Goeminne

the costs that can be ensured by P1. In this document, these costs are called
the ensured values. Other frequently studied questions are: Given a threshold x,
does there exist a strategy of P1 that ensures a cost less than or equal to x? Is
it possible to synthesize such a strategy, or even better, if it exists, a strategy
that ensures the best ensured value, i.e., an optimal strategy?

A well-known studied quantitative objective is the one of quantitative reach-
ability objective. A player who wants to achieve such an objective has a subset of
vertices, called target set, that he wants to reach as quickly as possible. In terms
of edge weights, that means that he wants to minimize the cumulative weights
until a vertex of the target set is reached. In this setting it is proved that the
best ensured value is computed in polynomial time and that optimal strategies
exist and do not require memory [9].

Considering systems with only one cost to minimize may seem too restric-
tive. Indeed, P1 may want to optimize different quantities while reaching his
objective. Moreover, optimizing these different quantities may lead to antago-
nistic behaviors, for instance when a vehicle wants to reach his destination while
minimizing both the delay and the energy consumption. This is the reason why
in this paper, we study two-player multi-weighted reachability games, where P1

aims at reaching a target while minimizing several costs. In this setting each edge
of the graph is labeled by a d-tuple of d natural numbers, one per quantity to
minimize. Given a sequence of vertices in the game graph, the cost profile of P1

corresponds to the sum of the weights of the edges, component by component,
until a given target set is reached. We consider the multi-dimensional counter-
part of the previous studied problems: we wonder what cost profiles are ensured
by P1. Thus P1 needs to arbitrate the trade-off induced by the multi-dimensional
setting. In order to do so, we consider two alternatives: the cost profiles can be
compared either via (i) a lexicographic order that ranks the objectives a pri-
ori and leads to a unique minimal ensured value; or via (ii) a componentwise
order. In this second situation, P1 takes his decision a posteriori by choosing an
element of the Pareto frontier (the set of minimal ensured values, which is not
necessarily a singleton).

Contributions. Our contributions are threefold. First, in Sect. 3.1, given a two-
player multi-weighted reachability game, independently of the order considered,
we provide a fixpoint algorithm, which computes the minimal cost profiles that
can be ensured by P1. In Sect. 3.2, we study the time complexity of this algo-
rithm, depending on the order considered. When considering the lexicographic
order (resp. componentwise order), the algorithm runs in polynomial time (resp.
exponential time). Moreover, if the number of dimensions is fixed, the computa-
tion of the Pareto frontier can be done in pseudo-polynomial time (polynomial if
the weights of the game graph are encoded in unary). As a second contribution,
in Sect. 3.3, based on the fixpoint algorithm, we synthesize the optimal strate-
gies (one per order considered). In particular, we show that positional strategies
suffice when considering the lexicographic order, although memory is needed in
the componentwise case. Finally, in Sect. 4, we focus on the natural decision
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problem associated with our model: the constrained existence problem. Given a
two-player multi-weighted reachability game and a cost profile x, the answer to
the constrained existence problem is positive when there exists a strategy of P1

that ensures x. In the lexicographic case, we show that the problem belongs to
PTime; although it turns to be PSpace-complete in the componentwise case.

The detailed proofs are provided in the full version of the article [2].

Related Work. Up to our knowledge, and quite surprisingly, two-player multi-
weighted reachability games, as defined in this paper, were not studied before.
Nevertheless, a one-player variant known as multi-constrained routing is known
to be NP-complete and exact and approximate algorithms are, for example,
provided in [11]. The time complexity of their exact algorithm matches our
results since it runs in exponential time and they indicate that it is pseudo-
polynomial if d = 2. The one-player setting is also studied in timed automata [10].

If we focus on two-player settings, another closely related model to multi-
weighted reachability games is the one studied in [7]. The authors consider two-
player generalized (qualitative) reachability games. In this setting P1 wants to
reach several target sets in any order but does not take into account the cost
of achieving that purpose. They prove that deciding the winner in such a game
is PSpace-complete. Moreover, they discuss the fact that winning strategies
need memory. The memory is used in order to remember which target sets have
already been reached. In our setting, we assume that there is only one target
set but that the cost to reach it depends on the dimension. Memory is needed
because we have to take into consideration the partial sum of weights up to now
in order to make the proper choices in the future to ensure the required cost
profile. Notice that if we would like to study the case where each dimension has
its own target set, both types of memory would be needed.

If we consider other objectives than reachability, we can mention different
works on multi-dimentional energy and mean-payoff objectives [3,5,8]. More-
over, in [1], they prove that the Pareto frontier in a multi-dimensional mean-
payoff game is definable as a finite union of convex sets obtained from linear
inequations. The authors also provide a ΣP

2 algorithm to decide if this set inter-
sects a convex set defined by linear inequations.

Lexicographic preferences are used in stochastic games with lexicographic
(qualitative) reachability-safety objectives [4]. The authors prove that lexico-
optimal strategies exist but require finite-memory in order to know on which
dimensions the corresponding objective is satisfied or not. They also provide an
algorithm to compute the best ensured value and compute lexico-optimal strate-
gies thanks to different computations of optimal strategies in single-dimensional
games. Finally, they show that deciding if the best ensured value is greater than
or equal to a tuple x is PSpace-hard and in NExpTime ∩ co-NExpTime.
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2 Preliminaries

2.1 Two-Player Multi-weighted Reachability Games

Weighted Arena. We consider games that are played on an (weighted) arena
by two players: P1 and P2. An arena Ad is a tuple (V1, V2, E,w) where (i)
(V = V1 ∪ V2, E) is a graph such that vertices Vi for i ∈ {1, 2} are owned by
Pi and V1 ∩ V2 = ∅ and (ii) w : E −→ N

d is a weight function which assigns d
natural numbers to each edge of the graph. The variable d is called the number
of dimensions. For all 1 ≤ i ≤ d, we denote by wi, with wi : E −→ N, the
projection of w on the ith component, i.e., for all e ∈ E, if w(e) = (n1, . . . , nd)
then, wi(e) = ni. We define W as the largest weight that can appear in the
values of the weight function, i.e., W = max{wi(e) | 1 ≤ i ≤ d and e ∈ E}.

Each time we consider a tuple x ∈ Xd for some set X, we write it in bold
and we denote the ith component of this tuple by xi. Moreover, we abbreviate
the tuples (0, . . . , 0) and (∞, . . . ,∞) by 0 and ∞ respectively.

Plays and Histories. A play (resp. history) in Ad is an infinite (resp. finite)
sequence of vertices consistent with the structure of the associated arena Ad,
i.e., if ρ = ρ0ρ1 . . . is a play then, for all n ∈ N, ρn ∈ V and (ρn, ρn+1) ∈ E. A
history may be formally defined in the same way. The set of plays (resp. histories)
are denoted by PlaysAd

(resp. HistAd). When the underlying arena is clear from
the context we only write Plays (resp. Hist). We also denote by Hist1 the set
of histories which end in a vertex owned by P1, i.e., Hist1 = {h = h0h1 . . . hn |
h ∈ Hist and hn ∈ V1}. For a given vertex v ∈ V , the sets Plays(v), Hist(v),
Hist1(v) denote the sets of plays or histories starting in v. Finally, for a history
h = h0 . . . hn, the vertex hn is denoted by Last(h) and |h| = n is the length of h.

Multi-weighted Reachability Games. We consider multi-weighted reacha-
bility games such that P1 has a target set that he wants to reach from a given
initial vertex. Moreover, crossing edges on the arena implies the increasing of
the d cumulated costs for P1. While in 1-weighted reachability game P1 aims at
reaching his target set as soon as possible (minimizing his cost), in the general
d-weighted case he wants to find a trade-off between the different components.

More formally, F ⊆ V which is a subset of vertices that P1 wants to reach
is called the target set of P1. The cost function Cost : Plays −→ N

d
of P1

provides, given a play ρ, the cost of P1 to reach his target set F along ρ.1 This
cost corresponds to the sum of the weight of the edges, component by component,
until he reaches F or is equal to ∞ for all components if it is never the case. For
all 1 ≤ i ≤ d, we denote by Costi : Plays −→ N, the projection of Cost on the
ith component. Formally, for all ρ = ρ0ρ1 . . . ∈ Plays:

Costi(ρ) =

{∑�−1
n=0 wi(ρn, ρn+1) if � is the least index such that ρ� ∈ F

∞ otherwise

1 Where the following notation is used: N = N∪{∞}.
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and Cost(ρ) = (Cost1(ρ), . . . ,Costd(ρ)) is called a cost profile.
If h = h0 . . . h� is a history, Cost(h) =

∑�−1
n=0 w(hn, hn+1) is the accumulated

costs, component by component, along the history. We assume that Cost(v) = 0,
for all v ∈ V .

Definition 1 (Multi-weighted reachability game). Given a target set F ⊆
V , the tuple Gd = (Ad,F,Cost) is called a d-weighted reachability game, or more
generally a multi-weighted reachability game.

In a d-weighted reachability game Gd = (Ad,F,Cost), an initial vertex v0 ∈
V is often fixed and the game (Gd, v0) is called an initialized multi-weighted
reachability game. A play (resp. history) of (Gd, v0) is a play (resp. history) of
Ad starting in v0.

In the rest of this document, for the sake of readability we write (initialized)
game instead of (initialized) d-weighted reachability game.

v0

v1

v2

v3

v4

v5

(4, 2)

(2, 4)

v6

v7

v8

v9

v10

(4, 2)

(2, 4)

Fig. 1. Example of the arena A2 of a game G2. The target set is F = {v9} and the
weight function is given by the label of the edges. Edges without label have a weight of
(1, 1). The dotted rectangle is a restriction of the arena specifically used in Example 2.

Example 1. We consider as a running example the game G2 such that its arena
A2 = (V1, V2, E,w) is depicted in Fig. 1. In this example the set of vertices of P1

(resp. P2) are depicted by rounded (resp. rectangular) vertices and the vertices
that are part of the target set are doubly circled/framed. The weight function
w labels the corresponding edges. We follow those conventions all along this
document. Here, V1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9}, V2 = {v0, v10}, F = {v9}
and, for example, w(v0, v2) = (2, 4). For all edges without label, we assume that
the weight is (1, 1), e.g., w(v3, v4) = (1, 1). Do not pay attention to the dotted
rectangle for the moment.

Let us now study the cost profiles of two different plays. First, the play ρ =
v0v1v4v6v

ω
9 has a cost profile of Cost(ρ) = (4, 2)+(1, 1)+(4, 2)+(1, 1) = (10, 6)

since ρ visits F in v9. Moreover, Cost1(ρ) = 10 and Cost2(ρ) = 6. Second, the
play ρ′ = v0v3(v5v8)ω has a cost profile of (∞,∞) since it does not reach F.

Strategies. A strategy of player i, i ∈ {1, 2}, provides the next action of Pi.
Formally, a strategy of Pi from a vertex v is a function σi : Histi(v) −→ V
such that for all h ∈ Histi(v), (Last(h), σi(h)) ∈ E. We denote by Σv

i the set of
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strategies of Pi from v ∈ V . Notice that in an initialized game (Gd, v0), unless
we specify something else, we assume that the strategies are defined from v0.

Moreover, given two strategies σ1 of P1 and σ2 of P2, there is only one play
which is consistent with (σ1, σ2) from v0. This play is called the outcome of
(σ1, σ2) from v0 and is denoted by 〈σ1, σ2〉v0 .

We differentiate two classes of strategies: positional strategies and finite-
memory strategies. A positional strategy σi only depends on the last vertex of
the history, i.e., for all h, h′ ∈ Histi, if Last(h) = Last(h′) then, σi(h) = σi(h′).
It is finite-memory if it can be encoded by a finite-state machine.

Partial Orders. Given two cost profiles x and y in N
d
, P1 should be able to

decide which one is the most beneficial to him. In order to do so, we consider
two partial orders in the rest of this document: the componentwise order and
the lexicographic order.

We recall some related definitions. A partial order on X is a binary relation
� ⊆ X × X which is reflexive, antisymmetric and transitive. The strict partial
order < associated with it is given by x < y if and only if x � y and x �= y,
for all x, y ∈ X. A partial order is called a total order if and only if for all
x, y ∈ X, x � y or y � x. Given a set X ′ ⊆ X, the set of minimal elements of
X ′ with respect to � is given by minimal(X ′) = {x ∈ X ′ | if y ∈ X ′ and y �
x, then x = y}. Moreover, the upward closure of X ′ with respect to � is the
set ↑ X ′ = {x ∈ X | ∃y ∈ X ′ st. y � x}. A set X ′ is said upward closed if
↑ X ′ = X ′.

In what follows we consider two partial orders on N
d
. The lexicographic order,

denoted by ≤L, is defined as follows: for all x,y ∈ N
d
, x≤L y if and only if either

(i) xi = yi for all i ∈ {1, . . . , d} or (ii) there exists i ∈ {1, . . . , d} such that xi < yi

and for all k < i, xk = yk. The componentwise order, denoted by ≤C, is defined
as: for all x,y ∈ N

d
, x≤C y if and only if for all i ∈ {1, . . . , d}, xi ≤ yi. Although

the lexicographic order is a total order, the componentwise order is not.

2.2 Studied Problems

We are now able to introduce the different problems that are studied in this
paper: the ensured values problem and the constrained existence problem.

Ensured Values. Given a game Gd and a vertex v, we define the ensured values
from v as the cost profiles that P1 can ensure from v whatever the behavior of P2.
We denote the set of ensured values from v by Ensure�(v), i.e., Ensure�(v) =

{x ∈ N
d | ∃σ1 ∈ Σv

1 st. ∀σ2 ∈ Σv
2 ,Cost(〈σ1, σ2〉v) � x}. Moreover, we say that

a strategy σ1 of P1 from v ensures the cost profile x ∈ N
d

if for all strategies σ2

of P2 from v, we have that Cost(〈σ1, σ2〉v) � x.
We denote by minimal(Ensure�(v)) the set of minimal elements of

Ensure�(v) with respect to �. If � is the lexicographic order, the set of minimal
elements of Ensure≤L(v) with respect to ≤L is a singleton, as ≤L is a total order,
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and is called the upper value from v. We denote it by Val(v). On the other hand,
if � is the componentwise order, the set of minimal elements of Ensure≤C(v) with
respect to ≤C is called the Pareto frontier from v and is denoted by Pareto(v).

Definition 2 (Ensured Values Problems). Let (Gd, v0) be an initialized
game. Depending on the partial order, we distinguish two problems: (i) com-
putation of the upper value, Val(v0), and (ii) computation of the Pareto
frontier, Pareto(v0).

Theorem 1. Given an initialized game (Gd, v0),

1. The upper value Val(v0) can be computed in polynomial time.
2. The Pareto frontier can be computed in exponential time.
3. If d is fixed, the Pareto frontier can be computed in pseudo-polynomial time.

Statement 1 is obtained by Theorem 3, Statements 2 and 3 are proved by
Theorem 4.

A strategy σ1 of P1 from v is said Pareto-optimal from v if σ1 ensures x
for some x ∈ Pareto(v). If we want to explicitly specify the element x of the
Pareto frontier which is ensured by the Pareto-optimal strategy we say that the
strategy σ1 is x-Pareto-optimal from v. Finally, a strategy σ1 of P1 from v is
said lexico-optimal if it ensures the only x ∈ Val(v).

In Sect. 3.3, we show how to obtain (i) a x-Pareto-optimal strategy from
v0 for each x ∈ Pareto(v0) and (ii) a lexico-optimal strategy from v0 which is
positional. Notice that, as in Example 2, Pareto-optimal strategies sometimes
require finite-memory.

Constrained Existence. We are also interested in deciding, given a cost profile
x, whether there exists a strategy σ1 of P1 from v0 that ensures x. We call this
decision problem the constrained existence problem (CE problem).

Definition 3 (Constrained Existence Problem – CE Problem). Given
an initialized game (Gd, v0) and x ∈ N

d, does there exist a strategy σ1 ∈ Σv0
1

such that for all strategies σ2 ∈ Σv0
2 , Cost(〈σ1, σ2〉v0) � x?

The complexity results of this problem are summarized in the following the-
orem which is restated and discussed in Sect. 4.

Theorem 2. If � is the lexicographic order, the CE problem is solved in PTime.
If � is the componentwise order, the CE problem is PSpace-complete.

We conclude this section by showing that memory may be required by P1 in
order to ensure a given cost profile.

Example 2. We consider the game such that its arena is a restriction of the arena
given in Fig. 1. This restricted arena is inside the dotted rectangle. For clarity,
we assume that the arena is only composed by vertices v0, v1, v2, v4, v6, v7 and
v9 and their associated edges. We prove that with the componentwise order ≤C,
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memory for P1 is required to ensure the cost profile (8, 8). There are only two
positional strategies of P1: σ1 defined such that σ1(v4) = v6 and τ1 defined such
that τ1(v4) = v7. For all the other vertices, P1 has no choice. With σ1, if P2

chooses v1 from v0, the resulting cost profile is (10, 6). In the same way, with
τ1, if P2 chooses v2 from v0, the resulting cost profile is (6, 10). This proves that
P1 cannot ensure (8, 8) from v0 with a positional strategy. This is nevertheless
possible if P1 plays a finite-memory strategy. Indeed, by taking into account the
past choice of P2, P1 is able to ensure (8, 8): if P2 chooses v1 (resp. v2) from v0
then, P1 should choose v7 (resp. v6) from v4 resulting in a cost profile of (8, 8)
in both cases.

3 Ensured Values

This section is devoted to the computation of the sets minimal(Ensure�(v)) for
all v ∈ V . In Sect. 3.1, we provide a fixpoint algorithm which computes these
sets. In Sect. 3.2, we study the time complexity of the algorithm both for the
lexicographic and the componentwise orders. Finally, in Sect. 3.3, we synthesize
lexico and Pareto-optimal strategies.

3.1 Fixpoint Algorithm

Our algorithm that computes the sets minimal(Ensure�(v)) for all v ∈ V shares
the key idea of some classical shortest path algorithms. First, for each v ∈ V ,
we compute the set of cost profiles that P1 ensures from v in k steps. Then,
once all these sets are computed, we compute the sets of cost profiles that can
be ensured by P1 from each vertex but in k + 1 steps. And so on, until the sets
of cost profiles are no longer updated, meaning that we have reached a fixpoint.

For each k ∈ N and each v ∈ V , we define the set Ensurek(v) as the set of
cost profiles that can be ensured by P1 within k steps. Formally, Ensurek(v) =
{x ∈ N

d | ∃σ1 ∈ Σv
1 st. ∀σ2 ∈ Σv

2 ,Cost(〈σ1, σ2〉v) � x ∧ |〈σ1, σ2〉v|F ≤ k}2,
where for all ρ = ρ0ρ1 . . . ∈ Plays, |ρ|F = k if k is the least index such that
ρk ∈ F and |ρ|F = −∞ otherwise.

Notice that the sets Ensurek(v) are upward closed and that they are infi-
nite sets except if Ensurek(v) = {∞}. This is the reason why, in the algorithm,
we only store sets of minimal elements denoted by Ik(v). Thus, the correct-
ness of the algorithm relies on the property that for all k ∈ N and all v ∈ V ,
minimal(Ensurek(v)) = Ik(v).

The fixpoint algorithm is provided by Algorithm 1 in which, if X is a set
of cost profiles, and v, v′ ∈ V , X + w(v, v′) = {x + w(v, v′) | x ∈ X}. For the
moment, do not pay attention to Lines 10 to 13, we come back to them later.

Example 3. We now explain how the fixpoint algorithm runs on Example 1.
Table 1 represents the fixpoint of the fixpoint algorithm both for the lexico-
graphic and componentwise orders. Remark that the fixpoint is reached with
2 To lighten the notations, we omit the mention of � in subscript.
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Algorithm 1: Fixpoint algorithm
1 for v ∈ F do I0(v) = {0}
2 for v �∈ F do I0(v) = {∞}
3

4 repeat
5 for v ∈ V do

6 if v ∈ F then Ik+1(v) = {0}
7

8 else if v ∈ V1 then

9 Ik+1(v) = minimal

⎛
⎝ ⋃

v′∈Succ(v)

↑ Ik(v′) + w(v, v′)

⎞
⎠

10 for x ∈ Ik+1(v) do

11 if x ∈ Ik(v) then fk+1
v (x) = fk

v (x)
12 else

13 fk+1
v (x) = (v′,x′) where v′ and x′ are such that

v′ ∈ Succ(v), x = x′ + w(v, v′) and x′ ∈ Ik(v′)
14

15 else if v ∈ V2 then

16 Ik+1(v) = minimal

⎛
⎝ ⋂

v′∈Succ(v)

↑ Ik(v′) + w(v, v′)

⎞
⎠

17 until Ik+1(v) = Ik(v) for all v ∈ V

Table 1. Fixpoint of the fixpoint algorithm reached at step k∗ = 4.

� v0 v1,v2 v3 v4 v5 v6,v7,v10 v8 v9

I∗(·) ≤L {(8, 8)} {(4, 6)} {(4, 4)} {(3, 5)} {(3, 3)} {(1, 1)} {(2, 2)} {(0, 0)}
≤C {(8, 8)} {(6, 4), (4, 6)} {(4, 4)} {(5, 3), (3, 5)} {(3, 3)} {(1, 1)} {(2, 2)} {(0, 0)}

k∗ = 4, while the algorithm takes one more step in order to check that
I4(v) = I5(v) for all v ∈ V . We only focus on some relevant steps of the algorithm
with the componentwise order ≤C.

Let us first assume that the first step is computed and is such that I1(v9) =
{(0, 0)} since v9 ∈ F, I1(v) = {(1, 1)} if v ∈ {v6, v7, v10} and I1(v) = {(∞,∞)}
for all other vertices. We now focus on the computation of I2(v4). By Algorithm 1,
I2(v4) = minimal(↑ I1(v6) + (4, 2)∪ ↑ I1(v7) + (2, 4)) = minimal(↑ {(5, 3)}∪ ↑
{(3, 5)}) = {(5, 3), (3, 5)}.

We now assume: I3(v0) = {(∞,∞)}, I3(v1) = I3(v2) = I3(v3) =
{(4, 6), (6, 4)}, I3(v4) = {(5, 3), (3, 5)} and I3(v5) = {(3, 3)}. We compute I4(v0)
which is equal to minimal(↑ {(4, 6), (6, 4)} + (4, 2)∩ ↑ {(4, 6), (6, 4)} + (2, 4)∩ ↑
{(4, 6), (6, 4)} + (1, 1)) = minimal(↑ {(8, 8), (10, 6)}∩ ↑ {(6, 10), (8, 8)}∩ ↑
{(5, 7), (7, 5)}) = minimal(↑ {(8, 8)}∩ ↑ {(5, 7), (7, 5)}) = {(8, 8)}. Finally,
we compute I4(v3) = minimal(↑ {(6, 4), (4, 6)}∪ ↑ {(4, 4)}) = minimal({(6, 4),
(4, 6), (4, 4)}) = {(4, 4)}.
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Termination. We focus on the termination of the fixpoint algorithm.

Proposition 1. The fixpoint algorithm terminates in less than |V | + 1 steps.

The proof of this proposition relies on Propositions 2 and 3. Proposition 2
is interesting on its own. It states that if there exists a strategy σ1 of P1 which
ensures a cost profile x ∈ N

d from v ∈ V then, there exists another strategy σ′
1

of P1 which also ensures x from v but such that the number of edges between
v and the first occurrence of a vertex in F is less than or equal to |V |, and this
regardless of the behavior of P2.

Proposition 2. Given a game Gd, a vertex v ∈ V and a cost profile x ∈ N
d,

if there exists a strategy σ1 of P1 such that for all strategies σ2 of P2 we have
that Cost(〈σ1, σ2〉v) � x then, there exists σ′

1 of P1 such that for all σ2 of P2

we have: (i) Cost(〈σ′
1, σ2〉v) � x and (ii) |〈σ′

1, σ2〉v|F ≤ |V |.
The strategy σ′

1 is obtained by adequately removing cycles formed by the
strategy σ1. Let us point out that Proposition 2 does not imply that σ′

1 is posi-
tional. Indeed, in Example 2, the finite-memory strategy is the only strategy that
ensures the cost profile (8, 8), it satisfies conditions (i) and (ii) of Proposition 2
but requires memory.

Proposition 3. We have: (i) for all k ∈ N and for all v ∈ V , Ensurek(v) ⊆
Ensurek+1(v); and (ii) there exists k∗ ≤ |V |, such that for all v ∈ V and for all
� ∈ N, Ensurek∗+�(v) = Ensurek∗

(v).

Properties stated in Proposition 3 hold by definition of Ensurek(v) and
Proposition 2. Moreover, the step k∗ is a particular step of the algorithm that
we call the fixpoint of the algorithm. Notice that even if the fixpoint is reached
at step k∗, the algorithm needs one more step in order to check that the fixpoint
is reached. In the remaining part of this document, we write Ensure∗(v) (resp.
I∗(v)) instead of Ensurek∗

(v) (resp. Ik
∗
(v)).

Correctness. The fixpoint algorithm (Algorithm 1) exactly computes the sets
minimal(Ensure�(v)) for all v ∈ V , i.e., for all v ∈ V , minimal(Ensure�(v)) =
I∗(v). This is a direct consequence of Proposition 4.

Proposition 4. For all k ∈ N and all v ∈ V , minimal(Ensurek(v)) = Ik(v).

3.2 Time Complexity

In this section we provide the time complexity of the fixpoint algorithm. The
algorithm runs in polynomial time for the lexicographic order and in exponential
time for the componentwise order. In this latter case, if d is fixed, the algorithm
is pseudo-polynomial, i.e., polynomial if the weights are encoded in unary.

Theorem 3. If � is the lexicographic order, the fixpoint algorihtm runs in time
polynomial in |V | and d.
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Theorem 4. If � is the componentwise order, the fixpoint algorithm runs in
time polynomial in W and |V | and exponential in d.

Theorem 3 relies on the fact that Line 9 and Line 16 can be performed in
polynomial time. Indeed, in the lexicographic case, for all k ∈ N and all v ∈ V ,
Ik(v) is a singleton. Thus these operations amounts to computing a minimum or
a maximum between at most |V | values. Theorem 4 can be obtained thanks to
representations of upward closed sets and operations on them provided in [6].

3.3 Synthesis of Lexico-Optimal and Pareto-Optimal Strategies

To this point, we have only explained the computation of the ensured values
and we have not yet explained how lexico and Pareto-optimal strategies are
recovered from the algorithm. This is the reason of the presence of Lines 10
to 13 in Algorithm 1. Notice that in Line 13, we are allowed to assume that
x′ is in Ik(v′) instead of ↑ Ik(v′) because for all k ∈ N, for all v ∈ V1\F,
Ik+1(v) = minimal

(⋃
v′∈Succ(v) Ik(v) + w(v, v′)

)
.

Roughly speaking, the idea behind the functions fk
v is the following. At each

step k ≥ 1 of the algorithm and for all vertices v ∈ V1\F, we have computed
the set Ik(v). At that point, we know that given x ∈ Ik(v), P1 can ensure a cost
profile of x from v in at most k steps. The role of the function fk

v is to keep
in memory which next vertex, v′ ∈ Succ(v), P1 should choose and what is the
cost profile x′ = x − w(v, v′) which is ensured from v′ in at most k − 1 steps. If
different such successors exist one of them is chosen arbitrarily.

In other words, fk
v provides information about how P1 should behave locally

in v if he wants to ensure one of the cost profile x ∈ Ik(v) from v in at most k
steps. In this section, we explain how, from this local information, we recover a
global strategy which is x-Pareto optimal from v (resp. lexico-optimal from v)
for some v ∈ V and some x ∈ I∗(v)\{∞}, if � is the componentwise order (resp.
the lexicographic order).

We introduce some additional notations. Since for all k ∈ N and all v ∈ V ,
fk

v : Ik(v) −→ V × N
d
, if (v′,x′) = fk

v (x) for some x ∈ Ik(v) then, we write
fk

v (x)[1] = v′ and fk
v (x)[2] = x′. Moreover, for all v ∈ V , we write f∗

v instead
of fk∗

v . Finally, if X is a set of cost profiles, min≤L(X) = {x ∈ X | ∀y ∈
X, (y≤L x =⇒ y = x)}.

For all u ∈ V and all c ∈ I∗(u)\{∞}, we define a strategy σ∗
1 ∈ Σu

1 . The
aim of this strategy is to ensure c from u by exploiting the functions f∗

v . The
intuition is as follows. If the past history is hv with v ∈ V1, P1 has to take
into account the accumulated partial costs Cost(hv) up to v in order the make
adequately his next choice to ensure c at the end of the play. For this reason, he
selects some x ∈ I∗(v) such that x � c − Cost(hv) and follows the next vertex
dictated by f∗

v (x)[1].
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Definition 4. Given u ∈ V and c ∈ I∗(u)\{∞}, we define a strategy σ∗
1 ∈ Σu

1

such that for all hv ∈ Hist1(u), let C(hv) = {x′ ∈ I∗(v) | x′ � c − Cost(hv) ∧
x′ ≤L c − Cost(hv)},

σ∗
1(hv) =

{
v′ for some v′ ∈ Succ(v), if C(hv) = ∅
f∗

v (x)[1] where x = min≤L C(hv), if C(hv) �= ∅ .

Remark 1. For some technical issues, when we have to select a representative in
a set of incomparable elements, the ≤L order is used in the definitions of C(hv)
and of the strategy. Nevertheless, Definition 4 holds both for the lexicographic
and the componentwise orders.

For all u ∈ V and c ∈ I∗(u)\{∞}, the strategy σ∗
1 defined in Definition 4

ensures c from u. In particular, σ∗
1 is lexico-optimal and c-Pareto-optimal from

u.

Theorem 5. Given u ∈ V and c ∈ I∗(u)\{∞}, the strategy σ∗
1 ∈ Σu

1 defined in
Definition 4 is such that for all σ2 ∈ Σu

2 , Cost(〈σ∗
1 , σ2〉u) � c.

Although the strategy defined in Definition 4 is a lexico-optimal strategy
from u, it requires finite-memory. However, for the lexicographic order, positional
strategies are sufficient.

Proposition 5. If � is the lexicographic order, for u ∈ V and c ∈ I∗(u)\{∞},
the strategy ϑ∗

1 defined as: for all hv ∈ Hist1(u), ϑ∗
1(hv) = f∗

v (x)[1] where x is
the unique cost profile in I∗(v), is a positional lexico-optimal strategy from u.

4 Constrained Existence

Finally, we focus on the constrained existence problem (CE problem).

Theorem 6. If � is the lexicographic order, the CE problem is solved in PTime.

Theorem 6 is immediate since, in the lexicographic case, we can compute the
upper value Val(v0) in polynomial time (Theorem 3).

Theorem 7. If � is the componentwise order, the CE problem is PSpace-
complete.

PSpace-easiness. Proposition 2 allows us to prove that the CE problem with
the componentwise order is in APTime. The alternating Turing machine works
as follows: all vertices of the game owned by P1 (resp. P2) correspond to dis-
junctive states (resp. conjunctive states). A path of length |V | is accepted if and
only if, (i) the target set is reached along that path and (ii) the sum of the
weights until an element of the target set is ≤C x. If such a path exists, there
exists a strategy of P1 that ensures the cost profile x. This procedure is done in
polynomial time and since APTime = PSpace, we get the result.
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PSpace-hardness. The hardness part of Theorem 7 is based on a polyno-
mial reduction from the Quantified Subset-Sum problem, proved PSpace-
complete [12, Lemma 4]. This problem is defined as follows. Given a set of
natural numbers N = {a1, . . . , an} and a threshold T ∈ N, we ask if the formula
Ψ = ∃x1 ∈ {0, 1} ∀x2 ∈ {0, 1} ∃x3 ∈ {0, 1} . . . ∃xn ∈ {0, 1},

∑
1≤i≤n xiai = T is

true.
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Abstract. We study the computational complexity of a robust version
of the problem of testing two univariate C-finite functions for eventual
inequality at large times. Specifically, working in the bit-model of real
computation, we consider the eventual inequality testing problem for real
functions that are specified by homogeneous linear Cauchy problems with
arbitrary real coefficients and initial values. In order to assign to this
problem a well-defined computational complexity, we develop a natural
notion of polynomial-time decidability of subsets of computable metric
spaces which extends our recently introduced notion of maximal partial
decidability. We show that eventual inequality of C-finite functions is
polynomial-time decidable in this sense.

1 Introduction

Linear dynamical systems capture the evolution of a wide range of real-world
systems of interest in physics, biology, economics, and other natural sciences.
In computing, they arise in connection with questions such as loop termina-
tion, model checking, and probabilistic or quantum computation. Unsurprisingly,
questions surrounding decidability of liveness and safety properties of such sys-
tems have a long history in theoretical computer science, dating back at least to
the mid-1970s with the work of Berstel and Mignotte [6] on decidable properties
of the zero sets of linear recurrence sequences – a line of research that itself
goes back at least to the beginning of the 20th century, as exhibited by Skolem’s
famous structural result of 1934. A simple-looking but notoriously difficult open
problem in this area is the so-called Positivity Problem [23]: decide whether a
given linear recurrence sequence or C-finite function is positive. The Positivity
Problem is known to be decidable for linear recurrences of order up to five, but
known to likely fall outside the scope of current techniques for recurrences of
order six or higher [21]. The situation is better for simple linear recurrences,
where Positivity is known to be decidable up to order nine [20] and Ultimate
Positivity – to decide if a recurrence sequence is eventually positive – is known
to be decidable for all orders [22]. Similar results have been obtained for the
continuous-time analogues of these problems for C-finite functions [5,9,10].

Recently, there has been increased interest in the study of robust reachability
questions for linear dynamical systems: in [2], point-to-point reachability for
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linear systems with rounded orbits is studied. In [11], a version of the Skolem
Problem (to decide whether a recurrence sequence has a zero), where arbitrarily
small perturbations are performed after each step of the iteration, is shown to
be decidable. Most notably, in [1] two robust versions of the Positivity Problem
are studied: in the first version, one is given a fixed rational linear recurrence
equation and a rational ball of initial values and asked to decide whether the
linear recurrence is positive for all initial values in the ball. In the second version,
one is given a linear recurrence equation and a single vector of initial values
and asked if there exists a ball about the initial values such that all sequences
satisfying the equation with initial values in the ball are positive. The second
version is shown to be decidable in polynomial space, while the first version is
shown to be at least as hard as the standard Positivity Problem. Both results
are shown to hold true also for analogous versions of the Skolem Problem.

We recently proposed [17] another natural robust variant of the Positivity
Problem based on computable analysis. Computable analysis [7,29] is the study
of computation on data that is in general not known exactly but can be mea-
sured to arbitrary accuracy. Algorithms are provided infinitary objects as inputs
via streams of increasingly accurate approximations. This allows one to provide
arbitrary real numbers (as opposed to “efficiently discrete” countable subsets
of real numbers such as rational or algebraic numbers) as inputs to algorithms.
Here, robustness is built into the definition of computation, for any decision that
an algorithm makes can only depend on a finite approximation to its input. See
[17] for further motivation.

We showed that the Positivity Problem and the Ultimate Positivity Problem
for linear recurrences with arbitrary real parameters are maximally partially
decidable (see below for a definition). In this paper we improve one of these
results by showing that the Ultimate Inequality Problem for C-finite functions
which are specified by arbitrary real parameters is maximally partially decidable
in polynomial time. This is a significant improvement over our previous decid-
ability result, which requires exponentially many queries to the theory of the
reals. The focus on the continuous-time setting is mainly for the sake of vari-
ety. Our results apply, mutatis mutandis, to linear recurrence sequences as well.
More concretely, we consider functions that are specified by homogeneous linear
differential equations

f (n)(t) + cn−1f
(n−1)(t) + · · · + c1f

(1)(t) + c0f(t) = 0 (1)

with constant coefficients c0, . . . , cn−1 ∈ R and initial values f (k)(0) = uk ∈ R,
k = 0, . . . , n − 1. Functions of this type are also called C-finite. The Ultimate
Inequality Problem1 is to decide, given (c, u, d, v) ∈ R

2n×R
2m if there exists t0 >

1 Over discrete inputs, the Ultimate Inequality Problem reduces to the Ultimate Posi-
tivity Problem, i.e., the special case of Ultimate Inequality where the second function
is identically equal to zero. However, the standard reduction maps robust instances
of Ultimate Inequality to non-robust instances of Ultimate Positivity, which is why
we consider Ultimate Inequality instead. For the same reason, we cannot assume
without loss of generality that n = m in the definition of the Ultimate Inequality
Problem.
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0 such that the function f satisfying the differential Eq. (1) with coefficients c and
initial values f (k)(0) = uk is greater than or equal to the function g satisfying an
equation analogous to (1) with coefficient vector d and initial values g(k)(0) = vk

for all t ≥ t0. Thus, we admit functions as inputs that are specified by Cauchy
problems with arbitrary real coefficients and initial values. Computation on such
objects can be defined using computable metric spaces [8]. A computable metric
space is a separable metric space (X, d) together with a dense sequence (xk)k

and a computable map δ : N3 → Q such that |δ(k, �, n) − d(xk, x�)| < 2−n. A
point x ∈ X can be provided as an input to an algorithm in the form of an
infinite sequence (kn)n of integers such that |x − xkn

| < 2−n. A sequence (kn)n

with this property is called a name2 of x.
The prototypical example of a computable metric space is the space R of real

numbers with the usual Euclidean distance, where (xk)k is a suitable enumera-
tion of the rational numbers. The computability of the map δ ensures that the
distance function d : X × X → R is computable when R is given this structure
of computable metric space.

Since an algorithm can only read a finite approximation to its input before
committing to a decision, connected computable metric spaces do not have any
non-trivial decidable subsets. For this reason, decision problems have arguably
been somewhat neglected by the computable analysis community in the past.
In order to extend the definition of decidability from N to arbitrary computable
metric spaces in a more meaningful way, we proposed [17] the following notion:

Let A ⊆ X be a subset of a computable metric space X. A partial algorithm
for deciding A is an algorithm that takes as input (a name of) a point x ∈
X and either halts and outputs a boolean value or runs indefinitely. Should
the algorithm halt on an input x, it is required to correctly report whether x
belongs to A. A maximal partial algorithm for deciding A is a partial algorithm
for deciding A which halts on all names of all points x ∈ X \ ∂A. If there
exists a maximal partial algorithm for deciding A, then A is called maximally
partially decidable. A point in X \ ∂A is also called a robust instance of A,
while a point in ∂A is called a boundary instance of A. A maximal partial
algorithm for deciding a set A can be alternatively defined as a partial algorithm
whose halting set is maximal among the halting sets of all partial algorithms for
deciding A. This motivates the name “maximal partial algorithm”. For metric
spaces X whose closed balls are compact, maximal partial decidability can be
further characterised using rational balls as inputs [17, Proposition 2.2]. This
helps clarify how maximal partial decidability compares with notions of robust
decidability proposed by other authors.

2 Note that we do not require names to be computable. In our computational model,
the algorithm is given access to the name of its input as a black box. As a conse-
quence, algorithms may operate on all points of X, not just on the computable points.
This should be distinguished from the related notion of Markov computability (see
[29, Chapter 9.6] and references therein), where algorithms operate on computable
points which are presented as Gödel numbers of Turing machines.
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In this paper, we extend the definition of maximal partial decidability to
polynomial-time decidability. For general background on computational com-
plexity in analysis, see [15]. Using second-order polynomials [14] and paramet-
rised spaces [19], the notion of “maximal partial decidability in polynomial time”
can be defined in great generality. For our present purpose, an ad-hoc definition
will suffice. We restrict ourselves to computable metric spaces X such that there
exists a function size : X → N with the property that every point x ∈ X is the
limit of a sequence (xkn

)n with |xkn
− x| < 2−n and kn ≤ size(x) + O(n). This

property is closely related to σ-compactness of X. See [25] and [16] for discus-
sions on spaces that admit size-functions of this type. We tacitly assume in the
sequel that all inputs to our algorithms are guaranteed to satisfy a size bound
of this form.

The only computable metric spaces we consider in this paper are subspaces
of countable sums of finite products of R or C. Size functions for these spaces can
easily be constructed from size functions for the spaces K

n where K ∈ {R,C}.
For the latter, we may put size ((x1, . . . , xn)) = O

(
n +

∑n
j=1 �log2(|xj | + 1)�

)
.

Let X be a computable metric space admitting a size function as above. Let
A ⊆ X be a subset of X. We say that A is maximally partially decidable in
polynomial time if there exist a polynomial P ∈ N[x] and a maximal partial
algorithm for deciding A such that given a name of a point x ∈ X \ ∂A, the
algorithm halts within at most P (size(x) − log (min {d(x, ∂A), 1})) steps (with
the convention that min{d(x, ∂A), 1} = 1 if ∂A = ∅). Observe that we recover
the definition of polynomial-time decidability of subsets of N by interpreting N

as a computable metric space with the discrete metric.
For K ∈ {R,C} and n ≥ 0, write Cn(K) = K

n × K
n. Let

�·� :
∑
n∈N

Cn(K) → C(R,K)

be the function that maps (c, u) ∈ Cn(K) to the unique solution f : R → K of the
Cauchy problem (1) with coefficient vector c and initial values u. By convention,
if n = 0, then the single element of Cn(K) represents the constant zero function.
The following is our main result:

Theorem 1. The Ultimate Inequality Problem is maximally partially decidable
in polynomial time. More precisely, given (c, u, d, v) ∈ Cn(R) × Cm(R) we can
maximally partially decide in polynomial time if �(c, u)� (t) ≥ �(d, v)� (t) for all
sufficiently large t.

As part of the proof of Theorem 1, we establish the following result of inde-
pendent interest:

Theorem 2. Equality comparison is maximally partially decidable in polyno-
mial time. More precisely, given (c, u, d, v) ∈ Cn(C) × Cm(C) we can maximally
partially decide in polynomial time if �(c, u)� 
= �(d, v)�.
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It can be proved essentially as in [17, Proposition 10.1] that the sets of bound-
ary instances of both problems above have measure zero, so that our algorithms
halt on almost every input.

2 Proof Outline

Let us briefly outline the proof of Theorem 1. For the purpose of exposition,
consider the special case of the Ultimate Positivity Problem, i.e., the special
case of Ultimate Inequality where the second function is identically equal to
zero. Formally speaking, this is the special case where the second input is an
element of C0(R), so that we know for certain that the input represents the
constant zero function.

The polynomial χc(z) = zn +cn−1z
n−1+ · · ·+c1z+c0 is called the character-

istic polynomial of (the differential equation with coefficient vector) c. The roots
of χc are also called the characteristic roots or eigenvalues of (the differential
equation with coefficient vector) c. Write σc ⊆ C for the set of all roots of χc.
The Cauchy problem (1) has a unique solution �(c, u)� : R → C, which has the
shape

�(c, u)� (t) =
∑
λ∈σc

Pλ(c, u, t)eλt =
N∑

j=1

mj−1∑
k=0

aj,ktkeλjt. (2)

The representation (2) is also called the exponential polynomial solution of (1).
A result by Bell and Gerhold [4, Theorem 2] asserts that non-zero linear

recurrence sequences without positive real characteristic roots admit positive
and negative values infinitely often. As an immediate consequence, one obtains
an analogous result for linear differential equations (see also the proof of [5,
Theorem 12]): if f satisfies a linear differential Eq. (1) where χc has no real
roots, then either f is identically zero or there exist unbounded sequences (tj)j

and (sj)j of positive real numbers with f(tj) < 0 and f(sj) > 0.
It is well-known [15, p. 117] that the roots of a polynomial can be computed

in polynomial time in the sense described above: there exists a polynomial-
time algorithm which takes as input a vector (c0, . . . , cn−1) ∈ C

n of complex
numbers and returns as output a vector (z0, . . . , zn−1) ∈ C

n of complex numbers
such that (z0, . . . , zn−1) contains all roots of the polynomial χc(z), counted with
multiplicity. Any such algorithm is necessarily multi-valued, which means that
it is allowed to return different outputs (z0, . . . , zn−1) for different names of the
same input (c0, . . . , cn−1). Of course, any two valid outputs for the same input
agree up to permutation.

It is relatively easy to see that �(c, u)� is robustly eventually positive if and
only if χc has a simple real root ρ with ρ > Re(λ) for all other roots such that
the coefficient of ρ in the exponential polynomial solution (2) is strictly positive.
We will show that we can detect this situation and in this case compute the sign
of the coefficient in polynomial time.

The case where �(c, u)� robustly fails to be eventually positive is much more
difficult. Intuitively, this can happen for two (potentially overlapping) reasons:
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A The polynomial χc has a root λ with non-zero imaginary part such that
Re(λ) > ρ for all real roots ρ of χc and the coefficient Pλ(c, u, t) in (2) is
non-zero. In this case, eventual inequality fails due to [4, Theorem 2] or the
proof of [5, Theorem 12].

B The polynomial χc has real roots and the leading coefficient of the polynomial
Pρ(c, u, t) in (2) corresponding to the largest real root ρ is strictly negative,
robustly under small perturbations of (c, u).

There is no obvious reason why either of these properties should be semi-
decidable, since the polynomials Pλ(c, u, t) do not depend continuously on c.
Indeed, the degree of Pλ(c, u, t) depends on the multiplicity of the roots of χc,
which is unstable under small perturbations. When the multiplicities of the roots
are fixed, the polynomials Pλ depend computably on the input data. For generic
initial values, the function which sends input data with fixed eigenvalue multi-
plicities to the leading coefficient of Pλ is unbounded as eigenvalues μ 
= λ are
moved towards λ. This implies that if λ has multiplicity > 2, then the leading
coefficient of Pλ will “jump discontinuously” from a finite value to an arbitrarily
large value under arbitrarily small perturbations of the input data.

More precisely, consider a vector (m1, . . . ,mN ) of positive integers with m1+
· · · + mN = n. Let Fm1,...,mN

denote the function which maps a complex vector
(λ1, . . . , λN , u0, . . . , un−1) to the leading coefficient of the polynomial Pλ1(c, u, t),
where c is the unique coefficient vector whose characteristic polynomial has roots
λ1, . . . , λN with respective multiplicities m1, . . . ,mN . The precise behaviour of
the functions Fm1,...,mN

is captured by the following result:

Theorem 3.

1. Let n ≥ 1. Let 1 ≤ m1 ≤ n. We have

Fm1,1,...,1(Λ1, Λm1+1, . . . Λn, U0, . . . , Un−1)

=
Gm1,n (Λ1, Λm1+1, . . . , Λn, U0, . . . , Un−1)

(m1 − 1)!
∏n

j=m1+1 (Λj − Λ1)
,

where

Gm1,n (λ1, λm1+1, . . . , λn, u0, . . . , un−1)

=
n∑

j=1

(−1)j+m1An,m1,j(λ1, λm1+1, . . . λn)uj−1

for integer polynomials An,m1,j ∈ Z [Λ1, Λm1+1, . . . Λn] with An,m1,n = 1.
Moreover, the polynomials An,m1,j can be evaluated on a complex vector in
polynomial time, uniformly in n, m1, and j (when these integers are given in
unary).

2. There exists a polynomial Ω ∈ N[X,Y,Z] with the following property:
Let (λ1, λm1+1, . . . , λn, u0, . . . , un−1) and (μ1, μm1+1, . . . , μn, v0, . . . , vn−1) be
complex vectors. Let C be a positive integer with



104 E. Neumann

C ≥ log (max{||u||∞ , ||v||∞ , ||λ||∞ , ||μ||∞} + 1) .
If |λj − μj | < 2−Ω(n,C,p) and |uj − vj | < 2−Ω(n,C,p) for all j, then
Gm1,n (λ1, λm1+1, . . . , λn, u0, . . . , un−1) and
Gm1,n (μ1, μm1+1, . . . , μn, v0, . . . , vn−1) have distance at most 2−p.

3. Let n ≥ 1. Let m1, . . . ,mN be positive integers with m1 + · · ·+mN = n. Then
Fm1,m2,...,mN

(Λ1, . . . , ΛN , U0, . . . , Un−1) is equal to
Fm1,1, . . . , 1︸ ︷︷ ︸

m2 times

,...,1, . . . , 1︸ ︷︷ ︸
mN times

(Λ1, Λ2, . . . , Λ2︸ ︷︷ ︸
m2 times

, . . . , ΛN , . . . , ΛN︸ ︷︷ ︸
mN times

, U0, . . . , Un−1).

The proof of Theorem 3 can be roughly outlined as follows: It is easy to see
that the coefficients in (2) satisfy a linear equation of the form

Ṽm1,...,mN
(λ1, . . . , λN ) ·

[
[aj,k]k=0,...,m1−1

]
j=1,...,N

= [uj ]j=0,...,n−1. (3)

where Ṽm1,...,mN
(λ1, . . . , λN ) is a modified generalised Vandermonde matrix. The

functions Fm1,...,mN
can be computed explicitly from the cofactor expansion of

Ṽm1,...,mN
(λ1, . . . , λN ). Full details are given in [18, Section 3].

In order to verify Condition (A) we approximate the roots of χc to finite
error 2−N . We can then identify roots λ1, . . . , λm that are guaranteed to have
non-zero imaginary part and real part larger than any real root. To verify that
one of the coefficients Pλj

(c, u, t) does not vanish, we construct the differential
equation c′ with χc′(z) = χc/

∏m
j=1(z −λj) and check that the functions �(c, u)�

and �(c′, u)� are different (to some finite accuracy). In case this check does not
succeed, we start over with increased accuracy.

Let us now sketch how to verify Condition B. We first approximate the char-
acteristic roots to error 2−N for some integer N . We identify the largest “poten-
tially real” root ρ, i.e. the root with largest real part among those roots whose
imaginary part has absolute value less than 2−N . We compute an upper bound
on the multiplicity m1 of this root. We then evaluate all “potential numerators”
Re G�,n(ρ, ρ, . . . , ρ, λm1+1, . . . , λn, u) for � = 1, . . . ,m1 as far as the accuracy of
the root approximations allows, to check if the sign of the real part of the leading
coefficient of Pρ(c, u, t) is guaranteed to be negative3. It is possible for this check
to succeed while ρ is not a real root. However, in that case Re ρ is larger than all
real roots and Pρ(c, u, t) is non-zero, so that Condition (A) is met. If the check
does not succeed we start over, increasing the accuracy to N + 1.

In the full algorithm, we run all three of the above searches simultaneously
while increasing the accuracy to which we approximate the roots. To establish
polynomial running time, we show that if our searches do not succeed after
“many” steps, then there exists a “small” perturbation of the given problem
instance which is eventually positive, and another “small” perturbation which is
not eventually positive. This is made possible mainly by the special shape of the
polynomials Gm1,n. In particular, since the coefficient of un−1 in Gm1,n is equal
to ±1, it is possible to perturb the value of Gm1,n by perturbing un−1, which does

3 If ρ is real with multiplicity � ≤ m1, then the leading coefficient of Pρ(c, u, t) has
the same sign as (−1)n−� Re G�,n (ρ, λ2, . . . , λn+1−�, u0, . . . , un−1).
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not interfere with simultaneous perturbations of the eigenvalues. If the search to
verify Condition (A) does not halt after “many” steps, the coefficients Pλ(c, u, t)
of all roots with “large” imaginary part whose real part is larger than the real
part of the largest root with “small” imaginary part can be made zero by a
“small” perturbation of4 (c, u). The precise result is as follows:

Lemma 1. Let (c, u, d, v) ∈ Cn(C) × Cm(C). Let (uj)j be the linear recurrence
sequence with initial values u and characteristic polynomial χc. Let (vj)j be the
linear recurrence sequence with initial values v and characteristic polynomial χd.
Assume that |uj − vj | < ε < 1 for j = min{n,m}, . . . , n + m. Then there exists
a perturbation (c̃, ũ, d̃, ṽ) ∈ Cn(C) × Cm(C) of (c, u, d, v) by at most

O
(
(n + m + ||c||∞ + ||d||∞ + ||u||∞)O((n+m) log(n+m))

)
ε

1
4(n+m)−2

with respect to the spectral distance, such that �(c̃, ũ)� =
�(

d̃, ṽ
)�

.

The proof to Lemma 1 is elementary, but less obvious than one might expect.
It can be extracted from a sufficiently constructive proof of the fact that if two
linear recurrences of order at most n agree in their first n terms, then they agree
everywhere. Theorem 2 follows immediately from Lemma 1. A full proof of both
results is given in [18, Section 4].

In perturbation arguments we will almost always perturb the roots of the
characteristic polynomial χc, rather than perturbing its coefficients directly. It
will therefore be useful to work with a suitable distance function. Let (c, u),
(c′, u′) ∈ K

2n. Let λ1, . . . , λn ∈ C denote the roots of χc, listed with multiplicity.
Let μ1, . . . , μn ∈ C denote the roots of χc′ , listed with multiplicity. Define the
spectral distance dσ(c, c′) of c and c′ as

dσ (c, c′) = inf
π∈Sn

max
j=1,...,n

{∣∣λj − μπ(j)

∣∣} .

The spectral distance dσ((c, u), (c′, u′)) of (c, u) ∈ Cn(K) and (c′, u′) ∈ Cn(K)
is then defined as dσ ((c, u), (c′, u′)) = ||u − u′||∞ + dσ (c, c′) .

The next proposition, proved in [18, Appendix A], shows that the running
time of an algorithm is bounded polynomially in the spectral distance to the set
of boundary instances, then it is bounded polynomially in the ordinary distance.

Proposition 1. Let c, c′ ∈ K
n with c 
= c′. Then we have:

− log dσ(c, c′) ≤ − log d(c, c′) + 2n log(n) + 2n log(max{||c||∞ , ||c′||∞}).

Theorem 3 has the following straightforward corollary, which is useful for
constructing perturbations. A proof can be found in [18, Appendix E].

Proposition 2. Let m,n1, n2 ∈ N with m ≤ n2 ≤ n1. Let λ1, . . . , λn1 , u0,. . . ,
un1−1 ∈ C. Assume that the finite sequence (uk)k satisfies the linear recurrence

4 Observe that the coefficients Pλ(c, u, t) themselves are not necessarily small, since
large coefficients for close characteristic roots could cancel each other out.
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with initial values u0, . . . , un2−1 and characteristic polynomial
∏n2

j=1(z − λj).
Then the number Gm,n1(λ1, λm+1, . . . , λn1 , u0, . . . , un1−1) is equal to

⎛
⎝

n1∏
j=n2+1

(λj − λ1)

⎞
⎠ Gm,n2(λ1, λm+1, . . . , λn2 , u0, . . . , un2−1).

3 Proof of Theorem 1

We now give the full algorithm for inequality testing:

Algorithm 1.

– Input. Two C-finite functions, specified by Cauchy problems (c, u, d, v) ∈
Cn(R) × Cm(R).

– Behaviour. The algorithm may halt and return a truth value or run indef-
initely. If the algorithm halts, it returns “true” if and only if �(c, u)� (t) ≥
�(d, v)� (t) for all sufficiently large t ≥ 0.

– Procedure.
1. Compute λ1, . . . , λn+m ∈ C such that the list λ1, . . . , λn contains all roots

of χc, and the list λn+1, . . . , λn+m ∈ C contains all roots of χd, listed with
multiplicity.

2. Compute an integer B > log (max {||u||∞ , ||v||∞ , |λ1|, . . . , |λn+m|} + 1).
3. For N ∈ N:

3.1. Let M = max{Ω (n,B,N + 1) , Ω (m,B,N + 1)}, where Ω is the
polynomial from the second item of Theorem 3.

3.2. Query the numbers λj for approximations λ̃j ∈ Q[i] with |Re(λ̃j) −
Re(λj)| < 2−M and | Im(λ̃j) − Im(λj)| < 2−M such that the polyno-

mials
∏n

j=1

(
z − λ̃j

)
and

∏n+m
j=n+1

(
z − λ̃j

)
have real coefficients.

3.3. Compute an (n + m) × (n + m)-matrix encoding the relation �M⊆
{1, . . . , n + m} which is defined as follows: j �M k if and only if
Re(λ̃j) − 2−M < Re(λ̃k) + 2−M .

3.4. Compute the sets

M1 = {k ∈ {1, . . . , n} | j �M k for all j ∈ {1, . . . , n + m}}

and

M2 = {k ∈ {n + 1, . . . , n + m} | j �M k for all j ∈ {1, . . . , n + m}} .

3.5. Initialise two Kleeneans5 c-positive? and d-positive? with value
“unknown”.

5 i.e., variables that can assume three values: true, false, and unknown.
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3.6. If |M1| = 1:
Writing M1 = {j1} and {j2, . . . , jn} = {1, . . . , n} \ {j1}, compute
an approximation to (−1)n−1G1,n(λj1 , . . . , λjn

, u0, . . . , un−1) to error
2−N−1. If the result is greater than or equal to 2−N , assign the value
true to c-positive?. If the result is less than or equal to −2−N ,
assign the value false to c-positive?.

3.7. If |M2| = 1:
Writing M2 = {k1} and {k2, . . . , kn} = {n+1, . . . , n+m}\{k1}, com-
pute an approximation to (−1)m−1G1,m(λk1 , . . . , λkn

, v0, . . . , vm−1) to
error 2−N−1. If the result is greater than or equal to 2−N , assign the
value true to d-positive?. If the result is less than or equal to −2−N ,
assign the value false to d-positive?.

3.8. If |M1| = 1, |M2| = 0, and c-positive? 
= unknown: Halt and
output the value of c-positive?.

3.9. If |M1| = 0 and |M2| = 1, and d-positive? 
= unknown: Halt and
output the negated value of d-positive?.

3.10. If |M1| = 1, |M2| = 1, and c-positive? = ¬d-positive?: Halt and
output the value of c-positive?.

3.11. Compute the set R of indexes j ∈ {1, . . . , n + m} such that Im(λ̃j) <
2−M .

3.12. Compute the sets
MR1 = {k ∈ R ∩ {1, . . . , n} | j �M k for all j ∈ R} and
MR2 = {k ∈ R ∩ {n + 1, . . . , n + m} | j �M k for all j ∈ R}.

3.13. Compute the set C = {j ∈ {1, . . . , n + m} | j 
�M k for all k ∈ R}.
3.14. If C is non-empty:

3.14.1. Compute the coefficients e ∈ R
n+m of the polynomial

χe =
∏

j∈{1,...,n+m}(z − λj).
3.14.2. Compute the first n + m terms of the sequence wj = uj − vj.
3.14.3. Compute the coefficients e′ ∈ C

� of the polynomial
χe′ =

∏
j∈{1,...,n+m}\C(z − λj).

3.14.4. Let (w′
j)j be the recurrence sequence with initial values w′

j = wj

for j = 0, . . . , � − 1 and characteristic polynomial χe′ .
3.14.5. Compute rational approximations ε̃j to εj = |wj − w′

j | for j =
�, . . . , n + m − 1 to error 2−M .

3.14.6. If ε̃j > 2−M for some j, halt and output false.
3.15. Initialise an empty list L = 〈〉.
3.16. Let m1 = |MR1|. Let m2 = |MR2|.
3.17. If m1 > 0:

3.17.1 Pick an arbitrary index j1 ∈ MR1.
3.17.2 Let {jm1+1, . . . , jn} = {1, . . . , n} \ {j1}
3.17.3 For � = 1, . . . ,m1, Compute a rational approximation α� to

(−1)n−� Re G�,n

⎛
⎜⎝λj1 , λj1 , . . . , λj1︸ ︷︷ ︸

m1−� times

, λjm1+1 , . . . , λjn
, u0, . . . , un−1

⎞
⎟⎠

to error 2−N−1. Add α� to L.
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3.18. If m2 > 0:
3.18.1 Pick an arbitrary index k1 ∈ MR2.
3.18.2 Let {km2+1, . . . , km} = {n + 1, . . . , n + m} \ {k2}
3.18.3 For � = 1, . . . ,m2, Compute a rational approximation α� to

(−1)m−�+1 Re G�,m

⎛
⎜⎝λk1 , λk1 , . . . , λk1︸ ︷︷ ︸

m2−� times

, λkm2+1 , . . . , λkm
,v

⎞
⎟⎠

to error 2−N−1. Add α� to L.
3.19. If all elements of L are strictly smaller than −2−N : halt and output

false.

Lemma 2. Algorithm 1 is correct and runs in polynomial time.

Proof. It is relatively easy to see that if Algorithm 1 halts, then it outputs the
correct result. A full proof is given in [18, Lemma 17].

Let us now show that Algorithm 1 halts in polynomial time on all robust
instances. The roots of χc and χd can be computed in polynomial time [15, p.
117]. It is relatively easy to see that each iteration of the For-loop takes polyno-
mially many steps. It therefore suffices to show that the number of iterations of
the For-loop is bounded polynomially in the negative logarithm of the spectral
distance of (c, u, d, v) to the set of boundary instances of Ultimate Inequality.

Assume that the algorithm does not halt within the first N iterations of the
For-loop. We will show that there exist polynomially controlled perturbations of
(c, u, d, v) such that one of the perturbed instances is a “Yes”-instance and the
other is a “No”-instance. Write f = �(c, u)� and g = �(d, v)�.

First consider the case where we have |M1| = 1 and |M2| = 0. In this case
we have f(t) − g(t) = F1,n(λj1 , . . . , λjn

, u0, . . . , un−1)eλj1 t + o(eλj1 t). Since the
algorithm does not halt in Step 3.8, |G1,n(λj1 , . . . , λjn

, u0, . . . , un−1)| is less than
2−N .

It follows from the definition of G1,n (Theorem 3) that there exists a perturba-
tion of un−1 by at most 2−N such that (−1)n−1G1,n(λj1 , . . . , λjn

, u0, . . . , un−1)
is strictly positive, and another perturbation by at most 2−N such that it is
strictly negative. It is easy to see that the sign of F1,n(λj1 , . . . , λjn

, u0, . . . , un−1)
is equal to that of (−1)n−1G1,n(λj1 , . . . , λjn

, u0, . . . , un−1). Hence, these pertur-
bations yield a “Yes”-instance and a “No”-instance of Ultimate Inequality. The
cases where |M1| = 0 and |M2| = 1 or |M1| = 1 and |M2| = 1 are treated
analogously.

It remains to consider the case where |M1| ≥ 2 or |M2| ≥ 2. Let us assume
without loss of generality that |M1| ≥ 2. Let us first construct the “No”-instance.
Consider the set of all λj with j ∈ M1. If this set contains only real numbers,
then the ball of radius 2−M about the largest real root of χc · χd contains at
least two real roots of χc, counted with multiplicity. It follows that there exist
perturbations c̃ and d̃ of c and d by at most 2−M such that all roots of χc̃ · χ

˜d
have non-zero imaginary part. We can further ensure that all roots of χc̃ · χ

˜d
with maximal real part are roots of χc̃. Let λ be a root of χc̃ with maximal
real part. Let Pλ ∈ C[t] denote its coefficient in the exponential polynomial
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solution of (c̃, u). Up to an arbitrarily small perturbation, Pλ is non-zero. This
induces an arbitrarily small perturbation of u by (3). It then follows from [4,
Theorem 2] or the proof of [5, Theorem 12] that �(c̃, ũ)� −

�
(d̃, v)

�
assumes

negative values at arbitrarily large times, so that (c̃, ũ, d̃, v) is a “No”-instance
of Ultimate Inequality.

Let us now construct the “Yes”-instance. Assume that the set C computed
in Step 3.14 is non-empty. Since the algorithm does not halt in Step 3.14.6, it
follows exactly like in the proof of Lemma 1 that there exists a perturbation
(c̃, ũ, d̃, ṽ) of (c, u, d, v) by at most

δ := O
(
(n + m + ||c||∞ + ||d||∞ + ||u||∞)O((n+m) log(n+m))

)
2

−M
4(n+m)−2

such that we have �(c̃, ũ)� =
∑n

j=1 Pj(t)e
˜λjt and

�
(d̃, ṽ)

�
=

∑n+m
j=n+1 Pj(t)e

˜λjt

with |Re(λj) − Re(λ̃j)| < δ, | Im(λj) − Im(λ̃j)| < δ, and Pj = 0 for all j ∈ C. In

particular, the real part of the dominant characteristic roots of �(c̃, ũ)�−
�
(d̃, ṽ)

�

is δ-close to the real part of a characteristic root whose imaginary part is at
most 2δ. Further, we can ensure that gcd(χc, χc̃) =

(∏
j∈{1,...,n}\C (z − λj)

)
and

gcd(χd, χ˜d) =
(∏

j∈{n+1,...,n+m}\C (z − λj)
)
. If C is empty, then these properties

already hold true for (c̃, ũ, d̃, ṽ) = (c, u, d, v).
Now, let c′ ∈ R

n′
and d′ ∈ R

m′
be defined by letting their characteristic poly-

nomials be χc′ =
∏

j∈{1,...,n}\C
(
z − λ̃j

)
and χd′ =

∏
j∈{n+1,...,n+m}\C

(
z − λ̃j

)
.

Define initial values u′ = (ũ0, . . . , ũn′−1) and v′ = (ṽ0, . . . , ṽm′−1). Then we have
�(c′, u′)� = �(c̃, ũ)� and �(d′, v′)� =

�(
d̃, ṽ

)�
.

Let N ′ be the largest integer with 2−max{Ω(n,B,N ′+1),Ω(m,B,N ′+1)} > δ. Then,
since Ω is a polynomial and − log δ depends polynomially on N , n, and B we have
N ′ ≥ α(n+m+B)N1/β(n+m+B) − γ(n+m+B) for polynomials α, β, γ ∈ N[x].

Observe that MR1 ∪ MR2 
= ∅. Since the algorithm does not halt, there
exists – without loss of generality – an � ∈ {1, . . . , m1} such that

(−1)n−� Re G�,n

⎛
⎜⎝λj1 , λj1 , . . . , λj1︸ ︷︷ ︸

m1−� times

, λjm1+1 , . . . , λjn
, u0, . . . , un−1

⎞
⎟⎠ ≥ −2−N ′

.

By construction, there exist λ̃j1 , λ̃j�+1 , . . . , λ̃jm1
, whose real and imaginary

parts are 2−M -close to those of λjk
, such that λ̃j1 is real and Re(λ̃j1) > Re(ν)

for all ν ∈ {λ̃j�+1 , . . . , λ̃jm1
, λjm1+1 , . . . , λjn

}. We then have that

G�,n

(
λ̃j1 , λ̃j�+1 , . . . , λ̃jm1

, λjm1+1 , . . . , λjn′ , λjn′+1
. . . , λjn

, ũ0, . . . , ũn−1

)

is greater than or equal to −2−N ′+1.
Further, up to perturbing the characteristic roots of χd′ by at most 2−M , we

can ensure that Re(λ̃j1) > Re(ν) for all characteristic roots ν of χd′ .
Up to relabelling, we may assume that C ∩ {1, . . . , n} = {jn′+1, . . . , jn}. By

Proposition 2 we have that
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G�,n

(
λ̃j1 , λ̃j�+1 , . . . , λ̃jm1

, λjm1+1 , . . . , λjn′ , λjn′+1
. . . , λjn

, ũ0, . . . , ũn−1

)

is equal to
(

n∏
k=n′+1

(
λjk

− λ̃j1

))
G�,n′

(
λ̃j1 , λ̃j�+1 , . . . , λ̃jm1

, λjm1+1 , . . . , λjn′ ũ0, . . . , ũn′−1

)

so that the number

(−1)n−�G�,n′
(
λ̃j1 , λ̃j�+1 , . . . , λ̃jm1

, λjm1+1 , . . . , λjn′ ũ0, . . . , ũn′−1

)

is greater than or equal to
(∏n

k=n′+1

(
λjk

− λ̃j1

))−1

− 2−N ′+1.

Now,
(∏n

k=n′+1

(
λjk

− λ̃j1

))
is a positive real number, since the numbers

λjk
with k ≥ n′+1 come in complex conjugate pairs. Further, the difference n−n′

is even, so that (−1)n−� = (−1)n′−�. Let C be an upper bound on
∣∣∣λjk

− λ̃j1

∣∣∣.
We obtain that

(−1)n′−�G�,n′
(
λ̃j1 , λ̃j�+1 , . . . , λ̃jm1

, λjm1+1 , . . . , λjn′ ũ0, . . . , ũn′−1

)

is greater than or equal to −Cn2−N ′+1.
By Proposition 2, the left-hand side of this inequality can be written as

ũn′−1 +
n′−1∑
j=1

(−1)n′+jAn′,�,j

(
λ̃j1 , λ̃j�+1 , . . . , λ̃jm1

, λjm1+1 , . . . , λjn′

)
ũj−1,

so that there exists a perturbation ˜̃un′−1 of ũn′−1 by at most Cn2−N ′+1 such
that the number

(−1)n′−�G�,n′
(
λ̃j1 , λ̃j�+1 , . . . , λ̃jm1

, λjm1+1 , . . . , λjn′ ũ0, . . . , ũn′−2, ˜̃un′−1

)

is strictly positive. Observing that N ′ is controlled polynomially in the input data
and that the logarithm of C is bounded polynomially in the input data, we obtain
that the perturbation is controlled polynomially. We have thus constructed poly-
nomially controlled perturbations (c̃′, ũ′) ∈ Cn′(R) and (d̃′, v′) ∈ Cm′(R) of
(c′, u′) and (d′, v′) with

�(
c̃′, ũ′

)�
(t) ≥

�(
d̃′, v′

)�
(t) for all large t. We can

construct polynomially controlled perturbations of (c, u) and (d, v) by adding
back the characteristic roots we have removed by passing from c to c′ and from
d to d′ and by extending ũ′ and v′ using the linear recurrence equations with
characteristic polynomial χ

˜c′ and χ
˜d′ respectively. By a calculation similar to

the proof of Lemma 1, this yields polynomially controlled perturbations of (c, u)
and (d, v).
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25. Schröder, M.: Spaces allowing type-2 complexity theory revisited. Math. Logic Q.
50(45), 443–459 (2004). https://doi.org/10.1002/malq.200310111

26. Schönhage, A.: The fundamental theorem of algebra in terms of computa-
tional complexity. Preliminary Report, Mathematisches Institut der Universität
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Abstract. Dynamical systems are systems in which states evolve
according to some laws. Their simple definition hides a powerful tool
successfully adopted in many domains from physics to economy and
medicine. Many techniques have been proposed so far to study proper-
ties, forecast behaviors, and synthesize controllers for dynamical systems,
in particular, for the continuous-time case. Recently, methods based
on Bernstein polynomials emerged as tools to investigate non-linear
evolutions for sets of states in discrete-time dynamical systems. These
approaches represent sets as parallelotopes having fixed axis/directions,
and, during the evolution, they update the parallelotope boundaries to
over-approximate the reached set.

This work suggests a heuristic to identify a new set of axis/directions
to reduce over-approximation. The heuristic has been implemented and
successfully tested in some examples.

1 Introduction

Dynamical systems are mathematical models in which a function or a set of
functions, named dynamic laws or dynamics, rule the evolution of a state (e.g.,
see [4,12]). In the last century, they have been successfully used to model and
analyze many Natural and artificial phenomena in various domains.

Dynamical systems can be classified as either discrete or continuous time
depending on how their time elapses: systems consisting of synchronized com-
ponents, or having coarse time granularity, represent time in a discrete non-
dense domain; Natural time-driven events usually model time as a continuous
dimension. To a certain extent, discrete-time dynamical systems can approx-
imate continuous-time ones. Numerical integration methods such as Euler or
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Runge-Kutta are commonly employed to investigate continuous-time models.
This approach involves discretization to calculate discrete step dynamics, which
are then used to approximate the continuous-time flow pipe (e.g., see [1,2]).

This paper focuses on discrete-time dynamical systems. We are interested in
over-approximating the image of polytopes in the case of polynomial dynam-
ics. This problem is at the core of sapo engine [5,8,11], which deals with the
non-linear dynamics using Bernstein coefficients. Such an approach has proved
effective in analyzing complex systems [14].

Even though the Bernstein-based approach allows for the analysis of high-
dimensional polynomial systems over a long time horizon, the surge of over-
approximation errors along the computation remains the main issue. One could
observe the dramatic effect even on a single time step when the dynamical laws
are normal to the faces of the starting polytope. The methods presented in
[5,11] control the computational complexity by preserving the initial polytope
directions at each step. In order to mitigate the problem, [11] introduced two
different ways of exploiting such static directions, which, however, do not solve
the issue even in the simplest case of a parallelotope.

This work aims to prove an efficient yet possibly effective way to improve
the over-approximation in the above-described framework by changing polytope
directions during the computation. First, we generalize the reachability algo-
rithm and parametrize it with respect to the image directions. Then we propose
a method for choosing the adaptive directions depending on the dynamics and
half of the polytope faces. We also provide two main improvements by keep-
ing the initial static directions and exploiting the remaining half faces. This
approach does not affect the asymptotic complexity of the original method. We
implemented the method in sapo and tested it on two toy, yet critical, examples.

Many approaches have been proposed so far for reachability analysis over non-
linear dynamical systems. For instance, Flow* [6] and HyPro [20] deal with non-
linear systems by exploiting Taylor model arithmetic techniques. They also han-
dle hybrid systems, but not parametric ones. More detailed comparison can be
found in [18] where a methodology that integrates different tools for the design of
cyber-physical systems is described. ARCH-COMP (International Workshop on
Applied Verification of Continuous and Hybrid Systems - Competition) reports
the state of the art in the field, see, e.g., [13,14]. Moreover, we mention here two
works that look strictly related to our approach. In [3], the authors consider lin-
ear systems and focus on hybrid zonotopes, a data structure for zonotopes that
effectively handle unions of 2n zonotopes. The idea is extended to non-linear sys-
tems in [22]. However, the emptiness test on hybrid zonotopes is NP-complete,
and the number of constraints increases at each time step. In our case, instead,
the emptiness test is polynomial, and the number of constraints in the set rep-
resentation does not change.

The paper is organized as follows: Sect. 2 introduces the notation and termi-
nology; Sect. 3 deals with the representations of convex polytopes at the basis
of our work; Sect. 4 describes a procedure for over-approximating the image of a
polytope subject to a discrete-time dynamical system parametric with respect to
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the directions; Sect. 5 presents our proposal on the use of adaptive directions for
improving such over-approximations; we implemented the proposed approach in
the tool sapo, and Sect. 6 uses the enhanced version of sapo to provide evidence
of the effectiveness of the proposal; finally, Sect. 7 draw some conclusions.

2 Notation and Basics

Let x = < x1, . . . , xn > and y = < y1, . . . , yn > be the two vectors in R
n, let i =

< i1, . . . , in > and j = < j1, . . . , jn > be two vectors in N
n, and let c be a value

in R. We write x ≤ y to state that xk ≤ yk for any k ∈ [1, n], x/y to denote the
vector < x1/y1, . . . , xn/yn >, and c∗x in place of < c ∗ x1, . . . c ∗ xn >. Moreover,
(
i
j

) def=
∏n

k=1

(
ik
jk

)
and xi stands for

∏n
k=1 xik

k . If A is a matrix, we write Ai to
denote the i-th row of A. We may write < x1, . . . ,xm > to represent the m×n-
matrix whose rows are the n-dimensional vectors x1, . . . ,xm.

If f : Rn → R
m is a function and S ⊆ R

n, as it is standard in the literature,
we write f(S) to denote the image of S through f , i.e., f(S) def= {f(v |v ∈ S}.

A term is the multiplication of some variables (potentially, none or in multiple
copies) and one single constant, e.g., −3 ∗ x ∗ y ∗ x, 5, and 0 ∗ x are terms, while
0 ∗ x + 5 and −3 ∗ x ∗ 4 are not. Any term involving a subset of the variables
x1, . . . , xn can be expressed as c∗xi where c is a constant value, x is the variable
vector < x1, . . . , xn >, and i is an opportune vector < i1, . . . , in > of natural
values.

Example 1. Let us consider the variable vector x = < x, y, z >. The term 7x2z
can be expressed as 7 ∗ xi where i = < 2, 0, 1 >.

Two functions f1(x1, . . . , xn) and f2(x1, . . . , xn) are equivalent when their
values are the same for every interpretation of the variables x1, . . . , xn, i.e.,
f1(x1, . . . , xn) = f2(x1, . . . , xn) for every value of x1, . . . , xn.

Polynomials are expressions exclusively built by variables, constants, addic-
tions, and multiplications. A polynomial is in normal form if it has the form∑

i∈I ai ∗ xi where I is a finite set of natural power vectors and the ais are con-
stant values depending on i. Every polynomial has an equivalent polynomial in
normal form.

Bernstein basis of degree d ∈ N
n are basis for the space of polynomials

over R
n having degree at most d. For i = < i1, . . . , in > ∈ N

n, the i-th Bern-
stein basis of degree d = < d1, . . . , dn > is defined as: Bd,i(< x1, . . . , xn >) def=
∏n

k=1 βdk,ik(xk) where βd,i(x) def=
(
d
i

)
xi(1 − x)d−i.

Any polynomial π(x) =
∑

i∈I aixi can be represented by using Bernstein

basis as: π(x) =
∑

i≤d bd,iBd,i(x) where bd,i =
∑

j≤i
(i
j)

(dj)
aj are the Bernstein

coefficients. See [5] for examples.
We are interested in Bernstein polynomial representation and, in particular,

in Bernstein coefficients because of the following theorem.
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Theorem 1 ([21]). Let π(x) be a polynomial having degree d ∈ R
n and let bd,i

be the Bernstein coefficients of π(x). For any v ∈ [0, 1]n, it holds that

min
i≤d

{bd,i} ≤ π(v) ≤ max
i≤d

{bd,i}

Theorem 1 provides upper and lower bounds for the image of the hypercube
[0, 1]n through π(x) in terms of π(x)’s Bernstein coefficients.

2.1 Dynamical Systems

A dynamical system is a system equipped with a state that evolves in time
according to a function called dynamic law. The state denotes the system con-
dition and changes according to the dynamic laws as time elapses. The space of
all the system states is called state space.

Depending on the nature of the underlying time structure, we distinguish
continuous-time dynamical systems, in which time elapses continuously, from
discrete-time dynamical systems whose state changes by successive applications
of the dynamic law called epochs. This work focuses on discrete-time dynamical
systems and leaves continuous-time dynamical systems for future works.

Definition 1 (Discrete-Time Dynamical System). A discrete-time dynam-
ical system is a tuple D = (X, f) where:

– X ⊆ R
n is the state space;

– f : X → X is the dynamic law.

A trajectory of a discrete-time dynamical system D = (X, f) is a succession
of values ξ0, . . . , ξi, . . ., being either finite or infinite, such that ξi ∈ X and ξi+1 =
f(ξi) for any ξi and ξi+1 in the succession. A trajectory of D from p is a trajectory
ξ0, . . . , ξi, . . . such that ξ0 = p.

A state r is reachable from p in n epochs by D when there exists a trajectory
ξ0, . . . , ξn for D from p and ξn = r. In this case, we may equivalently say that
D reaches r from p in n epochs.

Example 2. Let us consider the discrete-time dynamical system D = (X, f)
where X = {< x, y > ∈ R

2 | y ≤ 50 ∧ x > 0} and f(< x, y >) = < x2, y + x >.
The trajectory of D from < 2, 0 > is < 2, 0 >,< 4, 2 >,< 16, 6 >. Thus, < 2, 0 >,
< 4, 2 >, and < 16, 6 > are reachable from < 2, 0 > by D.

3 Representing Sets

Dynamical systems provide an elegant way to model natural phenomena, and
reachability analysis is a powerful tool to reason about them automatically. How-
ever, it is generally unlikely to precisely identify one single system state, for
instance, because of Heisenberg’s uncertainty principle or due to measurement
errors. It is, instead, relatively common to deal with approximate values, which
can be represented as sets, or sets themselves.

Convex polytopes are intersections of half-spaces in R
n that can effectively

approximate convex bounded sets.



Adaptive Directions for Bernstein-Based Polynomial Set Evolution 117

Definition 2. A hyperplane in R
n is a subset of Rn having the form h = {v ∈

R
n |dT · v = c} where c ∈ R and d ∈ R

n is a non-null vector.
A half-space of Rn is a set having the form H = {v ∈ R

n |dT · v ≤ c} where
c ∈ R and d ∈ R

n is a non-null vector, known as direction of h. Two half-spaces
H1 = {v ∈ R

n |d1
T · v ≤ c1} and H2 = {v ∈ R

n |d2
T · v ≤ c2} are opposite

when d2 = −d1.
A convex polytope P is a finite intersection of half-spaces, i.e., there exist a

vector c ∈ R
m and a matrix D ∈ R

n×m, known as direction matrix, such that
P = {v ∈ R

n |D · v ≤ c}.
Let P = {v ∈ R

n |D · v ≤ < c1, . . . cm >} be a convex polytope and let Di

be the i-th row of the direction matrix D, i.e., Di is the direction of the i-th
half-space. A face of P is a subset of P having the form Fi = {v ∈ P |Di ·v = ci}
for some row i in D. A vertex of P is the only value in a non-null intersection
of n distinct faces of P , and an edge of P is the non-null intersection of n − 1
distinct faces of P .

Parallelotopes in R
n are bounded convex polytopes consisting in the inter-

section of 2n pairwise opposite half-spaces and such that their direction matrices
have rank n. A bundle is an intersection of parallelotopes. Bundles are polytopes,
and any polytope can be represented as a bundle [5].

Beyond the standard representation for polytopes, any parallelotope P =
{v ∈ R

n |D · v ≤ < c1, . . . cm >} can be represented in two other ways: the
min-max representation and the generator representation.

In the min-max representation, each pair of opposite half-spaces hi = {v ∈
Rn |Di · v ≤ ci} and hj = {v ∈ Rn | − Di · v ≤ cj} is denoted by one single
direction Di and the associated upper and lower bounds, ci and −cj , respectively.
Since P consists in the intersection of 2n pairwise opposite half-spaces, all the
pairs of opposite half-spaces correspond to a matrix M ∈ R

n×n of directions and
two vectors l = < l1, . . . , ln >,u = < u1, . . . , un > ∈ R

n: the lower and upper
bound vectors, respectively. Thus, the set {v ∈ R

n | l ≤ M · v ≤ u} denotes the
parallelotope P too.

The standard polytope representation of P can be obtained from the min-
max representation as:

P =
{
v ∈ R

n |
(

M
−M

)
· v ≤

(
u
−l

)}
. (1)

The min-max representation allows computing the vertices of a parallelotope
in R

n. A vector v is a vertex if and only if M ·v = w where w = < w1, . . . , wn >
and wi ∈ {li, ui}. As a matter of the facts, if M · v = w, w = < w1, . . . , wn >,
and wi ∈ {li, ui}, then v belongs to exactly n different faces of P , i.e., {z ∈
P |Mi · z = wi} for i ∈ [1, n], and it is a vertex. If, instead, wj �∈ {lj , uj} for
some j ∈ [1, n], neither {z ∈ P |Mj ·z = lj} nor {z ∈ P |Mj ·z = uj} contains v,
v itself belongs to n − 1 distinct faces at most, and it is not a vertex. Regarding
vertex computation, M is invertible because it is full rank by definition. Thus, all
the parallelotope vertices have the form M−1 ·w where w = < w1, . . . , wn > and
wi ∈ {li, ui}. Since we can build 2n vector having the form w = < w1, . . . , wn >
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with wi ∈ {li, ui} at most (it may be the case that li = ui for some i), any
parallelotope in R

n can have 2n vertices edges at most.
Intriguingly, E is a parallelotope edge if and only if it has the form E ={

M−1 · < w1, . . . , wn > |wj ∈ [lj , uj ] ∧ ∧
i�=j wi ∈ {li, ui}

}
. Hence, every vertex

of a n-dimensional parallelotope belongs to n edges at most.
The generator representation characterizes a parallelotope in R

n by using one
base vertex, b, and a set, G = {g1, . . . ,gn}, of n linearly independent vectors,
called generators. In this case, any parallelotope P is denoted by a set having
the form P = {b +

∑n
i=1 cigi | ci ∈ [0, 1]}.

Let us notice that the above parallelotope generator representation is similar
to the zonotope generator representation in [15]. However, the latter depicts
zonotopes through their center, whereas the former focuses on one of the set
vertices. While moving from one representation to the other is not tricky, later
on, we will clarify the advantages of using the former in place of the latter in
the context investigated by this work.

Switching from min-max representation to generator representation can be
done in three steps: first, evaluate M−1; second, choose a base-vertex, e.g., we
can set b = M−1 · l by convention; third and final step, compute the generators
as the differences between the vertices on the edges containing b and b itself,
i.e., gi = M−1 · wi − b, where wi = < l1, . . . , li−1, ui, li+1, . . . , ln >. Hence,
gi = M−1 · (wi − l) = M−1 · ((ui − li)ei) where ei is the i-th vector in the
canonical base of Rn, i.e., ei[i] = 1 and ei[j] = 0 for all j �= i.

On the other hand, to get the min-max representation of a parallelotope P
from the generator representation, we need to compute the direction matrix M: l
and u can, then, be obtained as M·b and M·(b+

∑
i gi), respectively. A possible

way to compute M is to notice that any direction Mi is normal to the face
Fi = {v ∈ P |Mi ·v = ui}. Since Fi contains the vertices b and b+gj with j �= i,
we can evaluate a normal ni to hi as a vector that is normal to all the generators
in G, but gi. This can be achieved be setting ni = < a1, . . . , an > where

∑
i aixi

is the determinant of the matrix < < x1, . . . xn >,g1, . . . ,gi−1,gi+1, . . . ,gn >.
The direction Mi will be equal to Mi = ui

ni·bni.

4 Over-Approximating Parallelotope Images

A reachability algorithm to over-approximate the image of a parallelotope by
using Bernstein coefficients was presented in [11]. In this section, we generalize
it to be parametric with respect to the image directions.

Let πi : R
n → R be a polynomial function for all i ∈ [1, n] and let M∗

be a n × n-matrix having rank n. It follows that μi(x) def= M∗
i · π(x), where

π(x) def= < π1(x), . . . , πn(x) >, is polynomial too. If v ∈ [0, 1]n and ci and Ci are
the minimum and the maximum among all the Bernstein coefficients of μi(x),
respectively, then ci ≤ μi(v) ≤ Ci by Theorem 1 and the parallelotope

{v ∈ R
n |< c1, . . . , cn > ≤ M∗ · v ≤ < C1, . . . , Cn >} (2)
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over-approximate the image of [0, 1]n through π(x), i.e., π([0, 1]n).
This approach can be extended to compute the image of any generic parallelo-

tope P by using its generator representation. If < b1, . . . , bn > and g1, . . . ,gn are
the base vertex and the generators of P , respectively, then, η(< x1, . . . , xn >) def=
b +

∑n
i=1 xigi is a polynomial function mapping the hypercube [0, 1]n into the

parallelotope P . Thus, �i(x) def= (μi ◦ η)(x) is a polynomial function and, analo-
gously to the hypercube case, the parallelotope

Ππ,M∗(P ) def= {v ∈ R
n |< c∗

1, . . . , c
∗
n > ≤ M∗ · v ≤ < C∗

1 , . . . , Cn∗ >}, (3)

where c∗
i and C∗

i are the minimum and maximum among all the Bernstein
coefficients of �i(x), respectively, is a superset for the π image of P , i.e.,
Ππ,M∗(P ) ⊆ π(P ). Algorithm 1 details the described procedure.

Algorithm 1. Polynomial image of a parallelotope
Require: A parallelotope P = {v ∈ R

n | l ≤ M · v ≤ u}, a polynomial function
π(x) : Rn → R

n, and a full-rank n × n-matrix M.
Ensure: l∗,u∗ ∈ R

n such that {v ∈ R
n | l∗ ≤ M∗ · v ≤ u∗} ⊇ {π(v) |v ∈ P}

procedure polynomial image(P, π(x),M∗)
b, < g1, . . . ,gn > ← compute generator representation(P )
ρ(x) ← π

(
b +

∑n
i=1 gi · x)

allocate vectors({l∗,u∗}, n)
for i ← 1 . . . n do

�i(x) ← M∗
i · ρ(x)

Bi ← compute bernstein coefficients(�i(x))
l∗[i],u∗[i] ← find min(Bi), find max(Bi)

end for
return l∗,u∗

end procedure

Since bundles are parallelotope intersections and polytopes can be exactly
represented as bundles, Algorithm 1 can also be used to over-approximate
the image of any polytope through polynomial functions by observing that
π (

⋂
i Pi) ⊆ ⋂

i Ππ,M(Pi). Moreover, if P is defined by the min-max representa-
tion {v ∈ R

n | l ≤ M·v ≤ u}, then M is a full-rank matrix and the set Ππ,M(P ),
whose min-max representation is characterized by M once more, can be com-
puted as detailed above. By iterating the parallelotope image computation, we
can over-approximate the set reachable from a polytope by a discrete-time poly-
nomial dynamical system in a finite number of epochs.

4.1 Directions and Approximation

Algorithm 1 has effectively over-approximated the reachable set of many discrete-
time polynomial dynamical systems (e.g., see [5,7,9,11]). The approximation
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accuracy depends on the directions of the original parallelotope, on the polyno-
mial function π(x), and on the directions of the reached set. All these parameters
contribute to �i(x)’s definition, influence their Bernstein coefficients, and, con-
sequently, determine the bounds of the final approximation. However, while the
initial set of states and the function π(x) directly depend on the specific instance
of the considered reachability problem, the direction matrix M∗ is arbitrary and
may significantly impact the approximation. The following example shows a lin-
ear dynamical system whose reachability computation is severely affected when
we choose M∗ once for all before the evaluation.

Example 3. Let D1 = (R2, f1) be a discrete-time dynamical system where

f1(x) def=
(

cos π
4 − sin π

4
sin π

4 cos π
4

)
· x =

1√
2

(
1 −1
1 1

)
· x,

i.e., f1(x) rotates x of an angle π
4 around the axis origin < 0, 0 >. Moreover, let

P1 be the parallelotope P1
def= {v ∈ R

2 | l ≤ M·v ≤ u} where l = < −0.5,−0.5 >,
u = < 0.5, 0.5 >, and M1 = < 1, 0 > and M2 = < 0, 1 >. Namely, P1 is the
square [−0.5, 0.5]2.

The parallelotope Πf1,M(P1) is a superset for f1(P1) and, thus, it includes the
π
4 rotation around < 0, 0 > of the square [−0.5, 0.5]2 which is the square whose
vertices are < 0,−1/

√
2 >, < 1/

√
2, 0 >, < 0, 1/

√
2 >, and < −1/

√
2, 0 > (see

Fig. 1a). However, Πf1,M(P1) and P1 have the same directions, thus, Πf1,M(P1)
must include [−1/

√
2, 1/

√
2]2 whose area is twice the area of f1(P1) (actually,

Πf1,M(P1) is exactly [−1/
√

2, 1/
√

2]2). The over-approximation escalates as we
iterate the application of f and the computed over-approximation of the set
fk
1 (P1) has an area 2k time greater than that of fk

1 (P1) itself. On the other
hand, Πf1,M∗(P1), where M∗

1 = < 1, 1 >T and M∗
2 = < −1, 1 >T , equals f1(P1)

and f1(f1(P1)) = P1 = Πf1,M(Πf1,M∗(P1)). Thus, up to the arithmetic approx-
imations, the set reachable from P1 can be exactly approximated.

5 Adaptive Directions

Example 3 highlights the importance of selecting the appropriate directions at
each image computation. Ideally, we would like to identify the matrix M∗ that
minimizes the volume of Ππ,M∗(P ). However, this goal appears to be too ambi-
tious, in particular, when π(x) is non-linear.

This work proposes a heuristic for computing from π(x) and P = {v ∈
R

n | l ≤ M · v ≤ u} a matrix M∗ that may minimize the volume of Ππ,M∗(P ).
We suggest evaluating a linear approximation of π(x) in a neighborhood of P
and gauging its effects on the directions of P itself to get M∗.

Let π̃(x) def= T·x+d be the aimed approximation of π(x). Thus, π(q)−π(p) ≈
π̃(q)− π̃(p) = T · (q−p) for any distinct points p,q ∈ P . If b is the base vertex
and g1, . . . ,gn are the generators of P , b, b+ g1, . . . , b+ gn are vertices of P ,
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they are pairwise different, and the following equation holds
⎛

⎜
⎝

π(b + g1) − π(b)
...

π(b + gn) − π(b)

⎞

⎟
⎠

T

≈ T ·

⎛

⎜
⎝

(b + g1) − b
...

(b + gn) − b

⎞

⎟
⎠

T

= T ·

⎛

⎜
⎝

g1

...
gn

⎞

⎟
⎠

T

. (4)

Let Mb,π be < π(b + g1) − π(b), . . . , π(b + gn) − π(b) >
T . Since the genera-

tors are linearly independent, < g1, . . . ,gn >T is invertible, and T and d can be
evaluated as T ≈ Mb,π · (

g1 . . . gn

)−1 and d ≈ π(b) − T · b, respectively.
By construction, π̃(x) = π(x) for any x ∈ {b,b + g1, . . . ,b + gn}. If π(x)

is linear, then π̃(x) and π(x) are the same function, but, in the general case,
there may exist points x′ in P such that π̃(x′) �= π(x′). However, π̃(x) still
approximates π(x) in a neighborhood of the points b, b + g1, . . ., b + gn.

Each direction of P is normal to some of its faces F . When π̃(F ) is good
approximation for π(F ), we use a normal vector to π̃(F ) as direction for the
parallelotope over-approximating π(P ). Every face Fi is such that Fi = {v ∈
P |Mi ·v = ci} for some direction Mi and bound ci. If Mb,π is invertible, then T,
which equals Mb,π ·(g1 . . . gn

)−1, is invertible too, and Mi ·v = Mi ·T−1 ·T·v =
ci. The vector T ·v is a generic point in Fi transformed by T and, thus, Mi ·T−1

is normal to both π̃(Fi)−d and π̃(Fi). This last property holds for any direction
Mi of P and we can define M∗ as

M∗ =

{
M · T−1 = M ·

(
g1 . . . gn

)
· M−1

b,π if Mb,π is invertible

M if Mb,π is not invertible
(5)

Figure 1b shows how adaptive direction impacts over-approximation accu-
racy. We want to remark that Eq. 5 is only used to compute new directions,
while the image over-approximation is performed in the standard way by Algo-
rithm 1.

Our technique is similar to the approaches used to update the directions in
sets of states evolving according to linear dynamics (e.g., see [15–17,19]). Linear
dynamics map parallelotopes, zonotopes, and ellipsoids into parallelotopes, zono-
topes, and ellipsoids. Thus, computing the image of one of these sets requires the
evaluation of the new generators/axis, which can be achieved by applying the
linear function to the original generators/axis. When instead the dynamics are
non-linear, the images of linear sets, such as parallelotopes, zonotopes, and ellip-
soids, may be non-linear, and non-fully symbolic techniques can exclusively aim
to over-approximate (or under-approximate) them. In the considered framework,
the direction update is not mandatory, and we suggest it exclusively aiming for
a tighter approximation.

Moreover, the approach considered in this work deals with two different rep-
resentations of the same set: the min-max representation and the generator rep-
resentation. The approximation function π̃(x), i.e., T · x + d, depends on the
dynamics and the generator representation. Then, we compute M∗ considering
T and the min-max representation of the same set. This two-step evaluation
involving different representations of the same set is novel up to our knowledge.
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(a) When M1 = < 1, 0 > and M2 =
< 0, 1 >, the area of Ππ,M(P1) (the blue
region) is twice than that of f1(P1) (the
red region).
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(b) When M∗ is computed as in Eq. 5,
M∗

1 = < 1, 1 > and M∗
2 = < 1,−1 >

and Πf1,M∗(P1) (the blue region) equals
f1(P1) (the red region).

Fig. 1. A representation of Example 3. The function f1, that rotates the space around
< 0, 0 > of an angle π

4
, is applied to the set S = [0, 1]2 (the green region). (Color figure

online)

We need to stress two relevant aspects of our proposal: first of all, there are
no guarantees for π̃(x) to accurately approximate the image of the faces in P
through π(x) unless π(x) itself is linear. Because of this, we do not know whether
Ππ,M∗ is tighter or larger than Ππ,M when π(x) is non-linear.

In the second place, we only use n + 1 point images to estimate π̃(x): the
images of b, b+ g1, . . . , b+ gn. These points belong to n of the 2n faces in P :
those containing b. Thus, even if π̃(x) accurately approximates π(x) on these
faces, it does not consider the other n parallelotope faces.

Example 4. Let P2 be the parallelotope P2 = {v ∈ R
2 | l ≤ M · v ≤ u} where

l def= < −0.5, 0 >, u def= < −0.5, 1 >, and M is the 2 × 2 identity matrix. i.e.,
P2 is the square [−0.5, 0.5] × [0, 1]. Moreover, let D2 be the dynamical system
D2

def= (R2, f2) where f2(< x1, x2 >) = < x1(1 + x2), x2 >. It is easy to see
that b = l, g1 = < 1, 0 >, and g2 = < 0, 1 >. Thus, f2(b) = < −0.5, 0 >,
f2(b+ g1) = < 0.5, 0 >, f2(b+ g2) = < −1, 1 >, and Mb,f2 =

(
1 −0.5 ; 0 1

)
. It

follows that M∗ = M · (g1 g2

) ·M−1
b,f2

= I · I ·M−1
b,f2

= < < 1, 0.5 >,< 0, 1 > >,
where I is the 2×2 identity matrix, and Πf2,M∗(R) = {v ∈ R

2 | l∗ ≤ M∗·v ≤ u∗}
where l∗ = < −0.5, 0 > and u∗ = < 1.5, 1 >.

5.1 Avoiding Coarser Approximations

The concurrent use of both adaptive and non-adaptive directions can prevent
the approximation from soaring when non-favorable directions are selected.

Let P0 and P ′
0 be two alternative versions of the same set P such that the over-

approximations of the reachable sets from P0 are always represented by using
the same direction matrix M, while the direction matrices of over-approximation
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of the reachable sets from P ′
0 changes at each evolution step. Since P0 and

P ′
0 represent the same set, the two parallelotopes P1 = Ππ,M(P0) and P ′

1 =
Ππ,M∗

0
(P ′

0), where M∗
0 is the direction matrix evaluated as in Eq. 5, include

π(P0). As observed in Sect. 4, π(P0∩P ′
0) can be over-approximated by the bundle

P1 ∩P ′
1 and this bundle is a subset of P1. If Pi+1 and P ′

i+1 are the parallelotopes
Ππ,M(Pi) and Ππ,M∗

i
(P ′

i ), respectively, for any i ∈ [0, k − 1], then πk(P0 ∩
P ′
0) ⊆ Pk ∩ P ′

k and Pk ∩ P ′
k ⊆ Pk. Thus, we can use bundle computation and

parallelotope-dependent adaptive directions to avoid the possible approximation
worsening due to the adaptive directions.

This approach impacts the computation time because it requires doubling
the number of parallelotopes in each bundle, but it does not affect the time
complexity of the procedure in terms of set operations, and the evolution of each
set in the bundle can be independently computed in parallel. We should, however,
notice that the complexity of some of the set operations (e.g., the emptiness test)
polynomially depends on the number of directions in the bundle.

5.2 Fitting All the Parallelotope Faces

As highlighted by Example 4, even if π̃(x) correctly approximates π on the faces
containing the base vertex b, it may diverge from π on the remaining faces which
contain the opposite vertex b+

∑n
i=1 gi. If {v ∈ R

n | l ≤ M·v ≤ u} is a min-max
representation for the considered parallelotope P and b is conventionally set to
be M−1 · l as suggested in Sect. 3, then

b +
n∑

i=1

gi = M−1 ·
(

l +
n∑

i=1

(ui − li)ei

)

= M−1 · (l + (u − l)) = M−1 · u. (6)

Since l ≤ M · v ≤ u holds if and only if −u ≤ −M · v ≤ −l holds too, P

can also be represented as {v ∈ R
n | l ≤ M · v ≤ u} where l def= −u, u def=

−l, and M def= −M. This last min-max representation for P is the opposite
representation with respect to the original one, as M and M contain opposite
directions. Following the established convention for base vertices, the base vertex
b of the min-max representation based on l, u, and M is b = M

−1 · l = −M−1 ·
−u = M−1 ·u which is b+

∑n
i=1 gi by Eq. 6. Hence, from the two opposite min-

max representations of P , we can build two alternative generator representations
whose base vertices are M−1 · l and its opposite vertex M−1 · u, respectively.
Each of the two representations can approximate the effects of π on half of the
faces of P : one on the faces containing M−1 · l and the other on the remaining
faces, i.e., those containing the opposite vertex M−1 · u.

The effectiveness of this proposal will be evaluated in Sect. 6 on an example
similar to Example 4 (see Fig. 2).

The systematic application of the presented parallelotope double represen-
tation leads to a reachability algorithm exponential in the number of epochs.
However, when, for each face Fi, the effects of π(x) on Fi can be properly approx-
imated by a linear function π̃i(x) (such as in the case presented by Example 4),
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there is no need to double the number of parallelotopes at each evolution step,
and the approximation can be improved simply by including opposite represen-
tations of the same parallelotope in the initial bundle.

As in the previous case, this approach affects the execution time by doubling
the number of parallelotopes, but does not change the asymptotic complexity of
the reachability algorithm in terms of set operations.

Theorem 2. Let D = (Rn, f) be a discrete-time dynamical system, let P be the
parallelotope {v ∈ R

n | l ≤ M · v ≤ u}, and let P be its opposite representation.
The bundle B = {Πf,M(P ),Πf,M∗(P ),Πf,M

∗(P )}, where M∗ and M
∗

are
computed as in Eq. 5 from P and P , over-approximates f(P ) not worse than
Πf,M(P ). Moreover, both B and Πf,M(P ) can be computed with the same asymp-
totic computational complexity by using Algorithm 1 and Eq. 5.

6 Examples

We coded the techniques described in Sect. 5 in sapo, a software tool for analyz-
ing polynomial dynamics based on Bernstein coefficients [5,10], and we studied a
few relevant examples. This section reports the analysis results and the execution
time on a MacBook Pro M1 2020 with 16 GB of RAM.

First of all, we considered the dynamical system D1 = (R2, f1) and the paral-
lelotope P1 defined in Example 3, and we computed the over-approximations of
the set f100

1 (P1) reachable by D1 from P1 in 100 epochs using static and adaptive
directions. In the former case, the approximation diverges as time elapses and
sapo over-approximates f100

1 (P1) by [−5.63e+14, 5.63e+14]2. On the contrary,
using adaptive directions, sapo returns a quadrilateral R whose vertices are
about < 0.5, 0.5 >, < 0.5,−0.5 >, < −0.5,−0.5 >, and < −0.5, 0.5 >. The two
sets, P1 and R, are equivalent up to approximation errors and this is the result
expected by the theoretical analysis of the system. There are no appreciable dif-
ferences in execution time; the analysis is instantaneous using both approaches.
The approximation surge in static directions analysis avoided comparing the two
strategies on a longer time horizon.

We also used sapo to over-approximate the set reachable from the square
P2 = [−0.5, 0.5] × [0, 1] by D3 = (R2, f3), where f3 = < x1(1 + 0.001x2), x2 >,
in exactly 1000 epochs. Figure 2 depicts the set f1000

3 (P2) and the over-approxi-
mations obtained using static, adaptive, and adaptive directions combined with
opposite parallelotopes in the initial bundle. The static directions approach pro-
duces a rectangle loosely representing f1000

3 (P2) in 0.13 s. Adaptive directions
alone do not help in improving the approximation, and the area of the obtained
set does not change despite the computation time increasing to 0.18 s. When,
instead, the original bundle consists of two opposite parallelotopes and the com-
putation uses adaptive directions, sapo returns a much tighter approximation of
the reached set in 0.51 s.
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Fig. 2. Over-approximations of the set reachable by (R2, < x(1 + 0.001y), y >) in 1000
epochs from P2 (see Example 4) as computed by sapo. Both static and plain adaptive
directions do not approximate the reachability set adequately. A tighter approximation
can be obtained by including two opposite parallelotopes in the original bundle.

7 Conclusions

We presented a method for dealing with adaptive directions in the context of
reachability computation over polynomial dynamical systems. The proposal aims
to improve the over-approximation of the image of a polytope at the same asymp-
totic complexity of the algorithms presented in [8,11].

The method has already been implemented in sapo and has shown its effec-
tiveness on critical examples.

Since sapo also deals with parametric systems and synthesis problems [5,9]
we plan to analyze the parametric case in the future.
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Abstract. Computing the reachability probability in infinite state prob-
abilistic models has been the topic of numerous works. Here we introduce
a new property called divergence that when satisfied allows to compute
reachability probabilities up to an arbitrary precision. One of the main
interest of divergence is that our algorithm does not require the reachabil-
ity problem to be decidable. Then we study the decidability of divergence
for probabilistic versions of pushdown automata and Petri nets where the
weights associated with transitions may also depend on the current state.
This should be contrasted with most of the existing works that assume
weights independent of the state. Such an extended framework is moti-
vated by the modeling of real case studies. Moreover, we exhibit some
divergent subclasses of channel systems and pushdown automata, partic-
ularly suited for specifying open distributed systems and networks prone
to performance collapsing in order to compute the probabilities related
to service requirements.

Keywords: Reachability probability · Infinite state probabilistic
models · Divergence

1 Introduction

Probabilistic Models. In the 1980’s, finite-state Markov chains have been
considered for the modeling and analysis of probabilistic concurrent finite-state
programs [19]. Since the 2000’s, many works have been done to verify the infinite-
state Markov chains obtained from probabilistic versions of automata extended
with unbounded data (like stacks, channels, counters and clocks)1. The (qual-
itative and quantitative) model checking of probabilistic pushdown automata
(pPDA) is studied in many papers, for example in [6,10–12,17] (see [5] for a
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survey). In 1997, Iyer and Narasimha [15] started the study of probabilistic lossy
channel systems (pLCS) and later both some qualitative and quantitative prop-
erties were shown decidable for pLCS [1]. Probabilistic counter machines (pCM)
have also been studied [7–9].

Computing the Reachability Probability. In finite Markov chains, there is
a well-known algorithm for computing exactly the reachability probabilities in
polynomial time [3]. Here we focus on the problem of Computing the Reachability
Probability up to an arbitrary precision (CRP) in infinite Markov chains. There
are (at least) two possible research directions:

The first one is to consider the Markov chains associated with a particular class
of probabilistic models (like pPDA or probabilistic Petri nets (pPN)) and some
specific target sets and to exploit the properties of these models to design a CRP-
algorithm. For instance in [5], the authors exhibit a PSPACE algorithm for pPDA
and PTIME algorithms for single-state pPDA and for one-counter automata.

The second one consists in exhibiting a property of Markov chains that yields
a generic algorithm for solving the CRP problem and then looking for models
that generate Markov chains that fulfill this property. Decisiveness of Markov
chains is such a property. Intuitively, decisiveness w.r.t. s0 and A means that
almost surely the random path σ starting from s0 will reach A or some state s′

from which A is unreachable. It has been shown that pPDA are not (in general)
decisive but both pLCS and probabilistic Petri nets (pPN) are decisive (for pPN:
when the target set is upward-closed [2]).

Two Limits of the Previous Approaches. The generic approach based on
the decisiveness property has numerous applications but suffers the restriction
that the reachability problem must be decidable in the corresponding non deter-
ministic model. To the best of our knowledge, all generic approaches rely on a
decidable reachability problem.

In most of the works, the probabilistic models associate a constant weight for
transitions and get transition probabilities by normalizing these weights among
the enabled transitions in the current state. This forbids to model phenomena
like congestion in networks (resp. performance collapsing in distributed systems)
when the number of messages (resp. processes) exceeds some threshold leading
to an increasing probability of message arrivals (resp. process creations) before
message departures (resp. process terminations).

Our Contributions

– In order to handle realistic phenomena (like congestion in networks), we con-
sider dynamic weights i.e., weights depending on the current state.

– We introduce the new divergence property of Markov chains w.r.t. s0 and A:
given some precision θ, one can discard a set of states with either a small prob-
ability to be reached from s0 or a small probability to reach A such that the
remaining subset of states is finite and thus allows for an approximate compu-
tation of the reachability probability up to θ. For divergent Markov chains, we
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provide a generic algorithm for the CRP-problem that does not require the
decidability of the reachability problem. While decisiveness and divergence
are not exclusive (both hold for finite Markov chains), they are complemen-
tary. In fact, divergence is somehow related to transience of Markov chains
while decisiveness is somehow related to recurrence [13].

– In order to check divergence, we provide several simpler sufficient conditions
based on existing and new results of martingale theory.

– We study for different models the decidability of divergence. Our first unde-
cidability result implies that whatever the infinite models, one must restrict
the kind of dynamics weights. Here we limit to polynomial weights, i.e. where
a weight is defined by a polynomial whose variables are characteristics of the
current state (e.g. the marking of a place in a Petri net).

– We prove, by a case study analysis, that divergence is decidable for a subclass
of polynomial pPDA (i.e. pPDA with polynomial weights). We show that
divergence is undecidable for polynomial pPNs w.r.t. an upward closed set.

– We provide two classes of divergent polynomial models. The first one is a
probabilistic version of channel systems particularly suited for the model-
ing of open queuing networks. The second one is the probabilistic version of
pushdown automata restricted to some typical behaviors of dynamic systems.

Organisation. Section. 2 recalls Markov chains, introduces divergent Markov
chains, presents an algorithm for solving the CRP-problem. In Sect. 3, we study
the decidability status of divergence for pPDA and pPN. Finally Sect. 4 presents
two divergent subclasses of probabilistic channel systems and pPDA. All missing
proofs and a second CRP-algorithm when reachability is decidable can be found
in [14].

2 Divergence of Markov Chains

2.1 Markov Chains: Definitions and Properties

Notations. A set S is countable if there exists an injective function from S to
the set of natural numbers: hence it could be finite or countably infinite. Let S
be a countable set of elements called states. Then Dist(S) = {Δ : S → R≥0 |∑

s∈S Δ(s) = 1} is the set of distributions over S. Let Δ ∈ Dist(S), then the
support of Δ is defined by Supp(Δ) = Δ−1(R>0). Let T ⊆ S, then S \ T will
also be denoted T .

Definition 1 (Effective Markov chain). A Markov chain M = (S, p) is a
tuple where:

– S is a countable set of states,
– p is the transition function from S to Dist(S);

When for all s ∈ S, Supp(p(s)) is finite and computable and the function p is
computable, one says that M is effective.
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Notations. The function p may be viewed as a S×S matrix defined by p(s, s′) =
p(s)(s′). Let p(d) denote the dth power of the transition matrix p. When S is
countably infinite, we say that M is infinite and we sometimes identify S with

N. We also denote p(s, s′) > 0 by s
p(s,s′)−−−−→ s′. A Markov chain is also viewed as a

transition system whose transition relation → is defined by s → s′ if p(s, s′) > 0.
Let A ⊆ S, one denotes Post∗M(A), the set of states that can be reached from
some state of A and Pre∗

M(A), the set of states that can reach A. As usual,
we denote →∗, the transitive closure of → and we say that s′ is reachable from
s if s →∗ s′. We say that a subset A ⊆ S is reachable from s if some s′ ∈ A
is reachable from s. Note that every finite path of M can be extended into (at
least) one infinite path.

Example 1. Let M1 be the Markov chain of Fig. 1. In any state i > 0, the
probability for going to the “right”, p(i, i + 1), is equal to 0 < pi < 1 and for
going to the “left” p(i, i − 1) is equal to 1 − pi. In state 0, one goes to 1 with
probability 1. M1 is effective if the function n �→ pn is computable.

0 1 2 3 · · ·
1

1− p1

p1

1− p2

p2

1− p3

p3

1− p4

Fig. 1. A random walk M1

Given an initial state s0, the sampling of a Markov chain M is an infinite
random sequence of states (i.e., a path) σ = s0s1 . . . such that for all i ≥ 0,
si → si+1. As usual, the corresponding σ-algebra whose items are called events
is generated by the finite prefixes of infinite paths and the probability of an
event Ev given an initial state s0 is denoted PrM,s0(Ev). In case of a finite path
s0 . . . sn, PrM,s0(s0 . . . sn) =

∏
0≤i<n p(si, si+1).

Notations. From now on, G (resp. F, X) denotes the always (resp. eventual,
next) operator of LTL.

Let A ⊆ S. We say that σ reaches A if ∃i ∈ N si ∈ A and that σ visits A if
∃i > 0 si ∈ A. The probability that starting from s0, the path σ reaches (resp.
visits) A will be denoted by PrM,s0(FA) (resp. PrM,s0(XFA)).

We now state qualitative and quantitative properties of a Markov chain.

Definition 2 (Irreducibility, recurrence, transience). Let M = (S, p) be
a Markov chain and s ∈ S. Then M is irreducible if for all s, s′ ∈ S, s →∗ s′.
s is recurrent if PrM,s(XF{s}) = 1 otherwise s is transient.

In an irreducible Markov chain, all states are in the same category, either
recurrent or transient [16]. Thus an irreducible Markov chain will be said tran-
sient or recurrent depending on the category of its states. In the remainder of this
section, we will relate this category with techniques for computing reachability
probabilities.
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Example 2. Clearly M1 is irreducible. Moreover (see [14]), M1 is recurrent if and
only if

∑
n∈N

∏
1≤m<n ρm = ∞ with ρm = 1−pm

pm
, and when transient, the prob-

ability that starting from i the random path visits 0 is equal to
∑

i≤n

∏
1≤m<n ρm

∑
n∈N

∏
1≤m<n ρm

.

One of our goals is to approximately compute reachability probabilities in
infinite Markov chains. Let us formalize it. Given a finite representation of a
subset A ⊆ S, one says that this representation is effective if one can decide the
membership problem for A. With a slight abuse of language, we identify A with
any effective representation of A. The Computing of Reachability Probability
(CRP) problem is defined by:

– Input: an effective Markov chain M, an (initial) state s0, an effective subset
of states A, and a rational number θ > 0.

– Output: an interval [low, up] such that up − low ≤ θ and PrM,s0(FA) ∈
[low, up].

2.2 Divergent Markov Chains

Let us first discuss two examples before introducing the notion of divergent
Markov chains.

Example 3. Consider again the Markov chain M1 of Fig. 1 with for all n > 0,
pn = p > 1

2 . In this case, for m ≥ 0, PrM1,m(F{0}) = ρm with ρ = 1−p
p . Thus

here the key point is that not only this reachability probability is less than 1
but it goes to 0 when m goes to ∞. This means that given some precision θ, one
could “prune” states n ≥ n0 and compute the reachability probabilities of A in
a finite Markov chain.
Consider the Markov chain of Fig. 2, where PrM,0(F{m,m+1, . . .}) =

∏
n<m pn

goes to 0 when m goes to ∞. As in the precedent example, computing the
reachability probabilities of A can be also done in a finite Markov chain after
pruning states n ≥ n0, given some precision θ.

0 1 2 3 · · ·

A finite Markov chain containing A

∏
n∈N

pn = 0

p0

1− p0 1− p1

p1

1− p2

p2

1− p3

p3

Fig. 2. An infinite (divergent) Markov chain

Intuitively, a divergent Markov chain w.r.t. s0 and A generalizes these exam-
ples: given some precision θ, one can discard a set of states with either a small
probability to be reached from s0 (f−1

0 ([0, θ]) in the next definition) or a small
probability to reach A (from any state of the set f−1

1 ([0, θ]) in the next defini-
tion), such that the remaining subset of states is finite and thus allows for an
approximate computation of the reachability probability up to θ.
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Definition 3 (divergent Markov chain). Let M be a Markov chain, s0 ∈ S
and A ⊆ S. We say that M is divergent w.r.t. s0 and A if there exist two
computable functions f0 and f1 from S to R≥0 such that:

– For all 0 < θ < 1, PrM,s0(Ff−1
0 ([0, θ])) ≤ θ;

– For all s ∈ S, PrM,s(FA) ≤ f1(s);
– For all 0 < θ < 1, {s | f0(s) ≥ θ ∧ f1(s) ≥ θ} ∩ Post∗M({s0}) is finite.

Observation and Illustration. Let us remark that there may not exist, for
general Markov chains, an algorithm to decide the existence of such functions
f0, f1 and if there exist, to find them. Indeed as for decisiveness, divergence
is a semantical property. But there exist some simpler sufficient conditions for
divergence.

A finite Markov chain is divergent (letting f0 = f1 = 1) w.r.t. any s0 and
any A. In the first Markov chain of Example 3, f0 = 1 and f1(m) = ρm and
in the second Markov chain, f1 = 1, f0(m) =

∏
0≤n<m pn and f0(s) = 1 for

all s in the finite Markov chain containing A. Generalizing these two examples,
the next proposition introduces a sufficient condition for divergence. Its proof is
immediate by choosing (f = f0 and f1 = 1) or (f = f1 and f0 = 1).

Proposition 1. Let M be a Markov chain, s0 ∈ S, A ⊆ S, and a computable
function f from S to R≥0 such that:

– For all 0 < θ < 1, PrM,s0(Ff−1([0, θ])) ≤ θ
or for all s ∈ S, PrM,s(FA) ≤ f(s);

– For all 0 < θ < 1, {s | f(s) ≥ θ} ∩ Post∗M({s0}) is finite.

Then M is divergent w.r.t. s0 and A.

2.3 An Algorithm for Divergent Markov Chains

We now design an algorithm for accurately framing the reachability probability
for a divergent (effective) Markov chain w.r.t. s0 and an effective A.

Let us describe this algorithm. It performs an exploration of reachable states
from s0 maintaining S′, the set of visited states, and stopping an exploration
when the current state s fulfills: either (1) for some i ∈ {0, 1}, fi(s) ≤ θ

2 in
which case s is inserted in the AlmostLoosei set (initially empty), or (2) s ∈ A
in which case s is inserted in A′ (initially empty). When the exploration is
ended, if A′ is empty, the algorithm returns the interval [0, θ]. Otherwise it
builds M′ = (S′, p′) a finite Markov chain over S′ whose transition probabilities
are the ones of M except for the states of AlmostLoose0 ∪ AlmostLoose1 ∪ A′,
which are made absorbing. Finally it computes the vector of reachability proba-
bilities starting from s0 in M′ (function CompFinProb) and returns the interval
[preach(A′), preach(A′) + preach(AlmostLoose0) + θ

2 · preach(AlmostLoose1)].
The next proposition establishes the correctness of the algorithm.

Proposition 2. Let M be a divergent Markov chain with s0 ∈ S, A ⊆ S and
θ > 0. Then Algorithm 1 solves the CRP problem.
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Algorithm 1: Framing the reachability probability
CompProb(M, s0, A, θ)
AlmostLoose0 ← ∅; AlmostLoose1 ← ∅; S′ ← ∅
A′ ← ∅; Front ← ∅; Insert(Front, s0)
while Front �= ∅ do

s ← Extract(Front); S′ ← S′ ∪ {s}
if f0(s) ≤ θ

2
then AlmostLoose0 ← AlmostLoose0 ∪ {s}

else if f1(s) ≤ θ
2
then AlmostLoose1 ← AlmostLoose1 ∪ {s}

else if s ∈ A then A′ ← A′ ∪ {s}
else for s → s′ ∧ s′ /∈ S′ do Insert(Front, s′)

end
if A′ = ∅ then return (0, θ)
Abs ← AlmostLoose0 ∪ AlmostLoose1 ∪ A′

for s ∈ Abs do p′(s, s) ← 1
for s ∈ S′ \ Abs ∧ s′ ∈ S′ do p′(s, s′) ← p(s, s′)
preach ← CompFinProb(M′, s0) // M′ = (S′, p′): a finite Markov chain

return (preach(A′), preach(A′) + preach(AlmostLoose0) + θ
2

· preach(AlmostLoose1))

We also provide an algorithm for models with a decidable reachability prob-
lem that returns [0, 0] when A is unreachable and [�, u] with � > 0 otherwise.
This algorithm and the proof of its correctness are both presented in [14].

3 (Un)Decidability Results

We now study probabilistic versions of well-known models like Pushdown
Automaton (PDA) and Petri nets (PN), for which we analyse the decidability
of the divergence property.

3.1 Probabilistic Pushdown Automata

Let Γ be a finite alphabet. Γ≤k is the set of words over Γ with length at most
k. Let w ∈ Γ ∗, then |w| denotes its length. ε denotes the empty word.

Definition 4 (pPDA). A (dynamic-)probabilistic pushdown automaton
(pPDA) is a tuple A = (Q,Γ,Δ,W ) where:

– Q is a finite set of control states;
– Γ is a finite stack alphabet with Q ∩ Γ = ∅;
– Δ is a subset of Q×Γ≤1×Q×Γ≤2 such that for all (q, ε, q′, w) ∈ Δ, |w| ≤ 1;
– W is a computable function from Δ × Σ∗ to Q>0.

In the version of pPDA presented in [12], the weight function W goes from Δ
to Q>0. In order to emphasize this restriction here and later we say that, in this
case, the weight function is static and the corresponding models will be called
static pPDA. In what follows, pPDA denotes the dynamic version.
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An item (q, a, q′, w) of Δ is also denoted q
?a!w−−−→ q′ and ?a!ε is also simply

denoted by ?a. A configuration of A is a pair (q, w) ∈ Q×Γ ∗. We use the letters
a, b, c, x, y for elements in Γ and w for a word in Γ ∗.

Definition 5. Let A be a pPDA. Then the Markov chain MA = (SA, pA) is
defined by:

– SA = Q × Γ ∗ is the set of configurations;
– For all (q, ε) ∈ SA s.t. {t = q

?ε!wt−−−→ q′}t∈Δ = ∅, pA((q, ε), (q, ε)) = 1;
– For all (q, ε) ∈SA s.t. {t = q

?ε!wt−−−→ q′}t∈Δ �= ∅, let W (q, ε) =
∑

t=q
?ε!wt−−−→q′

W (t, ε).

Then: for all t=q
?ε!wt−−−→ q′∈Δ, pA((q, ε), (q′, wt))= W (t,ε)

W (q,ε)

– For all (q, wa) ∈SA s.t. {t = q
?a!wt−−−→ q′}t∈Δ = ∅, pA((q, wa), (q, wa)) = 1;

– For all (q, wa) ∈SA s.t. {t = q
?a!wt−−−→ q′}t∈Δ �= ∅,

let W (q, wa) =
∑

t=q
?a!wt−−−→q′

W (t, wa). Then:

for all t=q
?a!wt−−−→ q′∈Δ, pA((q, wa), (q′, wwt))= W (t,wa)

W (q,wa)

We now show that even for pPDA with a single state and with a stack
alphabet reduced to a singleton, divergence is undecidable.

Theorem 1. The divergence problem for pPDA is undecidable even with a single
state and stack alphabet {a}.

Due to this negative result on such a basic model, it is clear that one must
restrict the possible weight functions. A pPDA A is said polynomial if for all
t ∈ Δ, W (t, w) is a positive integer polynomial (i.e. whose coefficients are non
negative and the constant one is positive) whose single variable is |w|.
Theorem 2. The divergence problem w.r.t. s0 and finite A for polynomial
pPDA with a single state and stack alphabet {a} is decidable (in linear time).

3.2 Probabilistic Petri Nets

A probabilistic Petri net (resp. a probabilistic VASS) is a Petri net (resp. a
VASS) with a computable weight function W . In previous works [2,4], the weight
function W is a static one: i.e., a function from T , the finite set of transitions
of the Petri net, to N>0. As above, we call these models static probabilistic
Petri nets. We introduce here a more powerful function where the weight of a
transition depends on the current marking.

Definition 6. A (dynamic-)probabilistic Petri net (pPN)
N = (P, T,Pre,Post,W,m0) is defined by:

– P , a finite set of places;
– T , a finite set of transitions;
– Pre,Post ∈ N

P×T , resp. the pre and post condition matrices;
– W , a computable function from T × N

P to Q>0 the weight function;
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– m0 ∈ N
P , the initial marking.

When for all t ∈ T , W (t,−) is a positive polynomial whose variables are the
place markings, we say that N is a polynomial pPN.

A marking m is an item of N
P . Let t be a transition. Then t is enabled in

m if for all p ∈ P , m(p) ≥ Pre(p, t). When enabled, the firing of t leads to
marking m′ defined for all p ∈ P by m′(p) = m(p) + Post(p, t) − Pre(p, t)
which is denoted by m t−→ m′. Let σ = t1 . . . tn be a sequence of transitions.
We define the enabling and the firing of σ by induction. The empty sequence
is always enabled in m and its firing leads to m. When n > 0, σ is enabled if
m t1−→ m1 and t2 . . . tn is enabled in m1. The firing of σ leads to the marking
reached by t2 . . . tn from m1. A marking m is reachable from m0 if there is a
firing sequence σ that reaches m from m0.

Definition 7. Let N be a pPN. Then the Markov chain MN = (SN , pN ) asso-
ciated with N is defined by:

– SN is the set of reachable markings from m0;
– Let m ∈ SN and Tm be the set of transitions enabled in m. If Tm = ∅

then pN (m,m) = 1. Otherwise let W (m) =
∑

m
t−→mt

W (t,m). Then for all

m t−→ mt, pN (m,mt) = W (t,m)
W (m) .

Contrary to the previous result, restricting the weight functions to be poly-
nomials does not yield decidability for pPNs.

Theorem 3. The divergence problem of polynomial pPNs w.r.t. an upward
closed set is undecidable.

4 Illustration of Divergence

Due to the undecidability results, we propose syntactical restrictions for standard
models like pushdown automata and channel systems that ensure divergence.
Observing that function f1 of Definition 3 is somewhat related to transience of
Markov chains, we first establish a sufficient condition of transience from which
we derive a sufficient condition of divergence for infinite Markov chains used for
our two illustrations.

Theorem 4. Let M be a Markov chain and f be a function from S to R with
B = {s | f(s) ≤ 0} fulfilling ∅ � B � S, ε,K ∈ R>0 and d ∈ N

∗ such that:

for all s ∈ S \ B
∑

s′∈S

p(d)(s, s′)f(s′) ≥ f(s) + ε and
∑

|f(s′)−f(s)|≤K

p(s, s′) = 1

(1)
Then for all s ∈ S such that f(s) > dK,

PrM,s(FB) ≤ c1e
−c2(f(s)−dK)

where c1 =
∑

n≥1 e
− ε2n

2(ε+K)2 and c2 = ε
(ε+K)2 ,

which implies transience of M when it is irreducible.
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Proposition 3. Let M be a Markov chain and f be a computable function from
S to R with B = {s | f(s) ≤ 0} fulfilling ∅ � B � S, and for some ε,K ∈ R>0

and d ∈ N
∗, Equation (1). Assume in addition that for all n ∈ N, {s | f(s) ≤ n}

is finite. Then M is divergent w.r.t. any s0 and any finite A.

4.1 Probabilistic Channel Systems

Now we introduce a probabilistic variant of channel systems particularly appro-
priate for the modelling of open queuing networks. Here a special input channel
cin (that works as a counter) only receives the arrivals of anonymous clients
all denoted by $ (item 1 of the next definition). Then the service of a client
corresponds to a message circulating between the other channels with possibly
change of message identity until the message disappears (items 2 and 3).

Definition 8. A probabilistic open channel system (pOCS) S = (Q,Ch,Σ,
Δ,W ) is defined by:

– a finite set Q of states;
– a finite set Ch of channels, including cin;
– a finite alphabet Σ including $;
– a transition relation Δ ⊆ Q × Ch × Σε × Ch × Σε × Q that fulfills:

1. For all q ∈ Q, (q, cin, ε, cin, $, q) ∈ Δ;
2. For all (q, c, a, c′, a′, q′) ∈ Δ, a = ε ⇒ a′ = $ ∧ c = c′ = cin;
3. For all (q, c, a, c′, a′, q′) ∈ Δ, c �= cin ⇒ c′ �= cin;

– W is a function from Δ × (Σ∗)Ch to Q>0.

Illustration. We consider three types of transitions between configurations:
sending messages to the input channel (i.e., (q, cin, ε, cin, $, q)) representing client
arrivals; transferring messages between different channels (i.e., (q, c, a, c′, a′, q′)
with ε �∈ {a, a′} and c′ �= cin) describing client services; and terminating mes-
sage processing (i.e., (q, c, a, c′, ε, q′) with a �= ε) meaning client departures. All
messages entering cin are anonymous (i.e., denoted by $). The left part of Fig. 3
is a schematic view of such systems. The left channel is cin. All dashed lines
represent message arrivals (to cin) or departures. The solid lines model message
transferrings.

The next definitions formalize the semantics of pOCS.

Definition 9. Let S be a pOCS, (q, ν) ∈ Q × (Σ∗)Ch be a configuration and
t = (q, c, a, c′, a′, q′) ∈ Δ. Then t is enabled in (q, ν) if ν(c) = aw for some w.
The firing of t in (q, ν) leads to (q′, ν′) defined by:

– if c = c′ then ν′(c) = wa′ and for all c′′ �= c, ν′(c′′) = ν(c′′);
– if c �= c′ then ν′(c) = w, ν′(c′) = ν(c′)a′

and for all c′′ /∈ {c, c′}, ν′(c′′) = ν(c′′).

As usual one denotes the firing by (q, ν) t−→ (q′, ν′). Observe that from any
configuration at least one transition (a client arrival) is enabled.
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(a)

q0 qf

?x!xy

(b)

Fig. 3. A schematic view of pOCS (left) and a pPDA (right)

Definition 10. Let S be a pOCS. Then the Markov chain MS = (SS , pS) is
defined by:

– SS = Q × (Σ∗)Ch is the set of configurations;
– For all (q, ν) ∈ SS let W (q, ν) =

∑

(q,ν)
t−→(q′,ν′)

W (t, ν). Then:

for all (q, ν)
t−→ (q′, ν′), pS((q, ν), (q′, ν′))= W (t,ν)

W (q,ν)
.

The restrictions on pOCS w.r.t. standard CS do not change the status of the
reachability problem.

Proposition 4. The reachability problem of pOCS is undecidable.

As discussed in the introduction, when the number of clients exceeds some
threshold, the performances of the system drastically decrease and thus the
ratio of arrivals w.r.t. the achievement of a task increase. We formalize it by
introducing uncontrolled pOCS where the weights of transitions are constant
except the ones of client arrivals which are specified by positive non constant
polynomials. Let ν ∈ (Σ∗)Ch. Then |ν| denotes

∑
c∈Ch |ν(c)|.

Definition 11. Let S be a pOCS. Then S is uncontrolled if:

– For all t = (q, c, a, c′, a′, q′) ∈ Δ with a �= ε, W (t, ν) only depends on t and
will be denoted W (t);

– For all t = (q, cin, ε, cin, $, q), W (t, ν) is a positive non constant polynomial,
whose single variable is |ν|, and will be denoted Win(q, |ν|).
The next proposition establishes that an uncontrolled pOCS generates a

divergent Markov chain. This model illustrates the interest of divergence: while
reachability of a pOCS is undecidable, we can apply Algorithm 1.

Proposition 5. Let S be a uncontrolled pOCS. Then MS is divergent.

4.2 Probabilistic Pushdown Automata

Increasing pPDA. We introduce the subset of increasing pairs, denoted as
Inc(A), which is a subset of Q × Γ that contains pairs (q, a) such that from
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state (q, wa), the height of the stack can increase without decreasing before.
When some conditions on Inc(A) are satisfied, we obtain a syntactic sufficient
condition for MA to be divergent. This set Inc(A) can be easily computed in
polynomial time by a saturation algorithm.

Definition 12. Let (q, a), (q′, a′) ∈ Q×Γ . Then (q′, a′) is reachable from (q, a)
if either (q, a) = (q′, a′) or there is a sequence of transitions of Δ, (ti)0≤i<d such

that: ti =qi
?ai!ai+1−−−−−→ qi+1, (q0, a0)=(q, a), (qd, ad)=(q′, a′) and for all i, ai �= ε.

The set of increasing pairs Inc(A) ⊆ Q × Γ is the set of pairs (q, a) that can

reach a pair (q′, a′) with some q′ ?a′!bc−−−→ q′′ ∈ Δ.

Definition 13. A pPDA A is increasing if:

– Inc(A) = Q × Γ ;
– for all t = q

?a!w−−−→ q′ ∈ Δ such that |w| ≤ 1, W (t,−) is an integer constant
denoted Wt;

– for all t = q
?a!bc−−−→ q′ ∈ Δ, W (t,−) is a non constant integer polynomial

where its single variable is the height of the stack denoted Wt;
– for all q

?a−→ q′ ∈ Δ, there exists q
?a!bc−−−→ q′′ ∈ Δ.

Illustration. The right part of Fig. 3 is an abstract view of a pPDA modelling
of a server simultaneously handling multiple requests. The requests may occur
at any time and are stored in the stack. The loop labelled by ?x!xy is a symbolic
representation of several loops: one per triple (q, x, y) with q ∈ Q, x ∈ Γ and
y ∈ Γ . Due to the symbolic loop, the set of increasing pairs of the pPDAserver is
equal to Q×Γ and there is always a transition increasing the height of the stack
outgoing from any (q, a). Assume now that for any other transition, its weight
does not depend on the size of the stack and that a transition t = q

?a!ab−−−→ q
has weight Wt(n) = ct × n. Then A is increasing. The dependance on n means
that due to congestion, the time to execute tasks of the server increases with
the number of requests in the system and thus increase the probability of a
new request that occurs at a constant rate. One is interested in computing the
probability to reach (qf , ε) from (q0, ε) representing the probability that the
server reaches an idle state having served all the incoming requests.

We establish that an increasing pPDA generates a divergent Markov chain.

Proposition 6. Let A be an increasing pPDA. Then the Markov chain MA is
divergent w.r.t. any s0 and finite A.

5 Conclusion and Perspectives

We have introduced the divergence property of Markov chains and designed two
generic CRP-algorithms depending on the status of the reachability problem.
Then we have studied the decidability of divergence for pPDA and for pPN for
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different kinds of weights and target sets. Finally, we have provided two useful
classes of divergent models within pCS and pPDA.

In the future, we plan to study the model checking of polynomial pPDA (as
a possible extension of [12]) and some heuristics to find functions f0 and f1.
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Abstract. This paper presents a framework for the competitive analy-
sis of Model Predictive Controllers (MPC). Competitive analysis means
evaluating the relative performance of the MPC as compared to other
controllers. Concretely, we associate the MPC with a regret value which
quantifies the maximal difference between its cost and the cost of any
alternative controller from a given class. Then, the problem we tackle
is that of determining whether the regret value is at most some given
bound. Our contributions are both theoretical as well as practical: (1) We
reduce the regret problem for controllers modeled as hybrid automata to
the reachability problem for such automata. We propose a reachability-
based framework to solve the regret problem. Concretely, (2) we propose
a novel CEGAR-like algorithm to train a deep neural network (DNN) to
clone the behavior of the MPC. Then, (3) we leverage existing reacha-
bility analysis tools capable of handling hybrid automata with DNNs to
check bounds on the regret value of the controller.

Keywords: Competitive analysis · Hybrid automata

1 Introduction

An optimal control problem (OCP) deals with finding a function u(t), called a
control law that assigns values to control variables for every time step t ∈ R≥0.
The control law should minimize a given cost function J [x(·), u(·), t0, tf ] eval-
uated for a time interval (t0, tf ) and subject to the state-equation constraints
ẋ(t) = f [x(t), u(t), t]. Model predictive controllers (MPC) solve such a control
problem for a given f . This paper presents an approach for the competitive
analysis of MPC. Competitive analysis, in this context, means evaluating the
relative performance of the MPC as compared to other controllers. Referring
to the OCP, our approach assumes that a control law u(t) is given to us. Fur-
ther, we associate to u(t) a regret value, which quantifies the maximal difference
between its cost and the cost of any alternative control law from a given class C.
Formally, the regret of u(t) is: Reg(u) := supc∈C suptf∈R≥0

J [x(·), u(·), t0, tf ] −
J [x(·), c(·), t0, tf ]. If Reg(u) < r, then we say that the control law u(t) is r-
competitive.
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In this work, we first show that the r-competitivity problem for controllers
modeled as hybrid automata is interreducible with the reachability problem
for hybrid automata. It follows that the r-competitivity problem is undecid-
able. Fortunately, this also points to using approximate reachability analysis
tools to realize approximate competitive analysis. Based on the latter, we pro-
pose a counterexample-guided abstraction refinement (CEGAR) framework that
abstracts a given MPC using a deep neural network (DNN) trained to clone the
behavior of the MPC. This abstraction allows us to use reachability analysis
tools such as Verisig [13] to overapproximate the regret value of the abstracted
controller. As usual with CEGAR approaches, the refinement step is the main
challenge: If the regret is deemed too high (and Verisig finds a real example of
this), then this might be due to our abstraction of the controller as a DNN,
the overapproximation incurred by the reachability tool, or it might be a real
problem with the MPC. In our proposal, when we cannot match the high-regret
example to a behavior of the MPC, we use the output of the reachability analysis
tool to augment the dataset used for training the DNN.

As a final contribution, we report on a prototype implementation of our
CEGAR framework using Verisig. We have used this prototype to analyze MPC
for two well-known control problems. While the approach is promising, we con-
clude that further tooling support is required for the full automation of the
framework.

Related Work. Chen et al. 2022 [5] conducted a survey on recent advancements in
verifying cyber-physical systems and identified as understudied the verification
of control systems whose performance is measured using cost functions. Indeed,
we did not find many works on the verification of controllers with respect to the
cost functions used to obtain them from an OCP instance. Further, to the best
of our knowledge, there have been no previous works on the formal analysis of
regret in hybrid systems. A notable exception is the recent work of Muvvala
et al. [16] who propose regret minimization as a less pessimistic objective for
robots involved in collaborations (e.g., with humans), as opposed to a sole
emphasis on worst-case optimization. However, their regret analysis focuses on
a higher planning level, distinct from the hybrid-dynamics level of the system,
making it closer to the work of Hunter et al. [12] rather than the present one.

Behavioral cloning, also known as imitation learning, is a topic of increasing
interest within artificial intelligence (see, e.g. [3,17,18]). We do not claim to
have a new behavioral cloning algorithm. Rather, we have integrated a data
aggregation step into our CEGAR algorithm for the competitive analysis of
hybrid automata. Interestingly, contrary to previous uses of DNNs as proxies for
MPC [6,13], we have observed that a successful competitive analysis (i.e., the
tool says the controller is r-competitive for a small enough r) suggests one can
use the DNN instead of the MPC! Although this does not guarantee that the
MPC itself is r-competitive, the DNN demonstrates competitiveness. Moreover,
evaluating the DNN to compute the control law proves to be relatively efficient.
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2 Hybrid Automata and Competitive Analysis

A hybrid automaton (HA, for short) is an extension of a finite-state automaton
equipped with a finite set of real-valued variables. The values of the variables
change discretely along transitions and they do so continuously, over time while
staying in a state. Formally it is a tuple (Q, I, T,Σ,X, jump,flow , inv), where:

– Q is a finite set of states and I ⊆ Q is the subset of initial states,
– Σ is a finite alphabet,
– T ⊆ Q × Σ × Q is a set of transitions, and
– X is a finite set of real-valued variables. We write V ⊆ R

X to denote the set
of all possible valuations of X.

– jump : T → Op maps transitions to a set of guards and effects on the values
of the variables. That is, Op ⊆ V 2 and for a transition δ ∈ T , jump(δ) =
(guard , effect) implies that δ is “enabled” if the current valuation is guard
and effect is the valuation after the transition. Intuitively, jump denotes the
discrete changes in the variables along transitions. Usually, the guards and
effects are encoded as first-order predicates over the reals, e.g. jump(δ) =
(x > 2, x + 4) denotes the set {(v, v′) ∈ V 2 | v(x) > 2 and v′(x) = v(x) + 4}.

– flow : Q → F , with F ⊆ {f : R>0 → V }, maps each state q ∈ Q to a set F of
functions fq that give the continuous change in the valuation of the variables
while in state q. Usually, the functions fq are encoded as systems of first-order
differential equations, e.g. ẋ = 5 denotes functions1 f(t)(x) = 5t + c, where
c ∈ R>0 is the value of x at time t = 0.

– inv : Q → 2V maps each state q ∈ Q to an invariant that constrains the pos-
sible valuations of the variables in q. Similar to jump, inv is usually encoded
as first-order predicates over the reals.

Configurations and Runs. A configuration is a pair (q, v) where q ∈ Q and v ∈ V
is a valuation of the variables in X. A configuration (q, v) is valid if v ∈ inv(q).
Let (q, v) and (q′, v′) be two valid configurations. We say (q′, v′) is a discrete
successor of (q, v) if δ = (q, a, q′) ∈ T for some a ∈ Σ and (v, v′) ∈ jump(δ).
Similarly, (q′, v′) is a continuous successor of (q, v) if q = q′ and there exist
t0, t1 ∈ R>0 and fq ∈ flow(q) such that fq(t0) = v, fq(t1) = v′ and for all
t0 ≤ t ≤ t1, fq(t) ∈ inv(q).

A run ρ is a sequence of configurations (q0, v0)(q1, v1) . . . (qn, vn) such that
q0 ∈ I, v0 assigns 0 to all variables and, for all 0 ≤ i < n, (qi+1, vi+1) is a discrete
or continuous successor of (qi, vi). The Reach decision problem asks, for a given
hybrid automaton A and configuration (q, v), whether there is a run of A whose
last configuration is (q, v).

Parallel Composition. Let Ai = (Qi, Ii, Ti, Σi,Xi, jumpi,flow i, inv i) for i = 1, 2
be two HA. Then, A = (Q, I, T,Σ,X, jump,flow , inv) is the parallel composition
of A1 and A2, written A = A1 || A2, if and only if:

1 Note that if X contains more variables than just x, this function is not unique.
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– Q = Q1 × Q2 and I = I1 × I2,
– Σ = Σ1 ∪ Σ2 and X = X1 ∪ X2.
– The transition set T contains (〈q1, q2〉, σ, 〈q′

1, q
′
2〉) if and only if there are

i, j ∈ {1, 2} such that i 	= j and:
• either σ ∈ Σi \ Σj , (qi, σ, q′

i) ∈ Ti, and qj = q′
j ;

• or σ ∈ Σi ∩ Σj , (qi, σ, q′
i) ∈ Ti, and (qj , σ, q′

j) ∈ Tj .
– The jump function is such that, for δ = (〈q1, q2〉, σ, 〈q′

1, q
′
2〉), we have that:

• either σ ∈ Σi \ Σj and jump(δ) = jumpi(〈qi, σ, q′
i〉) for some i, j ∈ {1, 2}

with i 	= j,
• or σ ∈ Σi ∩ Σj and jump(t) = jump1(〈q1, σ, q′

1〉) ∩ jump2(〈q2, σ, q′
2〉).

– Finally, flow(〈q1, q2〉) = flow1(q1) ∩ flow2(q2), and
– inv(〈q1, q2〉) = inv1(q1) ∩ inv2(q2).

2.1 The Cost of Control

In this work, we use HA to model hybrid systems and controllers. In particular,
we henceforth assume any HA A = (Q, I, T,Σ,X, jump,flow , inv) modelling a
hybrid system has a designated cost variable J ∈ X. We make no such assump-
tion for HA used to model controllers. Observe that from the definition of parallel
composition, it follows that if A models a hybrid system, then B = A || C also
models a hybrid system—i.e. it has the cost variable J—for any HA C.

The following notation will be convenient: For a run ρ = (q0, v0) . . . (qn, vn)
we write Jρ to denote the value vn(J). Further, we write ρ ∈ A, where ρ is a
run of the hybrid automaton A. Now, the maximal and minimal cost of a HA A
respectively are J(A) := supρ∈A Jρ and, J(A) := infρ∈A Jρ.

2.2 Regret

Fix a hybrid-system HA A = (Q, I, T,Σ,X, jump,flow , inv). We define the
(worst-case) regret Reg(U) of a controller HA U as the maximal difference
between the (maximal) cost incurred by the parallel composition of A and U—
i.e. the controlled system—and the (minimal) cost incurred by an alternative
controller HA from a set C: Reg(U) := supU ′∈C(J(A || U) − J(A || U ′)). The
Regret problem asks, for given A, U , C, and r ∈ Q, whether Reg(U) ≥ r.

3 Reachability and Competitive Analysis

In this section, we establish that the reachability and regret problems are interre-
ducible. While this implies an exact algorithm for the competitive analysis of
hybrid automata does not exist, it suggests the use of approximation algorithms
for reachability as a means to realize an approximate analysis.

Theorem 1. Let C be the set of all possible controllers. Then, the Regret
problem reduces in polynomial time to the Reach problem.
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Fig. 1. Gadget for simulating any possible controller

Proof (of Theorem 1). Given a hybrid-system HA A, a controller U , a set of all
possible controllers C and a regret bound r ∈ Q, we will construct another HA
A′ = (Q′, I ′, T ′, Σ,X ′, jump′,flow ′, inv ′) and a target configuration (q′, v) of A′

such that, (q′, v) is reachable in A′ if and only if Reg(U) < r in A || U . Let us
write A = (Q, I, T,Σ,X, jump,flow , inv) and note that J ∈ X because A is a
hybrid-system HA. We extend the automaton A ||U with a gadget to obtain A′.
The idea is as follows: for every variable y ∈ Y of A || U , we add a copy of it
in the variable set X ′ of A′ that simulates any possible choice of value for that
variable by an alternative controller U ′. The variable J ′ ∈ X ′ calculates the cost
of that alternative controller. Formally, X ′ = Y ∪ {y′ | y ∈ Y }.

To simulate any possible valuation of the variables, we introduce the gadget
given in Fig. 1. For every variable x′

i such that xi is a variable in U , the gadget
contains two states q+x′

i
and q−

x′
i
. Then, flow ′(q+x′

i
) contains ẋ′

i = 1 and ẋ′
j = 0 for

all j 	= i. Intuitively, this state allows us to positively update the value of x′
i to

any arbitrary value. Similarly, flow ′(q−
x′
i
) contains ẋ′

i = −1 and ẋ′
j = 0, ∀j 	= i,

which allows it to negatively update the value of x′
i.

Now, we add a “sink” state qreach and make it reachable from all the other
states using transitions δ′

i ∈ T ′ such that jump′(δ′
i) contains guard of the form

J − J ′ ≥ r. Finally, from every state q′ ∈ Q′, we add the option to go into its
own copy of the gadget, set the values of the variables to any desired value and
come back to the same state.

Note that if (qreach,0) is reachable in A′, via a run ρ ∈ A′, then Jρ − J ′
ρ ≥ r.

As the gadget does not update the value of J and J ′, it is easy to see that
Reg(U) ≥ r. Now, if (qreach,0) is not reachable that means, Jρ − J ′

ρ < r for all
ρ ∈ A′. Now, as all possible controllers (in fact, all possible configurations of
variables from U) can be simulated in A′, it is easy to see that Reg(U) < r. �

Interestingly, the construction presented above does not preserve the prop-
erty of being initialized. Intuitively, an initialized hybrid automaton is one that
“resets” a variable x on transitions between states which have different flows for
x. Alas, we do not know whether an alternative proof exists which does preserve
the property of being initialized (and also being rectangular, a property which we
do not formally define here). Such a reduction would imply the regret problem
is decidable for rectangular and initialized hybrid automata.

We now proceed to stating and proving the converse reduction.

Theorem 2. The Reach problem reduces in polynomial time to the Regret
problem.
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qi A qTc = 0, J = 0
c ≥ 1, J = 1 v, J = 2

Fig. 2. Reduction from Reach to Regret

Proof (of Theorem 2). Given a HA A and a target configuration (q, v), we will
construct a HA A′ and a controller U such that Reg(U) ≥ 2 with respect to
A′ || U if and only if (q, v) is reachable in A. The reduction works for any set C
of controllers that contains at least one controller that sets c to 0 all the time.

First, we add two states to A′ so that Q′ = Q ∪ {qi, qT }. In A′, qi has a
self-loop that can be taken if the value of c is 0 and the effect is that J = 0 (see
Fig. 2). From qi, we can also transition to the initial states of A if c ≥ 1, and in
doing so, we set J to 1. Finally, from the target state q in A, we can go to the
new state qT if the target valuation v is reached, and that changes the valuation
of J to 2. The valuation of J does not change within A.

Note that the minimum cost incurred by a controller that constantly sets c
to 0 in A′ is 0, which is achieved by the run that loops on qi. Now, if (q,v) is
reachable in A via run ρ ∈ A, then the maximum cost incurred by a controller
that sets c to 1 occurs along a run qi · ρ · qT and is 2, making Reg(U) ≥ 2. On
the other hand, if (q,v) is not reachable in A, then the maximal value of J along
any such run is 1, resulting in Reg(U) < 2. Our constructed controller U is such
that it sets c to 1 all the time, and the above arguments give the desired result.
�

Since the reachability problem is known to be undecidable for hybrid
automata in general [10], it follows that our regret problem is also undecidable.

Corollary 1. The Regret problem is undecidable.

4 CEGAR-Based Competitive Analysis

We present our CEGAR approach to realize approximate competitive analysis.
To keep the discussion simple, we focus on continuous systems, specifically single-
state hybrid automata. Since our goal is to approximate the regret of MPCs, we
model controllers as hybrid automata that sample variable values at discrete-
time intervals and determine control variable values using a deep neural network
(DNN) trained to behave as the MPC. Concretely, our approach specializes the
reduction in the proof of Theorem 1: We will work with a hybrid automaton
D that abstracts the behavior of the controller using a DNN, and a hybrid
automaton N that abstracts the behaviors of all alternative controllers. The
overview of our framework is depicted in Fig. 3a.

4.1 Initial Abstraction and Analysis

Our proposed framework begins with the abstraction of the controller as a hybrid
automaton D and the alternative controllers as N . Each of these automata are
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Fig. 3. Flowchart depictions of our approach and our toolchain implementing it;
We use ANSI/ISO standard flowchart symbols: the parallelogram blocks represent
inputs/outputs, and the rectangular blocks represent processes or tools

assumed to have a cost variable, say JD for D and JN for N . For a given
value r ∈ R, if we want to determine whether D is r-competitive then we add to
A = D||N a new cost variable J = JN −JD. As is argued in Theorem 1, D should
be r-competitive if and only if A can reach a configuration where the value of J
is larger than r. Hence, we can apply any reachability set (overapproximation)
tool to determine the feasibility of such a configuration.

4.2 Reachability Status

If the reachability tool finds that a configuration with J ≥ r is reachable in
A, we say it concludes A is unsafe. In that case, we will have to process the
reachability witness. Otherwise, A is safe, and we can stop and conclude that D is
r-competitive. Interestingly, D can now be used as an r-competitive replacement
of the original controller! It is important to highlight that behavior cloning does
not provide any guarantees regarding the relationship between the MPC and
the DNN within D. Consequently, even if we have evidence supporting the r-
competitiveness of D, we cannot infer the same for the MPC itself.

In the context of MPCs, this result is already quite useful. This is because
MPCs have a non-trivial latency and memory usage before choosing a next valu-
ation for the control variables (see, e.g. [11,14]). In our implementation described
in the following section, D takes the form of a DNN. As DNNs can be evaluated
rather efficiently, using the DNN instead of the original MPC is desirable.
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4.3 Counterexample Analysis and Refinement

If A is deemed unsafe, we expect the reachability tool to output a counterex-
ample in the form of a run. There is one main reason why such a run could be
spurious, i.e. it is not a witness of the MPC not being r-competitive. Namely,
the abstractions D (representing the MPC) or N (representing alternative con-
trollers) might be too coarse. For the specific case of D, where a DNN is used to
model the MPC, we describe sufficient conditions to determine if the counterex-
ample is indeed spurious. If the counterexample is indeed deemed spurious, we
can refine our abstraction by incorporating new data obtained from the coun-
terexample and retraining the DNN. In general, though, refining D and N falls
into one of the tasks for which our framework does not rely on automation.

4.4 Human in the Loop

There are three points in the framework, where human intervention is needed.

Modelling and Specification. First, the task of obtaining initial abstractions D
and N of the controller and all alternative controllers, respectively, does require a
human in the loop. Indeed, crafting hybrid automata is not something we expect
from every control engineer. In our prototype described in the next section, we
mention partial support for obtaining D and N automatically when the MPC is
given in the language of a particular OCP and optimization library.

Reachability Analysis. Second, reachability being an undecidable problem, most
reachability analysis tools can not only output safe and unsafe as results. Addi-
tionally, they might output an “unknown” status. In this case, revisiting the
abstractions D and N , or even changing the options with which the tool is
being used may require human intervention. In fact, we see this as an additional
abstraction-refinement step which is considerably harder to automate since there
is an absence of a counterexample to work with.

Abstraction Refinement. Finally, our framework does not say what to do if the
counterexample being spurious is due to N being too coarse an approxima-
tion. This scenario can occur when N is purposefully modeled to discretize or
approximate certain behaviors of alternative controllers to facilitate reachability
analysis. However, for D, we offer automation support by proposing the retrain-
ing of our DNN in the implementation. It might actually be needed to change
the architecture of the DNN to obtain a better abstraction. This process can be
automated, as increasing the number of layers is often sufficient according to the
universal approximation theorem [4].

5 Implementation and Evaluation

We now present our implementation of the CEGAR-based competitive analysis
method presented in the previous section, along with two case studies used for
evaluation: the cart pendulum and an instance of motion planning.
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5.1 Competitive Analysis Toolchain

Figure 3b gives a visual depiction of the toolchain in the form of a flowchart.
Starting from the top, D.xml, N.xml are XML files encoding hybrid automata
D and N , respectively, in the SpaceEx modeling language [8]. The automaton D
represents the controller, which could be a model predictive controller (MPC),
and N represents a class of controllers that the MPC is compared against—
see also Sect. 4.1. We use the HyST [2] translation tool for hybrid automata
to generate the parallel composition D || N (encoded in DxN.xml, again in the
SpaceEx language). The composed automaton, along with the trained DNN and
the property to be verified, are fed as inputs to Verisig. Verisig [13] is a tool
that verifies the safety properties of closed-loop systems with neural network
components. The tool takes a hybrid automaton, a trained neural network, and
property specification files as inputs. It performs the reachability analysis and
provides safety verification result. We then parse the output of Verisig to deter-
mine whether D is competitive enough (parser.py). If this is not the case, we
realize a sound check to determine if the counterexample is spurious, in which
case we use it to extend our dataset and further train the DNN.

5.2 Initial Abstraction and Training

Our toolchain is finetuned to work well for hybrid systems modeled in a tool
called Rockit and MPCs obtained using the same tool. Rockit, which stands for
Rapid Optimal Control Kit, is a tool designed to facilitate the rapid prototyp-
ing of optimal control problems, including iterative learning, model predictive
control, system identification, and motion planning [9].

Our toolchain includes a utility that interfaces with the API of Rockit to
automatically generate the hybrid automata D and N from a model of a control
problem. While the use of Rockit is convenient, it is not required by our toolchain.

Based on a dataset (in our examples, we obtain it from Rockit), we train a
DNN using behavioral cloning : we try to learn the behavior of an expert (in our
case, the MPC) and replicate it. For this, we make use of the Dagger algorithm
[18], which, after an initial round of training on the dataset from Rockit, will
simulate traces using the DNN. The points that the neural network visits along
these traces are then given to the expert, and the output of the expert is recorded.
These new points and outputs are appended to the first dataset, and this new
dataset is used to train a second DNN. This iterative process is done multiple
times to make the DNN more robust. In all of our experiments, the TensorFlow
framework [1] was used for the creation and training of the DNN.

5.3 Reachability Status

The regret property, encoded as a reachability property as is done in the proof
of Theorem 1, is specified in the property file Property.yml, which also includes
the initial states of D || N . Verisig provides three possible results: “safe” if no
property violation is found, “unsafe” if there is a violation, and “unknown” if the
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property could not be verified, potentially due to a significant approximation
error. In the latter two cases, a counterexample file (CE file) is generated.

5.4 Counterexample Analysis and Retraining

If the result is “unsafe”, the next step is to compare the counterexample tra-
jectory against the dataset generated from the controller code. If a matching
trajectory is found, it indicates a real counterexample, meaning that this tra-
jectory could potentially occur in the actual controller, and no further action is
required. If a matching trajectory is not found, then it is a spurious counterex-
ample that requires either retraining the DNN or fix(es) in D||N . Our toolchain
automatically validates the counterexample by comparing the trajectories from
Verisig and the controller as implemented in Rockit. To do so, since Rockit uses
the floating-point representation of real numbers, we choose a decimal precision
of ε = 10−3 for the comparison. In the case of a spurious counterexample that
requires retraining the DNN, we update the existing dataset using Rockit to
obtain additional labeled data based on the trajectory from the CE file.

The CE file from Verisig represents state variable values using interval arith-
metic, while the controller dataset contains state variable values in R without
intervals. To accommodate this difference, we choose to append to the dataset
new entries: (a) the lower bounds of input intervals, (b) the upper bounds,
and (c) a range2 of intermediate input values within the intervals. For each of
these, we also include the corresponding controller outputs. The generation of
the updated dataset and the retraining of the DNN are performed automati-
cally by our toolchain. A DNN trained on the new dataset is then fed to Verisig
again along with DxN.xml and the Property.yml. This way, the CEGAR loop
is repeated until one of the following conditions is true: (a) the counterexample
is real, or (b) a maximum number of retraining iterations (determined by the
user) is reached.

5.5 Experiments

In the sequel, we use our tool to analyze two control problems that have been
implemented using the Rockit framework. The research questions we want to
answer with the forthcoming empirical study are the following.

RQ1 Can we have a fully automated tool to perform the competitive analysis?
RQ2 Is the toolchain scalable? Why or why not?
RQ3 Does the approach help to improve confidence in (finite-horizon) compet-

itivity of controllers?
RQ4 Does the approach help find bugs in controller design?

We now briefly introduce the two case studies, their dynamics, and how each
of them are modeled so that our toolchain can be used to analyze them.
2 Our toolchain splits each interval into n equally large segments and adds all points

in the resulting lattice. In our experiments, we use n = 4.
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Cart pendulum is a classic challenge in control theory and dynamics [7]. In it,
an inverted pendulum is mounted on a cart that can move horizontally via an
electronic servo system. The objective is to minimize a cost J = F 2+100∗pos2,
where F is the force applied to the cart and pos indicates the position of the
cart. The values of F and pos are constrained within the range of [−2, 2]. The
dynamics of the cart correspond to the physics of the system and depend on the
mass of the cart and the pendulum and the length of the pendulum.

While the proof of Theorem 1 provides a sound way to model all alternative
controllers in the form of N , the construction combines continuous dynamics and
non-determinism. Current hybrid automata tools do not handle non-trivial com-
binations of these two elements very well. Hence, we have opted to discretize the
choice of control values for alternative controllers. Every time the DNN is asked
for new control variable values in D, the automaton N non-deterministically
chooses new alternative values from a finite subset fixed by us a priori.

Motion planning involves computing a series of actions to move an object from
one point to another while satisfying specific constraints [15]. In our case study,
an MPC is used to plan the motion of an autonomous bicycle that is expected
to move along a curved path on a 2D plane using a predefined set of waypoints.
To prevent high-speed and skidding, the velocity (V ) and the turning rate (δ,
in radians) are constrained in the ranges 0 ≤ V ≤ 1 and −π/6 ≤ δ ≤ π/6.
The objective is to minimize the sum of squared estimate of errors between the
actual path taken by the bicycle and the reference path. Intuitively, the more
the controller deviates from the reference path, the higher its cost.

Like in the cart pendulum case study, we discretize the alternative control
variable valuations. A big difference is that the cost has both a Mayer term and
a Lagrangian that depend on the location of the bicycle and the waypoints in an
intricate way. In terms of modelling, this means that D and N have to “compute”
closest waypoints relative to the current position of the bicycle.

Discussion. Towards an answer for RQ1, we can say that while our toolchain3

somewhat automates our CEGAR, it still requires manual work (e.g. the initial
training and choice of DNN architecture). Moreover, in the described case stud-
ies, we did not observe an MPC DNN that is labeled as competitive. This may be
due to (over)approximations incurred by our framework and our use of Verisig.
Despite this, we can answer RQ4 positively as our toolchain allowed us to spot
a bug hidden in the Rockit MPC solution for the cart pendulum. We observed in
early experiments that the MPC was not competitive and short (run) examples
of this were quickly found by Verisig. We then found that the objective function
in Rockit was indeed not as intended by the developers.

The DNNs do show a trend towards copying the behavior of the MPC (see
Fig. 4) even though we retrain a new DNN from scratch after each (spurious)

3 All graphs and numbers can be reproduced using scripts from: https://doi.org/10.
5281/zenodo.8255730.

https://doi.org/10.5281/zenodo.8255730
https://doi.org/10.5281/zenodo.8255730
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Box Plot of Error Loss for DNNs 
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Fig. 4. Boxplots showing the training losses of all DNNs against all test sets

counterexample obtained via Verisig and we (purposefully) randomize the choice
of test and training set in each iteration. We do this to increase variability in
the set of behaviors and the counterexamples used to extend the dataset. In
the cart pendulum case study, we observe that in the iterations 2, 7, and 11,
the number of discrete time steps during which the corresponding DNN can act
while remaining competitive is larger than in the initial iteration. Hence, for
RQ3, we conclude our toolchain can indeed help increase reliability in the DNN
proxy being competitive, albeit only for a finite horizon. On the negative side,
experiments for 20 iterations of retraining from spurious counterexamples take
more than 90min in both our case studies. This leads us to conclude that our
toolchain does not yet scale as required for industrial-size case studies (RQ2).

6 Conclusion

Based on our theoretical developments to link the regret problem with the clas-
sical reachability problem, we proposed a CEGAR-based approach to realize the
competitive analysis of MPCs via neural networks as proxies. We also presented
an early proof-of-concept implementation of the approach. Now that we have a
baseline, we strongly believe improvements in the form of algorithms and dedi-
cated tools will allow us to improve our framework to the point where it scales
for interesting classes of hybrid systems.
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Abstract. We introduce and investigate a series of matching problems
for patterns with variables under Simon’s congruence. Our results pro-
vide a thorough picture of these problems’ computational complexity.

1 Introduction

A pattern with variables is a string α consisting of constant letters (or termi-
nals) from a finite alphabet Σ = {1, . . . , σ}, of size σ ≥ 2, and variables from
a potentially infinite set X , with Σ ∩ X = ∅. Such a pattern α is mapped by
a function h, called substitution, to a word by substituting the variables occur-
ring in α by strings of constants, i.e., strings over Σ. For example, the pattern
α = xxababyy can be mapped to the string of constants aaaaababbb by the
substitution h defined by h(x) = aa, h(y) = b. In this framework, h(α) denotes
the word obtained by substituting every occurrence of a variable x in α by h(x)
and leaving all the constants unchanged. If a pattern α can be mapped to a
string of constants w, we say that α matches w; the problem of deciding, given
a pattern α with variables and a string of constants w, whether there exists a
substitution which maps α to w is called the (exact) matching problem, Match.

Exact Matching Problem: Match(α,w)
Input: Pattern α, |α| = m, word w, |w| = n.
Question: Is there a substitution h with h(α) = w?

Match is a heavily studied problem, which appears frequently in various areas
of theoretical computer science. Initially, this problem was considered in language
theory (e.g., pattern languages [5]) or combinatorics on words (e.g., unavoidable
patterns [52]), with connections to algorithmic learning theory (e.g., the theory
of descriptive patterns for finite sets of words [5,16,63]), and has by now found
interesting applications in string solving and the theory of word equations [51],
stringology (e.g., generalised function matching [4]), the theory of extended reg-
ular expressions with backreferences [8,24,29,30]), or database theory (mainly
in relation to document spanners [15,25,27,28,46,58,59]).
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Match is NP-complete in general [5], and a more detailed image of the param-
eterised complexity of the matching problem is revealed in [17–19,55,57,62] and
the references therein. A series of classes of patterns, defined by structural restric-
tions, for which Match is in P were identified [13,17,55]; moreover, for most of
these classes, Match is W [1]-hard [14] w.r.t. the structural parameters used to
define the respective classes.

Recently, Gawrychowski et al. [35,36] studied Match in an approximate set-
ting: given a pattern α, a word w, and a natural number �, one has to decide
if there exists a substitution h such that D(h(α), w) ≤ �, where D is either
the Hamming [35] or the edit distance [36]. Their results offered, once more,
a detailed understanding of the approached matching problems’ complexity (in
general, and for classes of patterns defined by structural restrictions). The prob-
lems discussed in [35,36] can be seen in a more general setting: given a pattern
α and a word w, decide if there exists a substitution h such that h(α) is similar
to w, w.r.t. some similarity measure (Hamming resp. edit distance in [35,36] or
string equality for exact Match). Thus, it seems natural to also consider vari-
ous other string-equivalence relations as similarity measures, such as (k-)abelian
equivalence [41,42] or k-binomial equivalence [26,50,56]. Here, we consider an
approximate variant of Match using Simon’s congruence ∼k [65].

Matching under Simon’s Congruence: MatchSimon(α,w, k)
Input: Pattern α, |α| = m, word w, |w| = n, and number k ∈ [n].
Question: Is there a substitution h with h(α) ∼k w?

Let us recall the definition of Simon’s congruence. A string u is a subsequence
of a string v if u results from v by deleting some letters of v. Subsequences are
well studied in the area of combinatorics of words and combinatorial pattern
matching, and are well-connected to other areas of computer science (e.g., the
handbook [51] or the survey [48] and the references therein). Let Sk(v) be the
set of all subsequences of a given string v up to length k ∈ N0. Two strings v and
v′ are k-Simon congruent iff Sk(v) = Sk(v′). The problem of testing whether two
given strings are k-Simon congruent, for a given k, was introduced by Imre Simon
in his PhD thesis [64] as a similarity measure for strings, and was intensely stud-
ied in the combinatorial pattern matching community (see [11,20,31,39,66,67]
and the references therein), before being optimally solved in [6,33]. Another
interesting extension of these results, discussed in [44], brings us closer to the
focus of this paper. There, the authors present an efficient solution for the follow-
ing problem: given two words w, u and a natural number k, decide whether there
exists a factor of w which is k-Simon congruent to u; this is MatchSimon with the
input pattern α = xuy for variables x, y. Thus, it seems natural to consider, in
a general setting, the problem of checking whether one can map a given pattern
α to a string which is similar to w w.r.t. ∼k. Moreover, there is another way to
look at this problem, which seems interesting to us: the input word w and the
number k are a succinct representation of Sk(w). So, MatchSimon(α,w, k) asks
whether we can assign the variables of α in such a way that we reach a word
describing the target set of subsequences of length k, as well.
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One of the congurence-classes of Σ∗ w.r.t. ∼k received a lot of attention: the
class of k-subsequence universal words, those words which contain all k-length
words as subsequences. This class was first studied in [40,60], and further inves-
tigated in [1,2,6,12,21,22,47,61] in contexts related to and motivated by formal
languages, automata theory, or combinatorics, where the notion of universality is
central (see [7,9,34,37,49,53,54] for examples in this direction). The motivation
of studying k-subsequence universal words is thoroughly discussed in [12]. Here,
we consider the following problem:

Matching a Target Universality: MatchUniv(α, k)
Input: Pattern α, |α| = m, and k ∈ N0.
Question: Is there a substitution h with ι(h(α)) = k?

In this problem, ι(w) (the universality index of w) is the largest integer �
for which w is �-subsequence universal. Note that MatchUniv can be formu-
lated in terms of MatchSimon: the answer to MatchUniv(α, k) is yes iff the
answer to MatchSimon(α, (1 · · · σ)k, k) is yes and the answer to MatchSimon(α,
(1 · · · σ)k+1, k+1) is no. However, there is an important difference: for MatchUniv
we are not explicitly given the target word w, whose set of k-length subsequences
we want to reach; instead, we are given the number k which represents the target
set more compactly (using only log k bits).

In the problems introduced above, we attempt to match (or reach), starting
with a pattern α, the set of subsequences defined by a given word w (given
explicitly or implicitly). A well-studied extension of Match is the satisfiability
problem for word equations, where we are given two patterns α and β and are
interested in finding an assignment of the variables that maps both patterns to
the same word (see, e.g., [51]). This problem is central both to combinatorics
on words and to the applied area of string solving [3,38]. In this paper, we
extend MatchSimon to the problem of solving word equations under ∼k, defined
as follows.

Word Equations under Simon’s Congruence: WESimon(α, β, k)
Input: Patterns α, β, |α| = m, |β| = n, and k ∈ [m + n].
Question: Is there a substitution h with h(α) ∼k h(β)?

Besides introducing these natural problems, our paper presents a rather com-
prehensive picture of their computational complexity. We start with MatchUniv,
the most particular of them and whose input is given in the most compact way.
In Sect. 3 we show that MatchUniv is NP-complete, and also present a series of
structurally restricted classes of patterns, for which it can be solved in polynomial
time. In Sect. 4, we approach MatchSimon and show that it is also NP-complete;
some other variants of this problem, both tractable and intractable, are also dis-
cussed. Finally, in Sect. 5, we discuss WESimon and its variants, and characterise
their computational complexity. The paper ends with a section pointing to a
series of future research directions.
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2 Preliminaries

Let N = {1, 2, . . .} be the set of natural numbers. Let [n] = {1, . . . , n} and
[m : n] = [n] \ [m − 1], for m,n ∈ N,m < n. N0 denotes N ∪ {0}.

For a finite set Σ = [σ], called alphabet, Σ∗ denotes the set of all words (or
strings) over Σ, with ε denoting the empty word. For w ∈ Σ∗, |w| denotes its
length, while |w|a denotes the number of occurrences of a ∈ Σ in w. Further,
Σ≤k (resp. Σk) denotes the set of all words over Σ up to (resp. of) length k ∈ N.
Let w[i] denote the ith letter in the string w, and let alph(w) = {a | |w|a ≥ 1}
denote the set of different letters in w. To access the first occurrence of a letter
a ∈ Σ after a position i ∈ [|w|] in a word w ∈ Σ∗, define the X-ranker as a
mapping X : Σ∗ × ([|w|] ∪ {0,∞}) × Σ → [|w|] ∪ {∞} with (w, i, a) �→ min({j ∈
[i + 1 : |w|] | w[j] = a} ∪ {∞}) (cf. [68]). Notice that a lookup table for all
possible X-ranker evaluations for some given w ∈ Σ∗ can be computed in linear
time in |w|, where each item can be accessed in constant time [6,20]. In the
special case of X(w, 0, a), we call this occurrence of a the signature letter a of w,
for all a ∈ alph(w). A permutation γ of an alphabet Σ is a string in Σσ with
alph(γ) = Σ. A string u is a subsequence of a string w if there exists a strictly
increasing integer sequence 0 < i1 < i2 < . . . < i|u| ≤ |w| with w[ij ] = u[j] for
all j ∈ [|u|]. For a given k ∈ N0, we use Sk(w) as the set of all subsequences of w
with length at most k. A subsequence u of w is called a substring of w if there
exists a position i of w such that u = w[i]w[i + 1] · · · w[i + |u| − 1]. We write
w[i : j] for w[i]w[i + 1] · · · w[j] for 1 ≤ i ≤ j ≤ |w|. Substrings w[1 : j] (resp.,
w[i : |w|]) are called prefixes (resp., suffixes) of w.

Two words w1, w2 ∈ Σ∗ are called Simon k-congruent (w1 ∼k w2) if
Sk(w1) = Sk(w2) [65]. A word w ∈ Σ∗ is called k-subsequence universal (or short
k-universal) for some k ∈ N if Sk(w) = Σ≤k; this means that w ∼k (1 · · · σ)k.
The largest k ∈ N0 such that w is k-universal is the universality index of w,
denoted by ι(w). In [39], Hébrard introduced the following unique factorisation
of words.

Definition 1. The arch factorisation of a word w ∈ Σ∗ is defined by w =
arch1(w) · · · archk(w)rest(w) for some k ∈ N0 such that there exists a sequence
(ij)j≤k with i0 = 0, ij = max{X(w, ij−1, a) | a ∈ Σ} for all j ≥ 1, archj(w) =
w[ij−1 + 1 : ij ] whenever 1 ≤ ij < ∞, and rest(w) = w[ij : |w|], if ij+1 = ∞.

Clearly, the number of arches of w ∈ Σ∗ is exactly ι(w). Extending the notion
of arch factorisation, we define the arches and rest of w ∈ Σ∗ for a ∈ alph(w) (cf.
the arch jumping functions introduced in [61]) as well as the universality index
for the respective letter a. That is, we perform the arch factorisation and obtain
the universality index for the suffix of w that starts after the first occurrence
of a.

Definition 2. Let w ∈ Σ∗, a ∈ alph(w), and j ∈ [ι(w)]. The arches of
signature letters are defined by archa,j(w) = archj(w[X(w, 0, a) + 1 : |w|])
and resta(w) = rest(w[X(w, 0, a) + 1 : |w|]). The universality index of a is



Matching Patterns with Variables Under Simon’s Congruence 159

ιa(w) = ι(w[X(w, 0, a) + 1 : |w|]). The last index w.r.t. w of archa,j(w) is
defined as archEnda,j(w) = X(w, 0, a) +

∑j
i=1 |archa,i(w)|.

Now, we are interested in the smallest substrings of w that allow the com-
pletion of rests of specific prefixes of w to full arches. Hence, we define marginal
sequences, which are breadth-first orderings of σ parallel arch factorisations, each
starting after a signature letter of the word.

Definition 3. Let w ∈ Σ∗ and γ be a permutation of Σ such that X(w, 0, γ[i])
is increasing w.r.t. i ∈ [σ]. From the arches for signature letters, we define the
marginal sequence of integers of w ∈ Σ∗ inductively by M0(w) = 0, Mi(w) =
X(w, 0, γ[i]) for all i ∈ [σ], and Miσ+j(w) = archEndγ[j],i(w) for j ∈ [σ], i ∈
[ιγ[j](w)]. Let M∞(w) = |w| denote the last element of the sequence.

The sequence is called marginal because, for j ∈ [σ], w[Miσ+j−1(w) + 1 :
Miσ+j(w)] is the smallest prefix p of w[Miσ+j−1(w) + 1 : |w|] such that ιγ[j](w[1 :
Miσ+j−1(w)]p) = i. Note that the marginal sequence Mi(w) is non-decreasing.
In the following, we define a slight variation of the subsequence universality
signature s(w) introduced in [61].

Definition 4. 1. For w ∈ Σ∗, the subsequence universality signature s(w) of
w is defined as the 3-tuple (γ,K,R) with a permutation γ of alph(w), where
X(w, 0, γ[i]) > X(w, 0, γ[j]) ⇔ i > j (γ consists of the letters of alph(w) in
order of their first appearance in w) and two arrays K and R of length σ with
K[i] = ιγ[i](w) and R[i] = alph(restγ[i](w)) for all i ∈ [|alph(w)|]. For all
i ∈ [σ] \ alph(w), we have R[i] = Σ and K[i] = −∞.
2. Conversely, for a permutation γ′ of Σ, an integer array K′ and an alphabet
array R′ both of length σ, we say that the tuple (γ′,K′,R′) is a valid signature
if there exists a string w that satisfies s(w) = (γ,′ K′,R′).

Note that, for ki = ιγ[i](w), we have R[i] = alph(w[Mkiσ+i(w) + 1 : M∞(w)]),
since restγ[i](w) = w[Mkiσ+i(w) + 1 : M∞(w)].

A central notion to this work is that of patterns with variables. From now on,
we consider two alphabets: Σ = [σ] is an alphabet of constants (or terminals),
and X a (possibly infinite) alphabet of variables, with X ∩ Σ = ∅. A pattern α
is a string from (X ∪ Σ)∗, i.e., a string containing both constants and variables.
For a pattern α, var(α) = alph(α) ∩ X denotes the set of variables in α, while
term(α) = alph(α) ∩ Σ is the set of constants (terminals) in α.

Definition 5. A substitution h : (X ∪ Σ)∗ → Σ∗ is a morphism that acts as
the identity on Σ and maps each variable of X to a (potentially empty) string
over Σ. That is, h(a) = a for all a ∈ Σ and h(x) ∈ Σ∗ for all x ∈ X . We say
that pattern α matches string w over Σ under a binary relation ∼ if there exists
a substitution h that satisfies h(α) ∼ w.

In the above definition, if ∼ is the string equality =, we say that the pattern α
matches the string w instead of saying that α matches w under =.
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The problems addressed in this paper, introduced in Sect. 1, deal with
matching patterns to words under Simon’s congruence ∼k. For these prob-
lems, the input consists of patterns, words, and a number k. In general, we
assume that each letter of Σ appears at least once, in at least one of the
input patterns or words. E.g., for input pattern α and word w we assume that
Σ = term(α) ∪ alph(w). Hence, σ is upper bounded by the total length of the
input words and patterns. Similarly, the total number of variables occurring in
the input patterns is upper bounded by the total length of these patterns. How-
ever, in this paper, although the number of variables is not restricted, we assume
that σ is a constant, i.e., σ ∈ O(1). Clearly, the complexity lower bounds proven
in this setting for the analysed problems are stronger while the upper bounds
are weaker than in the general case, when no restriction is placed on σ. Note,
however, that σ ∈ O(1) is not an unusual assumption, being used in, e.g., [20].

Part of the results reported here are of algorithmic nature. The computational
model we use for these is the unit-cost Word RAM model with memory words
of logarithmic size, briefly presented in the full version of this paper [23] or in,
e.g., [10].

3 MatchUniv

In this section, we discuss the MatchUniv problem. In this problem, we are given
a pattern α and a natural number k ≤ n, and we want to check the existence of
a substitution h with ι(h(α)) = k. Note that ι(h(α)) = k means both that h(α)
is k-universal and that it is not (k + 1)-universal. A slightly relaxed version of
the problem, where we would only ask for h(α) to be k-universal is trivial (and,
therefore, not interesting): the answer, in that case, is always positive, as it is
enough to map one of the variables of α to (1 · · · σ)k. The main result of this
section is that MatchUniv is NP-complete, which we will show in the following.
To show that MatchUniv(α, k) is NP-hard, we reduce 3CNFSAT (3-satisfiability
in conjunctive normal form) to MatchUniv(α, k). We provide several gadgets
allowing us to encode a 3CNFSAT-instance ϕ as an MatchUniv-instance (α, k).
Finally, we show that we can find a substitution h for the instance (α, k), such
that ι(h(α)) = k, iff ϕ is satisfiable. We begin by recalling 3CNFSAT.

3-Satisfiability for formulas in conjunctive normal form, 3CNFSAT.
Input: Clauses ϕ := {c1, c2, . . . , cm}, where cj = (y1

j ∨ y2
j ∨ y3

j ) for 1 ≤
j ≤ m, and y1

j , y2
j , y3

j from a finite set of boolean variables X :=
{x1, x2, . . . , xn} and their negations X̄ := {x̄1, x̄2, . . . , x̄n}.

Question: Is there an assignment for X, which satisfies all clauses of ϕ?

It is well-known that 3CNFSAT is NP-complete (see [32,43] for a proof). With
this result at hand, we can prove the following lower bound. Full details and
figures illustrating the gadgets are given in the full version [23].

Lemma 1. MatchUniv is NP-hard.
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Proof. We reduce 3CNFSAT to MatchUniv(α, k). Let us consider an instance
of 3CNFSAT: formula ϕ given by m clauses ϕ := {c1, c2, . . . , cm} over n vari-
ables X := {x1, x2, . . . , xn} (for simplicity in notation we define N = n + m).
We map this 3CNFSAT instance to an instance (α, k) of MatchUniv(α, k) with
k = 5n + m + 2, the alphabet Σ := {0, 1, #, $} and the variable set X :=
{z1, z2, . . . , zn, u1, u2, . . . , un}. More precisely, we want to show that there exists
a substitution h to replace all the variables in α with constant words, such that
ι(h(α)) = 5n + m + 2, if and only if the boolean formula ϕ is satisfiable. Our
construction can be performed in polynomial time with respect to N . To present
this construction, we will go through its building blocks, the so-called gadgets.

Before defining these gadgets, we introduce a renaming function for Boolean-
variables ρ : X ∪ X̄ → X with ρ(xi) = zi and ρ(x̄i) = ui. Also, a substitution h
with ι(h(α)) = 5n + m + 2 is called valid in the following.

The Binarisation Gadgets. These gadgets ensure the image of valid substi-
tutions of zi and ui to be strings over {0, 1}.

At first, we construct the gadget π# = (z1z2 · · · znu1u2 · · · un01 $)N6 #. We
observe that for all possible substitutions h, we have two cases for the univer-
sality of the image of this gadget. On the one hand, assume that any of the
variables is substituted under h by a string that contains a #. Then, the uni-
versality index of the image of this gadget will be ι(h(π#)) ≥ N6 > k, which is
too big for a valid substitution. On the other hand, when all the variables are
substituted under h by strings that do not contain #, this gadget is mapped to
a string which consists of exactly one arch because there is only one # at its
very end. Thus, under a valid substitution h, the images of the variables zi and
ui do not contain #. Note also that, in the arch factorisation of such a string
(h(π#), where h is a valid substitution) we have one arch and no rest. The gad-
get π$ = (z1z2 · · · znu1u2 · · · un01 #)N6 $ is constructed analogously. This enforces
that under a valid substitution h, the images of the variables zi and ui do not
contain $. In conclusion, the gadgets π# and π$ ensure that under a valid sub-
stitution h, the images of the variables zi and ui contain only 0 and 1, i.e., they
are binary strings.

The Boolean Gadgets. We use the following gadgets to force the image of each
zi and ui to be either in 0∗ or 1∗. Intuitively, mapping a variable zi (respectively,
ui) to a string of the form 0+ corresponds to mapping xi (respectively, x̄i) to
the Boolean value false. Similarly, mapping one of these string-variables to a
string from 1+ means mapping the corresponding boolean variable to true. For
now, these gadgets just enforce that the image of any string-variable does not
contain both 0 and 1; other gadgets will enforce that they are not mapped
to empty words. We construct the gadget πz

i (respectively πu
i) for every string-

variable zi (respectively, ui). More precisely, for all i ∈ [n], we define two gadgets
πz
i = (zi $ #)N6

1001 $ # and πu
i = (ui $ #)N6

1001 $ #.
We now analyse the possible images of πz

i = (zi $ #)N6
1001 $ # under various

substitutions h. There are several ways in which zi can be mapped to a string
by h. Firstly, if the image of zi contains both 0 and 1, then for the universality
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index of the image of πz
i under the respective substitution is ι(h(πz

i)) ≥ N6 > k;
such a substitution cannot be valid. Secondly, if the image of zi is a string from
0∗ ∪ 1∗, then the universality of this gadget is exactly ι(h(πz

i)) = 2. Similarly to
the binarisation gadgets, in the arch factorisation of a string h(πz

i), where h is a
valid substitution, we have exactly two arches (and no rest). A similar analysis
can be performed for the gadgets πu

i = (ui $ #)N6
1001 $ #. In conclusion, the

gadgets πz
i and πu

i enforce that under a valid substitution h, the image of the
variables zi and ui contains either only 0s or only 1s (or is empty).

The Complementation Gadgets. The role of these gadgets is to enforce the
property that zi and ui are not both in 0+ or not both in 1+, for all i ∈ [n].
We construct the gadget ξi = $ ziui #, for every i ∈ [n]. Let us now analyse
the image of these gadgets under a valid substitution (π# and π$ are mapped to
exactly one arch each, and πz

i and πu
i are mapped to exactly two arches each). In

this case, we observe that ξi is mapped to exactly one complete arch ending on
the rightmost symbol # if and only if the image of one of the variables zi and ui
has at least one 0 and the image of the other one has at least one 1. Further, let
us consider the concatenation of two consecutive such gadgets ξiξi+1 and assume
that both zi and ui are mapped to strings over the same letter or at least one of
them is mapped to the empty word. In that case, the first arch must close to the
right of the $ letter in ξi+1, hence ξiξi+1 could not contain two arches. Thus, the
concatenation of the gadgets ξ1 · · · ξn is mapped to a string which has exactly n
arches if and only if each gadget ξi is mapped to exactly one arch, which holds
if and only if the image of one of the variables zi and ui has at least one 0 and
the image of the other one has at least one 1. When assembling together all the
gadgets, we will ensure that, in a valid substitution, this property holds: zi and
ui are mapped to repetitions of different letters.

The Clause Gadgets. Let cj = (y1
j ∨y2

j ∨y3
j ) be a clause, with y1

j , y2
j , y3

j ∈ X∪X̄.
We construct the gadget δj for every clause cj as $ 0ρ(y1j)ρ(y2j)ρ(y3j) #. Now,
by all of the properties discussed for the previous gadgets, we can analyse the
possible number of arches contained in the image of this gadget under a valid
substitution. Firstly, note that if at least one of the variables ρ(y1j), ρ(y2j), ρ(y3j) is
mapped to a string containing at least one 1, then this gadget will contain exactly
one arch ending on its rightmost symbol #. Now consider the concatenation of
two consecutive such gadgets δjδj+1, and assume that all the variables in δj are
substituted by only 0s. In this case, the first arch must end to the right of the
$ symbol in δj+1, hence the string to which δjδj+1 is mapped could not contain
two arches. The same argument holds if we look at the concatenation of the
last complementation gadget and the first clause gadget, e.g. ξnδ1. Thus, the
concatenation of the gadgets δ1 · · · δm is mapped to a string which has exactly
m arches if and only if each gadget δi is mapped to exactly one arch. This holds
if and only if at least one of the string-variables occurring in δi is mapped to a
string of 1s. When assembling together all the gadgets, we will ensure that at
least one of the variables occurring in each gadget δi, for all i ∈ [m], is mapped
to a string of 1s in a valid substitution.
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Final Assemblage. We finish the construction of the pattern α by concatenat-
ing all the gadgets. That is, α = π#π$π

z
1π

u
1π

z
2π

u
2 · · · πz

nπ
u
nξ1ξ2 · · · ξnδ1δ2 · · · δm.

The Correctness of the Reduction. We can show that there exists a substi-
tution h of the string variables of α with ι(h(α)) = 5n + m + 2 if and only if we
can find an assignment for all Boolean-variables occurring in ϕ that satisfy all
clauses cj ∈ ϕ. If there is a satisfying assignment for Boolean-variables of ϕ, then
we can give a canonical substitution h with h(ρ(xi)) = 1 and h(ρ(x̄i)) = 0, if xi

true, and h(ρ(xi)) = 0 and h(ρ(x̄i)) = 1, if xi false. Conversely, by performing
a left to right arch factorisation of h(α), while taking into account the intuition
given for each gadget, shows that if a substitution h is valid, then we can define
a satisfying assignment of ϕ by setting exactly those xi to be true for which
h(ρ(xi)) = 1+. Full details are given in the full version [23]. This concludes the
sketch of our proof, and shows that MatchUniv(α, k) is NP-hard. ��

In the following we show that MatchUniv(α, k) is in NP. One natural approach
is to guess the images of the variables occurring in the input pattern α under
a substitution h and check whether or not ι(h(α)) is indeed k. However, it is
difficult to bound the size of the images of the variables of α under h in terms of
the size of α and log k (the size of our input), since the strings we look for may
be exponentially long. For example, consider the pattern α = X1: the length of
the shortest k-universal string is kσ [6], which is already exponential in log k.
Therefore, we consider guessing only the subsequence universality signatures for
the image of each variable under the substitution. We show that it is sufficient to
guess |var(α)| subsequence universality signatures, one for each variable, instead
of the actual images of the variables under a substitution h using the following
proposition by Schnoebelen and Veron [61].

Proposition 1 ([61]). For u, v ∈ Σ∗, we can compute s(uv), given the subse-
quence universality signatures s(u) = (γu,Ku,Ru) and s(v) = (γv,Kv,Rv) of
each string, in time polynomial in |alph(uv)| and log t, where t is the maximum
element of Ku and Kv.

Once we have guessed the subsequence universality signatures of all variables
in var(α) under substitution h, we can compute ι(h(α)) in the following way.
We first compute the subsequence universality signature of the maximal prefix
of α that does not contain any variables. We then incrementally compute the
subsequence universality signature of prefixes of the image of α. Let α = α1α2,
where we already have s(h(α1)) from induction. If α2[1] is a variable, we compute
s(h(α1α2[1])) from s(h(α1)) and the guessed subsequence universality signature
for variable α2[1], using Proposition 1. Otherwise, we take the maximal prefix w
of α2 that does not consist of any variables. We first compute s(w) and then
compute s(h(α1w)) using Proposition 1. Once we have s(h(α)) = (γ,K,R), we
compute ι(h(α)) = K[σ] + 1. Note that the whole process can be done in a
polynomial number of steps in |α|, log k, and σ due to Proposition 1, provided
that the signatures are of polynomial size.

Thus, we now measure the encoding size of a subsequence universality sig-
nature and, as such, the overall size of the certificate for MatchUniv that we
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guess. We can use σ! bits to encode a permutation γ of a subset of Σ. An integer
between 1 and σ − 1 requires log σ bits. Naively, R requires (2σ)σ bits because
there can be 2σ choices for each item. Finally, in the framework of our problem,
note that K[1] − K[|γ|] ≤ 1 by Schnoebelen and Veron [61], and that the values
of K[i] are non-increasing in i. Therefore, we can encode K as a tuple (l, k′)
where k′ = max{K[i] | 1 ≤ i ≤ |γ|} ≤ k and l = |{i ∈ [|γ|] | K[i] = k′}|. This
encoding scheme requires at most log σ + log k bits. Summing up, the overall
space required to encode a certificate that consists of |var(α)| subsequence uni-
versality signatures takes at most (1 + σ! + (2σ)σ + log σ + log k)|var(α)| bits.
This is polynomial in the size of the input and the number of variables, because
we assume a constant-sized alphabet, i.e. σ ∈ O(1).

It remains to design a deterministic polynomial algorithm that tests the
validity of the guessed subsequence universality signature. Assume that we have
guessed the 3-tuple (γ,K,R). We claim that there are only constantly many
strings we need to check to decide whether or not (γ,K,R) is a valid subsequence
universality signature - allowing us a brute-force approach. Lemma2 allows us
to “pump down” strings with universality index greater than (2σ)σ, which is a
constant. The proof and a figure illustrating it are given in the full version [23].

Lemma 2. The tuple (γ,K1,R) is a valid subsequence universality signature iff
there exists w ∈ Σ∗ with ι(w) ≤ (2σ)σ, s(w) = (γ,K2,R), and K1[t] − K2[t] =
c ∈ N0 for all t ∈ [|γ|].

Lemma 2 limits the search space for the candidate string corresponding to a
tuple (γ,K,R) by mapping valid subsequence universality signatures to sub-
sequence universality signatures for strings with universality index at most
(2σ)σ. Therefore, we need to investigate those strings where there are up to
σ · (1 + (2σ)σ) + 1 terms in its marginal sequence. The following lemma bounds
the length of the substring between two consecutive marginal sequence terms in
such a string. Its proof can be found in the full version [23]. The conclusion of
this line of thought follows then, in Corollary 1.

Lemma 3. For a given string w, let w = uvx where v = w[Mi(w)+1 : Mi+1(w)] �=
ε, and u = w[1 : Mi(w)], and x = w[Mi+1(w)+1 : |w|] for some integer i ≥ 1. For
a permutation v′ of alph(v) that ends with v[|v|], we have s(uvx) = s(uv′x).

Corollary 1. The tuple (γ,K,R) is a valid subsequence universality signature
if and only if there exists a string w of length at most σ · (σ · (1 + (2σ)σ) + 1)
and a constant c ∈ N0 that satisfies s(w) = (γ,K − c,R).

We can now show the following result.

Lemma 4. MatchUniv(α, k) is in NP.

Proof. Follows from Proposition 1 and Corollary 1. Firstly, for a guessed sequence
of universality signatures (γx,Kx,Rx), for x ∈ var(α), we check their validity.
For that, we enumerate all strings of length up to the constant σ ·(σ ·(1+(2σ)σ)+
1) over Σ and see if there exist strings wx such that s(wx) = (γx,Kx − cx,Rx)
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for some constant cx ≤ k. Since σ is constant, this takes polynomial time. We
then use Proposition 1 to check if the guessed signatures lead to an assignment
h of the variables such that ι(h(α)) = k, as already explained. Since we have a
polynomial size bound on the certificate and a deterministic verifier that runs
in polynomial time, we obtain that MatchUniv(α, k) is in NP. ��

Based on Lemmas 1 and 4, the following theorem follows.

Theorem 1. MatchUniv is NP-complete.

Further, we describe two classes of patterns, defined by structural restrictions
on the input patterns, for which MatchUniv can be solved in polynomial time.
The proof of Proposition 2 can be found in the full version [23].

Proposition 2. a) MatchUniv(α, k) is in P when there exists a variable that
occurs only once in α. As such, MatchUniv(α, k) is in P for the heavily studied
class of regular patterns (see, e.g., [17] and the references therein), where each
variable occurs only once. b) MatchUniv(α, k) is in P when |var(α)| is constant.

4 MatchSimon

Further, we discuss the MatchSimon problem. For space reasons, the proofs of
the results from this Section can be found in the full version [23].

In the case of MatchSimon, we are given a pattern α, a word w, and a
natural number k ≤ n, and we want to check the existence of a substitu-
tion h with h(α) ∼k w. The first result is immediate: MatchSimon is NP-hard,
because MatchSimon(α,w, |w|) is equivalent to Match(α,w), and Match is NP-
complete. To understand why this results followed much easier than the corre-
sponding lower bound for MatchUniv, we note that in MatchSimon we only ask
for h(α) ∼k w and allow for h(α) ∼k+1 w, while in MatchUniv h(α) has to be
k-universal but not (k + 1)-universal. So, in a sense, MatchSimon is not strict,
while MatchUniv is strict. So, we can naturally consider the following problem.

Matching under Strict Simon’s Congruence: MatchStrictSimon(α,w, k)
Input: Pattern α, |α| = m, word w, |w| = n, and k ∈ [n].
Question: Is there a substitution h with h(α) ∼k w and h(α) �∼k+1 w?

Adapting the reduction from Lemma 1, we can show that MatchStrictSimon
is NP-hard.

Following [45], we can also show an NP-upper bound: it is enough to consider
as candidates for the images of the variables under the substitution h only strings
of length O((k +1)σ); longer strings can be replaced with shorter, ∼k-congruent
ones, which have the same impact on the sets Sk(h(α)). The following holds.

Theorem 2. MatchSimon and MatchStrictSimon are NP-complete.

Finally, note that MatchSimon and MatchStrictSimon are in P when the
input pattern is regular.

Proposition 3. If α is a regular pattern, then both problems MatchSimon(α,
w, k) and MatchStrictSimon(α,w, k) are in P.
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5 WESimon

In this section, we address the WESimon problem, where we are given two patterns
α and β, and a natural number k ≤ n, and we want to check the existence of a
substitution h with h(α) ∼k h(β). The first result is immediate: this problem is
NP-hard because MatchSimon, which is a particular case of WESimon, is NP-hard.

To show that the problem is in NP, we need a more detailed analysis. If
k ≤ |α| + |β|, the same proof as for the NP-membership of MatchSimon works:
it is enough to look for substitutions of the variables with the image of each
variable having length at most kσ, and this is polynomial in the size of the
input. If k > |α| + |β|, and β = w contains no variable, then this is an input
for MatchSimon with k greater than the length of the input word w, and we
have seen previously how this can be decided. Finally, if both α and β contain
variables, then the problem is trivial, irrespective of k: the answer to any input
is positive, as we simply have to map all variables to (1 · · · σ)k and obtain two
∼k-congruent words. Therefore, we have the following result.

Theorem 3. WESimon is NP-complete.

To avoid the trivial cases arising in the above analysis for WESimon, we can
also consider a stricter variant of this problem:

Word Equations under Strict Simon’s Congruence: WEStrictSimon(α, β, k)
Input: Patterns α, β, |α| = m, β = n, and k ∈ [m + n].
Question: Is there a substitution h with h(α) ∼k h(β) and h(α) �∼k+1 h(β)?

Differently from WESimon, we can show that this problem is NP-hard, even
in the case when both sides of the pattern contain variables.

Lemma 5. WEStrictSimon is NP-hard, even if both patterns contain variables.

The proof of Lemma 5 can be found in the full version [23]. Regarding the mem-
bership in NP: if k is upper bounded by a polynomial function in |α| + |β|
(or, alternatively, if k is given in unary representation), then the fact that
WEStrictSimon is in NP follows as in the case of MatchStrictSimon. The case
when k is not upper bounded by a polynomial in |α|+ |β| remains open. We can
show the following theorem.

Theorem 4. WEStrictSimon is NP-complete, for k ≤ |α| + |β|.

6 Conclusions

In this paper, we have considered the problem of matching patterns with vari-
ables under Simon’s congruence. More precisely, we have considered three main
problems MatchUniv, MatchSimon, and WESimon and we have given a rather
comprehensive image of their computational complexity. These problems are
NP-complete, in general, but have interesting particular cases which are in P.
Interestingly, our NP or P algorithms work in (non-deterministic) polynomial
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time only in the case of constant input alphabet (their complexity being, in
fact, exponential in the size σ of the input alphabet). It seems very interest-
ing to characterize the parameterised complexity of these problems w.r.t. the
parameter σ. In the light of Proposition 2, another interesting parameter to be
considered in such a parameterised complexity analysis would be the number of
variables. We conjecture that the problems are W [1]-hard with respect to both
these parameters.
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Abstract. We present HyperMonitor a Python prototype of a novel
runtime verification method specifically designed for predicting race con-
ditions in multithread programs. Our procedure is based on the com-
bination of Inductive Process Mining, Petri Net Tranformations, and
verification algorithms. More specifically, given a trace log, the Hyper
Predictive Runtime Verifier (HPRV) procedure first exploits Inductive
Process Mining to build a Petri Net that captures all traces in the log,
and then applies semantic-driven transformations to increase the number
of concurrent threads without re-executing the program. In this paper,
we present the key ideas of our approach, details on the HyperMonitor
implementation and discuss some preliminary results obtained on classi-
cal examples of concurrent C programs with semaphors.

Keywords: Runtime Verification · Process Mining · Petri Nets ·
Verification · Concurrent Programs

1 Introduction

In this paper, we present the main features and implementation details of the
HyperMonitor prototype tool, a Python implementation of the Hyper Predictive
Runtime Verification procedure (HPRV) designed for predicting race conditions
in concurrent programs. The HPRV procedure is based on a novel combination
of runtime verification, process mining, and Petri Nets verification algorithms.
The main idea underlying our approach is to automatically infer potential race
conditions by combining process mining and verification algorithms starting from
a trace log obtained by executing a concurrent program. In our setting a trace is
defined as a sequence of observed events (e.g. lock acquire and release operations)
inferred from executions of concurrent programs (e.g. instrumented concurrent
C programs).

The HPRV procedure is based on the following steps. We first apply induc-
tive Process Mining (PM) to a given trace log in order to generate a Petri
Net that represents at least every execution contained in the trace log. The
resulting Petri Net takes into consideration possible reorderings of events of
different threads. We then apply semantic-driven transformations to the com-
puter Petri Net in ordert to consider executions with a larger number of threads
w.r.t. those observed in the log. More specifically, starting from a model inferred
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from execution logs of K threads, we apply a series of Petri Net transforma-
tions to generate an over-approximation of the executions of K + N threads.
Based on practical considerations adopted in incomplete verification methods
such as context-bounded model checking [13], we assume here that the most
common race conditions can be detected with small values for N , the number
of additional threads injected in the model. To illustrate, our procedure can be
applied to a single threaded execution of a C program to predict possible race-
conditions with two or more threads without re-executing the program. This
way, we can increase the confidence level in legacy code that must be ported to
a multithreaded scenario.

The Petri Net transformation is driven by the semantics of the observed
operations. More specifically, we first assign a semantics to special operations
on shared locks adding new places and transition to the Petri Net generated
through PM. We then replicate parts of the Petri Net in order to model an
over-approximation of the possible interleaving of multiple threads.

We can then apply Petri Nets verification algorithms, e.g., reachability and
coverability, to the resulting model in order to predict potential race conditions
or prove the considered trace set free from errors. For instance, if a system has
been executed with 2 threads, our approach does not only check for violations
considering such threads, but it also checks for larger numbers of threads (like
for 4, 6, and so on). In this way, it is possible to expose wrong behaviours which
would have not been observed by simply executing the system multiple times.
This way, we try to combine techniques coming from Runtime Verification (RV)
with those based on Petri Nets verification as shown in Fig. 1.

log file 1

log file N

. . . Petri Net Reachability AnalysisHyper Petri Net

K threads
K+M threads

K=number of threads
N=number of logs
M =number of threads added using replication

Fig. 1. General Scheme

2 Related Work

RV [2] focuses on checking the runtime behaviour of software/hardware systems.
With respect to other formal verification techniques, such as Model Checking [4]
and Theorem Provers [11], RV is considered more dynamic and lightweight.
This is mainly due to its being completely focused on checking how the system
behaves, while the latter is currently being executed (i.e., running). In Predictive
Runtime Verification (PRV), monitors do not only consider the observed system
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executions, but try to predict other possible behaviours as well. We can find
at least two different kinds of PRV. The first use of prediction is to anticipate
possible future behaviour.

In this setting, the main reason for applying such prediction is when the sys-
tem under analysis is a safety-critical one. That is, a system where a failure can
be costly (in terms of money, or human lives). In such systems, a monitor cannot
reduce itself to report an error only when such error is observed in the system’s
execution. But, the monitor has to try to anticipate its presence and report it
as soon as possible. Thus, in safety-critical scenarios, the prediction used at the
monitor level is mainly focused on anticipating possible future events, in order to
let the monitor anticipate its own verdict. Examples of this kind of prediction in
RV can be found in [12,16]. The second kind of prediction is focused instead on
the prediction of possible alternatives to the observed system’s execution. The
prediction in these cases is used to predict other possible executions, that have
not been observed, but are nonetheless valid. Examples of this kind of prediction
in RV can be found in [7–9,14,15].

To the best of our knowledge, no work exploiting PM to perform the pre-
diction in RV has ever been studied before, except for [6]; however, in such a
case, the model extracted through PM is not used to predict possible threads
interleaving, but to predict future system’s events.

3 Preliminaries

A Petri Net is a bipartite graph containing places and transitions, interconnected
by directed arcs. Places (or states) can contain tokens. This is described through
the marking function, which denotes how many tokens are present in each place.
Tokens can move between states through transitions (or more precisely through
arcs and transitions), and by doing so, they define the behaviours of the system.
A Petri Net is a tuple N = (P, T, F,W,M) where P and T are disjoint finite sets
of places and transitions, respectively, F ⊆ (P ×T )∪(T ×P ) is a set of (directed)
arcs (or flow relations), W : F → N is the arc weight mapping (where W (f) > 0
for all f ∈ F ), M : P → N is a marking function that assigns to each place a
number of tokens (the current state of the net). M0 is the initial marking that
represents the initial distribution of tokens in the net. Let 〈P, T, F,W,M〉 be a
Petri Net. We associate with it the transition system 〈S,Σ,Δ, I,AP, l〉, where:

– S = {m | m : P → N}, I = M0, Σ = T
– Δ = {(m, t,m′) | ∀p∈P .m(p) ≥ W (p, t) ∧ m′(p) = m(p) − W (p, t) + W (t, p)}
– AP = P , l(m) = {p ∈ P | m(p) > 0}
When (m, t,m′) ∈ Δ, we say that t is enabled in m and that its firing pro-
duces the successor marking m′. In this paper we only consider Petri nets in
which the arc weight is always equal to one, i.e., each arcs removes/adds a
single token. When drawing a Petri Net in the paper, we omit arc weights
of 1. Also, we denote tokens on a place by black circles. Let m be a mark-
ing of a Petri Net 〈P, T, F,W,M〉. The set of markings reachable from m (the
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reachability set of m, written reach(m)), is the smallest set of markings such
that: m ∈ reach(m), and if (m′, t,m′′) for some t ∈ T , m′ ∈ reach(m), then
m′′ ∈ reach(m). The set of reachable markings reach(〈P, T, F,W,M〉) is defined
to be reach(M). Let 〈P, T, F,W,M〉 be a Petri Net with associated transition
system 〈S,Σ,Δ, I,AP, l〉. The reachability graph is the rooted, directed graph
G = 〈S′,Δ′,M〉, where S′ and Δ′ are the restrictions of S and Δ to reach(M).
Note that, the reachability graph can be constructed in iterative fashion, starting
with the initial marking and then adding, step for step, all reachable markings.
Given a Petri Net 〈P, T, F,W,M〉 and a marking m. The reachability problem
is to determine whether m ∈ reach(M). A Petri Net 〈P, T, F,W,M〉 is said to
be b-bounded for some b ∈ N if all markings in M have at most b tokens in all
places, i.e., ∀p∈P .M(p) = b. A b-bounded Petri Net has at most (b + 1)|P | reach-
able markings; for 1-bounded nets, the limit is 2|P |. The reachability problem for
1-bounded Petri Nets is known to be PSPACE [3].

4 An Overview of the HPRV Procedure

In our approach, we assume a system has been instrumented and log files have
been generated through its execution, a common approach in RV [5]. In our
setting, the events that can be generated through an execution of instrumented
concurrent program comprise: (i) read(Thr,R) (resp. write(Thr,R)), the event
denoting that thread T performs a read (resp. write) instruction on the shared
resource R; (ii) acquire(Thr, L) (resp. release(Thr, L)), the event denoting that
thread Thr acquires (resp. releases) lock L. Since we only focus on these events,
the other instructions can be discarded, largely reducing the number of events
that need to be observed.

4.1 Inductive Process Mining

Once the log files corresponding to (possibly multiple) runtime executions of the
system are extracted, a model denoting the system’s behaviour can be synthe-
sised. We consider here models extracted by PM specified as a Petri Net [1].
To generate such Petri Net, we exploit the Inductive Miner algorithm [10]. This
algorithm generates a 1-bounded Petri Net describing all traces of events passed
as input. The resulting Petri Net is exhaustive and possibly incomplete. Exhaus-
tive means that the Petri Net generated through PM recognises all traces given
in input to the Inductive Miner algorithm, i.e., there exists a sequence of transi-
tions in the Petri Net that corresponds to the sequence of events of every trace
in the log. In other words, the Petri Net captures all observed behaviours. Note
that, the other way around is not necessarily true. Indeed, the Petri Net gen-
erated by the Inductive Miner algorithm can be seen as an over-approximation
of the system. This is caused by the fact that in the process of generating the
Petri Net, unobserved relations amongst events may be added. For instance, let
us assume that one observed trace contains the sequence of events a b c (where
a, b and c are any possible observable events in the system). While another trace
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contains b d. Then, the Petri Net would recognise both traces a b c, and b d; but
also the never observed trace a b d.

The Petri Net produced via Inductive Miner is not complete in that it may
not consider aspects that have never been observed in any trace belonging to
the log files. This notion is closely related to branch coverage in software test-
ing. Therefore, as in RV, we do not have a complete understanding over the
system, because we can only evaluate what we can observe from the consid-
ered executions. This is a main difference w.r.t. other techniques, such as Model
Checking [4], where it is assumed a perfect knowledge over the system behaviour.

Once we obtained the Petri Net describing the system’s behaviour, we would
like to use it to check for the presence/absence of data races.

4.2 Semantic-Driven Model Transformations

The Petri Net we can obtain through PM is not ready to answer verification
questions. The main reason is that it does not assign any semantic to the events
used for its generation. For instance, an acquire operation will be represented as
a Petri Net transition without any synchronization with other transitions (e.g.
a release operation).

To overcome this issue, we need an additional step, we called Petri Net
enhancement, where we recognise the semantics of the observed events, and
modify the Petri Net, consequently. In particular, the event that we need to
consider is the one referring to the act of acquiring/releasing a lock; since this is
the event that may determine a mutual exclusion access over shared resources.

The semantics of a lock is that of allowing only one (or more in case of
semaphores) thread in a certain critical section (where one or more shared
resources can be accessed). To replicate the same behaviour in the Petri Net, we
need to enhance the transitions involving the acquiring/releasing of locks. The
Enhancement algorithm in Fig. 1 takes in input a Petri Net N = 〈P, T, F,W,M〉
and returns a new Petri net N ′ = 〈P ′, T, F ′,W,M ′〉 defined as follows. At line

Algorithm 1. Enhance(inputN = 〈P, T, F,W,M〉, outputN ′ = 〈P ′, T, F ′,M ′〉)
1: P ′ = P, F ′ = F, M ′ = M
2: Locks = GetLocks(T ) � Get all used locks
3: for l ∈ Locks do
4: P ′ = P ′ ∪ {pl} � Add lock place
5: M ′ = M ′ ∪ {pl → 1} � Add marking for lock place
6: for 〈p, acquire(l)〉 ∈ F do
7: F ′ = F ′ ∪ {〈pl, acquire(l)〉} � Add arc from pl to acquire transition

8: for 〈release(l), p〉 ∈ F do
9: F ′ = F ′ ∪ {〈release(l), pl〉〉} � Add arc from release transition to pl

return N ′ = 〈P ′, T, F ′, W, M ′〉

1, the new set P ′ (resp. F ′ and M ′) which will contain the places (resp. arcs
and markings) of the enhanced Petri Net is initialised. At line 2, the locks used
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by the system are extracted1. Then, the algorithm iterates over the set of locks
so extracted (lines 3–9). For each lock l, an additional place (pl) is created and
added to the set P ′ of places (line 4). Since pl is a place with a token, we also
need to update the marking function consequently (line 5). That is the state
which will be used to enforce synchronisations amongst traces using l. After
that, for each transition corresponding to the acquisition of l (lines 6–7), a new
arc is added in F ′ from pl to the transition. In the opposite direction, the same
thing is done, but for each transition corresponding to the release of l (lines 8–9),
where a new arc is added in F ′ from the transition to pl.

4.3 Hyper Projection over Additional Threads

Now that we have obtained the enhanced version of the Petri Net describing the
system under analysis, we can verify the absence of data races. However, before
the verification phase, there is another interesting post-processing modification
to be applied. Such a modification is also one of the reasons for which this
approach has been named “Hyper”. Specifically, we can modify the Petri Net to
increase the number of threads involved in the execution.

First of all, let us remark that the Petri Net we obtain through PM only
considers as many threads as the ones that have been observed at runtime (i.e.,
which have been reported in the trace log).

Algorithm 2. Project (〈P, T, F,W,M〉, N)
1: Locks = GetLocks(T ) � Get all used locks
2: P ′ = P, T ′ = T, F ′ = F, M ′ = M � Initialisation
3: for i ∈ {2, . . . , N} do

4: P i = {pi
j | pj ∈ P} � Clone places

5: T i = {tij | tj ∈ T} � Clone transitions

6: F i = {〈pi
j , tij〉 | 〈pj , tj〉 ∈ F} ∪ {〈tij , pi

j〉 | 〈tj , pj〉 ∈ F} � Clone arcs

7: Mi = {pi
j → M(pj) | pj ∈ P} � Clone markings

8: P ′ = P ′ ∪ (P i \ {pi
l ∈ P i | l ∈ Locks}) � Update places but locks

9: T ′ = T ′ ∪ T i � Update transitions
10: M ′ = M ′ ∪ (Mi \ {pi

l → | pi
l ∈ P i ∧ l ∈ Locks}) � Update markings but locks

11: for 〈pi
j , tij〉 ∈ F i do

12: if j ∈ Locks then
13: F ′ = F ′ ∪ {〈pj , tij〉} � Replace lock place’s arc
14: else
15: F ′ = F ′ ∪ {〈pi

j , tij〉} � Update arcs with new arc

16: for 〈tij , pi
j〉 ∈ F i do

17: if j ∈ Locks then
18: F ′ = F ′ ∪ {〈tij , pj〉} � Replace lock place’s arc
19: else
20: F ′ = F ′ ∪ {〈tij , pi

j〉} � Update arcs with new arc

return 〈P ′, T ′, F ′, M ′〉

Algorithm 2 presents a projection function that can be used to increase the
number of concurrent threads without re-executing the program. In more detail,
1 Assuming each lock has a label to uniquely identify it through multiple traces, e.g.,
by considering the name of the variable used to store it, or similar.
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the algorithm takes in input a Petri Net (in particular the Petri Net resulting
from Algorithm 1), and the multiplier which specifies how many times to replicate
the threads in the model. E.g., if N = 2, Algorithm 2 generates a Petri Net
with twice the number of threads, and so on. At line 1, as in Algorithm1, we
extracts the lock labels (to identify the locking places added in the previous
step). Then, in lines 3–20, the algorithms iterates over N . At each iteration,
a clone of the Petri Net is created (lines 4–7). Such clone is exactly as the
current Petri Net, except for the names of places, and transitions. For instance,
if we have P = {p1, p2, p3, pl}, we would obtain P i = {pi

1, p
i
2, p

i
3, p

i
l}, with i

from 1 to N . The same transformation is applied to transitions. While arcs and
markings are simply carried out on the newly created places and transitions.
After the clone Petri Net’s components are created, the algorithms proceeds with
the initialisation of the Hyper Petri Net’s components (lines 8–10). In there, the
newly created places and transitions are added to the places and transitions of
the Petri Net. Then, the algorithm iterates on the arcs generated for the current
clone Petri Net (F i). For each arc, if it refers to a lock place (the ones added in
Algorithm 1), a modified version of the arc is added to F ′, where pi

j is replaced
with pj . This is needed to keep track of locks amongst different replications of the
Petri Net. Otherwise, which means the arc does not refer to a lock place, the arc
is added to F ′ unchanged. Note that, the iteration over the arcs is performed for
the arcs from places to transitions (lines 11–15), and for the arcs from transitions
to places (lines 16–20).

Once the repetitions have been done for the number of times required, we
find in 〈P ′, T ′, F ′,W,M ′〉 the resulting Petri Net. Note that, the loop of lines 3–
20 iterates starting from 2; this means that if Algorithm2 is called with N = 1,
it returns directly the input Petri Net (which makes sense since N = 1 means
no replication is needed).

The Algorithm 2 terminates in polynomial time w.r.t. N and the size of the
Petri Net.

The entire Petri Net transformation algorithm can be refined in order to
generate not only clones of event traces observed in a real execution trace but,
for instance, to insert new places denoting locks reserved to a given set of event
traces in order to distinguish shared and private (i.e. visibile within the scope of
a given procedure) locks.

4.4 Verification

In our prototype, we focus on reachability properties for the Petri Net generated
via the combination of inductive process mining and Algorithms 1 and 2. For
instance, we can check whether bad states that represent data races can be
reached in the execution of the computed Petri Net.

One possible way to solve the reachability problem is by generating the reach-
ability graph. Then, to perform the formal verification step, it is enough to check
whether a place containing a data race is (or not) reachable in such a graph.

Enhancement and projection both preserve the boundedness of the Petri Net.
In fact, the enhancement step only adds locking places for synchronisation, while
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the projection step only replicates the Petri Net to simulate more threads. Both
steps do not change the maximum number of tokens that a place may contain.
Thus the final Petri Net is still a 1-bounded Petri Net.

As a natural extension we can also consider coverability problems (for
bounded nets) to specify bad states using constraints on place subsets of places
and applying parameterized verification procedures (e.g. covering graph, etc.).

Several other approaches can be applied to this kind of decision problems
ranging from symbolic state exploration via model checking to static analysis via
the marking equation or constraint solving in order to reduce the complexity of
the verification phase as required in traditional runtime verification procedures.

The HyperMonitor Algorithm3 summarizes the monitor resulting from com-
bining the different steps described in this section. Each line in Algorithm3

Algorithm 3. HyperMonitor (Logs,N)
1: PetriNet = modelExtraction(Logs) � Inductive Miner Algorithm [10]
2: EnhancedPetriNet = Enhance(PetriNet) � Algorithm1
3: HyperPetriNet = Project(EnhancedPetriNet, N) � Algorithm2

return IsDataRaceNotReachable(HyperPetriNet)

corresponds to one specific step. At line 1, the Inductive Miner algorithm is used
to extract a Petri Net from log files given in input. Such log files have been
obtained by executing the system under analysis. Note that, since we care about
all possible behaviours observed by running the system, differently from standard
RV techniques, we do not focus on a single execution at a time, but we consider
all executions that have been observed (all the ones in the past executions as
well). After the Petri Net has been generated, the algorithm continues with
the enhancement of the latter by applying Algorithm1. The resulting Enhanced
Petri Net is then replicated w.r.t. the parameter N . In this way, the Enhanced
Petri Net is projected on N dimensions (i.e., it is replicated N times). This is
obtained by applying Algorithm2. The resulting Hyper Petri Net is then anal-
ysed and checked against the presence of data races. This last step is obtained by
performing a reachability analysis over the Hyper Petri Net, where the algorithm
looks whether states denoting data races may be reached. Algorithm 3 returns
the answer given to the reachability problem, i.e., in case at least one data race
place is reachable in the Hyper Petri Net, Algorithm3 returns false, while it
returns true otherwise (so when no data race place can be reached whatsoever).
Since inductive miner, transformations and projections require polynomial time
w.r.t. the size of the Petri Net and the number N of replications, when a com-
plete reachability algorithm is used in the last step of Algorithm3, the whole
procedure may require exponential time w.r.t. the size of the input model.
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4.5 HPRV Implementation

The HPRV prototype implementation is publicly available as a GitHub repos-
itory2. Our procedure operates on trace logs given in XES (eXtensible Event
Stream) format, an XML-based standard format for process mining tools. XES
trace files are generated during the execution of an instrumented concurrent
program. For implementing the PM step, we used the PM4Py3 Python library.
PM4Py is an open source PM platform written in Python, and is developed
by the PM group of Fraunhofer Institute for Applied Information Technology4.
PM4Py, amongst various algorithms, supports the Inductive Miner algorithm
and generates a Petri Net starting from log files.

The Petri Net model transformations have been fully implemented by the
authors in Python. The verification step has been implemented by extracting
the reachability graph of the Petri Net derived from previous steps, and by
searching for states containing data races in the latter.

4.6 Case-Studies

To experimentally evaluate our verification method, we have defined a set of
instrumented C programs to capture the most common patterns (including typ-
ical errors) that we may find in concurrent programming when using libraries
such as the pthread library. For instance, we consider the basic pattern with a
single thread creation and an iterative body functions shown below.
#define INT2VOIDP( i ) (void ∗)( u i n t p t r t ) ( i )
#define VOIDP2INT( i ) ( u i n t p t r t ) ( void ∗)( i )
int c = 0 ;

void∗ fnC1 (void∗ a )
{

int tmp ; int k = VOIDP2INT(a ) ;
char t h r e ad l o g f i l e name [ 2 0 ] ; FILE∗ th r ead l og ;

th r ead l og = fopen ( ” log1 ” , ”a” ) ;

for ( int i =0; i<k ; i++) {
c=c+10;
pr intEvent ( thread log , ”Thread1” , ” read shared data ( c ) ” ) ;
pr intEvent ( thread log , ”Thread1” , ” wr i t e sha r ed data ( c ) ” ) ;

}

f p r i n t f ( thread log , ”%s\n” , ”</trace>\n” ) ;
f c l o s e ( th r ead l og ) ;
return ( 0 ) ;

}

int main ( int argc , char∗ argv [ ] )
{

int r t1 ; pthread t t1 ; int N=2;
i f ( argc >1) N=ato i ( argv [ 1 ] ) ;
void∗ val = INT2VOIDP(N) ;
r t1=pthread c r ea t e (&t1 , NULL, fnC1 , va l ) ;
p th r ead jo in ( t1 , NULL) ;
return 0 ;

}

The printEvent procedure is used to generate log items. Every read and write
access is traced using a sequence of “read/write shared data(c)” labels. A single
execution of the program appends the corresponding series of event items to the

2 https://github.com/AngeloFerrando/HyperPredictiveRuntimeVerification.
3 https://pm4py.fit.fraunhofer.de/.
4 http://fit.fraunhofer.de/process-mining.

https://github.com/AngeloFerrando/HyperPredictiveRuntimeVerification
https://pm4py.fit.fraunhofer.de/
http://fit.fraunhofer.de/process-mining
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log file. Then, an auxiliary program is used to generated the header information
needed to generate the XES format needed in the remaining part of the pipeline.
We consider several other examples of single threaded programs parametric on
input parameters such as the number of threads in the original C program (the
number m of iterations in each thread, the number of distinct shared variables
used in the different threads), and the following types of patterns for each thread:

P1 : (read(c) write(c))m

P2 : create lock(L) (lock(L) read(c) write(c) unlock(L))m

P3 : create lock(L) lock(L) read(c1) write(c1) unlock(L) . . . lock(L) read(cp) write(cp) unlock(L)
P4 : create lock(l) (lock(l) read(c) write(c) unlock(l))m

P5 : create lock(l) lock(l) read(c1) write(c1) unlock(l) . . . lock(l) read(cp) write(cp) unlock(l)

where L (resp. l) denotes a shared (resp. private to the thread) lock.

Table 1. Experimental results for patterns P1–P5, where OTS=Original Transition
System, CTS=Cloned Transition System): � = the original (resp. version with cloned
threads) C program is thread safe.

Pattern #threads #iterations #shared variables OTS? Time[s] #clones CTS? Time[s]

P1 1 10 1 � 0.05–0.001 2 ✗ 0.07–0.003

1 50 1 � 0.08–0.001 2 ✗ 0.11–0.003

1 100 1 � 0.12–0.001 2 ✗ 0.13–0.003

2 10 1 ✗ 0.25–0.004 2 ✗ 0.46–0.06

2 50 1 ✗ 1.41–0.006 2 ✗ 2.49–0.05

2 100 1 ✗ 3.95–0.009 2 ✗ 5.30–0.072

P2 1 10 1 � 0.09–0.0009 2 � 0.16–0.006

1 50 1 � 0.18–0.0008 2 � 0.21–0.005

1 100 1 � 0.38–0.0009 2 � 0.49–0.006

2 10 1 � 0.17–0.006 2 � 0.24–0.43

2 50 1 � 0.35–0.05 2 � 0.52–0.42

2 100 1 � 0.71–0.005 2 � 0.93–0.51

P3 1 10 10 � 0.28–0.002 2 � 0.36–0.02

1 50 50 � 2.45–0.009 2 � 3.58–0.20

1 100 100 � 17.74–0.03 2 � 19.66–0.56

2 10 10 � 0.37–0.02 2 � 1.01–1.97

2 50 50 � 5.17–0.16 2 � 7.09–16.78

2 100 100 � 36.63–0.59 2 � 39.02–101.64

P4 1 10 1 � 0.09–0.001 2 ✗ 0.14–0.01

1 50 1 � 0.17–0.001 2 ✗ 0.23–0.008

1 100 1 � 0.37–0.001 2 ✗ 0.52–0.01

2 10 1 ✗ 0.15–0.007 2 ✗ 0.19–1.34

2 50 1 ✗ 0.34–0.008 2 ✗ 0.47–1.77

2 100 1 ✗ 0.69–0.009 2 ✗ 0.81–2.03

P5 1 10 10 � 0.19–0.002 2 ✗ 0.37–0.06

1 50 50 � 2.15–0.01 2 ✗ 3.21–1.14

1 100 100 � 18.33–0.03 2 ✗ 21.17–6.88

2 10 10 ✗ 0.15–0.009 2 ✗ 0.26–2.09

2 50 50 ✗ 0.33–0.05 2 ✗ 0.47–2.02

2 100 100 ✗ 0.71–0.008 2 ✗ 0.87–2.03



Towards Hyper Predictive RV Through PM 181

Table 1 reports experiments we carried out on the previously listed patterns.
Each pattern is tested w.r.t. various parameters. Amongst them we may find the
number of threads used, the number of iterations per thread (the m parameter
used before), whether the program or its replicated version (with double the
number of thread) are thread safe. We name OTS (Original Transition System)
and CTS (Cloned Transition System) the columns reporting such verification
results. For the CTS version, we also report the multiplier used in the thread
replication (the N parameter in Algorithm 2, which in Table 1 is set to 2, i.e.,
the threads are duplicated through the projection).

Moreover, in each experiment, the execution time is reported. The first com-
ponent is the time required to extract the Petri Net and perform its enhancement.
While the second component is the verification time (i.e., the time required to
perform the reachability analysis). Each C program has been executed 10 times
to generate the log file used by the PM algorithm to synthesise the Petri Net.
The obtained results are consistent with the considered C programs with respect
to the safety violations detected by our procedure. Note that, the time execution
is always less than 1 s, except for the more stressed experiments. Even though
these are initial results the seem promising considering that we applied an exact
reachability procedure.

5 Conclusions

In this paper, we have presented the main features of HyperMonitor, a prototype
tool written in Python for predicting race conditions on (instrumented) concur-
rent C code. The tool is based on a pipeline that combines inductive process
mining with ad hoc Petri net transformations and verification procedures used
for different types of reachability problems. The considered examples are avail-
able on Github and consists of instrumented concurrent C programs (pthreads
library) that generate event traces in XES format when executed. Future direc-
tions include further development of the tool, above all w.r.t. the logs extrac-
tion and the analysis which can be performed on the Petri Net. For instance,
other synchronisation mechanisms can be introduced, like barriers. Furthermore,
approximated algorithms could be applied in order to lower the complexity of
the verification step.
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Abstract. Rotor walks are cellular automata that determine determin-
istic traversals of particles in a directed multigraph using simple local
rules, yet they can generate complex behaviors. Furthermore, these tra-
jectories exhibit statistical properties similar to random walks.

In this study, we investigate a generalized version of the reachability
problem known as arrival in Path Multigraphs, which involves predict-
ing the number of particles that will reach designated target vertices. We
show that this problem is in NP and co-NP in the general case. How-
ever, we exhibit algebraic invariants for Path Multigraphs that allow us
to solve the problem efficiently, even for an exponential configuration of
particles. These invariants are based on harmonic functions and are con-
nected to the decomposition of integers in rational bases (This paper is
an extended abstract. For a more explanatory approach please refer to
the full version [2]).

Keywords: Rotor walks · cellular automata · discrete harmonic
function

1 Introduction

The rotor routing, or rotor walk model, has been studied under different names:
eulerian walkers [15,16] and patrolling algorithm [17]. It shares many proper-
ties with a more algebraically focused model: abelian sandpiles [4,13]. General
introductions to this cellular automaton can be found in [11] and [13].

Here is how a rotor walk works: in a directed graph, each vertex v with an
outdegree of k has its outgoing arcs numbered from 1 to k. Initially, a particle is
placed on a starting vertex, and the following process is repeated. On the initial
vertex, the particle moves to the next vertex following arc 1. The same rule then
applies on subsequent vertices. However, when a vertex is revisited, the particle
changes its movement to the next arc, incrementing the number until the last
arc is used. Then, the particle restarts from arc 1 if it visits this vertex again.
The trajectories defined by this deterministic process has been shown to share
statistical properties with random walks [14].

This simple rule defines the rotor routing, which exhibits many interesting
properties. Particularly, if the graph is sufficiently connected, the particle will
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eventually reach certain target vertices known as sinks. The problem of deter-
mining, given a starting configuration (numbering) of arcs and an initial ver-
tex, which sink will be reached first, is known as the arrival problem. It was
defined in [5], along with a proof that the problem belongs to the complexity
class NP ∩ co-NP. Although the problem is not known to be in P, [9] showed that
it belongs to the smaller complexity class UP ∩ co-UP. Furthermore, a subexpo-
nential algorithm based on computing a Tarski fixed point was proposed in [10].

Despite these general bounds, little is known about efficiently solving the
problem in specific graph classes, especially when extending it to the routing
of multiple particles. In [1], we addressed the problem in multigraphs with a
tree-like structure and provided a linear algorithm for solving it with a single
particle. However, the recursive nature of the algorithm provided limited insights
into the structure of rotor walks in the graph. We also examined the structure
of rotor walks and the so-called sandpile group in the case of a simple directed
path, where simple invariants can explain the behavior of rotor walks.

In this work, we focus specifically on a family of multigraphs that consist of
directed paths with a fixed number of arcs going left and right on each vertex,
with a sink located at both ends of the path. We present an efficient algorithm for
solving the ARRIVAL problem in this general context (see Theorems 5 and 6, and
the example that follows), considering a potentially exponential number of parti-
cles and antiparticles, a concept introduced in [11]. Our approach involves intro-
ducing algebraic invariants for rotor walks and chip-firing, enabling a complete
description of the interplay between particle configurations and rotor configu-
rations/walks. These invariants are derived from harmonic functions in graphs,
which are functions invariant under chip-firing. Additionally, we introduce a
related concept for rotor configurations called arcmonic functions, inspired by
[12].

An essential tool for analyzing rotor routing in Path Multigraphs is the
decomposition of integer values, which is closely associated with the AFS num-
ber system [8], where numbers are decomposed into rational bases. While we
draw inspiration from these results, our approach focuses on proving precisely
what is necessary, using our own methodology.

Additionally, we derive other outcomes, such as the cardinality of the Sand-
pile Group of Path Multigraphs or its cyclic structure. These results can also
be derived from Kirchoff’s Matrix-Tree Theorem or the notion of co-eulerian
graphs [7]. Nevertheless, our results remain self-contained.

2 Mechanics and Tools for Rotor Routing in Multigraphs

Proofs of results that are not in the document can be found in the full version [2].

2.1 Multigraphs

A directed multigraph G is a tuple G = (V,A,head, tail) where V and A are
respectively finite sets of vertices and arcs, and head and tail are maps from A
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to V defining incidence between arcs and vertices. An arc with tail x and head
y is said to be from x to y. Note that multigraphs can have multiple arcs with
the same head and tail, as well as loops.

For a vertex u ∈ V , we denote by A+(u) the subset of arcs going out of u,
i.e. A+(u) = {a ∈ A | tail(a) = u} and deg+(u) = |A+(u)| is the outdegree of
u. We denote by V0 the set of vertices with positive outdegree and S0 vertices
with zero outdegree, i.e. sinks. A directed multigraph is stopping if for every
vertex u, there is a directed path from u to a sink. In this whole paper, we
suppose that G is a stopping multigraph.

In the second part of this work, we consider the Path multigraph P x,y
n on

n + 2 vertices which is a multigraph G = (V0 ∪ S0, A,head, tail) such that:
– V0 = {u1, u2, ..., un} and S0 = {u0, un+1};
– for k ∈ �1, n�, we have deg+(uk) = x + y with x arcs from uk to uk+1 and y

arcs from uk to uk−1

– u0 and un+1 are considered as sinks with no outgoing arcs.

This graph is clearly stopping if x+y ≥ 1. See Fig. 1 for a representation of P 2,3
n .

u0 u1 u2 ... un un+1

y arcs

x arcs

Fig. 1. The Path Multigraph P 2,3
n .

We consider the case n ≥ 1, and 1 ≤ x < y with x, y coprime.

2.2 Rotor Structure

If u ∈ V0, a rotor order at u is an operator denoted by θu such that:
– θu : A+(u) → A+(u) ;
– for all a ∈ A+(u), the orbit {a, θu(a), θ2u(a), ..., θ

deg+(u)−1
u (a)} of a under θu is

equal to A+(u), where θk
u(a) is the composition of θu applied to arc a exactly

k times.

A rotor order for G is then a map θ : A → A such that the restriction θu

of θ to A+(u) is a rotor order at u for every u ∈ V0. Note that all θu as well as
θ are one to one. If C ⊆ V0, the composition of operators θu for all u ∈ C does
not depend on the order of composition since they act on disjoint sets A+(u);
we denote by θC this operator and θ−1

C is its inverse. Finally, we use the term
rotor graph to denote a stopping multigraph together with a rotor order θ.

In P x,y
n , we define a rotor order by simply considering all arcs going right

before all arcs going left, cyclically (see Fig. 2). Formally, let ak
i denote for i ∈

�0, x − 1� the x arcs from uk to uk+1 and for i ∈ �x, x + y − 1� the y arcs from
uk to uk−1; then we define θ(ak

i ) = ak
j with j = i + 1 mod x + y.
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uk−1 uk uk+1ak
x

ak
x+y−1

ak
x−1

ak
0

Fig. 2. Rotor order at a vertex uk in the Path Multigraph P x,y
n

2.3 Configurations

Definition 1. A rotor configuration of a rotor graph G is a mapping ρ from
V0 to A such that ρ(u) ∈ A+(u) for all u ∈ V0. We denote by R(G) or simply R
the set of all rotor configurations of the rotor graph G.

The graph induced by ρ on G = (V,A,head, tail) is G(ρ) =
(V, ρ(V0),head, tail) in which each vertex in V0 has outdegree one.

Definition 2. A particle configuration of a rotor graph G is a mapping σ
from V to Z. We denote by Σ(G) or simply Σ the set of all particle configurations
of the rotor graph G.

The set Σ(G) can be identified with Z
V and has a natural structure of addi-

tive abelian group. If u ∈ V , we identify u with the element of Σ(G) which is
one on vertex u and zero elsewhere. Thus we can write, e.g. σ + 3u to denote
the configuration obtained from σ ∈ Σ by adding 3 to σ(u).

If σ(u) ≥ 0, we interpret it as a number of particles on vertex u, whereas if
σ(u) ≤ 0 it can be interpreted as antiparticles, or simply a debt of particles. The
degree of a particle configuration σ is defined by deg(σ) =

∑
u∈V σ(u).

Finally, a rotor-particle configuration is an element of R(G) × Σ(G).

2.4 Rotor Routing

Definition 3. Let G be a rotor graph, we define operators indexed by vertices
u ∈ V0 on R(G) × Σ(G):

– move+u : R(G) × Σ(G) → R(G) × Σ(G) is defined by

move+u (ρ, σ) = (ρ, σ + head(ρ(u)) − u);

– turn+u : R(G)×Σ(G) → R(G)×Σ(G) is defined by turn+u (ρ, σ) = (θu ◦ ρ, σ).

Note that θu ◦ ρ is the rotor configuration equal to ρ on all vertices except
in u where θ has updated the arc. Applying move+u to (ρ, σ) can be interpreted
as moving a particle from u to the head of arc ρ(u), whereas applying turn+

u

updates the rotor configuration at u. It is easy to see that these operators are
bijective on R(G) × Σ(G), and we denote by move−

u and turn−
u their inverses.
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We now define the routing operators by routing+u = turn+
u ◦ move+u , and its

inverse is obviously routing−
u = move−

u ◦ turn−
u . Routing a rotor-particle config-

uration (ρ, σ) consists in applying a series of routing+ and routing− operators.
Since they act on different vertices and disjoint sets of arcs, the following result
is straightforward.

Lemma 1. The family of operators routing+u and routing−
u for all u ∈ V0 com-

mute.

Since the order in which routing operators are applied does not matter, we
define a routing vector as a map from V0 to Z. We define routingr as the
operator obtained by composing all elements of the family {(routing+u )r(u)}u∈V0 ,
in any order, where the exponent r(u) stands for composition of the operator
or its inverse with itself, depending on the sign of r(u). We shall use the term
routing when we apply any operator routingr as well.

2.5 Legal Routing and Arrival

Applying routing+u to (ρ, σ) ∈ R × Σ is said to be a legal routing if
σ(u) > 0. A sequence of configurations obtained by successive legal routings
(ρ0, σ0)(ρ1, σ1) · · · (ρk, σk) is maximal if for all u ∈ V0 we have σk(u) ≤ 0, i.e.
no other legal routing can be applied.

The classic version of the commutativity result for rotor routing is the fol-
lowing:

Proposition 1 ([13]). For all (ρ, σ) ∈ R × Σ with σ ≥ 0, there is a unique
(ρ′, σ′) with σ′(u) = 0 for all u ∈ V0, such that all maximal legal routings from
(ρ, σ) end in (ρ′, σ′). Furthermore, all legal routings can be continued in such a
maximal legal routing.

For such a maximal legal routing, we shall say that (ρ, σ) is fully routed to
sinks, and write (ρ′, σ′) = routing∞

L (ρ, σ) where the L stands for legal.
The original arrival problem consists in the following decision problem: if

(ρ, σ) ∈ R × Σ with σ ≥ 0 and deg(σ) = 1, if (ρ′, σ′) = routing∞
L (ρ, σ), for a

given sink s ∈ S0, does σ′(s) = 1 ?
This problem is known to be in NP and co-NP, but the best algorithm known

to this date (see [10]) has complexity 2O(
√

|V | log |V |) in the case of a switch
graph (where deg+(u) ≤ 2 for every vertex u). We shall now generalize this
problem to any number of positive and negative particles, and remove the legality
assumption. In the next two subsections, we define equivalence classes for rotor
configurations and particle configurations respectively which will be the basis
for defining algebraic invariants for rotor walks.

2.6 Equivalence Classes of Rotors

Definition 4. Two rotor-particle configurations (ρ, σ) and (ρ′, σ′) are said to
be equivalent, which we denote by (ρ, σ) ∼ (ρ′, σ′), if there is a routing vector r
such that routingr(ρ, σ) = (ρ′, σ′).
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It is easy to see that this defines an equivalence relation on R × Σ.

Definition 5. Two rotor configurations ρ, ρ′ are said to be equivalent, which we
denote by ρ ∼ ρ′, if there is σ ∈ Σ such that (ρ, σ) ∼ (ρ′, σ).

In this case, the relation is true for any σ ∈ Σ, and it defines an equivalence
relation on R.

Cycle Pushes. Suppose that ρ ∈ R and let C be a directed circuit in G(ρ).
The positive cycle push of C in ρ transforms ρ into θC ◦ ρ. Similarly, if C
is a directed circuit in G(θ−1 ◦ ρ), the negative cycle push transforms ρ into
θ−1

C ◦ ρ. A sequence of cycle pushes is a finite or infinite sequence of rotor
configurations (ρi) such that each ρi+1 is obtained from ρi by a positive or
negative cycle push.

Note that if C is a directed circuit in G(ρ), for any σ ∈ Σ, we can obtain
(θC ◦ρ, σ) by applying routingrC to (ρ, σ), and if C is a circuit in G(θ−1◦ρ), then
(θ−1

C ◦ ρ, σ) is equal to routing−rC (ρ, σ), where in both cases rC is the routing
vector consisting in routing once every vertex of C. In other words, a cycle push
is a shortcut in the routing of a particle on the circuit.

Theorem 1. Given two rotor configurations ρ and ρ′, ρ ∼ ρ′ if and only if ρ′

can be obtained from ρ by a sequence of cycle pushes.

Whenever rotor configurations are equivalent, they eventually route particles
identically since positive and negative cycle pushes correspond to adding or
removing closed circuits in trajectories. In particular, it is easy to see that it is
always possible to route any (ρ, σ) to a (ρ′, σ′) such that σ′(u) = 0 for all u ∈ V0.
Let us denote by routing∞(ρ, σ) the nonempty set of these configurations.

Theorem 2. Let (ρ1, σ1) ∈ routing∞(ρ, σ). Then (ρ2, σ2) ∈ routing∞(ρ, σ) if
and only if ρ1 ∼ ρ2 and σ1 = σ2.

Corollary 1. If σ ≥ 0, then if (ρ′, σ′) = routing∞
L (ρ, σ) and (ρ1, σ1) ∈

routing∞(ρ, σ), we have σ1 = σ′ and ρ′ ∼ ρ1.

The generalized arrival problem is: given any (σ, ρ), compute σ1 for any
(ρ1, σ1) ∈ routing∞(ρ, σ).

Corollary 1 shows that this problem contains the original arrival problem.
On the other hand, the decision version of generalized arrival belongs to NP
and co-NP, a certificate being a routing vector r; one may compute efficiently
the configuration routingr(ρ, σ) and check that we obtain 0 particles on V0.

Acyclic Configurations. We say that ρ ∈ R is acyclic if G(ρ) contains no
directed cycles. It amounts to saying that the set of arcs ρ(V0) forms in G a
directed forest, rooted in the sinks of G.

Proposition 2 ([11]). Each equivalence class of rotor configurations contains
exactly one acyclic configuration.
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2.7 Equivalence Classes of Particles

Definition 6. Two particle configurations σ, σ′ are said to be equivalent, which
we denote by σ ∼ σ′, if there is ρ ∈ R such that (ρ, σ) ∼ (ρ, σ′).

In this case, the relation is true for any ρ ∈ R, and it defines an equivalence
relation on Σ.

Define the Laplacian operator Δ as the linear operator from Z
V0 to Σ, defined

for u ∈ V0 by
Δ(u) =

∑

a∈A+(u)

(head(a) − tail(a))

The vector Δ(u), when added to a particle configuration σ, corresponds to trans-
ferring a total of deg+(u) particles from u to every outneighbour of u. The
transformation from σ to σ + Δ(u) is called firing σ at u. This firing is legal if
σ(u) ≥ deg+(u).

A firing vector is simply an element of r ∈ Z
V0 , and we can fire simultane-

ously vertices according to this vector by

σ + Δ(r) = σ +
∑

u∈V0

r(u)Δ(u).

Proposition 3. For any two particle configurations σ, σ′ we have σ ∼ σ′ if and
only if there exists a firing vector r with σ′ = σ + Δ(r).

By analogy with maximal legal routings, define a maximal legal firing as a
sequence of legal firings from σ to another particle configuration σ′ such that
finally σ′ is stable, meaning that σ′(u) < deg+(u) for all u ∈ V0, i.e. no more
legal firing are possible.

Proposition 4 ([3]). If G is stopping, for all particle configurations σ there is
a unique configuration σ′ such that every maximal sequence of legal firings leads
to σ′, and every sequence of legal firings can be continued in such a maximal
sequence (in particular, all legal sequences are finite).

This stable configuration σ′ is the stabilization of σ and denoted σ◦.

2.8 Sandpile Group

We point out that the equivalence relation on particles defined in the previous
section is not equivalent to the construction of the so-called Sandpile Group. In
the case of a stopping rotor graph, the Sandpile Group is obtained from parti-
cle configurations equivalence classes by furthermore identifying configurations
which have the same value on V0. More precisely, define a relation ∼S by

σ ∼S σ′ ⇔ ∃σ1, σ ∼ σ1 and ∀u ∈ V0, σ
′(u) = σ1(u).

Proposition 5 ([13]).

– The quotient of Σ by ∼S has an additive structure inherited from Σ, and it
is a finite abelian group called the Sandpile Group and denoted by SP (G);

– the order of SP (G) is the number of acyclic rotor configurations in G.
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3 Main Results for Path Multigraphs

In this part, we summarize our results, and the rest of the paper will introduce
the tools used to prove them. From now on, we consider only graphs of the family
P x,y

n , and the letter G denotes such a graph.

3.1 Case x = y = 1

First, let us recall the results obtained about Path Graphs P 1,1
n in [1] in order

to understand how they compare to the case P x,y
n when 0 < x < y are coprime.

Technically, these results were stated only for nonnegative particle configurations
but they still hold in the general case.

In the case x = y = 1, define for any particle configuration σ and rotor
configuration ρ

h(σ) =
n+1∑

i=0

i · σ(ui) and g(ρ) = |i : head(ρ(ui)) = ui−1|

i.e. g(ρ) is the number of arcs in G(ρ) pointing to the left.
The next result completely solves generalized arrival in P 1,1

n for any
number of particles and antiparticles.

Theorem 3. In the case x = y = 1, for all (ρ, σ) ∈ R × Σ, the number of
particles on sink un+1 in any configuration of routing∞(ρ, σ) is equal to the
unique m ∈ Z such that

0 ≤ g(ρ) − h(σ) + m(n + 1) ≤ n, i.e. m = �h(σ) − g(ρ)
n + 1

�.

Additionally, we can describe the structure of the Sandpile Group of P 1,1
n

and its action on rotor configurations. Define h̄ and ḡ as h and g modulo n+ 1.

Theorem 4. (i) The Sandpile Group SP (P 1,1
n ) is cyclic of order n + 1;

(ii) the map h̄ : Σ → Z/(n+1)Z quotients by ∼S into an isomorphism between
SP (P 1,1

n ) and Z/(n + 1)Z;
(iii) the map ḡ : R → Z/(n + 1)Z quotients into a bijection between rotor

equivalence classes and Z/(n + 1)Z;
(iv) the action of the sandpile group on rotor equivalence classes can be under-

stood in the following way: let (ρ, σ) be a rotor-particle configuration and
(ρ′, σ′) ∈ routing∞(ρ, σ). Then ρ′ is in class ḡ(ρ′) = ḡ(ρ) − h̄(σ).

As an example, consider the case P 1,1
3 , which is depicted on Fig. 3, with the

particle configuration σ equal to (−8, 5, 10,−5, 12) from left to right and ρ as
depicted. We see that ρ has 2 arcs going left so that g(ρ) = 2, while we have

h(σ) = −8 · 0 + 5 · 1 + 10 · 2 − 5 · 3 + 12 · 4 = 58.
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From Theorem3, we deduce the final configuration σ′ of the full routing of
(ρ, σ) counts m = 14 particles ending on the right sink u4 and −8+5+10− 5+
12 − 14 = 0 particles on u0.

From Theorem4, we deduce that any final rotor configuration ρ′ in the rout-
ing will be such that ḡ(ρ′) = 2 − 58 = 0 mod 4, so that all its arcs will point
right, hence ρ′ is the acyclic configuration of this class.

−8 5 10 −5 12

Fig. 3. Rotor routing a particle configuration in P 1,1
3 . The particle configuration is

written in squares in vertices and the initial rotor configuration is given by full arcs
while other arcs are dashed. Note that there is a unique rotor order in this graph.

3.2 Case 0 < x < y Coprime

We now state our results in the case this paper is concerned about. Compare
this with Theorem 3. In both theorems, we use

F =
n∑

i=0

xn−iyi.

Theorem 5. Suppose that 0 < x < y are coprime and consider the rotor multi-
graph P x,y

n .

(i) There exists a linear function h : Σ → Z and a function g : R → Z such
that, for all (ρ, σ) ∈ R × Σ, the number of particles on sink un+1 in any
configuration of routing∞(ρ, σ) is equal to m if and only if

g(ρ) − h(σ) + mF ∈ g(R);

(ii) the set g(R) is a finite set of nonnegative integers, and membership in g(R)
can be tested in linear time; moreover the unique integer m satisfying the
previous condition can be found in time O(n log x), and it satisfies

m − �h(σ) − g(ρ)
F

� ∈ �0, x − 1�.

(iii) More generally, if (ρ, σ) and (ρ′, σ′) are rotor-particle configurations, then
(ρ, σ) ∼ (ρ′, σ′) if and only if

g(ρ) − h(σ) = g(ρ′) − h(σ′) and deg(σ) = deg(σ′).

Note that, in the case x = 1, we have m = �h(σ)−g(ρ)
F � as in the case x = y = 1

and no further algorithm is needed.
This is now the version of Theorem 4 in our present case. We define h̄ and ḡ

as equal respectively to h and g modulo F .
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Theorem 6. Suppose that 0 < x < y are coprime and consider the rotor multi-
graph P x,y

n .

(i) The Sandpile Group of P x,y
n is cyclic of order F ;

(ii) The map h̄ : Σ → Z/FZ quotients by ∼S into an isomorphism between
SP (P x,y

n ) and Z/FZ;
(iii) The map ḡ quotients by ∼ into a bijection between rotor equivalence classes

and Z/FZ;
(iv) The action of the sandpile group on rotor equivalence classes can be under-

stood in the following way: let (ρ, σ) be a rotor-particle configuration and
(ρ′, σ′) ∈ routing∞(ρ, σ). Then ρ′ is in class ḡ(ρ′) = ḡ(ρ) − h̄(σ).

As an example, we consider the Path Multigraph P 2,3
3 . The graph is depicted

on Fig. 4, together with harmonic values (values of h, inside vertices) and arc-
monic values (values of g, on arcs).

Consider for instance the particle configuration σ = (−8, 5, 13,−5, 12) from
left to right such that

h(σ) = −8 × 0 + 5 × 8 + 13 × 20 − 5 × 38 + 12 × 65 = 890,

and the rotor configuration ρ = (a1
1, a

2
1, a

3
1) such that g(ρ) = 12 + 18 + 27 = 57.

We have F = 65, and g(R) = {0, 8, 12, 16, 18, 20, 24, 26, 27, 28, 30, 32, 34, 35, 36,
38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 86, 87, 88, 90, 94, 96, 98,
102, 106, 114}.

The only value v in g(R) equal to g(ρ) − h(σ) = −833 mod 65 is 12 =
−833+13∗65. Since deg(σ) = 17, in the end of the routing there are 13 particles
on sink u4 and 4 particles on sink u0. The final rotor configuration ρ′ satisfies

ḡ(ρ′) = ḡ(ρ) − h̄(σ) = −833 mod 65 = 12 mod 65

so g(ρ′) = 12 by looking in g(R) (in this case, this gives a unique possibility for
ρ′).

0 8 20 38 6524
16

8

0

12

36
24
12

0

18

54
36
18

0

27

Fig. 4. Harmonic and arcmonic values on P 2,3
3 . The values of h and g are given respec-

tively in vertices and on arcs.
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4 Harmonic and Arcmonic Functions in the Path

In the rest of the paper, we fix n > 0 and coprime integers x, y such that
0 < x < y, and consider the Path Multigraph P x,y

n as defined in Subsect. 2.1.

4.1 Definition of h and g

First, we define the linear function h : Σ → Z which will serve as an invariant
for the firing operation and enable the characterization of particle equivalence
classes. Initially, we define h on vertices and then extend it by linearity to Σ.

Lemma 2. The linear function h : Σ → Z defined by h(u0) = 0 and

h(uk) =
k−1∑

i=0

xn−iyi

for k ∈ �1, n + 1� is harmonic on G, i.e. for any u ∈ V0 we have h(Δ(u)) = 0.

Corollary 2. For any particle configurations σ, σ′, if σ ∼ σ′ then h(σ) = h(σ′).

It turns out that h(uk) is the number of acyclic configurations in P x,y
n that

contain a directed path from uk to un+1. In particular, h(un+1) is the number of
rooted forests, which is also the number of particle equivalence classes and rotor
equivalence classes [13].

We now define a similar function for rotor configurations, designed to be
invariant on equivalence classes of rotors configurations. We introduce the term
arcmonic for these functions that correspond to harmonic functions but on arcs.

Proposition 6. The linear function g : ZA → Z, defined by

g(ak
j ) =

j−1∑

i=0

(h(head(ak
i )) − h(uk))

for all k ∈ �1, n� and j ∈ �0, x + y − 1� (in particular, g(ak
0) = 0) is arcmonic,

i.e. it satisfies for all directed circuits C in G(ρ), g(C) = g(θ(C)), where C is
identified with the sum of arcs

∑
a∈C a.

By identifying a rotor configuration ρ with the formal sum of its arcs, we define

g(ρ) =
∑

u∈V0

g(ρ(v)).

Corollary 3. If ρ ∈ R, ρ′ ∈ R are such that ρ ∼ ρ′, then g(ρ) = g(ρ′).

The exact values of g are given by:
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Proposition 7. For j ∈ �0, x + y − 1� and k ∈ �1, n�,

g(ak
j ) =

{
jdk if j ∈ �0, x�

(x + y − j)dk−1 if j ∈ �x + 1, x + y − 1�

where, for every k ≥ 0, dk = xn−kyk.

Remark that, for every k ∈ �0, n�, dk = h(uk+1) − h(uk). See Fig. 4 for an
example of harmonic and arcmonic values on P 2,3

3 . In this example, d0 = 8,
d1 = 12, d2 = 18, d3 = 27, and d4 = 81

2 .

Proposition 8. If (ρ, σ) and (ρ′, σ′) are rotor-particle configurations, then if
(ρ, σ) ∼ (ρ′, σ′) we have

g(ρ) − h(σ) = g(ρ′) − h(σ′).

It turns out that Corollary 3 and Proposition 8 are equivalences.

4.2 Stable Decomposition of Arcmonic Values

In the light of Proposition 8, it becomes important to characterize which integers
are of the form g(ρ) for some ρ ∈ R. If ρ ∈ R, by Proposition 7, g(ρ) can be
decomposed as a sum

g(ρ) =
n∑

k=0

ckdk,

with ck ∈ �0, x + y − 1� for all k ∈ �1, n�; recall that dk = xn−kyk.
This decomposition is not unique since all equivalent rotor configurations

share the same value.

Theorem 7. Every integer v ≥ 0 has unique decomposition of the form

v =
n∑

k=0

ckdk + cn+1dn+1

with ck ∈ �0, y − 1� for k ∈ �0, n� and cn+1 ∈ xZ. We call this decomposition the
stable decomposition of v and denote it by c[v].

Note that dn+1 = yn+1

x . A special case is the case x = 1 where if v < yn+1,
the stable decomposition of v coincides with the decomposition of v in base y
up to the n-th element.

Proof. We establish the uniqueness of this stable decomposition. The existence
relies on the lemmas presented subsequently.

Suppose that v admits two stable decompositions c1 = (c10, . . . , c
1
n+1) and

c2 = (c20, . . . , c
2
n+1). Recall that, for i ∈ {1, 2}, ci

n+1 ∈ xZ. Then:

n∑

k=0

c1kdk + c1n+1dn+1 =
n∑

k=0

c2kdk + c2n+1dn+1 mod y
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which amounts to
c10d0 = c20d0 mod y.

Since d0 = xn and y are coprime, and 0 ≤ c10, c
2
0 ≤ y − 1, we obtain c10 = c20.

Now, consider v′ = v−c10xn

y , then, for i ∈ {1, 2},

v′ =
n−1∑

k=0

ci
k+1x

n−1−kyk + ci
n+1

yn

x

and one can apply the same reasoning iteratively on v′ to show that c11 = c21,
c12 = c22, etc. And finally that c1 = c2. ��

To prove the existence of the stable decomposition, we rely on another device
named Engel Machine [6]. The Engel Machine Ex,y

n is the Multigraph defined
on the set {u0, u1, · · · , un} ∪ {un+1, s}, where every vertex ui for i ∈ �0, n� has
x arcs going to ui+1 and y − x arcs going to s. Since we assumed y > x, then
y − x > 0. Vertices s and un+1 are sinks. We say that a particle configuration
σ in Ex,y

n is nonnegative if σ(ui) ≥ 0 for i ∈ �0, n� (whereas sinks may have a
negative value). See Fig. 5 for an example.

u0 u1 u2 ... un un+1

s

y − x arcs

x arcs

y − x arcs

Fig. 5. The Engel Machine E2,3
n .

We define a function hE on the vertices of this graph that will turn out to
be harmonic on Ex,y

n . This function is defined by

hE(s) = 0 and hE(uk) = dk for k in �0, n + 1�

and extend it to particle configurations by linearity.
We shall be mainly concerned with the hE value of particle configurations in

the Engel Machine. In order to keep notation simple, and since hE(s) = 0, the
value of configurations on s never matters and we identify particle configurations
in c ∈ Σ(Ex,y

n ) with words c ∈ Z
n+2. In particular, for any v ≥ 0, the notation

c[v] denotes the word corresponding to the stable decomposition of v, as well as
a (stable) particle configuration (we can suppose that its value on s is always 0).
Note that hE(c[v]) = v by construction. Conversely, remark that any nonnegative
stable configuration c with hE(c) = v gives the unique stable decomposition of v.
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Lemma 3. The function hE is harmonic on Ex,y
n .

Proof. Consider the particle configuration c′ obtained from c by firing vertex uk,
k ∈ �0, n�. Then:

hE(c′) − hE(c) = −ydk + xdk+1 = 0.

��
In order to compute a stable decomposition for v, one simply has to find

any configuration c with hE(c) = v and then stabilize c. The proof of the next
lemma provides a method for computing such a configuration c. Together with
Lemma 3, this completes the proof of Theorem 7.

Lemma 4. For any v ≥ 0, there exists a nonnegative configuration c in Ex,y
n

with hE(c) = v.

Proof. Since xn+1 and yn+1 are coprime, by Bezout’s theorem there are integers
α, β such that

αxn+1 + βyn+1 = 1

and we can choose α ≥ 0. It follows that

(αxv)xn+1 + (βxv)yn+1 = xv

and
(αxv)d0 + (βxv)dn+1 = v.

��
We now characterize stable decompositions corresponding to an arcmonic

value.

Theorem 8. For any v ∈ Z, we have v ∈ g(R) if and only if the regular expres-
sion

ed = �0, y − 1�∗ · 0 · �1, x�∗ · 0
matches c[v].

Theorem 8 is the main tool for recognizing values m such that g(ρ)− h(σ) +
mF ∈ g(R) (see Theorem 5).

Open Problems and Future Works. In this paper, we addressed the general-
ized version of the arrival problem in the Path Multigraph P x,y

n . Moreover, we
investigated the Sandpile Group structure and its action on rotor configurations
when x and y are coprime. However, when x and y are not coprime, we observed
that the characterization of classes by harmonic and arcmonic functions becomes
inadequate, necessitating the inclusion of more comprehensive algebraic invari-
ants. We are currently working on a project that presents a theory of arcmonic
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and harmonic functions applicable to general graphs, which will be submitted
soon to publication.

Moreover, it is worth considering other scenarios, such as variations in x
and y across different vertices or changes in the rotor order. These cases pose
interesting questions that require further investigation. We regard them as open
problems that warrant additional research.
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