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1 Introduction

According to Gianni’s view of research, the role of Mathematics is essential in
many fields of science, and in Theoretical Physics in particular. The literature is
full of claims which look reasonable, but are not based on theorems or rigorous
proofs. And this is true in Condensed Matter, Statistical Physics, Quantum Field
Theory, Elementary Particles and so on. The content of this chapter, I believe, could
have been of some interest for Gianni, even if, as far as I know, he never worked
on what I will discuss here. Therefore, with this in mind, let me start my scientific
contribution to this volume.

Among the various tools which play a relevant role in quantummechanics, ladder
operators are quite interesting, and useful. We all know the bosonic annihilation and
creation operators, mainly because they are found already very early, while study-
ing the spectrum of a simple quantum harmonic oscillator. But these operators are
then used in a different, many-body, context: they describe bosonic modes, needed,
for instance, in the analysis of quantum fields describing interactions. Fermionic
ladder operators are also well known: they are used to model easily the Pauli ex-
clusion principle, but they appear also in some quantum fields describing matter.
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These two classes of ladded operators are usually defined in terms of suitable com-
mutation rules between a fixed (annihilation) operator and its adjoint, the creation
operator. For instance, Œc; c��D 1b and fd; d�g D 1f , with d2 D 0, are respectively
the canonical commutation and the canonical anti-commutation relations. Here 1b
and 1f are the identity operators in Hb and Hf respectively, the bosonic and the
fermionicHilbert spaces. It is well known that, for a single mode. dim.Hf /D 2 and
dim.Hb/ D 1. So the two spaces are truly different. Moreover, c� is the adjoint
of c, and d� that of d . Of course, these adjoints should be computed with respect
to the scalar product in the related Hilbert space. This is an easy task for fermions,
since the scalar product is just the one in C2, while it is not entirely trivial in Hb

which is quite often identified with L2.R/, due to the fact that c is an unbounded
operator. This creates a lot of subtle points to consider, of course, since unbounded
operators are not as easy as bounded operators: they have, in particular, domain
issues that should be considered to avoid mistakes. Hence, writing Œc; c�� D 1b is
just a formal relation which needs to be made more precise, for instance by making
explicit the vectors of Hb on which this formula is well defined. And we can eas-
ily imagine that this problem becomes even more complicated when Œc; c�� D 1b is
replaced by Œa; b� D 1b , for some pair of operators a and b with b ¤ a�. The anal-
ysis of this latter situation is indeed the core of this chapter. This is both because
the mathematical properties of these operators can be rather interesting, but also
because they appear, in a somehow hidden way, in several applications considered
in recent years in the physical literature, mainly in connection with manifestly non
self-adjoint Hamiltonians. In particular, as we will show later, removing the con-
straint that the commutation rule is given between an operator (c) and its adjoint
(c�), gives us the possibility to extend the functional framework from L2.R/ to the
space of tempered distributions S0.R/. Of course, this extension opens the problem
of a correct interpretation of the results from a physical side. This is because the
usual probabilistic interpretation of quantum mechanics can be lost. Still, some in-
teresting physically relevant operators appear strongly connected to what we will
discuss later and, in this perspective, we believe our framework may have some
intriguing consequences.

This chapter is organized as follows: we propose our special deformation of
the canonical commutation relations and we discuss some of the mathematical
consequences of our definition. Section 2.1 is devoted to a brief list of quantum
mechanical systems, considered in the literature in recent years, which can be an-
alyzed in terms of our ladder operators, named pseudo-bosonic. In particular we
show that a and b, together with a� and b�, behave as ladder operators and allow
the construction of two different families of vectors in L2.R/ which are biorthonor-
mal and are eigenstates of the pseudo-bosonic number operator N D ba, and of its
adjoint N�. These two sets are not necessarily bases in L2.R/, but they are usu-
ally total sets. In Sect. 3 we take advantage of the fact that in our pseudo-bosonic
commutation rule Œa; b� D 1b a and b can be, in general, quite unrelated to pro-
pose a generalized version of the Hilbertian settings proposed in Sect. 2. Hence we
construct a general settings for what we call weak pseudo-bosons (WPBs). Several
appearance of these WPBs are described in the second part of Sect. 3. In particular,
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in Sect. 3.1 we show how the position and the momentum operators Ox and Op can be
seen as weak pseudo-bosonic ladder operators, and we show that an extended scalar
product can be introduced to prove the biorhogonality of the generalized eigenstates
of the pseudo-bosonic number operators. In Sect. 3.2 we discuss the role of WPBs
in the context of the so-called inverted quantum harmonic oscillator (IQHO), while
in Sect. 3.3 we propose a rather general family of pseudo-bosons (PBs) which can
be defined in or out of L2.R/. Section 4 contains our conclusions.

2 Pseudo-Bosons

We begin our analysis by recalling few well known facts on bosonic operators. This
is important to fix the notation and later to stress the differences between PBs and
ordinary bosons.

Let c be an operator on an Hilbert space1 H D L2.R/ satisfying the canonical
commutation relation (CCR) Œc; c��D 1, c� being the adjoint of c and 1 the identity
operator on H . Notice that, using for c the representation c D 1p

2

� Ox C d
dx

�
, where

Ox is the multiplication operator and d
dx

is the derivative operator2, the set of the test
functions onR, S.R/, i.e. of all those C1 functions which go to zero, together with
their derivatives, faster than any inverse power, is stable under the action of c and
c�: if f .x/ 2 S.R/, then cf .x/; c�f .x/ 2 S.R/. Now we replace Œc; c�� D 1 with
its more complete version, writing

Œc; c��f .x/ D f .x/; (1)

for all f 2 S.R/. If we consider a vector e0.x/ 2 S.R/ which is annihilated by c,
c e0.x/ D 0, it is clear that all the vectors en.x/ D 1p

nŠ
c�
n
e0.x/, n � 0, belong to

S.R/. The set Fe D fen.x/; n � 0g is an orthonormal basis for H :

hen; emi D ın;m; and f .x/ D
1X

nD0
hen; f i en.x/;

8f .x/ 2 L2.R/, so that Le D l:s:fen.x/g, the linear span of the en.x/’s, is dense in
L2.R/. The following Parseval equality holds:

hf; gi D
1X

nD0
hf; enihen; gi; (2)

8f .x/; g.x/ 2 H . The explicit form of en.x/ is well known:

en.x/ D 1
p
2nnŠ

p
�
Hn.x/ e

� x2

2 ; (3)

1 From now on we will simply use H rather than Hb , since Hf will have no role in the rest of
this chapter.
2 We recall that this is proportional to the momentum operator Op, Op D �i d

dx
.
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where Hn.x/ is the n-th Hermite polynomial. It is evident now that en.x/ 2 S.R/,
for all n � 0, so that the (strict) inclusion Le � S.R/ holds.

The set Fe has interesting features, when considered in connection with c and
c�. Indeed we have the following

c en D
p
n en�1; c�en D

p
nC 1 enC1; (4)

with the agreement that e�1 D 0. An immediate consequence of these ladder equa-
tions is the following eigenvalue equation

N0 en D n en; (5)

n� 0, whereN0D c�c is called the number operator. Because of (4), c is a lowering
or an annihilation operator, while c� is a raising or a creation operator. Together
they are called ladder operators.N0, c and c� are all unbounded. In particular,N0 is
symmetric, since hN0f; gi D hf;N0gi 8f; g 2D.N0/, and is positive: hN0f; f i D
hcf; cf i D kcf k2 � 0, 8f 2 D.N0/. Hence, N0 admits a Friedrichs extension,
which we still denote with N0, which is self-adjoint.

Summarizing, if c satisfies the CCR (1), then we can build up an interesting
functional settings: a family of vectors, the en.x/’s, which are eigenvectors of the
self-adjoint operator N0 with eigenvalues n 2 N0 D N [ f0g, see (5), which obey
some relevant ladder conditions, see (4), and which, all together, produce a set of
functions Fe which is an orthonormal basis for H .

During the past few decades, many physicists realized that some non self-adjoint
operators can play a significant role in the analysis of various physical systems,
[1–5], since there exist quantummechanical situations in which the dynamics is bet-
ter described by Hamiltonians (and other observables) which are not self-adjoint.
This evidence has produced a huge interest in an extended version of quantum
mechanics, where self-adjointness of the observables is not a key aspect. This sug-
gested to consider ladder operators of different kind, not necessarily linked by the
usual adjoint operation, and their connected number-like operators. We refer to [6]
for some preliminary results and to [7] for a more recent monograph on these topics.
This chapter is intended to be a review of some recent results on these generalized
ladder operators, and to their weak3 version in particular. For readers’ convenience,
we begin our analysis by proposing first our definitions and their consequences in a
purely Hilbertian settings, postponing their distributional counterparts to Sect. 3.

Let a and b be two operators on H , with domains D.a/ and D.b/ respectively,
a� and b� their adjoint, and letD be a dense subspace ofH such that a]D�D and
b]D � D, where x] is either x or x�: D is assumed to be stable under the action
of a, b, a� and b�. Notice that we are not requiring here that D coincides with, e.g.
D.a/ or D.b/. However due to the fact that a]f is well defined, and belongs to D
for all f 2 D, it is clear that D � D.a]/. Analogously, we can also conclude that
D�D.b]/. The stability ofD implies that both a.bf / and b.af / are well defined,
8f 2 D.

3 In the sense of distributions!
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Definition 1 The operators .a; b/ areD-pseudo-bosonic (D-pb) if, for all f 2D,
we have

a b f � b a f D f: (6)

Sometimes, to simplify the notation, rather than (6) we will simply write Œa; b�D 1.
Of course, when b D a� we go back to CCR, and a; b … B.H /, the set of bounded
operators on H . a and b are unbounded also when a ¤ b�, and this is the reason
why the role of D is so relevant.

Our working assumptions, based on several existing systems in quantum me-
chanics, are the following:

Assumption D-pb 1 there exists a non-zero '0 2 D such that a '0 D 0.

Assumption D-pb 2 there exists a non-zero �0 2 D such that b� �0 D 0.

It is clear that, if b D a�, these two assumptions collapse into a single one and (6)
becomes the ordinary CCR, for which the existence of a vacuum which belongs to
an invariant set (S.R/, for instance) is guaranteed. On the other hand, if a and b are
uncorrelated, it might easily happen that Assumptions D-pb 1 or D-pb 2, or one of
the two, are not satisfied. One important example of this situation will be discussed
at length in Sect. 3.1.

The stability of D under the action of b and a� implies, in particular, that '0 2
D1.b/´ \k�0D.bk/ and that �0 2 D1.a�/. Here D1.X/ is the domain of all
the powers of the operator X . Hence

'n ´ 1p
nŠ
bn'0; �n ´ 1p

nŠ
a�
n
�0; (7)

n � 0, are well defined vectors in D and, therefore, they belong to the domains of
a], b] and N], where N D ba and N� is the adjoint of N . We introduce the sets
F� D f�n; n � 0g and F' D f'n; n � 0g.

It is now simple to deduce the following lowering and raising relations:

8
ˆ̂<

ˆ̂:

b 'n D
p
nC 1 'nC1; n � 0;

a '0 D 0; a'n D p
n'n�1; n � 1;

a��n D
p
nC 1�nC1; n � 0;

b��0 D 0; b��n D p
n�n�1; n � 1;

(8)

as well as the following eigenvalue equations:N'nD n'n andN��nD n�n, n� 0.
Hence, despite of the fact thatN andN� are manifestly non self-adjoint, in general,
their eigenvalues are real and, actually, coincide with those of the operatorN0Dc�c.
We call D-pseudo-bosons (D-PBs) the excitations described by 'n and �n, in the
same way we call bosons those described by the vectors en in (3).
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As a consequence of these equations, choosing the normalization of '0 and �0
in such a way h'0; �0i D 1, it can be shown that

h'n; �mi D ın;m; (9)

for all n;m � 0. The conclusion is, therefore, that F' and F� are biorthonormal
sets of eigenstates of N and N�, respectively. The properties we have deduced for
F' and F� does not allow us to conclude anything about the fact that they are also
(Riesz) bases forH . In fact, it is well known that, in some relevant concrete exam-
ples, this is not the case, while in other situations this is true. We will return on this
aspect in Sect. 2.1, where several counterexamples will be given. With this in mind,
we introduce the following (not always satisfied, in view of what just observed)
assumption:

Assumption D-pb 3 F' is a basis for H .

This is equivalent to assume that F� is a basis as well, [8]. Since this assumption is
not always true, it is more reasonable to replace Assumption D-pb 3 with a weaker
version, which thought being weaker, still produces several interesting results and,
maybe more relevant, is satisfied even when Assumption D-pb 3 does not hold. We
ask the following:

AssumptionD-pbw 3 F' andF� are G-quasi bases, for some subspace G dense4

in H .

This means that, 8f; g 2 G, the following identities hold

hf; gi D
X

n�0
hf; 'nih�n; gi D

X

n�0
hf;�nih'n; gi; (10)

which, as it is clear, extend the standard closure relation in H , also known as Par-
seval identity.

While Assumption D-pb 3 implies (10), the reverse is false. However, if F' and
F� satisfy (10), we still have some (weak) form of resolution of the identity, and we
can deduce several useful consequences. For instance, just to state a simple result,
if f 2 G is orthogonal to all the �n’s (or to all the 'n’s), then f is necessarily zero:
F� and F' are total in G.

For completeness we briefly discuss the role of two intertwining operators which
are intrinsically related to our D-PBs. More details can be found in [6].

Assumption D-pb 3 means that

f D
1X

nD0
h'n; f i�n D

1X

nD0
h�n; f i 'n; (11)

4 G does not need to coincide withD.
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8f 2H . Then, it is natural to ask if sums like S'f DP1
nD0h'n; f i'n or S�f DP1

nD0h�n; f i�n make some sense, or for which vectors they do converge, if any.
It is clear that, if b D a�, then F' D F� and S' D S� D 1: in this case not only the
series for S' and S� converge, but they converge to the identity operator.

If, in particular, F' is a Riesz basis, [8], then F� is a Riesz basis too, and we
know that an orthonormal basis Fc D fcng exists, together with a bounded operator
R with bounded inverse, such that 'n D Rcn and �n D .R�1/�cn, 8n. It is clear
that, if R D 1, the sums for S'f and S�f collapse and converge to f . But, what if
R¤ 1? In this case, let us take f 2D.S'/, which for the moment we do not assume
to be coincident with H . Then

S'f ´
X

n

h'n; f i'n D
X

n

hRcn; f iRcn D R

 
X

n

˝
cn;R

�f
˛
cn

!

D RR�f;

where we have used the facts thatFc is an orthonormal basis and that R is bounded
and, therefore, continuous. Of courseRR� is bounded as well and the above equality
can be extended to all ofH . Therefore we conclude that S'DRR�. In a similar way
we can deduce that S� D .R�/�1R�1 D S�1

' , which is also bounded. In fact, using
the C�-property for B.H /, we deduce that kS'k D kRk2 and kS�k D kR�1k2. In
this situation, our D-PBs are called regular.

Similar results can also be deduced without introducing the operator R, but sim-
ply using the biorthonormality of F' and F� :

S'�n D 'n; S 'n D �n; (12)

for all n � 0. These equalities together imply that �n D .S� S'/�n and 'n D
.S' S� /'n, for all n� 0. Now, since S'; S� 2B.H /, we can extend these identities
to all of H , and we conclude that

S� S' D S' S� D 1 ) S� D S�1
' : (13)

In other words, both S� and S' are invertible and one is the inverse of the other. It
is also clear that S' and S� are positive operators, and it is interesting to check that
they obey the following intertwining relations:

S�N'n D N�S�'n; NS'�n D S'N
��n; (14)

Indeed we have, recalling thatN'nD n'n andN��nD n�n, S�N'nD n.S�'n/D
n�n, as well asN�S�'n DN��n D n�n. The second equality in (14) follows from
the first one, simply by left-multiplying S�N'nDN�S�'n with S' , and using (12).
These relations are not surprising, since intertwining relations can be often deduced
between operators sharing the same eigenvalues.

The situation is mathematically much more complicated, in particular, for D-
PBs which are not regular. This is connected to the fact that S' and S� are not
bounded, so that the series

P1
nD0h'n; f i'n and

P1
nD0h�n; f i�n do not converge

uniformly on H . This case, together with many other details on PBs, can be found
in [6] and in references therein.
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2.1 Few Appearances of PBs

During the last few decades a lot of physical systems have been considered, mostly
in connection with PT -Quantum Mechanics, [1–5], driven by manifestly non self-
adjoint Hamiltonians which can be rewritten in terms of PBs. We briefly list here
some of these Hamiltonians, and we refer to [6, 7] for many more mathematical
details and physical applications. It is useful to remark that, in what follows, we
will be extremely concise, since ordinary PBs are not the main object of our review
here, but are only needed to provide a better setup for WPBs.

The Extended Quantum Harmonic Oscillator

We begin our list of models with the following Hamiltonian, proposed in [9]

H� D �

2

� Op2 C Ox2�C i
p
2 Op;

where � is a strictly positive parameter and Œ Ox; Op� D i1.H� is manifestly non self-
adjoint. However, with some algebra, it can be easily diagonalized in terms of PBs.

For that, we start introducing the (standard) bosonic operators c D 1p
2

� Ox C d
dx

�
,

c�D 1p
2

� Ox � d
dx

�
, Œc; c��D1, and the related operatorsA�D c� 1

�
, andB�D c�C 1

�
.

Then we can rewriteH� D �.B�A� C �� 1/, where �� D 2C�2
2�2

. It is clear that, for all

� > 0, A�� ¤ B� and that ŒA�; B��D 1. Hence we are dealing, at least formally, with
pseudo-bosonic operators. Indeed, we can check that Assumptions D-pb1, D-pb2
and D-pbw3, are satisfied, while Assumption D-pb3 is not, see [6, 10].

The Swanson Model

The starting point is here the non self-adjoint Hamiltonian,

H	 D 1

2

� Op2 C Ox2� � i

2
tan.2	/

� Op2 � Ox2�;

where 	 is a real parameter taking value in
���

4
; �
4

� n f0g DW I , [9, 11]. As before,
Œ Ox; Op� D i1. Of course, 	 D 0 is excluded from I just to avoid going back to the
standard, self-adjoint, harmonic oscillator, which is not so interesting for us. Notice
also thatH	 can be rewritten as

H	 D 1

2 cos.2	/

� Op2e�2i	 C Ox2e2i	� D e�2i	

2 cos.2	/

� Op2 C Ox2e4i	�;

which has, except for an unessential overall complex constant, the same form con-
sidered in [12],H D � d2

dx2
C z4 Ox2, z 2 C, taking z D ei	 .
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Introducing now the bosonic annihilation and creation operators c, c�, and their
linear combinations

(
A	 D cos.	/ c C i sin.	/ c� D 1p

2

�
ei	 Ox C e�i	 d

dx

�
;

B	 D cos.	/ c� C i sin.	/ c D 1p
2

�
ei	 Ox � e�i	 d

dx

�
;

we can write H	 D !	
�
B	 A	 C 1

2
1
�
, where !	 D 1

cos.2	/ is well defined because

cos.2	/ ¤ 0 for all 	 2 I . It is clear that, for 	 in this set, A�	 ¤ B	 and that
ŒA	 ; B	 �D 1. Again, we have rewritten the Hamiltonian in terms of PBs, and again,
we can check that Assumptions D-pb1, D-pb2 and D-pbw3, are satisfied, while
Assumption D-pb3 is not, see [6, 10].

Two Coupled Oscillators

The next example we want to briefly mention was originally introduced by Carl
Bender and Hugh Jones in [13] and then considered further in [14]. The starting
point is the following, manifestly non self-adjoint, Hamiltonian:

H D . Op21 C Ox21/C . Op22 C Ox22 C 2i Ox2/C 2
 Ox1 Ox2; (15)

where 
 is a real constant, with 
 2� � 1; 1Œ. Here the following commutation rules
are assumed: Œ Oxj ; Opk� D iıj;k1, 1 being the identity operator on L2.R2/. All the
other commutators are zero.

In order to rewrite H in a more convenient form it is possible to perform some
changes of variables, [14], starting by introducing the operators Pj , Xj , j D 1; 2,
via

P1 ´ 1

2a
. Op1 C � Op2/; P2 ´ 1

2b
. Op1 � � Op2/;

X1 ´ a. Ox1 C � Ox2/; X2 ´ b. Ox1 � � Ox2/;
where � can be˙1, while a and b are real, non zero, arbitrary constants. These oper-
ators satisfy the same canonical commutation rules as the original ones: ŒXj ; Pk�D
iıj;k1. Next we put

˘1 D P1; ˘2 D P2; q1 D X1 C i
a�

1C 
 �
; q2 D X2 � i b�

1 � 
 � ;

and it is clear that q�j ¤ qj , j D 1; 2. However, the commutation rules are preserved:
Œqj ;˘k� D iıj;k1. Finally, we introduce the operators:

8
ˆ̂<

ˆ̂:

a1 D a
4
p
1C
 �

�
i˘1 C

p
1C
 �
2a2

q1

�
;

a2 D a
4
p
1�
 �

�
i˘2 C

p
1�
 �
2b2

q2

�
;

(16)
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and 8
ˆ̂<

ˆ̂:

b1 D a
4
p
1C
 �

�
�i˘1 C

p
1C
 �
2a2

q1

�
;

b2 D a
4
p
1�
 �

�
�i˘2 C

p
1�
 �
2b2

q2

�
:

(17)

It may be worth remarking that bj ¤ a
�
j , since the qj ’s are not self-adjoint. These

operators satisfy, at least formally, the pseudo-bosonic commutation rules

Œaj ; bk� D ıj;k1; (18)

the other commutators being zero.
Going back to H , and introducing the operators Nj ´ bj aj , we can write

H DH1CH2C 1

1 � 
2 1; H1D
p
1C 
 �.2N1C1/; H2D

p
1 � 
 �.2N2C1/:

(19)
In [6, 15] it has been proved that these operators provide a two-dimensional version
of the general framework described in Sect. 2: we are dealing with PBs, but in 2D.

Another 2D Example

The last quantum mechanical model of this short (and very minimal!) list was orig-
inally introduced, in our knowledge, in [16]. The starting point is the following
manifestly non self-adjoint Hamiltonian,

H D 1

2
. Op21 C Ox21/C

1

2
. Op22 C Ox22/C i ŒA. Ox1 C Ox2/C B. Op1 C Op2/�; (20)

where A and B are real constants, while Oxj and Opj are the self-adjoint position and
momentum operators, satisfying Œ Oxj ; Opk� D iıj;k1. Notice that in [6] a noncommu-
tative version of this system has also been considered.

Let us introduce the shifted operators

P1 D Op1 C iB; P2 D Op2 C iB; X1 D Ox1 C iA; X2 D Ox2 C iA;

and then

aj D 1p
2
.Xj C iPj /; bj D 1p

2
.Xj � iPj /; (21)

j D 1; 2. It is easy to check that ŒXj ; Pk� D iıj;k1, Œaj ; bk� D ıj;k1, and that, since
(if A¤ 0 or B ¤ 0)X�

j ¤Xj and P
�
j ¤Pj , bj ¤ a

�
j . Introducing furtherNj D bj aj

we can rewriteH as follows:H D N1 CN2 C .A2 C B2 C 1/1. Also in this case,
we can rewrite H in diagonal form in terms of pseudo-bosonic number operators.
We refer to [6] to see the details of our computations, and for the mathematical
subtleties connected with the Hamiltonian in (20).
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We conclude here this list of concrete appearances of PBs in some quantum me-
chanical models already existing in the literature, before the analysis given in Sect. 2
was undertaken. It is useful to add that PBs have shown to be useful in the analysis
of many other models, and in connection with other interesting situations. We refer
to [7], in particular, for some applications of PBs to path integrals.

3 Weak PBs

From now on we will concentrate on a specific class of PBs, the so-called weak PBs,
WPBs. These are ladder operators acting on distributions, rather than on square-
integrable functions. They have, as we will see, similar properties as those of ordi-
nary PBs, but are maybe more intriguing for their mathematical properties.

We start introducing here, as before, two operators a and b which, together with
their adjoints a� and b�, map a certain dense subset of H , D, into itself. Then we
assume that a and b can be extended to a larger set, E � H , which is again stable
under their action, and under the action of their adjoints. The existence of such a
set E is, of course, very much model-dependent. Some explicit example will be
discussed later in Sect. 3. With this in mind, we propose the following

Definition 2 The operators a and b are weak E-pseudo bosonic if

Œa; b� F D F; (22)

for all F 2 E. When the role of E is clear we will simply call a and b weak pseudo
bosonic operators.

As in Sect. 2, the commutator in (22) is just the starting point to construct an inter-
esting mathematical framework. This is exactly what we will do here. In particular,
the following two assumptions reflect Assumptions D-pb 1 and D-pb 2:

Assumption E-wpb 1 there exists a non-zero '0 2 E such that a '0 D 0.

Assumption E-wpb 2 there exists a non-zero �0 2 E such that b� �0 D 0.

As before, the invariance of E under the action of the operators a, b, a� and b� im-
plies that '0 2D1.b/´\k�0D.bk/ and �0 2D1.a�/, in the sense of generalized
domains, so that the vectors

'n ´ 1p
nŠ
bn'0; �n ´ 1p

nŠ
a�
n
�0; (23)

n�0, can be defined and they all belong to E. Defining now the setsF Df n; n�
0g and F' D f'n; n � 0g, from (22) and from the definition in (23) we easily de-
duce the same raising and lowering relations as in (8), together with the eigenvalue
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equations N'n D n'n and N��n D n�n, n � 0. In the attempt to generalize what
we have proved for PBs, it is now natural to assume that, with a suitable choice of
the normalization of '0 and �0 which implies that h'0; �0i D 1, then

h'n; �mi D ın;m; (24)

for all n;m � 0. This means that F� and F' are requested to be biorthonormal,
with respect to a bilinear form h:; :i which extends the ordinary scalar product to E,
and which needs to be identified in concrete situations.

Of course, since the vectors of F� and F' are not, in general, in H , it makes
not much sense to require any strong version of the basis property forF� orF' . On
the other hand, what seems natural to require is that a set C � E exists, consisting
of “sufficiently many” functions, such that

hF;Gi D
1X

nD0
hF; nih'n;Gi D

1X

nD0
hF; 'nih n;Gi; (25)

for all F;G 2 C. A pragmatic view on C is that it should contains all those (gener-
alized) functions which are interesting for us, for some specific physical or mathe-
matical reason.

As in Sect. 2, we can use F' and F to introduce two operators, S' and S , as
follows: let

D.S'/ D fF 2 EWS'F 2 Eg; D.S / D fF 2 EWS F 2 Eg:

These are to be understood as generalized domains of S' and S , respectively.
Most of the properties found for ordinary PBs are recovered. Calling L' and L 
respectively the linear spans of the vectors 'n and  n, we see that L' � D.S /,
L � D.S'/, S' WL ! L' , and S WL' ! L . In particular we have

S'

 
NX

kD0
ck k

!

D
NX

kD0
ck'k; S 

 
NX

kD0
ck'k

!

D
NX

kD0
ck k; (26)

as well as
S'S F D F; S S'G D G; (27)

and
NS'G D S'N

�G; N �S F D S NF: (28)

Moreover

a F D S'b
�S F; b F D S'a

�S F; a�G D S bS'G; b�G D S aS'G;

(29)
for all F 2 L' and G 2 L . Using the same notation proposed in [6], the oper-
ators a and b� could be called S -conjugate. Conjugate operators are sometimes



On Some Deformed Canonical Commutation Relations: The Role of Distributions 29

considered in a Hilbertian context, and produce several interesting results. For this
reason, a deeper investigation of these similarities conditions in the distributional
sense could be interesting, and this analysis is in progress.

We can then conclude that there is no particular obstacle, in principle, in ex-
tending the main ideas and results deduced for PBs to WPBs. Of course, the rather
abstract construction proposed so far in the section becomes more interesting if it
can be really used, that is if there are (physical) systems which can be analysed in
terms of WPBs. This is indeed the case, as we will show in the rest of this section.

3.1 Weak PBs for Ox and Op

Let us consider the following operators defined on H D L2.R/: Oxf .x/ D xf .x/,
. ODg/.x/ D g0.x/, the derivative of g.x/, for all f .x/ 2 D. Ox/ D fh.x/ 2 L2.R/W
xh.x/ 2 L2.Rg and g.x/ 2 D. OD/ D fh.x/ 2 L2.RW h0.x/ 2 L2.R/g. Of course,
the set of test functions S.R/ is a subset of both sets above: S.R/ � D. Ox/ and
S.R/ � D. OD/. The adjoints of Ox and OD in H are Ox� D Ox, OD� D � OD. We have
Œ OD;x�f .x/ D f .x/, for all f .x/ 2 S.R/. This suggests that Ox and OD could be
thought as S.R/-pseudo bosons, since they satisfy Definition 1 and since S.R/ is
stable under their action, and the action of their adjoints. However, if we look for
the vacua of a D OD and b D Ox, we easily find that '0.x/ D 1 and  0.x/ D ı.x/,
with a suitable choice of the normalizations5. It is clear, therefore, that neither '0.x/
nor  0.x/ belong to S.R/. Also, they not even belong to L2.R/. Nonetheless, it is
interesting to see what can be recovered of the framework proposed in Sect. 2, or if
it can be extended, and how. In fact, we will show how the general settings proposed
in the first part of Sect. 3 work for our operators Ox and Op.

First of all, let us check if (7) still makes some sense. We have

'n.x/ D bnp
nŠ
'0.x/ D xnp

nŠ
;  n.x/ D .a�/np

nŠ
 0.x/ D .�1/np

nŠ
ı.n/.x/; (30)

for all n D 0; 1; 2; 3; : : : Here ı.n/.x/ is the n-th weak derivative of the Dirac delta
function. We can check that 'n.x/;  n.x/ 2 S0.R/, the set of the tempered distri-
butions, [17], that is the continuous linear functionals on S.R/. This suggests to
consider a� and b as linear operators acting on S0.R/. This is possible since the ac-
tion of Ox and OD can be extended outside L2.R/, to S0.R/, which is stable under the
action of these operators. In other words: a; b; a� and b� all map S0.R/ into itself.
This is exactly what required before Definition 2, with S0.R/ playing the role of E.
Then we can extend the pseudo-bosonic commutation relation, originally defined

5 In fact, to talk of normalization we should have a scalar product but, for the moment, it is not
clear what such a scalar product could be in the present context. This will be clarified later in this
section.
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as ŒD; x�f .x/ D f .x/, for all f .x/ 2 S.R/, to the space of tempered distributions:

Œa; b�'.x/ D '.x/; (31)

for all '.x/ 2 S0.R/.
From (30) it follows that b and a� act as raising operators, respectively on the

sets F' D f'n.x/g and F D f n.x/g:

b'k.x/ D
p
k C 1'kC1.x/; a� k.x/ D

p
k C 1 kC1.x/; (32)

k D 0; 1; 2; 3; : : : Moreover, from (31), we deduce that b� and a act as lowering
operators on these sets:

a'k.x/ D
p
k'k�1.x/; b� k.x/ D

p
k k�1.x/; (33)

k D 0; 1; 2; 3; : : :, with the understanding that a'0.x/ D b� 0.x/ D 0. It is now
clear that, calling N D baD Ox OD, N'k.x/D k'k.x/, for all k D 0; 1; 2; 3; : : : This
is because N'k.x/ D b.a'k.x// D

p
k b'k�1.x/ D k'k.x/. But the same result

can also be found in a different, more explicit, way:

N'k.x/ D Ox OD xkp
kŠ

D Ox kx
k�1

p
kŠ

D kxkp
kŠ

D k'k.x/:

The distributions  k.x/ are also (generalized) eigenstates of a number-like opera-
tor. In fact, calling N� D a�b�, and using formulas (32) and (33), one proves that
N� k.x/ D k k.x/. Again, this can be checked explicitly by computing

N� k.x/ D � OD Ox
�
.�1/kp
kŠ

ı.k/.x/

�
D .�1/kC1p

kŠ
.xı.k/.x//0 D k k.x/;

since the weak derivative of xı.k/.x/ can be easily computed and we have
.xı.k/.x//0 D �kı.k/.x/, for all k D 0; 1; 2; 3; : : : Summarizing, we have that

N'k.x/ D k'k.x/; N � k.x/ D k k.x/; (34)

for all k D 0; 1; 2; 3; : : : This formula, together with (32) and (33), are analogous to
those deduced in Sect. 2. Hence, this suggests that a framework close to that of PBs
can be extended, for Ox and OD, from the Hilbert space L2.R/ to the set of tempered
distributions.

The next step consists in checking, if possible, the biorthogonality of the sets
F' and F , and their basis properties, if any. In other words, we are interested in
understanding whether equations (24) and (25), or some similar expressions, can be
deduced for our families of tempered distributions.

Of course, to talk of biorthogonality, we should first define some sort of scalar
product. But this is impossible for distributions, in general. However, there are pairs



On Some Deformed Canonical Commutation Relations: The Role of Distributions 31

of distributions for which such an operation can be defined, as we will discuss now.
We should also stress that this extended scalar product is not unique: other choices
are possible, and a different choice was recently proposed in [18].

First we observe that the scalar product between two good functions, for instance
f .x/; g.x/ 2 S.R/, can be written in terms of a convolution between f .x/ and the
function Qg.x/ D g.�x/. Indeed we have hf; gi D .f � Qg/.0/. In the same way we
define the scalar product between two elements F.x/;G.x/2S0.R/ as the following
convolution:

hF;Gi D .F � QG/.0/; (35)

whenever this convolution exists. This existence issue is discussed, for instance, in
[19]. As we will see, this will not be a problem for us. In order to compute hF;Gi,
it is necessary to compute .F � QG/Œf �, f .x/ 2 S.R/, and this can be computed by
using the equality6 .F � QG/Œf � D hF;G � f i.

In our situation we have F.x/ D xn and G.x/ D ı.m/.x/, n;m D 0; 1; 2; 3; : : :

Hence .G � f /.x/ D R
R ı

.m/.y/f .x � y/dy D f .m/.x/, where f .m/.x/ is the or-
dinary m-th derivative of the test function f .x/. Then we have

.F � QG/Œf � D hF;G � f i D
Z

R

F.x/f .m/.x/ dx D
Z

R

xn
dmf .x/

dxm
dx

D .�1/m
Z

R

dmxn

dxm
f .x/ dx:

But

dmxn

dxm
D

8
<̂

:̂

0 if m > n

nŠ if m D n
nŠ

.n�m/Š x
n�m if m < n;

and therefore

.F � QG/Œf � D

8
<̂

:̂

0 if m > n

.�1/nnŠ RR f .x/ dx if m D n

.�1/m nŠ
.n�m/Š

R
R x

n�mf .x/ dx if m < n:

Hence

.F � QG/.x/ D

8
<̂

:̂

0 if m > n

.�1/nnŠ if m D n

.�1/m nŠ
.n�m/Šx

n�m if m < n;

and therefore that .F � QG/.0/ D .�1/nnŠın;m. Putting all these results together, we
conclude that not only h'n;  mi exists, but also that

h'n;  mi D ın;m; (36)

6 We stress once more that .F � QG/Œf � is not always defined, but there exist useful situations when
it is. This is the case when hF;G � f i exists. It is maybe useful to stress that .F � QG/Œf � represents
the action of .F � QG/.x/ on the function f .x/.
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as claimed before. Notice that our original choice of normalization for '0.x/ and
 0.x/ guarantees the biorthonormality (and not only the biorthogonality) of the
families F' and F .

Remark It is clear that h:; :i cannot satisfy all the properties of an ordinary scalar
product. In particular, it could be impossible to check that hF;F i � 0 for all tem-
pered distributions F , and that hF;F i D 0 if, and only if, F D 0. The reason is
simple: there is no guarantee that hF;F i does even exist, indeed. However, h:; :i
has all the properties of an ordinary scalar product when restricted, for instance, to
S.R/ since, in this case, h:; :i coincides with the ordinary scalar product in L2.R/.

It is clear that it makes no much sense to check ifF' orF , or both, are bases inH .
This is because none of the 'n.x/ and  n.x/ even belongs to L2.R/. However, the
pair .F';F / can still be used to expand a certain class of functions, those which
admit expansion in Taylor series. In fact we have

1X

nD0
h n; f i'n.x/ D

1X

nD0

.�1/n
nŠ

˝
ı.n/; f

˛
xn D

1X

nD0

1

nŠ
f .n/.0/ xn D f .x/;

for all f .x/ admitting this kind of expansion. However, if we invert the role of F 

and F' , the result is more complicated:

1X

nD0
h'n; f i n.x/ D

1X

nD0

.�1/n
nŠ

hxn; f iı.n/.x/:

This is, in principle, an infinite series of derivatives of delta, called dual Taylor
series, see [20, 21], for instance. It is known that the series does not define in general
an element ofD0.R/, a distribution, (hence it cannot define a tempered distribution)
except when the number of non zero moments of f .x/, hxn; f i, is finite, since,
in this case, the series above returns a finite sum, which is indeed a (tempered)
distribution.

This preliminary analysis shows that the pair .F';F / obeys a sort of weak
basis property, at least for very special functions or distributions. What we will do
next is to check if, and for which objects, a formula like that in (25) can be written.
In this perspective, let us introduce the following set of functions:

D D L1.R/ \ L1.R/\ A.R/; (37)

where A.R/ is the set of entire real analytic functions, which admit expansion in
Taylor series, everywhere convergent in R. It might be useful to notice that D con-
tains many functions of S.R/, but not all.

Let now f .x/; g.x/ 2 D, and let us consider the following sequence of func-

tions:RN .x/Df .x/ PN
nD0

g.n/.0/

nŠ
xn. It is clear, first of all, thatRN .x/ converges to

f .x/ g.x/ almost everywhere (a.e.) in R. Of course, it also converges with respect
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to stronger topologies, but this is not relevant for us. The second useful property is
that RN.x/ can be estimated as follows:

jRN .x/j � R.x/ 	 jf .x/j.M C kgk1/; (38)

for some fixedM > 0 and for all N large enough. It is clear that R.x/ 2 L1.R/. To
prove the estimate in (38) it is enough to observe that, a.e. in x,

jRN.x/j � jf .x/j
 ˇ̌
ˇ̌
ˇ

NX

nD0

g.n/.0/

nŠ
xn � g.x/

ˇ̌
ˇ̌
ˇ
C jg.x/j

!

� jf .x/j.M C kgk1/;

where M surely exists (independently of x) due to the uniform convergence of
PN

nD0
g.n/.0/

nŠ
xn to g.x/. Then we can apply the Lebesgue dominated convergence

theorem to conclude that

lim
N;1

Z

R

RN .x/dx D
Z

R

f .x/ g.x/dx D hf; gi:

Incidentally we observe that, since f; g 2 D, jhf; gij � kf k1kgk1, which ensures
that hf; gi is well defined. Now,

hf; gi D lim
N;1

Z

R

RN.x/dx D
1X

nD0

1

nŠ
g.n/.0/hf; xni D

1X

nD0

.�1/n
nŠ

hf; xni˝ı.n/; g˛ D

D
1X

nD0
hf; 'nih n; gi:

In a similar way we can also check that, for the same f .x/ and g.x/,

hf; gi D
1X

nD0
hf; nih'n; gi:

Hence we conclude that .F';F / are D-quasi bases. It should be stressed that
it is not clear if D is dense or not in H , but this is not particularly relevant
in the present context, where the role of the Hilbert space is only marginal.
Moreover, there are also distributions which satisfy (half of) formula (25). For
instance, if f .x/ DPM

kD0 ak k.x/ for some complex ak and fixed M , the equal-
ity hf; gi D P1

nD0 hf; 'nih n; gi is automatically satisfied, while it is not even
clear if

P1
nD0 hf; nih'n; gi does converge or not. Similarly, if we take g.x/ DPL

kD0 bk'k.x/ for some complex bk and fixed L, hf; gi DP1
nD0 hf; 'nih n; gi is

true, while
P1

nD0 hf; nih'n; gi could be not even convergent.
In analogy with what we have done in Sect. 2, we can useF' andF to introduce

two operators, S' and S , which we formally write, for the moment,

S' D
X

n

j'n >< 'nj; S D
X

n

j n ><  nj: (39)
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We have seen that these operators have interesting properties, and it makes sense to
understand if they can be extended, and in which sense, to the present distributional
context. In particular, it is interesting to check formulas (26)-(29).

First of all, we introduce the following subsets of S0.R/:

D.S'/ D fF.x/ 2 S0.R/W .S'F /.x/ 2 S0.R/g

and
D.S / D fF.x/ 2 S0.R/W .S F /.x/ 2 S0.R/g:

As always, we call these sets the generalized domains of S' and S , respectively.
It is easy to see that L' � D.S / and L � D.S'/ and that S' WL ! L' , while
S WL' ! L . In particular we have

S'

 
NX

kD0
ck k

!

D
NX

kD0
ck'k; S 

 
NX

kD0
ck'k

!

D
NX

kD0
ck k; (40)

as well as
S'S F D F; S S'G D G; (41)

and
NS'G D S'N

�G; N �S F D S NF; (42)

for F.x/ 2 L' , G.x/ 2 L . Furthermore, it is possible to see that L ¤ D.S'/. In
fact, for F to belong to D.S'/, it is sufficient that the series

P1
nD0h'n; F i'n.x/ DP1

nD0 ˛nx
n, ˛n D 1

nŠ
hxn; F i, converges. For instance, if F.x/ is equal to 1 for x 2

Œ0; 1� and zero otherwise, the series converges for all x 2 R, even if F.x/ … L .
We refer to [22] for more results on this specific example of WPBs.

3.2 Weak PBs for the Inverted Quantum Harmonic Oscillator

This section is devoted to another appearance of WPBs. In this case, this will occur
while studying a particular Hamiltonian which looks like a rotated version of the
harmonic oscillator. Once again, we will see that distributions are relevant for our
system.

We start considering the Hamiltonian

H	 D 1

2

� Op2 C e2i	�2 Ox2�; (43)

for 	 2 Œ��; ��, for the moment, and � > 0. Here, as usual, Œ Ox; Op� D i1, Ox D Ox�
and Op D Op�. It is clear that, if 	 D˙�

2
,H	 becomes the Hamiltonian of the IQHO,

HC D H� D 1
2

� Op2 ��2 Ox2� DW H , which is what we are really interested in.
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Let us introduce the operators

A	 D 1p
2�

�
ei	=2� Ox C i e�i	=2 Op�; B	 D 1p

2�

�
ei	=2� Ox � i e�i	=2 Op�; (44)

for all admissible 	 . It is clear that A	 and B	 are densely defined in L2.R/, since
in particular any test function f .x/ 2 S.R/ belongs to the domains of both these
operators: S.R/�D.A	 / and S.R/�D.B	/, for all 	 . It is also clear thatA�	 ¤B	 .
Indeed we can check that, for instance on S.R/,

A
�

	 D
1p
2�

�
e�i	=2� Ox � i ei	=2 Op�; B

�

	 D 1p
2�

�
e�i	=2� Ox C i ei	=2 Op�: (45)

The set S.R/ is stable under the action of all these operators. Formulas (45) show
that

A
�

	 D B�	 ; B
�

	 D A�	 : (46)

Moreover, it is easy to see that these operators obey pseudo-bosonic commutation
rules, [6]:

ŒA	 ; B	 �f .x/ D f .x/ (47)

for all f .x/ 2 S.R/, and for all values of 	 2 Œ��; ��. This is in agreement with
the fact that, if 	 D 0, we go back to the ordinary bosonic operators d D � OxCi Opp

2�
and

d� D � Ox�i Opp
2�

, Œd; d �� D 1. Indeed we have

A0 D B
�
0 D d; B0 D A

�
0 D d�:

In terms of the operators in (44)H	 can be rewritten as

H	 D �ei	
�
B	A	 C 1

2
1

�
: (48)

Then, because of (46), we have that

H
�

	 D �e�i	
�
A
�

	B
�

	 C
1

2
1

�
D H�	 ; (49)

on S.R/. Now the eigensystems of H	 and H�

	 can be constructed by using the
strategy adopted for PBs, see Sect. 2, and for WPBs, as shown in the first part of
Sect. 3: we should first look for the ground state of the two annihilation operators
A	 and B�

	 . But, since B
�

	 D A�	 , it is sufficient to solve the differential equation

A	'
.	/
0 .x/D 0, since the solution of B�

	 
.	/
0 .x/ D 0 is simply  .	/

0 .x/D '
.�	/
0 .x/.

Hence, recalling that Op D �i d
dx
, we find:

'
.	/
0 .x/ D N .	/e�

1
2 �e

i	 x2 ;  
.	/
0 .x/ D N .�	/e�

1
2 �e

�i	 x2 ; (50)
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where N .˙	/ are normalization constants which will be fixed later. From (50) we
see that the vacua are in L2.R/ if <.e˙i	 /D cos.	/ > 0. For this reason, from now
on, we will restrict to 	 2 I D ���

2
; �
2

�
. This constraint reminds very much the

similar one for the Swanson model, where it was needed both for ensuring square-
integrability of the eigenstates of the Hamiltonian, but also to work with a well
defined Hamiltonian, [9, 10].

With this in mind, and using again the usual pseudo-bosonic approach, we can
construct two families of functions, F .	/

' D f'.	/n .x/; n D 0; 1; 2; : : :g and F .	/
 D

f .	/
n .x/; n D 0; 1; 2; : : :g, where

'.	/n .x/ D Bn
	p
nŠ
'
.	/
0 .x/ D N .	/

p
2n nŠ

Hn

�
ei	=2

p
�x

	
e�

1
2 �e

i	 x2 ; (51)

 .	/
n .x/ D A

�

	

n

p
nŠ
 
.	/
0 .x/ D '.�	/n .x/ D N .�	/

p
2n nŠ

Hn

�
e�i	=2

p
�x

	
e�

1
2 �e

�i	 x2 :

(52)

Here Hn.x/ is the n-th Hermite polynomial. The proof of these formulas is given
in [26].

It is clear that, for 	 2 I , '.	/n .x/;  
.	/
n .x/ 2 L2.R/, for all n � 0. Also, these

functions belong to the domain of A	 , B	 and of their adjoints, and we have ladder
and eigenvalue equations as those in Sect. 2, see (8) in particular:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

B	 '
.	/
n .x/ D p

nC 1 '
.	/
nC1.x/; n � 0;

A	 '
.	/
0 .x/ D 0; A	 '

.	/
n .x/ D p

n'
.	/
n�1.x/; n � 1;

A
�

	  
.	/
n .x/ D p

nC 1 
.	/
nC1.x/; n � 0;

B
�

	  
.	/
0 .x/ D 0; B

�

	  
.	/
n .x/ D p

n 
.	/
n�1.x/; n � 1;

N .	/'
.	/
n .x/ D n '

.	/
n .x/; n � 0;

N .	/� 
.	/
n .x/ D n 

.	/
n .x/; n � 0;

(53)

whereN .	/DB	A	 andN .	/� is its adjoint. Then, using (48) and (49), we conclude
that

H	'
.	/
n .x/ D E.	/

n '.	/n .x/; H
�

	  
.	/
n .x/ D E.�	/

n  .	/
n .x/; (54)

whereE.	/
n D!ei	

�
nC 1

2

�
. Notice thatE.�	/

n DE
.	/
n . Hence the eigenvalues ofH	

andH�

	 have, for generic 	 2 I , a non zero real and a non zero imaginary part.

Remark If 	 D 0 everything collapses to the usual quantum harmonic oscillator,

as it is clear from (43). In this case, if we take N .0/ D �
�
�

�1=4
,

'.0/n .x/ D  .0/
n .x/ D en.x/ D 1p

2n nŠ

�
�

�

�1=4
Hn

�p
�x

	
e�

1
2 �x

2

; (55)
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which is the well known n-th eigenstate of the quantum harmonic oscillator, as
expected.

Another, also expected, feature of the families F .	/
' and F .	/

 is that, with a proper
choice of normalization, their vectors are mutually biorthonormal. Indeed if we fix

N .	/ D
�
�

�

�1=4
ei	=4; (56)

we can check that
h'.	/n ;  .	/

m i D ın;m; (57)

for all n;m � 0 and for all 	 2 I . Incidentally we observe that (56) gives back the
right normalization of en.x/ when 	 D 0.

It is interesting to observe that the functions '.	/n .x/ and  .	/
n .x/ are essentially

the rotated versions of the eigenstates en.x/ in (55):

'.	/n .x/ D ei	=4en.e
i	=2x/;  .	/

n .x/ D e�i	=4en.e�i	=2x/; (58)

for all n � 0. This is in agreement with (57):

h'.	/n ;  .	/
m i D

Z

R

'
.	/
n .x/ .	/

m .x/dx D
Z

	

en.z/em.z/dz

D
Z

R

en.x/em.x/dx D hen; emi D ın;m;

using well known results in complex integration, see [26] for the details.
Next we can check that F .	/

' and F .	/
 are complete (or, as some authors prefer,

total) in L2.R/. This follows from a standard argument adopted in several papers,
see [6] for instance, and originally proposed, in our knowledge, in [27]: if �.x/ is
a Lebesgue-measurable function which is different from zero almost everywhere
(a.e.) in R, and if there exist two positive constants ı; C such that j�.x/j � C e�ıjxj
a.e. in R, then the set fxn �.x/g is complete in L2.R/. We refer to [6] for some
physical applications of this result. Because of their completeness, the sets L.	/' D
l:s:f'.	/n .x/g and L.	/ D l:s:f .	/

n .x/g, i.e. the linear spans of the functions in F .	/
'

and in F .	/
 , are both dense in L2.R/. Now, (57) implies that

1X

nD0
hf; '.	/n ih .	/

n ; gi D hf; gi; (59)

8f .x/ 2 L.	/ and 8g.x/ 2 L.	/' , which is our usual weak version of the resolution
of the identity.
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Incidentally we observe that what we have discussed here is, in fact, another
concrete example of PBs, not particularly different from the Swanson model briefly
described in Sect. 2.1.

We refer to [26] for more result on coherent states and for the analysis of a
similarity operator which can be used in the analysis of the Hamiltonian in (43).
Here we are more interested in discussing how to connect what we have deduced
forH	 to similar results for the IQHO.

From L2.R/ to Distributions

The Hamiltonian we want to consider in this section is the following:

H D 1

2

� Op2 ��2 Ox2�; (60)

where, as in (43), � > 0. This is what, in the literature, is called an inverted har-
monic oscillator: we have a quadratic potential that, rather being convex, is concave,
see, e.g., [23–25]. Hence it is reasonable to expect that there are no bound, square
integrable, eigenstates. This is, indeed, what we are going to deduce here. We have
already seen thatH can be formally deduced by H	 fixing 	 either to �

2
or to � �

2
.

For this reason it is natural to define, see (58),

'.˙/n .x/ D '
.˙ �

2 /
n .x/ D e˙i�=8p

2n nŠ

�
�

�

�1=4
Hn

�
e˙i�=4

p
�x

	
e


i
2 � x

2

(61)

and

 .˙/
n .x/ D  

.˙ �
2 /

n .x/ D '.
/n .x/

D e
i�=8p
2n nŠ

�
�

�

�1=4
Hn

�
e
i�=4

p
�x

	
e˙

i
2 �x

2

: (62)

It is clear that
k'.˙/n k D k .˙/

n k D 1;

so that none of these functions is square-integrable. However, even if they are not
in L2.R/, they are connected to the operators A˙, B˙ and their adjoints, where

A˙ D A˙ �
2
D 1p

2�

�
e˙i�=4� Ox C i e
i�=4 Op�;

B˙ D B˙ �
2
D 1p

2�

�
e˙i�=4� Ox � i e
i�=4 Op�; (63)

and
B
�
˙ D A
; A

�
˙ D B
: (64)
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These operators can all be written in terms of the ordinary bosonic operators d and
d� introduced before as follows:

A˙ D d ˙ id �p
2

; B˙ D d� ˙ idp
2

; (65)

with A�˙ and B�
˙ deduced as in (64). All these operators leave S.R/ stable. Then we

have
ŒA˙; B˙�f .x/ D f .x/; (66)

for all f .x/ 2 S.R/. Moreover, these operators can also be applied to functions
which are outside S.R/, and even outside L2.R/. In fact, these operators can also
act on '.˙/n .x/ and  .˙/

n .x/ and satisfy ladder equations of the same kind as those
given in (53):

(
A˙ '

.˙/
0 .x/ D 0; A˙ '

.˙/
n .x/ D p

n'
.˙/
n�1.x/; n � 1;

B˙ '
.˙/
n .x/ D p

nC 1 '
.˙/
nC1.x/; n � 0;

(67)

and (
B
�
˙ 

.˙/
0 .x/ D 0; B

�
˙ 

.˙/
n .x/ D p

n 
.˙/
n�1.x/; n � 1;

A
�
˙  

.˙/
n .x/ D p

nC 1 
.˙/
nC1.x/; n � 0:

(68)

Hence the set E in Definition 2 surely contains S.R/ and the set of all the finite
linear combinations of the functions  .˙/

n .x/ and '.˙/n .x/.
Some easy computations show that H in (60) can be written in terms of these

ladder operators. To simplify the notation we give the results in an operatorial form7.
Specializing H	 in (43) by taking 	 D ˙�

2
we put

H˙ D ˙i�
�
B˙A˙ C 1

2
1

�
: (69)

We have, as expected,
H D HC D H�: (70)

Using (64) we conclude thatHC D H
�
C, at least formally. Furthermore

H˙'.˙/n .x/ D ˙i�
�
nC 1

2

�
'.˙/n .x/; (71)

8n � 0. Hence the eigenvalues of the IQHO are purely imaginary with both a pos-
itive and a negative imaginary part. Of course the functions  .˙/

n .x/, which are
usually the eigenstates of the adjoint of the original Hamiltonian, see (54), are not

7 All the operators we are considering in this section can be applied to functions of S.R/, but not
necessarily: they can also act on '.˙/n .x/ and  .˙/n .x/, and to their linear combinations.
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so relevant here since the adjoint of HC is HC itself. This is not surprising since,
see (62),  .˙/

n .x/ D '
.
/
n .x/.

To put the eigenfunctions of H in a more interesting mathematical settings we
start defining the following quantities:

˚.˙/
n Œf � D h'.˙/n ; f i; � .˙/

n Œg� D h .˙/
n ; gi; (72)

8f .x/; g.x/ 2 S.R/ and 8n � 0. Here h:; :i is the form with extend the ordinary
scalar product to compatible pairs, i.e. to pairs of functions which are, when mul-
tiplied together, integrable, but separately they are not (or, at least, one is not).
Compatible pairs have been considered in several contributions in the literature.
We refer to [28] for their appearance in partial inner product spaces, and to [7] for
some consideration closer (in spirit) to what we are doing here.

It is not hard to prove that ˚.˙/
n Œf � and �.˙/

n Œg� are well defined, linear, and
continuous in the natural topology �S in S.R/. In few words, they are tempered
distributions, ˚.˙/

n ; �
.˙/
n 2 S0.R/. We will only prove this claim for ˚.C/

n , since for
˚
.�/
n and for �.˙/

n not many differences appear.
To check that ˚.C/

n Œf � is well defined, we observe that

ˇ̌
˚.C/
n Œf �

ˇ̌� .�=�/1=4p
2n nŠ

Z

R

ˇ̌
ˇHn

�
ei�=4

p
�x

	
f .x/

ˇ̌
ˇ dx �Mn sup

x2R
.1Cjxj/nC2jf .x/j:

(73)
Here we have defined

Mn D .�=�/1=4p
2n nŠ

Z

R

jHn.e
i�=4

p
�x/j

.1C jxj/nC2 dx:

As we see, in this computation we have multiplied and divided the original inte-

grand function
ˇ̌
ˇHn

�
ei�=4

p
�x

	
f .x/

ˇ̌
ˇ for .1C jxj/nC2. In this way, since the ratio

jHn.ei�=4
p
�x/j

.1Cjxj/nC2 has no singularity and decreases to zero for jxj divergent as jxj�2, we
can conclude thatMn is finite (and positive). Moreover,

sup
x2R

.1C jxj/nC2jf .x/j D sup
x2R

nC2X

kD0

 
nC 2

k

!

jxjkjf .x/j D
nC2X

kD0

 
nC 2

k

!

pk;0.f /;

wherepk;0.:/ is one of the seminorms defining the topology �S, see [29] for instance:
pk;l .f / D supx2R jxjkjf .l/.x/j, k; l D 0; 1; 2; : : : Of course, all these seminorms
are finite for all f .x/ 2 S.R/.

Summarizing we have

ˇ̌
˚.C/
n Œf �

ˇ̌ �Mn

nC2X

kD0

 
nC 2

k

!

pk;0.f /;

so that ˚.C/
n Œf � is well defined for all f .x/ 2 S.R/, as we had to check.
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The linearity of ˚.C/
n is clear: ˚.C/

n Œ f̨ C ˇg� D ˛˚
.C/
n Œf �C ˇ˚

.C/
n Œg�, for all

f .x/; g.x/ 2 S.R/ and ˛; ˇ 2 C.
To conclude that ˚.C/

n 2 S0.R/we still have to prove that˚.C/
n is continuous. For

that we have to consider a sequence of functions ffk.x/ 2 S.R/g, �S-convergent to
f .x/ 2 S.R/, and check that ˚.C/

n Œfk�! ˚
.C/
n Œf � for k!1 in C, for all fixed n.

The proof of this fact is based on the following lemma, whose proof can be found
in [26].

Lemma 1 Given a sequence of functions ffk.x/2S.R/g, �S-convergent to f .x/2
S.R/, it follows that jxjl jfk.x/j converges, in the norm k:k of L2.R/, to jxjl jf .x/j,
8l � 0.

Then we have

ˇ̌
˚.C/
n Œfk � f �

ˇ̌ D ˇ̌h'.C/n ; fk � f i
ˇ̌ D

ˇ̌
ˇ̌
ˇ

*
'
.C/
n

.1C jxj/nC1 ; .1C jxj/nC1.fk � f /
+ˇ̌
ˇ̌
ˇ
;

with an obvious manipulation. Now, since both '
.C/
n .x/

.1Cjxj/nC1 and .1C jxj/nC1.fk.x/�
f .x// are in L2.R/, for all n; k, we can use the Schwarz inequality and we get

ˇ̌
˚.C/
n Œfk � f �

ˇ̌ �







'
.C/
n

.1C jxj/nC1








.1C jxj/nC1.fk � f /



! 0

when k ! 1, for all fixed n � 0, because of Lemma 1.
The role of tempered distributions in the context of the IQHO is further clarified

by the following result.

Theorem 1 For each fixed n � 0 the vector '.˙/n .x/ is a weak limit of '.	/n .x/, for
	 ! ˙�

2
:

'.˙/n .x/ D w � lim
	;˙ �

2

'.	/n .x/: (74)

Analogously,
 .˙/
n .x/ D w � lim

	;˙ �
2

 .	/
n .x/: (75)

Proof It is sufficient to prove that '.C/n .x/ D w � lim	;C �
2
'
.	/
n .x/, i.e. that

h'.C/n � '.	/n ; f i ! 0 (76)
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when 	 ! �
2
, for all fixed n � 0 and for all f .x/ 2 S.R/. First of all we observe

that,

j'.C/n .x/ � '.	/n .x/j � .�=�/1=4p
2n nŠ

�ˇ̌
ˇHn.e

i�=4
p
�x/

ˇ̌
ˇC

ˇ̌
ˇHn.e

i	=2
p
�x/

ˇ̌
ˇ
	

� .�=�/1=4p
2n nŠ

pn.x/;

where pn.x/ is a suitable polynomial in jxj of degree n, independent of 	 , whose
expression is not particularly relevant8. This estimate implies that the function

�.	/n .x/ D
'
.C/
n .x/� '.	/n .x/

.1C jxj/nC1

is square integrable for all fixed n and for all 	 2 I . Therefore, since .1 C
jxj/nC1f .x/ 2 L2.R/ as well, due to the fact that f .x/ 2 S.R/, we have

ˇ̌h'.C/n � '.	/n ; f iˇ̌ D
ˇ̌
ˇ̌
ˇ

*
'
.C/
n � '.	/n

.1C jxj/nC1 ; .1C jxj/nC1f
+ˇ̌
ˇ̌
ˇ
� k�.	/n k k.1C jxj/nC1f k;

using the Schwarz inequality. Now, to conclude as in (76), it is sufficient to show
that k�.	/n k ! 0 when 	 ! �

2
, i.e. that

lim
	; �2

Z

R

j�.	/n .x/j2 dx D 0:

This is a consequence of the Lebesgue dominated convergence theorem, since it is
clear first that lim	; �2

�
.	/
n .x/ D 0 a.e. in x and since j�.	/n .x/j2 is bounded by an

L1.R/ function, in view of what we have shown before. Indeed we have

j�.	/n .x/j2 D
j'.C/n .x/ � '.	/n .x/j2
.1C jxj/2nC2 � .�=�/1=2

2n nŠ

p2n.x/

.1C jxj/2nC2 ;

which goes to zero for jxj divergent as jxj�2. �

Summarizing the results proved so far we can write that the eigenstates of the
IQHO are not square integrable. They define tempered distributions and can be ob-
tained as weak limits of the eigenstates of the Swanson-like Hamiltonian introduced
in (43).

We refer to [26] for more results also on coherent states associated to the IQHO.

8 To clarify this aspect of the proof, let us consider, for instance H3.x/ D 8x3 � 12x. Hence
jH3.x/j � 8jxj3C 12jxj and, therefore jH3.e

i	=2
p
�x/j � 8.�/3=2jxj3C 12p�jxj D p3.x/, for

instance.
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3.3 A General Class of Pseudo-Bosonic Operators

Another interesting class of first order differential operators connected to PBs and
to WPBs are of the form

a D ˛a.x/
d

dx
C ˇa.x/; b D � d

dx
˛b.x/C ˇb.x/; (77)

for some suitable functions j̨ .x/ and ǰ .x/, j D a; b, which, for convenience,
will be assumed to be C1 functions. This is what happens in concrete models: for
ordinary bosons, for instance, we have ˛a.x/D ˛b.x/D 1p

2
, and ˇa.x/D ˇb.x/D

1p
2
x. For the shifted harmonic oscillator, see [6] and references therein, we have

aD cC ˛1 and b D c�Cˇ1, for some complex ˛ and ˇ with ˛ ¤ ˇ, and therefore
˛a.x/ D ˛b.x/ D 1p

2
as before, while ˇa.x/ D 1p

2
x C ˛ and ˇb.x/ D 1p

2
x C ˇ.

For the Swanson model, see again [6] and Sect. 2.1, ˛a.x/ D ˛b.x/ D e�i	p
2
, while

ˇa.x/ D ˇb.x/ D ei	 xp
2
.

More recently, [7, 30], a rather general class of pseudo-bosonic operators A and
B have been considered, where A D d

dx
C wA.x/ and B D � d

dx
C wB.x/. In this

case ˛a.x/D ˛b.x/D 1, while wA.x/ and wB.x/ have been called pseudo-bosonic
superpotentials (PBSs) and they must satisfy .wA.x/ C wB.x//

0 D 1, where the
prime is the first x-derivative. In particular, in this last example, different choices of
C1 functions wA.x/ and wB.x/ give rise to different families of functions, 'n.x/
and �n.x/, constructed as in Sect. 2, which may, or may not, be square-integrable.
However, see [30], we have proven the following result:

Proposition 1 IfwA.x/ andwB.x/ are C1 PBSs, then 'n.x/�m.x/2L1.R/ and
h�m; 'ni D ın;m, for all n;m � 0. �

This is another case, see also (72), in which the functions 'n.x/ and �n.x/ are
called compatible, in the sense of PIP-spaces, [28]. In this perspective it is useful
to recall that two functions h1.x/ 2 Lp.R/ and h2.x/ 2 Lq.R/ can be multiplied
producing a third function h.x/D h1.x/h2.x/which is integrable, h.x/ 2L1.R/, if
1
p
C 1

q
D 1. Hence, a compatibility form between h1.x/ and h2.x/ can be introduced,

whose functional expression is the same as a scalar product in L2.R/, to which it
reduces if p D q D 2. It is clear that, for those functions which are compatible, a
generalized notion of biorthonormality can also be introduced.

In what follows, we are interested in extending all the particular cases listed
above using the general forms of the operators in (77). Of course, our results will
be strongly connected to the functions j̨ .x/ and ǰ .x/.

To proceed in this direction we first compute the commutator Œa; b� on some suf-
ficiently regular function f .x/. In particular, if not explicitly said, we will assume
f .x/ to be at least C2, while we will not insist much on f .x/ being or not square-
integrable. Of course, this requirement could be relaxed if we interpret d

dx
as the
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weak derivative, but this will not be done here. An easy computation shows that, un-
der this mild condition on f .x/, Œa; b�f .x/ does make sense, and Œa; b�f .x/Df .x/
if j̨ .x/ and ǰ .x/, j D a; b, satisfy the following equalities

(
˛a.x/˛

0
b.x/ D ˛0a.x/˛b.x/;

˛a.x/ˇ
0
b.x/C ˛b.x/ˇ

0
a.x/ D 1C ˛a.x/˛

00
b.x/:

(78)

It is easy to check that all the examples listed at the beginning of this section sat-
isfy indeed these two conditions, in agreement with their nature of pseudo-bosonic
operators. In particular the first equation in (78) is clearly satisfied by any constant
choice of ˛a.x/ and ˛b.x/. Moreover, in this case, the second equation in (78) can
be rewritten as .˛aˇb.x/C˛bˇa.x//0 D 1, which implies that ˛aˇb.x/C˛bˇa.x/D
xCk, for some constant k. This is essentially the situation described in terms of the
PBSs wA.x/ and wB.x/ in [30]. Incidentally it is also clear that, if ˛a.x/D ˛a ¤ 0,
constant, then (78) implies that ˛a.x/˛0b.x/D˛a˛0b.x/D0, which means that ˛b.x/
must also be constant. For this reason, to avoid going back to PBSs, in the rest of
this section we will mainly focus on the situation in which both ˛a.x/ and ˛b.x/
depend on x in a non trivial way. Moreover, it is convenient for what follows to
assume that they are never zero: j̨ .x/ ¤ 0, 8x 2 R, j D a; b.

Under this assumption it is easy to deduce the vacua of a and of b�, as in Sects. 2
and 3. In what follows the following expressions are used for the adjoint in H of a
and b:

a� D � d

dx
˛a.x/C ˇa.x/; b� D ˛b.x/

d

dx
C ˇb.x/: (79)

The vacua of a and b� are the solutions of a'0.x/ D 0 and b� 0.x/ D 0, which
turn out to be:

'0.x/ D N' exp

�
�
Z
ˇa.x/

˛a.x/
dx

�
;  0.x/ D N exp

(

�
Z
ˇb.x/

˛b.x/
dx

)

; (80)

and are well defined under our assumptions on j̨ .x/ and ǰ .x/. Here N' and N 
are normalization constants which will be fixed later. If we now introduce 'n.x/
and  n.x/ as in (7),

'n.x/ D 1p
nŠ
bn'0.x/;  n.x/ D 1p

nŠ
a�
n
 0.x/; (81)

n � 0, we can prove the following, see [31]:

Proposition 2 Calling 	.x/ D ˛a.x/ˇb.x/C ˛b.x/ˇa.x/ we have

'n.x/ D 1p
nŠ
�n.x/'0.x/;  n.x/ D 1p

nŠ
�n.x/ 0.x/; (82)
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n � 0, where �n.x/ and �n.x/ are defined recursively as follows:

�0.x/ D �0.x/ D 1; (83)

and

�n.x/ D
�
	.x/

˛a.x/
� ˛0b.x/

�
�n�1.x/� ˛b.x/� 0

n�1.x/; (84)

�n.x/ D
�
	.x/

˛b.x/
� ˛0a.x/

�
�n�1.x/ � ˛a.x/ � 0

n�1.x/; (85)

n � 1. �

A Special Case: Constant j̨ .x/

We have already commented that taking ˛a.x/ D ˛a and ˛b.x/ D ˛b is not new,
compared to what was done in [30]. However, it is still an interesting exercise,
and for this reason we briefly discuss this case first. In this situation, ˛a.x/ and
˛b.x/ are always different from zero, at least if ˛a˛b ¤ 0. Formulas (84) and (85)
simplify significantly now since, in particular, as we have already deduced before,
	.x/ D ˛aˇb.x/C ˛bˇa.x/ D x C k. Hence we find

�n.x/ D 1

˛a
.x C k/ �n�1.x/ � ˛b � 0

n�1.x/;

�n.x/ D 1

˛a
.x C k/ �n�1.x/� ˛a � 0

n�1.x/; (86)

The case ˛aD ˛b D 1 has been considered in [30], while ˛a D ˛b D 1p
2
is discussed

in [7]. If ˛a is not necessarily equal to ˛b, similar conclusions can still be deduced.
In particular from (86) we find that

�n.x/D
s�

˛b

2˛a

�n
Hn

�
x C kp
2˛a˛b

�
; �n.x/D

s�
˛b

2˛a

�n
Hn

 
x C kp
2˛a˛b

!

: (87)

Here Hn.x/ is the n-th Hermite polynomial, and the square root of the complex
quantities are taken to be their principal determinations.

As for the functions in (80) we get '0.x/ D N' exp
n
� 1

˛a

R
ˇa.x/ dx

o
, and

 0.x/ D N exp
n
� 1
˛b

R
ˇb.x/ dx

o
, where ˇa.x/ and ˇb.x/ are only required to

satisfy the condition ˛aˇb.x/ C ˛bˇa.x/ D x C k. Now, it is easy to show that
'n.x/�m.x/ 2 L1.R/, for all n;m � 0, as in Proposition 1 above, if ˛a˛b > 0. The
proof is based on the fact that 'n.x/�m.x/ is (a part some normalization constants),
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the product of a polynomial of degree nCm times the following exponential

exp

�
�
Z �

ˇa.x/

˛a
C ˇb.x/

˛b

�
dx

�
D exp

�
� 1

˛a˛b

Z
	.x/ dx

�

D exp

�
� 1

˛a˛b

Z
.x C k/ dx

�

D exp

�
� 1

˛a˛b

�
x2

2
C kx C Qk

��
;

for some integration constant Qk. Notice that this is a gaussian term under our as-
sumption on ˛a˛b. We refer to [30] for the analysis of the biorthonormality (with a
little abuse of language) of F' D f'n.x/g and F D f n.x/g in this specific case
of constant j̨ .x/.

A General Example

The situation we will now consider is when ˛a.x/D ˛b.x/D ˛.x/, where ˛.x/¤ 0

for all x 2 R. In this case the first equation in (78) is automatically true, inde-
pendently of the particular form of ˛.x/. The second equation becomes .ˇa.x/C
ˇb.x//

0 D 1
˛.x/

C ˛00.x/, so that

ˇa.x/C ˇb.x/ D
Z

dx

˛.x/
C ˛0.x/: (88)

From now on we will identify ˇa.x/ and ˇb.x/ as follows:

ˇa.x/ D
Z

dx

˛.x/
; ˇb.x/ D ˛0.x/: (89)

Of course, other possible choices exist, like that in which the role of ˇa.x/ and
ˇb.x/ are simply exchanged. But we could also consider ˇa.x/ D

R
dx
˛.x/

C ˚.x/

and ˇb.x/ D ˛0.x/ � ˚.x/, for some fixed, sufficiently regular, ˚.x/. This can
produce interesting results, depending on how ˚.x/ is fixed. However, to simplify
our analysis here, we will take ˚.x/ D 0 in what follows. Similarly, we will also
fix to zero all the integration constants, except when explicitly stated. The function
	.x/ introduced in Proposition 2 becomes 	.x/ D ˛.x/.ˇa.x/C ˇb.x//, so that

	.x/ D ˛.x/

�Z
dx

˛.x/
C ˛0.x/

�
; (90)

which, when replaced in (84), produces the following sequence of functions:
�0.x/ D 1 and

�n.x/ D
�Z

dx

˛.x/

�
�n�1.x/ � ˛.x/� 0

n�1.x/: (91)
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Calling �.x/ D R
dx
˛.x/

we can rewrite (91) in the following alternative way:

�n.x/ D �.x/�n�1.x/� 1

�0.x/
� 0
n�1.x/; (92)

n � 1, which can be used to deduce the following expression for �n.x/:

�n.x/ D 1p
2n
Hn

�
�.x/p
2

�
; (93)

for all n � 0, [31].

Remarks

(1) Equation (93) returns the first equation in (87) if ˛.x/ D ˛, constant in x, as it
should.

(2) If ˛.x/ is real then, using (89), ˇb.x/ is also real. Also, ˇa.x/ is real if the
integration constant is chosen to be real, as we will do always here9. In these
conditions, �n.x/ D �n.x/, 8n � 0.

(3) We believe (but we don’t have a rigorous result for that) that Hermite polyno-
mials of some “complicated” argument always appear in connection with PBs
and WPBs because these are connected to deformed CCR, and CCR gives rise
to Hermite polynomials. This is indeed what we have observed along the years,
in all the models we have analysed so far.

As for the vacua in (80), using the fact that ˛a.x/D ˛b.x/D ˛.x/, together with
formulas (89), we deduce that

'0.x/ D N' exp
�
�1
2
.�.x//2

�
;  0.x/ D N 

˛.x/
; (94)

or simply  0.x/ D N 
˛.x/

if ˛.x/ is real, as we will assume from now on, to simplify
the notation. Putting all together we conclude that

'n.x/ D N'p
2nnŠ

Hn

�
�.x/p
2

�
e
�
�
�.x/p
2

	2

;  n.x/ D N p
2nnŠ

Hn

�
�.x/p
2

�
1

˛.x/
: (95)

These formulas suggest that, for many possible choices of ˛.x/, it is quite easy that
 n.x/ … L2.R/, even if maybe not for all the values of n. On the contrary, we could
easily imagine that, for the same choice of ˛.x/, 'n.x/ 2 L2.R/.

It is now very easy to prove that, under very mild assumption on ˛.x/, the
families F' and F are compatible and biorthonormal (in our slightly extended
meaning), even when the functions 'n.x/ or  n.x/ do not both belong to L2.R/. To
prove this claim, it is useful to assume that �.x/ is increasing in x and that, calling

9 Actually, as already stated, we will often fix to zero this integration constant.
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s D �.x/p
2
, s ! ˙1 when x ! ˙1. It is clear then that � can be inverted, and

that x D ��1.
p
2s/. Since �0.x/ D 1

˛.x/
, it follows that �.x/ is always increasing if

˛.x/>0. However, this is not enough to ensure that s diverges with x, and therefore
this must also be required.

Now, to prove that 'n.x/ and  m.x/ are compatible (and biorthonormal), we
compute the compatibility form:

h m; 'ni D N N'p
2nCm nŠmŠ

1Z

�1
Hm

�
�.x/p
2

�
Hn

�
�.x/p
2

�
e
�
�
�.x/p
2

	2
dx

˛.x/
:

This integral can be easily rewritten in terms of s. In fact, recalling the definition of
�.x/, we first observe that ds

dx
D 1p

2˛.x/
, so that dx

˛.x/
D p

2 ds. Hence we have

h m; 'ni D N N'p
2nCm�1 nŠmŠ

1Z

�1
Hm.s/Hn.s/e

�s2ds D p
2� N N' ın;m;

which returns

h m; 'ni D ın;m; if N N' D 1p
2�
; (96)

as will be assumed in the rest of this section. This is what we had to prove.

An Example Let us fix ˛.x/D 1
1Cx2 . This function is always strictly positive, and

produces, using (89) and the definition of �.x/, the functions ˇa.x/D�.x/DxC x3

3

and ˇb.x/ D �2x
.1Cx2/2 . We see that �.x/! ˙1 when x ! ˙1. Also, the inverse

of � exists and can be computed explicitly looking for the only real solution of the
equation

p
2s D x C x3

3
. We get

xD��1.p2 s/D
�

2

�3p2s Cp
2
p
2C 9s2

�1=3
�
 
�3p2s Cp

2
p
2C 9s2

2

!1=3
:

The functions in (94) turn out to be

'0.x/ D N' exp

�
�1
2
.x C x3=3/2

�
;  0.x/ D N .1C x2/: (97)

It is clear that '0.x/ 2 L2.R/, while  0.x/ is not square-integrable. Furthermore,
see (92), we have

�n.x/ D
�
x C x3

3

�
�n�1.x/� 1

.1C x2/
� 0
n�1.x/;
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with �0.x/ D 1, and a similar expression for �n.x/. More explicitly we get

�n.x/ D �n.x/ D 1p
2n
Hn

�
x C x3=3p

2

�
;

and

'n.x/ D N'p
2nnŠ

Hn

�
x C x3=3p

2

�
e�

1
2 .xCx3=3/2 ;

 n.x/ D N p
2nnŠ

Hn

�
x C x3=3p

2

�
.1C x2/; (98)

n � 0. Hence 'n.x/ 2 L2.R/, while  n.x/ … L2.R/, for all n D 0; 1; 2; : : :

The fact that these functions are compatible follows from the speed of decay
of 'n.x/, when compared with the speed of divergence of  m.x/. In particular, for-
mula (96) shows that these functions are biorthonormal ifN N'D 1p

2�
: h m; 'niD

ın;m, 8n;m � 0.

Notice that, for our particular operators in (77), there is no need to move to S0.R/.
However, we see that L2.R/ is not enough, in general, and we have to use compat-
ible spaces, with a compatibility form which extends the ordinary scalar product in
L2.R/. This is different fromwhat we have seen in Sects. 3.1 and 3.2, where the role
of S0.R/ was more relevant, if not essential. In other words, WPBs are not intrinsi-
cally connected with distributions; they can appear when L2.R/ is not sufficient in
the analysis of our pseudo-bosonic operators.

Since, as the example above shows, the functions 'n.x/ and n.x/ are not neces-
sarily square-integrable, it is clear that there is no reason forF' and F to be bases
for L2.R/. However, despite of the fact that 'n.x/ and  n.x/ are not necessarily
square-integrable, we will show that a set W , dense in L2.R/, does indeed exist
such that F' and F are W -quasi bases.

Let us introduce the set

W D
n
h.s/ 2 L2.R/W h�.s/´ h.��1.

p
2s// es

2=2 2 L2.R/
o

(99)

This set is dense in L2.R/, since it contains the set D.R/ of all the compactly
supported C1 functions, [31]. It is useful to observe that, if h.x/ 2 W , then the
function hC.s/´ h.��1.

p
2s// ˛.��1.

p
2s// e�s2=2 2L2.R/ as well, at least under

very general conditions on ˛.x/. This is because jhC.s/j2 D jh�.s/j2jg.s/j2, where
g.s/ D ˛.��1.

p
2s// e�s2 . Now, it is sufficient that g.s/ 2 L1.R/ to conclude that

hC.s/ 2 L2.R/. But, because of the presence of e�s2 in g.s/, this is true for many
choices of ˛.x/, like for instance the one proposed in the previous example, ˛.x/D
1

1Cx2 . However, even if ˛.x/ diverges very fast, if h.x/2D.R/ then hC.s/ 2L2.R/
anyhow, which is what we will use in the following.
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Theorem 2 .F';F / are W -quasi bases.

Proof Let us take f .x/; g.x/2W . It is possible to check that the following equal-
ities hold:

hf; 'ni D N' �
1=4

p
2hfC; eni; h n; gi D N �

1=4
p
2hen; g�i: (100)

Here en.s/ D 1p
2nnŠ

p
�
Hn.s/e

�s2=2 is the n-th eigenstate of the quantum harmonic

oscillator already considered several times in this chapter, while fC.s/ and g�.s/
should be constructed from f .s/ and g.s/ as shown before. The equalities in (100)
show, in particular, that the pairs .f .x/; 'n.x// and .g.x/;  n.x// are compatible,
8n � 0, since all the functions involved in the right-hand sides of the equalities in
(100), en.s/, fC.s/ and g�.s/, are square integrable. The proof of these identities
is based on the change of variable s D �.x/p

2
, which has already been used before, to

prove (96). Now, since Fe D fen.s/; n � 0g is an orthonormal basis for L2.R/, we
have

1X

nD0
hf; 'nih n; gi D N N' 2

p
�

1X

nD0
hfC; enihen; g�i D

p
2hfC; g�i;

using (96) and the Parseval identity for Fe . Next we have

hfC; g�i D
1Z

�1
fC.s/ g�.s/ ds

D
1Z

�1
f .��1.

p
2s// ˛.��1.

p
2s//e�s

2=2g.��1.
p
2s//es

2=2 ds

D
1Z

�1
f .��1.

p
2s// ˛.��1.

p
2s//g.��1.

p
2s// ds D 1p

2
hf; gi;

introducing the new variable x D ��1.
p
2s/ in the integral. Summarizing,

1X

nD0
hf; 'nih n; gi D hf; gi;

and, with similar computations,
P1

nD0hf; nih'n; gi D hf; gi. �

The conclusion is therefore that, even if .F';F / are not necessarily made of
functions in L2.R/, they can be used, together, to deduce a resolution (better, two
resolutions) of the identity on W .

More results and explicit examples of these WPBs, together with some applica-
tion to bi-coherent states, can be found in [31].
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4 Conclusions

In this chapter we have reviewed some general aspects and applications of WPBs,
and we have discussed how distribution theory and compatible spaces are relevant in
this context, and how ladder operators can be extended outside a purely Hilbertian
settings. We have not discussed here several aspects of this general framework. In
particular, we have not considered the role of coherent states in connection with
lowering operators of pseudo-bosonic type. We refer to [6, 7] for many results on
this, but more recent results can also be found, for instance in [22].

As we have noticed, biorthonormality of the eigenstates of our number-like op-
erators refers to some bilinear form which cannot be the ordinary scalar product in
L2.R/. In particular, the one proposed in Sect. 3.1 is only one possibility, among
many. In [32] we have proposed a new extension of the scalar product not related to
convolutions, and we proved that this class of multiplications can be flexible enough
to succeed where the convolution cannot really be useful. More on this new defini-
tion of multiplication, and its role in connection with the properties of the adjoint
of an operator and with the consequences of its definition, is work in progress.

Our approach, thought being mathematically already interesting by itself (in our
opinion, at least!), needs some extra effort in the attempt of connecting it with
physics, and in particular with the probabilistic interpretation of the wave function.
This is another open aspect of our approach, and surely deserve further investiga-
tion. This is also an active line of research.
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