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To Maud and Iris, 
two new characters 
who appeared in a recent chapter 
of the book of my life, 
with the clear intent of making 
the rest of it much funnier



Preface 

This book arose from the classes on the calculus of variations which I gave 
several times in Orsay (first in a PDE master’s program, and then jointly with an 
optimization program), in Pavia, and in Lyon. During these classes I used to write 
a webpage with a precise schedule, and for each lecture I would point the students 
toward various references, which could be existing books, papers, or, occasionally, 
short notes that I wrote for them. The main goal of this book is to collect all this 
material together, present it in the form of an exploratory journey through the 
calculus of variations, and of course take the time to develop related topics, both 
for completeness and for advertisement. 

Many important books already exist on the subject (let me just mention those 
which I used the most with my students, such as [95, 101] or [67]) and, naturally, 
the intersection with them will be non-negligible. Yet, besides collecting together 
various parts of the theory which, so far, have not always appeared together in 
the same volume, what I also want to do is to present the material from a point 
of view which is not often found in other texts. This is a particular perspective 
coming from optimization. On the one hand, a very important role is played in this 
book by convex analysis, convex optimization, and convex duality; on the other 
hand, many examples are taken from applications coming from what in France is 
called “mathématiques de la décision” (an expression which appears, by the way, 
in the name of the first Mathematics Department in which I held a position, the 
CEREMADE in Paris-Dauphine, as well as in the scientific society—actually, a part 
of the French Society for Applied and Industrial Mathematics—which I led in recent 
years, the group MODE). Indeed, although I would undoubtedly classify this book 
as a piece of mathematical analysis, many parts of it are inspired by applications 
and modeling, and among the models which come from decision sciences, let me 
mention the Ramsey model in economic growth (Sect. 1.5), equilibrium issues in 
traffic congestion (Sects. 1.3 and 1.6), the optimal shape of a transportation network 
(Sect. 6.3), the optimal location of facilities (Sect. 7.3), . . .  

In order to compare this book with other existing texts or other existing 
approaches, let me start with a brief list of what it does not discuss.
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viii Preface

First of all, the calculus of variations is not presented as a tool to do geometry. 
Of course, some geometric optimization problems are detailed, such as the isoperi-
metric problem (it is one of the most classical examples of a variational problem 
and it deserves to be addressed at least briefly in every treatise on the subject, in my 
opinion). Geodesic curves also play an important role in the book, but it is important 
to note that this term is only used here to denote curves which minimize the length, 
and not curves which solve a certain differential equation; moreover, except in a few 
examples (for instance, in the case of the Euclidean sphere), geodesics on manifolds 
do not play a particular role, and many results are directly presented in the case of 
metric spaces. In the Euclidean case, the geodesic curves for the standard Euclidean 
distance are trivial, motivating us to concentrate instead on curves which minimize 
a weighted length, which is the same as using a Riemannian distance, but only for 
metrics which are a multiple of the identity. This, however, already covers many 
cases which are interesting for applications (in traffic congestion, for instance). 
Coming back to the general connections with geometry, this book features many 
connections with geometric measure theory, but not with the branch of analysis 
called geometric analysis (minimal surfaces, geometric flows. . . ).  

As we have already pointed out concerning geodesics, no critical point which is 
not a global minimizer is considered in this book. In optimization, we are given a 
set of competitors and a function to minimize, and if we want to exploit optimality 
conditions, we are not bound to the choice of a specific notion of neighborhood or 
perturbations. Hence, we understand what a global minimizer is, but the notion of a 
local minimizer is not so clear (and, indeed, many classical texts distinguish between 
strong and weak minima, something which is absent from this book, and quite 
absent from modern research), not to mention critical points which are not even local 
minimizers! As a choice, in the book, the differentiability of functions defined on 
infinite-dimensional spaces will never be defined or discussed, so that critical points 
cannot be considered, but only minimizers. This also reflects a personal choice in the 
relation between the calculus of variations and the theory of those partial differential 
equations which arise as Euler–Lagrange equations of some minimization problems: 
in general, we minimize a functional, and then use a PDE to describe the properties 
of the minimizers, instead of choosing a PDE and using a suitable functional to 
produce one (or many) solution(s). We do not develop a functional setting to define 
a notion of differential for the functionals we minimize because, often, the function 
space in which the variational problem is posed is not canonical (we may sometimes 
decide to minimize over .W 1,p a functional which only takes finite values on a 
smaller space). Hence, it is a better choice in my opinion to obtain optimality 
conditions by ad hoc perturbations for each variational problem. In particular, we 
will not try to characterize the optimality in terms of generalized notions of gradients 
or differentials, as is done in non-smooth analysis. In this respect, this approach 
differs from that taken by another fundamental book, [66]. 

Finally, I made the choice (for reasons of simplicity) to exclude the vector 
calculus of variations from the topics which are dealt with in the book. I have 
the impression that, for an introductory book, there are already sufficiently many 
interesting and challenging examples and questions to consider without having
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to move to the case of vector-valued functions of several variables. This means 
that in the variational problems which are described here, either the dimension of 
the domain or that of the codomain will be one: we consider scalar functions of 
arbitrary many variables, or curves valued in arbitrary spaces (including abstract 
metric spaces), but we exclude the optimization of vector fields (except in the 
divergence-constrained optimization problems of Sects. 4.3, 4.4, and 4.6, where the 
vector field plays the role of the dual of the gradient of a scalar function, and anyway 
the derivatives of such a vector field do not enter the functional). In particular, all the 
notions related to quasi-convexity are sketched in a discussion section, but are not 
fully developed, and the applications coming from material sciences and continuum 
mechanics are reduced to simple scalar examples. This is, for instance, an important 
difference compared to the book by F. Rindler [172]. Also, the regularity theory 
using elliptic equations is presented avoiding the theory of systems which, at least, 
makes it much easier to read (and is a difference compared to [95] or [97]). 

Some of my colleagues who commented on the preliminary versions of this book 
have observed that an existing book, [20], is quite close in spirit to this one (which 
is not surprising, since one of its authors was my PhD advisor). Besides appearing 
more than 15 years later, and hence including novel material, there is a difference 
in the size of the two books, as this one is meant to be more concise. Of course, 
this has a price, and it cannot be fully self-contained. Among the prerequisites that 
I assume the reader will have, the most important ones are functional analysis and 
measure theory, even if most of the required results from these theories are recalled 
throughout the book. For pedagogical reasons (despite being suggested to do so 
by some referees), I decided not to include a chapter or appendix summarizing the 
required preliminaries. Instead, I recall the notions I need at the very moment when I 
need them, using some special boxes called Memo or Important notion. As I already 
pointed out in my book on optimal transport (the box system was essentially the 
same), the difference between these two kinds of boxes is just that I would consider 
the results covered by Important notion boxes as a memo, but I saw that students 
in general do not agree. A third type of box called Good to know! provides extra 
notions that are not usually part of the background of non-specialized graduate 
students in mathematics. For Important notion and Good to know! boxes some 
references are provided, while for Memo boxes any classical book on the topic (in 
most cases, [48]) will do the job. The density of the boxes decreases as the chapters 
go by. 

The book is composed of seven chapters, which I will briefly describe in a while. 
When teaching a master’s course of 30 hours (10 lessons of 3 hours), I used to cover 
one chapter per lesson, except for Chaps. 4, 5, and 7 to which two classes were 
devoted (in Chap. 4 one for duality theory and one for regularity via duality, in 
Chap. 5 one for the Schauder estimates and one for the De Giorgi–Moser theorem, 
and in Chap. 7 one for the general theory and a first example and one for other 
examples). Of course many parts of each chapter have been added to the book 
for completeness and were impossible to treat in 3 hours. On the other hand, it 
was also impossible to include in each chapter all possible developments, or to 
treat everything in an exhaustive way. In many sections, the choice was made to
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stick to the simplest case, just directing the interested reader to more complete 
references. For the same reason (the impossibility of covering everything within 
a reasonable length), some topics are completely absent from the book. Some have 
not been included because they are connected with the calculus of variations but are 
in my opinion a different subject (for instance, gradient flows, which are first-order 
evolution equations with a variational structure: the partial differential equations 
which are considered in this book are all “static” and arise from optimization as 
optimality conditions, and not as steepest descent flows). For some others, instead, 
the reason is different: this book is meant as introductory and exploratory, and I 
found some subjects too specialized (for instance, it was suggested to include Young 
measures, but I believe a master’s student and many researchers can live without 
them). 

Each chapter concludes with a discussion section, where I chose a topic related 
to the rest of the chapter and presented it with fewer (or no) details, and a list of 
exercises with hints. Many of these exercises come from the exams or the problem 
sheets I gave to my students. 

Chapter 1 is concerned with one-dimensional problems, which are the first 
examples of variational problems and, historically, the first to have been analyzed. 
Some classical examples are presented, the first being that of geodesic curves. 
We start from the example of great circles on the sphere and then move to a 
more abstract analysis of curves valued in metric spaces, which also allows us 
to obtain a short presentation of another classical problem in the 1D calculus of 
variations, namely heteroclinic connections for multi-well potentials. The other 
classical problems which are presented as examples are the brachistochrone curve, 
which is not fully solved but elements are proposed—in the text or in the exercises— 
for the reader to find the characterization of the solutions, and the Ramsey model 
for the optimal growth of an economic activity. This last problem is studied in a 
rigorous and original setting in the space of functions with bounded variation, and 
introduces the role of 1D BV functions which will also be used in other problems. 
Many examples studied here go beyond what is done in the classical reference on the 
subject, [53]. Of course the chapter includes the main tools to prove or disprove the 
existence of the minimizers and to study them via the Euler–Lagrange equation; the 
discussion section is devoted to optimal control problems with a formal discussion 
of the Hamilton–Jacobi equation solved by the value function and of the Pontryagin 
maximum principle. The whole chapter is written with the idea that the general 
procedures employed to study a variational problem will be clearer to the reader later 
on in the book, and that the 1D case is a way to taste them in a simpler setting; some 
memo boxes are included in the chapter, but some are postponed to later chapters, 
when I considered them to be more meaningful in a multi-dimensional setting. 

Chapter 2 extends this analysis to the higher-dimensional case, presenting what 
changes (not so much) for the existence and the characterization of the solutions. 
Since the most studied example is the minimization of the Dirichlet energy 
.
´ |∇u|2 dx, a section is devoted to the properties of harmonic functions, which are 
indeed the minimizers of this energy. We prove in particular that every harmonic 
distribution is actually an analytic function. This section follows classical texts on
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the topic such as [110]. The discussion section is devoted to the p-power variant, 
i.e. p-harmonic functions, including the limit cases .p = 1 and .p = ∞. 

The main tool to prove the existence of a solution of a variational problem is 
the so-called direct method in the calculus of variations, which is essentially an 
application of the Weierstrass theorem. This requires the lower semicontinuity of 
the functional to be minimized, typically with respect to weak convergences since 
in infinite dimension we usually do not have strong compactness. Hence, Chap. 3 is 
devoted to several lower semicontinuity results. In particular, we prove, following 
the presentation in [101] (up to minor modifications), the lower semicontinuity of 
integrals of the form .

´
L(x, u, v) dx w.r.t. the strong convergence of u and weak 

of v (assuming convexity in v and continuity in u: we do not consider the case 
where we only have lower semicontinuity in u, as is done in [52]). A section is 
also devoted to the semicontinuity of functionals defined on measures w.r.t. the 
weak-* convergence. Convexity plays a very important role in these semicontinuity 
results, and in this section some advanced tools from convex analysis are needed 
which are only detailed in the next chapter. The discussion section is devoted to 
a brief summary of the semicontinuity theory in the case of vector-valued maps, 
introducing the notion of quasi-convexity without complete proofs. 

Chapter 4 is devoted to the role of convexity and convex analysis in the calculus 
of variations. Section 4.1 is a little different than the rest of the chapter. It deals with 
the tools to prove sufficient optimality conditions and/or uniqueness of the mini-
mizers, first in an abstract setting, then translating it to the case of classical integral 
functionals. The rest of the chapter is concerned with notions from convex analysis: 
Fenchel–Legendre transforms, subdifferentials, duality. . . .  An  original  theory of 
regularity via duality, easy to explain and capable of recovering some classical 
results, is presented in Sect. 4.4. This theory was introduced to study time-dependent 
and less regular problems such as the incompressible Euler equation or Mean-Field 
Games, but here we stick to simpler, static, problems. The discussion section is 
devoted to a very short presentation of several connected problems which are of 
significant interest nowadays: optimal transport, Wardrop equilibria, and Mean-
Field Games, emphasizing the role that convex duality plays in their analysis. This 
chapter is highly reminiscent of [81] in spirit, but, of course, since it has been written 
almost half a century later, includes new material and examples. 

Chapter 5 is less variational than the others as it is mainly focused on regularity 
properties of elliptic PDEs, independently of their variational origin. Yet, it is crucial 
in the calculus of variations since what often happens is that we face a model where 
we need to optimize an integral functional of the form .

´
L(x, u,∇u) dx and we do 

not know which function space to choose. Most likely, due to the presence of the 
gradient, we would like to use .u ∈ C1, but existence results in . C1 are essentially 
impossible to obtain in a direct way because of lack of compactness. We then extend 
the problem to a suitable Sobolev space, where it is possible to prove the existence 
of a minimizer, and we secretly hope that this minimizer is indeed a . C1 function. 
In order to do this, we need to prove a regularity result, and this is often done by 
using the regularity theory for elliptic PDEs. In this chapter we first develop the 
tools, based on the integral characterization of .C0,α functions, in order to study the
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regularity in the case of smooth coefficients (following a standard approach which 
can be found in many classical books, such as those by Giaquinta and co-authors, 
[95–97] or [11]). Then, motivated by the regularity question contained in Hilbert’s 
19th problem, we move to the famous De Giorgi result about equations where the 
coefficients in the equation are only assumed to be bounded, following Moser’s 
proof. Since all the results of the chapter are related to the Hölder regularity in the 
interior of the domain, the discussion section presents a brief summary of the ideas 
behind the . Lp theory, and sketches how to extend the results to the boundary. Note 
that in many master’s programs the calculus of variations is taught together with 
elliptic equations, and this is another reason for including a chapter on the most 
classical results on elliptic PDEs. 

Chapter 6 is concerned with a different class of variational problems, those 
where the unknown, instead of being a function, is a set. The most well-known 
problem of this class is the isoperimetric one, where we prove that the ball 
minimizes the perimeter among sets with prescribed volume (or maximizes the 
volume under prescribed perimeter). A full proof of this result is provided, following 
De Giorgi’s strategy and the presentation in [142]. This is then applied to another 
shape optimization problem, the optimization of the first Dirichlet eigenvalue . λ1
under volume constraints. Another section is then devoted to those optimization 
problems where the set to be optimized is a 1D connected set and its length 
comes into play: we start with an informal discussion about some variational 
problems of this kind, including motivations from applications (for instance, in the 
planning of a transportation network), but then we move to the mathematically 
most challenging part. We prove the lower semicontinuity of the length under 
connectedness constraints, which is known as Goł ̨ab’s theorem. This is a very nice 
result which requires some non-trivial prerequisites on geometric measure theory. 
These are not detailed, but just recalled, and the need for geometric measure theory 
characterizes almost the entire chapter, which also needs to introduce in detail 
BV functions of several variables. The discussion section is devoted to variants, 
alternative proofs, and quantitative extensions of the isoperimetric inequality, which 
have generated a huge and celebrated literature in recent years. 

The last Chap. 7, deals with a very natural question in optimization: What about 
limits of optimization problems? Which notion of convergence on the functionals 
should we use to guarantee the convergence of the minimal values and/or of the 
minimizers? This notion of convergence is called .𝚪-convergence and its general 
theory is presented in detail in Sect. 7.1, followed by some sections discussing 
classical and less classical examples. One of the most important of these is 
the Modica–Mortola result about the approximation of the perimeter (the same 
functional which plays an important role in Chap. 6), but we also present in detail 
a more original example, the asymptotics of the optimal location problem (where 
to put N facilities in a town, knowing the population density, when .N → ∞?), 
a problem which can also be interpreted in terms of quantization of a continuous 
density. The discussion section is devoted to other geometric problems (including 
the Steiner minimal connection problem, already presented in Chap. 6, and the
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Mumford–Shah model from image segmentation) which admit approximations in 
the same spirit as the Modica–Mortola result. 

The intention was to produce a book which could be used for master’s-level 
courses on the calculus of variations, and for the courses which I personally gave 
this text would do the job. I hope and I think it could be useful to other students 
and other colleagues, both as a reference for some classical results and as a starting 
point for the exploration of some modern areas of this fascinating subject. 

Lyon, France Filippo Santambrogio 
July 2023
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Notation 

The following are standard symbols used throughout the book without always 
recalling their meaning.

• “domain”: this word is used in a very informal way and in general means “the 
set that we want to consider”; domains are assumed to be non-empty subsets 
of .Rd contained in the closure of their interior; when we need them to be 
open, bounded, compact, connected, or smooth, we usually state this explicitly; 
warning: in convex analysis, the word “domain” also refers to the set where a 
function defined on the whole space is finite.

• . R+: the set of non-negative real numbers, i.e. .[0,+∞).
• . log: the natural Naperian logarithm of a positive number.
• .limn, .lim infn, .lim supn (but n could be replaced by .k, h, j . . . ): limit, inferior 

limit (liminf), superior limit (limsup) as .n → ∞ (or .k, h, j · · · → ∞).
• . ∇ and . ∇· denote gradient and divergence, respectively.
• . Δ denotes the Laplacian: .Δu := ∇ · (∇u) (and not minus it).
• .Δp denotes the p-Laplacian: .Δpu := ∇ · (|∇u|p−2∇u).
• .D2u: Hessian of the scalar function u.
• .M(X),M+(X),Md(X): the spaces finite measures, positive finite measures, 

and vector measures (valued in . Rd ) on X.
• .R

d ,Td ,Sd : the  d-dimensional Euclidean space, flat torus, and sphere (. Sd is the 
unit sphere in .Rd+1).

• .C(X),C0(X): continuous (resp. continuous vanishing at infinity) functions on X.
• . δa : the Dirac mass concentrated at the point a.
• . 1A: the indicator function of a set A, equal to 1 on A and 0 on . Ac.
• . IA: the indicator function in the sense of convex analysis, 0 on A and .+∞ on . Ac.
• . I: the identity matrix.
• id the identity map.
• .
ffl
A

f (x) dx: the average value of f on the set A, equal to . 1
|A|
´
A

f (x) dx:

• .|A|,Ld(A): the Lebesgue measure of a set .A ⊂ R
d ; integration w.r.t. this 

measure is denoted by . dx.
• . ωd : the measure of the unit ball in . Rd .

xvii
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• . Hk: the  k-dimensional Hausdorff measure.
• .Per(A): the perimeter of a set A in . Rd (equal to .Hd−1(∂A) for smooth sets A).
• .Per(A;𝛀): the perimeter of a set A inside . 𝛀 (excluding the part of .∂A in . ∂𝛀).
• .μ ⪡ ν: the measure . μ is absolutely continuous w.r.t. . ν.
• .f · μ: the measure with density f w.r.t. . μ.
• .T#μ: the image measure of . μ through the map T .
• .Mk×h: the set of all real matrices with k rows and h columns.
• . Mt : the transpose of the matrix M .
• .Cof(M): the cofactor matrix of M , such that .Cof(M) · M = det(M)I.
• .ai

j , a
ij
kh . . . : superscripts are components (of vectors, matrices. . . ) and subscripts  

derivatives. No distinction between vectors and covectors is made.
• .a⊗b: the rank-one matrix equal to the tensor product of a and b: .(a⊗b)ij = aibj .
• .Tr(A): the trace of a matrix A.
• .Tr[u]: the trace (on the boundary) of a Sobolev function u.
• .x1, . . . , xd : coordinates of points in the Euclidean space are written as subscripts.
• . |x|: the Euclidean norm of a vector .x ∈ R

d .
• . vα: the vector with norm .|v|α and the same orientation as v, i.e. .|v|α−1v.
• .Length(ω), LK(ω): the length or weighted length (with coefficient K) of the  

curve . ω.
• .et : C→ 𝛀: the evaluation map defined on a set . C of curves, i.e. .et (ω) := ω(t).
• . n: the outward normal vector to a given domain.
• . LipL: the set of . L−Lipschitz functions.
• . X': the topological dual of the normed vector space . X.
• .d(x,A): the distance from a point to a set, i.e. .d(x,A) := inf{d(x, y) : y ∈ A}.
• . Ar : the  r-neighborhood of the set A, i.e. .Ar = {x : d(x,A) < r}.
• .d(A,B): the minimal distance between the sets A and B given by . d(A,B) :=

inf{d(x, y) : x ∈ A, y ∈ B}.
• .dH (A,B): the Hausdorff distance between two sets, defined via . dH (A,B) :=

inf{r > 0 : A ⊂ Br, B ⊂ Ar}.
• . p'; the dual exponent of p, characterized by . 1

p
+ 1

p' = 1, i.e. .p' = p
p−1 . 

— 

The following, instead, are standard choices of notations.

• The dimension of the ambient space is d; we use .R
N for the target space of a map 

which is supposed to produce vectors and not points, or for a finite-dimensional 
vector space which could be replaced by an abstract vector space . X. The index n 
is kept for the subscripts of sequences.

• . ω is usually a curve (but sometimes a modulus of continuity; when we need the 
modulus of continuity of a curve, we try to call the curve . γ ).

• . α is the symbol usually used for arbitrary family of indices (instead of . i, j, . . .
which are kept for countable families).

• . 𝛀 is usually a domain in . Rd , and general metric spaces are usually called X. 
General normed vector spaces are called . X.

• A vector-valued variable can be called v, but a vector field . v.
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Chapter 1 
One-Dimensional Variational Problems 

This chapter is devoted to one of the most classical classes of variational problems, 
the one-dimensional case. It consists in minimizing an integral cost, typically of the 
form 

. 

ˆ T

0
L(t, γ (t), γ '(t)) dt,

among functions .γ : [0, T ] → X defined on a one-dimensional interval and valued 
in a suitable space X. The one-dimensional aspect of the competitor makes them 
objects to be interpreted as trajectories in the space X, and the independent variable 
t is often interpreted as time (even if sometimes it could represent a horizontal 
coordinate or another parameterization of a one-dimensional object). The above 
integral cost can be completed with some penalizations on the values of . γ on the 
boundary, thus obtaining a total cost of the form 

. 

ˆ T

0
L(t, γ (t), γ '(t)) dt + g(γ (0), γ (T )),

and the minimization of an energy like this one under possible constraints on the 
curve . γ is known as the Bolza problem. As a very natural alternative, the values of 
. γ at .t = 0, T could be prescribed instead of penalized (which is typical in some 
geometric problems such as in the case of geodesic curves) or we could prescribe 
the value at .t = 0 and penalize the one at .t = T (which is natural in many 
applications where we do know the state of the system now and try to optimize 
the future evolution). 

This chapter will present a detailed discussion of some classes of examples, 
starting with the most classical ones. Their analysis may sometimes require refined 
approaches which will become standard after reading the rest of the book. 
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2 1 One-Dimensional Variational Problems

1.1 Optimal Trajectories 

We present here three very classical examples of one-dimensional variational 
problems. 

1.1.1 Three Classical 1D Examples 

The Geodesic Problem One of the most classical problems in the calculus of 
variations and geometry is that of finding minimal-length curves connecting two 
given points in a given space M (which can be, for instance, a manifold, a 
submanifold of Euclidean space, or even a more abstract metric space). 

We recall that the length of a curve .ω : [0, 1] → R
d is defined via 

. Length(ω) := sup

{
n−1∑
k=0

|ω(tk) − ω(tk+1)| : n ≥ 1, 0 = t0 < t1 < · · · < tn = 1

}
.

It is easy to see that the length does not change under a reparameterization of the 
curve, so we can always assume that the interval of definition of . ω is .[0, 1]. 

If .ω ∈ C1 it is well known that we have 

. Length(ω) =
ˆ 1

0
|ω'|(t) dt.

The same representation also holds when . ω is only Lipschitz or absolutely contin-
uous, which will be proven in Sect. 1.4. Given two points .x0, x1 ∈ M ⊂ R

d , the  
geodesic problem is then 

. min {Length(ω) : ω ∈ AC([0, T ];M),ω(0) = x0, ω(1) = x1} ,

where .AC([0, T ];M) stands for the set of absolutely continuous curves defined on 
.[0, T ] and valued in M (see Sect. 1.4.1). 

The most classical example of a geodesic problem, which is actually the one 
which justifies its name (geo standing for the Earth), is the one where M is the 
two-dimensional unit sphere in . R3, which we will analyze later in this section. 

The Brachistochrone Problem Another very classical problem in the one-
dimensional calculus of variations is the problem of finding the optimal shape 
of a curve such that a point only subject to the force of gravity goes from one 
endpoint to the other in minimal time. We can consider it as the problem of finding 
an optimal playground slide with given height and ground length. When kids are 
approximated by material points and no friction is considered, the goal is that they 
arrive at the bottom of the slide in minimal time. The name brachistochrone also
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comes from Greek and derives from the phrase “quickest time”. This is an example 
of a problem where the one-dimensional variable—which we will call x instead of 
t—does not represent time but the horizontal coordinate, and the function x I→ z(x) 
does not represent the evolution of the state of a system but its graph represents a 
shape. We consider then all possible smooth functions z with z(0) = H , the number 
H >  0 being the height of the slide on the side where children start sliding, and 
z(L) = 0, the number L >  0 being the horizontal extension of the slide on the 
ground. Given the profile z we need to compute the time required for a material 
point to go from (0,H)  to (L, 0). We assume that the velocity at (0,H)  is zero, so 
that the conservation of energy implies that when the material point is at (x, z(x)) 
its velocity v(x) satisfies 

. 
1

2
m|v(x)|2 + mgz(x) = mgH,

where m is the mass of the point. This provides |v(x)| =  
√
2g(H − z(x)) and 

implies that the time to move from (x, z(x)) to (x + dx, z(x + dx)) equals 

. 
d((x + dx, z(x + dx)), (x, z(x)))

v(x)
=

√
( dx)2 + (z(x + dx) − z(x))2

v(x)

=
√
1 + |z'(x)|2

v(x)
dx =

√
1 + |z'(x)|2
2g(H − z(x))

dx.

As a consequence, the total time T to slide down is given by 

. T(z) =
ˆ L

0

√
1 + |z'(x)|2
2g(H − z(x))

dx,

and the brachistochrone problem is thus 

. min
{
T(z) : z ∈ C1([0, L]), z(0) = H, z(L) = 0

}
.

The Ramsey Model for the Optimal Growth of an Economic Activity In this 
model we describe the financial situation of an economic activity (say, a small 
firm owned by an individual) by a unique number representing its capital, and 
aggregating all relevant information such as money in the bank account, equipment, 
properties, workers. . . This  number  can  evolve  in  time  and  will  be  denoted by k(t). 
The evolution of k depends on how much the firm produces and how much the 
owner decides to “consume” (put in his pocket or give as dividends to the share-
holders). We denote by f (k)  the production when the capital level is k, and we 
usually assume that f is increasing and often concave. We also assume that capital 
depreciates at a fixed rate δ >  0 and we call c(t) the consumption at time t . We  
then have k'(t) = f (k(t))  − δk(t) − c(t). The goal of the owner is to optimize the
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consumption (which is required to make an income out of the activity) bearing in 
mind that reducing the consumption for some time allows the capital to be kept high, 
letting it grow even further, to finally be consumed later. More precisely, the owner 
has a utility function U : R → R, also increasing and concave, and a discount rate 
r >  0, and his goal is to optimize 

. 

ˆ T

0
e−rtU(c(t)) dt,

where T is fixed time horizon. One can take T = ∞  or T <  ∞ and possibly 
add a final pay-off ψ(k(T  )). The maximization problem can be considered as 
a maximization over c, and k(T ) can be deduced from c, or everything can be 
expressed in terms of k. Positivity constraints are also reasonably added on c (no 
money can be inserted in the activity besides the initial capital and its production) 
and on k (if the capital becomes negative there is default). The problem thus 
becomes a classical calculus of variations problem of the form 

. max

{ˆ T

0
e−rtU(f (k) − δk − k') dt + ψ(k(T )) : k(0) = k0, k ≥ 0,

c := f (k) − δk − k' ≥ 0

}
.

1.1.2 Geodesics on the Sphere 

We consider here the most classical problem concerning minimal-length curves: we 
want to find geodesic curves in the set .M = {x ∈ R

3 : |x| = 1}, the unit sphere of 
. R3. Given two vectors .e0, e1 ∈ M such that .e0 · e1 = 0 we define the curve 

. γ (t) = e0 cos(t) + e1 sin(t).

This curve is an arc of a great circle on the sphere. It is a .C∞ curve, with constant 
unit speed since .γ '(t) = −e0 sin(t) + e1 cos(t) and 

. |γ '(t)|2 = |e0|2 sin2(t)+|e1|2 cos2(t)−2e0 ·e1 sin(t) cos(t) = sin2(t)+cos2(t) = 1.

Moreover it satisfies .γ ''(t) = −γ (t). 
We want to prove that, if T is small enough, then the curve . γ has minimal length 

among those which share the same initial and final point and are valued in M . We  
first use the following lemma.
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Lemma 1.1 Assume that .γ : [0, T ] → M is a curve parameterized by unit speed 
such that the following optimality holds:1 

. 

ˆ T

0
|γ '(t)|2 dt ≤

ˆ T

0
|γ̃ '(t)|2 dt

for every other smooth curve .γ̃ : [0, T ] → M with .γ̃ (0) = γ (0) and .γ̃ (T ) = γ (T ). 
Then we also have .Length(γ ) ≤ Length(γ̃ ) for these same curves. 

Proof As we will see in Proposition 1.12, given a curve .γ̃ : [0, T ] → M and a 
number .ε > 0, it is possible to reparameterize the curve into a new curve . γ̂ with the 
same length, same initial and final points, and .|γ̂ '| ≤ (Length(γ̃ ) + ε)/T . We then 
have 

. 

ˆ T

0
|γ̂ '(t)|2 dt ≤ T

(
Length(γ̃ ) + ε

T

)2

= (Length(γ̃ ) + ε)2

T
.

Then, using .|γ '(t)| = 1, we obtain 

. T =
ˆ T

0
|γ '(t)|2 dt ≤

ˆ T

0
|γ̂ '(t)|2 dt = (Length(γ̃ ) + ε)2

T
,

which implies .Length(γ̃ ) + ε ≥ T = ´ T

0 |γ '(t)| dt = Length(γ ). Since .ε > 0 is 
arbitrary, this shows . Length(γ̃ ) ≥ Length(γ ) ⨅⨆

With this lemma in mind we can prove the desired result. 

Proposition 1.2 The arcs of a great circle defined above are geodesic if T is small 
enough. 

Proof We just need to take . γ of the form .γ (t) = e0 cos(t) + e1 sin(t) and . γ̃ :
[0, T ] → M of the form .γ̃ = γ + η with .η(0) = η(T ) = 0, and prove . ́ T

0 |γ '|2 ≤´ T

0 |γ ' + η'|2. Imposing .γ̃ ∈ M means .|γ + η|2 = 1, i.e. .|η|2 + 2γ · η = 0. 
We have 

. 

ˆ T

0
|γ ' + η'|2 dt =

ˆ T

0
|γ '|2 dt +

ˆ T

0
|η'|2 dt +

ˆ T

0
2γ ' · η' dt.

We can integrate the last term by parts, using .η(0) = η(T ) = 0, and then use 
.γ '' = −γ and .|η|2 + 2γ · η = 0, so that we obtain 

.

ˆ T

0
2γ ' · η' dt = −

ˆ T

0
2γ '' · η dt =

ˆ T

0
2γ · η dt = −

ˆ T

0
|η|2 dt.

1 Note that the assumption that . γ has unit speed is useless and we could deduce that it is 
parameterized by constant speed from the optimality .

´ T

0 |γ '(t)|2 dt ≤ ´ T

0 |γ̃ '(t)|2 dt . 
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We then have 

. 

ˆ T

0
|γ̃ '|2 dt =

ˆ T

0
|γ '|2 dt +

ˆ T

0
|η'|2 dt −

ˆ T

0
|η|2 dt.

The result follows by the next lemma, which provides .
´ T

0 |η'|2 ≥ ´ T

0 |η|2 for T 
small enough. ⨅⨆
Lemma 1.3 There exists a universal constant C such that, if .η : [0, T ] → R

d is a 
. C1 function with .η(0) = η(T ) = 0, then we have .

´ T

0 |η|2 dt ≤ CT 2
´ T

0 |η|2 dt . 
Proof We will prove the result with .C = 1. We have .η(t) = ´ t

0 η'(s) ds, hence 

. |η(t)| ≤
ˆ t

0
|η'(s)| ds ≤

ˆ T

0
|η'(s)| ds ≤ √

T

√ˆ T

0
|η'(s)|2 ds.

This implies 

. 

ˆ T

0
|η(t)|2 dt ≤ T · T ·

ˆ T

0
|η'(s)|2 ds

and proves the claim with .C = 1. ⨅⨆
The above inequality is known as the Poincaré inequality and the optimal 

constant is not .C = 1. Indeed 

• If instead of writing .
´ t

0 |η'(s)| ds ≤ ´ T

0 |η'(s)| ds we keep the dependence in t 

we obtain .|η(t)| ≤ √
t

√´ t

0 |η'(s)|2 ds ≤ √
t

√´ T

0 |η'(s)|2 ds and, integrating in 
t , we gain a factor 2. 

• If we also exploit .η(T ) = 0 we can use the above argument in order to estimate 
.η(t) for .t ≤ T/2 but integrate backwards starting from .t = T for .t ≥ T/2. We  

then obtain .|η(t)| ≤ √
min{t, T − t}

√´ T

0 |η'(s)|2 ds, which provides another 
factor 2 when integrating, since .

´ T

0 min{t, T − t} = T 2/4. 
• The optimal constant is in fact .(1/π)2 as explained in Box 1.1. This shows the 

optimality of all arcs of a great circle as soon as .T ≤ π , i.e. when the arc is 
at most half of the circumference, which is absolutely natural (since arcs longer 
than half of the circle are not optimal, as the other half has smaller length).
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Box 1.1 Memo—The Poincaré Inequality in 1D 

.2π -Periodic functions which are .L2
loc on . R can be written via Fourier series: 

given such a function . η there are coefficients .an ∈ C such that 

. η(t) =
∑
n∈Z

ane
int ,

where the convergence of the series is (at least) in the . L2 sense. The well-
known Parseval identity provides .

ffl 2π
0 |η|2 = ∑ |an|2. In terms of the Fourier 

coefficients we have .η' ∈ H 1
loc if and only if .

∑
n∈Z n2|an|2 < +∞, and we 

have .
ffl 2π
0 |η'|2 = ∑

n2|an|2. 
The Poincaré inequality for zero-mean functions (Poincaré–Wirtinger): if 

. η is .2π -periodic and .
´ 2π
0 η = 0 then .a0 = 0 and we clearly have . 

ffl 2π
0 |η|2 ≤ffl 2π

0 |η'|2 as a consequence of .n2 ≥ 1 for .n /= 0. The only equality case in 
this inequality is given by functions which are linear combinations of . e±it

or, equivalently, of .sin(t) and .cos(t). Note that a similar inequality exists, 
but with a different constant, for zero-mean functions without the periodicity 
conditions (in particular, without requiring the function to be in .H 1

loc when 
extended by periodicity), as one can see from the example .η(t) = sin(t/2) on 
.[−π, π ] for which we have .

ffl 2π
0 |η|2 = 4

ffl 2π
0 |η'|2. 

The Poincaré inequality for . H 1
0 functions: if .η ∈ H 1([0, π ]) is such that 

.η(0) = η(π) = 0 we can define .η̃(t) = −η(t − π) for .t ∈ [π, 2π ] and 
then extend by .2π -periodicity. We can see that . η̃ is in .H 1

loc, has zero mean, 

and satisfies .
ffl 2π
0 |η̃|2 = ffl π

0 |η|2 together with .ffl 2π
0 |η̃'|2 = ffl π

0 |η'|2. We thus 
obtain .

´ π

0 |η|2 ≤ ´ π

0 |η'|2. This inequality is also sharp, and only attained as 
an equality for .η(t) = C sin(t). 

Alternative proofs of this last statement can be found in Exercises 1.19 
and 1.20. 

All these inequalities can be extended to other intervals .[0, T ] instead of 
.[0, 2π ] or .[0, π ] by considering .ũ(t) = u(2πt/T ) or .ũ(t) = u(πt/T ) and 
the Poincaré constant is proportional to . T 2 (see also Box 5.2). 

1.2 Examples of Existence and Non-existence 

One of the first questions that we should address in optimization, when the set of 
competitors is not finite, is the existence of a minimizer. This question is already 
non-trivial when optimizing over a continuum of competitors, as we do when 
minimizing a function defined on . R or . RN , but becomes even trickier when the
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optimization is performed in infinite dimension, in a class of functions, as is typical 
in the calculus of variations. 

1.2.1 Existence 

We will see in this section how to prove the existence for a very standard example 
of variational problem, the technique being useful to understand how to attack more 
general problems. We will consider a functional involving first derivatives of the 
unknown u, but the existence of the minimizers will not be proven in the space 
. C1. We will instead set the problem in a Sobolev space, since Sobolev spaces have 
better compactness properties and their norm is more adapted to study variational 
problems. 

Box 1.2 Memo—Sobolev Spaces in 1D 

Given an open interval .I ⊂ R and an exponent .p ∈ [1,+∞] we define the 
Sobolev space .W 1,p(I ) as 

. W 1,p(I ) :=
{

u ∈ Lp(I) : ∃g ∈ Lp(I) s.t.´
uϕ' dt = − ´

gϕ dt for all ϕ ∈ C∞
c (I )

}
.

The function g, if it exists, is unique, and will be denoted by . u' since it plays 
the role of the derivatives of u in the integration by parts. 

The space .W 1,p is endowed with the norm .||u||W 1,p := ||u||Lp + ||u'||Lp . 
With this norm .W 1,p is a Banach space, separable if .p < +∞, and reflexive 
if .p ∈ (1,∞). 

All functions .u ∈ W 1,p(I ) admit a continuous representative, which more-
over satisfies .u(t0) − u(t1) = ´ t0

t1
u'(t) dt . This representative is differentiable 

a.e. and the pointwise derivative coincides with the function . u' a.e. Moreover, 
for .p > 1 the same representative is also Hölder continuous, of exponent 
.α = 1 − 1

p
> 0. The injection from .W 1,p into .C0(I ) is compact if I is 

bounded. 
If .p = 2 the space .W 1,p can be given a Hilbert structure, choosing as a 

norm .

√
||u||2

L2 + ||u'||2
L2 , and is denoted by . H 1. 

Higher-order Sobolev spaces .Wk,p can also be defined for .k ∈ N by 
induction as follows: .Wk+1,p(I ) := {u ∈ Wk,p(I ) : u' ∈ Wk,p(I )} and 
the norm in .Wk+1,p defined as .||u||Wk,p + ||u'||Wk,p . In the case .p = 2 the 
Hilbert spaces .Wk,2 are also denoted by . Hk .
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We consider an interval .I = [a, b] ⊂ R and a continuous function . F : I ×R →
R that we assume bounded from below. 

Theorem 1.4 Let us consider the problem 

.min

{
J (u) :=

ˆ b

a

(
F(t, u(t)) + |u'(t)|2

)
dt : u ∈ H 1(I ),

u(a) = A, u(b) = B

}
. (1.1) 

This minimization problem admits a solution. 

Proof Take a minimizing sequence . un such that .J (un) → inf J . The functional J 
is composed of two terms (the one with F and the one with .|u'|2) and their sum is 
bounded from above. Since they are both bounded from below, we can deduce that 
they are also both bounded from above. In particular, we obtain an upper bound for 
.||u'

n||L2 . Since the boundary values of . un are fixed, applying the Poincaré inequality 
of Lemma 1.3 to the functions .t I→ un(t) − B−A

b−a
(t − a) − A, we obtain a bound on 

.||un||H 1 (i.e. the . L2 norms of . un and not only of . u'
n are bounded). 

Hence, .(un)n is a bounded sequence in .H 1 and we can extract a subsequence 
which weakly converges in .H 1 to a function u (see Box 1.4). In dimension one, 
the weak convergence in .H 1 implies the uniform convergence, and in particular 
the pointwise convergence on the boundary. We then deduce from . un(a) = A

and .un(b) = B that we have .u(a) = A and .u(b) = B, i.e. that u is an 
admissible competitor for our variational problem. We just need to show . J (u) ≤
lim infn J (un) = inf J in order to deduce .J (u) = inf J and the optimality of u. 

This strategy is very general and typical in the calculus of variations. It is called 
the direct method (see Box 1.3) and requires a topology (or a notion of convergence) 
to be found on the set of admissible competitors such that 

• there is compactness (any minimizing sequence admits a convergent subse-
quence, or at least a properly built minimizing sequence does so), 

• the functional that we are minimizing is lower semicontinuous, i.e. . J (u) ≤
lim infn J (un) whenever . un converges to u. 

⨅⨆

Box 1.3 Memo—Weierstrass Criterion for the Existence of Minimizers, 
Semicontinuity 

The most common way to prove that a function admits a minimizer is 
called the “direct method in the calculus of variations”. It simply consists 
in the classical Weierstrass Theorem, possibly replacing continuity with 
semicontinuity. 

(continued)
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Box 1.3 (continued) 
Definition On a metric space X, a function .f : X → R ∪ {+∞} is said to 
be lower semicontinuous (l.s.c. in short) if for every sequence .xn → x we 
have .f (x) ≤ lim infn f (xn). A function .f : X → R ∪ {−∞} is said to be 
upper-semicontinuous (u.s.c. in short) if for every sequence .xn → x we have 
.f (x) ≥ lim supn f (xn). 
Definition A metric space X is said to be compact if from any sequence . xn

we can extract a convergent subsequence .xnk
→ x ∈ X. 

Theorem (Weierstrass) If .f : X → R∪ {+∞} is lower semicontinuous and 
X is compact, then there exists an .x̄ ∈ X such that . f (x̄) = min{f (x) : x ∈
X}. 
Proof Define .𝓁 := inf{f (x) : x ∈ X} ∈ R ∪ {−∞} (.𝓁 = +∞ only if f is 
identically .+∞, but in this case any point in X minimizes f ). By definition 
there exists a minimizing sequence . xn, i.e. points in X such that .f (xn) → 𝓁. 
By compactness we can assume .xn → x̄. By lower semicontinuity, we have 
.f (x̄) ≤ lim infn f (xn) = 𝓁. On the other hand, we have .f (x̄) ≥ 𝓁 since . 𝓁 is 
the infimum. This proves .𝓁 = f (x̄) ∈ R and this value is the minimum of f , 
realized at . x̄. 

In our case, the uniform convergence .un → u implies . ́ b

a
F (t, un(t)) dt →´ b

a
F (t, u(t)) dt and proves the continuity of the first integral term. 
We now observe that the map .H 1  ϶ u I→ u' ∈ L2 is continuous and hence the 

weak convergence of . un to u in . H 1 implies .u'
n ⇀ u' in . L2. An important property 

of the weak convergence in any Banach space is the fact that the norm itself is lower 
semicontinuous, so that .||u'||L2 ≤ lim infn ||u'

n||L2 and hence 

. 

ˆ b

a

|u'(t)|2 dt ≤ lim inf
n

ˆ b

a

|u'
n(t)|2 dt.

This concludes the proof. . □

Box 1.4 Memo—Hilbert Spaces 

A Hilbert space is a Banach space whose norm is induced by a scalar product: 
.||x|| = √

x · x. 
Theorem (Riesz) If . H is a Hilbert space, for every .ξ ∈ H' there is a unique 
vector .h ∈ H such that .〈ξ, x〉 = h · x for every .x ∈ H, and the dual space . H'
is isomorphic to . H. 

In a Hilbert space . H we say that . xn weakly converges to x and we write 
.xn ⇀ x if .h · xn → h · x for every .h ∈ H. Every weakly convergent sequence 

(continued)
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Box 1.4 (continued) 
is bounded, and if .xn ⇀ x, using .h = x we find . ||x||2 = x · x = limn x · xn ≤
lim infn ||x|| ||xn||, i.e. .||x|| ≤ lim infn ||xn||. 

In a Hilbert space . H, every bounded sequence . xn admits a weakly 
convergent subsequence (see Box 2.2). 

Variants The same argument can be applied if the constraints on .u(a) and/or . u(b)

are removed and replaced by penalizations: 

. min

{
J (u) :=

ˆ b

a

(
F(t, u(t))+ |u'(t)|2

)
dt + g(u(a)) + h(u(b)) : u ∈ H 1(I )

}
.

If g and h are continuous, the uniform convergence of . un to u implies the continuity 
of the extra terms. Yet, we need to guarantee that the sequence is still bounded in 
. H 1. This can be obtained in many cases, for instance: 

• If .lims→±∞ g(s) = +∞ and h is bounded from below: in this case we 
obtain a bound on .|un(a)|. Together with the bound on .||u'

n||L2 and . un(t) =
un(a)+´ t

0 u'
n(s) ds, we also obtain a bound on .||un||L∞ . Analogously, if we have 

.lims→±∞ h(s) = +∞ and g bounded from below, we would obtain a bound on 

.|un(b)| and then on .||un||L∞ . 
• If .F(t, s) ≥ c(|s|2 − 1) for some constant .c > 0 and .g, h are bounded from 

below. In this case the bound on .J (un) also implies a bound on .||un||L2 . 
• Actually, much less is needed on F . Assume that there exists a subset . A ⊂ [a, b]

of positive measure and a function .ω : R → R with .lims→±∞ ω(s) = +∞ such 
that .F(t, s) ≥ ω(s) for every .t ∈ A. In this case we are also able to obtain a 
bound on .||un||L∞ from the bound on J . Indeed, the bound on .||u'

n||L2 implies 

. |un(t) − un(s)| ≤ (b − a)1/2||u'
n||L2 ≤ C

for every n. In case we had, on a subsequence, .||un||L∞ → ∞, we would also  
have the existence of a point .tn ∈ [a, b] such that .|un(tn)| = ||un||L∞ → ∞ and 
hence we would have .|un(t)| ≥ ||un||L∞ − C → ∞ for every .t ∈ A, and hence 
.
´ b

a
F (t, un(t)) dt ≥ ´

A
ω(||un||L∞ − C) − C → ∞. 

We also note that the same argument would work if the continuity of .F, g, h was 
replaced by their lower semicontinuity 

Non-quadratic Dependence in . u' The term .
´ |u'(t)|2 could be easily replaced by 

a term .
´ |u'(t)|p, .p > 1, and the results would be exactly the same using the space 

.W 1,p instead of .H 1 = W 1,2, but this would require the use of weak convergence 
in Banach spaces which are not Hilbert spaces (see Boxes 2.2 and 2.3). Luckily, for 
.p ∈ (1,∞) the spaces . Lp and .W 1,p are reflexive, which allows us to act almost as if
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we were in a Hilbert setting. The case would be different for .p = 1 since the space 
.W 1,1 is not reflexive and it is in general not possible to extract weakly convergent 
subsequences from bounded sequences. It is possible to use a larger space, i.e. the 
BV space, but in this case the limit would not necessarily belong to .W 1,1. This is  
the reason why the geodesic problem, which indeed involves a term .

´ |u'(t)| dt , is  
treated in a different way. We will re-discuss this very particular problem in Sect. 1.4 
and consider the minimization of .

´
(|u'(t)| + F(t, u(t))) dt in Sect. 1.6 

On the other hand, it would be possible to handle terms of the form . ́ H(u'(t)) dt
where H is convex but not necessarily a power. In order to obtain compactness we 
need a lower bound of the form .H(v) ≥ c(|v|p − 1) for .p > 1 and .c > 0. In order 
to handle the lower semicontinuity, observe that .Lp  ϶ v I→ ´

H(v) is l.s.c. for the 
weak convergence for the following reason (see Sect. 3.1 for details): it is l.s.c. for 
the strong convergence in . Lp and it is convex, which makes it weakly l.s.c. 

Minimization Among Smooth Functions In many natural questions, coming 
from geometry or from applied modeling, we do not look for a minimizer among 
. H 1 or .W 1,p functions, but the problem is set in the space . C1. In this case a natural 
strategy is the following. First, extend the minimization problem to a larger Sobolev 
space, chosen so that the functional guarantees weak compactness of a minimizing 
sequence (in practice, if the integrand has growth of order p in terms of . u' we 
usually choose .W 1,p) and lower semicontinuity. Then, prove that this extended 
problem admits a minimizer, i.e. a .W 1,p function which is better than any other 
.W 1,p function. Finally, write the optimality conditions of the problem—as we will 
see in Sect. 1.3—and hope that these conditions (which are a differential equation 
on the solution) help in proving that the optimizer is actually a smooth function. We 
will discuss the Euler–Lagrange equation in Sect. 1.3 but a simple example is the 
following: when solving (1.1), if we assume that F is . C1 then the Euler–Lagrange 
equation reads .2u''(t) = F '(t, u(t)) (where . F ' is the derivative w.r.t. the second 
variable). Since the right-hand side is continuous (due to .F ∈ C1 and .u ∈ H 1 ⊂ C0) 
then we even obtain .u ∈ C2. 

1.2.2 Non-existence 

We consider in this section a very classical example of a variational problem in 1D 
which has no solution. With this aim, let us consider 

. inf

{
J (u) :=

ˆ 1

0

(∣∣∣|u'(t)|2 − 1
∣∣∣ + |u(t)|2

)
dt : u∈ H 1([0, 1]), u(0) = u(1) = 0

}
.
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It is clear that for any admissible u we have .J (u) > 0: indeed, J is composed of 
two non-negative terms, and they cannot both vanish for the same function u. In  
order to have .

´ 1
0 |u(t)|2 dt = 0 one would need .u = 0 constantly, but in this case 

we would have .u' = 0 and .J (u) = 1. On the other hand, we will prove .inf J = 0, 
which proves that the minimum cannot be attained. 

To do so, we consider the following sequence of Lipschitz functions . un: we first 
define .U : [0, 1] → R as .U(t) = 1

2−|t− 1
2 |. It satisfies .U(0) = U(1) = 0, .|U | ≤ 1

2 , 
and .|U '| = 1 a.e. (U is Lipschitz continuous but not . C1). We then extend U as a 1-
periodic function on . R, that we call . Ũ , and then set .un(t) = 1

n
Ũ(nt). The function 

. un is .
1
n
-periodic, satisfies .un(0) = un(1) = 0 again, and .|u'

n| = 1 a.e. We also have 
.|un| ≤ 1

2n . If we compute .J (un) we easily see that we have .J (un) ≤ 1
4n2

→ 0, 
which shows .inf J = 0. 

The above example is very useful to understand the relation between compact-
ness and semicontinuity. Indeed, the sequence . un which we built is such that . un

converges uniformly to 0 and . u'
n is bounded in . L∞. This means that we also have 

.u'
n

∗
⇀ 0 in .L∞ (indeed, a sequence which is bounded in .L∞ admits a weakly-* 

convergent subsequence and the limit in the sense of distributions—see Box 2.5— 
of . u'

n can only be the derivative of the limit of . un, i.e. 0). This means that, if we 
use weak convergence in Sobolev spaces (weak convergence in .L∞ implies weak 
convergence in . L2, for instance), then we have compactness. Yet, the limit is the 
function .u = 0 but we have .J (u) = 1 while .limn J (un) = 0, which means that 
semicontinuity fails. This is due to the lack of convexity of the double-well function 
.W(v) = ∣∣|v|2 − 1

∣∣ (see Chap. 3): indeed, the 0 derivative of the limit function u is 
approximated through weak convergence as a limit of a rapidly oscillating sequence 
of functions . u'

n taking values . ±1, and the values of W at . ±1 are better than the 
value at 0 (which would have not been the case if W was convex). On the other 
hand, it would have been possible to choose a stronger notion of convergence, for 
instance strong . H 1 convergence. In this case, if we have .un → u in . H 1, we deduce 
.u'

n → u' in . L2 and .J (un) → J (u). We would even obtain continuity (and not just 
semicontinuity) of J . Yet, what would be lacking in this case is the compactness of 
minimizing sequences (and the above sequence . un, which is a minimizing sequence 
since .J (un) → 0 = inf J proves that it is not possible to extract strongly convergent 
subsequences). This is hence a clear example of the difficult task of choosing a 
suitable convergence for applying the direct method of calculus of variations : 
not too strong, otherwise there is no convergence, not too weak, otherwise lower 
semicontinuity could fail. 

We finish this section by observing that the problem of non-existence of the 
minimizer of J does not depend on the choice of the functional space. Indeed, even 
if we considered 

. inf

{
J (u) :=

ˆ 1

0

(∣∣∣|u'(t)|2 − 1
∣∣∣ + |u(t)|2

)
dt : u ∈ C1([0, 1]), u(0) = u(1) = 0

}
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we would have .inf J = 0 and .J (u) > 0 for every competitor, i.e. no existence. 
To show this, it is enough to modify the above example in order to produce a 
sequence of . C1 functions. In this case it will not be possible to make the term 
.
´ 1
0

∣∣|u'(t)|2 − 1
∣∣ dt exactly vanish, since this requires .u' = ±1, but  for a  . C1

function this means either .u' = 1 everywhere or .u' = −1 everywhere, and 
neither choice is compatible with the boundary data. On the other hand, we can fix 
.δ > 0, use again the Lipschitz function U introduced above, and define a function 
.Uδ : [0, 1] → R such that 

. Uδ = U on [δ, 1
2

− δ] ∪ [1
2

+ δ, 1− δ], Uδ(0) = Uδ(1) = 0, |Uδ| ≤ 1

2
, |U '

δ| ≤ 2.

We then extend . Uδ to a 1-periodic function . Ũδ defined on . R and set . un,δ(t) :=
1
n
Ũδ(nt). We observe that we have .|u'

n,δ| ≤ 2 and .|u'
n,δ| = 1 on a set 

. An,δ =
n−1⋃
k=0

(
[ k
n

+ δ

n
,
2k + 1

2n
− δ

n
] ∪ [2k + 1

2n
+ δ

n
,
k + 1

n
− δ

n
]
)

whose measure is .1 − 4δ. We then have 

. J (un,δ) =
ˆ

[0,1]\An,δ

∣∣∣|u'
n,δ(t)|2 − 1

∣∣∣ dt +
ˆ 1

0
|un,δ(t)|2 dt ≤ 12δ + 1

4n2
.

This shows .inf J ≤ 12δ and, .δ > 0 being arbitrary, .inf J = 0. 

1.3 Optimality Conditions 

We consider here the necessary optimality conditions for a typical variational 
problem. The result will be presented in 1D but we will see in Sect. 2.2 that 
the procedure is exactly the same in higher dimensions. We consider a function 
.L : [a, b] × R

d × R
d → R. The three variables of L will be called t (time), x 

(position), and v (velocity). We assume that L is . C1 in .(x, v) for a.e. .t ∈ [a, b]. 

1.3.1 The Euler–Lagrange Equation 

We start from the minimization problem 

.min

{
J (u) :=

ˆ b

a

L(t, u(t), u'(t)) dt : u ∈ X, u(a) = A, u(b) = B

}
,



1.3 Optimality Conditions 15

where X is a functional space which could be, in most cases, a Sobolev space. We 
assume anyway .X ⊂ W 1,1([a, b];Rd) which, at the same time, guarantees both the 
existence of a suitably defined derivative, and the continuity of all functions in X. 
We also assume that for every .u ∈ X the negative part of .L(·, u, u') is integrable, 
so that J is a well-defined functional from X to .R ∪ {+∞}. We assume that u is a 
solution of such a minimization problem and that .u+C∞

c ((a, b)) ⊂ X. This means 
that for every .ϕ ∈ C∞

c ((a, b)) we have .J (u) ≤ J (u + εϕ) for small . ε. 
We now fix the minimizer u and a perturbation . ϕ and consider the one-variable 

function 

. j (ε) := J (uε), where uε := u + εϕ,

which is defined in a neighborhood of .ε = 0, and minimal at .ε = 0. We now want 
to compute .j '(0). 

In order to so, we will assume that for every .u ∈ X with .J (u) < +∞ there exists 
a .δ > 0 such that we have 

. t I→ sup

{
|∇xL(t, x, v)| + |∇vL(t, x, v)| : x ∈ B(u(t)), δ),

v ∈ B(u'(t)), δ)

}
∈ L1([a, b]).

(1.2) 

We will discuss later some sufficient conditions on L which guarantee that this is 
satisfied. If this is the case, then we can differentiate w.r.t. . ε the function . ε I→
L(t, uε, u

'
ε), and obtain 

. 
d

dε
L(t, uε, u

'
ε) = ∇xL(t, uε, u

'
ε) · ϕ + ∇vL(t, uε, u

'
ε) · ϕ'.

Since we assume .ϕ ∈ C∞
c ((a, b)), both . ϕ and . ϕ' are bounded, so that for . ε small 

enough we have .ε|ϕ(t)|, ε|ϕ'(t)| ≤ δ and we can apply the assumption in (1.2) in 
order to obtain domination in . L1 of the pointwise derivatives. This shows that, for 
small . ε, we have  

. j '(ε) =
ˆ b

a

(∇xL(t, uε, u
'
ε) · ϕ + ∇vL(t, uε, u

'
ε) · ϕ') dt.

In particular, we have 

.j '(0) =
ˆ b

a

(∇xL(t, u, u') · ϕ + ∇vL(t, u, u') · ϕ') dt.
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Imposing .j '(0) = 0, which comes from the optimality of u, means precisely that 
we have, in the sense of distributions, the following differential equation, known as 
the Euler–Lagrange equation: 

. 
d

dt

(∇vL(t, u, u')
) = ∇xL(t, u, u').

This is a second-order differential equation (on the right-hand side we have the 
derivative in t of a term already involving . u') and, as such, requires the choice of 
two boundary conditions. These conditions are .u(a) = A and .u(b) = B, which 
means that we are not facing a Cauchy problem (where we would prescribe . u(a)

and .u'(a)). 

Energy Conservation When speaking of variational principles in mathematical 
physics, the word energy has multiple meanings due to an ambiguity in the physical 
language, which is increased by the mathematicians’ use of the notion. Sometimes 
we say that the motion should minimize the total energy (and we think in this case 
of an integral in time of a cost involving kinetic energy and potential energy; a 
more adapted name which can be found in the literature is action), while on other 
occasions we can say that the energy is preserved along the evolution (and in this 
case we think of a quantity computed at every time t). 

Mathematically, this can be clarified in the following way: assume the integrand 
in a variational problem is independent of time and of the form . L(t, x, v) = 1

2 |v|2+
V (x). The Euler–Lagrange equation of the corresponding minimization problem 
would be .γ '' = ∇xV (γ ). If we take the scalar product with . γ ' we obtain 

. 
d

dt

(
1

2
|γ '(t)|2

)
= γ '(t) · γ ''(t) = γ '(t) · ∇xV (γ (t)) = d

dt
(V (γ (t))).

This shows that the difference . 12 |γ '|2 − V (γ ) is constant in time. We see that the 
minimization of the integral of . 12 |γ '|2+V (γ ) (i.e. the sum of the kinetic energy and 
of V ) implies that the difference .

1
2 |γ '|2 − V (γ ) is constant. Which quantity should 

be called energy is then a matter of convention (or taste). 
This very same result could also be obtained by looking at the optimality of the 

curve . γ in terms of the so-called “internal variations”, i.e. taking . γε(t) = γ (t +
εη(t)) (see Exercise 1.13). 

In the very particular case .V = 0, this result reads as “minimizers of the integral 
of the square of the speed have constant speed”, and is a well-known fact for 
geodesics (see also Sect. 1.1.2). 

Remark 1.5 The energy conservation principle described above is a particular 
case of the so-called Beltrami formula, which is valid whenever the integrand L 
does not depend explicitly on time. In this case, from the Euler–Lagrange equation 
.
d
dt (∇vL(γ (t), γ '(t))) = (∇xL(γ (t), γ '(t))) we can deduce 

.L(γ (t), γ '(t))) − γ '(t) · ∇vL(γ (t), γ '(t)) = const.
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This can be proven by differentiating in time, as we have 

. 
d

dt

(
L(γ, γ ')) − γ ' · ∇vL(γ, γ ')

)
= ∇xL(γ, γ ') ·γ ' +∇vL(γ, γ ') ·γ '' −γ '' ·∇vL(γ, γ ')−γ ' · d

dt
(∇vL(γ, γ ')) = 0.

Example 1.6 The Euler–Lagrange equation was a key point in the development 
of the calculus of variations and one of the most important examples revealing 
how useful it can be is that of the brachistochrone curve. In this case, we saw 
in Sect. 1.1.1 that we have to use .L(z, v) = √

(1 + |v|2)/(H − z) and the Euler– 
Lagrange equation, after simplification, becomes 

. 
z''

1 + |z'|2 (H − z) = 1

2
.

It is interesting that one of the first to study the brachistochrone problem was Galileo 
Galilei, who understood that a straight line was not optimal, but he believed that the 
solution was an arc of a circle (Third Day, Theorem 22, Proposition 36 in [93]). 
Curiously enough, if one inserts .z(x) = H − √

1 − |x|2 in the left-hand side of the 
above equation, the result is a constant, but not .1/2 (the result would be 1). The 
true solution, after the problem was well-formalized by Johann Bernoulli ([26]) and 
correctly solved, is an arc of a cycloid. In this book we do not want to provide a 
complete discussion of the solution of this problem, which is just an example for 
us. Instead, we refer, for instance, to [53]. However, the reader will find two useful 
exercises on the brachistochrone problem, Exercises 1.1 and 1.2, at the end of the 
chapter. 

1.3.2 Examples of Growth Conditions on L 

We discuss now under which conditions on L and X we can guarantee (1.2). We  
will not give an exhaustive classification of all possible cases, which is probably 
impossible to do. We will only consider three examples 

1. The case where L has growth of order p in terms of v and is of the form 

. L(t, x, v) = c|v|p + F(t, x),

which is the example we considered for existence in the case .p = 2. Note that 
in this case a natural choice for the space X is .X = W 1,p([a, b]) since any 
minimizing sequence for J will be bounded in X and the arguments of Sect. 1.2 
prove that a minimizer exists.
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2. The case where L has growth of order p in terms of v but it has a multiplicative 
form 

. L(t, x, v) = a(t, x)|v|p

for .a : [0, T ] × R
d → R bounded from below and above by positive constants. 

In this case we will also choose .X = W 1,p([a, b]) since minimizing sequences 
will also be bounded, but we observe that Sect. 1.2 does not yet provide a proof 
of existence since the semicontinuity of the functional . u I→ ´

L(t, u(t), u'(t)) dt
still has to be proven (see Chap. 3). 

3. A less standard example such as 

. L(t, x, v) = eh(v) + F(t, x),

where .h : Rd → R is a . C1, Lipschitz continuous and convex function such that 
.lim|v|→∞ h(v) = +∞. 

We start from the first case. Let us assume that F is . C1 w.r.t. the variable x and 
that .∇xF is continuous in .(t, x). In this case we have 

. ∇xL(t, x, v) = ∇xF (t, x), ∇vL(t, x, v) = pc|v|p−2v.

For every .u ∈ X we have .u ∈ C0 and .u' ∈ Lp. In particular, assuming .|u| ≤ M , we  
have 

. sup
{|∇xL(t, x, v)| : x ∈ B(u(t)), δ), v ∈ B(u'(t)), δ)

}
≤ sup {|∇xF (t, x)| : t ∈ [a, b], |x| ≤ M + δ} < +∞.

Concerning . ∇vL, we have  

. sup
{|∇vL(t, x, v)| : x ∈ B(u(t)), δ), v ∈ B(u'(t)), δ)

} ≤ C(|u'(t)|p−1 + δp−1),

and this is integrable in t as soon as .u' ∈ Lp−1, which is satisfied since we even 
have .u' ∈ Lp. 

In the second case we assume that a is . C1 in x and that .∇xa is continuous in 
.(t, x). We have  

. ∇xL(t, x, v) = ∇xa(t, x)|v|p, ∇vL(t, x, v) = pa(t, x)|v|p−2v.

Thus, using again .u ∈ C0 and assuming .|u| ≤ M , we have  

. sup
{|∇xL(t, x, v)| : x ∈ B(u(t)), δ), v ∈ B(u'(t)), δ)

}
≤ sup {|∇xa(t, x)| : t ∈ [a, b], |x| ≤ M + δ} (|u'(t)| + δ

)p ≤ C(|u'(t)|p +δp).

This is integrable in t as soon as .u' ∈ Lp, which is true for every .u ∈ X.
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The third case is trickier because of the non-standard growth ofL in v. In this case 
a natural choice for the space X would be a Sobolev–Orlicz space which imposes 
integrability of .e|u'| but it is not necessary to do so. Indeed, one can take for arbitrary 
p, .X = W 1,p([a, b]). Thanks to the growth of L, any minimizing sequence will be 
bounded in such a space, and the semicontinuity results of Chap. 3 will also allow 
us to prove the existence of a solution. The difference with respect to the previous 
cases is that simply using .u ∈ X will not be enough to guarantee condition (1.2), 
but one will really need to use .J (u) < +∞. The condition on .∇xL will be treated 
in the same standard way since we still have .u ∈ C0. As for the condition on . ∇vL, 
we have 

. ∇vL(t, x, v) = ∇h(v)eh(v).

We then observe that we have .|∇vL(t, x, v)| ≤ (Liph)eh(v) and then 

. sup

{
|∇vL(t, x, v)| : x ∈ B(u(t)), δ),

v ∈ B(u'(t)), δ)

}
≤ (Liph)eh(u')+Liphδ = Ceh(u'),

so that its integrability is equivalent to that of .eh(u'), which is true when . J (u) <

+∞. 

1.3.3 Transversality Conditions 

We consider now the case where the Dirichlet boundary conditions on .u(a) and 
.u(b) are replaced by penalizations on the values of u at .t = a, b. Let us consider for 
instance the problem 

. min {J (u) + ψ0(u(a)) + ψ1(u(b)) u ∈ X} ,

where, again, we set .J (u) := ´ b

a
L(t, u(t), u'(t)) dt . We assume that u is a 

minimizer and we set .uε := u + εϕ, but we do not assume .ϕ ∈ C∞
c ((a, b)), 

since we are no longer obliged to preserve the values at the boundary points. Let 
us set .Jψ(u) := J (u) + ψ0(u(a)) + ψ1(u(b)) and .jψ(ε) := Jψ(uε). The optimality 
of u provides .jψ(0) ≤ jψ(ε) and we want to differentiate . jψ in terms of . ε. The  
computation is exactly the same as before (and requires the very same assumptions) 
concerning the term .j (ε) = J (uε) and is very easy for the boundary terms. We then 
obtain 

.j '
ψ(0) =

ˆ b

a

(∇xL(t, u, u') · ϕ + ∇vL(t, u, u') · ϕ') dt
+∇ψ0(u(a)) · ϕ(a) + ∇ψ1(u(b)) · ϕ(b).
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This derivative should vanish for arbitrary . ϕ, and it is possible to first consider 
.ϕ ∈ C∞

c ((a, b)). In this case we obtain exactly as before the Euler–Lagrange 
equation 

. 
d

dt

(∇vL(t, u, u')
) = ∇xL(t, u, u').

We now assume that u and L are such that .t I→ ∇xL(t, u(t), u'(t)) is . L1. This  
implies that .t I→ ∇vL(t, u(t), u'(t)) is .W 1,1 and in particular continuous. Moreover, 
the term .

´ b

a
∇vL(t, u, u') · ϕ' dt can be integrated by parts, thus obtaining 

. j '
ψ(0) =

ˆ b

a

∇xL(t, u, u') · ϕ dt −
ˆ b

a

(∇vL(t, u, u')
)' · ϕ dt

+ (∇ψ0(u(a)) − ∇vL(a, u(a), u'(a))
) · ϕ(a)

+ (∇ψ1(u(b)) + ∇vL(b, u(b), u'(b))
) · ϕ(b).

Since the first two integrals coincide thanks to the Euler–Lagrange equation, we are 
finally only left with the boundary terms. Their sum should vanish for arbitrary . ϕ, 
which provides 

. ∇ψ0(u(a)) − ∇vL(a, u(a), u'(a)) = 0, ∇ψ1(u(b)) + ∇vL(b, u(b), u'(b)) = 0.

These two boundary conditions, called transversality conditions, replace in this 
case the Dirichlet boundary conditions on .u(a) and .u(b), which are no longer 
available, and allow us to complete the equation. Of course, it is possible to combine 
the problem with fixed endpoints and the Bolza problem with penalization on the 
boundary, fixing one endpoint and penalizing the other. The four possible cases, 
with their Euler–Lagrange systems, are the following. 

• For the problem .min
{´ b

a
L(t, u(t), u'(t)) dt : u(a) = A, u(b) = B

}
, the  

Euler–Lagrange system is, as we already saw, 

. 

⎧⎪⎪⎨
⎪⎪⎩

d
dt

(∇vL(t, u, u')
) = ∇xL(t, u, u') in (a, b),

u(a) = A,

u(b) = B.

• For the problem .min
{´ b

a
L(t, u(t), u'(t)) dt + ψ0(u(a)) : u(b) = B

}
, the  

Euler–Lagrange system is 

.

⎧⎪⎪⎨
⎪⎪⎩

d
dt

(∇vL(t, u, u')
) = ∇xL(t, u, u') in (a, b),

∇vL(a, u(a), u'(a)) = ∇ψ0(u(a)),

u(b) = B.
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• For the problem .min
{´ b

a
L(t, u(t), u'(t)) dt + ψ1(u(b)) : u(a) = A

}
(the 

most classical choice in applications, where the initial point is known and the 
final point is free), the Euler–Lagrange system is 

. 

⎧⎪⎪⎨
⎪⎪⎩

d
dt

(∇vL(t, u, u')
) = ∇xL(t, u, u') in (a, b),

u(a) = A,

∇vL(b, u(b), u'(b)) = −∇ψ1(u(b)).

• For the problem .min
{´ b

a
L(t, u(t), u'(t)) dt + ψ0(u(a)) + ψ1(u(B))

}
, the  

Euler–Lagrange system is 

. 

⎧⎪⎪⎨
⎪⎪⎩

d
dt

(∇vL(t, u, u')
) = ∇xL(t, u, u') in (a, b),

∇vL(a, u(a), u'(a)) = ∇ψ0(u(a)),

∇vL(b, u(b), u'(b)) = −∇ψ1(u(b)).

1.4 Curves and Geodesics in Metric Spaces 

In this section we generalize the study of the problem of geodesics to the setting of 
metric spaces. This will show that most of the results do not depend on the Euclidean 
structure of . Rd and will allow a more abstract and intrinsic point of view to be 
adopted for some problems in . Rd , such as the search for geodesics for a weighted 
distance. 

1.4.1 Absolutely Continuous Curves and Metric Derivative 

A curve . ω is a continuous function defined on a interval, say .[0, 1], and valued in 
a metric space .(X, d). As it is a map between metric spaces, one can meaningfully 
ask whether it is Lipschitz or not, but its speed .ω'(t) has no meaning, unless X is a 
vector space. 

Surprisingly, it is possible to give a meaning to the modulus of the velocity, 
.|ω'|(t). 
Definition 1.7 If .ω : [0, 1] → X is a curve valued in the metric space .(X, d) we 
define the metric derivative of . ω at time t , denoted by .|ω'|(t), as  

. |ω'|(t) := lim
h→0

d(ω(t + h), ω(t))

|h| ,

provided this limit exists.
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Definition 1.8 A curve .ω : [0, 1] → X is said to be absolutely continuous 
whenever there exists a .g ∈ L1([0, 1]) such that .d(ω(t0), ω(t1)) ≤ ´ t1

t0
g(s) ds for 

every .t0 < t1. The set of absolutely continuous curves defined on .[0, 1] and valued 
in X is denoted by .AC([0, 1];X). 

We will prove that any absolutely continuous curve . ω admits a metric derivative 
at a.e. t , and also that we have .Length(ω) = ´ 1

0 |ω'|(t) dt . 
A first useful lemma is the following. It involves the Banach space . 𝓁∞, which is 

defined as the space of bounded sequences .y = (y[0], y[1], . . . ) endowed with the 
norm .||y||∞ := supi |y[i]|, and thus with the distance 

. d∞(y, z) := ||y − z||∞ = sup
i

|y[i] − z[i]|.

Lemma 1.9 Every compact metric space .(X, d) can be isometrically embedded in 
. 𝓁∞. 

Proof Any compact metric space is separable, so let us take a countable dense 
subset of X and let us order its points, obtaining a dense sequence .x0, x1, . . . . We  
then define a map .T : X → 𝓁∞ as follows 

. T (x) := (d(x, x0), d(x, x1), . . . ),

which means that the map T is defined via .T (x)[i] = d(x, xi). This sequence is 
bounded (which we need, for otherwise we would not have .T (x) ∈ 𝓁∞) since X is 
compact and hence bounded. For every pair .x, x' ∈ X and every i we have, using 
the triangle inequality on X, 

. |T (x)[i] − T (x')[i]| = |d(x, xi) − d(x', xi)| ≤ d(x, x')

and, passing to the sup in i, we get .d∞(T (x), T (x')) ≤ d(x, x'). Moreover, for any 
.ε > 0 we can find i such that .d(xi, x

') < ε, so that 

. |T (x)[i] − T (x')[i]| = |d(x, xi) − d(x', xi)| ≥ d(x, x') − 2ε,

which implies .d∞(T (x), T (x')) ≥ d(x, x')−2ε. Since .ε > 0 is arbitrary, we finally 
obtain .d∞(T (x), T (x')) = d(x, x'), which shows that T is an isometry from X to 
its image. ⨅⨆
Proposition 1.10 Given a metric space .(X, d) and an absolutely continuous curve 
.ω : [0, T ] → X the metric derivative .|ω'|(t) exists for a.e. t and we have 
.Length(ω) = ´ 1

0 |ω'|(t) dt . 
Proof It is not restrictive to assume that X is compact, since the image .ω([0, T ]) is 
indeed compact as a continuous image of a compact interval. Thanks to Lemma 1.9 
we can then assume .X ⊂ 𝓁∞ and we consider the curves .ωi : [0, T ] → Rwhich are 
the coordinates of . ω. Using .|ωi(t0)−ωi(t1)| ≤ d(ω(t0), ω(t1)) ≤ ´ t1

t0
g(t) dt we see
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that each coordinate is indeed a real-valued absolutely continuous function, and is 
hence differentiable a.e. (since it belongs to .W 1,1). The set of points t where all the 
. ωi are differentiable is of full measure (since its complement is a countable union 
of negligible sets) and on this set we define .m(t) := supi |ω'

i (t)|. At every Lebesgue 
point of g (see, for instance, the Box 5.1) we have  .|ω'

i (t)| ≤ g(t) and hence . m ≤ g

a.e. In particular, m is an . L1 function. We want to prove .|ω'|(t) = m(t) a.e. and, 
more precisely, at all Lebesgue points of m. Let us choose one such point t . First we  
observe that we have 

. 
d(ω(t + h), ω(t))

|h| ≥ |ωi(t + h) − ωi(t)|
|h| → |ω'

i (t)|.

This shows .lim infh d(ω(t + h), ω(t))/|h| ≥ |ω'
i (t)| and, taking the sup over i, we  

obtain .lim infh d(ω(t + h), ω(t))/|h| ≥ m(t). 
For the opposite inequality we first note that we have, for every .t0 < t1, the  

inequality .|ωi(t0) − ωi(t1)| ≤ ´ t1
t0

|ω'
i (s)| ds ≤ ´ t1

t0
m(s) ds, and, taking the sup over 

i, we obtain 

.d(ω(t0), ω(t1)) ≤
ˆ t1

t0

m(s) ds. (1.3) 

Using this, we obtain 

. 
d(ω(t + h), ω(t))

|h| ≤
 t+h

t

m(s) ds → m(t),

where we used the fact that t is a Lebesgue point for m. This shows 
.lim suph d(ω(t + h), ω(t))/|h| ≤ m(t) and proves .|ω'| = m a.e. 

We now need to prove the equality between the length of . ω and the integral of 
. |ω'|. The inequality (1.3), applied to arbitrary subdivisions . 0 ≤ t0 < t1 < · · · <

tN ≤ T in the definition of the length, now that we know .m = |ω'|, provides 
.Length(ω) ≤ ´ T

0 |ω'|(t) dt . 
In order to prove the opposite inequality, let us take .h = T/N > 0 and, for 

every .t ∈ (0, h), let us consider the subdivision .t0 < t1 < · · · < tN−1 given 
by .tk := t + kh, for  .k = 0, . . . , N − 1. By definition we have . Length(ω) ≥∑N−2

k=0 d(ω(tk), ω(tk+1) and hence, taking the average on .t ∈ (0, h), 

.Length(ω) ≥ 1

h

ˆ h

0

N−2∑
k=0

d(ω(t + kh), ω(t + (k + 1)h)) dt

=
ˆ (N−1)h

0

d(ω(s), ω(s + h))

h
ds,
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where the last equality is based on a change of variable .s = t + kh, inverting the 
sum and the integral, and putting the denominator h inside the integral. If we take 
the liminf in .h → 0 and apply Fatou’s lemma, by pointwise a.e. convergence we 
obtain .Length(ω) ≥ ´ T

0 |ω'|(t) dt and hence the desired equality. ⨅⨆
An easy corollary of the previous fact concerns the characterization of Lipschitz 

curves among absolutely continuous ones. 

Corollary 1.11 Let .ω : [0, T ] → X be an absolutely continuous curve. Then . ω ∈
LipL if and only if .|ω'| ≤ L a.e. 

Proof It is clear that .ω ∈ LipL implies . d(ω(t+h),ω(t))
h

≤ L and hence . |ω'|(t) ≤ L

for every t where the metric derivative exists. 
On the other hand, if .|ω'| ≤ L a.e., the inequality (1.3), together with .m = |ω'|, 

provides .d(ω(t0), ω(t1)) ≤ ´ t1
t0

|ω'|(t) dt ≤ L|t1 − t0| and hence .ω ∈ LipL. ⨅⨆
Another important fact about absolutely continuous curves is that they can be 
reparameterized in time (through a monotone-increasing reparameterization) and 
become Lipschitz continuous. More precisely, we have the following. 

Proposition 1.12 Given an arbitrary absolutely continuous curve . ω : [0, 1] → X

and a number .ε > 0, there exists a reparameterized curve .ω̃ : [0, 1] → X of the 
form .ω̃ = ω ◦ φ for a strictly increasing homeomorphism .φ : [0, 1] → [0, 1] such 
that .ω̃ ∈ LipL where .L := Length(ω) + ε. 

Proof Define .G(t) := ´ t

0 |ω'|(s) ds, then set .S(t) = εt + G(t). The function S 
is continuous and strictly increasing, and valued in the interval .[0, L], where . L :=
Length(ω) + ε. Then for .t ∈ [0, L], set  .ω̃(t) = ω(S−1(t)). It is easy to check that 
.ω̃ ∈ Lip1, since we have, for .t0 < t1, 

. d(ω(t0), ω(t1)) ≤
ˆ t1

t0

|ω'|(s) ds = G(t1) − G(t0) ≤ S(t1) − S(t0)

and then 

. d(ω̃(t0), ω̃(t1)) = d(ω(S−1(t0)), ω(S−1(t1))) ≤ S(S−1(t1))−S(S−1(t0)) = t1−t0.

In order to have a parameterization defined on the same interval .[0, 1], we just need 
to rescale by a factor L. ⨅⨆
In the above proposition we note that, if the interval .[0, 1] is replaced by another 
interval .[0, T ], then we have to set .L := (Length(ω) + ε)/T . We also observe that, 
if the curve . ω is injective (and actually it is enough that it is not constant on any 
non-trivial interval, so that the function G is indeed strictly increasing), the result 
can be strengthened, as follows. 

Proposition 1.13 Given an absolutely continuous curve .ω : [0, 1] → X, assume 
that there is no subinterval .(t0, t1) ⊂ [0, 1] on which . ω is constant. Then there



1.4 Curves and Geodesics in Metric Spaces 25

exists a reparameterized curve .ω̃ : [0, 1] → X of the form .ω̃ = ω ◦ φ for a 
strictly increasing homeomorphism .φ : [0, 1] → [0, 1] such that .ω̃ ∈ LipL where 
.L := Length(ω) and .|ω̃'| = L a.e. 

Proof We use again the function .G(t) := ´ t

0 |ω'|(s) ds and we observe that it is 
continuous and strictly increasing. Indeed, if .G(t0) = G(t1) then we obtain . |ω'| =
0 on .(t0, t1) and Proposition 1.10 shows that . ω is constant on .(t0, t1), which is a 
contradiction. Then for .t ∈ [0, L] (where .L := Length(ω)), set .ω̃(t) = ω(G−1(t)). 
We obtain again .ω̃ ∈ Lip1 as in Proposition 1.12. If we scale by a factor L we obtain 
a curve, which we call again . ̃ω, which is .LipL and defined on .[0, 1]. Since L also 
equals its length, we have 

. L = Length(ω) = Length(ω̃) =
ˆ 1

0
|ω̃'|(t) dt ≤

ˆ 1

0
L dt = L,

which shows that we must have .|ω̃'|(t) = L for a.e. t . ⨅⨆
Remark 1.14 We observe that in Proposition 1.13 the reparameterized curve . ̃ω
which is built also satisfies .Lip(ω̃) ≤ Lip(ω), since . Lip(ω̃) = L = Length(ω) =´ 1
0 |ω'|(t) dt ≤ Lip(ω). 

1.4.2 Geodesics in Proper Metric Spaces 

In a metric space .(X, d) we define the following quantity .geod (called geodesic 
distance) by minimizing the length of all curves . γ connecting two points . x0, x1 ∈
X: 

.geod(x0, x1) := inf

{
Length(γ ) : γ ∈ AC([0, 1];X),

γ (0) = x0, γ (1) = x1

}
∈ [0,+∞]. (1.4) 

This quantity is clearly a distance when it is finite. When .(X, d) is a Euclidean 
space, .geod = d and the infimum value in (1.4) is achieved by the segment .[x0, x1]. 
In general, a metric space such that .geod = d is called a length space. 

The minimal length problem consists in finding a curve . γ with . γ (0) =
x0, γ (1) = x1 and such that .Length(γ ) = geod(x0, x1). The existence of such a 
curve, called a geodesic, is given by the following classical theorem, which requires 
the metric space to be proper. 

Definition 1.15 A metric space .(X, d) is said to be proper if every bounded closed 
subset of .(X, d) is compact. 

Theorem 1.16 Assume that .(X, d) is proper. Then, for any two points .x0, x1 such 
that .geod(x1, x0) < +∞, there exists a minimizing geodesic joining . x0 and . x1.
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Proof Let us take a minimizing sequence for the geodesic problem, i.e. a sequence 
. ωn of absolutely continuous curves defined on .[0, 1], with .ωn(0) = x0, .ωn(1) = x1, 
and .Length(ωn) → geod(x0, x1). We take a sequence .εn > 0, with .εn → 0 and, 
using Proposition 1.12, we define a new sequence of curves . ω̃n such that . ω̃n(0) =
x0, .ω̃n(1) = x1, and .ω̃n ∈ LipLn

, where .Ln := Length(ωn) + εn → geod(x0, x1). 
Because of this Lipschitz bound, for any n and any t we have . d(ω̃n(t), x0) ≤ Lnt ≤
R, where R is a constant independent of n and t . Hence, the images of all the curves 
. ω̃n are contained in the closed ball .B(x0, R), which is compact. The sequence of 
curves . ω̃n is then equicontinuous and valued in some compact set, and the Ascoli– 
Arzelà theorem allows us to extract a uniformly convergent subsequence .ω̃nk

→ ω. 
We have 

. d(ω(t0), ω(t1)) = lim
k→∞ d(ω̃nk

(t0), ω̃nk
(t1)) ≤ Lnk

|t0 − t1| → geod(x0, x1)|t0 − t1|.

This shows that . ω is Lipschitz continuous and its Lipschitz constant is at most 
.geod(x0, x1). As a consequence we have .|ω'| ≤ geod(x0, x1)| and, integrating on 
.[0, 1], we also have  .Length(ω) ≤ geod(x0, x1), so that . ω is indeed a geodesic. 
Moreover, we can also observe that we necessarily have .|ω'|(t) = geod(x0, x1) for 
a.e. t . ⨅⨆

Box 1.5 Memo—Compactness for the Uniform Convergence 

We recall that a family . F of functions .f : X → Y is said to be equicontinuous 
if for every .ε > 0 there exists a common .δ > 0 such that . d(f (x), f (y)) < ε

for all pairs .x, y with .d(x, y) < δ and for all .f ∈ F. Equivalently, this means 
that there exists a continuous function .ω : R+ → R+ such that . ω(0) = 0
with .|f (x)− f (y)| ≤ ω(d(x, y)) for all .x, y, f . This function . ω is called the 
modulus of continuity. 
Theorem (Ascoli–Arzelà) If X is a compact metric space and . fn : X → R

are equi-continuous and equi-bounded (i.e. there is a common constant C 
with .|fn(x)| ≤ C for all .x ∈ X and all n), then the sequence .(fn) admits a 
subsequence . fnk

uniformly converging to a continuous function .f : X → R. 
Conversely, a subset of .C(X) is relatively compact for the uniform 

convergence (if and) only if its elements are equi-continuous and equi-
bounded. In particular, the functions of a uniformly convergent sequence are 
always equi-continuous and admit the same modulus of continuity. 

The same results are true if the target space . R and the equiboundedness 
assumption are replaced with a target space which is a compact metric space. 

We note that in the above Theorem 1.16 we proved the existence of a constant-
speed geodesic, i.e. a curve . ω which, besides being a geodesic, also satisfies . |ω'| =
const (and this constant can only be equal to .Length(ω) = geod(x−, x+) if the
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interval on which the curve is parameterized is .[0, 1]). Constant-speed geodesics 
admit other characterizations, as we can see in the following propositions. 

Proposition 1.17 If .(X, d) is a length space then .ω : [0, 1] → X is a constant-
speed geodesic between .ω(0) and .ω(1) ∈ X if and only if it satisfies 

.d(ω(t), ω(s)) = |t − s|d(ω(0), ω(1)) for all t, s ∈ [0, 1]. (1.5) 

Proof Assume that . ω satisfies (1.5) (and in particular it is Lipschitz continuous). 
Then, from the formula for the length as a sup over partitions, we have . Length(ω) =
d(ω(0), ω(1)). Since no curve connecting .ω(0) to .ω(1) can have a strictly smaller 
length, then . ω is a geodesic. Moreover, from (1.5), dividing by .|t − s| and sending 
.s → t , we obtain .|ω'|(t) = d(ω(0), ω(1)) for every t , which shows that the speed 
is constant. 

We now assume that . ω is a constant-speed geodesic. We then have . |ω'(t)| =
𝓁 := Length(ω) = geod(ω(0), ω(1)) = d(ω(0), ω(1)) (the last equality coming 
from the assumption that .(X, d) is a length space). In particular we have .ω ∈ Lip𝓁. 
We then have 

. d(ω(0), ω(s)) ≤ 𝓁s; d(ω(s), ω(t)) ≤ 𝓁(t − s); d(ω(t), ω(1)) ≤ 𝓁(1 − t).

If we sum the above three inequalities and use the triangle inequality we get 

. d(ω(0), ω(1)) ≤ d(ω(0), ω(s))+d(ω(s), ω(t))+d(ω(t), ω(1)) ≤ d(ω(0), ω(1)),

so that all the previous inequalities are indeed equalities and we have the equality 
.d(ω(s), ω(t)) = 𝓁(t − s) with .𝓁 = d(ω(0), ω(1)), i.e. (1.5). ⨅⨆
Proposition 1.18 Given a metric space .(X, d), a strictly convex, continuous, and 
strictly increasing function .h : R+ → R+, and two points .x0, x1 ∈ X, the following 
are equivalent 

1. .γ : [0, 1] → X is a constant-speed geodesic connecting . x0 to . x1; 
2. .γ : [0, 1] → X solves 

. min

{ˆ 1

0
h(|ω'|(t)) dt : ω ∈ AC([0, 1];X), ω(0) = x0, ω(1) = x1

}
.

Proof Given an arbitrary .ω : [0, 1] → X with .ω(0) = x0, ω(1) = x1 we have the 
inequalities 

.

ˆ 1

0
h(|ω'|(t)) dt ≥ h

(ˆ 1

0
|ω'|(t) dt

)
≥ h(geod(x0, x1)), (1.6) 

where the first inequality comes from Jensen’s inequality and the second from the 
definition of .geod, together with the increasing behavior of h.
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Let us assume that . γ is a constant-speed geodesic with .|γ '| = geod(x0, x1). 
Then (1.6) implies 

. 

ˆ 1

0
h(|ω'|(t)) dt ≥ h(geod(x0, x1)) =

ˆ 1

0
h(|γ '|(t)) dt

i.e. (1) implies (2). 
For the reverse implication, take . γ which minimizes .ω I→ ´ 1

0 h(|ω'|(t)) dt and 
an absolutely continuous competitor . ω with .Length(ω) = L. For .ε > 0, we choose 
a reparameterization . ω̃ of . ω with .|ω̃'| ≤ L + ε and the optimality of . γ provides 

. h

(ˆ 1

0
|γ '|(t) dt

)
≤
ˆ 1

0
h(|γ '|(t)) dt ≤

ˆ 1

0
h(|ω̃'|(t)) dt ≤ h(L + ε).

We obtain .Length(γ ) = ´ 1
0 |γ '|(t) dt ≤ L + ε and, taking .ε → 0, we deduce 

.Length(γ ) ≤ L, i.e. . γ minimizes the length and is a geodesic. Moreover, taking . ω =
γ we necessarily have equality in the inequality . h

(´ 1
0 |γ '|(t) dt

)
≤ ´ 1

0 h(|γ '|(t)) dt
and the equality case in Jensen’s inequality for strictly convex h implies that .|γ '| is 
constant. ⨅⨆

1.4.3 Geodesics and Connectedness in Thin Spaces 

The existence result of a geodesic curve connecting . x0 to . x1 in a proper space 
X, presented in the previous sub-section, required the assumption . geod(x1, x0) <

+∞. A completely different question is whether a curve with finite length, or 
an AC curve, connecting . x0 to . x1 exists. This is clearly related to the notion of 
connectedness of the space X. Yet, it is well-known that connectedness has a 
topological definition which does not involve curves at all, and that the existence 
of connecting curves is a stronger condition. 

Box 1.6 Memo—Connectedness 

A topological space X is said to be connected if for any subset .A ⊂ X which 
is at the same time open and closed we necessarily have either .A = ∅ or 
.A = X. 

A topological space X is said to be arcwise-connected if for any two points 
.x0, x1 ∈ X there exists a continuous curve .γ : [0, 1] → X such that . γ (t) = xt

for .t = 0, 1. 

(continued)
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Box 1.6 (continued) 
A metric space X is said to be AC-connected if for any two points . x0, x1 ∈

X there exists an absolutely continuous curve .γ : [0, 1] → X such that 
.γ (t) = xt for .t = 0, 1. 

Of course AC-connectedness implies arcwise-connectedness, and arcwise-
connectedness implies connectedness. 

We want to consider here a class of metric spaces, that we call thin spaces, where 
connectedness implies AC-connectedness. This result is essentially taken from [15], 
where it is presented as a preliminary result for a notion which will be discussed in 
Chap. 6. 

Definition 1.19 A metric space .(X, d) is said to be thin if it has the following 
property: there exists a constant C such that if .{B(xi, r) : i = 1, . . . , N} is a 
finite family of disjoint balls in X, then .N ≤ C

r
. 

The reason for the name “thin” lies in the fact that this property is typical of 1D sets. 
It is not satisfied by subsets of . Rd which have a non-empty interior. 

First, we clarify that this notion implies compactness. 

Box 1.7 Memo—Totally Bounded and Precompact Sets 

In a metric space .(X, d) we say that a subset .E ⊂ X is pre-compact if its 
closure in X is compact. This means that from any sequence in E we can 
extract a convergent subsequence, but the limit does not necessarily lie in E. 

We say that a subset .E ⊂ X is totally bounded if for every .ε > 0 we can 
cover E with a finite number of balls of radius . ε centered at points of E. The  
centers of these balls are called an .ε-net. 
Theorem If .(X, d) is complete, then a subset E is precompact if and only if 
it is totally bounded. A metric space .(X, d) is compact if and only if it is itself 
complete and totally bounded. 

Proposition 1.20 If .(X, d) is thin and complete then it is compact. 

Proof It is enough to prove that .(X, d) is totally bounded (see Box 1.7). Given a 
number .ε > 0, define a sequence of points .xk ∈ X as follows: we start from an 
arbitrary . x0, then we take .xk ∈ X \ ⋃k−1

i=1 B(xi, ε) if .
⋃k−1

i=1 B(xi, ε) /= X. As long 
as the construction proceeds, the balls .B(xi, ε/2) are disjoint, so by the definition 
of thin space the construction must stop after .k = 2C/ε steps at most. Hence, X is 
contained in a finite union of balls of radius . ε, which means that it is totally bounded, 
and hence compact because we also assumed completeness. ⨅⨆

We now state the main theorem of this section.
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Theorem 1.21 If .(X, d) is thin, complete, and connected, then it is AC-connected 
and for every pair of points .x0, x1 ∈ X there exists a geodesic connecting them. 

Proof Let us fix .ε > 0 and define an equivalence relation on X: we say that two 
points .x, y ∈ X are .ε-connected if there exists a finite chain of points . x0, x1, . . . , xN

such that .x0 = x, .xN = y, and .d(xi, xi+1) ≤ ε for every i. It is easy to see that this 
is an equivalence relation. For every point . x0, we denote by .A(x0) its equivalence 
class. It is clear by definition that the equivalence classes are open sets, since we 
have .B(x, ε) ⊂ A(x0) for every .x ∈ A(x0). Since the complement of an equivalence 
class is the union of all the others, then every equivalence class is also closed as 
the complement of an open set. By connectedness, we have .A(x0) = X for every 
. x0. Hence, for every pair .x, y ∈ X and every .ε > 0 there exists a finite chain 
of points .x0, x1, . . . , xN such that .x0 = x, .xN = y, and .d(xi, xi+1) ≤ ε. Let  
us consider then a minimal chain connecting x to y (i.e. a chain for which N is 
minimal: such a chain exists since we are minimizing an integer-valued quantity). 
By minimality, .d(xi, xi+2) > ε (otherwise we could remove the point .xi+1). Hence 
the balls .B(xi, ε/2) for i odd are disjoint, and this gives a bound on the number N , 
of the form .N ≤ C/ε, because X is thin. 

Since we know that X is compact, we can isometrically embed X into . 𝓁∞, and 
we can define a curve .γε : [0, 1] → 𝓁∞ taking .γ (i/N) = xi (with .N = N(ε)) and 
connecting two subsequent points . xi with a constant-speed segment in . 𝓁∞ (this is 
the reason for embedding into . 𝓁∞, we need a vector space). For . t ∈ [i/N, (i+1)/N ]
we have .|γ '

ε|(t) = d(xi ,xi+1)
1/N = Nd(xi, xi+1) ≤ Nε ≤ C, so that these curves are 

equi-Lipschitz continuous. We want to apply the Ascoli–Arzelà theorem to extract a 
convergent subsequence, but the ambient space . 𝓁∞ is not compact. Yet, if we take a 
sequence .εn → 0 and the corresponding curves . γεn , the  set .

⋃
n γεn([0, 1]) is totally 

bounded, and hence contained in a compact set. To see this, we fix .ε > 0 and we note 
that .

⋃
n:εn≥ε/2 γεn([0, 1]) is compact since it is a finite union of compact sets (and 

hence can be covered by finitely many balls of radius . ε), while . 
⋃

n:εn<ε/2 γεn([0, 1])
is contained in an .ε/2-neighborhood of .X ⊂ 𝓁∞. By taking finitely many balls of 
radius .ε/2 which cover X we then cover this set as well with finitely many balls of 
radius . ε. 

Hence, we can extract a subsequence which uniformly converges to a curve . γ
which will also be Lipschitz continuous with the same Lipschitz constant C. This  
curve will also satisfy .γ (0) = x and .γ (1) = y as the approximating curves did, and 
since the image .γεn([0, 1]) was contained in an .εn-neighborhood of X, at the limit 
we have .γ (t) ∈ X for every t . 

This provides the existence of at least an AC curve connecting arbitrary points 
.x, y ∈ X. The existence of a minimal one follows from Theorem 1.16. ⨅⨆
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1.4.4 The Minimal Length Problem in Weighted Metric Spaces 

Let .(X, d) be a metric space and .K : X → R
+ be a nonnegative function called 

the weight function. We define the K-length . LK of an absolutely continuous curve 
. γ via the formula 

. LK(γ ) :=
ˆ

I

K(γ (t)) |γ '|(t) dt

and we consider the minimization of .LK among curves with fixed endpoints. This 
problem is very natural and appears in many different instances both in applied 
and fundamental mathematics. For example, it can be considered as a particular 
case of the problem of looking for geodesics in Riemannian manifolds, since in a 
Riemannian manifold the length of a curve . γ is computed by applying to the tangent 
vector .γ '(t) a norm induced by a scalar product on the tangent space depending 
on the point .γ (t): if we choose for .(X, d) the Euclidean space with the Euclidean 
distance, the length .LK can be seen as a particular Riemannian length, when the 
scalar product is a positive scalar multiple of the standard Euclidean one (in practice, 
we do not use general positive symmetric matrices to define a Riemannian metric, 
but only a positive multiple of the identity: we obtain in this case a conformal 
metric). From the applied point of view, minimizing weighted lengths is natural 
for instance in traffic problems (see Sect. 4.6), where the cost of passing through a 
given point is not uniform, but depends on the amount of traffic at that point, as well 
as in optics, where the coefficient K depends on the refraction index of the material. 

We first analyze the properties of the weighted length . LK . For future use, we 
define for every .r > 0 and every .x ∈ X the following two quantities: 

. Kr(x) := inf{K(y) : d(x, y) ≤ r}, Kr(x) := sup{K(y) : d(x, y) ≤ r}.
(1.7) 

Lemma 1.22 Assume that .K : X → R+ is l.s.c. If .γ : [0, 1] → X has modulus of 
continuity . ω then we have 

. LK(γ ) = sup

⎧⎨
⎩

N−1∑
i=0

Kr(γ (ti))d(γ (ti), γ (ti+1)) :
δ > 0, r > ω(δ),

0 ≤ t0 < · · · < tN ≤ 1,
|ti+1 − ti | ≤ δ

⎫⎬
⎭ .

As a consequence, . LK is lower semicontinuous for the uniform convergence, i.e. 
.γn → γ uniformly implies .LK(γ ) ≤ lim infn LK(γn).
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Proof If we take an absolutely continuous . γ with modulus of continuity . ω, and two 
instants .ti < ti+1 with .|ti+1 − ti | ≤ δ, we then have .|γ (t) − γ (ti)| ≤ ω(δ) < r and 
hence .K(γ (t)) ≥ Kr(γ (ti)) for all .t ∈ [ti , ti+1]. We then have 

. 

ˆ ti+1

ti

K(γ (t))|γ '|(t) dt ≥Kr(γ (ti))

ˆ ti+1

ti

|γ '|(t) dt ≥Kr(γ (ti))d(γ (ti), γ (ti+1)).

This shows that .LK(γ ) is larger than the sup in the first part of the claim. For the 
opposite inequality we first take, for every N , a number .rN > 0 so that .limN rN = 0, 
and a partition with .ti = i/N and define a function .kN(t) := KrN (γ (ti)) for 
.t ∈ [ti , ti+1). By the continuity of . γ and the semicontinuity of K we have 
.lim infN kN(t) ≥ K(γ (t)) for every t . Hence, by Fatou’s lemma, we have 

. lim inf
N

ˆ
kN(t)|γ '|(t) dt ≥ LK(γ ),

so that for every . ε there exists an N with .
´

kN(t)|γ '|(t) dt ≥ LK(γ )(1−ε). We now  
look at .

´ ti+1
ti

kN (t)|γ '|(t) dt = kN(ti)
´ ti+1
ti

|γ '|(t) dt . By definition of the length as 
a sup it is possible to sub-partition the interval .[ti , ti+1] by means of some . ti,j with 
.
∑

j d(γ (ti,j ), γ (ti,j+1) ≥ (1 − ε)
´ ti+1
ti

|γ '|(t) dt . 
We now have 

. 
∑
i,j

KrN (γ (ti))d(γ (ti,j ), γ (ti,j+1)) ≥ (1 − ε)2LK(γ ).

We need to replace the coefficients .KrN (γ (ti)) with some coefficients of the 
form .Kr(γ (ti,j )), with .r > ω(maxi,j |ti,j − ti,j+1|), yet satisfying . KrN (γ (ti)) ≤
Kr(γ (ti,j )). Since we have .B(γ (ti,j ), r) ⊂ B(γ (ti), r + ω(1/N)), it is enough to 
choose .r = ω(1/N) and .rN = 2ω(1/N). This shows that the partition .{ti,j } with 
.r = ω(1/N) satisfies 

. 
∑
i,j

Kr(γ (ti,j ))d(γ (ti,j ), γ (ti,j+1)) ≥ (1 − ε)2LK(γ )

and shows that the sup in the claim is larger than .LK(γ ). 
Once we have established this representation formula, the proof of the lower 

semicontinuity is easy. We take a sequence .γn → γ uniformly and we denote by 
. ω a common modulus of continuity (see Box 1.5) for the curves . γn and . γ . On all  
these curves we can use the first part of the statement to write . LK as a sup, and use 
the fact that lower semicontinuity is stable under sup (see Chap. 3). Then, for fixed 
.δ, r, t0, t1, . . . , tN the quantity 

.γ I→
N−1∑
i=0

Kr(γ (ti))d(γ (ti), γ (ti+1))
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is clearly continuous for the uniform convergence (and actually pointwise conver-
gence would be enough), which shows the semicontinuity of . LK by taking the sup 
(see Proposition 3.3). ⨅⨆

We can now prove an existence theorem for curves minimizing the weighted 
length . LK . 

Theorem 1.23 Given a proper metric space .(X, d), an l.s.c. function . K : X →
R which is strictly positive everywhere, and two points .x0, x1 ∈ X, consider the 
minimization problem 

. inf{LK(γ ) : γ ∈ AC([0, 1];X), γ (0) = x0, γ (1) = x1}.

Then, there exists a curve solving this minimization problem whenever the above inf 
is finite and we have .

´∞
0 (infB(x0,r) K) dr = +∞. 

Proof We start from a minimizing sequence . γn, so that we have .LK(γn) ≤ C. 
First of all, we want to prove that all curves . γn are contained in a ball . B(x0, R)

with R independent of n. Let us denote by . Rn := max{d(γn(t), x0), t ∈ [0, 1]}
the maximal distance from . x0 attained by . γn. This maximum exists as we look at 
the continuous function .t I→ d(γn(t), x0) on a compact interval. For every integer 
.k < Rn we can define .tk,n := min{t : d(γn(t), x0) ≥ k}. All these numbers . tk,n are 
well-defined by continuity of .t I→ d(γn(t), x0) and we have .t1,n < t2,n < t3,n . . . . 
We then have 

. 

ˆ tk+1,n

tk,n

K(γ (t))|γ '|(t) dt ≥
(

inf
B(x0,k+1)

K

)ˆ tk+1,n

tk,n

|γ '|(t) dt

≥
(

inf
B(x0,k+1)

K

)
d(γ (tk,n), γ (tk+1,n)).

Using .d(γ (tk,n), γ (tk+1,n)) ≥ |d(γ (tk,n), x0) − d(x0, γ (tk+1,n))| = 1 we get 

. LK(γ ) ≥
⎿Rn⏌∑
k=0

inf
B(x0,k+1)

K.

Using the comparison between series and integral for non-decreasing functions, the 
condition .

´∞
0 (infB(x0,r) K) dr = +∞ is equivalent to . 

∑∞
k=0(infB(x0,k+1) K) =

+∞, and this shows an upper bound on .⎿Rn⏌. 
We now know that all curves . γn are contained in a bounded, and hence compact, 

set. On this set K is bounded from below by a strictly positive number, so that 
we also have a uniform bound on .Length(γn) ≤ L. We then reparameterize these 
curves into some curves . γ̃n with .|γ̃ '

n| ≤ L + ε and this does not change the value 
of the weighted length . LK , which is also invariant under reparameterization. We 
can now apply the Ascoli–Arzelà theorem to this new minimizing sequence, extract
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a uniformly convergent subsequence, apply Lemma 1.22 which gives the lower 
semicontinuity of . LK , and obtain the existence of a minimizer. ⨅⨆

The condition .
´∞
0 (infB(x0,r) K) dr = +∞, introduced for instance in [43] and 

also used in [90, 150, 151], is crucial in order to obtain a bound on the minimizing 
sequence. We now want to provide an example where the existence of weighted 
geodesics fails if it is not satisfied. We will consider a Euclidean space, say . R2, 
endowed with a positive weight .K > 0 which does not satisfy the above non-
integrability condition. 

Theorem 1.24 Given an arbitrary continuous and strictly positive function . g :
R+ → (0,∞) such that .

´∞
0 g(s) ds < +∞, there exists a continuous weight 

.K : R2 → R+ and two points .x0, x1 ∈ R
2 such that 

• the weight .K(x) coincides with .g(d(x, x0)) on an unbounded set; 
• there is no curve connecting . x0 to . x1 and minimizing . LK . 

Proof First we define .G(t) = ´ t

0 g(s) ds and .G(∞) := ´∞
0 g(s) ds ∈ R. Also take  

a smooth function .h : R → [0, 1] such that .h(0) = 1 and .h(±1) = 0 (which 
implies .h'(0) = h'(±1) = 0), and choose it so that . h' only vanishes at .−1, 0, 1. 
Build a function .f : R2 → R+ via 

. f (x, y) = h(y)(2G(∞) − G(|x|)) + (1 − h(y))G(|x|).

Note that we have .f ∈ C1(R2 \ {x = 0}). At .x = 0, the partial derivative of f w.r.t. 
x is discontinuous and changes its sign, because of the modulus in the definition. 
However, .|∇f | is well-defined, and we take .K = |∇f |. This means that we are 
defining 

. K(x, y) =
√

|1 − 2h(y)|2g(|x|)2 + 4h'(y)2(G(∞) − G(|x|))2.

It is easy to see that we have .K(x, 0) = K(x,±1) = g(|x|) and .K > 0 on . R2. 
Consider now the two points .x0 = (0, 1) and .x1 = (0,−1). 
Any continuous curve .γ : [0, 1] → R

2 connecting these two points must cross 
the line .{y = 0}. Let us call .(𝓁, 0) a point where . γ crosses such a line, i.e. . γ (t0) =
(𝓁, 0) for .t0 ∈ [0, 1]. We can estimate the weighted length of . γ via 

.

ˆ 1

0
K(γ (t))|γ '(t)| dt =

ˆ t0

0
|∇f |(γ (t))|γ '(t)| dt +

ˆ 1

t0

|∇f |(γ (t))|γ '(t)| dt

≥
ˆ t0

0
∇f (γ (t)) · γ '(t) dt −

ˆ 1

t0

∇f (γ (t)) · γ '(t) dt

= 2f (γ (t0)) − f (x0) − f (x1) = 2f (𝓁, 0) − f (0, 1) − f (0,−1)

= 2(2G(∞) − G(|𝓁|)) > 2G(∞).
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This shows that no curve joining these two points can have a weighted length 
less than or equal to .2G(∞). If we are able to construct a sequence of curves 
approaching this value, we have shown that the minimum of the weighted length 
does not exist. To do so, take a sequence .xn → ∞ with .g(xn) → 0 (which is 
possible because of the condition .

´∞
0 g(s) ds < +∞). Consider a curve . γn defined 

on the interval .[0, 2xn +2] (and possibly reparameterized on .[0, 1]) in the following 
way 

. γn(t) =

⎧⎪⎪⎨
⎪⎪⎩

(t, 1) if t ∈ [0, xn],
(xn, 1 − t + xn) if t ∈ [xn, xn + 2],
(2xn + 2 − t,−1) if t ∈ [xn + 2, 2xn + 2].

It is easy to see that we have 

. 

ˆ 2xn+2

0
K(γ (t))|γ '(t)| dt = 2

ˆ xn

0
g(t) dt

+
ˆ 1

−1

√
|1 − 2h(y)|2g(|xn|)2 + 4h'(y)2(G(∞) − G(|xn|))2 dy.

Using 

. 

√
|1 − 2h(y)|2g(|xn|)2 + 4h'(y)2(G(∞) − G(xn))2

≤ C(g(|xn|) + G(∞) − G(xn)),

we can also obtain 

. 

ˆ 2xn+2

0
K(γ (t))|γ '(t)| dt = 2G(xn)+O(g(|xn|)+G(∞)−G(xn)) −→

n→∞ 2G(∞),

which concludes the example. ⨅⨆
We are now interested in studying the minimization of .LK when K may 

vanish. This case is of interest, for instance, in the applications to the existence 
of heteroclinic connections presented in [150, 151] and in Sect. 1.4.5. If  K vanishes 
on a connected set this creates a free region where movement has no cost: this can be 
interesting (see for instance [54] and Sect. 7.5 for an application in the modeling of 
transport networks) but goes beyond the scope of this section. We will only consider 
the case where K vanishes on a finite set . ∑ . This already creates a certain number 
of difficulties. In particular, K will no longer be bounded from below by positive 
constants on bounded sets, and it will be impossible to obtain bounds on the length 
(in the sense of the length for the original distance d, and not of the weighted length) 
for minimizing sequences. It will then be hard to apply Lemma 1.22 to obtain the 
semicontinuity, even if this lemma does not require .K > 0.
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Moreover, it will not be natural to work with curves . γ which are absolutely 
continuous anymore, since this assumption corresponds to .

´ |γ '| dt < +∞ and 
we cannot enforce bounds on this integral, but only on the weighted integral with 
the (possibly vanishing) factor K . 

In the sequel we will make the following assumptions on .(X, d,K): 

(H1) .(X, d) is a proper length metric space. 
(H2) K is continuous. 
(H3) We have .K(x) ≥ κ(d(x,∑ )) for a function .κ : R+ → R+ such that 

.
´∞
0 κ(r) dr = +∞. 

For a given interval I we now consider the class .ACploc(I,X) of curves . γ ∈
C(I ;X) which are piecewise locally absolutely continuous, i.e. there exists a finite 
partition .(t0, t1, . . . , tN ) of I such that .γ ∈ AC([ti + ε, ti+1 − ε];X) for every i and 
every .ε > 0 such that .2ε < ti+1 − ti . 

Our aim is to investigate the existence of a curve . γ ∈ ACploc([0, 1], X)

minimizing the K-length, defined by 

. LK(γ ) :=
ˆ 1

0
K(γ (t)) |γ '(t)| dt.

Namely, we want to find a curve .γ ∈ ACploc([0, 1];X) which minimizes the K-
length among curves connecting two given points .x0, x1. We define 

. dK(x0, x1) := inf{LK(γ ) : γ ∈ ACploc([0, 1];X), γ (0) = x0, γ (1) = x1}.

We are going to prove that . dK is a metric on X s.t. .(X, dK) is proper and such that 
. LK coincides with the length induced by the distance . dK , which we will denote by 
.LengthdK

, thus implying the existence of a geodesic between two joinable points, in 
view of Theorem 1.16 (see Theorem 1.26 below). 

Proposition 1.25 The quantity . dK is  a metric on  X. Moreover .(X, dK) enjoys the 
following properties 

1. . dK and d are equivalent (i.e. they induce the same topology) on all d-compact 
subsets of X. 

2. Any .dK -bounded set is also d-bounded. 
3. .(X, dK) is a proper metric space. 
4. Any locally AC curve .γ : I → X is also .dK -locally AC and the metric derivative 

of . γ in .(X, dK), denoted by .|γ '|K , is given by .|γ '|K(t) = K(γ (t)) |γ '|(t) a.e. 
5. We have .LK(γ ) = LengthdK

(γ ) for all .γ ∈ ACploc(I,X). 

Theorem 1.26 For any .x0, x1 ∈ X, there exists a .γ ∈ ACploc([0, 1];X) s.t. 
.LK(γ ) = dK(x0, x1), .γ (0) = x0 and .γ (1) = x1. 

Proof Let us see how Proposition 1.25 implies Theorem 1.26. As  .(X, dK) is a 
proper metric space, Theorem 1.16 ensures the existence of a .LengthdK

-minimizing 
curve . γ connecting . x0 to . x1. This curve is valued in a .dK -bounded set, which
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is then d-bounded, and hence contained in a d-compact set, where . dK and d are 
equivalent. This implies that . γ is also d-continuous. Then, up to renormalization, 
one can assume that . γ is parameterized by .LengthdK

-arc length. By minimality, we 
also know that . γ is injective: if .γ (t) = γ (s), then . γ restricted to the interval . (t, s)
is reduced to a point, and .t = s as . γ is parameterized by arc length. In particular, 
. γ meets the finite set .∑ = {K = 0} at finitely many instants .t1 < · · · < tN . As  
K is bounded from below by some positive constant on each compact subinterval 
of .(ti , ti+1) for .i ∈ {1, . . . , N}, Lemma 1.27 below implies that . γ is piecewise 
locally d-Lipschitz, hence it belongs to .ACploc([0, 1];X). Finally, thanks to the last 
statement in Proposition 1.25, the fact that . γ minimizes .LdK

means that it also 
minimizes . LK among .ACploc curves connecting . x0 to . x1. ⨅⨆
In order to prove Proposition 1.25, we will need the following estimates on . dK . 

Lemma 1.27 For all .x, y ∈ X, one has 

. Kd(x,y)(x) d(x, y) ≤ dK(x, y) ≤ Kd(x,y)(x) d(x, y),

where .Kr(x) and .Kr(x) are defined in (1.7). 

Proof Set .r := d(x, y). Since any curve . γ connecting x to y has to get out of the 
open ball .B := Bd(x, r), it is clear that we have 

. LK(γ ) =
ˆ

I

K(γ (t)) |γ '|(t) dt ≥ r inf
B

K = rKr(x).

Taking the infimum over the set of curves .γ ∈ ACploc joining x and y, one gets the 
first inequality. 

For the second inequality, let us fix .ε > 0. By definition, there exists a Lipschitz 
curve . γ connecting x to y, that one can assume to be parameterized by arc-length, 
s.t. .Lengthd(γ ) ≤ r+ε. In particular, the image of . γ is included in the ball . Bd(x, r+
ε). Thus, one has 

. dK(x, y) ≤ LK(γ ) ≤ (r + ε)Kr+ε(x)

and the second inequality follows by sending .ε → 0. Indeed, the mapping . r →
Kr(x) is continuous on . R+ since K is uniformly continuous on compact sets and 
since bounded closed subsets of X are compact (assumption (H1)). ⨅⨆
Proof (of Proposition 1.25) The proof is divided into six steps. 

Step 1: . dK is a metric. First note that . dK is finite on .X × X. Indeed, given two 
points .x, y ∈ X, just take a Lipschitz curve connecting them, and use . LK(γ ) ≤
Ld(γ ) supIm(γ ) K < +∞. The triangle inequality for . dK is a consequence of the 
stability of the set .ACploc under concatenation. The fact that .dK(x, y) = 0 implies 
.x = y is an easy consequence of the finiteness of the set .{K = 0}. Indeed, if .x /= y, 
then any curve .γ : x I→ y has to connect .Bd(x, ε) to .Bd

c(x, 2ε) for all .ε > 0 small 
enough. This implies that .LK(γ ) ≥ ε infC K , where .C = {y : ε ≤ d(x, y) ≤ 2ε}.



38 1 One-Dimensional Variational Problems

But for . ε small enough, C does not intersect the set .{K = 0} so that .infC K > 0. In  
particular, .dK(x, y) ≥ ε infC K > 0. 

Step 2: . dK and d are equivalent on d-compact sets. Take a compact set . Y ⊂
X, and assume .Y ⊂ Bd(x0, R) just to fix the ideas. Consider the identity map 
from .(Y, d) to .(Y, dK). It is an injective map between metric spaces. Moreover, 
it is continuous, since, as a consequence of Lemma 1.27, we have  .dK ≤ Cd on 
.Y × Y , where .C = supBd(x0,3R) K < +∞ (note that the closed ball .Bd(x0, 3R) is 
d-compact, and that we assumed .d = geod since .(X, d) is a length space). Hence, 
as every injective continuous map defined on a compact space is a homeomorphism, 
d and . dK are equivalent (on Y ). 

Step 3: every ball in .(X, dK) is d-bounded. This is a consequence of assumptions 
(H1) and (H3). Let us take .x0, x ∈ X with .dK(x, x0) ≤ R. By definition, there 
exists a .γ ∈ ACploc(I,X) s.t. .γ : x0 I→ x and .LK(γ ) ≤ dK(x0, x) + 1. Now, set  
.φ(t) := d(γ (t),∑ ): since the function .x I→ d(x,∑ ) has Lipschitz constant equal 
to 1, we have .φ ∈ ACploc(I,R) and .|φ'(t)| ≤ |γ '(t)| a.e. Take the antiderivative 
.h : R+ → R

+ of the function . κ (the one in assumption (H3)) , i.e. .h' = κ with 
.h(0) = 0, and compute .[h(φ(t))]' = κ(φ(t))φ'(t). Hence, 

. |[h(φ(t))]'| = κ(φ(t))|φ'(t)| ≤ K(γ (t)) |γ '(t)|

and .h(d(γ (t),∑ )) ≤ h(d(x0, ∑ )) + LK(γ ) ≤ h(d(x0, ∑ )) + R + 1. Since 
.lims→∞ h(s) = +∞, this provides a bound on .d(x,∑ ), which means that the ball 
.BdK

(x0, R) is d-bounded. 
Step 4: every closed ball in .(X, dK) is .dK -compact. Now that we know that 

closed balls in .(X, dK) are d-bounded, since .(X, d) is proper, we know that they are 
contained in d-compact sets. But on these sets d and . dK are equivalent, hence these 
balls are also .dK -precompact and, since they are closed, .dK -compact. 

Step 5: proof of Statement 4. Let .γ : I → X be a d-locally Lipschitz curve 
valued in X. Thanks to the second inequality in Lemma 1.27, . γ is also .dK -locally 
Lipschitz. Now, Lemma 1.27 provides 

. Kr(γ (t))
d(γ (t), γ (s))

|t − s| ≤ dK(γ (t), γ (s))

|t − s| ≤ Kr(γ (t))
d(γ (t), γ (s))

|t − s|
with .r := d(γ (t), γ (s)). In the limit .s → t we get 

. K(γ (t)) |γ '|(t) ≤ |γ '|K(t) ≤ K(γ (t)) |γ '|(t) a.e.,

where the continuity of .r → Kr(x) and .r → Kr(x) on . R+ have been used. 
Last step: proof of Statement 5. This is an easy consequence of Statement 4. 

Indeed, by additivity of . LK and .LengthdK
we can check the validity of the statement 

for curves which are locally AC (and not only piecewise locally AC), and the 
statement comes from the integration in time of the last equality in Statement 4. ⨅⨆
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1.4.5 An Application to Heteroclinic Connections 

In this section we move to a different variational problem, i.e. our aim is to 
investigate the existence of a global minimizer of the energy 

. EW(γ ) =
ˆ
R

(
1

2
|γ '(t)|2 + W(γ (t))

)
dt,

defined over locally Lipschitz curves .γ : R → X such that .γ (±∞) = x± (in the 
sense that they admit limits at .±∞). Here .W : X → R

+ is a continuous function, 
called the potential in the sequel, and .x± ∈ X are two wells, i.e. .W(x±) = 0. Note  
that .W(x±) = 0 is a necessary condition for the energy of . γ to be finite. We will 
see how to attack this problem, whose main difficulty comes from the fact that the 
interval where curves are defined is not bounded and compactness is lacking, via 
the techniques concerning weighted geodesics that we developed here before. This 
problem, which allows us to find solutions to the equation .γ '' = W '(γ ) with given 
boundary conditions at .±∞, is very classical and it has been studied, for instance, 
in [7, 18, 90, 184, 188]. The approach which is presented here is essentially taken 
from [150] and also appears in [201]. The results of [150] have been extended in 
[151] to the infinite-dimensional case with applications to the PDE .∆u = W '(u). 

The main result of this section is the following: 

Theorem 1.28 Let us take .(X, d) a metric space, .W : X → R+ a continuous 
function and .x± ∈ X such that: 

(H) .(X, d,K) satisfies hypotheses (H1), (H2), (H3) of the previous section, where 
.K := √

2W . 
(STI) .W(x−) = W(x+) = 0 and . dK (defined above) satisfies the following strict 

triangle inequality on the set .{W = 0}: for all . x ∈ X \ {x−, x+} s.t. W(x) =
0, .dK(x−, x+) < dK(x−, x) + dK(x, x+). 

Then, there exists a heteroclinic connection between . x− and . x+, i.e. . γ ∈ Lip(R;X)

such that 

. EW(γ ) = inf{EW(σ) : σ ∈ ACploc(R, X), σ (±∞) = x±}.

Moreover, .EW(γ ) = dK(x−, x+). 

Proof This theorem is a consequence of Theorem 1.26 and the following conse-
quence of Young’s inequality: 

.for all γ ∈ ACploc(R, X), EW(γ ) ≥ LK(γ ), (1.8) 

where .K := √
2W . Indeed, thanks to assumption (H), Theorem 1.26 provides an 

.LK -minimizing curve .γ0 : I → X, that one can assume to be parameterized by .LK -
arc length (and injective by minimality), connecting . x− to . x+. Thanks to assumption
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(STI), it is clear that the curve . γ0 cannot meet the set .{W = 0} at a third point 
.x /= x±: in other words .K(γ (t)) > 0 on the interior of I . Thus, . γ0 is also d-locally 
Lipschitz on I (and not only piecewise locally Lipschitz). In particular, one can 
reparameterize the curve . γ0 by .Ld -arc length, so that .|γ '

0| = 1 a.e. in I . Note that, 
since d and . dK are equivalent on .Im(γ0), . γ0 remains .dK -continuous, and . γ0 is even 
.dK -Lipschitz as .dK(γ (t), γ (s)) ≤ LK(γ(t,s)) ≤ supK ◦ γ × Ld(γ(t,s)) ≤ C|t − s|. 
In particular, . γ0 is still .LK -minimizing. 

Then, in view of (1.8), it is enough to prove that . γ0 can be reparameterized into 
a locally Lipschitz curve . γ satisfying the equipartition condition .|γ '| = K ◦ γ a.e., 
for which (1.8) becomes an equality. 

Namely, we look for an admissible curve .γ : R → X of the form . γ (t) =
γ0(ϕ(t)), where .ϕ : R → I is . C1, increasing and surjective. For . γ to satisfy 
.|γ '|(t) = K(γ (t)) a.e., we need . ϕ to solve the ODE 

.ϕ'(t) = F(ϕ(t)), (1.9) 

where .F : I → R is the continuous function defined by .F = K ◦ γ0 on I and 
.F ≡ 0 outside . I . Thanks to the Peano theorem, (1.9) admits at least one maximal 
solution .ϕ0 : J = (t−, t+) → R such that .0 ∈ J and .ϕ0(0) is any point inside 
I . Since F vanishes outside I , we know that .Im(ϕ0) ⊂ I . Moreover, since . ϕ0 is 
non-decreasing on I , it converges to two distinct stationary points of the preceding 
ODE. As .F > 0 inside I , one has .limt→t+ ϕ0(t) = sup I and .limt→t− ϕ0(t) = inf I . 
We deduce that . ϕ0 is an entire solution of the preceding ODE, i.e. .I = R. Indeed, 
if .I /= R, say  .t+ < +∞, then one could extend . ϕ0 by setting .ϕ0(t) = sup I for 
.t > t+. Finally, the curve .γ := γ0◦ϕ0 satisfies .γ (±∞) = x±, it is locally Lipschitz 
(by composition), and .|γ '|(t) = K(γ (t)) a.e. Thus, 

. EW(γ ) = LK(γ ) = LdK
(γ ) = LdK

(γ0) = dK(x−, x+)

≤ inf{EW(σ) : σ ∈ ACploc(R;X), σ (±∞) = x±}.

Namely, . γ minimizes .EW over all admissible connections between . x− and . x+. ⨅⨆
• It is easy to see that the equipartition of the energy, that is, the identity . |γ '|2(t) =

2W(γ (t)), is a necessary condition for critical points of . EW . 
• The assumption (STI) is not optimal but cannot be removed, and is quite standard 

in the literature. Without this assumption, a geodesic . γ could meet the set . {W =
0} at a third point .x /= x±. In this case, it is not always possible to parameterize 
. γ in such a way that .|γ '|(t) = K(γ (t)). 

• However, if .K = √
2W is not Lipschitz, it is possible that there exists a 

heteroclinic connection from . x− to . x+ meeting .{W = 0} at a third point 
.x /= x±. Indeed, if .lim infy→x K(y)/d(y, x) > 0, then, there exists a heteroclinic 
connection . γ − from . x− to x which reaches x in finite time (say, .γ −(t) = x for 
.t ≥ 0). Similarly, there exists a heteroclinic connection . γ + from x to . x+ such
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that .γ +(t) = z for .t ≤ 0. Thus, there exists a heteroclinic connection between 
. x− and . x+ obtained by matching . γ − and . γ +. 

1.5 The Ramsey Model for Optimal Growth 

In this section we propose a detailed and rigorous treatment of the Ramsey model 
that we introduced in Sect. 1.1, proving the existence of solutions and studying them 
using a natural and original approach taken from [180] and based on the use of the 
BV space. 

Box 1.8 Memo—Bounded Variation Functions in One Variable 

BV functions are defined as . L1 functions whose distributional derivatives are 
measures (see Chap. 6). In dimension one this has a lot of consequences. In 
particular these functions coincide a.e. with functions which have bounded 
total variation in a pointwise sense. For each .f : [a, b] → R define 

. T V (f ; [a, b]) := sup

{∑N−1
i=0 |f (ti+1) − f (ti)| :
a = t0 < t1 < t2 < · · · < tN = b

}
.

Note that the definition of the total variation T V  is essentially the same 
as .Length, the only difference is that we do not apply it only to continuous 
curves. Functions of bounded variation (BV) are defined as those f such that 
.T V (f ; [a, b]) < ∞. It is easy to check that BV functions form a vector 
space, and that bounded monotone functions are BV (if f is monotone we 
have .T V (f ; [a, b]) = |f (b) − f (a)|). Lipschitz functions are also BV and 
.T V (f ; [a, b]) ≤ Lip(f )(b − a). On the other hand, continuous functions are 
not necessarily BV (but absolutely continuous functions are BV). 

BV functions have several properties: 
Properties of BV functions in . R – If  .T V (f ; [a, b]) < ∞ then f is the 

difference of two monotone functions (in particular we can write . f (x) =
T V (f ; [a, x]) − (T V (f ; [a, x]) − f (x)), both terms being non-decreasing 
functions); it is a bounded function and .sup f − inf f ≤ T V (f ; [a, b]); it has 
the same continuity and differentiability properties of monotone functions (it 
admits left and right limits at every point, it is continuous up to a countable 
set of points and differentiable a.e.). 

In particular, in 1D, we have .BV ⊂ L∞. 
We also have a very important compactness result: given a sequence . fn of 

BV functions on an interval I such that .T V (fn; I ) is bounded, there exists a 
subsequence and a limit function f which is also BV such that . fn(t) → f (t)

(continued)
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Box 1.8 (continued) 
for all .t ∈ I which are continuity points for f , i.e. for all but a countable set 
of points t . 

We finish by stressing the connections with measures: for every positive 
measure . μ on .[a, b] we can build a monotone function by taking its 
cumulative distribution function, i.e. .Fμ(x) = μ([a, x]) and the distributional 
derivative of this function is exactly the measure . μ. Conversely, every 
monotone non-decreasing function on a compact interval is the cumulative 
distribution function of a (unique) positive measure, and every BV function is 
the cumulative distribution function of a (unique) signed measure. 

We come back to the problem we already described in Sect. 1.1, i.e. 

.

max
c

ˆ ∞

0
e−rtU(c(t)) dt subject to

k'(t) = f (k(t), t) − c(t)

k(t) ≥ 0, c(t) ≥ 0 a.e. k(0) = k0 fixed.

(1.10) 

We assume that U is concave, non-negative and increasing, with .U '(∞) = 0, and 
that .f (·, t) is also concave for every t . 

We will now give a precise functional setting for Problem (1.10). The choice 
is motivated by the uniform bounds that we obtain below, in Lemma 1.29. Let us 
define, for fixed . k0 ∈ R+

. A :=
{
(k, c) : k ∈ BVloc(R+), c ∈Mloc(R+),

k ≥ 0, k(0) = k0, c ≥ 0,
k' + c ≤ f (k, t)

}
,

where the last inequality is to be intended as an inequality between measures (the 
right-hand side being the measure on .R+ with density .f (k(·), ·)). On the set of 
pairs .(k, c) (and in particular on . A), we consider the following notion of (weak) 
convergence: we say .(kn, cn) ⇀ (k, c) if . cn and . k'

n weakly-* converge to c and 
. k', respectively, as measures on every compact interval .I ⊂ R+. It is important to 
observe that, thanks to the fact that the initial value .k(0) is prescribed in . A, the weak 
convergence as measures .k'

n ⇀ k' also implies .kn → k a.e., as we have 

.kn(t) = k0 +
ˆ t

0
dk'

n → k0 +
ˆ t

0
dk' = k(t)
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for every t which is not an atom for . k' (i.e. every continuity point t for k). This 
condition is satisfied by all but a countable set of points t . 

Lemma 1.29 Consider any pair .(k, c) ∈ A. Then, .k ∈ L∞(R+), and for any 
compact subset .I ⊂ R+, we have .‖c‖M(I ) ≤ C and .‖k'‖M(I ) ≤ C, with the 
constant C depending on the choice of I but not on .(k, c). In particular if .I = [0, t], 
we can choose .C = C(t) = C̄0 + C̄1t for suitable .C̄0, C̄1. 

Proof Consider first the constraint 

.k' + c ≤ f (k, t), (1.11) 

where the inequality is an inequality between measures. Since c is non-negative and 
f is negative for large k (say for .k ≥ k̄), k is bounded from above by .max{k(0), k̄}. 
Hence, .k ∈ L∞(R+). 

We return to (1.11), and note that, since the right-hand side is positive and 
bounded above by . C1, we have  .k'(t) ≤ C1, for any t . This provides upper . L∞
bounds for . k', but we also need lower bounds if we want to bound . k' in .∈Mloc(R+). 
We break up . k' into its positive and negative parts as .k' = (k')+−(k')−. The positive 
part is bounded, by (1.11), and the upper bound is . C1. We proceed to obtain a bound 
for .(k')−. Clearly, 

. k(t) − k(0) =
ˆ t

0
dk' =

ˆ t

0
(k')+(s) ds −

ˆ t

0
d(k')−,

which, using .k(t) ≥ 0 and the upper bound .(k')+ ≤ C1, leads to the estimate 

. − k(0) ≤ k(t) − k(0) =
ˆ t

0
(k')+(s) ds −

ˆ t

0
d(k')− ≤ C1 t −

ˆ t

0
(k')−,

i.e. 

.

ˆ t

0
(k')− ≤ k0 + C1 t. (1.12) 

This allows us to estimate the total mass of .|k'| = (k')+ + (k')− as 

.

ˆ t

0
|k'| =

ˆ
0
(k')+ +

ˆ
0
(k')− ≤ C1 t + k0 + C1 t = k0 + 2C1 t, (1.13) 

where we used  (1.12). This estimate implies .‖k'‖M(I ) < C for any compact . I =
[0, t], where C depends on t . 

Once we have the desired bound for . k' we return to (1.11), which yields . 0 ≤ c ≤
C1 − k', from which the desired bound on c follows. ⨅⨆
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The above lemma is the one which justifies the choice of the space BV as a 
functional setting. Indeed, Lemma 1.29 provides suitable compactness in this space, 
while the same could not be obtained in stronger spaces such as .W 1,p. 

We now define the quantity which is optimized, in this functional setting. Define 

. J (c) :=
ˆ ∞

0
e−rtU(cac(t)) dt,

where . cac is the absolutely continuous part of the measure c. 

Box 1.9 Memo—Radon–Nikodym Decomposition 

Given a finite measure . μ and a positive .σ -finite measure .ν ≥ 0 on the same 
space X, we say that . μ is absolutely continuous w.r.t. . ν (and we write .μ ⪡ ν) 
if .ν(A) = 0 implies .μ(A) = 0 for every measurable set A. We say that . μ is 
orthogonal to . ν if . μ is concentrated on a set A such that .ν(A) = 0. 

Two important facts can be proven: 

• we have .μ ⪡ ν if and only if there exists a function .f ∈ L1(ν) such that 
.μ = f ·ν, i.e. we have .μ(A) = ´

A
f dν; such a function is called a density 

of . μ w.r.t. . ν; 
• for any pair .(μ, ν) we can decompose . μ into two parts, . μ = μac + μsing

where .μac ⪡ ν and .μsing is singular, i.e. orthogonal w.r.t. . ν. 

Combining the two statements we obtain the well-known Radon–Nikodym 
theorem saying that for every .μ, ν there exists an .f ∈ L1(ν) such that . μ =
f · ν + μsing. Moreover, we often identify, by abuse of language, the measure 
.μac and its density f , so that .μac can be considered as a function belonging 
to .L1(ν). In most cases, when X is a subspace of Euclidean space, we use for 
. ν the Lebesgue measure on X. 

For notational purposes, we also introduce, for .T ∈ R+ ∪ {+∞}, the quantity 
.JT : Mloc(R+) → [0,+∞]: 

. JT (c) :=
ˆ T

0
e−rtU(cac(t)) dt,

and we will use the notations J and . J∞ interchangeably. 

Lemma 1.30 The following hold: 

1. For any .ϵ > 0, there exists a .T = T (ϵ) < ∞ such that .J∞(c) ≤ JT (c) + ϵ for 
any .(k, c) ∈ A (in particular, .T (ϵ) does not depend on c). 

2. Whenever .(kn, cn) ⇀ (k, c) in . A we have .lim sup J∞(cn) ≤ J∞(c), i.e. .J∞ is 
u.s.c.



1.5 The Ramsey Model for Optimal Growth 45

Proof We treat the two points in order 

1. We write 

. J∞(c) = JT (c) +
ˆ ∞

T

e−rtU(cac(t)) dt

and we use the fact that U , as it is concave, is bounded above by an affine 
function .U(c) ≤ A + B c. The integral .

´∞
T

e−rtA dt can be made small as 
soon as T is chosen large enough. For the integral .

´∞
T

e−rtBcac(t) dt we use 
the bound in Lemma 1.29, applied to the intervals .[T + j, T + j + 1]. We have  
.
´ T +j+1
T +j

cac(t) dt ≤ C̄0 + C̄1(T + j + 1) and hence 

. 

ˆ T +j+1

T +j

e−rtBcac(t) dt ≤ B(C̄0 + C̄1(T + j + 1))e−j e−T .

The series of these quantities as j ranges from 0 to . ∞ converges for every T , and 
can be also made small just by choosing T large enough. 

2. Consider such a sequence .(kn, cn). By (i), for any .ϵ > 0, there exists a . T = T (ϵ)

such that 

.J∞(cn) ≤ JT (cn) + ϵ, ∀ n ∈ N. (1.14) 

Furthermore, using .U ≥ 0, 

.JT (c) ≤ J∞(c), ∀ c ∈Mloc(R+). (1.15) 

The functional . JT is upper semicontinuous with respect to weak. −∗ convergence 
in .Mloc(R+). Indeed, since U is concave, .−U is a convex function, and we can 
apply the semicontinuity results of Sect. 3.3. 

Then, taking the limsup on both sides of (1.14) yields 

. lim sup
n

J∞(cn) ≤ lim sup
n

JT (cn) + ϵ ≤ JT (c) + ϵ ≤ J∞(c) + ϵ,

where we used first the upper semicontinuity of . JT and then (1.15). Taking the 
limit as .ϵ → 0+ we obtain the upper semicontinuity of . J∞. 

⨅⨆
Proposition 1.31 The optimization problem (1.10) admits a maximizer. 

Proof Consider a maximizing sequence .(kn, cn) for (1.10). Since . (kn, cn) ∈ A
for any interval .I = [0, T ], we conclude by Lemma 1.29 that . kn is bounded in 
.BVloc(R+) and . cn in .Mloc(R+) (in the sense that we have bounds on the mass 
of . k'

n and . cn on any compact interval of . R+). Using the weak. −∗ compactness of 
bounded sets in the space of measures on each compact interval, together with a
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suitable diagonal extraction procedure, we obtain the existence of . k ∈ BVloc(R+)

and .ζ, c ∈Mloc(R+) such that up to subsequences 

. kn → k a.e.

k'
n

∗
⇀ ζ inMloc(R+),

cn
∗
⇀ c inMloc(R+).

By looking at the distributional derivatives we can see that we necessarily have 
.ζ = k'. 

Our first task is to show admissibility of the limit .(k, c). It is straightforward to 
check .c ≥ 0 and .k ≥ 0. It remains to check .k' + c ≤ f (k, t). In order to see this, 
note first that since .(kn, cn) ∈ A for every .n ∈ N, we have  

.k'
n + cn ≤ f (kn, t), ∀ n ∈ N. (1.16) 

We need to pass to the limit as .n → ∞ (along the converging subsequence) in the 

above. The left-hand side is linear and .k'
n + cn

∗
⇀ k' + c. Some care must be taken 

for the nonlinear right-hand side. Since f is continuous and bounded from above, 
it is sufficient to use the pointwise convergence .kn(t) → k(t) a.e. in .t ∈ [0, T ], 
guaranteed by the local BV bound on . kn. 

To show that .(k, c) is a maximizer for Problem (1.10), we use the upper 
semicontinuity result, .lim supn J∞(cn) ≤ J∞(c) contained in Lemma 1.30. ⨅⨆

The above result guarantees the existence of a maximizer .(k, c) where both . k'
and c are measures. In order to come back to a more standard functional setting we 
will show that, actually, such measures have no singular part. In terms of the state 
function k, this means .k ∈ W

1,1
loc . This result is crucial both for the mathematical 

analysis of the optimization problem and for its economic meaning. 

Lemma 1.32 Any optimizer .(k, c) satisfies .c ∈ L1
loc(R+). 

Proof Let us recall that, in general, any c such that .(k, c) ∈ A consists of 
an absolutely continuous and a singular part with respect to Lebesgue measure 
.c = cac + csing. 

Assume that .(k, c) is optimal. Given an interval .I = [a, b] ⊂ R+, we build a 
new competitor .(k̃, c̃) in the following way: outside I , we take  .k̃ = k and .c̃ = c; 
then we choose . ̃k to be affine on .[a, b], connecting the values .k(a−) to .k(b+); . ̃c
restricted to .[a, b] is an absolutely continuous measure, with constant density. We 
have to choose the constant value for . ̃c for the inequality .k̃' + c̃ ≤ f (k̃(t), t) to 
be satisfied. Notice that on .[a, b] we have .k̃' = k'([a, b])/(b − a). If we set  . ̂c =
c([a, b])/(b − a) then we have .k̃' + ĉ ≤ ffl b

a
f (k(s), s) ds. Since we can assume f 

to be bounded (k only takes values in a bounded set, and hence so does . ̃k), we have 
.
ffl b

a
f (k(s), s) ds ≤ f (k̃(t), t) + M . Thus, it is sufficient to set .c̃ = ĉ − M , provided 

.ĉ ≥ M .
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Now, suppose that c is not absolutely continuous. Then there exists an . I = [a, b]
such that .csing([a, b]) > M(b − a) + cac([a, b]) (otherwise .csing ≤ M + cac and 
.csing would be absolutely continuous). The interval .[a, b] may be taken as small 
as we want, which means that we can assume .(b − a)e−ra ≤ 2ε0, where we set 
.ε0 := ´ b

a
e−rs ds. We choose such an interval and we build . ̃k and . ̃c as above, since 

we now have .ĉ ≥ M . We now claim we have a contradiction. 
Let us set .m0 = cac([b − a])/(b − a) and .m1 = csing([b − a])/(b − a). The  

optimality of .(k, c) gives 

. 

ˆ b

a

e−rtU(cac(t)) dt ≥
ˆ b

a

e−rtU(c̃(t)) dt.

Using Jensen’s inequality, we get 

. 

ˆ b

a

e−rtU(cac(t)) dt ≤ ε0U

(
1

ε0

ˆ b

a

cac(t)e−rt dt

)

≤ ε0U

(
e−ra

ε0

ˆ b

a

cac(t) dt

)
≤ ε0U(2m0),

and 

. 

ˆ b

a

e−rtU(c̃(t)) dt = ε0U(m0 + m1 − M).

We deduce 

. U(m0 + m1 − M) ≤ U(2m0),

but the interval .[a, b] was chosen so that .m1 > m0+M , which gives a contradiction 
because of the strict monotonicity of U . ⨅⨆

We can use the above result to prove some useful properties of our maximization 
problem. 

Corollary 1.33 For any optimizer .(k, c), we have .k ∈ W
1,1
loc (R+) and saturation of 

the constraint .k' + c = f (k, t). Moreover, the optimal pair .(k, c) is unique. 

Proof First, note that, if .k /∈ W
1,1
loc (R+), then this means that . k' has a negative 

singular part .((k')sing)−. Yet the inequality .k' + c ≤ f (k, t) stays true if we replace 
c with .c + ((k')sing)−, which would be another optimizer. But this contradicts 
Lemma 1.32, since in every optimizer c should be absolutely continuous. 

As soon as we know that both . k' and c are absolutely continuous, it is clear that 
we must have .k' + c = f (k, t). Otherwise, we can replace c with .f (k, t) − k' and 
get a better result (we needed to prove the absolute continuity of . k', since adding a 
singular part to c does not improve the functional).
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Concerning uniqueness, we first stress that the functional we are maximizing is 
not strictly concave, for two reasons: on the one hand we did not assume U to be 
strictly concave, and on the other hand, anyway, there would be an issue as far as the 
singular part of c is involved. Yet, now that we know that optimizers are absolutely 
continuous and saturate the differential inequality constraint, uniqueness follows 
from the strict concavity of f . 

Indeed, suppose that .(k1, c1) and .(k2, c2) are two minimizers. Then, setting . c3 =
(c1 + c2)/2 and .k3 = (k1 + k2)/2, the pair .(k3, c3) is also admissible (since f 
is concave in k) and optimal (since the cost is concave in c). Yet, strict concavity 
of f implies that .(k3, c3) does not saturate the constraint, which is a contradiction 
with the first part of the statement, unless .k1 = k2. As a consequence, we obtain 
uniqueness of k in the optimal pairs .(k, c). But this, together with the relation . k' +
c = f (k, t), which is now saturated, also provides uniqueness of c. ⨅⨆

In [180] other bounds on the optimal c are proven (in particular upper and lower 
bounds on any bounded interval), but we will not insist on this here. 

1.6 Non-autonomous Optimization in BV 

In Sect. 1.2, as a very classical example for existence, we discussed problems of the 
form .min

´ 1
0 |u'|p + F(t, u), in particular for .p = 2, but we noted that .p > 1 does 

not add substantial difficulties. In this section we discuss the case .p = 1, which 
naturally requires the use of the space BV. As we are only dealing with one-variable 
BV functions, the theory that we need is that described in Box 1.8. 

The reader will observe that, in the case .F = 0, this amounts to the geodesic 
problem studied in Sect. 1.4, where there was no need to use the space BV, and 
we found a solution as a Lipschitz curve. The reason lies in the possibility of 
reparameterizing the curves without changing their length. In the presence of an 
extra running cost F this is no longer possible, since the term .

´
F(t, u(t)) dt is not 

invariant under reparameterization. 
The problem that we will consider will then be of the form 

. min

{
T V (γ ; [0, 1])+

ˆ 1

0
F(t, γ (t)) dt+ψ0(γ (0))+ψ1(γ (1)) : γ ∈ BV([0, 1])

}
,

(1.17) 

where .T V (γ ; [0, 1]) stands for the total variation of . γ on the interval .[0, 1], see  
Box 1.8, and the space .BV([0, 1]) is the space of BV functions valued in . Rd The 
functions .ψ0, ψ1 : Rd → [0,+∞] are just assumed to be l.s.c., and among possible 
choices we mention those which impose Dirichlet boundary conditions, i.e. 

.ψi(x) =
{
0 if x = xi,

+∞ if not.
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We stress the fact that functions in BV spaces are not continuous and can 
have jumps; even if we consider that BV functions of one variable are defined 
pointwisely, it is possible to change their value at a point very easily. In particular, 
Dirichlet boundary conditions have a very particular meaning: a curve which takes 
the value . x0 at .t = 0 but immediately jumps at another point at .t = 0+ is considered 
to satisfy the condition .γ (0) = x0. In particular, it is possible to freely choose 
a curve . γ on .(0, 1) and then add a jump to . x0 or . x1 at the boundary in order to 
satisfy the corresponding Dirichlet boundary condition, of course adding a price 
.|γ (0+) − x0| or .|γ (1−) − x1| to the total variation. In this way, we could decide to 
identify the values of . γ at .t = 0 or .t = 1 with their right or left limits at these 
points, respectively, and replace Dirichlet boundary conditions with a boundary 
penalization. This could also be done for more general penalizations .ψ0, ψ1, for  
which it is useful to define the relaxed functions 

. ψ̃i(x) := inf
y

|y − x| + ψi(x).

It is important to observe that the functions . ψ̃i are automatically 1-Lipschitz 
continuous, as an inf of .Lip1 functions of the variable x, indexed by the parameter y. 

Box 1.10 Memo—Continuity of Functions Defined as an . inf or . sup

Proposition Let .(fα)α be a family (finite, infinite, countable, uncountable. . . )  
of functions all satisfying the same condition 

. |fα(x) − fα(x')| ≤ ω(d(x, x')).

Consider f defined by .f (x) := infα fα(x). Then f also satisfies the same 
estimate. 

This can be easily seen from .fα(x) ≤ fα(x')+ω(d(x, x')), which implies 
.f (x) ≤ fα(x') + ω(d(x, x')) since .f ≤ fα . Then, taking the infimum over 
. α on the r.h.s. one gets .f (x) ≤ f (x') + ω(d(x, x')). Interchanging x and . x'
one obtains 

. |f (x) − f (x')| ≤ ω(d(x, x')).

In particular, if the function .ω : R+ → R+ satisfies . limt→0 ω(t) = 0
(which means that the family .(fα)α is equicontinuous), then f has the same 
modulus of continuity (i.e. the same function . ω) as the functions . fα . The  same  
idea obviously works for the supremum instead of the infimum.
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In this way the problem (1.17) becomes 

. min

{
T V (γ ; [0, 1])+

ˆ 1

0
F(t, γ (t)) dt+ψ̃0(γ (0+))+ψ̃1(γ (1−)) : γ∈BV([0, 1])

}
,

or, equivalently, we can replace .ψ̃0(γ (0+))+ψ̃1(γ (1−)) with . ψ̃0(γ (0))+ψ̃1(γ (1))
and impose continuity of . γ at .t = 0, 1. 

First, we note that in the case where F does not depend explicitly on time the 
problem becomes trivial and it is completely equivalent to the following static 
problem 

. min
{
F(x) + ψ̃0(x) + ψ̃1(x)

}
.

Indeed, setting .J (γ ) := T V (γ ; [0, 1])+ ´ 1
0 F(γ (t)) dt + ψ̃0(γ (0+))+ ψ̃1(γ (1−)), 

for every curve . γ we have, for every . t0 ∈ (0, 1)

. J (γ ) ≥ ψ̃0(γ (0+))+ψ̃1(γ (1−))+|γ (0+)−γ (t0)|+|γ (1−)−γ (t0)|+inf
t

F (γ (t)).

Using the 1-Lipschitz behavior of . ψ̃0 and . ψ̃1 we also obtain 

. J (γ ) ≥ ψ̃0(γ (t0)) + ψ̃1(γ (t0)) + inf
t

F (γ (t))

and, fixing .ε > 0 and choosing a point . t0 such that .F(γ (t0)) < inft F (γ (t))+ ε, we  
finally obtain 

. J (γ ) ≥ ψ̃0(γ (t0)) + ψ̃1(γ (t0) + F(γ (t0)) − ε.

This shows that we have .infγ J (γ ) ≥ infx F (x) + ψ̃0(x) + ψ̃1(x). The opposite 
inequality is obvious since we can use constant curves .γ (t) = x in the minimization 
of J . 

Note that, when saying that two optimization problems are equivalent, we do not 
only want to say that their minimal values are the same, but also have a rule on how 
to build a minimizer of one of them from a minimizer of the other. In this case, the 
procedure is the following. 

Given an optimal x one can build an optimal . γ by taking .γ (t) = x for every t . 
Given an optimal . γ one can build an optimal x by considering the set 

.X = {γ (t) : t ∈ [0, 1]}
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and choosing .x ∈ argminX F + ψ̃0+ ψ̃1 (the reason for choosing the closed set X is 
that this guarantees, if F is l.s.c., that a point x attaining this minimum exists, thus 
making a clear rule on how to choose at least a point x out of . γ ). 

In the above discussion we saw that the problem becomes somehow trivial when 
F does not explicitly depend on time, and we will now turn to the case where it does. 
This discussion is taken from [78]. We will start from an approximated problem. 

Lemma 1.34 Let .L : Rd → R be a smooth and uniformly convex function which 
is assumed to be radial: .L(v) := 𝓁(|v|) for a convex and non-decreasing function 
.𝓁 : R+ → R. Let .F : [0, 1] × R

d → R be a . C2 time-dependent potential satisfying 
.D2

xxF (t, x) ≥ c0I for a certain constant .c0 > 0 and .|∂t∇xF (t, x)| ≤ C0, and 
.ψ0, ψ1 : Rd → R two Lipschitz continuous functions. Consider a solution . γ of 

. min

{ˆ 1

0
(L(γ '(t)) + F(t, γ (t))) dt + ψ0(γ (0)) + ψ1(γ (1)) : γ ∈ H 1([0, 1])

}
.

Then . γ is Lipschitz continuous and satisfies .|γ '| ≤ C, where C is defined by 

. C := max

{
C0

c0
, (𝓁')−1(Lipψ0), (𝓁

')−1(Lipψ1)

}

(the function . 𝓁' is strictly increasing as a consequence of the uniform convexity of 
L). 

Proof Let us start from the Euler–Lagrange system of the above optimization 
problem. We have 

. 

⎧⎪⎪⎨
⎪⎪⎩

(∇L(γ '))' = ∇xF (t, γ (t))

∇L(γ '(0)) = ∇ψ0(γ (0))

∇L(γ '(1)) = −∇ψ1(γ (1)).

First we observe that .γ ∈ C0 and .F ∈ C1 imply that the right-hand side in the 
first equation is a continuous function, so that we have .∇L(γ ') ∈ C1. Inverting the 
injective function .∇L we obtain .γ ∈ C2 and, since .F ∈ C2, we obtain .γ ∈ C3. 

Then, the transversality conditions show .|∇L(γ '(i))| ≤ Lipψi for .i = 0, 1. 
Using .|∇L(v)| = 𝓁'(|v|) we see that at .t = 0, 1 the condition .|γ '| ≤ C is satisfied. 

Let us now consider the maximal value of .|γ '(t)|. This maximum exists on . [0, 1]
since .γ ∈ C1 and if it is attained on the boundary .t = 0, 1 the desired Lipschitz 
bound .|γ '| ≤ C is satisfied. We can now assume that it is attained in .(0, 1). Since 
. 𝓁' is an increasing and non-negative function, the maximum points of .|γ '| and of 
.|∇L(γ ')|2 are the same. We can then write the optimality condition differentiating 
once and twice in t : we have  

.∇L(γ ') · (∇L(γ '))' = 0; ∇L(γ ') · (∇L(γ '))'' + |(∇L(γ '))'|2 ≤ 0.



52 1 One-Dimensional Variational Problems

In the last condition we can ignore the non-negative term .|(∇L(γ '))'|2 and observe 
that, since .∇L(γ ') and . γ ' are vectors with the same orientation (. ∇L(γ ') =
𝓁'(|γ '|)

|γ '| γ '), we have .γ ' · (∇L(γ '))'' ≤ 0. 
We now differentiate the Euler–Lagrange equation in time and take the scalar 

product with . γ ', obtaining 

. 0 ≥ γ '(t) · (∇L(γ '(t)))'' = (∇xF (t, γ (t)))' · γ '(t)

= ∂t∇xF (t, γ ) · γ '(t) + γ '(t) · D2
xxF (t, γ (t))γ '(t).

We deduce 

. c0|γ '(t)|2 ≤ |γ '(t)||∂t∇xF (t, γ )|,

which implies .|γ '(t)| ≤ C0
c0

≤ C and concludes the proof. ⨅⨆
We now use the above result on an approximation of the original problem in BV. 

Proposition 1.35 Consider 

. min
{
TV(γ ; [0, 1])+´ 1

0 F(t, γ (t)) dt+ψ0(γ (0+))+ ψ1(γ (1−)) : γ ∈BV([0, 1])
}

(1.18) 

where .F : [0, 1] × R
d → R is a .C2 time-dependent potential satisfying 

.D2
xxF (t, x) ≥ c0I for a certain constant .c0 > 0 and .|∂t∇xF (t, x)| ≤ C0, and 

.ψ0, ψ1 ∈ Lip1(R
d) are two given penalization functions. 

Then a minimizer . γ for the above problem exists, is unique, and is actually 
Lipschitz continuous with .|γ '| ≤ C0

c0
. 

Proof Given .ε > 0, we define .𝓁ε : R+ → R+ via .𝓁ε(s) := √
ε2 + s2 + εh(s), 

where .h : R+ → R+ is a smooth, convex, and increasing function, with 
.lim infs→∞ h''(s) > 0. We then define .Lε : R

d → R via .Lε(v) = 𝓁ε(|v|), so  
that . Lε is smooth, uniformly convex, and radial.2 Since the second derivative of 
.s I→ √

ε2 + s2 is strictly positive, it is enough to guarantee this lower bound far 
from 0. 

We also choose some numbers .αε < 1 in such a way that .limε→0 αε = 1 and 

.limε→0
ε2

1−α2
ε

= 0 (for instance .αε = √
1 − ε).

2 Note that the easiest choice for h is .h(s) = 1
2 s2, but other choices are possible and reasonable, 

and the only role of h is to guarantee a lower bound on the Hessian of . Lε (and in particular, to 
provide a quadratic behavior to . 𝓁ε so that the problem is well-posed in . H 1). Later on we will see 
the interest in other choices of h. 
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We consider the solution . γε of the variational problem 

. min

{ˆ 1

0
(Lε(γ

'(t))+F(t, γ (t))) dt+αε(ψ0(γ (0))+ψ1(γ (1))) : γ ∈ H 1([0, 1])
}

.

The solution exists by applying the same methods as in Sect. 1.2, and is unique 
because of the convexity of the problem, the function F being strictly convex, by 
assumption, in the variable . γ . 

We want to apply Lemma 1.34 to this approximated optimization problem. We 
first compute 

. 𝓁'
ε(s) = s√

ε2 + s2
+ εh'(s) ≥ s√

ε2 + s2

and observe that we have .(𝓁'
ε)

−1(r) ≤ rε√
1−r2

. Since . Lip(αεψi) = αε Lip(ψi) ≤ αε

we obtain from Lemma 1.34 

. |γ '
ε| ≤ max

{
C0

c0
,

αεε√
1 − α2

ε

}
,

and we observe that our choice of . αε implies that the second term in the max above 
tends to 0 as .ε → 0. This means that the Lipschitz constant of . γε is at most . C0

c0
if . ε

is small enough. 
By comparing . γε with the constant curve .γ = 0 we obtain 

. 

ˆ 1

0
F(t, γε(t)) dt + αε(ψ0(γε(0)) + ψ1(γε(1)))

≤
ˆ 1

0
F(t, 0) dt + αε(ψ0(0) + ψ1(0)) ≤ C.

Let us define .Mε := supt |γε(t)| and .mε := inft |γε(t)|. Using the growth condition 
on F and the Lipschitz behavior of .ψ0, ψ1 we have 

. 

ˆ 1

0
F(t, γε(t)) dt + αε(ψ0(γε(0)) + ψ1(γε(1))) ≥ c0

m2
ε

2
− CMε

for some large constant C. Moreover, the uniform Lipschitz condition on . γε shows 
.Mε − mε ≤ C, so that we obtain an upper bound on . mε and hence on . Mε, 
independent of . ε. This shows that the sequence .(γε)ε is an equibounded and 
equicontinuous sequence of curves. We can then apply the Ascoli–Arzelà theorem 
to obtain a limit curve .γε → γ0. This curve . γ0 is of course .

C0
c0
-Lipschitz continuous, 

and we want to prove that it solves Problem (1.18). This is a typical question in 
optimization, and a general theory, called .┌-convergence, is developed in Chap. 7.
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The optimality of . γε, together with the inequality .Lε(v) ≥ |v|, shows that we 
have 

. T V (γε; [0, 1]) +
ˆ 1

0
F(t, γε(t)) dt + αε(ψ0(γε(0)) + ψ1(γε(1)))

≤
ˆ 1

0
Lε(γ

') dt +
ˆ 1

0
F(t, γ (t)) dt + αε(ψ0(γ (0)) + ψ1(γ (1)))

for every .γ ∈ H 1. If we send .ε → 0 and use the lower semicontinuity of T V  for 
the uniform convergence we obtain 

. T V (γ0; [0, 1]) +
ˆ 1

0
F(t, γ0(t)) dt + αε(ψ0(γ0(0)) + ψ1(γ0(1)))

≤
ˆ 1

0
|γ '| dt +

ˆ 1

0
F(t, γ (t)) dt + ψ0(γ (0)) + ψ1(γ (1)),

where we used the dominated convergence .Lε(γ
') → |γ '| as .ε → 0, and .αε → 1. 

This shows the optimality of . γ0 compared to any .H 1 curve. It is now enough 
to approximate any BV curve with .H 1 curves. We take .γ ∈ BV([0, 1];Rd), we  
define it as equal to .γ (0+) on .[−1, 0] and to .γ (1−) on .[1, 2] and we convolve it 
with a smooth compactly supported kernel . ηδ tending to the identity so as to smooth 
it, thus obtaining a sequence of curves .γ ∗ ηδ such that . T V (γ ∗ ηδ; [−1, 2]) =´ 2
−1 |(γ ∗ ηδ)

'(t)| dt ≤ T V (γ, (0, 1)); moreover, .γ ∗ ηδ is uniformly bounded and 
converges to . γ at all continuity points of . γ , which means that the convergence holds 
a.e. and at the boundary point. This proves 

. lim sup
δ→0

ˆ 1

0
|(γ ∗ηδ)

'| dt +
ˆ 1

0
F(t, γ ∗ηδ(t)) dt +ψ0(γ ∗ηδ(0))+ψ1(γ ∗ηδ(1))

≤ T V (γ, (0, 1)) +
ˆ 1

0
F(t, γ (t)) dt + ψ0(γ (0)) + ψ1(γ (1))

and concludes the proof of the optimality of . γ0. 
This proof contains a proof of the existence of an optimal curve for (1.18), and 

uniqueness comes from strict convexity (which is guaranteed by the term F , not by 
the penalization of the time-derivative). ⨅⨆

In the case where the target set is . R, we observe some very interesting behavior. 

Proposition 1.36 When .d = 1, i.e. the target space of the curves in Problem (1.18) 
is one-dimensional, the minimizer . γ satisfies .|γ '(t)||∇xF (t, γ (t))| = 0 a.e., i.e. at
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each instant of time either . γ does not move or it is already located at the optimal 
point for .F(t, ·). 
Proof We consider the same approximation as in Proposition 1.35, using  the  
function .h(s) = (s − M)2+ for a very large M . Since the uniform Lipschitz bound 
proven in Lemma 1.34 and Proposition 1.35 makes the behavior of . 𝓁ε for large 
values of s irrelevant, we can write the Euler–Lagrange equation for the minimizer 
. γε in the form 

. ε2(ε2 + |γ '
ε|2)−3/2γ ''

ε = (
L'

ε(γ
'
ε)
)' = ∇xF (t, γε),

where we explicitly computed3 the second derivative of . Lε ignoring the term in h. 
We write this as .ε2γ ''

ε = (ε2+|γ '
ε|2)3/2∇xF (t, γε) and we differentiate it in time, 

thus obtaining 

. ε2γ '''
ε = 3(ε2 + |γ '

ε|2)1/2γ '
ε · γ ''

ε ∇xF (t, γε) + (ε2 + |γ '
ε|2)3/2 (∇xF (t, γε))

' .

Re-using the Euler–Lagrange equation we have 

. ε2γ '''
ε = 3ε2(ε2 + |γ '

ε|2)−1(γ '
ε · γ ''

ε )γ ''
ε + (ε2 + |γ '

ε|2)3/2 (∇xF (t, γε))
' .

We observe that the last term .(ε2 + |γ '
ε|2)3/2 (∇xF (t, γε))

' is bounded thanks to the 
Lipschitz bound on . γε and the regularity of F . We multiply by . γ '

ε and obtain 

. ε2γ '''
ε · γ '

ε = 3ε2(ε2 + |γ '
ε|2)−1(γ '

ε · γ ''
ε )2 + O(1),

where .O(1) stands for a quantity bounded independently of . ε. We then compute 

. ε2
ˆ 1

0
|γ ''

ε |2 dt = −ε2
ˆ 1

0
γ '''
ε · γ '

ε dt +
[
ε2γ '

ε · γ ''
ε

]1
0

≤ C.

The last inequality is justified by the sign of the first term in the product .ε2γ '''
ε · γ '

ε, 
the bound on the other term, and the fact that the boundary term is the product of 
two bounded quantities: . γ '

ε and .ε2γ ''
ε = (ε2 + |γ '

ε|2)3/2∇xF (t, γε). 

3 Note that this computation is based on a 1D cancellation effect, since in higher dimensions we 
have instead 

. D2Lε(v) = (ε2 + |v|2)I − v ⊗ v

(ε2 + |v|2)3/2

and the matrices .|v|2I and .v ⊗ v do not cancel out.
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Coming back to the equality .ε2γ ''
ε = (ε2 + |γ '

ε|2)3/2∇xF (t, γε) we take the . L2

norms of both sides, thus obtaining 

. 

ˆ 1

0
|γ '

ε|6|∇xF (t, γε)|2dt ≤
ˆ 1

0
(ε2 + |γ '

ε|2)3|∇xF (t, γε)|2dt =
ˆ 1

0
ε4|γ ''

ε |2dt ≤ Cε2.

We deduce .
´ 1
0 |γ '

ε|6|∇xF (t, γε)|2 dt → 0 and, using the uniform convergence 
of . γε to the limit optimizer . γ as well as the boundedness of .|γ '

ε| we can also 

write .
´ 1
0 |γ '

ε|6|∇xF (t, γ )|2 dt → 0. The functions . γ '
ε weakly converge in . L6 to . γ '

(actually, the convergence is weak-* in . L∞) and multiplying by the fixed function 
.|∇xF (t, γ )|1/3 ∈ L∞ we preserve the . L6 weak convergence, which implies, thanks 
to the semicontinuity of a norm w.r.t. the weak convergence in the same space 

. ||γ '|∇xF (t, γ )|1/3||L6 ≤ lim inf
ε→0

||γ '
ε|∇xF (t, γ )|1/3||L6 = 0,

and proves the claim. ⨅⨆

1.7 Discussion: Optimal Control and the Value Function 

A mathematical theory which shares many common points with that of the 1D 
calculus of variations is that of optimal control problems. We will see that, 
depending on the definitions that we choose, we can either say that the 1D calculus 
of variations is a particular case of optimal control problems or that optimal control 
problems are a particular case of the 1D calculus of variations. . . 

The problem reads as follows. Given a space X (for instance a metric space) and 
a time horizon .T > 0, consider a measurable function .α : [0, T ] → X, a function 
.f ∈ C0([0, T ] × R

N × X;RN) and a point .x0 ∈ R
N . We then look at the Cauchy 

problem 

.y'(t) = f (t, y(t), α(t)) in [0, T ] with y(0) = x0. (1.19) 

Equation (1.19) is a standard first-order ODE with an extra variable . α, which is 
fixed so far. If f satisfies suitable conditions (for instance it is Lipschitz in its second 
variable), then there exists a unique solution, and this solution depends on . x0 and on 
. α. This solution will be denoted by .yα,0,x0 and, more generally, .yα,t0,x0 will stand 
for the solution of .y'(t) = f (t, y(t), α(t)) in [t0, T ] with y(t0) = x0. 

Given a running cost .= L(t, y, α) and a final cost . Ψ we can consider the problem 
of choosing the function . α so as to solve 

. min

{
J (α) :=

ˆ T

0
L(t, yα,0,x0(t), α(t)) dt + Ψ(yα,0,x0(T )) : α : [0, T ] → X

}
.

(1.20)
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We can now see what we meant when we said that the standard 1D calculus of 
variations problems could be considered as particular cases of optimal control and 
conversely optimal control could be considered as particular cases of 1D calculus 
of variations problems. It is clear that, if one takes .X = R

d and .f (t, x, α) = α, 
then the problem (1.20) becomes precisely .min

´ T

0 L(t, y; y') dt + ψ(y(T )), i.e. 
a standard Bolza problem, one of the most classical and general 1D calculus of 
variations problems. On the other hand, we can also consider that the calculus of 
variations includes all optimization problems where the unknown are functions, and 
in optimal control the unknown is the function . α, even if the functional involves 
the solution of a differential equation where . α is an ingredient (as occurs in many 
shape optimization problems, see for instance Chap. 6); with this in mind, we could 
instead say that optimal control is a particular case of the calculus of variations, and 
more precisely of the 1D calculus of variations, since . α is a function of one variable. 

This is just a matter of taste and does not change what we can say about optimal 
control problems and their interest. We do not want to discuss optimality conditions 
or existence proofs here, but concentrate on a crucial tool, which has mainly been 
developed in the framework of optimal control but is also useful for the calculus of 
variations, which is the value function. 

The value function . ϕ for Problem (1.20) is defined as a function of time and 
space 

. ϕ(t0, x0)

:= min

{ˆ T

t0

L(t, yα,t0,x0(t), α(t)) dt + Ψ(yα,t0,x0(T )) : α : [t0, T ] → X

}
.

(1.21) 

In practice, the value of . ϕ at .(t0, x0) stands for the best possible cost that one can 
achieve in the remaining time after . t0 if currently located at . x0. 

Optimal control theory provides two important pieces of information about . ϕ. 
The first is that it solves, in a suitable sense, a PDE called the Hamilton–Jacobi 
equation. The second is that the knowledge of . ∇ϕ allows us to find the optimal . α in 
the optimal control problems as a function of time and current position. 

More precisely, let us define the Hamiltonian H through 

. H(t, x, p) := sup {p · f (t, x, α) − L(t, x, α) : α ∈ X}.

The function H is convex in p and coincides with the Legendre transform of L (see 
Sect. 4.2.1) when .f (t, x, α) = α. 

The equation solved by . ϕ is then given by 

.(HJ ) − ∂tϕ(t, x) + H(t, x,−∇ϕ(t, x)), ϕ(T , x) = Ψ(x).
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This is a first-order equation, which is coupled with the final condition . ϕ(T , x) =
Ψ(x). If the validity of this final condition can be easily seen (if .t0 = T there is no 
integral term in the definition of . ϕ and we obviously have .yα,t0,x0(T ) = x0 since 
the initial and final time coincide), it is more delicate to see why the PDE should 
be satisfied. We will give a heuristic computation, based on the assumption that all 
involved functions are smooth. 

Indeed, let us take .(t0, x0) and a small parameter .ε > 0. Fix  some  .α0 ∈ X and 
define . xε as the value of .yα,t0,x0 at time .t0 + ε when the control . α is chosen constant 
and equal to . α0. We have .xε = x0 +εf (t0, x0, α0)+o(ε). We can estimate . ϕ(t0, x0)

in terms of .ϕ(t0 + ε, xε), writing 

. ϕ(t0, x0) ≤
ˆ t0+ε

t0

L(t, yα,t0,x0(t), α0) dt + ϕ(t0 + ε, xε)

= εL(t0, x0, α0) + o(ε) + ϕ(t0 + ε, xε),

and we can take the first-order Taylor expansion of . ϕ, thus obtaining 

. ϕ(t0, x0) ≤ εL(t0, x0, α0) + ϕ(t0, x0) + ∂tϕ(t0, x0)ε

+ ∇ϕ(t0, x0) · εf (t0, x0, α0) + o(ε).

If we now subtract .ϕ(t0, x0), divide by . ε and send . ε to 0 we obtain the inequality 

. − ∂tϕ(t0, x0) + (−∇ϕ(t0, x0)) · f (t0, x0, α0) − L(t0, x0, α0) ≤ 0

and, taking the sup over . α0, 

. − ∂tϕ(t0, x0) + H(t0, x0,−∇ϕ(t0, x0)) ≤ 0.

We are now left to prove the opposite inequality. For this, we take the optimal control 
.α : [t0, T ] → X (supposing it exists) starting from .(t0, x0) and the corresponding 
optimal trajectory .yα,t0,x0 , and we write the equality 

. ϕ(t0, x0) =
ˆ t1

t0

L(t, yα,t0,x0(t), α) dt + ϕ(t1, yα,t0,x0(t1)).

If we differentiate w.r.t. . t1 we find 

.0 = L(t1, yα,t0,x0(t1), α(t1)) + ∂tϕ(t1, yα,t0,x0(t1))

+ ∇ϕ(t1, yα,t0,x0(t1)) · f (t1, yα,t0,x0(t1), α(t1)),
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where we used the equation .y'(t) = f (t, y(t), α(t)). We then compute everything 
at .t1 = t0 and obtain, setting .ᾱ := α(t0), 

. 0 = L(t0, x0, ᾱ) + ∂tϕ(t0, x0) + ∇ϕ(t0, x0) · f (t0, x0, ᾱ)

≥ ∂tϕ(t0, x0) − H(t0, x0,−∇ϕ(t0, x0)).

This shows at the same time the equality 

. − ∂tϕ(t0, x0) + H(t0, x0,−∇ϕ(t0, x0)) = 0,

i.e. the Hamilton–Jacobi equation, but also that . ̄α must be optimal in the definition 
of .H(t0, x0,−∇ϕ(t0, x0)). Assume that (because of strict convexity or for other 
reasons) for every .(t, x, p) there is a unique . ̄α(t, x, p) = argmaxα∈X p ·f (t, x, α)−
L(t, x, α). Define then .v̄(t, x, p) := f (t, x, ᾱ(t, x, p)). Then we obtain that 
optimal trajectories y should be solutions of 

.y'(t) = v̄(t, y(t),−∇ϕ(t, y(t))), (1.22) 

which is a first-order equation which allows us to find the optimal trajectory as a 
solution of a Cauchy problem if we add the condition .y(t0) = x0. Note that the 
envelope theorem clarifies that we have .v̄(t, x, p) = ∇pH(t, x, p). 

Box 1.11 Good to Know!—Envelope Theorem 

Proposition Let .(fα)α be a family (finite, infinite, countable, uncountable. . . )  
of functions of a variable .x ∈ R

d and assume that each . fα is differentiable. 
Consider f defined through .f (x) := supα fα(x). Then, if f is differentiable 
at . x0 and . α0 is such that .f (x0) = fα0(x0) we necessarily have . ∇f (x0) =
∇xfα0(x0). 

This simple statement is a crucial tool in mathematical economics, and 
is known as the envelope theorem in that community. We refer for instance 
to [189]. It can be easily proven using the fact that we have . f − fα0 ≥ 0
everywhere, with equality at .x = x0, so that . x0 is a minimum point of .f −fα0 . 
Roughly speaking, this says that differentiating a function defined as a sup 
only requires us to differentiate the functions . fα and choose the derivative of 
the one corresponding to the optimal parameter .α = α0. The above statement 
is rigorous if we already assume the differentiability of f . Under suitable 
continuity assumptions on . fα and .∇xfα , in case of uniqueness of the optimal 
. α0, it is also possible to prove the differentiability of f . Uniqueness is not 
strictly necessary for the differentiability of f , but it is necessary that all 
maximizers . α provide the same value for .∇xfα(x0). 

(continued)
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Box 1.11 (continued) 
An example of non-differentiability is given by .fα(x) = αx with . α ∈

[−1, 1]. We get .f (x) = |x|, which is non-differentiable at .x = 0, where any 
. α is optimal. 

For more precise mathematical details we refer to [62, Section 5.3]. 

Comparing this to the Euler–Lagrange equation for 1D variational problems, 
the interest here is to obtain a Cauchy problem, instead of having a second-order 
equation with initial and final transversality conditions. On the other hand, one 
should first find . ϕ and hope that it is differentiable. 

The problem of the differentiability (or regularity) of . ϕ also arises when proving 
the validity of the Hamilton–Jacobi equation: we proved it supposing .ϕ ∈ C1, but  
the definition (1.21) need not provide a smooth function. In general, the function 
. ϕ defined by (1.21) is not a classical solution of (HJ) but is only a solution in the 
viscosity sense, and it is possible to prove that the equation (HJ) together with its 
final condition does indeed admit a unique viscosity solution. 

Box 1.12 Important Notion—Viscosity Solution for First-Order PDEs 

Given a function .F : 𝛀×R×R
d → R and .𝛀 ⊂ R

d , we say that a function . u ∈
C0(𝛀) is a viscosity solution of .F(x, u,∇u) = 0 if it satisfies the following 
two properties 

• for every .x0 ∈ 𝛀 and .ϕ ∈ C1(𝛀) such that .ϕ ≥ u but .ϕ(x0) = u(x0) we 
have .F(x0, ϕ(x0),∇ϕ(x0)) ≤ 0; 

• for every .x0 ∈ 𝛀 and .ϕ ∈ C1(𝛀) such that .ϕ ≤ u but .ϕ(x0) = u(x0) we 
have .F(x0, ϕ(x0),∇ϕ(x0)) ≥ 0. 

An interesting example is given by the Eikonal equation .|∇u| − 1 = 0. 
In 1D, many saw-shaped functions solve .|u'| = 1 a.e. but only those which 
only have singularities shaped like .−|x| and not like . |x| satisfy the above 
conditions. For instance, with .𝛀 = (−1, 1) and imposing .u = 0 on . ∂𝛀 the 
only viscosity solution of .|u'| − 1 = 0 is .u(x) = 1 − |x|. More generally, 
the only viscosity solution of .|∇u| − 1 = 0 with .u = 0 on . ∂𝛀 is, even in 
higher dimensions and in more general domains, .u(x) = d(x, ∂𝛀). Note that 
the solutions would change if the same equation was written .−|∇u| + 1 = 0, 
changing the sign. The Eikonal equation .|∇u|−K = 0 characterizes, instead, 
the distance function induced by the weighted geodesic problem of Sect. 1.4.4. 

As a reference for first-order viscosity theory, see for instance [83, 
Chapter 10], or [21, 59] for connections with optimal control.
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The use of the value function also allows a very informal approach to another 
classical issue in optimal control, that of optimality conditions in the form of the 
Pontryagin Maximum Principle. This principle can be roughly stated as follows: if 
. α is a solution to Problem (1.20) and y is the associated trajectory, calling H the 
Hamiltonian which we already introduced, then there exists a curve . p : [0, T ] →
R

d such that 

• for every t the value .α(t) is a maximizer in the definition of .H(t, y(t), p(t)); 
• y and p together solve the Hamiltonian system 

. 

⎧⎪⎪⎨
⎪⎪⎩

y'(t) = ∇pH(t, y(t), p(t)) in (0, T ),

p'(t) = −∇xH(t, y(t), p(t)) in (0, T ),

y(0) = x0, p(T ) = −∇ψ(y(T )).

Indeed, using the considerations that we presented above on the value function 
. ϕ, it is enough to choose .p(t) = −∇ϕ(t, y(t)). We already explained that the 
optimal . α solves the maximization problem defining .H(t, y(t),−∇ϕ(t, y(t))) and 
the combination of (1.22) with .v̄(t, x, p) = ∇pH(t, x, p) provides the first equation 
in the Hamiltonian system. Since the initial and final conditions for y and p are also 
satisfied with this choice of p (using the final condition for . ϕ in the Hamilton–Jacobi 
system), we are only left to prove the validity of the second one. For this we compute 

. 
d

dt
(−∇ϕ(t, y(t))) = −∂t∇ϕ(t, y(t)) − D2ϕ(t, y(t)) · y'(t).

We then differentiate the Hamilton–Jacobi equation in space and obtain 

. − ∂t∇ϕ(t, x) + ∇xH(t, x,−∇ϕ(t, x)) − ∇pH(t, x,−∇ϕ(t, x)) · D2ϕ(t, x) = 0.

This allows us to obtain (the reader can easily check that all vector-matrix products 
provide the desired vector in these equations, using the symmetry of the Hessian 
.D2ϕ) 

. 
d

dt
(−∇ϕ(t, y(t))) = −∇xH(t, x,−∇ϕ(t, x)).

Another very formal justification of the Pontryagin Maximum Principle can 
be obtained using methods inspired by convex duality, writing the problem as an 
optimization in .(y, α) under the constraint .y' = f (t, y, α) and transforming this 
constraint into a sup over test functions p, as proposed in Exercise 4.21.
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1.8 Exercises 

Exercise 1.1 Using the change of variable u = 
√

H − z prove that the brachis-
tochrone problem can be reformulated as a convex optimization problem, and 
deduce the uniqueness of its solution. 

Exercise 1.2 Prove that if z is a solution to the brachistochrone problem, then we 
have (H − z(t))(1 + |z'(t)|2) = const. Verify that any portion of the cycloid curve, 
written in parametric form as z(θ) = H − k(1 − cos θ)  and t (θ)  = k(θ − sin θ), 
satisfies this condition. 

Exercise 1.3 Let M ⊂ Rd be a set defined via M = {x : h(x) = 0} for a smooth 
function h such that ∇h /= 0 on  M . Let  γ : [0, T ] →  M be a smooth curve 
satisfying γ ''(t) = a(t)∇h(γ (t)) for a scalar coefficient a. Prove that we necessarily 
have 

. a(t) = −D2h(γ (t))(γ '(t), γ '(t))
|∇h(γ (t))|2

and that if T is small enough this curve is a geodesic on M . 

Exercise 1.4 Solve the problem 

. min

{
J (f ) :=

ˆ 1

0

[
1

2
f '(t)2 + tf (t) + 1

2
f (t)2

]
dt : f ∈ A

}
,

where A := {f ∈ C1([0, 1]) : f (0) = 0}. Find the minimal value of J on A and 
the function(s) f which attain(s) it, proving that they are actually minimizers. 

Exercise 1.5 Consider the problem 

. min

{ˆ T

0
e−t

(
u'(t)2 + 5u(t)2

)
dt : u ∈ C1([0, T ]), u(0) = 1

}
.

Prove that it admits a minimizer and that it is unique. Find it, compute the value of 
the minimum, and the limit of the minimizer (in which sense?) and of the minimal 
value as T → +∞. 

Exercise 1.6 Consider the problem 

. min

{
J (u) :=

ˆ 1

0

[
1

2
u'(t)2 + u(t)f (t)

]
dt : u ∈ W 1,2([0, 1])

}
.

Find a necessary and sufficient condition on f so that this problem admits a solution.
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Exercise 1.7 Let L : R → R be a strictly convex C1 function, and consider 

. min

{ˆ 1

0
L(u'(t)) dt : u ∈ C1([0, 1]), u(0) = a, u(1) = b

}
.

Prove that the solution is u(t) = (1− t)a  + tb, whatever L is. What happens if L is 
not C1, and if L is convex but not strictly convex? 

Exercise 1.8 Prove that we have 

. inf

{ˆ 1

0
t |u'(t)|2 dt : u ∈ C1([0, 1]), u(0) = 1, u(1) = 0

}
= 0.

Is the infimum above attained? What about, instead 

. inf

{ˆ 1

0

√
t |u'(t)|2 dt : u ∈ C1([0, 1]), u(0) = 1, u(1) = 0

}
?

Exercise 1.9 Consider a minimization problem of the form 

. min

{
F(u) :=

ˆ 1

0
L(t, u(t), u'(t)) dt : u ∈ W 1,1([0, 1]), u(0) = a, u(1) = b

}
,

where L ∈ C2([0, 1] ×  R × R). We denote as usual by (t, x, v)  the variables of L. 
Assume that ū is a solution to the above problem. Prove that we have 

. 
∂2L

∂v2
(t, ū(t), ū'(t)) ≥ 0 a.e.

Exercise 1.10 Given f ∈ C2(R), consider the problem 

. min

⎧⎨
⎩F(u) :=

ˆ 1

0

[
(u'(t)2 − 1)2 + f (u(t))

]
dt :

u ∈ C1([0, 1]),
u(0) = a,

u(1) = b

⎫⎬
⎭ .

Prove that the problem does not admit any solution if |b − a| ≤  1√
3 
. 

Exercise 1.11 Consider the problem 

. min

{ˆ 1

0

[
|u'(t)|2 + arctan(u(t))

]
dt : u ∈ C1([0, 1])

}
,

and prove that it has no solutions. Prove the existence of a solution if we add the 
boundary condition u(0) = 0. Write the optimality conditions and prove that any 
solution is C∞



64 1 One-Dimensional Variational Problems

Exercise 1.12 Consider the functional F : H 1([0, T ]) → R defined by 

. F(u) =
ˆ T

0

(
u'(t)2 + arctan(u(t) − t)

)
dt.

Prove that 

1. the problem (P ) := min{F(u)  : u ∈ H 1([0, T ])} has no solution; 
2. the problem (Pa) := min{F(u)  : u ∈ H 1([0, T  ]), u(0) = a} admits a solution 

for every a ∈ R; 
3. we have F(−|u|) ≤ F(u); 
4. the solution of (Pa) is unique as soon as a ≤ 0; 
5. there exists an L0 < +∞ such that for every T ≤ L0 the solution of (Pa) is 

unique for every a ∈ R 
6. the minimizers of (P ) and (Pa) are C∞ functions. 

Exercise 1.13 Given a function V : X → R on a metric space (X, d) and the 
functional J defined via J (γ  )  := 

´ 1 
0 (

1 
2 |γ '|2 + V (γ  )) dt prove the conservation 

of the energy 1 
2 |γ '|2 − V (γ  )  for minimizers of J (among curves with fixed 

endpoints) without using the Euler–Lagrange equation (which has no meaning in 
a metric setting) but considering variations of the form γε(t) = γ (t  + εη(t)) for 
η ∈ C∞

c ((0, 1)). 

Exercise 1.14 Given p ∈ (1,∞), set  Jp(γ ) := ´ 1 
0 ( 

1 
p
|γ '|p +V (γ  )) dt , assume that 

γ minimizes Jp among curves with fixed endpoints. Prove the following p-variant 
of the conservation of the energy: 

. 
p − 1

p
|γ '|p − V (γ ) = const.

Also prove the same result by internal variations as in Exercise 1.13. 

Exercise 1.15 Consider the problem 

. min

{ˆ 2π

0

|u'(t)|2
2 + sin t

dt : u ∈ C1([0, 2π ]), u(0) = 0, u(2π) = 1

}
.

Find the minimizer as well as its minimal value. 
More generally, given a function h ∈ C0([a, b]), h > 0, characterize the solution 

and find the minimal value of 

. min

{ˆ b

a

|u'(t)|2
h(t)

dt : u ∈ C1([a, b]), u(a) = A, u(b) = B

}

in terms of h, A and B.
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Exercise 1.16 Find an analogous Lipschitz regularity result to that of Proposi-
tion 1.35 for the minimizers of the infinite-horizon discounted variational problem 

. min

{ˆ ∞

0
e−δt (|γ '|(t) + F(t, γ (t))) dt + ψ0(γ0) : γ ∈ BVloc(R+;Rd)

}
,

where the term
´∞ 
0 e−δt |γ '|(t) dt can be defined, for γ ∈ BV as a non-autonomous 

weighted-length equal to sup
∑

i e
−δti+1 |γ (ti) − γ (ti+1)|, the sup being taken over 

all finite partitions of R+. 

Exercise 1.17 Let || · ||p be the 𝓁p norm on Rd , i.e. ||v||p := (
∑

i |vi |p )1/p and 
T Vp(γ ) be the total variation defined w.r.t. the 𝓁p norm. Consider the minimization 
problem of Proposition 1.35 but replace T V2 with T V1. Prove that we have an 
estimate of the form 

. c1 sup ||γ '||2 ≤ sup ||∂t∇xF ||2.

Exercise 1.18 Given a curve ω ∈ C0(R;Rd ) which is 2π -periodic, consider the 
minimization problem 

. min

{ ˆ 2π

0

(√
ε2 + |u'(t)|2+ε

2
|u'(t)|2+1

2
|u(t) − ω(t)|2

)
dt : u ∈ H 1

per(R;Rd)

}
,

where H 1 
per(R) denotes the set of functions u ∈ H 1 

loc(R) which are 2π -periodic. 

1. Prove that this minimization problem admits a unique solution uε. 
2. Prove that the sequence of minimizers is bounded, when ε → 0, in BV(I ) for 

any interval I ⊂ R. 
3. Prove that uε converges (in which sense?) to the unique solution ū of 

. min

{
T V (u; [0, 2π)) +

ˆ 2π

0

1

2
|u(t) − ω(t)|2 dt : u ∈ BVper(R;Rd)

}
,

where BVper(R) denotes the set of functions u ∈ BVloc(R) which are 2π -
periodic and T V  (u; [0, 2π))  is their total variation on one period. 

4. Find ū in the case d = 2 and ω(t) = (R cos t, R sin t)  for R >  1. 

Exercise 1.19 Solve the minimization problem 

. min

{´ A

−A
(u')2(x) dx´ A

−A
u2(x) dx

: u ∈ H 1
0 ((−A,A))

}
,

i.e. prove that the solutions exist and find them, and deduce from this another way 
of finding the Poincaré constant of the interval (−A, A).
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Exercise 1.20 Prove that we have
∑

n∈Z\{0} 1 
4n2−1 

= 1 and deduce
∣∣∣∑n∈Z\{0} an

∣∣∣2 
≤ ∑

n∈Z\{0}(4n2 − 1)|an|2 for any sequence an ∈ C. 
Prove that any 2π-periodic function u ∈ H 1 

loc(R) satisfies, when written as a 
Fourier series,

∑
n∈Z |an| < +∞ and that we have

∑
n∈Z an = 0 if and only if 

u(0) = u(2π)  = 0. Deduce the Poincaré inequality for functions in H 1 
0 ([0, 2π ]) 

and the case of equality. 

Hints 

Hint to Exercise 1.1 One obtains an integrand of the form
√|u'|2 + u−2. 

Hint to Exercise 1.2 Use the Beltrami formula. 

Hint to Exercise 1.3 Differentiate the relation h(γ (t)) = 0 twice  for every  t 
in order to identify a. Prove the sufficiency of this condition for minimality in 
min

´ T 
0 |γ '(t)|2 dt by adapting the computations on the sphere (where h(x) = 

|x|2 − 1). 

Hint to Exercise 1.4 It is enough to write the Euler–Lagrange equation, solve it, and 
prove by an explicit expansion of the squares that the solution of the equation is a 
minimizer. 

Hint to Exercise 1.5 The Euler–Lagrange equation is again linear with constant 
coefficients. Its explicit expression allows us to obtain the limit, which is locally 
uniform in time. 

Hint to Exercise 1.6 If f has zero average we can restrict to zero-mean competitors 
and use the Poincaré–Wirtinger inequality, otherwise the infimum is −∞. 

Hint to Exercise 1.7 If L ∈ C1 the Euler–Lagrange equation provides L(u') = 
const, i.e. u' = const. If not, we can use Jensen’s inequality with its equality case. 

Hint to Exercise 1.8 In the second case the Hölder inequality (
´ |u'|) ≤´ √

t |u'|2 ´ 1√
t provides the lower bound; in the other case, one can draw inspiration 

from the same inequality and try to get as close as possible to equality. 

Hint to Exercise 1.9 Consider a second-order expansion in ε for J (u+εφ) and then 
use a sequence of very oscillating functions φn. 

Hint to Exercise 1.10 Apply the necessary condition found in the previous exercise, 

Hint to Exercise 1.11 Follows the strategy in Sects. 1.2.1 and 1.3.1. For non-
existence, use u = −n. 

Hint to Exercise 1.12 Follows the standard strategy. Uniqueness is obtained once 
we restrict the arctan function to a region where it is convex.
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Hint to Exercise 1.13 Consider a first-order expansion in ε and use the arbitrariness 
of η to obtain an ODE. 

Hint to Exercise 1.14 Use either the Euler–Lagrange equation or the same proce-
dure as the previous exercise. 

Hint to Exercise 1.15 Find u' = ch and adjust the value of c so as to satisfy the 
boundary data. 

Hint to Exercise 1.16 Follow the same strategy as in Sect. 1.6. There is an extra 
term due to the coefficient e−rt but it vanishes due to the first-order condition. 

Hint to Exercise 1.17 Find another quantity to be maximized over t , of the form∑
i h(γ '

i (t)). 

Hint to Exercise 1.18 Compare to the problem studied in Sect. 1.6. 

Hint to Exercise 1.19 Take a minimizing sequence which, up to multiplication, can 
be assumed to be such that the denominator is equal to 1, and use its compactness. 
Then write the optimality conditions by considering the first-order expansion of 
u + εφ. 

Hint to Exercise 1.20 Use the Hölder inequality, with its equality case.



Chapter 2 
Multi-Dimensional Variational Problems 

This short chapter establishes the bases of the multi-dimensional case, starting 
from the techniques which were described in the previous chapter for the 1D case 
and highlighting the necessary modifications. After discussing the existence of the 
minimizers and their properties in terms of a multi-dimensional Euler–Lagrange 
equation, which typically takes the form of an elliptic PDE, a section is devoted to 
the study of harmonic functions, which are the solutions to the simplest example of 
a variational problem, that of minimizing the Dirichlet energy .u I→ ´ |∇u|2. 

As a choice, throughout the chapter, the multidimensional case will only be 
treated when the target space is, instead, one-dimensional. Many notions can be 
easily extended to vector-valued maps without particular difficulties. 

2.1 Existence in Sobolev Spaces 

In this section we will discuss the classes of problems for which we are easily able 
to prove the existence of a solution in the Sobolev space .W 1,p(𝛀). In the sequel . 𝛀
will be a bounded (and, when needed, smooth) open set in . Rd . We will consider 
optimization problems in .W 1,p(𝛀) for .p > 1. 

Box 2.1 Memo—Sobolev Spaces in Higher Dimensions 
Given an open domain .𝛀 ⊂ R

d and an exponent .p ∈ [1,+∞] we define the 
Sobolev space .W 1,p(𝛀) as 

. W1,p(𝛀) := {u ∈ Lp(𝛀) : ∀i∃gi ∈ Lp(𝛀) s.t.
ˆ

u∂xi
ϕ =−

ˆ
giϕ for all ϕ ∈ C∞

c (𝛀)}.

(continued) 
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Box 2.1 (continued) 
The functions . gi , if they exist, are unique, and together they provide a vector 
which will be denoted by . ∇u since it plays the role of the derivative in the 
integration by parts. The space .W 1,p is endowed with the norm . ||u||W 1,p :=
||u||Lp + ||∇u||Lp . With this norm .W 1,p is a Banach space, separable if . p <

+∞, and reflexive if .p ∈ (1,∞). 
The functions in .W 1,p(𝛀) can also be characterized as those functions 

.u ∈ Lp(𝛀) such that their translations . uh (defined via .uh(x) := u(x + h)) 
satisfy .||u − hh||Lp(𝛀') ≤ C|h| for every subdomain . 𝛀' compactly contained 
in . 𝛀 and every h such that .|h| < d(𝛀'∂𝛀). The optimal constant C in this 
inequality equals .||∇u||Lp . 
Sobolev Injections If .p < d all functions .u ∈ W 1,p are indeed more 
summable than just . Lp and they actually belong to . Lp∗

, where . p∗ := pd
d−p

>

p. The injection of .W 1,p into . Lq is compact (i.e. it sends bounded sets into 
precompact sets) for any .q < p∗ (including .q = p), while the injection into 
.Lp∗

is continuous. If .p = d then .W 1,p injects compactly in all spaces . Lq with 
.q < +∞, but does not inject into . L∞. If  .p > d then all functions in . W 1,p

admit a continuous representative, which is Hölder continuous of exponent 
.α = 1 − d

p
> 0, and the injection from .W 1,p into .C0(𝛀) is compact if . 𝛀 is 

bounded. 
The space .W 1,p

0 (𝛀) can be defined as the closure in .Wk,p(𝛀) of . C∞
c (𝛀)

and the Poincaré inequality .||ϕ||Lp ≤ C(𝛀)||∇ϕ||Lp(𝛀), which is valid for 
all .ϕ ∈ C∞

c (𝛀) if . 𝛀 is bounded (this is not a sharp condition, for instance 
bounded in one direction—a notion to be made precise—would be enough), 
allows us to use as a norm on .W

1,p
0 (𝛀) the quantity .||u||

W
1,p
0

:= ||∇u||Lp . 

If .p = 2 the space .W 1,p can be given a Hilbert structure exactly as in 1D 
and is denoted by . H 1. Higher-order Sobolev spaces .Wk,p and . Hk can also be 
defined exactly as in dimension 1 (and .W

k,p

0 is again defined as the closure of 
.C∞

c (𝛀) for the .Wk,p norm). 
We can also define negative-order Sobolev spaces: the space .W−k,p'

is 
defined as the dual of the space .W

k,p

0 . 

Theorem 2.1 Given a function .g ∈ W 1,p(𝛀) and a measurable function . F : 𝛀 ×
R → R+ such that .F(x, ·) is lower semicontinuous for a.e. x, let us consider the 
problem 

. min

{
J (u) :=

ˆ
𝛀

(
F(x, u(x))+|∇u(x)|p)

dx : u ∈ W 1,p(𝛀), u−g ∈ W
1,p
0 (𝛀)

}
.

(2.1) 
This minimization problem admits a solution.
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Proof Take a minimizing sequence . un such that .J (un) → inf J . From the bound 
on .J (un) we obtain an upper bound for .||∇un||Lp . Applying the Poincaré inequality 
for .W

1,p
0 functions to .un − g we obtain 

. ||un||Lp ≤ ||un − g||Lp + ||g||Lp

≤ C||∇(un − g)||Lp + ||g||Lp

≤ C||∇un||Lp + C||∇g||Lp + ||g||Lp,

which allows us to bound .||un||Lp . 
Hence, .(un)n is a bounded sequence in .W 1,p and we can extract a subsequence 

which weakly converges in .W 1,p to a function u (see Boxes 2.2 and 2.3). This 
convergence implies the strong convergence .un → u in .Lp(𝛀) and, up to a 
subsequence, a.e. convergence .un(x) → u(x). Moreover, we also have . ∇un ⇀ ∇u

in .Lp(𝛀;Rd) by applying the continuous linear mapping . W 1,p(𝛀) ϶ v I→ ∇v ∈
Lp. 

The space .W 1,p
0 (𝛀) is a closed subspace (by definition, as it is defined as the 

closure of .C∞
c in .W 1,p) of  .W 1,p(𝛀) and, since it is a vector space and hence a 

convex set, it is also weakly closed (see Proposition 3.7). Then, from .un ⇀ u we 
deduce .un −g ⇀ u−g and .u−g ∈ W

1,p
0 (𝛀). Hence, the limit u is also admissible 

in the optimization problem. 
We now need to show that J is l.s.c. for the weak convergence in .W 1,p(𝛀). The  

semicontinuity of the . Lp norm for the weak convergence easily provides 

. 

ˆ
𝛀

|∇u|p dx ≤ lim inf
n

ˆ
𝛀

|∇un|p dx.

The a.e. pointwise convergence together with the lower semicontinuity of F and the 
use of Fatou’s lemma provides 

. 

ˆ
𝛀

F(x, u(x)) dx ≤ lim inf
n

ˆ
𝛀

F(x, un(x)) dx.

This shows that u is a minimizer. ⨅⨆

Box 2.2 Memo—Weak Convergence and Compactness 

On a normed vector space . X we say that a sequence . xn weakly converges 
to x if for every .ξ ∈ X' we have .〈ξ, xn〉 → 〈ξ, x〉, and we write .xn ⇀ x. Of  
course, if .xn → x (in the sense of .||xn − x|| → 0), then we have .xn ⇀ x. 
On the dual space . X' we say that a sequence . ξn weakly-* converges to . ξ if for 

(continued)
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Box 2.2 (continued) 
every .x ∈ X we have .〈ξn, x〉 → 〈ξ, x〉, and we write .ξn

∗
⇀ ξ . Note that this is 

a priori different than the notion of weak convergence on . X', which involves 
the bidual . X''. 

Theorem (Banach–Alaoglu) – If . X is a separable normed space and . ξn is 
a bounded sequence in . X', then there exists a subsequence . ξnk

and a vector 

.ξ ∈ X' such that .ξnk

∗
⇀ ξ . 

Box 2.3 Memo—Reflexive Banach Spaces 

A normed vector space . X can always be embedded in its bidual . X'' since 
we can associate with every .x ∈ X the linear form . ιx on . X' defined via 
.〈ιx, ξ〉 := 〈ξ, x〉. In general not all elements of . X'' are of the form . ιx for 
.x ∈ X. When .ι : X→ X'' is surjective we say that . X is reflexive. In this case 
it is isomorphic to its bidual which, as a dual space, is a Banach space. 

All . Lp spaces for .p ∈ (1,∞) are reflexive as their dual is .Lp'
and their 

bidual is again . Lp. In contrast, .L∞ is the dual of . L1 but . L1 is not the dual of 
. L∞. The space .C(X) of continuous functions on a compact metric space X 
is not reflexive either, since its dual is .M(X), the space of measures, and the 
dual of .M(X) is not .C(X). Of course all Hilbert spaces are reflexive, as they 
coincide with their own dual. Sobolev spaces .Wk,p for .p ∈ (1,∞) are also 
reflexive. 
Theorem (Eberlein–Smulian) A Banach space . X is reflexive if and only if 
any bounded sequence in . X is weakly compact. 

In optimization the most important part of this theorem is that it provides 
weak compactness of bounded sequences. If . X is separable this is a conse-
quence of the Banach–Alaoglu theorem, as this convergence coincides with 
the weak-* convergence on the dual of . X'. Yet, separability is not necessary 
since one can restrict to the closure of the vector space generated by the 
sequence: this space is separable, closed subspaces of reflexive spaces are 
reflexive, and a space is reflexive and separable if and only if its dual is 
reflexive and separable. 

Many variants of the above result are possible. A first possibility is to replace the 
positivity assumption on F with a lower bound of the form . F(x, u) ≥ −a(x)−C|u|r
for .a ∈ L1(𝛀) and .r < p. In this case, we cannot immediately deduce a bound on 
.||∇un||Lp from the bound on .J (un). Yet, we can act as follows: 

.J (un) ≤ C ⇒ ||∇un||pLp ≤ C + C||un||rLr ≤ C + C||un||rLp ≤ C + C||∇un||rLp
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and the condition .r < p allows us to prove that we cannot have .||∇un||Lp → ∞. 
This is enough to obtain the desired compactness but the lower semicontinuity of 
the functional J is still to be proven, since we cannot directly apply Fatou’s lemma 
to F , which is no longer non-negative. The idea is then to define 

. F̃ (x, u) := F(x, u) + C|u|r

and write 

. J (u) = J̃ (u) − C||u||rLr , where J̃ (u) :=
ˆ

𝛀

(
F̃ (x, u(x)) + |∇u(x)|p

)
dx.

The semicontinuity of . J̃ can be handled exactly as in Theorem 2.1, while on the . Lr

part we need, because of the negative part, continuity (upper semicontinuity of the 
norm would be enough, but we already know that norms are lower semicontinuous). 
This is easy to handle because of the compact injection .W 1,p c−→ Lr (an injection 
which is compact also for .r = p and even for some .r > p). 

The reader may be disappointed that we need to require .r < p, while we 
know that W. 1,p implies a summability better than . Lp and that the injection is 
still compact. Indeed, it would be possible to handle the case where the functional 
includes a positive part of the form .||∇un||pLp and a negative part of the form 
.||un||r2Lr1 for .r1 < p∗, but we would still need .r2 < p if we want to prove that 
minimizing sequences are bounded. Since only .r1 = r2 gives a classical integral 
function, we only consider .r1 = r2 = r < p. 

Another variant concerns the Dirichlet boundary data. In dimension one we con-
sidered the case where each endpoint was either penalized or fixed, independently. 
A first natural question is how to deal with a Dirichlet boundary condition on a part 
of . ∂𝛀 and not on the full boundary. In order to deal with the values on the boundary 
we recall the notion of the trace of a Sobolev function. 

Box 2.4 Important Notion—Traces of Sobolev Functions 
If . 𝛀 is a smooth open domain in . Rd (we assume that its boundary has 
Lipschitz regularity, i.e. . 𝛀 can locally be written as the epigraph of a Lipschitz 
function) and .p > 1, there exists an operator . Tr : W 1,p(𝛀) → Lp(∂𝛀)

(where the boundary . ∂𝛀 is endowed with the natural surface measure .Hd−1) 
with the following properties 

• . Tr is a linear continuous and compact operator when .W 1,p(𝛀) and . Lp(∂𝛀)

are endowed with their standard norms; 
• for every Lipschitz function .u : 𝛀 → R we have .Tr[u] = u|∂𝛀; 

• the kernel of . Tr coincides with .W 1,p
0 (𝛀), i.e. with the closure in . W 1,p(𝛀)

of .C∞
c (𝛀); 

(continued)
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Box 2.4 (continued) 
• for every Lipschitz function .h : R → R we have .Tr[h(u)] = h(Tr[u]); 
• the operator . Tr actually takes values in a space .Lq(∂𝛀) with .q > p and is 

continuous when valued in this space: we can take . q = (d − 1)p/(d − p)

when .p < d, .q = ∞ when .p > d and any .q ∈ (p,∞) when .p = d; when 
.p > d the operator is also valued and continuous in .C0,α with .α = 1−d/p. 

For the theory of traces of Sobolev functions we refer to [84, Chapter 4]. 

We need the following Poincaré-like inequality, that we state in the most general 
form so as to be able to re-use it when dealing with boundary penalization instead 
of Dirichlet boundary data. We will summarize in the same statement both a result 
involving the trace and a result involving the behavior inside the domain. 

Proposition 2.2 Given a connected open domain . 𝛀, for every .ε > 0 there exist two 
constants .C1, C2 such that we have 

1. if .u ∈ W 1,p(𝛀) satisfies .Hd−1({x ∈ ∂𝛀 : Tr[u](x) = 0}) ≥ ε then we have 
.||u||Lp ≤ C1||∇u||Lp ; 

2. if .u ∈ W 1,p(𝛀) satisfies .|{x ∈ 𝛀 : u(x) = 0}| ≥ ε, then we have . ||u||Lp ≤
C2||∇u||Lp . 

The proof of the above proposition will be done by contradiction, which provides 
a useful technique to prove similar inequalities, even if the constants are in general 
neither explicit nor quantified. 

Proof We suppose by contradiction that one of these constants, for a certain .ε > 0, 
does not exist. This means that for every n we find a function .un ∈ W 1,p(𝛀) which 
violates the claimed inequality with .C = n. Up to multiplying this function by a 
multiplicative constant we can assume .||un||Lp = 1 and .||∇un||Lp < 1/n. The  
sequence . un is hence bounded in .W 1,p and a weakly convergent subsequence can 
be extracted. We call u the weak limit and the compact injection of .W 1,p into . Lp

provides .un → u in . Lp and hence .||u||Lp = 1 as well. We also have . ||∇u||Lp ≤
lim infn ||∇un||Lp = 0, so that u is a constant function. The condition on its . Lp

norm implies .u = c with .c /= 0. Moreover, the convergence .un → u = c is actually 
strong in .W 1,p since we also have .||∇un − ∇u||Lp = ||∇un||Lp → 0. 

We now distinguish the two cases. For the sake of the constant . C1 related to the 
behavior on the boundary, we observe that the strong convergence in .W 1,p implies 
the convergence of the trace, so that .Tr[un] strongly converges to .Tr[u] and we have 
.Tr[u] = c. Then we write 

. ||Tr[un] − Tr[u]||pLp(∂𝛀) ≥ cpHd−1({x ∈ ∂𝛀 : Tr[un](x) = 0}) ≥ cpε,

which is a contradiction since the limit of the left-hand side is 0.
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For the sake of the constant . C2 related to the behavior inside . 𝛀, the situation is 
easier, since we already have strong convergence .un → u in .Lp(𝛀). Yet, we have  

. ||un − u||pLp(∂𝛀) ≥ cp|({x ∈ 𝛀 : un(x) = 0})| ≥ cpε,

and, again, this provides a contradiction when .n → ∞. ⨅⨆
The idea behind the inequality proven above is that the . Lp norm of a function is 

bounded by the . Lp norm of its gradient as soon as we impose sufficient conditions 
which prevent the function from being a non-zero constant. We note that the very 
same technique could also be used to prove another inequality of this form, which 
is the one concerning zero-mean functions, and is known as Poincaré–Wirtinger 
inequality. 

Proposition 2.3 Given a connected, Lipschitz, and open domain . 𝛀 there exists a 
constant C such that we have .||u||Lp ≤ C||∇u||Lp for all functions . u ∈ W 1,p(𝛀)

satisfying .
ffl
𝛀

u = 0. 

Proof We suppose by contradiction that such a constant does not exist. For every 
n we find a function .un ∈ W 1,p(𝛀) with .||un||Lp = 1 and .||∇un||Lp < 1/n. 
As before, we extract a weakly convergent subsequence and call u the weak limit. 
The compact injection of .W 1,p into . Lp provides again .un → u in . Lp and hence 
.||u||Lp = 1 as well. We also have .||∇u||Lp ≤ lim infn ||∇un||Lp = 0, so that u 
is a constant function because . 𝛀 is connected. We also have .

ffl
un → ffl

u = 0 so 
that .

ffl
u = 0. We have a contradiction since u is a constant with zero mean (hence 

.u = 0) but .||u||Lp = 1. ⨅⨆
The above result on zero-mean functions was presented for the sake of complete-

ness. We now come back to the notion of trace, which we are able to use in order to 
provide a more general existence result. 

Theorem 2.4 Given two measurable functions .ψ : ∂𝛀 × R → [0,+∞] and 
.F : 𝛀 × R → R+ such that .ψ(x, ·) is lower semicontinuous for .Hd−1-a.e. x 
and .F(x, ·) is lower semicontinuous for a.e. x, let us consider the problem 

.min
{
J (u) : u ∈ W 1,p(𝛀)

}
, (2.2) 

where 

. J (u) :=
ˆ

𝛀

(
F(x, u(x))+|∇u(x)|p)

dx +
ˆ

∂𝛀

ψ(x,Tr[u](x)) dHd−1(x).

This minimization problem admits a solution provided one of the following condi-
tions is satisfied for a function .g : R → R+ with . lims→±∞ g(s) = +∞
1. either there exists an .A ⊂ ∂𝛀 with .Hd−1(A) > 0 and such that . ψ(x, s) ≥ g(s)

for all .x ∈ A;
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2. or there exists a .B ⊂ 𝛀 with positive Lebesgue measure .|B| > 0 and such that 
.F(x, s) ≥ g(s) for all .x ∈ B. 

Proof Take a minimizing sequence . un with .J (un) ≤ C. 
We first analyze the case (1). From the positivity of all the terms in the 

optimization problem we can deduce that the set . {x ∈ A : g(Tr[un](x)) > 𝓁}
has measure at most .Hd−1(A) − C/𝓁 so that, taking .𝓁 = 2C/Hd−1(A), we  
have .g(Tr[un](x)) ≤ 𝓁 on a set  .An ⊂ A with .Hd−1(An) ≥ Hd−1(A)/2. Using  
the condition on g we deduce that there exists an M independent of n such that 
.|(Tr[un](x)| ≤ M on . An. If instead, we are in the situation described in case 2), we 
see analogously that we have a set .Bn ⊂ B with .|Bn| ≥ |B|/2 and .|u| ≤ M on . Bn. 

In both cases, defining the function .h : R → R as 

. h(s) =

⎧⎪⎪⎨
⎪⎪⎩

s − M if s > M,

0 if |s| ≤ M,

s + M if s < −M,

we can apply the bounds provided by Proposition 2.2 to .vn = h(un). Using . |h'| ≤ 1
the norm .||∇vn||Lp is bounded, and so is the . Lp norm of . vn. Using . |vn − un| ≤ M

this implies a bound on .||un||Lp and then on .||un||W 1,p . 
We can then extract a subsequence which weakly converges in .W 1,p to a function 

u. We have  .un → u in .Lp(𝛀) as well as .Tr[un] → Tr[u] in .Lp(∂𝛀) (since both 
the injection of .W 1,p into . Lp and the trace operator are compact). This means, 
up to a subsequence, a.e. convergence .un(x) → u(x) in . 𝛀 and . Tr[un](x) →
Tr[u](x) a.e. for the .Hd−1 measure on . ∂𝛀. Fatou’s lemma provides the semi-
continuity of both the integral term .

´
𝛀

F(x, u(x)) dx and the boundary integral 
.
´
∂𝛀

ψ(x,Tr[u](x)) dHd−1(x), and the gradient term is treated by semicontinuity 
of the norm as usual. This shows that u is a minimizer. ⨅⨆

It is important to observe that the assumption on the boundary penalization . ψ in 
the above theorem allows us to consider the case 

. ψ(x, s) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x /∈ A,

0 if x ∈ A, s = h(x),

+∞ if x ∈ A, s /= h(x),

which is equivalent to imposing the Dirichlet boundary condition .u = h on .A ⊂ ∂𝛀. 
In particular, the function . ψ satisfies .ψ(x, s) ≥ g(s) := (s − M)+ for all . x ∈ A

with .|h(x)| ≤ M , a set of points x which is of positive measure for large M .
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2.2 The Multi-Dimensional Euler–Lagrange Equation 

This section is just a translation to higher dimensions of Sect. 1.3. We consider an 
open domain .𝛀 ⊂ R

d and an integrand .L : 𝛀 × R × R
d → R, where the variables 

will be called x (the position, which is now the independent variable, replacing 
time), s (the value of the function) and v (its variation, which here is a gradient 
vector). The function L will be assumed to be . C1 in .(u, v) and its partial derivatives 
w.r.t. s and . vi will be denoted by .∂sL and .∂vi

L, respectively (and the gradient vector 
with all the corresponding partial derivatives w.r.t. v, by .∇vL). 

As we did in Chap. 1, we write the optimality conditions for multi-dimensional 
variational problems starting from the case where the boundary data are fixed. For 
simplicity, in particular in order to handle the boundary, we will stick to the case 
where the functional space X is a Sobolev space .W 1,p(𝛀). In 1D we presented a 
more abstract situation where X was a generic functional space contained in . C0

but in higher dimensions few spaces are at the same time a reasonable choice for 
the most classical optimization problems and are made of continuous functions, so 
we prefer to directly choose the Sobolev formalism, and the boundary data will be 
imposed using the space .W

1,p
0 . We then face 

. min

{
J (u) :=

ˆ
𝛀

L(x, u(x),∇u(x)) dx : u ∈ W 1,p(𝛀), u − g ∈ W
1,p
0 (𝛀)

}
.

We assume a lower bound of the form . L(x, u, v) ≥ −a(x) − c(|u|p + |v|p)

for .a ∈ L1, so that for every .u ∈ W 1,p(𝛀) the negative part of .L(·, u,∇u) is 
integrable,1 thus J is a well-defined functional from .W 1,p(𝛀) to .R ∪ {+∞}. We  
assume that u is a solution of such a minimization problem. Since all functions 
in .u + C∞

c (𝛀) are admissible competitors, for every .ϕ ∈ C∞
c (𝛀) we have 

.J (u) ≤ J (u + εϕ) for small . ε. 
We now fix the minimizer u and a perturbation . ϕ and consider the one-variable 

function 

. j (ε) := J (uε), where uε := u + εϕ,

which is defined in a neighborhood of .ε = 0, and minimal at .ε = 0. We compute 
exactly as in Chap. 1 the value of .j '(0). 

The assumption to justify the differentiation under the integral sign will be the 
same as in Chap. 1: we assume that for every .u ∈ W 1,p(𝛀) with .J (u) < +∞ there 
exists a .δ > 0 such that we have 

. x I→ sup
{|∂sL(x, s, v)|+|∇vL(x, s, v)| : |s−u(x)| < δ, v ∈ B(∇u(x)), δ)

}
∈ L1(𝛀). (2.3)

1 Actually, exploiting .W 1,p ⊂ Lp∗
, we could accept a weaker lower bound in terms of u, i.e.  

.L(x, u, v) ≥ −a(x) − c(|u|p∗ + |v|p). 
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Examples of sufficient conditions on L in order to guarantee (2.3) are the same 
as in 1D. Under these conditions, we can differentiate w.r.t. . ε the function . ε I→
L(t, uε,∇uε), and obtain 

. 
d

dε
L(t, uε,∇uε) = ∂sL(x, uε,∇uε)ϕ + ∇vL(x, uε,∇uε) · ∇ϕ.

Then, using the fact that both . ϕ and . ∇ϕ are bounded, we can apply the assumption 
in (2.3) in order to obtain domination in . L1 of the pointwise derivatives and thus, 
for small . ε, we have  

. j '(ε) =
ˆ

𝛀

(∂sL(x, uε,∇uε)ϕ + ∇vL(x, uε,∇uε) · ∇ϕ) dx

and 

. j '(0) =
ˆ

𝛀

(∂sL(x, u,∇u)ϕ + ∇vL(x, u,∇u) · ∇ϕ) dx.

Imposing .j '(0) = 0, which comes from the optimality of u, means precisely that we 
have, in the sense of distributions, the following partial differential equation, also 
known as the Euler–Lagrange equation: 

. ∇ · (∇vL(x, u,∇u)) = ∂sL(x, u,∇u).

This second-order partial differential equation (PDE) is usually of elliptic type, 
because of the standard assumption (which is satisfied in all the examples that we 
saw for the existence of a solution and will be natural from the lower semicontinuity 
theory that will be developed in Chap. 3) that L is convex in v, so that . ∇vL(x, u,∇u)

is a monotone function of . ∇u. It is formally possible to expand the divergence and 
indeed obtain 

. ∇ · (∇vL(x, u,∇u)) =
∑
j

d

dxj

(
∂vj

L(x, u,∇u)
)

=
∑
j

(
∂2xj ,vj

L(x, u,∇u) + ∂2u,vj
L(x, u,∇u)uj

)

+
∑
j,k

∂2vk,vj
L(x, u,∇u)uj,k,

where . uj and .uj,k stand for the various partial derivatives of the solution u. This  
computation shows that the second-order term in this PDE is ruled by the matrix 
.Aj,k(x) := ∂2vk,vj

L(x, u(x),∇u(x)), which is (semi-)positive-definite if L is convex 
in v.
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It is important to stress the exact meaning of the Euler–Lagrange equation. 

Box 2.5 Memo—Distributions 

We call a distribution on an open domain . 𝛀 any linear operator T on 
.C∞

c (𝛀) with the following continuity property: for every compact subset 
.K ⊂ 𝛀 and every sequence .φn ∈ C∞

c (𝛀) with .sptφn ⊂ K and such that 
all derivatives .Dαφn of any order of . φn uniformly converge on K to the 
corresponding derivative .Dαφ we have .〈T , φn〉 → 〈T , φ〉. 

On the set of distributions we define a notion of convergence: we say . Tn →
T if for every .φ ∈ C∞

c (𝛀) we have .〈Tn, φ〉 → 〈T , φ〉. 
.L1

loc functions are examples of distributions in the sense that for any . f ∈
L1

loc(𝛀) we can define a distribution . Tf by .〈Tf φ〉 := ´
𝛀

f φ. Locally finite 
measures are also distributions (with .〈μ, φ〉 := ´

φ dμ). 
Some operations are possible with distributions: the derivative .∂xi

T is 
defined via the integration-by-parts formula .〈∂xi

T , φ〉 := −〈T , ∂xi
φ〉; the  

product with a .C∞ function u by .〈uT , φ〉 := 〈T , uφ〉, and the convolution 
(for simplicity with an even function . η with compact support) by . 〈η∗T , φ〉 :=
〈T , η ∗ φ〉. It is possible to show that, whenever .η ∈ C∞

c , then .η ∗ T is a 
distribution associated with a locally integrable function which is . C∞. If . η is 
not .C∞ but less smooth, then the regularity of .η ∗ T depends both on that of 
. η and of T . 

A distribution is said to be of order m on a compact set K whenever 
.|〈T , φ〉| ≤ C||φ||Cm(K) for all functions .φ ∈ C∞

c (𝛀) with .sptφ ⊂ K . When 
convolving a function .η ∈ Ck with a convolution T of order m we have 
.η ∗ T ∈ Ck−m if .k ≥ m while, if .k < m, we obtain a distribution .η ∗ T of 
order .m − k. 

Whenever a function .f ∈ L1
loc belongs to a Sobolev space .W 1,p it is easy to 

see that the derivative in terms of distributions coincides with that in Sobolev 
spaces. The notion of convergence is also essentially the same: for every space 
.Wk,p with .1 < p < ∞ a sequence .un ⇀ u weakly converges in .Wk,p to u if 
and only if it is bounded in .Wk,p and converges in the sense of distributions 
to u (in the sense that the associated distributions converge). 

It is easy to see that .Tn → T in the sense of distributions implies 
the convergence of the derivatives .∂xi

Tn → ∂xi
T . The convergence in the 

sense of distributions is essentially the weakest notion of convergence that 
is used in functional analysis and is implied by all other standard notions of 
convergence. 

Indeed, in the expression that we obtained by expanding the divergence, the terms 
.∂2vk,vj

L(x, u,∇u)uj,k are the product of a measurable function (whose regularity is 
the same as that of . ∇u, which is just summable) and the Hessian of a Sobolev
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function, which is in general a distribution but not a function. Since distributions can 
only be multiplied by .C∞ functions, our Euler–Lagrange equation cannot be written 
in the distributional sense in this way. Indeed, the precise meaning of the PDE under 
the current assumptions is the following: the vector-valued function . ∇vL(x, u,∇u)

is an . L1 function whose distributional divergence equals .∂sL(x, u,∇u) since it 
satisfies 

. 

ˆ
𝛀

(∂sL(x, u,∇u)ϕ + ∇vL(x, u,∇u) · ∇ϕ) dx = 0

for every .ϕ ∈ C∞
c (𝛀). In dimension one, it was easy to deduce from this condition 

extra regularity for u, at least on some examples, since, for instance, having a . C0

distributional derivative is equivalent to being . C1. In higher dimensions we do 
not have an equation on each partial derivative of .∇vL(x, u,∇u), but only on its 
divergence, which makes it difficult to deduce regularity. 

A classical example is the case .L(x, u, v) = 1
2 |v|2, i.e. the minimization of 

. H 1(𝛀) ϶ u I→
ˆ

𝛀

|∇u|2

with prescribed boundary conditions. In this case we have .∇vL(x, u,∇u) = ∇u and 
the equation is .∇ · ∇u = 0. This corresponds to the Laplace equation . ∆u = 0
which would mean, in the distributional sense, .

´
𝛀

u∆ϕ = 0 for all .ϕ ∈ C∞
c (𝛀). 

Here, instead, since we know .u ∈ H 1 and hence . ∇u is a well-defined integrable 
function, we require .

´
𝛀

∇u · ∇ϕ = 0. We will see anyway that these two conditions 
coincide and both imply .u ∈ C∞ and .∆u = 0 in the most classical sense (see 
Sect. 2.3, devoted to the study of harmonic functions and distributions). On the other 
hand, the situation could be trickier when the equation is non-linear, or if there is 
an explicit dependence on x and/or some low-regularity lower order terms, and in 
this case the regularity of the optimal solution u is usually obtained from the Euler– 
Lagrange equation by choosing suitable test functions . ϕ. As we will see in Chap. 5, 
for instance, it is often useful to choose a function . ϕ related to the solution u itself. 
This requires the weak formulation of the Euler–Lagrange equation to be extended 
to test functions which, instead of being . C∞, have the same regularity as u. This  
can be done via the following lemma. 

Lemma 2.5 Let .p > 1 be a given exponent, with .p' = p
p−1 its dual exponent, and 

let .z ∈ Lp'
(𝛀;Rd) be a vector field such that .

´
𝛀

z · ∇ϕ = 0 for all .ϕ ∈ C∞
c (𝛀). 

Then we also have .
´
𝛀

z · ∇ϕ = 0 for all .ϕ ∈ W
1,p
0 (𝛀). This applies in particular 

to the case .z = ∇vL(x, u,∇u) whenever .u ∈ W 1,p and L satisfies . |∇vL(x, u, v)| ≤
C(1 + |v|p−1). 

Proof The condition .z ∈ Lp'
implies that .Lp ϶ v I→ ´

z · v is continuous in 
. Lp and hence .W 1,p ϶ ϕ I→ ´

z · ∇ϕ is continuous in .W 1,p. Thus, if this linear
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form vanishes on .C∞
c (𝛀), it also vanishes on its closure for the .W 1,p norm, i.e. on 

.W
1,p
0 (𝛀). 
For the second part of the claim, note that whenever .u ∈ W 1,p(𝛀) we have 

.|∇u|p−1 ∈ L
p

p−1 , which implies, under the growth assumption of the claim, 
.∇vL(x, u,∇u) ∈ Lp'

. ⨅⨆
Boundary and Transversality Conditions We switch now to the case where no 
boundary value is prescribed. Exactly as in the 1D case we can consider . uε = u+εϕ

for arbitrary .ϕ ∈ C∞, without imposing a zero boundary value or compact support 
for . ϕ. The same computations as before provide the necessary optimality condition 

. 

ˆ
𝛀

(∂sL(x, u,∇u)ϕ + ∇vL(x, u,∇u) · ∇ϕ) dx = 0 for all ϕ ∈ C∞(𝛀).

Distributionally, this corresponds to saying that the vector field . x I→
∇vL(x, u,∇u) extended to 0 outside . 𝛀 has a distributional divergence equal to the 
scalar function .∂sL(x, u,∇u), also extended to 0 outside . 𝛀. A formal integration 
by parts would instead give 

. 0 =
ˆ

𝛀

(∂sL(x, u,∇u)−∇ · (∇vL(x, u,∇u))) ϕ dx+
ˆ

∂𝛀

∇vL(x, u,∇u)·n ϕ dHd−1,

where . n is the normal vector to . ∂𝛀, so that besides the differential condition inside 
. 𝛀 we also obtain a Neumann-like boundary condition on . ∂𝛀, i.e. we obtain a weak 
version of the system 

. 

{
∇ · (∇vL(x, u,∇u)) = ∂sL(x, u,∇u), in 𝛀,

∇vL(x, u,∇u)) · n = 0 on ∂𝛀.

In the particular case where .L(x, sv) = 1
2 |v|2 + F(x, s) the boundary condition is 

exactly a homogeneous Neumann condition .∂u/∂n = 0. 
It is of course possible to consider mixed cases where part of the boundary is 

subject to a Dirichlet boundary condition and part of the boundary is either free or 
penalized. We then consider the optimization problem 

.min

{
J (u) := ´

𝛀
L(x, u(x),∇u(x)) dx + ´

∂𝛀
ψ(x,Tr[u]) dHd−1 :

u ∈ W 1,p(𝛀),Tr[u] = g on A

}
, (2.4) 

where .A ⊂ ∂𝛀 is a prescribed part of the boundary (which is possibly empty) and 
.ψ : ∂𝛀 × R → R is a prescribed penalization function, which could be zero for x 
in some parts of . ∂𝛀 and is irrelevant for .x ∈ A. In order to perform a differentiation 
under the integral sign we need to add to condition (2.3) a similar condition on the 
boundary, i.e.
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.x I→ sup {|∂sψ(x, s)| : |s − Tr[u](x)| < δ} ∈ L1(∂𝛀 \ A) (2.5) 

for every .u ∈ W 1,p with .J (u) < +∞. The conditions to guarantee this bound are 
similar to those for the corresponding bound on L. Condition (2.5) is in particular 
satisfied when .p ≤ d every time that .∂sψ(x, s) has a growth of order q in s (i.e. 
.|∂sψ(x, s)| ≤ C(1 + |s|)q ) and .Tr[u] ∈ Lq(∂𝛀) (in particular, we can take . q = p

since the trace operator is valued in .Lp(∂𝛀), but also .q = (d − 1)p/(d − p), if we  
use the last property of the trace operator in Box 2.4). In the case .p > d any local 
bound on .∂sψ is enough since .Tr[u] is bounded, in particular this can apply to the 
case where . ψ is differentiable in s with .∂sψ ∈ C0(∂𝛀 × R). 

A computation which will be now standard for the reader provides the necessary 
optimality condition for the problem (2.4): u should satisfy 

. 

ˆ
𝛀

(∂sL(x, u,∇u)ϕ + ∇vL(x, u,∇u) · ∇ϕ) dx +
ˆ

∂𝛀

∂sψ(x,Tr[u])ϕ dHd−1 = 0

(2.6) 

for all .ϕ ∈ C∞
c (𝛀 \ A). 

When .A = ∅, distributionally this means that the vector field . x I→ ∇vL(x, u,∇u)

extended to 0 outside . 𝛀 has a distributional divergence equal to the scalar function 
.∂sL(x, u,∇u), also extended to 0 outside . 𝛀, plus a singular measure concentrated 
on . ∂𝛀 with a density w.r.t. the surface measure .Hd−1, this density being equal to 
.∂sψ(x,Tr[u]). When .A /= ∅, this distributional condition is satisfied on the open set 
.R

d \ A. 
A formal integration by parts provides the Euler–Lagrange system 

.

⎧⎪⎪⎨
⎪⎪⎩

∇ · (∇vL(x, u,∇u)) = ∂sL(x, u,∇u), in 𝛀,

∇vL(x, u,∇u)) · n = −∂sψ(x, u) on ∂𝛀 \ A

u = g on A,

(2.7) 

where we dared to write u instead of .Tr[u] since, anyway, the condition is quite 
formal. 

2.3 Harmonic Functions 

This section will be devoted to the study of harmonic functions, which are the 
solutions of the simplest and most classical variational problem, i.e. the minimiza-
tion of the Dirichlet energy .

´ |∇u|2 among functions with prescribed values on the 
boundary of a given domain. However, we will not make use here of the variational
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properties of these functions, but only of the equation they solve. Recall that we 
denote by . ∆ the differential operator given by 

. ∆ :=
d∑

i=1

∂2

∂x2
i

.

We will start from the case of a . C2 function u satisfying .∆u = 0 in a given open 
domain . 𝛀. The first property that we consider is the mean value formula, which 
connects the value of u at a point . x0 to the averages of u on balls or spheres around 
. x0. 

Proposition 2.6 If .u ∈ C2(𝛀) and .∆u = 0 then, for every point . x0 and . R > 0
such that .B(x0, R) ⊂ 𝛀, we have the following properties 

• .(0, R) ϶ r I→ ffl
∂B(x0,r)

u dHd−1 is constant and equal to .u(x0); 

• .(0, R) ϶ r I→ ffl
B(x0,r)

u dx is also constant and equal to .u(x0). 

Proof We start from the function .h(r) := ffl
∂B(x0,r)

u dHd−1, which we can write as 

.h(r) = ffl
∂B(0,1) u(x0+re) dHd−1(e). The smoothness of u allows us to differentiate 

and obtain 

. h'(r) =
 

∂B(0,1)
∇u(x0 + re) · e dHd−1(e) =

 
∂B(0,1)

∇u(x0 + re) · n dHd−1(e),

where we used that, for every point e on the boundary of the unit ball, the vector 
e coincides with the outward normal vector. The last integral can be then re-
transformed into an integral on the sphere .∂B(x0, r), and it equals 

. 

 
∂B(0,r)

∇u · n dHd−1.

We can then integrate by parts 

. 

ˆ
∂B(0,r)

∇u · n dHd−1 =
ˆ

B(0,r)
∆u dx = 0,

which proves that h is constant as soon as .∆u = 0. Since u is continuous, we have 
.limr→0 h(r) = u(x0), so that we have .h(r) = u(x0) for every r , which proves the 
first part of the claim. 

We then use the polar coordinate computation 

. 

 
B(0,r)

u dx =
´ r

0 sd−1h(s) ds´ r

0 sd−1 ds
= u(x0),

to obtain the second part of the claim. ⨅⨆
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Remark 2.7 It is clear from the above proof that if one replaces the assumption 
.∆u = 0 with .∆u ≥ 0 then the functions .r I→ ffl

∂B(x0,r)
u dHd−1 and . r I→ffl

B(x0,r)
u dx are no longer constant but non-decreasing. Functions with non-negative 

Laplacian are called sub-harmonic. 

A key point about harmonic functions is that if u is harmonic and . C∞, then all 
derivatives of u are also harmonic. This allows us to prove the following bounds. 

Proposition 2.8 If .u ∈ C∞(𝛀) and .∆u = 0 then, for every point . x0 and . R > 0
such that .B(x0, R) ⊂ 𝛀 ⊂ R

d , we have 

. |∇u(x0)| ≤ d

R
||u||L∞(B(x0,R)).

Proof We consider the vector function . ∇u, which is also harmonic (each of its 
components is harmonic) and use 

. ∇u(x0) =
 

B(x0,R)

∇u dx = 1

ωdRd

ˆ
B(x0,R)

∇u dx = 1

ωdRd

ˆ
∂B(x0,R)

un dHd−1,

where . ωd is the volume of the unit ball in . Rd . To establish the last equality we used 
an integration by parts: for every constant vector e we have .∇ · (ue) = ∇u · e and 
.
´
A

∇ · (ue) = ´
∂A

ue · n for every open set A; the vector e being arbitrary, this 
provides .

´
A

∇u = ´
∂A

un. 

We finish the estimate by bounding .
∣∣∣´∂B(x0,R)

un dHd−1
∣∣∣ by the maximal norm 

of . un times the measure of the surface, i.e. by .||u||L∞(B(x0,R))Hd−1(∂B(x0, R)) or, 
equivalently, by .||u||L∞(B(x0,R))dωdRd−1. ⨅⨆

In order to analyze higher-order derivatives of u we recall the notation with 
multi-indices: a multi-index .α = (α1, . . . , αd) ∈ N

d is a vector of natural numbers 
indicating how many times we differentiate w.r.t. each variable, and we write 

. Dαu := ∂ |α|

∂
α1
x1 . . . ∂

αd
xd

u,

where .|α| := ∑d
i=1 αi is the order of the multi-index . α. A consequence of the 

previous estimate, if iteratively applied to the derivatives of u, is the following result. 

Proposition 2.9 If .u ∈ C∞(𝛀) and .∆u = 0 then, for every point . x0 and . R > 0
such that .B(x0, R) ⊂ 𝛀 ⊂ R

d and every multi-index . α with .|α| = m, we have 

.|Dαu(x0)| ≤ dmem−1m!
Rm

||u||L∞(B(x0,R)). (2.8) 

Proof Given . x0 and r , assume .B(x0,mr) ⊂ 𝛀. We can find a finite family of 
harmonic functions . vk , .k = 0, . . . , m such that each .vk+1 is a derivative (with
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respect to a suitable variable . xi) of the previous . vk , with .v0 = u, and .vm = Dαu. 
Applying iteratively Proposition 2.8 we obtain .|vk(x)| ≤ d

r
||vk−1||L∞(B(x,r), so that 

we have 

. |Dαu(x0)| = |vm(x0)| ≤ d

r
||vm−1||L∞(B(x,r) ≤ d2

r2
||vm−2||L∞(B(x,2r) ≤ . . .

· · · ≤ dk

rk
||vm−k||L∞(B(x,kr) ≤ dm

rm
||u||L∞(B(x,mr).

We then take .r = R/m and get 

. |Dαu(x0)| ≤ mmdm

Rm
||u||L∞(B(x,R).

We then apply the inequality .mm ≤ em−1m! and conclude. 
To prove this inequality we observe that we have . m logm = m logm − 1 log 1 =´ m

1 (log s + 1) ds ≤ ∑m
k=2(log k + 1) = log(m!) + m − 1, which gives exactly the 

desired inequality when taking the exponential on both sides.2 ⨅⨆
With this precise estimate in mind we can also prove the following fact. 

Proposition 2.10 .C∞ harmonic functions are analytic. 

We recall that analytic functions are those functions which locally coincide with 
their Taylor series around each point. 

Proof For a .C∞ function u we can write its Taylor expansion as 

. u(x) = u(x0) +
m∑

k=1

∑
α : |α|=k

1

α!D
αu(x0)x

α + R(m + 1, x),

where the notation . α! stands for .α1!α2! . . . αd !, the notation . xα for . xα1
1 x

α2
2 . . . x

αd

d

and the remainder .R(m + 1, x) has the form 

. R(m + 1, x) =
∑

α : |α|=m+1

1

α!D
αu(ξ)xα

for a certain point .ξ ∈ [x0, x]. In order to prove that the function u is analytic we 
need to prove .R(m, x) → 0 as .m → ∞ for x in a neighborhood of . x0. Assume 
.B(x0, 2R) ⊂ 𝛀; if  .x ∈ B(x0, r) the point . ξ also belongs to the same ball and if

2 A refinement of this argument provides the well-known Stirling formula for the factorial . n! =√
2πn(n/e)n(1 + O(1/n)). 
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.r ≤ R we have .B(ξ, R) ⊂ B(x0, 2R) ⊂ 𝛀. Then, we can estimate, thanks to (2.8), 

. |R(m, x)| ≤
∑

α : |α|=m

1

α! r
m dmem−1m!

Rm
||u||L∞(B(x0,2R))

= C

(
d · e · r

R

)m ∑
α : |α=m

m!
α! .

We then use the well-known formula for multinomial coefficients 

. 
∑

α : |α|=m

m!
α! = dm

and obtain 

. |R(m, x)| ≤ C

(
d2 · e · r

R

)m

.

The convergence is guaranteed as soon as .r < R
d2e

, which proves the analyticity of 
u. ⨅⨆

Another consequence of Proposition 2.9 is the following regularity result. 

Proposition 2.11 If .u ∈ L1
loc(𝛀) satisfies .∆u = 0 in the distributional sense, then 

.u ∈ C∞(𝛀). 

Proof Given a sequence (with .ε → 0) of standard convolution kernels . ηε we 
consider .uε := u ∗ ηε. We consider a ball .B(x0, R) compactly contained in . 𝛀; 
we have .uε ∈ C∞(B(x0, R)) for small . ε and .∆uε = 0 in the distributional, 
and hence classical, sense, in the same ball. Moreover, .||uε||L1(B(x0,R)) is bounded 
independently of . ε because of .u ∈ L1

loc(𝛀). We deduce a uniform bound, 
independent of . ε, on  .||uε||L∞(B(x0,R/2)), as a consequence of the mean formula. 
Indeed, for each .x ∈ B(x0, R/2) we have 

. uε(x) =
 

B(x,R/2)
uε(y) dy = 1

ωd(R/2)d

ˆ
B(x,R/2)

uε(y) dy

and using .B(x,R/2) ⊂ B(x0, R) we obtain .|uε(x)| ≤ C||uε||L1(B(x0,R)). Then, 
the estimate (2.8) allows us to bound all the norms .||Dαuε||L∞(B(x0,R/4)) by 
.||uε||L∞(B(x0,R/2)). This shows that, on the ball .B(x0, R/4), all derivatives of . uε are 
bounded by a constant independent of . ε. Using  .uε → u in the distributional sense, 
we obtain .u ∈ Ck(B(x0, R/4)) for every k and the same bounds on the derivatives 
are satisfied by u. This shows .u ∈ C∞(B(x0, R/4)) and, the point .x0 ∈ 𝛀 being 
arbitrary, .u ∈ C∞(𝛀). ⨅⨆
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Box 2.6 Memo—Convolutions and Approximation 

Given two functions .u, v on . Rd we define their convolution .u ∗ v via 

. (u ∗ v)(x) :=
ˆ
Rd

u(x − h)v(h) dh

when this integral makes sense, for instance when one function is . L1 and the 
other . L∞. Via a simple change of variables we see that we have . (u∗ v)(x) :=´

u(x')v(x − x'), so that the convolution is commutative and .u ∗ v = v ∗ u. 
When .u, v ∈ L1 it is possible to prove that .u ∗ v is well-defined for a.e. x and 
it is an . L1 function itself. 

In the particular case where .v ≥ 0 and .
´

v = 1 we can write . u ∗ v =ffl
uh dv(h), where . uh is the translation of u defined via . uh(x) := u(x − h)

and we identify v with a probability measure. This means that .u∗v is a suitable 
average of translations of u. 

A very common procedure consists in using a function .η ∈ C∞
c with . η ≥

0 and .
´

η = 1, and taking .vn(x) := ndη(nx), which is also a probability 
density, supported in a ball whose radius is .O(1/n). It is clear that when u 
is uniformly continuous we have .u ∗ vn → u uniformly. Moreover, using the 
density of .C∞

c in . Lp, it is possible to prove that for any .u ∈ Lp we have 
.u ∗ vn → u strongly in . Lp. 

Derivatives of convolutions of smooth functions can be computed very 
easily: we have .∂xi

(u ∗ v) = (∂xi
u) ∗ v as a consequence of the differentiation 

under the integral sign. Using .u ∗ v = v ∗ u, the derivative can be taken on 
any of the two functions. If one of the functions is . Ck and the other .Cm the 
convolution is .Ck+m, and if one is . Ck and the other is only . L1 the convolution 
inherits the regularity of the best one. In particular, for .u ∈ L1 the sequence 
.un := u ∗ vn defined above is an approximation of u made of .C∞ functions. 

A striking fact is the following: if F is any functional defined on a 
functional space which is convex and invariant under translations (which is 
the case, for instance, for all the . Lp norms, but also for norms depending 
on the derivatives) and v is a probability measure, we necessarily have 
.F(u ∗ v) ≤ F(u). 

Finally, it is also possible to define convolutions for distributions, thanks 
to the procedure in Box 2.5. When using the convolution kernel . vn above, for 
any distribution T we have .T ∗ vn → T in the sense of distributions. 

We want to go on with our analysis, proving that all harmonic distributions 
are actually analytic functions. In order to proceed, we first need to make a short 
digression about the equation .∆u = f and its fundamental solution. We introduce
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the fundamental solution of the Laplacian as the function . ┌ given by 

. ┌(x) =
{

1
2π log |x| if d = 2,

− 1
d(d−2)ωd

|x|2−d if d > 2.

We can see that we have 

• .┌ ∈ L1
loc, .∇┌ ∈ L1

loc, but .D
2┌ /∈ L1

loc. 
• .

´
∂B(0,R)

∇┌ · n = 1 for every R. 

• .┌ ∈ C∞(Rd \ {0}) and .∆┌ = 0 on .R
d \ {0}. 

• .∆┌ = δ0 in the sense of distributions. 

As a consequence, for every .f ∈ C∞
c (Rd), the function .u = ┌ ∗ f is a smooth 

function solving .∆u = f in the classical sense. It is of course not the unique 
solution to this equation, since we can add to u arbitrary harmonic functions. 

For this solution, we have the following estimate 

Proposition 2.12 Given .f ∈ C∞
c (Rd), let  u be given by .u = ┌ ∗ f . Then we have 

.
´
Rd |D2u|2 = ´

Rd |f |2, where .|D2u|2 denotes the squared Frobenius norm of the 
Hessian matrix, given by .|A|2 = Tr(AtA) = ∑

i,j A2
ij . 

Proof We consider a ball .B(0, R) and obtain, by integration by parts, 

. 

ˆ
B(0,R)

f 2 dx =
ˆ

B(0,R)

|∆u|2 dx =
∑
i,j

ˆ
B(0,R)

uiiujj dx

= −
∑
i,j

ˆ
B(0,R)

uiij uj dx +
∑
i,j

ˆ
∂B(0,R)

uiiuj nj dHd−1.

If the support of f is compactly contained in .B(0, R) then the last boundary term 
vanishes since it equals .

´
∂B(0,R)

f ∇u · n. Going on with the integration by parts we 
have 

. 

ˆ
B(0,R)

f 2 dx =
∑
i,j

ˆ
B(0,R)

uij uij dx −
∑
i,j

ˆ
∂B(0,R)

uij uj ni dHd−1,

hence 

.

ˆ
B(0,R)

f 2 dx =
ˆ

B(0,R)

|D2u|2 dx −
ˆ

∂B(0,R)

D2u∇u · n dHd−1.
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We then note that, for .R ⪢ 1, we have .|∇u(x)| ≤ C|x|1−d and .|D2u(x)| ≤ C|x|−d , 
as a consequence of the shape of . ┌ and the compact support of f , so that we have 

. 

∣∣∣∣
ˆ

∂B(0,R)

D2u∇u · n dHd−1
∣∣∣∣ ≤ CRd−1 · R−d · R1−d = CR−d → 0 as R → ∞,

which proves the claim. ⨅⨆
Using .┌,∇┌ ∈ L1

loc we see that .f ∈ L2 also implies that the . L2 norms of . ┌ ∗ f

and .∇(┌ ∗ f ) are locally bounded by constants multiplied by the . L2 norm of f , so  
that we have local bounds on the full norm .||┌ ∗ f ||H 2 in terms of .||f ||L2 . 

Applying the same result to the derivatives of f we immediately obtain the 
following. 

Corollary 2.13 Given .f ∈ C∞
c (𝛀) for a bounded set . 𝛀, let  u be given by . u =

┌ ∗ f . Then for every .k ≥ 0 we have 

. ||u||Hk+2(𝛀) ≤ C(k,𝛀)||f ||Hk(𝛀).

Lemma 2.14 Assume that .u ∈ C∞(𝛀) is harmonic in . 𝛀 and take .x0, r < R such 
that we have .B(x0, R) ⊂ 𝛀. Then, for every integer .k ≥ 1, we have 

. ||u||H 1−k(B(x0,r))
≤ C(k, r, R)||u||H−k(B(x0,R)).

Proof We want to take .ϕ ∈ C∞ with .spt(ϕ) ⊂ B(x0, r) and estimate .
´

uϕ in terms 
of .||ϕ||Hk−1 and .||u||H−k(B(x0,R)). To do this, we first consider .v = ┌∗ϕ and a cutoff 
function .η ∈ C∞(𝛀) with .η = 1 on .B(x0, r) and .η = 0 outside of .BR := B(x0, R). 
We write 

. 0 =
ˆ

BR

u∆(vη) dx =
ˆ

BR

uϕη dx +
ˆ

BR

uv∆η dx + 2
ˆ

BR

u∇v · ∇η dx.

Using .ϕη = ϕ (since .η = 1 on .spt(ϕ)), we obtain 

. 

ˆ
BR

uϕ dx = −
ˆ

BR

uv∆η dx − 2
ˆ

BR

u∇v · ∇η dx

≤ ||u||H−k(B(x0,R)

(||v∆η||Hk(B(x0,R) + 2||∇v · ∇η||Hk(B(x0,R)

)
.

Since . η is smooth and fixed, and its norms only depend on . r, R, we obtain 

. ||v∆η||Hk(B(x0,R), ||∇v · ∇η||Hk(B(x0,R) ≤ C(k, r, R)||∇v||Hk(B(x0,R).

Applying the Corollary 2.13 we obtain . ||∇v||Hk ≤ ||v||Hk+1 ≤ C(k, r, R)||ϕ||Hk−1 ,

which provides the desired result. ⨅⨆
We can then obtain
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Proposition 2.15 Assume that .u ∈ H−k
loc (𝛀) is harmonic in . 𝛀 in the sense of 

distributions. Then u is an analytic function. 

Proof The proof is the same as in Proposition 2.11: we regularize by convolution 
and apply the bounds on the Sobolev norms. Lemma 2.14 allows us to pass from 
.H−k to .H 1−k and, iterating, arrive at . L2. Once we know that u is in .L2

loc we directly 
apply Proposition 2.11. ⨅⨆

Finally, we have 

Proposition 2.16 Assume that u is a harmonic distribution in . 𝛀. Then u is an 
analytic function. 

Proof We just need to show that u locally belongs to a space .H−k (said differently, 
every distribution is of finite order, when restricted to a compact set). This is a 
consequence of the definition of distributions. Indeed, we have the following: for 
every distribution u and every compact set .K ⊂ 𝛀 there exist .n,C such that 
.〈u, ϕ〉 ≤ C||ϕ||Cn for every .ϕ ∈ C∞ with .spt(ϕ) ⊂ K . If we want to prove this we 
just need to proceed by contradiction: if it is not true, then there exists a distribution 
u and a compact set K such that for every n we can find a . ϕn with 

. 〈u, ϕn〉 = 1, ||ϕn||Cn ≤ 1

n
, spt(ϕn) ⊂ K.

Note that we define the . Cn norm as the sup of all derivatives up to order n; so that 
.||ϕ||Cn+1 ≥ ||ϕ||Cn . Yet, this is a contradiction since the sequence . ϕn tends to 0 
in the space of .C∞

c functions and u should be continuous for this convergence. So 
we have the inequality .〈u, ϕ〉 ≤ C||ϕ||Cn which can be turned into . < u, ϕ >≤
C||ϕ||Hk because of the continuous embedding of Sobolev spaces into . Cn spaces 
(take .k > n + d/2). ⨅⨆

The techniques that we presented for the case .∆u = 0 now allow us to discuss 
the regularity for the Poisson equation .∆u = f in Sobolev spaces . Hk , and we can 
prove the following. 

Proposition 2.17 Assume that u is a distributional solution in . 𝛀 of .∆u = f , where 
.f ∈ H−k

loc (𝛀). Then .u ∈ H 2−k
loc (𝛀). 

Proof Let B be an open ball compactly contained in . 𝛀 and let us define a 
distribution . f̃ of the form . ηf , where .η ∈ C∞

c (𝛀) is such that .B ⊂ {η = 1}. 
Since u and .┌ ∗ f̃ have the same Laplacian in B, they differ by a harmonic function, 
and we know that harmonic functions are locally smooth, so that we just need to 
prove .┌ ∗ f̃ ∈ H 2−k

loc (B). This result is proven in Corollary 2.13 if .k ≤ 0, so we can 
assume .k ≥ 1.



2.3 Harmonic Functions 91

We take a test function .φ ∈ C∞
c (B) and we use the properties of the convolution 

to write 

. 

ˆ
B

(┌∗f̃ )φ dx =
ˆ

B

f̃ (┌∗φ) dx =
ˆ

B

f η(┌∗φ) dx ≤ ||f ||H−k(B)||η(┌∗φ)||Hk(B).

We then exploit the .C∞ regularity of . η to obtain . ||η(┌ ∗ φ)||Hk(B) ≤ C||┌ ∗
φ||Hk(B) and, if .k ≥ 2, we have, using again Corollary 2.13, . ||η(┌ ∗ φ)||Hk(B) ≤
C||φ||Hk−2(B). This proves .

´
(┌ ∗ f̃ )φ ≤ C||φ||Hk−2(B), i.e. .┌ ∗ f̃ ∈ H 2−k(B). 

We are left with the case .k = 1. Since this case is treated in a different way, we 
refer to a separate proposition for it. ⨅⨆
Proposition 2.18 Let .Bi = B(x0, Ri), .i = 1, 2, be two concentric balls with 
.R1 < R2. Then, given .f ∈ H−1(B2), setting .u = ┌ ∗ f , we have . ||u||H 1(B1)

≤
C(R1, R2)||f ||H−1(B2)

.

Proof By density, it is enough to prove this inequality if .f ∈ C∞. We choose a 
smooth cut-off function . χ with .0 ≤ χ ≤ 1, .χ = 1 on . B1 and .sptχ ⊂ B2. We then 
write 

. 

ˆ
B2

f uχ2 dx =
ˆ

B2

∆u(uχ2) dx = −
ˆ

B2

∇u∇(uχ2) dx,

where in the integration by parts there are no boundary terms since . χ is compactly 
supported. We then obtain 

. 

ˆ
B1

|∇u|2 dx ≤
ˆ

B2

|∇u|2χ2 dx

and 

. 

ˆ
B2

|∇u|2χ2 dx = −
ˆ

B2

f uχ2 dx − 2
ˆ

B2

∇u · ∇χuχ dx.

The right-hand side above can be bounded by 

. ||f ||H−1 ||∇(uχ2)||L2 + C||∇uχ ||L2 ||u∇χ ||L2 .

Using .||∇(uχ2)||L2 ≤ C||∇uχ ||L2 + C||u∇χ ||L2 (an estimate where we use . |χ | ≤
1) and applying Young’s inequality we obtain 

.

ˆ
B2

|∇u|2χ2 ≤ C||f ||2
H−1(B2)

+ C||f ||H−1(B2)
||u∇χ ||L2(B2)

+ C||u∇χ ||2
L2(B2)

.
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The same estimate as in Proposition 2.17, for  .k = 2, shows that we have 
.||u||L2(B2)

≤ C||f ||H−2(B2)
≤ C||f ||H−1(B1)

, so that we can deduce from the 
previous inequality 

. 

ˆ
B2

|∇u|2χ2 dx ≤ C(r, R)||f ||2
H−1(B2)

and then 

. 

ˆ
B1

|∇u|2 dx ≤ C(r, R)||f ||2
H−1(B2)

,

which is the claim. ⨅⨆

Box 2.7 Good to Know—Manifold- and Metric-Valued Harmonic Maps 

All the regularity theory on harmonic functions which has been presented 
in this section relies on the linear structure of the target space (we presented 
the results for scalar harmonic maps, but working componentwise they are 
easily seen to be true for vector-valued harmonic maps). 

Given a manifold .M ⊂ R
N , one could consider the problem 

. min{
ˆ

𝛀

|∇u|2 : u ∈ H 1(𝛀;RN), u ∈ M a.e., u − g ∈ H 1
0 (𝛀)}

together with its optimality conditions written as a PDE. This PDE would not 
be .∆u = 0 as it should take into account the constraint, and formally one 
finds .∆u = c(x)nM(u) (the Laplacian is pointwisely a vector normal to the 
manifold M at the point u). In this case, because of the non-convexity of the 
problem, the PDE would not be sufficient for the minimization, and because 
of the right-hand side in .∆u = f the regularity is not always guaranteed. 

For instance, when .M = S
2 ⊂ R

3 the equation is .∆u = −|∇u|2u (see 
Exercise 2.10) and .u(x) = x/|x|, a function defined on . 𝛀 = B(0, 1) ⊂
R
3 which solves it, is . H 1, but not continuous. This lack of regularity is not 

surprising considering that the right-hand side .−|∇u|2u is only . L1. It has been 
pointed out in [165] that the condition of being an . H 1 distributional solution 
of .∆u = −|∇u|2u is so weak that for any boundary data there are infinitely 
many solutions. Yet, the function .u(x) = x/|x| is not only a solution of this 
PDE, but also a minimizer of the Dirichlet energy for M-valued maps which 
are the identity on .∂B(0, 1). This nontrivial fact was first proven by Brezis, 
Coron and Lieb in [49] and then extended to other dimensions (and even other 
.W 1,p norms, for .p < d) in [116] and [139]. 

(continued)
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Box 2.7 (continued) 
The situation is different when M has non-positive curvature, in which 

case it is possible to prove regularity of harmonic maps valued in M . These 
harmonic maps were first studied by Ells and Sampson in [80]. Then, Schoen 
and Uhlenbeck proved in [181], for maps minimizing the Dirichlet energy 
.
´ |∇u|2 (and not only solving the Euler–Lagrange equation), some partial 
regularity results (smoothness out of a lower-dimensional set), guaranteeing 
in some cases that the singular set is empty. The interested reader can have a 
look at the book [122, Chapter 8] or at the survey by Hélein and Woods [112, 
Section 3.1]. 

Finally, it is possible to study the problem of minimizing the Dirichlet 
energy when replacing the Euclidean space or its submanifolds as a target 
space with a more abstract metric space. This requires us to give a definition 
of this energy, as the notion of gradient is not well-defined for maps valued 
in a metric space (consider that we also had to provide a suitable definition 
for the derivative of curves valued in a metric space, see Sect. 1.4.1). In this 
case the key observation to define a Dirichlet energy is the fact that, for the 
Euclidean case, we have for . u ∈ C1

c (Rd)

. 

ˆ
Rd

|∇u|2 dx = c(d) lim
ε→0+ ε−(d+2)

ˆ ˆ
|x−y|<ε

|u(x) − u(y)|2 dx dy,

where .c(d) is a dimensional constant. Then it is possible to replace . |u(x) −
u(y)| with .d(u(x), u(y)) and study the maps minimizing the limit energy. 
For this approach we refer to [127] and [122]. Besides the definition of the 
energy, these references provide a study of the harmonic maps valued in a 
metric space .(X, d), provided it has negative curvature in a suitable sense. 

2.4 Discussion: p-Harmonic Functions for 1 ≤ p ≤ ∞  

Section 2.3 provides a full description of the functions which minimize . ||∇u||L2

with given boundary conditions, which are the solutions of .∆u = 0 (and actually 
more, since it also considers harmonic distributions, i.e. we discuss distributional 
solutions of .∆u = 0 without requiring .u ∈ H 1). A similar problem can 
be considered by minimizing .||∇u||Lp , for arbitrary p. Let us start with . p ∈
(1,∞). 

From the variational point of view, minimizing .
´
𝛀

|∇u|p dx with given boundary 

conditions .u − u0 ∈ W
1,p
0 (𝛀) is a very classical and simple problem: not only can 

we easily show that the minimizers exist thanks to the techniques presented in this 
chapter, but they are unique (because of strict convexity), and they are characterized
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by the p-Laplacian equation 

. ∇ · (|∇u|p−2∇u) = 0,

whose solutions are called p-harmonic functions. Moreover, the growth conditions 
on the integrand allow us to formulate the equation as .

´ |∇u|p−2∇u · ∇ϕ = 0 for 

every .ϕ ∈ W
1,p
0 (𝛀). 

For .p = 2 we have harmonic functions, and we proved that they are actually 
smooth and even analytic. What about p-harmonic functions? These functions have 
been the object of a huge number of works in elliptic PDEs: there are of course 
regularity results, but the situation is actually much trickier than the linear case 
.p = 2. We will see in Chap. 4 some results—which are presented in this book 
through techniques coming from convex duality but could have been introduced 
using more classical PDE tools—about the Sobolev regularity of solutions of . ∇ ·
(|∇u|p−2∇u) = f (even for .f /= 0, but depending of course on the regularity 
of f ). When we mention Sobolev regularity, considering that we already assume 
.u ∈ W 1,p, we mean Sobolev regularity of the gradient, i.e. proving that . ∇u, or  
some function of . ∇u, belongs to . H 1 or some other spaces . Hs . 

Another possible, and classical, direction of research could be the Hölder 
regularity of the gradient. This started with [192], which proved that, among other 
results, for .p ≥ 2, functions which are p-harmonic are .C1,α . In dimension . d = 2
the result can be made much stronger and sharp, as it is possible to prove (see [119]) 
.u ∈ Ck,α with 

.k + α = 1

6

(
7 + 1

p − 1
+

√
1 + 14

p − 1
+ 1

(p − 1)2

)
. (2.9) 

The literature on the p-Laplacian equation is huge (see, for instance, the classical 
references [30, 131]), and these considerations as well as those in Chap. 4 only cover 
a small part of the results. 

It is then interesting to consider the limit cases .p = 1 and .p = ∞. Let us start 
from the latter. We can take two different approaches: either we look at the limit 
of the minimization problem, and we consider functions minimizing .||∇u||L∞ with 
prescribed boundary datum, or we look at the limit of the equation. The equation 
.∇ · (|∇u|p−2∇u) = 0 can be expanded and it can be written as 

. |∇u|p−2∆u + (p − 2)|∇u|p−4∇u · D2u∇u = 0.

We can factorize .(p − 2)|∇u|p−4 and this becomes 

.
∆u

p − 2
+ ∇u · D2u∇u = 0.
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In the limit .p → ∞, only the second terms remains, and we define .∞-harmonic 
functions to be those which solve, in a suitable sense, the non-linear equation 

. ∇u · D2u∇u = 0.

Since the equation is non-linear and is not in divergence form, we cannot use 
distributional or weak solutions. On the other hand, the function . (p,M) I→ p · Mp

is non-decreasing in M , which allows us to use the notion of viscosity solutions 
(see below). Thus, we define .∞-harmonic functions as those which solve the above 
equation in the viscosity sense. An important result (many proofs are available, but 
we suggest the reader to look at [19], which is very elementary) states that there 
exists a unique viscosity solution u of .∇u · D2u∇u = 0 with given boundary 
conditions. Solutions of this equation, that we also write as .∆∞u = 0, are said 
to be .∞-harmonic. 

Box 2.8 Important Notion—Viscosity Solution of Second-Order PDEs 

Let us take a function .F : 𝛀×R×R
d ×R

d×d
sym → R, where .R

d×d
sym stands for 

the space of .d×d symmetric matrices. Let us assume that F is non-decreasing 
in the last variable, in the sense that .F(x, s, p,M) ≤ F(x, s, p,N) every time 
that .N − M is positive-definite. We then say that a function .u ∈ C0(𝛀) is a 
viscosity solution of .F(x, u,∇u,D2u) = 0 if it satisfies the following two 
properties 

• for every .x0 ∈ 𝛀 and .ϕ ∈ C2(𝛀) such that .ϕ ≥ u but .ϕ(x0) = u(x0) we 
have .F(x0, ϕ(x0),∇ϕ(x0),D

2ϕ(x0)) ≥ 0; 
• for every .x0 ∈ 𝛀 and .ϕ ∈ C2(𝛀) such that .ϕ ≤ u but .ϕ(x0) = u(x0) we 

have .F(x0, ϕ(x0),∇ϕ(x0),D
2ϕ(x0)) ≤ 0. 

As a reference for the theory of viscosity solutions for second-order PDEs, 
see [58]. 

Another approach to the limit .p → ∞ concerns the limit of the optimization 
problem. Limits of optimization problems will be discussed in detail in Chap. 7, 
but in this case it is very easy, as one only needs to replace the . Lp norm with 
the .L∞ norm. What can we say about minimizers of .u I→ ||∇u||L∞ with given 
boundary conditions? On convex domains, this quantity coincides with the Lipschitz 
constant, which makes it easy to prove the existence of a solution using the Ascoli– 
Arzelà theorem. More than this, it is also possible to identify the optimal Lipschitz 
constant, which is equal, when speaking of real-valued functions, to the Lipschitz 
constant of the boundary datum. Indeed, given an L-Lipschitz function on a set A 
(not necessarily . ∂𝛀), it is always possible to extend it to the whole space keeping 
L as a Lipschitz constant. For instance, given .u : A → R, one can define .u(x) :=
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sup{L|x − y| +  u(y) : y ∈ A}. But this is only a possible choice, since we can, for 
instance, also choose .u(x) := inf{−L|x −y|+u(y) : y ∈ A}. These two functions 
do not coincide in general, and they are actually the smallest and the largest possible 
L-Lipschitz extension of u, in the sense that any .u ∈ LipL with prescribed value on 
A satisfies .u ≤ u ≤ u. 

As a consequence, we understand that many different functions can minimize 
.u I→ ||∇u||L∞ with given boundary conditions, but which is the one that we can find 
as the limit of the solutions . up of .−∆pu = 0 with the same boundary conditions? 
(or, equivalently, which is the limit of the minimizers of .u I→ ||∇u||Lp?). We 
see now that the minimization problem of the .L∞ norm lacks a property which 
is obviously satisfied by the minimization of the . Lp norm and, more generally, of 
all integral functionals: when we minimize on a domain . 𝛀 an integral cost of the 
form .

´
𝛀

L(x, u,∇u) dx, the solution u is such that, for every subdomain .𝛀' ⊂ 𝛀, 
it also minimizes .

´
𝛀' L(x, u,∇u) dx among all functions defined on . 𝛀' sharing the 

same value with u on . ∂𝛀'. This is just due to the additivity of the integral, so that if a 
better function existed on . 𝛀' we could use it on . 𝛀' instead of u, and strictly improve 
the value of the integral. When the functional is defined as a sup, if the sup is not 
realized in . 𝛀' but in .𝛀 \ 𝛀', most likely modifying u on . 𝛀' does not change the 
value of the functional. This means that minimizers of the .L∞ norm of the gradient 
can, in many situations, be almost arbitrary in large portions of the domain . 𝛀 and, 
unlike the case of the . Lp norm, cannot be characterized by any PDE. This motivates 
the following definition. 

Definition 2.19 A Lipschitz function .u : 𝛀 → R is said to be an absolute 
minimizer of the .L∞ norm of the gradient if it satisfies the following condition: 
for every .𝛀' ⊂ 𝛀 we have 

. ||∇u||L∞(𝛀') = min{||∇ũ||L∞(𝛀') : ũ ∈ Lip(𝛀'), ũ = u on ∂𝛀'}.

We then have the following results, which we will not prove. 

Theorem 2.20 A Lipschitz function .u : 𝛀 → R is an absolute minimizer if and 
only if it is a viscosity solution of .∆∞u = 0. 

Given a Lipschitz boundary datum .g : ∂𝛀 → R, the functions . up defined as 
the unique solution of .∆pup = 0 in . 𝛀 with .up = g on .∂𝛀 uniformly converge as 
.p → ∞ to the function .u∞ defined as the unique viscosity solution of . ∆∞u = 0
with the same boundary data. 

We now switch to the other extreme case, i.e. .p = 1. The first difficulty in 
solving .min ||∇u||L1 with given boundary data consists in the fact that the space 
. L1 is neither reflexive (as is the case for .1 < p < ∞) nor it is a dual space (as is 
the case for .p = ∞). So, it is in general not possible to extract weakly convergent 
subsequences from bounded sequences, and the minimization problem could turn 
out to be ill-posed if we consider .u ∈ W 1,1. The natural framework in order to 
obtain the existence of a minimizer is to extend the problem to .u ∈ BV and replace 
the . L1 norm of the gradient with the mass of the measure . ∇u (see Sects 1.5 and 1.6
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for the first appearance of BV functions, and Box 6.1 for the multi-dimensional 
case). Exactly as in the 1D case (in particular, as it happened in Sect. 1.6), boundary 
data are not always well-defined for BV functions, as they could jump exactly on 
the boundary. Hence, it is the same to solve 

. min{||∇u||M(𝛀) : u ∈ BV(𝛀), u = g on ∂𝛀},

where the condition .u = g on ∂𝛀 can be intended as “u is a BV function on a larger 
domain . �̃� which contains . 𝛀 in its interior, which coincides with an extension of g 
on .�̃� \ 𝛀, this extension being continuous in a suitable sense in .�̃� \ 𝛀”, or to solve 

.min{||∇u||M(𝛀) +
ˆ

∂𝛀

|Tr[u] − g| dHd−1 : u ∈ BV(𝛀)}, (2.10) 

where the trace of a BV function should also be suitably defined (and corresponds 
in this case to the trace coming from inside . 𝛀). 

In particular, it is possible for certain choices of g and of . 𝛀 that the solution 
of this problem (which is in general not unique, because the functional which is 
minimized is no longer strictly convex) is a smooth function inside . 𝛀 but does not 
take the value g on . ∂𝛀. 

Formally, the equation solved by the minimizers is the 1-Laplacian equation, i.e. 

. ∆1u := ∇ ·
( ∇u

|∇u|
)

= 0

and functions which solve it are called, besides 1-harmonic, least gradient functions. 
In order to treat points where .∇u = 0, a possible interpretation of the above 

equation is the following: there exists a vector field .z : 𝛀 → R
d with .|z| ≤ 1 and 

.z · ∇u = |∇u| (i.e. .z = ∇u/|∇u| whenever .∇u /= 0) such that .∇ · z = 0. Since 
the condition .|z| ≤ 1 already implies .z · ∇u ≤ |∇u|, the equality .z · ∇u = |∇u| is 
equivalent to .

´
z · ∇u = ´ |∇u|, a condition which has a meaning also when . ∇u is 

a measure. 
Note that, whenever u is a smooth function with non-vanishing gradient, the 

quantity .∆1u(x0) coincides with the curvature (in the sense of the sum of the princi-
pal curvatures) of the codimension 1 surface .{u = u(x0)} at the point . x0. In particu-
lar, imposing that it vanishes means imposing that these surfaces all have zero mean 
curvature; in dimension .d = 2 they should be locally segments. Finally, also note 
that the level sets are invariant if one composes u with a monotone increasing func-
tion, and this is absolutely consistent with the fact that we have . ∆1u = ∆1(f (u))

for every monotone increasing function f , just because the quantity .∇u/|∇u| is 
0-homogeneous and it is not affected by the multiplication by .f '(u) which appears 
in the composition. 

We do not want to give general results on least gradient functions here, but we 
want to underline a nice transformation which is only possible in dimension .d = 2. 
Indeed, in the two-dimensional case, if we set .v := R∇u, where R is a 90. ◦ rotation,
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we have .∇ · v = 0 in . 𝛀. Moreover, the Dirichlet condition on u, which can be seen 
(up to additive constants) as a condition on its tangential derivative, becomes after 
this rotation a condition on the normal component of . v. Imposing the divergence in 
the interior of . 𝛀 and . v·n on . ∂𝛀 is the same as imposing the distributional divergence 
(which can have a singular part on . ∂𝛀) on the whole space of the vector field 
obtained by extending . v to 0 outside . 𝛀. Since the norms of . v and of . ∇u are the same, 
the optimization problem defining least gradient functions can be reformulated 
as the minimization of the . L1 norm (or of the mass of a vector measure) under 
divergence constraints. This minimal flow problem will be discusses in Chap. 4 and 
in particular in the discussion Sect. 4.6, and it is equivalent to an optimal transport 
problem from the positive to the negative part of the prescribed divergence. In this 
case, it consists in an optimal transport problem between measures supported on 
. ∂𝛀. This reformulation, suggested in [104], made it possible in [79] to prove the 
following results in the 2D case: 

Theorem 2.21 Assume that . 𝛀 is a 2D strictly convex domain and assume that g 
is a BV function on the 1D curve . ∂𝛀. Then the solutions of Problem (2.10) satisfy 
.Tr[u] = g on . 𝛀. If moreover g is continuous on . ∂𝛀, then the solution is unique. 

If furthermore . 𝛀 is uniformly convex and .g ∈ W 1,p(∂𝛀) for .p ≤ 2, then the 
solution u satisfies .u ∈ W 1,p(𝛀). If .g ∈ C1,α(∂𝛀), then u satisfies . u ∈ W 1,p(𝛀)

for .p = 2
1−α

. If .g ∈ C1,1, then u is Lipschitz continuous. 

The very last part of the above statement (Lipschitz regularity if the boundary 
data are .C1,1) is a particular case of what can be proven under the so-called bounded 
slope condition, which we do not detail here and for which we refer, for instance, to 
[64, 186]. 

2.5 Exercises 

Exercise 2.1 Prove the existence and uniqueness of the solution of 

. min

{ˆ
𝛀

(
f (x)|u(x)| + |∇u(x)|2

)
dx : u ∈ H 1(𝛀),

ˆ
𝛀

u = 1

}

when 𝛀 is an open, connected and bounded subset of Rd and f ∈ L2(𝛀). Where 
do we use connectedness? Also prove that, if 𝛀 is not connected but has a finite 
number of connected components and we add the assumption f ≥ 0, then we have 
existence but maybe not uniqueness, and that if we withdraw both connectedness 
and positivity of f , then we might not even have existence. 

Exercise 2.2 Consider 𝛀 = (0, 1)d ⊂ Rd and A = {0} ×  (0, 1)d−1 ⊂ ∂𝛀. Prove 
that the set of functions u ∈ W 1,p (𝛀) such that Tr[u] =  0 a.e. on  A coincides with 
the closure in W 1,p (𝛀) of the set {ϕ ∈ C1(𝛀) : spt(ϕ) ∩ A = ∅}.
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Exercise 2.3 Given a smooth and connected open domain 𝛀 ⊂ Rd and two 
exponents α, β > 0, consider the following problem: 

. min

{ˆ
𝛀

(−|u|α + |∇u|p)
dx +

ˆ
∂𝛀

|Tr[u]|β dHd−1 : u ∈ W 1,p(𝛀)

}
.

Prove that the above problem has a solution if α <  min{β, p} and that it has no 
solution if α >  min{β, p}. 
Exercise 2.4 Given a measurable function c : 𝛀 → R such that c0 ≤ c ≤ c1 a.e., 
for two strictly positive constants c0, c1, a function g ∈ W 1,p (𝛀), and a continuous 
function F : 𝛀 × R → R+, prove that the following problem has a solution: 

. min

{ˆ
𝛀

(
c(x)|∇u|p + F(x, u(x))

)
dx : u − g ∈ W

1,p
0 (𝛀)

}
.

Exercise 2.5 Fully solve 

. min

{ˆ
Q

(
|∇u(x, y)|2 + u(x, y)2

)
dx dy : u ∈ C1(Q), u = φ on ∂Q

}
,

where Q = [−1, 1]2 ⊂ R2 and φ : ∂Q → R is given by 

. φ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x = −1, y ∈ [−1, 1]
2(ey + e−y) if x = 1, y ∈ [−1, 1]
(x + 1)(e + e−1) if x ∈ [−1, 1], y = ±1.

Find the minimizer and the value of the minimum. 

Exercise 2.6 Which among the functions u which can be written in polar coordi-
nates as u(ρ, θ) = ρα sin(kθ) are harmonic on the unit ball? (i.e. for which values 
of α, k ∈ R). 

Exercise 2.7 Let u ∈ D'(Rd ) be a distributional solution of ∆u = b(x) · ∇u + 
f (x)u, where f : Rd → R and b : Rd → Rd are given C∞ functions. Prove 
u ∈ C∞(Rd ). 

Exercise 2.8 Prove, using the mean property, that any bounded harmonic function 
u on the whole space Rd is constant. Also prove that any harmonic function u on 
the whole space Rd satisfying a growth bound of the form |u(x)| ≤  C(1+ |x|)p for 
some exponent p is actually a polynomial function.
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Exercise 2.9 Prove that any smooth solution of ∆u = f in 𝛀 ⊂ Rd , d ≥ 3, 
satisfies 

. 

 
∂B(x0,R)

u dx = u(x0) + 1

d(d − 1)ωd

ˆ
B(x0,R)

f (x)
(
|x − x0|1−d − R1−d

)
dx.

Find an analogous formula for the case d = 2 and for the average on the ball instead 
of the sphere. 

Exercise 2.10 Let M ⊂ RN be the zero set of a smooth function h : RN → R 
with ∇h /= 0 on  M . Prove that if a function u : 𝛀 → M (with 𝛀 ⊂ Rd ) satisfies
∆u(x) = c(x)∇h(u(x)) for a scalar function c, then we have 

. c = −
∑d

i=1 D2h(u(x))ui(x) · ui(x)

|∇h(u(x))|2 .

Also prove that any smooth function u : 𝛀 → M satisfying∆u(x) = c(x)∇h(u(x)) 
for the above expression of c is a minimizer of v I→ 

´
𝛀

|∇v|2 with prescribed 
boundary datum as soon as 𝛀 is contained in a small enough ball. 

Exercise 2.11 Determine for which values of p >  1 the function u : R2 → R 
given by u(x1, x2) := |x1|p − |x2|p is ∞-harmonic, and use this information to 
give bounds on the optimal C1,α regularity of ∞-harmonic functions. Compare to 
Formula 2.9. 

Exercise 2.12 For p ∈ (1,∞), let  u be a solution of ∆pu = 0 on 𝛀. Let  M be a 
constant such that Tr[u] ≤  M a.e. on ∂𝛀. Prove u ≤ M a.e. in 𝛀. 

Hints 

Hint to Exercise 2.1 Minimizing sequences are bounded in H 1 because of the 
Poincaré–Wirtinger inequality. This cannot be applied when 𝛀 is non-connected. 
In this case we use f ≥ 0 and the term with 

´ 
f |u| on each component to bound 

a suitable L1 norm of u (distinguishing the components where f is identically 0, 
where we can replace u with a constant). 

Hint to Exercise 2.2 We approximate u with u(1−ηn) where ηn is a cutoff function 
with ηn = 1 on  A and spt ηn ⊂ [0, 1/n] × [0, 1]d−1. We need to prove uηn → 0 
at least weakly in W 1,p. The key point is bounding the norm ||u∇ηn||Lp using the 
trace of u and suitable Poincaré inequalities. 

Hint to Exercise 2.3 If α is large the infimum is −∞ using either large constants if 
α >  β  or nu0 with u0 ∈ W 1,p 

0 if α >  p. If  α is small we can prove compactness.
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Hint to Exercise 2.4 For a minimizing sequence, prove that ∇un is bounded and 
hence weakly convergent, both in Lp ( dx) and in Lp (c(x) dx). 

Hint to Exercise 2.5 Write and solve the Euler–Lagrange equation (by guessing the 
form of the solution). 

Hint to Exercise 2.6 For smoothness, we need α ≥ 0 and k ∈ Z. When α2 = k2 we 
have the real part of a holomorphic function. In general, compute the gradient and 
its divergence in polar coordinates. 

Hint to Exercise 2.7 Start from a distribution in a certain H−k and prove that it 
actually belongs to H 1−k . 

Hint to Exercise 2.8 Use Proposition 2.8 to prove ∇u = 0. For the polynomial 
growth, prove |∇u| ≤  C(1 + |x|)p−1 and iterate. 

Hint to Exercise 2.9 Re-perform the proof of the mean property keeping into 
account the non-vanishing Laplacian. 

Hint to Exercise 2.10 Differentiate h ◦u twice. For the optimality, act as we did for 
geodesics in Sect. 1.1.2. 

Hint to Exercise 2.11 Check that only p = 4/3 works. This also coincides with the 
limit regularity for p-harmonic functions when p → ∞, which gives 8/6. 

Hint to Exercise 2.12 Use the variational interpretation of p-harmonic functions as 
minimizers of the Lp norm of the gradient, and truncate them at M obtaining a 
better competitor.



Chapter 3 
Lower Semicontinuity 

As we saw in the two previous chapters, the standard way to prove the existence of 
a solution to a variational problem consists in what is called the direct method of the 
calculus of variations (several books have been devoted to this topic, see for instance 
[67] and [101]), which includes as a key ingredient the lower semicontinuity of the 
functional to be minimized w.r.t. a convergence for which we have compactness of 
a minimizing sequence. Lower semicontinuity results are then a crucial aspect in 
the calculus of variations, and in particular the lower semicontinuity w.r.t. weak and 
weak-* convergences, since it is usually for these kinds of convergences that we are 
able to obtain compactness. This chapter is devoted to this kind of result, the main 
goal being to be able to treat more general functionals than those we considered in 
Chap. 2, where as far as weak convergence was concerned only the semicontinuity 
of the norm was used. The first section is devoted to more abstract results, the second 
to general results on the semicontinuity of integral functionals for strong and weak 
convergence in . Lp spaces (essentially based on Chap. 4 of [101]), and the third 
(presented for completeness—since this theory will appear less often in the rest 
of the book—and mainly based on the paper [35]) to the semicontinuity of some 
class of functionals for the weak-* convergence of measures. A short section on 
the application of these results to the existence of minimizers follows. The chapter 
closes with a discussion section on the case of vector-valued functional spaces, 
where the assumptions could be relaxed, but a much harder theory would be needed, 
followed by an exercise list. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
F. Santambrogio, A Course in the Calculus of Variations, Universitext, 
https://doi.org/10.1007/978-3-031-45036-5_3

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45036-5protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3
https://doi.org/10.1007/978-3-031-45036-5_3


104 3 Lower Semicontinuity

3.1 Convexity and Lower Semicontinuity 

We recall the sequential definition of lower semicontinuity, which will be the one 
we will use throughout this book:1 a function .f : X → R ∪ {+∞} is said to be 
lower semicontinuous (l.s.c. for short) if for every sequence .xn → x in X we have 
.lim infn f (xn) ≥ f (x). The definition can also be re-written by assuming that . f (xn)

converges, since we can always extract a subsequence which realizes the liminf as a 
limit. In this case we could say that f is lower semicontinuous if for every sequence 
.xn → x such that .f (xn) → 𝓁 ∈ R we have .f (x) ≤ 𝓁. 

We start with a characterization of lower semicontinuity in terms of level sets. 

Proposition 3.1 A function .f : X → R ∪ {+∞} is l.s.c. if and only if for every . 𝓁
the level set .A(𝓁) := {x ∈ X : f (x) ≤ 𝓁} is closed. 
Proof First we prove that the sequential lower semicontinuity implies the closed-
ness of the level sets. Take a sequence .xn ∈ A(𝓁) and assume .xn → x. From  
.f (xn) ≤ 𝓁 and .f (x) ≤ lim infn f (xn) we deduce .f (x) ≤ 𝓁, hence .x ∈ A(𝓁), so  
that .A(𝓁) is closed. 

Assume now that the sets .A(𝓁) are all closed, and take a sequence .xn → x. 
Setting .𝓁0 := lim infn f (xn), for every .𝓁 > 𝓁0 we have .xn ∈ A(𝓁) infinitely often 
(i.e. there is a subsequence . xnk

such that .xnk
∈ A(𝓁)). From the closedness of . A(𝓁)

we deduce .x ∈ A(𝓁), i.e. .f (x) ≤ 𝓁 for every .𝓁 > 𝓁0. This implies . f (x) ≤ 𝓁0 =
lim infn f (xn), and f is l.s.c. ⨅⨆

A similar characterization can be given in terms of epigraphs. We define 

. Epi(f ) := {(x, t) ∈ X × R : t ≥ f (x)}

and we have: 

Proposition 3.2 A function .f : X → R ∪ {+∞} is l.s.c. if and only if .Epi(f ) is 
closed. 

Proof First let us start from sequential lower semicontinuity and prove the closed-
ness of the epigraph. Take a sequence .(xn, tn) ∈ Epi(f ) and assume .xn → x, 
.tn → t . From  .f (xn) ≤ tn and .f (x) ≤ lim infn f (xn) we deduce .f (x) ≤ t , hence 
.(x, t) ∈ Epi(f ) so .Epi(f ) is closed. 

Assume now that .Epi(f ) is closed, and take a sequence .xn → x. Setting . 𝓁0 :=
lim infn f (xn), for every .𝓁 > 𝓁0 we have .(xn, 𝓁) ∈ Epi(f ) infinitely often. From 
the closedness of the epigraph we deduce .(x, 𝓁) ∈ Epi(f ), i.e. .f (x) ≤ 𝓁 for every 
.𝓁 > 𝓁0. Again, this implies .f (x) ≤ 𝓁0 = lim infn f (xn), and f is l.s.c. ⨅⨆

1 Analogously, in the sequel the notion of closed set will be identified with that of sequentially 
closed; for the sake of the topologies that we shall consider, which are either metrizable or 
metrizable on bounded sets, this will be enough. 
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Another important property of lower semicontinuous functionals is that they are 
stable under sup. More precisely: 

Proposition 3.3 Given a family of functions .fα : X → R ∪ {+∞} which are all 
l.s.c., define .f (x) := supα fα(x). Then f is also l.s.c. 

Proof Two easy proofs can be given of this fact. One is based on the previous 
characterization: for every . 𝓁 we have . {f ≤ 𝓁} = {x : fα(x) ≤ 𝓁 for every α} =⋂

α{fα ≤ 𝓁}. If all functions . fα are l.s.c. all the sets .{fα ≤ 𝓁} are closed, and so is 
their intersection, so that .{f ≤ 𝓁} is closed and f is l.s.c. 

Another proof is based on the definition via the liminf. Take .xn → x and write 

. fα(x) ≤ lim inf
n

fα(xn) ≤ lim inf
n

f (xn).

It is then enough to take the sup over . α in the left-hand side in order to obtain 

. f (x) ≤ lim inf
n

f (xn),

which is the desired result. ⨅⨆
All these properties are highly reminiscent of those of convex functions. In order 

to define the notion of convexity we need the space X to be a vector space, which 
we will rather write as . X. We say that .f : X → R ∪ {+∞} is convex if for every 
.x, y ∈ X and .t ∈ [0, 1] we have 

. f ((1 − t)x + ty) ≤ (1 − t)f (x) + tf (y).

We have the following properties 

Proposition 3.4 A function .f : X→ R ∪ {+∞} is convex if and only if .Epi(f ) is 
convex. 

Proof First let us start from the convexity of f and let us prove the convexity of 
the epigraph. Take two points .(x0, t0), (x1, t1) ∈ Epi(f ) and consider the convex 
combination .((1 − t)x0 + tx1, (1 − t)t0 + t t1). The convexity of f implies 

. f ((1 − t)x0 + tx1) ≤ (1 − t)f (x0) + tf (x1) ≤ (1 − t)t0 + t t1,

so that .((1 − t)x0 + tx1, (1 − t)t0 + t t1) ∈ Epi(f ) and the epigraph is then convex. 
Assume now that .Epi(f ) is convex, and take two points . x0 and . x1. If  .f (x0) or 

.f (x1) = +∞ there is nothing to prove, otherwise we have . (xi, f (xi)) ∈ Epi(f )

and, by convexity .((1 − t)x0 + tx1, (1 − t)f (x0) + tf (x1)) ∈ Epi(f ), i.e. . f ((1 −
t)x0 + tx1) ≤ (1 − t)f (x0) + tf (x1), so that f is convex. ⨅⨆

Note that it is not possible to characterize convex functions in terms of their level 
sets only. It is true that the level sets .A(𝓁) := {x : f (x) ≤ 𝓁} are convex if f is 
convex (simple exercise, see Exercise 3.1) but the converse is false, as any increasing
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function of a convex function also has convex level sets (also see Exercise 3.1). The 
functions which have convex level sets are sometimes called level-convex.2 

Proposition 3.5 Given a family of functions .fα : X → R ∪ {+∞} which are all 
convex, define .f (x) := supα fα(x). Then f is also convex. 

Proof Again, two easy proofs can be given of this fact. One is based on the fact 
that the epigraph of the sup is the intersection of the epigraphs (since the condition 
.t ≥ supα fα(x) is equivalent to .t ≥ fα(x) for every . α), and on the convexity of the 
intersection of an arbitrary family of convex sets. 

Another proof is based on the definition via the inequality: take .x, y and write 

. fα((1 − t)x + ty) ≤ (1 − t)fα(x) + tfα(y) ≤ (1 − t)f (x) + tf (y).

Again, taking the sup over . α in the left-hand side provides the desired inequality. 
⨅⨆

Besides these analogies, we stress now a first connection between the two notions 
of lower semicontinuity and convexity. If the notion of convexity is independent 
of the topological or metric structure that we choose for the vector space x, the  
lower semicontinuity of course depends on the choice of the topology. For normed 
vector spaces, we will be mainly concerned with two natural choices: the strong 
topology and the weak (or weak-*) one. We will see that convexity is a crucial 
ingredient in the lower semicontinuity for the weak convergence (also called weak 
lower semicontinuity). 

Note that having a strong notion of convergence makes it easier to be lower 
semicontinuous (since there are fewer convergent sequences of points), so that weak 
lower semicontinuity is actually a stronger notion than strong lower semicontinuity. 

The first result involving convexity and lower semicontinuity is the following. 

Theorem 3.6 Assume that .f : X → R ∪ {+∞} is strongly lower semicontinuous 
and convex. Then f is also weakly lower semicontinuous. 

Proof In view of the characterization of lower semicontinuity in terms of level sets 
we just need to prove that each set .A(𝓁) := {x : f (x) ≤ 𝓁} is weakly closed. 
We know that it is convex and strongly closed. This implies that it is weakly closed 
because of a simple consequence of the Hahn–Banach theorem that we state in 
Box 3.1. ⨅⨆

The above theorem required a functional analysis fact about convex sets, which 
we will state together with a well-known consequence. 

Proposition 3.7 Every convex subset C of a normed vector space . X is strongly 
closed if and only if it is weakly closed.

2 Unfortunately sometimes, and in particular, in the economics literature, they are also called quasi-
convex, a notion which has a completely different meaning in the calculus of variations, as we will 
see in Sect. 3.5. 
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Proof It is always true that weak closedness implies strong closedness (since any 
strongly convergent sequence is also weakly convergent). We need to prove the 
converse implication. Take a sequence .xn ∈ C and assume .xn ⇀ x. If  .x /∈ C, 
we then consider the two closed convex sets C and . {x}. They are disjoint and one is 
compact. They can be separated thanks to the Hahn–Banach theorem (see Box 3.1 
below) by an element .ξ ∈ X'. Yet, this is not compatible with .〈ξ, xn〉 → 〈ξ, x〉, 
which should be satisfied because of .xn ⇀ x. Then .x ∈ C and C is weakly closed. 

⨅⨆
Another consequence of the last fact is the following, known as Mazur’s Lemma. 

Lemma 3.8 For every weakly convergent sequence .xn ⇀ x there exists a sequence 
. yn of convex combinations of the points . xn (more precisely, . yn is a finite convex 
combination of points of the form . xk , with .k ≥ n) such that .yn → x. 

Proof Given n, consider the set . Cn defined as the set of finite convex combinations 
of .{xk : k ≥ n}, which is a convex set. Then we consider its (strong) closure . Cn. 
Since . Cn is convex and strongly closed, it is also weakly closed, and it contains the 
sequence . xn from a certain point on, so it also contains the weak limit x. Hence, by 
definition of the closure, there exists a point .yn ∈ Cn such that .||x − yn|| < 1/n. 
This sequence proves the theorem. ⨅⨆

We note that the above results concern the weak convergence in a space . X (in 
duality with . X') and not the weak-* convergence in a space . X' (in duality with . X, 
instead of . X''). As an example we can consider .C ⊂M([−1, 1]) defined as the set of 
all absolutely continuous measures. It is a convex set (since it is a vector space) and 
it is closed under the convergence of measures in the norm of .M([−1, 1]) (indeed, 
whenever .μn → μ, for every .A ⊂ [−1, 1] we have .μn(A) → μ(A), so that the 
negligibility of Lebesgue-negligible sets passes to the limit). On the other hand, the 
sequence . μn defined as the uniform measure on .[−1/n, 1/n] weakly-* converges 
to .δ0 /∈ C, which shows that C is not weakly-* closed. 

Box 3.1 Memo—Hahn–Banach Theorem 

Awell-known theorem in functional analysis is the Hahn–Banach theorem, 
which has different equivalent statements, and which we will present in its 
“geometric” form dealing with the separation of suitable convex sets by means 
of hyperplanes. 
Hahn–Banach Separation Theorem Let A and B be two convex non-empty 
subsets of a normed vector space . X, with .A ∩ B = ∅. 

If A is open, there exists a linear functional .ξ ∈ X' which separates A 
and B, i.e. there is a number .c ∈ R such that .〈ξ, a〉 < c ≤ 〈ξ, b〉 for all 
.a ∈ A, b ∈ B. 

(continued)
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Box 3.1 (continued) 
If A is compact and B is closed, there exists a linear functional . ξ ∈ X'

which strictly separates A and B, i.e. there are two numbers .c1 < c2 such that 
.〈ξ, a〉 ≤ c1 < c2 ≤ 〈ξ, b〉 for all .a ∈ A, b ∈ B. 

When the space . X itself is a dual (.X = Y') a natural question is whether 
it is possible to perform these separations by using elements of . Y instead 
of .X' = Y''. Unfortunately this is in general not true and the last statement 
(strict separation of a closed and a compact sets) requires a slightly different 
assumption. It is indeed true that if .A,B ⊂ X = Y' are convex, if we assume 
A to be compact and B to be weakly-* closed (which is stronger than strongly 
closed), then there exists a .y ∈ Y which strictly separates A and B, i.e. there 
are two numbers .c1 < c2 such that .〈a, y〉 ≤ c1 < c2 ≤ 〈b, y〉 for all . a ∈
A, b ∈ B. 

The distinction between strong and weak-* closedness is necessary since 
it is not true that convex strongly closed subsets of . Y' are weakly-* closed, 
differently from what happens with weak convergence. 

We finish this section with two considerations on concrete integral functionals 
over functional spaces. First we provide an example of a semicontinuity result 
obtained from Theorem 3.6. 

Proposition 3.9 Let .L : 𝛀 × R → R+ be a measurable function, such that . s I→
L(x, s) is convex for a.e. .x ∈ 𝛀. Then the functional 

. Lp(𝛀) ϶ u I→ J (u) :=
ˆ

𝛀

L(x, u(x)) dx

is lower semicontinuous for the weak . Lp convergence, for every .p ∈ [1,+∞). 

Proof From the convexity of L in the variable s we deduce the convexity of the 
functional J . Then, the result is proven if we prove that J is l.s.c. for the strong 
convergence of . Lp. If we take  .un → u in . Lp and .J (un) → 𝓁, we can extract 
a subsequence such that .un(x) → u(x) a.e. The continuity of L in the second 
variable3 and Fatou’s lemma, together with the lower bound .L ≥ 0, imply  . J (u) ≤
lim infn J (un), hence J is strongly l.s.c. ⨅⨆

We then see that the convexity in the variable s is necessary for weak lower 
semicontinuity, and hence is equivalent to it, but we will state the result, for 
simplicity, in the case where L does not depend explicitly on x.

3 Note that we assumed .L(x, ·) to be real-valued for every x, and convex functions are known to 
be locally Lipschitz on . R, hence continuous. 
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Proposition 3.10 Consider the functional .F : Lp(𝛀;Rd) → R ∪ {+∞} given by 
.F(v) = ´

L(v(x)) dx for a continuous function .L : Rd → R, .L ≥ 0. Then, F is 
l.s.c. for the weak . Lp convergence if and only if L is convex. 

Proof In order to show that convexity of L is necessary, we will build a sequence 
.vn ⇀ v on which we will evaluate F . If we take a cube inside . 𝛀 and choose . vn = 0
outside this cube for every n, we can reduce to the case where . 𝛀 is a cube Q. We  
then fix two vectors .a, b ∈ R

d and a number .t ∈ [0, 1] and define a sequence . vn

in the following way: we divide the cube into n parallel stripes of equal width . 𝓁/n

(. 𝓁 being the side of the cube), and each stripe is further divided into two parallel 
sub-stripes, one of width .(1 − t)𝓁/n where . vn takes the value a, and one of width 
.t𝓁/n where . vn takes the value b. We easily see that in this case we have .vn ⇀ v, 
where v is the constant vector function equal to .(1 − t)a + tb, and that we have 
.F(vn) = (1 − t)|Q|L(a) + t |Q|L(b), while .F(v) = |Q|L((1 − t)a + tb). The  
semicontinuity of F then implies the convexity of L. 

The converse implication is a particular case of Proposition 3.9. ⨅⨆

3.2 Integral Functionals 

We consider in this section the lower semicontinuity of integral functionals with 
respect to the strong and weak convergence of two different variables. Later, in 
Sect. 3.4, this will be applied to the case where the variable which converges weakly 
is the gradient of the one which converges strongly. 

More precisely, we consider 

. F(u, v) :=
ˆ

𝛀

L(x, u(x), v(x)) dx for u, v ∈ L1(𝛀).

We assume .L ≥ 0 so that we avoid any integrability issues in order to define F : as  
the integral of a non-negative function, it can take the value .+∞, but it is always 
well-defined. The variables u and v can be vector-valued, and in many concrete 
applications, at least in what concerns v, this will be the case. We will analyze 
the lower semicontinuity of F w.r.t. the strong convergence of u and the weak 
convergence of v. In order to deal with the weak convergence in . L1, we first recall 
an important fact from functional analysis. 

Box 3.2 Memo—Weak Convergence in . L1

Definition A sequence of functions .vn ∈ L1(𝛀) converges weakly in . L1 to a 
function .v ∈ L1(𝛀) if for every .L∞ function . ϕ we have .

´
vn · ϕ → ´

v · ϕ. 

(continued)
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Box 3.2 (continued) 
Definition A family of functions .(vα)α ∈ L1(𝛀) is said to be equi-integrable 
if for every .ε > 0 there exists a .δ > 0 such that on every set A with . |A| ≤ δ

we have .
´
A

|vα| ≤ ε for any . α. 
The following equivalence characterizes compactness for the weak . L1

convergence (this result is known as the Dunford–Pettis theorem). 
Theorem Given a family of functions .(vα)α ∈ L1(𝛀), the following are 
equivalent 

• the family is precompact for the weak . L1 convergence (i.e. from any 
sequence . vαn one can extract a weakly convergent subsequence .vαnk

); 
• the family is equi-integrable; 
• there exists a convex and superlinear function .ψ : R → R+ and a constant 

.C < +∞ such that .
´
𝛀

ψ(|vα|) ≤ C for every . α. 

The goal of this section is to prove that the functional F is lower semicontinuous 
for the strong-weak convergence as above as soon as L is a Carathéodory function 
(measurable in x, continuous in .(u, v)), convex in the last variable. 

We start from a particular case. 

Lemma 3.11 Assume that L is continuous in all variables, nonnegative, and convex 
in v. Assume that . 𝛀 is compact. Take a sequence .(un, vn) with .un → u in . L1 and 
.vn ⇀ v in . L1. Assume that . un and . vn are also .L∞ functions, uniformly bounded. 
Then .lim infn F (un, vn) ≥ F(u, v). 

Proof First of all, we write . F(un, vn) = F(un, vn) − F(u, vn) + F(u, vn).

We first consider .F(un, vn) − F(u, vn) = ´
𝛀

L(x, un, vn) − L(x, u, vn) and 
we note that the continuity of L is uniform on .𝛀 × BR × BR , where R is an 
upper bound of .||un||L∞, ||vn||L∞ . Hence, there exists a modulus of continuity 
. ω (a continuous and bounded function with .ω(0) = 0) such that we can write 
.|L(x, un, vn)−L(x, u, vn)| ≤ ω(|un−u|). The strong convergence .un → u implies 
a.e. convergence up to subsequences, and hence we have .ω(|un − u|) → 0 a.e. This 
convergence is dominated by a constant, so that we obtain . F(un, vn)−F(u, vn) →
0. 

We then consider the term .F(u, vn). We define . L̃u(x, v) := L(x, u(x), v)

and .F̃u(v) := ´
L̃(x, v(x)) dx = F(u, v), which is an integral functional, lower 

semicontinuous thanks to Proposition 3.9. We then obtain . lim infn F (u, vn) ≥
F(u, v), which concludes the proof. ⨅⨆

We now want to remove the assumption on the boundedness of . vn, thanks to the 
following lemma.
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Lemma 3.12 For any constant .M > 0, let .fM : Rk → R
k be defined via 

. fM(v) := v1B(0,M)(v) =
{

v if |v| ≤ M,

0 if |v| > M.

Given a sequence .vn → v in .L1(𝛀), consider for any .M > 0 the sequence . vn,M :=
fM(vn). It is possible to extract a subsequence and to find, for every .M ∈ N, a  
function .v(M) such that, for every M , the sequence .vn,M weakly converges in . L1

(actually, even weakly-* in . L∞) to .v(M). 
Then we have .limM→∞ ||v(M) − v||L1(𝛀) = 0. 

Proof First, let us fix a convex and superlinear function . ψ such that .
´

ψ(|vn|) ≤ C, 
which exists thanks to the weak convergence of . vn. We observe that we have, using 
the fact that .s I→ ψ(s)/s is nondecreasing, 

. 

ˆ
|vn|>M

|vn| dx =
ˆ

|vn|>M

|vn|
ψ(|vn|)ψ(|vn|) dx ≤ M

ψ(M)

ˆ
𝛀

ψ(|vn|) dx ≤C
M

ψ(M)
.

We now take a test function .φ ∈ L∞ and write the equality 

. 

∣
∣
∣
∣

ˆ
𝛀

φ · (vn−vn,M)dx

∣
∣
∣
∣=

∣
∣
∣
∣

ˆ
|vn|>M

φ · vndx

∣
∣
∣
∣≤||φ||L∞

ˆ
|vn|>M

|vn|dx ≤C
M||φ||L∞

ψ(M)
.

We then take the limit .n → ∞ for fixed M and obtain, thanks to weak convergence, 

. 

∣
∣
∣
∣

ˆ
𝛀

φ · (v − v(M)) dx

∣
∣
∣
∣ ≤ C||φ||L∞

M

ψ(M)
.

This estimate, valid for arbitrary . φ, due to the duality between . L1 and . L∞, means 
precisely 

. ||v(M) − v||L1(𝛀) ≤ C
M

ψ(M)
.

The superlinearity of . ψ provides .limM→∞ M
ψ(M)

= 0 and hence the claim. ⨅⨆
We can now extend the results of Lemma 3.11. 

Proposition 3.13 The conclusions of Lemma 3.11 also hold if removing the 
assumption on the uniform bound on .||vn||L∞ . 

Proof We first fix .M > 0 and write . F(un, vn) = (F (un, vn) − F(u, vn,M)) +
F(u, vn,M). By applying Lemma 3.11 we obtain .lim infn F (u, vn,M) ≥ F(u, v(M)).
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We consider now the other term, for which we have 

. F(un, vn) − F(u, vn,M) =
ˆ

|vn|>M

(L(x, un, vn) − L(x, un, 0)) dx

≥ −
ˆ

|vn|>M

L(x, un, 0) dx,

where we used the positivity of L. We can then use 

. 

ˆ
|vn|>M

L(x, un, 0) dx ≤ C1|{|vn| > M}| ≤ C

M
,

and . C1 denotes the maximum of L on .𝛀 × BR × {0} (remember that . un is 
equibounded, . 𝛀 is compact, and L is continuous), and .C = C1C2, where . C2 :=
supn ||vn||L1 . Indeed, since the sequence . vn is bounded in . L1, we have  . |{|vn| >

M}| ≤ C2/M . 
Finally, we obtain 

. lim inf
n

F (un, vn) ≥ lim inf
n

(
F(un, vn) − F(u, vn,M

)
) + lim inf

n
F (u, vn,M)

≥ − C

M
+ F(u, v(M)).

This estimate is valid for arbitrary M , and we can now send .M → ∞. Lemma 3.12 
provides .v(M) → v in . L1 (in the strong sense, but weak convergence would have 
been enough) so that we can apply, exactly as at the end of Lemma 3.11, the  same  
idea of considering the functional where we freeze u, and Proposition 3.9 provides 
the semicontinuity .lim infM F(u, v(M)) ≥ F(u, v). Since the term . C

M
tends to 0, we 

obtain the claim. ⨅⨆
We now need to get rid of the continuity assumption on L, and of the boundedness 
of . un. This will require some classical results from measure theory. 

Box 3.3 Memo—Lusin’s Theorem 

A well-known theorem in measure theory states that every measurable 
function f on a reasonable measure space .(X,μ) is actually continuous on a 
set K with .μ(X \ K) small. This set K can be taken to be compact. Actually, 
there are at least two statements: either we want f to be merely continuous on 
K , or we want f to coincide on K with a continuous function defined on X. 
This theorem is usually stated for real-valued functions, but we happen to need 
it for functions valued in more general spaces. Let us be more precise: take a 

(continued)
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Box 3.3 (continued) 
topological space X endowed with a finite regular measure . μ (i.e. any Borel 
set .A ⊂ X satisfies . μ(A) = sup{μ(K) : K ⊂ A, K compact} = inf{μ(B) :
B ⊃ A, B open}). The target space Y will be assumed to be second-countable 
(i.e. it admits a countable family .(Bi)i of open sets such that any other open 
set .B ⊂ Y may be expressed as a union of . Bi ; for instance, separable metric 
spaces are second-countable). 

Theorem (Weak Lusin) Under the above assumptions on .X, Y,μ, if  . f :
X → Y is measurable, then for every .ε > 0 there exists a compact set . K ⊂ X

such that .μ(X \ K) < ε and the restriction of f to K is continuous. 
Proof For every .i ∈ N, set .A+

i = f −1(Bi) and .A−
i = f −1(Bc

i ). Consider 
compact sets .K±

i ⊂ A±
i such that .μ(A±

i \ K±
i ) < ε2−i . Set . Ki = K+

i ∪ K−
i

and .K = ⋂
i Ki . For each i we have .μ(X \ Ki) < ε21−i . By construction, 

K is compact and .μ(X \ K) < 4ε. To prove that f is continuous on K it 
is sufficient to check that .f −1(B) ∩ K is relatively open in K for each open 
set B, and it is enough to check this for .B = Bi . Equivalently, it is enough 
to prove that .f −1(Bc

i ) ∩ K is closed, and this is true since it coincides with 
.K−

i ∩ K . 
Theorem (Strong Lusin) Under the same assumptions on X, if  . f : X →

R is measurable, then for every .ε > 0 there exists a compact set .K ⊂ X and 
a continuous function .g : X → R such that .μ(X \ K) < ε and .f = g on K . 

Proof First apply the weak Lusin theorem, since . R is second countable. 
Then we just need to extend .f|K to a continuous function g on the whole X. 
This is possible since .f|K is uniformly continuous (as a continuous function 
on a compact set) and hence has a modulus of continuity . ω such that . |f (x) −
f (x')| ≤ ω(d(x, x')) (the function . ω can be taken to be sub-additive and 
continuous). Then define .g(x) = inf{f (x') + ω(d(x, x')) : x' ∈ K}. It can 
be easily checked that g is continuous and coincides with f on K . 

Note that this last proof strongly uses the fact that the target space is . R. It  
could be adapted to the case of . Rd just by extending component-wise. On the 
other hand, it is clear that the strong version of Lusin’s theorem cannot hold 
for any space Y : just take X connected and Y disconnected. A measurable 
function .f : X → Y taking values in two different connected components on 
two sets of positive measure cannot be approximated by continuous functions 
in the sense of the strong Lusin theorem. 

Another classical result, often presented together with Lusin’s theorem, is the 
following.
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Box 3.4 Memo—Egoroff’s Theorem 

Theorem (Egoroff) Let X be a measure space with finite measure, and 
.un : X → Y a sequence of functions, valued in a metric space Y , which  is  
a.e. converging to a function .u : X → Y . Then, for every .ε > 0, there exists 
a compact set .K ⊂ X, with .|X \ K| < ε, such that the convergence . un → u

is uniform on K . 
Note that the theorem is usually stated for functions valued in . R, but it is 

enough to apply it to .d(un(x), u(x)) in order to generalize to arbitrary metric 
spaces. 

An interesting observation is the fact that Egoroff’s theorem implies the 
weak Lusin theorem in the Euclidean case (i.e. when X is an open subset 
of the Euclidean space and .Y = R

k). Indeed, it is enough to take . u ∈ L1

and approximate it with a sequence of smooth functions . un, which exists 
because .C∞

c is dense in . L1. Up to subsequences we can assume a.e. pointwise 
convergence and applying Egoroff’s theorem transforms this into uniform 
convergence on K . Hence u is continuous on K as a uniform limit of 
continuous functions. The case where u is not . L1 can be treated by first 
truncating it. 

A statement which we need in this framework is the following, known as 
the Scorza-Dragoni theorem, which we will present as a consequence of Lusin’s 
theorem. We first provide an intermediate lemma. 

Lemma 3.14 Let S be a compact metric space, and .f : 𝛀 × S → R be a 
measurable function, such that .f (x, ·) is continuous for a.e. x. Then for every . ε > 0
there exists a compact subset .K ⊂ 𝛀 with .|𝛀 \K| < ε and f continuous on .K ×S. 

Proof The continuity of a function of two variables, when the second lives in a 
compact space S, is equivalent to the continuity of the map .x I→ f (x, ·) seen as a 
map from . 𝛀 to the Banach space .C(S). We can apply the weak version of Lusin’s 
theorem to this map and easily obtain the claim. ⨅⨆
Theorem 3.15 (Scorza-Dragoni) Let .f : 𝛀×R

d → R be a measurable function, 
such that .f (x, ·) is continuous for a.e. x. Then for every .ε > 0 there exists a compact 
subset .K ⊂ 𝛀 with .|𝛀 \ K| < ε and f continuous on .K × R

d . 

Proof The statement is more difficult to prove because of the non-compactness of 
the second space. We then fix a number .R ∈ N and consider the restriction of f 
to .𝛀 × BR , where . BR is the closed ball of radius R. We consider . εR = ε2−R−1

and apply the previous lemma, thus obtaining a set . KR such that f is continuous on 
.KR ×BR and .|𝛀 \KR| < εR . Set .K = ⋂

R KR . We then have .|𝛀 \K| < ε and f is 
continuous on .K × BR for every R. Since continuity is a local property, we deduce 
that f is continuous on .K × R

d . ⨅⨆
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We are now in position to prove the main theorem of this section: 

Theorem 3.16 Assume that L is a Carathéodory function, continuous in .(s, v) and 
measurable in x, nonnegative, and convex in v. For any sequence .(un, vn) with 
.un → u in . L1 and .vn ⇀ v in . L1 we have .lim infn F (un, vn) ≥ F(u, v). 

Proof We start by supposing that . 𝛀 is of finite measure. We also assume, which is 
possible up to extracting a subsequence, that we have .un → u a.e. Using together 
Lusin’s (in its weak form), Egoroff’s and Scorza-Dragoni’s theorems, for any . ε > 0
we can find a compact set .K ⊂ 𝛀 with .|𝛀 \ K| < ε such that 

• u is continuous (and hence bounded) on K; 
• . un converges uniformly to u on K , and hence they are equibounded; 
• L is continuous on .K × R

m × R
k . 

If we consider .FK(u, v) := ´
K

L(x, u(x), v(x)) dx we can then apply Proposi-
tion 3.13 and obtain 

. lim inf
n

F (un, vn) ≥ lim inf
n

FK(un, vn) ≥ FK(u, v) =
ˆ

K

L(x, u(x), v(x)) dx.

We now choose a sequence .εj → 0 and for each j we consider the corresponding 
compact set . Kj . By replacing each . Kj with .

⋃
i≤j Ki it is not restrictive to assume 

that . Kj is increasing in j , and all the properties satisfied on . Kj are still valid, as 
they are stable when considering finite unions of sets. We then obtain 

. lim inf
n

F (un, vn) ≥
ˆ

Kj

L(x, u(x), v(x)) dx =
ˆ

𝛀

L(x, u(x), v(x))1Kj
(x) dx.

Since .1Kj
converges increasingly a.e. to . 1𝛀 (as a consequence of the inclusion 

.Kj ⊂ Kj+1 and of .|𝛀 \ Kj | < εj ), sending .j → ∞ provides the desired 
semicontinuity 

. lim inf
n

F (un, vn) ≥
ˆ

𝛀

L(x, u(x), v(x)) dx.

The case where . 𝛀 is not of finite measure can be easily dealt with by writing 

. F = sup
R

FR, where FR(u, v) :=
ˆ

𝛀∩B(0,R)

L(x, u(x), v(x)) dx.

Each functional in the sup has been proven to be lower semicontinuous, and this 
property is stable under taking the sup. ⨅⨆

Note that in the above result the function L is assumed to be continuous in s. It  
would be possible to replace this assumption with its lower semicontinuity, but the 
proof is much harder, and we refer to [52] for these more refined semicontinuity 
results.
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3.3 Functionals on Measures 

In this section we prove the lower semicontinuity of a particular family of func-
tionals defined on measures, with respect to the weak-* convergence of measures. 
We consider here vector-valued measures, which are the dual of vector-valued 
continuous functions. 

Box 3.5 Memo—Vector Measures 

Definition A finite vector measure . λ on a metric space . 𝛀 is a map associating 
with every Borel subset .A ⊂ 𝛀 a value .λ(A) ∈ R

N such that, for every 
countable disjoint union .A = ⋃

i Ai (with .Ai ∩ Aj = ∅ for .i /= j ), we have 

. 
∑

i

|λ(Ai)| < +∞ and λ(A) =
∑

i

λ(Ai).

We denote by .MN(𝛀) the set of finite vector measures on . 𝛀. With such 
measures we can associate a positive scalar measure .|λ| ∈M+(𝛀) by 

. |λ|(A) := sup

{
∑

i

|λ(Ai)| : A =
⋃

i

Ai with Ai ∩ Aj = ∅ for i /= j

}

.

This scalar measure is called the total variation measure of . λ. For simplicity 
we only consider the Euclidean norm on . RN , and write . |λ| instead of . ||λ||
(a notation that we keep for the total mass of the total variation measure, 
see below), but the same could be defined for other norms as well. The 
integral of a measurable function .ξ : 𝛀 → R

N w.r.t. . λ is well-defined if 
.|ξ | ∈ L1(𝛀, |λ|), is denoted .

´
𝛀
ξ · dλ, and can be computed as .

∑N
i=1

´
ξi dλi , 

thus reducing to integrals of scalar functions according to scalar measures. It 
could also be defined as a limit of integrals of piecewise constant functions. 
Functional Analysis Facts The quantity .||λ|| := |λ|(𝛀) is a norm on .MN(𝛀), 
and this normed space is the dual of .C0(𝛀;RN), the space of continuous 
function on . 𝛀 vanishing at infinity 

. C0(𝛀;RN)

= {ϕ : 𝛀 → R
N : ∀ε > 0 ∃K ⊂ 𝛀 compact such that |ϕ| ≤ ε on 𝛀 \ K}

endowed with the norm .||ϕ|| := max{|ϕ(x)| : x ∈ 𝛀}. Of course, when . 𝛀
itself is compact, .C0(𝛀;RN) and .C(𝛀;RN) coincide. We use here the duality 
product .〈ξ, λ〉 := ´

ξ · dλ. 

(continued)
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Box 3.5 (continued) 
A clarifying fact is the following. 

Proposition For every .λ ∈ MN(𝛀) there exists a measurable function . u :
𝛀 → R

N such that .λ = u · |λ| and .|u| = 1 a.e. (for the measure . |λ|). In 
particular, .

´
ξ · dλ = ´

(ξ · u) d|λ|. 
Note that . L1 vector functions can be identified with vector measures, 

absolutely continuous w.r.t. the Lebesgue measure. Their . L1 norm coincides 
with the norm in .MN(𝛀). 

For simplicity, throughout this section . 𝛀 will be assumed to be a compact 
domain. 

As a first example, we consider functionals of the form 

. λ = v · μ I→
ˆ

𝛀

f (v(x)) dμ(x),

where . μ is a given positive measure over . 𝛀 (for instance the Lebesgue measure). 
Let us first see which are the natural conditions on f so as to ensure lower 

semicontinuity. Then, we will give a precise result. 
As a first point, an easy adaptation of the construction of Proposition 3.10 shows 

that one needs to require f to be convex. 
Another requirement concerns the growth of f . For simplicity it is always 

possible to assume .f (0) = 0 (up to adding a constant to f ). Suppose that f satisfies 
.f (v) ≤ C|v| for all .v ∈ R

N and .C < +∞. Consider the functional defined by 

. F(λ) :=
{´

f (v(x)) dμ(x) if λ = v · μ,

+∞ otherwise.

Take a sequence . λn of absolutely continuous measures weakly converging to a 
singular measure . λ: we then get .F(λn) ≤ C||λn|| ≤ C while .F(λ) = +∞, thus 
violating the semicontinuity. This suggests that one should have .C = +∞, i.e. f 
should in some sense be superlinear. This is clarified in the following proposition. 

Proposition 3.17 Assume that f is convex, l.s.c., and superlinear (i.e. f satisfies 
.lim|v|→∞ f (v)

|v| = +∞). Then the functional . F defined by 

. F(λ) :=
{´

f (v(x)) dμ(x) if λ = v · μ,

+∞ otherwise

is l.s.c. for the weak-* convergence of measures.
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Proof We take a sequence .λn
∗
⇀ λ and we assume, up to extracting a subsequence, 

that we have .F(λn) ≤ C (if no such subsequence exists, then there is nothing to 
prove, since .lim infF(λn) = +∞). This means that the sequence of functions . vn

defined by .λn = vn · μ is such that .
´

f (vn) is bounded, which means (see Box 3.2) 
that . vn is equi-integrable and, up to extracting another subsequence, we can assume 
.vn ⇀ v in . L1. We then have .

´
ϕ·vn dμ → ´

ϕ· dλ for every continuous test function 

. ϕ (because of .λn
∗
⇀ λ) but also .

´
ϕ · vn dμ → ´

ϕ · v dμ for every . ϕ ∈ L∞(μ)

(because of .vn ⇀ v in .L1(μ)). Hence, .λ = v · μ, and .F(λ) = ´
f (v) dμ. The  

semicontinuity results of the previous sections are then enough to obtain . F(λ) ≤
lim infF(λn). ⨅⨆
Next, we consider a more general statement which includes the previous one as 
a particular case, but also considers non-superlinear integrand functions f . In this  
case we need to “compensate” for their non-superlinearity. In order to do so, we first 
need to introduce the notion of a recession function (see Sect. 4.2.1 as well). 

Definition 3.18 Given a proper convex function .f : RN → R∪{+∞} its recession 
function .f ∞ is defined by 

. f ∞(v) := sup
x : f (x)<+∞

f (x + v) − f (x)

= sup
x : f (x)<+∞

lim
t→+∞

f (x + tv)

t

= sup
t>0,x : f (x)<+∞

f (x + tv) − f (x)

t
.

The function .f ∞ is 1-homogeneous, i.e. .f ∞(cv) = cf ∞(v) for every .c ≥ 0. 

Given a 1-homogeneous function f and a vector measure . λ on . 𝛀, we define 
the integral .

´
𝛀

f (λ) as follows: take an arbitrary reference measure . μ, positive and 
scalar, such that .λ ⪡ μ, define .

´
𝛀

f (λ) := ´
𝛀

f (v(x)) dμ(x) where . v is the density 
of . λ w.r.t. . μ, i.e. .λ = v ·μ. The result does not depend on . μ, since, if we take . μ1 and 
. μ2 such that .λ = vi · μi , setting .μ3 := μ1 + μ2, then .λ,μ1 and . μ2 are absolutely 
continuous w.r.t. . μ3. If we call . αi the density of . μi w.r.t. . μ3 and . v3 that of . λ w.r.t. 
. μ3, we have .αivi = v3. Thus, we get 

. 

ˆ
𝛀

f (v1) dμ1=
ˆ

𝛀

f (v1)α1 dμ3=
ˆ

𝛀

f (v3) dμ3=
ˆ

𝛀

f (v2)α2 dμ3=
ˆ

𝛀

f (v2) dμ2.

In particular, it is always possible to choose .μ = |λ| in order to guarantee .λ ⪡ μ. 
We then have the following result
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Proposition 3.19 Let .f : RN → R be a proper, convex, and l.s.c. function, and 
.f ∞ its recession function. Let . μ be a fixed finite positive measure on . 𝛀. For every 
vector measure . λ write .λ = v · μ + λs , where .v · μ is the absolutely continuous part 
of . λ and . λs is the singular part (w.r.t. . μ). Then, the functional defined by 

.F(λ) =
ˆ

𝛀

f (v(x)) dμ(x) +
ˆ

𝛀

f ∞(λs) (3.1) 

is l.s.c. for the weak-* convergence of measures. 

Proof We will see in Sects. 4.2.1 and 4.2.3 that there exists a convex function . f ∗
(called Fenchel–Legendre transform of f ) satisfying the two following equalities 

. f (v) = sup
{
v · w − f ∗(w) : w ∈ R

N
}

; f ∞(v) = sup
{
v · w : f ∗(w) < ∞}

.

Let us consider the following functional 

. ̃F(λ) := sup
K,a∈C(𝛀;K)

ˆ
𝛀

a(x) · dλ(x) −
ˆ

𝛀

f ∗(a(x)) dμ(x),

where K ranges among compact and convex subsets of .{f ∗ < +∞} (on each of 
these sets . f ∗ is bounded, so that the integral .

´
𝛀

f ∗(a(x)) dμ(x) is well-defined). 
The functional . ̃F is obviously l.s.c. since it is the supremum of a family of affine 
functionals, each continuous w.r.t. the weak-* convergence. We want to prove . ̃F =
F. 

In order to do so, first note that, thanks to Lusin’s theorem (see Box 3.3), applied 
here to the measure .|λ|+μ, it is not difficult to replace continuous functions valued 
in K with measurable functions valued in the same set. Lusin’s theorem does not 
guarantee that the values can be taken inside K , but since K is convex it is possible 
to compose with the projection onto K in order to ensure that it is so. We then get 

. ̃F(λ) := sup
K,a:𝛀→K

ˆ
𝛀

a(x) · dλ(x) −
ˆ

𝛀

f ∗(a(x)) dμ(x).

Then take a set A such that .|λs |(𝛀 \ A) = μ(A) = 0: this allows us to write 

.̃F(λ) := sup
K,a:𝛀→K

ˆ
𝛀\A

[
a(x) · v(x) − f ∗(a(x))

]
dμ(x) +

ˆ
A

a(x) · dλs(x).
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The values of .a(x) may be chosen independently on A and .𝛀 \ A and we can check 
that we have 

. sup
K,a:𝛀→K

ˆ
𝛀\A

[
a(x) · v(x) − f ∗(a(x))

]
dμ(x)

=
ˆ

𝛀\A

(

sup
w : f ∗(w)<+∞

v(x) · w − f ∗(w)

)

dμ(x)

=
ˆ

𝛀\A
f (v(x)) dμ(x) =

ˆ
𝛀

f (v(x)) dμ(x),

as well as, writing .λs = v0 · |λs |, 

. sup
K,a:𝛀→K

ˆ
A

a(x) · dλs(x) = sup
K,a:𝛀→K

ˆ
A

a(x) · v0 d|λs |(x)

=
ˆ

A

(

sup
w : f ∗(w)<+∞

v0(x) · w

)

d|λs |(x)

=
ˆ

A

f ∞(v0(x)) d|λs |(x) =
ˆ

f ∞(λs).

This allows us to conclude .̃F = F. ⨅⨆
As we saw in the previous sections of this chapter, the convexity of the integrand 

plays a crucial role in the lower semicontinuity of integral functionals. Yet, in 
the case of functionals defined on measures a small exception is possible, which 
concerns the presence of atoms. Given a measure . λ we will define the atoms of 
. λ as the points x such that .λ({x}) /= 0 (equivalently, .|λ|({x}) /= 0), and their set 
is denoted by .A(λ) := {x : λ({x}) /= 0}. Note that this set is always at most 
countable, since .

∑
x∈A(λ) |λ|({x}) ≤ |λ|(𝛀). The atomic part of . λ is then defined as 

. λ# :=
∑

x∈A(λ)

λ({x})δx.

Measures . λ such that .λ = λ# are said to be purely atomic. 
We now consider a functional depending on the masses of the atoms of . λ. As we  

did before, let us first consider a simple example, 

.G(λ) :=
{∑

x∈A(λ) g(λ({x})) if λ = λ#,

+∞ if λ is not purely atomic.
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As before, let us first understand which are the basic properties of g so as to 
guarantee semicontinuity. Let us assume .g(0) = 0 (which is by the way necessary if 
we want to avoid ambiguities due to zero-mass atoms). First, take .λn = aδxn + bδx . 

Assume .xn → x. Then .λn
∗
⇀ λ = (a + b)δx . In this case semicontinuity requires 

. g(a + b) ≤ g(a) + g(b),

i.e. we need g to be subadditive. 
Assume that g satisfies .g(v) ≤ C|v| for all v and take, similarly to what we 

did before, a sequence .λn
∗
⇀ λ where . λn is purely atomic but . λ is not. Then we 

have .G(λn) ≤ C||λn|| ≤ C but .G(λ) = +∞. This is a contradiction with the 
semicontinuity and suggests that we should impose .C = +∞, i.e. g should not be 
bounded by something with linear growth. Note that subadditive functions, due to 
.g(nv) ≤ ng(v), are indeed sublinear at infinity, so the superlinear growth should 
occur near 0. This is consistent with the most common examples of subadditive 
functions (think of .g(v) = |v|α for .α ∈ (0, 1)) and with what occurs when 
approximating a non-atomic measure by atomic measures: in this case, we need 
to have more and more atoms, and their masses to tend to 0. 

It is useful to establish the following. 

Lemma 3.20 Assume that g is an l.s.c. and subadditive function with .g(0) = 0. 
Assume that .λn = ∑M

i=1 ai,nδxi,n
is a sequence of atomic vector measures with a 

bounded number of atoms and bounded mass. Then, up to a subsequence, we have 

.λn
∗
⇀ λ for a certain measure . λ which is also atomic, has at most M atoms, and 

satisfies .G(λ) ≤ lim infG(λn). 

Proof Let us note that we can assume that the points .xi,n are distinct. If a measure 
. λn has fewer than M atoms then we can choose arbitrary points .xi,n to complete the 
list of atoms and set .ai,n = 0 for those extra indices. 

Now, extract a subsequence (not relabeled) such that for each .i = 1, . . . ,M one 
has .ai,n → ai and .xi,n → xi (this is possible because we assumed . 𝛀 to be compact). 

For this subsequence one has .λn
∗
⇀ λ := ∑M

i=1 aiδxi
. It is possible that the points 

. xi are not distinct. If they are distinct we have .G(λ) = ∑M
i=1 g(ai), otherwise we 

have (thanks to subadditivity) .G(λ) ≤ ∑M
i=1 g(ai). Anyway we have  

. G(λ) ≤
M∑

i=1

g(ai) = lim
n

M∑

i=1

g(ai,n) = lim
n
G(λn),

which proves the desired result (one can choose the subsequence so that it realizes 
the liminf of the whole sequence). ⨅⨆

It is now possible to prove the following. 

Lemma 3.21 Assume that g is a non-negative subadditive and l.s.c. function such 
that .g(0) = 0 and .limv→0 g(v)/|v| = +∞. Then . G is l.s.c.
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Proof Assume without loss of generality that all the . λn are purely atomic. Fix a 
number .M > 0 and use .limv→0 g(v)/|v| = +∞: this implies that there exists an 
. ε0 such that for all v with .|v| < ε0 we have .g(v) > M|v|. Consider a sequence 
.λn

∗
⇀ λ, assume .G(λn) ≤ C < +∞ and decompose it into .λn = λs

n + λb
n, where 

.λb
n = ∑N

i=1 ainδxi,n
is the sum of the atoms of . λn with mass at least . ε0. In particular, 

there are no more than .N := Cε−1
0 of these atoms, where C is a bound for .||λn||. 

The other part . λs
n (the “small” part, . λb

n being the “big” one) is just defined as the 
remaining atoms (every . λn is purely atomic since .G(λn) < +∞). 

If we write 

. C ≥ G(λn) ≥ G(λs
n) =

∑

i

g(ai,n) ≥ M
∑

i

|ai,n| = M|λs
n|(𝛀)

we get an estimate on the mass of the “small” part. Hence it is possible to get, up to 
subsequences, 

. λb
n ⇀ λb and λs

n ⇀ λs, |λs |(𝛀) ≤ C

M
.

We can now apply Lemma 3.20 to prove that . λb is purely atomic and that 
.G(λb) ≤ lim infn G(λb

n) ≤ lim infn G(λn). 
This proves that . λ must be purely atomic, since the possible atomless part of . λ

must be contained in . λs , but  .|λs |(𝛀) ≤ C/M . Hence the mass of the non-atomic 
part of . λ must be smaller than .C/M for every .M > 0, i.e. it must be zero. 

We have now proven that . λ is purely atomic and we have an estimate on .G(λb), 
where . λb is a part of . λ that depends on M . If we write .(ai)i for the masses of . λ and 
.(aM

i )i for those of . λb we have 

. 
∑

i

g(aM
i ) ≤ lim inf

n
G(λn) := 𝓁.

We want to prove .
∑

i g(ai) ≤ 𝓁 and, with this aim, it is enough to let .M → ∞. 
Actually, .|λs |(𝛀) = ∑

i |ai − aM
i | ≤ C/M → 0 implies that for each i we have 

.ai − aM
i → 0 and thus .aM

i → ai . Using the semicontinuity of g we have . g(ai) ≤
lim infM→∞ g(aM

i ). If we fix an arbitrary number N we get 

. 

N∑

i=1

g(ai) ≤ lim inf
M→∞

N∑

i=1

g(aM
i ) ≤ 𝓁.

By passing to the supremum over N we finally get 

.

∞∑

i=1

g(ai) ≤ 𝓁,
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which is the claim. ⨅⨆
Also for this class of functionals we are able to provide a more general 

semicontinuity result which allows g to be non-superlinear at 0. We first need to 
discuss the slope at 0 of subadditive l.s.c. functions. 

Lemma 3.22 Let .g : R
N → R be an l.s.c. subadditive function with .g(0) = 0. 

Then for every v there exists the limit .limt→0+ g(tv)
t

which also equals .supt>0
g(tv)

t
. 

This limit is denoted by .g0(v). 

Proof It is not restrictive to consider the case .n = 1, as the statement only concerns 
the behavior of g on the half-line .{tv, t ∈ R+}. Set .𝓁 := lim inft→0+ g(tv)

t
. If  . 𝓁 =

+∞ then it is clear that we also have .lim supt→0+ g(tv)
t

= supt>0
g(tv)

t
= 𝓁 and 

there is nothing else to prove. If .𝓁 < +∞, then for every . ε there are infinitely many 
small values of t such that .g(tv) ≤ (𝓁 + ε)t . Because of sub-additivity, if a certain 
t belongs to .{t : g(t) ≤ Ct} for some C, then all its multiples, of the form nt for 
positive integer n, also belong to the same set. Hence, if such a set contains arbitrary 
small numbers t it also contains a dense set. Because of the lower semicontinuity of 
g, if it contains a dense set it actually contains every point, so that we can deduce 
.g(tv) ≤ (𝓁 + ε)t for every t . The  value of  .ε > 0 being arbitrary, we also find 
.g(tv) ≤ 𝓁t, so that .𝓁 ≥ supt>0

g(tv)
t

= 𝓁 and the result is proven. ⨅⨆
Note that the function .t I→ g(tv)

t
is not always monotone when g is subadditive 

but not concave. For instance, one can use as an example the function . g(s) = |sin s|
in dimension one, and, if we want an example where there is not even local 
monotonicity in a neighborhood of the origin, .g(s) = ∑

k 2
−k|sin(ks)|. Moreover, 

we also observe that the lower semicontinuity of g was crucial in the above result, 
which would be false for non-l.s.c. subadditive functions g such as .g = 1R\Q. 

We now look at the function . g0: 

Proposition 3.23 The function . g0 defined via .g0(v) = limt→0+ g(tv)
t

is convex, 
1-homogeneous, and lower semicontinuous. 

Proof The subadditivity of g implies 

. 
g(t (v + w))

t
≤ g(tv)

t
+ g(tw)

t

and, taking the limit .t → 0, we obtain the subadditivity of . g0. 
In order to prove that . g0 is 1-homogeneous we take v and .c > 0 and write 

. 
g(t (cv))

t
= c

g((tc)v)

tc

and, taking the limit .t → 0 (hence .ct → 0), we obtain .g0(cv) = cg0(v). 
The convexity of . g0 then follows from the next Lemma 3.24.
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Its semicontinuity is due, instead, to its representation as a sup: for each t the 
function .v I→ g(tv)

t
is l.s.c. and hence . g0 is also l.s.c. as a sup of l.s.c. functions. ⨅⨆

Lemma 3.24 Given a function .f : X → R on a vector space . X with .f (0) = 0, 
any two of the following conditions imply the third one: 

1. f is convex; 
2. f is 1-homogeneous; 
3. f is subadditive. 

Proof In order to prove 1+2. ⇒3 we write 

. f (x + y) = f

(
1

2
(2x + 2y)

)

≤ 1

2
f (2x) + 1

2
f (2y) = f (x) + f (y),

using first the convexity and then the 1-homogeneity of f . 
In order to prove 2+3. ⇒1 we write 

. f ((1 − t)x + ty) ≤ f ((1 − t)x) + f (ty) = (1 − t)f (x) + tf (y),

using first the subadditivity and then the 1-homogeneity of f . 
In order to prove 3+1. ⇒2 we consider the ratio .h(t) := f (tv)

t
. This ratio is 

nondecreasing, as a consequence of the convexity of f and of .f (0) = 0. Moreover, 
f is continuous on the line .{tv : t ∈ R} as a consequence of convexity in finite 
dimensions, so that we can apply Lemma 3.22 since we have semicontinuity and 
subadditivity. Hence, we have .h(t0) ≥ limt→0+ h(t) = supt>0 h(t) ≥ h(t0) for 
every .t0 > 0, which proves that h is constant, and hence f is 1-homogeneous. ⨅⨆

For the proof of the next semicontinuity result it is useful to approximate . g0 from 
below by convex 1-homogeneous functions . gε such that .gε ≤ g on the ball .B(0, ε). 
We then prove the following. 

Lemma 3.25 Let .g : RN → R be an l.s.c. subadditive function such that . g(v) ≥
c|v| for some constant .c > 0. Set . Cε := {w : w · v ≤ g(v) for every v s.t. |v| ≤ ε}
and .gε(v) := sup{w · v : w ∈ Cε}. We then have .gε ≤ g ≤ g0 on .B(0, ε) and 
.gε(v) → g0(v) for every .v ∈ R

N . 

Proof Note that by definition we have .gε(v) ≤ g(v) for every .v ∈ B(0, ε). We then 
use the subadditivity of g to write .g(v) ≤ 2kg(2−kv) and, taking the limit .k → ∞, 
we obtain .g ≤ g0. 

In order to find the limit of . gε let us first consider the sets . Cε. It is clear that these 
sets increase as . ε decreases. Let us define .C0 := {w : w · v ≤ g0(v) for every v}. 
The assumption .g(v) ≥ c|v| implies .g0(v) ≥ c|v|, so that .B(0, c) ⊂ C0. Hence, 
. C0 is a convex set with non-empty interior, and it is then the closure of its interior, 
which we denote by . C◦

0 . We now prove .
⋃

ε Cε ⊃ C◦
0 . Suppose by contradiction that 

a certain point w belongs to . C◦
0 but not to .

⋃
ε Cε. The condition .w ∈ C◦

0 means 
that there exists a .δ > 0 such that .w + δe ∈ C0 for all vectors e with .|e| = 1, i.e.
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.w · v + δ|v| ≤ g0(v) for all v. On the other hand, the condition .w /∈ ⋃
ε Cε means 

that for any j , we can find a . vj such that .|v| ≤ 2−j but .w · vj > g(vj ). Because of 
the subadditivity of g this also implies .w · (nvj ) > g(nvj ) for every n. Hence, we 
can find for every j a vector . ̂vj such that .1 ≤ |v̂j | ≤ 2 and such that 

.w · (2−hv̂j ) > g(2−hv̂j ) (3.2) 

for every .h = 1, . . . , j . Up to subsequences, we can assume that the vectors . ̂vj

converge as .j → ∞ to a certain vector v with .1 ≤ |v| ≤ 2. We now fix an integer h 
and take the limit .j → ∞ in (3.2) so that we obtain 

. w · (2−hv) ≥ g(2−hv).

Multiplying by . 2h and taking now the limit .h → ∞ we obtain .w · v ≥ g0(v), which 
contradicts .w · v + δ|v| ≤ g0(v). 

Hence, we obtain 

. lim
ε→0

gε(v) ≥ sup{w · v : v ∈ C◦
0} = sup{w · v : v ∈ C0}.

The claim will be proven if we can show that the last expression above coincides 
with . I ∗

C0
, but .IC0 = g∗

0 and .I ∗
C0

= g∗∗
0 = g0, and for this we refer again to Sect. 4.2.1. 

⨅⨆
We can now state the following semicontinuity result. 

Theorem 3.26 Given a subadditive and l.s.c. nonnegative function .g : RN → R, 
the functional . G defined as follows: 

.G(λ) =
∑

x∈A(λ)

g(λ({x})) +
ˆ

𝛀

g0(λ − λ#) (3.3) 

is lower semicontinuous on .Md(𝛀) for the weak* convergence of measures. 

Proof First, we assume for now that g satisfies .g(v) ≥ c|v| for some constant 
.c > 0. 

Let us take a sequence .λn
∗
⇀ λ. Fix a number .ε > 0 and decompose . λn into 

.λn = λs
n + λb

n, where .λb
n = ∑N

i=1 ainδxi,n
is the sum of the atoms of . λn with mass at 

least . ε. In particular, there are no more than .N := Cε−1 of these atoms. The other 
part . λs

n (again, the “small” part) is just defined as the remaining atoms together with 
the non-atomic part .λn − λ#n. The definition of . G, which is additive on measures 
concentrated on disjoint sets, allows us to write .G(λn) = G(λb

n) + G(λs
n). 

Up to subsequences, we can assume .λb
n

∗
⇀ λb, .λs

n

∗
⇀ λs , and .λ = λb + λs . 

Lemma 3.20 tells us that . λb is finitely atomic, and we have .G(λb) ≤ lim infn G(λb
n).
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In what concerns the other part, we use the inequalities .g ≥ gε on .B(0, ε) and 
.g0 ≥ gε everywhere, in order to obtain 

. lim inf
n
G(λs

n) ≥ lim inf
n

ˆ
𝛀

gε(λs
n) ≥

ˆ
𝛀

gε(λs),

where we used the semicontinuity of the functional .λ I→ ´
gε(λ) as a particular 

case of Proposition 3.19. 
We then observe that the atoms of . λ are split into the parts . λb and . λs , while the 

non-atomic part is completely contained in . λs . Hence we have obtained 

. lim inf
n
G(λn) ≥

∑

x∈A(λ)

g(λb({x})) + gε(λb({x})) +
ˆ

𝛀

gε(λ − λ#).

We now take the limit .ε → 0. By monotone convergence, using Lemma 3.25, we  
have .

´
gε(λ − λ#) → ´

g0(λ − λ#). For each atom .x ∈ A(λ), we have  

. g(λb({x})) + gε(λb({x})) ≥ hε(λ({x})),

where the function .hε : RN → R is defined via 

. h(v) := inf{g(v1) + gε(v2) : v1 + v2 = v}.

We will see that, pointwisely, we have .limε→0 hε(v) ≥ g(v), from which the result 
follows, again by monotone convergence in the sum. 

In order to prove .limε→0 hε(v) ≥ g(v) we fix v and take .vε
1, v

ε
2 realizing the 

inf in the definition of . hε. Such two values exist because the functions which are 
minimized are l.s.c. and the lower bound .g(v), gε(v) ≥ c|v| allows us to bound 
any minimizing sequences. Such a bound is uniform in . ε, so we can  assume, up to  
subsequences, .vε

1 → v1, v
ε
2 → v2 as .ε → 0, with .v1 + v2 = v. We fix  .ε0 > 0 and 

use .gε ≥ gε0 for .ε < ε0, so that we have .hε(v) ≥ g(vε
1) + gε0(vε

2). Taking the limit 
as .ε → 0, we get .limε→0 hε(v) ≥ g(v1) + gε0(v2). We then take the limit .ε0 → 0, 
thus obtaining 

. lim
ε→0

hε(v) ≥ g(v1) + g0(v2) ≥ g(v1) + g(v2) ≥ g(v),

where we also used  .g0 ≥ g and the subadditivity of g. This concludes the proof in 
the case .g(v) ≥ c|v|. The general case can be obtained using Lemma 3.27. ⨅⨆
Lemma 3.27 A functional .F : X → R ∪ {+∞} defined on a Banach space . X is 
l.s.c. for the weak (or weak-*, if . X is a dual space) convergence if and only if for 
every .c > 0 the functional . Fc defined through .Fc(x) = F(x)+ c||x|| is l.s.c. for the 
same convergence.
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Proof Obviously, since the norm is always l.s.c., if F is l.s.c. so is . Fc for any c. 
Assume now that . Fc is l.s.c. for every .c > 0 and take a sequence .xn ⇀ x (or 

.xn
∗
⇀ x). Since any weakly (or weakly-*) convergent sequence is bounded (see 

Box 4.2), we have .||xn|| ≤ M for a suitable constant M . Then, we observe that we 
have 

. F(x) ≤ Fc(x) ≤ lim inf
n

Fc(xn) ≤ lim inf
n

F (xn) + cM.

This shows .lim infn F (xn) ≥ F(x) − cM and the result follows by taking the limit 
.c → 0. ⨅⨆
Finally, we can combine the two results, that for a convex function f and that for a 
sub-additive function g, into the following lower semicontinuity result. 

Theorem 3.28 Given a positive non-atomic finite measure . μ, a subadditive and 
l.s.c. nonnegative function .g : R

N → R and a convex function .f : R
N → R, 

assume .f ∞ = g0 = ϕ. Then the functional F defined as follows is weakly-* lower 
semicontinuous on .Mn(𝛀): 

. F(λ) =
∑

x∈A(λ)

g(λ({x})) +
ˆ

𝛀

ϕ(λs − λ#) +
ˆ

𝛀

f (v(x)) dμ(x),

where we write .λ = v · μ + λs and . λs is the singular part of . λ, which includes a 
possible atomic part . λ#. 

Proof Let us take a sequence .λn
∗
⇀ λ and decompose it into .λn = vn · μ + λs

n. We  
then have 

. F(λn) = G(λs
n) + F(vn · μ),

where . G and . F are the functionals associated with the functions g and f , respec-
tively, according to Eqs. (3.3) and (3.1). Up to subsequences we have .λs

n

∗
⇀ λg and 

.vn ·μ ∗
⇀ λf , with .λ = λg +λf . Note that nothing guarantees that . λg and . λf are the 

singular and absolutely continuous parts of . λ. Using the semicontinuity of . F and . G
we obtain 

. lim inf
n

F (λn) ≥ G(λg) + F(λf )

=
∑

x∈A(λg)

g(λg({x})) +
ˆ

𝛀

ϕ(λs
g − λ#g + λs

f ) +
ˆ

𝛀

f (w(x)) dμ(x),

where .λf = w(x) · μ + λs
f , and we used .f

∞ = g0 = ϕ. We observe that the 

measure .λs
g −λ#g +λs

f can contain atoms (in the part . λs
f ) and absolutely continuous 

parts (in .λs
g − λ#g). On the other hand, all the part of . λ which is neither atomic nor
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absolutely continuous is there. We then write 

. λs
g − λ#g + λs

f = (λ# − λ#g) + (λs − λ#) + (v − w) · μ.

Then we use .g(a) + ϕ(b) = g(a) + g0(b) ≥ g(a) + g(b) ≥ g(a + b), so that we 
obtain 

. 
∑

x∈A(λg)

g(λg({x})) +
ˆ

𝛀

ϕ(λ# − λ#g) ≥
∑

x∈A(λ)

g(λ({x})).

We also use .f (v) ≤ f (w) + f ∞(v − w) to obtain 

. 

ˆ
𝛀

ϕ((v − w) · μ) +
ˆ

𝛀

f (w(x)) dμ(x) ≥
ˆ

𝛀

f (v(x)) dμ(x)

and this concludes the proof of the semicontinuity of F . ⨅⨆

3.4 Existence of Minimizers 

This short section is devoted to some existence results which extend those of 
Sect. 2.1 and can be obtained by combining the techniques already used there with 
the semicontinuity results of this chapter. 

A general statement that we can obtain is, for instance, the following. 

Theorem 3.29 Let . 𝛀 be an open domain and .g ∈ W 1,p(𝛀) and an integrand 
.L : 𝛀 × R × R

d → R such that .L(x, s, v) is continuous in .(s, v) and convex 
in v for a.e. x and such that we have 

. c|v|p − a(x) − C|s|q1 ≤ L(x, s, v) ≤ C|v|p + a(x) + C|s|q2

for some constants .c, C > 0, a function .a ∈ L1(𝛀), and some exponents . p, q1, q2
with .1 ≤ q1 < p ≤ q2 ≤ p∗. Then the optimization problem 

.min

{

J (u) :=
ˆ

𝛀

L(x, u(x),∇u(x)) dx : u − g ∈ W
1,p
0 (𝛀)

}

(3.4) 

admits a solution. 

Proof The assumption on the upper bound on L has been introduced to guarantee 
.J (u) < +∞ for every .u ∈ W 1,p(𝛀). The function .u = g satisfies the boundary 
constraint, and provides a finite value to J , which shows that the inf in the 
optimization problem is not .+∞. We now take a minimizing sequence . un with
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.J (un) ≤ C < +∞. Using the lower bound on L we find 

. c||∇un||pLp ≤ C(1 + ||u||q1
Lq1 ).

Using the same estimates as in Theorem 2.1 we have the inequality . ||u||Lp ≤
C||∇u||Lp + C(g) for every admissible u. We can moreover bound the .Lq1 norm 
with the . Lp norm and obtain 

. c||∇un||pLp ≤ C(1 + ||∇un||q1Lp),

which proves that .∇un is bounded in . Lp since .q1 < p. This implies that . un is 
bounded in .W 1,p, which is a reflexive space since we assumed .p > 1. We can then 
extract a subsequence weakly converging to a limit u. This limit is also admissible 
(i.e. .u−g ∈ W

1,p
0 (𝛀)) and the compact injection of .W 1,p into . Lq1 implies pointwise 

a.e. convergence of . un to u. 
We now want to apply Theorem 3.16 in order to show the semicontinuity of J . 

The only lacking assumption is the positivity of L. Hence, we write . L̃(x, s, v) =
L(x, s, v) + a(x) + C|s|q1 and we have .L̃ ≥ 0; moreover, . L̃ satisfies the same 
assumptions as L in terms of continuity or convexity. Hence, the functional 

. (u, v) I→
ˆ

𝛀

L̃(x, u(v), v(x)) dx

is l.s.c. for the strong . L1 convergence of u and the weak . L1 convergence of v, so  
that we have 

. lim inf
n

ˆ
𝛀

L̃(x, un(v),∇un(x)) dx ≥
ˆ

𝛀

L̃(x, u(v),∇u(x)) dx.

Moreover, we have 

. lim
n

ˆ
𝛀

(
a(x) + C|un(x)|q1) dx =

ˆ
𝛀

(
a(x) + C|u(x)|q1) dx

because of the strong .Lq1 convergence of . un to u, from which we conclude the 
semicontinuity of J and hence the optimality of u. ⨅⨆
The main difference between this result and those of Sect. 2.1 is that we do not 
require that the dependence of the functional on the gradient is exactly through its 
. Lp norm. Hence, to obtain its semicontinuity we need to use the tools for more 
general functionals developed in this chapter, and to obtain the compactness of 
minimizing sequences we need to require a lower bound on the growth of the 
integrand which mimics this . Lp norm. 

We do not develop the details here, but it would of course be possible to obtain 
an analogue of Theorem 2.4 with boundary penalization, as well as results which
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use the functionals whose semicontinuity was proven in Sect. 3.3. Some examples 
in this direction are available in the exercises (see Exercises 3.8 and 3.9). 

3.5 Discussion: Lower Semicontinuity for Vector-Valued 
Maps 

The semicontinuity results that we introduced in this chapter to study the existence 
of minimizers of integral functionals of the form .u I→ ´

L(x, u,∇u) actually 
concern more general functionals of the form .(u, v) I→ ´

L(x, u, v) and they do 
not exploit the fact that we only look at .v = ∇u. Actually, they do not even 
exploit the fact that the variable v will be a gradient. Due to this generality, the 
assumptions on L for the functional to be l.s.c. impose convexity in the variable v. 
For many applications it would be important to relax this assumption, in particular 
in compressible mechanics, where one would like to study . u : R

d → R
d

as a deformation and consider functionals penalizing the compression of such a 
deformation, hence functionals depending on .det(Du). The determinant being a d-
degree polynomial in the entries of Du, it is in general not a convex function of 
Du. This motivates the study of more general functionals. In particular, we look at 
functionals of the form .u I→ F(u) := ´

f (Du) dx for .u : 𝛀 → R
k , . 𝛀 ⊂ R

d

and we want to understand the natural conditions on .f : Rd×k → R for F to be 
lower semicontinuous for the weak .W 1,p convergence. For simplicity and in order 
to avoid growth conditions, one can consider .p = ∞. 

Charles Morrey found in [152] the sharp condition, as he observed that the 
assumption that f is quasi-convex is necessary, and also sufficient. 

Definition 3.30 A function .f : Rd×k → R is said to be quasi-convex if for every 
matrix A and every function .ϕ ∈ C1

c (Q) we have . 
ffl
Q

f (A + ∇ϕ(x)) dx ≥ f (A),

where .Q = (0, 1)d is the unit cube in . Rd . 

It is clear that convex functions are quasi-convex, since .
ffl ∇ϕ = 0 and then 

Jensen’s inequality gives .
ffl
Q

f (A+∇ϕ(x)) dx ≥ f
(ffl

Q
(A + ∇ϕ(x)) dx

)
= f (A). 

This definition could be somehow disappointing as it cannot be given by only 
looking at the behavior of f as a function on matrices, but one needs to look 
at matrix fields and it involves the notion of gradient. . . we could even say that 
it is a way of cheating as the final goal is to produce necessary and sufficient 
conditions for the l.s.c. behavior of F and the assumption is given in terms of 
F instead of f . Yet, this is exactly the sharp condition. One can easily see that 
quasiconvexity is necessary for the semicontinuity by considering .u(x) = Ax and 
.un(x) = Ax + 1

n
ϕ(nx). It is clear that .Dun is bounded in .L∞ and weakly-* 

converges to .Du = A, and that . un uniformly converges to u, and when .𝛀 = Q from 
.F(un) = ffl

Q
f (A + ∇ϕ(x)) dx (which can be obtained via a change-of-variables) 

we see that the lower semicontinuity of F on this sequence is equivalent to the 
inequality defining quasiconvexity.
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We do not prove here the fact that this condition is also sufficient but it is the case, 
and it is also possible to prove the semicontinuity of F when we add dependence 
on x and u. In particular, .u I→ ´

L(x, u(x),Du(x)) dx is lower semicontinuous 
for the Lipschitz weak convergence (.un → u uniformly together with . ||Dun||L∞
bounded) if .f (x, u, v) is continuous in .(x, u) and quasiconvex in v for every . (x, u)

(see [152]). Once we know this result the choice of the definition of quasi-convexity 
is not disappointing anymore, as we are characterizing the lower semicontinuity of 
the functional in terms of pointwise (for every .(x, u) properties of .f (x, u, ·)) and 
not only in terms of the integrals of given test functions. 

The notion of quasiconvexity can be compared to other notions, in particular to 
that of polyconvexity and rank-1-convexity. 

Definition 3.31 A function .f : Rd×k → R is said to be polyconvex if there exists a 
convex function .g : RN → R such that .f (A) = g((det(Aα))α) where the matrices 
. Aα stand for all the square submatrices that one can extract from a .d × k matrix 
and N is the number of those submatrices (we have .N = ∑min{k,d}

j=1

(
d
j

)(
k
j

)
). When 

.d = k = 2 this means .f (A) = g(A, detA) and when .d = k = 3 this means . f (A) =
g(A,Cof(A), detA) where .Cof(A) is the cofactor matrix of A, characterized by the 
condition .ACof(A) = det(A)I. 

Definition 3.32 A function .f : R
d×k → R is said to be rank-1-convex if . t I→

f (A + tB) is convex in t whenever B is a matrix with rank one. 

We have the following result. 

Theorem 3.33 If f is convex, then it is polyconvex. If f is polyconvex, then it is 
quasi-convex. If f is quasi-convex, then it is rank-1-convex. If .min{k, d} = 1, then 
rank-1-convex functions are also convex. 

The only non-trivial statements hereabove are the quasi-convexity of polyconvex 
functions, and the rank-1-convexity of quasi-convex functions. 

For the latter, we just observe that rank-1 matrices B can be written as . a ⊗ b

for .a ∈ Rk and .b ∈ R
d and we can construct a function . ϕ whose gradient . Dϕ

is only composed of multiples of .a ⊗ b. Given a function .φ : R → R which 
is 1-periodic and satisfies .φ' = 1 − t on .(0, t) and .φ' = −t on .(t, 1), we can 
define .ϕ(x) = aφ(b · x) and see (up to correcting boundary effects due to the fact 
that . ϕ is not compactly supported) that the quasi-convexity of f implies . f (A) ≤
tf (A+ (1− t)a ⊗ b)+ (−t)f (A+ ta ⊗ b), which gives the rank-1-convexity of f . 

The fact that polyconvex functions are quasi-convex relies again on Jensen’s 
inequality, once we find that .ϕ I→ ´

det(Dϕ) dx (when .ϕ : R
d → R

d , so that 
.Dϕ is a square matrix) is a null-Lagrangian, i.e. it only depends on the boundary 
value of . φ. This can be seen by writing the determinant as a divergence. Remember 
that we have 

. det(A) =
∑

j

A1j zj (A), where zj (A) =
∑

σ : σ1=j

ε(σ )A2σ2A3σ3 · · ·Adσd ,

(3.5)
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where the sum is over permutations . σ and .ε(σ ) stands for the signature of the 
permutation. The terms .zj (A) are the entries of the cofactor matrix .Cof(A) (here 
those on the first line of this matrix). An important point is the fact that cofactors of 
gradients have zero-divergence, as a consequence of Schwartz’s theorem: 

Proposition 3.34 If . ϕ is a vector-valued . C2 function, then 

. 
∑

j

∂

∂xj

zj (Dϕ) = 0.

Proof Computing the above sum of derivatives we obtain 

. 
∑

j

∂

∂xj

zj (Dϕ) =
∑

σ

ε(σ )
∂

∂xσ1

(
∂ϕ2

∂xσ2

∂ϕ3

∂xσ3

. . .
∂ϕd

∂xσd

)

.

Expanding the derivatives further, we find the sum of all terms which are products 
of .(d − 2) first derivatives of components of . ϕ (the component i differentiated with 
respect to . σi for .i ≥ 2) times a unique factor with two derivatives (one w.r.t. to 
. σi , one w.r.t. to . σ1). Since we are considering all permutations, these terms can 
be paired and each term appears exactly twice, using the commutativity of the 
second derivatives. Indeed, the same term where . ϕi is differentiated w.r.t. . xj and 
to . xk appears when .(σi, σ1) = (j, k) but also when .(σi, σ1) = (k, j). These two 
permutations differ by a transposition and so their signatures are opposite, so that 
they cancel in the sum, thus proving the result. ⨅⨆

We then obtain the following result. 

Proposition 3.35 Assume .d = k. Then, the functional F defined via . F(u) :=´
𝛀
det(Du) dx is such that .F(u) = F(ũ) whenever .u − ũ ∈ W

1,d
0 (𝛀). 

Proof First, we observe that, for smooth . ϕ, we have  

. det(Dϕ) = ∇ · v[ϕ], where v[ϕ]j := ϕ1zj (Dϕ).

Indeed, we have 

. ∇ · v[ϕ] =
∑

j

∂

∂xj

(ϕ1zj (Dϕ))

=
∑

j

∂ϕ1

∂xj

zj (Dϕ) + ϕ1
∑

j

∂

∂xj

zj (Dϕ) = det(Dϕ) + 0,

where in the last inequality we used the characterization (3.5) of the determinant 
and the result of Proposition 3.34. This shows that .

´
𝛀
det(Dϕ) only depends on . ϕ

and its derivatives on . ∂𝛀, so that we have .F(u) = F(ũ) whenever .u, ũ ∈ C∞ with
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.u − ũ ∈ C∞
c (𝛀). Then we observe that F is continuous for the strong convergence 

of .W 1,d so that this stays true whenever .u, ũ ∈ W 1,d with .u − ũ ∈ W
1,d
0 (𝛀), by  

approximating u with .C∞ functions and .u − ũ with functions in . C∞
c . Note that the 

dependence on higher-order derivatives on . ∂𝛀 disappears, in the end. ⨅⨆
It is not difficult to adapt the above result to the case of determinants of smaller 

minors .h × h, possibly in the case of rectangular matrices .k × d. This allows us to 
prove the quasi-convexity of polyconvex functionals, since we have in this case 

. 

 
Q

f (A + Dϕ) dx =
 

Q

g((det((A + Dϕ)α))α) dx

≥ g

(( 
Q

det((A + Dϕ)α) dx

)

α

)

= g ((det(Aα))α) = f (A),

using the convexity of g and the result of Proposition 3.35 adapted to all minors. 
The question of whether or not rank one convexity implies quasiconvexity was 

left open by Morrey. The question is natural, as it can be proven that rank one 
affine functions (i.e. functions f such that both f and .−f are rank one convex) 
are indeed quasi-affine functions (both f and .−f are quasi-convex). However, 
Morrey conjectured that quasi-convexity and rank one convexity should be different 
notions. This has been proven thanks to a family of counterexamples introduced by 
Dacorogna and Marcellini and later improved by Alibert and Dacorogna ([6, 68]). 
Consider for . A ∈ R

2×2

. f (A) = ||A||2(||A||2 + c det(A)),

where the norm is the Euclidean norm in . R4 (i.e. .||A||2 = Tr(AT A)). This function 
is a 4-homogeneous polynomial and it can be proven that 

• f is convex if and only if .|c| ≤ 4
3

√
2; 

• f is polyconvex if and only if .|c| ≤ 2; 
• f is rank-one convex if and only if .|c| ≤ 4√

3
; 

• f is quasi-convex if and only if .|c| ≤ M for a constant M whose precise value is 
unknown but satisfies .M ∈ (2, 4√

3
). 

3.6 Exercises 

Exercise 3.1 Prove that the level sets {x ∈ X : f (x)  ≤ 𝓁} are all convex if f is 
convex, but find an example of a function f which is not convex, despite having 
convex level sets.
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Exercise 3.2 Assume that un is a sequence weakly converging to u in L1(𝛀) and 
assume

´
𝛀

√
1 + |un|2 dx → ´

𝛀

√
1 + |u|2 dx. Prove un → u a.e. and in L1. 

Exercise 3.3 Assume that the functional u I→ F(u)  := 
´
𝛀

L(x, u(x)) dx is l.s.c. 
for the weak convergence in Lp, and that L : 𝛀 × R → R is continuous. Prove that 
L(x, ·) is convex for every x. 
Exercise 3.4 Assume that un is a sequence weakly converging to u in Lp (X) and 
set vn := H(un) where H : R → R is a given convex function. Assume that vn 
weakly converges to v in L1(X). Prove v ≥ H(u), and find examples where the 
inequality is strict. 

Exercise 3.5 Consider the functional J (u)  := 
´
𝛀
arctan(u + |∇u|2) dx and the 

minimization problem 

. min {J (u) : ||u||L∞, ||∇u||L∞ ≤ c0} .

Prove that this problem admits a solution if c0 > 0 is small enough. 

Exercise 3.6 Show that for every l.s.c. function f : R → R+ there exists a 
sequence of functions fk : R → R+, each k−Lipschitz, such that for every x ∈ R 
the sequence (fk(x))k increasingly converges to f (x). 

Use this fact and the theorems of this chapter to prove the semicontinuity, w.r.t. 
to the weak convergence in H 1(𝛀), of the functional 

. J (u) =
ˆ

𝛀

f (u(x))|∇u(x)|p dx,

where p ≥ 1 and f : R → R+ is l.s.c. 

Exercise 3.7 Let 𝛀 be an open, connected and smooth subset of Rd . Prove that the 
following minimization problem admits a solution 

. min

{ˆ
𝛀

(
1

2
|∇u|2−(1 + v2) sin

(
u

1 + v2

)

+ (2+arctan(u))|∇v|2
)

dx :

u, v ∈ H 1
0 (𝛀)

}
.

Exercise 3.8 Prove that the following problem admits a minimizer 

. min

{ˆ 1

0
L(t, u(t), u'(t)) dt + J (u) : u : [0, 1] → R

d piecewise H 1,

|u| ≤ M a.e.

}

,

where the set of piecewise H 1 functions is defined as those functions u ∈ L2([0, 1]) 
for which there exists a decomposition of [0, 1] into finitely many intervals [ti , ti+1] 
with 0 = t0 < t1 < · · ·  < tN = 1 such that the restriction of u to each of these 
intervals is H 1; u then admits a piecewise continuous representative, admitting right
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and left limit at each point ti , and the functional J is defined as the number of jumps 
of u, i.e. the number of indices i such that these two limits are different. We assume 
here that L(t, s, v) is continuous in (s, v) and C2 in v, with D2 

vvL ≥ c0I for c0 > 0 
and M is any given constant. 

Exercise 3.9 Prove that the following problem admits a minimizer 

. min

{ˆ 1

0
L(t, u(t), u'(t)) dt + H(u) : u : [0, 1] → R

d piecewise H 1
}

,

where the set of piecewise H 1 functions is defined as in Exercise 3.8 and the 

functional H is defined as
∑

i

(

1 +
√

|u(ti)+ − u(t− 
i )|

)

, where the points ti are, 

again, the jump points of u, i.e. those points where the right and left limits are 
different. We assume here as well that L(t, s, v) is continuous in (s, v) and C2 in v, 
with D2 

vvL ≥ c0I for c0 > 0. 

Hints 

Hint to Exercise 3.1 Use the definition of convexity of a function to prove the 
convexity of level sets. As a counter-example to the converse implication, any 
monotone function on R can be used. 

Hint to Exercise 3.2 Use the inequality 

. 
√
1 + a2 ≥

√
1 + b2 + b√

1 + b2
(a − b) + c(b)min{(a − b)2, 1}

for a number c(b) > 0, applied to a = un and b = u, to deduce un → u a.e. In order 
to get L1 strong convergence, prove that equi-integrability and a.e. convergence 
imply L1 convergence. 

Hint to Exercise 3.3 Localize the example of Proposition 3.10 on a small cube of 
side ε around a point x and take the limit ε → 0. 

Hint to Exercise 3.4 Fix a non-negative function ϕ and consider the functional 
defined by u I→ ´

ϕ(x)H(u(x)) dx. 

Hint to Exercise 3.5 Prove that the function v I→ arctan(u + v2) is convex on 
(−ε, ε) if u and ε are small. 

Hint to Exercise 3.6 Use fk(x) := infy f (y)  + kd(x, y). Then write the functional 
as a sup. 

Hint to Exercise 3.7 Prove boundedness in H 1 and use the semicontinuity results 
of Sect. 3.2.
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Hint to Exercise 3.8 Subtract c0 2 v
2 from L(x, u, v) and prove separately the semi-

continuity of two parts of the functional using Sects. 3.2 and 3.3. Obtain a bound of a 
minimizing sequence un in BV, thus proving weak-* convergence of the derivatives 
u'

n. 

Hint to Exercise 3.9 In the previous exercise the intensity u(t+ 
i ) − u(t− 

i ) of the 
jump was not penalized but the L∞ norm was bounded. Here we can only have 
finitely many jumps, with a bound on their intensity, and this allows us to obtain 
compactness. The conclusion follows again by Sects. 3.2 and 3.3.



Chapter 4 
Convexity and its Applications 

This chapter is devoted to several applications of convexity other than the semicon-
tinuity of integral functionals that we already saw in Chap. 3. After a first section 
about the identification of the minimizers (discussing their uniqueness and the 
sufficient conditions for optimality, both in a general setting and in the calculus of 
variations, i.e. when we face integral functionals on functional spaces) the attention 
turns to many notions coming from abstract convex analysis, in particular related to 
Legendre transforms and duality. Section 4.2 will be quite general, while Sects. 4.3 
and 4.4 will concentrate on some precise problems in the calculus of variations 
which can be described through the language of convex duality and where tools 
from convex duality will help in establishing regularity results. Section 4.5 will 
come back to an abstract setting, exploiting the ideas presented in concrete cases 
in order to discuss the well-known Fenchel–Rockafellar duality theorem. As usual, 
the chapter contains a discussion section (devoted here to questions from the theory 
of optimal transport and of some congestion games) and closes with a (quite long) 
exercise section. 

4.1 Uniqueness and Sufficient Conditions 

We discuss in this section two important roles that convexity plays in optimization: 
the fact that for convex functions necessary conditions for optimality are also 
sufficient, and the fact that strict convexity implies uniqueness of the minimizers. 

We start with the relation between necessary and sufficient optimality conditions 
and recall what happens in the easiest case, i.e. the one-dimensional case: if . f :
R→ R is convex and .x0 ∈ R is such that .f '(x0) = 0, then . x0 is a minimizer for f 
(which would not necessarily be the case if f was not convex). 

This can be seen as a consequence of the above-the-tangent inequality: if . f ∈ C1

is convex we have .f (x) ≥ f (x0)+f '(x0)(x−x0) so that .f '(x0) = 0 implies . f (x) ≥
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f (x0), for every .x, x0. In higher (but finite) dimensions this can be expressed in 
terms of .∇f (of course, only if f is differentiable: the case of non-smooth convex 
functions will be discussed in the next section), and we have the inequality 

. f (x) ≥ f (x0)+∇f (x0) · (x − x0),

so that a point . x0 minimizes f if and only if .∇f (x0) = 0. 
In the abstract (and possibly infinite-dimensional) setting, the situation is essen-

tially the same, but we need to be precise about the notion of necessary optimality 
conditions, as we never defined a proper notion of gradient or differential in abstract 
spaces. The way we obtained, for instance, the necessary optimality conditions in 
Chaps. 1 and 2 (the Euler–Lagrange equation in the calculus of variations) was 
the following: given .f : X → R and .x0 ∈ X, we choose a perturbation v and 
compute .j (ε) := f (x0 + εv). We take as a necessary optimality condition the fact 
that .j '(0) = 0 for every v. The 1D above-the-tangent inequality can be written as 
.j (ε) ≥ j (0) + εj '(0), so that .j '(0) = 0 implies .j (ε) ≥ j (0). Taking .ε = 1 we 
obtain .f (x0 + v) ≥ f (x0) for arbitrary v, i.e. the minimality of . x0. 

In order to apply this argument to the functional case, where we consider 
an integral functional .F(u) := ´ L(x, u(x),∇u(x)) dx (with possible boundary 
penalizations or constraints), we need a minor clarification: when writing necessary 
conditions, we often consider a class of smooth perturbations, for instance . ϕ ∈
C∞c (𝛀), and impose .j '(0) = 0 only for those . ϕ. This means that we have 

.

ˆ

𝛀

(∂sL(x, u,∇u)ϕ +∇vL(x, u,∇u) · ∇ϕ) dx = 0 (4.1) 

for every .ϕ ∈ C∞c (𝛀). This is, by definition, what we need to write the Euler– 
Lagrange equation as a PDE in the sense of distributions: .∇ · (∇vL) = ∂sL. Yet,  
we need for the necessary conditions to be sufficient that the same integral version 
of the PDE is satisfied for every . ϕ in the same vector space as the optimizer, so 
that .u + ϕ covers all possible competitors. As we saw in Sect. 2.2, if we know 
information on the summability of .∂sL(x, u,∇u) and .∇vL(x, u,∇u)we can usually 
obtain, by density, that if (4.1) holds for .ϕ ∈ C∞c then it also holds for any . ϕ. More  
precisely, if .X = W 1,p(𝛀) and .∂sL(x, u,∇u),∇vL(x, u,∇u) ∈ Lp' (. p' being the 
dual exponent of p, i.e. .p' = p/(p − 1)) then (4.1) for every .ϕ ∈ C∞c implies the 

validity of the same equality for every .ϕ ∈ W
1,p
0 , which is enough to consider the 

minimization of F in X with prescribed boundary conditions. 
A similar argument can be extended to the case of boundary penalizations. 

Consider the optimization problem 

.min

{
J (u) :=

ˆ

𝛀

L(x, u(x),∇u(x))dx+
ˆ

∂𝛀

ψ(x,Tr[u])dHd−1 : u ∈ W 1,p(𝛀),

Tr[u]=g on A

}
,
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where .A ⊂ ∂𝛀 is a fixed part of the boundary. Then, if J is a convex functional, the 
condition 

. 

ˆ

𝛀

(∂sL(x, u,∇u)ϕ + ∇vL(x, u,∇u) · ∇ϕ) dx +
ˆ

∂𝛀

∂sψ(x,Tr[u])ϕdHd−1 = 0

for all .ϕ ∈ W 1,p(𝛀) such that .Tr[ϕ] = 0 on A is sufficient for the optimality of u. 
Note that this condition is a weak version of (2.7), but is slightly stronger than (2.6). 

It now becomes important to understand when J is convex. Of course, the 
convexity of the function .(x, s, v) I→ L(x, s, v) in the variables .(s, v) for a.e. x 
is sufficient for the convexity of J , but it is not necessary. 

Example 4.1 Consider the quadratic form .J (u) = ´ T

0 (|u'(t)|2 − |u(t)|2) dt for 
.u ∈ H 1

0 ([0, T ]). We can easily compute 

. J (u+ h) = J (u)+ 2
ˆ T

0
(u'(t) · h'(t)− u(t) · h(t)) dt + J (h).

We will use Lemma 4.2 below. The second term in the last expression is of the form 
.A(h), thus we just have to see whether the last one is non-negative. This is the case, 
thanks to the Poincaré inequality, for small T , and more precisely for .T ≤ π . Hence, 
this functional J is convex despite the integrand .L(x, s, v) being clearly non-convex 
in s. 

Lemma 4.2 If a function .f : X → R ∪ {+∞} is such that for every .x ∈ X there 
exists a linear function .A : X → R satisfying .f (x + h) ≥ f (x) + A(h) for every 
.h ∈ X, then f is convex. 

Proof To see this, we apply the assumption to .x = (1 − t)x0 + tx1 and . h =
(1 − t)(x1 − x0), thus obtaining .f (x1) = f (x + h) ≥ f (x) + (1 − t)A(x1 − x0). 
We then apply the same condition to the same point x but .h = −t (x1 − x0), thus 
obtaining .f (x0) ≥ f (x) − tA(x1 − x0). We multiply the first inequality by t , the  
second by .(1− t), and we sum up, and obtain the desired convexity inequality. ⨅⨆

Unfortunately, the above discussion has to be modified in the case where there are 
constraints which cannot be written in the form of belonging to an affine subspace. 
To stick to the finite-dimensional case, we can say that the minimization of a 
smooth convex function f on .RN is equivalent to .∇f = 0; for the case where 
the problem is .min{f (x) : x ∈ H } where .H ⊂ R

N is a given affine subspace, 
of the form .H = x0 + V , V being a vector subspace of . RN , the optimality is 
equivalent to .∇f being orthogonal to V , but a simpler approach is just to re-
write the problem as an optimization problem in . Rk , .k = dim(V ) < N , and 
impose that the gradient vanishes. This corresponds to choosing a basis of V and 
just considering perturbations in the direction of the vector of the basis. In the 
particular case where .V = span(e1, e2, . . . , ek), the vectors . ei being vectors of the 
canonical basis of . RN , this is essentially implicit: given a function . f : RN → R

and some numbers .ak+1, . . . , aN the optimality conditions for the minimization
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problem .minx1,...,xk
f (x1, . . . , xk, ak+1, . . . , aN) are of course given by the fact that 

the partial derivatives .∂xi
f vanish for .i = 1, . . . , k, as this can be considered as the 

minimization of a function g defined over . Rk with .g(x) = f (x, a). This is what is 
implicitly done in the calculus of variations when the values of a competitor u are 
fixed on some subset A (typically, .A ⊂ ∂𝛀): we just change the vector space we are 
minimizing on, and consider perturbations which vanish on the set where values are 
prescribed. 

The situation is much more complicated when the constraint is given by a convex 
set which is not an affine space (for instance in the case of inequality constraints). 
In this case, the finite-dimensional procedure is simple, and based as usual on the 
reduction to the 1D case. Assume we are minimizing a convex function f on a 
convex set .K ⊂ X. Then, a point .x0 ∈ K is optimal if and only if it satisfies 

. lim
ε→0+

f ((1− ε)x0 + εx)− f (x0)

ε
≥ 0 for every x ∈ K.

This condition is of course necessary since .(1 − ε)x0 + εx ∈ K (because of the 
convexity of K) and then .f ((1− ε)x0 + εx)− f (x0) ≥ 0, and it is sufficient since 
the one-variable function .[0, 1] ϶ ε I→ f ((1 − ε)x0 + εx) is convex and then it 
is minimal at .ε = 0 if its right-derivative at .ε = 0 is non-negative. Note that the 
limit defining the right derivative always exists when facing a 1D convex functional, 
since the incremental ratio is a monotone function (but could be equal to .−∞). 

When f is differentiable at . x0 the above condition can be written using the 
gradient as .∇f (x0) · (x− x0) ≥ 0 and characterizes the minimizers. In other words, 
a point optimizes a convex function on a convex set if and only if it minimizes the 
linearization of the same function around such a point on the same set. 

For the calculus of variations, a possible (quite technical) statement (which also 
includes the non-constrained case) is the following. 

Theorem 4.3 Consider the minimization problem 

. min

{
J (u) :=

ˆ

𝛀

L(x, u(x),∇u(x)) dx +
ˆ

∂𝛀

ψ(x,Tr[u])dHd−1 : u ∈ K

}
,

(4.2) 

where .K ⊂ W 1,p(𝛀) is a convex set of Sobolev functions and L and . ψ are . C1 in the 
variables s and v. Assume that the functional J is convex on K . Consider a function 
.u0 ∈ K which satisfies the conditions (2.3) and (2.5) and such that we have 

.∂sL(x, u0,∇u0) ∈ L(p∗)'(𝛀),

∇vL(x, u0,∇u0) ∈ Lp'(𝛀),

∂sψ(x,Tr[u0]) ∈ Lp'(∂𝛀).
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Also assume the following properties: 

• .(u0 + Lip(𝛀)) ∩K is dense (for the strong .W 1,p convergence)1 in K; 
• either .L(x, ·, ·) and .ψ(x, ·) are convex, or J is continuous on K for the strong 

.W 1,p convergence. 

Then . u0 is a solution of (4.2) if and only if 

. 

ˆ

𝛀

(∂sL(x, u0,∇u0)(u− u0) + ∇vL(x, u0,∇u0) · ∇(u− u0)) dx

+
ˆ

∂𝛀

∂sψ(x,Tr[u0])Tr[u− u0] dHd−1 ≥ 0

(4.3) 

for all .u ∈ K . 

Proof First let us prove that (4.3) is necessary for optimality. The conditions (2.3) 
and (2.5) allow us to differentiate w.r.t. . ε the function .ε I→ J (u0 + εϕ) for 
.ϕ ∈ Lip(𝛀) (indeed, in order to apply dominated convergence to the differentiation 
under the integral sign, we need to guarantee that the perturbation . εϕ is bounded 
with bounded gradient). Hence, for every .u ∈ K of the form .u = u0 + ϕ, . ϕ ∈
Lip(𝛀), we have  (4.3) because of the optimality of . u0. Taking an arbitrary . u ∈ K

and approximating it through a sequence .u0 + ϕn, .ϕn ∈ Lip(𝛀), the summability 
that we assumed on .∂sL(x, u0,∇u0),∇vL(x, u0,∇u0) and .∂sψ(x,Tr[u0]) allows us 
to obtain the same result for u, because we have .ϕn ⇀ u− u0 in . Lp∗ , . ∇ϕn ⇀ ∇ϕ

in . Lp, and .Tr[ϕn]⇀ Tr[u− u0] in .Lp(∂𝛀). 
For the sufficiency of (4.3) we distinguish two cases. If .L(x, ·, ·) and .ψ(x, ·) are 

convex, we just write 

. J (u) =
ˆ

𝛀

L(x, u(x),∇u(x)) dx +
ˆ

∂𝛀

ψ(x,Tr[u]) dHd−1

≥ J (u0)+
ˆ

𝛀

(∂sL(x, u0,∇u0)(u− u0)+ ∇vL(x, u0,∇u0) · ∇(u− u0)) dx

+
ˆ

∂𝛀

∂sψ(x,Tr[u0])Tr[u− u0] dHd−1

and we use (4.3) to obtain .J (u) ≥ J (u0). 
If, instead, we assume that J is continuous on K , it is enough to prove . J (u0 +

ϕ) ≥ J (u0) for every .ϕ ∈ Lip(𝛀) such that .u0 + ϕ ∈ K . In this case, (4.3) shows 
that . ddε (J (u0 + εϕ)) is nonnegative for .ε = 0, hence .[0, 1] ϶ ε I→ J (u0 + εϕ))

1 Or for the weak .W 1,p convergence, the two notions being equivalent thanks to Mazur’s 
lemma 3.8. 
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is minimal at .ε = 0, which proves the claim. By continuity and density of . (u0 +
Lip(𝛀)) ∩K the inequality extends to .J ≥ J (u0) on K . ⨅⨆
Note that in the above statement we preferred to re-use the conditions (2.3) and 
(2.5) in order to guarantee differentiability of J but in some practical cases this 
could be avoided if we are able to differentiate J along perturbations . ϕ which are 
not necessarily Lipschitz continuous. For instance, in Example 4.1, it is possible 
to explicitly compute and differentiate .J (u + εϕ) for every u and every . ϕ. This  
would allow us to simplify the argument without using the density of Lipschitz 
perturbations; by the way, this is also a case where L is not convex in .(s, v), but  J 
is continuous for the strong .W 1,2 convergence. 

Remark 4.4 Another possible assumption on L and . ψ could be 

. |∂sL(x, s, v))| ≤ C(1+ |s|p∗−1),
|∇vL(x, s, v)| ≤ C(1+ |v|p−1),
|∂sψ(x, s))| ≤ C(1+ |s|p−1).

In this case it would be easy to prove that .ε I→ J (u + εϕ) is differentiable for any 
.ϕ ∈ W 1,p with no need for the .L∞ bounds on . ϕ and . ∇ϕ that we used so far. This 
would simplify the analysis of the optimality conditions under constraints. On the 
other hand, it is easy to see that these bounds imply . |L(x, s, v)| ≤ a0(x)+C|s|p∗ +
C|v|p and .|ψ(x, v)| ≤ a1(x) + C|s|p (with .a0 ∈ L1(𝛀), .a1 ∈ L1(∂𝛀)), which 
automatically makes the functional J continuous for the strong .W 1,p convergence, 
and allows us to apply the strategy that we discussed. 

We then move to the second topic of the section, also related to convexity, which 
is the uniqueness of the optimizer. 

An easy and classical statement is the following. 

Proposition 4.5 If .K ⊂ X is a convex set in a vector space . X, and . f : X→ R ∪
{+∞} is strictly convex and not identically .+∞ on K , then the problem . min{f (x) :
x ∈ K} admits at most one minimizer. 
Proof If two minimizers .x0 /= x1 existed, then .x = (x0 + x1)/2 would provide a 
strictly better value for f . ⨅⨆

In the above result, of course the strict convexity of f on K (and not on the whole 
space . X) would be enough. 

We list some sufficient conditions for strict convexity, in the calculus of variations 
case .J (u) = ´

𝛀
L(x, u(x),∇u(x)) dx + ´

∂𝛀
ψ(x,Tr[u](x)). In all the cases below 

we assume anyway that for a.e. .x ∈ 𝛀 the function L is convex in .(s, v) and for 
a.e. .x ∈ ∂𝛀 the function . ψ is convex in s, which guarantees at least convexity of J 
(though not being necessary for this convexity). Then 

• if for a.e. x the function L is strictly convex in .(s, v), then J is strictly convex; 
• if for a.e. x the function L is strictly convex in s, then J is strictly convex;



4.2 Some Elements of Convex Analysis 143

• if for a.e. x the function L is strictly convex in v, then the only possibility for 
having equality in .J ((1− t)u0 + tu1) ≤ (1− t)J (u0)+ tJ (u1) is .∇u0 = ∇u1. 
If we assume . 𝛀 to be connected, then we get .u0 − u1 = const. Then, if the 
constraints are such that the minimization is performed over a set which does not 
contain two functions whose difference is a constant, we have strict convexity 
of J on the set K on which we are minimizing. This happens for instance if the 
boundary values are fixed, or if the average is fixed. As another option, if there 
exists a subset .A ⊂ ∂𝛀 with .Hd−1(A) > 0 and .ψ(x, ·) strictly convex for all 
.x ∈ A, then we should also have .Tr[u0] = Tr[u1] on A, which finally implies 
.u0 = u1. 

Of course, looking again at the Example 4.1, it is possible to build cases where J is 
strictly convex but L is not even convex in s. 

4.2 Some Elements of Convex Analysis 

This section is devoted to the main notions in convex analysis which are useful for 
our purposes, and in particular to the notion of the Fenchel–Legendre transform, 
which is crucial for duality theorems. 

4.2.1 The Fenchel–Legendre Transform 

In this section we consider a pair (in the sense of a non-ordered couple) of normed 
vector spaces which are in duality, i.e. one of the spaces is the dual of the other. 
Given a space . X in this duality pair, we will call . X∗ the other one, so that we have 
either .X∗ = X' or .X = (X∗)'. By definition, we have .X∗∗ = X for any . X, and this 
should not be confused with the fact that . X is reflexive or not (see Box 2.3). 

We denote by .〈ξ, x〉 the duality between an element .ξ ∈ X∗ and .x ∈ X. This  
gives rise to a notion of weak convergence on each of the two spaces, which is 
the weak convergence on one of them and the weak-* convergence on the other. 
We call this form of weak convergence .(X,X∗)-weak convergence. The .(X,X')-
weak convergence is the standard weak convergence on . X, while the .(X',X)-weak 
convergence is the weak-* convergence on . X'. Moreover, on each of these two 
spaces we have a notion of strong convergence, induced by their norms. 

By affine functions we will mean all functions of the form . X ϶ x I→ 〈ξ, x〉 + c

for .ξ ∈ X∗. In this way affine functions are also continuous, both for the strong 
convergence and for the .(X,X∗)-weak convergence. Note that the set of affine 
functions on a space depends on the pair we choose. If we take a non-reflexive 
space . X with its dual . X' and its bi-dual .X'' := (X')', we can consider the 
duality pair .{X',X''} or .{X',X} and the set of affine functions on the space . X'
will not be the same (in the second case, we only consider functions of the form
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.X' ϶ ξ I→ 〈ξ, x〉 + c for .x ∈ X, while in the first one we can replace .x ∈ X with an 
arbitrary element of .X'' ⊃ X. 
Definition 4.6 We say that a function valued in .R ∪ {+∞} is proper if it is not 
identically equal to .+∞. The  set .{f < +∞} is called the domain of f . 
Definition 4.7 Given a duality pair of spaces and a proper function . f : X→ R ∪
{+∞} we define its Fenchel–Legendre transform .f ∗ : X∗ → R ∪ {+∞} via 

. f ∗(ξ) := sup
x
〈ξ, x〉 − f (x).

Remark 4.8 We observe that we trivially have .f ∗(0) = − infX f . 

We note that . f ∗, as a sup of affine continuous functions, is both convex and l.s.c., 
as these two notions are stable under sup. 

We prove the following results. 

Proposition 4.9 We consider a duality pair and a function . f : X → R ∪ {+∞}
which is proper, convex, and .(X,X∗)-weakly l.s.c. Then 

1. there exists an affine function . 𝓁 such that .f ≥ 𝓁; 
2. f is a sup of affine functions; 
3. there exists a .g : X∗ → R ∪ {+∞} such that .f = g∗; 
4. we have .f ∗∗ = f . 

Proof We consider the epigraph .Epi(f ) := {(x, t) ∈ X × R : t ≥ f (x)} of f , 
which is a convex and closed set in .X × R. More precisely, this set is also weakly 
closed if .X∗ = X' (just because in this case strongly closed sets are weakly closed 
when they are convex), and weakly-* closed if .X = (X∗)' because we assumed 
lower semicontinuity for the .(X,X∗)-weak convergence, which is in this case the 
weak-* convergence. We take a point . x0 such that .f (x0) < +∞ and consider the 
singleton .{(x0, f (x0)−1)} which is a convex and compact set in .X×R. The Hahn– 
Banach separation theorem (see Box 3.1) allows us to strictly separate this set from 
the epigraph. It is important for us to separate them through an affine function in 
the sense of our definition, i.e. using an element of . X∗ and not of . X'. The only 
case where this is different is when .X∗ /= X', i.e. when .X = (X∗)'. Yet, with 
our assumption the epigraph would be weakly-* closed, and this allows us to use 
elements of the predual instead of the dual of . X. 

Hence, we deduce the existence of a pair .(ξ, a) ∈ X∗ × R and a constant c such 
that .〈ξ, x0〉 + a(f (x0) − 1) < c and .〈ξ, x〉 + at > c for every .(x, t) ∈ Epi(f ). 
Note that this last condition implies .a ≥ 0 since we can take .t →∞. Moreover, we 
should also have .a > 0, otherwise taking any point .(x, t) ∈ Epi(f ) with .x = x0 we 
have a contradiction. If we then take .t = f (x) for all x such that .f (x) < +∞ we 
obtain .af (x) ≥ −〈ξ, x〉+ 〈ξ, x0〉+a(f (x0)−1) and, dividing by .a > 0, we obtain 
the first claim. 

We now take an arbitrary .x0 ∈ X and .t0 < f (x0) and separate again the singleton 
.{(x0, t0)} from .Epi(f ), thus getting a pair .(ξ, a) ∈ X∗ × R and a constant c such
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that .〈ξ, x0〉 + at0 < c and .〈ξ, x〉 + at > c for every .(x, t) ∈ Epi(f ). Again,  
we have .a ≥ 0. If  .f (x0) < +∞ we obtain as before .a > 0 and the inequality 
.f (x) > − ξ

a
· (x − x0) + t0. We then have an affine function . 𝓁 with .f ≥ 𝓁 and 

.𝓁(x0) = t0. This shows that the sup of all affine functions smaller than f is, at the 
point . x0, at least . t0. Hence this sup equals f on .{f < +∞}. In the case . f (x0) =
+∞ we can perform the very same argument as long as we can guarantee that for 
. t0 arbitrarily large the corresponding coefficient a is strictly positive. Suppose now 
that we have a point . x0 such that .f (x0) = +∞ and .a = 0 in the construction above. 
Then we find .〈ξ, x0〉 < c and .〈ξ, x〉 ≥ c for every x such that . (x, t) ∈ Epi(f )

for at least one .t ∈ R. Hence, .〈ξ, x〉 ≥ c for every .x ∈ {f < +∞}. Consider 
now .𝓁n(x) = 𝓁(x) − n(〈ξ, x〉 − c), where . 𝓁 is the affine function smaller than f 
previously found. We have .f ≥ 𝓁 ≥ 𝓁n since on .{f < +∞} we have .〈ξ, x〉−c ≥ 0. 
Moreover .limn 𝓁n(x0) = +∞ since .〈ξ, x0〉 − c < 0. This shows that at such a point 
. x0 the sup of the affine functions smaller than f equals .+∞ = f (x0). 

Once we know that f is a sup of affine functions we can write 

. f (x) = sup
α
〈ξα, x〉 + cα

for a family of indices . α. We then set .c(ξ) := sup{cα : ξα = ξ}. The set in the sup 
can be empty, which would mean .c(ξ) = −∞. Anyway, the sup is always finite: fix 
a point . x0 with .f (x0) < +∞ and use .cα ≤ f (x0)−〈ξ, x0〉. We then define . g = −c

and we see .f = g∗. 
Finally, before proving .f = f ∗∗ we prove that for any function f we have 

.f ≥ f ∗∗ even if f is not convex or l.s.c. Indeed, we have .f ∗(ξ) + f (x) ≥ 〈ξ, x〉, 
which allows us to write .f (x) ≥ 〈ξ, x〉 − f ∗(ξ), an inequality true for every . ξ . 
Taking the sup over . ξ we obtain .f ≥ f ∗∗. We now want to prove that this inequality 
is an equality if f is convex and l.s.c. We write .f = g∗ and transform this into 
.f ∗ = g∗∗. We then have .f ∗ ≤ g and, transforming this inequality (which changes 
its sign), .f ∗∗ ≥ g∗ = f , which proves .f ∗∗ = f . ⨅⨆
Remark 4.10 Note that the above result allows us to define a convex function f 
on a dual space . X' and use as a duality pair .(X',X) instead of .(X',X''). Under 
the assumption that f is weakly-* lower semicontinuous we proved .f ∗∗ = f , i.e. 
.f (ξ) = sup{〈ξ, x〉 − f ∗(x) : x ∈ X}. If we had used the pair .(X',X'') we would 
have obtained .f (ξ) = sup{〈ξ, x〉 − f ∗(x) : x ∈ X''}, which is not the same result 
(on the other hand, this result only requires f to be weakly lower semicontinuous 
on . X', which is equivalent to the strong lower semicontinuity on . X'). 

We now know that, on the class of convex and .(X,X∗)-weakly l.s.c. functions, 
the Fenchel–Legendre transform is an involution. Two convex and l.s.c. functions 
which are the Fenchel–Legendre transform of each other will be said to be two 
conjugate convex functions. We can also obtain a characterization of the double 
transform when we are not in this setting (i.e. f is not convex and l.s.c.). 

Corollary 4.11 Given an arbitrary proper function .f : X → R ∪ {+∞} we have 
.f ∗∗ = sup{g : g ≤ f, g is convex and (X,X∗)-weakly l.s.c. }.



146 4 Convexity and its Applications

Proof Let us call h the function obtained as a sup on the right-hand side. Since 
.f ∗∗ is convex, .(X,X∗)-weakly l.s.c., and smaller than f , we have  .f ∗∗ ≤ h. Note  
that h, as a sup of convex and l.s.c. functions, is also convex and l.s.c. for the 
same convergence, and it is of course smaller than f . We write .f ≥ h and double 
transform this inequality, which preserves the sign. We then have .f ∗∗ ≥ h∗∗ = h, 
and the claim is proven. ⨅⨆

We finally discuss the relations between the behavior at infinity of a function f 
and its Legendre transform. We give two definitions. 

Definition 4.12 A function .f : X→ R ∪ {+∞} defined on a normed vector space 
. X is said to be coercive if .lim||x||→∞ f (x) = +∞; it is said to be  superlinear if 
.lim||x||→∞ f (x)

||x|| = +∞. 

We note that the definition of coercive does not include any speed of convergence 
to . ∞, but that for convex functions this should be at least linear: 

Proposition 4.13 A proper, convex, and l.s.c. function .f : X → R ∪ {+∞} is 
coercive if and only there exist two constants .c0, c1 > 0 such that .f (x)≥ c0||x||−c1. 

Proof We just need to prove that .c0, c1 exist if f is coercive, the converse being 
trivial. Take a point . x0 such that .f (x0) < +∞. Using  .lim||x||→∞ f (x) = +∞ we 
know that there exists a radius R such that .f (x) ≥ f (x0)+1 as soon as . ||x−x0|| ≥
R. By convexity, we have, for each x with .||x − x0|| > R, the inequality . f (x) ≥
f (x0) + ||x − x0||/R (it is enough to use the definition of convexity on the three 
points .x0, x and .xt = (1− t)x0+ tx ∈ ∂B(x0, R)). Since f is bounded from below 
by an affine function, it is bounded from below by a constant on .B(x0, R), so that 
we can write .f (x) ≥ c2+||x− x0||/R for some .c2 ∈ R and all .x ∈ X. We then use 
the triangle inequality and obtain the claim with .c0 = 1/R and .c1 = c2 − ||x0||/R. 

⨅⨆
Note that in the above proposition the lower semicontinuity is only used to prove 

that f is bounded from below on every ball. 

Proposition 4.14 A proper, convex, and .(X,X∗)-weakly l.s.c. function . f : X →
R ∪ {+∞} is coercive if and only if . f ∗ is bounded in a neighborhood of 0; it is  
superlinear if and only if . f ∗ is bounded on each bounded ball of . X∗. 

Proof We know that f is coercive if and only if there exist two constants . c0, c1 > 0
such that .f ≥ gc0,c1 , where .gc0,c1(x) := c0||x|| − c1. Since both f and . gc0,c1

are convex and .(X,X∗)-weakly l.s.c., this inequality is equivalent to the opposite 
inequality for their transforms, i.e. .f ∗ ≤ g∗c0,c1 . We can compute the transform and 
obtain 

.g∗c0,c1(ξ) =
{

c1 if ||ξ || ≤ c0,

+∞ if not.
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This shows that f is coercive if and only if there exist two constants .R,C (with 
.R = c−10 , .C = c1) such that .f ∗ ≤ C on the ball of radius R of . X', which is the 
claim. 

We follow a similar procedure for the case of superlinear functions. We first note 
that a convex l.s.c. function f is superlinear if and only if for every . c0 there exists a 
. c1 such that .f ≥ gc0,c1 . Indeed, it is clear that, should this condition be satisfied, we 
would have .lim inf||x||→∞ f (x)/||x|| ≥ c0, and hence . lim inf||x||→∞ f (x)/||x|| =
+∞ because . c0 is arbitrary, so that f would be superlinear. On the other hand, if 
f is superlinear, for every . c0 we have .f (x) ≥ c0||x|| for large .||x||, say outside 
of .B(0, R). If we then choose .−c1 := min{infB(0,R) f − c0R, 0} (a value which is 
finite since f is bounded from below by an affine function), the inequality . f (x) ≥
c0||x|| − c1 is true everywhere. 

We then deduce that f is superlinear if and only if for every .R = c0 there is a 
constant . c1 such that .f ∗ ≤ c1 on the ball of radius R of . X', which is, again, the 
claim. ⨅⨆

4.2.2 Subdifferentials 

The above-the-tangent property of convex functions inspired the definition of an 
extension of the notion of differential, called the sub-differential, as a set-valued 
map: 

Definition 4.15 Given a function .f : X→ R∪ {+∞} we define its subdifferential 
at x as the set 

. ∂f (x) = {ξ ∈ X' : f (y) ≥ f (x)+ 〈ξ, y − x〉 ∀y ∈ X}.

We observe that .∂f (x) is always a closed and convex set, whatever f is. 
Moreover, if f is l.s.c. we easily see that the graph of the subdifferential multi-
valued map is closed: 

Proposition 4.16 Assume that f is l.s.c. and take a sequence .xn → x. Assume 

.ξn
∗
⇀ ξ and .ξn ∈ ∂f (xn). Then .ξ ∈ ∂f (x). 

Proof For every y we have .f (y) ≥ f (xn) + 〈ξn, y − xn〉. We can then use the 
strong convergence of . xn and the weak convergence of . ξn, together with the lower 
semicontinuity of f , to pass to the limit and deduce .f (y) ≥ f (x)+ 〈ξ, y − x〉, i.e. 
.ξ ∈ ∂f (x). ⨅⨆
Note that in the above proposition we could have exchanged strong convergence for 
. xn and weak-* for . ξn for weak convergence for . xn (but f needed in this case to be 
weakly l.s.c., and f has not been assumed to be convex) and strong for . ξn. 

When dealing with arbitrary functions f , the subdifferential is in most cases 
empty, as there is no reason for the inequality defining .ξ ∈ ∂f (x) to be satisfied for
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y very far from x. The situation is completely different when dealing with convex 
functions, which is the standard case where subdifferentials are defined and used. In 
this case we can prove that .∂f (x) is never empty if x lies in the interior of the set 
.{f < +∞} (note that outside .{f < +∞} the subdifferential of a proper function is 
clearly empty). 

We first provide an insight about the finite-dimensional case. In this case we 
simply write .ξ · x for the duality product, which coincides with the Euclidean scalar 
product on . RN . 

We start from the following property. 

Proposition 4.17 Given .f : RN → R ∪ {+∞} assume that f is differentiable 
at a point . x0. Then .∂f (x0) ⊂ {∇f (x0)}. If moreover f is convex, then . ∂f (x0) =
{∇f (x0)}.
Proof From the definition of sub-differential we see that .ξ ∈ ∂f (x0) means that 
.y I→ f (y) − ξ · y is minimal at .y = x0. Since we are supposing that f is 
differentiable at such a point, we obtain .∇f (x0) − ξ = 0, i.e. .ξ = ∇f (x0). 
This shows .∂f (x0) ⊂ {∇f (x0)}. The inclusion becomes an equality if f is 
convex since the above-the-tangent property of convex functions exactly provides 
.f (y) ≥ f (x0)+∇f (x0) · (y − x0) for every y. ⨅⨆
Proposition 4.18 Assume that .f : RN → R∪ {+∞} is convex and take a point . x0
in the interior of .{f < +∞}. Then .∂f (x0) /= ∅. 
Proof It is well-known that convex functions in finite dimensions are locally 
Lipschitz in the interior of their domain, and Lipschitz functions are differentiable 
Lebesgue-a.e. because of the Rademacher theorem (see Box 4.1). We can then take 
a sequence of points .xn → x0 such that f is differentiable at . xn. We then have 
.∇f (xn) ∈ ∂f (xn) and the Lipschitz behavior of f around . x0 implies .|∇f (xn)| ≤ C. 
It is then possible to extract a subsequence such that .∇f (xn)→ v. Proposition 4.16 
implies .v ∈ ∂f (x0). ⨅⨆

Box 4.1 Good to Know!—Differentiability of Lipschitz and Convex Func-
tions 

Theorem (Rademacher) Any Lipschitz continuous function .f : RN → R is 
differentiable at Lebesgue-a.e. point. 

The proof of this non-trivial but crucial theorem, which is based on the 
a.e. differentiability of Lipschitz functions in 1D (a fact which can be proven 
independently of the Rademacher Theorem: absolutely continuous functions 
u in 1D coincide with the antiderivative of their distributional derivative . u' ∈
L1 and they are differentiable at Lebesgue points of . u') can be found, for 
instance, in [15]. 

(continued)
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Box 4.1 (continued) 
Of course the same result holds for locally Lipschitz functions, and hence 

for convex functions, as they are always locally Lipschitz in the interior of 
their domain. On the other hand, convex functions are actually differentiable 
on a much larger set of points, and more precisely we have (see [2–4]): 

Theorem If .f : RN → R is convex then the set of non-differentiability 
points of f is of dimension at most .N − 1. More precisely, it is contained—up 
to .HN−1-negligible sets (see Box 6.4)—in a countable union of .(N − 1)-
dimensional Lipschitz hypersurfaces, i.e., in suitable coordinates, graphs of 
Lipschitz functions of .N − 1 variables. Moreover, for every .k ≥ 1, the  set of  
points x where the convex set .∂f (x) has dimension at least k is at most of 
dimension .n− k. Of course the same result is true for semi-convex functions, 
i.e. functions f such that .x I→ f (x) + λ|x|2 is convex for some .λ > 0, and 
for locally semi-convex functions. 

We can easily see, even from the 1D case, that different situations can occur at 
the boundary of .{f < +∞}. If we take for instance the proper function f defined 
by 

. f (x) =
{

x2 if x ≥ 0,

+∞ if x < 0,

we see that we have .∂f (0) = [−∞, 0] so that the subdifferential can be “fat” on 
these boundary points. If we take, instead, the proper function f defined by 

. f (x) =
{
−√x if x ≥ 0,

+∞ if x < 0,

we see that we have .∂f (0) = ∅, a fact related to the infinite slope of f at 0: of 
course, infinite slope can only appear at boundary points. 

The proof of the fact that the sub-differential is non-empty2 in the interior of 
the domain is more involved in the general (infinite-dimensional) case, and is based 
on the use of the Hahn–Banach Theorem. It will require the function to be convex 
and l.s.c., this second assumption being useless in the finite-dimensional case, since 
convex functions are locally Lipschitz in the interior of their domain. It also requires 
us to discuss whether the function is indeed locally bounded around some points. 
We state the following clarifying proposition.

2 Note that, instead, we do not discuss the relations between subdifferential and gradients as we 
decided not to discuss the differentiability in the infinite-dimensional case. 
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Proposition 4.19 If .f := X → R ∪ {+∞} is a proper convex function, bounded 
from below on each ball of . X, then the following facts are equivalent 

1. the interior of the domain of f is non-empty and f is locally Lipschitz continuous 
on it (i.e. for every point in the interior of the domain there exists a ball centered 
at such a point where f is finite-valued and Lipschitz continuous); 

2. there exists a non-empty ball where f is finite-valued and Lipschitz continuous; 
3. there exists a point where f is continuous and finite-valued; 
4. there exists a point which has a neighborhood where f is bounded from above 

by a finite constant. 

Moreover, all the above facts hold if . X is a Banach space, f is l.s.c., and the domain 
of f has non-empty interior. 

Proof It is clear that 1 implies 2, which implies 3, which implies 4. Let us note 
that, if f is bounded from above on a ball .B(x0, R), then necessarily f is Lipschitz 
continuous on .B(x0, R/2). Indeed, we assumed that f is also bounded from below 
on .B(0, R). Then, suppose there are two points .x1, x2 ∈ B(x0, R/2) with an 
incremental ratio equal to L and .f (x1) > f (x2), i.e. 

. L = f (x1)− f (x2)

||x1 − x2|| .

Following the half-line going from . x2 to . x1 we find two points . x3 ∈ ∂B(x0, R/2)
and .x4 ∈ ∂B(x0, 3R/4) with .|x3 − x4| ≥ R/4 and an incremental ratio which is 
also at least L. This implies .f (x4) > f (x3)+LR/4 but the upper and lower bounds 
on f on the ball .B(0, R) imply that L cannot be too large, so that f is Lipschitz 
continuous on .B(x0, R/2). 

Hence, in order to prove that 4 implies 1 we just need to prove that every point in 
the interior of the domain admits a ball centered at such a point where f is bounded 
from above. We start from the existence of a ball .B(x0, R) where f is bounded from 
above and we take another point . x1 in the interior of the domain of f . For small 
.ε > 0, the point .x2 := x1 − ε(x0 − x1) also belongs to the domain of f and every 
point of the ball .B(x1, r) with .r = εR

1+ε
can be written as a convex combination of 

. x2 and a point in .B(x0, R): indeed we have 

. x1 + v = 1

1+ ε
x2 + ε

1+ ε
(x0 + 1+ ε

ε
v)

so that .|v| < r implies .x0 + 1+ε
ε

v ∈ B(x0, R). Then, f is bounded from above on 
.B(x1, r) by .max{f (x2), supB(x0,R) f }, which shows the local bound around . x1. 

Finally, we want to prove that f is necessarily locally bounded around every 
point of the interior of its domain if . X is complete and f is l.s.c. Consider a closed 
ball . B contained in .{f < +∞} and write .B = ⋃

n{f ≤ n} ∩ B. Since f is l.s.c., 
each set .{f ≤ n} ∩ B is closed. Since their countable union has non-empty interior, 
Baire’s theorem (see Box 4.2) implies that at least one of these sets also has non-
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empty interior, so there exists a ball contained in a set .{f ≤ n}, hence a point where 
f is locally bounded from above. Then we satisfy condition 4., and consequently 
also conditions 1., 2. and 3. ⨅⨆
Remark 4.20 In the above proposition, the assumption that f is bounded from 
below on each ball of . X is useless when f is l.s.c., as we know that convex l.s.c. 
functions are bounded from below by at least an affine function, which implies that 
they are bounded from below by a constant on each ball. Yet, we prefer not to add 
f l.s.c. in the assumptions, as this proposition could be used as a way to prove that 
some convex functions are indeed l.s.c., by proving that they are locally Lipschitz 
continuous. 

Box 4.2 Memo—Baire’s Theorem and Applications 

Theorem (Baire) In a complete metric space any countable union of closed 
sets with empty interior has empty interior. 

Among the many applications of this very important theorem in functional 
analysis we cite the Banach–Steinhaus theorem: 
Theorem (Banach–Steinhaus) If E is a Banach space and F a normed 
vector space then a family .(fα)α of continuous linear maps from E to F is 
uniformly bounded on the unit ball of E if and only if .(fα(x))α is bounded for 
every .x ∈ E. 

This theorem has itself a well-known consequence: if a sequence of vectors 
weakly (or weakly-*) converges, then it is necessarily bounded. 

We can now prove the following theorem. 

Theorem 4.21 Assume that .f : X → R ∪ {+∞} is a proper convex and l.s.c. 
function and take a point . x0 in the interior of .{f < +∞}. Also assume that there 
exists at least a point . x1 (possibly different from . x0) where f is finite and continuous. 
Then .∂f (x0) /= ∅. 
Proof Let us consider the set A given by the interior of .Epi(f ) in .X × R and 
.B = {(x0, f (x0))}. They are two disjoint convex sets, and A is open. Hence, by 
the Hahn–Banach Theorem, there exists a pair .(ξ, a) ∈ X' × R and a constant such 
that .〈ξ, x0〉 + af (x0) ≤ c and .〈ξ, x〉 + at > c for every .(x, t) ∈ A. 

The assumption on the existence of a point . x1 where f is continuous implies that 
f is bounded (say by a constant M) on a ball around . x1 (say .B(x1, R), and hence 
the set A is non-empty since it includes .B(x1, R) × (M,∞)). Then, the convex 
set .Epi(f ) has non-empty interior and it is thus the closure of its interior (to see 
this it is enough to connect every point of a closed convex set to the center of a ball 
contained in the set, and see that there is a cone composed of small balls contained in 
the convex set approximating such a point). In particular, since .(x0, f (x0)) belongs
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to .Epi(f ), it is in the closure of A, so necessarily we have .〈ξ, x0〉 + af (x0) ≥ c and 
hence .〈ξ, x0〉 + af (x0) = c. 

As we did in Proposition 4.9, we must have  .a > 0. Indeed, we use Proposi-
tion 4.19 to see that f is also locally bounded around . x0 so that points of the 
form .(x, t) = (x0, t) for t large enough should belong to A and should satisfy 
.a(t − f (x0)) > 0, which implies .a > 0. 

Then, we can write the condition .〈ξ, x〉+at > c = 〈ξ, x0〉+af (x0) in a different 
form: dividing by a and using .ξ̃ := ξ/a we get 

. 〈ξ̃ , x〉 + t > 〈ξ̃ , x0〉 + f (x0) for every (x, t) ∈ A.

The inequality becomes large on the closure of A but implies, when applied to 
.(x, t) = (x, f (x)) ∈ Epi(f ) = A, 

. 〈ξ̃ , x〉 + f (x) ≥ 〈ξ̃ , x0〉 + f (x0),

which means precisely .−ξ̃ ∈ ∂f (x0). ⨅⨆
Remark 4.22 Of course, thanks to the last claim in Proposition 4.19, when . X is a 
Banach space we obtain .∂f (x0) /= ∅ for every . x0 in the interior of .{f < +∞}. 
We list some other properties of subdifferentials. 

Proposition 4.23 

1. A point . x0 solves .min{f (x) : x ∈ X} if and only if we have .0 ∈ ∂f (x0). 
2. The subdifferential satisfies the monotonicity property 

. ξi ∈ ∂f (xi) for i = 1, 2 ⇒ 〈ξ1 − ξ2, x1 − x2〉 ≥ 0.

3. If f is convex and l.s.c., the subdifferentials of f and . f ∗ are related through 

. ξ ∈ ∂f (x)⇔ x ∈ ∂f ∗(ξ)⇔ f (x)+ f ∗(ξ) = 〈ξ, x〉.

Proof Point 1 is a straightforward consequence of the definition of subdifferential, 
since .0 ∈ ∂f (x0) means that for every y we have .f (y) ≥ f (x0). 

Point 2 is also straightforward if we sum up the inequalities 

. f (x2) ≥ f (x1)+ 〈ξ, x2 − x1〉; f (x1) ≥ f (x2)+ 〈ξ, x1 − x2〉.

As for point 3, once we know that for convex and l.s.c. functions we have . f ∗∗ =
f , it is enough to prove .ξ ∈ ∂f (x) ⇔ f (x) + f ∗(ξ) = 〈ξ, x〉 since then, by 
symmetry, we can also obtain .x ∈ ∂f ∗(ξ)⇔ f (x)+ f ∗(ξ) = 〈ξ, x〉. We now look
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at the definition of subdifferential, and we have 

. ξ ∈ ∂f (x) ⇔ for every y ∈ X we have f (y) ≥ f (x)+ 〈ξ, y − x〉
⇔ for every y ∈ X we have 〈ξ, x〉 − f (x) ≥ 〈ξ, y〉 − f (y)

⇔ 〈ξ, x〉 − f (x) ≥ sup
y
〈ξ, y〉 − f (y)

⇔ 〈ξ, x〉 − f (x) ≥ f ∗(ξ).

This shows that .ξ ∈ ∂f (x) is equivalent to .〈ξ, x〉 ≥ f (x)+ f ∗(ξ), which is in turn 
equivalent to .〈ξ, x〉 = f (x)+f ∗(ξ), since the opposite inequality is always true by 
definition of . f ∗. ⨅⨆
Remark 4.24 Point 2 in the above proposition includes a very particular case: if f 
and . f ∗ are two conjugate smooth convex functions on . RN , then .∇f ∗ = (∇f )−1. 
In particular, the inverse map of the gradient of a convex function is also a gradient 
of a convex function. This was the motivation for Legendre to introduce this notion 
of transform, and his intention was to apply it to the Euler–Lagrange equation: the 
condition .(∇vL(t, γ (t), γ '(t)))' = ∇xL(t, γ (t), γ '(t)) could indeed be written as 
.w'(t) = ∇xL(t, γ (t), γ '(t)), where .w = ∇vL(t, γ (t), γ '(t)) and, inverting, . γ '(t) =
∇wL∗(t, γ (t), w(t)), which allows us in some cases to transform the second-order 
equation into a Hamiltonian system of order one. 

We also state another property, but we prefer to stick to the finite-dimensional 
case for simplicity. 

Proposition 4.25 A function .f : RN → R ∪ {+∞} is strictly convex if and only if 
.∂f (x0) ∩ ∂f (x1) = ∅ for all .x0 /= x1. 

Proof If we have .∂f (x0) ∩ ∂f (x1) /= ∅ for two points .x0 /= x1, take  . ξ ∈
∂f (x0) ∩ ∂f (x1) and define .f̃ (x) := f (x) − ξ · x. Then both . x0 and . x1 minimize 
. f̃ and this implies that f is not strictly convex. If, instead, we assume that f 
is not strictly convex, we need to find two points with the same vector in the 
subdifferential. Consider two points . x0 and . x1 on which the strict convexity fails, 
i.e. f is affine on .[x0, x1]. We then have a segment . S = {(x, f (x)) : x ∈ [x0, x1]}
in the graph of f and we can separate it from the interior A of .Epi(f ) exactly as we 
did in Theorem 4.21. Assume for now that the domain of f (and hence the epigraph) 
has non-empty interior. 

Following the same arguments as in Theorem 4.21, we obtain the existence of a 
pair .(ξ, a) ∈ R

N × R such that 

. 〈ξ, x〉 + af (x) < ξ · x' + at for every (x', t) ∈ A and every x ∈ [x0, x1].

We then prove .a > 0, divide by  a, pass to a large inequality on the closure of A, and 
deduce .−ξ/a ∈ ∂f (x) for every .x ∈ [x0, x1].
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If the domain of f has empty interior, it is enough to restrict the space where f 
is defined to the minimal affine space containing its domain. Then the domain, and 
the epigraph, would have (in this new lower-dimensional space) non-empty interior. 
This does not affect the conclusion, since if we want then to define subdifferentials 
in the original space it is enough to add arbitrary components orthogonal to the 
affine space containing the domain. ⨅⨆

Limiting once more to the finite-dimensional case (also because we do not 
want to discuss differentiability in other settings) we can deduce from the previous 
proposition and from point 3. of Proposition 4.23 the following fact. 

Proposition 4.26 Take two proper, convex and l.s.c. conjugate functions f and . f ∗
(with .f = f ∗∗); then f is a real-valued . C1 function on .RN if and only if . f ∗ is 
strictly convex and superlinear. 

Proof We first prove that a convex function is . C1 if and only if .∂f (x) is a singleton 
for every x. If it is  . C1, and hence differentiable, we already saw that this implies 
.∂f (x) = {∇f (x)}. The converse implication can be proven as follows: first we 
observe that, if we have a map .v : RN → R

N with .∂f (x) = {v(x)}, then v is 
necessarily locally bounded and continuous. Indeed, the function f is necessarily 
finite everywhere (since the subdifferential is non-empty at every point) and hence 
locally Lipschitz; local boundedness of v comes from . v(x) · e ≤ f (x+ e)−f (x) ≤
C|e| (where we use the Local Lipschitz behavior of f ): using e oriented as . v(x)

we obtain a bound on .|v(x)|. Continuity comes from local boundedness and from 
Proposition 4.16: when .xn → x then .v(xn) admits a convergent subsequence, but 
the limit can only belong to .∂f (x), i.e. it must equal .v(x). Then we prove . v(x) =
∇f (x), and for this we use the definition of .∂f (x) and .∂f (y) so as to get 

. v(y) · (y − x) ≥ f (y)− f (x) ≥ v(x) · (y − x).

We then write .v(y) · (y − x) = v(x) · (y − x) + o(|y − x|) and we obtain the 
first-order expansion .f (y)−f (x) = v(x) · (y−x)+o(|y−x|) which characterizes 
.v(x) = ∇f (x). 

This shows that f is . C1 as soon as subdifferentials are singletons. On the other 
hand, point 3. in Proposition 4.23 shows that this is equivalent to having, for each 
.x ∈ R

N , exactly one point . ξ with .x ∈ ∂f ∗(ξ). The fact that no more than one point 
. ξ has the same vector in the subdifferential is equivalent (Proposition 4.25) to being 
strictly convex. The fact that each point is taken at least once as a subdifferential is, 
instead, equivalent to being superlinear (see Lemma 4.27 below) ⨅⨆
Lemma 4.27 A convex and l.s.c. function .f : RN → R ∪ {+∞} is superlinear if 
and only if . ∂f is surjective. 

Proof Let us assume that f is convex, l.s.c., and superlinear. Then for every . ξ the 
function . f̃ given by .f̃ (x) := f (x)−ξ ·x is also l.s.c., and superlinear, and it admits 
a minimizer . x0. Such a point satisfies .ξ ∈ ∂f (x0), which proves that . ξ is in the 
image of . ∂f , which is then surjective.
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Let us assume now that . ∂f is surjective. Let us fix a number .L > 0 and take 
the 2N vectors .ξ±i := ±Lei , where the vectors . ei form the canonical basis of . RN . 
Since each of these vectors belong to the image of the subdifferential, there exist 
points . x±i such that .ξ±i ∈ ∂f (x±i ). This implies that f satisfies 2N inequalities of 
the form .f (x) ≥ ξ±i · x − C±i for some constants . C±i . We then obtain . f (x) ≥
L||x||∞ − C, where .||x||∞ = max{|xi |} = maxi x · (±ei) is the norm on . RN

given by the maximal modulus of the components, and .C = maxC±i . From the  
equivalence of the norms in finite dimensions we get .f (x) ≥ C(N)L||x|| − C, 
which shows .lim inf||x||→∞ f (x)

||x|| ≥ C(N)L. The arbitrariness of L concludes the 
proof. ⨅⨆
Remark 4.28 Note that this very last statement is false in infinite dimensions. 
Indeed, as one can see for instance in [34], the fact that all functions . f : X →
R ∪ {+∞} such that . f ∗ is finite everywhere (a condition which is equivalent to 
.∂f ∗(ξ) /= ∅ for every .ξ ∈ X', and then to the surjectivity of . ∂f ) are superlinear is 
equivalent to the fact that X is finite-dimensional! Exercises 4.11 and 4.12 discuss 
some subtle points about this fact. 

4.2.3 Recession Functions 

Recalling the use we made of it in Sect. 3.3, we discuss in this short subsection 
another notion in convex analysis, that of a recession function. Given a function 
.f : X→ R ∪ {+∞} we define its recession function .f∞ via 

. f∞(v) := sup
x∈X : f (x)<+∞

f (x + v)− f (x).

We start with the following properties and characterizations. 

Proposition 4.29 If .f : X → R ∪ {+∞} is a proper, convex, and l.s.c. function, 
then the function .f∞ is proper, convex, l.s.c. and 1-homogeneous. Moreover, it is 
also characterized by 

. f∞(v) := sup
x∈X : f (x)<+∞

sup
t>0

f (x + tv)−f (x)

t
= sup

x∈X : f (x)<+∞
lim

t→+∞
f (x+tv)

t
.

Proof We clearly have .f∞(0) = 0 so that .f∞ is proper. As a sup of the functions 
.v I→ f (x + v) − f (x), which are just translations of f , the function .f∞ inherits 
convexity and lower semicontinuity from f . The fact that it is 1-homogeneous will 
be clear after proving the equality .f∞(v) = supx∈X : f (x)<+∞ limt→+∞ f (x+tv)

t
.
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Indeed, this would imply, for every .c > 0: 

. f∞(cv) = sup
x∈X : f (x)<+∞

lim
t→+∞

f (x + tcv)

t

= sup
x∈X : f (x)<+∞

lim
s→+∞

f (x + sv)

s/c
=cf∞(v),

where we used a change of variable .s = ct . 
In order to prove the equality in the last part of the claim we look at the behavior 

of f on each line directed as v: the function . hx defined via .hx(t) := f (x + tv) is 
convex, and its incremental ratios are non-decreasing. This means that, studying the 
behavior of 1D convex functions, the sup defining .f∞(v) can be re-written as 

. sup
x∈X : f (x)<+∞

hx(1)− hx(0) = sup
x∈X : f (x)<+∞

sup
t>0

hx(t + 1)− hx(t)

= sup
x∈X : f (x)<+∞

sup
t>0

h'x(t)

= sup
x∈X : f (x)<+∞

lim
t→+∞h'x(t)

= sup
x∈X : f (x)<+∞

lim
t→+∞

hx(t)− hx(0)

t

= sup
x∈X : f (x)<+∞

sup
t>0

hx(t)− hx(0)

t
.

This gives the first part of the required equality. For the last equality, we just need 
to observe that we have .f (x)/t → 0 as .t →+∞. ⨅⨆
Proposition 4.30 Given a duality pair and a function .f : X→ R∪{+∞}, assume 
that f is a proper, convex, and .(X,X∗)-weakly l.s.c. function. Then we have 

. f∞(v) = sup{〈ξ, v〉 : f ∗(ξ) < +∞}.

Proof We denote the function .v I→ sup{〈ξ, v〉 : f ∗(ξ) < +∞} by . ̃f∞. First, we  
prove that we always have .f∞ ≥ f̃∞. Let  . ξ be a point where .f ∗(ξ) < +∞. We  
have .f (x + tv)+ f ∗(ξ) ≥ 〈ξ, (x + tv)〉, so that we have 

.f∞(v) = sup
x∈X : f (x)<+∞

lim
t→+∞

f (x + tv)

t

≥ sup
x∈X : f (x)<+∞

lim
t→+∞

〈ξ, x〉 − f ∗(ξ)

t
+ 〈ξ, v〉 = 〈ξ, v〉,



4.2 Some Elements of Convex Analysis 157

and the fact that . ξ is arbitrary gives 

. f∞(v) ≥ sup{〈ξ, v〉 : f ∗(ξ) < +∞}.

We want to prove the opposite inequality. We start from the case where f is 
locally bounded on . X, so that .∂f (x) /= ∅ for every x (see Proposition 4.21). In this 
case we consider .ξ ∈ ∂f (x + v) and we have .f (x) ≥ f (x + v) − 〈ξ, v〉, hence 
.f (x + v) − f (x) ≤ 〈ξ, v〉. Since . ξ is in the image of . ∂f , it is in the domain of 
.∂f ∗ (due to Point 3. in Proposition 4.23), and hence .f ∗(ξ) < +∞. We then obtain 
.f (x+v)−f (x) ≤ 〈ξ, v〉 ≤ f̃∞(v) and, passing to the sup in x, we get .f∞ ≤ f̃∞. 

The general case is obtained via approximation. Given an arbitrary nonnegative, 
convex, .X∗-weakly l.s.c. and superlinear function3 .h : X∗ → R (note that we take 
h finite everywhere), let . fε be the function on . X such that .(fε)

∗ = f ∗ + εh (i.e. 
.fε = (f ∗ + εh)∗). Since .f ∗ + εh is superlinear, Proposition 4.14 guarantees that . fε

is locally bounded on . X. Moreover, we observe that the set where . f ∗ε is finite is the 
same as the one where . f ∗ is finite. We then have, for every x such that .f (x) < +∞, 

. ̃f∞(v) = (fε)
∞̄(v) = (fε)

∞(v) ≥ fε(x + v)− fε(x) ≥ fε(x + v)− f (x).

We then take the limit .ε → 0 (using Exercise 4.2) in order to obtain . ̃f∞(v) ≥
f (x + v)− f (x) and the sup over x in order to conclude .f̃∞(v) ≥ f∞(v). ⨅⨆
Remark 4.31 In Remark 4.28 we saw that .f ∗ < ∞ is not enough for the 
superlinearity of f , while the previous proposition implies that when .f ∗ < ∞ we 
have .f∞(v) = +∞ for every .v /= 0. It is important to note that this last condition 
is very different from superlinearity, as it corresponds to superlinearity on each line 
.x + tv, but lacks uniformity in v. 

4.2.4 Formal Duality for Constrained and Penalized 
Optimization 

In this section we introduce the notion of the dual problem of a convex optimization 
problem through an inf-sup exchange procedure. This often requires us to write 
possible constraints as a sup penalization, and we will then see how to adapt to more 
general problems. No proof of duality results will be given, and we will analyze in 
detail in the next section the most relevant examples in the calculus of variations. 
The proofs presented in Sect. 4.3 will then inspire a more general theory in Sect. 4.5. 

We start from the following problem: 

.min {f (x) : x ∈ X, Ax = b} ,

3 For instance .h(ξ) := ||ξ ||2. 
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where .A : X → Y is a linear map between two normed vector spaces, .b ∈ Y is a 
fixed vector and .f : X→ R ∪ {+∞} is a given convex and l.s.c. function. We will 
denote by . At the transpose operator of A, a linear mapping defined on . Y', the dual 
of . Y, and valued in . X', the dual of . X, and characterized by 

. 〈Atξ, x〉 := 〈ξ,Ax〉 for all ξ ∈ Y' and x ∈ X.

We can see that the above problem is equivalent to 

. min

⎧⎨
⎩f (x)+ sup

ξ∈Y'
〈ξ,Ax − b〉 : x ∈ X

⎫⎬
⎭ ,

since we can compute the value of the expression .supξ∈Y ' 〈ξ,Ax − b〉 by distin-
guishing two cases: either .Ax = b, in which case .〈ξ,Ax − b〉 = 0 for every . ξ and 
the sup equals 0, or .Ax /= b, in which case there exists an element .ξ ∈ Y' such 
that .〈ξ,Ax − b〉 /= 0 and, by multiplying . ξ by arbitrarily large constants, positive 
or negative depending on the sign of .〈ξ,Ax − b〉, we can see that the sup is .+∞. 
Hence, adding this sup means adding 0 if the constraint is satisfied or adding . +∞
if not; since in a minimization problem adding the value .+∞ has the same effect 
as imposing a constraint, we can see the equivalence between the problem with the 
constraint .Ax = b and the problem with the sup over . ξ . 

We now arrive at a problem of the form 

. inf
x
sup
ξ

L(x, ξ), where L(x, ξ) = f (x)+ 〈ξ,Ax − b〉.

This is an inf-sup problem, and we can associate with it a second optimization 
problem, obtained by switching the order of the inf and the sup. We can consider 

. sup
ξ

inf
x

L(x, ξ),

which means maximizing over . ξ the function obtained as the value of the inf over 
x. Remember that we have forgotten the constraint .Ax = b, since it took part in 
the definition of L, and we now minimize over all x. We can then give a better 
expression of this new problem, that we will call the dual problem. Indeed we have 

. sup
ξ

inf
x

L(x, ξ) = sup
ξ

−〈ξ, b〉 + inf
x

f (x)+ 〈ξ,Ax〉.

We then rewrite .〈ξ,Ax〉 as .〈Atξ, x〉 and change the sign in the inf so as to write it 
as a sup. We obtain 

. sup
ξ

inf
x

L(x, ξ) = sup
ξ

−〈ξ, b〉 − sup
x
−f (x)+ 〈−Atξ, x〉.
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We now recognize in the sup over x the form of a Fenchel–Legendre transform and 
we finally obtain 

. sup
ξ

inf
x

L(x, ξ) = sup
ξ

−〈ξ, b〉 − f ∗(−Atξ).

This is a convex optimization problem in the variable . ξ (the maximization of the 
sum of a linear functional and the opposite of a convex function, . f ∗, applied to 
a linear function of . ξ ), involving the Legendre transform of the original objective 
function f . 

We would like the above two optimization problems (“inf sup” and “sup inf”) to 
be related to each other, and for instance their values to be the same. 

Given an arbitrary function L the values of inf sup and of sup inf are in general 
different, as we can see from this very simple example: take .L : A × B → R with 
.A = B = {±1} and .L(a, b) = ab. In this case we have .inf sup = 1 > sup inf = −1. 
Here the two values are different, and the inf sup is larger than the sup inf. This is a 
general inequality, that we prove here. 

Proposition 4.32 Given an arbitrary function .L = A× B → R we have 

. inf
a
sup
b

L(a, b) ≥ sup
b

inf
a

L(a, b).

Proof Take .(a0, b0) ∈ A × B and write .L(a0, b0) ≥ infa L(a, b0). We then take 
the sup over . b0 on both sides, thus obtaining .supb0

L(a0, b0) ≥ supb0
infa L(a, b0). 

We have now a number on the right-hand side, and a function of . a0 on the left-hand 
side. We then take the inf over . a0 and get 

. inf
a0

sup
b0

L(a0, b0) ≥ sup
b0

inf
a

L(a, b0),

which is exactly the same as the claim up to renaming the variables. ⨅⨆
Although in general it is not possible to connect the two problems obtained as the 

inf-sup and sup-inf of the same function, this can be the case when some conditions 
are met. The main tool to achieve this is a theorem of Rockafellar (see [173, Section 
37]) requiring concavity in the variable on which we maximize, convexity in the 
other one, and some compactness assumption. In our precise case concavity and 
convexity are met, since L is convex in x and linear in . ξ , and hence concave. Yet, 
Rockafellar’s statement concerns finite-dimensional spaces, and moreover we still 
have to deal with the compactness properties we would need. Hence, we will not 
provide any proof here that .min{f (x) : x ∈ X, Ax = b} and . max{−〈ξ, b〉 −
f ∗(−Atξ) : ξ ∈ Y'} are equal, and we will wait until the next section for a proof 
in a very particular case. 

We only discuss here some consequences and some variants of this duality 
approach.
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A first consequence concerns sufficient optimality conditions. Assume we 
have two optimization problems issued by an inf-sup/sup-inf procedure, i.e. 
.min{f (a) : a ∈ A} and .max{g(b) : b ∈ B} with .f (a) := supb L(a, b) and 
.g(b) := infa L(a, b). Then, if .a0 ∈ A and .b0 ∈ B are such that .f (a0) = g(b0), 
automatically . a0 minimizes f and . b0 maximizes g, just because Proposition 4.32 
guarantees .f (a0) ≥ inf f ≥ sup g ≥ g(b0) and all inequalities must be equalities 
here. In our precise case the functional f should be replaced with f plus the 
constraint .Ax = b, and g is given by .g(ξ) := −〈ξ, b〉 − f ∗(−Atξ). 

A second consequence concerns instead necessary optimality conditions. We 
need now to believe in .inf f = sup g. Take a pair .(a0, b0) where . a0 minimizes 
f and . b0 maximizes g. Then we deduce .f (a0) = g(b0), but this equality is a very 
strong piece of information in many cases. For instance, in our case this means that, 
if . x0 and . ξ0 are optimal, then we have 

. f (x0) = −〈ξ0, b〉 − f ∗(−Atξ0) and Ax0 = b.

This can be re-written as 

. f (x0)+ f ∗(−Atξ0) = −〈ξ0, b〉 = −〈ξ0, Ax0〉 = −〈Atξ0, x0〉,

i.e. we have equality in the inequality .f (x)+ f ∗(y) ≥ 〈x, y〉. This is equivalent to 

. x0 ∈ ∂f ∗(−Atξ0) and − Atξ0 ∈ ∂f (x0).

We can note the similarity with Lagrange multipliers, where optimizing a function 
f under a linear constraint of the form .Ax = b can be translated into the fact that 
.∇f should belong to a subspace, orthogonal to the affine space of the constraints, 
which is indeed the image of . At . 

Before moving on to variants of the previous pair of dual problems we want 
to insist that writing an equality constraint as a sup over test elements of a dual 
space is exactly what is always done in the weak formulation of PDEs. In the next 
section we will see as an example what happens when the constraint is of the form 
.∇ · v = f , which can be written as .

´ ∇φ · v + φf = 0 for every test function 
. φ, and it is very natural to replace the constraint with a sup over . φ. In this case, 
the dual problem turns out to be a maximization over scalar functions . φ. Moreover, 
the transpose of the divergence operator . ∇· is the opposite of the gradient, since 
.
´

φ∇ · v = − ´ ∇φ · v by integration by parts, as soon as boundary conditions 
are taken care of. In this way, the functional .f ∗(−Atφ) will be a very classical 
functional in the calculus of variations. 

Among variants, we first want to discuss the case of inequality constraints instead 
of equalities. A constraint of the form .Ax ≤ b only has a meaning if we give a 
notion of inequality among vectors, which in general is not canonically defined. In 
finite dimensions a general convention, mainly used in the Operational Research 
community, is that we can consider the inequality component-wise. In the calculus 
of variations, we can expect both Ax and . b to be functions in a certain functional
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space, and we can require the inequality to be satisfied pointwise (or a.e.). What is 
important is that we should characterize the inequality in terms of test functions. For 
instance, the inequality .f ≤ g a.e. is equivalent to .

´
φ(f − g) ≤ 0 for every . φ ≥ 0

and a similar equivalence can be stated in the finite-dimensional componentwise 
case. We then write 

. min {f (x) : x ∈ X, Ax ≤ b} = min

⎧⎨
⎩f (x)+ sup

ξ∈Y',ξ≥0
〈ξ,Ax − b〉 : x ∈ X

⎫⎬
⎭ ,

since 

. sup
ξ∈Y ',ξ≥0

〈ξ, y〉 =
{
0 if y ≤ 0,

+∞ if not.

We can then go on with the very same procedures and obtain the dual problem 

. max{−〈ξ, b〉 − f ∗(−Atξ) : ξ ∈ Y, ξ ≥ 0}.

Finally, once we know how to build dual problems out of constrained optimization 
problems, we could consider a more general case, such as 

. min {f (x)+ g(Ax)} ,

where .g = I{b} corresponds to the previous example. In this case we do not have 
constraints to write as a sup, but we can decide to write one of the two functions f 
or g as a sup thanks to the double Legendre transform. We then set 

. L(x, ξ) := f (x)+ 〈ξ,Ax〉 − g∗(ξ)

and we easily see that we have 

. min {f (x)+ g(Ax)} = inf
x
sup
ξ

L(x, ξ).

We then interchange inf and sup, thus obtaining the dual problem 

. sup
ξ

inf
x

L(x, ξ) = sup
ξ

−g∗(ξ)+ inf
x

f (x)+ 〈ξ,Ax〉

= sup
ξ

−g∗(ξ)− sup
x
−f (x)+ 〈−Atξ, x〉

= sup
ξ

−g∗(ξ)− f ∗(−Atξ).
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As we said, the equality constraint .Ax = b corresponds to .g = I{b}, so that we have 
.g∗(ξ) = 〈ξ, b〉. 

The duality between 

. min {f (x)+ g(Ax) : x ∈ X} and sup
{−g∗(ξ)− f ∗(−Atξ) : ξ ∈ Y'}

is a classical object in convex analysis and a theorem guaranteeing, under some 
conditions, that the values are actually equal is known as the Fenchel–Rockafellar 
theorem. We will see in Sect. 4.5 a proof of this theorem, inspired by the precise 
proof of a concrete duality result presented in Sect. 4.3. 

4.3 An Example of Convex Duality: Minimal Flows and 
Optimal Compliance 

We start this section with two classical examples of convex optimization problems, 
which have a strong connection with PDEs, one from traffic congestion modeling 
and one from the mechanics of deformation. 

The first problem consists in finding a flow transporting some mass from an 
original configuration .f+ (to be intended as a distribution of mass on a given 
compact domain . 𝛀, so, for instance, one could take .f+ ∈ P(𝛀), the set of 
probability measures on . 𝛀) to a target configuration . f−. The flow will be a vector 
field . v which describes, in Eulerian variables, the motion: .v(x) stands for the 
intensity and the direction of the movement of the mass at the point x (more 
precisely, . |v| is the intensity and .v/|v| the direction); the motion is assumed to be 
stationary (i.e. the mass follows a permanent movement, and new mass is always 
injected at the points belonging to the support of . f+, distributed according to . f+, 
and withdrawn according to . f−) so that there is no explicit time dependence. The 
condition to move mass from .f+ to .f− can be written in terms of .∇ · v, thanks 
to the following heuristic consideration: for every small subdomain .A ⊂ 𝛀, the  
conservation of the mass imposes that the mass exiting A, which equals . 

´
∂A

v · n
since mass can only leave A through the boundary (and the tangential movement 
on the boundary does not contribute to this), should be equal to the mass which 
has been inserted minus that which has been removed, i.e. to .

´
A

f+ − f−; writing 
.
´
∂A

v ·n = ´
A
∇ ·v thanks to the divergence theorem and assuming that this equality 

holds for any A means .∇ ·v = f+−f−. Note that, if . 𝛀 itself has a boundary and no 
mass is injected/removed at points of the boundary, one should also impose . v ·n = 0
on . ∂𝛀 so that no mass leaves . 𝛀. A convenient way to express this set of constraints 
is the weak formulation 

.

ˆ

𝛀

(∇φ · v+ φf ) dx = 0 for all φ ∈ C∞(𝛀),
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where .f = f+ − f−. This includes the possibility that . f± are singular measures 
with a part on the boundary, which should compensate .v · n. 

Among all the possible flows . v satisfying these constraints, we minimize a 
cost which penalizes the total movement which is realized, i.e. an integral cost 
which is increasing in . |v|. We will discuss in Sect. 4.6 the connection of this 
problem with optimal transport; here we just say that a natural choice would be 
to minimize .

´ |v| dx or .
´

K(x)|v| dx, where .K > 0 is a weight (exactly as we did 
in Sect. 1.4.3 for weighted geodesics); on the other hand, when we want to model 
traffic congestion, we can assume that the weight k is not given a priori but depends 
on the traffic itself and, in a very simplified setting, on . |v|. The simplest choice is to 
choose .K = |v| and hence solve (adding, in order to simplify the computations, a 
factor . 12 in front of the integral) 

.min

{ˆ
𝛀

1

2
|v|2 dx : ∇ · v = f

}
. (4.4) 

As we said, the second problem comes from mechanics, and is much more 
standard in its modeling. Assume that a membrane is originally at rest in horizontal 
position, which we model via the constant function .u = 0 on . 𝛀: the domain . 𝛀
stands for the projection on the horizontal plan of the membrane, and the value of 
.u(x) ∈ R stands for its vertical displacement. If no force acts on the membrane, 
the configuration .u = 0 is stable and is what can be observed in reality. Assume 
now that at some points the membrane is pushed down, and at others it is pushed 
up, thus applying a force .f = f+ − f− with positive and negative parts. If the 
two parts equilibrate (i.e. .

´
f+ = ´ f−) we can imagine that the barycenter of 

the membrane does not move, but the shape of the membrane is deformed. The 
configuration which is realized by the membrane is the one which minimizes a sum 
of a potential energy given by the work of the force f (i.e. .

´
uf ) and an elastic 

energy related to the deformation. The simplest choice is to choose the Dirichlet 
energy .

´ 1
2 |∇u|2 as an elastic energy. One of the reason for this choice is that it is 

equivalent to the Taylor expansion (stopped at the first non-zero term) of the energy 
.
´ √

1+ |∇u|2, which represents the surface area of the deformed membrane (and 
hence approximates well such an area if u is small in . C1 norm). Alternatively, one 
can also describe the equilibrium shape of the membrane in PDE terms through 
.∆u = f . We will discuss later how to insert Dirichlet data on u (i.e. regions where 
the displacement u is prescribed, for instance .u = 0), and in particular we will see in 
Chap. 6 that an interesting question is how to optimize the Dirichlet regions, which 
can be considered as reinforcements for the membrane, under possible constraints 
or penalizations on their size. So far, we have stuck to the case where no value is 
prescribed for u, which corresponds to Neumann boundary conditions for the PDE 
.∆u = f if . 𝛀 has a boundary. The variational problem reads 

.min

{ˆ
𝛀

1

2
|∇u|2 dx +

ˆ

𝛀

uf dx : u ∈ H 1(𝛀)

}
. (4.5)
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In the case where f is a function instead of a more general distribution in the dual 
of . H 1 (in which case one should replace .

´
uf with .〈f, u〉), this is a particular case 

of the problems presented in Sect. 2.1. The minimal value is necessarily negative 
(since .u = 0 is a competitor) and one can see that, using the optimality condition 
given by the Euler–Lagrange equation .∆u = f , it equals .− ´ 1

2 |∇u|2. Hence, if 
we consider that this minimal value depends on . 𝛀 and on the force f we see that 
how much it differs from 0 is a measure of how stiff the configuration is, since it 
measures the effective total deformation (in terms of elastic energy). The negative 
of this minimal value is called the compliance and it can be optimized in order to 
find the stiffest configuration (usually among domains . 𝛀 for given f , and usually 
adding Dirichlet boundary data). 

The main goal of this section is to show that the two problems of the form (4.4) 
and (4.5) are actually dual to each other, and that the same holds for a large class 
of variants of the same problems, replacing the quadratic costs with other convex 
functions. 

To be more precise we will consider a function .H : 𝛀 × R
d → R which is 

convex in the second variable 

. (Hyp1) for every x v I→ H(x, v) is convex

and satisfying the following uniform bounds: 

. (Hyp2)
c0

q
|v|q − h0(x) ≤ H(x, v) ≤ c1

q
|v|q + h1(x),

where .h0, h1 are . L1 functions on . 𝛀, .c0, c1 > 0 are given finite constants, and . q ∈
(1,+∞) is a given exponent. For functions of this form, when we write . H ∗(x,w)

we mean the Legendre transform in the second variable, i.e. . H ∗(x,w) = supv w ·
v −H(x, v).

We consider the problem 

. min

{ˆ
𝛀

H(x, v(x)) dx : ∇ · v = f

}
.

Before giving rigorous results, we will formally build its dual problem, with the 
same informal derivation as we did in Sect. 4.2.3. This can be done in the following 
way: the constraint .∇ · v = f can be written, in weak form, as . − ´ v · ∇u = ´ f u

for every u in a suitable space of test functions This means that we can rewrite the 
above problem in the min-max form 

. min

{ˆ
𝛀

H(x, v) dx + sup
u

(
−
ˆ

𝛀

f u dx −
ˆ

𝛀

v · ∇u dx

)}
,

since the last sup is 0 if the constraint is satisfied and .+∞ if not. Now, we have a 
min-max problem and the dual problem can be obtained just by inverting inf and
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sup. In this case we get 

. sup

{
−
ˆ

𝛀

f u dx + inf
v

(ˆ
𝛀

H(x, v) dx −
ˆ

𝛀

v · ∇u dx

)}
.

Since .infv
´
𝛀

H(x, v)−´
𝛀
v·∇u = − supv

´
𝛀
∇u·v−´

𝛀
H(x, v) = ´

𝛀
H ∗(x,∇u), 

the problem becomes 

. sup

{
−
ˆ

𝛀

f u dx −
ˆ

𝛀

H ∗(x,∇u) dx

}
.

In the following, we will see precise statements about the duality between the two 
problems. The duality proof, based on the above convex analysis tools, is essentially 
inspired by the method used in [36] . Other proofs are obviously possible. 

4.3.1 Rigourous Duality with No-Flux Boundary Conditions 

We define the space .W 1,p
♢ (𝛀) as the vector subspace of .W 1,p(𝛀) composed by 

functions with zero mean and the space .(W 1,p)'♢(𝛀) as the subspace of the dual of 
.W 1,p composed by those f such that .〈f, 1〉 = 0 (i.e. those f with zero mean as 
well). 

Note that for every .v ∈ Lp'(𝛀;Rd), the distribution .∇ · v, defined by 

. 〈∇ · v, φ〉 := −
ˆ

𝛀

v · ∇φ dx,

naturally belongs to .(W 1,p)'♢(𝛀). Incidentally, this will be the definition we will use 
of the divergence operator (in weak form), and it includes a natural Neumann (no-
flux) boundary condition on . ∂𝛀. However, note that we will sometimes use the flat 
torus as a domain . 𝛀, which gets rid of many boundary issues. 

We will prove the following duality result. 

Theorem 4.33 Assume that . 𝛀 is smooth enough and that H satisfies Hyp1 and 
Hyp2 with .q = p' = p/(p − 1). Then, for any .f ∈ (W 1,p)'♢(𝛀), we have 

.min

{ˆ
𝛀

H(x, v(x)) dx : v ∈ Lp'(𝛀;Rd),∇ · v = f

}

= max

{
−
ˆ

𝛀

H ∗(x,∇u(x)) dx − 〈f, u〉 : u ∈ W 1,p(𝛀)

}
.
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Proof We will define a function .F : (W 1,p)' → R in the following way 

. F(f ) := min

{ˆ
𝛀

H(x, v(x)) dx : v ∈ Lp'(𝛀;Rd),∇ · v = f

}
.

Note that if .f /∈ (W 1,p)'♢ ⊂ (W 1,p)', then .F(f ) = +∞, as there is no . v ∈ Lp'

with .∇ · v = f . On the other hand, if .f ∈ (W 1,p)'♢, then .F(f ) is well-defined and 
real-valued since .

´
𝛀

H(x, v(x)) dx is comparable to the .Lp' norm of . v, and we use 
the following fact: for every .f ∈ (W 1,p)'♢ there exists a .v ∈ Lp' such that . f = ∇ · v
and .||v||

Lp' ≤ ||f ||(W 1,p)'♢ (see the next lemma). 

We now compute .F∗ : W 1,p → R: 

. F∗(u) = sup
f

〈f, u〉 − F(f ) = sup
f,v : ∇·v=f

〈f, u〉 −
ˆ

𝛀

H(x, v(x)) dx.

We can then go on using only . v as a variable, thus obtaining 

. F∗(u) = sup
v
〈∇ · v, u〉 −

ˆ

𝛀

H(x, v(x)) dx

= sup
v
−
ˆ

(v · ∇u) dx −
ˆ

𝛀

H(x, v(x)) dx =
ˆ

𝛀

H ∗(x,−∇u(x)) dx.

In the very last equality we used the fact that the vector field . v can be chosen point 
by point as there are no longer any constraints on its divergence. The reader may 
wonder how we can restrict to .v ∈ Lp' , but this can be done in the following way. 
Of course we have 

. sup
v∈Lp'

−
ˆ

(v · ∇u) dx −
ˆ

𝛀

H(x, v(x)) dx ≤
ˆ

𝛀

H ∗(x,−∇u(x)) dx,

because of the pointwise inequality defining . H ∗. On the other hand, for every . M >

0 we have 

. sup
v∈Lp'

−
ˆ

(v·∇u) dx−
ˆ

𝛀

H(x, v(x)) dx≥ sup
v : |v|≤M

−
ˆ

(v·∇u) dx−
ˆ

𝛀

H(x, v(x)) dx.

The sup in the right-hand side can be realized by choosing for every x a vector . v(x)

which realizes the max (or almost the sup) in .−v · ∇u(x)−H(x, v) among vectors 
v with .|v| ≤ M . This can be done in a measurable way. If we set . H ∗,M(x,w) :=
supv : |v|≤M v · w −H(x, v) we then obtain 

. sup
v∈Lp'

−
ˆ

(v · ∇u) dx −
ˆ

𝛀

H(x, v(x)) dx ≥
ˆ

𝛀

H ∗,M(x,−∇u(x)) dx.
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The desired equality can be obtained taking the limit .M →∞, using the monotone 
increasing convergence of .H ∗,M(x,w) to .H ∗(x,w). 

Now we want to make use of the double transform . F ∗∗. By definition we have 

. F ∗∗(f ) := sup
u
〈f, u〉 − F∗(u) = sup

u
〈f, u〉 −

ˆ

𝛀

H ∗(x,−∇u(x)) dx.

By taking the sup on . −u instead of u we also have 

. F ∗∗(f ) = sup
u
−〈f, u〉 −

ˆ

𝛀

H ∗(x,∇u(x)) dx.

Finally, if we prove that . F is convex and l.s.c., then we also have .F ∗∗ = F, and 
the desired duality result is proven. 

The convexity of . F is easy. We just need to take .f0, f1 ∈ (W 1,p)'♢(𝛀) and define 
.ft := (1 − t)f0 + tf1. Let  .v0, v1 be optimal in the definition of .F(f0) and .F(f1), 
i.e. .
´

H(x, vi (x)) dx = F(fi) and .∇ · vi = fi . Let .vt := (1− t)v0+ tv1. Of course 
we have .∇ · vt = ft and, by convexity of .H(x, ·) we have 

. F(ft ) ≤
ˆ

H(x, vt (x)) dx ≤ (1− t)

ˆ
H(x, v0(x)) dx + t

ˆ
H(x, v1(x)) dx

≤ (1− t)F(f0)+ tF(f1),

and the convexity is proven. 
For the semicontinuity, we take a sequence .fn → f in .(W 1,p)'. We can assume 

that .F(fn) < +∞ otherwise there is nothing to prove, hence .fn ∈ (W 1,p)'♢(𝛀). 
Take the corresponding optimal vector fields .vn ∈ Lp' , i.e. . 

´
H(x, vn(x)) dx =

F(fn). We can extract a subsequence such that .limk F(fnk
) = lim infn F(pn). 

Moreover, from the bound on H we can see that the .Lp' norm of . vn is bounded in 
terms of the values of .F(fn), which are (use Lemma 4.34) bounded by the . (W 1,p)'♢
norms of . fn. Since . fn converges, we get a bound on .||vn||Lp' . Hence, up to an extra 
subsequence extraction, we can assume .vnk

⇀ v. Obviously we have . ∇ · v = f

and, by semicontinuity of the integral functional .v I→ ´ H(x, v) dx, we get 

. F(f )≤
ˆ

H(x, v(x)) dx≤ lim inf
k

ˆ
H(x, vnk

(x)) dx= lim
k
F(fnk

)= lim inf
n
F(fn),

which gives the desired result. ⨅⨆
The duality result that we proved can be written in the following form 

.min{A(v)} +min{B(u)} = 0, (4.6)
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where A is defined on .Lp'(𝛀;Rd) and B on .W 1,p(𝛀) via 

. A(v) :=
{´

𝛀
H(x, v(x)) dx if ∇ · v = f,

+∞ otherwise,

and 

. B(u) =
ˆ

𝛀

H ∗(x,∇u(x)) dx + 〈f, u〉.

Lemma 4.34 Given .f ∈ (W 1,p)'♢(𝛀) there exists a .v ∈ Lp'(𝛀;Rd) such that 
.f = ∇ · v and .||v||

Lp' ≤ C||f ||(W 1,p)' . 

Proof Consider the minimization problem 

. min

{
1

p

ˆ

𝛀

|∇φ|p dx + 〈f, φ〉 : φ ∈ W 1,p(𝛀)

}
.

It is easy to prove that this problem admits a solution, as the minimization can be 
restricted to the set .W 1,p

♢ . This solution . φ satisfies4 (see Sect. 2.4) 

. −
ˆ

𝛀

(∇φ)p−1 · ∇ψ dx = 〈f,ψ〉

for all .ψ ∈ W 1,p(𝛀). This means precisely .∇ · v = f for .v = (∇φ)p−1. Moreover, 
testing against . φ, we get 

. ||v||p'
Lp' =

ˆ

𝛀

|v|p' dx =
ˆ

𝛀

|∇φ|p dx = 〈f, φ〉 ≤ ||f ||(W 1,p)' ||φ||W 1,p

≤ C||f ||(W 1,p)' ||∇φ||Lp = C||f ||(W 1,p)' ||v||p
'−1

Lp' ,

which gives the desired bound on .||v||
Lp' . ⨅⨆

4.4 Regularity via Duality 

In this section we will use the relation (4.6) to produce Sobolev regularity results 
for solutions of the minimization problems .minA or .minB.

4 Pay attention to the notation: for every vector w and .α > 0 we denote by . wα the vector with 
modulus equal to .|w|α , and same direction as w, i.e. .wα := |w|α−1w. 
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We will start by describing the general strategy. We consider a function H not 
explicitly depending on x, and we assume that an inequality of the following form 
is true 

. (Hyp3) H(v)+H ∗(w) ≥ v · w + c|j (v)− j∗(w)|2

for some given functions .j, j∗ : Rd → R
d . This is an improvement of the Young 

inequality .H(v)+H ∗(w) ≥ v · w (which is just a consequence of the definition of 
. H ∗). Of course this is always true taking .j = j∗ = 0, but the interesting cases are 
the ones where j and . j∗ are non-trivial. 

To simplify the computations, we will assume that . 𝛀 is the flat d-dimensional 
torus . Td . We start from the following observations, which we collect in a lemma. 
For the sake of the notation, we call . ̄v and . ̄u the minimizers (or some minimizers, 
in case there is no uniqueness) of A and B, respectively, and we denote by . uh the 
function .uh(x) := ū(x + h). We define a function .g : Rd → R given by 

. g(h) :=
ˆ

Td

f (x)ū(x + h) dx −
ˆ

Td

f (x)ū(x) dx.

Lemma 4.35 Assume H satisfies Hyp.1, 2, 3 with .q = p', and let . ̄v and . ̄u be 
optimal. Then we have 

1. .j (v̄) = j∗(∇ū). 
2. . c
´
Td |j∗(∇uh)− j∗(∇ū)|2 dx ≤ g(h).

3. If .g(h) = O(|h|2), then .j∗(∇ū) ∈ H 1. 
4. If g is .C1,1, then .g(h) = O(|h|2) and .j∗(∇ū) ∈ H 1. 

5. If .f ∈ W
1,p'
♢ (𝛀), then .g ∈ C1,1 and hence .j∗(∇ū) ∈ H 1. 

Proof First, we compute for arbitrary . v and u admissible in the primal and dual 
problems (i.e. we need .∇ · v = f ), the sum .A(v)+ B(u): 

. A(v)+B(u) =
ˆ

Td

(H(v)+H ∗(∇u)+f u) dx =
ˆ

Td

(H(v)+H ∗(∇u)−v·∇u) dx

≥ c

ˆ

Td

|j (v)− j∗(∇u)|2 dx.

If we take .v = v̄ and .u = ū, then .A(v) = minA, .B(u) = minB and . A(v)+B(u) =
0. Hence, we deduce .j (v̄) = j∗(∇ū), i.e. Point 1. in the statement. 

Now, let us fix .v = v̄ but .u = uh. We obtain 

.

ˆ

Td

|j∗(∇ū)− j∗(∇uh)|2dx =
ˆ

Td

|j (v̄)− j∗(∇uh)|2dx ≤ A(v̄)+B(uh)

c

= B(uh)−B(ū)

c
.
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In computing .B(uh) − B(ū), we see that the terms .
´
Td H ∗(∇uh) and . 

´
Td H ∗(∇ū)

are equal, as one can see from an easy change-of-variable .x I→ x + h. Hence, 

. B(uh)− B(ū) =
ˆ

Td

f uh dx −
ˆ

Td

f ū dx = g(h),

which gives Point 2. 
Point 3 of the statement is an easy consequence of the classical characterization 

of Sobolev spaces (see Box 2.1). Point 4 comes from the optimality of . ̄u, which 
means that we have .g(0) = 0 and .g(h) ≥ 0 for all h. This implies, as soon as 
.g ∈ C1,1, .∇g(0) = 0 and hence .g(h) = O(|h|2). 

For Point 5, we first differentiate .g(h), thus getting 

. ∇g(h) =
ˆ

Td

f (x)∇ū(x + h) dx.

If we want to differentiate once more, we use the regularity assumption on f : we  
write 

. 

ˆ

Td

f (x)∇ū(x + h) dx =
ˆ

Td

f (x − h)∇ū(x) dx

and then 

. D2g(h) =
ˆ

Td

∇f (x − h)⊗∇ū(x) dx,

which also gives .|D2g| ≤ ||∇f ||
Lp' ||∇ū||Lp . Note that . ̄u naturally belongs to .W 1,p, 

hence the integral is finite and bounded, and .g ∈ C1,1. ⨅⨆
Unfortunately, the last assumption (.f ∈ W 1,p' ) is quite restrictive, but we want 

to provide a case where it is reasonable to use it. First, we find interesting cases of 
functions H and . H ∗ for which we can provide non-trivial functions j and . j∗. 

4.4.1 Pointwise Vector Inequalities 

The first interesting case is the quadratic case. Take .H(v) = 1
2 |v|2 with . H ∗(w) =

1
2 |w|2. In this case we have easily 

. H(v)+H ∗(w) = 1

2
|v|2 + 1

2
|w|2 = v · w + 1

2
|v − w|2,

hence one can take .j (v) = v and .j∗(w) = w. 
Now we move to the general case.
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Lemma 4.36 Consider a function H which is uniformly convex, i.e. . v I→ H(v) −
c
2 |v|2 is convex for some .c > 0 (or, equivalently, .D2H ≥ cI). In this case we have 

. H(v)+H ∗(w) ≥ v · w + c

2
|v −∇H ∗(w)|2.

Proof We start from the equality 

.H(∇H ∗(w))+H ∗(w) = ∇H ∗(w) · w (4.7) 

together with 

.H(v) ≥ H(∇H ∗(w))+ w · (v − ∇H ∗(w))+ c

2
|v −∇H ∗(w)|2, (4.8) 

which is a consequence of .w ∈ ∂H(∇H ∗(w)) (note that H is not necessarily . C1, 
while . H ∗ is indeed . C1 because H is strictly convex). If we sum (4.7) and (4.8) we 
obtain the claim. ⨅⨆
Remark 4.37 If we use Lemma 4.35 for a function H satisfying the assumptions 
of Lemma 4.36 we can use .j (v) = v and .j∗(w) = ∇H ∗(w). We obtain the 
equality .v = ∇H ∗(∇ū) for the optimizers . v and . ̄u. We deduce the condition 
.∇ · (∇H ∗(∇ū)) = f , which is exactly the Euler–Lagrange equation for the 
variational problem solved by . ̄u. 

We now move to another interesting, though more difficult case, the case of 
powers. Take .H(v) = 1

p
|v|p with .H ∗(w) = 1

p' |w|p
'
. We claim that in this case 

we can take .j (v) = vp/2 and .j∗(w) = wp'/2 (remember the notation for powers of 
vectors). 

Lemma 4.38 For any .v,w ∈ R
d we have 

. 
1

p
|v|p + 1

p'
|w|p' ≥ v · w + 1

2max{p, p'} |v
p/2 − wp'/2|2.

Proof First we write .a = vp/2 and .b = wp'/2 and we express the inequality in terms 
of . a, b. Hence we try to prove . 1

p
|a|2 + 1

p' |b|2 ≥ a2/p · b2/p' + 1
2max{p,p'} |a − b|2.

In this way the inequality is more homogeneous, as it is of order 2 in all its terms 
(remember .1/p + 1/p' = 1). Then we notice that we can also write the expression 
in terms of .|a|, |b| and .cos θ , where . θ is the angle between a and b (which is the 
same as the one between .v = a2/p and .w = b2/p

'
). Hence, we want to prove 

.
1

p
|a|2 + 1

p'
|b|2≥ cos θ

(
|a|2/p|b|2/p' − 1

max{p, p'} |a||b|
)

+ 1

2max{p, p'} (|a|
2 + |b|2).
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Since this depends linearly on .cos θ , it is enough to prove the inequality in the two 
limit cases .cos θ = ±1. 

For simplicity, due to the symmetry in p and . p' of the claim, we assume . p ≤
2 ≤ p'. We start from the case .cos θ = 1, i.e. .b = ta, with .t ≥ 0 (the case .a = 0 is 
trivial). In this case the l.h.s. of the inequality becomes 

. |a|2
(
1

p
+ 1

p'
t2

)
= |a|2

(
1

p
+ 1

p'
(1+ (t − 1))2

)

= |a|2
(
1+ 2

p'
(t − 1)+ 1

p'
(t − 1)2

)

≥ |a|2
(

t2/p
' + 1

p'
(t − 1)2

)
,

where we used the concavity of .t I→ t2/p
'
, which provides .1 + 2

p' (t − 1) ≥ t2/p
'
. 

This inequality is even stronger than the one we wanted to prove, as we get a factor 
.1/p' instead of .1/(2p') in the r.h.s. 

The factor .1/(2p') appears in the case .cos θ = −1, i.e. .b = −ta, .t ≥ 0 (we do 
not claim that this coefficient is optimal). In this case we start from the r.h.s. 

. |a|2
(

1

2p'
(1+ t)2 − t2/p

'
)
≤|a|2 1

2p'
(1+t)2≤|a|2 2

2p'
(1+t2)≤|a|2

(
1

p
+ 1

p'
t2

)
,

which gives the claim. ⨅⨆
As a more involved variant of the power cost functions, we also consider some 

other convex functions which will be natural in the study of very degenerate elliptic 
PDEs and in congestion models. 

Consider the case .H(v) = |v| + 1
p
|v|p. In this case, we can use . j (v) = vp/2

and .j∗(w) = (w − 1)p
'/2
+ (again, we use this weird notation: the vector .(w − 1)α+ is 

the vector with norm equal to .(|w| − 1)α+ and the same direction as w, i.e. . j∗(w) =
(|w| − 1)α+w/|w|). 

Indeed, we have 

. H ∗(w) = sup
v

v · w − |v| − 1

p
|v|p = 1

p'
(|w| − 1)p

'
+

and 

.H(v)+H ∗(w) = |v| + 1

p
|v|p + 1

p'
(|w| − 1)p

'
+

≥ |v| + v · (w − 1)+ + c|vp/2 − (w − 1)p
'/2
+ |2.
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We only need to prove .|v| + v · (w − 1)+ ≥ v · w. This can be done by writing 

. |v| + v · (w − 1)+ = |v|(1+ (|w| − 1)+ cos θ).

If .|w| ≥ 1 then we go on with 

. |v|(1+ (|w| − 1)+ cos θ) ≥ |v| cos θ(1+ (|w| − 1)+) = |v| cos θ |w| = v · w.

If .|w| ≤ 1 then we simply use 

. |v|(1+ (|w| − 1)+ cos θ) = |v| ≥ v · w.

4.4.2 Applications to (Degenerate) Elliptic PDEs 

If we look at the case .H(v) = 1
p' |v|p

'
, we have  .H ∗(w) = 1

p
|w|p and the solutions 

of .∆pu = f (where .∆pu := ∇ · ((∇u)p−1)) are the minimizers of . 
´ 1

p
|∇u|p +

f u. We already mentioned in Sect. 2.4 some regularity issues about p-harmonic 
functions, and the same classical references [30, 131] also provide many results 
about solutions of .∆pu = f . In this section we first underline the simplest result 
that we can obtain from the consideration of the previous sections and these duality 
methods. It is indeed easy to obtain the following. 

Proposition 4.39 Assume that . 𝛀 is the flat torus and .∆pū = f ∈ W 1,p'(𝛀). Then 
.(∇ū)p/2 ∈ H 1. 

Proof This statement can be proven by combining Lemma 4.35 and Lemma 4.38. 
⨅⨆

Remark 4.40 The above result is very classical (see for instance [140]), even if 
usually obtained using a slightly different technique. In particular, the pointwise 
inequality of Lemma 4.38 replaces, in this duality-based approach, the usual vector 
inequality that PDE methods require to handle equations involving . ∆p, i.e. 

. (w
p−1
0 − w

p−1
1 ) · (w0 − w1) ≥ c|wp/2

0 − w
p/2
1 |2,

which is an improved version of the monotonicity of the gradient of .w I→ 1
p
|w|p. 

Instead, if we consider .H(v) = |v| + 1
p' |v|p

'
, we get the following result. 

Proposition 4.41 Let H be given by .H(v) = |v| + 1
p' |v|p

'
and . H ∗(w) = 1

p
(|w| −

1)p+. Assume that . 𝛀 is the flat torus and .f ∈ W 1,p'(𝛀). Let . ̄v be a solution of . minA

and . ̄u a solution of .minB (equivalently, assume that . ̄u solves . ∇ · ((∇ū− 1)p−1+ ) =
f ). Then .v̄p'/2 = (∇ū− 1)+)p/2 ∈ H 1.
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This result is the same as that proven in [44], which used PDE methods, and 
does not seem easy to improve. The equation .∇ · ((∇u− 1)p−1+ ) = f , which can be 
written 

. ∇ ·
(

(|∇u| − 1)p−1+
∇u

|∇u|
)
= f,

is very degenerate in the sense that the coefficient .(|∇u| − 1)p−1+ /|∇u| vanishes on 
the whole set where .|∇u| ≤ 1. 

This equation and the corresponding minimization problems arise in traffic 
congestion (see [22, 44, 63] and Sect. 4.6) and the choice of the function H is very 
natural: we need a superlinear function of the form .H(v) = |v|h(|v|), with .h ≥ 1). 
This automatically implies the degeneracy. 

We now move to the Poisson equation .∆u = f , corresponding to the mini-
mization of .

´ 1
2 |∇u|2 + f u, and hence to .H(v) = 1

2 |v|2 and .H ∗(w) = 1
2 |w|2. 

It is possible to treat this case by the same techniques as in the degenerate case 
above, but the result is disappointing. Indeed, from these techniques we just obtain 
.f ∈ H 1 ⇒ ∇u ∈ H 1, while it is well-known that .f ∈ L2 should be enough for the 
same result. Yet, with some more attention it is also possible to treat the . L2 case. 

Proposition 4.42 Assume that . 𝛀 is the flat torus and .∆ū = f ∈ L2(𝛀). Then 
.∇ū ∈ H 1. 

Proof We use the variational framework we presented before, with .H(v) = 1
2 |v|2. 

We then obtain 

.
1

2
||∇uh −∇ū||2

L2 ≤ g(h). (4.9) 

Now, set .ωt := sup{||∇uh − ∇u||L2 : |h| ≤ t}. From  (4.9) we have 

. ω2
t ≤ sup

h:|h|≤t

2g(h) ≤ 2t sup
h:|h|≤t

|∇g(h)|.

From .∇g(h) = ∇g(h)−∇g(0) = ´ f (∇uh − ∇ū) we deduce 

. |∇g(h)| ≤ ||f ||L2 ||∇uh − ∇ū||L2 ≤ ||f ||L2ωt ,

hence .ω2
t ≤ 2t ||f ||L2ωt , which implies .ωt ≤ 2t ||f ||L2 and hence .∇ū ∈ H 1. ⨅⨆

As we already pointed out, the result stating that solutions u of . ∆pū = f ∈
W 1,p'(𝛀) satisfy .(∇ū)p/2 ∈ H 1 is very classical but not very satisfactory in the 
limit case .p = 2. This is why we also look at the following other classical result. 
Before stating it, we recall some useful definitions of fractional Sobolev spaces.



4.4 Regularity via Duality 175

Box 4.3 Important Notion—Fractional Sobolev Spaces 
When . 𝛀 is bounded and its diameter is R, if  .1 < p < +∞ and .0 < s < 1, 
the space .Ws,p(𝛀) is defined as 

. Ws,p(𝛀) =
{

u ∈ Lp(𝛀) : [u]ps,p :=
ˆ

B(0,R)

||uδ − u||pLp(𝛀δ)

δd+sp
dδ < +∞

}
,

where .𝛀δ = {x ∈ 𝛀 : x + δ ∈ 𝛀}. The norm on .Ws,p(𝛀) is given by 
.||u||Lp + [u]s,p. The space . Hs is defined as .Ws,2. 

Note that an inequality of the form .||uδ − u||Lp ≤ C|δ|s implies . u ∈
Ws',p for every .s' < s. Also note that the Hilbert case .p = 2 also enjoys 
an alternative definition in terms of the Fourier transform. Indeed, we have 
.u ∈ Hs if and only if .ξ I→ |ξ |s û(ξ) ∈ L2 and .[u]s,2 is equivalent to the . L2

norm of .ξ I→ |ξ |s û(ξ). 
We refer to [1] or [77] for more details. 

Proposition 4.43 Assume that . 𝛀 is the flat torus . Td and .∆pū = f ∈ Lp'(𝛀), with 
.p > 2. Then .||(∇uh)

p/2 − (∇ū)p/2||L2 ≤ C|h|p'/2, which implies in particular 
.(∇ū)p/2 ∈ Hs for .s < p'/2 < 1. 

Proof We use the same strategy as in Proposition 4.42. For simplicity, we set . G :=
(∇u)p/2. As in Proposition 4.42, we set  .ωt := suph:|h|≤t ||Gh − G||L2 . We have  
.||Gh −G||2

L2 ≤ Cg(h), which implies 

. ω2
t ≤ Ct sup

h:|h|≤t

|∇g(h)−∇g(0)| ≤ Ct ||f ||
Lp' sup

h:|h|≤t

||∇uh −∇ū||Lp .

From the .α-Hölder behavior of the vector map .w I→ wα in . Rd (see Lemma 4.44 
below), with .α = 2/p < 1, we deduce, using .∇u = Gα , 

. ||∇uh −∇ū||pLp =
ˆ

Td

|∇uh −∇ū|p dx ≤
ˆ

Td

|Gh −G|2 dx = ||Gh −G||2
L2 .

Hence, we have 

. ω2
t ≤ Ct ||f ||

Lp'ω
2/p
t ,

which implies 

. ω
2/p'
t ≤ Ct ||f ||

Lp' ,

i.e. the claim ⨅⨆
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Lemma 4.44 For .0 < α < 1, the  map .w I→ wα is .α-Hölder continuous in . Rd . 

Proof Let .a, b ∈ R
d . We write 

. |aα − bα|=
∣∣∣∣|a|α a

|a| −|a|
α b

|b| +|a|
α b

|b| −|b|
α b

|b|
∣∣∣∣≤|a|α

∣∣∣∣ a

|a| −
b

|b|
∣∣∣∣+ ∣∣|a|α−|b|α∣∣ .

For the second term in the r.h.s., we use the .α-Hölder behavior of .t I→ tα in . R+ and 
get 

. 
∣∣|a|α − |b|α∣∣ ≤ ||a| − |b||α ≤ |a − b|α.

For the first term in the r.h.s., we use the inequality 

. 

∣∣∣∣ a

|a| −
b

|b|
∣∣∣∣ =

∣∣∣∣ a

|a| −
b

|a| +
b

|a| −
b

|b|
∣∣∣∣ ≤ |a − b|

|a| + |b| ||b| − |a|||a||b| ≤ 2
|a − b|
|a|

and get 

. |a|α
∣∣∣∣ a

|a| −
b

|b|
∣∣∣∣ ≤ 2|a|α−1|a − b|.

If we choose a to be such .|a| ≥ |b| (which is possible w.l.o.g.), we have . 2|a| ≥
|a − b| and hence .2α−1|a|α−1 ≤ |a − b|α−1, i.e. .2|a|α−1|a − b| ≤ 22−α|a − b|α . 

Summing up, we have (without claiming that this constant is optimal) 

. |aα − bα| ≤ (22−α + 1)|a − b|α.

⨅⨆
Remark 4.45 Note that the result of Proposition 4.43 is also classical, and quite 
sharp. Indeed, one can informally consider the following example. Take . u(x) ≈ |x|r
as .x ≈ 0 (and then multiply by a cut-off function out of 0). In this case we have 

. ∇u(x)≈ |x|r−1, (∇u(x))p−1≈ |x|(r−1)(p−1), f (x) :=∆pu(x)≈ |x|(r−1)(p−1)−1.

Hence, .f ∈ Lp' if and only if .((r−1)(p−1)−1)p' > −d, i.e. .(r−1)p−p' > −d. 
On the other hand, the fractional Sobolev regularity can be observed by considering 
that “differentiating s times” means subtracting s from the exponent, hence 

. (∇u(x))p/2 ≈ |x| p(r−1)
2 ⇒(∇u)

p
2 ∈ Hs ⇔ |x| p(r−1)

2 −s ∈ L2 ⇔ p(r−1)−2s > −d.

If we want this last condition to be true for arbitrary .s < p'/2, then it amounts to 
.p(r − 1)− p' > −d, which is the same condition as above.
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4.4.3 Variants: Local Regularity and Dependence on x 

In the previous section we only provided global Sobolev regularity results on the 
torus. This guaranteed that we could do translations without boundary problems, 
and that by change-of-variable, the term .

´
H(∇uh) dx did not actually depend on h. 

We now provide a result concerning local regularity. As the result is local, boundary 
conditions should not be very important. Yet, as the method itself is global, we 
need to fix them and be precise about the variational problems that we use. We 
will consider, as usual, variational problems without any boundary constraint, which 
correspond to PDEs with no-flux boundary conditions. Since, as we said, boundary 
conditions should play no role, with some work it is also possible to modify them, 
but we will not develop these considerations here. 

We will only provide the following result, in the easiest case .p = p' = 2. 

Theorem 4.46 Let .H,H ∗, j and . j∗ satisfy Hyp.1, 2, 3 with .q = 2. Assume .f ∈ H 1. 
Assume also .H ∗ ∈ C1,1 and .j∗ ∈ C0,1. Assume .∇ · (∇H ∗(∇ū)) = f in . 𝛀 with 
no-flux boundary conditions on . ∂𝛀. Then, .j∗(∇ū) ∈ H 1

loc. 

Proof The condition .∇ · ∇H ∗(∇ū) = f is equivalent to the fact that . ̄u is solution 
of 

. min

{ˆ
𝛀

H ∗(∇u) dx +
ˆ

𝛀

f u dx : u ∈ W 1,p(𝛀)

}
.

We will follow the usual duality strategy as in the rest of the section. Yet, in order 
not to have boundary problems, we need to use a cut-off function .η ∈ C∞c (𝛀) and 
define 

. uh(x) = ū(x + hη(x))

(note that for small h we have .x + hη(x) ∈ 𝛀 for all .x ∈ 𝛀). In this case it is no 
longer true that we have .g̃(h) := ´

𝛀
H ∗(∇uh) dx =

´
𝛀

H ∗(∇ū) dx. If this term is 
not constant in h, then we need to prove that it is a .C1,1 function of h. To do this,  
and to avoid differentiating . ∇ū, we use a change-of-variable. Set .y = x + hη(x). 
We have .∇(uh)(x) = (∇ū)(y)(I + h⊗∇η(x)), hence 

. g̃(h) =
ˆ

𝛀

H ∗(∇uh) dx =
ˆ

𝛀

H ∗(∇ū(y)+ (∇ū(y) · h)∇η(x))
1

1+ h · ∇η(x)
dy,

where .x = X(h, y) is a function of h and y obtained by inverting . x I→ x + hη(x)

and we used .det(I + h ⊗ ∇η(x)) = 1 + h · ∇η(x). The function X is .C∞ by the 
implicit function theorem, and all the other ingredient of the above integral are at 
least .C1,1 in h. This proves that . g̃ is .C1,1. The regularity of the term . g(h) = ´

𝛀
f uh

should also be considered. Differentiating once we get . ∇g(h) = ´
𝛀

f (x)∇ū(x +
hη(x))η(x) dx. To differentiate once more, we use the same change-of-variable,
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thus getting 

. ∇g(h) =
ˆ

𝛀

f (X(h, y))∇ū(y)η(X(h, y))
1

1+ h · ∇η(x)
dy.

From .y = X(h, y) + hη(X(h, y)) we get a formula for .DhX(h, y), i.e. . 0 =
DhX(h, y) + η(X(h, y))I + h ⊗ ∇η(η(X(h, y))DhX(h, y). This allows us to 
differentiate once more the function g and proves .g ∈ C1,1. 

Finally, we come back to the duality estimate. What we can easily get is 

. c||j∗(∇(uh))− j∗(∇ū)||2
L2 ≤ g(h)+ g̃(h) = O(|h|2).

A small difficulty remains in the fact that .j∗(∇(uh)) is not the translation of .j∗(∇ū). 
Yet, if we take a subdomain .𝛀' ⊂ 𝛀 such that .(𝛀')r ⊂ {η = 1}, then for every h 
with .|h| < r it is true that, on . 𝛀', the function .j∗(∇(uh)) is the translation of 
.j∗(∇ū) by a vector h. This allows us to conclude, as in Lemma 4.35 (4), and obtain 
.j∗(∇ū) ∈ H 1

loc. ⨅⨆
The duality theory has been presented in the case where H and . H ∗ could also 

depend on x, while for the moment regularity results have only be presented under 
the assumption that they do not. We now consider a small variant and look at how 
to handle the following particular case, corresponding to the minimization problem 

.min

{
1

p

ˆ

𝛀

a(x)|∇u(x)|p dx +
ˆ

𝛀

f (x)u(x) dx : u ∈ W 1,p(𝛀)

}
. (4.10) 

We will use .𝛀 = T
d to avoid accumulating difficulties (boundary issues and 

dependence on x). Note that the PDE corresponding to the above minimization 
problem is .∇ · (a(∇u)p−1) = f . 

First, we need to compute the transform of .w I→ H ∗(w) := a
p
|w|p. Set . b =

a1/(p−1). It is easy to obtain .H(v) = 1
bp' |v|p

'
. Also, we can check (just by scaling 

the inequality of Lemma 4.38), that we have 

. 
1

bp'
|v|p' + bp−1

p
|w|p ≥ v · w + bp−1

∣∣∣∣∣wp/2 − vp'/2

bp/2

∣∣∣∣∣
2

.

In particular, if we assume that .a(x) is bounded from below by a positive constant, 
and we set .H ∗(x,w) = a(x)

p
|w|p, then we get 

. H(x, v)+H ∗(x,w) ≥ v · w + c|j (x, v)− j∗(w)|2

where .j∗(w) = wp/2.
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We can now prove the following theorem. 

Theorem 4.47 Assume .f ∈ W 1,p'(Td) and .a ∈ Lip, a ≥ a0 > 0, and let . ̄u be the 
minimizer of (4.10). Then .G := ∇ūp/2 ∈ H 1(Td). 

Proof Our usual computations show that we have 

. c||Gh −G||2
L2 ≤ g(h)+ g̃(h),

where .g(h) = ´ f uh −
´

f ū and .g̃(h) = ´ a(x)
p
|∇uh|p −

´
a(x)
p
|∇ū|p. With our 

assumptions, .g ∈ C1,1. As for .g̃(h), we write 

. 

ˆ

Td

a(x)

p
|∇uh|p =

ˆ

Td

a(x − h)

p
|∇ū|p

and hence 

. ∇g̃(h) =
ˆ

Td

∇a(x − h)

p
|∇ū|p =

ˆ

Td

∇a(x)

p
|∇uh|p.

Hence, 

. |∇g̃(h)− ∇g̃(0)| ≤
ˆ

Td

|∇a(x)|
p

∣∣|∇uh|p − |∇ū|p∣∣

≤ C

ˆ

Td

||Gh|2 − |G|2| ≤ C||Gh −G||L2 ||Gh +G||L2 .

Here we used the .L∞ bound on .|∇a|. Then, from the lower bound on a, we also  
know .G ∈ L2, hence we get .|∇g̃(h)− ∇g̃(0)| ≤ C||Gh −G||L2 . 

Now, we define as usual .ωt := suph=|h|≤t ||Gh −G||L2 and we get 

. ω2
t ≤ C sup

h=|h|≤t

g(h)+ g̃(h) ≤ Ct sup
h=|h|≤t

|∇g(h)+ ∇g̃(h)|

= Ct sup
h=|h|≤t

|∇g(h)− ∇g(0)+ ∇g̃(h)− ∇g̃(0)| ≤ Ct2 + Ctωt ,

which allows us to deduce .ωt ≤ Ct and hence .G ∈ H 1. ⨅⨆
We also provide the following theorem, which is also interesting for .p = 2. 

Theorem 4.48 Assume .p ≥ 2, .f ∈ Lp'(Td) and .a ∈ Lip, a ≥ a0, and let . ̄u be 
the minimizer of (4.10). Then .G = ∇ūp/2 satisfies .||Gh − G||L2 ≤ C|h|p'/2. In  
particular, .G ∈ H 1(Td) if .p = 2 and .G ∈ Hs(Td) for all .s < p'/2 if .p > 2.
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Proof The only difference with the previous case is that we cannot say g is .C1,1 but 
we should stick to the computation of . ∇g. We use as usual 

. |∇g(h)− ∇g(0)| ≤ ||f ||
Lp' ||∇uh −∇ū||Lp .

As we are forced to let the norm .||∇uh − ∇ū||Lp appear, we will use it also in . g̃. 
Indeed, observe that we can estimate 

. |∇g̃(h)− ∇g̃(0)| ≤
ˆ

Td

|∇a(x)|
p

∣∣|∇uh|p − |∇ū|p∣∣

≤ C

ˆ

Td

(|∇uh|p−1 + |∇ū|p−1)|∇uh − ∇ū| ≤ C||∇ūp−1||
Lp' ||∇uh −∇ū||Lp .

We then use .||∇ūp−1||
Lp' = ||∇ū||p−1Lp and conclude 

. |∇g̃(h)− ∇g̃(0)| ≤ C||∇uh −∇ū||Lp .

This gives, defining . ωt as usual, 

. ωt ≤ Ct sup
h=|h|≤t

|∇g(h)− ∇g(0)+ ∇g̃(h)− ∇g̃(0)| ≤ Ct sup
h=|h|≤t

||∇uh − ∇ū||Lp

and hence 

. ω2
t ≤ Ctω

2/p
t

as in Proposition 4.43. ⨅⨆

4.5 A Proof of the Fenchel–Rockafellar Duality Theorem 

In this section we want to take advantage of the technique presented in Sect. 4.3 
for the precise case of minimal flow problems in order to prove a general abstract 
version of the Fenchel–Rockafellar duality theorem. For simplicity and in order to 
understand the technique, we will start from the case where all spaces are reflexive. 
In the following theorem we consider two reflexive spaces . X and . Y and use duality 
pairs including them and their duals. 

Theorem 4.49 Let . X and . Y be two reflexive normed vector spaces, . f : X →
R∪{+∞} and .g : Y→ R∪{+∞} two convex and lower semicontinuous functions, 
and .A : X→ Y a continuous linear mapping. Assume that g is bounded from below
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and f is coercive. Then we have 

. min {f (x)+ g(Ax) : x ∈ X} = sup
{−g∗(ξ)− f ∗(−Atξ) : ξ ∈ Y'} ,

where the existence of the minimum on the left-hand side is part of the claim. 

Proof We define a function .F : Y→ R ∪ {+∞} by 

. F(p) := min {f (x)+ g(Ax + p) : x ∈ X} .

The existence of the minimum is a consequence of the following fact: for any 
sequence .(xn, pn) with .f (xn) + g(Axn + pn) ≤ C the sequence . xn is bounded. 
This boundedness comes from the lower bound on g and from the coercive behavior 
of f . Once we know this, we can use .pn = p, take a minimizing sequence . xn for 
fixed p, and extract a weakly convergent subsequence .xn ⇀ x using the Banach– 
Alaoglu theorem in reflexive spaces. We also have .Axn + p ⇀ Ax + p and the 
semicontinuity of f and g provide the minimality of x (since, being convex, f and 
g are both l.s.c. for the strong and the weak convergence, in . X and . Y, respectively). 

We now compute .F∗ : Y' → R ∪ {+∞}: 

. F∗(ξ) = sup
p
〈ξ, p〉 − F(p)

= sup
p,x
〈ξ, p〉 − f (x)− g(Ax + p)

= sup
y,x
〈ξ, y − Ax〉 − f (x)− g(y)

= sup
y
〈ξ, y〉 − g(y)+ sup

x
〈−Atξ, x〉 − f (x)

= g∗(ξ)+ f ∗(−Atξ).

Now we use, as we did in Sect. 4.3, the double transform . F ∗∗. In this case, as the 
variable in the function . F is a perturbation p which has been added to the problem 
and we are interested in the case .p = 0, we will use .F ∗∗(0) = sup−F∗. The claim 
is proven as soon as we prove that . F is convex and l.s.c. so that .F ∗∗(0) = F(0). 

The convexity of . F is easy. We just need to take .p0, p1 ∈ Y , and define . pt :=
(1 − t)p0 + tp1. Let  .x0, x1 be optimal in the definition of .F(p0) and .F(p1), i.e. 
.
´

f (xi)+ g(Axi + pi) = F(pi), and set .xt := (1− t)x0 + tx1. We have  

. F(pt ) ≤ f (xt )+ g(Axt + pt ) ≤ (1− t)F(p0)+ tF(p1),

and the convexity is proven. 
For the semicontinuity, we take a sequence .pn → p in Y . We can assume 

.F(pn) ≤ C otherwise there is nothing to prove. Take the corresponding optimal 
points . xn and, applying the very first observation of this proof, we obtain .||xn|| ≤ C. 
We can extract a subsequence such that .limk F(pnk

) = lim infn F(pn) and .xnk
⇀ x.
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The semicontinuity of f and g provides 

. F(p) ≤ f (x)+ g(Ax + p) ≤ lim inf
k

f (xnk
)+ g(Axnk

+ pnk
)

= lim
k
F(pnk

) = lim inf
n
F(pn),

which gives the desired result. ⨅⨆
Remark 4.50 The use of a perturbation p as a tool to prove duality results is 
nowadays classical, and very useful as it allows the use of min-max exchange 
theorems to be avoided, which in general require some compactness assumptions 
which are difficult to prove. In Theorem 4.33 instead of using a perturbation p we 
directly defined a function on the value of the constraint f , but when the function 
g is not an indicator function this is not a doable procedure. Another interesting 
feature of the perturbation approach is that the set of solutions of the dual problem 
is equal to the set .∂F(0) (simply because the subdifferential at 0 of a convex function 
. F coincides with the set of points where .∂F∗ contains 0, i.e. of the minimizers of 
. F∗). This is the point of view of [62, 81], for instance. 

We now note that, if g is not bounded from below, it is always possible to make it 
so by removing a suitable linear function from it, since all convex and l.s.c. functions 
are bounded from below by an affine function. We can then define . g̃ by . g̃(y) =
g(y) − 〈ξ0, y〉 for a suitable . ξ0, and guarantee .inf g̃ > −∞. In order not to change 
the value of the primal problem we also need to modify f into . f̃ defined by . f̃ (x) :=
f + 〈Atξ0, x〉, so that 

. f̃ (x)+ g̃(Ax) = f (x)+ 〈Atξ0, x〉 + g(Ax)− 〈ξ0, Ax〉 = f (x)+ g(Ax).

Moreover, we can compute what changes in the dual problem. Is it true that we have 
.supξ −g∗(ξ)− f ∗(−Atξ) = supξ −g̃∗(ξ)− f̃ ∗(−Atξ) ? 

In order to do this, we need to compute the Legendre transform of . f̃ and . g̃. A  
general and easy fact, which is proposed as an exercise (see Exercise 4.9), states that 
subtracting a linear function translates into a translation on the Legendre transform. 
We then have 

. g̃∗(ξ) = g∗(ξ + ξ0); f̃ ∗(ζ ) = f ∗(ζ − Atξ0)

and then 

. g̃∗(ξ)+ f̃ ∗(−Atξ) = g∗(ξ + ξ0)+ f ∗(−At(ξ + ξ0))

and a simple change of variable .ξ I→ ξ+ξ0 shows that the sup has not changed. This 
shows that the duality result is not affected by this reformulation in terms of . f̃ and 
. g̃. It is then enough, for the duality to hold, that the assumptions of Theorem 4.49 
are satisfied by .(f̃ , g̃) instead of .(f, g). Since we chose . ξ0 on purpose in order to
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have . g̃ lower bounded, we only need now to require that . f̃ is coercive. Not that this 
would be the case if f was superlinear, as it would stay superlinear after adding any 
linear function, but it is not automatic when speaking of a generic coercive function. 

The condition on . ξ0 such that, at the same time, . g̃ is bounded from below and . f̃

superlinear can be more easily translated in terms of . f ∗ and . g∗. 
Yet, we will directly state the main result of the section, which is the most 

standard formulation of the Fenchel–Rockafellar duality theorem. This requires us 
to switch the roles of f and . f ∗, g and . g∗, and of the spaces. In this statement we 
also remove the reflexivity assumption that we used, for simplicity, in the previous 
statement. 

Theorem 4.51 Let . X and . Y be two normed vector spaces, and suppose that . Y is 
separable. Let .f : X → R ∪ {+∞} and .g : Y → R ∪ {+∞} be two convex and 
lower semicontinuous functions, and .A : X → Y a continuous linear mapping. 
Assume that there exists an .x0 ∈ X such that .f (x0) < +∞ and that g is continuous 
and finite at .Ax0. Then we have 

. inf {f (x)+ g(Ax) : x ∈ X} = max
{−g∗(ξ)− f ∗(−Atξ) : ξ ∈ Y'} ,

where the existence of the maximum on the right-hand side is part of the claim. 

Proof First of all, we note that the assumption on . x0 allows us to write 

. f ∗(η) ≥ 〈η, x0〉 − f (x0),

as well as 

. g∗(ξ) ≥ 〈ξ,Ax0〉 + c0||ξ || − c1,

for suitable constants .c0, c1 > 0. This second inequality comes from the fact that 
.ξ I→ g∗(ξ) − 〈ξ,Ax0〉 is coercive, as a consequence of the fact that its Fenchel– 
Legendre transform is locally bounded around 0. We then have 

. g∗(ξ)+ f ∗(−Atξ + η) ≥ 〈ξ,Ax0〉 + c0||ξ || − c1 + 〈−Atξ, x0〉 + 〈η, x0〉 − f (x0)

≥ c0||ξ || − C(||η||).

This proves that, for every sequence .(ξn, ηn) such that . g∗(ξn)+ f ∗(−Atξn+ ηn) ≤
C, if  .||ηn|| is bounded then .||ξn|| is also bounded. Using the Banach–Alaoglu 
theorem, since the sequence . ξn lies in the dual . Y' of a separable space, we can 
also extract a weakly-* convergent subsequence from . ξn. 

We now consider the function . F defined on . X' via 

.F(η) := min{g∗(ξ)+ f ∗(−Atξ + η) : ξ ∈ Y'}.
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The minimum in this definition exists because every minimizing sequence is 

compact for the weak-* convergence, so that we have .ξnk

∗
⇀ ξ and . −Atξnk

+ η)
∗
⇀

−Atξ + η), and both . f ∗ and . g∗ are weakly-* lower semicontinuous, as is always 
the case for Fenchel–Legendre transforms defined on dual spaces. 

We then compute the Fenchel–Legendre transform of . F using the duality pair 
with . X (and not . X''): 

. F∗(x) : = sup
ξ

〈x, η〉 − F(η)

= sup
ξ,η

〈x, η〉 − g∗(ξ)− f ∗(−Atξ + η)

= sup
ξ,ζ

〈x, (ζ + Atξ)〉 − g∗(ξ)− f ∗(ζ )

= f ∗∗(x)+ g∗∗(Ax)

= f (x)+ g(Ax),

where we used the change of variable .ζ = η − Atξ and then the equalities . f ∗∗ =
f and .g∗∗ = g (because f and g are convex and l.s.c.). We then conclude by 
using .F ∗∗(0) = F(0) as usual, but we need to prove that . F is convex and lower 
semicontinuous. 

The proof of convexity follows the same lines as in Theorem 4.49. For  the  

semicontinuity, we take .ηn
∗
⇀ η and we observe that we have .||ηn|| ≤ C. We can 

assume, up to extracting a subsequence, that .limn F(ηn) exists and is finite. If we call 
. ξn some minimizers in the definition of .F(ηn) we have . g∗(ξn)+f ∗(−Atξn+ηn) ≤
C. We deduce that .||ξn|| is bounded and we can extract a weakly-* convergent 
subsequence .ξnk

∗
⇀ ξ . We then have 

. F(η) ≤ g∗(ξ)+ f ∗(−Atξ + η) ≤ lim inf
k

g∗(ξnk
)+ f ∗(−Atξnk

+ ηnk
)

= lim
n
F(ηn),

which proves the lower semicontinuity. ⨅⨆

4.6 Discussion: From Optimal Transport to Congested 
Traffic and Mean Field Games 

In this section we want to underline the connections of some of the problems studied 
in this chapter with problems from optimal transport theory, and with their variants 
involving traffic congestion.
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We start with a very brief presentation of the optimal transport problem, for 
which we refer for instance to the books [195] and [177]. 

The starting point is the following problem proposed by the French mathemati-
cian Gaspard Monge in 1781, [149], that we present here in modern language. Given 
two metric spaces X and Y , two probability measures .μ ∈ P(X), ν ∈ P(Y ), and a 
cost function .c : X × Y → R, we look for a map .T : X → Y pushing the first one 
onto the other, i.e. satisfying .T#μ = ν, and minimizing the integral 

. M(T ) :=
ˆ

X

c(x, T (x)) dμ(x).

Box 4.4 Memo—Image Measures 

An important notion in measure theory is that of image measure. Given a 
measure .μ ∈M(X) on a space X and a measurable function .T : X → Y , we  
define the image measure or push-forward of . μ through T as a measure . T#μ

on Y characterized by 

. (T#μ)(A) := μ(T −1(A))

for every measurable set .A ⊂ Y . Equivalently, we can require 

. 

ˆ

Y

φ d(T#μ) :=
ˆ

X

φ ◦ T dμ

for every bounded and measurable function (or, by approximation, for every 
bounded and continuous function) .φ : Y → R. The case of sets can 
be recovered using .φ = 1A. Note that image measures pass to the limit 

through a.e. convergence (if .Tn → T .μ-a.e. then .(Tn)#μ
∗
⇀ T#μ) but not 

through weak convergence (for instance consider .X = [0, 2π ], .μ = L1, 
.Tn(x) = sin(nx) and .T (x) = 0). 

In the problem considered by Monge X and Y were subsets of Euclidean space, . μ
and . ν were absolutely continuous, and .c(x, y) = |x−y|was the Euclidean distance. 
Roughly speaking, this means that we have a collection of particles, we know how 
they are distributed (this is the measure . μ), and they have to be moved so that they 
will be arranged according to a new prescribed distribution . ν. The displacement has 
to be chosen so as to minimize the average displacement, and the map T describes 
the movement. 

Monge proved many properties of the optimal transport map T in the case he 
was interested in, but never cared to prove that such a map existed. In this sense, the 
problem remained unsolved until the reformulation that Leonid Kantorovich gave
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in 1942, [124]. His formulation consists in the problem 

.(K) min

{ˆ
X×Y

c dγ : γ ∈ Π(μ, ν)

}
. (4.11) 

Here .Π(μ, ν) is the set of the so-called transport plans, i.e. . Π(μ, ν) = {γ ∈
P(X × Y ) : (πx)#γ = μ, (πy)#γ = ν, } where . πx and . πy are the two projections 
of .X × Y onto the two factors X and Y . These probability measures over . X × Y

are an alternative way to describe the displacement of the particles of . μ: instead 
of saying, for each x, which is the destination .T (x) of the particle originally 
located at x, we say for each pair .(x, y) how many particles go from x to y. It  
is clear that this description allows for more general movements, since from a 
single point x particles can a priori move to different destinations y. If multiple 
destinations really occur, then this movement cannot be described through a map 
T . 

If we define the map .(id, T ) : X → X × Y by .(id, T )(x) := (x, T (x)), it  
can be easily checked that .γT := (id, T )#μ belongs to .Π(μ, ν) if and only if T 
pushes . μ onto . ν and the functional .

´
c dγT takes the form .

´
c(x, T (x)) dμ(x), thus 

generalizing Monge’s problem. 
Kantorovich’s generalized problem is much easier to handle than the original 

one proposed by Monge and the direct method of the calculus of variations proves 
that a minimum does exist (at least when c is l.s.c. and bounded from below). 
This is not the case for the original Monge problem, since in general we can 
only obtain weakly convergent minimizing sequences .Tn ⇀ T but the limit T 
could have a different image measure than . ν. Hence, the general strategy to prove 
the existence of an optimizer in the Monge problem consists in first considering 
the minimizer . γ of the Kantorovich problem and then trying to prove that it is 
actually of the form .(id, T )#μ. This is possible (see, for instance, [177, Chapter 
1]) under some conditions on . μ and on the cost c. Anyway, we will not consider 
this question here. Another important fact which makes the Kantorovich problem 
easier to consider is that it is convex (it is a linear optimization problem under 
linear constraints) and hence an important tool will be the theory of convex 
duality. 

As we already did in this chapter, we first find a formal dual problem, by means 
of an inf-sup exchange. With this aim, we first express the constraint . γ ∈ Π(μ, ν)

in the following way: notice that, if . γ is a non-negative measure on .X× Y , then we 
have 

. sup
φ ∈ C(X),

ψ ∈ C(Y )

ˆ

X

φdμ+
ˆ

Y

ψdν−
ˆ

X×Y

(φ(x)+ψ(y)) dγ =
{
0 if γ ∈ Π(μ, ν)

+∞ otherwise
.
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Hence, we can remove the constraints on . γ if we add the previous sup. Then, we 
look at the problem we get by interchanging the inf in . γ and the sup in .φ,ψ : 

. sup
φ,ψ

ˆ

X

φ dμ+
ˆ

Y

ψ dν + inf
γ

ˆ

X×Y

(c(x, y)− (φ(x)+ ψ(y))) dγ.

We can then re-write the inf in . γ as a constraint on . φ and . ψ , since we have 

. inf
γ≥0

ˆ

X×Y

(c(x, y)− (φ(x)+ ψ(y))) dγ =
{
0 if φ ⊕ ψ ≤ c,

−∞ otherwise
,

where .φ ⊕ ψ denotes the function .(x, y) I→ φ(x)+ ψ(y). 
The validity of the exchange of inf and sup can be proven with the techniques 

that we developed in Sects. 4.3 and 4.5. A precise proof can be found, for instance, 
in Sect. 1.6 of [177], based on the fact that it is (magically) possible to prove a 
compactness result for the functions . φ and . ψ when X and Y are compact and c is 
continuous (indeed, it is possible to restrict to functions sharing the same modulus 
of continuity as c). A different proof, based on the reduction to a particular case of 
the Fenchel–Rockafellar duality theorem, is presented in [195]. 

We then have the following dual optimization problem: 

. (D) max

{ˆ
X

φ dμ+
ˆ

Y

ψ dν : φ ∈ C(X),ψ ∈ C(Y ), φ ⊕ ψ ≤ c

}
.

(4.12) 

We now look in particular at the case where c is the Euclidean distance (i.e. 
.X = Y ⊂ R

d and .c(x, y) = |x − y|; for the case where the cost is a strictly 
convex function of .x−y we refer to Box 4.5 below). A first observation concerning 
the dual problem is that for any . φ one can choose the best possible (the largest) 
function . ψ which satisfies, together with . φ, the constraint .φ(x)+ψ(y) ≤ c(x, y). 
Such a function is given by 

. ψ(y) = inf
x
|x − y| − φ(x)

and it belongs to .Lip1. This means that we can restrict the maximization in the dual 
problem to .ψ ∈ Lip1 and, analogously, to .φ ∈ Lip1. Furthermore, if we now know 
.φ ∈ Lip1, there is an easy expression for the function .ψ(y) = infx |x − y| − φ(x), 
which is just .ψ = −φ (see Exercise 4.22). In this case the dual problem becomes 

.(D− dist) max

{ˆ
X

φ d(μ− ν) : φ ∈ Lip1(X)

}
.



188 4 Convexity and its Applications

Box 4.5 Good to Know!—The Brenier Theorem in Optimal Transport 

The use of primal-dual optimality conditions in optimal transport allows 
us to say that for any optimal . γ in (K) and any optimal pair .(φ,ψ) in (D) 
we have .φ(x) + ψ(y) = c(x, y) for all .(x, y) ∈ spt(γ ), while in the other 
points we have an inequality. When .∇φ(x) and .∇xc(x, y) exist, this implies 
.∇φ(x) = ∇xc(x, y). If  c is of the form .c(x, y) = h(x − y) for a function h 
which is strictly convex and . C1, this gives .y = x − ∇h∗(∇φ(x)) := T (x), 
which proves the existence of a transport map T . The only delicate assumption 
is the differentiability of . φ, but  . φ can be assumed to share the modulus of 
continuity of c, which is Lipschitz continuous on compact sets, hence . ∇φ

exists a.e. This applies to all costs of the form .h(z) = c|z|p for .p > 1, for  
instance. 

In the very particular case .h(z) = 1
2 |z|2 we have .∇h∗ = id. We then obtain 

.T (x) = x −∇φ(x) = ∇u(x), where .u(x) = 1
2 |x|2 − φ(x). Moreover, by the 

trick of choosing the best possible . φ given . ψ , we can assume that . φ is of the 
form 

. φ(x) = inf
y

1

2
|x − y|2 − ψ(y).

This can be written ad .u = v∗, where .v(y) = 1
2 |y|2 − ψ(y) and shows 

that the optimal transport map for the quadratic cost is the gradient of 
a convex function (see [45, 46]). This applies to the case where convex 
functions are differentiable .μ-a.e., in particular if . μ is absolutely continuous. 
Moreover, when . μ and . ν have densities f and g respectively, one can 
write the condition .T#μ = ν in the form of a change-of-variable formula 
involving the determinant of the Jacobian: . | det(DT (x))| = f (x)/g(T (x))

a.e. In the case .T = ∇u and u convex this becomes the Monge–Ampère 
equation 

. det(D2u) = f

g(∇u)
.

This is a second-order non-linear elliptic PDE which would need to be 
completed by some boundary conditions. What replaces the boundary 
conditions is the condition .∇u(spt f ) ⊂ spt g. 

Besides Brenier’s original papers [45, 46] we refer to [177, Chapter 1]. 

Another important aspect of the optimal transport problem when the cost is given 
by the Euclidean distance is its connection with minimal-flow problems. Let us
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concentrate on the case of a compact connected domain .𝛀 ⊂ R
d and consider 

.(B) min
{
||v|| : v ∈Md(𝛀); ∇ · v = μ− ν

}
, (4.13) 

where .||v|| denotes the mass of the vector measure . v and the divergence condition 
is to be read in the weak sense, with no-flux boundary conditions, i.e. . − ´ ∇φ·dv =´

φ d(μ − ν) for any .φ ∈ C1(𝛀). Indeed, if . 𝛀 is convex then the value of this 
problem is equal to that of the optimal transport problem with . c(x, y) = |x − y|
(if . 𝛀 is not convex then the Euclidean distance has to be replaced with the geodesic 
distance inside . 𝛀) 

This minimal flow problem was first proposed by Beckmann in [22], under the 
name of the continuous transportation model. This problem is actually strongly 
related to the Kantorovich problem with the distance cost .c(x, y) = |x − y|, as we  
will show in a while, although Beckmann was not aware of this, the two theories 
being developed essentially at the same time. 

In order to see the connection between the two problems, we start from a formal 
computation. We re-write the constraint on . v in (4.13) by means of the equality 

. sup
φ

ˆ

𝛀

−∇φ · dv+
ˆ

𝛀

φ d(μ− ν) =
{
0 if ∇ · v = μ− ν

+∞ otherwise
.

Hence one can write (4.13) as 

. min
v
||v|| + sup

φ

ˆ

𝛀

−∇φ · dv+
ˆ

𝛀

φ d(μ− ν)

= sup
φ

ˆ

𝛀

φ d(μ− ν)+ inf
v
||v|| −

ˆ

𝛀

∇φ · dv,

where inf and sup have been exchanged formally as in the previous computations. 
Then, one notices that we have 

. inf
v
||v|| −

ˆ

𝛀

∇φ · dv = inf
v

ˆ

𝛀

d|v|
(
1−∇φ · dv

d|v|
)
=

{
0 if |∇φ| ≤ 1

−∞ otherwise

and this leads to the dual formulation for (B), which gives 

. sup
φ : |∇φ|≤1

ˆ

𝛀

φ d(μ− ν).

Since this problem is exactly the same as (D-dist) (a consequence of the fact that 
.Lip1 functions are exactly those functions whose gradient is smaller than 1, when 
the domain is convex), this gives the equivalence between (B) and (K) (when we use 
.c(x, y) = |x − y| in (K)).
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The proof of the duality for (B) is proposed as an exercise (Exercise 4.23), in the 
more general case 

. (B−K) min

{ˆ
𝛀

K d|v| : v ∈Md(X); ∇ · v = μ− ν

}
,

where a given continuous weight .K : X → R+ is integrated against the total 
variation measure . |v|. In this case the dual is given by 

. sup

{ˆ
𝛀

φ d(μ− ν) : φ ∈ Lip, |∇φ| ≤ K

}

and the corresponding Kantorovich problem is the one with cost given by . c =
dK , the weighted distance with weight K (see Sect. 1.4.3), since the functions . φ
satisfying .|∇φ| ≤ K are exactly those which are .Lip1 w.r.t. this distance. 

As a transition to congestion problems, we will now see how to provide a new 
equivalent formulation of (K) and (B) with geodesic cost functions. 

We will use absolutely continuous curves .ω : [0, 1] I→ 𝛀. Given  . ω ∈
AC([0, 1];𝛀) and a continuous function . φ, we write 

. Lφ(ω) :=
ˆ 1

0
φ(ω(t))|ω'(t)| dt,

which coincides with the weighted length if .φ ≥ 0. We will write . C (the space 
of “curves”) for .AC([0, 1];𝛀), and consider probability measures Q on the space 
. C, which is endowed with the uniform convergence. Note that the Ascoli–Arzelà 
theorem guarantees that the sets .{ω ∈ C : Lip(ω) ≤ 𝓁} are compact for every . 𝓁. We  
will associate with Q two measures on . 𝛀. The first is a scalar one, called the traffic 
intensity and denoted by .iQ ∈M+(𝛀); it is defined (see [63]) by 

. 

ˆ

𝛀

φ diQ :=
ˆ

C

(ˆ 1

0
φ(ω(t))|ω'(t)| dt

)
dQ(ω) =

ˆ

C
Lφ(ω) dQ(ω),

for all .φ ∈ C(𝛀,R+). The interpretation is the following: for a subregion A, . iQ(A)

represents the total cumulated traffic in A induced by Q, i.e. for every path we 
compute “how long” it stays in A, and then we average on paths. 

We also associate with any traffic plan .Q ∈ P(C) a vector measure . vQ via 

.∀ξ ∈ C(𝛀;Rd)

ˆ

𝛀

ξ · dvQ :=
ˆ

C

(ˆ 1

0
ξ(ω(t)) · ω'(t) dt

)
dQ(ω).
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We will call . vQ the traffic flow induced by Q. Taking a gradient field .ξ = ∇φ in the 
previous definition yields 

. 

ˆ

𝛀

∇φ · dvQ =
ˆ

C
[φ(ω(1))− φ(ω(0))] dQ(ω) =

ˆ

𝛀

φ d((e1)#Q− (e0)#Q)

(. et denotes the evaluation map at time t , i.e. .et (ω) := ω(t)) so that, if we set 
.(e0)#Q = μ and .(e1)#Q = ν, we have  

. ∇ · vQ = μ− ν

in the usual sense with no-flux boundary conditions. 
It is easy to check that we have .|vQ| ≤ iQ, where .|vQ| is the total variation 

measure of the vector measure . vQ. This last inequality is in general not an equality, 
since the curves of Q could produce some cancellations. 

A re-formulation of the optimal transport problem with cost . dK can then be given 
in the following way: 

. min

{ˆ
C

LK(ω) dQ(ω) : (e0)#Q = μ, (e1)#Q = ν

}
.

It it then possible to show that, given an optimal Q, the measure .γ := (e0, e1)#Q is 
an optimal transport plan in (K) for the cost .c = dK , and the vector measure . vQ is 
optimal in (B-K). 

Yet, this language allows us to consider many other interesting situations, and in 
particular the case of congested traffic, where the weight function K is in general 
not given a priori but depends on the traffic intensity itself. We present here the 
extension to the continuous framework of the notion of Wardrop equilibrium (a 
very common definition of equilibrium in traffic problems, introduced in [196], and 
generally used on networks) proposed in [63]. 

Congestion effects are captured by the metric associated with Q via its traffic 
intensity: assume .iQ ⪡ Ld and set 

. KQ(x) := g(x, iQ(x))

for a given increasing function .g(x, .) : .R+ → R+. We then consider the weighted 
length .LKQ

, as well as the corresponding weighted distance .dKQ
, and define a 

Wardrop equilibrium as a measure .Q ∈ P(C) such that 

.Q({ω : LKQ
(ω) = dKQ

(ω(0), ω(1))}) = 1. (4.14) 

Of course this requires some technicalities, to take into account the case where . iQ
is not absolutely continuous or its density is not smooth enough. 

This is a typical situation in game theory, and a particular case of Nash 
equilibrium: a configuration where every agent makes a choice, has a cost depending
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on his own choice and on the others’ choices, and no agent will change his mind 
after knowing what the others chose. Here the choice of every agent consists of a 
trajectory . ω, the configuration of choices is described via a measure Q on the set 
of choices (since all agents are indistinguishable, we only care about how many of 
them made each choice), the cost which is paid is .LKQ

(ω), which depends on the 
global configuration of choices Q and, of course, on . ω, and we require that Q is 
concentrated on optimal trajectories, so that nobody will change their mind. 

Box 4.6 Important Notion—Nash Equilibria 

Definition Consider a game where several players .i = 1, . . . , n must choose 
a strategy among a set of possibilities . Si and assume that the each player tries 
to optimize (say, minimize) a result depending on what everybody chooses. 
More precisely, for every i we have a function .fi : S1 × · · · × Sn → R and 
we say that a configuration .(s1, . . . , sn) (where .si ∈ Si) is an equilibrium 
(a Nash equilibrium) if, for every i, the choice . si optimizes . Si ϶ s I→
fi(s1, . . . , si−1, s, si+1, . . . , sn) (i.e. . si is optimal for player i under the 
assumption that the other players freeze their choice). 

Nash equilibria need not exist in all situations, but Nash proved (via convex 
analysis and fixed point arguments) that they always exist when we consider 
the so-called mixed strategies. This means that we accept that every player, 
instead of choosing an element .si ∈ Si , only chooses a probability on . Si and 
then randomly picks a strategy according to the law he has chosen. 

The notion of Nash equilibrium, first introduced by J. Nash in [157, 158] in  
the case of a finite number of players, can be easily extended to a continuum 
of players where each one is negligible compared to the others (non-atomic 
games). Considering for simplicity the case of identical players, we have a 
common space S of possible strategies and we look for a measure .Q ∈ P(S). 
This measure induces a payoff function .fQ : S → R and we want the 
following condition to be satisfied: there exists a .C ∈ R such that . fQ(x) = C

for Q-a.e. x, and .fQ(x) ≥ C everywhere (if the players want to minimize the 
payoff . fQ, otherwise, if it has to be maximized, we impose .fQ(x) ≤ C), i.e. 
. fQ must be optimal Q-a.e. 

For all notions related to game theory we refer for instance to the classical 
book [162]. 

A typical problem in road traffic is to find a Wardrop equilibrium Q with 
prescribed transport plan .γ = (e0, e1)#Q (what is usually called an origin-
destination matrix in the engineering community, in the discrete case). Another 
possibility is to only prescribe its marginals .μ = (e0)#Q and .ν = (e1)#Q. More  
generally, we impose a constraint .(e0, e1)#Q ∈ 𝚪 ⊂ P(𝛀×𝛀). A way to find such 
equilibria is the following.
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Let us consider the (convex) variational problem 

.(W) min

{ˆ
𝛀

H(x, iQ(x)) dx : Q ∈ P(C), (e0, e1)#Q ∈ 𝚪

}
(4.15) 

where .H '(x, ·) = g(x, ·), .H(x, 0) = 0. Under some technical assumptions, the 
main result of [63] is that (W) admits at least one minimizer, and that such a 
minimizer is a Wardrop equilibrium (which is consistent with what proven in [23] 
in the discrete case on a network). Hence, the Wardop equilibrium problem is a 
potential game (see [148]) as one can find an equilibrium by minizing an overall 
functional. Moreover, .γQ := (e0, e1)#Q solves the optimization problem 

. min

{ˆ
𝛀×𝛀

dKQ
(x, y) dγ (x, y) : γ ∈ 𝚪

}
.

In particular, if . 𝚪 is a singleton, this last condition does not play any role (there 
is only one competitor) and we have the existence of a Wardrop equilibrium 
corresponding to any given transport plan . γ . If, on the contrary, .𝚪 = Π(μ, ν), 
then the second condition means that . γ solves a Monge–Kantorovich problem for a 
distance cost depending on Q itself, which is a new equilibrium condition. 

In the case where .𝚪 = Π(μ, ν) it is possible to prove that (W) is indeed 
equivalent to a variational divergence constrained problem à la  Beckmann, i.e. 

.(B− cong) min

{ˆ
𝛀

H(x, |v(x)|) dx : ∇ · v = μ− ν

}
, (4.16) 

which is a variational problem of the form of those studied in Sects. 4.3 and 4.4. It  
is then possible to prove that the optimizers of this problem are the vector fields of 
the form . vQ where Q solves (W). 

We now switch to optimal transport problems with other costs, and in particular 
.c(x, y) = |x − y|p. Since these costs do not satisfy the triangle inequality the dual 
formulation is more involved than that in (D-dist) and no Beckmann formulation 
exists.5 Instead, there exists a dynamic formulation, known as the Benamou–Brenier 
problem, [24]. We can indeed consider the optimization problem 

.(BBp) min

{ˆ 1

0

ˆ

𝛀

|vt |p dϱt dt : ∂tϱt +∇ · (ϱtvt ) = 0, ϱ0 = μ, ϱ1 = ν

}

5 We  mention anyway [120] which reformulates optimal transport problems with costs which are 
convex but not 1-homogeneous in .x − y into transport costs with 1-homogeneous costs, for which 
a Beckmann formulation exists, after adding a time variable. 
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which consists in minimizing the integral in time and space of a p-variant of the 
kinetic energy among solutions of the continuity equation with prescribed initial 
and final data. 

Box 4.7 Good to Know!—The Continuity Equation in Mathematical 
Physics 

Assume that a family of particles moves according to a velocity field . v, 
depending on time and space: .v(t, x) stands for the velocity at time t of any 
particle which is located at point x at such an instant of time. The position of 
the particle originally located at x will be given by the solution of the ODE 

.

{
y'x(t) = vt (yx(t))

yx(0) = x.
(4.17) 

We then define the map . Yt through .Yt (x) = yx(t), and, if we are given the 
distribution of particles at .t = 0, we look for the measure .ϱt := (Yt )#ϱ0. We  
can then prove that . ϱt and . vt solve together the so-called continuity equation 

. ∂tϱt +∇ · (ϱtvt ) = 0

(as usual, with no-flux boundary condition on . ∂𝛀 if we assume that we have 
.yx(t) ∈ 𝛀 for all .(t, x)). For the use of this equation in optimal transport 
theory and related topics we refer to [177, Chapter 4]. 

It is possible to prove that the minimal value in (BB. p) equals that of (K) with 
cost .|x − y|p and that the optimal solutions of (BB. p) are obtained by taking an 
optimal transport map T for this same cost in the Monge problem, defining . Tt :=
(1−t)id+tT , and setting .ϱt = (Tt )#μ and .vt = (T −id)◦(Tt )

−1. A corresponding 
formula may be given using the optimizers of (K) if they are not given by transport 
maps. 

Concerning Problem (BB. p), we observe that it is not a convex optimization 
problem in the variables .(ρ, v), because of the product term .ρ|v|p in the functional 
and the product . ρv in the differential constraint. But if one changes variables, 
defining .w = ρv, then using the variables .(ρ,w), the constraint becomes linear 
and the functional convex. The important point for convexity is that the function 

.R× R
d ϶ (s, w) I→

⎧⎪⎪⎨
⎪⎪⎩

|w|p
psp−1 if s > 0,

0 if (s, w) = (0, 0),

+∞ otherwise

(4.18)
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is convex (and it is actually obtained as .sup{as + b · w : a + 1
p' |b|p

' ≤ 0}; see  
Exercise 4.8). 

Some analogies and some differences may be underlined between the optimal 
flow formulation à la Beckmann of the OT problem with .p = 1 and the dynamic 
formulation à la Benamou–Brenier of the case .p > 1. Both involve differential 
constraints on the divergence, and actually we can also look at the continuity 
equation as a time-space constraint on .∇t,x · (ρ,w) making the analogy even 
stronger. Yet, there is no time in the Beckmann problem, and even when time 
appears in the Lagrangian formulation with measures Q on curves it is a fictitious 
time parameter since everything is invariant under reparameterization. On the other 
hand, time plays an important role in the case .p > 1. This is also the reason 
why the models that we will present in a while, for congestion problems where the 
congestion effect is evaluated at each time, will be so close to the Benamou–Brenier 
problem. 

The models that we want to introduce are known as Mean Field Games (MFG 
for short). This theory was introduced around 2006 at the same time by Lasry and 
Lions, [132–134], and by Caines, Huang and Malhamé, [117], in order to describe 
the evolution of a population in a game with a continuum of players where collective 
effect of the players’ presence on each player recalls what is called in physics a mean 
field. These games are very particular examples of differential games: typically, in a 
differential game the role of the time variable is crucial since if a player decides to 
deviate from a given strategy (a notion which is at the basis of the Nash equilibrium 
definition), the others can react to this change, so that the choice of a strategy 
is usually not defined as the choice of a path, but of a function selecting a path 
according to the information the player has at each given time. Yet, when each player 
is considered as negligible, any deviation he/she performs will have no effect on the 
other players, so that they will not react. In this way we have a static game where 
the space of strategies is a space of paths. 

We can give a Lagrangian description of the equilibria by using again measures 
on paths, or an Eulerian description through a system of PDEs, where the key 
ingredients are the density . ρ and the value function . ϕ of the control problem solved 
by each player, the velocity .v(t, x) of the agents at .(t, x) being, by optimality, related 
to the gradient .∇ϕ(t, x). For a general overview of MFG theory, see the lecture notes 
by P. Cardaliaguet [60], based on the course by P.-L. Lions at Collège de France 
[141]. 

Let us describe in a more precise way the simplest MFG models. We look at a 
population of agents moving inside a compact connected domain . 𝛀 and assume that 
every agent chooses his own trajectory . ω solving a minimization problem 

. min
ˆ T

0

( |ω'(t)|2
2

+ h[ϱt ](ω(t))

)
dt +Ψ(ω(T )),

with given initial point .x(0). Here . Ψ stands for the preferences of the agents in terms 
of their final position, and .h[ϱ](x) is the cost of moving around x: the mean-field
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effect is modeled through the fact that the function h depends on the density . ϱt of 
the agents at time t . The dependence of the cost on the velocity . ω' could of course 
be more general than a simple quadratic function. 

For now, we consider the evolution of the density . ϱt as an input, i.e. we assume 
that agents know it. Hence, we can assume the function h to be given, and we want 
to study the above optimization problem. The main tool to analyze it, coming from 
optimal control theory, is the value function . ϕ (see Sect. 1.7): we know that it solves 
the Hamilton–Jacobi equation .−∂tϕ + 1

2 |∇ϕ|2 = h with final datum . ϕ(T , x) =
Ψ(x) and that the optimal trajectories .ω(t) can be computed using . ϕ, since they are 
the solutions of 

. ω'(t) = −∇ϕ(t, ω(t)).

This means that the velocity field which advects the particles when each agent 
follows the optimal curves will be given by .v = −∇ϕ. If we want to find an 
equilibrium, the density . ϱt that we fixed at the beginning should also coincide with 
that which is obtained by following this optimal velocity field . v and so . ϱ should 
evolve according to the continuity equation with such a velocity field. This means 
solving the following coupled (HJ)+(CE) system: 

.

⎧⎪⎪⎨
⎪⎪⎩
−∂tϕ + |∇ϕ|2

2 = h[ρ]
∂tρ −∇ · (ρ∇ϕ) = 0,

ϕ(T , x) = Ψ(x), ρ(0, x) = ρ0(x).

(4.19) 

The above system is a PDE, and Eulerian, description of the equilibrium we 
were looking for. In Lagrangian terms we could express the equilibrium condition 
in a similar way to what we did for Wardrop equilibria. Consider again the space of 
curves . C and define the kinetic energy functional .K : C→ R given by 

. K(ω) = 1

2

ˆ T

0
|ω'|2(t) dt.

For notational simplicity, we write .KΨ for the kinetic energy augmented by a final 
cost: .KΨ(ω) := K(ω)+Ψ(ω(T )); similarly, we denote by .KΨ,h the same quantity 
when also a running cost h is included: .KΨ,h(ω) := KΨ(ω)+ ´ T

0 h(t, ω(t)) dt . 
We now define an MFG equilibrium as a measure .Q ∈ P(C) such that Q-a.e. 

the curve . ω minimizes .KΨ,h with given initial point when .h(t, ·) := h[(et )#Q]. 
Whenever .(x, ϱ) I→ h[ϱ](x) has some continuity properties it is possible to 
prove the existence of an equilibrium by the Kakutani fixed point method (see, for 
instance, [107] or [144], where such a theorem is used to prove the existence of an 
MFG equilibrium in a slightly different setting). 

On the other hand, the assumption that h is continuous does not cover a very 
natural case, which is the local one, where .h[ρ](x) directly depends on the density 
of . ρ at the point x. We can focus for instance on the case .h[ρ](x) = V (x)+g(ρ(x)),
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where we identify the measure . ρ with its density w.r.t. the Lebesgue measure on . 𝛀. 
The function .V : 𝛀 → R is a potential taking into account different local costs of 
different points in . 𝛀 and the function .g : R+ → R is assumed to be nondecreasing 
and models congestion effects. 

In this case it is not possible to prove the existence of an equilibrium using a 
fixed point theorem, but luckily there exists a variational formulation. Indeed, we 
can consider all the possible population evolutions, i.e. pairs .(ρ, v) satisfying . ∂tρ+
∇ · (ρv) = 0, and we minimize the following energy 

. A(ρ, v) :=
ˆ T

0

ˆ

𝛀

(
1

2
ρt |vt |2 + ρtV +G(ρt )

)
dx dt +

ˆ

𝛀

Ψ dρT ,

where G is the anti-derivative of g, i.e. .G'(s) = g(s) for .s ∈ R
+ with .G(0) = 0. 

We fix by convention .G(s) = +∞ for .ρ < 0. Note in particular that G is convex, 
as its derivative is the nondecreasing function g. 

The above minimization problem recalls, in particular when .V = 0, the  
Benamou–Brenier dynamic formulation for optimal transport. The main difference 
with the Benamou–Brenier problem is that here we add to the kinetic energy a 
congestion cost G; also note that usually in optimal transport the target measure . ρT

is fixed, and here it is part of the optimization (but this is not a crucial difference). 
As is often the case in congestion games, the quantity .A(ρ, v) is not the total 

cost for all the agents. Indeed, the term .
´ ´ 1

2ρ|v|2 is exactly the total kinetic energy, 
the last term .

´
Ψ dρT is the total final cost, and the cost .

´
V dρt exactly coincides 

with the total cost induced by the potential V ; yet, the term .
´

G(ρ) is not the total 
congestion cost, which should instead be .

´
ρg(ρ). This means that the equilibrium 

minimizes an overall energy (we have what is called a potential game), but not the 
total cost; this gives rise to the so-called price of anarchy. 

In order to convince the reader of the connection between the minimization of 
.A(ρ, v) and the equilibrium system (4.19), we will use a formal argument from 
convex duality. A rigorous proof of duality would, by the way, require the problem 
to be rewritten as a convex optimization problem, with a change of variables, using 
again .w = ρv. 

We will formally produce a dual problem to .minA via a min-max exchange 
procedure. First, we write the constraint .∂tρ +∇ · (ρv) = 0 in weak form, i.e. 

.

ˆ T

0

ˆ

𝛀

(ρ∂tφ + ∇φ · ρv) dx dt +
ˆ

𝛀

φ0 dρ0 −
ˆ

𝛀

dφT ρT = 0 (4.20) 

for every function .φ ∈ C1([0, T ] × 𝛀) (note that we do not impose conditions on 
the values of . φ on . ∂𝛀, hence this is equivalent to completing the continuity equation 
with a no-flux boundary condition .ρv · n = 0).
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Using (4.20), we can re-write our problem as 

. min
ρ,v
A(ρ, v)+ sup

φ

ˆ T

0

ˆ

𝛀

(ρ∂tφ +∇φ · ρv) dx dt +
ˆ

𝛀

φ0 dρ0 −
ˆ

𝛀

dφT ρT ,

since the sup in . φ takes the value 0 if the constraint is satisfied and .+∞ if not. We 
now switch the inf and the sup and look at the maximization over . φ of 

. 

ˆ

𝛀

φ0dρ0 + inf
ρ, v

ˆ

𝛀

(Ψ − φT )dρT

+
ˆ T

0

ˆ

𝛀

(
1

2
ρt |vt |2 + ρtV +G(ρt )+ ρ∂tφ + ∇φ · ρv

)
dxdt.

First, we minimize w.r.t. . v, thus obtaining .v = −∇φ (on .{ρt > 0}) and we replace 
.
1
2ρ|v|2 +∇φ · ρv with .− 1

2ρ|∇φ|2. Then we get, in the double integral, 

. inf
ρ

{
G(ρ)− ρ(−V − ∂tφ + 1

2
|∇φ|2)

}
= − sup

ρ
{pρ −G(ρ)} = −G∗(p),

where we set .p := −V −∂tφ+ 1
2 |∇φ|2 and . G∗ is defined as the Legendre transform 

ofG. Then, we observe that the minimization in the final cost simply gives as a result 
0 if .Ψ ≥ φT (since the minimization is only performed among non-negative . ρT ) and 
.−∞ otherwise. Hence we obtain a dual problem of the form 

. sup

{
−B(φ, p) :=

ˆ

𝛀

φ0 dρ0 −
ˆ T

0

ˆ

𝛀

G∗(p) dx dt : φT ≤ Ψ,

−∂tφ + 1
2 |∇φ|2 = V + p

}
.

Note that the condition .G(s) = +∞ for .s < 0 implies .G∗(p) = 0 for .p ≤ 0. This  
in particular means that in the above maximization problem one can assume . p ≥ 0
(indeed, replacing p with . p+ does not change the . G∗ part, but improves the value 
of . φ0, considered as a function depending on p). The choice of using two variables 
.(φ, p) connected by a PDE constraint instead of only . φ is purely conventional, and 
it allows for a dual problem which has a sort of symmetry w.r.t. the primal one. 

The arguments from convex duality developed in Sect. 4.2.4 would allow 
us to say that optimal pairs .(ρ, v) are obtained by looking at saddle points 
.((ρ, v), (φ, p)), provided that there is no duality gap between the primal and 
the dual problems, and that both problems admit a solution. This would mean 
that, whenever .(ρ, v) minimizes . A, then there exists a solution .(φ, p) of the dual 
problem, such that 

• . v minimizes . 12ρ|v|2 + ∇φ · ρv, i.e. .v = −∇φ .ρ-a.e. This gives (CE): . ∂tρ − ∇ ·
(ρ∇φ) = 0. 

• . ρ minimizes .G(ρ) − pρ, i.e. .g(ρ) = p if .ρ > 0 or .g(ρ) ≥ p if .ρ = 0 (in 
particular, when we have .g(0) = 0, we can write .g(ρ) = p+); this gives (HJ):
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.−∂tφ + 1
2 |∇φ|2 = V + g(ρ) on .{ρ > 0} (as the reader can see, there are some 

subtleties where the mass . ρ vanishes). 
• . ρT minimizes .(Ψ − φT )ρT among .ρT ≥ 0. This is not a condition on . ρT , 

but rather on . φT : we must have  .φT = Ψ on .{ρT > 0}, otherwise there is no 
minimizer. This gives the final condition in (HJ). 

This provides an informal justification for the equivalence between the equilibrium 
and the global optimization. It is only informal because we have not discussed if we 
have duality gaps and whether or not the maximization in .(φ, p) admits a solution. 
Moreover, once these issues are clarified, we will still only get a very weak solution 
to the coupled system (CE)+(HJ). Nothing guarantees that this solution actually 
encodes the individual minimization problem of each agent. 

It is also possible to provide a Lagrangian version of the variational problem, 
which then has the following form: 

.min

⎧⎨
⎩

J (Q) :=
ˆ

C
K dQ+

ˆ T

0
G((et )#Q) dt +

ˆ

𝛀

Ψ d(eT )#Q,

Q ∈ P(C), (e0)#Q = ρ0

⎫⎬
⎭ , (4.21) 

where .G : P(𝛀)→ R is defined by 

. G(ρ) =
{´

𝛀 (V (x)ρ(x)+G(ρ(x))) dx if ρ ⪡ Ld ,

+∞ otherwise.

The functional . G is a typical local functional defined on measures (see [35] and 
Sect. 3.3). It is lower semicontinuous w.r.t. the weak-* convergence of probability 
measures provided .lims→∞G(s)/s = +∞ (which is the same as . lims→∞ g(s) =
+∞). 

In the Lagrangian language, it is possible to prove that the optimal . Q̄ satisfies 
the following optimality conditions: setting .ρt = (et )#Q̄ and . h(t, x) = g(ρt (x))

(identifying as usual measures and densities), if we take another competitor . Q̃, we  
have 

. Jh(Q̃) ≥ Jh(Q̄),

where . Jh is the linear functional 

.Jh(Q) =
ˆ

C
K dQ+

ˆ T

0

ˆ

𝛀

h(t, x)(et )#Q+
ˆ

𝛀

Ψd(eT )#Q.
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Since we only consider absolutely continuous .(et )#Q, the functional . Jh

is well-defined for any measurable .h ≥ 0. Formally, we can also write 
.
´ T

0

´
𝛀

h(t, x)(et )#Q = ´C dQ
´ T

0 h(t, γ (t)) dt and hence we get that 

. Q I→
ˆ

C
dQ(γ )

(
K(γ )+

ˆ T

0
h(t, γ (t)) dt +Ψ(γ (T ))

)

is minimal for .Q = Q̄. This corresponds to saying that . Q̄ is concentrated on curves 
minimizing .Kψ,h, hence it is a Lagrangian MFG equilibrium. Unfortunately, this 
argument is not rigorous at all because of two main difficulties: first, integrating 
h on a path has no meaning if h is a function which is only defined a.e.; second, 
in order to prove that . Q̄ is concentrated on optimal curves one needs to compare 
it to a competitor . Q̃ which is indeed concentrated on optimal curves, but at the 
same time we need .(et )#Q̃ ⪡ Ld , and these two conditions can be incompatible 
with each other. These difficulties could be fixed by a density argument if h is 
continuous; another, more technical approach requires .h ∈ L∞ by choosing a 
precise representative. This is explained for instance in [178] and is based on 
techniques from incompressible fluid mechanics (see [13]). In any case, it becomes 
crucial to prove regularity results on h or, equivalently, on . ρ. 

A general .L∞ regularity result is presented in [135] and is based on optimal 
transport techniques. Here we want, instead, to briefly mention that this question can 
be attacked using the techniques for regularity via convex duality of Sect. 4.4. By the  
way, the first use of duality-based methods as a way to prove regularity can indeed 
be found in time-dependent problems, in [47] (later improved by [12]), in the study 
of variational models for the incompressible Euler equation. This was later adapted 
in [61] and [171] to density-constrained or density-penalized mean-field games. 

We can then come back to the primal and the dual problems in variational MFG 
and do our usual computation taking arbitrary .(ρ, v) and .(φ, p) admissible in the 
primal and dual problem. We compute 

. A(ρ, v)+ B(φ, p) =
ˆ

𝛀

(Ψ − φT )dρT

+
ˆ T

0

ˆ

𝛀

(
G(ρ)+G∗(p)− pρ

)
dxdt

+1

2

ˆ T

0

ˆ

𝛀

|v+∇φ|2dρ. (4.22) 

Note that we have .(G(ρ)+G∗(p)− pρ) ≥ λ
2 |ρ − g−1(p)|2 where .g = G' and 

.λ = infG''. We assume .λ > 0 and, for simplicity, .𝛀 = T
d . Using  

.A(ρ, v)+ B(φ, p) ≥ c

ˆ T

0

ˆ

𝛀

|ρ − g−1(p)|2 dx dt
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we can deduce, with the same technique as in Sect. 4.4, .ρ ∈ H 1 (we can get both 
regularity in space and local in time). By the way, using the last term in (4.22), we  
can also get .

´´
ρ|D2φ|2 <∞. 

4.7 Exercises 

Exercise 4.1 Assume that a functional F : W 1,p (𝛀) → R ∪ {+∞}  of the form 
F(u)  = 

´
𝛀

L(x, u(x), ∇u(x)) dx is convex and that the function L : 𝛀×R×R
d → 

R is continuous in all variables and C2 in its last variable. Prove that L(x, s, ·) is 
convex for every (x, s). 

Exercise 4.2 Given a function f : X → R ∪ {+∞}  and a function h : X → R+, 
prove that we have (f + εh)∗ → f ∗ in the sense of pointwise convergence, as 
ε → 0+. 

Exercise 4.3 Prove that the function f : R+ → R∪{+∞} given by f (x)  = x log x 
admits a unique extension to R which is convex and l.s.c., and compute its Legendre 
transform. 

Exercise 4.4 If f : RN → R is given by f (x)  = |x| log |x|, compute f ∗ and f ∗∗. 

Exercise 4.5 Given p, r ∈ (1,∞), let ||·||r be the norm on RN defined via ||x||r := 
(
∑

i |xi |r )1/r , and f the function given by f (x)  = 1 
p
||x||p 

r . Compute f ∗. 

Exercise 4.6 Let f : RN → R be convex. Prove that f is C1,1 if and only if f ∗ is 
elliptic (meaning that there exists a c >  0 such that f (x)  − c|x|2 is convex). 
Exercise 4.7 Prove that a convex and l.s.c. function f : X → R ∪ {+∞}  is 
1-homogeneous (i.e. f (tx)  = tf (x) for every t ≥ 0 and every x ∈ X) if and 
only if f ∗ takes its values in {0,+∞}. 
Exercise 4.8 Let f : RN → R be a finite-valued superlinear convex function. 
Prove that the function h : RN × R → R ∪ {+∞}  defined via 

. h(x, t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tf
(

x
t

)
if t > 0,

0 if t = 0, x = 0,

+∞ if t = 0, x /= 0,

+∞ if t < 0

is convex and l.s.c. The function h is called the perspective function of f . 

Exercise 4.9 Given f : X→ R∪{+∞}  and ξ0 ∈ X', define fξ0 : X→ R∪{+∞}  
via fξ0(x) := f (x)  − 〈ξ0, x〉. Prove that we have f ∗ξ0 (ξ) = f ∗(ξ + ξ0) for every ξ . 

Exercise 4.10 In dimension N = 1, prove the equivalence between these two 
facts:
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1. f ∗ is strictly convex; 
2. f satisfies the following property: it is C1 in the interior 𝛀 of its domain, and it 

coincides with x I→ supx'∈𝛀 f (x') + ∇f (x') · (x − x'). 

Exercise 4.11 LetX be a normed space with the following property: all convex and 
l.s.c. functions f such that ∂f is surjective are superlinear. Prove that X' has this 
other property: all convex and weakly-* l.s.c. functions are bounded on bounded 
sets. 

Exercise 4.12 Discuss what does not work in the following (wrong) counter-
example to the statement of Exercise 4.11. Consider X = L2(𝛀) and F(u)  :=´ |∇u|2 (a functional set to +∞ if u /∈ H 1(𝛀)). This functional is not superlinear 
because it vanishes on constant functions, but for every u ∈ H 2(𝛀) we do have 
∂F (u) = {−∆u}, which shows that any L2 function (the elements of the dual of the 
Hilbert space on which the functional is defined) is a subgradient, so the subgradient 
is surjective. 

Also discuss what would change if we took F(u)  := 
´ |∇u|2 if u ∈ H 1 

0 (𝛀) (and 
F = +∞  outside of H 1 

0 (𝛀)). 

Exercise 4.13 Given a smooth open and connected domain 𝛀 ⊂ Rd , and f ∈ 
L2(𝛀), set  Hdiv(𝛀) = {v ∈ L2(𝛀; Rd ) : ∇  ·  v ∈ L2(𝛀)} and consider the 
minimization problems 

. (P ) := min

{
F(u) :=

ˆ

𝛀

(
1

2
|∇u|2 + 1

2
|u|2 + f (x)u

)
dx : u ∈ H 1(𝛀)

}

(D) := min

{
G(v) :=

ˆ

𝛀

(
1

2
|v|2 + 1

2
|∇ · v− f |2

)
dx : v ∈ Hdiv(𝛀)

}
,

1. Prove that (P ) admits a unique solution; 
2. Prove min(P )+ inf(D) ≥ 0; 
3. Prove that there exist v ∈ Hdiv(𝛀) and u ∈ H 1(𝛀) such that F(u)+ G(v) = 0; 
4. Deduce that min(D) is attained and min(P )+ inf(D) = 0; 
5. Justify by a formal inf-sup exchange the duality min F(u)  = sup−G(v); 
6. Prove min F(u)  = sup−G(v) via a duality proof based on convex analysis. 

Exercise 4.14 Consider the problem 

. min

{
A(v) :=

ˆ

Td

H(v(x)) dx : v ∈ L2,∇ · v = f

}

for a function H which is elliptic. Prove that the problem has a solution, provided 
there exists at least an admissible v with A(v) <  +∞. Prove that, if f is an H 1 

function with zero mean, then the optimal v is also H 1.
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Exercise 4.15 Let H : Rd → R be given by H(z)  = √
1+ |z|2 + |z|4 and 𝛀 be 

the d-dimensional torus. Consider the equation 

. ∇ ·
(

(1+ 2|∇u|2)∇u

H(∇u)

)
= f.

1. Given f ∈ H−1(𝛀) such that 〈f, 1〉 =  0 (i.e. f has zero average), prove that 
there exists a solution u ∈ H 1(𝛀) to this equation, which is unique up to additive 
constants. 

2. If f ∈ H 1, prove that the solution u is H 2. 
3. What can we say if f ∈ L2? 

Exercise 4.16 Let f ∈ L1([0, 1]) and F ∈ W 1,1([0, 1]) be such that F ' = f and 
F(0) = F(1) = 0 (in particular, f has zero mean). Let 1 < p  <  ∞ be a given  
exponent, and q be its conjugate exponent. Prove 

. min

{ˆ 1

0

1

p
|u'(t)|p dt +

ˆ 1

0
f (t)u(t) dt : u ∈ W 1,p([0, 1])

}
= − 1

q
||F ||qLq([0,1]).

Exercise 4.17 Let H : Rd → R be given by 

. H(v) = (4|v| + 1)3/2 − 6|v| − 1

12
.

1. Prove that H is C1 and strictly convex. Is it C1,1? Is it elliptic? 
2. Compute H ∗. Is it  C1, strictly convex, C1,1 and/or elliptic? 
3. Consider the problem min{´ H(v) : ∇  · v = f } (on the d-dimensional torus, 

for simplicity) and find its dual. 
4. Supposing f ∈ L2, prove that the optimal u in the dual problem is H 2. 
5. Under the same assumption, prove that the optimal v in the primal problem 

belongs to W 1,p for every p <  2 if  d = 2, for p = d/(d − 1) if 3 ≤ d ≤ 5, and 
for p = 6/5 if  d ≥ 3. 

Exercise 4.18 Given a function H : Rd → R which is both elliptic and C1,1 (i.e. 
there are two positive constants c0, c1 such that c0I ≤ D2H ≤ c1I), let u ∈ H 1 

loc(𝛀) 
be a weak solution in 𝛀 of ∇ · (∇H(∇u)

) = 0. 

1. Prove that we have u ∈ H 2 
loc. 

2. Prove the same result for solutions of ∇ · (∇H(∇u)
) = f , f ∈ L2 

loc. 
3. If 𝛀 is the torus, prove that the same result is global and only uses the lower 

bound on D2H .
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Exercise 4.19 Given a function  g ∈ L2([0, L]), consider the problem 

. min

{ˆ L

0

1

2
|u(t)− g(t)|2 dt : u(0) = u(L) = 0, u ∈ Lip([0, L]), |u'| ≤ 1 a.e.

}
.

1. Prove that this problem admits a solution. 
2. Prove that the solution is unique. 
3. Find the optimal solution in the case where g is the constant function g = 1 in  

terms of the value of L, distinguishing L >  2 and L ≤ 2. 
4. Computing the value of 

. sup

{
−
ˆ L

0
(u(t)z'(t)+ |z(t)|) dt : z ∈ H 1([0, L])

}

find the dual of the previous problem by means of a formal inf-sup exchange. 
5. Assuming that the equality inf sup = sup inf in the duality is satisfied, write the 

necessary and sufficient optimality conditions for the solutions of the primal and 
dual problem. Check that these conditions are satisfied by the solution found in 
the case g = 1. 

6. Prove the equality inf sup = sup inf. 

Exercise 4.20 Given u0 ∈ C1([0, 1]) consider the problem 

. min

{ˆ 1

0

1

2
|u(t)− u0(t)|2 dt : u' ≥ 0

}
,

which consists in the projection of u0 onto the set of monotone increasing functions 
(where the condition u' ≥ 0 is intended in the weak sense). 

1. Prove that this problem admits a unique solution. 
2. Write the dual problem 
3. Prove that the solution is actually the following: define U0 through U '0 = u0, set  

U1 := (U0)
∗∗ to be the largest convex and l.s.c. function smaller than U0, take  

u = U '1. 

Exercise 4.21 Consider the optimal control problem (1.20): write the constraint 
y' = f (t,  y;α) as a sup over vector test functions p and, via a formal inf-sup 
inversion as is usually done in convex duality, formally recover the Pontryagin 
Maximum Principle. 

Exercise 4.22 Given a space X let us fix a cost function c : X × X → R+ which 
is symmetric (c(x, y) = c(y, x) for all x, y) and satisfies the triangle inequality 
c(x, y) ≤ c(x, z) + c(z, y), as well as  c(x, x) = 0. For ψ : X → R define ψc : 
X → R via ψc (x) := infy c(x, y) − ψ(y). Prove that a function φ is of the form
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ψc if and only if it satisfies |φ(x)− φ(y)| ≤  c(x, y) for all x, y. Also prove that for 
functions satisfying this condition we have φc = −φ. 

Exercise 4.23 Prove the equality 

. min

{ˆ
𝛀

K d|v| : v ∈Md(𝛀); ∇ · v = μ− ν

}

= max

{ˆ
𝛀

φ d(μ− ν) : |∇φ| ≤ K

}

using the duality methods inspired by those developed in Sect. 4.3. 

Hints 

Hint to Exercise 4.1 If F is convex, then it is weakly l.s.c. 

Hint to Exercise 4.2 Prove that the limit is actually a sup and do a sup-sup 
exchange. 

Hint to Exercise 4.3 The only extension takes the value +∞ on (−∞, 0) and 
f ∗(y) = ey−1. 

Hint to Exercise 4.4 The function f is no longer convex, and f ∗(y) = e|y|−1. 

Hint to Exercise 4.5 Check that we have f ∗(y) = 1 
p' ||y||p

'
r ' . 

Hint to Exercise 4.6 For elliptic functions f we have an improved monotonicity of 
∂f , and, applying this to f ∗, if we assume it to be elliptic, we obtain c|ξ − ξ0|2 ≤ 
(ξ − ξ0) · (x − x0) whenever x ∈ ∂f ∗(ξ) and x0 ∈ ∂f ∗(ξ0). This implies that f 
is C1 and ∇f is c−1-Lipschitz. For the converse implication, we want to prove the 
inequality f ∗(ξ) ≥ f ∗(ξ0)+ x0 · (ξ − ξ0)+ 1 

2L |ξ − ξ0|2, where L = Lip(∇f )  and 
x0 ∈ ∂f ∗(ξ0). To prove this, first consider minξ f ∗(ξ) − f ∗(ξ0) − x0 · (ξ − ξ0) +

1 
2L+ε

|ξ − ξ0|2 + δ|ξ − ξ0|4 for ε, δ > 0, and prove that the minimum is attained at 
ξ = ξ0. 

Hint to Exercise 4.7 When f is 1-homogeneous, use f ∗(y) = supt>0,x(tx) · y − 
f (tx)  = supt tf ∗(y). 

Hint to Exercise 4.8 Consider supa,b : a+f ∗(b)≤0 at + b · x. 
Hint to Exercise 4.9 Use the definition of f ∗ and a change of variables. 

Hint to Exercise 4.10 Use Point 3. of Proposition 4.23.
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Hint to Exercise 4.11 Use the fact that the superlinearity of f is equivalent to the 
boundedness of f ∗ on each ball, and that the surjectivity of ∂f is equivalent to 
∂f ∗(ξ) /= ∅  for every ξ ∈ X'. 
Hint to Exercise 4.12 Even for smooth functions it is not true that we have F(v)  ≥ 
F(u)+´ (−∆u)(v−u) because of boundary terms. Taking into account these terms, 
the subdifferentials of F always have zero-mean. 

Hint to Exercise 4.13 In point 3. use v = ∇u where u solves (P). 

Hint to Exercise 4.14 Use the results on regularity via duality, after proving that we 
can use j (v)  = v. 

Hint to Exercise 4.15 Note that the equation is just ∇ ·  (∇H(∇u)) = f and 
associate with it a variational problem. 

Hint to Exercise 4.16 Use the duality of Sect. 4.3 in 1D, where only one vector field 
v = F is admissible. 

Hint to Exercise 4.17 H is not elliptic (since it does not grow as |v|2) but  C1,1, 
while H ∗ is elliptic and not C1,1. 

Hint to Exercise 4.18 Use the regularity via duality and adapt the case of the 
Laplacian when f ∈ L2. 

Hint to Exercise 4.19 The sup in the last point gives the constraint |u'| ≤  1. The 
solution in point 3. is given by u(t) = min{t, L − t, 1}. 
Hint to Exercise 4.20 The dual is maxϕ∈H 1 

0 ,ϕ≥0−
1 
2 

´ |ϕ'|2 + ´ ϕ'u0. Use the func-
tion ϕ = U0 − U1. 

Hint to Exercise 4.21 Write miny,α supp 
´ 

L(t, y, α) − p' · y + p · f (t,  y,  α). 

Hint to Exercise 4.22 When φ satisfies |φ(x)−φ(y)| ≤  c(x, y), use this inequality 
to obtain φc ≥ −φ (the opposite inequality is trivial). 

Hint to Exercise 4.23 Consider F(w) := max{´ φ d(μ− ν) : |∇φ + w| ≤  K}.



Chapter 5 
Hölder Regularity 

This chapter presents some classical results from the regularity theory of uniformly 
elliptic PDEs and in particular those results related to Hölder regularity (i.e. proving 
that the weak solutions of some elliptic PDEs, and/or their derivatives, belong to 
.C0,α). It is a priori less variational in spirit than the rest of the book, since it concerns 
solutions of some PDEs, which may or may not be obtained as minimizers of some 
variational problems, but its connections with the calculus of variations are crucial. 
In particular, the whole modern approach to the calculus of variations consists 
in relaxing the problems to large functional spaces, where compactness results 
are available, but where functions are not smooth enough to provide a “classical” 
formulation of the problem: it is then important to be able to come back, at least in 
some cases, to classical solutions, i.e. to prove that the solution of a minimization 
problem in .H 1 is actually . C1 (or . C1,α , or .C∞). Moreover, the very theory that we 
present in this chapter is the core argument in the solution of Hilbert’s 19th problem, 
which is a problem in the calculus of variations: is it true that the solution of smooth 
variational problems are smooth functions? A historical discussion of this problem 
will be presented, after Sects. 5.1 and 5.2. These two sections are devoted to the 
classical Schauder estimates (prove that the solution gains in regularity compared 
to the data, if the data are themselves in .Ck,α; these sections essentially follow 
what is done in many classical books on the topic, such as [95, 97]). We then 
move to Sect. 5.4 which is devoted to the most difficult case: proving at least some 
regularity without any assumption on the coefficients of the equation besides their 
uniform ellipticity. This was the key ingredient in the solution given by De Giorgi 
to Hilbert’s 19th problem. The chapter closes with a discussion section on other 
regularity results (in .Wk,p spaces instead of .Ck,α and including boundary regularity) 
followed by a list of exercises. 
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5.1 Morrey and Campanato Spaces 

We will define and analyze in this section some functional spaces defined by integral 
inequalities which will turn out to coincide, in some cases, with the space of Hölder 
continuous functions, and which will be very useful in proving Hölder regularity 
results. 

We consider an open domain . 𝛀 with the following regularity property: there 
exists a constant .A ∈ (0, 1) such that 

.|𝛀 ∩ B(x0, R)| ≥ A|B(x0, R)| (5.1) 

for every .x0 ∈ 𝛀 and every .R < diam(𝛀). We denote by .𝛀x0,R the set .𝛀∩B(x0, R). 
Every Lipschitz domain (in particular, every convex domain) satisfies this property 
while a typical example of a domain not satisfying it is a domain with a cusp such 
as .{(x1, x2) ∈ R

2 : x2
2 ≤ x4

1 , x1 ∈ [0, 1]}. 
Given .p ∈ [1,∞) and .λ ∈ R+ we define the Morrey space 

. Lp,λ(𝛀) :=
{

u ∈ Lp(𝛀) : sup
x0,R

R−λ

ˆ
𝛀x0,R

|u|p dx < +∞
}

,

where the sup in the definition is taken over .x0 ∈ 𝛀 and .R < diam(𝛀). We define a 
norm on this vector space via 

. ||u||Lp,λ :=
(

sup
x0,R

R−λ

ˆ
𝛀x0,R

|u|p dx

)1/p

.

We then define the Campanato space 

. Lp,λ(𝛀) :=
{

u ∈ Lp(𝛀) : sup
x0,R

R−λ

ˆ
𝛀x0,R

|u − 〈u〉x0,R|p dx < +∞
}

,

where the sup in the definition is taken over the same set of pairs .(x0, R) and 
.〈u〉x0,R := ffl

𝛀x0,R
u. We also define a seminorm on this vector space by 

. [u]Lp,λ :=
(

sup
x0,R

R−λ

ˆ
𝛀x0,R

|u − 〈u〉x0,R|p dx

)1/p

and a norm by setting 

.||u||Lp,λ := ||u||Lp + [u]Lp,λ .
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We summarize in the table below the different spaces that one obtains for 
.Lp,λ and .Lp,λ depending on p and . λ. This will depend on the dimension d. We  
consider for simplicity scalar-valued functions (otherwise, the same would be true 
componentwise). 

.λ < d .λ = d .λ ∈ (d, d + p] . λ > d + p

.Lp,λ .= Lp,λ .L∞ .{0} . {0}

.Lp,λ .= Lp,λ “BMO” .C
0, λ−d

p . R

What we mean is

• If .λ < d the two spaces .Lp,λ and .Lp,λ coincide and their norms are equivalent. 
The only non-trivial fact to prove is the inequality .||u||Lp,λ ≤ C||u||Lp,λ , which 
is done in Proposition 5.3.

• If .λ = d the spaces .Lp,λ all coincide with .L∞(𝛀). This can be easily seen 
considering that we have a.e. .|u(x0)|p = limR→0

ffl
𝛀x0,R

|u|p and this quantity is 

bounded whenever .u ∈ Lp,d (on the other hand, if .u ∈ L∞ then we easily have 
.||u||Lp,d ≤ C(A)||u||L∞).

• If .λ = d the spaces .Lp,λ do not coincide with .L∞(𝛀) but with the spaces where 
a suitable mean oscillation of u is bounded. This is called the space of Bounded 
Mean Oscillation (BMO) functions when .p = 1 (this explains the quotation 
marks in the table above, since calling it BMO when .p > 1 is an abuse of 
language) and was introduced in [121], but we will not discuss it further.

• If .λ > d the space .Lp,λ only contains the zero function. This can also be easily 
seen by considering the formula .|u(x0)|p = limR→0

ffl
𝛀x0,R

|u|p together with 

.
ffl
𝛀x0,R

|u|p ≤ C(A)R−d
´
𝛀x0,R

|u|p ≤ Rλ−d ||u||Lp,λ and taking .R → 0.

• If .λ > d the space .Lp,λ coincides with the space of functions which admit a 
representative satisfying 

. |u(x) − u(y)| ≤ C|x − y|α

for .α = λ−d
p

and .C ≤ C(A)||u||Lp,λ , i.e. .C0,α functions; on the other hand, 

it is clear that .C0,α functions belong to .Lp,d+αp functions and .||u||Lp,λ can be 

estimated in terms of the .C0,α norm. This will be proven in Theorem 5.4 and is 
the main result of this section. Once we identify .Lp,λ with .C0,α functions it is 
clear that for .α > 1 we only have constant functions. 

In order to prove the results leading to the above characterizations of the spaces 
.Lp,λ and .Lp,λ we first need the following lemmas, where we assume that . 𝛀
satisfies (5.1) and we set .λ = d + pα, for . α which can be positive or negative.
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Lemma 5.1 Take .u ∈ Lp,λ(𝛀) and two numbers .r, R < diam(𝛀) with . r ≤ R ≤
2r . Then we have 

. |〈u〉x0,R − 〈u〉x0,r | ≤ C[u]Lp,λrα,

where the constant C only depends on .A,p and d. 

Proof For every point .x ∈ 𝛀x0,r we have . |〈u〉x0,R − 〈u〉x0,r | ≤ |〈u〉x0,R − u(x)| +
|u(x) − 〈u〉x0,r | so that we have 

. |〈u〉x0,R − 〈u〉x0,r |p ≤ 2p−1(|〈u〉x0,R − u(x)|p + |u(x) − 〈u〉x0,r |p)

and then 

. |〈u〉x0,R − 〈u〉x0,r |p

≤ 2p−1

( 
𝛀x0,r

|〈u〉x0,R − u(x)|p dx +
 

𝛀x0,r

|u(x) − 〈u〉x0,r |p dx

)
.

Then we use 

. 

 
𝛀x0,r

|〈u〉x0,R − u(x)|p dx ≤ C

 
𝛀x0,R

|〈u〉x0,R − u(x)|p dx,

where the constant C is an upper bound to .
|𝛀x0,R |
|𝛀x0,r | ≤ |B(x0,R)|

A|B(x0,r)| = Rd

Ard ≤ 2d

A
. Then, 

using .u ∈ Lp,λ(𝛀) and .λ = d + pα, we obtain 

. |〈u〉x0,R − 〈u〉x0,r |p ≤ C(Rαp + rαp) ≤ Crαp.

The result follows. ⨅⨆
Lemma 5.2 Take two points .x0, y0 ∈ 𝛀, a function .u ∈ Lp,λ(𝛀), and set . R =
|x0 − y0|. There exists a constant C only depending on .A,p, d such that 

. |〈u〉x0,2R − 〈u〉y0,2R| ≤ C[u]Lp,λRα,

provided .2R < diam(𝛀). 

Proof Consider the set .𝛀x0,2R ∩ 𝛀y0,2R . Since it contains .𝛀x0,R its measure is at 
least .A|B(x0, R)|, so that we have 

.
|𝛀x0,2R|

|𝛀x0,2R ∩ 𝛀y0,2R| ,
|𝛀y0,2R|

|𝛀x0,2R ∩ 𝛀y0,2R| ≤ 2d

A
.
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We then take .x ∈ 𝛀x0,2R ∩ 𝛀y0,2R and write 

. |〈u〉x0,2R − 〈u〉y0,2R|p ≤ 2p−1(|〈u〉x0,2R − u(x)|p + |u(x) − 〈u〉y0,2R|p),

which gives, averaging over x, 

. |〈u〉x0,2R − 〈u〉y0,2R|p

≤ C

( 
𝛀x0,2R∩𝛀y0,2R

|〈u〉x0,2R − u(x)|pdx +
 

𝛀x0,2R∩𝛀y0,2R

!|u(x) − 〈u〉y0,2R|pdx

)

≤ C

( 
𝛀x0,2R

!|〈u〉x0,2R − u(x)|pdx +
 

𝛀y0,2R

!|u(x) − 〈u〉y0,2R|pdx

)
≤ CRαp,

which concludes the proof. ⨅⨆
We now prove the following. 

Proposition 5.3 Assume .λ < d. Then we have .Lp,λ(𝛀) = Lp,λ(𝛀) and the two 
norms are equivalent (up to a multiplicative constant depending on . 𝛀). 

Proof Since we can cover . 𝛀 with a ball of the form .B(x0, diam(𝛀)) it is clear that 
we have .||u||Lp ≤ C||u||Lp,λ and by using 

. |〈u〉x0,R|p ≤
 

𝛀x0,R

|u|p dx

we have 

. R−λ

ˆ
𝛀x0,R

|u − 〈u〉x0,R|p dx = R−αp

 
𝛀x0,R

|u − 〈u〉x0,R|p dx

≤ CR−αp

 
𝛀x0,R

|u|p dx + CR−αp|〈u〉x0,R|p

≤ CR−αp

 
𝛀x0,R

|u|p dx ≤ ||u||Lp,λ,

which implies .[u]Lp,λ ≤ C||u||Lp,λ . 

We now need to obtain the opposite inequality. Take .u ∈ Lp,λ with .λ = d + αp, 
. α < 0. We fix .R < diam(𝛀) and consider a sequence .2kR for .k = 0, . . . , k0 such
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that .2k0R ∈ (diam(𝛀)/2, diam(𝛀)). Using Lemma 5.1 we obtain 

. |〈u〉x0,R| ≤ |〈u〉x0,2k0R| +
k0−1∑
k=0

|〈u〉x0,2kR − 〈u〉x0,2k+1R|

≤ C||u||L1 + C[u]Lp,λRα
∞∑

k=0

2kα.

Since .α < 0, the last sum is convergent, so that we obtain . |〈u〉x0,R| ≤ C||u||Lp +
CRα[u]Lp,λ . Using again .α < 0 together with .R < diam(𝛀) we obtain . |〈u〉x0,R| ≤
C||u||Lp,λRα.

Then we use 

. R−λ

ˆ
𝛀x0,R

|u|p ≤ CR−αp

 
𝛀x0,R

|u − 〈u〉x0,R|p + CR−αp|〈u〉x0,R|p

≤ C[u]pLp,λ + C||u||Lp,λ ,

which proves the opposite inequality. ⨅⨆
The most interesting case is the following 

Theorem 5.4 Assume .λ > d. Then we have .u ∈ Lp,λ(𝛀) if and only if u admits 
a continuous representative satisfying .|u(x) − u(y)| ≤ C|x − y|α . Moreover, the 
best constant C in this inequality and the seminorm .[u]Lp,λ are comparable up to 
multiplicative constants only depending on .A,p, d. 

Proof First of all, it is clear that every u satisfying . |u(x) − u(y)| ≤ C|x − y|α
belongs to .Lp,λ(𝛀), since in this case we have 

. |u(x) − 〈u〉x0,R| ≤ CRα for all x ∈ 𝛀x0,R

and integrating this inequality over .𝛀x0,R after raising it to the power p provides 
.u ∈ Lp,λ(𝛀) with a seminorm bounded by C. 

We now have to find a Hölder continuous representative for functions . u ∈
Lp,λ(𝛀). We fix a point .x0 ∈ 𝛀 and look at .R I→ 〈u〉x0,R . We consider the 
sequence .〈u〉x0,2−kR and use (Lemma 5.1) 

. |〈u〉x0,2−kR − 〈u〉x0,2−(k+1)R| ≤ C[u]Lp,λRα2−kα.

This proves that this sequence is Cauchy, and that it admits a limit. Moreover, for 
every .r > 0 we can find k such that .2−(k+1)R ≤ r ≤ 2−kR and . |〈u〉x0,2−kR −
〈u〉x0,r | ≤ C[u]Lp,λrα . This shows that .R I→ 〈u〉x0,R has a limit .𝓁(x0) as .R → 0
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and that we have 

.|𝓁(x0) − 〈u〉x0,R| ≤ C[u]Lp,λRα. (5.2) 

We observe that the function .x0 I→ 𝓁(x0) is a representative of u since it 
coincides with u at every Lebesgue point of u. Up to changing u on a negligible 
set, we will assume .𝓁(x0) = u(x0) for every . x0. We now consider .x0, y0 ∈ 𝛀, set  
.R = |x0 − y0|, and assume .2R ≤ diam(𝛀). We then consider 

. |u(x0) − u(y0)| ≤ |u(x0) − 〈u〉x0,2R| + |〈u〉x0,2R − 〈u〉y0,2R| + |〈u〉y0,2R − u(y0)|
≤ C[u]Lp,λRα,

where we estimate the first and last term thanks to (5.2) and the second one using 
Lemma 5.2. ⨅⨆

Box 5.1 Memo—Lebesgue Points of . L1 Functions 
A very useful notion concerning .L1

loc functions is that of Lebesgue points, as 
it allows us, for instance, to select a precise representative. 

Definition Given a function .u ∈ L1
loc(𝛀) a point x is said to be a Lebesgue 

point of u if we have 

. lim
r→0

 
B(x,r)

|u(y) − u(x)| dy = 0.

In particular, this condition also implies .u(x) = limr→0
ffl
B(x,r)

u(y) dy, but  
is stronger. Note that on Lebesgue points we also have .un(x) → u(x) every 

time that . un is defined as a convolution .un = ηn ∗u for a rescaling .ηn
∗
⇀ δ0 of 

a fixed convolution kernel .η ∈ C∞
c (actually, bounded kernels with bounded 

supports are enough). 

A well-known theorem in geometric measure theory is the following: 

Theorem For any .u ∈ L1
loc(𝛀) a.e. point .x ∈ 𝛀 is a Lebesgue point. 

The set of Lebesgue points depends on the representative of u (since 
.u(x) appears in the definition). Yet, it is possible to define . 𝓁(x) :=
lim infr→0

ffl
B(x,r)

u(y) dy; the value of . 𝓁 does not depend on the represen-
tative of u. We then consider the set of points x where . limr→0

ffl
B(x,r)

|u(y) −
𝓁(x)| dy = 0; this set is independent of the representative; moreover . 𝓁 is a 
representative of u. It is also possible to define . 𝓁 as the limsup, of course.
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Theorem 5.4 provides an extremely useful characterization of Hölder continuous 
functions. It allows us, for instance, to recover the well-known injection of Sobolev 
spaces into Hölder continuous functions, due to Morrey. Indeed, we have: 

Proposition 5.5 The space .W 1,p(𝛀) continuously injects into .L1,λ(𝛀) for . λ =
1 + d

p' = d + 1 − d
p

. Whenever .p > d, we then have a continuous injection of 

.W 1,p(𝛀) into .C0,α(𝛀) for .α = 1 − d
p

. 

Proof We start from the Poincaré–Wirtinger inequality followed by a Hölder 
inequality with exponents p and . p': 

. 

ˆ
𝛀x0,R

|u − 〈u〉x0,R| dx ≤ CR

ˆ
𝛀x0,R

|∇u| dx

≤ CR|𝛀x0,R|1/p'
(ˆ

𝛀x0,R

|∇u|p dx

)1/p

≤ CR
1+ d

p' .

We used the fact that the constant in all forms of the Poincaré inequality is 
proportional to the diameter of the domain, here R (see Box 5.2). The above 
inequality proves 

. [u]L1,λ ≤ C||∇u||Lp

and from Proposition 5.4 we conclude the Hölder regularity whenever .1 − d
p

> 0. 
⨅⨆

Box 5.2 Memo—Dependence of the Constants on the Domain in Poincaré 
and Sobolev Inequalities 
It is well-known that for every open and connected domain . 𝛀 there exist 

constants .Cp(𝛀) such that we have 

. ||u||Lp ≤ Cp(𝛀)||∇u||Lp

for functions u which belong either to .W 1,p

0 (𝛀) or to .W 1,p(𝛀) and have 
zero mean. These inequalities are called the Poincaré inequality in the case 
of zero boundary conditions, or the Poincaré–Wirtinger inequality for zero-
mean functions. We also saw in Proposition 2.2 that this also holds when u 
vanishes on a subset of measure at least .|𝛀|/2 (or on a subset of the boundary 
with .Hd−1 measure at least .Hd−1(∂𝛀)/2; the ratio .1/2 could be replaced 
with other ratios, but then the constant would also depend on this ratio). How 
do these constants .Cp depend on the domain . 𝛀? In the Poincaré case (in 

.W
1,p

0 ), it is easy to see that the constant is monotone by inclusion (since 

(continued)
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Box 5.2 (continued) 
if .𝛀 ⊂ 𝛀' and .u ∈ W

1,p

0 (𝛀) then the extension of u to 0 outside . 𝛀 also 

belongs to .W 1,p

0 (𝛀')). Hence, one can estimate the value of the constant . Cp

just by looking at it when . 𝛀 is a ball. For the case of the Poincaré–Wirtinger 
inequality or of functions vanishing on a certain proportion of the domain this 
is not true, and we will only concentrate on the case of balls. 

When .𝛀 = B(0, R) a simple scaling argument shows . Cp(𝛀) =
RCp(B(0, 1)). Indeed, if .u ∈ W 1,p(B(0, R)) then . uR defined via . uR(x) =
u(Rx) belongs to .W 1,p(B(0, 1)) (and this transformation preserves the 
boundary value, the mean, and the proportion of the vanishing set) and we 
have 

. R−d/p||u||Lp(B(0,R)) = ||uR||Lp(B(0,1)) ≤ Cp(B(0, 1))||∇uR||Lp(B(0,1))

=Cp(B(0, 1))R||∇u(Rx)||Lp(B(0,1))=Cp(B(0, 1))R1−d/p||∇u||Lp(B(0,R)).

The scaling is different when the norms on the sides of the inequality do 
not share the same exponent. This is possible thanks to the Sobolev injection 
: if .q ≤ p∗ := dp

d−p
(when .p < d, otherwise one just needs . q < ∞) we have  

indeed, under the same assumptions on u, 

. ||u||Lq ≤ Cp,q(𝛀)||∇u||Lp .

Here for .𝛀 = B(0, R) the same scaling argument shows . Cp,q(𝛀) =
R

1− d
p

+ d
q Cp(B(0, 1)). This also shows that only the critical injection for . q =

p∗ can be true in the whole space as it is the only case where .1 − d
p

+ d
q

= 0. 
When different exponents are involved it is more convenient to express the 

norms in terms of averages instead of integrals: the Sobolev inequality for 
zero-mean or .W 1,p

0 functions becomes 

. 

( 
B(0,R)

|u|q dx

)1/q

≤ CR

( 
B(0,R)

|∇u|p dx

)1/p

and the general case for functions in .W 1,p becomes 

.

( 
B(0,R)

|u|q dx

)1/q

≤
(

Rp

 
B(0,R)

|∇u|p dx +
 

B(0,R)

|u|p dx

)1/p

.
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5.2 Regularity for Elliptic Equations in Divergence Form 
and Smooth Coefficients 

5.2.1 Preliminaries 

We start with a very useful algebraic lemma, which can be found in any classical 
book on elliptic regularity. 

Lemma 5.6 Assume that an increasing function .φ : [0, R0] → R+ satisfies, for 
every .r < R/2, 

. φ(r) ≤ A
(
ε +

( r

R

)α)
φ(R) + BRβ

for some constants .A,B, ε ≥ 0 and exponents .α > β > 0. Then there exists an 
.ε0 = ε0(A, α, β) such that, if .ε < ε0, we also have .φ(r) ≤ Crβ for all . r ∈ [0, R0]
for a constant .C = C(A,B,R0, φ(R0), α, β). 

Proof For every .τ < 1/2 we have .φ(τR) ≤ A(ε + τα)φ(R) + BRβ . Choosing 
.γ ∈ (β, α), we can take . τ such that .2Aτα = τγ and we can assume without loss of 
generality that A is large enough so that .τ < 1/2. We then take .ε0 = τα so that, for 
. ε < ε0, we have  

. φ(τR) ≤ A(ε0 + τα)φ(R) + BRβ ≤ 2Aταφ(R) + BRβ ≤ τγ φ(R) + BRβ.

(5.3) 
We now iterate this estimate, thus obtaining 

. φ(τkR) ≤ τ kγ φ(R) + BRβτ (k−1)β
k−1∑
j=0

τ j (γ−β).

This inequality can be proven by induction. It is already proven for .k = 1 as it 
coincides with (5.3). Assuming it is true for k we then obtain 

. φ(τk+1R) ≤ τγ φ(τ kR) + BτkβRβ

≤ τ (k+1)γ φ(R) + BRβτkβτγ−β
k−1∑
j=0

τ j (γ−β) + BτkβRβ

= τ (k+1)γ φ(R) + BRβτkβ
k∑

j=0

τ j (γ−β).

Using .τ < 1 and .γ > β we have .
∑k

j=0 τ j (γ−β) ≤ C and then we obtain 

.φ(τkR) ≤ τ kγ φ(R) + BCRβτ (k−1)β ≤ Cτkβ,
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where C is a new constant also depending on .B,R and . φ(R). We also used .τγ ≤ τβ . 
Choosing .R = R0 and finding for every r a value of k such that . τ (k+1)R0 ≤ r ≤
τ kR0 one obtains, using the monotonicity of . φ and its boundedness, the estimate 
.φ(r) ≤ Crβ . ⨅⨆

We now need some estimates on constant coefficient equations. In the following 
pages, when there is no ambiguity and a point . x0 is fixed, we write . Br for . B(x0, r)

for every radius .r > 0. 

Proposition 5.7 Assume that u solves .∇ · (A∇u) = 0 in . BR , where A is a fixed 
symmetric and positive definite matrix with .Λmin I ≤ A ≤ Λmax I, and take .r < R. 
Then there exists a constant C, only depending on .Λmin,Λmax, such that we have 

.

ˆ
Br

|u|2 dx ≤ C
( r

R

)d
ˆ

BR

|u|2 dx, . (5.4) 

ˆ 
Br 

|u − 〈u〉x0,r |2 dx ≤ C
( r 
R

)d+2
ˆ 

BR 
|u − 〈u〉x0,R|2 dx. (5.5) 

Proof We can prove (5.4) with constant .C = Λd
maxΛ

−d
min. First, note that if u 

solves .∇ · (A∇u) = 0 then .uA(x) := u(A1/2x) is harmonic. In particular .u2
A is 

subharmonic and Remark 2.7 implies that its averages on balls are non-decreasing 
functions of the radius of the ball: 

. 

ˆ
Br

|u(A1/2x)|2 dx ≤
( r

R

)d
ˆ

BR

|u(A1/2x)|2 dx.

A change of variable .y = A1/2x gives 

. 

ˆ
BΛminr

|u|2 dx≤
ˆ

A1/2Br

|u(y)|2 dy≤
( r

R

)d̂

A1/2BR

|u(y)|2 dy ≤
( r

R

)d̂

BΛmaxR

|u|2 dx.

Setting .r ' = Λminr and .R' = ΛmaxR, this provides 

. 

ˆ
Br'

|u|2 dx ≤ C

(
r '

R'

)d ˆ
BR'

|u|2 dx

as soon as .r ' < Λmin
Λmax

R', with .C = Λd
maxΛ

−d
min. Since the inequality is true with 

constant .C = c−d whenever restricted to .r ≥ cR, then (5.4) is also satisfied without 
the restriction .r ' < Λmin

Λmax
R'. 

In order to prove (5.5), we use the Poincaré–Wirtinger inequality, then (5.4) 
applied to . ∇u, which also solves the same constant-coefficient equations, and then
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the Caccioppoli inequality (see Proposition 5.8): 

. 

ˆ
Br

|u − 〈u〉x0,r |2 dx ≤ Cr2
ˆ

Br

|∇u|2 dx

≤ Cr2
( r

R

)d
ˆ

BR

|∇u|2 dx

≤ Cr2
( r

R

)d 1

R2

ˆ
B2R

|u − 〈u〉x0,2R|2 dx.

This proves (5.5) as soon as .r < R/2. In the case .r ≥ cR (here .c = 1/2) we use the  
fact that .t I→ ´

E
|u − t |2 dx is minimal when .t = ffl

E
u dx, so that we have 

. 

ˆ
Br

|u − 〈u〉x0,r |2 dx ≤
ˆ

Br

|u − 〈u〉x0,R|2 dx ≤
ˆ

BR

|u − 〈u〉x0,R|2 dx,

which yields the inequality with .C = c−(d+2). ⨅⨆
We now finish this preliminary section by proving the Caccioppoli inequality, 

which we present in the general case, i.e. for non-constant coefficients, for future 
use. 

Proposition 5.8 Assume that u solves .∇ · (A(x)∇u) = 0 in . BR , in the sense that 
we have .

´
A(x)∇u · ∇ϕ = 0 for every .ϕ ∈ H 1

0 (BR), or that u is non-negative and 
that it solves .∇ · (A(x)∇u) ≥ 0, in the sense that we have .

´
A(x)∇u · ∇ϕ ≤ 0 for 

every .ϕ ∈ H 1
0 (BR) with .ϕ ≥ 0. Also assume that .A(x) is, for every x, a symmetric 

and positive definite matrix with .ΛminI ≤ A(x) ≤ ΛmaxI. Then, for every .r < R, 
we have 

. 

ˆ
Br

|∇u|2 dx ≤ C

(R − r)2

ˆ
BR

|u|2 dx,

where .C = 4Λmax/Λmin. 

Proof Let .η ∈ Lip(BR) be a function such that .η = 0 on .∂BR , .η = 1 on . Br and 
.|∇η| ≤ (R − r)−1. The important fact is that, in both cases (when the equation is 
satisfied as an equality or as an inequality), we can use .ϕ = η2u. Then we have 
.∇ϕ = 2uη∇η + ∇uη2 and hence 

. 

ˆ
BR

A(x)∇u · ∇uη2 dx ≤ −2
ˆ

BR

A(x)∇u · ∇ηηu dx.

It is possible to apply a Hölder inequality on the right-hand side, thus obtaining 

.

∣∣∣∣
ˆ

BR

A(x)∇u ·∇ηηu

∣∣∣∣ dx ≤
(ˆ

BR

A(x)∇u ·∇uη2dx

) 1
2
(ˆ

BR

A(x)∇η ·∇ηu2dx

) 1
2

,
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so that we have 

. 

ˆ
BR

A(x)∇u · ∇uη2 dx ≤ 4
ˆ

BR

A(x)∇η · ∇ηu2 dx ≤ 4Λmax

(R − r)2

ˆ
BR

ηu2 dx.

Using .A ≥ ΛminI and restricting the integral on the left-hand side to the set . Br

where .η = 1 provides the desired inequality. ⨅⨆

5.2.2 Schauder Regularity 

We prove here a sequence of three incremental theorems about the regularity of 
solutions of .∇ · (A(x)∇u) = ∇ · F in Morrey and Campanato spaces. These results 
are part of what is usually called Schauder regularity theory, presented here using 
the powerful tools of Campanato spaces. The analysis requires a small preliminary 
lemma. 

Lemma 5.9 For every vector field .F ∈ L2(BR) and every matrix field .A(x) such 
that .A(x) is symmetric and satisfies .ΛminI ≤ A(x) ≤ ΛmaxI for every x for two 
positive constants .Λmin,Λmax > 0, there exists a unique solution .w ∈ H 1

0 (BR) of 
.∇ · (A(x)∇w) = ∇ · F , and such a function w satisfies 

. Λ2
min

ˆ
BR

|∇w|2 dx ≤
ˆ

BR

|F − 〈F 〉x0,R|2 dx ≤
ˆ

BR

|F |2 dx.

Proof The existence of such a w can be obtained by minimizing the functional 

.w I→ ´ (
1
2A(x)∇w · ∇w + F · ∇w

)
dx among .w ∈ H 1

0 (BR) and the uniqueness 

is due to the strict convexity of this functional. Testing the equation against w itself 
provides 

. 

ˆ
BR

A(x)∇w · ∇w dx = −
ˆ

BR

F · ∇w dx = −
ˆ

BR

(F − 〈F 〉x0,R) · ∇w dx,

where we use for the last inequality the fact that we have .
´ ∇w = 0 because 

.w ∈ H 1
0 (BR). Replacing A with .ΛminI on the left-hand side and applying a Hölder 

inequality on the right-hand side provides 

. Λmin

ˆ
BR

|∇w|2 dx ≤
(ˆ

BR

|F − 〈F 〉x0,R|2 dx

)1/2 (ˆ
BR

|∇w|2 dx

)1/2

.

Dividing by .
(´ |∇w|2)1/2

on both sides and taking the square gives the first part of 
the claim. We then conclude by using once more the fact that .v I→ ´ |F − v|2 dx is 
minimized when v is the average of F . ⨅⨆
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Theorem 5.10 Let u be a solution of .∇ · (A∇u) = ∇ · F in . 𝛀, where A is a 
constant symmetric and positive-definite matrix and .F ∈ L2,λ(𝛀) with .λ < d + 2. 
Then .∇u ∈ L2,λ(𝛀') for every subdomain . 𝛀' compactly contained in . 𝛀. 

Proof Given a ball .BR ⊂ 𝛀 we write .u = ũ + w in such a ball, where w is the 
solution of .∇ · (A∇w) = ∇ · F with .w ∈ H 1

0 (BR). Then . ̃u solves .∇ · (A∇ũ) = 0. 
Note that we have .〈∇w〉x0,R = 0, hence .〈∇u〉x0,R = 〈∇ũ〉x0,R . We then define 
.φ(r) := ´

Br
|∇u − 〈∇u〉x0,r |2 dx and we have 

. φ(r) ≤
ˆ

Br

|∇u − 〈∇ũ〉x0,r |2 dx ≤ 2
ˆ

Br

|∇ũ − 〈∇ũ〉x0,r |2 dx + 2
ˆ

Br

|∇w|2 dx

≤ C
( r

R

)d+2
ˆ

BR

|∇ũ − 〈∇ũ〉x0,R|2 dx + 2
ˆ

BR

|∇w|2 dx

≤ C
( r

R

)d+2
ˆ

BR

|∇u − 〈∇u〉x0,R|2 dx + C

ˆ
BR

|∇w|2 dx

≤ C
( r

R

)d+2
φ(R) + C

ˆ
BR

|F − 〈F 〉x0,R|2 dx ≤ C
( r

R

)d+2
φ(R) + CRλ.

In the inequalities above we used the formula (5.5) applied to . ∇ũ, which also solves 
the same constant-coefficient equation as . ̃u, and then Lemma 5.9, as well as the  
assumption .F ∈ L2,λ. Finally, by Lemma 5.6 we obtain .φ(r) ≤ Crλ, which gives 
the claim. The restriction to a subdomain . 𝛀' compactly contained in . 𝛀 is required 
to cover it with finitely many balls contained in . 𝛀, with a uniform radius . R0. ⨅⨆
Theorem 5.11 Let u be a solution in . 𝛀 of .∇ · (A(x)∇u) = ∇ · F , where A is a 
symmetric and positive-definite matrix depending continuously on x and satisfying 
.ΛminI ≤ A(x) ≤ ΛmaxI for every x, for two positive constants .Λmin,Λmax > 0. 
Assume .F ∈ L2,λ(𝛀) with .λ < d. Then .∇u ∈ L2,λ(𝛀') for every subdomain . 𝛀'
compactly contained in . 𝛀. 

Proof Given a ball .BR ⊂ 𝛀 we write .u = ũ + w in such a ball, where w is the 
solution of .∇ · (A(x0)∇w) = ∇ · (F + (A(x0)−A(x))∇u) with .w ∈ H 1

0 (BR). Then 
. ̃u solves .∇ · (A(x0)∇ũ) = 0. This is a useful trick: if a function solves an equation 
with variable coefficients, we can “freeze” the coefficients at a point, and of course 
add on the other side of the equation the difference between the coefficients at x and 
at such a point, which will hopefully be small. We then define . φ(r) := ´

Br
|∇u|2 dx

and we have 

.φ(r) ≤
ˆ

Br

|∇u|2 dx ≤ 2
ˆ

Br

|∇ũ|2 dx + 2
ˆ

Br

|∇w|2 dx

≤ C
( r

R

)d
ˆ

BR

|∇ũ|2 dx + 2
ˆ

BR

|∇w|2 dx
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≤ C
( r 
R

)d ˆ 
BR 

|∇u|2 dx + C 
ˆ 

BR 
|∇w|2 dx 

≤ C
( r 
R

)d 
φ(R) + C 

ˆ 
BR 

|G|2 dx, 

where .G := F + (A(x0) − A(x))∇u). Here we used formula  (5.4) applied to . ∇ũ, 
and again Lemma 5.9. We now use  

. 

ˆ
BR

|G|2 dx ≤ 2
ˆ

BR

|F |2 dx + 2ω(R)2
ˆ

BR

|∇u|2 dx,

where . ω is the modulus of continuity of A. Using the assumption .F ∈ L2,λ we then 
obtain 

. φ(r) ≤ C
( r

R

)d

φ(R) + CRλ + Cεφ(R)

as soon as .ω(R) is small enough. Again, by Lemma 5.6 we obtain .φ(r) ≤ Crλ, 
which gives the claim (with the same need to restrict to compact subdomains as in 
Theorem 5.10). ⨅⨆
Theorem 5.12 Let u be a solution of .∇ · (A(x)∇u) = ∇ · F in . 𝛀, where A is a 
symmetric and positive-definite matrix which is .C0,α w.r.t. x and satisfies . ΛminI ≤
A(x) ≤ ΛmaxI for every x, for two positive constants .Λmin,Λmax > 0. Assume 
.F ∈ C0,α(𝛀). Then .∇u ∈ C0,α(𝛀') for every subdomain . 𝛀' compactly contained 
in . 𝛀. 

Proof We now combine the ideas of the two previous proofs. We fix again a ball 
.BR ⊂ 𝛀 and write .u = ũ + w, where w is the solution of . ∇ · (A(x0)∇w) =
∇·(F +(A(x0)−A(x))∇u) with .w ∈ H 1

0 (BR). We then define, as in Theorem 5.10, 
.φ(r) := ´

Br
|∇u − 〈∇u〉x0,r |2 dx, and we get 

. φ(r) ≤ C
( r

R

)d+2
φ(R) + C

ˆ
BR

|∇w|2 dx.

Again as in Theorem 5.10 we bound .
´
BR

|∇w|2 by 

.

ˆ
BR

|G − 〈G〉x0,R|2 dx ≤
ˆ

BR

|G − 〈F 〉x0,R|2 dx.
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We then obtain 

. 

ˆ
BR

|∇w|2 dx ≤ C

ˆ
BR

|G − 〈F 〉x0,R|2dx

≤ C

ˆ
BR

|F − 〈F 〉x0,R|2dx + Cω(R)2
ˆ

BR

|∇u|2dx.

We use Theorem 5.11 to obtain .∇u ∈ L2,d−ε for arbitrary .ε > 0, so that 
.ω(R)2

´ |∇u|2 can be bounded by .CR2α+d−ε (we use .ω(R) ≤ CRα , by assump-
tion). Then we get, using the assumption .F ∈ C0,α = L2,d+2α , 

. φ(r) ≤ C
( r

R

)d+2
φ(R) + CRd+2α + CR2α+d−ε.

Using Lemma 5.6 we obtain .φ(r) ≤ Cr2α+d−ε, i.e. .∇u ∈ L2,d+2α−ε. This means 
.∇u ∈ C0,α−ε/2. In particular, .∇u is continuous and hence locally bounded. Up 
to restricting to a compact subdomain, we can use .∇u ∈ L∞ and then the term 
.ω(R)2

´ |∇u|2 is now bounded by .CR2α+d . This allows us to write 

. φ(r) ≤ C
( r

R

)d+2
φ(R) + CRd+2α

and the result follows by using once more Lemma 5.6. ⨅⨆
We can then extend this to higher-order regularity: 

Theorem 5.13 Let u be a solution of .∇ · (A(x)∇u) = ∇ · F in . 𝛀 where A is a 
symmetric and positive-definite matrix which is .Ck,α w.r.t. x and satisfies . ΛminI ≤
A(x) ≤ ΛmaxI for every x, for two positive constants .Λmin,Λmax > 0. Assume 
.F ∈ Ck,α . Then .∇u ∈ Ck,α(𝛀') for every subdomain . 𝛀' compactly contained in . 𝛀. 

Proof This theorem can be proven by induction. The case .k = 0 coincides with 
Theorem 5.12. Once we know it for a certain k, in order to prove it for . k + 1
we differentiate the equation. Denoting by the superscript . ' the derivatives w.r.t. 
a certain variable . xi we have 

. ∇ · (A(x)∇u') = ∇ · F ' − ∇ · (A'(x)∇u)

so that . u' solves the same equation where in the right-hand side F is replaced by 
.F ' − A'(x)∇u. Since we assume .F ∈ Ck+1,α we also have .F ∈ Ck,α and, by the 
induction assumption, we know .∇u ∈ Ck,α . Moreover .F ', A'(x) ∈ Ck,α since 
.F,A ∈ Ck+1,α . Then using the equation solved by . u' we obtain .∇u' ∈ Ck,α . 
Applying this to all partial derivatives of u this provides .∇u ∈ Ck+1,α . ⨅⨆

It is also possible to obtain a result when the right-hand side is not expressed as 
a divergence.
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Theorem 5.14 Let u be a solution of .∇ · (A(x)∇u) = f in . 𝛀, where A is a 
symmetric and positive-definite matrix which is .Ck,α w.r.t. x and satisfies . ΛminI ≤
A(x) ≤ ΛmaxI for every x, for two positive constants .Λmin,Λmax > 0. Assume 
.f ∈ Ck−1,α(𝛀). Then .u ∈ Ck+1,α(𝛀') for every subdomain . 𝛀' compactly contained 
in . 𝛀. 

Proof First we prove .u ∈ C
k,α
loc . Locally around a point with .x1 = a, consider 

the vector field .F(x1, . . . , xn) = e1
´ x1
a

f (s, x2, . . . , xn) ds. This vector field 
satisfies .∇ · F = f and has at least the same regularity as f (indeed, we took 
the antiderivative in one variable, which improves the regularity, but in the other 
variables the regularity is not improved). We then have .∇ · (A(x)∇u) = ∇ · F and 
this provides .∇u ∈ C

k−1,α
loc . We then differentiate the equation in a direction . xi and 

denote by the superscript . ' the derivatives w.r.t. to . xi . We have  

. ∇ · (A(x)∇u') = f ' − ∇ · (A'(x)∇u) = ∇ · (f ei − A'(x)∇u).

In the right-hand side the vector field .f ei − A'(x)∇u is at least .Ck−1,α because 
of the assumptions on A and f , and on what we proved on . ∇u. Then we obtain 
.∇u' ∈ C

k−1,α
loc , which means .u ∈ C

k+1,α
loc . ⨅⨆

5.3 Hilbert’s 19th Problem and the De Giorgi Theorem 

Hilbert’s nineteenth problem is one of the 23 Hilbert problems proposed in 1900 
by David Hilbert (see [115]): the question is whether the solutions of “regular” 
problems in the calculus of variations are always analytic. Indeed, Hilbert noted 
that some classes of PDEs, like the Laplace equation, only admit solutions which 
are analytic functions, and that these equations share the property of being the 
Euler–Lagrange equations of a certain class of variational problems of the form 
.min

´
H(∇u), where H is convex and smooth. To make the question more precise, 

convexity and smoothness can be quantified, and boundary data can be imposed 
(possibly non-analytic). We can formulate the question by assuming that .D2H is 
both bounded from below and from above by positive multiples of the identity, 
say .ΛminI ≤ D2H ≤ ΛmaxI, and wonder whether all solutions of the variational 
problem inherit the regularity of H . 

We proved in Sect. 2.3 that harmonic functions are analytic, but the arguments 
used there cannot be translated to more general equations, so we will concentrate 
on .C∞ regularity. Since the Euler–Lagrange equation of .min

´
H(∇u) is the non-

linear PDE .∇ · (∇H(∇u)) = 0 the question is whether all solutions of this PDE are 
.C∞ if H is .C∞ and satisfies .ΛminI ≤ D2H ≤ ΛmaxI. Differentiating the equation 
(which is possible, for instance, because of the regularity .u ∈ H 2, which can be 
obtained thanks to the techniques of Sect. 4.4) provides 

.∇ · (D2H(∇u)∇u') = 0
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for every partial derivative . u'. By setting .A(x) = D2H(∇u(x)) we saw in 
Theorem 5.13 that .A ∈ Ck,α implies .∇u' ∈ Ck,α . Since .H ∈ C∞, the regularity 
of A only depends on . ∇u, so that we have .∇u ∈ Ck,α ⇒ ∇u' ∈ Ck,α , i.e. 
.∇u ∈ Ck+1,α . This allows us to improve the regularity by one degree at each 
iteration of the argument, and provides .u ∈ C∞. The techniques due to Morrey 
and Campanato that we presented are not the only possible ones, but the results 
are quite classical. The first results proving smoothness (up to analyticity) of the 
solutions of elliptic second-order PDEs starting from some initial regularity date 
back, for instance, to Bernstein [28]. Yet, this requires a initialization, i.e. we need 
at least .u ∈ C1,α in order to have .A ∈ C0,α . 

This was the state of the art in the first half of the twentieth century (see for 
instance [169], which improved Bernstein results); then, independently, in the ’50s 
both Ennio De Giorgi [72, 73], and John Forbes Nash [159, 160] filled this gap, by 
proving the following remarkable theorem: it u solves .∇ · (A(x)∇u) = 0, without 
assuming any regularity of A but only the bounds .ΛminI ≤ A(x) ≤ ΛmaxI, then 
.u ∈ C0,α . By applying this to . u' with .A = D2H(∇u) one obtains .u' ∈ C0,α , i.e. 
.u ∈ C1,α . De Giorgi’s proof arrived first, followed by Nash’s proof slightly later, 
but the latter was more general: indeed, Nash proved the same result for solutions 
of parabolic equations .∂tu = ∇ · (A(x)∇u), which includes the elliptic case when 
the solution is time-independent. De Giorgi’s proof passed through the following 
statement: all functions u which satisfy an inequality of the form 

. 

ˆ
B(x0,r)

|∇(u − k)±|2 dx ≤ C

(R − r)2

ˆ
B(x0,R)

(u − k)2± dx

for every k are necessarily locally Hölder continuous. The class of these functions 
is now usually referred to as the De Giorgi class. Subsequently, Jürgen Moser gave 
an alternate proof of these results in a celebrated short paper [154], and this will be 
the proof we present in the next section. 

As it can be seen in both Moser’s proof and in the definition of the De Giorgi 
class, the order structure of . R plays an important role in the theory, and the same 
result cannot be obtained for vector-valued functions solutions of elliptic systems, in 
contrast to the theory of Sect. 5.2, which could be adapted to systems (as is done, for 
instance, in [95, 97] and in many classical texts about the subject, which we avoided 
here for simplicity). Later on counter-examples in the vector-valued case appeared, 
as in De Giorgi [75] and Giusti and Miranda [102]. 

5.4 Moser’s Proof 

In this section we consider solutions and subsolutions of .∇ · (A(x)∇u) = 0 (and 
later we will add a right-hand side) with a matrix field A without any regularity 
assumption, but only .ΛminI ≤ A(x) ≤ ΛmaxI (together with measurability in x, of  
course). Since we will not be able to apply any approximation argument (differently,
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for instance, from the case .A = I discussed in Sect. 2.3) it is crucial to clarify the 
notion of solution that we use: 

Definition 5.15 A function u is said to be a solution of .∇ · (A(x)∇u) = 0 in . 𝛀 if it 
belongs to .H 1

loc(𝛀) and .
´
𝛀

A(x)∇u · ∇ϕ = 0 for every function .ϕ ∈ C1
c (𝛀). In this  

case, the same equality also holds for functions .ϕ ∈ H 1
0 (𝛀') for every .𝛀' ⊂ 𝛀 such 

that we have .u ∈ H 1(𝛀'). 
A function u is said to be a subsolution of .∇ · (A(x)∇u) = 0 (and we write 

.∇ · (A(x)∇u) ≥ 0) in . 𝛀 if it belongs to .H 1
loc(𝛀) and .

´
𝛀

A(x)∇u · ∇ϕ ≤ 0 for every 
function .ϕ ∈ C1

c (𝛀) with .ϕ ≥ 0. In this case, the same equality also holds for non-
negative functions .ϕ ∈ H 1

0 (𝛀') for every .𝛀' ⊂ 𝛀 such that we have .u ∈ H 1(𝛀'). 

In the sequel, we will often use the term solution and subsolution without 
explicitly saying “of .∇ · (A(x)∇u) = 0”. We have the following results 

Proposition 5.16 

1. If u is a solution in . 𝛀 and .f : R → R is convex and f and . f ' are Lipschitz 
continuous, then .f (u) is a subsolution. The same is true if u is only a subsolution 
but f is also assumed to be non-decreasing. 

2. If f is convex and u is a solution such that .f (u) ∈ L2
loc(𝛀), then .f (u) is a 

subsolution. The same is true if f is convex and non-decreasing, and u is a 
subsolution. 

3. If u is a solution or a non-negative subsolution, then .|u|p is a subsolution for 
every .p ≤ 2∗/2. 

4. If u is a solution or a non-negative subsolution, then .|u|p is a subsolution for 
every .p ∈ (1,∞). 

Proof 

1. If u is a solution we take .ϕ = f '(u)ψ for .ψ ∈ C1
c . Thanks to .u ∈ H 1

loc and . f '
Lipschitz continuous we have .ϕ ∈ H 1, and since . ϕ is compactly supported in . 𝛀, 
it is then an admissible test function, so that we have 

. 0 =
ˆ

𝛀

A(x)∇u·∇ϕ dx =
ˆ

𝛀

A(x)∇(f (u))·∇ψ dx+
ˆ

𝛀

A(x)∇u·∇uf ''(u)ψ dx.

Assuming .ψ ≥ 0 the last term is non-negative, so that we obtain . ́ A(x)∇(f (u))·
∇ψ ≤ 0 and .f (u) (which is .H 1

loc because f is Lipschitz) is a subsolution. If u 
is only assumed to be a subsolution then we need to require .f ' ≥ 0 in order to 
use .ϕ = f '(u)ψ as a non-negative test function and obtain .0 ≥ ´

A(x)∇u · ∇ϕ, 
from which the result follows. 

2. If f is convex but we remove the assumption that f and . f ' are Lipschitz 
continuous we approximate f with an increasing sequence . fn of Lipschitz 
and .C1,1 convex functions. We then obtain that .fn(u) are subsolutions and the 
Caccioppoli inequality provides local bounds of their .H 1 norm in terms of the 
.L2 norm on larger domains. If .f (u) ∈ L2

loc then the .L2 norms of .fn(u) are
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bounded (we use .fn(u) ≤ f (u) together with a uniform lower bound with an 
affine function .fn(u) ≥ au + b) and this implies a similar bound on their . H 1

norms, thus obtaining at the limit .f (u) ∈ H 1
loc. From this we obtain that .f (u) is 

a subsolution. 
3. If u is a solution or subsolution, it is .H 1

loc and then .L2p
loc for every .p ≤ 2∗/2. We  

can then apply the previous point to the convex function .s I→ |s|p (the positivity 
is needed for subsolutions since otherwise this function is not monotone). 

4. Given an exponent .p ≥ 1 we can always write it as .p = pn
1 for large n and 

.p1 ≤ 2∗/2. The previous argument shows that the power . p1 of a subsolution is 
always a subsolution, so that we can iterate it and obtain that .|u|p is a subsolution. 

⨅⨆

5.4.1 L∞ Bounds 

We now quantify some of the estimates that we used in the previous proposition and 
we obtain the following: 

Proposition 5.17 If u is a nonnegative subsolution in . 𝛀, and .Br := B(x0, r) and 
.BR := B(x0, R) are two balls compactly contained in . 𝛀 with .r ∈ (R/2, R), then 
for every .p ∈ (1, 2∗/2) we have 

. 

( 
Br

|u|2p dx

)1/p

≤ C
R2

(R − r)2

 
BR

|u|2 dx,

for a constant C only depending on .p,Λmin,Λmax. 

Proof We start from the Caccioppoli inequality (Proposition 5.8), which provides 

. 

 
Br

|∇u|2 dx ≤ C

(R − r)2

 
BR

|u|2 dx,

where we wrote averages instead of integrals since r and R are assumed to be  
comparable up to a factor . 1/2. Then we use the Sobolev inequality (see the Box 5.2) 

. 

( 
Br

|u|2p dx

)1/p

≤ C

(
r2
 

Br

|∇u|2 dx +
 

Br

|u|2 dx

)
.

Combining the two, we obtain 

.

( 
Br

|u|2p dx

)1/p

≤ C

(
Cr2

(R − r)2

 
BR

|u|2 dx +
 

Br

|u|2 dx

)
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which, together with .
ffl
Br

|u|2 ≤ (R/r)d
ffl
BR

|u|2 and .r ∈ (R/2, R), gives the claim. 
⨅⨆

Theorem 5.18 If u is a nonnegative subsolution in . 𝛀 and .BR0 := B(x0, R0) is 
compactly contained in . 𝛀, then .u ∈ L∞(BR0/2) and we have 

. |u(x)| ≤ C

( 
BR0

|u|2 dx

)1/2

for a.e. x ∈ BR0/2

for a constant C only depending on .d,Λmin,Λmax. 

Proof We fix a sequence of radii .Rk = R0/2 + 2−(k+1)R0 for .k ≥ 0 and a 
sequence of exponents .mk = pk where p is a fixed exponent in . (1, 2∗/2). We  
apply Proposition 5.17 to .umk with .r = Rk+1 and .R = Rk . Since . Rk ∈ (R0/2, R0)

for every . k, the assumption .r ∈ (R/2, R) is satisfied. We then have . R2/(R − r)2 =
R2

k/(Rk − Rk+1)
2 ≤ 4k+2 hence 

. 

( 
BRk+1

|u|2mk+1 dx

)1/p

≤ C4k

 
BRk

|u|2mk dx.

We raise both sides to the power .1/(2mk) so that we obtain norms: 

. 

( 
BRk+1

|u|2mk+1 dx

) 1
2mk+1

≤ (C4k)
1

2mk

( 
BRk

|u|2mk dx

) 1
2mk

.

We set .yk := log(||u||L2mk (BRk
)), where the norms are computed in terms of the 

normalized Lebesgue measure on each ball. We just proved 

. yk+1 ≤ log C + k log 4

2mk

+ yk ⇒ yk ≤ y0 +
k−1∑
j=0

log C + j log 4

2mj

.

Since the series of . log C+j log 4
2mj

is convergent (remember that .mj grows exponen-
tially) we have .yk ≤ C + y0 for all k, and then 

. ||u||L2mk (B(x0,Rk))
≤ C||u||L2(B(x0,R0))

.

We then use 

. ||u||L2mk (B(x0,R/2)) ≤
(

Rk

R/2

) d
2mk ||u||L2mk (B(x0,Rk))

and .||u||L2mk (B(x0,R/2)) → ||u||L∞(B(x0,R/2)) in order to obtain the claim. ⨅⨆
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5.4.2 Continuity 

We have just proven that solutions and non-negative subsolutions are locally . L∞
functions. We need now to study better local .L∞ bounds in order to prove a certain 
decay of the oscillation of the solutions, if we want to prove that they are Hölder 
continuous. 

We then act as follows. 

Lemma 5.19 If u is a solution in . 𝛀 valued in an interval .[a, b] and . h : [a, b] → R

is a convex function such that .h'' ≥ |h'|2 then .v := h(u) is a subsolution such that 

. 

ˆ
B(x0,R)

|∇v|2 dx ≤ CRd−2

whenever .B(x0, 2R) is compactly contained in . 𝛀, for a constant C only depending 
on .d,Λmin,Λmax. 

Proof We come back to the proof that v is a subsolution, i.e. we test the equation 
against .ϕ = h'(u)ψ . We take .ψ = η2 where . η is a cut-off function with .η = 1 on 
.B(x0, R), .spt η ⊂ B(x0, 2R) and .|∇η| ≤ 1

R
. We first assume that h is smooth, and 

the result will be true for general h by approximation: we have 

. 0=
ˆ

B2R

A(x)∇u ·∇ϕdx =
ˆ

B2R

A(x)∇u ·∇uh''(u)η2dx+2
ˆ

B2R

A(x)∇u ·∇ηh'(u)ηdx,

from which we obtain 

. 

ˆ
B2R

A(x)∇v · ∇vη2 dx =
ˆ

B2R

A(x)∇u · ∇u|h'(u)|2η2 dx

≤
ˆ

B2R

A(x)∇u · ∇uh''(u)η2 dx

= −2
ˆ

B2R

A(x)∇v · ∇ηη dx.

Applying the Hölder inequality to the right-hand side exactly as for the proof of 
the Caccioppoli inequality we get 

. Λmin

ˆ
BR

|∇v|2 dx ≤
ˆ

B2R

A(x)∇v · ∇vη2 dx ≤ 4
ˆ

B2R

A(x)∇η · ∇η dx

≤ 4Λmax

ˆ
B2R

|∇η|2 dx = CRd−2,

which concludes the proof for h smooth. For general h, we first note that h is 
bounded on .[a, b] so that .v = h(u) is bounded, hence . L2, and this guarantees (point
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2. in Proposition 5.16) that v is a subsolution. Then, we observe that the condition 
.h'' ≥ |h'|2 is equivalent to .e−h being concave, so that it is enough to approximate 
.e−h with a sequence of smooth concave functions . kn and take .hn := − log(kn); we  
write the inequality of the claim for . hn and then use the lower semicontinuity of the 
. L2 norm of the gradient. ⨅⨆

We define .osc(u,E) as .ess sup{u(x) : x ∈ E} − ess inf{u(x) : x ∈ E}. 
Theorem 5.20 There exists a constant .c < 1 only depending on .d,Λmin,Λmax such 
that .osc(u, B(x0, R/2)) ≤ cosc(u, B(x0, 2R)) whenever .B(x0, 2R) is compactly 
contained in . 𝛀 and u is a solution in . 𝛀. 

Proof Fix a ball .B(x0, 2R) compactly contained in . 𝛀. We know that u is locally 
.L∞, hence .osc(u, B(x0, 2R)) < ∞. Up to adding a constant and multiplying by a 
constant we can assume .−1 ≤ u ≤ 1 a.e. in .B(x0, 2R) and . osc(u, B(x0, 2R)) =
2. The claim is proven if we are able to find a universal constant strictly smaller 
than 2 which bounds .osc(u, B(x0, R/2)) from above. Looking at u on .B(x0, R) one 
of the two sets .{u > 0} ∩ B(x0, R) or .{u < 0} ∩ B(x0, R) has measure smaller 
than .|B(x0, R)|/2. We assume for simplicity that we have . |{u > 0} ∩ B(x0, R)| ≤
|B(x0, R)|/2. Fix .ε > 0 and take .v = h(u) with .h : [−1, 1] → R defined via 
.h(s) = (− log(1 + ε − s))+, i.e. 

. h(s) =
{

0 if s < ε,

− log(1 + ε − s) if s ≥ ε.

The function h satisfies .h''(s) ≥ |h'(s)|2 and in particular is convex, so that v is a 
nonnegative subsolution. Then, thanks to Theorem 5.18, we have  

. ||v||2L∞(B(x0,R/2)) ≤ C

 
B(x0,R)

|v|2 dx ≤ CR2
 

B(x0,R)

|∇v|2 dx ≤ C,

where the second inequality is a Poincaré inequality as in Proposition 2.2 and 
Box 5.2 justified by the fact that v vanishes on a set which has at least half of 
the measure of the ball .B(x0, R), and the last inequality comes from Lemma 5.19. 
Since this last constant C does not depend on . ε we can pass to the limit .ε → 0 and 
obtain 

. − log(1 − u(x)) ≤ C for every x ∈ B(x0, R/2) ⇒ u(x) ≤ 1 − e−C < 1.

This shows that in .B(x0, R/2) the oscillation is at most .2 − e−C < 2 and proves the 
result. ⨅⨆

It is then easy to obtain the following final result, which is the main result of 
[154] and [72]: 

Theorem 5.21 There exists an exponent . α only depending on .d,Λmin,Λmax such 
that all solutions in . 𝛀 admit a representative which is locally .C0,α in . 𝛀.
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Proof Consider a set .𝛀' ⊂ 𝛀 on which u is essentially bounded: . |u(x)| ≤ M

for a.e. .x ∈ 𝛀'. Then, consider a set .𝛀'' such that .B(x, δ) ⊂ 𝛀' for all . x ∈ 𝛀''
and for a fixed .δ > 0. Take two Lebesgue points .x, y of u. Assume .x, y ∈ 𝛀''. 
For those points we have .|u(x) − u(y)| ≤ osc(u, B(x, r)), where .r = |x − y|, 
as well as .|u(x)|, |u(y)| ≤ M . Let k be the largest integer such that .4kr ≤ δ. We  
have .osc(u, B(x, r)) ≤ ckosc(u, B(x, 4kr)) for a constant .c > obtained in Theo-
rem 5.20, but we also have .osc(u, B(x, 4kr)) ≤ 2M since .B(x, 4kr)) ⊂ 𝛀'. Then 
.|u(x) − u(y)| ≤ 2Mck , where .4k+1r > δ, i.e. .k >

log δ−log r
log 4 − 1. Then 

.ck < Crα where .α = − log c
log 4 . This proves .|u(x) − u(y)| ≤ C|x − y|α , i.e. u is 

.C0,α on the Lebesgue points of u in . 𝛀''. This Hölder continuous function can be 
extended, preserving the modulus of continuity, to the whole . 𝛀'', and this is still a 
representative of u on . 𝛀''. If we do this construction on a countable and increasing 
sequence of sets . 𝛀''

n these representatives are each an extension of the previous one, 
and this provides a representative of u which is locally .C0,α . ⨅⨆

5.4.3 The Non-Homogeneous Case 

For completeness, we want to study what happens for solutions of . ∇ · (A(x)∇u) =
∇ · F . 

We will first start with the case of solutions .u ∈ H 1
0 (𝛀) (i.e. with homogeneous 

Dirichlet boundary conditions) and define the notion of subsolution in this same 
case. 

Definition 5.22 A function u is said to be a subsolution of the Dirichlet problem 
.∇ · (A(x)∇u) = ∇ · F (and we write .∇ · (A(x)∇u) ≥ ∇ · F) in . 𝛀 if it belongs 
to .H 1

0 (𝛀) and .
´
𝛀

A(x)∇u · ∇ϕ ≤ ´
𝛀

F · ∇ϕ for every function .ϕ ∈ H 1
0 (𝛀) with 

.ϕ ≥ 0. 

We have the following result. 

Proposition 5.23 

1. If u is a non-negative subsolution and .h : R+ → R is a non-decreasing Lipschitz 
function such .h(0) = 0, then we have 

. Λ2
min

ˆ
𝛀

h'(u)|∇u|2 dx ≤
ˆ

𝛀

|F |2h'(u) dx.

2. If u is a non-negative subsolution and .F ∈ Ld(𝛀) then .u ∈ Lp(𝛀) for all 
.p < ∞. 

3. If u is a non-negative subsolution and .F ∈ Ld(𝛀) then .up ∈ H 1
0 (𝛀) for all 

.p ∈ [1,∞).
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4. If u is a non-negative subsolution then for every .p ∈ [0,∞) we have 

.Λ2
min

ˆ
𝛀

up|∇u|2 dx ≤
ˆ

𝛀

|F |2up dx. (5.6) 

5. If u is a non-negative subsolution and .F ∈ Lq(𝛀) for some .q > d, then . u ∈
L∞(𝛀) and .||u||L∞ is bounded by a constant only depending on . d, q,Λmin,𝛀

and .||F ||Lq . 

Proof 

1. Let us use .ϕ = h(u), and assume that .h(u) is in . H 1
0 . We then obtain 

. 

ˆ
𝛀

A(x)∇u · ∇uh'(u) dx ≤
ˆ

𝛀

F · ∇uh'(u) dx.

This implies 

. Λmin

ˆ
𝛀

h'(u)|∇u|2dx ≤
ˆ

𝛀

|F ||∇u|h'(u)dx

≤
(ˆ

𝛀

|F |2h'(u)dx

) 1
2
(ˆ

𝛀

|∇u|2h'(u)dx

) 1
2

which provides the claim since in particular this can be applied when .h(u) is a 
non-decreasing Lipschitz function of u which vanishes at 0 (because in this case 
we do have .h(u) ∈ H 1

0 ). 
2. If .d = 2 then we have .u ∈ Lp(𝛀) for all .p < ∞ because this is true for every 

.H 1 function. If .d > 2, then we have .|F |2 ∈ Ld/2 and .( d
2 )' = d

d−2 = 2∗
2 . Assume 

now .u ∈ Lp for a certain p and take .h(s) = sm+1 with .m2∗/2 = p. This function 
cannot be used in the estimate that we just proved since it is not globally Lipschitz 
but can be approximated by a sequence of Lipschitz continuous functions . hn

such that .h'
n ≤ h' (take, for instance, .h'

n(s) = min{h'(s), n} and define . hn

accordingly) for which we have 

. Λ2
min

ˆ
𝛀

h'
n(u)|∇u|2 dx ≤

ˆ
𝛀

|F |2h'
n(u) dx ≤

ˆ
𝛀

|F |2h'(u) dx < ∞,

where the finiteness of the last integral comes from .|F |2 ∈ Ld/2 and . h'(u) =
cum ∈ L(d/2)' . Passing to the limit this implies 

. 

ˆ
𝛀

um|∇u|2 dx < ∞ ⇒ u
m
2 +1 ∈ H 1 ⇒ u

m
2 +1 ∈ L2∗

,

which means .u ∈ Lp+2∗
. This proves that the integrability of u can be improved 

by induction and .u ∈ Lp(𝛀) for all .p < ∞.
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3. Now that we know .u ∈ Lp(𝛀) for all .p < ∞ the same argument as before 
provides .u

m
2 +1 ∈ H 1 for all .m = 2p/2∗. Note that we can also use .p < 1 and 

even .p = 0 as the only assumption on p is that .h(s) = sm+1 is non-decreasing, 
so that .m = 0 is allowed. 

4. Given .p ∈ [0,∞[ we define .h(s) = sp+1

p+1 so that .h'(s) = sp and we know 

.h(u) ∈ H 1
0 . This allows us to obtain the desired estimate as in the first point of 

the proof. 
5. Let us start from the case .|𝛀| = 1. In this case the .Lm norm of u is increasing 

in m. Set .m0 := inf{m ≥ 1 : ||u||Lm > 1}. If .m0 = +∞ then . ||u||Lm ≤ 1
for all m and .||u||L∞ ≤ 1. In this case there is nothing to prove. If .m0 > 1 then 
.||u||Lm ≤ 1 for all .m < m0 and, by Fatou’s lemma, we also have .||u||Lm0 ≤ 1. 
If .m0 = 1 we then have .||u||Lm0 = ||u||L1 ≤ C||u||L2 ≤ C||∇u||L2 and we 
know from Lemma 5.9 that u is bounded in .H 1 in terms of .||F ||L2 , and hence of 
.||F ||Lq . In any case, we obtain that .||u||Lm0 is bounded in terms of .||F ||Lq , and 
for .m > m0 we have .||u||Lm ≥ 1, an inequality which we will use to simplify the 
computations. 

Using (5.6) we have 

. 
4

(p + 2)2

ˆ
𝛀

|∇(u
p
2 +1)|2 dx ≤ C

ˆ
𝛀

|F |2up dx ≤ C

(ˆ
𝛀

u
pq
q−2 dx

) q−2
q

,

where the constant C depends on .Λmin and .||F ||Lq(𝛀). Let us fix an exponent . β
such that .β < 2∗

2 but .β >
q

q−2 . This is possible because .q > d. We then use the 

Sobolev injection of .H 1
0 into .L2β and obtain 

. 

(ˆ
𝛀

u(p+2)β

) 1
β ≤ C(p + 2)2

(ˆ
𝛀

u
pq
q−2

) q−2
q

.

We now raise to the power .1/(p + 2) and assume .pq/(q − 2) ≥ m0. We then 
have 

. ||u||Lpβ ≤ ||u||L(p+2)β ≤ C(p + 2)
2

p+2 ||u||
p

p+2

L
pq
q−2

≤ C(p + 2)
2

p+2 ||u||
L

pq
q−2

,

where we used .||u||
L

pq
q−2

≥ 1. Setting .r = β(q − 2)/q > 1 and .mk = m0r
k we 

then have 

. ||u||Lmk+1 ≤ C(pk + 2)
2

pk+2 ||u||Lmk ,

where .pk = mk
q−2
q

. Passing to the logarithms and using the exponential 
behavior of . pk as in the proof of Theorem 5.18 we then obtain 

.||u||Lmk ≤ C||u||Lm0 ≤ C,
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where all constants depend on .d, q,Λmin,𝛀 and .||F ||Lq . 
For the case where .|𝛀| /= 1, we simply perform a scaling: if u is a subsolution 

in . 𝛀 with the matrix field .A(x) and the datum .F(x) then we define .uR,AR and 
.FR as .uR(x) = u(Rx), .AR(x) = A(Rx) and .FR(x) = F(Rx), and we obtain 
.∇ · (AR∇uR) ≥ R∇ ·FR in .

1
R

𝛀. Indeed, for every non-negative test function we 
have .

´
𝛀

A(x)∇u · ∇ϕ ≤ − ´
𝛀

F · ∇ϕ and the change of variable .x = Ry gives 

. 

ˆ
1
R

𝛀

AR(y)∇u(Ry) · ∇ϕ(Ry) dy ≤ −
ˆ

𝛀

FR(y) · ∇ϕ(Ry) dy,

which gives the desired inequality using .∇u(Ry) = 1
R

∇uR(y) and . ∇ϕ(Ry) =
1
R

∇ϕR(y). Choosing R such that .| 1
R

𝛀| = 1 provides the desired estimate on 
.||uR||L∞ = ||u||L∞ . 

⨅⨆
We can now obtain a precise result on solutions. 

Theorem 5.24 If .u ∈ H 1
0 (𝛀) is a solution of .∇ · (A(x)∇u) = ∇ · F in . 𝛀 with . F ∈

Lq(𝛀) for some .q > d, then .u ∈ L∞(𝛀) and .||u||L∞ ≤ C(d, q,Λmin,𝛀)||F ||Lq . 

Moreover, if .𝛀 = B(x0, R) we have .C(d, q,Λmin,𝛀) = R
1− d

q C(d, q,Λmin). 

Proof First we prove that .||u||L∞ can be bounded in terms of .||F ||Lq , without being 
precise about the exact dependence of the bound on this norm. 

Consider .h : R → R given by .h(s) = √
s2 + ε2 − ε. The function h is convex, 

smooth, and 1-Lipschitz. We set .v = h(u). Taking .ϕ = h'(u)ψ as a test function, 
with .ψ ∈ C1

c and non-negative, we obtain 

. 

ˆ
𝛀

A(x)∇v · ∇ψ dx +
ˆ

𝛀

A(x)∇u · ∇uh''(u)ψ dx = −
ˆ

𝛀

Fh'(u) · ∇ψ dx.

Since the second term in the left-hand side is nonnegative, we obtain 

. 

ˆ
𝛀

A(x)∇v · ∇ψ dx ≤ −
ˆ

𝛀

Fh'(u) · ∇ψ dx.

This is valid for .ψ ∈ C1
c but, by density, also for .ψ ∈ H 1

0 since both .A∇v and 
.Fh'(u) are in . L2. Hence v is a non-negative subsolution with right-hand side . ∇ ·
(Fh'(u)). We then obtain 

. ||
√

u2 + ε2 − ε||L∞ ≤ C(||Fh'(u)||Lq ) ≤ C(||F ||Lq )

(where we used .|h'| ≤ 1). Sending .ε → 0 we obtain 

.||u|L∞ ≤ C(||F ||Lq ).
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We now need to investigate more precisely the dependence of the bound. The 
map .F I→ u is well-defined (thanks to Lemma 5.9) from . L2 to .H 1 but we proved 
that it maps . Lq into .L∞ and that it is bounded on the unit ball of . Lq . It is linear, 
so we necessarily have .||u||L∞ ≤ C||F ||Lq . The constant C depends here on all 
the data, including the domain. When .𝛀 = BR := B(x0, R) we perform the same 
scaling as in the last part of the proof of Proposition 5.23, and we obtain 

. ||u||L∞ = ||uR||L∞ ≤ C||RFR||Lq(B1)

= CR

(ˆ
B1

|F(Ry)|q dy

)1/q

=CR
1− d

q

(ˆ
BR

|F(y)|q dy

)1/q

.

⨅⨆
We are now able to consider the full case, where we consider a right-hand side F 

without imposing Dirichlet boundary conditions: 

Theorem 5.25 If .u ∈ H 1
loc(𝛀) is a solution in . 𝛀 of .∇ · (A(x)∇u) = ∇ · F with 

.F ∈ L
q
loc(𝛀) for some .q > d, then .u ∈ C

0,α
loc (𝛀) for an exponent . α depending on 

.q, d,Λmin and .Λmax. 

Proof Consider a ball .BR := B(x0, R) and decompose u into .u = ũ + w with 
.w ∈ H 1

0 (BR) a solution of .∇ ·(A(x)∇w) = ∇ ·F . Then . ̃u solves .∇ ·(A(x)∇ũ) = 0. 
Set .φ(R) := osc(u, BR). Theorem 5.20 proves that we have 

. osc(ũ, BR) ≤ C
( r

R

)α0
osc(ũ, BR) ≤ C

( r

R

)α0 (
osc(u, BR) + ||w||L∞(BR)

)
for a certain exponent . α0 depending on .d,Λmin and .Λmax. Then we obtain, using 
Theorem 5.24, 

. φ(r) ≤ C
( r

R

)α0
(φ(R) + CR

1− d
q ) + CR

1− d
q

≤ C
( r

R

)α0
φ(R) + CR

1− d
q ≤ C

( r

R

)α0
φ(R) + CRα1 ,

where . α1 is any exponent strictly smaller than . α0 and smaller than .1 − d
q

. We then 

obtain, using once more Lemma 5.6, the estimate .φ(r) ≤ Crα1 , i.e. .u ∈ C
0,α1
loc . ⨅⨆

We note that the assumption .q > d is essential throughout this analysis, since in 
the case .A = I and .F = ∇u we are just dealing with the Sobolev injection of . W 1,q

in .C0,α .
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5.5 Discussion: Lp Elliptic Regularity and Boundary Data 

The results in this chapter mainly concern the regularity of the solutions of elliptic 
equations in terms of Hölder spaces, in the spirit of a statement of the form “if . Δu =
f with .f ∈ Ck,α , then .u ∈ Ck+2,α” (a result which is included in Theorem 5.14). 
The general idea is that solutions gain two degrees of regularity compared to the 
data in the right-hand side, provided the coefficients of the equation are compatible 
with this smoothness. A natural question, different but following the same scheme, 
would be whether a similar statement is true in . Lp spaces. Starting from the easiest 
case of the Laplacian, the question is whether it is true that .Δu = f with . f ∈ Lp

implies .u ∈ W 2,p. 
Since any solution of .Δu = f can be written as .u = ũ +  𝚪 ∗ f , where . ̃u is 

harmonic and .  𝚪 is the fundamental solution of the Laplacian (see Sect. 2.3), and 
harmonic functions are .C∞, we only consider the regularity of . 𝚪 ∗ f . We already 
know from Proposition 2.12 that .f ∈ Lp ⇒ D2( 𝚪 ∗ f ) ∈ Lp is true for . p = 2. We  
want to extend this to other exponents p. 

The strategy for this amounts to a standard procedure in harmonic analysis, called 
real interpolation: if a linear operator .T : Lp∩Lq → Lp∩Lq is bounded both in the 
. Lp norm and in the . Lq norm, then for every .r ∈ (p, q) it is also bounded in . Lr (i.e. 
if there are constants .Cp and . Cq such that .||Tf ||Lp ≤ Cp||f ||Lp and . ||Tf ||Lq ≤
Cq ||f ||Lq , then there exists a constant . Cr , which can be explicitly computed in 
terms of .p, q, r, Cp, Cq , such that .||Tf ||Lr ≤ Cr ||f ||Lr ). Actually, the conditions 
for this interpolation result are even weaker, since we do not necessarily need the 
continuity of T in .Lp and . Lq , but a weaker condition; we need the existence of a 
constant C such that 

. |{|Tf | > t}| ≤ Cp

||f ||pLp

tp
for all t > 0,

and the same replacing p with q. We usually say that T maps .Lp into the Lorentz 
space .Lp,∞ (also called .Lp,w for “.Lp weak”; see [106] for the theory of Lorentz 
spaces) and . Lq into .Lq,∞. This condition is satisfied when . ||Tf ||Lp ≤ Cp||f ||Lp

because of the estimate .|{|g| > t}|tp ≤ ||g||pLp valid for every function g. This  
interpolation result is called Marcinkiewicz interpolation, see [143, 202], as well as 
[98] where the whole content of this section is explained in detail. 

In the case of the operator T defined via .Tf := ( 𝚪 ∗ f )ij (the second derivative 
of the convolution . 𝚪 ∗f w.r.t. the variables . xi and . xj ) we know that T is continuous 
in . L2 (see Proposition 2.12). The idea is then to prove the weaker estimate above 
in the case .p = 1. Note that if .D2 𝚪 was an . L1 function the continuity of T would 
be trivial in all the . Lp spaces; unfortunately, .D2 𝚪(x) ≈ |x|−d fails . L1 integrability 
close to 0. On the other hand, the function .x I→ |x|−d is a typical example of an 
.L1,∞ function since .{x : |x|−d > t} = B(0, t−1/d) and thus . |{x : |x|−d >

t}| = c/t . It is then reasonable to expect that .f ∈ L1 would imply .Tf ∈ L1,∞. 
If the condition to be in .L1,∞ could be expressed as the finiteness of a norm or
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of a convex functional, it would be clear that the convolution with an . L1 density f 
would preserve it (it is always true that convex functionals which are invariant under 
translations decrease by convolution with probability measures), and decomposing 
f into positive and negative parts and rescaling by their masses one would have 
.||g∗f ||X ≤ ||g||X||f ||L1 for every translation-invariant norm .|| · ||X. Unfortunately, 
the .L1,∞ space is a very pathological space on which it is impossible to define 
a norm with the desired properties and the proof of .( 𝚪 ∗ f )ij ∈ L1,∞ is more 
involved than just a convolution argument. In particular, the proof in [98, Section 
9.4] strongly uses the condition .D3 𝚪(x) ≈ |x|−1−d . 

This allows us to prove that T maps .L1 into .L1,∞ and .L2 into . L2. By  
interpolation, it also maps . Lr into . Lr for all .r ∈ (1, 2). By considering a sequence 

.fn
∗
⇀ δ0 it is not difficult to understand that T cannot map . L1 into . L1. 
It is then possible to consider the case .p ∈ (2,∞) via a duality argument. Indeed, 

we can take .f, g ∈ C∞
c (𝛀) and write 

. 

ˆ
𝛀

(Tf )g dx =
ˆ

𝛀

( 𝚪 ∗ f )ij g dx =
ˆ

𝛀

( 𝚪 ∗ f )gij dx

=
ˆ

𝛀

f (T g) dx ≤ ||f ||Lp ||T g||
Lp' ≤ C||f ||Lp ||g||

Lp' ,

where we used the fact that both the second-order derivations and the convolution 
with even kernels are self-adjoint operators in . L2, and the .Lp'

boundedness of T , 
since .p' < 2. By arbitrariness of g, the above estimate means .||Tf ||Lp ≤ C||f ||Lp , 
which proves the result for .p > 2. 

We then obtain the following result. 

Theorem 5.26 For every open domain .𝛀 ⊂ R
d and any .p ∈ (1,∞) there exists a 

constant C such that 

. || 𝚪 ∗ f ||W 2,p(𝛀) ≤ C||f ||Lp .

In particular, if u solves .Δu = f in . 𝛀 and .𝛀' ⊂ 𝛀 is a compactly contained 
subdomain, we have the estimate 

. ||u||W 2,p(𝛀') ≤ C(||f ||Lp + ||u||Lp(𝛀)),

for a constant C depending on .p, d,𝛀' and . 𝛀. 

Note that an alternative interpolation argument could be based on the fact that 
T maps .L2 into .L2 and .L∞ into BMO (a space which is not so different from 
.L2,d ). Indeed, one can take Theorem 5.12, rewrite it replacing .C0,α with .L2,d+2α , 
and adapt the proof to the case .α = 0 (actually, the assumption .α > 0 is not 
needed, only .α < 1 is important). As a particular case, we find that the solution 
of .Δu = ∇ · F is such that .∇u ∈ L2,d whenever .F ∈ L2,d . If one takes . f ∈
L∞ ⊂ L2,d and a solution of .Δu = f , it is possible to differentiate the equation
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and find .Δu' = f ', view . f ' as the divergence of a vector field .F = f e, where the 
unit vector e is oriented as the direction of the derivative denoted by . ', and deduce 
.∇u' ∈ L2,d , i.e. .D2u ∈ L2,d . It is then possible to apply an interpolation theorem 
due to Stampacchia ([187]; see also [97, 101] and [11] as some examples of books 
explaining this approach to elliptic regularity in detail) to prove that T maps . Lp into 
.Lp for .p > 2, and then use the duality argument above to extend to . p < 2. Note  
that this approach does not use the fundamental solution of the Laplacian and can 
be more easily extended to the case of equations with variable coefficients. 

Before stating a result on variable coefficients we discuss the role of the data on 
the boundary. Indeed, all the estimates presented so far (in this section but also in the 
rest of the chapter) are local, in the sense they are valid in the interior of the domain 
where the equation is solved, i.e. on subsets .𝛀' ⊂ 𝛀 with coefficients depending on 
the distance between . 𝛀' and . ∂𝛀. The question is whether we can obtain regularity 
results (in .Ck,α or in .Wk,p) for Dirichlet problems and/or other boundary data. 

We will see shortly a sketch of a technique to prove these regularity results for 
.Δu = f with homogeneous boundary conditions .u = 0 on .∂𝛀 when .∂𝛀 is flat. 

Let .𝛀 ⊂ R
d be a compact domain with a flat part in .∂𝛀 and . R : R

d → R
d

a reflection which fixes this part. For instance, if .𝛀 = [0, 1]d , we can consider 
.R(x1, . . . , xd) = (−x1, . . . , xd). The map  R is linear, self-adjoint, with determinant 
equal to . −1, and .R2 = id. 

Assume that .u ∈ H 1
0 (𝛀) solves in the weak sense .Δu = f . Define . �̃� := 𝛀 ∪

R(𝛀) and 

. ̃u(x) =
{

u(x) if x ∈ 𝛀,

−u(Rx) if x ∈ R(𝛀).

We define in analogous way . f̃ . Note that the condition .u ∈ H 1
0 (i.e. zero on the 

boundary) makes . ̃u well-defined on .𝛀 ∩ R(𝛀) and we have .ũ ∈ H 1
0 (�̃�). This is not 

the case for f if we do not assume any boundary condition on it, but . f ∈ Lp(𝛀)

clearly implies .f̃ ∈ Lp(�̃�). 
We can check that we also have .Δũ = f̃ in . �̃�. This is left as an exercise (see 

Exercise 5.12). Using several reflections like the one presented here, we conclude 
the following. 

Proposition 5.27 Assume that .u ∈ H 1
0 (𝛀) is a weak solution of .Δu = f (i.e. we 

have .
´ ∇u · ∇φ = − ´

f φ for every .φ ∈ C1
c (𝛀)) with .f ∈ Lp(𝛀) and . 𝛀 is a cube. 

Then .u ∈ W 2,p(𝛀). 

The main idea in proving the above result consists in reflecting enough times 
so as to see f and u as restrictions of functions . f̃ and . ̃u on a larger domain . �̃�
containing . 𝛀 in its interior, and satisfying .Δũ = f̃ . Since reflections preserve the 
. Lp behavior, we obtain .ũ ∈ W 2,p. Note that this same idea would not work as well 
for other regularity results, which require better than mere summability for f , since 
the reflection with the change of sign does not preserve continuity or higher-order
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regularity. On the other hand, Exercise 5.13 proposes a different reflection formula 
for Neumann boundary conditions, which preserves first-order regularity. 

The same techniques can then be extended to the case of non-zero boundary data, 
since if we want to prove .u ∈ W 2,p necessarily we need to assume that the trace 
of u on .∂𝛀 is the trace of a .W 2,p function, so we can write the boundary condition 
as .u − g ∈ H 1

0 (𝛀) for some .g ∈ W 2,p, and then we apply the previous result to 
.v = u − g, which solves .Δv = f − Δg ∈ Lp. 

It is then possible to extend the result to other domains which are not the cube 
after a suitable diffeomorphism .S : 𝛀 → Q where Q is a cube. Yet, . u ◦ S−1

no longer solves on Q a constant-coefficient equation, but a more complicated 
elliptic equation involving variable coefficients depending on the Jacobian of S. 
Hence, proving regularity results for the Laplace equation up to the boundary on a 
domain with non-flat boundaries is equivalent to proving the same regularity results 
for variable coefficients on the cube or, equivalently, local regularity results (since 
the reflection tricks transforms the boundary into an interior region). These results 
usually require regularity of the coefficients, which translate into regularity of S 
and hence of . ∂𝛀. This justifies the interest in general equations, and the final result 
which can be obtained by a non-trivial combination of all the techniques seen so far 
(+ other technical ingredients) is the following (see, for instance [98, Sections 9.5 
and 9.6]). 

Theorem 5.28 Assume that .𝛀 ⊂ R
d has .C1,1 boundary and let u be a solution of 

.
∑

i,j aij uij = f in . 𝛀, with .u−g ∈ H 1
0 (𝛀). Assume .g ∈ W 2,p(𝛀) and .aij ∈ C0(𝛀). 

Then we have .u ∈ W 2,p(𝛀). 

5.6 Exercises 

Exercise 5.1 Write and prove a Caccioppoli-type inequality between the Lp (Br) 
norm of ∇u and the Lp (BR) norm of u for solutions of ∇ ·  (|∇u|p−2∇u) = 0. 

Exercise 5.2 Given u ∈ W
1,p 
loc (R

d ), assume that we have 

. 

ˆ
B(x0,r)

|∇u|p dx ≤ Crdf (r),

where f : R+ → R+ is defined as f (r)  = − log r for r ≤ e−1 and f (r)  = 1 for  
r ≥ e−1. Prove that u is continuous and that we have 

. |u(x) − u(y)| ≤ C|x − y|f (|x − y|)1/p

(possibly for a different constant C).
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Exercise 5.3 Consider the equation Δu = f (u), where f : R → R is a given C∞ 

function. Assume that u ∈ H 1(𝛀) is a weak solution of this equation and f has 
polynomial growth of order m (i.e. |f (t)| ≤  C(1 + |t |)m. In dimension d = 1, 2, 
prove u ∈ C∞. In higher dimensions, prove it under the restriction m <  2/(d − 2). 

Exercise 5.4 Let u ≥ 0 be a continuous function on an open domain 𝛀 which is a 
weak solution of 

. 

{
Δu = √

u in 𝛀,

u = 1 on ∂𝛀.

Prove that we have u ∈ C2,1/2 
loc (𝛀) and u ∈ C∞ if u >  0. Prove that we have u >  0 

if 𝛀 is contained in a ball of radius R sufficiently small (how much?). For larger 
domains 𝛀, is it possible to have min u = 0 ?  

Exercise 5.5 Given a function H : Rd → R which is both elliptic and C1,1 (i.e. 
there are two positive constants c0, c1 such that c0I ≤ D2H ≤ c1I), let u ∈ H 1 

loc(𝛀) 
be a weak solution of ∇ · (∇H(∇u)

) = 0 in 𝛀. 

1. Prove that we have u ∈ H 2 
loc ∩ C1,α 

loc . 
2. Prove the same result for solutions of ∇ · (∇H(∇u)

) = f , f ∈ L p 
loc for p large 

enough. 

Exercise 5.6 Let u ∈ H 1 
loc be a weak solution of ∇ · (

(3 + sin(|∇u|2))∇u
) = 0. 

Prove that we have u ∈ C0,α 
loc . Also prove u ∈ C∞ on any open set where sup |∇u| < 

1. 

Exercise 5.7 Let u ∈ H 1 
loc ∩L∞

loc be a weak solution of ∇ ·(A(x, u)∇u
) = 0, where 

. Aij (x, u) = (1 + u2|x|2)δij − u2xixj .

Prove that we have u ∈ C∞. 

Exercise 5.8 Consider a Lipschitz open domain 𝛀 ⊂ Rd , a measurable map τ :
𝛀 → 𝛀 and a scalar function u ∈ H 1 

loc(𝛀) which is a weak solution in 𝛀 of 

. ∇ ·
(

2 + u(τ(x))2

1 + u(τ(x))2 ∇u

)
= 0.

1. If τ is the identity, prove that u + arctan u is a harmonic function. 
2. If τ ∈ C∞, prove u ∈ C∞(𝛀). 

Exercise 5.9 Let pn be a sequence of C1 functions on a smooth open domain 𝛀 ⊂ 
R

d which is bounded in L∞ ∩H 1 and g a given  C2 function on 𝛀. Let  un ∈ H 1(𝛀)
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be the unique weak solution of 

. 

{
Δun = ∇u · ∇pn in 𝛀,

un = g on ∂𝛀.

1. Find a minimization problem solved by un. 
2. Prove that we have ||un||L∞ ≤ ||g||L∞ . 
3. Prove that un is bounded in H 1(𝛀). 
4. Prove that un is locally Hölder continuous, with a modulus of continuity on each 

subdomain 𝛀' compactly contained in 𝛀 which is independent of n (but can 
depend on 𝛀'). 

5. If pn weakly converges in H 1 to a function p prove that we have un → u (the 
convergence being strong in H 1 and locally uniform), where u is the unique 
solution of the same problem where pn is replaced by p. 

Exercise 5.10 Consider the equation Δu = f (|∇u|2), where f : R → R is a 
given C∞ function. Prove that, if u ∈ C1( ̄𝛀) ⊂ H 1(𝛀) is a weak solution of this 
equation, then we have u ∈ C∞. What is the difficulty in removing the assumption 
u ∈ C1(�̄�)? Which assumption should we add to f so as to prove the result for H 1 

weak solutions? 

Exercise 5.11 Let Q = (a1, b1) × (a2, b2) × . . . (an, bn) ⊂ Rd be a rectangle and 
f ∈ C∞

c (Q). Let  u ∈ H 1 
0 (Q) be the solution of Δu = f with u = 0 on  ∂Q. Prove 

u ∈ C∞(Q). Can we say  u ∈ C∞
c (Q)? Do functions f such that u ∈ C∞

c (Q) exist? 

Exercise 5.12 Prove the claim Δũ = f̃ concerning reflections in Sect. 5.5. 

Exercise 5.13 If u ∈ H 1(𝛀) is a weak solution of Δu = f in 𝛀 with Neumann 
boundary conditions (i.e. 

´ ∇u · ∇φ = − ´ 
f φ  for every φ ∈ C1(𝛀)) with f ∈ 

Lp (𝛀) and 𝛀 is a cube, prove u ∈ W 2,p (𝛀). If moreover f ∈ W 1,p (𝛀) prove 
u ∈ W 3,p (𝛀). 

Exercise 5.14 Let T ⊂ R2 be an equilateral triangle and f ∈ Lp (T ). Let  u ∈ 
H 1 

0 (T ) be the solution of Δu = f with u = 0 on  ∂T . Prove u ∈ W 2,p (T ). 

Hints 

Hint to Exercise 5.1 Test the equation against ϕ = uηp. 

Hint to Exercise 5.2 Follow the same proof as for Campanato spaces and Proposi-
tion 5.5. 

Hint to Exercise 5.3 Differentiate the equation to obtain a right-hand side of the 
form ∇ ·  F with F ∈ Lp, p >  d, and then go on with Hölder regularity.
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Hint to Exercise 5.4 Start from u bounded to obtain u ∈ C0,α and go on with 
Schauder’s estimates. To study min u, use  u ≤ 1 to obtain Δu ≤ 1 and compare 
to the solution of Δu = 1. 

Hint to Exercise 5.5 Combine regularity via duality and the strategy for Hilbert’s 
19th problem. 

Hint to Exercise 5.6 Start from Moser’s result to obtain u ∈ C0,α . View it as an  
equation of the form ∇ · ∇H(∇u) with H uniformly convex when |∇u| is small. 

Hint to Exercise 5.7 Start from Moser’s result and go on with Schauder’s estimates. 

Hint to Exercise 5.8 For the second question, start from Moser’s result and go on 
with Schauder’s estimates. For the first, compute the gradient of u + arctan u. 

Hint to Exercise 5.9 Write the equation as ∇ ·  (e−pn∇un) = 0. 

Hint to Exercise 5.10 Start from the fact that the right-hand side is bounded to 
obtain u ∈ W 2,p ⊂ C1,α and go on. Without at least u ∈ Lip this does not work and 
the right-hand side could be only L1. 

Hint to Exercise 5.11 Use the reflection method. 

Hint to Exercise 5.12 Take a test function ϕ on �̃� and define a test function ψ on
𝛀 via ψ(x)  := ϕ(x) − ϕ(Rx). 

Hint to Exercise 5.13 Use reflections without changing the sign. Prove that they 
preserve the Sobolev regularity of f . 

Hint to Exercise 5.14 Use six reflections.



Chapter 6 
Variational Problems for Sets 

In this chapter we present some classical and less classical optimization problems 
where the unknown, instead of being a function, is a set (of course, identifying 
sets with their indicator functions can let us back to the functional setting). These 
problems, which also belong to the calculus of variations in a broad sense, are 
sometimes called shape optimization problems, in particular when the important 
feature of the set is its shape (rather than its size and/or its position in the space) and 
when partial differential equations are involved. 

We will collect here a few problems all involving in some sense the notion of 
perimeter or of length of the set. The first one is the most classical one: minimizing 
the perimeter for fixed volume. The second one replaces the perimeter with another 
quantity, called .λ1(𝛀), which can be both defined as the minimal value of a 
variational problem in .H 1

0 (𝛀) or as an eigenvalue of a differential operator; in 
this case the perimeter and more generally the use of lower-dimensional measures 
appears in the proof of the result (the optimality of the ball) that we present, and 
not in the statement. The last class of problems is less classical and involves optimal 
networks, i.e. one-dimensional closed and connected sets of finite length. Presenting 
and studying these problems will require us to introduce the so-called Hausdorff 
measures, i.e. the lower-dimensional measures that we can define on subsets of . Rd

(even for non-integer dimensions). So far in the rest of the book we essentially only 
used the natural surface measure on the boundary of a set, which we denoted by 
.Hd−1 but we never rigorously introduced. In Sect. 6.3 we will mainly use, instead, 
the 1D case . H1: we will present some problems very naturally arising in modeling 
(choosing the best urban transportation system or the best reinforcement for a given 
membrane), and then the main cornerstone in the proof of the existence of optimal 
sets. This key ingredient will be the so-called Goł ąb theorem, which states the 
lower semicontinuity of the length (in the sense of the .H1 measure) in the class 
of connected sets, for the Hausdorff convergence. 

The chapter closes with a digression on variants and alternative proofs for the 
isoperimetric inequality and, as usual, a section of exercises. 
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6.1 The Isoperimetric Problem 

This section is devoted to one of the most classical problems in the calculus of 
variations, consisting in finding the set with maximal volume among those with 
fixed perimeter. Because of this constraint, it is called the isoperimetric problem. A  
legend connects the first instance of this optimization problem with the foundation 
of the ancient city of Carthage. When Queen Dido arrived on the Tunisian coasts 
from the East she wanted to build a new city but was only allowed by the local 
tribes to use a fixed (and supposedly small) amount of land: she was given a bull’s 
hide, and told she could take as much land for her new city as she could enclose 
with it. Then, she had two clever ideas. The first was not to cover the land with the 
hide, but have the hide cut into a very long and thin strip of leather which she would 
use to enclose a portion of land. The second was to choose the position where to 
put the leather, and hence the shape of the land portion she would enclose with the 
strip, in an optimal way (and here is where mathematics comes into play: she chose 
a semi-circle having the coastline on its diameter).1 

Mathematically, Dido solved the problem 

. max{|A| : A ⊂ 𝛀, Per(A;𝛀) = L},

where . 𝛀 represented the existing land (and .𝛀c := R2 \ 𝛀 the sea), .Per(·;𝛀) stands 
for the perimeter inside . 𝛀 (not counting the coastline), and L was the length of the 
strip. In the sequel of this section, after introducing precise mathematical definitions 
and properties concerning the perimeter .Per(A) of a set A and its variant .Per(A;𝛀), 
we will mainly concentrate on the case where . 𝛀 is the whole space. In this last case 
it is very easy to see that this problem is equivalent to the following one: 

. min{Per(A) : |A| = V }

in the sense that if . A0 solves the problem with fixed perimeter, then it must also solve 
this second one, choosing .V = |A0|. Moreover, both these problems are equivalent, 

1 One can find the legend concerning the bull’s hide in Virgil, [194], Book 1, lines 365–368 but 
without any mention of Dido’s tricks to optimize her city. 

Devenere locos, ubi nunc ingentia cernis 
moenia surgentemque novae Karthaginis arcem, 
mercatique solum, facti de nomine Byrsam, 
taurino quantum possent circumdare tergo. 

The first part of the trick (cutting the hide into strips) is then described more explicitly by Justinus 
in [123] but, still, no word about the choice of a circular shape, which seems to be a myth among 
mathematicians. See also [156] for a discussion about this legend and which parts of it have 
been added in the mathematical folklore. Being married to a historian with Greek and Phoenician 
expertise, I can say that the importance given to this part of Dido’s legend by mathematicians is 
not really shared by classicists.
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by scaling properties, to the minimization of the ratio 

. A I→ Per(A)

|A| d−1
d

,

where d is the dimension of the ambient space. This last formulation of the problem 
has the advantage of avoiding constraints on the set A, which allows us more easily 
to write optimality conditions in the form of a PDE. This is proposed, for instance, 
in Exercise 6.2, but not developed in detail as we will not need it to prove the main— 
and very classical—result of the section, i.e. that this problem is solved by the ball. 
Also the adaptation to the case where . 𝛀 is a half-space (a rough approximation of 
Dido’s coastline setting) is proposed as an exercise (Exercise 6.4). 

6.1.1 BV Functions and Finite Perimeter Sets 

A very useful variant of the space of Sobolev functions is the space of BV functions, 
which can be defined once we know the space of vector measures on a domain 
.𝛀 ⊂ Rd (see Box 3.5). 

Box 6.1 Memo—BV Functions of Several Variables 

The space of functions with bounded variation on an open domain . 𝛀, called 
.BV(𝛀) is defined via 

. BV(𝛀) := {u ∈ L1(𝛀) : ∇u ∈Md(𝛀)},

where the gradient is to be intended in the sense of distributions in . 𝛀 (i.e. 
.〈∇u, ϕ〉 := − ´

u∇ϕ for every function .ϕ ∈ C∞
c (𝛀)). The condition for a 

function .u ∈ L1(𝛀) to belong to .BV(𝛀) (i.e. for the distributional gradient 
to be written as a measure) is the following: 

. sup

{∣∣∣∣
ˆ

𝛀

u∇ϕ dx

∣∣∣∣ : ϕ ∈ C∞
c (𝛀), ||ϕ||L∞ ≤ 1

}
< +∞.

The norm on the space .BV is given by .||u||BV := ||u||L1 + ||∇u||M (and 
.||∇u||M coincides with the above sup). 

We can see that the space .W 1,1, where the gradients are in . L1, is a subset 
of . BV, since when a gradient is an . L1 function it is also a measure. 

.BV(𝛀) is a Banach space, which is continuously injected in all . Lp spaces 
for .p ≤ d/(d − 1) (for .d = 1, we already saw in Box 1.8 that BV is injected 

(continued)
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Box 6.1 (continued) 
in .L∞). If . 𝛀 is bounded, the injection is compact for every . p < d/(d − 1)

and in particular in . L1. 
Thanks to this compact injection and to the Banach–Alaoglu Theorem in 

the space of measures, given a sequence . un which is bounded in .BV(𝛀), 
when . 𝛀 is bounded it is always possible to extract a subsequence .unk

strongly 

converging in .L1(𝛀) to a function u, with .∇unk

∗
⇀ ∇u. 

Some non-trivial indicator functions may belong to the space . BV, differently 
than what happens for Sobolev spaces. For smooth sets A we can indeed see, as a 
simple consequence of the divergence theorem, that we have 

. ∇1A = −n ·Hd−1
|∂A ,

where . n is the exterior unit normal to A, and .Hd−1 is the standard .(d − 1)-
dimensional surface measure. 

Definition 6.1 We say that a set .A ⊂ 𝛀 is a set of finite perimeter if .1A ∈ BV(𝛀), 
and we define its perimeter .Per(A;𝛀) as .||∇1A||M(𝛀). When .𝛀 = Rd we simply 

write .Per(A) instead of .Per(A;Rd). 

Note that the perimeter of A defined in this way depends on the domain . 𝛀: the  
two numbers .Per(A;𝛀) and .Per(A;𝛀') can be different even if .A ⊂ 𝛀 ∩ 𝛀'. More  
precisely, this perimeter corresponds to the part of the boundary of A which is not 
in . ∂𝛀. 

We now want to state some equivalent definitions of the perimeter, in terms of 
approximation via sequences of sets for which the notion of perimeter is clearly 
well-defined. For simplicity, we state it in the case of the whole space (i.e. .𝛀 = Rd ). 

Proposition 6.2 For every set A of finite perimeter in . Rd we have 

. Per(A) := inf
{

lim inf
n
Hd−1(∂An) : An ∈ C, 1An → 1A in L1(Rd)

}
,

where the class . C can be chosen as the class of all smooth and bounded sets or as 
that of all bounded polyhedra. 

Proof From the semicontinuity of the norm in the space of measures it is clear 
that the inf in the right-hand side is larger than .Per(A). Indeed, for any set . A ∈ C
(for both choices of . C) we have .Per(A) = ||∇1A||M = Hd−1(∂A) and for any 

sequence .An ∈ C with .1An → 1A in . L1 and .lim infnHd−1(∂An) < ∞ we can 
see that the sequence .un := 1An is bounded in BV and, up to subsequences, we 

have .∇1An

∗
⇀ v, where the limit v can only be .∇1A because of the convergence
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in the sense of distributions of .1An to . 1A. Then, we obtain . Per(A) = ||∇1A||M ≤
lim infn ||∇1An ||M = lim infn Per(An). 

We then only need to show the opposite inequality, i.e. to find a suitable sequence 
of sets .An ∈ C. We start from the case where . C is the class of smooth compact sets. 
We fix a set A of finite perimeter and set .u = 1A. Take a smooth and compactly 
supported convolution kernel .ηn ⇀ δ0 defined by rescaling a fixed kernel . η1, and 
define .vn := ηn∗u. The function . vn is smooth and, for each n, uniformly continuous 
(since it has the same modulus of continuity as . ηn up to a multiplicative factor 
.||u||L1 ). In particular, since it is . L1 and uniformly continuous, it tends to 0 at infinity 
(see Exercise 6.1). In particular, its level sets .{vn ≥ r} are all bounded for every 
.r > 0. 

We have .
´ |∇vn| ≤ ||∇u||M since the norm of the gradient is a convex 

functional invariant under translations, hence it decreases under convolution. We 
use the coarea formula to write 

. 

ˆ 1

0
Hd−1({vn = r}) dr =

ˆ
R

d
|∇vn| ≤ Per(A).

If we fix .δ > 0 we can then choose a number .rn ∈ [δ, 1 − δ] such that 

. Per({vn ≥ rn}) ≤ Hd−1({vn = rn}) ≤ Per A

1 − 2δ

and . rn is not a critical value for . vn (since, by Sard’s lemma, a.e. value is not critical). 

Box 6.2 Important Notion—Co-area Formula 

Consider a Lipschitz function .f : Rd → R
m, where .n ≥ m. Define, at any 

differentiability point of f , the Jacobian factor . Jf (x) :=
√∑

α | det(Mα)|2
where the matrices .Mα are all the .m × m minors of Df . We then have the 
following change-of-variables formula (see [84, Section 3.43]) 

. 

ˆ
R

d
g(x) Jf (x) dx =

ˆ
R

m

(ˆ
f −1({y})

g dHn−m

)
dy

which is valid for any measurable function .g : Rm → R for which the 
integrals make sense (for instance .g ≥ 0 or .g ∈ L1(Rd)). Note that, when 
. m = 1, we have .Jf = |∇f |, and when .m = n we have .Jf = | det(Df )|. The  
latter case gives the standard change-of-variable formula. 

See [84, Chapter 3] for proofs and details.



248 6 Variational Problems for Sets

Box 6.3 Memo—Sard’s Lemma 
For a . C1 function .f : Rd → R

m we define the set of critical values of f as 
.f (

{
x ∈ Rd : rank(Df ) < min{n; m}}). When .m = 1, this means the image 

of the set of points where .∇f vanishes. 
Sard’s lemma states that, given a .Ck function .f : Rd → R

m, with . k ≥
max{n − m + 1, 1}, the set of critical values is Lebesgue-negligible in . Rm. In  
the case .m = 1 this requires . Cn functions. 

In particular, the set .An := {vn ≥ rn} is a smooth set (as a consequence of the 
implicit function theorem, and we use here .∇vn /= 0), and we then take .un = 1An . 
As we already pointed out as a consequence of .lim|x|→∞ vn(x) = 0, such a level 
set is compact. By construction the perimeter of . An is bounded by . Per A

1−2δ
and . un is 

bounded in BV. We want to prove that we have .un → u in . L1. Up to subsequences, 
we have .un → w strongly in . L1 and a.e. Since .un ∈ {0, 1}, we also have . w ∈ {0, 1}
a.e. Consider a point x which is a Lebesgue point (see Box 5.1) for  u. 

In particular, this implies .vn(x) → u(x) as .n → ∞. Consider the case .w(x) = 1. 
Then .un(x) = 1 for large n, i.e. .vn(x) ≥ rn ≥ δ. Then .u(x) ≥ δ, which means 
.u(x) = 1. Analogously, .w(x) = 0 implies .u(x) = 0. Finally we have .w = u and 
.un → u strongly in . L1. 

This means that we found a sequence of sets . An such that .1An → 1A and their 
perimeter is bounded by .(1 − 2δ)−1 Per(A), which shows 

. 
Per(A)

1 − 2δ
≥ inf

{
lim inf

n
Hd−1(∂An) : An ∈ C, 1An → 1A in L1(Rd)

}
,

and the claim follows since .δ > 0 is arbitrary. 
Replacing the class of smooth domains with that of polyhedra is easy, using a 

suitable approximation argument. Given a smooth compact domain A and a number 
.δ > 0 it is indeed possible to find a polyhedron . Ã with .||1A − 1

Ã
|| < δ and 

.Per(Ã) < Per(A)(1 + δ) by a simple triangulation procedure (it is enough to cover 

.∂A with local charts and approximate the smooth function defining the boundary 
with piecewise affine functions). This allows us to find a sequence . Ãn of polyhedra 
showing the desired result. ⨅⨆

6.1.2 The Isoperimetric Property of the Ball 

In this section we will prove the following inequality: given a set A and a ball 
.B = B(0, R) with the same volume as A (i.e. .|A| = ωdRd , where . ωd stands for 
the volume of the unit ball in . Rd ), we have .Per(A) ≥ Per(B). This means that
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the ball minimizes the perimeter among sets with fixed volume, i.e. it solves the 
isoperimetric problem. The idea to prove this fact is 

• to prove that a minimizer for the perimeter under volume constraints exists, using 
the theory of finite perimeter sets and the properties of the BV space, 

• to prove that any set which is not a ball can be modified via a suitable 
transformation which preserves the volume but reduces the perimeter. 

Actually, the very first step is delicate, since we are considering arbitrary sets in 
. Rd , and the injection of .BV(Rd) into .L1(𝛀) is not compact. It would indeed be 
possible for a minimizing sequence .An to escape at infinity, so that .1An , despite 
being bounded in BV, does not converge in . L1, since its pointwise limit would be 0, 
but this does not preserve the . L1 norm. 

Two possible strategies to overcome this difficulty in dimension 2 are proposed 
in the exercises (see Exercises 6.6, 6.15). Since the same strategies do not work 
in higher dimensions, for the general proof we first add an additional constraint, 
imposing the sets A to be contained in a given ball .B(0, R0), and minimizing among 
them, and later prove that the minimizer is the same ball whatever . R0 is. We follow 
the approach of [74], as described, for instance, in [142, Chapter 14]. 

We start from an easy existence result. 

Proposition 6.3 Given a number .V > 0 and a radius . R0 such that .|B(0, R0)| ≥ V , 
the optimization problem 

. min {Per(A) : A ⊂ B(0, R0) , |A| = V }

admits at least one solution. 

Proof We consider a minimizing sequence .An and define .un := 1An . Since 
.Per(An) is bounded and .|An| is fixed, the sequence . un is bounded in .BV(𝛀) where 
.𝛀 = B(0, R0 + 1) (we add 1 to the radius so that .∂B(0, R0) is now included in 
the interior of the domain .𝛀 = B(0, R0 + 1) and there is no ambiguity between 
the perimeter inside . 𝛀 or in the whole space). We can then extract a subsequence 
.unk

which converges strongly in .L1(𝛀) and a.e. to a function .u ∈ BV(𝛀) and 

.∇unk

∗
⇀ ∇u. The a.e. convergence shows that u is also an indicator function 

.u = 1A and .A ⊂ B(0, R0). We then have, because of the strong . L1 convergence, 

.|A| = ´
u = limk

´
unk

= limk |Ank
| = V and, because of the weak-* convergence 

of the gradients, .Per(A) = ||∇u||M ≤ lim infk ||∇unk
||M = lim infk Per(Ank

). 
This shows that A solves the problem. ⨅⨆

We now want to prove that, for each .R0 and .V ≤ |B(0, R0)|, the ball . B :=
B(0, r) with .ωdrd = V is a minimizer of the above problem. This will then be 
used to prove that, for every set A with .|A| = V , we have .Per(A) ≥ Per(B). This  
strategy, consisting in first proving the existence of a minimizer under an additional 
constraint depending on a parameter . R0 (here, being included in .B(0, R0)) and then 
proving that this minimizer is the same for every . R0, is dangerous: indeed, for the 
problem without constraints we could make use of simpler optimality conditions
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(such as those of Exercise 6.2), but this could be impossible in the constrained 
case, as they are based on perturbations of the minimizer which could violate the 
constraints; on the other hand, for the problem without constraints the existence 
itself of a minimizer would be more delicate and may be impossible to prove via the 
direct method of the calculus of variations. In our case, we will hence need to prove 
that the minimizer is a ball (we will prove that any ball of radius r contained in 
.B(0, R0) is a minimizer) by using necessary optimality conditions which compare 
it to other competitors which are guaranteed to be contained in .B(0, R0). This will 
be done thanks to the notion of Steiner symmetrization described in Sect. 6.1.3. 

Proposition 6.4 Given a number .V > 0 and a radius . R0 such that .|B(0, R0)| ≥ V , 
any solution of the optimization problem 

. min {Per(A) : A ⊂ B(0, R0) , |A| = V }

is necessarily a ball of radius r with .ωdrd = V . 

Proof We take an optimal set A and apply the symmetrization described in 
Sect. 6.1.3 with respect to an arbitrary .e ∈ Sd−1. First, we note that . A ⊂ B(0, R0)

implies .Se(A) ⊂ B(0, R0), hence we should have .Per(Se(A)) ≥ Per(A). This  
means that we have equality and the set . A' of Lebesgue points of A is convex in 
the direction e (Theorem 6.8). Since this is valid for any e, we deduce that . A' is 
convex. Now we can apply Proposition 6.9, which implies that A and .Se(A) are 
translations of one another. This implies that A is a ball, thanks to the next lemma. 

⨅⨆
Lemma 6.5 A convex set A such that for every e the set .Se(A) is a translation of A 
is necessarily a ball. 

Proof Without loss of generality, we can assume that the origin is the barycenter of 
A. This does not change the shape of A or .Se(A), or the conclusion, but it allows 
us to obtain .A = Se(A) for every e. In particular, A is symmetric w.r.t. every 
hyperplane passing through its barycenter. Now, take two points .x, x' ∈ ∂A. By  
choosing e oriented as .x − x' we obtain that x and . x' are at the same distance (by 
symmetry) from the hyperplane passing through 0 and orthogonal to e. Yet, they  
also have the same projection onto this hyperplane, and hence .|x| = |x'|. Since all 
points of .∂A are at the same distance from the origin, A is a ball. ⨅⨆
We can then conclude: 

Proposition 6.6 Given a number . V > 0, let  B be a ball with radius R such that 
.ωdRd = V . Then, for any measurable set .A ⊂ Rd with .|A| = V = |B| we have 
.Per(A) ≥ Per(B). 

Proof We can assume that A is a finite perimeter set, otherwise there is nothing to 
prove. Then, using Proposition 6.2, we consider a sequence of smooth and compact 
sets .An such that .Per(An) → Per(A) and .|An| → |A|. Each set .An is bounded, 
hence contained in a ball of radius .R0(n), depending on n. We can assume .R0(n)
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large enough so that .V ≤ ωdR0(n)d . We then have 

. Per(An) ≥ min
{

Per(Ã) : Ã ⊂ B(0, R0(n)) , |Ã| = V
}

= Per(Bn) = dωdRd−1
n ,

where . Rn is a radius such that .ωdRd
n = |An|. We then have .Rn → R. This shows 

.Per(A) ≥ Per(B) and proves the isoperimetric inequality. ⨅⨆

6.1.3 Steiner Symmetrization of Sets With Respect to a 
Hyperplane 

In this section we consider the following construction: given a set .A ⊂ Rd with 
.|A| < ∞ and a vector .e ∈ Sd−1, we construct a set .Se(A) which has the same 
measure as A but is symmetric w.r.t. the hyperplane .{x : x · e = 0}. For simplicity 
of notation we describe this construction when .e = ed is the last element of the 
canonical basis, but it can of course be adapted to any unit vector e. 

In this case, let us define 

. 𝓁(x1, . . . , xd−1) := L1({xd : (x1, . . . , xd−1, xd) ∈ A}),

where .L1 is the one-dimensional Lebesgue measure. For a.e. . (x1, . . . , xd−1) ∈
R

d−1 we have .𝓁(x1, . . . , xd−1) < +∞. We then define 

. Se(A) :=
{
(x1, . . . , xd−1, xd) : |xd | <

𝓁(x1, . . . , xd−1)

2

}
.

We can easily see that .Se(A) is symmetric w.r.t. .{xd = 0} and has the same measure 
as A. We now want to prove that .Se(A) has a smaller perimeter than A, and in many 
cases strictly smaller. 

We start from the easiest case. 

Proposition 6.7 Assume that A is a polyhedron and that none of its faces contains 
segments directed as .e = ed . Then we have 

. Per(Se(A)) + 6Ld−1(B)2

Per(A)
≤ Per(A)

where B is the set of all points .(x1, . . . , xd−1) ∈ Rd−1 such that the set . {xd :
(x1, . . . , xd−1, xd) ∈ A} is disconnected (i.e. it is composed of more than one 
segment). 

Proof Let . π be the projection onto the .(d − 1)-dimensional plane orthogonal to 
e. The set .π(A) is a polyhedron which can be decomposed into a finite number 
of polyhedra . Fi such that, for each i, there is a number .Ni ≥ 1 and some affine
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functions .f ±
i,j for .j = 1, . . . , Ni with 

. A ∩ π−1(Fi) =
Ni⋃

j=1

{x ∈ Rd : xd ∈ [f −
i,j (x1, . . . , xd−1), f

+
i,j (x1, . . . , xd−1)]}.

Note that we have .B = ⋃
i :Ni>1 Fi . Moreover, we have 

. 𝓁(x1, . . . , xd−1) =
Ni∑

j=1

f +
i,j (x1, . . . , xd−1) − f −

i,j (x1, . . . , xd−1)

and 

. Per(A) =
∑

i

Ni∑
j=1

ˆ
Fi

(√
1 + |∇f +

i,j |2 +
√

1 + |∇f −
i,j |2

)
dx,

while 

. Per(Se(A)) = 2
∑

i

ˆ
Fi

√
1 +

∣∣∣∣∇ 𝓁

2

∣∣∣∣
2

dx =
∑

i

ˆ
Fi

√
4 + |∇𝓁|2 dx,

where all these integrals on . Fi are actually integrals of constant functions. We then 
use the convexity of the function .v I→ √

1 + |v|2 to obtain 

. 
1

2Ni

Ni∑
j=1

ˆ
Fi

(√
1 + |∇f +

i,j |2 +
√

1 + |∇f −
i,j |2

)
dx

≥
ˆ

Fi

√√√√√1 +
∣∣∣∣∣∣∇

1

2Ni

Ni∑
j=1

f +
i,j (x1, . . . , xd−1) − f −

i,j (x1, . . . , xd−1)

∣∣∣∣∣∣
2

dx.

We deduce 

. Per(A) ≥
∑

i

Ni∑
j=1

ˆ
Fi

√
4N2

i + |∇𝓁|2 dx.
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From .Ni ≥ 1 we immediately obtain .Per(A) ≥ Per(Se(A)) but we can do more. 
Indeed, we have 

. Per(A) − Per(Se(A)) ≥
∑

i :Ni>1

ˆ
Fi

(√
16 + |∇𝓁|2 −

√
4 + |∇𝓁|2

)
dx.

We then use 

. 

√
16 + |∇𝓁|2 −

√
4 + |∇𝓁|2 = 12√

16 + |∇𝓁|2 + √
4 + |∇𝓁|2 ≥ 6√

16 + |∇𝓁|2

and, thanks to the Hölder inequality, we have 

. 
∑

i:Ni>1

ˆ
Fi

1√
16 + |∇𝓁|2 dx

∑
i:Ni>1

ˆ
Fi

√
16 + |∇𝓁|2dx

≥
⎛
⎝ ∑

i:Ni>1

Ld−1(Fi)

⎞
⎠

2

= Ld−1(B)2.

Together with 

. 
∑

i :Ni>1

ˆ
Fi

√
16 + |∇𝓁|2 dx ≤

∑
i

ˆ
Fi

√
4N2

i + |∇𝓁|2 dx ≤ Per(A)

we obtain the desired inequality. ⨅⨆
By approximation, we can obtain the following result: 

Theorem 6.8 Let A be a finite perimeter set in . Rd and e a unit vector. Then we have 
.Per(Se(A)) ≤ Per(A). Moreover, if .Per(Se(A)) = Per(A) then the set of Lebesgue 
points of A is convex in the direction e: whenever it contains two points .x, x' with 
.x − x' oriented as e, it also contains the segment .[x, x']. 
Proof Given A there exists a sequence of polyhedral sets . An such that . 1An → 1A

in . L1 and .Per(An) → Per(A). Without loss of generality, we can assume that all . An

are polyhedra with no face containing vectors parallel to e (otherwise we just need 
to tilt them a little bit). We then have 

. Per(Se(An)) ≤ Per(Se(An)) + 6Ld−1(Bn)
2

Per(An)
≤ Per(An).

The .L1 convergence of .1An to .1A can be seen as .L1 convergence of functions 
defined on .Rd−1, valued in .L1(R). This implies in particular the convergence of 
the functions . 𝓁n associated with the sets . An to . 𝓁 (associated with A), and hence the 
sets .Se(An) converge (in the sense that their indicator functions converge in . L1 to
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the indicator function of the limit) to .Se(A). By semicontinuity of the perimeter we 
obtain 

. Per(Se(A)) ≤ lim inf
n

Per(Se(An)) ≤ lim inf Per(An) = Per(A),

which proves the first part of the claim. Moreover, in the case of equality 

.Per(Se(A)) = Per(A) we also obtain .limn
6Ld−1

(Bn)2

Per(An)
= 0, i.e. .Ld−1(Bn) → 0. 

This means that for a.e. point of .Rd−1 the set .{xd : (x1, . . . , xd−1, xd) ∈ An} is a 
segment for large n. Hence, for a.e. point of .R

d−1 the set . {xd : (x1, . . . , xd−1, xd) ∈
A} is also a segment. If we denote by . A' the set of Lebesgue points of A, we  
then deduce that for every point of .Rd−1 the set . {xd : (x1, . . . , xd−1, xd) ∈ A'}
is also a segment.2 If this was not the case, there would be two points . xa :=
(x1, . . . , xd−1, a), xb := (x1, . . . , xd−1, b) ∈ A' and a number .c ∈ (a, b) such 
that .xc := (x1, . . . , xd−1, c) /∈ A'. Yet, if the points . xa and . xb are of density 1 for 
A, knowing that almost any vertical section of A is convex, we also deduce that . xc

is of density 1 (more precisely, the proportion of points in .B(xc, r) not belonging to 
A is at most the sum of the proportion of points in .B(xa, r) not belonging to A and 
of the proportion of points in .B(xb, r) not belonging to A, these two proportions 
tending to 0 by the fact that . xa and . xb are of density 1). This proves the claim. ⨅⨆

We also have the following result: 

Proposition 6.9 Let A be a bounded convex set in .Rd and e a unit vector. If 
.Per(Se(A)) = Per(A) then A is a translation of .Se(A) in a direction parallel to 
the vector e. 

Proof If A is convex we can write 

. A =
{
x = (x1, . . . , xd−1, xd) : (x1, . . . , xd−1) ∈ π(A),

f −(x1, . . . , xd−1) ≤ xd ≤ f +(x1, . . . , xd−1)

}
,

where .f + is a suitable concave function and .f − a suitable convex function. We 
can then perform globally a computation similar to the one we performed in 
Proposition 6.7 and obtain 

. Per(A) = Hd−1(∂eA) +
ˆ

π(A)

(√
1 + |∇f +|2 +

√
1 + |∇f −|2

)
dx,

2 This simple and clarifying fact was not explicitly mentioned in the original paper by De Giorgi, 
[74], but is an observation contained in [91] and due to G. Alberti and N. Fusco. 
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where .∂eA is the vertical part of the boundary3 of A, situated in .π−1(∂(π(A))). On  
the other hand we have 

. Per(Se(A)) = Hd−1(∂e(Se(A)) +
ˆ

π(A)

2
√

1 + |∇𝓁|2 dx,

where .𝓁 = f + − f −. Moreover, by construction, . Hd−1(∂e(Se(A)) = Hd−1(∂eA)

since above each point of .∂(π(A)) = ∂(π(Se(A))) the two sets contain a segment 
of the same length. Hence, in the case of equality .Per(Se(A)) = Per(A), we  
can conclude that we have a.e. the equality . 

√
1 + |∇f +|2 + √

1 + |∇f −|2 =
2
√

1 + |∇𝓁|2 (since there would be equality of the integrals, but we have a pointwise 
inequality because of the same convexity argument as in Proposition 6.7). This 
implies, by strict convexity and using .𝓁 = f +−f −, that we have . ∇f + = −∇f − =
∇𝓁/2. We then find .f + = 𝓁/2 + c+ and .f − = −𝓁/2 + c− for two real constants 
. c±. By subtracting these two equalities we obtain .c+ = c−, which shows that A is 
the translation of .Se(A) by a vector .c+e. ⨅⨆

6.2 Optimization of the First Dirichlet Eigenvalue 

The starting point of this section is the following variational problem in a fixed open 
domain . 𝛀: 

. min

{
R(u) :=

´
𝛀

|∇u|2 dx´
𝛀

u2 dx
: u ∈ H 1

0 (𝛀) \ {0}
}

.

The ratio .R(u) is called the Rayleigh quotient. Finding a lower bound on it is 
equivalent to finding a constant in the Poincaré inequality for functions in .H 1

0 (𝛀). 
We first study this problem for fixed . 𝛀: 

Proposition 6.10 For every bounded domain . 𝛀 the problem 

. min{R(u) : u ∈ H 1
0 (𝛀) \ {0}}

admits a solution. Such a solution can be chosen non-negative, is .C∞ in the interior 
of . 𝛀 and satisfies .−Δu = λ1(𝛀)u where .λ1(𝛀) > 0 is the smallest positive number

3 Another option to get rid of this vertical part is to observe that the proofs of Propositions 6.7 
and 6.8 could be adapted to show that the Steiner symmetrization decreases not only the total 
perimeter .Per(A) but also the relative perimeters .Per(A; 𝛀) for every open set . 𝛀 which is—after 
choosing a coordinate frame where .e = ed—a cylinder of the form . {x ∈ Rd : (x1, . . . , xd−1) ∈
𝛀'} for an open set .𝛀' ∈ Rd−1, and that the equality .Per(A) = Per(Se(A)) implies the equality 
.Per(A; 𝛀) = Per(Se(A); 𝛀) in any such open set. This allows us to restrict to open sets compactly 
contained in .π(A). 
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. λ such that a non-zero solution to .−Δu = λ(𝛀)u exists. Moreover, .λ1(𝛀) is also 
the value of the problem. 

Proof Let us start from the existence of a solution. We take a minimizing sequence 
.un ∈ H 1

0 (𝛀) and it is not restrictive, by multiplying it by a constant, to assume 
.||un||L2 = 1. Then, the bound on .R(un) becomes a bound on .||∇un||L2 and . un

is bounded in . H 1. We can then extract a subsequence which converges weakly 
in .H 1 to a function .u ∈ H 1

0 (𝛀). The weak convergence .∇un ⇀ ∇u in . L2

implies .||∇u||L2 ≤ lim infn ||∇un||L2 , while the strong convergence .un → u in 
.L2 (due to the compact embedding of .H 1 into . L2) proves .||u||L2 = 1. Hence 
.R(u) ≤ lim infn R(un) and u is a minimizer. Of course any multiple of u is also a 
minimizer, but the same is true for . |u|. Hence, we can assume that u is non-negative. 

We now look at the optimality conditions. We take a function .φ ∈ H 1
0 (𝛀) and 

look at .R(u + εφ). We have  

. R(u + εφ) =
´
𝛀

|∇u|2 dx + 2ε
´
𝛀

∇u · ∇φ dx + o(ε)

1 + 2ε
´
𝛀

uφ dx + o(ε)

=
(ˆ

𝛀

|∇u|2 dx + 2ε

ˆ
𝛀

∇u · ∇φ dx + o(ε)

)

×
(

1 − 2ε

ˆ
𝛀

uφ dx + o(ε)

)

=
ˆ

𝛀

|∇u|2 dx + 2ε

(ˆ
𝛀

∇u · ∇φ dx − M

ˆ
𝛀

uφ dx

)
+ o(ε),

where .M = ´
𝛀

|∇u|2 = R(u) equals the value of the minimum. By optimality, we 
then obtain 

. 

ˆ
𝛀

∇u · ∇φ dx − M

ˆ
𝛀

uφ dx = 0

for every . φ, which means .−Δu = Mu in the weak sense. From .u ∈ L2 we obtain 
.u ∈ H 2

loc and, differentiating the equation, we then obtain .u ∈ H 4
loc and so on, up 

to .u ∈ C∞. 
This also proves that u is an eigenfunction of the (negative) Laplacian operator, 

with eigenvalue equal to the minimal value of the problem. Moreover, for any 
eigenvalue . λ, if v is a corresponding eigenfunction, i.e. a solution of .−Δv = λv, 
we easily see (by testing against v and integrating by parts) that we have .R(v) = λ. 
This shows that among all the eigenvalues the one corresponding to the minimizer 
is the minimal one, so we write .M = λ1(𝛀). ⨅⨆
Remark 6.11 By proving that solutions of .−Δu = λu are analytic (which we 
did not do in Sect. 2.3, where we only proved it for .λ = 0) or applying a strong 
maximum principle for elliptic PDEs (see for instance [98, Theorem 3.5]), it is also



6.2 Optimization of the First Dirichlet Eigenvalue 257

possible to prove that, when . 𝛀 is connected, there is a unique (up to multiplicative 
constants) minimizer u, but we will not do this in this book. 

When studying the problem in a fixed domain . 𝛀, we see that a geometric quantity 
called .λ1(𝛀) appears. This quantity is also the inverse of the optimal constant in the 
Poincaré inequality on .H 1

0 (𝛀). Since when .𝛀' ⊃ 𝛀 all the functions in .H 1
0 (𝛀) can 

be extended to 0 and such an extension belongs to .H 1
0 (𝛀'), we easily see that we 

have .λ1(𝛀
') ≤ λ1(𝛀). 

A natural question in shape optimization (the branch of optimization theory 
where the unknown is a set . 𝛀 and we optimize quantities related to the solution 
of some PDEs in . 𝛀) is to find the domain . 𝛀 which minimizes .λ1(𝛀) under volume 
constraints.4 The answer is, again, that the optimal set is the ball, as we state in the 
next theorem, also known as the Faber–Krahn inequality (see [85, 129, 130]). 

Theorem 6.12 Let .𝛀 ⊂ Rd be an arbitrary bounded domain and B the ball with 
the same measure as . 𝛀. Then we have .λ1(𝛀) ≥ λ1(B). 

We note that in the proof of this fact the definition of . λ1 as an eigenvalue is not 
important, and the result would stay true even if . 𝛀 was unbounded, but with finite 
measure, if defining .λ1(𝛀) := inf{R(u) : u ∈ C∞

c (𝛀), u /= 0}. 
Proof The proof consists in taking an arbitrary competitor in the minimization 
problem defining .λ1(𝛀) and associating with it a function in .H 1

0 (B) with a smaller 
Rayleigh quotient. The construction will be made by a radially decreasing rear-
rangement, which makes this new competitor also radial, but this is not important. 
For this, it is sufficient to take .u ≥ 0 in .C∞

c (𝛀) (we can restrict to . u ≥ 0
thanks to Proposition 6.10 and then to .u ∈ C∞

c by density) and consider . u◦, its 
radially decreasing rearrangement (see Definition 6.13), which is clearly supported 
on B. The  Pólya–Szegő inequality (see Remark 6.15 below) proves that we have 
.||∇u◦||L2 ≥ ||∇u||L2 and the definition itself guarantees .||u◦||L2 = ||u||L2 , so that 
.R(u◦) ≤ R(u). Hence, we have .λ1(B) ≤ R(u◦) ≤ R(u) and, u being arbitrary, we 
obtain .λ1(B) ≤ λ1(𝛀). ⨅⨆
Definition 6.13 Given a nonnegative function .u ∈ L1(Rd) we define its radially 
decreasing rearrangement as the unique function . u◦ such that its level sets . {u◦ > t}
are balls with the same measure of the corresponding level set .{u > t}. The function 
. u◦ can be defined as 

. u◦(x) =
ˆ ∞

0
1B(0,R(t)) dt

where .R(t) := (|{u > t}|/ωd)1/d is the radius of a ball with the same measure as 
the level set .{u > t}.

4 This recalls the isoperimetric problem, where . λ1 was replaced by the perimeter. Yet, we note that 
the perimeter is no longer involved, which makes it very inappropriate that some mathematicians 
still call these kinds of optimization problems “generalized isoperimetric inequalities”. 
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Theorem 6.14 For every .u ∈ C∞
c (Rd), .u ≥ 0, and every increasing function . ϕ :

R+ → R with .ϕ(0) = 0 we have .
´

ϕ(u) = ´
ϕ(u◦). For every function . f : R+ ×

R+ → R with .f (0, s) = f (t, 0) = 0 for every .s, t ∈ R+ which is convex in the 
second variable we have 

. 

ˆ
R

d
f (u, |∇u|) dx ≥

ˆ
R

d
f (u◦, |∇u◦|) dx.

Remark 6.15 As a particular case of the above theorem, we have . ||∇u||Lp ≥
||∇u◦||Lp , a fact which is known as the Pólya–Szegő inequality (see [170]). 

Proof The layer-cake representation of the integral of a nonnegative function . ́ u =´∞
0 |{u > t}| dt shows that the integral of a function only depends on the measure 

of its level sets, which easily shows that we have .
´

ϕ(u) = ´
ϕ(u◦) for every . ϕ (the 

condition .ϕ(0) = 0 is required for the finiteness of the integral when integrating on 
the whole space, while the monotone increasing behavior of . ϕ is not strictly needed, 
even if it easily shows the correspondence between the level sets). 

For the integrals depending on the gradient, we first observe that every convex 
function f vanishing at 0 can be written as .f (s) = sg(1/s) for a convex and 
nonincreasing function g. Indeed, we take .g(1/s) = f (s)/s, which is clearly a 
nondecreasing function of s because of the convexity of f and .f (0) = 0; this  
proves that g is nonincreasing. Then, we write 

. g(s) = sf (1/s) = sf ∗∗(1/s) = s sup
t

t

s
− f ∗(t) = sup

t
t − sf ∗(t),

which proves that g is also convex as a sup of affine functions of s. We should then 
consider the quantity 

. 

ˆ
R

d
f (u, |∇u|)dx =

ˆ
R

d
|∇u|g

(
u,

1

|∇u|
)

dx =
ˆ ∞

0
dt

ˆ
{u=t}

g

(
t,

1

|∇u|
)

dHd−1,

where the correspondence between f and g is done in the second variable, and the 
last equality is due to the co-area formula (Box 6.2). We then use the fact that for 
a.e. t the gradient .∇u does not vanish on .{u = t} (Sard’s lemma) and . {u = t} =
∂{u > t}. By the isoperimetric inequality, since .{u > t} and .{u◦ > t} have the 
same measure and the latter is a ball, we have .Hd−1({u = t}) ≥ Hd−1({u◦ = t}). 
Moreover, we have, again by the coarea formula 

.|{u > t0}| =
ˆ ∞

t0

dt

ˆ
{u=t}

1

|∇u| dHd−1,
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and a corresponding formula holds for . u◦. This implies that for a.e.  t we have 

. 

ˆ
{u=t}

1

|∇u| dHd−1 =
ˆ

{u◦=t}
1

|∇u◦| dHd−1.

We then use the convexity of g to write, for a.e. t 

. 

ˆ
{u=t}

g

(
t,

1

|∇u|
)

dHd−1 = Hd−1({u = t})
 

{u=t}
g

(
t,

1

|∇u|
)

dHd−1

≥ Hd−1({u = t})g
(

t,

 
{u=t}

1

|∇u| dHd−1
)

= Hd−1({u = t})g
(

t,

´
{u=t}

1
|∇u| dHd−1

Hd−1({u = t})

)
,

and the fact that g is nonincreasing allows us to obtain 

. 

ˆ
{u=t}

g

(
t,

1

|∇u|
)

dHd−1 ≥ Hd−1({u◦ = t}) g

(
t,

´
{u◦=t}

1
|∇u◦| dHd−1

Hd−1({u◦ = t})

)
.

If one replaces from the beginning u with . u◦ all these inequalities are equalities, 
in particular because .|∇u◦| is constant on .{u◦ = t} since . u◦ is radially symmetric. 
This shows 

. 

ˆ
R

d
|∇u|g

(
u,

1

|∇u|
)

dx ≥
ˆ
R

d
|∇u◦|g

(
u◦, 1

|∇u◦|
)

dx,

and the claim. ⨅⨆

6.3 Optimal 1D Networks and the Goł ąb Theorem 

In this section we briefly present some variational problems which all share the 
following features: the unknown is a one-dimensional connected set whose length is 
prescribed or minimized, and the optimization problem involves, besides its length, 
a penalization or a constraint which forces it to be spread as much as possible 
in the domain (as close as possible to some points of the domain, for instance) 
or, more generally, to be as large as possible. These 1D connected sets could be 
called “networks”. The important point compared to many other problems in applied 
mathematics usually classified as network optimization is that here the network itself 
is the main unknown (differently from what happens, for instance, in the problems 
related to Wardrop equilibria described in Sect. 4.6, where the network is given and 
we optimize the traffic on it).
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We will discuss some examples of such problems together with their interpre-
tation, and provide the tools to prove the existence of a solution. The qualitative 
description of the minimizers and their regularity will only be informally described 
with references, as they are outside the scope of an elementary book such as this 
one. 

6.3.1 Steiner Trees, Irrigation and Transportation Networks, 
and Membrane Reinforcement 

This section begins with a very classical problem: the Steiner problem of the optimal 
connection of a given number of points. 

Steiner Trees Many optimization problems are known in mathematics and com-
puter science under the name of Steiner tree problems, and they all involve the 
connection of a given set of points under some constraints. The most widely known 
is probably the Steiner tree problem on graphs. Given a non-oriented graph with 
a cost on each edge, and a subset of vertices (called terminals), we look for a 
tree of minimum total cost (equal to the sum of the costs of the edges composing 
the tree) that contains all such vertices (but may include additional vertices). This 
generalizes, for instance, two famous combinatorial optimization problems: the 
search for a shortest path in a graph and the problem of finding a minimum spanning 
tree. Indeed, if we only prescribe two terminals then the Steiner tree problem reduces 
to finding the shortest path connecting them. If all the vertices of the graph are 
terminals, then the Steiner tree problem is equivalent to finding a minimum spanning 
tree (i.e. a connected set of edges with minimal total cost arriving at each vertex of 
the graph). However, while these two precise problems are solvable in polynomial 
time, this is not the case for the Steiner tree problem, which is an NP-hard problem. 
More precisely, its decision variant is NP-complete: given the graph, the costs and 
the terminals, we wonder whether there exists a tree of cost less than some given 
threshold connecting all the terminals; this problem was among Karp’s original list 
of 21 NP-complete problems, [125]. 

However, the Steiner tree problem on graphs can be classified as discrete 
optimization, while the variant which is closer to the spirit of the calculus of 
variations is the Euclidean Steiner tree problem. In this variant we do not look at 
a graph, a set of terminals is prescribed as a finite subset of the Euclidean space . Rd , 
and any possible tree is admitted. For this, we first need to give a precise definition 
of length for an arbitrary measurable subset of . Rd (or, more generally, of a metric 
space). We will choose as a definition of the length the value of the one-dimensional 
Hausdorff measure .H1 (see Box 6.4).
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The problem then consists in solving 

. min
{
H1(∑) : ∑ ⊂ Rd compact, connected, and containing D

}
, (6.1) 

where .D ⊂ Rd is a given set of points, usually finite. In this case, it can be proven 
that the optimal set . ∑ is a network composed of finitely many segments whose 
endpoints either belong to D or are extra points, called Steiner points which are of 
order 3 (i.e. three segments stem out of these points) and the three segments at each 
Steiner point lie on the same plane and meet at 120. ◦. Moreover, the network is a 
tree, i.e. it has no cycles, and the maximum number of Steiner points that a Steiner 
tree can have is .#D−2. The case where .#D = 3 is at the basis of the whole analysis, 
and shows two possible behaviors: if the angles of the triangle formed by the three 
given points are all less than 120 degrees, the solution is given by a Steiner point 
located at the so-called Fermat point; otherwise the solution is given by the two 
sides of the triangle which form an angle of 120 or more degrees. We refer to [100] 
for a general presentation of the problem, and to [166] for modern mathematical 
results in a more general framework, including the case where D is not finite (see 
also [167] for an example where D is fractal), or the case where the ambient space 
is a general metric space. 

Box 6.4 Important Notion—Hausdorff Measures 

Hausdorff measures are a notion of k-dimensional “surface” measures for sets 
contained in a higher-dimensional Euclidean space or even in a metric space 
.(X, d). 

With each .k ≥ 0 we associate a constant . ωk whose general definition is 

given by .ωk = πk
(´∞

0 tk/2e−t dt
)−1

(the denominator being the so-called 
Euler’s . 𝚪 function) but whose main property is that, when k is an integer, it 
coincides with the volume of the unit ball in . Rk . Given .k ≥ 0, we consider a 
subset .A ⊂ X, a positive number .δ > 0, and we define 

. Hk
δ(A) := ωk

2k
inf

{∑
i

(diam(Ai))
k : A ⊂

⋃
i

Ai, diam(Ai) < δ

}
,

where the infimum is taken among countable coverings of A. This means that 
we try to cover A with small sets and consider the sum of the power k of their 
diameters. We then define 

. Hk(A) := sup
δ>0
Hk

δ(A) = lim
δ→0
Hk

δ(A).

(continued)



262 6 Variational Problems for Sets

Box 6.4 (continued) 
It is possible to prove the following facts: 

• The quantity .Hk
δ is additive on pairs of sets whose distance is at least . 2δ; 

this property is inherited by . Hk , which is additive on Borel sets and is 
hence a nonnegative measure. On the other hand, it is not necessarily a 
finite measure. 

• If .X = Rd and .A ⊂ Rk × {0} ⊂ Rd then .Hk(A) = Lk(A). 
• When .k = 0 we have .H0(A) = #A, i.e. .H0 is the counting measure. 
• If .A = γ ([0, 1]) is the image of an injective curve, then . H1(A) =

Length(γ ). 
• If for a set A we have .Hk0(A) ∈ (0,∞) for some . k0, then we have 

.Hk(A) = +∞ for every .k < k0 and .Hk(A) = 0 for every . k > k0. It is  
possible to define the Hausdorff dimension of a set A as . inf{k : Hk(A) =
0}. 

• Whenever .ϕ = X → Y is an L-Lipschitz function we have . Hk(ϕ(A)) ≤
LkHk(A). 

One can also consider non-integer k and sets with non-integer dimension 
are often called fractals. As an example, we can consider the standard triadic 
Cantor set C in .[0, 1], which has .Hk(C) = 2−kωk for .k = log 2/ log 3. 

We refer to [15, Chapter 2] for proofs and details. 

Existence Results: Hausdorff Convergence and the Goł ąb Theorem In the case 
of the Euclidean Steiner tree problem with finitely many terminals we can reduce 
the study to a finite-dimensional issue, after proving that we only need to choose at 
most .#D−2 extra points and the topology of the network (which is the most difficult 
part of the optimization: once the topology is fixed, the choice of the position of the 
points amount to minimizing a sum of length, i.e. a convex function). Yet, this is no 
longer possible in the most general variants of the problem (and will not be possible 
for the other problems that we will present in the rest of the section). Hence, we need 
an abstract theorem which guarantees the existence of an optimal set. This requires 
a notion of convergence on sets to be chosen which is relevant for these problems. 
Note that the choice which was made in Sect. 6.1 (i.e. identifying sets with their 
indicator functions and using the space BV) is no longer reasonable, since here 
we face sets which are often Lebesgue-negligible (indeed, if .H1(A) < +∞ and 
.A ⊂ Rd for .d > 1 we necessarily have .Ld(A) = 0), which would then be identified 
with the 0 function. . . Moreover, the choice of the space BV was adapted to deal 
with perimeters, while here, even when .d = 2 and hence perimeters are also given 
by lengths, we consider the length of sets which are not necessarily boundaries of 
other sets.
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Box 6.5 Important Notion—Hausdorff Convergence 

Definition On a bounded metric space .(X, d) we define the Hausdorff 
distance . dH between two closed subsets .A,B ⊂ X via 

. dH (A,B) : = max
{

sup{d(x,A) : x ∈ B}, sup{d(x, B) : x ∈ A}}
= inf{δ > 0 : A ⊂ Bδ, B ⊂ Aδ}.

We can prove the following facts 

• . dH is a distance on the set .C(X) of closed subsets of X; 
• a sequence .An converges for .dH (we say that it Hausdorff converges) to 

A if and only if the functions .x I→ d(x,An) uniformly converge to . x I→
d(x,A); 

• if .(X, d) is complete then .(C(X), dH ) is also complete; 
• if .(X, d) is compact then .(C(X), dH ) is also compact. 

The notion of Hausdorff convergence is very closely related to that of 
Kuratowski convergence (see Definition 7.7). When the ambient space X is 
compact, the two notions coincide. 

We refer to [15, Chapter 4] for proofs and details. 

With the notion of Hausdorff convergence it is then possible to prove existence 
results using the direct method of the calculus of variations, since from any sequence 
of competitors . ∑n, as soon as they are contained in some compact set, it is 
possible to extract a subsequence which converges in the Hausdorff sense. The other 
ingredient consists in the semicontinuity of the functional to be minimized, and in 
the case of the length functional this is exactly the content of the so-called Goł ̨ab 
theorem that we state below and prove in the next subsection. 

Theorem 6.16 Let X be a compact subset of the Euclidean space . Rd and .Cn ⊂ X a 
sequence of closed connected subsets Hausdorff-converging to a closed set .C ⊂ X. 
Then C is connected and we have 

. H1(C) ≤ lim inf
n
H1(Cn).

The proof will be the object of Sect. 6.3.2. 

Remark 6.17 We note that the assumptions that the sets are connected cannot be 
removed in the Goł ąb theorem: otherwise just take a sequence of sets .An defined 
by numbering the rational points of .[0, 1]2 and adding a segment of length .2−j /n
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around the j -th rational point .qj ∈ [0, 1]2 for .j ≤ n. Since . An ⊃ {q1, q2, . . . , qn}
and the set .{qj : j ∈ N} is dense, we can see that we have . dH (An, [0, 1]2) → 0
but .H1(An) ≤ 1/n while .H1([0, 1]2) = +∞. However, this does not mean that 
connectedness is necessary, nor that it is the only reasonable assumption to require 
for the semicontinuity to hold. For instance, in [70], the authors introduce what 
they call the concentration property (a set .A ⊂ 𝛀 is said to satisfy it if, roughly 
speaking, inside every ball .B(x, r) ⊂ 𝛀 centered at a point .x ∈ A we can find a 
smaller sub-ball of comparable radius which contains enough length of A) and prove 
the same lower semicontinuity result whenever . Cn is a sequence of sets satisfying 
the concentration property in a uniform way. Anyway, as the reader may guess from 
the fact that we did not provide a precise definition for this property, connectedness 
is a much easier notion to deal with. 

Remark 6.18 We also note that, even under connectedness assumptions, the result 
of the Goł ̨ab theorem could not hold in the case of .Hk for .k > 1. For instance, 
we can consider the same rational points . qj as before and define .An ⊂ [0, 1]3 via 
.An = [0, 1]2 × {1} ∪ ⋃n

j=1 ∂B(qj , 2−j /n) × [0, 1]. We then have a sequence of 
connected sets . An composed of a horizontal square and many vertical cylinders. We 
also have .dH (An, [0, 1]3) → 0 but .H2(An) ≤ 1 + 1/n while .H2([0, 1]3) = +∞. 

Even if the reader will have already guessed the procedure, we describe in detail 
how to prove the existence of an optimal set for Problem (6.1). 

Proposition 6.19 If .D ⊂ Rd is compact and contained in a compact connected set 
with finite .H1 measure, then the problem 

. min
{
H1(∑) : ∑ ⊂ Rd compact, connected, and containing D

}

admits at least one solution. 

Proof We take a minimizing sequence . ∑n. Let . π be the projection onto the convex 
hull of D: such a map is 1-Lipschitz and it is the identity on D. It reduces the 
Hausdorff measures, so that .∑̃n := π(∑n) is again a minimizing sequence. The sets 
. ∑̃n are contained in the same compact set (the convex hull of D, which is contained 
in a ball), so that we can extract a Hausdorff convergent subsequence. We call . ∑
its limit. The set . ∑ contains D: indeed, for every .x ∈ D we had .d(x, ∑̃n) = 0 and 
by the uniform convergence of the distance functions we find .d(x,∑) = 0 for all 
.x ∈ D, i.e. .D ⊂ ∑. Moreover . ∑ is connected, thanks to Theorem 6.16. Hence, . ∑ is 
an admissible competitor. Again, Theorem 6.16 gives the semicontinuity of the . H1

measure and proves that . ∑ is a minimizer. ⨅⨆
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Irrigation and Transportation Networks: The Average Distance Problem We 
present here a very natural problem proposed in [54]. Given a compact domain 
.𝛀 ⊂ Rd , a nonnegative density .f ∈ L1(𝛀), and a number . L > 0, solve  

. min

{ˆ
𝛀

d(x,∑)f (x) dx : ∑ ⊂ 𝛀 compact, connected, and such thatH1(∑)≤ L

}
.

This can be interpreted in many ways. The name irrigation, which was first used 
to describe these problems, comes from considering . ∑ as a network of irrigation 
channels, and f as the density of the need for water. There is a budget constraint 
preventing the use of networks which are too long, and among the admissible ones 
we try to be as close as possible (on average, but weighted with f ) to all points of . 𝛀. 
Another natural interpretation views . ∑ as a transportation network: we want to build 
a subway system, connected, arriving as close as possible on average (weighted 
with the population density f ) to all points of the city . 𝛀, but the budget constraint 
bounds the length of the network. If we forget the possible modeling interpretation, 
a reasonable name for this problem, which has been used, is the average distance 
problem, even if, unfortunately, it does not convey the information that the unknown 
is a network. 

Of course many variants are easy to consider, replacing the length constraint with 
a penalization and/or replacing the distance in the integral with other increasing 
functions of it. In general we can consider problems of the form 

. min

{ˆ
𝛀

ψ(d(x,∑))f (x) dx + g(H1(∑)) : ∑ ⊂ 𝛀 compact, connected

}

for some non-decreasing and l.s.c. functions .ψ, g : R+ → [0,+∞] (this includes 
the previous case when .ψ = id and .g = I[0,L]). For suitable choices of . ψ and 
g, the above problem also has an interpretation in terms of computer graphics or 
image processing: if f stands for an object whose shape can be roughly simulated 
by that of a 1D network but which is observed through a blurred density, we could 
be interested in replacing it with its skeleton, i.e. a truly 1D object which passes 
through the middle of the density, as close as possible to the important parts of the 
density, but without using too much length. 

This leads to a huge branch of generalizations (and this was the original scope 
of [54]) where, instead of prescribing a unique density f , two densities .f ± are 
prescribed, and we compute the value of an optimal transport problem (see Sect. 4.6) 
where the cost depends on . ∑. A possibility is 

.c∑(x, y) := min{|x − y|, d(x,∑) + d(y,∑)},
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which consists in giving two options: walking from x to y or walking to the subway 
system . ∑, move on it to a new point, and then walk towards the destination y, and 
the cost is the walking time. More generally, one could consider a cost depending 
on .H1(γ ∩∑) and .H1(γ \∑), to be minimized among all curves . γ connecting x to 
y, where the part outside . ∑ is more expensive than the one on . ∑. 

Similar arguments to those used for the Euclidean Steiner problem can prove the 
existence of a minimizer. Note that in the case where the cost involves . H1(γ ∩ ∑)

and .H1(γ \ ∑) a variant of the Goł ̨ab theorem is needed, where we consider the 
semicontinuity of .(C,K) I→ H1(C \ K) among pairs of compact sets, the first one 
being connected, w.r.t. the Hausdorff convergence of both of them (see [42]). 

Then, [54] raised a certain number of interesting questions, that we briefly list 
here: 

1. (Regularity). Study the regularity properties of the solutions, which are expected 
to be composed of a finite number of smooth curves connected through a finite 
number of singular points. 

2. (Absence of loops). Study the topological properties of the solutions, which are 
expected to be loop-free. When .d = 2 this can be expressed by saying that . R2\∑

is connected. 
3. (Triple points). Study the nature of the singular points, which are expected to be 

triple junctions with angles of 120 degrees. 
4. (Distance from the boundary). Study the cases when the optimal solutions do not 

touch the boundary . ∂𝛀, which is expected to occur at least for convex . 𝛀. 
5. (Behavior for small lengths). Study the asymptotic behavior of the optimal . ∑L

as .L → 0. It is expected that . ∑ is a smooth curve without singular points located 
close to the point . x0 which minimizes .

´
𝛀

|x − x0|f (x) dx. 
6. (Behavior for large lengths). Study the asymptotic behavior of the minimal value 

and of the optimizers as .L → ∞. For the optimizers, find the weak limits as 
.L → ∞ of . 1

L
H1|∑L

. 

The answers to most of these questions have been given in subsequent papers, most 
of which are restricted to the case where .d = 2 and f is bounded from below 
and above by positive constants. For instance in [57] the topological question is 
clarified, thus giving a full answer to question 2 and partial answers to questions 
1 and 3: it is proven that . ∑ is composed of a finite number of curves connected 
through a finite number of singular points which are all triple junctions, but the 
regularity of these curves and hence the angle condition had not been settled yet 
(note that one needs to define tangent vectors, and hence discuss regularity, in order 
to fully answer question 3). The regularity is widely discussed in [179], where the 
blow-up of the optimal . ∑ (i.e. the limits in the Hausdorff convergence of the sets 
.
1
r
(∑ ∩ B(x0, r) − x0) as .r → 0) are studied. More precisely, [179] proved that . ∑

has a blow-up limit (a full limit, not up to subsequences) .K ⊂ B(0, 1) at every point 
.x0 ∈ ∑, and characterized the possible limits K according to the nature of the point 
. x0: K is a radius of the unit ball if . x0 is an endpoint, it is the union of two radii if . x0 is 
an ordinary point (the two radii forming a diameter or an angle larger than 120. ◦), or
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is the union of three radii forming angles of 120. ◦ if . x0 is a triple junction. Moreover, 
a partial regularity result was proven, namely that every branch of . ∑ is a .C1,1 curve 
in a neighborhood of every point . x0 such that .diam({x ∈ 𝛀 : d(x,∑) = |x−x0|}) is 
sufficiently small. Since this assumption is always satisfied if . x0 is a triple junction, 
the three branches starting at a triple junction are indeed .C1,1 near the singularity, 
and their tangents form angles of 120 degrees at . x0, which fully answers question 3. 
The general regularity of the optimal . ∑ is discussed and summarized in [136], and 
the fact that .C1,1 is the best that we can expect, even for .f ∈ C∞, is presented in 
[190]. In all these papers, as well in the survey [137], the possibility that . ∑ contained 
corners far from the triple junction was left open, but considered as a technical 
difficulty to overcome since it was expected that in the end these curves would be 
smooth. Yet, [183] provided clever counterexamples which showed that the presence 
of corners was indeed possible. We will not discuss the other questions listed above, 
but only mention that the answer to Question 6 has been given in [153] with a 
.𝚪-convergence technique very similar to the one that we will explain in Sect. 7.3. 
By the way, the techniques developed in [153] can be used to improve the results 
presented in Sect. 7.3 or in the original paper [38]. 

Optimal Membrane Reinforcement We consider now a different problem 
inspired by mechanics: the domain .𝛀 ⊂ R2 represents a membrane fixed on its 
boundary, and the function f represents a force exerted on it and pushing it down, 
so that the shape of the membrane will be represented by a function u vanishing 
on .∂𝛀 and solving .Δu = f ; we can then reinforce the membrane on a set . ∑ ⊂ 𝛀

where we are able to impose .u = 0, but the length of . ∑ is either penalized or 
constrained. More precisely, given .𝛀 ⊂ R2, .∑ ⊂ 𝛀, and .f ∈ L2(𝛀), we consider 
the energy 

. E(u) := 1

2

ˆ
𝛀\∑

|∇u|2 dx +
ˆ

𝛀

f u dx,

defined for .u ∈ H 1
0 (𝛀 \ ∑). We denote by .u∑ the unique minimizer of E over 

.H 1
0 (𝛀 \ ∑), which is also the unique solution of 

.Δu∑ = f (6.2) 

in the weak sense in .𝛀 \ ∑. The profile .u∑ stands for the displacement of the 
membrane when it is subject to the force field f but the boundary is fixed and 
the membrane is also “glued” along . ∑. The compliance of the membrane is then 
defined as 

.C(∑) := −E(u∑) = 1

2

ˆ
𝛀\∑

|∇u∑ |2 dx = −1

2

ˆ
𝛀

f u∑ dx,
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where the value of the optimal energy is computed using (6.2). Using the last 
equivalent expression, this value can be interpreted as a measure of how much the 
membrane resists the force f , and is proportional to the work of such a force. 

We then consider the problem 

. min
{
C(∑)+ λH1(∑)= − E(u∑)+ λH1(∑) : ∑ ⊂ 𝛀 compact and connected

}
,

where the parameter .λ > 0 is given, and the length penalization could also be 
replaced by a length constraint. 

We observe, which is useful for lower semicontinuity and then existence (see 
Exercise 6.17), that we have 

. C(∑) = sup

{
−
ˆ

𝛀

f u dx − 1

2

ˆ
𝛀\∑

|∇u|2 dx : u ∈ C∞
c (𝛀 \ ∑)

}
.

We note anyway that this problem only makes sense in . R2. Indeed, in higher 
dimensions, one-dimensional sets do not play a role in the definition of Sobolev 
functions, and in particular the set .C∞

c (𝛀 \ ∑) is dense in .H 1
0 (𝛀), for every closed 

subset . ∑ of finite length. This is due to the fact that 1D sets in dimension . d > 2
have zero 2-capacity. 

Box 6.6 Important Notion—p-Capacity of a Set 

Definition Given a number .p ≤ d we define the p-capacity of a set . A ⊂ Rd

as 

. inf

{ˆ
R

d
|∇u|p dx : u ∈ C∞

c (Rd), u = 1 on a neighborhood of A

}
.

For instance, the p-capacity of a point is 0 (and the condition .p ≤ d is 
crucial), which exactly fits the condition for Sobolev functions to be well-
defined on points. If A is a smooth surface of positive and finite .Hk measure, 
the condition to have zero capacity becomes .p ≤ d − k. 

We refer to [84, Chapter 4] for proofs and details. 

We could then generalize the problem to arbitrary dimension and, replacing the 
exponent 2 with p, provided we assume .p > d − 1, we consider 

.Ep(u) := 1

p

ˆ
𝛀\∑

|∇u|p dx +
ˆ

𝛀

f u dx,
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and then 

. Cp(∑) := −Ep(u∑) = 1

p'

ˆ
𝛀\∑

|∇u∑ |p dx = − 1

p'

ˆ
𝛀

f u∑ dx,

where . p' is the dual exponent of p. We then solve 

. min

{
Cp(∑) + λH1(∑) = −E(u∑) + λH1(∑) : ∑ ⊂ 𝛀 compact, connected

}
.

It is not possible, on the other hand, to modify the dimension of . ∑ without imposing 
additional constraints, since there is no Goł ̨ab theorem for . Hk , .k > 1. Among other 
generalizations, one could remove the condition .u = 0 on . ∂𝛀, and define .u∑ as 
a minimizer of .Ep among functions .u ∈ W 1,p(𝛀) which vanish on . ∑, i.e. on the 
closure in .W 1,p(𝛀) of .C∞

c (𝛀 \ ∑). In this case .u∑ would solve .Δpu = f with 
Neumann boundary conditions on . ∂𝛀. 

It is interesting to observe (as pointed out in [55]) that, when we have .f ≥ 0, 
the average distance problem can be recovered at the limit .p → ∞ of the Neumann 
case. Indeed, using .𝚪-convergence techniques (see Sects. 7.1 and 7.2) one can see 
that as .p → ∞ the penalization . 1

p

´
𝛀\∑ |∇u|p becomes a constraint .||∇u|| ≤ 1, 

and the function which maximizes .
´

f u among those functions .u ∈ Lip1 satisfying 
.u = 0 on . ∑ is exactly .d(·, ∑). 

For all these problems, besides existence results, the regularity of the optimal . ∑
is very interesting and much more delicate than in the average distance case, as any 
small perturbation of . ∑ globally affects . u∑ : it has been addressed in [65] and [51]. 
Moreover, we stress that these are typical examples of shape optimization problems 
(see [50, 113, 114]), where the unknown is a set and the functional depends on the 
solution of a PDE on such a set. This was already the case for the optimization 
of the Dirichlet eigenvalue, and we point out that the eigenvalue case with length 
constraints on . ∑ has also been studied, in [191]. 

6.3.2 Proof of the Goł ąb Semicontinuity Theorem 

The semicontinuity result which is the object of this section was first proven in 
[103], but the proofs in this section are essentially taken from [15] up to some minor 
modifications. 

Lemma 6.20 Assume that .A ⊂ X is a connected subset of a metric space X and 
.x0 ∈ A. Then, if .r > 0 is such that .A\B(x, r) /= ∅, we have .H1(A∩B(x0, r)) ≥ r .
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Proof Consider the function .ϕ : A → R defined by .ϕ(x) = min{r, d(x, x0)}. This  
function is continuous, so that it sends connected sets into connected sets. Moreover, 
it is 1-Lipschitz, so that it reduces the Hausdorff measures. Furthermore, we have 
.ϕ(A) = [0, r] because .x0 ∈ A and A contains points at distance larger than r from 
. x0. We then obtain 

. r = H1(ϕ(A)) ≤ H1(ϕ(A \ B(x0, r))) +H1(ϕ(A ∩ B(x0, r)))

= H1(ϕ(A ∩ B(x0, r))) ≤ H1(A ∩ B(x0, r)),

where we used .ϕ(A \ B(x0, r)) = {r} and hence .H1(ϕ(A \ B(x0, r))) = 0. ⨅⨆
Proposition 6.21 Let X be a compact connected metric space with .H1(X) < +∞. 
Then there exist a Lipschitz continuous curve .γ : [0, 1] → X parameterized with 
constant speed, with .|γ '| ≤ 2H1(X), and such that .γ ([0, 1]) = X. 

Proof We first observe that the space X satisfies the assumptions of Theorem 1.21, 
i.e. it is thin. Indeed, using Lemma 6.20, for every .r < diam(X)/2 and every point 
.x ∈ X we have .H1(B(x, r)) ≥ r , which shows that the maximal number of disjoint 
balls of radius r that one can find in X is at most .C/r . 

This implies that every pair of points in X can be connected by an AC curve, and 
hence by reparameterization by a Lipschitz curve. We then take two points . x0, y0 ∈
X and a Lipschitz curve .ω0 : [0, 𝓁0] → X connecting them. Such a curve can be 
chosen to be a geodesic parameterized with unit speed (so that .𝓁0 = Length(ω0)). 
Then, we iteratively construct a sequence of curves in the following way: we set 
.𝚪k =: ⋃k

i=0 ωi([0, 1]) and, if .𝚪k /= X, we consider the function .X ϶ x I→ d(x, 𝚪k). 
We call . dk the maximal value of this function, which is strictly positive (otherwise 
.𝚪k = X, since . 𝚪k is closed). We then consider a point .xk+1 which maximizes this 
function and .yk+1 ∈ 𝚪k such that .d(xk+1, yk+1) = dk . We consider a Lipschitz 
curve . ω, again a geodesic parameterized by constant speed, with .ω(0) = xk+1 and 
.ω(1) = yk+1 and set .t0 := inf{t > 0 : ω(t) ∈ 𝚪k}. We then set . zk+1 = ω(t0)

and reparameterize . ω so as to obtain a Lipschitz curve .ωk+1 : [0, 𝓁k+1] → X which 
is parameterized by unit speed and such that .ωk+1(0) = zk+1, . ωk+1(𝓁k+1) = xk+1
and .ωk+1(t) /∈ 𝚪k for . t > 0. We have .Length(ωk+1) = 𝓁k+1 ≥ d(xk+1, zk+1) ≥ dk . 
In this way we have .H1(ωk+1([0, 𝓁k+1])) ≥ dk and . 

∑
kH

1(ωk([0, 𝓁k])) ≤ H1(X)

(since the images of these curves are essentially disjoint). We deduce .dk → 0 and 
since we have .X ⊂ (

⋃k
i=1 𝚪i)dk

we deduce that .𝚪∞ := ⋃∞
i=1 𝚪i is dense. 

We now build a sequence of curves . γk in the following way. Each . γk will 
be defined on .[0, 2Lk] where .Lk := H1(𝚪k) = ∑k

i=0 𝓁i . The first curve . γ0 :
[0, 2L0] → X is defined by 

.γ0(t) =
{

ω0(t) if t ≤ 𝓁0,

ω0(2𝓁0 − t) if t ≥ 𝓁0.
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Once . γk is defined, define .γk+1 as follows: let . tk be an instant (it will not be unique) 
such that .γk(tk) = zk+1, then take 

. γk+1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γk(t) if t ≤ tk,

ωk+1(t − tk) if tk ≤ t ≤ tk + 𝓁k+1,

ωk+1(tk + 2𝓁k+1 − t) if tk + 𝓁k+1 ≤ t ≤ tk + 2𝓁k+1,

γk(t − (tk + 2𝓁k+1)) if t ≥ tk + 2𝓁k+1.

This means that we transform . γk into .γk+1 by “inserting” the curve .ωk+1 inside . γk

first in the forward direction, and then backward. All curves . γk are parameterized by 
unit speed and the image of . γk equals the set . 𝚪k (and most points of . 𝚪k are visited 
twice by . γk). Moreover, they are all closed curves with .γk(0) = γk(2Lk) = x0 ∈ X. 
We can then reparameterize all these curves into curves . γ̃k with constant speed on 
the same interval, say .[0, 1]. In this way we have .Lip(γ̃k) = 2Lk ≤ 2H1(X). Hence, 
we can apply to this sequence of curves, which are equi-continuous and valued in a 
compact set, the Ascoli–Arzelà theorem and obtain, up to extracting a subsequence, 
a uniform limit . γ . 

If we take an arbitrary point .x ∈ 𝚪k for every .j ≥ k we have .x ∈ γ̃j ([0, 1]), 
hence .x = γ̃j (sj ) for some points .tj ∈ [0, 1] so that, by extracting a convergent 
subsequence .tj → t , we find .x = γ (s). This proves .𝚪∞ ⊂ γ ([0, 1]). Since 
.γ ([0, 1]) is compact and hence closed, and .𝚪∞ is dense, we deduce .γ ([0, 1]) = X. 

This proves that there exists a Lipschitz curve with Lipschitz constant at most 
.2H1(X) which covers the set X. The proof is not yet complete since we do not 
know if this curve is parameterized with constant speed. 

In order to obtain a curve parameterized with constant speed it is enough to solve 

. min{Lip(ω) : ω : [0, 1] → X surjective}.

By applying once more the Ascoli–Arzelà theorem it is clear that a solution . ω exists. 
Suppose that the optimizer . ω is constant on a subinterval .(t0, t1) ⊂ [0, 1]; then 
we could remove it and reparametrize the curve sending in a piecewise linear way 
.[0, t0] ∪ [t1, 1] into .[0, 1], which would multiply the Lipschitz constant by . 1 − (t1 −
t0) < 1 and contradict the optimality. So, . ω is not constant on any interval, allowing 
us to apply Proposition 1.13 and reparametrize . ω as a constant speed curve without 
increasing its Lipschitz constant (see also Remark 1.14). ⨅⨆
The above proposition, or simple variants of it, are crucial in all the proofs of 
Goł ̨ab’s theorem. Observe that in our construction we defined a sequence of curves 
covering the set X twice, and such that their length was exactly equal to twice the 
.H1 measure of their image. We did not try to preserve this fact in the conclusion (i.e. 
taking the limit and then extracting a curve parameterized by constant speed), as it 
is not important for us in the sequel. Yet, it would have been possible to impose this 
on the curve . γ and the original proof by Goł ̨ab [103] passes through this fact: each 
set .Cn is covered by a curve . γn such that .Lip(γn) = Length(γn) = 2H1(Cn), then
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at the limit we have a curve . γ with .Length(γ ) ≤ lim infn 2H1(Cn) covering the set 
C. The conclusion comes after proving .H1(C) ≤ 1

2 Length(γ ), which more or less 
corresponds to saying that . γ also covers each point of C at least twice. This was also 
done in a more recent proof of the same theorem, see [5], in a more general setting 
(in metric spaces instead of the Euclidean setting studied by Goł ̨ab). However, the 
last part of the proof (proving that . γ covers each point twice) is delicate, so we will 
use a different strategy, the one presented in [15].5 

Proof (of Theorem 6.16) Let us first prove that C is connected. If not, there are two 
subsets .A1, A2 which are closed, non-empty and disjoint such that .A1 ∪ A2 = C. 
Set .ε := d(A1, A2) = min{d(x1, x2) : xi ∈ Ai} > 0. The Hausdorff convergence 
of . Cn to C implies that, for n large, we have .Cn ⊂ (A1)ε/3 ∪ (A2)ε/3. Moreover, 
both .Cn∩(A1)ε/3 and .Cn∩(A2)ε/3 are non-empty since every point of . C = A1∪A2
is a limit of points of . Cn. But this is a contradiction to the connectedness of . Cn, as  
we would have .Cn = (

Cn ∩ (A1)ε/3
) ∪ (

Cn ∩ (A2)ε/3
)
, which is a disjoint union of 

two non-empty closed sets. 
We then move to the semicontinuity of the length. Up to extracting a subse-

quence, we assume .H1(Cn) → L, and we want to prove .H1(C) ≤ L. 
First we prove .H1(C) < +∞. To do this, we define a sequence of measures 

. μn via .μn(A) := H1(A ∩ Cn) and, up to subsequences, we have .μn
∗
⇀ μ for a 

nonnegative measure . μ with .μ(X) = L. Take .x ∈ X and .r < diam(X)/2 (note 
that if .diam(X) = 0 there is nothing to prove). Since x is a limit of points in . Cn

we can fix .r ' < r and find .xn ∈ Cn with .xn → x and .B(xn, r
') ⊂ B(x, r). From  

Lemma 6.20 we have .μn(B(xn, r
')) ≥ r ', so that we have .μn(B(x, r)) ≥ r '. Taking 

first the limit .n → ∞ and then .r ' → r we deduce .μ(B(x, r)) ≥ r , which shows 
.Θ1(μ, x)1/2 for all .x ∈ C (see Box 6.7 below). This shows 

. L = μ(X) ≥ μ(C) ≥ 1

2
H1(C),

(where we also used the fact that the mass passes to the limit via weak-* convergence 

in compact spaces: it is enough to test the weak-* convergence .μn
∗
⇀ μ against the 

function 1 in order to obtain .μ(X) = L). This implies that C has finite .H1 measure 
and almost proves the theorem, up to a factor 2.

5 Note that [15] exploited a variant of Proposition 6.21, as, after producing the curves . ωk and 
observing that .𝚪∞ is dense, instead of using this to cover the whole set with a single curve, the 
authors proved .H1(X \ 𝚪∞) = 0, which is very interesting and of course enough for the proof of 
Goł ̨ab’s theorem, but less elementary than what we did. From this point of view, in this part of the 
proof we have followed [71, Section 30] instead of [15]. 
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Box 6.7 Important Notion—Differentiation of Measures 

Given a positive measure . μ on a metric space X and a real number . k > 0
we define for every point the upper and lower k-dimensional densities of . μ as 
follows: 

. Θk(μ, x) := lim sup
r→0

μ(B(x, r)

ωkrk
, Θk(μ, x) := lim inf

r→0

μ(B(x, r)

ωkrk
,

where the numbers . ωk are some dimensional constants which coincide with 
the unit volume of the k-dimensional unit ball in . Rk when k is an integer. 

The following theorem holds, and its proof is based on suitable covering 
arguments: 

Theorem Assume that . μ is a locally finite measure on X and .B ⊂ X is a 
Borel set. Then for every .c > 0 we have the following implications: 

. Θk(μ, x) ≥ c for all x ∈ B ⇒ μ(B) ≥ cHk(B),

Θk(μ, x) ≤ c for all x ∈ B ⇒ μ(B) ≤ 2kcHk(B).

We refer to [15, Chapter 2] or [14, Chapter 2] for proofs and details. 

We now use Proposition 6.21 to say that .H1-a.e. point .x ∈ C can be expressed 
as .x = γ (t) for a Lipschitz curve . γ such that .γ '(t) exists and is not zero. Indeed, 
for a.e. t the curve . γ is differentiable (since it is Lipschitz continuous) and satisfies 
.|γ '|(t) = c > 0; if we remove the instants t such that this does not hold we are 
only removing a set of points .x = γ (t) which is .H1-negligible (as a Lipschitz 
image of a .H1-negligible set). We now take such a point x and, up to a change of 
coordinates, we can say .x = 0 and .γ '(t) = e1. We fix a small value of .r > 0 and 
consider the points .xk = γ ( k

N
r) ∈ C. Using the differentiability of . γ , we have  

.xk ∈ B( k
N

re1, rε(r)) where .limr→0 ε(r) = 0. For large  n, the sets . Cn intersect each 

of the balls .B( k
N

re1, r2ε(r)). Applying Lemma 6.22 below6 we obtain . H1(Cn ∩
B(x, r)) ≥ 2r(1 − 1

N
− 2ε(r)). Taking the limit .n → ∞, this gives . μ(B(x, r)) ≥

2r(1 − 1
N

− 2ε(r)). Taking the liminf for .r → 0, we obtain that the density of . μ at

6 This argument was not present in [15], but fixes a small issue in the proof therein, where the 
estimate giving density 1 has to be clarified; this issue was also fixed in [166] with a very similar 
argument. The construction of our Lemma 6.22 allows us anyway to exclude one of the cases 
considered in Lemma 3.2 of [166] and is slightly shorter. On the other hand, it exploits the 
Euclidean setting in which we work, while [166] deals with general metric spaces. 
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x is at least .1 − 2
N

for any N , hence it is 1. This provides 

. L = μ(X) ≥ μ(C) ≥ H1(C)

and proves the claim. ⨅⨆
Lemma 6.22 If .A ⊂ R

d is a compact connected set in .R
d such that . A ∩

B( k
N

re1, ε) /= ∅ for all .k = −(N −1), . . . , N −1, then we have . H1(A∩B(0, r)) ≥
2r − 2r

N
− 4ε. 

Proof The set A is connected but this is not necessarily the case for .A ∩ B(0, r). 
We distinguish two cases: either we have .A ⊂ B(0, r), in which case .A ∩ B(0, r) is 
indeed connected, or .A \ B(0, r) /= ∅, in which case every connected component of 
.A ∩ B(0, r) must touch .∂B(0, r). 

Let us choose some points .xk ∈ A∩B( k
N

re1, ε). If .A∩B(0, r) is connected then 
considering the 1-Lipschitz function .ϕ(x) = x · e1, we see that we have 

. H1(A∩B(0, r)) ≥ H1(ϕ(A∩B(0, r))) ≥ (xN−1 − x−(N−1)) · e1 ≥ 2
N − 1

N
r − 2ε

and the claim is proven. 
We consider now the case where the connected components of .A ∩ B(0, r) all 

touch .∂B(0, r) and consider in particular the connected components which contain 
each . xk . For one such connected component .B ⊂ A ∩ B(0, r), we have for sure 

. H1(B) ≥ |i − j | r

N
− 2ε

whenever two points .xi, xj belong to B (via the same argument using the function 
. ϕ as before), but also 

. H1(B) ≥ (N − |i|) r

N
− ε

whenever a single point . xi belongs to B (to prove this, we use instead . ϕ(x) =
r − |x|). Hence, the set of indices .k = −(N − 1), . . . , N − 1 is partitioned into 
some classes, each corresponding to one connected component, and each of them 
contributes to .H1(B) the maximum between .|i − j |r − 2ε, where i and j are the 
extreme indices of the class (its “diameter”), and .(N −|i|)r − ε, where i is an index 
which maximizes .N − |i| in the class.
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We need to look at the partition into classes which minimizes the sum of these 
contributions. It is clear that, in order to minimize the sum of the contributions, the 
classes have to be connected.7 Indeed, if a class contains i and j but not h with 
.i < h < j , then merging the class of h with that of i and j reduces the total 
contribution (indeed, the diameter of the union would be—in this very particular 
case—smaller than the sum of the diameters, and the maximal value of .N − |i| on 
the union is the maximum between the two maximal values). 

We then consider the class including .i = 0. If it includes all the indices we then 
obtain a contribution of .2(N − 1) r

N
− 2ε. If not, let us call . k1 the largest negative 

index not included in this class and . k2 the smallest positive one. We then have three 
contributions, equal to .[(k−2−1)−(k1+1)] r

N
−2ε, .(N+k1)

r
N

−ε and .(N−k2)
r
N

−ε, 
so that the sum is .2r − 2r

N
− 4ε. The case where the class of 0 includes all negative 

indices but not all positive ones or vice versa is treated similarly and gives a total 
contribution of .2r− 2r

N
−3ε. In all cases, we obtain .H1(A∩B(0, r)) ≥ 2r− 2r

N
−4ε. 

⨅⨆

6.4 Discussion: Direct Proofs, Quantitative Versions, and 
Variants for the Isoperimetric Inequality 

In this section we come back to the isoperimetric problem and provide some 
sketches of some direct proofs, i.e. proofs where it is directly proven that we have 
.Per(A) ≥ Per(B) (when B is a ball with the same volume as A) without using 
variational arguments (i.e. proving that a minimizer of the perimeter exists and that 
it must be the ball). 

A Proof Via Fourier Series We start with a proof which is really two-dimensional. 
It is due to Hurwitz [118] but can be found, for instance, in [88] together with a 
variant for the higher dimensional case. It applies when A is a set whose boundary 
is a Jordan curve, and in particular this requires A to be connected and simply 
connected. It is however not difficult to reduce to this case in dimension 2 (indeed, 
it is easy to see that we can restrict to convex sets, as taking the convex hull of a 
set in dimension 2 increases the volume but reduces the perimeter, differently than 
what happens in higher dimensions, see Exercise 6.5). 

Consider a set .A ⊂ R2 whose boundary is given by a closed curve . γ that we 
can assume to be parameterized with constant speed on the interval .[0, 2π ] and be

7 This must not be confused with the connectedness in . Rd : a class of indices including 0 and 2 but 
not 1 is disconnected, but this just means that the connected component of .A∩(B(0, r)) containing 
. x0 and . x2 does not pass through . x1. 
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.2π -periodic. If we set .L = Per(A) we have .|γ '| = L
2π

. We then observe that the 
area of A can be written as 

. |A| = 1

2

ˆ 2π

0
γ (t) ∧ γ '(t) dt.

This can be seen, for instance, by approximating . γ with polygonal curves and 
computing the area of each triangle. Here the vector product .v ∧w in . R2 is given by 
the determinant of the .2 × 2 matrix whose columns are v and w or, equivalently, to 
the product of their Euclidean norms times the sine of the (oriented) angle between 
them. We identify .R2 with . C and see that for two vectors .v,w ∈ C we have 
.v ∧ w = Re(ivw̄). We then have 

. |A| = 1

2
Re

(ˆ 2π

0
iγ (t)γ '(t) dt

)
.

We write . γ as a Fourier series, i.e. .γ (t) = ∑
n∈Z aneint . Then we have . γ '(t) =∑

n∈Z anineint and .γ '(t) = −i
∑

n∈Z anne−int . Hence, we obtain, 

. |A| = π
∑
n∈Z

n|an|2,

where we used the fact that the functions .eint are orthogonal in .L2([0, 2π ]) and each 
has squared . L2 norm equal to . 2π . On the other hand, from the value of . |γ '|, we also  
have 

. 
L2

2π
=
ˆ 2π

0
|γ '(t)|2 dt = 2π

∑
n∈Z

|n|2|an|2.

We thus obtain 

. L2 = 4π2
∑
n∈Z

|n|2|an|2 ≥ 4π2
∑
n∈Z

n|an|2 = 4π |A|.

Note that this coincides exactly with the isoperimetric inequality that we wanted to 
prove, since if write .|A| = πr2 our goal was to prove .L ≥ 2πr , i.e. . L2 ≥ 4π2r2 =
4π |A|. 

The key point in this proof was the inequality .|n|2 ≥ n, which is satisfied for 
every .n ∈ Z. Moreover, note the cases of equality: the only possible way to obtain 
an equality in the isoperimetric inequality is if .an = 0 for every n such that .|n|2 > n, 
i.e. for .n /= 0, 1. This clearly shows that only curves of the form . γ (t) = a0 + a1eit

realize the equality, and they are circles. 
It is even possible to use this approach to prove a stability result, i.e. to make 

the inequality quantitative. This means proving inequalities of the form .Per(A) ≥
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Per(B)+ε(A), where .ε(A) is an error term which quantifies how different A is from 
a ball. In our case we can define .ω(t) := γ (t)− (a0 + a1eit ), i.e. . ω is the difference 
between . γ and the corresponding circle. The Fourier coefficients of . ω are the same 
as those of . γ except for the coefficients of the modes .n = 0, 1, which vanish. We 
then use the inequality 

. |n|2 ≥ n + 2

5
(1 + |n|2),

which is valid for .n ∈ Z \ {0, 1}. To check this, we just need to prove that the 
difference .g(n) := n2 −n− 2

5 (1+|n|2) = 3
5n2 −n− 2

5 is non-negative on . [2,∞)∪
(−∞,−1]. The function g is a convex function whose minimum is attained as . n =
5
6 , hence it is increasing on .[2,∞), where it is thus non-negative since .g(2) = 0, 
and decreasing on .(−∞,−1], where it is thus non-negative since .g(−1) > 0. 

We then obtain 

. L2 = 4π2
∑
n∈Z

|n|2|an|2 ≥ 4π2
∑
n∈Z

n|an|2 + 8π2

5

∑
n /=0,1

(1 + |n|2)|an|2

= 4π |A| + 8π2

5
||ω||2

H 1 .

From this inequality it is possible to obtain an inequality of the form 

. Per(A) ≥ Per(B) + c||ω||2
H 1 ≥ Per(B) + c'||ω||2L∞,

where the constant c in the first inequality is given by . 45π2 Per(B)−1. As for the  
second inequality, we use the Sobolev injection .H 1 ⊂ L∞. This shows that any set 
whose perimeter is almost optimal in the isoperimetric inequality is, in terms of . L∞
distance of the boundary, close to a ball. This is not the most classical or general way 
of expressing this quantitative fact (which we will come back to later) but is a very 
clear statement, presented in [88] and compared to the previous stability results by 
Bonnesen [31]. Note that similar techniques can also be used to solve isoperimetric 
problems in higher codimension, i.e. comparing the length of a closed curve (image 
of . S1) in . R3 with the area of a minimal surface, parameterized by the unit disc, 
having the curve as a boundary datum, see for instance [8]. 

A Proof Via Transport Maps We provide here another direct proof of the 
isoperimetric inequality, this time in arbitrary dimension. The methods are based 
on optimal transport (see Sect. 4.6) but can also be adapted to use other non-optimal 
transport maps. 

The technique is the following; we take a smooth domain .A ⊂ Rd and we choose 
R such that .|A| = |B(0, R)|. We set .B := B(0, R). We then consider the uniform 
measures on A and B, and consider a transport map T sending one into the other. 
Assume that the Jacobian matrix of T has only non-negative eigenvalues. It then
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satisfies the condition 

. det(DT) = |B|
|A| = 1

(with no absolute value at the determinant). Hence we can write 

. ωdRd = |A| =
ˆ

A

(det(DT ))
1
d dx ≤ 1

d

ˆ
A

∇·T dx = 1

d

ˆ
∂A

T dHd−1·n ≤ R

d
Per(A),

where the inequalities are obtained thanks to the arithmetic-geometric inequality 

.
1
d

∑
i λi ≥ (Πiλi)

1
d applied to the eigenvalues of DT (which gives an inequality 

between the determinant and the trace, i.e. the divergence of T ), and to the fact that 
T is valued in B, whence .T · n ≤ R. This shows .Per(A) ≥ dωdRd−1 = Per(B). 

Note that we only need to use a map T such that the Jacobian matrix DT 
has non-negative eigenvalues and that it transports one measure onto the other. 
These properties are satisfied by the Brenier map (see Box 4.5). The regularity 
of such a map can depend on the smoothness of A but it is possible to make the 
above argument rigorous even when T is not smooth. Indeed, the Monge–Ampère 
equation will be solved a.e. by .T = ∇u replacing .DT = D2u with its absolutely 
continuous part (since u is convex .D2u is a positive measure), while the divergence 
theorem requires the use of the full distributional derivatives, but the positivity of 
the Hessian implies a sign on the singular part. The first appearance of this proof of 
the isoperimetric inequality in the literature is due to Knothe [128], and we follow 
here the presentation given by Gromov in the appendix of [145]. Both Knothe and 
Gromov worked on this before the discovering of the Brenier’s map and then used 
an alternative map, which is now called the Knothe transport map. We do not give 
the details of the construction of this map here, for which we refer to [128] and to 
[177, Section 2.3]; roughly speaking, it is a map obtained in the following way: its 
first component is the monotone map which sends the projection of one measure 
on the first coordinate axis onto the projection of the other; we then disintegrate 
both measures according to the value of . x1 and iterate the construction projecting 
the disintegration on the second axis, and so on. The result is a map of the form 
.TK(x1, . . . , xd) = (T1(x1), T2(x1, x2), . . . , TD(x1, . . . , xd)), where each map . Ti is 
increasing in the variable . xi . Hence .DTK is a triangular matrix with non-negative 
entries on the diagonal. 

This proof can also be used to prove the uniqueness of the optimal sets. 
For this, the use of the Brenier map strongly simplifies the study of the equality 

cases. Indeed, assume we have equality in the above inequalities. This implies 

the equality .(det(DT ))
1
d = 1

d
(∇ · T ) a.e. and, from the cases of equality in the 

arithmetic-geometric inequality, we get that the eigenvalues of DT should all be 
equal. Thanks to the condition on the determinant, they are equal to 1. If the matrix 
is known to be symmetric (which is the case for Brenier’s map, but not for Knothe’s), 
then we get .DT = I and .T (x) = x+x0. Since T would be a translation, we conclude 
.A = B, up to translations.
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It is slightly harder to do this for the Knothe transport, since DT is not symmetric. 
Yet, if all the eigenvalues are 1, one deduces that . T1 (the first component) is a 
translation. Let us call . xA and . xB the barycenters of A and B respectively; then, the 
barycenters of the two projected measures are .(xA)1 and .(xB)1, respectively. If the 
transport map is a translation, then the barycenters also are obtained by translations 
from one another, so that we have .(xB)1 = T1((x

A)1). If we assume from the very 
beginning that A and B are centered at the origin, then the map . T1 is the identity, 
since it is a translation which fixes the origin. This means .π1(A) = π1(B). This  
is not yet enough to get .A = B. Yet, we can exploit the fact that the directions of 
the axes used to define .TK are arbitrary. Hence, if A is a set giving equality in the 
isoperimetric inequality, then its projections onto any direction coincide with those 
of the ball. This implies .A ⊂ B and, by equality of the volumes, .A = B. 

Extensions: Anisotropic Isoperimetric Inequalities and Quantitative Variants 
Given a bounded and convex body .K ⊂ Rd , containing 0 in its interior, we can 
associate with it a norm .|| · ||K on .Rd defined via . ||x||K := sup{x · y, y ∈ K}
(this norm can be non-symmetric if . K is not symmetric). We also consider its dual 
norm .||x||∗K , characterized by .{x : ||x||∗K ≤ 1} = K . Since 0 belongs to the 
interior of K , which is bounded, there exist two balls centered at 0, one contained 
in K and one containing K , so that we can find two constants .mK ≤ MK with 
.mK ||x|| ≤ ||x||K ≤ MK ||x||. We can then define an anisotropic perimeter, or K-
perimeter, by taking 

. PerK(A) :=
ˆ

∂A

||nA||K dHd−1,

where . nA is the exterior normal to A. This definition works for smooth sets E. For  
sets of finite perimeter we can just consider .|| − ∇1A|| but measuring the norms 
of the vector measure .∇1A with the norm .|| · ||K instead of using the Euclidean 
norm. Note that it is important to use here the negative sign on the gradient, since 
the normal is opposite to the gradient, and K could be non-symmetric. 

We then have a natural question about the isoperimetric inequality for this notion 
of perimeter. The answer was suggested by Wulff [199] at the beginning of the 
twentieth century for applications in crystallography, and then proven by Gromov 
in [145]: the optimal set is K itself, so that we have 

. PerK(A) ≥
( |A|

|K|
)1− 1

d

PerK(K) = d|A|1− 1
d |K|1/d . (6.3) 

The last equality comes from the fact that we always have .|K| = 1
d

PerK(K), as can 
be seen by approximating K with convex polyhedra and computing the volume of 
each pyramid based on each face and arriving at the origin. 

Now that we have addressed the question of how to find the optimal sets and 
discussed the equality cases (note that for (6.3) it is also true that the only equality



280 6 Variational Problems for Sets

case is given by K up to translations and dilations), it is natural to ask about the 
stability of the optimizers: if a set A is almost optimal in the isoperimetric inequality, 
is it almost a ball, and in which sense? Can we say the same for the case of .PerK? 

We already saw an answer in the 2D case for the isotropic perimeter, but as we 
already mentioned, it is not possible in general to quantify this proximity between 
almost optimal sets and optimal sets in an .L∞ sense. The usual approach is the 
following: first we introduce the isoperimetric deficit .δ(A) of A as follows 

. δ(A) := PerK(A)

d|A|1− 1
d |K| 1

d

− 1.

Then, we define the asymmetry index .AK(A) of a set A via 

. AK(A) := inf

{ ||1A − 1x0+rK ||L1

|A| : x0 ∈ Rd , rd |K| = |A|
}

,

which is the proportion of the volume of the symmetric difference of A and any 
copy of K , dilated and translated so as to fit the same volume as A. The question is 
then to estimate .δ(E) from below in terms of .AK(A). 

The best answer to this question has been provided in a paper by Figalli, Maggi 
and Pratelli [87], where they find an inequality with an optimal exponent: 

.AK(A) ≤ C(d)
√

δ(A). (6.4) 

The constant .C(d) that they find is not necessarily optimal, but the exponent 
. 12 is optimal, and the constant .C(d) they find is independent of K and grows 
polynomially w.r.t. d. 

Before their study, many works had been devoted to the Euclidean case (i.e. 
.K = B), first obtaining a proof in dimension 2, [29, 31], then among convex 
competitors, [89], in arbitrary dimension, then without the convexity constraint but 
with a non-optimal exponent . 14 [109]. The Euclidean question had been closed by 
Fusco, Maggi and Pratelli in [92], which was the starting point for [87]. Yet, in 
all these works the main technique is based on the Steiner symmetrization which 
we already saw in Sect. 6.1.3 or on some of its variants, but unfortunately this tool 
is less flexible in the anisotropic case. Indeed, a symmetrization procedure exists 
in order to prove .PerK(E) ≥ PerSe(K)(Se(E)) (see [126] and [193]), and this can 
be iterated in order to obtain the desired isoperimetric inequality, but it is harder 
to obtain sharp quantitative estimates. In the case of a more general convex body 
K , a first stability result for the isoperimetric inequality was presented in [82], but 
with a non-optimal exponent. The strategy of [87], instead, is based on the proof by 
transport maps (which can be easily adapted to the case of the anisotropic perimeter, 
using the estimate 

.

ˆ
∂A

T · n dHd−1 ≤
ˆ

∂A

||T ||∗K ||n||K dHd−1 = R PerK(A),
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when T sends the uniform measure on A onto the uniform measure on RK , with R 
chosen such that .Rd |K| = |A|). Of course, the difficult part of the proof consists in 
finding which of the inequalities which are used can be made quantitative. Besides 
[87], we also refer to [175] for a short review on these results. 

6.5 Exercises 

Exercise 6.1 Prove that if f : Rd → R is uniformly continuous and L1, then we 
have lim|x|→∞ f (x)  = 0. 

Exercise 6.2 Let A be a solution of 

. min
A

Per(A)

|A| d−1
d

,

among all finite perimeter sets A ⊂ Rd . Assume that in a certain open set 𝛀 we 
can write A as an epigraph of a smooth function: there exists an f : Rd−1 → R 
such that for x = (x1, . . . , xd−1, xd) ∈ 𝛀 we have x ∈ A if and only if xd > 
f (x1, . . . , xd−1). Prove that f solves 

. ∇ ·
(

∇f√
1 + |∇f |2

)
= c

for some constant c ∈ R, and find this constant in terms of A. 

Exercise 6.3 Given two smooth and strictly positive functions a, b : Rd → R, 
consider the isoperimetric problem where both the volume and the perimeter are 
weighted by variable coefficients: 

. min
A

´
∂A

a dHd−1

(´
A

b dx
) d−1

d

,

among all smooth domains A ⊂ Rd . Assume that a solution exists and that it is a 
convex domain A. Prove that A has a C∞ boundary. 

Exercise 6.4 Using the isoperimetric property of the ball in the whole space, prove 
that when 𝛀 = Rd+ := {x ∈ Rd : x1 > 0} the half ball B(0, R)  ∩ Rd+ solves the 
problem 

. max{|A| : A ⊂ 𝛀, Per(A;𝛀) = L}.
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Exercise 6.5 Show that in dimension 3 there are compact sets with perimeter 
smaller than that of their convex hull, i.e. sets A such that Per(co(A)) > Per(A), 
where co(A) is the smallest convex set containing A. 

Exercise 6.6 Prove the following fact: if An is a sequence of subsets of R2 such 
that |An| +  Per(An) ≤ C and we define A'

n as Se1(Se2(An)), where e1, e2 is the 
canonical basis of R2 the sequence of sets A'

n is contained in a compact domain of 
R

d . Use this to prove the existence of an optimal set in the isoperimetric problem in 
the whole space without first restricting to compact sets. What fails for d >  2? 

Exercise 6.7 Prove the well-known inequality ||u||Ld/(d−1) ≤ C||∇u||L1 (with 
optimal constant) using the isoperimetric inequality, and deduce the Sobolev 
injection W 1,p ⊂ Lp∗ 

for p >  1. 

Exercise 6.8 Let 𝛀 be an open, connected, bounded, and smooth subset of Rd and 
p ∈ (1,∞). Prove that the following minimization problem admits a solution 

. min

{´
𝛀

|∇u|p dx´
𝛀

|u|p dx
: u ∈ W

1,p

0 (𝛀) \ {0}
}

,

that this solution may be taken non-negative, and that it satisfies 

. Δpu = cup−1

for a suitable constant c <  0. Assume p >  2 and consider G := |∇u|p−2∇u: prove 
G ∈ H 1 

loc(𝛀). 

Exercise 6.9 Let 𝛀 be an open, connected, bounded, and smooth subset of Rd . 
Prove that the following minimization problem admits a solution 

. min

{´
𝛀

|∇u|2 dx∣∣´
𝛀

u dx
∣∣2 : u ∈ H 1

0 (𝛀),

ˆ
𝛀

u dx /= 0

}
,

that this solution may be taken to be non-negative, and that any solution is C∞. 
Prove that the solution is unique up to multiplicative constants and strictly positive 
inside 𝛀. 

Exercise 6.10 Given two functions u, v ≥ 0 in L2(Rd ) prove that we have´ 
u◦v◦ ≥ 

´ 
uv and deduce that the radially decreasing rearrangement does not 

increase the L2 distance. 

Exercise 6.11 Let u ≥ 0 be a Lipschitz continuous function with compact support 
in Rd , and u∗ its symmetrization. Prove that u◦ is also Lipschitz, and Lip(u◦) ≤ 
Lip(u).
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Exercise 6.12 Let 𝛀 be an open and bounded subset of Rd . Consider the following 
minimization problem 

. min

{ˆ
𝛀

(
1

2
|∇u(x)|2 + cos(u(x))

)
dx : u ∈ H 1

0 (𝛀)

}
.

1. Prove that it admits a solution, which can be taken to be positive 
2. Write the PDE satisfied by the solutions. 
3. Prove that the solutions are C∞ in the interior of the domain 𝛀. 
4. Prove that if λ1(𝛀) ≥ 1 then the only solution is u = 0. 
5. Prove that if λ1(𝛀) < 1 then u = 0 is not a solution. 
6. Prove that, if 𝛀 is a ball, there exists a radial solution. 

Exercise 6.13 Given an open bounded set 𝛀 ⊂ Rd with volume |𝛀| > 2ωd (ωd 
denoting the volume of the unit ball in Rd ) and a function f ∈ L1(𝛀), prove that 
the following problem has a solution 

. min

{
Per(A) + Per(B) +

ˆ
A∩B

f (x) dx : A,B ⊂ 𝛀, |A| = |B| = ωd

}
.

Also compute the above minimal value when 𝛀 is the smallest convex domain 
containing B(e, 1) and B(−e, 1), where e is an arbitrary unit vector e ∈ Rd , and 
f = 1 on 𝛀. 

Exercise 6.14 Let 𝛀 ⊂ Rd be the unit cube 𝛀 = (0, 1)d . Prove that for any 
measurable set A ⊂ 𝛀 there exists a unique solution to the problem 

. min

{
1

2

ˆ
𝛀

|∇u(x)|2 dx +
ˆ

A

u(x) dx −
ˆ

𝛀\A
u(x) dx : u ∈ H 1

0 (𝛀)

}
.

Let us call such a solution uA. Write the Euler–Lagrange equation satisfied by uA. 
Prove that if An → A (in the sense 1An → 1A in L1) then uAn → uA in the strong 
H 1 

0 sense. 
Prove that the problem 

. min

{ˆ
𝛀

|uA(x)|2 dx + Per(A) : A ⊂ 𝛀

}

admits a solution. Removing the perimeter penalization, prove that we have 

. inf

{ˆ
𝛀

|uA(x)|2 dx : A ⊂ 𝛀

}
= 0

and that the infimum is not attained.
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Exercise 6.15 Let A ⊂ R2 be a bounded measurable set. Let π(A) ⊂ R be defined 
via π(A) = {x ∈ R : L1({y ∈ R : (x, y) ∈ A} > 0}. Prove that we have 
Per(A) ≥ 2L1(π(A)). Apply this result to the isoperimetric problem in R2, proving 
the existence of a solution to 

. min
{

Per(A) : A ⊂ R2, A bounded, |A| = 1
}

.

Exercise 6.16 Let 𝚪 be the image of an injective Lipschitz curve with end-
points x, y ∈ Rd and [x, y] be the segment from x to y. Prove H1 (𝚪) ≥√

4dH (𝚪, [x, y])2 + |x − y|2. Is the same estimate true if we only assume that 𝚪

is compact and connected? 

Exercise 6.17 Prove the existence of a minimizer for the problem 

. min
{
C(∑) + λH1(∑) : ∑ ⊂ 𝛀 compact and connected

}
,

where λ >  0 is given, and we set 

. C(∑) = sup

{ˆ
𝛀

f u dx − 1

2

ˆ
𝛀\∑

|∇u|2 dx : u ∈ C∞
c (𝛀 \ ∑)

}
.

Exercise 6.18 Prove that the functional A I→ |A| is u.s.c. for the Hausdorff 
convergence but not continuous. 

Hints 

Hint to Exercise 6.1 If not there are infinitely many disjoint balls of fixed radius 
where f ≥ ε >  0. 

Hint to Exercise 6.2 Perturb the function f into f +εϕ and compute the first-order 
development of the ratio. The value of the constant is c = − (d−1) Per(A) 

d|A| . 

Hint to Exercise 6.3 Since A is locally the epigraph of a convex, and hence 
Lipschitz, function f , perturb f into f +εϕ and use the PDE to prove its regularity, 
in the spirit of Chap. 5. 

Hint to Exercise 6.4 For any competitor A in this problem consider Ã obtained 
by taking the union of A and its symmetric set as a competitor in the standard 
isoperimetric problem. 

Hint to Exercise 6.5 Use for instance A = B(0, 1) × ([−L,−L + ε] ∪ [L − ε, L]). 
Hint to Exercise 6.6 After two Steiner symmetrizations, the set A'

n is such that if it 
contains a point (x1, x2) it also contains the rectangle [−|x1|, |x1|] × [−|x2|, |x2|]
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and the perimeter condition yields the result. On the other hand, even if combined 
with the volume condition, this does not work for d >  2. 

Hint to Exercise 6.7 For u ≥ 0, write 
´ |∇u| as 

´∞ 
0 Per({u > t}) dt and bound this 

from below in terms of |{u > t}|. Also write 
´ |u|m = ´∞ 

0 mtm−1{u > t}| dt . For  
the last question, apply the case p = 1 to |u|α . 

Hint to Exercise 6.8 Follow the same steps as in the proof of Proposition 6.10. For  
the regularity, use Sect. 4.4. 

Hint to Exercise 6.9 Follow again similar steps as in the proof of Proposition 6.10. 
Then use the equation Δu = c. 

Hint to Exercise 6.10 Write 
´ 

uv dx = 
´ 

dx ́ ∞ 
0 dt ds1u>t (x)1v>s(x) and com-

pare the intersection of these level sets for u, v and u◦, v◦. For the L2 distances, 
expand the squares. 

Hint to Exercise 6.11 Use Remark 6.15 and send p → ∞. 

Hint to Exercise 6.12 When λ1(𝛀) ≥ 1 the functional is convex, if not one can 
Taylor-expand the cosine to find a better competitor than 0. For the existence of a 
radial solution, replace u with u◦. 

Hint to Exercise 6.13 Take a minimizing sequence and use the bound on the 
perimeters to obtain strong L1 and hence a.e. convergence of the indicator functions. 
For the specific example of 𝛀 containing B(e, 1) and B(−e, 1), take  A = B(e, 1) 
and B = B(−e, 1). 

Hint to Exercise 6.14 The function uA is the solution of Δu = f , for  f = 21A −1. 
Strong L2 convergence of the right-hand side implies strong convergence in H 1 

0 of 
the solutions. When penalizing the perimeter, we obtain strong L1 convergence of 
1An on a minimizing sequence, which is also strong L2 because these functions are 
bounded in L∞. Without this penalization we could have 21An − 1 ⇀ 0. 

Hint to Exercise 6.15 The perimeter decreases by Steiner symmetrization and the 
perimeter of the symmetrized set is at least twice the measure of its projection. If 
we replace A with ϕ(A), where ϕ(x, y) = (ψ(x), y), and ψ is a Lipschitz function 
with ψ ' = 1 on  π(A) and ψ ' = 0 elsewhere, the perimeter again decreases. This 
allows us to modify a minimizing sequence so that it is compact in x. The same  
construction can then be performed in y. 

Hint to Exercise 6.16 Use H1 (𝚪) ≥ |x − z| + |z − y| for a point z such that 
d(z, [x, y]) = dH (𝚪, [x, y]) and optimize over possible z. If 𝚪 is not a curve this 
estimate could be false, think of x = (−1, 0), y = (1, 0) and 𝚪 = [x, y] ∪ [a, b] 
with a = (0, 0) and b = (0, L), L ⪢ 1. 

Hint to Exercise 6.17 Take a minimizing sequence ∑n which converges to ∑ in 
the Hausdorff sense. Prove the lower semicontinuity of the functional by fixing a 
function u ∈ C∞

c (𝛀 \ ∑) and proving that for large n we have u ∈ C∞
c (𝛀 \ ∑). 

Combine with the Goł ̨ab theorem.
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Hint to Exercise 6.18 Use |𝛀| − |A| =  sup{´ ϕ dx : ϕ ≤ 1, ϕ  ∈ C∞
c (𝛀 \ A)}. 

For the failure of lower semicontinuity, use a sequence of small sets which become 
denser and denser.



Chapter 7 
.𝚪-Convergence: Theory and Examples 

This chapter is devoted to a very natural question in optimization, which consists 
in investigating the limit of a sequence of optimization problems. Which is the 
correct notion of convergence which guarantees the convergence of the minimal 
values and/or of the minimizers? 

Although the question is very natural in optimization in general, its leading 
approach has been particularly popularized in the framework of the calculus of 
variations. The reason for this can be found in the connections with the convergence 
of solutions of some PDEs, which are the Euler–Lagrange equations of variational 
problems. This also explains the name which has been chosen to denote this 
convergence: according to the terminology in [76] it is called .𝚪-convergence and 
it is to be considered as a variational counterpart of a previously existing notion of 
convergence for differential operators (hence, PDEs) based on the convergence of 
the corresponding graphs, called G-convergence (see [185]); . 𝚪 was then chosen as 
a variant of G. As we will see, .𝚪-convergence is equivalent to a suitable notion of 
convergence of the epigraphs of the functions to be minimized, and is consequently 
also called epiconvergence but it is much less frequently referred to by this name 
than .𝚪-convergence. 

In this chapter the first section will be devoted to the abstract theory, for 
simplicity in a metric setting (as a reference for the topological case we refer to 
[69], while for a simpler introduction to the topic we refer to [40]); we will then 
move in the second section to some easy examples in the framework of the calculus 
of variations where the .𝚪-limit is in some sense not surprising, or at least shares 
a similar form with the approximating functionals. This includes a very simple 1D 
example of homogenization. Then, Sects. 7.3 and 7.4 will be devoted to two, very 
different, examples where the limit optimization problem is quite different from the 
approximating ones. One of these examples, related to the perimeter functional and 
useful for the numerical approximation of perimeter optimization, is a very classical 
result in the calculus of variations and .𝚪-convergence and is known (at least to a part 
of the variational community, in particular the Italian community) as the Modica– 
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Mortola approximation of the perimeter. The other is an optimal location problem 
appearing both in logistic and practical optimization issues and in the quantization 
of measures in signal theory. Its presentation in textbooks about .𝚪-convergence is 
less classical. We then finish the chapter with a discussion section about variants 
of the Modica–Mortola approach for other problems involving lower-dimensional 
energies, and with an exercise section. 

7.1 General Metric Theory and Main Properties 

Let us fix a metric space .(X, d). Given a sequence of functionals . Fn : X → R ∪
{+∞} we define their .𝚪-liminf and their .𝚪-limsup as two other functionals on X, in  
the following way. 

. (𝚪- lim inf Fn)(x) := inf{lim inf
n

Fn(xn) : xn → x},
(𝚪- lim sup Fn)(x) := inf{lim sup

n
Fn(xn) : xn → x}.

We say that .Fn .𝚪-converges to F , and we write .Fn
𝚪→ F , if  

. (𝚪- lim inf Fn) = (𝚪- lim sup Fn) = F.

Very often we will write .F− instead of .𝚪- lim inf Fn and .F+ instead of 
.𝚪- lim sup Fn. 

In practice, proving .Fn
𝚪→ F requires us to prove two facts:

• (.𝚪-liminf inequality): we need to prove .F− ≥ F , i.e. we need to prove the 
inequality .lim infn Fn(xn) ≥ F(x) for any approximating sequence .xn → x; 
of course it is sufficient to prove it when .Fn(xn) is bounded, at least after passing 
to a subsequence;

• (.𝚪-limsup inequality): we need to prove .F+ ≤ F , i.e. we need to find, for every 
x, a sequence .xn → x such that .lim supn Fn(xn) ≤ F(x) (such a sequence is 
called a recovery sequence) or at least, for every .ε > 0, find a sequence with 
.lim supn Fn(xn) ≤ F(x) + ε (in which case we call this sequence an .ε-recovery 
sequence). We will see later that this inequality can be restricted to suitable 
dense subsets. In any case, it can obviously be restricted to the set .{F < +∞}, 
otherwise the inequality is trivial. 

We will see that the notion of .𝚪-convergence is exactly what we need in order 
to consider limits of optimization problems, since we have the following main 
properties (that will be proven in this section):

• if there exists a compact set .K ⊂ X such that .infX Fn = infK Fn for any n, then 
F attains its minimum and .inf Fn → min F ;
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• if .(xn)n is a sequence of minimizers for . Fn admitting a subsequence converging 
to x, then x minimizes F ;

• if . Fn is a sequence .𝚪-converging to F , then .Fn + G will .𝚪-converge to . F + G

for any continuous function .G : X → R ∪ {+∞}. 
The first two properties above explain the relation between .𝚪-convergence and 

the convergence of the minimization problems, i.e. they provide, under suitable 
conditions, the convergence of the minimal values and of the minimizers. The third 
property explains why we have developed all this theory instead of just looking for 
ad-hoc tricks to study the limits of minima and minimizers of a given sequence of 
problems: because the theory of .𝚪-convergence allows us to avoid re-doing all the 
work when similar functionals (for instance, if adding continuous perturbations) are 
considered. 

Note that the theory developed here deals with minimization problems, and 
indeed the definitions of .𝚪-liminf, .𝚪-limsup and .𝚪-limit are not symmetric. If one 
wanted to study the limit of a sequence of maximization problems it would be 
necessary either to change the sign of the functionals, or to re-do the entire theory by 
changing all the inequalities, following a mirror theory which is sometimes called 
.𝚪+-convergence. 

In order to prove the three properties above we will prove a series of technical 
facts. 

Proposition 7.1 If .Fn
𝚪→ F then for every subsequence . Fnk

we still have .Fnk

𝚪→ F . 

Proof Let us take a sequence .xnk
→ x corresponding to the indices of this 

subsequence and let us complete it to a full sequence using .xn = x for all the 
other indices. We have 

. lim inf
k

Fnk
(xnk

) ≥ lim inf
n

Fn(xn) ≥ (𝚪- lim inf Fn)(x),

which proves that the .𝚪-liminf of the subsequence is larger than that of the full 
sequence. 

For the .𝚪-limsup, let us take an .ε-recovery sequence .xn → x for the full 
sequence. We then have 

. lim sup
k

Fnk
(xnk

) ≤ lim sup Fn(xn) ≤ (𝚪- lim sup Fn)(x) + ε,

thus proving .(𝚪- lim sup Fnk
) ≤ (𝚪- lim sup Fn) + ε. 

This proves that passing to a subsequence increases the .𝚪-liminf and reduces the 
.𝚪-limsup, but when they coincide they cannot change, thus proving the claim. ⨅⨆
Proposition 7.2 Both .F− and .F+ are l.s.c. functionals. 

Proof Let us take .x ∈ X and a sequence .xk → x. We want to prove the 
semicontinuity of . F−. It is not restrictive to assume .F−(xk) < +∞ for every k. 
Fix an arbitrary sequence of strictly positive numbers .εk → 0. For each k there
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is a sequence .xn,k such that .limn xn,k = xk and .lim infn Fn(xn,k) < F−(xk) + εk . 
We can hence choose .n = n(k) arbitrarily large such that .d(xn,k, xk) < εk and 
.Fn(xn,k) < F−(xk) + εk . We can assume .n(k + 1) > n(k) which means that the 
sets of indices n that we use defines a subsequence. Consider a sequence . x̃n defined 
as 

. x̃n =
{

xn,k if n = n(k),

x if n /= n(k) for all k.

We have .limn x̃n = x and 

. F−(x) ≤ lim inf
n

Fn(x̃n) ≤ lim inf
k

Fn(k)(xn(k),k) ≤ lim inf F−(xk),

which proves that .F− is l.s.c. 
We now want to prove the semicontinuity of . F+. We can assume, up to 

subsequences, that .F+(xk) is finite for every k and that .lim F+(xk) exists and is 
finite as well. For each k there is a sequence .xn,k such that .limn xn,k = xk and 
.lim supn Fn(xn,k) < F+(xk) + εk . This means that we can hence choose . n = n(k)

such that for every .n ≥ n(k) we have .d(xn,k, xk) < εk and .Fn(xn,k) < F+(xk)+εk . 
We can choose the sequence .n(k) such that .n(k + 1) > n(k). We now define a 
sequence . x̃n defined as 

. x̃n = xn,k if n(k) ≤ n < n(k + 1).

We have .limn x̃n = x and 

. F+(x) ≤ lim sup
n

Fn(x̃n) ≤ lim
k

F+(xk),

which proves that .F+ is l.s.c. ⨅⨆
Proposition 7.3 Assume .F+ ≤ F on a set  D with the following property: for every 
.x ∈ X there is a sequence .xn → x contained in D and such that .F(xn) → F(x). 
Then we have .F+ ≤ F on X. 

Proof Let us take .x ∈ X and a sequence .xn → x as in the statement. We then 
write .F+(xn) ≤ F(xn) and pass to the limit, using the semicontinuity of .F+ and 
the assumption .F(xn) → F(x). This provides .F+(x) ≤ F(x), as required. ⨅⨆

The sets D with the property described in the assumption of Proposition 7.3 are 
said to be dense in energy. This means that they are dense but the approximating 
sequence that can be found in D for every limit point in X also satisfies an extra 
property: it makes the functional F converge. The name “energy” comes from the 
fact that often the functionals are called energies. Note that only F , and not . Fn, is  
involved in this definition.
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Proposition 7.4 If .Fn
𝚪→ F and there exists a compact set .K ⊂ X such that 

.infX Fn = infK Fn for any n, then F attains its minimum and .inf Fn → min F . 

Proof Let us first prove .lim infn(inf Fn) ≥ inf F . Up to extracting a subsequence, 
we can assume that this liminf is a limit, and .𝚪-convergence is preserved. Now, 
take .xn ∈ K such that .Fn(xn) ≤ inf Fn + 1

n
. Extract a subsequence .xnk

→ x0 and 
look at the sequence of functionals . Fnk

, which also .𝚪-converge to F . We then have 
.inf F ≤ F(x0) ≤ lim inf Fnk

(xnk
) = lim inf(inf Fn). 

Take now a point x, and .ε > 0. There exists .xn → x such that . lim sup Fn(xn) ≤
F(x) + ε. In particular, .lim supn(inf Fn) ≤ F(x) + ε and, .ε > 0 and .x ∈ X being 
arbitrary, we get .lim supn(inf Fn) ≤ inf F . 

We then have 

. lim sup
n

(inf Fn) ≤ inf F ≤ F(x0) ≤ lim inf
n

(inf Fn) ≤ lim sup
n

(inf Fn).

Hence, all inequalities are equalities, which proves at the same time . inf Fn → inf F

and .inf F = F(x0), i.e. the min is attained by . x0. ⨅⨆
Proposition 7.5 If .Fn

𝚪→ F , .xn ∈ argmin Fn, and .xn → x, then .x ∈ argmin F . 

Proof First notice that .
⋃

n{xn} ∪ {x} is a compact set on which all the functionals 
. Fn attain their minimum, so we can apply the previous proposition and get . inf Fn →
inf F . We then apply the .𝚪-liminf property to this sequence, thus obtaining 

. F(x) ≤ lim inf Fn(xn) = lim inf
n

(inf Fn) = inf F,

which proves at the same time .x ∈ argmin F and . argmin F /= ∅. ⨅⨆
Proposition 7.6 If .Fn

𝚪→ F , then for any continuous function . G : X → R∪{+∞}
we have .Fn + G

𝚪→ F + G. 

Proof To prove the .𝚪-liminf inequality, take . xn → x: we have . lim inf(Fn(xn) +
G(xn)) = (lim inf Fn(xn))+G(x) ≥ F(x)+G(x). To prove the .𝚪-limsup inequal-
ity, the same .ε-recovery sequence .xn → x can be used: indeed, . lim sup(Fn(xn) +
G(xn)) = (lim sup Fn(xn)) + G(x) ≤ F(x) + ε + G(x). ⨅⨆

We finish this abstract section by showing the relation between .𝚪-convergence 
and the convergence of the epigraphs of the functions . Fn. 

We recall the following definition (as usual, adapted to metric spaces). 

Definition 7.7 In a metric space X a sequence of sets .An ⊂ X is said to be 
Kuratowski-converging to A if

• for every .x ∈ A there exists a sequence . xn with .xn ∈ An and .xn → x;
• for every sequence . xn with .xn ∈ An and every x which is a limit of a subsequence 

.xnk
of . xn we have .x ∈ A.
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As we underlined in Box 6.5, in compact metric spaces this notion of conver-
gence is equivalent to that of convergence in the Hausdorff distance. 

We can then state the following result. 

Proposition 7.8 Given a sequence .Fn : X → R∪{+∞} of functionals on a metric 
space X and another functional .F : X → R∪{+∞} the following are equivalent
• .Fn

𝚪→ F

• .Epi(Fn) Kuratowski converges to .Epi(F ) in .X × R. 

Proof We will show that the first condition in the Kuratowski convergence of the 
epigraphs is equivalent to the .𝚪-limsup inequality and the second to the .𝚪-liminf 
inequality. 

Indeed, let us assume that we have the .𝚪-limsup inequality and let us take 
.(x0, t0) ∈ Epi(F ). We know that there exists a sequence .xn → x0 with 
.lim supn Fn(xn) ≤ F(x0) ≤ t0. We can assume .Fn(xn) < +∞, at least for n 
large enough. If we define .tn := max{t0, Fn(xn)} we have .(xn, tn) ∈ Epi(Fn) and 
.(xn, tn) → (x0, t0), which shows the first condition in the Kuratowski convergence. 
Conversely, if we assume that this condition holds and take a point .x0 ∈ X we can 
consider the point .(x0, F (x0)) ∈ Epi(F ) and we obtain the existence of a sequence 
.(xn, tn) ∈ Epi(Fn) with .(xn, tn) → (x0, F (x0)), which means .tn ≥ Fn(xn) and 
.tn → F(x0). In particular, .lim supn Fn(xn) ≤ lim supn tn = F(x0) and the .𝚪-limsup 
inequality is satisfied. 

We now assume that we have the .𝚪-liminf inequality and take a sequence 
.(xn, tn) ∈ Epi(Fn) as well as a point .(x0, t0) which is a limit of a subsequence 
of such a sequence. Up to replacing the . xn which do not belong to this subsequence 
with . x0, we can assume that the whole sequence . xn converges to . x0, while we only 
have .tnk

→ t0 on a subsequence. On this subsequence we have . t0 = limk tnk
≥

lim infk Fnk
(xnk

) ≥ lim infn Fn(xn) ≥ F(x0) because of the .𝚪-liminf inequality. 
We then obtain .t0 ≥ F(x0), i.e. .(x0, t0) ∈ Epi(F ), which shows the second 
condition of the Kuratowski convergence. Conversely, we assume that this condition 
is satisfied and take a sequence .xn → x0. There exists a subsequence such that 
.limk F (xnk

) = 𝓁 := lim infn Fn(xn) and we can assume .𝓁 < +∞. Then we 
have .(xnk

, F (xnk
)) → (x0, 𝓁) and .(xnk

, F (xnk
) ∈ Epi(Fnk

). Up to completing this 
subsequence with some points .(xn, tn) ∈ Epi(Fn) we can apply the second condition 
of Kuratowski convergence in order to obtain .(x0, 𝓁) ∈ Epi(F ), i.e. .𝓁 ≥ F(x0), 
which is the .𝚪-liminf condition that we wanted to prove. ⨅⨆

A consequence of the above equivalence, considering that the Hausdorff and 
the Kuratowski convergence on compact sets are equivalent and compact, is that 
from every sequence of functions .Fn : X → R+ one can extract a .𝚪-converging 
subsequence (see Exercise 7.3; the limit can of course be infinite-valued, and 
possibly the constant .+∞). This can be used in order to obtain a compact notion 
of convergence on cost functions, and has been used for instance in [94] for price 
optimization.
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7.2 𝚪-Convergence of Classical Integral Functionals 

In this section we discuss some first, easy, examples of .𝚪-convergence in the 
framework of the calculus of variations, i.e. we consider integral functionals defined 
on functional spaces. 

We start from the most trivial situation, where we consider an integral functional 
depending on a parameter, one of the involved functions converges in a suitable 
sense to another function of the same form, and the limit functional is just obtained 
by using this limit function. We describe this via an easy example. 

Example 7.9 Consider .X = L2(𝛀) for a smooth open domain .𝛀 ⊂ R
d , and some 

functions .fn ∈ L2(𝛀). Consider 

. Fn(u) :=
⎧⎨
⎩
´
𝛀

(
1
p
|∇u|p + fnu

)
dx if u ∈ W

1,p

0 (𝛀),

+∞ if not.

Assume .fn ⇀ f .Then we have .Fn
𝚪→ F where F is defined by replacing . fn with 

f . 

The statement of the above example can be proven in the following way. For the 
.𝚪-liminf inequality, assume .un → u in . L2 and .Fn(un) ≤ C. Using the . L2 bounds 
on . un and . fn we see that the .W 1,p norm of . un is bounded, so that we can assume 
.∇un ⇀ ∇u in .Lp and, by semicontinuity .

´ 1
p
|∇u|p ≤ lim inf

´ 1
p
|∇un|p. In what 

concerns the second part of the integral, we clearly have .
´

fnun → ´
f u since we 

have weak convergence of . fn and strong of . un. We then obtain . lim inf Fn(un) ≥
F(u). For the .𝚪-limsup inequality it is enough to choose u with .F(u) < +∞ and 
take .un = u. 

This .𝚪-convergence result implies the convergence of the minimizers as soon as 
they are compact for the . L2 strong convergence. This is true for .p ≥ 2d

d+2 so that 
.W 1,p compactly embeds into . L2. In this case, we can for instance deduce the . L2

convergence of the solutions . un of .Δpun = fn to the solution of .Δpu = f . Note  
that the linear case .p = 2 could be easily studied by bounding the norm . ||un−u||H 1

in terms of .||fn − f ||H−1 (which tends to 0 since . L2 compactly embeds into .H−1) 
but the situation is more complicated in the non-linear case and the .𝚪-convergence 
is a useful tool. 

As a last remark, we observe that for .p ≥ 2d
d+2 the choice of the strong . L2

convergence to establish the .𝚪-convergence is irrelevant. We could have for instance 
chosen the weak . L2 convergence and deduced the strong . L2 convergence in the .𝚪-
liminf inequality from the .W 1,p bound. We could have chosen other norms, but in 
this case it would have been necessary to first obtain a bound on .||un||W 1,p . 

The .𝚪-Limit of the . Lp Norm when .p → ∞ The next examples that we consider 
involve the behavior of the .Lp norms when .p → ∞ and, without any surprise, the 
limit involves the .L∞ norm.
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We first consider the following situation: 

Example 7.10 Consider .X = L1(𝛀) endowed with the topology of weak conver-
gence in . L1, where . 𝛀 is a measurable space with finite measure. For .p ∈ [1,+∞], 
define .Fp : X → R∪{+∞} via .Fp(u) = ||u||Lp (a functional which takes the value 

.+∞ if .u ∈ L1 \ Lp). Then we have, as .p → ∞, the .𝚪-convergence .Fp
𝚪→ F∞. 

The reader can check that, as soon as the measure of . 𝛀 is 1, then the statement 
of the above example is a particular case of the statement of Exercise 7.1, since 
.Fp ≤ Fq as soon as .p ≤ q. When the measure of . 𝛀 is finite but not equal to 
1 we have .Fp = |𝛀|1/pF̃p, where the functionals .F̃p are increasing in p, and 
.limp→∞ |𝛀|1/p = 1, which gives the same result. 

It is often more useful to deal with the following variant, that we fully prove: 

Proposition 7.11 Consider .X = L1(𝛀) endowed with the topology of weak 
convergence in . L1, where . 𝛀 is a measurable space with finite measure. For . p ∈
[1,∞), define .Fp : X → R ∪ {+∞} via .Fp(u) = c(p)

´
𝛀

|u|p dx (a functional 
which takes the value .+∞ if .u ∈ L1 \ Lp). Assume that the coefficients .c(p) satisfy 

.limp→∞ c(p)1/p = 1. Then we have, as .p → ∞, the  .𝚪-convergence .Fp
𝚪→ F , 

where 

. F(u) =
{

0 if |u| ≤ 1 a.e.

+∞ if not.

Proof Let us first prove the .𝚪-liminf property, taking a sequence . up with . Fp(up) ≤
C < ∞ and assuming .up ⇀ u, we need to prove .|u| ≤ 1. We fix an exponent . p0
and, for .p ≥ p0, we write 

. 

( 
𝛀

|up|p0 dx

)1/p0

≤
( 

𝛀

|up|p dx

)1/p

= (c(p)−1Fp(up))1/p

|𝛀|1/p
≤

(
C

c(p)|𝛀|
)1/p

.

Using .c(p)1/p → 1 we can take the limit as .p → ∞ of the right-hand side of the 
above inequality and obtain 

. 

( 
𝛀

|u|p0 dx

)1/p0

≤ lim inf
p

( 
𝛀

|up|p0 dx

)1/p0

≤ 1,

where we used the lower semicontinuity, for fixed . p0, of the .Lp0 norm w.r.t. the 
weak convergence in . L1.We can then take the limit .p0 → ∞ and use the well-
known fact that, for a fixed function on a set of finite measure, the .Lp norm 
converges to the .L∞ norm as .p → ∞, to deduce .||u||L∞ ≤ 1, which is equivalent 
to the .𝚪-liminf inequality.
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For the .𝚪-limsup inequality we just need to prove that, given a function u with 
.|u| ≤ 1 a.e., we can find a recovery sequence. We choose .up = [pc(p)]−1/pu. This  
sequence converges to u since .p−1/p → 1 and .c(p)−1/p → 1; moreover we have 
.Fp(u) ≤ |𝛀|

p
→ 0, which is the desired result. ⨅⨆

Remark 7.12 The most common choice for the coefficient .c(p) in the previous 
proposition is .c(p) = 1

p
but .c(p) = 1 is also useful; both satisfy the assumption 

guaranteeing the .𝚪-convergence to F . 

With essentially the very same proof we can also obtain the following. 

Proposition 7.13 Consider .X = L1(𝛀) for a bounded convex domain . 𝛀 ⊂ R
d

and, for .p ∈ [1,∞), define .Fp : X → R ∪ {+∞} via .Fp(u) = c(p)
´
𝛀

|∇u|p (a 
functional which takes the value .+∞ if .u ∈ L1 \W 1,p). Assume that the coefficients 
.c(p) satisfy .limp→∞ c(p)1/p = 1. Then we have, as .p → ∞, the  .𝚪-convergence 

.Fp
𝚪→ F , where 

. F(u) =
{

0 if u ∈ Lip1 .

+∞ if not.

Proof Once we observe that, in a convex domain, the condition . u ∈ W 1,∞
and .|∇u| ≤ 1 a.e. is equivalent to .u ∈ Lip1, the proof is exactly the same 
as in Proposition 7.11. The recovery sequence can be taken to be, again, . up =
[pc(p)]−1/pu, and for the .𝚪-liminf condition we just note that .up → u in . L1

together with a bound on .||∇up||Lp0 implies the weak convergence .up ⇀ u in 
.W 1,p0 and allows us to use the lower semicontinuity of the norm. We then obtain a 
uniform bound on .||∇u||Lp0 , independent of . p0, i.e. .∇u ∈ L∞. ⨅⨆
Elliptic Functionals with Variable Coefficients We now consider a more sur-
prising example. We consider a sequence of functions .an : [0, 1] → R such that 
.Λmin ≤ an ≤ Λmax for two strictly positive constants .Λmin,Λmax. We then define a 
functional on .L2([0, 1]) via 

.Fn(u) :=
{´ 1

0 an(x)
|u'(x)|2

2 dx if u ∈ W 1,2, u(1) = 0,

+∞ if not.
(7.1) 

We now wonder what the .𝚪-limit of . Fn could be. A natural guess is to assume, 

up to subsequences, that we have .an
∗
⇀ a in .L∞ and hope to prove that the 

functional where we replace . an with a is the .𝚪-limit. If this was true, then we 
would also have .𝚪-convergence when adding .

´
f u to the functional, for fixed 

.f ∈ L2 (since this is a continuous functional, and we can apply Proposition 7.6), 
and convergence of the minimizers. The minimizers . un would be characterized by 
.(anu

'
n)

' = f with a transversality condition .u'
n(0) = 0, so that this would imply 

.an(x)u'
n(x) = ´ x

0 f (t) dt and hence .u'
n(x) = (an(x))−1

´ x

0 f (t) dt . We then see
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that the weak convergence of . an is not a good assumption, but we should rather 

require .a−1
n

∗
⇀ a−1!! 

We can now prove the following. 

Proposition 7.14 Assume that . an is such that .Λmin ≤ an ≤ Λmax and . a−1
n

∗
⇀ a−1

in . L∞. Let . Fn be defined by (7.1) and F be defined analogously by replacing . an

with a. Then .Fn
𝚪→ F (w.r.t. to the . L1 convergence). 

Proof To prove the .𝚪-liminf inequality, we write .Fn(u) = ´ 1
0 L(u'

n, a
−1
n ) dx, where 

.L : R × R+ is given by .L(v, s) = |v|2
2s

. We take a sequence .un → u with . Fn(un) ≤
C. This bound implies that . un is bounded in .H 1 and then .u'

n ⇀ u' in . L2. We can 
easily check that L is a convex function of two variables, for instance by computing 
its Hessian,1 which is given by 

. D2L(v, s) =
(

1
s

− v
s2

− v
s2

|v|2
s3

)
≥ 0.

Hence, by semicontinuity (see Proposition 3.9), we deduce from .a−1
n

∗
⇀ a−1 and 

.u'
n ⇀ u' that we have .lim inf Fn(un) ≥ F(u). 

To prove the .𝚪-limsup inequality, given u with .F(u) < +∞ (i.e. .u ∈ H 1), we 
define . un via .u'

n = a
an

u' and .un(1) = 0. We see that . u'
n is bounded in . L2 and hence 

.u'
n ⇀ v. Integrating against a smooth test function and using .a−1

n

∗
⇀ a−1 we see 

that we have .v = a
a
u' = u', so that we obtain .u'

n ⇀ u', the weak convergence being 
intended in the . L2 sense. Thanks to the final value .un(1) = u(1) = 0, we deduce 
weak convergence of . un to u in . H 1, and strong in . L2. We then have 

. Fn(un) =
ˆ

1

2
anu

'
n · u'

n =
ˆ

1

2
au' · u'

n →
ˆ

1

2
au' · u' = F(u),

which proves the .𝚪-limsup inequality. ⨅⨆
In the above proof, we strongly used the fact that we are in 1D, since we defined 

a recovery sequence by choosing . u'
n. In higher dimensions, one could consider a 

functional of the form .
´

an

2 |∇u|2 but the functions . a
an

∇u could not be gradients! 
Indeed, the higher-dimensional situation is much trickier, and it is (very partially) 
addressed in Exercise 7.11. 

Remark 7.15 The above situation also includes one of the most studied cases, that 
of periodic homogenization. Assume .a1 : R → [amin, amax] is a given 1-periodic 
function taking its values between .amin and .amax , with .amin > 0, and consider in 
particular the case where . a1 only takes values in .{amin, amax}. Let us define the 

1 One can also refer to the computations in (4.18), as we are facing a perspective function.
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quantity .r := |{x ∈ [0, 1] : a1(x) = amin}| ∈ (0, 1). Define .an(x) := a1(nx). 

Then we have .Fn
𝚪→ F , where F is obtained using the constant function . a =

(ra−1
min + (1 − r)a−1

max)
−1. This can be interpreted in terms of materials: a mixture of 

two different materials with conductivity .amin and .amax in proportions r and . 1 − r

produces a composite material whose conductivity is the (weighted) harmonic mean 
of the two conductivities. 

7.3 Optimal Location and Optimal Quantization 

This section is devoted to a very natural optimization problem: approximating a 
probability density with a finite number of points. This can be interpreted in different 
ways. The first comes from a classical optimization question in logistics or urban 
planning: suppose that we want to choose where to ideally put N post offices in 
a town . 𝛀 and that we know how the population (or the demand) is distributed in 
the domain . 𝛀; where should we place the N offices? We suppose that we want to 
minimize the average distance for the population to reach the closest post office. In 
this case, if f is the population density, we solve 

. min

{ˆ
𝛀

d(x, S)f (x) dx : S ⊂ 𝛀, #S = N

}
,

where the set S stands for the position of the post offices. We can also decide to 
consider the average of a power of the distance, in which case we fix .p > 0 and 
solve 

. min

{ˆ
𝛀

d(x, S)pf (x) dx : S ⊂ 𝛀, #S = N

}
. (7.2) 

Note that these optimization problems are exactly the ones presented in Sect. 6.3, but  
the constraint on S is different: we impose here the number of points, i.e. .H0(S), 
while in Sect. 6.3 we considered the measure .H1 (together with a connectedness 
constraint, which is necessary for the existence). 

Another interpretation of the same problem comes from signal processing. We 
can consider f as the probability distribution of a signal, supported on a whole 
domain . 𝛀, and we want to approximate it with a probability measure concentrated 
on N points (compare with what we discussed in Sect. 6.3.1 about the 1D skeleton 
of an image); such a measure will be of the form .

∑N
j=1 aj δxj

and S will stand for 
.{xj : j = 1, . . . , N}. Given S, the value .

´
d(x, S)pf (x) dx is indeed equal to 

.min{Wp(f, ν)p : spt(ν) ⊂ S}, where .Wp is the Wasserstein distance of order p 
among probability measures (this only works for .p ≥ 1, as the Wasserstein distance 
is not defined for .p < 1).
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Box 7.1 Good to Know!—Wasserstein Distances 

Given two probability measures .μ, ν ∈ P(𝛀) and an exponent .p ≥ 1 we 
define 

. Wp(μ, ν) := inf

{ˆ
𝛀×𝛀

|x − y|p dγ : γ ∈ Π(μ, ν)

}1/p

,

where .Π(μ, ν) is the set of transport plans from . μ to . ν (i.e. measures on . 𝛀×𝛀

with marginals . μ and . ν) see Sect. 4.6. 
It is possible to prove that the above quantity, called the Wasserstein 

distance of order p between . μ and . ν, is indeed a distance on .P(𝛀) if . 𝛀 is 
bounded (otherwise we need to restrict our attention to the set of measures 
. μ with finite moment of order p, i.e. such that .

´ |x|p dμ < +∞), and that 
it metrizes the weak-* convergence of probability measures (in duality with 
.C(𝛀)) when . 𝛀 is compact. When . μ has no atoms it is also possible to define 
.Wp as follows 

. Wp(μ, ν) := inf

{ˆ
𝛀

|x − T (x)|p dμ : T : 𝛀 → 𝛀, T#μ = ν

}1/p

and an optimal map T , called the optimal transport, exists whenever . 𝛀 ⊂ R
d

and .μ ⪡ Ld . 
Given a closed set .S ⊂ R

d and an absolutely continuous measure . μ the 
problem 

. min{Wp(μ, ν) : spt(ν) ⊂ S}

has a unique solution, given by .ν = (ΠS)#μ, where .ΠS is the projection 
onto S, which is well-defined Lebesgue a.e. (more precisely, the projection 
exists and is unique on any differentiability point of .x I→ d(x, S), which is 
a Lipschitz function, differentiable a.e. because of the Rademacher theorem), 
and the map .T = ΠS is the optimal transport from . μ to . ν. 

For more details we refer to [177, Chapter 5]. 

Note that the weights . aj of each atom . xj are not prescribed, and will finally 
be equal to the measure (w.r.t. f ) of the region which is projected on each . xj , i.e. 
.aj = ´

Vj
f (x) dx where 

.Vj = (ΠS)−1({xj }) = {x : |x − xj | ≤ |x − xi | for all i}
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is the so-called Voronoi cell of the point . xj . We then see that, once the points of S are 
known, the optimization among possible weights is easy,2 while the optimization 
of the position of the points . xj is a non-convex optimization problem. The main 
unknown is hence the support S and we are interested in understanding how S covers 
. 𝛀 (or .{f > 0}) as .N → ∞. It is indeed clear that, as .N → ∞, the optimal sets . SN

become denser and denser and that the optimal value .
´

d(x, SN)pf (x) dx tends to 0. 
We need to find the speed of convergence (i.e. find an exponent .α > 0 and a constant 
c such that .

´
d(x, SN)pf (x) dx = O(N−α) and . limN Nα

´
d(x, SN)pf (x) dx =

c) and the limit distribution of . SN , i.e. the average number of points per unit volume 
when N is very large. Intuitively, one can guess that this density will be higher 
where f is larger, but we can also try to find an explicit expression in terms of f 
and, if possible, an exponent .β > 0 such that it is of the order of . f β . 

All these questions can be attacked via .𝚪-convergence tools. 
We start by associating with every set S with .#S = N the uniform probability 

measure on S, i.e. .μS = 1
N

∑
y∈S δy ∈ P(𝛀). Our question is to identify the limit 

as .N → ∞ of the measures .μSN
where .SN is optimal. Identifying S with .μS is 

natural and useful for two reasons; first, if we need to identify the limit density of 
the optimal set . SN what we need to find is exactly the weak-* limit of .μSN

; second, 
this identification allows us to set all the optimization problems for different values 
of N on the same set .X = P(𝛀). 

We will indeed define a sequence of functionals .FN on the space of probability 
measures such that their minimization is equivalent to finding the optimal set . SN . We  
will then look for their .𝚪-limit F so that we can deduce that the optimal measures 
.μSN

converge to the minimizer . μ of F . If this minimizer is unique and easy to find, 
we have the answer to our asymptotical question. 

We define now the functionals .FN : P(𝛀) → R ∪ {+∞} whose .𝚪-convergence 
will be the object of this section. We set 

. FN(μ) :=
{

Np/d
´
𝛀

d(x, S)pf (x) dx if μ = μS with #S = N,

+∞ otherwise.

This choice requires at least a clarification, i.e. why is the integral multiplied by 
.Np/d? This normalizing factor corresponds to the guess .α = p/d for the speed of 
convergence and, without it, we could easily expect the .𝚪-limit to be the constant 
0 functional. Now, when the .𝚪-limit is constant, every . μ is a minimizer and we 
do not obtain any information on the limits of the minimizers .μSN

. On the other 
hand, multiplying .FN by a multiplicative constant does not affect the minimizers, 
and the goal is to choose a good scaling so that the limit is non-trivial. Choosing

2 We underline another possible quantization problem, where the unknown is still the set . S =
{x1, . . . , xN }, but the weights are prescribed and equal to .1/N , so that the problem becomes the 
minimization of .Wp(f, ν) among empirical measures; in this case the Voronoi cells have to be 
replaced by a more involved notion, that of Laguerre cells (or power cells), which we will not 
develop here, see for instance Section 6.4.2 in [177]. 
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.Np/d is a sort of bet: if we are able to find a .𝚪-limit which is non-constant and 
whose minimal value is a finite strictly positive number, we also prove that we have 
.
´

d(x, SN)pf (x) dx = O(N−p/d). 
We consider the unit cube .[0, 1]d and define the constant 

. θp,d := inf

{
lim inf

N
N1/d

ˆ
[0,1]d

d(x, SN)p dx, #SN = N

}

as well as, for technical reasons, the similar constant 

. θ̃p,d := inf

{
lim inf

N
Np/d

ˆ
[0,1]d

d(x, SN ∪ ∂[0, 1]d) dx, #SN = N

}
.

Proposition 7.16 We have .θp,d = θ̃p,d and .0 < θp,d < ∞. 

Proof We have of course .θp,d ≥ θ̃p,d . To prove the opposite inequality, fix . ε > 0
and select a sequence of uniform grids on .∂[0, 1]d : decompose the boundary into 
.2dMd−1 small cubes, each of size .1/M , choosing M such that .M−1 < εN−1/d . We  
call such a grid .GN . Take a sequence .SN which almost realizes the infimum in the 
definition of .θ̃p,d , i.e. .#SN = N and . lim infN Np/d

´
[0,1]d d(x, SN ∪∂[0, 1]d)p dx ≤

θ̃p,d + ε. We then use 

. d(x, SN ∪ GN) ≤ d(x, SN ∪ ∂[0, 1]d) +
√

d − 1

M
.

Lemma 7.17 allows us to deduce from this, for .ε1 > 0, 

. d(x, SN ∪ GN)p ≤ (1 + ε1)d(x, SN ∪ ∂[0, 1]d)p + C(ε1, p)

(√
d − 1

M

)p

.

We then obtain 

. lim inf
N

Np/d

ˆ
[0,1]d

d(x, SN ∪ GN)p dx

≤ (1 + ε1)θ̃p,d + ε(1 + ε1) + lim sup
N

C(d, p, ε1)N
p/d 1

Mp

≤ (1 + ε1)θ̃p,d + ε(1 + ε1) + C(d, p, ε1)ε
p.
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If we use .#(SN ∪GN) ≤ N +2dMd−1 = N +O(N(d−1)/d) = N +o(N) we obtain 
a sequence of sets .S̃N := SN ∪ GN such that 

. lim inf
N

(#S̃N )p/d

ˆ
[0,1]d

d(x, S̃N )p dx ≤ (1 + ε)(1 + ε1)θ̃p,d + C(d, p, ε1)ε
p.

Taking first the limit .ε → 0 and then .ε1 → 0 we obtain .θp,d ≤ θ̃p,d . 
In order to prove .θp,d < +∞, just use a sequence of sets on a uniform grid in 

.[0, 1]d : we can decompose the whole cube into .Md small cubes, each of size .1/M , 
choosing M such that .M ≈ N1/d . 

In order to prove .θ > 0 we also use a uniform grid, but choosing M such that 
.Md > 2N . Then we take an arbitrary . SN with N points: in this case at least half of 
the cubes of the grid do not contain points of . SN . An empty cube of size . δ contributes 
at least .Cδd+p in the integral, i.e. .cM−(d+p). Since at least N cubes are empty we 
obtain .θp,d ≥ cNp/d · N · M−(d+p) = O(1). ⨅⨆
Lemma 7.17 Given .p > 0 and .ε > 0, there exists a finite constant .C(ε, p) such 
that we have 

. (x + y)p ≤ (1 + ε)xp + C(ε, p)yp for all x, y ≥ 0.

Proof Since the inequality is trivial for .y = 0, it is enough to prove that we have 

. sup
x,y≥0,y>0

(x + y)p − (1 + ε)xp

yp
< +∞.

By homogeneity, we can restrict to .y = 1 and thus we must consider 

. sup
x≥0

(x + 1)p − (1 + ε)xp.

Since we have .(x + 1)p − (1 + ε)xp ≤ 0 for x large enough (depending on . ε), the 
above sup is clearly a maximum and is thus finite, which proves the claim. ⨅⨆

We then define the functional .F : P(𝛀) → R ∪ {+∞} through 

. F(μ) := θp,d

ˆ
𝛀

f

(μac)p/d
dx,

where .μac is the density of the absolutely continuous part of . μ. 
The role and the value of the constants .θp,d deserve a small discussion. First of 

all, we note that in order to study the limit behavior of the minimization problem 
(7.2) we introduced some constants whose definition require us to solve a very 
similar problem. This may seem disappointing but, luckily, we do not need to 
compute the precise value of .θp,d (we just need to be sure that it is a non-zero 
finite number) if we want to investigate the limit behavior of the minimizers. Indeed,
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they do not depend on any multiplicative constants in front of the functionals they 
minimize. This is also related to another interesting fact: the limit distribution of 
the N points of the sets .SN essentially depend on scaling (see [111] where a 
general framework is presented in order to obtain the asymptotical behavior of 
point configurations optimizing a large class of functionals, including the setting 
we present in this section) while the precise value of .θp,d is instead related to how 
points arrange locally once their density is known. This is a different, and more 
geometrical question, which is not easy to answer: typically points are arranged on 
a regular lattice and we need to understand the best possible lattice configuration. 
In dimension .d = 2 the answer is the same for every p, the lattice where each point 
is placed at the center of a regular hexagon is the optimal one, and this allows us 
to compute the value of .θp,2. The optimality of the hexagon can be seen as related 
to the fact that we are minimizing .

´
A

|x|p dx among sets A with fixed volume and 
which tile the space: the best A without the tiling constraint would be the ball, and 
the hexagon is in some sense the closest to the ball among the possible tilings. Many 
optimization problems among possible tilings have the hexagon as a solution in 
dimension 2, a fact which is known as the honeycomb conjecture, see also Sect. 7.5. 

The .𝚪-convergence result that we will prove is the following. 

Proposition 7.18 Assume that . 𝛀 is a closed cube and that f is strictly positive 
and continuous. Then we have .FN

𝚪→ F in .P(𝛀) (endowed with the weak-* 
convergence) as .N → ∞. 

Proof Let us start from the .𝚪-liminf inequality. Consider .μN
∗
⇀ μ and assume 

.FN(μN) ≤ C. In particular, we have .μN = μSN
for a sequence of sets . SN

with .#SN = N . Let us define the functions .λN(x) := Np/df (x)d(x, SN)p. This  
sequence of functions is bounded in . L1, so we can assume that, as a sequence 
of positive measures, it converges weakly-* to a measure . λ up to a subsequence. 
Choosing a subsequence which realizes the liminf, we will have . lim infN FN(μN) =
λ(𝛀). 

In order to estimate . λ from below,3 we fix a closed cube .Q ⊂ 𝛀. Let us call . δ
the size of this cube (its side, so that .|Q| = δd ). We write 

. λN(Q) = Np/d

ˆ
Q

f (x)d(x, SN)p dx

≥ (min
Q

f )

(
1

μN(Q)

)p/d

(#SN ∩ Q)p/d

ˆ
Q

d(x, (SN ∩ Q) ∪ ∂Q)p dx.

We note that the last part of the right-hand side recalls the definition of . θ̃p,d . We also  
note that if we want to bound .λN(Q) from below we can assume . limN #SN ∩ Q =
∞, otherwise, if the number of points in Q stays bounded, we necessarily have

3 Note the analogy of the proof with that of the Goł ̨ab theorem. Many lower semicontinuity or 
.𝚪-convergence theorems are proven in this way. 
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.λN(Q) → ∞. So, the sequence of sets .SN ∩Q is admissible in the definition of . θ̃p,d

after being scaled so as to fit the unit cube: indeed, if the unit cube in the definition 
of .θ̃p,d is replaced by a cube of size . δ, the values of the integrals are multiplied by 
.δd+p. We then have 

. lim inf
N

(#SN ∩ Q)p/d

ˆ
Q

d(x, (SN ∩ Q) ∪ ∂Q)p dx ≥ δd+pθ̃p,d = δd+pθp,d

and hence 

. lim inf
N

λN(Q) ≥
(

min
Q

f

)
lim inf

N

(
1

μN(Q)

)p/d

δd+p θp,d .

We now use the fact that, for closed sets, when a sequence of measures weakly 
converges, the mass given by the limit measure is larger than the limsup of the 
masses: 

. λ(Q) ≥ lim inf
N

λN(Q) ≥
(

min
Q

f

) (
1

μ(Q)

)p/d

δd+pθp,d .

This can be re-written as 

. 
λ(Q)

|Q| ≥
(

min
Q

f

)( |Q|
μ(Q)

)p/d

θp,d .

We now choose a sequence of cubes shrinking around a point .x ∈ 𝛀 and we use 
the fact that, for a.e. x, the ratio between the mass a measure gives to the cube and 
the volume of the cube tends to the density of the absolutely continuous part (see 
Lemma 7.19), thus obtaining (also using the continuity of f ) 

. λac(x) ≥ θp,df (x)

(
1

μac(x)

)p/d

.

This implies 

. lim inf
N

FN(μN) = λ(𝛀) ≥
ˆ

𝛀

λac(x) dx ≥ F(μ).

We now switch to the .𝚪-limsup inequality. Let us start from the case . μ =∑
i ai1Qi

, i.e. . μ is absolutely continuous with piecewise constant density . ai > 0
on the cubes of a regular grid. In order to have a probability measure, we assume 
.
∑

i ai |Qi | = 1. Fix .ε > 0. Using the definition of .θp,d we can find a finite set 

.S0 ⊂ [0, 1]d with .#S0 = N0 such that .Np/d

0

´
[0,1]d d(x, S0)

p dx < θp,d(1 + ε). We  

then divide each cube . Qi into .Md
i subcubes .Qi,j of size . δi on a regular grid, and on 

each subcube we put a scaled copy of . S0. We have .Md
i δd

i = |Qi |. We choose .Mi
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such that .N0M
d
i ≈ ai |Qi |N (take .Mi to be the integer part of .(ai |Qi |N/N0)

1/d ) 
so that, for .N → ∞, we have indeed .μN ⇀ μ (where .μN is the uniform measure 
on the set .SN obtained by the union of all these scaled copies). Note that with this 
construction, in general we do not have exactly N points in . SN , but we can complete 
this set with arbitrary points, and the proportion of the number of points that we 
added over N tends to 0. We now estimate 

. FN(μN) ≤ Np/d
∑
i,j

δ
d+p
i θp,d(1 + ε)N

−p/d

0 max
Qi,j

f.

For N large enough, the cubes .Qi,j are small and we have 

. max
Qi,j

f ≤ (1 + ε)

 
Qi,j

f dx = (1 + ε)δ−d
i

ˆ
Qi,j

f dx.

Thus, we get 

. FN(μN) ≤ Np/dθp,d(1 + ε)N
−p/d

0

∑
i,j

δ
p
i

ˆ
Qi,j

f dx.

Note that we have .δi = |Qi |1/d/Mi ≈ N
1/d

0 N−1/da
−1/d
i , whence 

. lim sup
N

FN(μN) ≤ θp,d(1 + ε)
∑
i,j

ˆ
Qi,j

f

a
p/d
i

dx = (1 + ε)F (μ).

This shows, . ε being arbitrary, the .𝚪-limsup inequality in the case .μ = ∑
i ai1Qi

. 
We now need to extend our .𝚪-limsup inequality to other measures . μ which are 

not of the form .μ = ∑
i ai1Qi

. We hence need to show that this class of measures 
is dense in energy. 

Take now an arbitrary probability . μ with .F(μ) < ∞. Since f is assumed 
to be strictly positive, this implies .μac > 0 a.e. Take a regular grid of size 
.δk → 0, composed of . kd disjoint cubes .Qi and define .μk := ∑

i ai1Qi
with 

.ai = μ(Qi)/|Qi | (one has to define the subcubes in a disjoint way, for instance 
as products of semi-open intervals, of the form .[0, δk)

d ). It is clear that we have 
.μk ⇀ μ since the mass is preserved in every cube, whose diameter tends to 0. 

We then compute . F(μk). We have  

.F(μk) ≤
∑

i

(max
Qi

f )|Qi |
(

μ(Qi)

|Qi |
)−p/d

.
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We use the function .U(s) = s−p/d , which is decreasing and convex, together with 
Jensen’s inequality, in order to obtain 

. 

(
μ(Qi)

|Qi |
)−p/d

= U

(
μ(Qi)

|Qi |
)

≤ U

( 
Qi

μac dx

)
≤
 

Qi

U(μac) dx.

This allows us to write 

. F(μk) ≤
∑

i

(
max
Qi

f

)
|Qi |

 
Qi

U(μac) dx =
∑

i

(max
Qi

f )

ˆ
Qi

U(μac) dx.

We finish by noting that, for . k → ∞, we have .maxQi
f ≤ (1 + εk)f on . Qi

for a certain sequence of positive numbers .εk → 0 (depending on the modulus of 
continuity of f ), so that .(maxQi

f )
´
Qi

U(μac) ≤ (1 + εk)
´
Qi

f U(μac). We then 
get 

. F(μk) ≤ (1 + εk)F (μ),

which concludes the proof. ⨅⨆
Lemma 7.19 Let us denote by .Q(x, r) the cube .x + [−r, r]d , centered at x and 
with side 2r , so that its volume is .(2r)d . Then, for every locally finite measure . μ on 
. Rd whose Radon–Nikodym decomposition is .μ = μac dx + μsing, we have 

. lim
r

μ(Q(x, r))

(2r)d
= μac(x) for Lebesgue-a.e. x.

Proof Because of the characterization of Lebesgue points (see Box 5.1), if x is 
a Lebesgue point of the .L1

loc function .μac we know that we have . 
ffl
Q(x,r)

μac →
μax(x). Hence, it is enough to prove .limr μsing(Q(x, r))/(2r)d = 0 for a.e. x. 
Using .Q(x, r) ⊂ B(x,

√
dr) and .|B(x,

√
dr)| ≤ Crd , it is enough to prove 

.limr μsing(B(x, r))/ωdrd = 0 for Lebesgue-a.e. x. We consider then . Eε = {x :
lim supr μsing(B(x, r))/ωdrd ≥ ε} and we need to prove that .Eε is Lebesgue-
negligible for every . ε > 0. Let  A be a Lebesgue-negligible set on which .μsing is 
concentrated and set .B = Eε \ A. We have .μsing(B) = 0 since .B ∩ A = ∅; 
moreover, the theorem about densities and differentiation of measures presented in 
Box 6.7 provides .εHd(B) ≤ μsing(B) = 0 so that .Eε \ A is Lebesgue-negligible. 
Since A is also Lebesgue-negligible, this proves the claim. ⨅⨆

Note that the assumption that . 𝛀 is a cube is just made for simplicity in the 
.𝚪-limsup, and that it is possible to get rid of it by suitably considering the 
“remainders” after filling . 𝛀 with cubes. 

The above proof is a simplified version of that in [38] where f was only assumed 
to be l.s.c. (note that here we only used its continuity in the .𝚪-limsup part, since for 
the .𝚪-liminf the lower semicontinuity would have been enough). Actually, in [153]
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(which deals with the average distance problem presented in Sect. 6.3.1, but the  
answer to question 6 raised in [54] gives rise to a very similar problem to this one) 
even this assumption is removed, and f is only assumed to be . L1. 

The consequences of the previous .𝚪-convergence proof include the two follow-
ing results: 

Proposition 7.20 Assume that . SN is a sequence of optimizers for (7.2) with . N →
∞. Then, the sequence .μN := μSN

weakly-* converges to the measure . μ which is 
absolutely continuous with density . ρ equal to .cf d/(d+p), where c is a normalization 
constant such that .

´
ρ = 1. 

Proof We just need to prove that this measure . μ is the unique optimizer of F . First  
note that F can only be minimized by an absolutely continuous measure, as singular 
parts will not affect the value of the functional, so it is better to remove a possible 
singular part and use the same mass to increase the absolutely continuous part. 

We use again the notation .U(s) = s−p/d , and write .ρ = cf d/(d+p) as in the 
statement. Then we have, for .μ ⪡ Ld , 

. F(μ) = θp,d

ˆ
𝛀

f U(μac) dx = θp,dc0

 
𝛀

U

(
μac

ρ

)
dρ

≥ θp,dc0U

( 
𝛀

(
μac

ρ

)
dρ

)

= θp,dc0U

(ˆ
𝛀

μac dx

)
= θp,dc0U(1) = θp,dc0

where . c0 is such that .c0ρ
(d+p)/d = f , i.e. 

. c0 = c−d/(d+p) =
(ˆ

𝛀

f
d

d+p dx

) d+p
d

.

The inequality follows from Jensen’s inequality, and is an equality if and only if 
.μac/ρ is constant, which proves the claim since the mass has been fixed as 1. ⨅⨆

The following result is probably one of the most well-known in the field of 
quantization of measures, and is known as Zador’s theorem (see [105]). 

Proposition 7.21 If we call .mN the minimal value of (7.2) then we have . mN =
O(N−p/d) and more precisely we have 

. lim
N

Np/dmN = θp,d

(ˆ
𝛀

f
d

d+p dx

) d+p
d

.

Proof We apply again the properties of .𝚪-convergence. Since . mN =
N−p/d min FN we just need to compute the limit of .min FN , which equals .min F .
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This computation is contained in the proof of Proposition 7.20, and we saw that the 
minimal value of F is .θp,dc0, which proves the desired claim. ⨅⨆

These two results are standard in the subject and do not necessarily need to be 
expressed in terms of .𝚪-convergence. We refer for instance to the classical book 
[105], which discusses the topic of optimal quantization of measures from a different 
point of view. Yet, the language of .𝚪-convergence provided a unified framework to 
attack this and similar questions about the optimal location of resources, whether 
they are points, lines, small balls. . . the reference list includes, but is not limited to 
[38, 55, 56, 179]. We also underline [39], where the constraint on the cardinality of 
the set S is replaced by a constraint on the measure . ν. More precisely, instead of 
considering 

. min{Wp(f, ν)p : # spt(ν) ≤ N},

the authors of [39] considered problems of the form 

. min{Wp(f, ν)p : G(ν) ≤ N},

where . G is another functional defined on atomic measures, for instance 

. G(ν) :=
{∑

k aα
k if ν = ∑

k akδxk
,

+∞ if ν is not purely atomic,

for an exponent .α < 1, which is one of the functionals studied in Sect. 3.3. Note  
that we can recover the standard case presented in this section when .α = 0. 
The approach via .𝚪-convergence of [39] is more involved than what we presented 
here, in particular because they consider an extended variable which also carries 
information on the local distribution of the masses of the atoms. 

7.4 The Modica–Mortola Functional and the Perimeter 

In this section we consider another example of .𝚪-convergence, and actually one 
of its most classical examples, as the title of the paper by Modica and Mortola 
[146, 147], where this result is proven, suggests. This result is concerned with 
the approximation of the perimeter functional via some functionals which are 
more typical for the calculus of variations, i.e. integral functionals involving the 
squared norm of the gradient. This .𝚪-convergence result is particularly interesting 
for numerical reasons; indeed, from a computational point of view, it is very difficult 
to handle perimeters, both because we are more accustomed to handling functions 
instead of sets, and because the perimeter is an energy which only involves a 
lower-dimensional subset, thus making the number of relevant pixels in the domain 
proportionally very small, and the computation unstable. Replacing the perimeter
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with a more standard functional involving derivatives of functions allows us to use 
more robust and more classical numerical methods. In some sense, the interest of 
the result presented in this section is exactly the opposite of that of the previous 
section: if in Sect. 7.3 we had a clear idea of the sequence of minimization problems 
that we wanted to study, and the goal was to investigate the asymptotic properties 
of the minimizers, in this section the important minimization problem is the limit 
one, and we want to deliberately build an approximating sequence which is easier to 
handle. On the other hand, both sections share this important aspect that the .𝚪-limit 
is quite different in nature than the approximating functionals. 

We consider the following sequence4 of functionals defined on .L1(𝛀), 

. Fε(u) :=
{

ε
2

´
𝛀

|∇u|2 dx + 1
2ε

´
𝛀

W(u) dx if u ∈ H 1
0 (𝛀),

+∞ if not,

where .W : R → R is a continuous and bounded function satisfying . W(0) =
W(1) = 0 and .W > 0 on .R \ {0, 1}. We denote by . c0 the constant given by 
.c0 = ´ 1

0

√
W . 

We also define 

. F(u) :=
{

c0 Per(A) if u = 1A ∈ BV(Rd),

+∞ if not.

In this case we stress that the perimeter of A is computed inside the whole space, 
i.e. also considering .∂A ∩ ∂𝛀. 

We will prove the following result, which is due, as we already said, to Modica 
and Mortola [146]. 

Proposition 7.22 Assume that . 𝛀 is a bounded convex set in . Rd . Then .Fε
𝚪→ F in 

.L1(𝛀), as .ε → 0. 

Proof Let us start from the .𝚪-liminf inequality. Consider .uε → u in . L1. 
Note that the Young inequality . ε2 |a|2 + 1

2ε
|b|2 ≥ ab provides the lower bound 

. Fε(uε) ≥
ˆ

𝛀

√
W(uε)|∇uε| dx =

ˆ
𝛀

|∇ (Ф(uε)) | dx,

where .Ф : R → R is the function defined by .Ф(0) = 0 and .Ф' = √
W . Note that, 

W being bounded, we have .|Ф(uε)| ≤ C|uε|. This means that .Ф(uε) is bounded in 
.BV(𝛀) and, up to a subsequence, it converges strongly in . L1 to a function v. Up to  
another subsequence we also have pointwise convergence a.e., but we already had

4 Throughout this section the approximation parameter is . ε, which is a continuous parameter, so 
that when we speak about sequences or even about .𝚪-convergence we mean that we consider an 
arbitrary sequence .εn → 0. 
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.uε → u in . L1 (hence a.e. up to subsequences), so that we get .v = Ф(u). We then 
have .∇Ф(uε) → ∇Ф(u) in the sense of distributions and weakly as measures, and 
the lower semicontinuity of the norm implies .Ф(u) ∈ BV(𝛀) and 

. ||∇Ф(u)||M ≤ lim inf
ε

ˆ
𝛀

|∇Ф(uε)| dx ≤ lim inf
ε

Fε(uε).

On the other hand, since we can of course assume .Fε(uε) ≤ C, we also have  
.
´
𝛀

W(uε) ≤ Cε and, by Fatou, .
´
𝛀

W(u) = 0, i.e. .u ∈ {0, 1} a.e. This means that 
we do have .u = 1A for a measurable set .A ⊂ 𝛀. Note that in this case we have 
.Ф(u) = Ф(1)u = Ф(1)1A. Since we have .Ф(1) = ´ 1

0

√
W > 0, this implies 

.1A ∈ BV(𝛀), and we finally have 

. F(u) = Ф(1) Per(A) ≤ lim inf
ε

Fε(uε).

We now switch to the .𝚪-limsup inequality. We first consider the case . u = 1A

with A smooth and .d(A, ∂𝛀) > 0. We need to build a recovery sequence . uε. Let us 
define . sdA, the signed distance function to A given by 

. sdA(x) :=
{

d(x,A) if x /∈ A,

−d(x,Ac) if x ∈ A.

Take a function .φ : R → [0, 1] such that there exist .L± > 0 with .φ = 1 on 
.(−∞, L−], .φ = 0 on .[L+,+∞), and .φ ∈ C1([−L−, L+]). Define 

. uε = φ

(
sdA

ε

)
.

Note that .|∇sdA| = 1 a.e. and hence we have .ε|∇uε|2 = 1
ε
|φ'|2

(
sdA

ε

)
and 

. Fε(uε) = 1

2ε

ˆ
𝛀

(
|φ'|2 + W

) (
sdA

ε

)
dx.

We now use the co-area formula (see Box 6.2) which provides the following 
equality, valid at least for Lipschitz functions .f, g : 𝛀 → R: 

.

ˆ
g|∇f | dx =

ˆ
R

dt

ˆ
{f =t}

g dHd−1.
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We apply it to the case .f = sdA, for which the norm of the gradient is always 1. 
We then have 

. Fε(uε) = 1

2ε

ˆ
R

(
|φ'|2 + W(φ)

) (
t

ε

)
·Hd−1({sdA = t}) dt

= 1

2

ˆ
R

(
|φ'|2 + W(φ)

)
(r) ·Hd−1({sdA = εr}) dr,

where the second equality comes from the change of variable .t = εr . 
Since A is smooth we have, for every r , the convergence 

. Hd−1({sdA = εr}) → Per(A).

We can restrict the integral to .r ∈ [−L−, L+] which allows us to apply dominated 
convergence and obtain 

. lim
ε

Fε(uε) = Per(A)

ˆ
R

(
|φ'|2 + W(φ)

)
(r) dr.

Moreover, it is clear that we have .uε → 1A in .L1 because of dominated 
convergence. 

We now have to choose . φ. Choose a function . φ̃ defined as a maximal solution of 
the Cauchy problem 

. 

⎧⎨
⎩φ̃' = −

√
W(φ̃),

φ̃(0) = 1
2 .

We necessarily have .limr→−∞ φ̃(r) = 1 and .limr→+∞ φ̃(r) = 0. The function . φ̃ is 
. C1 and monotone non-increasing.5 Fix .δ > 0 and let . r± be defined via . φ̃(r−) = 1−δ

and .φ̃(r) = δ. We then take .φ = φδ to be a function such that .φδ = φ̃ on .[r−, r+], 
.φδ ∈ C1([r− − 2δ, r+ + 2δ]), and .|φ'

δ| ≤ 1 on .[r− − 2δ, r−]∪ [r+, r+ + 2δ], . φδ = 1
on .(−∞, r−2δ) and .φδ = 0 on .(R+ + 2δ,+∞). We have  

.

ˆ
R

(
|φ'

δ|2 + W(φδ)
)

(r) dr ≤ (1 + sup W)2δ +
ˆ r+

r−

(
|φ̃'|2 + W(φ̃)

)
(r) dr

≤ Cδ +
ˆ
R

(
|φ̃'|2 + W(φ̃)

)
(r) dr.

5 Note that this function also coincides with the heteroclinic connection between the two wells 0 
and 1 for the potential W , as described in Sect. 1.4.5. 
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Note that we have 

. 

ˆ
R

(
|φ̃'|2 + W(φ̃)

)
(r) dr = 2

ˆ
R

√
W(φ̃)|φ̃'| dr

= −2
ˆ
R

d

dr

(
Ф ◦ φ̃

)
dr

= −2
(
Ф(φ̃(+∞)) − Ф(φ̃(−∞))

)
= 2Ф(1) = 2c0,

which means 

. lim
ε

Fε(uε) ≤ (c0 + Cδ) Per A.

Since this holds for arbitrary .δ > 0, we obtain 

. (𝚪- lim sup Fε)(u) ≤ c0 Per A = F(u).

We now need to extend our .𝚪-limsup inequality to other functions u which are 
not of the form .u = 1A with A smooth and far from the boundary, but only . u = 1A

with A of finite perimeter. We hence need to show that the class . S of indicators of 
smooth sets far from the boundary is dense in energy. 

We start from a set A of finite perimeter with .d(A, ∂𝛀) > 0 and set .u = 1A. 
The construction of Proposition 6.2 shows precisely that, if we take a smooth and 
compactly supported convolution kernel .ηn ⇀ δ0 defined by rescaling a fixed kernel 
. η1, and define .vn := ηn ∗ u, we can chose .rn ∈ (δ, 1 − δ) so that the set . An :=
{vn ≥ rn} is a smooth set with .Per(An) ≤ Per A

1−2δ
and .1An → 1A in . L1. This is  

not yet the desired sequence, since we have .F(un) ≤ (1 − 2δ)−1F(u) instead of 
.lim supn F (un) ≤ F(u), but this can be fixed easily. Indeed, for every . δ this allows 
us to find .ũ ∈ S with .||ũ − u||L1 arbitrarily small and .F(ũ) ≤ (1 − 2δ)−1F(u), 
which can be turned, using .δn → 0, into a sequence which shows that . S is dense in 
energy. 

We now have to get rid of the assumption .d(A, ∂𝛀) > 0. Using the fact that 
. 𝛀 is convex, and assuming without loss of generality that the origin 0 belongs to 
the interior of . 𝛀, we can take .u = 1A and define .un = 1tnA for a sequence . tn →
1. The sets .tnA are indeed far from the boundary. Moreover, we have . F(un) =
c0 Per(tnA) = td−1

n F (u) → F(u). We are just left to prove .un → u strongly in 
. L1. Because of the BV bound which provides compactness in . L1 we just need to 
prove any kind of weak convergence. Take a test function . ϕ and compute . ́ ϕun =´
tnA

ϕ = (tn)
d
´
A

ϕ(tny)dy → ´
A

ϕ, as soon as . ϕ is continuous. This shows the 
weak convergence in the sense of measures .un ⇀ u and, thanks to the BV bound, 
strong . L1 convergence, and concludes the proof. ⨅⨆
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We do not detail here some interesting variants of the above .𝚪-convergence 
result, where one could impose a volume constraint on A in the perimeter min-
imization (as for the isoperimetric problem of Sect. 6.1), which corresponds to a 
constraint on .

´
u in the approximation, or prescribe boundary values. Note that, in 

general, imposing constraints (which are stable under the convergence used in the 
.𝚪-convergence) do not affect the .𝚪-liminf part, but make it harder to prove the .𝚪-
limsup part, since we need to produce a recovery sequence which satisfies them. 
Moreover, it is not possible to evoke Proposition 7.6, since the function G imposing 
the constraints is not continuous (as it takes the values 0 and .+∞). Yet, in many 
simple cases it is not hard to slightly modify the unconstrained recovery sequence 
in order to preserve the constraints. 

7.5 Discussion: Phase-Field Approximation of Free 
Discontinuity and Optimal Network Problems 

This section discusses some recent and less recent works on the approximation 
of variational problems involving energy terms concentrated on lower-dimensional 
objects, in the same spirit as the Modica–Mortola result of the previous section. This 
kind of approximation is usually referred to as phase-field approximation, since the 
sharp behavior .{0, 1} (belonging or not to a set) is replaced by a continuous variable 
.u ∈ [0, 1], which recalls what is usually done in phase transition models, where 
instead of just considering water and ice, intermediate states, corresponding to 
different proportions of melted ice, are considered. This terminology was introduced 
by Van der Waals, who was the first to propose an energy of the form of the Modica– 
Mortola energy in this setting. 

Optimal Partitions, and a Particular Case of the Steiner Problem We already 
mentioned in a different setting the so-called honeycomb conjecture, a name which 
encompasses several optimal partition questions where a large domain (and ideally 
the whole space) has to be partitioned into pieces of unit volume so as to minimize 
a global energy. The most well-known problem among them consists in minimizing 
the average perimeter: how do we tile . Rd by a partition into cells . Ai of unit volume 
so that the asymptotic average perimeter of the partition, defined via 

. lim
R→∞

∑
iH

d−1(∂Ai ∩ B(0, R))

|B(0, R)|
is minimal? (Note that .|B(0, R)| also approximately equals the number of cells 
in the same ball, since cells have volume 1.) In dimension two the question dates 
back to antiquity and the conjecture that the hexagonal tiling (exactly the one used 
by bees) should be optimal is usually attributed to Pappus of Alexandria (fourth 
century). An affirmative answer was first given by Fejes Tóth [86], in the restricted 
case where each cell is required to be a convex polygon, while the general case
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was proven many years later by Thomas C. Hales [108]. On the other hand, in 
higher dimensions the picture is rather unclear. The problem when .d = 3 was first 
raised by Lord Kelvin (the same Lord Kelvin who gave his name to the temperature 
unit) in 1894, and he conjectured that a certain tiling made of suitably adjusted 
truncated octahedra (whose faces are 8 slightly curved hexagons and 6 squares) may 
be optimal. This tiling satisfied suitable first-order optimality conditions and was 
therefore a satisfactory competitor. Yet, in [197], Denis Weaire and Robert Phelan 
found a counter-example, proving that a tiling made of a block of 8 polyhedra of 
two different types, one with 14 faces and the other with 12, gave a better average 
perimeter, even if the improvement was only of about 0.3%. 

It is natural to attack the question numerically. Of course it is impossible to really 
attack the asymptotic question, but one can fix a large domain . 𝛀 with volume . N ∈ N

and look for the solution of the problem 

. min

{
N∑

i=1

Per(Ai) : |Ai | = 1, (Ai)i is a partition of 𝛀

}
.

Note that it is irrelevant whether the perimeters of . Ai are defined as .Per(Ai;𝛀) or 
.Per(Ai;Rd), since the boundary .∂𝛀 is fixed and would be fully covered by .

⋃
i ∂Ai . 

This can be clearly approximated via a suitable modification of the Modica– 
Mortola functional by studying 

. min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
i=1

ε

2

ˆ
𝛀

|∇ui |2dx + 1

2ε

ˆ
𝛀

W(ui)dx : ui ∈ H 1
0 (𝛀),

ˆ
ui = 1, u1 + · · · + uN = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

which is what is done in [163] for numerical purposes. It is shown in this paper 
that both Kelvin’s solution and the Weaire–Phelan solution can be found, depending 
on the initialization of the optimization algorithm (the optimization problem being 
non-convex, the output can depend on the initialization). This is remarkable, due to 
the very small gap between the energies of the two configurations.6 

Yet another remarkable fact is that the same approach can be used to attack a very 
particular instance of the Euclidean Steiner tree problem7 (see Sect. 6.3.1). Indeed, 
assume that we want to connect a set D of N points which lie on the boundary of a

6 According to some texts on the internet, after the publication of [163] a new configuration better 
than that of Weaire–Phelan was discovered in [161], but after a careful look at the latter paper it 
seems that this is not exactly what is claimed in it. 
7 This very natural approach is due to É. Oudet, but is not contained in any particular paper, despite 
being the starting point of many oral presentations on the subject. 
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convex domain .𝛀 ⊂ R
2. Since the competitors . ∑ connecting them will be trees, i.e. 

with no loops, we can prove that they determine a partition of . 𝛀 into N sets, and the 
total perimeter of the sets in the partition will be equal to twice the length of . ∑ plus 
the length of . ∂𝛀. Hence, we can find a solution of the Steiner problem by solving 

. min

⎧⎨
⎩

N∑
i=1

ε

2

ˆ
𝛀

|∇ui |2 dx + 1

2ε

ˆ
𝛀

W(ui) dx :
ui ∈ H 1(𝛀),

u1 + · · · + uN = 1,

Tr[ui] = 1 on 𝚪i

⎫⎬
⎭ ,

where . 𝚪i is the part of .∂𝛀 bounded by two consecutive points of D. 

The Mumford–Shah Functional and the Ambrosio–Tortorelli Approximation 
The calculus of variations has had a very strong impact in some parts of applied 
mathematics related, for instance, to image analysis and reconstruction, and it would 
have been a pity to end a book on it without mentioning any of these ideas, one of 
the most well-known being the so-called Mumford–Shah functional (see [155]). The 
starting point to arrive to this functional is a general procedure in signal processing: 
when observing some data g we can expect that these data have been noised, and we 
would like to denoise them; to do so, we look for another signal u which minimizes a 
sum .d(u, g) + R(u), where .d(u, g) is a term called the data fidelity, which ensures 
that u is as close as possible to the observed data, while R is a regularizing term 
which ensures that u fits as much as possible the a priori properties of the signal we 
are looking for (for instance being continuous, being sparse. . . ). For image  analysis, 
we identify images with functions defined on a (typically rectangular) domain and 
valued in .[0, 1] (for gray-scale images, otherwise we can consider functions valued 
in .[0, 1]3 for color pictures), and the a priori idea that we have is that the images 
should be smooth, except at contours which are the boundaries of different objects. 
A reasonable choice of a regularization term is then 

.R(u) := inf

{ˆ
𝛀\S

|∇u|2 dx + λHd−1(S) : u ∈ H 1(𝛀 \ S)

}
, (7.3) 

where the infimum is among all possible closed sets S such that .u ∈ H 1(𝛀 \ S), 
so that if there is no such set with finite .Hd−1 measure the value of R is . +∞. In  
practice, the functions u with .R(u) < +∞ are smooth outside a small jump set of 
dimension .d − 1, which corresponds to the desired contours. The parameter . λ tunes 
the relative importance of the two parts of the functional, so that a very small value 
of . λ allows for larger and larger jump sets. 

It is possible to re-express a relaxed version of the functional R with the language 
of BV functions.
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Box 7.2 Important Notion—Decomposition of the BV Derivative, and SBV 
Functions 

Definition Given a function .u ∈ BV(𝛀) we say that a point . x0 belongs to the 
jump set . Ju if there exists a unit vector . ν and two constants . u± with . u+ /= u−
such that 

. lim
r→0

 
B(x0,r)∩{x:(x−x0)·±ν>0}

|u − u±| dx = 0.

We can prove that .|∇u| ≥ |u+ − u−|Hd−1
|Ju , so that . Ju is a countable union 

of sets with finite .Hd−1 measure. Note that at every point of . Ju the vector . ν
will be unique and will also play the role of the normal to . Ju. 

Given .u ∈ BV(𝛀) we decompose its distributional gradient . ∇u ∈M(𝛀)d

as 

. ∇u = (∇u)ac + (∇u)cant + (∇u)jump,

where .(∇u)ac is the absolutely continuous part of the measure .∇u but the 
singular part is also decomposed into two sub-parts, .(∇u)jump which is the 
restriction of .∇u to the set . Ju, and .(∇u)cant, which is the remaining (“Cantor”) 
part. In dimension .d = 1 this corresponds to the decomposition of a measure 
into its absolutely continuous part, atomic part, and the remaining singular 
part, as done in Sect. 3.3. In the general case atoms have been replaced with 
.(d − 1)-dimensional objects. The name “jump” comes from the fact that 
atoms in . u' in 1D exactly correspond to jumps, and “Cantor” refers to the 
devil’s staircase function u introduced by Cantor, whose derivative . u' has 
no absolutely continuous part (indeed, .u' = 0 a.e.) nor atoms (indeed, u is 
continuous) but u is non-constant. 

Definition A function .u ∈ BV(𝛀) is said to belong to the space .SBV(𝛀) (the 
set of special functions of bounded variations) if .(∇u)cant = 0. 

We refer to [14] for the theory of BV functions and for more details. 

With this language, we can then choose 

. R(u) =
ˆ

𝛀

|(∇u)ac|2 dx + λHd−1(Ju).

Of course this expression does not coincide with the one in (7.3) since the set . Ju has 
no reason to be closed, but one has to interpret this as a suitable relaxed version of 
(7.3).
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The Mumford–Shah problem then consists in solving 

. min

{
α

ˆ
𝛀

|u − g|2 dx + R(u) : u ∈ SBV(𝛀)

}
,

a problem which can be re-written in two variables as 

. min
u,S : u∈H 1(𝛀\S)

α

ˆ
𝛀

|u − g|2 dx +
ˆ

𝛀\S
|∇u|2 dx + λHd−1(S).

It is important to stress that the existence of an optimal u is not straightforward, 
as the functional that is minimized does not fit into classical lower semicontinuity 
theorems, except for .d = 1, where .Hd−1(S) = #S and we can see .R(u) as a 
particular case of the functionals studied in Theorem 3.28 applied to . u'. For the  
higher-dimensional case, a different semicontinuity theorem is necessary, and this 
is part of a whole theory of SBV functions developed by Ambrosia. We refer to 
[9, 10] for existence results in this setting and to [14] for a detailed exposition of 
the theory. As an example, we mention the following non-trivial statement: given a 
sequence of functions .un ∈ SBV(𝛀) with .||(∇un)

ac||Lp , ||un||L∞ and . Hd−1(Jun)

all uniformly bounded in n (for some .p > 1), there exists a subsequence strongly 
converging in . L1 to a function .u ∈ SBV(𝛀) and each of these three quantities is 
lower semicontinuous along this sequence. 

The numerical treatment of the Mumford–Shah minimization problem is made 
difficult by the role played by the jump set, which concentrates an important part 
of the energy, despite being Lebesgue-negligible. On a space discretization of the 
problem (actually, image problems are discrete in space, since the number of pixels 
in the image, though large, is finite), this means that an important part of the energy 
is contained in a very small proportion of pixels. A phase-field approximation for 
this problem was necessary, and has been developed by Ambrosia and Tortorelli 
in [16, 17]. The main idea is the .𝚪-convergence of the following functional of two 
variables: 

. Rε(u, ϕ) :=
ˆ

𝛀

ϕ|∇u|2 dx + λ

(
ε

2

ˆ
𝛀

|∇ϕ|2 dx + 1

2ε

ˆ
𝛀

(1 − ϕ)2 dx

)
.

When .ε → 0, the variable . ϕ tends to be as close as possible to the constant 1, but the 
first term favors the fact that it could take the value 0. At the points where .ϕ = 0 or . ϕ

is very small, the condition .u ∈ H 1 coming from the first term is no longer enforced. 
As a result, when optimizing this functional and sending .ε → 0, the variable . ϕ
takes values very close to 0 on a set S on which u is finally allowed to jump, and the 
second term, which closely resembles the Modica–Mortola functional, penalizes the 
.Hd−1 measure of this set S. The precise statement which can be proven is the .𝚪-
convergence of . Rε to R in .L2(𝛀), which then allows us to add the data fidelity term 
and obtain a useful result in order to approximate the Mumford–Shah functional. 
Note that here we do not use a double-well potential W as in Sect. 7.4. The reason
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for this is that we expect .ϕ = 1 at the limit (hence, we want one only well), but the 
other term (the one involving .ϕ|∇u|2) acts as a second well favoring .ϕ = 0. 

Because of the possible jumps on .{ϕ = 0}, these problems are also called free 
discontinuity problems (the discontinuity region being part of the optimization). See 
[41] for the general theory on this approximation. 

Approximation of the Steiner Problem and of Connected Networks The 
Ambrosio–Tortorelli result reveals a very clever idea behind this approximation: if 
a condition has to be enforced everywhere except at a small set S, it is possible 
to penalize it with a weight . ϕ (so that we morally have .S = {ϕ = 0}) and 
add a Modica–Mortola-like functional . ε2

´
𝛀

|∇ϕ|2 + 1
2ε

´
𝛀
(1 − ϕ)2 on . ϕ, which 

imposes that at the limit we have .ϕ = 1 a.e. and we pay for the measure .Hd−1(S). 
This idea could be applied to other optimization problems, one of the simplest 
being the average distance problem presented in Sect. 6.3.1, at least in its variant 
where the length is penalized instead of being constrained. Indeed, the quantity 
.
´
𝛀

d(x,∑)f (x) dx could be written as (see Sect. 7.3) 

. min
{
W1(f, ν) : spt ν ⊂ ∑

}
.

This quantity, using the bidual problem of the optimal transport for the linear cost 
presented in Sect. 4.6, could in turn be written as 

. min
{||v||L1 : ∇ · v = f − ν, spt ν ⊂ ∑

} = min
{||v||L1 : ∇ · v = f outside ∑

}
,

where the last equality comes from the elimination of the variable . ν: if the  
divergence has to be equal to .f − ν but . ν is an arbitrary measure concentrated 
on . ∑, then this is equivalent to requiring that the divergence equals f outside . ∑. 

A tempting idea would then be to solve a minimization problem in the variable 
v and . ϕ, including a term like .||v||L1 , a term of the form . 1

ε

´
ϕ d|∇ · v − f |, and a 

Modica–Mortola term which mimics the length of the set .S = {ϕ = 0}. The only 
problem here8 consists in the fact that we are forgetting the connectedness constraint 
on S. This can be fixed by using the distance function . dϕ associated with the weight 
. ϕ (see Sects. 1.4.4 and 4.6) 

. dϕ(x, y) := inf

{ˆ 1

0
ϕ(γ (t))|γ '(t)| dt : γ (0) = x, γ (1) = y

}
.

Indeed, imposing .dϕ(x, x0) to be small somewhere does not only mean that . ϕ is 
small at x, but also that a whole path can be found which connects x to . x0 where . ϕ
is small, and this can be used to prove connectedness. More precisely, it is possible 
to prove the following result (see [32]): if . με is a family of positive measures on

8 Besides the fact that we expect a similar construction could only work in the case . d = 2, since  
Modica–Mortola functionals provide .Hd−1 terms, and we want to obtain . H1. 
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.𝛀 ⊂ R
2 and .ϕε ∈ H 1(𝛀) ∩ C(𝛀) satisfy .ϕε = 1 on .∂𝛀 and .0 ≤ ϕε ≤ 1 in . 𝛀, if  

.cε → 0 and . xε is sequence of points of . 𝛀 such that 

1. .xε → x0 for some .x0 ∈ 𝛀, 

2. .με
∗
⇀ μ for some measure . μ on . 𝛀, 

3. .dϕε (·, xε) converges uniformly to some 1-Lipschitz function d on . 𝛀, 
4. we have .supε>0 Sε(ϕε, με, xε) < +∞, where 

. Sε(ϕ, μ, x0) := ε

2

ˆ
𝛀

|∇ϕ|2 dx + 1

2ε

ˆ
𝛀

(1 − ϕ)2 dx + 1

cε

ˆ
𝛀

dϕ(x, x0) dμ(x),

then 

1. the compact set .K := {x ∈ 𝛀 ; d(x) = 0} is connected, 
2. .x0 ∈ K , 
3. .spt(μ) ⊂ K , 
4. we have . H1(K) ≤ lim infε→0 Sε(ϕε, με, xε).

We then obtain an approximation for the average distance problem 

. min

{ˆ
𝛀

d(x,∑)f (x) dx +H1(∑) : ∑ ⊂ 𝛀 compact and connected

}

which is given by 

. min
ˆ

𝛀

d|v| + ε

2

ˆ
𝛀

|∇ϕ|2 dx + 1

2ε

ˆ
𝛀

(1 − ϕ)2 dx + 1

cε

ˆ
𝛀

dϕ(x, x0) d|∇ · v− f |,

where the unknowns are the vector field . v, the weight function . ϕ, and the base point 
. x0 (indeed, if we fixed . x0 we would obtain the problem where we impose that . ∑ is 
connected and contains . x0). For fixed .ε > 0 the existence of a minimizer for this 
problem is not straightforward, because of the term in . dϕ . Indeed, as it is defined as 
an infimum, it is easy to see that .ϕ I→ dϕ(x, y) is u.s.c. for most reasonable notions 
of convergence on . ϕ, but lower semicontinuity is more delicate. A simple result that 
one can prove (see [32]) is the following: if .ϕn → ϕ uniformly and there exists 
a lower bound .c > 0 such that .ϕn ≥ c for every n, then . dϕn(x, y) → dϕ(x, y)

for every pair .(x, y). Counterexamples exist without the lower bound, and it is not 
clear whether the weak .H 1 convergence (that we can easily obtain in this setting 
because of the penalization .ε

´ |∇ϕ|2) can help. In order to obtain the existence of 
the minimizers for fixed .ε > 0 it is then possible to restrict to functions . ϕ satisfying 
a lower bound .ϕ ≥ c'

ε, and to add a term of the form .εm
´ |∇ϕ|p for .p > d and m 

large enough, which is enough to guarantee compactness in . C0.



7.5 Discussion 319

It is then easy to find a variant for the optimal compliance problem (see again 
Sect. 6.3). We consider the Neumann case, i.e. the problem we want to approximate 
is 

. min
{
Cp(∑) + λH1(∑) : ∑ ⊂ 𝛀 compact and connected

}
,

where 

. Cp(∑) := − inf

{
1

p

ˆ
𝛀\∑

|∇u|p dx +
ˆ

𝛀

f u dx : u ∈ C∞
c (𝛀 \ ∑)

}
.

It is annoying that .Cp is defined as a sup (as a negative inf), which prevents us 
from obtaining a min-min formulation; yet, the convex minimization problem which 
defines it can be treated by convex duality and transformed into a maximization, 
since we can prove that we have 

. inf

{
1

p

ˆ
𝛀\∑

|∇u|p dx +
ˆ

𝛀

f u dx, : u ∈ C∞
c (𝛀 \ ∑)

}

= sup

{
− 1

p'

ˆ
𝛀\∑

|v|p'
dx : ∇ · v = f − ν, spt ν ⊂ ∑)

}
.

This suggests that we should simply consider 

. min
ˆ

𝛀

1

p' |v|p
'
dx+ ε

2

ˆ
𝛀

|∇ϕ|2dx+ 1

2ε

ˆ
𝛀

(1−ϕ)2dx+ 1

cε

ˆ
𝛀

dϕ(x, x0) d|∇·v−f |.

Finally, these ideas can be used to attack the simplest and most natural optimiza-
tion problem among compact connected sets, which is the Euclidean Steiner tree 
problem (see [138] besides [32]). The precise result, which unfortunately cannot 
be expressed explicitly in terms of .𝚪-convergence (because the variable . v has 
disappeared), is the following. 

Theorem 7.23 Let . 𝛀' be the convex hull of the set D and .𝛀 ⊃ 𝛀' a larger convex 
open set. For all .ε > 0 let . ϕε be a minimizer of .ϕ I→ Sε(ϕ, μ, x0), where . x0 ∈ D

and . μ is an arbitrary measure such that .spt μ ⊃ D\{x0}, among the . H 1 continuous 
functions bounded from below by . ε, from above by 1, and equal to 1 on . ∂𝛀. Consider 
the sequence of functions .dϕε ( · , x0), which are 1-Lipschitz and converge, up to 
subsequences, to a certain function d. Then the set .K := {d = 0} is compact, 
connected and is a solution to the Steiner Problem (6.1). 

All these results can then be used for numerical computations (see [32], but 
also [33]), but of course they require us to handle the computation of . dϕ and of 
its gradient with respect to . ϕ. This can be done, for instance, via the so-called Fast 
Marching method (see Rouy and Tourin [174] for a consistent discretization, [182] 
for an efficient algorithm, and [25] for the computation of the gradient).
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Branched Transportation Networks In this very last part of the section we 
consider a minimal flow problem, where, contrary to what happens in traffic 
congestion (Sect. 4.6), joint transportation on a common path is encouraged. This is 
reasonable when we consider “economy of scale” principles: when a single planner 
needs to organize a transport (building a transportation network, for instance), the 
total cost happens to be sub-additive (the cost of moving two objects cannot exceed 
the sum of the two costs), and in many cases it has decreasing marginal costs (i.e. 
the cost of adding a unit to a given background quantity is a decreasing function of 
the background, which means that the cost is actually concave). 

Note that we are considering here the transport cost as a function of the mass, and 
not of the length. The silent assumption is that the cost will be linear in the length 
(is the case in all minimal flow problems). Many branching structures transporting 
different fluids, such as road systems, communication networks, river basins, blood 
vessels, leaves, trees and so on. . . may be easily thought of as coming from a 
variational principle for a cost of this kind. In all these cases, the shape of the optimal 
solution for this kind of problem follows the same principle: particles are collected 
at some points, move together as much as possible, and then branch towards their 
different destinations. This is why these problems are nowadays known as branched 
transportation problems. 

The formalization of the discrete framework of these problems is very classical 
in optimization and operational research. 

Translating into our language the work of Gilbert [99] (see also [100], these two 
works presenting this question as an extension of Steiner’s minimal length problem), 
we consider two atomic probability measures .μ = ∑m

i=1 aiδxi
and . ν = ∑n

j=1 bj δyj

supported in some compact subset .𝛀 ⊂ R
d , and we want to connect them through 

a weighted oriented graph .G = (sk, θk)k , where the . sk are oriented segments . sk =
(pk, qk) in . Rd and .θk ∈ R+ is a weight associated with the segment . sk . We denote 
by . ̂sk the orientation . qk−pk|qk−pk | of . sk and by .|sk| its length .|qk − pk|. 

We count as incoming the mass conveyed by the segments .sk = (pk, qk) reaching 
x, i.e. such that .x = qk , increased by the mass given by . μ, i.e. increased by . ai

if .x = xi . Similarly, the outgoing mass at x is the total weight of the segments 
.sk = (pk, qk) leaving x, i.e. such that .pk = x, increased by the mass taken out by 
. ν, i.e. by . bj if .x = yj . The set of graphs irrigating . ν from . μ is denoted by .G(μ, ν). 

For .α ∈ [0, 1], we define the cost of .α-irrigation of a graph G, also called the 
Gilbert energy, as  

. Eα(G) =
n∑

k=1

θα
k |sk| ,

which means that the cost of moving a mass m along a segment of length l is .mαl.



7.5 Discussion 321

Given .μ, ν atomic probabilities, we want to minimize this energy among all 
graphs sending . μ to . ν, which reads 

. min {Eα(G) : G ∈ G(μ, ν)}.

Note that for .α ∈ [0, 1] the function .t I→ tα is concave and subadditive; it is strictly 
concave and strictly subadditive for .α ∈ (0, 1). In this way larger tubes bringing the 
mass from . μ to . ν are preferred to several smaller ones transporting the same total 
mass. As for the case of the Steiner problem, it can be seen that optimal graphs have 
no cycles. It is possible to prove optimality conditions on the free junctions in the 
graph, which generalize the 120. ◦ condition of the Steiner problem. 

More recently Xia, in [200], has proposed a new formalization leading to 
generalizations of this problem to arbitrary probability measures . μ and . ν, and this 
gave rise to a wide literature on the subject (see [27] or [177, Section 4.4]). The 
main idea was to translate the Kirchhoff law constraint into a divergence constraint. 

Given a finite graph .G = (sk, θk)k , we associate with G the vector measure 

. vG :=
∑

k

θkŝkH1|sk ∈Md(𝛀).

We can express both the cost and the constraint in terms of . vG only. First note that 
.G ∈ G(μ, ν) (i.e. it satisfies mass balance conditions for irrigating . ν from . μ) if and 
only if .∇ · vG = μ − ν. Then, we also write 

. Eα(G) =
n∑

k=1

θα
k |sk| =

ˆ
sptvG

|θ(x)|α dH1(x),

where . θ is the density of . vG w.r.t. the .H1 measure. 
This suggests a continuous Eulerian formulation of Gilbert’s problem by gener-

alizing the Gilbert energy, the minimization problem becoming 

. min {Mα(v) : v ∈Md
div(𝛀), ∇ · v = μ − ν}. (7.4) 

Obviously, one needs to define the energy .Mα (which is also called the “.α-mass” of 
. v). Xia’s original idea is to define it by relaxation, i.e. 

. Mα(v) := inf
{

lim inf
n
Eα(Gn) : Gn ∈ G(μn, νn), vGn ⇀ v inMd

div(𝛀)
}

,

where the convergence in .Md
div(𝛀) means .vGn ⇀ v and . ∇ ·vGn = μn − νn ⇀ ∇ ·v

as measures. 
As a consequence of a famous rectifiability theorem due to B. White [198], one 

can prove that .Mα(v) < +∞ implies that . v is a measure concentrated on a set E of
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dimension 1 and satisfying 

. Mα(v) =
ˆ

E

(
dv

dH1

)α

dH1.

It can also be proven that, when . μ and . ν are both atomic measures, we retrieve 
Gilbert’s original problem. 

From the point of view of the practical search for solutions, branched transport 
problems lie in between combinatorial optimization (they are similar to the Steiner 
minimal connection problem, which is, on a graph, known to be NP-hard) and 
continuous minimal flow problems. The numerical methods for finding a solution 
have to face at least two difficulties: concavity (and hence the high number of local 
minimizers) and singularity (i.e. working with singular structures such as networks 
instead of using . Lp or smoother functions, as in the congested traffic case). 

Inspired by the previous works on phase-field approximation of lower-
dimensional objects, in [164, 176] an approximation for branched transport has 
been proposed in the two-dimensional case . 𝛀 ⊂ R

2. Let .Md
div(𝛀) be the space 

of vector measures on . 𝛀 with divergence which is also a measure (endowed with 
the weak convergence of both the measures and their divergences). Consider on 
.Md

div(𝛀) the functionals 

.Mα
ε (v) = εα−1

ˆ
𝛀

|v(x)|β dx + εα+1
ˆ

𝛀

|∇v(x)|2 dx, (7.5) 

defined on .v ∈ H 1(𝛀;R2) and set to .+∞ outside .H 1 ∩Md
div(𝛀). The exponent 

.β = 4α−2
α+1 is fixed via suitable scaling computations. 

Compared to the Modica–Mortola case, here the double-well potential is replaced 
with a concave power. Note that concave powers, in their minimization, if the 
average value for u is fixed in a region (which is in some sense the meaning of 
weak convergence), prefer either .u = 0 or . |u| to be as large as possible, i.e. there is 
sort of a double well at zero and infinity. 

Theorem 7.24 Assume .d = 2 and .α ∈ ( 1
2 , 1): then we have .𝚪-convergence of the 

functionals .Mα
ε to .cMα , with respect to the convergence in .Md

div(𝛀), as  .ε → 0, 
where c is given by 

. c = α−1 (4c0α/(1 − α))1−α , where c0 =
ˆ 1

0

√
tβ − t dt.

It is interesting to observe that the above .𝚪-convergence result is a sort of higher-
dimensional counterpart of a result of Bouchitté et al. [37], who found (in a more 
general framework, with applications to the stability of charged droplets) the .𝚪-limit
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of the following energy 

. Fε(u) := εα−1
ˆ
R

W(u) dx + εα+1
ˆ
R

|u'|2 dx

whenever .α ∈ (0, 1) is a given exponent and .W : R+ → R+ is a cost function such 
that .W(0) = 0,W '(0) > 0 and .W(s) ≈ sβ for .s → ∞, where .β = 4α−2

α+1 . The  
.𝚪-limit is a functional F on measures of the same form as those studied in Sect. 3.3, 
and more precisely 

. F(u) :=
{∑

i g(ai) if u = ∑
i aiδxi

+∞ if u is not purely atomic,

where .g(s) is proportional to . sα . Theorem 7.24 differs from the result of [37] in  
that it concerns one-dimensional energies in a 2D setting, while [37] concerns 0-
dimensional energies (the limit measures are forced to be purely atomic) in a 1D 
setting. The 2D statement can be guessed (but not easily proven) from the 1D result 
via a slicing procedure. 

As a consequence of the approximation result contained in Theorem 7.24, 
É. Oudet performed efficient numerical simulations by minimizing the functionals 
.Mα

ε (more precisely: first a large value of . ε is fixed, so that the problem is more 
or less convex, and a minimizer is found by gradient descent, then, following a 
continuation method, the value of . ε is reduced and at every step the gradient descent 
starts from the previously found minimizer). In the end we find a “well-chosen” 
local minimizer, quite satisfactory in practice. This has been used in [168] to solve  
a shape optimization problem consisting in finding the set with unit volume which 
is the closest in the sense of branched transport to the Dirac mass . δ0, a set which is 
conjectured to have fractal boundary. 

7.6 Exercises 

Exercise 7.1 Let (Fn)n be a sequence of functionals defined on a common metric 
space X, such that Fn ≤ Fn+1 for every n. Assume that each Fn is l.s.c. and set 

F := supn Fn. Prove Fn
𝚪→ F . 

Exercise 7.2 Consider a continuous function F : X → R defined on a metric 
space (X, d) and a function G : X → [0,+∞]. Define F+

n := F + 1 
n G and 

F−
n := F − 1 

n G. 

1. Prove that we have F+
n

𝚪→ F if and only if the set {G <  +∞} is dense. 

2. Prove that we have F−
n

𝚪→ F if and only if G is finite everywhere and locally 
bounded around each point of X.
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Exercise 7.3 Let (Fn)n be a sequence of functionals defined on a common compact 
metric space X. Prove that there exists a subsequence Fnk and a function F such that 

Fnk

𝚪→ F . 

Exercise 7.4 Prove the result of Proposition 7.11 when |𝛀| is not of finite measure, 
but has σ -finite measure. 

Exercise 7.5 Let us define the following functionals on X = L2([−1, 1]) 

. Fn(u) :=
{

1
2n

´ 1
−1 |u'(t)|2 dt + 1

2

´ 1
−1 |u(t) − t |2 dt if u ∈ H 1

0 ([−1, 1]),
+∞ otherwise;

together with 

. H(u) =
{

1
2

´ 1
−1 |u(t) − t |2 dt if u ∈ H 1

0 ([−1, 1]),
+∞ otherwise;

and F(u)  := 1 
2 

´ 1 
−1 |u(t) − t |2 dt for every u ∈ X. 

1. Prove that, for each n, the functional Fn is l.s.c. for the L2 (strong) convergence. 
2. Prove that F is l.s.c. for the same convergence, but not H . 
3. Find the minimizer un of Fn over X. 
4. Find the limit as n → ∞  of un. Is it a strong L2 limit? Is it a uniform limit? A 

pointwise a.e. limit? 
5. Find the 𝚪-limit of Fn. 
6. Does the functional H admit a minimizer in X? 

Exercise 7.6 Let 𝛀 ⊂ Rd be an open domain. On the space H 1 
0 (𝛀) consider the 

sequence of functionals 

. Fε(u) =
ˆ

𝛀

[ |∇u(x)|2
2

+ sin(εu(x))

ε

]
dx.

1. Prove that, for each ε >  0, the functional Fε admits at least a minimizer uε. 
2. Prove that the minimizers uε satisfy ||∇uε||2 

L2 ≤ 2||uε||L1 and that the norm 
||uε||H 1 

0 
is bounded by a constant independent of ε. 

3. Find the 𝚪-limit F0, in the weak H 1 
0 topology, of the functionals Fε as ε → 0. 

4. Characterize via a PDE the unique minimizer u0 of the limit functional F0. 
5. Prove uε ⇀ u0 in the weak H 1 

0 topology. 
6. Prove that the convergence uε → u0 is actually strong in H 1 

0 . 

Exercise 7.7 Prove the convergence in the last question of Exercise 5.9 using 𝚪-
convergence.
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Exercise 7.8 Given a sequence of functions an : 𝛀 → R which are bounded from 
below and above by two strictly positive constants a−, a+ and a function a bounded 
by the same constants, prove that we have 

. 

{
an

∗
⇀ a

a−1
n

∗
⇀ a−1

if and only if we have an → a in L2 (and hence in all Lp spaces for p <  ∞). 

Exercise 7.9 Consider the following sequence of minimization problems, for n ≥ 
0, 

. min

{ˆ 1

0

(
|u'(t)|2

3
2 + sin2(nt)

+
(

3

2
+ sin2(nt)

)
u(t)

)
dt : u∈ H 1([0, 1]), u(0)= 0

}
,

calling un their unique minimizers and mn their minimal values. 
Prove that we have un(t) → t2 − 2t uniformly, and mn → −2/3. 

Exercise 7.10 Consider the functions an : [0, 1] →  R given by an(x) = a(nx) 
where a = 2

∑
k∈Z 1[2k,2k+1] + ∑

k∈Z 1[2k−1,2k]. Given f ∈ L1([0, 1]) with ´ 1 
0 f (t) dt = 0 and p ∈ (1,+∞), compute 

. lim
n→∞ min

{ˆ 1

0

(
1

p
an|u'(t)|pdt + f (t)u(t)

)
dt : u ∈ W 1,p([0, 1])

}
.

Exercise 7.11 Let 𝛀 ⊂ Rd be the unit square 𝛀 = (0, 1)2 and S = {0} ×  (0, 1) ⊂ 
∂𝛀. Consider the functions an : 𝛀 → R defined via 

. an(x, y) =
{

A0 if x ∈ [ 2k
2n

, 2k+1
2n

) for k ∈ Z

A1 if x ∈ [ 2k+1
2n

, 2k+2
2n

) for k ∈ Z,

where 0 < A0 < A1 are two given values. On the space L2(𝛀) (endowed with the 
strong L2 convergence), consider the sequence of functionals 

. Fn(u) =
{´

𝛀
an|∇u|2 if u ∈ X,

+∞ if not,

where X ⊂ L2(𝛀) is the space of functions u ∈ H 1(𝛀) satisfying Tr[u] = 0 on  S.
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Set for convenience 

. A∗ :=
( 1

A0
+ 1

A1

2

)−1

and A♢ := A0 + A1

2
.

Find the 𝚪-limit of Fn. Is it of the form F(u)  = ´ 
a|∇u|2 for u ∈ X? 

Exercise 7.12 Let un, ϕn be two sequences of functions belonging to H 1([0, 1]). 
Assume 

. un ⇀ u0, ϕn ⇀ ϕ0, En(un, ϕn, [0, 1]) ≤ C,

where En is the energy defined for every interval J ⊂ [0, 1] through 

. En(u, ϕ, J ) :=
ˆ

J

(
ϕ(t)|u'(t)|2 + 1

2n
|ϕ'(t)|2 + n

2
|1 − ϕ(t)|2

)
dt,

C ∈ R is a given constant, the weak convergence of un and vn occur in L2([0, 1]), 
and u0 is a function which is piecewise C1 on [0, 1] (i.e. there exists a partition 
0 = t0 < t1 < · · ·  < tN = 1 such that u0 ∈ C1((ti , ti+1)), and the limits of u0 exist 
and are finite at t = t± 

i but u0(t
− 
i ) /= u0(t

+ 
i ) for i = 1, . . . , N  − 1). 

Denote by J the family of all the intervals J compactly contained in one of the 
open intervals (ti , ti+1[). Also assume, for simplicity, that we have un ⇀ u0 in 
H 1(J ) for every interval J ∈ J. 

Prove that we necessarily have 

1. ϕ0 = 1 a.e. and ϕn → ϕ0 strongly in L2. 
2. lim infn→∞ En(un, ϕn, J )  ≥ ´ 

J |u'
0(t)|2 dt for every interval J ∈ J. 

3. lim infn→∞ En(un, ϕn, J )  ≥ 1 for every interval J containing one of the points 
ti . 

4. C ≥ lim infn→∞ En(un, ϕn, [0, 1]) ≥ ´ 1 
0 |u'

0(t)|2 dt + (N − 1). 

Exercise 7.13 Let uε be solutions of the minimization problems Pε given by 

. Pε := min

{̂ π

0

(
ε

2
|u'(t)|2+ 1

2ε
sin2(u(t))+103|u(t) − t |

)
dt : u ∈ H 1([0, π ])

}
.

Prove that uε converges strongly (the whole sequence, not up to subsequences!!) in 
L1 to a function u0 as ε → 0, find this function, and prove that the convergence is 
actually strong in all the Lp spaces with p <  ∞. Is it a strong  L∞ convergence?
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Hints 

Hint to Exercise 7.1 Use Fn ≥ Fn0 and the semicontinuity of each Fn0 . 

Hint to Exercise 7.2 For F+
n the only difficult part is the 𝚪-limsup. Use Proposi-

tion 7.3. For  F−
n the only difficult part is the 𝚪-liminf. 

Hint to Exercise 7.3 Consider the sets Epi(Fn) ∩ (X × [0,M]), and prove that any 
local Hausdorff limit of epigraphs is an epigraph. 

Hint to Exercise 7.4 Consider a sup of restrictions to finite-measure subsets. 

Hint to Exercise 7.5 The key point to realize is that the 𝚪-limit of Fn is F and not 
H . 

Hint to Exercise 7.6 Use a suitable Taylor expansion of the sine function to justify 
that the 𝚪-limit is the pointwise limit. The strong H 1 convergence comes from the 
convergence of the minimal value. 

Hint to Exercise 7.7 Use the variational formulation of Exercise 5.9 and prove
𝚪-convergence noting that we indeed have strong convergence of the coefficients 
in the integrand. 

Hint to Exercise 7.8 Use an inequality of the form 1 
t ≥ 1 

s − 1 
s2 (t − s) + c|t − s|2. 

Hint to Exercise 7.9 Use Proposition 7.14. 

Hint to Exercise 7.10 Again, use Proposition 7.14. 

Hint to Exercise 7.11 For the 𝚪-liminf, separately deal with ∂xun (the number A∗ 
will appear) and ∂yun (here the number A♢ will appear). For the 𝚪-limsup, use the 
antiderivative in one direction. 

Hint to Exercise 7.12 Adapt the result that we briefly sketched for the Ambrosio– 
Tortorelli approximation. 

Hint to Exercise 7.13 Adapt the proof of the Modica–Mortola result to this case 
with infinitely many wells and find the minimizer of the limit functional, which is a 
combination of the number of jumps and the L1 distance from the identity.
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