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Abstract. Multiobjective/Many-objective Optimization Genetic Algo-
rithm (MOGA) is a method that utilizes a stochastic search inspired
by nature to find solutions in a multiobjective optimization framework.
Examples of MOGA include NSGA-II and NSGA-III, both of which rely
on fast non-dominated sorting during execution. Non-dominated sort-
ing is a difficult task in this field. This paper presents an alternative
deterministic approach to fast non-dominated sorting that is both cor-
rect and complete. The approach focuses on pivots, which enables it to
handle data with multiple or many objectives. The proposed method
has been applied to relevant benchmark data sets and has been proven
effective.
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1 Introduction

MOGA is extensively employed in diverse fields such as engineering, science,
medicine, management, finance, etc. A couple of examples [1,2] showcase its effec-
tiveness in addressing crucial multi-objective optimization problems in recent
times. The widespread adoption of MOGA in industrial applications has signif-
icantly elevated its significance, making it a highly valued domain.

1.1 Prerequisites

This portion presents an exploration of the essential terminologies and pertinent
concepts related to multi-objective optimization problems.

Definition 1 (Multi-objective Optimization Problem(MOP)). Multiob-
jective optimization is a method utilized to improve multiple objectives concur-
rently, considering their mutual influence and any existing constraints. It aims
to find optimal solutions that enhance two or more objectives simultaneously.
The formal definition of the MOP is as follows:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Maji et al. (Eds.): PReMI 2023, LNCS 14301, pp. 559–567, 2023.
https://doi.org/10.1007/978-3-031-45170-6_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45170-6_58&domain=pdf
http://orcid.org/0000-0002-2860-2754
http://orcid.org/0000-0003-3946-2440
https://doi.org/10.1007/978-3-031-45170-6_58


560 S. Mandal and P. Dutta

Min/Max zm(x), m = 1, 2, . . . ,M ;
s.t., wj(x) ≥ 0, j = 1, 2, . . . , J ; yk(x) = 0, k = 1, 2, . . . ,K;

x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, . . . , n;

A solution1, denoted as x ∈ R
n, is a vector consisting of n decision variables:

x = (x1, x2, . . . , xn)T . In this context, M , J , and K represent the number of
objectives that require optimization, denoted by zm, the number of inequality
constraints denoted by wj, and the number of equality constraints denoted by yk,
respectively. The lower and upper bounds of xi are denoted as x

(L)
i and x

(U)
i ,

respectively, where i = 1, 2, . . . , n [3]. The mapping of decision space points to
objective space points is illustrated in Fig. 1.

Fig. 1. Decision Space to Objective Space Mapping. The red points found in the objec-
tive space represent the members of the Pareto front. (Color figure online)

Definition 2 (Domination Relation). A solution α ∈ D (Decision Space) is
said to dominate another solution β ∈ D if both the following conditions hold
together:

1. In terms of all the objective functions, the solution α can not be worse than
the solution β.

2. There exists at least one objective function for which α is strictly better than
β [3].

Definition 3 (Pareto Optimal Set). A solution is deemed Pareto optimal
when there is no other solution that can improve one objective without worsening
another. The set of all Pareto optimal solutions is the “Pareto optimal set”, and
their corresponding objective points form the “Pareto front” [3].
1 Here “solution” refers to the elements of the decision space and “point” refers to the

elements of the objective space respectively.
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For example, in Fig. 1, the red solutions in the decision space form the Pareto
optimal set, while the red points in the objective space depict the Pareto front.

1.2 Literature Survey

There have been several mechanisms to solve the MOPs, including SPEA2 [4],
MOGA [5], NSGA-II [6], IBEA [7], NSGA-III [8], and more. Among these,
NSGA-II stands out as one of the most popular approaches. NSGA-II comprises
two main constituents: Fast Non-dominated Sorting (FNDS) and Crowding Dis-
tance. FNDS having the computational complexity of O(MN2), generates non-
dominated fronts, with M and N being the number of objective functions and
population size respectively. Although other non-dominated sorting approaches
exist, for example, a recursive mechanism having a computational complexity
of O(NlogM−1N) by Jensen et al. [9], they become ineffective when two differ-
ent solutions are with the same objective function value. Tang et al. introduced
a fast approach for generating the non-dominated set using the arena’s prin-
ciple [10]. Zhang et al. introduced an important method called Efficient Non-
dominated Sorting (ENS), which encompasses two variations: one employing
sequential search (ENS-SS) and the other utilizing binary search (ENS-BS) [11].
However, no existing algorithm in the literature achieves better time complex-
ity in the worst-case scenario than O(MN2) for non-dominated sorting while
remaining complete.

1.3 Gap Identification and Motivation

To address the issues discussed in Sect. 1.2, we have offered a pivot-based non-
dominated sorting that intends to provide a complete, correct, and time-efficient
algorithm that generates non-dominated fronts.

1.4 Structure of the Paper

This paper is structured into the following four sections. First, “Introduction” in
Sect. 1, covers the background information, literature review, and gap analysis.
Followed by “Methodology” in Sect. 2, which explains the proposed technique
and provides information about the relevant dataset. Section 3 is dedicated to
“Result and Analysis”, where the completeness and accuracy of the proposed
method are demonstrated and discussed. Finally, the “Conclusion” is presented
in Sect. 4.
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Fig. 2. Flow Diagram of the Pivot-based Deterministic Non-dominated Sorting App-
roach. a. Snippet of a demo data set in an objective space with each column representing
five different objective functions. b. Five Pivot points for five objective functions. c.
Comparing all points in the objective space with the pivot point(s) to check whether
they are worse or in a non-dominated relation with the pivot point(s). d. The recur-
sive process of generating fronts until the “left” buffer, used to hold all other elements
excluding the current front’s pivot points and its non-dominated points, is empty.

2 Methodology

For a clear understanding of the methodology, we introduce the concept of Pivot.

Definition 4 (Pivot). Pivot points refer to the mapped solutions from a deci-
sion space to an objective space where there is at least one objective function that
achieves the optimal value. This optimal value can be either the maximum value
if the objective function aims to maximize or the minimum value if the objective
function aims to minimize. In a typical multi-objective optimization, there can be
a combination of possibilities for both maximization and minimization. Figure 2
depicts the flow diagram of the mechanism, with an explanation of pivot points.

2.1 Benchmark Data-Set Specification

Zitzler-Deb-Thiele-1 (ZDT-1) Test Suite. The construction of the ZDT
problem suite is rooted in a 30-variable problem (n = 30) that exhibits a convex
Pareto-optimal set [14].
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min z1(x); min z2(x) = g(x)h(z1(x), g(x));

where two objectives need minimization, the function g(x) is typically used
to represent convergence, and it is common for g(x) = 1 for Pareto-optimal solu-
tions. The definition of the ZDT-1 test suite is as follows:

z1(x) = x1; g(x) = 1 +
9

n − 1

n∑

i=2

xi; h(z1, g) = 1 −
√

z1
g

; 0 ≤ xi ≤ 1

where, i = 1, . . . , n.

The Vehicle Crashworthiness Problem. This real-life application-based
benchmark involves optimizing the level of safety in the event of a crash and
is characterized as a problem with three objectives and no constraints [13]. This
problem involves five decision variables, x1, x2, x3, x4, and x5. Three objective
functions: z1, z2, and z3 are depicted as follows:

z1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2

+ 4.5688768x3 + 7.7213633x4 + 4.4559504x5

z2(x) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4 − 0.3695x1x4

+ 0.0861x1x5 + 0.3628x2x4 − 0.1106x1x1 − 0.3437x3x3 + 0.1764x4x4

z3(x) = −0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 − 0.0073x1x2 + 0.024x2x3

− 0.0118x2x4 − 0.0204x3x4 − 0.008x3x5 − 0.0241x2x2 + 0.0109x4x4

Deb-Thiele-Laumanns-Zitzler-1 (DTLZ-1). This involves n decision vari-
ables and is defined as follows [15]:
Minimize:

f1(�x) =
1
2
x1x2 · · · xM−1(1 + g(�x))

fi(�x) = 1
2x1x2 · · · (1 − xi−1) · · · (1 − xM−1)(1 + g(�x)), i = 2, . . . , M − 1

fM (�x) =
1
2
(1 − x1)(1 + g(�x))

where �x = (x1, x2, . . . , xK) depicts the decision variables, and g(�x) is a non-
linear function given by:

g(�x) =
K∑

i=K−M+1

(xi − 0.5)2 − cos(20π(xi − 0.5))

The decision variables are subject to the following constraints:

0 ≤ xi ≤ 1, i = 1, . . . , K
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OneMinMax and Leading Ones and Trailing Zeros (LOTZ). The One-
MinMax benchmark was originally suggested by Giel and Lehre (2010) as a two-
objective version of the well-known ONEMAX benchmark. Laumanns, Thiele,
and Zitzler (2004) introduced a benchmark called LOTZ. The benchmarks men-
tioned here contain objective functions that are of maximization type [12].
z : {0, 1}n → N × N

OneMinMax Function is defined by:

z(x) = (z1(x), z2(x)) = (n −
n∑

i=1

xi,

n∑

i=1

xi);∀x = (x1, x2, ....., xn) ∈ {0, 1}n

The LOTZ function is defined as follows:

z(x) = (z1(x), z2(x)) = (
n∑

i=1

i∏

j=1

xj ,
n∑

i=1

n∏

j=1

(1 − xj));∀x ∈ {0, 1}n

2.2 Pivot-Based Deterministic Non-dominated Sorting

The algorithm takes input as the mapped solutions from the decision space
and outputs non-overlapping decomposed Front(s), where the first Front repre-
sents the Pareto Front. Algorithm 1 shows the Pivot-based Deterministic Non-
dominated Sorting.

3 Result and Analysis

The result yielded for different benchmark functions are shown in Fig. 3. The
result of the suggested Pivot-based algorithm is evaluated using the ZDT-1 bi-
objective benchmark function to compare the fast non-dominated sorting and the
proposed approach. In the sample of 500 elements in the objective space, both
methods successfully position all elements on the Pareto Front. This indicates
the presence of a single front, where all 500 elements in the sample are mutually
non-dominated. This information is visualized as a diamond shape in Fig. 3. The
analysis extends to the “Vehicle Crashworthiness” benchmark, which involves
three objective functions and is examined using both fast non-dominated sorting
and the proposed approach. In this case, the entire objective space is divided into
eight fronts, with each front containing an equal number of elements for both
methods. These fronts are represented by a brown-coloured asterisk sign. The
consistency of this outcome is observed across all other benchmark functions
showcased in Fig. 3 where yellow square, green triangle, and brown cross are
used respectively for DTLZ - 1, LOTZ, and OneMinMax front representation,
thereby affirming the validity of the proposed algorithm.

3.1 Completeness and Correctness of the Algorithm

Formation of pivots followed by placement of an objective space element in a
suitable front in respect of the pivot undergo exhaustive exploration in a deter-
ministic sense. Hence, assigning a newly explored element in an appropriate
Front can not but be procedurally complete.
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Algorithm 1 Pivot-based Deterministic Non-dominated Sorting Algorithm
1: Find the pivot points (min/max depending on the objective function(s)) and assign

them to the head of the current level
2: Save the remaining tuples (or points) in a buffer named left
3: for each Tmptpl from left fetch one by one and do
4: swapflg ← 0; moveflg ← 0
5: for each ith element of both Tmptpl and Headtpl do
6: lowerflg ← 0; greaterflg ← 0; equiflg ← 0
7: if Tmptpl == Headtpl then
8: Insert the Tmptpl into current Head and go to step-3.
9: end if

10: for i ← 0 to M do � M : Number of objective functions
11: if (Tmptpl)i > Headtpl then
12: greaterflg+ = 1
13: end if
14: if (Tmptpl)i < Headtpl then
15: lowerflg+ = 1
16: end if
17: if (Tmptpl)i == Headtpl then
18: equiflg+ = 1
19: end if
20: end for
21: if (greaterflg + equiflg) == M then
22: move Headtpl from head list to left
23: swapflg+ = 1
24: end if
25: if (greaterflg == 0 and lowerflg �= 0) then
26: move Temptpl to left
27: swapflg ← 0, moveflg ← 0
28: goto step-3
29: end if
30: if (greaterflg �= 0 and lowerflg == 0) then
31: moveflg+ = 1
32: end if
33: if (swapflg > 0 or moveflg > 0) then
34: move/add Tmptpl in the Head(current Head)
35: goto step-3
36: end if
37: end for
38: end for
39: if left is not empty then
40: Create next level and goto step-1
41: end if
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Fig. 3. Number of Fronts and corresponding elements generated using the proposed
method and the Fast Non-dominated Sorting.

3.2 Complexity of the Proposed Algorithm

The Algorithm proposed in Algorithm 1 consists of two nested for loops in
steps 3 and 5, which iterate N times, where N represents the number of
mapped solutions in the objective space. In the worst-case scenario, this algo-
rithm requires O(N2) time to finish. Additionally, step 10 includes another loop
that iterates M times, where M is the number of objective functions. Step 1,
on the other hand, takes O(MN) time to complete. Consequently, the algo-
rithm’s best-case, average-case, and worst-case time complexity is respectively,
Ω(MN2), Θ(MN2), O(MN2), which is similar to respective cases of the Fast
Non-dominated Sorting phase in NSGA-II and NSGA-III. Furthermore, no worse
than any existing non-dominated sorting algorithm, which is complete, in the
worst-case scenario.

4 Conclusion

The pivot-based framework has a number of benefits. First off, the idea is simple
and straightforward to put into practice. Second, it covers all the solutions in the
decision space by effectively dividing them into non-overlapping fronts using the
mapped objective space values, needless to mention which ensures the catego-
rization of the quality of the solutions. Last but not least, it accomplishes these
advantages in a time-efficient way that isn’t worse than current state-of-the-art
methods. The effectiveness of the suggested approach is validated by compar-
isons with multiple benchmark multi-objective optimization functions that exist
in the literature. Despite being a novel, complete, and correct approach, the
algorithm cannot handle streamed or online data. Our efforts in the future will
be directed towards addressing this particular issue in the algorithm.
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