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Abstract. Providing 3D navigation in colonoscopy can help decrease
diagnostic miss rates in cancer screening by building a coverage map
of the colon as the endoscope navigates the anatomy. However, this
task is made challenging by the lack of discriminative localisation land-
marks throughout the colon. While standard navigation techniques rely
on sparse point landmarks or dense pixel registration, we propose edges
as a more natural visual landmark to characterise the haustral folds
of the colon anatomy. We propose a self-supervised methodology to
train an edge detection method for colonoscopy imaging, demonstrat-
ing that it can effectively detect anatomy related edges while ignor-
ing light reflection artifacts abundant in colonoscopy. We also propose
a metric to evaluate the temporal consistency of estimated edges in
the absence of real groundtruth. We demonstrate our results on video
sequences from the public dataset HyperKvazir. Our code and pseudo-
groundtruth edge labels are available at https://github.com/jwyhhh123/
HaustralFold_Edge_Detector.

Keywords: Colonoscopy - Scene understanding - Edge detection -
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1 Introduction

Reconstructing 3D gastrointestinal (GI) tract maps from endoscopy videos is a
research challenge receiving increasing attention in recent years [4]. In the context
of colon cancer screening, real-time 3D reconstruction would enable monitoring
which surfaces have already been inspected [13,14], making it easier to ensure
complete coverage and reduce the chance of missing polyps [18]. It would also
enable complete reporting, associating polyps with precise colon map locations.

Simultaneous Localization and Mapping (vSLAM) is a popular algorithm
framework that has been translated to colonoscopy 3D reconstruction [6,17].
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However, we are still far from reliably reconstructing entire colons in real cases
due to multiple imaging challenges. The majority of established methods builds
3D maps relying on the detection of point landmarks in the visualised scene
across different frames. In colonoscopy, however, the detection and matching
of point landmarks are extremely challenging due to scene textures being very
similar, fast camera motions, abundant presence of light reflections, blur, and
multiple types of occlusions.

While there is some research towards making point landmark detection more
reliable in endoscopy [3], other alternatives involve bypassing the detection of
points altogether. Some works perform registration of different frames by directly
estimating depth [17] or relative motion [20] using end-to-end deep learning
networks. The main challenge here is obtaining the necessary training data. Using
virtual simulation has been suggested to train such algorithms [21], however,
there is still a gap in generalising its results to real images.

A different alternative to bypass point landmark detection would be to focus
on detecting scene edges instead. The colon anatomy has clearly visible and
identifiable edges corresponding to its haustral folds (Fig.1). While edge detec-
tion has seen significant progress in computer vision [19], there has been very
little investigation on its application to endoscopy. Therefore, we introduce the
following contributions:

— We introduce a method to detect haustral fold edges in colonoscopy based
on the DexiNed architecture [19]. To the best of our knowledge, it’s the first
time this problem has been investigated.

— Given the inexistence of groundtruth for colonoscopy edge detection, we pro-
pose a combination of transfer learning and self-supervision to train our
method.

— We propose an unsupervised evaluation process to measure the temporal con-
sistency of edge predictions in continuous video frames.

— We will release both our code and pseudo-groundtruth edge masks for a subset
of the public dataset HyperKvazir.

example 1 example 2

Fig. 1. We aim at detecting haustral folds (denoted by green arrows) in colonoscopy
video. Formulating the problem as edge detection, these are circular contours on the
colon wall (denoted by black lines). Sample predictions from our method are provided
in black and white masks. (Color figure online)
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2 Related Work

While most of the classic 3D navigation and reconstruction literature deals
with rigid scenes containing unique and easy to recognise visual landmarks,
in endoscopy there are two striking differences. The first one is the presence of
deformable tissue. A few works have extended visual SLAM to explicitly model
deformation of the 3D scene over time [12,22]. The second difference is that it
is much more challenging to detect and track reliable landmarks on the GI tract
due to simple tissue textures, frequent camera blur, light reflections and other
dynamic occlusions. This paper will focus on this latter challenge which we now
review in more detail.

Endoscopic scenes contain wet tissues illuminated by a close-range, moving
light source. This produces abundant specular light reflections on tissue surfaces
and makes it difficult to find landmarks with stable visual appearance. One
approach to tackle this is to detect and inpaint specular reflections prior to
landmark detection and matching [7]. A large amount of literature is dedicated
to detection, filtering and inpainting of specular reflections in surgery [1,9,16].

The different visual appearance of endoscopic scenes presents a very spe-
cific domain shift in comparison to well established applications (e.g. out-
doors/indoors human-made environments), and therefore machine learning
approaches have been useful in bridging this gap. The SuperPoint [8] feature
detector can be fine-tuned on endoscopy scenes in a self-supervised way [3],
optimising its performance to this particular environment. There are a few other
recent deep learning point feature detector alternatives that to the best of our
knowledge have not been tried on endoscopy scenes [23,25,26].

Notably, there has been little investigation into the detection of features
with other shapes than points. In the context of colonoscopy, this would be a
promising direction since the colon is characterised by haustral folds, i. e. thin,
ring-shaped structures on its surface (Fig. 1). A recent work has investigated the
semantic segmentation of haustral folds [15]. However, we show that its results
are still limited and inconsistent when applied to sequences of consecutive frames.
We believe there is intrinsic ambiguity in labelling segmentations of these folds,
as they do not have a well defined contour in the regions where they join the
colon wall. Therefore, we propose to focus instead exclusively on the well defined
portion of haustral fold contours using edge detection.

There have been recent advances in performing edge detection with deep
learning architectures [19,24]. While pre-trained models are publicly available,
these have been trained for general purpose vision, and we show in this paper that
they are extremely sensitive to specular reflections. Furthermore, these methods
have been trained in a fully supervised fashion, requiring either manually edge
labels or proxy edges from semantic segmentation labels. While it would be a
burdensome task to produce colonoscopy edge labels in sufficient numbers, we
focus instead on self-supervised transfer learning.
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3 Methodology

We aim at performing classification of each pixel in colonoscopic images as either
edge or not-edge. Our target edges result from the colon shape (i.e. contours
of the haustral folds) and not from its surface texture (i.e. vessels, shadows,
reflections, etc).

Method Outline. As a baseline we start from the DexiNed model [19] which is
a state-of-the-art edge detector trained on non-medical image data. This network
is a sequence of 6 convolutional blocks, each of them performing pixel-dense edge
detection at different image scales. Using skip connections and up-sampling,
these 6 detections are fused into a final multi-scale edge detection result. The
network is originally trained with a modified BDCN loss [10] in a fully supervised
manner, using manually drawn edges as groundtruth labels.

A pre-trained model of DexiNed is publicly available, and we verify that it
is able to detect haustral folds in colonoscopy videos. However, it also produces
a significant amount of other false positive detections, mostly artifacts from
illumination patterns. While DexiNed is pre-trained in a fully supervised man-
ner, we aim at improving its results on endoscopy data without any additional
groundtruth labels available.

Our first observation is that false positive detections can be removed by
pre-processing the videos with a temporal specularity inpainting method [7]. In
[7], a spatial-temporal transformer is used as a generator within a GAN struc-
ture to inpaint specular occlusions. While this produces very appealing results,
unfortunately the pre-processing step restricts its usage to offline inference. This
is because reliable inpainting results require processing a window of both past
and future frames in a single inference step to take advantage of temporal cues.
Furthermore such a pipeline would require running two different networks at
inference time which is computationally sub-optimal.

To obtain a single model capable of online operation in an end-to-end fash-
ion, we will leverage edges generated with offline pre-processing as pseudo-
groundtruth labels to fine-tune DexiNed in a self-supervised manner.

Training Pipeline. Our training methodology is summarised in Fig. 2. We ini-
tialise the network with the weights from the original pre-trained DexiNed model,
and then fine-tune it on endoscopy video. Our training procedure differs from
[19] in the following aspects: (1) Instead of manually annotated groundtruth, we
automatically generate pseudo-groundtruth labels with offline processing. (2)
Instead of BDCN, we use a mean squared error (MSE) loss, as we empirically
verified better results. (3) We train the network on batches of consecutive video
frames rather than independent photos. (4) We also add a triplet loss term to
improve temporal consistency in continuous video inference.

For a given set of training video clips ¢ = 1, ..., C', we generate a set of pseudo-
groundtruth label masks G, for all frames X 1,..., X. 1. in three steps. First,
we pre-process all frames with the inpainting method from [7]. Secondly, we run
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Fig. 2. Model fine-tuning. Pseudo-groundtruth labels are predicted by the pretrained
DexiNed on the inpainted images in the pre-processing step. DexiNed is then further
trained with a loss combining the pixel-wise loss Lissg and consistency loss Lrc. The
encoder uses a SegNet model to produce embedding vectors.

the pre-trained DexiNed model on the inpainted training data, generating clean
edges of haustral folds. As a last step, we apply a mask to remove any edges
resulting from field-of-view and interface overlays typically present in endoscopy
images, resulting in the pseudo-groundtruth masks G ;.

Loss Function. We train our model with a loss combining two terms weighted
by a parameter -y

L=~Lyse+ (1 -7v)Lrc (1)
Lyrsg is the mean squared error between edge predictions E.; and respective
pseudo-labels G

e
Lyse = FZ

where I, J are respectively the vertical and horizontal image resolution and P is
the total number of pixels in the training data.

Lpc is a triplet loss that measures temporal consistency. We take edge pre-
dictions from 3 consecutive frames (E. ¢, Ec 41, Ec+2) and obtain their lower
dimensional embedding vectors with an encoder (). We use the encoder from
SegNet [2], pre-trained on the Cars dataset! The triplet loss is then calculated:

1 J
DY (Berlind) = Cenind))’ @)

C T.—2

Lre =Y. Y maz(|$(Ee) — $(Eei1)ll2— )

[V(Ee.t) = ¥(Ees2)ll2 + 5,0)
where (3 is a pre-defined margin parameter. In triplet loss terminology, E. ; rep-
resents the anchor, F. 11 the positive sample, and E. ;o the negative sample.

! The pretrained SegNet is available on https://github.com/foamliu/Autoencoder.
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Evaluation. Edge predictions are typically evaluated by comparison against
groundtruth labels, through Optimal Dataset Scale (ODS), Optimal Image Scale
(OIS) and Average Precision (AP) [19,24]. In addition, our main motivation
is to investigate edges as alternative features for navigation, and therefore we
aim at temporally consistent estimations that can be further registered in video
sequences for camera motion estimation. To this end, we also propose an unsu-
pervised temporal consistency metric based on [27] that was originally introduced
for semantic segmentation.

Our evaluation method is summarised in Fig.3. We measure the temporal
consistency T'C} ™ of two independent edge predictions F;, E; 1 by first warping
E; into E; using optical flow then measuring the overlap between F; and Ey;.

We assume that edge predictions Ej and E;;1 are binarised with a threshold
T;. For optical flow we use FlowNet 2.0 [11]. While [27] computes intersection
over union (IoU) between E; and F;11 we find this is not adequate for deal-
ing with thin edges. Small spatial shifts in edge predictions result in drastic loU
decrease without it necessarily corresponding to a drastic decrease in edge consis-
tency. Instead, we apply a distance transform to both E(’:,t and E;;1, generating
grayscale fields with intensity values representing the distance to the closest edge.
The distance fields are binarised with a threshold Ts, resulting in masks D}, Dy
denoting all pixels with a distance smaller or equal to T, from edges in E},Fy 11
respectively. The temporal consistency TCtt+1 is a class-weighted IoU between
D; and D;1. We weight classes based on their frequency in the image, due to
the extreme imbalance between edge and not-edge pixels. Finally, the metric is
averaged on all pairs of consecutive frames in the test data.

Input frames Motion tracking Evaluation

1
&

Optical Flow
-5\ X Estimation P t,
v T Pixel Warping T

XM
i
s pon weighted loU

Edge Detection

Distance Transform

T

By

local TC score
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procedure B} T, — ;\\) T, — \S —> D

Fig. 3. The framework of consistency evaluation. The motion tracking block produces
a pair of edge-maps F; and E;;; aligned via optical flow (FlowNet 2.0). The overlap
of aligned edge-maps is measured as the class-weighted IoU of binarised distance fields
D; and D;y1. These distance fields represent pixels within a distance T to the edge
predictions.
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4 Experiments

Experimental Setup. We train and test our model on a subset of the Hyper-
Kvasir dataset [5], defined as all 31 videos of lower GI with adequate bowel
preparation (i.e. labelled as BBPS 2-3). We split the data into training, valida-
tion, and test with respectively 12, 8, and 11 videos. The images contain black
margins and often an endoscope pose display on the lower left corner that pro-
duce irrelevant edge detections. We mask out these regions for all images. To
compute temporal consistency metrics, we use the totality of the test video data.
For comparison against groundtruth, we manually annotated a sparse sub-set of
78 randomly selected images from the test data.

Our method is implemented in Pytorch 1.12.1 with an Intel i7 CPU with
3GHz and an Nvidia 3090 GPU. Video frames are cropped and resized to
256 x 256. DexiNed is trained with a RMSprop optimiser with @ = 0.99 and
e =1 x 1078, using a constant learning rate n = 1 x 10~8. We use a triplet loss
margin 3 = 1. A threshold T7 = 240 is set to binarise edge-maps. We use T, = 5
for model evaluation. We used two-stage training where all models are trained
with MSE loss for 5 epochs, followed by 5 epochs of our complete loss in Eq. 1.

Experimental Results Figure4 displays qualitative results for our model,
pseudo-groundtruth, and baselines for a sample sequence of 4 frames. Our model
is able to significantly reduce the number of false positive detections caused by
highlight reflections. This is a combined effect of the pseudo-groundtruth with
temporal consistency (i.e. reflections are less consistent than haustral folds). We
note that our method is able to capture the outer edge (see red box) which
was not visible either in pre-trained DexiNed or pseudo-groundtruth. We also
display results of Foldit [15] for the same sequence, which produces temporally
inconsistent fold segmentations that also generally provide less detail about the
scene.

In Table 1 we report the temporal consistency (TC), the average percentage
of detected edge pixels for each of the tested methods, and also conventional
edge accuracy metrics [19,24] ODS, OIS and AP. Our method has higher TC
score than all others, including pseudo-groundtruth. This can be explained by
the effect of the triplet loss. On average our method detects fewer edge pixels
than others which in part is explained by the reduced number of false positive
reflection detections (when compared to pre-trained DexiNed) and also due to its
thinner edge predictions (when compared to pseudo-groundtruth). In terms of
groundtruth evaluation, we observe a comparable performance to the pretrained
model when evaluating edge detection metrics. The significantly higher scores
obtained for the pseudo-groundtruth validate the reliability of our pseudo-labels.
We also highlight that the FoldIt quantitative results should be interpreted with
caution (we present them for the sake of completeness) as the detected regions
are much larger than our proposed edges. However, its lower TC is consistent
with the clearly visible temporal inconsistencies in Fig. 4. In Table 2, we show
an ablation of the loss function weight . v = 1.0 corresponds to using the MSE
loss alone, which significantly reduces the TC score.
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original frames Foldit pretrained DexiNed pseudo-GT triplet+mse('y = 0.1)

A X
2

Fig. 4. Edge detection results on four consecutive frames. The predictions in the last
column are made by our method. We highlight the red box where significant differences
between methods and pseudo-groundtruth can be visualised. (Color figure online)

Table 1. Temporal Consistency (TC), edge pixel rate and results of edge detection
metrics (ODS, OIS and AP). We note that Foldit is an image segmentation model
(rather than edge detection), which explains the significant differences.

ID | Method TC mean | TC std | edge pixel | ODS OIS AP
rate
1 | pretrained 0.8840 0.0244 |0.1564 0.6332 |0.6613 |0.5258
DexiNed

pseudo-GT | 0.9028 0.0172 | 0.1300 0.7271 | 0.7556 | 0.6704
Ours (y=.1) |0.9348 0.0107 | 0.0350 0.6491 |0.6668 |0.5145
Foldit 0.8708 0.0359 |0.4976

We must note that, as with any unsupervised metric, TC values cannot be
analysed in a vacuum. In extreme, a method that never predicts any edge has
the highest TC score but this is undesirable. Therefore we should also make sure
edge pixel rates are not approaching zero. Our method has an edge pixel rate
of 3.5% which is still deemed reasonable for the given data. We note that it is
significantly lower than other methods due to detecting thinner edges.
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Table 2. Ablation of loss weight ~. All values have similar TC except for v = 1 (MSE).

ID | Method TC mean |TC std |edge pixel rate
1 | triplet+mse (y=.1) 0.9348 0.0107 |0.0350
2 | triplet+mse (y=.3) 0.9314 0.0111 0.0357
3 | triplet+mse (y=.5) 0.9278 0.0112 0.0351
4 | triplet+mse (y=.7) 0.9310 0.0110 0.0336
5 triplet+mse (y=.9) 0.9268 0.0117 0.0409
6 triplet+mse (y=1.0) 0.8445 0.0259 0.4080

5 Conclusions

We demonstrate that end-to-end detection of haustral fold edges in colonoscopy
videos is feasible and can be made robust to the abundant reflection arti-
facts present in these scenes with a simple self-supervised training pipeline. We
believe these are stable and consistent features across multiple views that can
be exploited for colonoscopy video navigation and place recognition, but so far
have been underexplored. While our method shows promising qualitative results
and temporal consistency, future work should evaluate these features in down-
stream tasks such as endoscope motion estimation, 3D reconstruction, and place
recognition.
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