
Binod Bhattarai · Sharib Ali · 
Anita Rau · Anh Nguyen · 
Ana Namburete · Razvan Caramalau · 
Danail Stoyanov (Eds.)

LN
CS

 1
43

14

First MICCAI Workshop, DEMI 2023 
Held in Conjunction with MICCAI 2023 
Vancouver, BC, Canada, October 8, 2023, Proceedings

Data Engineering 
in Medical Imaging



Lecture Notes in Computer Science 14314
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Binod Bhattarai · Sharib Ali · Anita Rau ·
Anh Nguyen · Ana Namburete ·
Razvan Caramalau · Danail Stoyanov
Editors

Data Engineering
in Medical Imaging
First MICCAI Workshop, DEMI 2023
Held in Conjunction with MICCAI 2023
Vancouver, BC, Canada, October 8, 2023
Proceedings



Editors
Binod Bhattarai
University of Aberdeen
Aberdeen, UK

Anita Rau
Stanford University
Stanford, CA, USA

Ana Namburete
University of Oxford
Oxford, UK

Danail Stoyanov
University College London
London, UK

Sharib Ali
University of Leeds
Leeds, UK

Anh Nguyen
University of Liverpool
Liverpool, UK

Razvan Caramalau
University College London
London, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-44991-8 ISBN 978-3-031-44992-5 (eBook)
https://doi.org/10.1007/978-3-031-44992-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-0980-3227
https://doi.org/10.1007/978-3-031-44992-5


Preface

DEMI 2023 was the “1st International Workshop on Data Engineering inMedical Imag-
ing”, organized as a satellite event of the 26th InternationalConference onMedical Image
Computing and Computer Assisted Intervention (MICCAI 2023) in Vancouver, Canada.
Data engineering plays a vital role in advancingmedical imaging research, where limited
data availability poses a significant challenge. To tackle this issue, the medical imaging
community has adopted various techniques, including active learning, label and data
augmentation, self-supervision, and synthetic data generation. However, the potential of
these methods has yet to be fully leveraged. Data augmentation, for instance, is often
randomly chosen based on intuition. Yet previous work has shown that it is crucial to
jointly optimize the augmentations’ complexity and affinity, i.e., howmuch the augmen-
tation shifts the decision boundary of the clean baseline model. Other studies suggest
that not every synthetic example improves the model’s generalizability, with some even
hurting performance if not reasonably chosen. Similarly, the effect of self-supervised
pre-trainingmethods on downstream tasks generally depends on the overlap between the
pretext task and the downstream tasks. For instance, a model trained to predict rotation
angles will not be effective in rotationally invariant organs. Thus, DEMI aims to invite
researchers to submit their work in the field of medical imaging around the central theme
of data engineering in various topics such as data and label augmentation, active learing
and active synthesis, federated learning, multimodal learning, self-supervised learning
and large-scale data management and data quality assessment.

The DEMI 2023 proceedings contain 11 high-quality papers of 9 to 15 pages pre-
selected through a rigorous peer review process. All submissions were peer-reviewed
through a double-blind process by on average threemembers of the scientific reviewcom-
mittee, comprising 16 experts in the field of medical imaging. The accepted manuscripts
cover variousmedical image analysis methods and applications. In addition to the papers
presented in this LNCS volume, the workshop hosted two keynote presentations from
world-renowned experts: James Zhou (Stanford University) and Qi Dou (Chinese Uni-
versity ofHongKong).Wewish to thank all theDEMI2023 authors for their participation
and the members of the scientific review committee for their feedback and commitment
to the workshop. We are very grateful to our sponsor FogSphere.

October 2023 Binod Bhattarai
Sharib Ali
Anita Rau

Anh Nguyen
Ana Namburete

Razvan Caramalau
Danail Stoyanov
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Weakly Supervised Medical Image
Segmentation Through Dense

Combinations of Dense Pseudo-Labels

Ziyang Wang(B) and Irina Voiculescu

Department of Computer Science, University of Oxford, Oxford, UK
{ziyang.wang,irina}@cs.ox.ac.uk

Abstract. Annotating a large amount of medical imaging data thor-
oughly for training purposes can be expensive, particularly for medi-
cal image segmentation tasks. Instead, obtaining less precise scribble–
like annotations is more feasible for clinicians. In this context, training
semantic segmentation networks with limited-signal supervision remains
a technical challenge. We present an innovative scribble-supervised app-
roach to image segmentation via densely combining dense pseudo-labels
which consists of groups of CNN– and ViT–based segmentation networks.
A simple yet efficient dense collaboration scheme called Collaborative
Hybrid Networks (CHNets) ensembles dense pseudo–labels to expand the
dataset such that it mimics full-signal supervision. Additionally, internal
consistency and external consistency training of the collaborating net-
works are proposed, so as to ensure that each network is beneficial to the
others. This results in a significant overall improvement. Our experiments
on a public MRI benchmark dataset demonstrate that our proposed app-
roach outperforms other weakly-supervised methods on various metrics.
The source code of CHNets, ten baseline methods, and dataset are avail-
able at https://github.com/ziyangwang007/CV-WSL-MIS.

Keywords: Weakly-Supervised Learning · Convolution · Vision
Transformer · Image Segmentation · Pseudo–Labels

1 Introduction

Recent studies of Convolutional Neural Networks (CNN) and self-attention-
based Vision Transformers (ViT) have shown exhilarating performance in
medical image analysis [6,20,24,28,29]. Most of the recent studies reported
state-of-the-art achievement, however, relying on a large-scale set with high-
quality pixel-level annotations for training [6,15,16]. To tackle the expensive
cost of annotation for segmentation purpose, existing works present network
training with Semi-Supervised Learning(SSL) and Weakly-Supervised Learn-
ing(WSL) [8,17,18,26,27]. SSL medical image segmentation involves training
a model with a few pixel-level labeled data and a large amount of raw data. As
an alternative simple way for clinicians to annotate data, this paper presents a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Bhattarai et al. (Eds.): DEMI 2023, LNCS 14314, pp. 1–10, 2023.
https://doi.org/10.1007/978-3-031-44992-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44992-5_1&domain=pdf
https://github.com/ziyangwang007/CV-WSL-MIS
https://doi.org/10.1007/978-3-031-44992-5_1


2 Z. Wang and I. Voiculescu

WSL scribble-based approach to train CNN-based and ViT-based segmentation
networks simultaneously and collaboratively.

WSL for segmentation is normally proposed to leverage sparse annota-
tions including bounding boxes, points, text, and scribbles for model train-
ing [13,19,31]. Among them, scribble annotation, seen in Fig. 1, is one of the
practical and convenient forms of clinicians labeling. The lack of sufficient infor-
mation signal, however, remains challenging for medical image semantic segmen-
tation, especially for the classification of pixels on the boundaries of regions of
interest. The current SSL and WSL approaches mostly utilize partial-supervision
losses to initialize the model and leverage the prior assumption to expand data.
By doing so, the inference of the model can be used to expand scribbles and
regenerate dense pixel-level pseudo-labels. ScribbleSup [13] proposed a graphi-
cal model that propagates feature information from scribbles to unlabeled pixels
with a unique loss for model training. Conditional random field [4] was explored
to refine the segmentation inference via random walker in an iterative two-step
stage to train segmentation model [7]. Scribble2Label [12] was introduced to
strengthen pseudo-labeling with a novel label filtering with EMA [22] to gener-
ate more reliable pseudo-labels during training. Some works introduce generat-
ing a virtual training set by MixUp [30]. For example, CycleMix [31] introduced
integrating mix augmentation and regularization of supervision from consistency
for scribble-supervised segmentation. Inspired by generative adversarial training,
other works propose to encourage high-quality pseudo-labels by introducing an
additional model for evaluation. AAG [23], Adversarial Attention Gate, explored
adversarial training for the segmentation model with multi-scale attention gates.
Adversarial training requires additional computational costs with challenging
training settings for additional models.

Recent studies on SSL and WSL have argued that the consistency of pseudo-
labels under feature- and network-perturbation is essential for segmentation per-
formance, as consistency-aware training. Triple-view learning [27] introduced
three different segmentation networks to iteratively generate pseudo-labels to
help each model. Cross teaching [17] further explored Cross Pseudo Supervi-
sion [5] between CNN and ViT for SSL. Mix pseudo supervision [18] was then
proposed as a data perturbation technique for pseudo label generation, achieving
state-of-the-art performance for scribble-supervised MRI cardiac segmentation.

Fig. 1. The Illustration of a Multi–Class Scribble–Supervised Segmentation. (a) Input
sagittal left–facing MRI, (b) ground truth dense labels, (c) scribble annotations, (d) seg-
mentation inference by fully supervised UNet, (e) segmentation inference by scribble–
supervised UNet, (f) segmentation inference by scribble–supervised CHNets.
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Building on the recent advancements in network architecture engineering
and consistency-aware training with WSL, we propose Collaborative Hybrid Net-
works (CHNets) for learning from scribbles. CHNets comprises two feature learn-
ing networks: a CNN-based encoder-decoder UNet [20], and a Swin-Transformer-
based UNet-style network called SwinUNet [3], which directly replaces the pure
CNN layers of UNet to pure self-attention layers of ViT. Our approach aims
to facilitate simultaneous and collaborative learning between the two networks
by introducing an iterative labeling-ensemble scheme to generate dense pseudo-
labels and retrain networks via external-consistency supervision. Additionally,
we employ a self-ensemble technique on each network separately under internal-
consistency supervision to boost their performance further. Through this dual
consistency supervision mechanism, CHNets fully exploits and strengthens the
two segmentation networks to produce dense pixel-level inference. We evaluate
CHNets on a public scribble-supervised MRI cardiac dataset [2], and our exper-
imental results demonstrate that our approach outperforms other existing WSL
methods [3,8,11–14,20,21] on various evaluation metrics.

2 Approach

The proposed CHNets is sketched in Fig. 2, consisting of a CNN-based UNet
fcnn : X �→ Y cnn, and ViT-based SwinUNet as fvit : X �→ Y vit, where X ∈
R

h×w,Y ∈ [0, 1, 2, 3]h×w represents a 2D input image, corresponding inference
by UNet and SwinUNet, respectively. We denote a batch of scribble-annotated
data of training set as (X ,Y scrib) ∈ Ttrain where Y scrib ∈ [0, 1, 2, 3, None]h×w

(None indicates no annotation information on the corresponding pixels), and
densely-annotated data of the test set (e.g. in the form of black and white masks)
as (X ,Y gt) ∈ Ttest where Y gt ∈ [0, 1, 2, 3]h×w.

Fig. 2. The Framework of Collaborative Hybrid Networks for Medical Image Segmen-
tation Under Scribble limited–signal Supervision and Dense Pseudo Label full–signal
Supervision. It consists of dual ViT–based & CNN–based segmentation networks. Each
of the losses are shown.
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2.1 Training Objective

The training of CHNets is done in an end-to-end manner and is briefly illustrated
in Fig. 2. In general, the whole framework optimizes the hybrid networks using
the sum of different categories of losses, formulated as:

L = Lcnn
pCE + Lvit

pCE
︸ ︷︷ ︸

Scribble−Supervision

+ λ1 (Lcnn
inter + Lvit

inter)
︸ ︷︷ ︸

Internal−Consistency

+ λ2 (Lcnn
exter + Lvit

exter)
︸ ︷︷ ︸

External−Consistency

(1)

where the scribble-supervision loss, internal-consistency loss, and external- con-
sistency loss are indicated as LpCE, Linter, Lexter, respectively. Depending on
the architecture of the segmentation networks used (in this case CNN-based or
ViT-based networks), losses are also qualified as Lcnn, or Lvit. The λ is a ramp-
up function which enforces the training gradually to move from limited-signal
scribble-supervised learning to dense pseudo-full-signal supervised learning [25].

2.2 CNN– And ViT–Based Networks

Motivated by the success of the legendary UNet and recent advancements in
Vision Transformers (ViT), we intuitively designed a hybrid network architecture
for single segmentation task. Recent strategies for training multi-networks with
limited signal include Multi-View Learning [27] feeding with different augmented
data, Co-Teaching [9] with noisy labels, and Cross Supervision [5] with different
parameter initializations. All of these approaches aim to encourage consistency
in inference with different levels of perturbations. Our hybrid network achieves
desired perturbations not only at the parameter level but also at the architecture
level. For a fair comparison, we introduce the UNet [20] as the CNN-based
segmentation network and directly explore two successive Swin-ViT layers as
a network block to the U-shape segmentation network resulting in a pure ViT-
based modified UNet named as SwinUNet [3].

2.3 Scribble-Supervised Loss

To address the challenge of limited-signal scribble-based supervision, CrossEn-
tropy CE function is applied solely on the annotated pixels, while ignoring unla-
beled pixels as partial supervised segmentation loss (seen in Eq. 2). In this way,
we introduce Partial Cross-Entropy pCE while only scibble signal training net-
works [13].

LpCE(ypred, yscrib) = −
∑

i∈ωL

∑

k

yscrib[i, k]log(ypred[i, k]) (2)

where i indicates the i-th pixel, and ωL refers to the set of labeled pixels with
scribble annotations. k indicates the k-th class, and [i, k] indicates the probability
of i-th pixel belongs to the k-th class.
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2.4 Internal Self-Ensembling Consistency Supervision

To boost the performance of each network, we introduce Mean Teacher [22]
method from limited-signal SSL task to the similar WSL scribble-supervision
task as internal Self-Ensembling consistency supervision (denoted by ��� in
Fig. 2). An additional network f(θ) with the same architecture but updated by
the other network f(θ) through Exponential Moving Average (EMA) is utilized
(as shown in Eq. 3).

θi = αθi + (1 − α)θi−1 (3)

where θ is the parameter set of the segmentation network at training step i,
and α ∈ [0, 1] is used to balance the weight of updating. Following the internal-
consistency requirement, the Gaussian perturbation is applied during training;
thus the inference by the Student is enforced to be similar to the Teacher from
the same input with noise via internal-consistency loss Linter (as shown in Eq. 4):

Linter(ys, yt) = CE (ys, yt) + Dice(ys, yt) (4)

where CE and Dice indicate Cross-Entropy-based and Dice-Coefficient-based
segmentation loss on the dense pseudo label provided by the Teacher.

2.5 External Dynamic Cross-Consistency Supervision

To ensure that the multiple networks benefit each other, we propose external
dynamic cross-consistency supervision. Inspired by MixUp [18,30], we densely
combine (in the sense of DenseNet [10]) the output of our group of networks
as a dense pseudo-label (in the sense of full segmentation mask), in order to
supervise each network iteratively. The dense pseudo annotation, which provides
a full-signal supervision, is formulated as:

ypseudo = argmax[
1
2
(βyt

cnn + (1 − β)ys
cnn) +

1
2
(βyt

vit + (1 − β)ys
vit] (5)

where y refers to the inference by CNN- and ViT-based networks fvit(θ), fvit(θ),
fcnn(θ), fcnn(θ) to provide dense pseudo-labels through dense combinations of
output from each model. β∈[0, 1] is randomly generated and considered as a kind
of ‘dynamic’ enhanced data perturbation. This process is iterative, thus ypseudo

is utilized for network training per iteration as external-consistency loss Lexter

(seen in Eq. 6):

Lexter(ypseudo, ypred) = CE (ypseudo, ypred) + Dice(ypseudo, ypred) (6)

where CE ,Dice indicates as Cross-Entropy and Dice-Coefficient-based segmen-
tation loss on the dense pseudo label provided by the dynamic pseudo label
ensembling (denoted as ��� in Fig. 2).
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3 Experiments

Data Set. We evaluate our proposed CHNets against other baseline methods as
a 2D semantic segmentation task on a public benchmarking dataset ACDC [2],
a Cardiac MRI segmentation set of 100 patients within five groups: normal con-
trols, heart failure with infarction, dilated cardiomyopathy, hypertrophic car-
diomyopathy, abnormal right ventricle. Dense annotations are for Right Ventri-
cle (RV), Myocardium (Myo), and Left Ventricle (LV). Following prior scribble
annotation work [1,23], in the pre-processing step we generate the scribble based
on the dense annotation already available; we then directly utilize just pure scrib-
bles (and no other annotations) with raw images for training and validation [18].
Dense annotations for the test set enables a conventional validation process to
take place by comparing full masks. The data set is randomly splited as 60%,
20% and 20% for training, validation, and testing with no overlap and only
conducted once for all baseline and CHNets methods. All images are resized to
224 × 224 to align with the ViT input style.

Implementation Details. The original UNet [20], and SwinUNet [3] are uti-
lized as CNN- and ViT-based segmentation backbone for CHNets and all WSL
baseline methods. The code is written in Pytorch on a single NVIDIA GeForce
RTX 3090 GPU, and Intel Core i9-10900K CPU. The dataset is preprocessed
for a 2D segmentation task. The total parameter count of ViT- and CNN-based
networks is 27.15 ×106 and 1,81 ×106 respectively. The training has 60,000
iterations, the batch size is 12, and the optimizer is SGD (learning rate = 0.1,
momentum = 0.9, weight decay = 0.0001). The memory cost is 7 GB, and the
runtimes averaged around 4.5 h. The network which performed best on the vali-
dation set is utilized for the final testing.

Evaluation Metrics. Various evaluation metrics are utilized to validate the
CHNets against other baseline methods including Dice, IOU, Accuracy (Acc),
Precision (Pre), Sensitivity (Sen), Specificity (Spe), Hausdorff Distance (HD)
in mm with a 95% threshold, Average Surface Distance (ASD) in mm. Each

Table 1. Direct Comparison of Weakly-Supervised Frameworks on the Test Set

WSL Net mDice↑ mIOU↑ Acc↑ Pre↑ Sen↑ Spe↑ HD↓ ASD↓
[13] ViT 0.8459 0.7355 0.9954 0.8324 0.8709 0.9975 28.6010 7.3933

[14] ViT 0.8745 0.7802 0.9959 0.8648 0.8920 0.9977 13.4157 3.6616

[12] ViT 0.8641 0.7630 0.9960 0.8704 0.8655 0.9982 6.4881 1.7645

[11] ViT 0.8632 0.7614 0.9960 0.8718 0.8620 0.9982 7.6870 2.2027

[21] ViT 0.8493 0.7405 0.9955 0.8475 0.8678 0.9978 8.3234 2.3858

[13] CNN 0.6455 0.4918 0.9831 0.5318 0.8945 0.9848 163.5975 69.0296

[14] CNN 0.8588 0.6147 0.9904 0.6501 0.9203 0.9916 143.5347 44.8333

[12] CNN 0.8645 0.7644 0.9955 0.8449 0.8904 0.9973 28.4650 7.6293

[11] CNN 0.8681 0.7709 0.9957 0.8518 0.8915 0.9975 23.6676 6.6040

[21] CNN 0.8709 0.7755 0.9957 0.8519 0.9030 0.9974 7.8396 1.8412

Ours 0.8906 0.8058 0.9964 0.8698 0.9158 0.9978 5.4180 1.6484
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Table 2. Direct Comparison of Weakly-Supervised Frameworks on the Test Set of
Each Segmented Feature

WSL Net RV Myo LV

Dice↑ HD↓ ASD↓ Dice↑ HD↓ ASD↓ Dice↑ HD↓ ASD↓
[13] ViT 0.8587 9.3925 3.7748 0.7859 45.0363 10.0612 0.8929 31.3743 8.3438

[14] ViT 0.8639 9.4354 2.9105 0.8230 14.83338 4.3353 0.9366 15.9782 3.7390

[12] ViT 0.8727 6.7018 1.6205 0.8105 5.7516 1.5848 0.9091 7.0109 2.0971

[11] ViT 0.8678 6.9280 1.6073 0.8137 7.1041 2.1839 0.9081 9.0291 2.8168

[21] ViT 0.8622 6.9086 1.7250 0.7904 8.0107 2.2518 0.8952 10.0510 3.1806

[13] CNN 0.5806 182.2923 87.5389 0.5260 160.3049 68.6412 0.8300 163.5975 69.0296

[14] CNN 0.7304 138.4518 41.0612 0.7102 125.1634 31.8241 0.8360 166.9888 61.6147

[12] CNN 0.8502 11.2341 3.3072 0.8156 29.3005 8.0682 0.9276 44.8603 11.5125

[11] CNN 0.8354 29.2791 8.0856 0.8260 24.3843 7.6606 0.9427 17.3394 4.0656

[21] CNN 0.8519 13.5882 3.1754 0.8164 3.8603 1.2166 0.9444 6.0701 1.1317

Ours 0.8752 8.9538 2.3428 0.8445 3.6503 1.5336 0.9519 3.6499 1.0687

Fig. 3. Two Sample ACDC Images with Their Corresponding Inferences. Left to right,
(a) Input MRI raw image, (b) Ground Truth. Further, the images show inferences
from (c) pCE [13], (d) USTM [14], (e) Scribble2Label [12], (f) Mumford-Shah loss [11],
(g) GatedCRFLoss [21] and (h) CHNets (ours).

metric is annotated with ↑ or ↓ to indicate whether higher is better or lower
is better. mDice in Table 1 and Dice in Table 2 respectively refer to the mean
Dice-coefficient over the three classes (RV, Myo and LV), or per class.

Comparison with Baseline Methods. CHNets is compared against five other
scribble-supervised segmentation methods including pCE [13], USTM [14], Scrib-
ble2Label [12], Mumford-Shah loss [11], and GatedCRFLoss [21]. All baseline
methods and CHNets are trained with the same hyper-parameter setting, the
same loss functions (pCE), and the same quality of scribble annotations. Each
of the scribble-supervised methods is extended to be with either CNN- or ViT-
based network as the segmentation backbone. The quantitative results of the
direct comparison of baseline methods and CHNets are reported in Table 1, and
we further report the performance of each region of interest in Table 2. The best
performance is highlighted with Bold, and the second best is Underlined.
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Table 3. Ablation Study with Two Internal-External Supervision on the Test Set and
Fully Supervised Supervision

Consistency-Aware Supervision Performance

Internal Consistency External Consistency mDice↑ mIOU↑ HD↓ ASD↓
CNN ViT CNN ViT

� × 2 0.7083 0.5544 150.5851 50.3175

� × 2 0.7612 0.6253 148.5577 43.7664

� × 2 0.8837 0.7945 6.1310 4.9041

� × 2 0.7392 0.6087 62.4700 24.7017

� × 2 � 0.8846 0.7964 8.2995 2.8425

� × 2 � 0.8880 0.8012 12.2475 3.2928

� × 2 � 0.8815 0.7902 12.7286 3.7176

� × 2 � 0.8633 0.7632 7.3206 2.4864

� � � � 0.8906 0.8058 5.4180 1.6484

Pixel-level Supervision CNN 0.9167 0.9120 3.7452 0.8615

Pixel-level Supervision ViT 0.9049 0.8290 3.6233 0.8749

The qualitative performance is shown in Fig. 3 where the outside boundary
of inference on the test set is evaluated against published ground truth at pixel
level of 4 classes.

Ablation Study. We further investigate the effect of different contributions
for the CHNets, where all combinations of internal-consistency and external-
consistency, with CNN or ViT chosen as backbone, are reported in Table 3. The
symbol � × 2 indicates two models for the internal-consistency training with
self-ensembling fashion. A tick � with all internal-consistency and external-
consistency with CNN and ViT refers to CHNets which achieve the best perfor-
mance demonstrating the promising improvement by our proposed techniques.
The pixel-level ground truth supervised training with CNN and ViT is further
reported as the upper bound of performance, and we find our proposed method
has achieved very similar results compared with the upper-bound performance.

Clinical Application. It is important to emphasise that the numerical eval-
uation measures are only indicative of the power of such methods. To identify
cardiomyopathy, for instance, clinicians are interested in the strength of the
Myocardium. This, in turn, is indicated by the circularity of the Left Ventricle.
A precise segmentation of the LV is, therefore, not essential: what is important is
to gauge its correct xy aspect ratio, which can be obtained by scribble-training.

4 Conclusion

The CNN and ViT architectures have been developed and trained simultaneously
in an end-to-end manner. Internal- and external-consistency training schemes are
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proposed to boost the performance of each network and benefit each other. The
quantitative experiments on the public benchmark MRI dataset demonstrate
promising performance of the proposed method against other scribble-supervised
methods. In future, we will extend experiments to other limited-signal supervi-
sion for training such as bounding boxes or point-based annotations.
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Abstract. Breast cancer is a major concern for women’s health globally,
with axillary lymph node (ALN) metastasis identification being critical
for prognosis evaluation and treatment guidance. This paper presents a
deep learning (DL) classification pipeline for quantifying clinical infor-
mation from digital core-needle biopsy (CNB) images, with one step less
than existing methods. A publicly available dataset of 1058 patients was
used to evaluate the performance of different baseline state-of-the-art
(SOTA) DL models in classifying ALN metastatic status based on CNB
images. An extensive ablation study of various data augmentation tech-
niques was also conducted. Finally, the manual tumor segmentation and
annotation step performed by the pathologists was assessed. Our pro-
posed training scheme outperformed SOTA by 3.73%. Source code is
available here.

1 Introduction

Breast cancer (BC) is currently the world’s most diagnosed cancer [3], account-
ing for 685, 000 deaths among women in 2020. Axillary lymph nodes (ALNs)
are typically the first location of breast cancer metastasis, which makes their
status the single most important predictive indicator for diagnosis [7]. Several
studies have demonstrated that deep learning (DL) can support pathologists by
increasing the sensitivity of ALN micro-metastasis detection, as shown in the
review paper [10]. Furthermore, earlier research has demonstrated lymph node
metastasis detection may be assisted by deep features from whole slide images
(WSIs) [13]. Deep learning has greatly reduced the need for domain experts to
manually extract features from data. However, human experts are still essential
for data labeling. Unfortunately, the increasing complexity of many problems
requires large amounts of annotated data, which can be costly and raise privacy
concerns since the process of labeling often involves analyzing and categorizing
personal information or sensitive data, especially, in a medical context. Pixel-
level annotation is a time-consuming and expensive process, as it requires a
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human annotator to go through every single pixel in an image to label it cor-
rectly. This process can take a lot of time and effort, especially for large datasets
or complex images, and may also require a high level of expertise or specialized
training. On the other hand, image-level annotation is a much simpler and faster
process, as it only requires a human annotator to assign a single label to an entire
image.

Multiple Instance Learning (MIL) has enabled pathologists to label bags of
sub-images or patches, rather than labeling each individual patch. This approach
is particularly useful in binary classification tasks, where distinguishing between
healthy and diseased patients is the primary goal. By using MIL, an image can be
labeled as malignant if it contains at least one malignant patch, while an image
is considered cancer-free if all patches are classified as healthy. We present a
pipeline that enables the prediction of axillary lymph node metastasis status
from whole slide images of core-needle biopsy samples from patients with early
breast cancer. The prediction of metastasis status based solely on histopatholog-
ical images is a complex and challenging task and one that previously exceeded
the competencies of medical experts. Our approach surpasses the limitations of
traditional manual assessments and pixel-wise annotation of whole slide images,
but yet provides a reliable and objective method for predicting metastasis status.

In this paper, we reproduce the results of the attention-based MIL classifi-
cation model proposed by [12], which aims at identifying the (micro-)metastatic
status of ALN preoperatively using the Early Breast Cancer Core-Needle Biopsy
WSI (BCNB) [12] dataset of early breast cancer (EBC) patients. To evaluate the
impact of feature extraction components on the classification pipeline’s perfor-
mance, we utilized 43 different convolutional neural networks (CNNs) as a back-
bone for feature extraction. Given the constraints of limited data, we hypothesize
that data augmentation can enhance and diversify the original BCNB dataset
[12], leading to improved model generalization and overall performance. An
extensive ablation study on different data augmentation techniques, including
basic and advanced methods, examined this effect. Finally, the pipeline proposed
by [12] relied on hand-labeled, pixel-wise annotation of the tumor. However,
manual tumor segmentation and annotation is a time-consuming process and
prone to errors. As such, we tested the necessity of this information input for
the deep-learning core-needle biopsy model.

Related Work: Recently, DL has demonstrated its ability to extract features
from medical images at a high throughput rate and analyze the correlation
between primary tumor features and ALN metastasis information. In the study
by [15], researchers utilized Inception-v3 [11], Inception-ResNet-v2 and ResNet
[4] to predict clinically negative ALN metastasis using two-dimensional grey-
scale ultrasound images of patients with primary breast cancer. Moreover, [14]
employed two-dimensional shear wave elastography (SWE), a new ultrasound
method for measuring tissue stiffness, to discriminate between malignant and
benign breast tumors. They combined clinical parameters with DL radiomics,
where a pre-trained ResNet model [4] encoded the input images into features.
This combination achieved an area under the receiver operating characteristic
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(AUROC) value of 0.902 in the test cohort. Comparatively, their classification
model using only clinicopathologic data achieved an AUROC value of 0.727.

2 Method

Our goal in this paper is to predict the status of axillary lymph nodes (ALN)
using core needle biopsies. We present the deep learning (DL)-based core-needle
biopsy with whole slide processing (DLCNBC-WS) network, a revised method
that builds on two attention-based deep MIL frameworks, proposed by [12]. The
Deep-learning core-needle biopsy (DLCNB) model is the base model for both
frameworks and is built on an attention-based deep MIL framework for predict-
ing the ALN status using DL (histopathological) features [6], from core-needle
biopsies. These DL features were extracted only from the cancerous areas of the
WSIs of breast CNB samples. We differentiate between non-existing or already
advanced metastasis as ALN status. In contrast to the DLCNB model, the DLC-
NBC model uses additionally selected features from the clinical data set. The
clinical information of the slide is added to all the constructed bags in order to
provide insightful information for predicting and achieving better performance.
The whole algorithm pipeline is composed of four steps and follows [12].

One of the key features of our revised method is the eliminated segmentation
of the cancerous features in the CNB slides which allows higher flexibility and
adaptability. Our proposed DLCNBC with whole slide processing (DLCNBC-
WS) omits the time-consuming step of segmentation and reduces the require-
ments of its applications. We accomplish to cut the steps of the algorithm pipeline
into only three remaining steps.

In the following, we explain the DLCNBC-WS in detail, see Fig. 1. First,
N feature vectors for the N WSI patches of size 256 × 256 pixels in each bag
were extracted using multiple different CNN models as the backbone for feature
extraction. Multiple bags were built for each WSI (top image of Fig. 1). As the
bottom image of Fig. 1 shows, the clinical data were also preprocessed for feature
extraction in addition to the WSIs. For tackling the restricted availability of the
training data and therefore the issue of overfitting, a wide range of basic and
advanced data augmentation techniques were applied to the WSI patches.

Next, the N feature vectors of patches in a bag were processed by max-
pooling and reshaping. Then, they were passed through two fully connected
layers to output N weight factors for patches in the bag, which were then further
multiplied by the original feature vectors in order to dynamically adjust the
impact of instance features. Finally, the weighted image feature vectors, created
by the aggregation of features of multiple patches from the attention module,
were fused with clinical features by concatenation. A classifier learns to estimate
ALN status based on aggregated input.

3 Evaluation

Data Source: The BCNB dataset used in this paper includes clinical data and
the core-needle biopsy (CNB) hematoxylin and eosin (H&E) stained WSIs of

https://bcnb.grand-challenge.org/Dataset/


14 G. Shkëmbi et al.

Fig. 1. The overall pipeline of DLCNBC-WS model to predict ALN status between N0
and N(+). Top image: Multiple training bags were built. Bottom image: DLCNBC-WS
model training process included feature extraction and MIL, and by aggregating the
model outputs of all bags from the same slide, the ALN state is predicted.

patients with pathologically confirmed ALN status. It includes the following clin-
ical features: age, tumor size, tumor type, estrogen receptor (ER)-status, proges-
terone receptor (PR)-status, human epidermal growth factor receptor 2 (HER2)-
status, HER2 expression, histological grading, surgical procedure (ALND or
SLNB), Ki67, molecular subtype, the number of lymph node metastases (LNM)
and the target variable which is the metastatic status of ALN (N0, N+(1-2) or
N+(>2)). The dataset contains 655 patients with N0 status (no metastasis), 210
patients with N+(1-2) status (cancer has metastasized to 1–2 ALNs), and 193
patients with N+(>2) ALN status (cancer has metastasized to 3 or more ALNs).

Preprocessing: The selected numerical features (age and tumor size) of the clin-
ical dataset were standardized and the selected categorical variables (ER/ PR/
HER-2 status and the ALN metastases status as label) were one-hot encoded
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as no ordinal relationship was observed. The WSI preparation was performed
according to [12]. The multiple training bags were constructed by fusing together
the features extracted from the cropped patches of the selected tumor regions of
each CNB WSI with the selected features from the clinical dataset. The WSIs
and the clinical data were divided on a per-patient level into training and inde-
pendent testing cohorts; 80:20 respectively, according to [12], where one WSI
belongs to one patient and clinical information of each patient is represented
by one entry in the clinical dataset. The validation cohort was created from the
training set by randomly selecting 25% of that data. In this way, the patches
from one patient are found exclusively in either the train/validation set or the
test set, but not in both. In [12], the model relied on manually annotated can-
cerous regions in each WSI. However, to reduce the need for expert pathologists,
decrease human errors in annotation, and increase reproducibility, patches were
sampled from all (tissue) areas of the WSI, in contrast to the pipeline by [12].
They extracted the patches from only tumor areas which were manually selected
in advance by pathologists. Our pipeline framework assumes that the model has
no prior knowledge of whether the sampled patch belongs to a tumor. For adapt-
ing the dataset to our proposed pipeline, the sampled patches with artefacts or
without cell information were filtered out using Shannon entropy computed on
the grey-scale versions of the patches.

Training: The model is trained to predict the ALN metastasis based on WSIs
of primary BC samples by predicting the bag label while thoroughly considering
all included instances in each bag. A stochastic gradient descent (SGD) opti-
mizer with a learning rate of 1e−4 to update the model parameters and a cosine
annealing warm restarts strategy to adjust the learning rate were utilized. In
the training phase, L2 regularization was implemented by passing weight decay
of 1e−3 to the optimizer. In addition, to ease overfitting L1 regularization was
employed with weight 1e−6. During the testing phase, the ALN status was pre-
dicted by aggregating the model outputs of all bags from the same WSI (Fig. 1c).
We trained our models on NVIDIA RTX A6000 for 2000 epochs.

Statistical Analysis: To examine the clinical characteristics of different
cohorts, we conducted a correlation analysis. To establish a basis for compar-
ison, we first utilized all features of the clinical dataset to develop a logistic
regression (LR) model for ALN prediction. We then trained the LR model using
a subset of features from the clinical dataset, specifically age, tumor size, and
the expression levels of ER, PR, and HER2 biomarkers. These specific features
were chosen based on the results of a correlation analysis conducted on the clin-
ical dataset, which involved selecting features with a higher correlation to the
outcome variable and a lower correlation among other predicting variables. The
reduced clinical dataset was then incorporated into the input of the DLCNBC
model.

Ablation Study: Comparing multiple backbone models is essential to building
a robust and effective deep-learning classification pipeline. We compared multiple
CNN models for finding the best-suited pipeline for this specific task. We updated
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the list of backbone models with the latest advances: AlexNet, VGG with and
without BN, GoogleNet, Inception-v3, ResNet, DenseNet, SqueezeNet, ResNext,
WideResNet, MobileNet, ShuffleNet-v2, EfficientNet, and EfficientNet-v2.

For identifying which augmentation techniques contribute the most to
improving the model’s accuracy and generalization ability, we conducted an
extensive ablation study. All augmentations techniques were applied as a pre-
processing step on the training cohort of the WSI patches. For model train-
ing, each image was resized to 224 × 224 pixels and normalized. Next, different
data augmentation methods, including different types of geometric augmenta-
tion (including flipping, rotation, translation, shearing and scaling), colors space
augmentation (including changes in brightness, contrast, saturation and hue,
converting an image to grayscale, solarization, and posterization), image erasing
(including random erasing and random cropping), AugMix [5], as well as more
advanced approaches such as AutoAugment [1], RandAugment [2] and Triv-
ialAugmentWide [9], were applied. Basic augmentation techniques such as geo-
metric augmentation, color space augmentation, image erasing and image mix-
ing were manually designed, and a manually predefined set of parameter values
was applied. The augmentation techniques that yielded the best performance on
the test dataset, as determined by AUROC, were selected and combined into an
augmentation mixture, which was subsequently evaluated to assess its impact on
model performance. The best-performing model based on [12] (DLCNBC model
with VGG-16 BN) was trained on each data augmentation technique. Finally,
the DLCNBC and DLCNBC-WS models were trained, as described above.

4 Results and Discussion

In this section, we present and analyze the results of our experiments. First, the
performance results in terms of AUROC, accuracy, sensitivity, specificity, PPV,
NPV, and F1-score in the test cohort of the best and worst-performing DLCNBC
models with different backbones for feature extraction in the binary classification
of ALN status are illustrated in Table 1. The highest AUROC score of 0.837 was
achieved using VGG-13 with batch normalization (BN) as the feature extrac-
tor, while the lowest AUROC score of 0.543 was achieved by EfficientNet-b0,
EfficientNet-b2 and EfficientNet-b3. In general, EfficientNet and Inception-v3
have shown not to outperform VGG in terms of accuracy and AUROC while
using fewer computational resources. However, VGG outperformed all other
backbone models, for which its reasons needs to be further investigated in future.
Second, the ablation study showed that the classification was improved by fur-
ther applying one of the following augmentation strategies to the data for DLC-
NBC models: random rotation, scaling, shearing, or random vertical flipping, see
Table 2. The best results were obtained by performing a random rotation ≤ 10◦.
It increased the AUROC score from 0.837 to 0.852 in the binary classification
task.

Third, our proposed DLCNBC-WS model performed best when VGG-13 BN
was used as the backbone for feature extraction in the binary classification task
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Table 1. The performance results on the test cohort of the best and worst perform-
ing DLCNBC models with different backbones for feature extraction in the binary
classification of ALN status (N0 vs. N(+)).

Backbone AUROC Accuracy Sensitivity Specificity PPV NPV F1-Score

VGG-11 BN 0.83 0.739 0.607 0.821 0.68 0.769 0.642

VGG-13 BN 0.837 0.739 0.548 0.858 0.708 0.752 0.617

VGG-16 BN 0.822 0.739 0.679 0.776 0.655 0.794 0.667

VGG-19 BN 0.828 0.739 0.881 0.649 0.612 0.897 0.722

Inception-v3 0.545 0.633 0.095 0.970 0.667 0.631 0.167

EfficientNet-b0 0.543 0.624 0.024 1.000 1.000 0.620 0.047

EfficientNet-b2 0.545 0.615 0.048 0.970 0.500 0.619 0.087

EfficientNet-b3 0.543 0.615 0.071 0.955 0.500 0.621 0.125

Table 2. The performance results on the test cohort of the four best and worst per-
forming data augmentation techniques on the DLCNBC models with VGG-16 BN as
the backbone for feature extraction in the binary classification of ALN status (N0 vs.
N(+)).

Augmentation AUROC Accuracy Sensitivity Specificity PPV NPV F1-Score

Random Rotation 0.868 0.761 0.690 0.806 0.690 0.806 0.690

Shear 0.865 0.775 0.679 0.836 0.722 0.806 0.699

Random Erasing 0.863 0.757 0.821 0.716 0.645 0.865 0.723

Vertical Flip 0.857 0.780 0.762 0.791 0.696 0.841 0.727

Table 3. Comparison of the performance of DLCNBC and DLCNBC-WS models with
VGG-13 BN backbone for binary classification of the ALN status. T: training cohort,
V: validation cohort, I-T: independent test cohort.

Method Set AUROC Accuracy Sensitivity Specificity PPV NPV F1-Score

DLCNBC T 0.903 0.814 0.812 0.815 0.73 0.876 0.769

V 0.847 0.767 0.734 0.786 0.674 0.831 0.703

I-T 0.837 0.739 0.548 0.858 0.708 0.752 0.617

DLCNBC T 0.945 0.881 0.896 0.872 0.811 0.932 0.851

Rotation V 0.866 0.790 0.886 0.733 0.667 0.914 0.761

I-T 0.852 0.766 0.774 0.761 0.670 0.843 0.718

DLCNBC-WS T 0.983 0.938 0.941 0.935 0.899 0.963 0.920

V 0.863 0.781 0.823 0.756 0.670 0.876 0.739

I-T 0.862 0.803 0.833 0.784 0.707 0.882 0.765

DLCNBC-WS T 0.976 0.910 0.907 0.912 0.863 0.941 0.885

Rotation V 0.884 0.790 0.709 0.840 0.727 0.827 0.718

I-T 0.843 0.766 0.619 0.858 0.732 0.782 0.671

N0 vs. N(+), see Table 4, the results for multi-class classification are given in
Table 5.

Table 3 compares the results of the baseline method DLCNBC and our pro-
posed DLCNBC-WS with the best-performing backbone model for binary clas-
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Table 4. The performance results on the test cohort of the DLCNBC-WS models with
different backbones for feature extraction in the binary classification of ALN status
(N0 vs. N(+)).

Backbone AUROC Accuracy Sensitivity Specificity PPV NPV F1-Score

VGG-11 0.82 0.711 0.655 0.746 0.618 0.775 0.636

VGG-11 BN 0.86 0.739 0.940 0.612 0.603 0.943 0.735

VGG-13 0.84 0.78 0.690 0.836 0.725 0.812 0.707

VGG-13 BN 0.86 0.803 0.833 0.784 0.707 0.882 0.765

VGG-16 0.85 0.766 0.571 0.888 0.762 0.768 0.653

VGG-16 BN 0.86 0.706 0.357 0.925 0.750 0.697 0.484

VGG-19 0.83 0.784 0.738 0.813 0.713 0.832 0.725

VGG-19 BN 0.85 0.766 0.571 0.888 0.762 0.768 0.653

Table 5. The performance results for each class on the test cohort of the best and
worst performing DLCNBC models with different backbones for feature extraction in
the multi-class classification of ALN status (N0 vs. N+(1-2) vs. N+(>2)).

Backbone Class AUROC Accuracy Sensitivity Specificity PPV NPV

VGG-11 BN N0 0.84 0.761 0.855 0.621 0.772 0.740

N+(1-2) 0.80 0.784 0.440 0.887 0.537 0.842

N+(>2) 0.68 0.766 0.243 0.873 0.281 0.849

VGG-13 BN N0 0.84 0.757 0.847 0.621 0.771 0.730

N+(1-2) 0.79 0.784 0.420 0.893 0.538 0.838

N+(>2) 0.71 0.761 0.270 0.862 0.286 0.852

VGG-16 BN N0 0.85 0.748 0.931 0.471 0.726 0.820

N+(1-2) 0.79 0.784 0.360 0.911 0.545 0.827

N+(>2) 0.71 0.807 0.162 0.939 0.353 0.846

WideResNet-101-2 N0 0.58 0.587 0.939 0.057 0.600 0.385

N+(1-2) 0.60 0.775 0.060 0.988 0.600 0.779

N+(>2) 0.48 0.794 0.000 0.956 0.000 0.824

MobileNet v3 large N0 0.64 0.615 0.947 0.115 0.617 0.588

N+(1-2) 0.60 0.775 0.120 0.970 0.545 0.787

N+(>2) 0.50 0.812 0.027 0.972 0.167 0.830

EfficientNet b3 N0 0.63 0.606 0.947 0.092 0.611 0.533

N+(1-2) 0.59 0.780 0.120 0.976 0.600 0.788

N+(>2) 0.51 0.807 0.000 0.972 0.000 0.826

EfficientNet b5 N0 0.64 0.601 0.916 0.126 0.612 0.500

N+(1-2) 0.62 0.752 0.100 0.946 0.357 0.779

N+(>2) 0.48 0.812 0.054 0.967 0.250 0.833

sification, VGG-13 with BN. We also show the impact of random rotation as an
augmentation function for both models. The table shows that applying random
rotation increased the model performance in terms of AUROC score only for
the baseline method by 1.79%. Moreover, training the model without the expert
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tumor segmentation step surpassed the results of the preceding paper on the
BCNB dataset [12] for the independent test cohort by 3.37% in the AUROC
score.

5 Conclusion

In this paper, we succeeded in reproducing the results of [12] and further
upgraded their attention-based MIL classification pipeline for predicting ALN
metastasis status preoperatively in EBC patients. We found that both the perfor-
mance of DLCNB and DLCNBC were significantly influenced by CNN backbone
selection. The results of the ablation study showed that learning was heavily
influenced by the preparation of training data and changes in data distribution.
In particular, the use of random rotation on top of the baseline model outper-
formed SOTA in the binary classification of ALN status by 2.53%. Lastly, the
requirement of pathologists to perform tumor segmentation and annotation was
removed and SOTA was outperformed by 3.73%.

Since the waiting time between biopsy and pathological classification affects
whether a diagnosis of lymph node metastasis still reflects the current status and,
hence, is accurate, the ALN metastasis is intrinsically unstable [15]. For instance,
if monitored for a sufficient amount of time, some patients with negative lymph
nodes may eventually develop positive lymph nodes. In addition, an interesting
attempt would be to evaluate the clinical utility of immunochemically stained
images, instead of focusing solely on H&E staining. One important limitation
of CNNs in histopathology image analysis does not clearly capture inter-nuclear
interactions and histopathological information. This is important for detecting
and characterizing cancers [8], which could be solved with the help of graph
neural networks.
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Abstract. This paper presents a solution to the cross-domain adapta-
tion problem for 2D surgical image segmentation, explicitly considering
the privacy protection of distributed datasets belonging to different cen-
ters. Deep learning architectures in medical image analysis necessitate
extensive training data for better generalization. However, obtaining suf-
ficient diagnostic and surgical data is still challenging, mainly due to the
inherent cost of data curation and the need of experts for data anno-
tation. Moreover, increased privacy and legal compliance concerns can
make data sharing across clinical sites or regions difficult. Another ubiq-
uitous challenge the medical datasets face is inevitable domain shifts
among the collected data at the different centers. To this end, we pro-
pose a Client-server deep federated architecture for cross-domain adapta-
tion. A server hosts a set of immutable parameters common to both the
source and target domains. The clients consist of the respective domain-
specific parameters and make requests to the server while learning their
parameters and inferencing. We evaluate our framework in two bench-
mark datasets, demonstrating applicability in computer-assisted inter-
ventions for endoscopic polyp segmentation and diagnostic skin lesion
detection and analysis. Our extensive quantitative and qualitative exper-
iments demonstrate the superiority of the proposed method compared to
competitive baseline and state-of-the-art methods. We will make the code
available upon the paper’s acceptance. Codes are available at: https://
github.com/bhattarailab/federated-da.

Keywords: Domain Adaptation · Federated Learning · Decentralised
Storage · Privacy

1 Introduction

The deployment of artificial intelligence (AI) technology in medical image anal-
ysis is rapidly growing, and training robust deep network architectures demands
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millions of annotated examples. Despite significant progress in establishing large-
scale medical datasets, these are still limited in some clinical indications, espe-
cially in surgical data science and computer-assisted interventions [21]. Scaling
training data needs multi-site collaboration and data sharing [1], which can
be complex due to regulatory requirements (e.g. the EU General Data Protec-
tion Regulation [31], and China’s cyber power [13]), privacy, and legal concerns.
Additionally, even after training, practical AI model deployment in the clinic will
require fine-tuning or optimization to local conditions and updates [11]. There-
fore, architectures trained in federated and distributed ways to tackle cross-
domain adaptation problems are critical. Yet, developing such architectures has
challenges [25].

Fig. 1. Sample training examples collected from various centres for polyp segmentation
(left); Sizes of training and test set at different centres for polyp segmentation (middle)
and skin lesion segmentation (right).

Several works [7,8,29] have been proposed to tackle the problem of cross-
domain adaptation in medical imaging. However, these methods require raw
source and target domain data and cannot address the ever-increasing privacy
concerns in sharing medical data. To circumvent the problem of privacy pro-
tection, there is a lot of research interest growing in Federated Learning (FL)
in the medical domain [15,18,24,25,27,28,30]. Some methods even rely on syn-
thetic data [10] to avoid sharing real data. For more details, we refer readers to a
survey [23] on federated learning for smart health care. The common drawback
of most existing methods [15,18,24,25] is that these methods are not designed
for the domain shift problem. The most common topology in the FL workflow is
averaging the local gradients (FedAvg) at the center and peer-to-peer gradient
(FedP2P) sharing. These architectures are effective when data are independent
and identically distributed (IID) in every client. In reality, domain shift is quite
prevalent as data collected at different centers tend to be center specific. In
Fig. 1, we can see the training examples for polyp segmentation collected at dif-
ferent centres. These examples show the discrepancy in lighting, camera pose
and modalities in different centers. Some recent works, such as [9] by Guo et
al. and [19] by Liu et al., address cross-domain problems in FL. However, [9]
limits to a source-target pair at a time. Also, they employed adversarial loss to
align the parameters, which is difficult to optimize. Similarly, FedDG [19] shares
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the information between the sources in the form of amplitudes of images. Their
evaluation is limited to fundus images and MRI.

To tackle the problems of cross-domain adaptation and privacy protection
in surgical image segmentation, we propose a simple yet effective Client-server
FL architecture consisting of a server and multiple clients, as shown in Fig. 2.
A server hosts a set of immutable task-specific parameters common to all the
clients. Whereas every client requests the server to learn their domain-specific
parameters locally and make the inference. In particular, every client learns an
encoder’s parameters to obtain an image’s latent representation. These latent
representations and ground truth masks are sent to the server. The decoder
deployed on the server makes the predictions and computes the loss. The gra-
dients are computed and updated only on the encoder to align the client’s
features with task-specific parameters hosted on the server. Aligning domain-
specific parameters to common parameters helps diminish the gap between the
source and target domains. We can draw an analogy between our framework
and public-key cryptography. A client’s network parameters are equivalent to a
private key, and the decoder’s parameters shared on the server are equivalent
to the public key. Thus a client only with access to its private key can transfer
its latent vector to the server containing the public key to obtain the semantic
mask. Distributed storage of the parameters diminishes the risk of model param-
eter theft and adversarial attacks [20]. Moreover, each client communicates to
the server only via a latent image representation, which prevents exposing the
information of the raw data collected on the client side. It is possible to encrypt
data transferred between the server and clients to secure communication. Finally,
the server receives only fixed latent dimension representations, making it agnos-
tic to the client’s architecture. This enables clients to communicate with the
server concurrently, improving efficiency. Likewise, none of the centres can mod-
ify the parameters deployed on the server; this would prevent the memorisation
of client-specific information and parameter poisoning on the server [17].

To sum up, we propose a Client-server Federated Learning method for cross-
domain surgical image segmentation. We applied our method to two multi-
centre datasets for endoscopic polyp and skin lesion segmentation. We compared
with multiple baselines, including recent works on cross-domain FL [9,19] and
obtained a superior performance.

2 Method

Background: We consider a scenario where we have C1, C2, . . . Cn represent n
number of different institution’s centres located at various geographical regions.
Each centre collects its data in the form of tuple (x,y) where x ∈ R

w×h×c,y ∈
R

w×h, where, w, h, c represent the width, height, and number of channels of an
image. The annotated examples collected at the different centers are not IID
due to variations in the illumination, the instruments used to acquire data, the
ethnicity of the patients, the expertise of the clinician who collects the data, etc.
We denote the total number of annotated pairs in each centre by Nn. In this
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paper, one of the major goals is to address the problem of domain adaptation,
avoiding the need for the sharing of raw data to protect privacy.

Fig. 2. The schematic diagram of the proposed framework. There are three major com-
ponents: Source domain, Target domains, and Server infrastructure to share common
parameters.

Learning Source Domain Parameters: First, we train a semantic segmen-
tation network on the source data. In Fig. 2, the Source domain block shows the
training of source domain/centre parameters. For us, data collected on Centre 1,
C1 is source data. We employ fully-convolutional encoder-decoder architecture.
Such architectures are quite popular for semantic segmentation [2,26]. With the
randomly initialised parameters, we minimise the objective of the Eq. 1. In Eq. 1,
θeC1

and θdC1
represent the learnable parameters of the encoder and decoder,

respectively.

L([θeC1
; θdC1

]) = − 1
N1

N1∑

i=1

W∑

i=j

H∑

k=1

yijk log ŷijk

+(1 − yijk) log(1 − ŷijk)

(1)

Setting-up Server Infra-structure: Figure 2’s Server infra-structure block
shows the setting up of the server infrastructure. Once we learn the parameters
of the network from the source (C1) data set, we upload the decoder’s (θdC1

)
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parameters on the server to share with every target client. The decoder mod-
ule specializes to segment anatomies, given the encoder module’s latent vector
representation of the input image. As this segmentation task is common to all
the centres, we propose to use a single decoder for all the centres. The previous
works on cross-modal [4] and cross-feature [3] representations learning for cross-
domain classification in computer vision employed the idea of sharing Convolu-
tional Neural Networks’ top layers parameters. However, none of these methods
were employed in Federated Learning. The idea of sharing top layers parameters
is in contrast to the conventional transfer learning [12] where the parameters are
initialised with a model pre-trained on Imagenet and fine-tuned only the task-
specific fully connected layers. We freeze the shared decoder parameters of the
source. This arrangement brings advantages for privacy protection by prevent-
ing weight poisoning attacks [17]. Weight poisoning attacks alter the pre-trained
model’s parameters to create a backdoor. The parameters of the encoders can be
shipped to the target client as per demand. Sometimes, the clients may demand
these parameters to initialize their local networks when the training data is very
small.

Federated Cross-domain Adaptation: Target centres other than the source
centre deploy only the encoder network of their choice. In Fig. 2, the target
domain block depicts the method. Every centre feeds its images to its encoder
network during training, generating the respective latent representations. The
latent representation and the ground truth (yi) mask from each target centre are
pushed to the server where the pre-trained source decoder, θdC1, is placed. The
decoder feeds the latent representation, which predicts the output segmentation
labels (ŷi). We learn the parameters of the target encoders (θeCi) to minimize the
objective given in Eq. 2. Since the decoder’s parameters are frozen and shared
with every client, only the target encoder’s parameters are updated on the client
side. This helps to align the latent representations to that of the source decoder’s
parameters and maximises the benefit from the task-specific discriminative rep-
resentations learned from the large volume of source data.

L([θeCi
; θdC1

]) = − 1
Ni

Ni∑

i=2

W∑

i=j

H∑

k=1

yijk log ŷijk

+(1 − yijk) log(1 − ŷijk)

∀i ∈ 2, . . . n

(2)

The only thing that matters for target centres to communicate to the server is
the fixed dimension of latent representations of an image. Thus, our architecture
gives the flexibility of deploying the various sizes of networks on the client side
based on available computing resources. And it is also entirely up to the target
centres whether they want to initialize the parameters of the encoder using the
parameters of the source domain. If the number of training examples is extremely
few, then initialization using the pre-trained model’s weight can prevent over-
fitting.
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Equations for Gradient Update: Equations 3 and 4 show mathematical for-
mulation to update gradients of decoder and encoder modules in the proposed
framework. Equation 3 updates the gradient of the decoder in the source cen-
ter. Equation 4 represents the mechanism of updating gradients of each encoder
module in every center. Here, αi is the center-specific learning rate, where i rep-
resents the index of the centre. Please note the parameters of the decoder remain
the same for every target centre. L denotes the loss function.

θdC1
= θdC1

− α1 × ∂L([θeC1
; θdC1

])
∂θdC1

; (3)

θeCi
= θeCi

− αi × ∂L([θeCi
; θdC1

])
∂θeCi

;∀i ∈ 1, . . . n (4)

3 Experiments

Data sets and Evaluation Protocol: We applied our method in two bench-
mark datasets: endoscopic polyp segmentation and skin lesion segmentation. The
polyp segmentation dataset contains images collected at four different cen-
tres. Kvasir-SEG [14] data set is the source centre (C1) in our experiment. It
has 800 images in the train set and 200 in the test set. These high-resolution
images acquired by electromagnetic imaging systems are made available to the
public by Simula Lab in Norway. Similarly, the EndoUDA-target data set makes
the first target domain (C2) in our experiment, consisting of 21 images in both
the training and testing sets [5]. Our experiment’s second target domain cen-
tre (C3) consists of images from the CVC-ClinicDB data set made available to
the research community by a research team in Spain. There are 520 images in
the train set and 92 in the test set. Finally, the ETIS-Larib data set released by
a laboratory in France makes our third target domain data set (C4). This data
set consists of 166 in the train set and 30 images in the test set. These data sets
were curated at different time frames in different geographical locations.

For skin lesion segmentation, we took data set collected at two different
centres: ISIC (International Skin Imaging Collaboration) [6] and PH2 [22]. In
ISIC, there are 2596 training examples and 102 test examples. The PH2 data set
is curated through a joint research collaboration between the Universidade do
Porto, Tecnico Lisboa, and the Dermatology Service of Hospital Pedro Hispano
in Matosinhos, Portugal. In this data set, there are only 180 training examples
and 20 testing examples. We consider ISIC and PH2 source and target domain,
respectively. We report the mean Intersection over Union (mIoU) and dice scores
for quantitative evaluations. Qualitative comparisons also validate our idea.

Baselines: We have compared the performance of our method with several com-
petitive baselines, including both non-federated and federated frameworks. One
of the naive baselines is to train a model for each target centre independently
(INDP). The models of the with less training data overfit. Another configura-
tion is creating a data pool by combining the training data (COMB) from all
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Table 1. mIoU scores on Endoscopic Polyp Segmentation data sets (upper block) and
Skin Lesion Segmentation data sets(lower block). The AVERAGE row is the weighted
average across all the centers. The best score is highlighted in red and the second best
is in blue.

Data Centres
mIOU

INDP COMB [16] [19] FtDe [9] RandEn FtEn

Endo.

Kvasir-SEG (C1, source) 80.3 81.0 82.3 73.5 N/A 80.5 80.3 N/A

EndoUDA (C2) 52.0 57.5 53.1 29.7 59.9 61.7 50.6 62.0

CVC-ClinicDB (C3) 88.3 87.8 86.8 74.5 85.8 83.0 89.1 88.4

ETIS-Larib (C4) 62.1 66.9 61.4 70.8 65.1 71.7 64.3 69.9

AVERAGE 70.6 73.3 70.9 62.1 72.7 74.2 71.0 75.2

Skin
ISIC (C1, source) 81.3 75.7 84.9 N/A N/A N/A 81.3 N/A

PH2 (C2) 88.4 88.3 88.4 N/A 88.0 N/A 89.6 89.4

Table 2. Dice scores on Endoscopic Polyp Segmentation data sets (upper block) and
Skin Lesion Segmentation data sets(lower block). The AVERAGE row is the weighted
average across all the centers. The best score is highlighted in red and the second best
in blue.

Data Centres
Dice Score

INDP COMB [16] [19] FtDe [9] RandEn FtEn

Endo.

Kvasir-SEG (C1, source) 89.1 89.5 90.4 84.7 N/A 89.2 89.1 N/A

EndoUDA (C2) 64.8 73.0 0.694 45.8 74.9 76.3 67.2 76.5

CVC-ClinicDB (C3) 93.8 93.5 92.9 85.4 92.4 90.7 94.2 93.8

ETIS-Larib (C4) 76.6 80.2 76.1 82.9 78.9 83.5 78.3 82.3

AVERAGE 82.7 84.6 83.0 76.6 84.2 85.2 83.0 85.8

Skin
ISIC (C1, source) ] 89.7 86.2 91.8 N/A N/A N/A 89.7 N/A

PH2 (C2) 93.8 93.7 93.8 N/A 93.6 N/A 94.5 94.4

the centres and training a single model. However, this method does not address
any of the issues regarding privacy and compliance. Another viable option is to
adapt a pre-trained model to a new domain by fine-tuning the parameters of the
latter layers (FtDe). We also compared our method with competitive federated
learning algorithms. FedAvg [16] averages the gradients computed in every cen-
ter and shares the average gradients with the clients. This method ignores the
non-IID nature of data from different centres. FedDG [19] is another Federated
Learning method for domain adaption published at CVPR 2021. Finally, we also
compared with another recent work by Guo et al. [9] for federated learning for
multi-institutional data published at CVPR 2021. Our methods have two vari-
ants: initialising clients’ parameters randomly(RandEn) and with the source’s
parameters (FtEn).

Implementation Details and Learning Behaviour: We implement our algo-
rithms on PyTorch framework. All the images were resized to the dimension of
418×418. For optimization, we employ Adam optimizer with values of β1 and β2
set to 0.9 and 0.999 respectively. We initialize learning rate to 2e-4 and set the
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Fig. 3. Curves show the learning behaviour of different methods on PH2 data set.

decaying of the learning rate every 25k iterations. Taking UNet as a base archi-
tecture, we train the networks for 100k iterations and save the best-performing
checkpoints on the validation set and report the performance on the test set.
Since the task is to perform the semantic segmentation of the surgical images,
we used Cross-Entropy loss to optimize the models. Figure 3 summarises the
learning behaviour of the different methods for the first 100k iterations on PH2
data set, a target domain for skin lesion segmentation. The solid lines are our
methods, and the dashed lines are the compared methods. The smooth curves
demonstrate that our method, FtEn, has the highest starting mIoU. Hence, the
method can be converged faster, and it is particularly beneficial in centers with
limited computing resources for training.
Quantitative Evaluations: Table 1 shows the quantitative performance com-
parison. In the table, the last two grey-shaded columns show the performance of
our methods. Our method outperforms INDP in every target centre. This signi-
fies the importance of domain adaptation by our method. Compared to the other
Federated Learning methods, our methods obtain the highest performance on
2/3 of target centres and are competitive on the third one for endoscopic polyp
segmentation. On skin lesion segmentation, our method surpassed all the com-
pared baselines and the recent competitive Federated Learning methods. Addi-
tionally, we also observe that our method FtEn, achieves the highest weighted
average mIOU over all centres of polyp segmentation dataset. We also computed
the dice score and obtained a similar performance, which is reported in Table 2.

Qualitative Evaluations: Figure 4 shows the qualitative performance compar-
isons between the baselines and the proposed methods on the target domains.
Rows 2–4 (inclusive) are from endoscopy benchmarks, and the last row is from
skin benchmarks. FedAvg fails to generalise well on target domains (see ETIS-
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Fig. 4. Qualitative Comparisons

Larib and CVC-ClinicDB). Whereas our method is consistent in every target
domain. These results further validate that our method is superior to the others.
Figure 5 depicts additonal segmentation results on Endoscopic polyp data from
the target domain centres. The first four rows are from the ETIS-Larib dataset,
the next three are from the CVC-ClinicDB data set, and the last two are from
EndoUDA. Columns RandEn and FtEn show the results of our method.

Computational Complexity: For INDP and FedAvg, the parameters of both
the encoders and decoders grow in O(n) with the number of centres. Similarly,
for FtDe and our method, the parameters of the encoder grow in O(n), while
the parameters of the decoder are constant, i.e., O(1). Although the growth of
the parameters for both the encoder and decoder for COMB is O(1), it does not
address any privacy concerns. From these, our method is computationally less
expensive and has high privacy protection.

Ablation Study on Varying Encoder Sizes: To further validate the robust-
ness of our proposed framework, we trained the networks with different numbers
of learnable parameters in the encoder module as shown in the Table 3. We
vary the parameters by adding or removing the constituting layers in the encod-
ing blocks of the network. We designate the conventional encoder of the UNet
architecture as an encoder with medium size. The learnable parameters in the
medium encoder are approximately 17 million. Table 4 depicts the architecture
of a general encoder. It consists of three down-sampling layers, represented as
Down Block. We vary the number of layers in the Down Blocks of the general
encoder as per the availability of labeled data and computing resources in the
particular centre.

The proposed federated distributed framework for domain adaptation pro-
vides flexibility to choose different network architectures to learn a common
latent representation of images. These architectures can be designed based on
the data size and available resources at a particular center. The performance
evaluation results of various encoder sizes on polyp segmentation and skin lesion
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Fig. 5. Additional Qualitative Comparison oin Endoscopic Polyp Dataset

Table 3. Result on Endoscopic Polyp Segmentation Data sets (upper block) and Skin
Lesion Segmentation (lower block) with different sizes of encoder networks.

Data Centres Size Trainable Parameters mIoU

INDP RandEn(Ours)

Polyp ETIS-Larib Small 6,311,616 61.6 62.9

Medium 17,080,896 62.1 64.3

Large 27,850,176 62.5 64.7

Skin PH2 Small 6,311,616 88.4 88.4

Medium 17,080,896 88.5 89.6

Large 27,850,176 89.4 89.8

segmentation are shown in Table 3. From the table, we can observe that seg-
mentation performance for various sizes of the encoder is higher when trained
using our framework than training independently for a specific center.
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Table 4. Architecture of the general encoder.

Operations Output Size

Input Image c× h× h

Down Block c× h
2
× h

2

Down Block c× h
4
× h

4

Down Block c× h
8
× h

8

4 Conclusions

In this paper, we presented a client-server Federated Learning architecture for
cross-domain surgical image segmentation. Our architecture addresses the cross-
domain adaptation problem without sharing the raw images. Moreover, sharing
only a part of the parameters from the source domain enhances privacy pro-
tection. Extensive experiments on two benchmarks from various data centres
demonstrated improved cross-domain generalisation and privacy protection over
the baselines and the competitive contemporary method.
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Abstract. We investigate the usefulness of formula-driven supervised
learning (FDSL) for breast ultrasound (US) image analysis. Medical data
are usually too scarce to develop a better performing deep learning model
from scratch. Transfer learning with networks pre-trained on ImageNet
is commonly applied to address this problem. FDSL techniques have
been recently investigated as an alternative solution to ImageNet based
approaches. In the FDSL setting, networks for transfer learning applica-
tions are developed using large amounts of synthetic images generated
with mathematical formulas, possibly taking into account the charac-
teristics of the target data. In this work, we use Field II to develop a
large synthetic dataset of 100 000 US images presenting different contour
objects, as shape features play an important role in breast mass charac-
terization in US. Synthetic data are utilized to pre-train the ResNet50
classification model and various variants of the U-Net segmentation net-
work. Next, the pre-trained models are fine-tuned on breast mass US
images. Our results demonstrate that the proposed FDSL approach can
provide good performance with respect to breast mass classification and
segmentation.

Keywords: breast cancer · deep learning · synthetic data · ultrasound

1 Introduction

Convolutional neural networks (CNNs) have achieved state-of-the-art results in
tasks like medical image classification and segmentation. However, medical data
are often too scarce to develop better performing deep learning models from
scratch. Transfer learning with networks pre-trained on large datasets, such as
ImageNet, is commonly used to overcome the issue of limited data [10]. Pre-
trained ImageNet networks are publicly accessible in the widely used deep learn-
ing frameworks and can be easily utilized for transfer learning purposes. Ima-
geNet models have been developed using supervised learning with annotations
prepared by humans. Additionally, self-supervised learning methods have been
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Bhattarai et al. (Eds.): DEMI 2023, LNCS 14314, pp. 34–45, 2023.
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extensively researched to develop generic ImageNet networks without the human
annotations. Formula-driven supervised learning (FDSL) has been recently inves-
tigated as an alternative solution to supervise and self-supervise learning. In
FDSL, neural networks are trained on large amounts of synthetic images gen-
erated through mathematical formulas, thus removing the time-consuming data
collection, curation and labeling process. Synthetic data can also be generated
using formulas that take into account the characteristics of the target medi-
cal data. Kataoka et al. demonstrated that large-scale networks pre-trained on
images featuring artificially generated fractals can be used to successfully pro-
cess ImageNet data [18]. In subsequent work, Kataoka et al. also trained deep
networks using radial contour images [17].

In this work, we present a FDSL method designed for ultrasound (US) image
analysis. Acquiring large volumes of medical US data retrospectively from hos-
pitals is challenging, particularly for rare diseases. Moreover, significant time
is often required to properly curate and annotate US data. Handling patient
data presents additional ethical challenges compared to ImageNet like datasets.
We create a large synthetic US image dataset (SUD) featuring automatically
generated variable contours obtained with an algorithm that uses Bezier curves
and Perlin noise. Field II numerical software is utilized to simulate US images
based on the generated contour objects and specified scatterer fields [15]. We
use the synthetic dataset to pre-train classification and segmentation networks.
Next, we compare the transfer learning capabilities of the models pre-trained on
simulated US data and ImageNet with respect to breast mass classification and
segmentation. Our results demonstrate the potential of using formula generated
synthetic US data for network pre-training and transfer learning purposes in US.

2 Related Work

As far as we know, synthetic US data have not been so far utilized to train
large vision models, such as the ResNet50 CNN. Synthetic US data have been
used for machine learning purposes in several papers, mainly in the context
of quantitative US. Chen et al. used Field II to simulate raw radio-frequency
(RF) US data (US data before US image reconstruction) to pre-train a model
for microbubble localization [9,15]. Byra et al. developed a Siamese CNN for
temperature monitoring of tissues using RF US signals simulated in Field II
[8]. Simson et al. generated synthetic RF (RF) US data from numerical breast
phantoms using k-Wave software to train a deep CNN for sound speed estimation
[25,26]. Similarly, Jush et al. used RF signals generated with K-wave to train a
network for speed of sound estimation in breast [16]. Kim et al. utilized synthetic
US data to train a deep learning model for attenuation coefficient estimation in
liver [19]. Koike et al. used K-wave to generate RF US data and develop a
network for aberration correction [21]. Moreover, synthetic US data have been
also utilized for pre-training of US image reconstruction networks [14].
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3 Methods

3.1 Simulated Ultrasound Data

Our approach to synthetic US data generation consists of two steps, see Fig. 1.
First, we generate a binary mask indicating the position of the simulated contour
object. Shape of the mask is related to one of 100 categories, corresponding
to a specific set of hyper-parameters governing the stochastic mask generation
procedure. Second, Field II software is used to create a b-mode US image based
on the generated binary mask.

Mask Generation. We used mathematical formulas to generate objects of
variable shapes. However, in comparison to the previous studies, utilizing fractals
[18] or objects made by superimposing polygons [17], we generated compact
contour objects. Our method was based on a two step procedure. First, we
generated an n-sided polygon with vertices subjected to random perturbations,
with coordinates given as follows:

x(i) = (1 + Aεx(i))cos(2πi/n),
y(i) = (1 + Aεy(i))sin(2πi/n), (1)

where A stands for the amplitude of 2D Perlin noise sequence ε(i) = (εx(i),
εy(i)) with i ∈ [0, 1, ..., n]. Next, we used the polygon to fit a smooth Bezier
curve. In the second step, we utilized the generated curve to create a binary
mask. 2D Bezier curve was appropriately scaled to match specific long-to-short
axis ratio (LSAR). We selected this shape parameter because it corresponds to
a general morphological feature, which is considered to be important for breast
mass differentiation [11]. Next, we rotated the contour by a random angle sam-
pled uniformly from [−π/2, π/2] and rendered the contour as a compact binary
mask to an 512× 512 image, with position of the mask selected randomly. Mask
was scaled to occupy a pre-specified area percentage of the entire image.

Contour Categories. Given the above mask generation procedure, we selected
the following hyper-parameter set (n,A,LSAR) to generate shape categories for
FDSL. The number of the vertices n was selected from {50, 150, 250, 350, 450},

Fig. 1. Ultrasound image generation pipeline. First, a binary mask is generated based
on a contour object obtained with a mathematical formula. Next, the binary mask in
converted to a scatterer field and Field II simulation tool is used to generate a synthetic
b-mode US image.
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Fig. 2. Binary masks presenting contour objects of different variability.

Perlin noise amplitude A from {1, 5, 10, 20} and LSAR from {0.5, 3/4, 1, 4/3,
2}, respectively. The number of the vertices and noise amplitude levels were
chosen based on our experiments and the study of Kataoka et al. [17]. The LSAR
parameter was selected to span typical values of this parameter corresponding to
benign and malignant breast masses. All combinations of these three parameters
resulted in 100 categories, corresponding to objects with variable shapes. For
each category, 1000 masks were generated. The masks occupied a percentage of
the entire image that was sampled from {2%, 6.5%, 11%, 15.5%, 20%}. Figure 2
presents several images corresponding to contour objects of different variability.

Ultrasound Images. The Field II package was used to simulate b-mode US
images based on the generated binary masks [15]. The medium was modeled
as a cloud of point scatterers, with higher scatterer density corresponding to
higher echogenicity in resulting b-mode image. Spatial distribution of the point
scatterers was determined based on the binary mask. Area of the contour object
was associated with a different scatter density than the background area. The
background scatterer density was equal 267 mm−3, which roughly corresponds to
a single scatterer in a cube with edge length approximately equal to simulated
pulse length. The scatterer density inside the object was equal to 0.2 or 5 of
the background scatterer density. These values were experimentally selected to
provide a satisfactory level of contrast in simulated b-mode US images. The scat-
terers locations were randomly drawn from the space extending from −15 mm
to 15 mm in the x-axis (azimuth), −0.5 mm to 0.5 mm in y-axis (elevation), and
from 10 mm to 40 mm in z-axis (depth). The medium with speed of sound equal
to 1540 m m/s was assumed and the sampling frequency of 25 MHz was used.
Linear probe with 128 elements, 0.298 mm pitch, 4 mm element height, 0.25 mm
element width, 80% bandwidth and the transmit frequency 5 MHz was used
in simulations. These parameters corresponded to a standard linear ultrasound
probe. Synthetic US images were generated using fast plane wave imaging. In
this setting, each US image was reconstructed based on a single transmit/receive
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Fig. 3. Synthetic and real breast mass US images, and the corresponding binary masks.

event utilizing a plane wave emitted at angle equal to 0. We used this US imaging
technique to simplify the calculations and generate the dataset in a fast manner.
Still, about 30 d were required to generate the US images given our computing
resources of several computers (e.g. AMD EPYC 7402P, Intel Xeon Processor
E5-2680 V4 CPUs). Matlab and Parallel Computing Toolbox (MathWorks, MA,
USA) were used for the simulations. Several simulated and regular breast mass
US images are presented in Fig. 3. The generated dataset can be downloaded
from the Zenodo repository (10.5281/zenodo.8196163).

3.2 Breast Mass Ultrasound Images

We used UDIAT and BUSI public datasets to assess the proposed FDSL app-
roach [2,27]. Both datasets contain breast mass US images with binary labels
and mass region annotations. For our experiments, we curated both datasets
and removed duplicates and US images with scanner annotations overlaid over
the breast mass region. This resulted in a total of 159 (52 malignant) US images
from the UDIAT dataset and 400 (152 malignant) US images from the BUSI
dataset. To evaluate the performance of the investigated deep learning methods,
we applied stratified 5-fold cross-validation. The datasets were combined and
divided into five training and test sets. Additionally, for each fold, we randomly
selected 15% of cases from the training set to serve as a validation set. The pro-
portion of UDIAT and BUSI images was the same for the training, validation,
and test sets.

3.3 Classification

To demonstrate the usefulness of the proposed FDSL technique, we employed a
standard approach to the classification of breast mass US images. Specifically,
we used the ResNet50 CNN, which is the most widely used backbone model
for transfer learning applications [13]. Residual networks have been utilized for
breast mass classification in several papers [4,6,24].
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We pre-trained the ResNet50 from scratch to predict 100 SUD categories.
Given a synthetic US image, the network had to predict the category related
to the underlying shape generation formula parameters. The architecture of the
network was the same as in the original work, except for the last fully connected
layer, which included 100 output units instead of 1000 as for ImageNet. Following
the original paper and to enable comparisons with the ImageNet model, simu-
lated US images were resized to 224 × 244 and scaled to [−1,1] [13]. The network
was trained for 250 epochs using the Adam optimizer with a learning rate set to
0.001 [20]. A cross-entropy loss function was used for the training, with a batch
size set to 250. To augment the training set, we used the Albumentations pack-
age and applied the following operations with different probabilities: horizontal
flipping, Gaussian filtering, median filtering, random brightness and contrast
adjustments, and adaptive histogram equalization filtering [5]. In general, image
texture filtering was applied with a probability of 75%. The experiments were
performed using TensorFlow and NVIDIA 3090 RTX GPU [1].

Given pre-trained SUD model, two transfer learning techniques, commonly
used in literature, were investigated to perform breast mass classification. First,
we investigated if the SUD pre-trained model can serve as a good feature extrac-
tor [3]. In this case, the convolutional weights of the network were frozen and we
replaced the last fully connected layer of the network with a single unit suitable
for the binary classification task. Only the last linear layer, initialized with ran-
dom weights, was trained to perform breast mass classification. For the second
approach, we also replaced the last linear layer with a linear layer having a single
output. However, in this case we did not freeze the weights and fine-tuned the
entire network. Additionally, we investigated two standard approaches to the
pre-processing of the input US images [3,6,12]. First, the network was trained
with entire US images resized to 224× 224. Second, we cropped the US images
before the resizing based on manually segmented masks with a margin ranging
from 10 to 30 pixels. This operation is commonly applied to exclude the noisy
contributions from the surrounding tissues and improve the performance [3]. For
the testing, we cropped the US images with a fixed margin of 20 pixels.

We evaluated the transfer learning performance with respect to the number
of pre-training epochs on simulated US data. For each pre-trained model and
each cross-validation fold, we used the training set of breast mass US images for
fine-tuning. Adam optimizer with a learning rate of 0.001 was applied to fine-
tune the model based on the binary cross-entropy loss function. During training,
we monitored the loss function on the validation set and terminated training
if no improvement was observed over 15 epochs. The same augmentation tech-
niques were applied. For the training with the cropped US images, we performed
augmentations before image cropping. For comparison, we investigated the Ima-
geNet based ResNet50 as well as ResNet50 trained from scratch with the breast
mass US images. We evaluated the performance of the models using accuracy and
the area under the receiver operating characteristic curve (AUC). For the eval-
uations, we did not apply the filtering techniques to the breast mass US images.
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Test scores were calculated for the models that achieved better performance on
the validation set.

3.4 Segmentation with U-Nets

We also investigated if the simulated data can be used to pre-train breast mass
segmentation networks. For this study, we examined three variants of the U-Net
CNN [23]. We implemented the standard U-Net, Attention-U-Net and SK-U-Net
[7,22]. Compared to the standard U-Net, Attention-U-Net utilizes an attention
mechanism to process the feature maps propagated using the skip connections
[22]. SK-U-Net utilizes selective kernel to adjust the receptive field of the network
to better take into account that breast masses have variable sizes [7].

We pre-trained all three networks on simulated data for up to 100 epochs.
The networks were pre-trained to predict the contour object mask based on
synthetic US images. We used the Adam optimizer with a learning rate of 0.001
for the training. The masks and simulated US images were resized to 256× 256.
We used a loss function composed of the soft Dice score-based loss and binary
cross-entropy loss, expressed with the following equation:

L(S,A) = LDice(S,A) + αLCE(S,A), (2)

where α stands for the cross-entropy loss weight set to 0.5, S and A are the
reference mask and the network output, respectively. The same augmentation
procedure was applied as in the case of the classification networks. Additionally,
dropout regularization with a rate of 10% was applied to all convolutional lay-
ers of the networks. Following the pre-training, we fine-tuned each model with
resized breast mass US images using the Adam optimizer and a learning rate of
0.0001. The same loss function was used for the fine-tuning. Moreover, for the
comparison we also used the breast mass US images to train the models starting
from random weights, following the same training procedure. Similarly to the
classification models, at test time, the segmentation networks were evaluated
with breast mass US images unprocessed with the image filtration techniques.
To assess segmentation performance, we used the Dice score and detection rate
metric defined as the percentage of cases with a Dice score above 0.5 [27]. Test
scores were calculated for the models that achieved better performance according
to the validation set.

4 Results

Figure 4 compares the weights of the first convolutional layer of the ResNet50
model pre-trained on the ImageNet and simulated US data. Training on the sim-
ulated data resulted in filters suited for the processing of grayscale images. Both
networks presented filters sensitive to image texture variations. The network pre-
trained for 100 epochs had filters with strictly localized spatial characteristics,
which may be important for processing synthetic US images or anticipating early
signs of benign overfitting.
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Fig. 4. Comparison between the weights of the first convolutional block of the ResNet50
pre-trained on ImageNet and simulated US data.

Fig. 5. Breast mass classification performance with respect to the number of pre-
training epochs on synthetic data (starting from a single epoch).

Figure 5 presents breast mass classification performance with respect to the
number of pre-training epochs on the synthetic data. We found that even a small
number of the pre-training epochs was sufficient to achieve good classification
performance. Table 1 presents the test set performance for each ResNet50 CNN
selected based on the highest validation set AUC score. Training from scratch
resulted in low AUC scores of 0.804 and 0.845 for full and cropped US images,
respectively. All ImageNet models achieved good AUC scores of around 0.91.
Models developed using cropped US images achieved comparable performance
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Table 1. Breast mass classification performance test scores (mean, ± standard devi-
ation) obtained for the investigated methods based on the ResNet50 CNN. Tuning
indicates whether the backbone network was fine-tuned or served as a feature extrac-
tor, crop indicates whether the breast mass US images were cropped for the training.

Training Tuning Crop Accuracy AUC

From scratch – No 0.746 (± 0.109) 0.804 (± 0.044)

Yes 0.801 (± 0.055) 0.845 (± 0.042)

ImageNet No No 0.831 (± 0.031) 0.909 (± 0.018)

Yes 0.884 (± 0.017) 0.933 (± 0.023)

Yes No 0.854 (± 0.026) 0.927 (± 0.024)

Yes 0.843 (± 0.031) 0.912 (± 0.017)

Simulated US data No No 0.752 (± 0.028) 0.783 (± 0.021)

Yes 0.838 (± 0.044) 0.891 (± 0.021)

Yes No 0.813 (± 0.037) 0.859 (± 0.036)

Yes 0.852 (± 0.059) 0.909 (± 0.032)

Table 2. Breast mass segmentation performance obtained for the investigated methods
based on the U-Net CNN. Dice (mean, median, standard deviation) and DR stand for
the Dice score and detection rate, respectively.

Network Training Dice DR

U-Net Scratch 0.608 (0.697± 0.304) 0.694

Simulated US data 0.703 (0.849± 0.313) 0.796

SK-U-Net Scratch 0.599 (0.701± 0.303) 0.699

Simulated US data 0.731 (0.866± 0.291) 0.827

Attention-U-Net Scratch 0.529 (0.616± 0.331) 0.606

Simulated US data 0.624 (0.794± 0.350) 0.706

to the ImageNet based networks, with AUC values of around 0.9. However, AUC
values were much lower for SUD based models trained on full images. In this case,
the model developed without fine-tuning achieved an AUC value of 0.783, similar
to the ResNet50 trained from scratch. Fine-tuning of the model increased the
AUC value to 0.859. The higher difference between SUD and ImageNet networks
fine-tuned based on full images may be due to the lack of surrounding tissues in
the simulated US images, which only presented contour objects.

Table 2 presents segmentation performance obtained for different variants
of the U-Net CNN. Pre-training on the simulated data improved the perfor-
mance of all investigated segmentation networks. For example, the mean Dice
score obtained for the standard U-Net trained from scratch was equal to 0.608
(median 0.697) and increased to 0.709 (median 0.849) due to the SUD pre-
training. The overall best performance was achieved by the SK-U-Net pre-trained
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on the simulated data, with a mean Dice score of 0.731 (median 0.866). Similarly,
pre-training on the simulated data had a positive impact on the detection rates.

5 Discussion and Conclusion

Our results demonstrate the potential of the FDSL approach in US. We devel-
oped a dataset of 100 000 synthetic US images presenting various contour objects
generated with a mathematical formula. Our findings confirm that models pre-
trained with simulated data can be effectively fine-tuned for breast mass seg-
mentation and classification, highlighting the potential of simulated US data for
developing models suitable for clinical data. Notably, pre-training on the sim-
ulated US images improved performance compared to training from scratch,
although the overall performance was comparable to that of ImageNet pre-
trained networks. This may be due to the size and diversity of the ImageNet
dataset, which includes over 1000k images across 1000 categories. The SUSD
images presented single contour objects without any surrounding structures.
However, our dataset of simulated images can be extended by incorporation
of additional mathematical formulas and image generation methods to further
improve the performance.

Our work has several limitations. First, generating large volumes of synthetic
US data can be time and resource demanding. In our case, it took approxi-
mately 30 d to generate the synthetic US images using Field II. To speed up the
simulations, we used fast plane wave imaging and limited the contents of the
medium to contour objects of variable shape. To partially compensate for these
simplifications, we applied image augmentation during the training of the net-
works. Similarly, Simson et al. used k-Wave package to generate pre-beamformed
US data to train a network for sound speed estimation in breast [25]. Authors
reported that it took approximately 43 d to simulate 5996 samples using plane
wave imaging on a computer equipped with NVIDIA Quadro RTX 6000 GPU.
Therefore, generating synthetic data for pre-training can be challenging. Second,
our study focused only on breast mass segmentation and classification, and the
usefulness of pre-training with synthetic US data for other US imaging tasks
remains to be investigated. The performance improvement due to pre-training
on synthetic data might depend on the similarity between the synthetic and
clinical data distributions, which might differ between different imaging tasks.
Thus, further research is needed to determine whether pre-training on synthetic
US data is applicable to other US imaging tasks and how the amount and quality
of synthetic data impact the performance of the pre-trained models. Third, our
study used only one type of synthetic US data, and the impact of different types
of synthetic data on pre-training needs to be explored. For example, it might
be possible to generate synthetic US data that mimic different tissue types or
imaging modalities.

In the future, we would like to utilize additional computing resources and gen-
erate a larger dataset of more detailed US images, including background objects
corresponding to tissues of different physical properties. Simulations could be
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performed using k-Wave simulation tool, which takes into account the spatial
distribution of sound speed and attenuation coefficients [26]. We consider our
study as an important preliminary step towards generation of large-scale syn-
thetic datasets for generic US image analysis. We believe that a large and diverse
corpus of US datasets and pre-trained models will contribute to the development
of robust and accurate machine learning methods for US image analysis.
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Abstract. In the rapidly evolving field of medical imaging, machine
learning algorithms have become indispensable for enhancing diagnos-
tic accuracy. However, the effectiveness of these algorithms is contingent
upon the availability and organization of high-quality medical imaging
datasets. Traditional Digital Imaging and Communications in Medicine
(DICOM) data management systems are inadequate for handling the
scale and complexity of data required to be facilitated in machine
learning algorithms. This paper introduces an innovative data curation
tool, developed as part of the Kaapana (https://github.com/kaapana/
kaapana) open-source toolkit, aimed at streamlining the organization,
management, and processing of large-scale medical imaging datasets. The
tool is specifically tailored to meet the needs of radiologists and machine
learning researchers. It incorporates advanced search, auto-annotation
and efficient tagging functionalities for improved data curation. Addition-
ally, the tool facilitates quality control and review, enabling researchers
to validate image and segmentation quality in large datasets. It also
plays a critical role in uncovering potential biases in datasets by aggre-
gating and visualizing metadata, which is essential for developing robust
machine learning models. Furthermore, Kaapana is integrated within
the Radiological Cooperative Network (RACOON), a pioneering initia-
tive aimed at creating a comprehensive national infrastructure for the
aggregation, transmission, and consolidation of radiological data across
all university clinics throughout Germany.

A supplementary video showcasing the tool’s functionalities can be
accessed at https://bit.ly/MICCAI-DEMI2023.
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1 Introduction

In recent years, the development and application of machine learning algorithms
in medical imaging have emerged as an instrumental component in advancing
healthcare and diagnostic accuracy [1]. This advancement, however, depends
heavily on the availability and organization of high-quality medical imaging
datasets [2,3]. The Digital Imaging and Communications in Medicine (DICOM)
standard, commonly adopted for storing medical images, encapsulates both
image data and vital metadata, including image modality, acquisition device
manufacturer, and patient information like age and gender [4,5]. This metadata
holds considerable value in the development of robust medical imaging machine
learning algorithms [6]. Traditional DICOM data management systems, while
effective for individual scans or patients, struggle to efficiently handle the scale
and complexity of the data needed to be facilitated in machine learning algo-
rithms [7]. The demand for superior data curation tools is crucial for advancing
the field of medical imaging [8,9]. Despite recent progress in medical imaging
data curation, existing solutions exhibit certain limitations. Some tools, while
useful for data curation, are either proprietary, ill-equipped to handle large-scale
medical datasets, or fail to fully exploit the benefits of DICOM headers [10].

Additionally, while there are automated approaches to enhance the data
curation process, they are not conveniently integrated into a user-friendly tool
[11–13].

In response to these challenges, we have developed an innovative data cura-
tion tool as part of the Kaapana open-source toolkit [14,15]. Kaapana is designed
for advanced medical data analysis, especially in radiological and radiotherapeu-
tic imaging, facilitating AI-driven workflows and federated learning approaches.
By enabling on-site data processing and ensuring seamless integration with clin-
ical IT infrastructures, it aims to address challenges in multi-center data acqui-
sition and offers tools for standardized data processing workflows, distributed
method development, and large-scale multi-center studies. Building up on Kaa-
pana, our tool is designed to streamline the organization, management, and
processing of large-scale medical imaging datasets, catering specifically to the
needs of radiologists and machine learning researchers.

Our contribution is threefold: Our data management tool facilitates (1) effi-
cient data curation by advanced search, auto-annotation and tagging, (2) quality
control and review and (3) dataset bias detection by metadata visualization.

Kaapana is a constituent of the Radiological Cooperative Network
(RACOON), an initiative to establish a nationwide infrastructure for collecting,
transferring, and pooling radiological data across all German university clinics.
Integrating our tool in Kaapana paves the way for its imminent deployment
across all German university clinics, facilitating clinical validation.
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Fig. 1. Screenshot of the curation tool integrated into Kaapana. The gallery view dis-
plays series thumbnails accompanied by customizable metadata, providing a compre-
hensive visual overview. The sidebar showcases the metadata of the current selection,
enabling swift detection of potential biases based on the DICOM metadata. This layout
illustrates the tool’s user-friendly interface and its capabilities in efficient data curation
and bias detection.

2 Methodology

The essence of our methodology is to extend the capabilities of Kaapana, an
open-source toolkit designed for medical data analysis and platform provisioning,
by incorporating a comprehensive tool for managing, curating, and processing
large-scale medical imaging datasets.

2.1 Technical Infrastructure

Our system benefits from Kaapana’s robust technical infrastructure. Vue.js,
a versatile JavaScript framework, powers the frontend, ensuring user-friendly,
dynamic, and responsive web interfaces. FastAPI, a high-performance web frame-
work, forms the backbone of the backend, enabling efficient communication with
the frontend.

The persistence layer is three-fold, each serving a unique purpose. The
dcm4chee Picture Archiving and Communication System (PACS) stores the
original DICOM images, safeguarding their integrity and availability. For effi-
cient management of large datasets, the DICOM Header is converted to JSON
and stored in OpenSearch, a powerful open-source search engine known for its
quick querying abilities. PostgreSQL, an open-source object-relational database
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Fig. 2. Illustrating the technical infrastructure. Highlighting the frontend powered by
Vue.js, the backend using FastAPI, and the three-fold data persistence layer consisting
of dcm4chee, OpenSearch, and PostgreSQL. The arrows visualize the communication
between the components.

system, forms the mapping layer, establishing connections between data and
respective datasets, hence facilitating effective categorization and retrieval. The
full utilized technical infrastructure is visualized in Fig. 2.

While our focus has primarily been on DICOM data, our solution also demon-
strates flexibility in accommodating other formats. Kaapana is capable of trans-
forming images in the Neuroimaging Informatics Technology Initiative (NIfTI)
data format into DICOMs. These transformed images can then be curated. It’s
important to note, however, that metadata extraction is not possible from the
NIfTI format; only the image data is preserved in the transformation. Neverthe-
less, this flexibility in data handling further extends the applicability of our tool
in a variety of medical imaging contexts.

2.2 Graphical User Interface

The graphical user interface in seamlessly integrated into Kaapana’s Vue.js fron-
tend. Throughout the development process, which was conducted in close col-
laboration with radiologists, it was highlighted that varying use cases necessitate
distinct user interface requirements. Consequently, the user interface has been
designed to be highly adaptable, offering an array of customizable settings to
cater to diverse needs. Overall, the user interface consists of a three-part layout
visualized in Fig. 3.

Search. A sophisticated full-text search function, supporting wildcard search
and free-text filtering, assists users in efficiently locating specific items based on
image metadata. Additionally, it provides autocomplete functionality, stream-
lining the search process.

Gallery View. The gallery view provides a visual display of DICOM series,
presenting them in a thumbnail format along with customizable metadata. The
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Fig. 3. Filtering for series containing lower lung lobes. The gallery view presents thumb-
nails with superimposed segmentations, while one selected series is opened in the side-
bar for interactive 3D volume visualization with segmentations.

thumbnail creation is in compliance with the DICOM standard [4,5], which
accommodates a broad spectrum of image modalities, including but not limited
to, Structured Reports (SR), CT, or Magnetic Resonance Imaging (MRI). Given
the current interest in segmentation algorithms within the medical imaging com-
munity [16], our tool automatically generates thumbnails for DICOM-SEGs or
RTStructs that illustrates the segmentation superimposed on the original image.
The gallery view also includes a multi-selection feature that facilitates bulk oper-
ations (see Fig. 1).

Sidebar. The sidebar serves a dual function - as a metadata dashboard and a
detail view. The configurable metadata dashboard aggregates and displays com-
prehensive metadata distributions based on the current selection in the gallery
view. These metadata distributions are interactive, allowing for selection and
zooming for detailed examination. They can also be downloaded as charts or
CSV files, providing flexibility in data analysis and sharing.

In the detail view mode, activated upon series selection, it showcases an
interactive 3D visualization of the chosen DICOM series using the integrated
(adjusted) OHIF Viewer [7] next to a searchable table with the series’ metadata,
including the DICOM Headers.

2.3 Machine Learning Integration

Kaapana is capable of executing state-of-the-art machine learning algorithms
robustly. It is already equipped with a robust body part regression algorithm,
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allowing automatic assignment of which body part is covered in a given CT image
[13,17]. Since one of Kaapana’s major strengths is the easy extendability, we inte-
grated TotalSegmentator [12] to even further extend the automatic data cura-
tion capabilities. TotalSegmentator is based on nnUNet [18], an automatically
adapting semantic segmentation method, which allows segmenting 104 anatomi-
cal structures (27 organs, 59 bones, 10 muscles, 8 vessels) from CT images. This
integration significantly enhances the automatic annotation capabilities. Fur-
thermore, by this, users can filter for those body parts or anatomical structures
and even further speed up their curation process.

2.4 Data Management and Workflow Execution

Our tool incorporates robust data management and workflow execution capabili-
ties. Users can perform various actions on multiple selected series simultaneously,
such as adding or removing series from a dataset and initiating workflows. An
intuitive tagging system, with shortcut and autocomplete support, streamlines
data annotation and categorization.

3 Results

Our data curation tool, integrated into Kaapana, provides a comprehensive and
intuitive interface for managing, organizing, and processing extensive medical
imaging datasets, thereby contributing significantly to efficient dataset curation
for machine learning algorithms. Here, we highlight potential applications of our
tool through a series of illustrative examples:

3.1 Dataset Management, Auto-Annotation and Tagging

Radiologists frequently handle vast collections of medical images, encompass-
ing multiple patients, studies, and imaging modalities [9]. A common scenario
involves a radiologist tasked with organizing thousands of CT and MRI scans
acquired over several years for a large-scale study. Concurrently, in large-scale
medical imaging studies curating and annotating an extensive collection of CT
scans presents a formidable challenge. This requires a meticulous analysis of
thousands of scans for visible disease symptoms, a process that is both labor-
intensive and time-consuming.

Our tool offers a solution to these challenges with its gallery-style view,
multi-select functionality, and advanced search features. Radiologists can swiftly
sift through images, categorizing them into different datasets based on various
attributes, such as patient demographics, study type, or imaging modality. The
tool’s advanced search functionality enables efficient image curation by allow-
ing filters for DICOM metadata or algorithm outcomes, such as body part or
anatomical structure.

These machine-assisted annotations provide an initial dataset that radiolo-
gists can validate and refine, significantly reducing the manual labor required
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and streamlining the annotation process. Furthermore, the gallery view, coupled
with tagging functionality, enhances the organization of the curated and anno-
tated dataset. This integrated approach to data organization, management, and
annotation significantly alleviates the burden on radiologists and accelerates the
preparation of data for machine learning applications.

3.2 Quality Control and Review

Our tool is particularly beneficial in scenarios where researchers need to vali-
date the quality of images and segmentations in large medical imaging datasets,
such as those obtained from multi-center studies. The tool’s gallery and detail
views can be effectively utilized to swiftly pinpoint images with poor quality
or erroneous segmentations. An illustration of this capability is evident in the
lower row of Fig. 4, where a multi-organ segmentation algorithm was applied to
CT images but yielded subpar results. While 2D thumbnails may not always
suffice for quality control of 3D segmentation algorithms, they can significantly
expedite the quality control process in certain cases.

For instances where thumbnails fall short, the detail view allows researchers
to navigate through the 3D volumes for a more comprehensive quality assurance.
Moreover, as Magudia et al. [9] highlight, quality control for DICOM Headers is
particularly crucial in multi-center studies due to data heterogeneity. Our tool
caters to this need by displaying and allowing filtering of metadata.

Fig. 4. Showcasing the gallery view’s ability to handle various DICOMs and visually
inspecting problematic series, such as the noisy series (top row, fourth from left) and
the adjacent patient report. The radiologist can then exclude those problematic series.
The lower row emphasizes the tool’s capacity to quickly spot low-quality segmentations
of a 3D CT image.
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3.3 Uncovering Potential Bias in Datasets

Dataset biases, such as disparities in patient demographics or variations in
scanner types and configurations, can profoundly influence the performance of
machine learning models [6]. Such biases may lead to models that exhibit excel-
lent performance during training and validation phases but falter in real-world
applications due to an over-dependence on biased features. For example, a model
predominantly trained on data from a specific scanner may struggle to general-
ize to images produced by other scanners [19]. Our tool can play a pivotal role
in identifying these biases through its metadata dashboard. By aggregating and
visualizing the metadata of selected items, researchers can discern patterns or
inconsistencies that could signal potential biases. The visualization of the meta-
data distribution from a subset of the LIDC-IDRI Dataset’s CT scans, as shown
in Fig. 1, underscores the tool’s ability to detect such biases [20]. A machine
learning model trained on this dataset might inadvertently learn the skewed
distribution of convolution kernels or scanners, which could result in failure on
unseen data which does not represent the learned distribution.

By offering early detection of bias, the tool enables researchers to implement
corrective strategies, such as data augmentation or bias mitigation techniques.
This enhances the generalizability and resilience of the machine learning models
developed, ensuring they perform optimally across varied scenarios.

4 Discussion and Conclusion

The development of an efficient data curation tool as part of the Kaapana open-
source toolkit, as presented in this paper, addresses a critical need in the field
of medical imaging. The availability and organization of high-quality medical
imaging datasets are paramount for the successful application of machine learn-
ing algorithms in healthcare. The tool’s integration with Kaapana provides a
robust infrastructure for managing, curating, and processing large-scale medical
imaging datasets.

One of the significant contributions of this tool is the streamlined annota-
tion process. By employing advanced search functionality and auto-annotation
capabilities through machine learning algorithms such as TotalSegmentator and
Body Part Regression, the tool significantly reduces the manual labor required
for image curation. Moreover, the tool’s ability to support quality control and
review mechanisms is vital for ensuring the reliability of datasets, especially in
multi-center studies. The integration of a metadata dashboard is particularly
noteworthy, as it enables the detection of potential biases in datasets. Further-
more, the open-source nature of the tool promotes collaboration and sharing
among researchers, which is essential for advancing medical imaging research.

By leveraging Kaapana’s federated learning capabilities, in future work
curated datasets can be used in downstream federated learning use cases,
enabling a collaborative approach to machine learning that respects data pri-
vacy and locality constraints. While the use cases demonstrate the utility of
the tool, quantifying its enhancements remains a primary focus for future work.
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Furthermore, integrating even more advanced algorithms for automatic image
annotation could further improve the efficiency and accuracy of the tool. Another
potentially promising advancement could be the integration of Electronic Health
Record (EHR) data, which plays a crucial role in the process of creating datasets.

These future directions aim to ensure that the Kaapana data curation tool
remains at the forefront of medical imaging research, catering to the evolving
needs of radiologists and machine learning researchers.
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Abstract. Providing 3D navigation in colonoscopy can help decrease
diagnostic miss rates in cancer screening by building a coverage map
of the colon as the endoscope navigates the anatomy. However, this
task is made challenging by the lack of discriminative localisation land-
marks throughout the colon. While standard navigation techniques rely
on sparse point landmarks or dense pixel registration, we propose edges
as a more natural visual landmark to characterise the haustral folds
of the colon anatomy. We propose a self-supervised methodology to
train an edge detection method for colonoscopy imaging, demonstrat-
ing that it can effectively detect anatomy related edges while ignor-
ing light reflection artifacts abundant in colonoscopy. We also propose
a metric to evaluate the temporal consistency of estimated edges in
the absence of real groundtruth. We demonstrate our results on video
sequences from the public dataset HyperKvazir. Our code and pseudo-
groundtruth edge labels are available at https://github.com/jwyhhh123/
HaustralFold Edge Detector.

Keywords: Colonoscopy · Scene understanding · Edge detection ·
Landmark detection

1 Introduction

Reconstructing 3D gastrointestinal (GI) tract maps from endoscopy videos is a
research challenge receiving increasing attention in recent years [4]. In the context
of colon cancer screening, real-time 3D reconstruction would enable monitoring
which surfaces have already been inspected [13,14], making it easier to ensure
complete coverage and reduce the chance of missing polyps [18]. It would also
enable complete reporting, associating polyps with precise colon map locations.

Simultaneous Localization and Mapping (vSLAM) is a popular algorithm
framework that has been translated to colonoscopy 3D reconstruction [6,17].
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However, we are still far from reliably reconstructing entire colons in real cases
due to multiple imaging challenges. The majority of established methods builds
3D maps relying on the detection of point landmarks in the visualised scene
across different frames. In colonoscopy, however, the detection and matching
of point landmarks are extremely challenging due to scene textures being very
similar, fast camera motions, abundant presence of light reflections, blur, and
multiple types of occlusions.

While there is some research towards making point landmark detection more
reliable in endoscopy [3], other alternatives involve bypassing the detection of
points altogether. Some works perform registration of different frames by directly
estimating depth [17] or relative motion [20] using end-to-end deep learning
networks. The main challenge here is obtaining the necessary training data. Using
virtual simulation has been suggested to train such algorithms [21], however,
there is still a gap in generalising its results to real images.

A different alternative to bypass point landmark detection would be to focus
on detecting scene edges instead. The colon anatomy has clearly visible and
identifiable edges corresponding to its haustral folds (Fig. 1). While edge detec-
tion has seen significant progress in computer vision [19], there has been very
little investigation on its application to endoscopy. Therefore, we introduce the
following contributions:

– We introduce a method to detect haustral fold edges in colonoscopy based
on the DexiNed architecture [19]. To the best of our knowledge, it’s the first
time this problem has been investigated.

– Given the inexistence of groundtruth for colonoscopy edge detection, we pro-
pose a combination of transfer learning and self-supervision to train our
method.

– We propose an unsupervised evaluation process to measure the temporal con-
sistency of edge predictions in continuous video frames.

– We will release both our code and pseudo-groundtruth edge masks for a subset
of the public dataset HyperKvazir.

example 1 example 2

Fig. 1. We aim at detecting haustral folds (denoted by green arrows) in colonoscopy
video. Formulating the problem as edge detection, these are circular contours on the
colon wall (denoted by black lines). Sample predictions from our method are provided
in black and white masks. (Color figure online)
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2 Related Work

While most of the classic 3D navigation and reconstruction literature deals
with rigid scenes containing unique and easy to recognise visual landmarks,
in endoscopy there are two striking differences. The first one is the presence of
deformable tissue. A few works have extended visual SLAM to explicitly model
deformation of the 3D scene over time [12,22]. The second difference is that it
is much more challenging to detect and track reliable landmarks on the GI tract
due to simple tissue textures, frequent camera blur, light reflections and other
dynamic occlusions. This paper will focus on this latter challenge which we now
review in more detail.

Endoscopic scenes contain wet tissues illuminated by a close-range, moving
light source. This produces abundant specular light reflections on tissue surfaces
and makes it difficult to find landmarks with stable visual appearance. One
approach to tackle this is to detect and inpaint specular reflections prior to
landmark detection and matching [7]. A large amount of literature is dedicated
to detection, filtering and inpainting of specular reflections in surgery [1,9,16].

The different visual appearance of endoscopic scenes presents a very spe-
cific domain shift in comparison to well established applications (e.g. out-
doors/indoors human-made environments), and therefore machine learning
approaches have been useful in bridging this gap. The SuperPoint [8] feature
detector can be fine-tuned on endoscopy scenes in a self-supervised way [3],
optimising its performance to this particular environment. There are a few other
recent deep learning point feature detector alternatives that to the best of our
knowledge have not been tried on endoscopy scenes [23,25,26].

Notably, there has been little investigation into the detection of features
with other shapes than points. In the context of colonoscopy, this would be a
promising direction since the colon is characterised by haustral folds, i. e. thin,
ring-shaped structures on its surface (Fig. 1). A recent work has investigated the
semantic segmentation of haustral folds [15]. However, we show that its results
are still limited and inconsistent when applied to sequences of consecutive frames.
We believe there is intrinsic ambiguity in labelling segmentations of these folds,
as they do not have a well defined contour in the regions where they join the
colon wall. Therefore, we propose to focus instead exclusively on the well defined
portion of haustral fold contours using edge detection.

There have been recent advances in performing edge detection with deep
learning architectures [19,24]. While pre-trained models are publicly available,
these have been trained for general purpose vision, and we show in this paper that
they are extremely sensitive to specular reflections. Furthermore, these methods
have been trained in a fully supervised fashion, requiring either manually edge
labels or proxy edges from semantic segmentation labels. While it would be a
burdensome task to produce colonoscopy edge labels in sufficient numbers, we
focus instead on self-supervised transfer learning.
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3 Methodology

We aim at performing classification of each pixel in colonoscopic images as either
edge or not-edge. Our target edges result from the colon shape (i.e. contours
of the haustral folds) and not from its surface texture (i.e. vessels, shadows,
reflections, etc).

Method Outline. As a baseline we start from the DexiNed model [19] which is
a state-of-the-art edge detector trained on non-medical image data. This network
is a sequence of 6 convolutional blocks, each of them performing pixel-dense edge
detection at different image scales. Using skip connections and up-sampling,
these 6 detections are fused into a final multi-scale edge detection result. The
network is originally trained with a modified BDCN loss [10] in a fully supervised
manner, using manually drawn edges as groundtruth labels.

A pre-trained model of DexiNed is publicly available, and we verify that it
is able to detect haustral folds in colonoscopy videos. However, it also produces
a significant amount of other false positive detections, mostly artifacts from
illumination patterns. While DexiNed is pre-trained in a fully supervised man-
ner, we aim at improving its results on endoscopy data without any additional
groundtruth labels available.

Our first observation is that false positive detections can be removed by
pre-processing the videos with a temporal specularity inpainting method [7]. In
[7], a spatial-temporal transformer is used as a generator within a GAN struc-
ture to inpaint specular occlusions. While this produces very appealing results,
unfortunately the pre-processing step restricts its usage to offline inference. This
is because reliable inpainting results require processing a window of both past
and future frames in a single inference step to take advantage of temporal cues.
Furthermore such a pipeline would require running two different networks at
inference time which is computationally sub-optimal.

To obtain a single model capable of online operation in an end-to-end fash-
ion, we will leverage edges generated with offline pre-processing as pseudo-
groundtruth labels to fine-tune DexiNed in a self-supervised manner.

Training Pipeline. Our training methodology is summarised in Fig. 2. We ini-
tialise the network with the weights from the original pre-trained DexiNed model,
and then fine-tune it on endoscopy video. Our training procedure differs from
[19] in the following aspects: (1) Instead of manually annotated groundtruth, we
automatically generate pseudo-groundtruth labels with offline processing. (2)
Instead of BDCN, we use a mean squared error (MSE) loss, as we empirically
verified better results. (3) We train the network on batches of consecutive video
frames rather than independent photos. (4) We also add a triplet loss term to
improve temporal consistency in continuous video inference.

For a given set of training video clips c = 1, ..., C, we generate a set of pseudo-
groundtruth label masks Gc,t for all frames Xc,1, ...,Xc,Tc

in three steps. First,
we pre-process all frames with the inpainting method from [7]. Secondly, we run
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Fig. 2. Model fine-tuning. Pseudo-groundtruth labels are predicted by the pretrained
DexiNed on the inpainted images in the pre-processing step. DexiNed is then further
trained with a loss combining the pixel-wise loss LMSE and consistency loss LTC . The
encoder uses a SegNet model to produce embedding vectors.

the pre-trained DexiNed model on the inpainted training data, generating clean
edges of haustral folds. As a last step, we apply a mask to remove any edges
resulting from field-of-view and interface overlays typically present in endoscopy
images, resulting in the pseudo-groundtruth masks Gc,t.

Loss Function. We train our model with a loss combining two terms weighted
by a parameter γ

L = γLMSE + (1 − γ)LTC (1)

LMSE is the mean squared error between edge predictions Ec,t and respective
pseudo-labels Gc,t

LMSE =
1
P

C∑

c=1

Tc∑

t=1

I∑

i=1

J∑

j=1

(Ec,t(i, j) − Gc,t(i, j))
2 (2)

where I, J are respectively the vertical and horizontal image resolution and P is
the total number of pixels in the training data.

LTC is a triplet loss that measures temporal consistency. We take edge pre-
dictions from 3 consecutive frames (Ec,t, Ec,t+1, Ec,t+2) and obtain their lower
dimensional embedding vectors with an encoder ψ(). We use the encoder from
SegNet [2], pre-trained on the Cars dataset1 The triplet loss is then calculated:

LTC =
C∑

c=1

Tc−2∑

t=1

max(‖ψ(Ec,t) − ψ(Ec,t+1)‖2−

‖ψ(Ec,t) − ψ(Ec,t+2)‖2 + β, 0)

(3)

where β is a pre-defined margin parameter. In triplet loss terminology, Ec,t rep-
resents the anchor, Ec,t+1 the positive sample, and Ec,t+2 the negative sample.
1 The pretrained SegNet is available on https://github.com/foamliu/Autoencoder.

https://github.com/foamliu/Autoencoder
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Evaluation. Edge predictions are typically evaluated by comparison against
groundtruth labels, through Optimal Dataset Scale (ODS), Optimal Image Scale
(OIS) and Average Precision (AP) [19,24]. In addition, our main motivation
is to investigate edges as alternative features for navigation, and therefore we
aim at temporally consistent estimations that can be further registered in video
sequences for camera motion estimation. To this end, we also propose an unsu-
pervised temporal consistency metric based on [27] that was originally introduced
for semantic segmentation.

Our evaluation method is summarised in Fig. 3. We measure the temporal
consistency TCt+1

t of two independent edge predictions Et, Et+1 by first warping
Et into E′

t using optical flow then measuring the overlap between E′
t and Et+1.

We assume that edge predictions E′
t and Et+1 are binarised with a threshold

T1. For optical flow we use FlowNet 2.0 [11]. While [27] computes intersection
over union (IoU) between E′

t and Et+1 we find this is not adequate for deal-
ing with thin edges. Small spatial shifts in edge predictions result in drastic IoU
decrease without it necessarily corresponding to a drastic decrease in edge consis-
tency. Instead, we apply a distance transform to both E′

c,t and Ec,t+1, generating
grayscale fields with intensity values representing the distance to the closest edge.
The distance fields are binarised with a threshold T2, resulting in masks D′

t,Dt+1

denoting all pixels with a distance smaller or equal to T2 from edges in E′
t,Et+1

respectively. The temporal consistency TCt+1
t is a class-weighted IoU between

D′
t and Dt+1. We weight classes based on their frequency in the image, due to

the extreme imbalance between edge and not-edge pixels. Finally, the metric is
averaged on all pairs of consecutive frames in the test data.

Fig. 3. The framework of consistency evaluation. The motion tracking block produces
a pair of edge-maps E′

t and Et+1 aligned via optical flow (FlowNet 2.0). The overlap
of aligned edge-maps is measured as the class-weighted IoU of binarised distance fields
D′

t and Dt+1. These distance fields represent pixels within a distance T2 to the edge
predictions.
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4 Experiments

Experimental Setup. We train and test our model on a subset of the Hyper-
Kvasir dataset [5], defined as all 31 videos of lower GI with adequate bowel
preparation (i.e. labelled as BBPS 2-3). We split the data into training, valida-
tion, and test with respectively 12, 8, and 11 videos. The images contain black
margins and often an endoscope pose display on the lower left corner that pro-
duce irrelevant edge detections. We mask out these regions for all images. To
compute temporal consistency metrics, we use the totality of the test video data.
For comparison against groundtruth, we manually annotated a sparse sub-set of
78 randomly selected images from the test data.

Our method is implemented in Pytorch 1.12.1 with an Intel i7 CPU with
3 GHz and an Nvidia 3090 GPU. Video frames are cropped and resized to
256× 256. DexiNed is trained with a RMSprop optimiser with α = 0.99 and
ε = 1 × 10−8, using a constant learning rate η = 1 × 10−8. We use a triplet loss
margin β = 1. A threshold T1 = 240 is set to binarise edge-maps. We use T2 = 5
for model evaluation. We used two-stage training where all models are trained
with MSE loss for 5 epochs, followed by 5 epochs of our complete loss in Eq. 1.

Experimental Results Figure 4 displays qualitative results for our model,
pseudo-groundtruth, and baselines for a sample sequence of 4 frames. Our model
is able to significantly reduce the number of false positive detections caused by
highlight reflections. This is a combined effect of the pseudo-groundtruth with
temporal consistency (i.e. reflections are less consistent than haustral folds). We
note that our method is able to capture the outer edge (see red box) which
was not visible either in pre-trained DexiNed or pseudo-groundtruth. We also
display results of Foldit [15] for the same sequence, which produces temporally
inconsistent fold segmentations that also generally provide less detail about the
scene.

In Table 1 we report the temporal consistency (TC), the average percentage
of detected edge pixels for each of the tested methods, and also conventional
edge accuracy metrics [19,24] ODS, OIS and AP. Our method has higher TC
score than all others, including pseudo-groundtruth. This can be explained by
the effect of the triplet loss. On average our method detects fewer edge pixels
than others which in part is explained by the reduced number of false positive
reflection detections (when compared to pre-trained DexiNed) and also due to its
thinner edge predictions (when compared to pseudo-groundtruth). In terms of
groundtruth evaluation, we observe a comparable performance to the pretrained
model when evaluating edge detection metrics. The significantly higher scores
obtained for the pseudo-groundtruth validate the reliability of our pseudo-labels.
We also highlight that the FoldIt quantitative results should be interpreted with
caution (we present them for the sake of completeness) as the detected regions
are much larger than our proposed edges. However, its lower TC is consistent
with the clearly visible temporal inconsistencies in Fig. 4. In Table 2, we show
an ablation of the loss function weight γ. γ = 1.0 corresponds to using the MSE
loss alone, which significantly reduces the TC score.
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Fig. 4. Edge detection results on four consecutive frames. The predictions in the last
column are made by our method. We highlight the red box where significant differences
between methods and pseudo-groundtruth can be visualised. (Color figure online)

Table 1. Temporal Consistency (TC), edge pixel rate and results of edge detection
metrics (ODS, OIS and AP). We note that Foldit is an image segmentation model
(rather than edge detection), which explains the significant differences.

ID Method TC mean TC std edge pixel
rate

ODS OIS AP

1 pretrained
DexiNed

0.8840 0.0244 0.1564 0.6332 0.6613 0.5258

2 pseudo-GT 0.9028 0.0172 0.1300 0.7271 0.7556 0.6704

3 Ours (γ=.1) 0.9348 0.0107 0.0350 0.6491 0.6668 0.5145

4 Foldit 0.8708 0.0359 0.4976

We must note that, as with any unsupervised metric, TC values cannot be
analysed in a vacuum. In extreme, a method that never predicts any edge has
the highest TC score but this is undesirable. Therefore we should also make sure
edge pixel rates are not approaching zero. Our method has an edge pixel rate
of 3.5% which is still deemed reasonable for the given data. We note that it is
significantly lower than other methods due to detecting thinner edges.
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Table 2. Ablation of loss weight γ. All values have similar TC except for γ = 1 (MSE).

ID Method TC mean TC std edge pixel rate

1 triplet+mse (γ=.1) 0.9348 0.0107 0.0350

2 triplet+mse (γ=.3) 0.9314 0.0111 0.0357

3 triplet+mse (γ=.5) 0.9278 0.0112 0.0351

4 triplet+mse (γ=.7) 0.9310 0.0110 0.0336

5 triplet+mse (γ=.9) 0.9268 0.0117 0.0409

6 triplet+mse (γ=1.0) 0.8445 0.0259 0.4080

5 Conclusions

We demonstrate that end-to-end detection of haustral fold edges in colonoscopy
videos is feasible and can be made robust to the abundant reflection arti-
facts present in these scenes with a simple self-supervised training pipeline. We
believe these are stable and consistent features across multiple views that can
be exploited for colonoscopy video navigation and place recognition, but so far
have been underexplored. While our method shows promising qualitative results
and temporal consistency, future work should evaluate these features in down-
stream tasks such as endoscope motion estimation, 3D reconstruction, and place
recognition.
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Abstract. The use of synthetic/simulated data can greatly improve
model training performance, especially in areas such as image guided
surgery, where real training data can be difficult to obtain, or of limited
size. Procedural generation of data allows for large datasets to be rapidly
generated and automatically labelled, while also randomising relevant
parameters within the simulation to provide a wide variation in models
and textures used in the scene.

A method for procedural generation of both textures and geometry
for IGS data is presented, using Blender Shader Graphs and Geome-
try Nodes, with synthetic datasets used to pre-train models for polyp
detection (YoloV7) and organ segmentation (UNet), with performance
evaluated on open-source datasets.

Pre-training models with synthetic data significantly improves both
model performance and generalisability (i.e. performance when evaluated
on other datasets). Mean DICE score across all models for liver segmen-
tation increased by 15% (p=0.02) after pre-training on synthetic data.
For polyp detection, Precision increased by 11% (p=0.002), Recall by 9%
(p=0.01), mAP@.5 by 10% (p=0.01) and mAP@[.5:95] by 8% (p-0.003).

All synthetic data, as well as examples of different Shader
Graph/Geometry Node operations can be downloaded at https://doi.
org/10.5522/04/23843904.

Keywords: Simulation · Image Guided Surgery · Data Engineering

1 Introduction

A majority of researchers in Image Guided Surgery (IGS) are involved with
machine learning in some form (registration, segmentation, stereo reconstruc-
tion, classification etc.). However, the lack of application specific training data

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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is a major blocker for development. In addition, the time-consuming process of
manually labelling data is especially challenging for medical data, as labelling
complex intraoperative scenes or radiological data typically requires the inter-
vention of a trained clinician.

The wider computer vision community has benefited from large open-sourced
datasets, including both real (e.g. ImageNet, KITTI) and simulated (e.g. Scene
Flow, Virtual KITTI). While synthetic data can underperform in training when
compared to real data, due to the so called ‘domain gap’, recent advances in
domain specific simulation have produced models with equivalent, or in some
cases superior performance to those trained only on real data [10,13,16]. Syn-
thetic data has the additional advantage of being able to generate more accurate
and complex labels, without the time/cost overheads of manual labelling.

IGS researchers have applied several methods from the machine learning
community to generate synthetic data [4,6,9,11,14–16]. However, procedural
generation, a method of creating data algorithmically from a pre-defined set of
rules, is not an area that has had much investigation in IGS, despite showing
promising results on conventional image recognition tasks [13]. As they allow
control over the entire scene, procedural methods can also be integrated into
active learning/active simulation pipelines, where the simulation parameters are
updated on the fly in response to the network performance.

1.1 Contribution

In this work, methods for the generation of high quality, procedurally rendered
data for IGS applications are described. This includes a fully procedural gener-
ation method, with no user inputs required, for generating colonoscopy data for
polyp detection (which the authors believe to be a first), and a partially pro-
cedural method, where anatomically accurate models are used, with procedural
textures, for liver segmentation during laparoscopic liver surgery.

Data was rendered using Blender (https://www.blender.org) (Fig. 1), taking
ad-vantage of two main areas of functionality. The first is the use of Shader
Graphs to generate realistic tissue textures. The second is Geometry Nodes,
which allows for the entire geometry of the scene to be defined, and modified
procedurally. On top of this, custom scripting allows for randomization of rele-
vant parameters within the scene, allowing large, varied datasets to be rapidly
generated.

The use of this data for model pre-training boosts performance, when eval-
uated on a number of publicly available datasets, in both laparoscopy and
colonoscopy. Data used for training, along with original Blender files, to allow
for data replication, is available for download (https://doi.org/10.5522/04/
23843904).

https://www.blender.org
https://doi.org/10.5522/04/23843904
https://doi.org/10.5522/04/23843904
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Fig. 1. Rendered synthetic data for Laparoscopy (left column) and Colonoscopy.

2 Methods

2.1 Shader Graphs for Texture Generation

The use of visual editors and node based approaches to producing shaders has
increased in recent years, providing a layer of abstraction above shader code
(HLSL, OSL etc.), allow the user to design shaders more intuitively, with instant
feedback as parameters are changed. All major 3D graphics tools now include
this functionality, including Unreal (Material Editor), Unity (Shader Graph),
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Fig. 2. Example of Blender Shader Graph for basic shading and normal maps. By
combining different nodes, and adjusting their parameters, different textures/effects
can be generated.

Houdini (Materials) and Blender. (Shader Graph) An example Shader Graph in
Blender is shown in Fig. 2, making use of the following nodes:

– Noise Texture: this node generates a procedural noise pattern, often used for
creating natural-looking textures or adding surface imperfections. It offers
various parameters to control the type, scale, and intensity of the noise pat-
tern.

– Bump: this node perturbs the surface normals of a material, simulating sur-
face details without actually modifying the geometry.

– Diffuse BSDF: The Diffuse BSDF node represents a Lambertian diffuse mate-
rial.

– Material Output: The Material Output node is the final node in the shader
graph and serves as the endpoint for the material. It combines different shader
outputs, such as Diffuse BSDF and links them to the surface of the 3D model
for rendering.

The approach used in this work was to generate all textures procedurally, making
use of more than 20 different Shader Graph nodes, allowing for fine grained
control over all aspects of the texture’s appearance, including albedo, bump
mapping, displacement, subsur-face scattering, reflectance, glossiness etc.

Custom Shader Graphs were created for each organ, to match the properties
of the real tissues as closely as possible. Within each graph, key parameters were
identified which were to be randomly varied (Fig. 3) at simulation time, as well
as the ranges over which to randomise. The appearance of each Shader Graph
was manually tuned, and the appearance compared visually to sample images
of each target tissue. All textures used for training in this work were generated
using a Shader Graph, and these can be found in the accompanying dataset
release (https://doi.org/10.5522/04/23843904).

https://doi.org/10.5522/04/23843904
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Fig. 3. Randomising texture and lighting parameters on laparoscopy (above) and
colonos- copy (below) data.

2.2 Geometry Nodes for Model Generation

Procedural modeling is a powerful approach in computer graphics and 3D design
that allows for the automatic generation of complex shapes, textures, and ani-
mations using algorithms and rules. Instead of manually creating each element,
procedural modeling relies on mathematical functions, parameters, and logi-
cal operations to define the geometry and appearance of objects. This app-
roach offers numerous advantages, including scalability, flexibility, and the abil-
ity to create variations easily. Procedural models can be modified parametrically,
enabling quick adjustments without redoing the entire design. As a result, pro-
cedural modeling is widely used in various industries, including video games,
visual effects, architectural visualization, and simulation. Here, we use Blender’s
Geometry Nodes feature (Fig. 4) which enables procedural modeling by connect-
ing nodes that manipulate input geometry, perform operations like transforma-
tions and deformations, and generate or modify mesh topology. Attribute and
math nodes manage data and perform calculations, while input nodes provide
user-defined parameters. Geometry nodes are used to procedurally generate both
a colon model, and to distribute polyps across the surface of the colon. Start-
ing with a single curve to represent the shape of the colon, the entire model,
including the location and size of polyps, is generated from scratch (Fig. 5).

2.3 Rendering/Synthetic Dataset Generation

For each frame of data, texture parameters were randomised controlling displace-
ment magnitude, bump map magnitude, colour of the organs/tissues, subsurface
scattering parameters, noise levels etc. The intensity of the lighting, the level of
motion blur, and the position, look direction and focal distance of the camera
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Fig. 4. Geometry Nodes example. (a) Input Cube. (b) Linear extrusion of each face.
(c) Subdivision of the mesh, then extrusion of each face to a random distance. Output
geometry data is generated on the fly from as the input geometry/parameters are
changed.

were also adjusted. All images were rendered using the Cycle raytracing engine,
at dimensions of 512× 512, with a noise threshold of 0.1 and 256 samples. Ren-
der time for each frame was ∼ 5 s.

Colonoscopy - 50,000 frames. Geometry Nodes parameters, controlling the
shape of the colon, and the position, size and distribution of polyps were ran-
domized per frame.

Laparoscopic liver surgery - 50,000 frames. Publicly available models for
liver, gallbladder, etc. were used, and mesh primitives were used to represent
other organs/tissues where appropriate (abdominal cavity = sphere etc.).

Custom Labelling. Semantic segmentations (Liver) were acquired by re-
rendering the scene with each object assigned a flat colour, with bounding boxes
(Polyps) derived from the minimum/maximum extents of the segmentation infor-
mation.
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Fig. 5. Procedural generation of colon model. Clockwise from top left - curve used
to define shape of colon; curve used to define cross section of colon; internal view of
generated colon (no shading) with randomly placed polyps; external view of generated
colon. The colon shape will update in real time in response to changes to either of the
input curves. Further customization is carried out through randomization of Geometry
Node parameters at simulation time.

2.4 Evaluation Datasets

Colonoscopy. Four datasets were used: Kansas Polyp Dataset [7], HyperKvasir
[2], LDPolypVideo [8] and PolypGen [1]. Only polyp detection was considered, so
from each data set, the relevant subset of data was used (HyperKvasir for exam-
ple also contains upper GI tract data). Labels were converted to the COCO for-
mat. Kansas and LD datasets have a train/test/validation split already defined,
which was left unchanged. LD data was split 80/10/10, and PolypGen was ran-
domly split into 5 patients for train, 1 for test and 1 for validation (Table 1).

Laparoscopic Liver Segmentation. Three datasets were used: Dresden Surgi-
cal Anatomy Dataset (DSAD) [3], CholecSeg8k [5], SISVSE [16]. DSAD contains
both single organ labelling and multi-organ labelling datasets. For this work,
only the data from the liver single organ subset was used. The full SISVSE and
CholecSeg8k datasets were used, with any non-liver labels removed.

Each dataset provides data from a number of separate patients/procedures.
Data was randomly split into training, test and validation data, with an approx-
imate 80/10/10 split of images between the three (Table 2). Actual splits deviate
slightly from this, as the number of images for each patient varies. It should be
noted that while CholecSeg8k has the highest number of images, the dataset
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Table 1. Data split for colonoscopy data. Brackets indicate the number of labeled
polyps in that set.

Total Images Train Validation Test

Kansas 37899 28773 (27048) 4254 (4214) 4872 (4719)

HyperKvasir 1000 800 (972) 100 (121) 100 (113)

LD 4186 20855 (18900) 3934 (4569) 15397 (15268)

PolypGen 1471 1178 (1191) 88 (98) 208 (204)

Blender 50000 45000 (60827) 5000 (7685) N/A

Table 2. Data split for laparoscopy data. Brackets indicate the number of distinct pa-
tients/procedures in that set.

Total Images Train Validation Test

DSAD 1430 (23) 1131 (18) 101 (2) 119 (3)

CholecSeg8k 8080 (19) 6080 (15) 1000 (2) 2000 (2)

SISVSE 4510 (40) 3588 (32) 457 (4) 462 (4)

Blender 50000 45000 5000 N/A

consists of multiple sets of sequential frames taken from the same procedures,
whereas each frame in DSAD and SISVSE are non-sequential/from different
procedures.

2.5 Model Training

Laparoscopy - semantic segmentation Semantic segmentation was evaluated
using a standard UNet configuration, with combined DICE loss and Cross
Entropy loss, RMSprop optimizer, and learning rate of 1e–5. The network was
trained on each dataset individually, as well as with pre training on Blender data
for each dataset. Pre-training on Blender data was for 10 epochs; all other train-
ing runs were 50 epochs. This resulted in 6 trained models (each dataset with
and without Blender pre-training), each of which was evaluated on the three sets
of test data, with the DICE score for liver classification recorded.

Colonoscopy - polyp bounding box detection Polyp detection was trained using
Yolov7 [12]. Default training parameters were used for the full YoloV7 network,
with pre-trained ImageNet weights loaded. A model was trained for 100 epochs
on each of the 4 datasets, as well as being pre-trained on the Blender data and
post trained on each dataset. This resulted in 8 trained models (each dataset
with and without Blender pre-training), each of which was evaluated on the four
sets of test data.

The metrics reported by YoloV7 are precision, recall and mean average pre-
cision (mAP). mAP is calculated both for a single IoU of 0.5 (mAP@.5), and as
an average of the mAP for IoU values between 0.5 and 0.95 (mAP@[.5:.95]).



Procedurally Generated Colonoscopy and Laparoscopy Data 75

Table 3. Liver segmentation DICE score, out of 100. Rows indicate training dataset,
columns the test dataset. Cells with highlighted background show the highest value for
that metric, across all models. Bold values indicate the highest value when the dataset
used for training is excluded (e.g. excluding Cholec trained models from evaluation on
Cholec data)

Cholec DSAD SISVSE

Cholec 75 74 73

DSAD 37 85 61

SISVSE 23 77 77

Blender + Cholec 79 87 78

Blender + DSAD 55 96 79

Blender + SISVSE 71 92 91

3 Results

For laparoscopy data (Table 3), the use of synthetic data for pre-training
increased the DICE score in 8 out of 9 cases, with the average change being
an increase of 15% (p=0.02, using paired t-test).

For colonoscopy data (Table 4), for each evaluation metric, for each dataset,
the highest value was achieved when the synthetic data was used for pre-training
(cells with shaded background). If the training dataset is excluded from eval-
uation, 11 out of 16 metrics are achieved on pre-trained data (bold text in
table); 3 are unchanged, and 2 are lower following pre-training. When the per-
formance of individual metrics is compared with/without pre-training, then Pre-
cision is increased 12/16 times (Average change +11%, p=0.01), Recall 14/16
(+9%, p=0.002), MAP@.5 13/16 (+10%, p=0.01), MAP@[.5:.95] 13/16 (+8%,
p=0.003).

4 Discussion

For both the laparoscopy (Table 3) and colonoscopy (Table 4) datasets, the use of
synthetic data improved model performance, across all metrics, compared with
train-ing only on real data. The results given in this work show that the method
employed for procedural generation of training data can be used to improve
model performance. It is envisaged that such methods would be complementary
to existing approaches for data synthesis (GANs, diffusion models etc.) either
by the use of multiple sources of synthetic data for training, or for example,
by generating target geometries and labels using Geometry Nodes, and then
applying an alternative method for texture synthesis. Being able to generate
synthetic data in this way also extends the use of synthetic data to areas where
there may not be sufficiently large training datasets to utilize deep learning
methods. Further work is underway to consider the effects of changing the ratio
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Table 4. Polyp detection results. All values given as a score out of 100. Columns
represent the results on the test sets, and rows are the different trained models. Cells
with a highlighted background show the highest value for that metric, across all models.
Bold values indicate the highest value when the dataset used for training is excluded
(e.g. excluding HyperKvasir models from evaluation on HyperKvasir test set). B =
Blender, KA = Kansas, KV = Kvasir, L = LD, P = PolypGen.

Kansas (KA) Kvasir (KV) LD (L) PolypGen (P)

P R
mAP

.5

mAP

[.5:.95]
P R

mAP

.5

mAP

[.5:.95]
P R

mAP

.5

mAP

[.5:.95]
P R

mAP

.5

mAP

[.5:.95]

KA 83 74 82 49 86 54 61 40 55 36 37 17 45 33 33 16

KV 46 23 23 12 82 66 73 44 37 15 14 07 20 28 16 08

LD 64 38 41 24 84 67 74 46 69 47 52 24 54 43 44 21

P 81 39 50 31 86 74 80 55 52 34 36 18 69 50 59 37

B+KA 88 83 92 58 80 62 66 44 62 42 45 21 59 45 43 24

B+KV 65 41 44 28 93 80 84 64 60 38 41 20 74 52 63 39

B+LD 68 29 33 20 83 65 73 44 73 48 55 26 59 44 45 25

B+P 74 43 50 30 86 81 83 62 63 41 45 21 71 66 67 45

of synthetic to real data when training, and to make use of Geometry Nodes
to provide more fine-grained labels, such as polyp sizing, for more advanced
applications.
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Abstract. Noisy labels hurt deep learning-based supervised image clas-
sification performance as the models may overfit the noise and learn cor-
rupted feature extractors. For natural image classification training with
noisy labeled data, model initialization with contrastive self-supervised
pretrained weights has shown to reduce feature corruption and improve
classification performance. However, no works have explored: i) how
other self-supervised approaches, such as pretext task-based pretrain-
ing, impact the learning with noisy label, and ii) any self-supervised
pretraining methods alone for medical images in noisy label settings.
Medical images often feature smaller datasets and subtle inter-class vari-
ations, requiring human expertise to ensure correct classification. Thus,
it is not clear if the methods improving learning with noisy labels in nat-
ural image datasets such as CIFAR would also help with medical images.
In this work, we explore contrastive and pretext task-based self-
supervised pretraining to initialize the weights of a deep learning
classification model for two medical datasets with self-induced noisy
labels—NCT-CRC-HE-100K tissue histological images and COVID-QU-
Ex chest X-ray images. Our results show that models initialized with
pretrained weights obtained from self-supervised learning can effectively
learn better features and improve robustness against noisy labels.

Keywords: medical image classification · label noise · learning with
noisy labels · self-supervised pretraining · warm-up obstacle · feature
extraction

1 Introduction

Medical image classification using supervised learning relies on large amounts
of representative data with accurately annotated labels to achieve good gener-
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alization. However, recent practices of crowd-sourcing for data labeling or auto-
matically generating labels from patients’ medical reports using algorithms, and
the high variability among expert annotators introduce higher levels of label
noise in medical datasets. Moreover, supervised deep learning is highly suscep-
tible to label noise as the models can easily overfit the noisy labels, leading to
corrupt representation learning and compromising generalizability [18,19,24,39].
Correcting label noise in large medical image datasets is expensive and requires
extensive human resources and time-consuming protocols. Several methods for
learning with noisy labels (LNL) have been introduced in natural image datasets
to minimize the influence of label noise on the training [2,8,12,25,32,34]. Similar
methods, with adjustments, have also been applied to medical image classifica-
tion [15,26,36,44].

Many LNL methods rely on a warm-up phase, a small number of initial
epochs during which the model is trained directly using all the noisy training
data [8,15,25,27]. While the warm-up phase is important to kickstart the model
and learn basic features important for proper separation of noisy labels from
clean labels at a later phase [41,42], the high noise rate makes it challenging to
avoid memorizing wrong labels and learning poor feature extractors. Zheltonozh-
skii et al. [42] referred to this issue as the “warm-up obstacle”. One may use
supervised pretraining to learn good feature extractors and train with noisy
labels to mitigate the warm-up obstacle. However, this approach presents chal-
lenges in medical datasets due to the limited availability of large labeled datasets
that closely align with the given new dataset. Alternatively, if existing medical
datasets already contain valuable metadata such as gender and age information,
one may pretrain to predict such auxiliary information before proceeding with
training on the main task involving noisy labels. Such an approach could mini-
mize feature corruption, as the auxiliary tasks are relatively straightforward and
less likely to contain label noise. However, if the datasets lack such metadata,
another approach is to use self-supervised learning techniques for pretraining to
learn feature extractors, without relying on any labels.

Some studies have demonstrated the benefits of contrastive learning-based
self-supervised pretraining to improve robustness against noisy labels in natural
image datasets [41,42]. However, no extensive study has been conducted to inves-
tigate which self-supervised pretraining is suitable for a specific scenario, there-
fore providing no such prior knowledge that can be adapted and used in med-
ical image classification. Additionally, medical images come with some caveats
that make it challenging to apply various self-supervised techniques in medical
datasets (discussed in Sect. 2.2).

In this work, we investigate contrastive learning and propose simple and
intuitive pretext task-based self-supervised pretraining approaches to improve
robustness against noisy labels in the medical image classification problem. We
show that self-supervised pretraining can significantly improve the robustness
against noisy labels in the existing classification framework. Furthermore, we
explored the implications of this pretraining approach on existing LNL methods
by pretraining the models before the warm-up phase.
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Fig. 1. Our approach involves two phases: I. Pretrain the model with pretext task-
based self-supervised technique (left), and II. Retrain the pretrained model on medical
image classification with noisy labels using LNL approaches (right).

Our contributions can be summarized as follows: 1) To our knowledge, we
are the first to investigate the use of only self-supervised pretraining to improve
robustness in the presence of noisy labels for medical image classification; 2) We
propose the use of pretext task-based self-supervised pretraining in classification
with noisy labels, which hasn’t been studied even with natural image datasets;
3) Using two representative datasets, namely X-ray and histopathology images,
induced with label noise at various rates, we show that self-supervised pretraining
alone improves the feature extractor, thus helping overcome the warm-up obsta-
cle in LNL methods, yielding significantly improved performance while reducing
the label memorization.

2 Related Works

2.1 Learning with Noisy Labels in Medical Images

Several methods have been proposed to robustly train medical image classifiers
with noisy labels [16]. Pham et al. [30] used label smoothing to reduce the impact
of noisy labels in thoracic disease classification. Dgani et al. [4] introduced a noise
layer and modified the network architecture to address unreliable labels in breast
classification. Le et al. [22] used a sample reweighting technique to robustly train
a pancreatic cancer detection model with noisy labels, while Xue et al. [35] used
a similar reweighting technique for skin lesion classification with noisy datasets.

Ju et al. [15] used dual-uncertainty estimation to tackle two cases: label
noise due to disagreement among experts and single-target label noise, in skin
lesions, prostate cancer, and retinal disease. Ying et al. [37] improved COVID-19
chest X-ray classification through techniques like PCA, low-rank representation,
neighborhood graph regularization, and k-nearest neighbor. Similarly, Zhou et al.
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[44] employed consistency regularization and disentangled distribution learning
for multi-label disease classification and severity grading in chest X-rays and
diabetic retinopathy. Xue et al. [36] combined a student-teacher network with
a co-training strategy to improve prostrate cancer grading, skin classification,
chest X-ray classification, and histopathology cancer detection, in different label
noise settings. Liu et al. [26] proposed co-correcting, a curriculum learning-based
label correction strategy, for robust training with noisy labels in metastatic tissue
classification and melanoma classification.

Despite incorporating some concepts from self-supervised learning, no
research has explored the impact of just self-supervised pretraining on enhancing
robustness against noisy labels.

2.2 Self-supervised Pretraining

Several self-supervised techniques have emerged recently [7], encompassing
simple pretext task-solving approaches [5,6,40], contrastive learning methods
[3,10,38], and generative approaches [9,28,43]. Generative approaches have
shown promise but face challenges due to training instability and high compu-
tational resource requirements. Additionally, the majority of recent generative
approaches necessitate a Transformer as the backbone, and investigating the
robustness of a Transformer-based architecture against label noise, in compari-
son to a CNN, is a distinct topic of discussion. Furthermore, recent mask image
modeling-based generative approaches that learn by randomly masking a certain
portion of the image may inadvertently miss crucial features. This issue could be
problematic for medical datasets that rely on subtle image cues [13] and requires
a separate investigation. Therefore, for this work, we considered focusing solely
on contrastive learning, which is widely used, and the pretext task-based app-
roach, which is simple but unexplored, leaving generative approaches for future
investigation.

In this study, we chose three pretext tasks: Rotation prediction, Jigsaw puzzle,
and Jigmag puzzle, and a contrastive approach: SimCLR. Rotation prediction [6]
trains a model to predict the rotation degree of an image in various orientations.
Jigsaw puzzle [29] requires training a model to learn to predict the arrangement
of shuffled, non-overlapping patches in an image. Jigmag puzzle [20], originally
proposed for histopathology images, learns to predict the arrangement of patches
obtained from magnifying an image at various factors. SimCLR utilizes a con-
trastive loss to compare the representations of different augmented views of the
same input, aiming to bring closer the augmented views (positive pairs) of the
same image while keeping the augmented views of other images (negative pairs)
far apart in the representation space. The benefit of pretraining depends on the
suitability of the pretraining task with the main task [23].

We selected these pretext tasks because Rotation prediction and Jigsaw puz-
zle are commonly used in the literature, while Jigmag puzzle was specifically
proposed to address the subtlety of medical images. Other pretext tasks, such
as Colorization [21], were deemed unsuitable for our grayscale X-ray image and
stained histopathology image datasets. SimCLR was chosen for the contrastive
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approach due to its simplified framework, which eliminates the need for special
memory buffers or specialized architectures.

3 Datasets

3.1 COVID-QU-Ex

This dataset is a collection of chest X-ray images obtained from various patients
[33] categorized into three groups: COVID infection, Non-COVID infection, and
Normal. The dataset consists of a total of 27,132 training images, with 8,561
classified as Normal, 9,010 as Non-COVID-19, and 9,561 as COVID-19 cases.
Additionally, there is an exclusive test set containing 6,788 images for evaluation.

3.2 NCT-CRC-HE-100K

This dataset has 100,000 histopathological image patches of size 224 × 224
extracted from stained tissue slides [17] featuring nine classes, such as adipose,
lymphocytes, mucus, etc. The test set uses a different CRC-VAL-HE-7K dataset
consisting of 7,180 images, featuring all nine classes of the training set.

4 Experimental Setup

4.1 Random Label Noise

To evaluate how a deep learning classifier performs on high label noise, we ran-
domly flipped all the labels in the training set such that the original labels
are assigned to any other labels within the close-set with some probability [14].
Assuming a training dataset {(xi, yi)}ni ∈ D, which contains n samples, xi is a
data point belonging to the set X ∈ R

d, and yi is its corresponding class label
from a close-set classes C = {c0, c1, .., c4}. For any sample (xi, yi), we change its
label yi to ŷi

p∼ C \ yi, where p is the noise probability and C \ yi denotes any
label of close-set classes other than the true label. The label noise is symmetri-
cal for all the classes within the close set. We conducted experiments using four
different noise rates p ∈ {0.5, 0.6, 0.7, 0.8}.

As depicted in Fig. 2, the impact of noisy labels on test performance varies
across datasets; NCT-CRC-HE-100K remains robust to noise below 0.5, whereas
COVID-QU-Ex is affected at lower rates also.

4.2 Methodology

Our approach involves two stages: i) pretrain a model using self-supervised learn-
ing on the given dataset to learn meaningful feature extractors, and ii) train the
pretrained model for medical image classification on the same dataset with noisy
labels (Fig. 1). We primarily focus on the first stage, experimenting with four self-
supervised tasks. In the second stage, we experimented with cross-entropy alone,
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(a) NCT-CRC-HE-100K (b) COVID-QU-Ex

Fig. 2. Test performance as a function of training label noise rate (noise probability
p) ranging from scale 0 to 1, with the shaded region indicating variability across three
experimental trials. BEST indicates the highest test accuracy achieved, while LAST
denotes the average test accuracy achieved in the last five epochs.

followed by two state-of-the-art LNL approaches, Co-teaching [8] and DivideMix
[25].

Co-teaching selectively samples clean examples by ranking the training loss,
while DivideMix utilizes a Gaussian Mixture Model (GMM) to categorize exam-
ples into clean and noisy groups based on the training loss of each sample.
DivideMix also applies the MixMatch [1] semi-supervised learning approach by
treating noisy labels as unlabeled examples. Notably, Co-teaching focuses on
clean sample selection, while DivideMix does both clean sample selection and
noisy label correction, but both use dual networks and utilize a warm-up phase.

Evaluation: Following [8,25], we evaluate the best test classification accuracy
(BEST) and the average test accuracy of the last five epochs (LAST). The test
set serves as a pseudo-test set, accessing the model’s maximum performance
with BEST, while LAST measures if the model has overfitted to noisy labels
(see Fig. 2).

4.3 Implementation Details

Self-supervised Pretraining: We utilized the ResNet18 architecture for all
experiments. For Rotation prediction, images were resized and underwent strong
data augmentations: random horizontal flips, small rotations (10◦), sharpness
adjustment, equalization, and auto contrast. The model had to predict the rota-
tion angle from four possible angles (0◦, 90◦, 180◦, 270◦).

For Jigsaw puzzle solving, we performed similar strong augmentations and
divided the resized input image into a 3 × 3 grid of patches. The patches were
resized to 64×64 pixels, normalized with patch mean and standard deviation, and
randomly shuffled to create one of the 1000 chosen permutations1. Then, they
1 https://github.com/bbrattoli/JigsawPuzzlePytorch.

https://github.com/bbrattoli/JigsawPuzzlePytorch
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were passed through the ResNet18 feature extractor and concatenated before
being fed into a fully connected output layer that predicted the input permuta-
tion.

For Jigmag puzzle solving, we applied the aforementioned augmentations and
randomly magnified the input image at different locations using nine magnifica-
tion factors ranging from 1 to 5. The magnified patches were resized, normalized,
and randomly rearranged into one of the 1000 chosen permutations similar to the
Jigsaw puzzle. A fully connected softmax layer after the ResNet feature extrac-
tor predicted the input permutation. We used SimCLR [3] implemented in2,
setting the default parameters. The input images were resized and augmented
with random horizontal flips, color jitter, and Gaussian blur. Table 1 summa-
rizes all training hyperparameter settings. All the methods were trained until
convergence, with the number of epochs and learning rates chosen accordingly.
For instance, Rotation prediction performed best with an SGD learning rate of
0.01 compared to other settings, while Jigsaw and Jigmag converged effectively
using a batch size of 128.

Table 1. Hyperparameters used for training various self-supervised methods.

Datasets Method Input size Batch Epochs Wt decay Lr Optim Sheduler

NCT-CRC-HE-100K Rotation 224 × 224 256 70 10−4 0.01 SGD Cosine Annealing

Jigsaw 64 × 64 128 50 10−4 0.001 Adam Cosine Annealing

Jigmag 64 × 64 128 50 10−4 0.001 Adam Cosine Annealing

SimCLR 224 × 224 256 100 10−4 0.001 Adam Cosine Annealing

COVID-QU-Ex Rotation 224 × 224 256 70 10−4 0.01 SGD Cosine Annealing

Jigsaw 64 × 64 128 60 10−4 0.001 Adam Cosine Annealing

Jigmag 64 × 64 128 60 10−4 0.001 Adam Cosine Annealing

SimCLR 224 × 224 256 200 10−4 0.001 Adam Cosine Annealing

Learning with Noisy Labels: In this stage, we took the ResNet18 feature
extractor initialized with from self-supervised training, added a fully connected
output layer, and retrained the entire model with noisy labels. In the first set
of experiments, we trained the model using standard cross-entropy loss without
any modifications. The training process involved a batch size of 256, an SGD
optimizer with a momentum of 0.9, weight decay of 10−4, an initial learning rate
of 0.01, and 50 training epochs. In the second set of experiments, we used two
LNL methods.

2 https://github.com/sthalles/SimCLR.

https://github.com/sthalles/SimCLR


Improving Medical Image Classification in Noisy Labels 85

For Co-teaching, we followed the original paper’s [8] recommendations and
set the warm-up epochs to 10, τ = p and c = 1, where p is the label noise
rate in data. As for DivideMix, we slightly adjusted the original hyperparame-
ters [25], setting the warm-up epochs to 10, M = 2, T = 0.2, α = 4, τ = 0.2,
and λu = 0 for p = {0.5, 0.6, 0.7}, while λu was changed to 0.25 for p = 0.8.
Both methods maintained other training hyperparameters the same as the stan-
dard cross-entropy approach, except for DivideMix, where a batch size of 128
was used. To avoid confirmation bias, both Co-teaching and DivideMix original
implementations initialize the dual networks with different weights. Similarly,
in our approach, we adopt this strategy by initializing the dual networks with
two distinct pretrained weights obtained from separate self-supervised training
under the same settings.

All our experiments were implemented in Python 3.8 using the PyTorch
12.1.1 framework and trained on an A100 GPU (40 GB). We ran 3 experimental
trials for each case to report the mean and standard deviation.

5 Results

Self-supervised Pretraining Improves Robustness Against Noisy
Labels: In Fig. 3, we compared models trained with standard cross-entropy
(CE) loss, using weights initialized from the self-supervised pretraining against
PyTorch’s default randomized He initialization [11].

The results demonstrate that self-supervised pretrained models significantly
improve in terms of the BEST and LAST accuracy, particularly at high noise
rates in the NCT-CRC-HE-100K. Specifically, SimCLR achieved better perfor-
mance in both BEST and LAST accuracy at all noise rates, while Jigsaw and
Jigmag also notably improve the LAST accuracy at p = {0.6, 0.7, 0.8}.

Similar trends are observed in the COVID-QU-Ex, where SimCLR, Jigmag,
and Jigsaw outperform others significantly at p = {0.5, 0.6} in terms of both
BEST and LAST accuracy. At p = {0.7, 0.8}, rotation performs better, but the
improvements are not as good as those observed with SimCLR, Jigsaw, and
Jigmag in the p = {0.5, 0.6} range. However, SimCLR, Jigmag, and Jigsaw
performed worst than the cross entropy in the range p = {0.7, 0.8}.

The choice of the best self-supervised task varies based on the dataset, noise
rate, and evaluation criteria, but the results achieved using self-supervised pre-
training consistently show better performance compared to directly starting train-
ing from PyTorch’s default randomized He initialization.
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Fig. 3. Performance comparison of models trained starting from default weights vs.
trained from weights initialized from self-supervised pretraining, when using standard
cross entropy (CE) loss at different training label noise rates (p), in COVID-QU-Ex
and NCT-CRC-HE-100K. BEST denotes the best test accuracy, while LAST denotes
the average test accuracy achieved of the last five epochs. The experiments were run
for three experimental trials to report the error bar.

Self-supervised Pretraining for LNL Methods: We compared LNL meth-
ods trained from PyTorch’s default He initialization with those trained using
weights initialized from a self-supervised pretraining in Fig. 4. The results show
that the LNL methods already achieved good performance in the NCT-CRC-
HE-100K, with only a small room for improvement at a lower noise rate. At
higher noise rates, SimCLR achieved the highest BEST and LAST accuracy, fol-
lowed by Rotation prediction. Initializing LNL with Jigsaw and Jigmag didn’t
improve the performance, but rather degraded it.

In the COVID-QU-Ex, we observed an improvement in classification perfor-
mance in the noise range p = {0.5, 0.6} for both Coteaching and DivideMix
when using pretrained weights from the SimCLR and Rotation prediction task.
However, beyond p = {0.7, 0.8}, the scores exhibited high variability, making
it difficult to identify the best performance. SimCLR struggled with high noise
rates, possibly due to excessive contrastive learning augmentations that over-
looked vital subtle features valuable for discerning classes at high label noise.
But, this speculation needs further study. Additionally, in COVID-QU-Ex, we
noticed that the clean samples selected by LNL methods were biased towards
one class and ignored the other classes, particularly at high noise levels, making
it intriguing to investigate the cause behind this phenomenon in the future.
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(a) COVID-QU-Ex

(b) NCT-CRC-HE-100K

Fig. 4. Performance comparison of existing LNL methods when initialized with self-
supervised pretraining against baselines at different training label noise rates (p), in (a)
COVID-QU-Ex and (b) NCT-CRC-HE-100K. Cross entropy (CE) denotes the actual
baseline, Coteaching (CT) and Dividemix (DM) are existing LNL methods, and the
term after + represents various self-supervised pretraining methods. BEST denotes
the best test accuracy, while LAST denotes the average test accuracy achieved of the
last five epochs. The shaded region along the line indicates the variability across three
experimental trials.

6 Conclusion

We examined the effectiveness of utilizing self-supervised pretraining alone to
improve the model’s robustness against noisy labels in medical image classifica-
tion. The choice of self-supervised task varied depending on the dataset, noise
rate, and, evaluation criteria, with SimCLR consistently yielding the best results
in most cases with LNL.

This study addresses a gap in the current research by serving as a first demon-
stration of the benefits of various self-supervised pretraining for medical image
classification with noisy labels and offering valuable insights to mitigate the
impact of high label noise. In the future, we plan to investigate additional self-
supervised baselines and further explore how the nature and size of the dataset
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influence the improvements offered by self-supervised pretraining in terms of
robustness against noisy labels.

Additionally, in this work, we have limited the investigation to CNN-based
architecture. It would be interesting to investigate how recent Transformer-based
architectures behave under various levels of label noise, whether off-the-shelf
LNL methods work with Transformer architecture, and how Transformer-based
self-supervised techniques improve robustness against noisy labels.
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Abstract. Due to limited direct organ visualization, minimally invasive
interventions rely extensively on medical imaging and image guidance to
ensure accurate surgical instrument navigation and target tissue manip-
ulation. In the context of laparoscopic liver interventions, intra-operative
video imaging only provides a limited field-of-view of the liver surface,
with no information of any internal liver lesions identified during diag-
nosis using pre-procedural imaging. Hence, to enhance intra-procedural
visualization and navigation, the registration of pre-procedural, diagnos-
tic images and anatomical models featuring target tissues to be accessed
or manipulated during surgery entails a sufficient accurate registration
of the pre-procedural data into the intra-operative setting. Prior work
has demonstrated the feasibility of neural network-based solutions for
nonrigid volume-to-surface liver registration. However, view occlusion,
lack of meaningful feature landmarks, and liver deformation between
the pre- and intra-operative settings all contribute to the difficulty of
this registration task. In this work, we leverage some of the state-of-
the-art deep learning frameworks to implement and test various network
architecture modifications toward improving the accuracy and robust-
ness of volume-to-surface liver registration. Specifically, we focus on the
adaptation of a transformer-based segmentation network for the task of
better predicting the optimal displacement field for nonrigid registra-
tion. Our results suggest that one particular transformer-based network
architecture—UTNet—led to significant improvements over baseline per-
formance, yielding a mean displacement error on the order of 4 mm across
a variety of datasets.
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1 Introduction

Background and Motivation: Hepatocellular carcinoma is a pressing concern
in oncology, being the fifth-most common cancer responsible for the second-most
cancer-related deaths [10]. For these cases, surgery is frequently the standard of
care [16].

For all minimally invasive intervention applications, accurate navigation to
relevant tissues is paramount. In laparoscopic surgery, the procedure is per-
formed under guidance provided by a camera inserted through a small incision.
While this confers several benefits such as recovery time, additional difficul-
ties are encountered in surgical navigation. Limited field-of-view (FOV) and the
homogeneous appearance of the surface of organs can pose significant difficulty
in locating relevant lesions [21].

This task can be facilitated by using 3D preoperative scans, generated from
Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). While this
approach has some benefits, the use of pre-procedural scans adds a necessary pre-
processing step to be performed during surgery: the registration of that data to
the surgical view. This step has several challenges that need to be overcome.
For rigid registration, the homogeneous intraoperative surface and varying noise
characteristics make localizing a specific view on the intraoperative liver diffi-
cult [22]. The nature of the liver as a soft body introduces additional difficulties
after rigid registration. Factors such as the interaction of surgical instruments
with the organs, patient breathing, and insufflation of the abdominal cavity dur-
ing surgery to increase the working volume lead to deformations that must be
predicted and compensated for in order to achieve a sufficiently accurate and
faithful pre- to intra-operative organ registration [26]. In addition, the opacity
of most organs implies that the intraoperative view cannot be easily modeled as
a closed shape of finite volume. Rather, the problem of registering the preoper-
ative scan onto a limited intraoperative view is a problem of volume-to-surface
registration. This task entails two major components: first, a correspondence
must be found between the partial surface and the complete volume; second,
both rigid and nonrigid registration must be performed to correct for deforma-
tions between the preoperative organ volume (from CT or MRI) and the recon-
structed intraoperative partial organ surface. Both tasks have been the focus of
substantial prior work, both in the clinical setting [5,12,14] and elsewhere [30].
Prior work has identified the potential advantages of image-guided navigation
in concert with augmented reality visualization during minimally invasive liver
surgery. While currently proposed methods could be highly useful to the sur-
geon, improvements in anatomical precision are necessary to increase the value
of image guidance in the operating theater [1,4]. Therefore, a rapid volume-to-
surface registration method would enable the surgeon to visualize in real time the
intraoperative location of relevant lesions present inside the liver, and identified
in pre-procedural scans, but not visible using intraoperative video, since located
beneath the liver surface, in turn, allowing for more effective visualization and
navigation to the target tissue during surgery.
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Prior Work: Prior literature indicates the viability of predicting soft-body
deformations given partial data. Several of these methods function by input
of two meshes representing the preoperative and intraoperative geometriesand
output the deformation field that warps the preoperative geometry to match
the intraoperative geometry [18,19]. Sulewack et al. [26] have developed a
physics-based shape matching method for this task. While this does achieve
sub-millimeter registration accuracy, the need for manual statement of boundary
conditions and inference time hamper practical usefulness. Other methods have
demonstrated the viability of lower-dimensional representations of 3D objects.
Small-scale neural networks trained on individual scenes have allowed for efficient
volume encoding and generation of novel views [7,15,20].

Recent advances in computer vision and image processing have focused on the
network structure known as the Transformer, first described in [27]. This devi-
ates from the CNN architecture by creating representations of patch sequences,
and using self-attention to extract more global information. This in turn allows
transformers to extract more global information, contrasted with the limited
influence range of a CNN. Prior work showed its effectiveness in image classifi-
cation tasks [8] and in image segmentation [11,28].

Proposed Work: The proposed work leverages the prior work of [22] that
yielded V2S-Net, a Convolutional Neural Network (CNN) to simultaneously
establish surface correspondences and perform the nonrigid registration in one
step. Their implementation employs a structure akin to a U-Net as in [24]. It uses
voxelized representations of the preoperative volume and intraoperative surface
as input, and generates a 3 × 64 × 64 × 64 voxel image corresponding to the
spatial displacement components. Such an implementation allows for efficient
inferencing and simple scalability for large quantities of synthetic data.

In this work, we build on the technique proposed by Pfeiffer et al. [22] by
investigating several alterations to the network architecture to more accurately
estimate the pre- to intraoperative displacement to help achieve a better registra-
tion. The most promising network architecture modification found, and the focus
of this work, consists of the use of transformer architectures to better encode
global shape information, which, in turn, will provide better control toward bet-
ter predicting the pre- to intra-operative displacement field.

Following the example in [11], our proposed UTNet-inspired architecture is
adapted for this 3D image transformation task by employing transformer encoder
blocks on the encoding pathway and replacing the traditional skip connec-
tions with transformer decoding blocks. Further investigation consists of altering
network components such as activation function and the presence of dropout.
Finally, the performance of the proposed network architectures is evaluated by
assessing their accuracy (and robustness) achieved under different levels of noise
present in the test data.
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2 Methods

Training Data: Training data for the networks in this study were generated
using the pipeline in [22]. The pipeline begins by generating an icosphere in
Blender [6] and uses automated operations to deform it into a soft body of
random shape. Figure 1 shows one such random body. In our work, we modify
the previous implementation at this step by repairing non-closed meshes; this
enforcement of watertightness improves stability in generating valid data. Gmsh
[13] is then used to convert the surface mesh to a tetrahedral volumetric mesh.
Random forces of 1.5 N maximum magnitude are assigned to specific locations
on the mesh surface, and zero-displacement boundary conditions are applied to
randomly-selected areas. These data are passed to Elmer [17] to calculate the
displacement field via the Finite Element Modeling (FEM) method.

Fig. 1. An example of a random body surface generated by deforming the icosphere
using the training dataset and pipeline proposed in [22]

The FEM yields the equivalent of an intraoperative organ volume used to
extract a random surface point cloud patch to serve as an intraoperative limited
laparoscopic view; in addition, random portions of the patch are removed to
simulate occlusion. Lastly, to better portray the reality of intraoperative data,
uncertainty is added to the dataset by displacing 30% of the surface points along
each axis by uniform noise with a magnitude of no more than 1 cm.

In order to easily use this data as a neural network input, both the preop-
erative and intraoperative surfaces are voxelized. A uniform 64 × 64 × 64 grid
of 30 cm in each direction is generated for the preoperative and intraoperative
surfaces. In each case, each voxel represents the shortest distance from the center
of that voxel to the surface. For the preoperative case, the sign of the distance
map is inverted for voxels inside the surface. The displacement field is voxelized
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in a similar manner using Gaussian interpolation. For the purpose of our work,
a total of 40 000 cases are generated in this fashion. Further data augmentation
consists of reflecting the samples across the xy, yz, and xz planes, scaling the
training set size by a factor of 8 and yielding approximately 32 0000 effective
training samples. Figure 2 shows the summary of this process. Dataset used is
available upon request.

Fig. 2. A diagram of the data generation pipeline, reproduced from [22]. a) Preoper-
ative volume mesh; b) Intraoperative surface in green with partial surface in orange;
c) Preoperative signed distance map; d) Intraoperative distance map; e) Ground truth
displacement field to be predicted.

Testing Data: In order to further evaluate the robustness of the network, a
number of additional datasets are generated.

To evaluate network performance in the presence of additional noise, a
dataset of 1000 samples was created by adding displacement noise featuring
a maximum magnitude of 5 cm. An additional dataset was generated without
noise to assess the ability of the network to encode clean, noiseless shapes.

In order to assess ability to generalize to liver shapes specifically, two addi-
tional datasets were generated based on previously generated liver meshes. One
dataset is based on a set of 120 liver meshes derived from liver data in [2]. To
augment the dataset, each liver mesh was scaled by 5 random scaling factors.
The above pipeline was employed to generate a total of 1200 testing samples. A
second liver dataset was derived from the liver samples used by Suwelack et al.
in [26] in concert with a Physics-Based Shape Matching (PBSM) method. Mesh
representations of the liver phantoms used therein were obtained and used to
generate a series of four additional test cases.

Network Structures: For additional validation, the original V2S-Net network
was re-run with the newly-generated training dataset. This network features a
CNN architecture that uses an encoder chain to capture global detail, a decoder
chain to return to output resolution and skip connections to carry over higher-
resolution details to the decoder chain. Figure 3 shows a diagram of the network
structure. Elementary changes to the network were investigated by generating
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two additional networks with similar structure: one using the Rectified Lin-
ear Unit (ReLU) activation function at non-output layers, and one including a
dropout layer with probability 20% at each level of the encoder chain. Prior work
has seen performance improvements with either change: see Sivagami et al. [25]
and Yang et al. [29], respectively.

Fig. 3. A diagram of the general network structure of V2S-Net. The circled num-
bers indicate locations where relevant structures are appended to modify the original
network (V2S-Net) to generate modified networks evauated in this work: the Input net-
work, featuring a vision transformer at location 1; the Bottleneck network, featuring a
vision transformer at location 4; and the ViT network, featuring a vision transformer
at locations 1, 2, 3, and 4.

The original V2S-Net framework was further modified by the addition of
the transformer module as shown in [8]. Input and output channels were chosen
to maintain parity with the original network. The networks generated in this
fashion are as follows: the Input network, with a vision transformer at location
1; the Bottleneck network, with a vision transformer at location 4; and the ViT
network, with a vision transformer at locations 1, 2, 3, and 4.

An additional network, modeled after the UTNet framework in [11], was also
constructed. This network uses a similar methodology as the ViT network, but
alters the skip connections to instead employ a transformer decoder block to
combine upsampled features with features from the encoder chain. In light of
the prior work by Gao et al. [11], it is hypothesized that including transformer
architectures within the network will allow for more efficient encoding of shape
information similar to the semantic encoding described in [28]. This approach
would, in turn, yield more efficient training and more accurate estimates without
risk of overtraining due to the additional parameters.

Networks were trained using the research computing cluster at Rochester
Institute of Technology [23]. A one-cycle learning rate scheduler and the Adam
optimizer were used to train each network for 100 epochs.
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Evaluation: We assessed the performance of all modified network architectures
against the performance of the original network architecture (V2S-Net), in terms
of the accuracy of their predicted displacement fields relative to the ground
truth displacement field. Specifically, we computed the mean displacement error
(MDE) in mm, as the difference between the displacement field predicted by
each network architecture and the ground truth displacement field. The MDE
was averaged across each testing set for each network architecture. In addition,
to compare the performance of the modified network architectures to that of the
original baseline (V2S-Net) network, we conducted statistical tests to identify
any statistically significant differences in performance (quantified by the MDE
metric) brought forth by the network modifications under investigation.

3 Results and Discussion

Table 1. Summary of Mean Displacement Error (MDE) in mm reported as mean
± standard error, computed between the predicted displacement and ground-truth
displacement achieved by each model configuration under investigation and across all
datasets used for training and validation

Mean Displacement Error (MDE): Mean ± Std. Err. (mm)

Model/Dataset Synthetic

Validation

Set

Liver Test Set PBSM Dataset Noise Free

Synthetic

Data

High

Noise

Synthetic

Data

V2S-Net 5.4 ± 0.5 4.02 ± 0.09 2.9 ± 0.6 5.4 ± 0.2 5.6 ± 0.3

Bottleneck 5.9 ± 0.6 4.16 ± 0.09 4.0 ± 0.8 5.6 ± 0.2 5.7 ± 0.2

Input 5.6 ± 0.5 4.10 ± 0.09 3.2 ± 0.7 5.4 ± 0.2 5.6 ± 0.3

ViT 5.2 ± 0.5 4.16 ± 0.09 3.2 ± 0.5 5.4 ± 0.2 5.6 ± 0.2

UTNet 4.7 ± 0.5 3.91 ± 0.07 3.9 ± 1.3 4.9 ± 0.2 5.0 ± 0.2

V2S-Net (ReLU) 15.8 ± 1.3 7.2 ± 0.1 6.0 ± 1.0 14.5 ± 0.4 14.5 ± 0.4

V2S-Net (dropout) 5.4 ± 0.5 3.73 ± 0.05 3.0 ± 0.5 5.1 ± 0.2 5.5 ± 0.3

In general, the implementation of the UTNet network yields lower MDE across
the various testing datasets (see Table 1, Fig. 4). However, the high variability in
MDE across all networks limits the conclusiveness of this difference. Pfeiffer et
al. [22] noted that outliers could be observed during testing, especially for cases
with relatively low visible surface area. Contrary to expectations, simply imple-
menting the vision transformer modules do not appear to significantly improve
MDE, and seemingly leads to slight degradation in some cases. In this case, it
appears that under-generalization caused by the increased number of parameters
outweighs the benefits of the transformer architecture. Nevertheless the UTNet-
based architecture, with the most parameters of all, displays a generally lower
mean MDE. This indicates a benefit of the transformer decoder block specifically
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Fig. 4. Performance comparison between each network architecture under investigation
and the baseline network architecture (V2S-Net) in terms of Mean Displacement Error
- MDE (mm) evaluated across five datasets.

in terms of semantic encoding; this network block appears to be able to carry
over global features in a manner that the simple skip connection cannot.

Results in terms of elementary modifications to the V2S-Net were similarly
unremarkable. Unexpectedly, the changing of the activation function led to a
substantial increase in MDE. It is possible that the nature of the output as a
signed function creates issues when using the strictly non-negative ReLU func-
tion. Combined with the need of the network to output multiple resolution levels
during training, this could reduce the ability of the network to generate effective
estimates. On the other hand, the use of dropout has a more negligible effect on
MDE. The current understanding of the dropout indicates that the training set
is not too restricted to cause substantial network overfitting.

The need for substantial variability in input shape creates a demand for
large quantities of synthetically-acquired data, as is the case in this study. Cur-
rent work is investigating methods to generate novel liver meshes that are still
physiologically plausible. It is important to note that the current analysis is
specifically tested on the purpose of navigation in liver surgery. As such, it is
not necessarily problematic if the method is overfitted to liver shapes, as long
as it is generalized enough to adapt to novel liver shapes.

It may also be feasible to consider alternative methods for encoding of liver
shapes. The current implementation with fixed inputs of 64×64×64 voxels does
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require substantial computational power to increase the resolution; hence, further
boosting the resolution will require techniques that provide a reasonable trade-
off between resolution and computational expense. Prior work has identified
deep networks trained on functional map representations as a viable method for
non-rigid partial shape correspondence [3]. Modifications to that methodology
may provide another efficient method for volume to surface registration through
encoding at arbitrary resolution.

The use of voxelized datasets as input and output makes it difficult to com-
pare the performance of the models with other benchmarks used for similar
tasks. Several investigations are currently being conducted to effectively convert
the voxelized displacement estimates into a displaced mesh. This conversion to
a more traditional displacement dataset will facilitate the comparison of the
proposed model performance to the performance of a broader set of existing
techniques. Typical metrics used for assessing similar tasks have included the
mean error value at mesh nodes as in Suwelack et al. [26]; and Hausdorff dis-
tance between the pre-operative and intraoperative meshes as in Elhawary et al.
[9]. Future updates to this framework that can easily improve these metrics will
allow for more unified comparison with traditional methods and benchmarks.

4 Conclusion and Future Work

In this work we investigate several network architecture modifications and exten-
sions to baseline configurations featuring the classic U-Net architecture in the
effort to improve the performance of voxelized volume-to-surface liver registra-
tion. This study has shown that, using synthetically generated data, the network
configurations investigated here were able to predict displacement fields within
5 mm on average of the ground truth displacements. Moreover, while three of the
transformer-based modifications did not yield significant performance improve-
ments in terms of the quantified mean displacement error (MDE), the UTNet
transformer modification led to the most significant performance improvement,
while the dropout and ReLU activation functions led to slight and significant
performance deterioration, respectively. Nevertheless, the UTNet-based trans-
former architecture not only improved overall performance, yielding a MDE on
the order of 4 mm relative to the ground truth displacement, but also brings forth
several advantages over other methods, specifically: it performs both a rigid and
nonrigid registration concurrently, does not require any parameter tuning, and
does not rely on any prior knowledge of boundary conditions.

Several avenues exist for further extensions of this work. Pfeiffer et al. [22]
pointed out the potential of training the networks on inhomogeneous bodies to
more accurately capture the nature of lesion-containing organs. This could allow
for further extensions of the network by allowing for estimates of the ground
truth material property to be passed in as input [22]. While exact knowledge of
these properties is not available, reasonable estimates may suffice to solve the
nonrigid registration. In addition, we also plan to extend the validation of the
robustness of the best performing models using more realistic, either in vitro
collected data or deidentified clinical patient data.
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Abstract. Ulcerative colitis (UC) is a long-term condition that needs
clinical attention and can be life-threatening. While Mayo Endoscopic
Scoring is widely used to stratify patients at higher risk of developing col-
orectal cancer, the phenotypic endoscopic features involved in the scoring
are highly inconsistent. Thus, devising automated methods is required.
However, bias in the labels can also trigger such inconsistency and inac-
curacy, which makes the use of fully supervised learning not preferable.
We propose to exploit a self-supervised learning paradigm for automated
MES grading of endoscopic images in UC. To take full advantage of local
and global features, we propose to use Swin Transformers in the MoCo-v3
SSL setting. In addition, we provide a comprehensive benchmarking of
other existing SSL methods. Our approach with Swin Transformer with
MoCo-v3 provides performance boosts in different data size settings.

1 Introduction

Ulcerative colitis (UC) is a long-term condition characterised by inflammation
of the bowel and rectum that can cause severe complications and thus require
patient risk stratification and management. Due to the increased risk of cancer
in patients with UC, a colonoscopy is usually performed together with a biopsy
that further helps to stratify risk in patients affected with this disease. One of
the most widely used scoring systems is the Mayo Endoscopic scoring [15] that
has four categories ranging from 0 (normal or inactive condition); 1 (mild dis-
ease); 2 (moderate disease); and 3 (a severe disease with spontaneous bleeding
and ulceration). These are based on endoscopic findings, such as erosions, vas-
cular patterns, erythema, friability, and ulceration. Most of these phenotypic
endoscopic features are further classified into mild, moderate, and severe, which
makes it difficult for gastroenterologists to agree on their scoring. As a result, UC
subjectivity [6] exists among the clinical experts, which needs to be addressed.
Devising an automated deep-learning method can help reduce subjectivity. Fully
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supervised methods have been proposed in most literature for tackling UC grad-
ing [2,11,13,16]. We argue that due to the data-voracious nature of the super-
vised deep networks, a large number of expert-level annotations are required for
incorporating a more extensive range of existing variabilities in these images,
which makes them prone to being heavily biased towards that particular anno-
tator and may not converge with other expert observations. Also, it is almost
impossible to bring together multiple annotators to label, study and minimise
biases in a massive pool of datasets. However, this can be more feasible when
the data size is small.

Motivated by the idea of minimising variability in expert annotations, we
aim to explore techniques that do not require many annotations but can be
effectively trained using minor good quality labelled data providing higher accu-
racy. In this context, we are particularly interested in leveraging learnt feature
embeddings using a representation learning technique that allows to encapsulate
important phenotypic endoscopic features within the endoscopy data without
requiring ground truth labels as a pre-text task which is also widely referred
to as self-supervised learning (SSL). Such a setting can minimise the chances
of subjectivity in ground truth labels as opposed to fully supervised learning
techniques. The idea here is to fine-tune the model on a refined set of labelled
data with higher confidence, allowing us to predict MES scores automatically
and consistently. While the SSL technique using convolutional neural networks
has been explored [17], to our knowledge, no method exploits vision transformers
for UC classification. In addition, we provide a comprehensive benchmarking of
other SSL methods with both CNN and transformer. Our approach with the
Swin transformer with MoCo-v3 delivers a performance boost in different data
size settings.

2 Related Work

2.1 UC Classification

Recent work by Polat et al. [14] involved assessing various supervised deep learn-
ing models on a large dataset of ulcerative colitis. Most of the works in the
past have focused on supervised learning [1,11,16]. Only a few methods involve
exploiting self-supervision strategy in this area [17]. Xu et al. [17,18] proposed
patch-level instance-group discrimination with pretext-invariant representation
learning and discrimination by clustering similar representative patches. How-
ever, they only used MoCo-v2 with a ResNet50 backbone in their work.

2.2 Self-supervised Learning

Self-supervised learning (SSL) uses pretext tasks to learn image representations
from large amounts of unlabeled data and then fine-tune downstream tasks with
small amounts of labelled data. Misra et al. [10] proposed pretext-invariant rep-
resentation learning (PIRL), which uses Jigsaw puzzles to learn invariant repre-
sentations. The SimCLR model was proposed by Chen et al. [3], using various
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data augmentation techniques. The contrastive loss is applied to maximize the
inter-class similarity and minimize the same-class global and local similarity. He
et al. [8] proposed the MoCo v1 model, which uses a contrastive loss to learn a
general feature representation. MoCo v1 cleverly adds a dynamic memory queue
to store feature vectors, significantly reducing the computational cost. Then He
et al. [5] proposed MoCo v2 based on MoCo v1. Compared with MoCo v1, MoCo
v2 uses more powerful data enhancement and cosine learning rate to improve
the model effect further.

2.3 Vision Transformers

Due to the success of the Transformer in the field of natural language processing,
Dosovitskiy et al. [7] applied Transformer to the area of computer vision and
proposed the Vision Transformer model (ViT). ViT divides an image into fixed-
sized patches through patch embedding, thus converting the visual problem into
a sequence-to-sequence problem. The core conclusion of ViT is that when there
is enough data for pre-training, ViT’s performance will exceed that of CNN,
breaking through the limitation of transformer lack of inductive bias, and can
obtain a better migration effect in downstream tasks. On the self-supervised
settings, while most previous approaches use traditional convolutional neural
networks (CNNs), He et al. [4] proposed the MoCo v3 model utilising ViT as
the backbone. In MoCo v3, since the Transformer has Q, K, and V structures
with attention for long sequences, it can store and memorise more information,
so the memory queue mechanism is cancelled and changed to use a large batch
size for training. In order to solve the instability in training, MoCo v3 adopts
the random patch projection method; that is, after random initialisation, the
parameters of patch embedding are frozen. MoCo v3 achieves state-of-the-art
results in each dataset. Later, three key features of a Swin Transformer network
were introduced: inductive biases of locality, hierarchical feature representation,
and translation invariance that makes them achieve a better speed-accuracy
trade-off than other vision models.

3 Method

We propose to use a backbone feature encoding layer with Swin Transformer [9]
for self-supervised learning using a framework MoCo v3 [4]. According to the set-
ting of MoCo v3, we first take two crops for each endoscopic image and perform
random data augmentation, which is then encoded by two Swin Transformer-
based encoders providing query and key feature vectors fq and fk (Fig. 1). Pos-
itive and negative sets are built, say k+ and k−, where k+ refers to a group of
all samples of the same image as the query and k− is otherwise. A contrastive
loss is minimised using InfoNCE [12]. It is noted that fq has a backbone, the
projection head, and an extra prediction head, while fk only has a backbone and
projection head.

For the feature encoding, we used the Swin-B base model with 128 channels
in the hidden layers in the first stage [9]. We have used the default window size
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Fig. 1. MoCo-v3 with SwinB for UC classification task.

of M = 7, the query dimension of each head to be d = 32 and the expansion
layer of each MLP α = 4. The choice of using the base model is because of
the lower trainable parameters (88M), more than half than Swin-L (197M) but
improved accuracy compared to Swin-T over the ImageNet classification task.
Swin transformer uses patch partition, linear embeddings and two successive
Swin Transformer blocks in the first stage, followed by patch merging and sub-
sequent Swin Transformer blocks for the latter three additional stages. Both
multi-head self-attention modules with regular and shifted windowing config-
urations are applied in each stage. An ImageNet pre-trained Swin-B extracts
features for the feature encoding layers in the MoCo v3 SSL setting [4].

4 Experiments and Results

4.1 Dataset, Evaluation Metrics, and Experimental Setup

Dataset We have used Labeled Images for Ulcerative Colitis (LIMUC) consisting
of a total of curated 11,276 endoscopic images from 1043 colonoscopy procedures
of 564 UC patients at Marmara University Institute of Gastroenterology between
December 2011 and July 2019 [14]. We have used official splits for all our exper-
iments comprising a total of 9590 images for training and 15% of images (1686
images from 85 patients) for held-out samples for testing. We applied an 80:20
split for training and validation samples on the training set.
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Table 1. Self-supervised learning approach for ulcerative colitis grading under 100%
and 50% data availability for downstream classification task. Best two values are in
bold for each setting.

Fine tuning with all available training data

Method Backbone Pre. Top1 F1 Spec. Sens. QWK Kappa

Supervised learning

ResNet50 NA Yes 0.761 0.678 0.904 0.676 0.832 0.602

SwinB† NA Yes 0.778 0.722 0.912 0.723 0.848 0.634

Self-supervised learning

PIRL ResNet50 No 0.691 0.591 0.871 0.580 0.729 0.475

SimCLR ResNet50 No 0.739 0.662 0.897 0.655 0.810 0.568

MoCo-v2 ResNet50 No 0.700 0.636 0.875 0.625 0.719 0.498

MoCo-v3 ResNet50 No 0.716 0.583 0.860 0.570 0.669 0.446

MoCo-v3 ViT No 0.708 0.628 0.885 0.621 0.750 0.519

MoCo-v3 -SB(ours) SwinB† No 0.767 0.711 0.905 0.717 0.844 0.613

Fine tuning with 50% training data

Method Backbone Pre. Top1 F1 Spec. Sens. QWK Kappa

Supervised learning

ResNet50 NA Yes 0.746 0.658 0.900 0.655 0.819 0.580

SwinB NA Yes 0.767 0.672 0.909 0.675 0.846 0.614

Self-supervised learning

PIRL ResNet50 No 0.648 0.592 0.847 0.513 0.600 0.388

SimCLR ResNet50 No 0.719 0.641 0.890 0.633 0.803 0.536

MoCo-v2 ResNet50 No 0.657 0.566 0.856 0.555 0.626 0.422

MoCo-v3 ResNet50 No 0.676 0.586 0.863 0.646 0.659 0.449

MoCo-v3 ViT No 0.708 0.630 0.882 0.616 0.736 0.515

MoCo-v3 -SB(ours) SwinB† No 0.765 0.702 0.905 0.705 0.837 0.611

NA, not available; † swin base patch4 window7 224 model; Pre., pretrained ImageNet

weights; Spec., specificity; Sens., sensitivity

Table 2. Self-supervised learning approach for ulcerative colitis grading under 25%
data availability for downstream classification task. Best values are in bold.

Method Backbone Pre. Top1 F1 Spec. Sens. QWK kappa

Supervised learning

ResNet50 NA Yes 0.729 0.643 0.900 0.665 0.801 0.563

SwinB NA Yes 0.724 0.620 0.888 0.602 0.748 0.537

Self-supervised learning

PIRL ResNet50 No 0.631 0.467 0.841 0.449 0.504 0.357

SimCLR ResNet50 No 0.686 0.601 0.875 0.595 0.743 0.481

MoCo-v2 ResNet50 No 0.633 0.488 0.856 0.466 0.494 0.36

MoCo-v3 ResNet50 No 0.651 0.524 0.848 0.499 0.536 0.394

MoCo-v3 ViT No 0.691 0.583 0.875 0.566 0.684 0.481

MoCo-v3 -SB(ours) SwinB† No 0.765 0.700 0.903 0.693 0.831 0.606
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Table 3. Classification (top 1) accuracy per class for different sample sizes. Fine-tuning
data using all, 50% of samples, and 25% of training samples.

Methods Top 1 on full data Top 1 on 50% data Top 1 on 25% data

MES 0 MES 1 MES 2 MES 3 MES 0 MES 1 MES 2 MES 3 MES 0 MES 1 MES 2 MES 3

Supervised learning

ResNet50 0.853 0.666 0.582 0.624 0.859 0.640 0.548 0.575 0.835 0.590 0.587 0.65

SwinB 0.868 0.663 0.655 0.708 0.888 0.651 0.525 0.633 0.851 0.627 0.514 0.416

Self-supervised learning

PIRL (ResNet50) 0.860 0.487 0.458 0.517 0.854 0.413 0.277 0.508 0.83 0.493 0.192 0.283

SimCLR (ResNet50) 0.854 0.621 0.537 0.608 0.835 0.616 0.446 0.633 0.81 0.562 0.435 0.575

MoCo-v2 (ResNet50) 0.82 0.551 0.514 0.616 0.807 0.495 0.378 0.541 0.835 0.454 0.259 0.316

MoCo-v3 (ResNet50) 0.836 0.491 0.395 0.558 0.824 0.522 0.407 0.525 0.828 0.508 0.293 0.366

MoCo-v3 (ViT) 0.824 0.594 0.474 0.592 0.822 0.603 0.491 0.550 0.828 0.596 0.367 0.475

Ours 0.883 0.588 0.615 0.783 0.870 0.644 0.525 0.783 0.878 0.625 0.593 0.675

Evaluation metrics We have used standard top-k accuracy (percentage of sam-
ples predicted correctly), F1-score (= 2tp

2tp+fp+fn , tp: true positive, fp: false posi-
tive), specificity (= tp

tp+fn ) and sensitivity (= tn
tn+fp ), quadratic weighted Kappa

(QWK) and Cohen’s Kappa for classification task of MES-scoring (0–3) for UC.
The reason behind using QWK and Kappa is that there is a class imbalance in
the dataset, and an ordinal relation exists between classes [14].

Experimental setup All models were trained on NVIDIA Tesla P100 GPU with a
batch size of 32. The default learning rate of each self-supervised learning (SSL)
model was used during the training of the pre-text task. We empirically set the
learning rate for the downstream task to 10−4. We used an Adam optimiser to
minimise cross-entropy loss. All images were resized to 224× 224. SSL approach
with ResNet50 backbone took approximately 8 h to train, while those with vision
transformers took around 48 h for training.

4.2 Results

Table 1 shows different data configurations for fine-tuning downstream classifi-
cation tasks of the self-supervised learning (SSL) approaches. It also illustrates
the fully supervised training of backbones used in the SSL approaches. It can be
observed that utilising 100% training data Swin Transformers yielded the best
result that reflects in the SSL setting (i.e., MoCo-V3 + SwinB backbone). An
improvement over 8.3% compared to the proposed initial MoCo-v3 with ViT [4].
From Table 1 and Table 2, it can be observed that as the data samples decrease,
fully supervised methods tend to show a drastic decrease in performance (1.4%
on 50 % data and 7% on 25% data with SwinB) compared to our proposed
SSL configuration (SwinB and MoCo-v3) that showed only negligible decrease.
Our approach yielded consistent results across both 50% and 25% data with
Top 1 accuracy of 76.5% in both cases. With 25% data, our method produced
a 17.5% improvement over MoCo-v3 with ResNet50 backbone. Also, compared
to the fully supervised model, our model outperformed SwinB by 5% on Top 1
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a. t-SNE plot for fully supervised (ResNet50 and SwinB) and self-supervised models (MoCo-v3 with ResNet 50
and SwinB) for 25% data

b. Correctly classified samples with supervised and self-supervised (MoCo-v3 with ResNet 50 and SwinB)

c. Correctly classified samples only with our configuration (i.e., MoCo v3-SB)

Fig. 2. UC classification on 25% data. a) Represents the 2D t-SNE plot showing
confused classes in red ellipese and pointed with arrows. b) Samples that were cor-
rectly classified with methods indicated in (a). c) Illustration of samples that were
misclassified by other approaches but only correctly classified by ours.

and 11% on the QWK metric. A similar trend can be observed across all other
metrics.

A class-wise classification accuracy (top 1) is provided in Table 3. It can
be observed that even on complete data, our approach outperformed all SSL
approaches (with different backbones), including those with fully supervised set-
tings. As going towards 25% data, we can observe that there is a consistent rise
in the performance gap between the supervised backbone model SwinB and our
approach with the same SwinB backbone in almost all classes (improvement of
3.1% for MES 0, nearly 8% for MES2, and 62% for MES 3).

It can be observed from Fig. 2 a that on 25% data, there exists a significant
overlap between MES 2 and MES 3 and MES 0 and MES 1 in the supervised
setting with ResNet50, which is lesser but still dominant in the SSL version with
MoCo v3 with ResNet50 backbone (see red circles and arrows in Fig. 2a). An
evident boundary separation can be observed with MoCo v3 with SwinB back-
bone (see straight lines). Similarly, from Fig. 2b, it is clear that most methods
worked fine when the mucosa is distinctly clear with visible patterns in MES 2
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and MES 3. However, the severity appearance of the MES is misjudged by other
methods in Fig. 2c for all the MES scores.

5 Discussion and Conclusion

Ulcerative colitis (UC) is an inflammatory disease with relapses and remissions,
and categorising different stages based on endoscopic appearances is challenging
and often subjective. While efforts have been made to automate scoring systems
in the past, these have been widely based on supervised learning paradigms
known as data voracious, requiring labelled samples. This work addresses this
problem, demonstrating that using a self-supervised learning paradigm with
Swin Transformer-based backbone compared to traditional CNN-based models
can provide competitive classification accuracies over different categories with
only a few samples (Table 3). MoCo v3 with Swin-B backbone has lower class
overlap (Fig. 2 a). This is because the Swin transformer-based encoder has hier-
archical feature representation, which can capture very localised feature repre-
sentation providing better inter-class separations. We also observed that due to
the degree of severity and some phenotypic features (Fig. 2 c) are not captured
by most methods where our proposed approach provides correct predictions.
This could be because most of the areas in the endoscopic frames appear similar
to other MES scores. For example, MES 1 is classified as MES 0 and MES 2 as
MES 3, which can be because only very local features are distinguishable.

Thus, this work provides a benchmark for a self-supervised approach to
ulcerative colitis. We demonstrate that using Swin Transformer-based backbone
improves the classification and provides consistent results when the number of
training samples is decreased from 100% to 50% to 25% during fine-tuning of the
main classification task. In our future work, we aim to include other downstream
tasks, such as detection and segmentation, on endoscopic and other medical
imaging data.
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Abstract. Colorectal cancer remains one of the deadliest cancers in the
world. In recent years computer-aided methods have aimed to enhance
cancer screening and improve the quality and availability of colono-
scopies by automatizing sub-tasks. One such task is predicting depth
from monocular video frames, which can assist endoscopic navigation.
As ground truth depth from standard in-vivo colonoscopy remains unob-
tainable due to hardware constraints, two approaches have aimed to cir-
cumvent the need for real training data: supervised methods trained on
labeled synthetic data and self-supervised models trained on unlabeled
real data. However, self-supervised methods depend on unreliable loss
functions that struggle with edges, self-occlusion, and lighting inconsis-
tency. Methods trained on synthetic data can provide accurate depth
for synthetic geometries but do not use any geometric supervisory sig-
nal from real data and overfit to synthetic anatomies and properties.
This work proposes a novel approach to leverage labeled synthetic and
unlabeled real data. While previous domain adaptation methods indis-
criminately enforce the distributions of both input data modalities to
coincide, we focus on the end task, depth prediction, and translate
only essential information between the input domains. Our approach
results in more resilient and accurate depth maps of real colonoscopy
sequences. The project is available here: https://github.com/anitarau/
Domain-Gap-Reduction-Endoscopy.

Keywords: Depth prediction · Domain adaptation · Self-supervision ·
Endoscopy

1 Introduction

Colorectal Cancer is treatable if detected early, but patient outcome relies on
the skill of the performing colonoscopist and complete diagnostic examination of
the colon. To improve navigation during colonoscopy and assist endoscopists in
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Fig. 1. The proposed network reduces the domain gap between synthetic and real
images without fully closing it. We translate only domain- and task-specific information
like water which is present in real images but not in synthetic ones.

ensuring complete examination, computer-assisted mapping and 3D reconstruc-
tion could help detect missed surfaces manifesting as holes in the colon map
reconstruction [3,6]. Such surgical 3D environment maps could also be used for
robotic systems and automation, but despite rapid advances in endoscopic arti-
ficial intelligence systems for polyp detection [1], mapping technologies remain
challenging to implement robustly. Traditional methods require reliable features
to be matched between frames, but colonoscopic images suffer from illumination
inconsistency and a lack of texture. A featureless way to obtain a 3D model
of the colon is to directly learn frame-wise depth and the relative camera pose
between frames. But obtaining ground truth training data for real colonoscopy
frames is currently unfeasible, as this would require a depth sensor to be inte-
grated into a standard colonoscope. Instead, self-supervised methods [12,16] do
not require any ground truth data and use warping-errors to optimize depth and
pose predictions mutually. While such methods work well on homogeneous sur-
faces [17], they are challenged by the self-occluding tubular shape of the colon
and the view-dependent illumination during colonoscopy.

An alternative to unlabeled real data is synthetically generated data with
ground truth depth. Chen et al. propose to first train a network on synthetic
data only and in a second, independent step, train the initialized network on
real images with self-supervision [5]. However, this approach does not account
for the domain shift between real and synthetic images. Other methods have used
Generative Adversarial Networks (GANs) to reduce the appearance domain gap,
some of which Fig. 2 depicts. Mahmood et al. [10] propose a multi-stage pipeline
first mapping real examples to the synthetic domain, followed by an independent
depth network trained on synthetic data only. However, independently training
each sub-net might lead to sub-optimal results. Integrating domain adaptation
and depth prediction into a mutual framework, Rau et al. [15] propose to train
a single network on real and synthetic images. Mathew et al. propose a vari-
ation of a cycle GAN that maps virtual images to real images and vice versa
[11]. One common drawback of these GAN-based methods is the holistic transla-
tion from one domain to another without considering domain- and task-specific
components. Itoh et al. [8] are more deliberate about their choice of translation
and decompose information based on a Lambertian-reflection mode; however,
this hand-crafted decomposition is not guaranteed to extract and translate the
most helpful information. All the translations mentioned above are difficult and
distract from the main objective: predicting depth.
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Fig. 2. Comparisons of different domain adaptation methods [5,8,10,11,15] for depth
prediction in colonoscopy. Depiction inspired by [19].

Rather than aligning one domain to another, images should reduce the
domain gap between real and synthetic images only to the extent that it ben-
efits the end task [13]. Our approach is end-to-end trainable and learns from
real and synthetic data accounting for their different geometries by using sep-
arate depth losses. As Fig. 1 shows, the resulting network translates unknown
geometric structures like water which is not present in the synthetic dataset. To
the best of our knowledge, our method is the first to integrate synthetic data
through a domain-adaptation framework into self-supervised depth estimation
in colonoscopy.

2 Methods

A standard GAN-based approach to depth prediction can map real and synthetic
images to the real domain [19], the synthetic/depth domain [15], or both [8,11].
To map an image X1 ∈ X1 to a different domain X2, X1 is passed through
a generator G. The output G(X1) is then passed through the discriminator D
which compares it to known images from X2. Minimizing

EX2 [log(D(X2))] + EX1 [log(1 − D(G(X1)))], (1)

forces G to learn the distribution of X2 [8,11,15,19].
There are two issues with this approach: (i) these GANs assume that real

and synthetic depths come from the same distribution, which is not necessarily
true; (ii) the domain adaptation is not guided by the end task. Depth losses for
synthetic data are employed but there is no geometric supervision for predicted
real depths. The domain adaptation network thus has no incentive to translate
images such that the most accurate real depths are predicted. Our approach
solves both issues.

2.1 Domain Gap Reduction

Our method maps as little information as possible to a mutual domain, allowing
the network to focus on the end task. This concept was proposed by SharinGAN
[13] for depth prediction from calibrated stereo cameras in urban settings.
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Fig. 3. Overview of our training and testing pipelines. Our network maps real and
synthetic images into a new domain X ′. These translated images are passed through
the DepthNet. Synthetic images are supervised with an L1 error; real images are self-
supervised using a warp loss. During testing, inputs are passed through the Generator
and DepthNet only.

Figure 3 shows an overview of our approach. First, a GAN maps synthetic and
real images to a mutual and end-task-specific domain. Being in the same domain,
the synthetic and real images can now learn depth-specific features from one
another. Let XR and XS denote the real and synthetic domain and let each
image ∈ {XR,XS} consist of domain-agnostic and domain-specific information.

Domain-agnostic information I is shared between the domains. Such infor-
mation should encompass the underlying geometry of the colon. We actively
avoid adaptation of I as it is unnecessary. Domain-specific information could
be blood vessels that are visible in real images but not in synthetic ones. Such
domain-specific information can be end-task-specific, δR and δS , or unspecific,
δ′
R and δ′

S . The end task in our case is depth prediction but other tasks can be
adapted to the same concept. Blood vessels do not encode relevant information
about the geometry and are δ′

R; water and shadows, on the other hand, contain
information about shape and are δS . The domain gap between δ′

R and δ′
S is neg-

ligible, as the depth net will learn to ignore such information. But the domain
gap between δR and δS will affect the training of the depth network. If δR and δS
are first mapped into a shared domain, real and synthetic data can complement
each another.

Let x be a feature of image X. We want to learn a mapping f : XR ∪ XS →
X ′;x �→ f(x), such that f(x) = x if x ∈ {δ′

S , δ′
R, I}, and f(x) �= x if x ∈ {δS , δR}.

But how do we learn such a mapping?
Instead of mapping one domain to the other, both domains can be mapped

into a mutual one moving the means of the distributions together [2]:

LGAN = EXS [D(G(XS))] − EXR [D(G(XR))]. (2)
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To translate only crucial information in an image while retaining most of it, we
use a reconstruction loss that penalizes translation by comparing the generator’s
input with its output:

LR = ‖G(XS) − XS‖22 + ‖M(G(XR) − XR)‖1. (3)

We experimentally found the L1-loss to lead to more similar reconstructions
of small details in the real images and applied a specularity mask M based on
the real images’ RGB values.

Now, instead of having to learn how to translate a synthetic image to the
real domain, or vice-versa, the network only needs to solve how to translate some
information. To encourage that only task-relevant information is translated, we
pass the generator’s output through a depth net. The depth losses from both
domains must then be back-propagated as described in the next section.

2.2 Depth Supervision

As labels for synthetic data exist, synthetic depths are supervised with an L1-loss
between the prediction and ground truth:

LS = ‖Y ′
S − YS‖1. (4)

But as we miss ground truth for real data, the supervision for the real domain
is less straight-forward. SharinGAN proposes to use stereo images for supervi-
sion. But in endoscopy we have to fall back to monocular video. We therefore
propose to incorporate self-supervised geometric supervision for real images.
Self-supervised losses help generalize to real anatomies but tend to converge to
local minima. Additional synthetic supervision can help guide the optimization
of self-supervised models.

For warping-based self-supervision we pass a second image, Xt+1, through
the same generator and subsequently input both images into a WarpNet, which
outputs a 6D pose vector p allowing us to warp image Xt+1 to look like image
Xt. We refer to this warped image as Xt+1→t. The warp loss LW is computed
as proposed in [12] allowing a direct comparison of both models:

LW = 1 ∗ Lphoto + 0.5 ∗ Lgeo + 0.1 ∗ Lsmooth. (5)

It consists of a photometric loss comparing an image to its warped counter-
part:

Lphoto =
∑

‖T(Xt) − Xt+1→t‖2, (6)

where T is the brightness-aware transformation of X according to [12]. Unlike
[12] we do not incorporate the structural similarity index measure (SSIM) in
the warp loss [18], making SSIM a fair evaluation measure on the test set. The
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geometric consistency loss is based on Y ′t warped to t+1, and Y ′t+1 backwards
interpolated to Ỹ ′t+1 and the smooth loss supports convergence:

Lgeo =
‖Y ′t→t+1 − Ỹ ′t+1‖1

Y ′t→t+1 + Ỹ ′t+1
, and Lsmooth =

∑
(exp−∇Xt ·∇Y ′t)2. (7)

The final loss is a sum of the GAN-loss, reconstruction loss, and depth losses:

L = ωGLGAN + ωRLR + 0.5 · (ωSLS + ωWLW ). (8)

Now that the task losses from both domains are back-propagated through
the generator, the domain adaptation is guided by the end task and issue (ii) is
addressed. Lastly, we observe that our network does not assume that real and
synthetic depths are identically distributed (issue i); Fig. 2 illustrates that we
only input RGB images (XS ,XR) to a mutual discriminator, not depths.

2.3 Implementation Details

Our DepthNet is the architecture used both in EndoSLAM [12] and SharinGAN
[13], allowing a direct comparison of the methods. For further comparability, we
use the WarpNet proposed in [12]. We use SharinGAN’s generator but replace
the transposed convolutional layers with interpolation-based upsampling. We
replace SharinGAN’s discriminator with the lightweight discriminator proposed
in Pix2Pix [7] reducing training time by almost half to 8 h on one NVIDIA
A100-80GB GPU. The loss weights are chosen based on grid search and are:
ωG = 1, ωR = 10, ωS = 100, ωW = 1. We train our network on 3,162 image pairs
generated from 1,300 real colonoscopy frames of the EndoMapper1 dataset [4].
All training images were extracted from a single video, as only two videos in the
dataset provide camera intrinsics, and one was held out for testing. The synthetic
dataset consists of 11,000 frames from the Unity-based SimCol2 dataset [14].

3 Experiments

Evaluating a method that bypasses the need for training data is not straightfor-
ward, because the absence of test data is inherent to the task. Our evaluation thus
first focuses on a qualitative comparison. We then quantitatively compare vari-
ous reprojection losses for baselines trained in a self-supervised fashion. Lastly,
we show that our method generalizes across patients and datasets.

Qualitative Comparison: We compare our method to two self-supervised
approaches and two domain-adaptation-based algorithms. Our baselines are the
self-supervised approaches EndoSLAM [12] and AF-SfMLearner [16] with all
parameters set to their default values. The domain-adaptation-based baselines
are: (1) a modification of SharinGAN [13], SharinGAN*, in which we omit the
1 https://www.synapse.org/Synapse:syn26707219/wiki/615178.
2 https://www.ucl.ac.uk/interventional-surgical-sciences/simcol3d-data.

https://www.synapse.org/Synapse:syn26707219/wiki/615178
https://www.ucl.ac.uk/interventional-surgical-sciences/simcol3d-data
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Fig. 4. Comparison of different methods on test images. EndoSLAM and the varia-
tion of SharinGAN fail to generalize to test data. AF-SfMLearner generalizes more
robustly but suffers from large artefacts. We highlight some inconsistencies in pix2pix-
ucl through magenta boxes. Our method is more resilient to specular highlights, water,
and bubbles than the baselines and leads to smoother depth maps where the geometry
is even (box in f) while preserving crisp edges (arrow in h) and details (arrows in c).

virtual supervision of the real images; (2) the extension of Pix2Pix [7], referred
to as pix2pix-ucl [15]. Figure 4 depicts results on real test images. These test
images are from the same patient but different sections of the colon than the
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Fig. 5. Examples of input test images, their translated counterparts, and a difference
map, where yellow denotes larger difference. The GAN mainly translates specularities
and water in the real image, and shadows in synthetic images (see bottom right corner).
(Color figure online)

train images. EndoSLAM fails to generalize to unseen scenes. Although the net-
work converged on the training data, it fails to predict useful depth maps on
test images. AF-SfMLeraner predicts largely sensible depth maps but struggles
with artifacts like water, stool, and specular highlights. SharinGAN* predicts
the overall shape well but fails to preserve details. Pix2pix-ucl, preserves details
but the resulting depth maps are patchy and sometimes inaccurate. See, for
instance, the highlighted inconsistency in map (e). Further, the gradient of these
depth maps is uneven, with only very few pixels assuming high depths (mostly
in wrong locations). Our method is the most robust one. It learns from synthetic
images, such as SharinGAN or pix2pix-ucl, but incorporating the warping loss
helps understand structures that would otherwise be misinterpreted.

In Fig. 5 we investigate how our GAN works. We plot an image, its translated
version, and a difference map for a real and a synthetic example. We can observe
that only domain-specific and task-relevant information is translated. In the real
image, specularities and water are translated the most (yellow). Specularities
encapsulate information about surface normals, while water puddles have specific
geometric properties that are not present in the synthetic data. The synthetic
example shows that the network hallucinates a strong shadow in the lower right
corner, because Unity’s renderer does not produce entirely realistic shadows.

Quantitative Comparison: For methods using warping during training, we
can evaluate the warping losses on real test images. These indirectly give us
information about the accuracy of the depth [5]. As our network is supervised
by the warping loss and the synthetic L1-loss, one might assume that our network

Table 1. Comparison of the different warping-based methods on 1,006 real test images.

Photo. loss (Eq. 6) ↓ Geo. loss (Eq. 7) ↓ SSIM ↑
AF-SfMLearner .096 ± .081 ‡ .069 ± .040 .686 ± .134 †
EndoSLAM .076 ± .035 † .061 ± .033 † .641 ± .104 †
Proposed .076 ± .036 † .036 ± .031 † .659 ± .110
†) Loss used for training as well. ‡) Related loss used for training as well.
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results in a larger warp error than EndoSLAM, which is trained with warp loss
only. However, in Table 1 we observe that our network results in a comparable
photometric loss but a significantly smaller geometric loss. Comparing the SSIM
between the methods, we observe that our model produces higher structural sim-
ilarity than EndoSLAM, although EndoSLAM uses an SSIM-loss during train-
ing and our approach does not. A direct comparison of the self-supervised model
EndoSLAM and our GAN suggests that synthetic data benefits our shared train-
ing approach. AF-SfMLearner produces the highest SSIM, though it was trained
with the SSIM-loss while the proposed method was not. This evaluation has
limitations. Warping errors evaluate the quality of depth and pose prediction
mutually, and the two tasks can compensate each other. We also investigated
EndoMapper’s provided point clouds as potential pseudo ground truth but found
them too noisy and sparse to be useful.

Generalization to New Patients: The EndoMapper dataset provides
COLMAP results for two of the patients. These pseudo-labels are helpful as
they provide camera intrinsics and because COLMAP rejects images that are
too blurred or too occluded and thus neither useful to extract features nor for
our purposes. We found that training on fewer but qualitatively better sequences
improves results. We trained our model on one of the two patients with COLMAP
labels and evaluated it on the other. Results are shown in Fig. 6. We can observe
that the model generalizes well to a different patient, even when the colon is
filled with water as in image (g, top row) or when geometries are peculiar as in

Fig. 6. Generalization to different patients. Our method predicts accurate depths even
when trained on only one other patient. Failure cases due to extreme shade, tools, and
very large specular highlights, that are not in the training set, are indicated by orange
frames. (Color figure online)
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Fig. 7. Depth predictions on the LDPolypVideo dataset. Depicted are results on test
images from a different procedure than the training data. Depths are accurate and
robust to interlacing artefacts. Failure cases are indicated by orange frames. (Color
figure online)

image (b, bottom row). We also show failure cases in the bottom row. In image
(e), the model does not generalize to extensive shadow, probably cause by an
occluded light source. In image (f), the model falsely locates the retroflexed scope
viewing itself in the background. In image (g), the model does not generalize to
the extraordinary large specular highlight. However, none of these extreme cases
were present in the training data. Nonetheless, the model predicts sharp, accu-
rate, and robust depth maps on most frames of an unseen patient, even when
trained on a single anatomy and procedure only.

Generalization to Different Datasets: We repeat our experiments on a sec-
ond publicly available dataset: the LDPolypVideo3 dataset [9], a dataset for
polyp detection that conveniently offers polyp-free colonoscopy videos. These
videos can be used for our purposes as most frames focus on the lumen rather
than the mucosa. As the dataset does not provide camera intrinsics we cannot
rule out that the network learns a consistent but skewed geometry. We trained
our model on frames from one colonoscopy sequence and applied it to images of a
different procedure. We use the same synthetic dataset and hyper-parameters as
in the previous experiments. But unlike the EndoMapper dataset, the sequences
used for this experiment are only a few minutes long and show only a small
section of a colon. Accordingly, the model is only trained on a fraction of the
geometries observed in our first experiment. Nonetheless, the model can general-

3 https://github.com/dashishi/LDPolypVideo-Benchmark.

https://github.com/dashishi/LDPolypVideo-Benchmark
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ize to a different patient predicting accurate and sharp depth maps and is highly
robust to interlacing artefacts as illustrated in Fig. 7.

4 Conclusions

Learning-based depth prediction has seen significant advances in recent years but
requires labels for training, which are not available for colonoscopy. This work
addresses the question how unlabeled real data and cheap, labeled synthetic data
can be used in a mutual framework without overfitting to the geometry of the
synthetic data. At the core of this work is the idea that domain adaptation is
a challenging task that should only be addressed to the extent that it benefits
the end task. Rather than indiscriminately translating entire images from one
domain to another, and accounting only for appearance domain gaps, we propose
task-guided domain gap reduction.

Our experiments show that our model learns to translate only task- and
domain-specific information in real and synthetic input images. The network
learns that water and air bubbles are specific to real data and that rendered
shadows in synthetic data differ from real data. Accounting for these task-specific
differences leads to geometrically consistent depth maps, outperforming previous
domain translation and self-supervised models. We demonstrate that our results
are more consistent with the smooth surfaces of the colon, more robust to unseen
geometries, and still preserve details and edges. In the future, other tasks could
benefit from task-guided domain gap reduction.
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