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Abstract. Traffic flow prediction is one of the core issues in the field of trans-
portation planning and management. Traditional traffic flow prediction methods
are limited by factors such as data sparsity, long-term interdependencies, and intri-
cate spatiotemporal dynamics. To overcome these challenges, this paper proposes
a novel predictive model called ARSTGCN, which incorporates spatiotempo-
ral attention mechanisms and deep learning networks. Firstly, the spatiotemporal
attentionmechanism assigns attentionweights to traffic sensor nodes, enabling the
capture of spatiotemporal relationships. Dilation convolution is employed to pro-
cess the temporal correlation in the data, mitigating concerns of gradient explosion
and vanishing during the training of lengthy time series. Secondly, data containing
spatiotemporal weight features undergoes input into the graph convolutional net-
work, facilitating the capture of spatial dynamic correlations. The final prediction
results are obtained through the utilization of the fully connected layer. Compared
with the baseline model on two publicly available datasets, ARSTGCN showed
certain advantages.
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1 Introduction

With the continuous development of China’s transportation industry and the sharp
increase in vehicles, traffic congestion and frequent traffic accidents have emerged as
critical challenges confronted by modern cities. To overcome these issues, experts have
shifted their focus towards establishing an intelligent transportation system (ITS) [1].
The objective is to develop smart transportation and transportation information technol-
ogy, enhance the efficiency and precision of traffic control, while optimizing traffic flow,
with the ultimate aim of alleviating the prevailing traffic problems.

So far, research on traffic flow prediction has a history of over a decade. Initially,
mathematical and physical methods were commonly employed for prediction. The most
typical models included the Historical Average (HA) model [2], Vector Autoregressive
(VAR) model [3], and Autoregressive Integrated Moving Average (ARIMA) model [4].
However, these models relied on linear data analysis, while traffic flow data is nonlin-
ear and complex. Therefore, statistical-based prediction methods did not adequately fit
traffic flow data. Some common machine learning methods used in the field of traffic
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flow prediction include Support Vector Machine (SVM), K-Nearest Neighbors (KNN)
algorithm, and Kalman filter model [5]. In the 1990s, SVM proposed by Vapnik et al.
in the literature [6] has gained considerable attention. SVM is a supervised learning
algorithm that separates samples into two categories by defining an optimal boundary.
It was employed in traffic flow prediction to overcome the limitations of traditional sta-
tistical models in handling nonlinear problems. In literature [7], Zhang et al. proposed
a short-term traffic flow prediction method based on Balanced Binary Tree K-Nearest
Neighbor Non-parametric Regression. This method utilized clustering and a balanced
binary tree structure to establish a case database, aiming to improve prediction accuracy
and meet real-time requirements. These machine learning methods offered new avenues
for enhancing the accuracy and reliability of traffic flow prediction. However, machine
learning models needed to possess good generalization ability when predicting new traf-
fic flow data. Yet, due to the complexity and dynamic nature of the traffic system, the
generalization ability of the models was limited across different regions, time periods,
or traffic scenarios.

In recent years, with the emergence of deep learning models, researchers have grad-
ually employed deep neural network models for traffic flow prediction. Ma et al. [8] uti-
lized Long Short-Term Memory (LSTM) neural networks for predicting traffic speeds,
effectively capturing the temporal correlations in the data flow. Literature [9] combines
the convolutional neural network (CNN) and LSTM to extract the spatiotemporal fea-
tures from multiple perspectives, and the experimental results show that this method
can effectively predict traffic information. Although these models have made significant
progress in feature extraction, they still cannot represent the true non-Euclidean spatial
road network structure [10]. Some scholars have studied the graph convolutional net-
work (GCN). Li et al. [11] proposed theDCRNNmodel, combining the characteristics of
diffusion graph convolution and recurrent neural network to capture the spatiotemporal
dependence in traffic data. Yu et al. [12] designed the STGCNmodel using spatial graph
convolution and temporal convolution to effectivelymodel the spatiotemporal dependen-
cies in traffic data and improve traffic prediction accuracy. Subsequently, Guo et al. [13]
introduced the ASTGCN model by adding attention mechanisms to the STGCN model.
Geng et al. [14] proposed the SMGCN model for predicting the demand of ride-hailing
services. This model combines spatiotemporal features and multi-graph convolution
operations, aiming to capture the spatiotemporal dependencies in the data related to
ride-hailing service demand.

Although existing deep learning methods consider the temporal and spatial correla-
tions, these methods still have shortcomings. Most of these methods rely on LSTM and
GRU to capture temporal dependencies, which can easily lead to the problems of gra-
dient explosion and vanishing when dealing with long time series. Additionally, some
network models attempt to use stacked one-dimensional convolutions to mitigate the
gradient explosion issue, leading to an increase in computational complexity.

To overcome these limitations, fully consider the spatiotemporal dynamic correla-
tion, and further improve the accuracy of traffic flow prediction, this paper reduces the
model complexity and improves the operating efficiency by reducing the number of
network layers on the basis of the ASTGCN model. In addition, the dilated convolution
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is introduced based on the existing baseline model to extract long-time dynamic corre-
lations with fewer network layers and parameters to improve the prediction accuracy.
Therefore, this paper proposes a new traffic flow prediction method called ARSTGCN.

2 ARSTGCN Model

2.1 Problem Definition

Traffic flow prediction refers to the use of traffic flow data collected by traffic sensors
distributed on the road [15] to predict the future traffic flow of a certain location or area.
That is, the number of vehicles passing through the location or area in a certain period
of time in the future.

Definition 1 (Traffic Road Network G). The sensors in the road network constitute
a topology diagram G = (V, E, A), where V is the set of nodes, indicating the sensor
nodes in the road network, the number of nodes is N, V = {v1,v2,v3,…vn}; E is the set
of edges, indicating the connectivity between the sensors; A ∈ RN×N is the adjacency
matrix constructed based on the distances between sensors, representing the connectivity
between nodes.

Definition 2 (Graph Signal Matrix X). The traffic flow observed on graph G is repre-
sented as the graph signal X ∈ RN×P, where P represents the number of features of each
node. The traffic flow prediction problem involves learning a mapping function f (·) for
the traffic flow at a given graph G and historical T time period to predict future traffic
information for T´. The mapping relationship is shown in Eq. (1).

(Xt+1,Xt+2, · · · ,Xt+T ′ = f (G; (Xt−T+1, · · · ,Xt−1,Xt)) (1)

2.2 Model Framework

The overall framework of this paper is illustrated in Fig. 1, which consists of a residual
layer, a spatiotemporal convolutional block, and a fully connected layer. The spatiotem-
poral convolutional block is composed of two temporal convolutions (TCM) and one
graph convolution (GCN), and incorporates spatiotemporal attention mechanisms to
extract features from both the temporal and spatial dimensions. The input traffic time
series data first undergoes spatiotemporal attention mechanism to obtain the spatiotem-
poral correlationmatrix. The TCMmodule introduces dilated convolutions to effectively
handle long time series problems. The GCN module uses Chebyshev polynomial as the
convolution kernel to reduce the computational complexity.
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Fig. 1. ARSTGCN model framework

2.3 Spatiotemporal Attention Mechanism

The spatiotemporal attention mechanism [16] is a mechanism used to handle spa-
tiotemporal data. It can learn and capture the correlations between different locations
and time points in spatiotemporal data, thereby extracting and expressing important
spatiotemporal features.

The temporal attention is used to model the relationships between different time
points. It helps us determine which time points aremore important for the current task. In
time series data, the temporal attention mechanism can learn the evolution and variation
patterns of different time points, as well as their impact on specific tasks. The temporal
correlation matrix is defined as Eq. (2).

It = Vt · σ(
(
X TW1

)
W2(W3X ) + bt) (2)

In the equations, Vt , bt ∈ RT×T , W1 ∈ RN ,W2 ∈ RF×N ,W3 ∈ RF are the learnable
parameters.X∈RN×F×T represents all sequence data, whereN is the number of nodes,F
is the number of data types, and T is the length of time. σ denotes the activation function.
Based on the temporal correlationmatrix, we calculate the time attentionmatrix between
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nodes i and j. such as the following Eq. (3).

I ′t(i,j) = exp(It(i,j))∑N
j=1 exp(It(i,j))

(3)

where It(i,j) represents the element in the i -th row and j -th column of the temporal
correlation matrix, which indicates the degree of temporal correlation between the two
nodes. I ′t(i,j) represents the calculated time attention matrix.

Similarly to the calculation of the time attentionmatrix, the spatial attention is used to
model the relationships between different spatial locations. It helps us determine which
spatial positions are more important for the current task. The equations for calculating
the spatial correlation matrix and the spatial attention matrix are shown in (4) and (5)
respectively. In these equations, Vs, bs ∈ RN×N , U1 ∈ RT , U2 ∈ RF×T , U3 ∈ RF are
all parameters to be learned, X ∈ RN×F×T represents all sequence data. Is(i,j) denotes
the element in the i -th row and j -th column of the spatial correlation matrix, which
represents the degree of spatial correlation between the two nodes. I ′s(i,j) represents the
calculated spatial attention matrix.

Is = Vs · σ((XU1)U2(U3X )T + bs) (4)

I ′s(i,j) = exp(Is(i,j))∑N
j=1 exp(Is(i,j))

(5)

2.4 Time Convolution

Recurrent neural networks have significant advantages in handling time series problems.
However, they can suffer from the issues of vanishing and exploding gradients when
dealing with long time series data. In addition, when dealing with complex problems, it
requires adding multiple layers of convolution to capture the long-term dependencies in
the time series. Dilated convolution [17] has a major advantage in that it can increase the
receptive field without introducing additional parameters and computational complexity.
By introducing a dilation rate parameter, the receptive field of the convolution kernel can
be expanded. This allows the network to capture both local detailed features and larger
contextual information. Therefore, in this paper, dilated convolution is used to extract
temporal dynamic correlations, and the network architecture is shown in Fig. 1b. Given
the input time series data X ∈ RN×T×F, where N is the number of nodes, T is the time
steps, and F is the number of features, the temporal convolution is defined as Eq. (6).

TCM(X) = g(Conv(X )) � σ(Conv(X )) (6)

where, g(·) and σ(·) represent the activation functions tanh and sigmoid, respectively.
Conv(·) denotes one-dimensional dilated convolution, and � represent Hadamard mul-
tiplication. After obtaining the temporal feature correlations through the temporal
convolutional layer, the spatial features are learned using the graph convolutional layer.
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2.5 Graph Convolution

Graph convolution is mainly used to capture spatial dependencies among different nodes
in a graph. Graph Convolutional Networks (GCNs) implement convolutional operations
on topological graphs based on graph theory [18]. In graph convolution, each node has
its own feature vector and is connected to its neighboring nodes to form an adjacency
relationship. The goal of graph convolution is to update the features of each node by
incorporating the feature information from its neighboring nodes. In graph convolution,
the first step is to transform the adjacency matrix into a Laplacian matrix, which is
defined as Eq. (7).

L = IN − D− 1
2AD− 1

2 (7)

In the equation, IN is the N × N identity matrix, A is the adjacency matrix of the
graph G, and D is the degree matrix of the adjacency matrix A. The Laplacian matrix
L is subjected to eigendecomposition, which decomposes it into the form L = β�βT.
Here, � is a diagonal matrix containing the eigenvalues, and β is a matrix containing
the corresponding eigenvectors. The obtained parameters are used to perform graph
convolution on the input time series sequence, and the equation is as follows.

gθ ∗ x = g(L)x = β�(�)βTXin (8)

gθ∗ is the graph convolution operator. Due to the computational complexity of Eq. (8),
Hammond [19] et al. proposed that using Chebyshev polynomials to effectively solve
this problem. Therefore, Eq. (8) can be approximated and simplified to Eq. (9).

gθ ∗ x = g(L)x ≈
K−1∑
k=0

θkTk(L̃)x (9)

L̃ = 2L

λmax − IN
(10)

where, θk represents trainable parameters, Tk(L̃) are the coefficients of the Chebyshev
polynomials. The expression for L̃ is defined asEq. (10).λmax is themaximumeigenvalue
of the Laplacian, andK is the size of the convolutional kernel. In order to effectively learn
spatial-temporal correlations, attention is incorporated into the convolutional operation
in this paper, as shown in Fig. 1c. Therefore, Eq. (9) is modified to Eq. (11).

gθ ∗ x = g(L)x ≈
∑K−1

k=0
θk

(
Tk

(
L̃
)

� I ′s(i,j)
)
x (11)

3 Experiment and Result Analysis

3.1 Dataset

This experiment uses two publicly available datasets, namely PEMSD4 and PEMSD8.
PEMSD4 and PEMSD8 are datasets from the Los Angeles area in California, USA.
Table 1 provides detailed information about these datasets. The distinctive feature of
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these two datasets is that they have a relatively fine granularity, with a statistical time
interval of 5 min for each data group. In this experiment, one hour of traffic flow data is
taken as the historical time period to predict the future traffic information for the next
hour, with 12 data records considered as one time step. The datasets are divided into
training, validation, and testing sets with a ratio of 6:2:2, respectively. The input data is
processed using the Z-score method.

Table 1. Dataset description.

Datasets Nodes Timesteps Time frame

PEMSD4 307 16992 2018.1.1—2018.2.28

PEMSD8 170 17856 2016.7.1—2016.8.31

3.2 Experimental Setting

The experiment was conducted in a Windows system environment, using the PyTorch
framework. The computer processor used was Intel(R) Core(TM) i5-1135G7 @ 2.40
GH, with CUDA 10 and Python 3.7.

In the experiment, the Adam optimizer was employed, with a learning rate of 0.001.
The batch sizewas set to 32. Tomeasure the predictive performance of differentmethods,
the chosen evaluation metrics were Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE). Smaller values of these metrics indicate better prediction performance
of the model. The formula are given as Eq. (12) and (13) below.

(1) Mean Absolute Error:

MAE = 1

n

n∑
i=1

∣∣yi
∧ − yi

∣∣ (12)

(2) Root Mean Square Error:

RMSE =
(
1

n

n∑
i=1

∣∣yi
∧ − yi

∣∣
) 1

2

(13)

In the equations, yi represents the true traffic flow and yi
∧

represents the predicted
traffic flow for the i-th sample, where n represents the number of samples.

3.3 Baselines

This study compares the proposed model with six benchmark models for traffic flow
prediction.

(1) Historical Average: This is a simple traffic flow prediction model that uses the
historical average to predict future traffic flow.
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(2) LSTM: LSTM is a type of recurrent neural networkmodel that can capture long-term
dependencies in time series data. It is used for predicting future traffic flow.

(3) T-GCN: T-GCN is a traffic flow prediction model that combines temporal informa-
tion and graph convolution. It can effectively learn the spatiotemporal relationships
and evolution patterns of traffic flow for future predictions.

(4) STGCN: STGCN is a spatial-temporalmethod for traffic flowprediction. It leverages
graph convolutional operations to model the spatial and temporal dependencies in
traffic data.

(5) ASTGCN: ASTGCN is a traffic flow prediction model that utilizes attention
mechanisms along with spatial and temporal graph convolutional networks.

(6) Graph WaveNet [20]: Graph WaveNet is a traffic flow prediction model based on
graph convolutional neural networks and WaveNet.

3.4 Experimental Results

Table 2 displays the prediction results of various models for a 60-min prediction on
the PEMSD4 and PEMSD8 datasets. The benchmark experimental results in this study
referenced the experimental data from ASTGCN [13]. The performance of the ARST-
GCN model showed improvement on both datasets. Compared to ASTGCN, the pro-
posed model improved the MAE and RMSE metrics by 1.7%, 2.4%, 8.02%, and 3.6%
on PEMSD4 and PEMSD8, respectively. Compared to STGCN, the proposed model
achieved an improvement of 10.1%, 10.1%, 6.5%, and 1.2% on PEMSD4 and PEMSD8
for the MAE and RMSE metrics, respectively.

Table 2. Performance comparison of different methods for one-hour traffic prediction on
PEMSD4 and PEMSD8

Dataset Metric HA LSTM T-GCN STGCN Graph
WaveNet

ASTGCN ARSTGCN

PEMSD4 MAE 36.76 36.76 28.04 25.15 25.45 23.00 22.59

RMSE 54.14 45.82 41.21 38.29 39.70 35.28 34.39

PEMSD8 MAE 29.52 23.18 24.01 18.88 19.13 19.19 17.65

RMSE 44.03 36.96 33.98 27.87 31.05 29.20 27.52

3.5 Run Time Comparison

In the experiment, the computational time of the proposed ARSTGCN model was com-
pared with the benchmark models STGCN and ASTGCN on the two datasets. Since
STGCN and ASTGCN involve stacking multiple layers in their network, it increases the
computational complexity. In this study, some complex network layers were reduced in
the proposed model. As shown in Fig. 2, it can be observed that compared to STGCN
and ASTGCN models, the ARSTGCN model had the least computational time on both
datasets, resulting in significant speed improvements.
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Fig. 2. Comparison of running times on dataset PEMSD4 and PEMSD8

4 Conclusion

This paper introduces the spatiotemporal attention mechanism to capture the temporal
and spatial correlation respectively, reducing the defect of common graph convolution
in extracting data features. Additionally, the paper introduces dilated convolutions to
the existing benchmark models, which can increase the range of receptive fields without
introducing extra parameters and computational complexity. This effectively solves the
issues of gradient vanishing and explosion that often occur in long time series. This
model is optimized in terms of network complexity, which not only improves accuracy
but also greatly reduces time cost operations.
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