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Preface

This volume accomplishes a beautiful collective effort to celebrate and remember
the late Giovanni (Gianni) Morchio on behalf of his friends, colleagues, collabo-
rators, mentees, students, presenting at the same time updated overviews and per-
spectives on topical research themes in theoretical and mathematical physics which
are intimately connected with Gianni’s wide spectrum of scientific interests and
activities.

When Gianni left us, way too early, on 10 November 2021, it did not take long
for the dismay of that immense loss to be replaced by the desire to say goodbye to
such an outstanding, humble, generous scientist through an editorial initiative in his
memory and tribute.

As two of the many former students of Gianni, we took it upon ourselves to
channel these intentions into a volume that immediately met with sincere interest
and prompt approval by Springer.

Right from the start we were very positively impressed, but certainly not sur-
prised, by the support and direct or indirect participation of a large number of people
linked to Gianni by friendship and scientific ties of various kinds, including his
many former students, several of his world-class collaborators and co-authors, and
also international scholars involved in modern physical developments of classical
results which Gianni had given a decisive contribution to over the years.

Indeed, Gianni’s scientific, social, and human legacy trespasses the necessarily
narrow boundaries of this volume. Today countless people can proudly bear wit-
ness to Gianni’s righteousness, his humanity, his sensitivity towards the evolution,
injustices, and hopes of contemporary society, his interests in human history and
its lessons, his dedication to the cause of the labourers, the acuity of his political
analysis, his scientific stature, the depth of his knowledge of modern physics and
mathematics, his altruism and boundless generosity with friends, collaborators, and
students, the kindness and moderation of his character, his permanent availability
to help, support, encourage, always with his sweet smile.

It is with this spirit and in the light of such a warm response that we structured
the volume into three parts.

v



vi Preface

The first presents the profile of Gianni from two complementary and inseparable
points of view: on the one hand, the theoretical and mathematical physicist side,
whose academic career spanned the last five decades, produced admirable results,
and impacted all those who had the luck to know him at whatever stage of their
scientific path; on the other hand, the social and political side of Gianni, often little
known to those who knew him as a scientist, but surely central to his entire life and
equally inspiring for so many. Remarkably indeed, Gianni had the utmost devotion
to these two spheres of his life without those who knew him on the one side be-
ing well aware of what he did with equal dedication on the other. In the end, this
first part of the volume is complemented by an intimate and touching memory by
Gianni’s children which opens up a discreet and intense look at the beauty of his
family life.

The second part is the purely scientific one and, in a sense, it represents the
core of the volume. Several outstanding scholars, many of which had been Gianni’s
co-authors, mentors, collaborators, kindly accepted to discuss themes that are top-
ical in modern theoretical and mathematical physics and are very closely linked to
Gianni’s vast research field as it unfolded throughout his whole career. They all
managed to produce valuable scientific chapters, each of which is self-contained
and with its own bibliographic references, where the reader may find, in a straight-
forward and accessible form, a collection of retrospectives, modern reviews, recent
developments, updated refinements, and future and open problems.

It is not by chance that we entitled this part “Trails in modern theoretical and
mathematical physics”, like the title of the whole volume: the readers—the ex-
perts as well as young graduates and interested researchers from neighbouring
fields—may indeed enjoy surfing across those chapters and may well benefit from
presentations that are clean, concise, updated, and surely inspirational.

At the same time we trust to have managed, by curating this second part, and in
view of the calibre of the scholars involved, to convey a flavour of the indisputable
resonance that Gianni Morchio had and has in theoretical physics and that part of
mathematical physics concerned with the rigorous understanding of classical and
quantum systems.

In the end, the third part of this volume collects a miscellaneous ensemble of
short or not-so-short contributions by those who accepted to remember Gianni by
revisiting and sharing their memories as former friends, colleagues, and of course
former students of his—some of the latter kindly included instructive retrospectives
of their scientific activity with Gianni as well. Gianni was, among other, a splendid
teacher who inspired generations of students, a numerous group of which eventu-
ally chose him as supervisor and mentor. This resulted in a touching tribute across
personal and private recollections and anecdotes which gives the volume a final
brushstroke of intimate humanity, in the sadness of the loss accompanied by the
warmth and happiness of the memory.

In fact, while curating the whole initiative many more had the pleasure to express
to us their sincere adhesion while at the same time opting not to send a written con-
tribution and instead cherish their own memory of Gianni privately. Analogously,
many outstanding former co-authors of Gianni gently declined to send a scientific
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chapter, despite their appreciation for this initiative, due to compelling private rea-
sons. We do consider all them equally part of the volume, as all the present authors,
of course.

In addition to the genuine involvement of the many we already referred to, the
completion of this volume was possible thanks to the decisive advice and encour-
agement from Franco Strocchi, who was Gianni’s teacher first, and then was linked
to him through a fortunate decades-long scientific and human tie, as well as thanks
to the patient and professional technical support of Elena Griniari, Springer se-
nior editor, and her team at Springer. We are also keen to acknowledge the discreet
encouragement received from Gianni’s family, who followed the genesis and im-
plementation of this initiative.

May this volume be of inspiration and scientific reference, and keep Gianni’s
legacy alive.

Pisa and Bonn
July 2023

Andrea Cintio
Alessandro Michelangeli
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Part I
Gianni: A Profile



Giovanni Morchio (1948–2021)

Sergio Albeverio and Alessandro Michelangeli

Giovanni (“Gianni”) Morchio passed away on 10 November 2021.
He left with discretion and a smile, intelligence and generosity, culture and

unique insight of physics, all features that have always distinguished him and
through which for years he has trained his students and enriched his colleagues.

His name is linked to the Institute—later Department—of Physics of the Uni-
versity of Pisa, where he carried out his research, teaching, and training activity for
almost fifty years, including those following his retirement. Even more is his name
linked to his exceptional scientific profile, recognised by unanimous admiration and
international esteem, including his enduring prolific collaboration with his former
supervisor and later close collaborator Franco Strocchi.

For his thesis for the Diploma in Physics obtained in 1971, as a student at the
University of Pisa and at the same time of the Scuola Normale Superiore of Pisa,
Gianni was sent by Franco Strocchi to the ETH Zurich, to discuss the infrared prob-
lem with Klaus Hepp with non-perturbative techniques, also in low dimensions. As
further explained later on, those were the years of the great successes of construc-
tive field theory; Strocchi had previously returned to Pisa after his collaboration at
Princeton with Arthur Wightman, and the ETH was the other world top node in this
branch of theoretical physics. After graduating, Gianni left for the then-compulsory
two-year army service, and subsequently joined the Physics Institute of Turin, from
which he then moved to Pisa in 1974, which became his permanent home since
then. Even after the forced “pre-retirement” imposed by law by the regulations of
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Institute for Applied Mathematics, University of Bonn, Bonn, Germany
Hausdorff Center for Mathematics, University of Bonn, Bonn, Germany
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4 S. Albeverio and A. Michelangeli

the time, Gianni remained most active in the Physics Department and in all ex-
changes with former students and collaborators.

The context in which Gianni started his research was the very lively activity on
the theory of quantised fields in the second half of the 1960s.

After the pioneering works of P. A. Dirac, W. Heisenberg, and W. Pauli in the
years 1927–1929, with the first formal treatment for passing from non-relativistic
quantummechanics to the theory of quantised fields, the problems that arose within
perturbation theory—necessary to include the interactions, but bringing in physi-
cally and mathematically unacceptable divergences—had given rise to renormali-
sation techniques intended to “cure” such divergences. The dissatisfaction from the
point of view of rigour led an amount of physicists and mathematicians, starting
from the mid-1950s, to develop axiomatic frameworks that express in a mathemat-
ically precise way a few fundamental principles, which be sufficient for rigorous
deductions (the Gårding–Wightman axioms, with deductions of physical relevance
such as PCT invariance and the connection between spin and statistics, and the
rigorous formulation by R. Haag and D. Ruelle of scattering theory for relativis-
tic fields). It then became even more accessible and crucial to solve the problem of
establishing whether quantum field theory axioms imply the non-triviality of the as-
sociated scattering amplitudes—the latter being the signature of actually interacting
fields or particles, as indeed observed in Nature.

Around the mid-1960s, with the Princetonian theses of A. Jaffe and O. Lan-
ford, researchers started analysing models (respectively, �4 and Yukawa) of local
interactions with regularisation, intended as potential candidates, upon removing
the regularisations in a mathematically consistent way, for the construction of fields
satisfying all the axioms and with non-trivial scattering amplitudes. E. Nelson in
1964–66 had obtained, through probabilistic methods of Feynman–Kac type, a
fundamental estimate (hypercontractivity) for the �4 model on a bounded spatial
interval. In other seminal works, J. Glimm and A. Jaffe had begun a systematic
study of the problem of regularisation removal. A course held by K. Hepp in 1969
at the École Polytechnique had indicated a ‘road map’ for the development of a
constructive theory of fields in lower space-time dimensions (from 1 to 3, thereby
requiring only a finite number of renormalisation counter-terms) and, later, in higher
dimensions as well (from 4 on, with instead infinitely many counter-terms needed).
The case of quantum electrodynamics was further complicated by the absence of
mass in the photons, which implies a too slow decrease of the propagator at infinity
(the necessary modifications to scattering theory for that scenario were only formu-
lated at the end of the 1970s), and by gauge invariance, which introduces constraints
between the potentials of the field variables.

All that had stimulated the study of simplified interacting models devised as
approximations of electrodynamics accessible to known methods. After a visit at
the ETH, E. Nelson had developed the ‘Nelson model with mass’ (non-relativistic
scalar electrons interacting with massive scalar bosons, and consequent renormali-
sation), published in 1966, also discussed by K. Hepp in his 1969 course, and later
generalised by J. P. Eckmann in his 1970 thesis by means of relativistic kinematics
for scalar electrons. Scattering in this model was further studied by S. Albeverio at
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Princeton in 1970–71. In his first stay at the ETH as a guest of K. Hepp, Gianni
had the opportunity to discuss ideas and strategies for dealing with models of such
type, including the scenario of massless bosons, hence closer to the case of electro-
dynamics, with J. Fröhlich, who in the course of 1971 was working on his doctoral
thesis under the direction of K. Hepp and W. Hunziker.

It is in this scenario, so much fertile and in strong expansion, that in Novem-
ber 1971 Gianni discussed his thesis entitled ‘Infrared difficulties in field theory’ in
Pisa. In it he analysed the problem of infrared divergence in quantum electrodynam-
ics and in simple models such as the ‘models of currents’ (also time-dependent) of
Bloch–Nordsieck (proposed in 1937) and of Pauli–Fierz (of 1938), the latter having
been rigorously treated shortly before by Ph. Blanchard in 1969 in the doctoral the-
sis carried out under the direction of R. Jost and W. Hunziker. Gianni’s thesis ends
with a discussion of Nelson’s model and J. Fröhlich’s results. Among other things,
with this brilliant work Gianni begun a notable scientific closeness with J. Fröhlich,
which would give rise to fundamental subsequent works.

Among all topics of all Gianni’s research activity, that of infrared divergences
in quantum electrodynamics would in fact occupy a central position throughout,
starting from the celebrated joint works with J. Fröhlich and F. Strocchi. In the
first of them (Annals of Physics, 1979), it was demonstrated that under explicit
hypotheses scattering states of quantum electrodynamics with non-zero charge have
an associated algebra with disjoint representation from that of a free field—whereby
the meaningfulness of ‘associated infra-particles’. The existence of a spontaneous
symmetry breaking with respect to Lorentz group’s boosts was also highlighted, and
the possibility of an extension of the Haag–Ruelle scattering theory to the case of
charged infra-particles was outlined. In the subsequent works of this series (Physics
Letters B, 1979 and 1980, and Nuclear Physics B, 1981) the Higgs phenomenon (of
mass generation in bosonic gauge fields) is discussed both in the continuum (with
a discussion in perturbative terms) and on lattice, and with emphasis on the role of
gauge invariance in connecting the two approaches.

The success of those theoretical results on the formulation of the Higgs mecha-
nism without an order parameter, later known as the ‘FMS mechanism’ (Fröhlich–
Morchio–Strocchi), is the basis of a research line that is extremely active at present,
in theoretical physics and phenomenology of fundamental interactions, as well in
the direction of extending physics beyond the Standard Model and to quantum grav-
ity.

Gianni kept investigating problems of the theories of quantised gauge fields also
later in the course of his career, in particular the issues of: infrared singularities,
choice of the Hilbert space of physical states, presence and multiplicity of invariant
states, symmetries and their breaking, representation in spaces of indefinite metric.
The results contained in various works by Gianni with F. Strocchi along these direc-
tions have become a reference for all subsequent studies of mathematical-physical
nature. Significant examples were the general study of the structure of theories of
local quantised fields with non-positive-metric Hilbert space, the formulation of
both the relativistic and Euclidean axiomatic framework, the study of the algebras
associated with the fields and their irreducibility.
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Gianni’s collaboration with F. Strocchi has produced many other remarkable
studies of both general structures and specific models, across a multitude of areas of
theoretical physics, which also includes, in addition to the axiomatic and construc-
tive field theories and their models (by Schwinger, Kibble, and the others already
mentioned), condensed matter theory, statistical mechanics, classical and quantum
dynamical systems.

To these, he further added over time an intense research activity on problems
from non-relativistic quantum theory (Bell’s inequalities, quantisation on mani-
folds, topological effects, scattering theory, objectification of quantum mechanics,
stationary and thermal states in quantum statistical mechanics, Bohmian mechan-
ics and stochastic mechanics à la Nelson, rules of sum in frequency, Coulomb
model of Jellium, partial Boolean structures, classical representability in quantum
mechanics), as well as works of more algebraic-geometric nature (theory of the rep-
resentation of algebras in spaces of Hilbert with non-positive definite product, Dirac
operators on manifolds, C�-categories in relation to asymptotic abeliannnes, repre-
sentation of commutation relations, Kreı̆n representation of CCR-Heisenberg and
non-regular algebras, algebraic bosonisation, spectral stochastic processes, Wigner
crystals, Poisson–Rinehart spectral algebra on manifolds), and, recently, the study
of the connection between general relativity and Newtonian gravitation.

In fact, the above overview is inevitably partial, even more impressively so in
view of Gianni’s extreme caution in publishing only works that be highly innova-
tive, original, trailblazers.

Such a depth of contributions across a very broad spectrum of physical subjects
reflects Gianni’s characteristic, certainly atypical in the contemporary specialisation
and fragmentation into disciplines and sub-disciplines, of dominating an immense
physical and mathematical culture.

Owing to his extraordinary versatility, depth, and culture, not infrequently in
the Institute of Physics Gianni was consulted as a sort of ‘oracle’ for difficult or
impossible questions . . .

Gianni was, in the highest sense of the term, a theoretical physicist: for him
the discussion of a model or a problem was primarily and profoundly physical,
hinged on a coherent framework of first principles and specific assumptions and
hypotheses, developed with rigorous methods where the mathematical rigour has
the role of language and tool, and with ontological distinction between physical
formalism and its interpretation.

Alongside the top-level physicist and scientist, internationally recognised, appre-
ciated and esteemed far beyond the unfortunately limited national and local awards,
Gianni was an extraordinary trainer of students and young collaborators, offering
extraordinary and unique stimuli, opportunities, advice, and vision.

For years, generations of students of the physics study programme in Pisa came
across him first for the class of mathematical methods for physics; then, a part of
them, including students from the mathematics programme, decided to to attend his
legendary final year elective course, centred on probabilistic, statistical, functional-
analytic, operator-theoretic, as well as foundational methods and tools for quantum
mechanics (‘in the [penultimate year’s] theoretical physics class you’d learn things,
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in [last year’s] Morchio’s class you’d understand them’, recited a popular handbook
for freshmen, written by senior students, to provide a presentation of all the courses
of the study programme).

Fundamental was, for Gianni, the rigour that permeated all his pedagogical and
didactic interaction with students: he shunned sterile abstractions or unnecessary
generalisations; on the contrary, he adopted an ‘experimental’ approach in applying
theoretical tools to identify the conceptually essential aspects of a problem, through
an initial ‘exploratory’ phase consisting of identifying and examining particularly
illuminating special cases, prior to leading to a general comprehension of the sub-
ject.

When even the arduous effort of Gianni’s course was overcome, repaid in the
end by the satisfaction of an unparalleled cultural experience in the whole physics
study programme, the most daring students—indeed many, and in a regular and
continuous flow over time—used to ask him to be their supervisor for the final
thesis. Which, in turn, proved on the one hand to be an extraordinarily demanding
undertaking, on problems already strongly characterised by the elements of current
academic research, and on the other to be a path of profound understanding and
superior breadth and vision. Gianni’s former students, who today are researchers,
university professors, journalists, professionals in Italy and abroad, all bring with
them, in addition to the memory of the man’s tenderness and generosity, the vivid
recollections of their thesis’ work, so intense, challenging, fulfilling.

Not to mention, it should not be forgotten, the innumerable theses for which
Gianni acted as opponent in the final dissertation, always accepting the task with ab-
negation, and on the most disparate topics from a whole spectrum of subjects taught
in the physics department, contributing with detailed and improving observations—
yet one further sign of his cultural universality.

Interacting and discussing with Gianni, for those who knew him, went far
beyond the scientific collaboration or the training relationship between the lec-
turer/supervisor and his students, and continued with broad and exciting dialogues
on society, politics, history, literature, science’s paths and trends, discussions on
recent scientific or popular monographs, among many others.

Outside the academic sphere, Gianni has always maintained primary and ex-
traordinary sensitivity and watchful attention to social and political problems of our
time, to contemporary, local, and global injustices and distortions, to contradictions
and inequalities in society and in the labour world, not only by sharing his own al-
ways deep and vigilant analysis, but also by personally devoting his own time and
energy with great generosity to many labourers and ‘non-scientists’ of sort, who too
now pay him their sincere and dear memory.

With profound sadness we are aware that there will no longer be another Gianni
Morchio, an exquisite physicist, a researcher of exceptional calibre and boundless
culture, a rigorous and scrupulous teacher and trainer, a person of unique human-
ity, sensitivity, altruism, and generosity. Yet, in many lucky ones remain all the
affection, admiration, esteem, recognition, friendship for Gianni, and great many re-
member his example, his results, his scientific impact, and his high lesson in physics
and life.



Chi ha compagni non morirà

Fulvio Cornolti, Pompeo Antonio De Biase, and Maurizio Rinaldi

CHI HA COMPAGNI NON MORIRÀ1

In a New Year email message, Gianni once wrote to us:

I’ve just found one thing in the Marxists Internet Archive, beautiful and simple. I had be-
lieved that the choice of both the adage and the motto had been mine, but someone did come
first.

The adage: Humani nihil a me alienum puto.2

The motto: De omnibus dubitandum.3

These were actually Karl Marx’s answers to a questionnaire his daughters once
submitted to him—it was then customary in England that girls elicited confessions
from parents and friends.

We believe that there is the whole Gianni in such words.
Referring to Gianni, Humani nihil was meant in all its universality. Each and ev-

ery single moment of human history raised condemnation and enthusiasm in Gianni.
Condemnation for all the anguish and the material and moral devastation suffered
by the vast majority of the humankind in the course of history; enthusiasm for all

1 “Those having comrades will never die”, from The Internationale anthem, Italian adaptation by
Franco Fortini (1917–1994) in Poesie Inedite, curated by Pier Vincenzo Mengaldo (1997). Original
Italian version of the present Chapter included in Appendix A.1.
2 “I consider nothing human is alien to me”, Terence (195–159 b.C.).
3 “Doubt everything”, René Descartes (1596–1650).
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what man had created and would further create, against all odds, so as to bring the
humankind more and more towards the dreamed world.

Gianni totally identified himself in these words by Marx: “It will then become
plain that the world has long since dreamed of something of which it needs only to
become conscious for it to possess it in reality. It will then become plain that our
task is not to draw a sharp mental line between past and future, but to complete the
thought of the past. Lastly, it will become plain that mankind will not begin any new
work, but will consciously bring about the completion of its old work.”4

Not a blind faith, though. Rather, a faith based on reason.
In fact, quite the opposite of the fetishistic reason that worships the magnifiche

sorti e progressive,5 the blind positivist belief in an unlimited and extraordinary
progress of the course of history. And quite the opposite also of the instrumental
rationality of those who only exploit the use of reason to achieve the best personal
advantages within a society given as a fact and hence accepted as a destiny. Neither
was Gianni’s standpoint the contemplation typical of those living detached from
the society, isolated in the world of ideas or of science. On the contrary: his was the
reason meant as the foundation of ethics and common good, as well as the ground
of passion and political action. This is why Gianni used to love the Dutch philoso-
pher Baruch Spinoza, whom he read until his last days, as well as the Neapolitan
philosopher Antonio Labriola.

Gianni was adamant in his belief that each person may eventually reach the ca-
pability to comprehend even the most complex subjects. That was actually the main
legacy of the Age of Enlightenment. One should have seen how unlimited his pa-
tience and passion were when he used to illustrate abstract categories of economics
to the labourers whom he shared decades of political and union activity with. He
was driven by the confidence that the exchange with them would elevate himself,
for thought and knowledge are the outcome of the real life of real people.

The simple fact that every succeeding generation finds productive forces (includ-
ing science) acquired by the preceding generation and which serve it as the raw
material of further production, engenders a relatedness in the history of man, en-
genders a history of mankind, which is all the more a history of mankind as man’s
productive forces, and hence his social relations, have expanded. From this it can
only be concluded that the social history of man is never anything else than the
history of his individual development, whether he is conscious of this or not. His
material relations form the basis of all his relations. These material relations are
but the necessary forms in which his material and individual activity is realised.6

De omnibus dubitandum: Gianni firmly believed that “there is nothing so far
removed from us as to be beyond our reach, or so hidden that we cannot discover
it”,7 and that both the object of knowledge and the subject itself are inherently part
of human activity as steps of the social production process. As a result, every truth

4 Karl Marx (1818–1983), Letter to Arnold Ruge, September 1843.
5 “the magnificent and progressive fate”, from La Ginestra, by Giacomo Leopardi (1798–1837).
6 Karl Marx, Letter to Pavel Vasilevic̆ Annenkov, December 1846.
7 René Descartes, The Discourse on The Method (1637).
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must be considered provisional, continually subjected to criticism, both in the check
of its internal consistency and in its accordance to historical and scientific facts.

The actual truth of a theory lies first and foremost in its ability to stimulate hu-
man actions and subsequent researches, and ultimately in its capacity to lead beyond
itself. In this respect, questioning any proposition or consolidated result is precisely
the opposite of relativism and scepticism: constantly reflecting on what is consid-
ered established is the driving principle of any development of thinking.

Gianni used to devour one book after another, in continuous search of historical
facts that enhance experience and widen ideas to discuss on. Whenever he reached
a conclusion that broadened his understanding of history and relationships between
classes he promptly shared it with us with great zeal, impatient to test it and to
subject it to objections and criticism. Not rarely, however, in the very moment when
he was reporting and substantiating his deductions, his concern was palpable, as a
thought unsatisfied of itself and of the findings reached until that moment. And then
he restarted the analysis of the problem from yet another perspective.

It was wonderful to witness and follow his thoughts in their making.
Nonetheless, never did Gianni consider this process as an end in itself. It was

the search for truth that drove him in every single moment of his life, intimately
convinced, as he was to his very foundation, that the search for truth was one with
the struggle for a future society as a community of free people, as is indeed feasible
with the technical means available nowadays, with the goal of transforming those
social relations that bound people to suffer and their souls to sadden.

The split between man and society has characterised all historical forms of social
life. So far, the society has founded its very existence on an immediate oppression or
it has emerged as the blind result of opposing forces: it is certainly not the outcome
of a spontaneous and aware action of free individuals.

Gianni’s indestructible assumption was that the truth is pushed forward to the
extent that men who own it adamantly side with it, apply and impose it, acting
in accordance with it. “The process of cognition includes real historical will and
action just as much as it does learning from experience and intellectual compre-
hension.”8 Therefore, the process of cognition is always the collective struggle for
the transformation of the existing state of things.

On the historical and political level, in particular, Gianni, together with his fellow
comrades, had arrived at the conclusion of the necessity to take stock of the com-
munist movement and of the problems that had put it in difficulty. Such an analysis
had to account, in a unified perspective, for the historical expansion of capitalism
beyond the USA and Western Europe, and for the political crisis of the workers’
movement between the last years of the Second International and the crisis of the
Third International. Furthermore, one had to take stock of such processes with no
shortcuts and within the framework of Marx’s theses and their later developments.

This is not the forum to summarise and discuss the results of such an analysis;
what matters and is to be emphasised is that the coherent reconstruction of the
history of the last century and a half from the point of view of the communists has

8 Max Horkheimer (1895–1973), from On the Problem of Truth (1935).
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been Gianni’s principal theoretical activity throughout. He was not moved by mere
intellectual curiosity: it was the indispensable prerequisite for the political struggle
of the workers’ movement.

All of Gianni’s life bears witness to what Anatole France says: “We have nothing
that belongs to us alone but ourselves; we truly give only when we give our work,
our minds, our genius. And this splendid offering of one’s whole self to all men
enriches the giver as much as the community.”9

And for sure Gianni would endorse each single word of Walter Benjamin’s An-
gelus Novus: “The class struggle, which is always present to a historian influenced
by Marx, is a fight for the crude and material things without which no refined and
spiritual things could exist. Nevertheless, it is not in the form of the spoils which fall
to the victor that the latter make their presence felt in the class struggle. They man-
ifest themselves in this struggle as courage, humour, cunning, and fortitude. They
have retroactive force and will constantly call in question every victory, past and
present, of the rulers. As flowers turn toward the sun, by dint of a secret heliotropism
the past strives to turn toward that sun which is rising in the sky of history. A histor-
ical materialist must be aware of this most inconspicuous of all transformations.”10

Even if all this today seems impossible and crazy to many.
We are left with the rare and immense privilege of having known him.

Pompeo, Maurizio, Fulvio

(Translation and adaptation by Alessandro Michelangeli)

9 Anatole France (1844–1924), fromMonsieur Bergeret in Paris (1901).
10 Walter Benjamin (1892–1940), from On the Concept of History (1940).



Our Dad

Cecilia Morchio and Iacopo Morchio

We have long hesitated to write something about our father; the reason is that he
was fundamentally convinced that nobody is ever capable of judging, describing,
and narrating about other people. He sincerely thought this, not because he was
disinterested in others, but because he deeply respected other people’s lives, and
because he was extremely humble and modest.

In all his relationships, he was the one who listened, who always maintained that
listening to the opinions of those who think differently from you is one of the most
interesting things in the world.

However, we would like to convey an impression of our father that could some-
how show a less known side of his personality in the pages that follow.

The first images that come to our mind when we think about him are the moments
in which he came back from work. In these occasions, we felt almost as if he was
the one welcoming us, not vice versa: he entered our home with a gorgeous smile,
eager to hear how our day had been and to exchange ideas and opinions, often
so complex that they were hard for us to comprehend, although we could always
feel his unlimited trust in intelligence and in the ability to understand, ours and
everyone’s.

He spoke little of his work and of physics, and when he did it was exclusively
in an entertaining way, making jokes about how the laws of physics determine how
water boils, how ice cream gets made, how frittatas are turned.

He spoke little of it also because he shared with us many of his other passions.
He translated from latin and greek without needing a dictionary, he had a deep
knowledge of philosophy, he knew entire sections of the Divine Comedy and many
poems by heart, he was a great lover of classical music and opera, to the point that
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he frequently sang his favourite arias in everyday life, often to take the edge off
small fights or nervous days.

Now that we are adults, with lives made of work, friends and loved ones, we
struggle even more to understand where he found the energy to do everything he
did, with inexhaustible enthusiasm. Maybe the best way to share your love is to
give time to others, and he was always available and open to spend time with us,
both to play and tell us stories when we were children, and to talk and discuss with
us when we were adults.

Our father taught us that it’s important to have passions, to know things in depth,
to think independently, to live independently, to work seriously, to have many inter-
ests, to remain open to the world and to never stop learning. But most of all, with
few words but rather by example, he taught us that it is crucial to have integrity, and
to be coherent with our ideas and values.

His example has helped us find our way, with the deep understanding that how-
ever we chose to live our life was going to be fine, as long as we did it with passion
and integrity.

Although he declared not to believe in the importance of emotions, he always
made us feel the depth of the love that he had for us, and he made us feel appreciated
and loved for who we are.

We miss him so much, but everything he was still lives in us.

Iacopo and Cecilia
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1 Introduction

According to Gianni’s view of research, the role of Mathematics is essential in
many fields of science, and in Theoretical Physics in particular. The literature is
full of claims which look reasonable, but are not based on theorems or rigorous
proofs. And this is true in Condensed Matter, Statistical Physics, Quantum Field
Theory, Elementary Particles and so on. The content of this chapter, I believe, could
have been of some interest for Gianni, even if, as far as I know, he never worked
on what I will discuss here. Therefore, with this in mind, let me start my scientific
contribution to this volume.

Among the various tools which play a relevant role in quantummechanics, ladder
operators are quite interesting, and useful. We all know the bosonic annihilation and
creation operators, mainly because they are found already very early, while study-
ing the spectrum of a simple quantum harmonic oscillator. But these operators are
then used in a different, many-body, context: they describe bosonic modes, needed,
for instance, in the analysis of quantum fields describing interactions. Fermionic
ladder operators are also well known: they are used to model easily the Pauli ex-
clusion principle, but they appear also in some quantum fields describing matter.
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These two classes of ladded operators are usually defined in terms of suitable com-
mutation rules between a fixed (annihilation) operator and its adjoint, the creation
operator. For instance, Œc; c��D 1b and fd; d�g D 1f , with d2 D 0, are respectively
the canonical commutation and the canonical anti-commutation relations. Here 1b
and 1f are the identity operators in Hb and Hf respectively, the bosonic and the
fermionicHilbert spaces. It is well known that, for a single mode. dim.Hf /D 2 and
dim.Hb/ D 1. So the two spaces are truly different. Moreover, c� is the adjoint
of c, and d� that of d . Of course, these adjoints should be computed with respect
to the scalar product in the related Hilbert space. This is an easy task for fermions,
since the scalar product is just the one in C2, while it is not entirely trivial in Hb

which is quite often identified with L2.R/, due to the fact that c is an unbounded
operator. This creates a lot of subtle points to consider, of course, since unbounded
operators are not as easy as bounded operators: they have, in particular, domain
issues that should be considered to avoid mistakes. Hence, writing Œc; c�� D 1b is
just a formal relation which needs to be made more precise, for instance by making
explicit the vectors of Hb on which this formula is well defined. And we can eas-
ily imagine that this problem becomes even more complicated when Œc; c�� D 1b is
replaced by Œa; b� D 1b , for some pair of operators a and b with b ¤ a�. The anal-
ysis of this latter situation is indeed the core of this chapter. This is both because
the mathematical properties of these operators can be rather interesting, but also
because they appear, in a somehow hidden way, in several applications considered
in recent years in the physical literature, mainly in connection with manifestly non
self-adjoint Hamiltonians. In particular, as we will show later, removing the con-
straint that the commutation rule is given between an operator (c) and its adjoint
(c�), gives us the possibility to extend the functional framework from L2.R/ to the
space of tempered distributions S0.R/. Of course, this extension opens the problem
of a correct interpretation of the results from a physical side. This is because the
usual probabilistic interpretation of quantum mechanics can be lost. Still, some in-
teresting physically relevant operators appear strongly connected to what we will
discuss later and, in this perspective, we believe our framework may have some
intriguing consequences.

This chapter is organized as follows: we propose our special deformation of
the canonical commutation relations and we discuss some of the mathematical
consequences of our definition. Section 2.1 is devoted to a brief list of quantum
mechanical systems, considered in the literature in recent years, which can be an-
alyzed in terms of our ladder operators, named pseudo-bosonic. In particular we
show that a and b, together with a� and b�, behave as ladder operators and allow
the construction of two different families of vectors in L2.R/ which are biorthonor-
mal and are eigenstates of the pseudo-bosonic number operator N D ba, and of its
adjoint N�. These two sets are not necessarily bases in L2.R/, but they are usu-
ally total sets. In Sect. 3 we take advantage of the fact that in our pseudo-bosonic
commutation rule Œa; b� D 1b a and b can be, in general, quite unrelated to pro-
pose a generalized version of the Hilbertian settings proposed in Sect. 2. Hence we
construct a general settings for what we call weak pseudo-bosons (WPBs). Several
appearance of these WPBs are described in the second part of Sect. 3. In particular,



On Some Deformed Canonical Commutation Relations: The Role of Distributions 19

in Sect. 3.1 we show how the position and the momentum operators Ox and Op can be
seen as weak pseudo-bosonic ladder operators, and we show that an extended scalar
product can be introduced to prove the biorhogonality of the generalized eigenstates
of the pseudo-bosonic number operators. In Sect. 3.2 we discuss the role of WPBs
in the context of the so-called inverted quantum harmonic oscillator (IQHO), while
in Sect. 3.3 we propose a rather general family of pseudo-bosons (PBs) which can
be defined in or out of L2.R/. Section 4 contains our conclusions.

2 Pseudo-Bosons

We begin our analysis by recalling few well known facts on bosonic operators. This
is important to fix the notation and later to stress the differences between PBs and
ordinary bosons.

Let c be an operator on an Hilbert space1 H D L2.R/ satisfying the canonical
commutation relation (CCR) Œc; c��D 1, c� being the adjoint of c and 1 the identity
operator on H . Notice that, using for c the representation c D 1p

2

� Ox C d
dx

�
, where

Ox is the multiplication operator and d
dx

is the derivative operator2, the set of the test
functions onR, S.R/, i.e. of all those C1 functions which go to zero, together with
their derivatives, faster than any inverse power, is stable under the action of c and
c�: if f .x/ 2 S.R/, then cf .x/; c�f .x/ 2 S.R/. Now we replace Œc; c�� D 1 with
its more complete version, writing

Œc; c��f .x/ D f .x/; (1)

for all f 2 S.R/. If we consider a vector e0.x/ 2 S.R/ which is annihilated by c,
c e0.x/ D 0, it is clear that all the vectors en.x/ D 1p

nŠ
c�
n
e0.x/, n � 0, belong to

S.R/. The set Fe D fen.x/; n � 0g is an orthonormal basis for H :

hen; emi D ın;m; and f .x/ D
1X

nD0
hen; f i en.x/;

8f .x/ 2 L2.R/, so that Le D l:s:fen.x/g, the linear span of the en.x/’s, is dense in
L2.R/. The following Parseval equality holds:

hf; gi D
1X

nD0
hf; enihen; gi; (2)

8f .x/; g.x/ 2H . The explicit form of en.x/ is well known:

en.x/ D 1
p
2nnŠ
p
�
Hn.x/ e

� x22 ; (3)

1 From now on we will simply use H rather than Hb , since Hf will have no role in the rest of
this chapter.
2 We recall that this is proportional to the momentum operator Op, Op D �i d

dx
.
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where Hn.x/ is the n-th Hermite polynomial. It is evident now that en.x/ 2 S.R/,
for all n � 0, so that the (strict) inclusion Le � S.R/ holds.

The set Fe has interesting features, when considered in connection with c and
c�. Indeed we have the following

c en D
p
n en�1; c�en D

p
nC 1 enC1; (4)

with the agreement that e�1 D 0. An immediate consequence of these ladder equa-
tions is the following eigenvalue equation

N0 en D n en; (5)

n� 0, whereN0D c�c is called the number operator. Because of (4), c is a lowering
or an annihilation operator, while c� is a raising or a creation operator. Together
they are called ladder operators.N0, c and c� are all unbounded. In particular,N0 is
symmetric, since hN0f; gi D hf;N0gi 8f; g 2D.N0/, and is positive: hN0f; f i D
hcf; cf i D kcf k2 � 0, 8f 2 D.N0/. Hence, N0 admits a Friedrichs extension,
which we still denote with N0, which is self-adjoint.

Summarizing, if c satisfies the CCR (1), then we can build up an interesting
functional settings: a family of vectors, the en.x/’s, which are eigenvectors of the
self-adjoint operator N0 with eigenvalues n 2 N0 D N [ f0g, see (5), which obey
some relevant ladder conditions, see (4), and which, all together, produce a set of
functions Fe which is an orthonormal basis for H .

During the past few decades, many physicists realized that some non self-adjoint
operators can play a significant role in the analysis of various physical systems,
[1–5], since there exist quantummechanical situations in which the dynamics is bet-
ter described by Hamiltonians (and other observables) which are not self-adjoint.
This evidence has produced a huge interest in an extended version of quantum
mechanics, where self-adjointness of the observables is not a key aspect. This sug-
gested to consider ladder operators of different kind, not necessarily linked by the
usual adjoint operation, and their connected number-like operators. We refer to [6]
for some preliminary results and to [7] for a more recent monograph on these topics.
This chapter is intended to be a review of some recent results on these generalized
ladder operators, and to their weak3 version in particular. For readers’ convenience,
we begin our analysis by proposing first our definitions and their consequences in a
purely Hilbertian settings, postponing their distributional counterparts to Sect. 3.

Let a and b be two operators on H , with domains D.a/ and D.b/ respectively,
a� and b� their adjoint, and letD be a dense subspace ofH such that a]D�D and
b]D � D, where x] is either x or x�: D is assumed to be stable under the action
of a, b, a� and b�. Notice that we are not requiring here that D coincides with, e.g.
D.a/ or D.b/. However due to the fact that a]f is well defined, and belongs to D
for all f 2 D, it is clear that D � D.a]/. Analogously, we can also conclude that
D�D.b]/. The stability ofD implies that both a.bf / and b.af / are well defined,
8f 2 D.

3 In the sense of distributions!
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Definition 1 The operators .a; b/ areD-pseudo-bosonic (D-pb) if, for all f 2D,
we have

a b f � b a f D f: (6)

Sometimes, to simplify the notation, rather than (6) we will simply write Œa; b�D 1.
Of course, when b D a� we go back to CCR, and a; b … B.H /, the set of bounded
operators on H . a and b are unbounded also when a ¤ b�, and this is the reason
why the role of D is so relevant.

Our working assumptions, based on several existing systems in quantum me-
chanics, are the following:

Assumption D-pb 1 there exists a non-zero '0 2 D such that a '0 D 0.

Assumption D-pb 2 there exists a non-zero �0 2 D such that b� �0 D 0.

It is clear that, if b D a�, these two assumptions collapse into a single one and (6)
becomes the ordinary CCR, for which the existence of a vacuum which belongs to
an invariant set (S.R/, for instance) is guaranteed. On the other hand, if a and b are
uncorrelated, it might easily happen that Assumptions D-pb 1 or D-pb 2, or one of
the two, are not satisfied. One important example of this situation will be discussed
at length in Sect. 3.1.

The stability of D under the action of b and a� implies, in particular, that '0 2
D1.b/´ \k�0D.bk/ and that �0 2 D1.a�/. Here D1.X/ is the domain of all
the powers of the operator X . Hence

'n´ 1p
nŠ
bn'0; �n´ 1p

nŠ
a�
n
�0; (7)

n � 0, are well defined vectors in D and, therefore, they belong to the domains of
a], b] and N], where N D ba and N� is the adjoint of N . We introduce the sets
F� D f�n; n � 0g and F' D f'n; n � 0g.

It is now simple to deduce the following lowering and raising relations:

8
ˆ̂<

ˆ̂:

b 'n D
p
nC 1 'nC1; n � 0;

a '0 D 0; a'n D pn'n�1; n � 1;
a��n D

p
nC 1�nC1; n � 0;

b��0 D 0; b��n D pn�n�1; n � 1;
(8)

as well as the following eigenvalue equations:N'nD n'n andN��nD n�n, n� 0.
Hence, despite of the fact thatN andN� are manifestly non self-adjoint, in general,
their eigenvalues are real and, actually, coincide with those of the operatorN0Dc�c.
We call D-pseudo-bosons (D-PBs) the excitations described by 'n and �n, in the
same way we call bosons those described by the vectors en in (3).
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As a consequence of these equations, choosing the normalization of '0 and �0
in such a way h'0; �0i D 1, it can be shown that

h'n; �mi D ın;m; (9)

for all n;m � 0. The conclusion is, therefore, that F' and F� are biorthonormal
sets of eigenstates of N and N�, respectively. The properties we have deduced for
F' and F� does not allow us to conclude anything about the fact that they are also
(Riesz) bases forH . In fact, it is well known that, in some relevant concrete exam-
ples, this is not the case, while in other situations this is true. We will return on this
aspect in Sect. 2.1, where several counterexamples will be given. With this in mind,
we introduce the following (not always satisfied, in view of what just observed)
assumption:

Assumption D-pb 3 F' is a basis for H .

This is equivalent to assume that F� is a basis as well, [8]. Since this assumption is
not always true, it is more reasonable to replace Assumption D-pb 3 with a weaker
version, which thought being weaker, still produces several interesting results and,
maybe more relevant, is satisfied even when Assumption D-pb 3 does not hold. We
ask the following:

AssumptionD-pbw 3 F' andF� are G-quasi bases, for some subspace G dense4

in H .

This means that, 8f; g 2 G, the following identities hold

hf; gi D
X

n�0
hf; 'nih�n; gi D

X

n�0
hf;�nih'n; gi; (10)

which, as it is clear, extend the standard closure relation in H , also known as Par-
seval identity.

While Assumption D-pb 3 implies (10), the reverse is false. However, if F' and
F� satisfy (10), we still have some (weak) form of resolution of the identity, and we
can deduce several useful consequences. For instance, just to state a simple result,
if f 2 G is orthogonal to all the �n’s (or to all the 'n’s), then f is necessarily zero:
F� and F' are total in G.

For completeness we briefly discuss the role of two intertwining operators which
are intrinsically related to our D-PBs. More details can be found in [6].

Assumption D-pb 3 means that

f D
1X

nD0
h'n; f i�n D

1X

nD0
h�n; f i 'n; (11)

4 G does not need to coincide withD.
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8f 2H . Then, it is natural to ask if sums like S'f D
P1

nD0h'n; f i'n or S�f DP1
nD0h�n; f i�n make some sense, or for which vectors they do converge, if any.

It is clear that, if b D a�, then F' D F� and S' D S� D 1: in this case not only the
series for S' and S� converge, but they converge to the identity operator.

If, in particular, F' is a Riesz basis, [8], then F� is a Riesz basis too, and we
know that an orthonormal basis Fc D fcng exists, together with a bounded operator
R with bounded inverse, such that 'n D Rcn and �n D .R�1/�cn, 8n. It is clear
that, if R D 1, the sums for S'f and S�f collapse and converge to f . But, what if
R¤ 1? In this case, let us take f 2D.S'/, which for the moment we do not assume
to be coincident with H . Then

S'f ´
X

n

h'n; f i'n D
X

n

hRcn; f iRcn D R
 
X

n

˝
cn;R

�f
˛
cn

!

D RR�f;

where we have used the facts thatFc is an orthonormal basis and that R is bounded
and, therefore, continuous. Of courseRR� is bounded as well and the above equality
can be extended to all ofH . Therefore we conclude that S'DRR�. In a similar way
we can deduce that S� D .R�/�1R�1 D S�1' , which is also bounded. In fact, using
the C�-property for B.H /, we deduce that kS'k D kRk2 and kS�k D kR�1k2. In
this situation, our D-PBs are called regular.

Similar results can also be deduced without introducing the operator R, but sim-
ply using the biorthonormality of F' and F� :

S'�n D 'n; S 'n D �n; (12)

for all n � 0. These equalities together imply that �n D .S� S'/�n and 'n D
.S' S� /'n, for all n� 0. Now, since S'; S� 2B.H /, we can extend these identities
to all of H , and we conclude that

S� S' D S' S� D 1 ) S� D S�1' : (13)

In other words, both S� and S' are invertible and one is the inverse of the other. It
is also clear that S' and S� are positive operators, and it is interesting to check that
they obey the following intertwining relations:

S�N'n D N�S�'n; NS'�n D S'N ��n; (14)

Indeed we have, recalling thatN'nD n'n andN��nD n�n, S�N'nD n.S�'n/D
n�n, as well asN�S�'n DN��n D n�n. The second equality in (14) follows from
the first one, simply by left-multiplying S�N'nDN�S�'n with S' , and using (12).
These relations are not surprising, since intertwining relations can be often deduced
between operators sharing the same eigenvalues.

The situation is mathematically much more complicated, in particular, for D-
PBs which are not regular. This is connected to the fact that S' and S� are not
bounded, so that the series

P1
nD0h'n; f i'n and

P1
nD0h�n; f i�n do not converge

uniformly on H . This case, together with many other details on PBs, can be found
in [6] and in references therein.
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2.1 Few Appearances of PBs

During the last few decades a lot of physical systems have been considered, mostly
in connection with PT -Quantum Mechanics, [1–5], driven by manifestly non self-
adjoint Hamiltonians which can be rewritten in terms of PBs. We briefly list here
some of these Hamiltonians, and we refer to [6, 7] for many more mathematical
details and physical applications. It is useful to remark that, in what follows, we
will be extremely concise, since ordinary PBs are not the main object of our review
here, but are only needed to provide a better setup for WPBs.

The Extended Quantum Harmonic Oscillator

We begin our list of models with the following Hamiltonian, proposed in [9]

H� D �

2

� Op2 C Ox2�C ip2 Op;

where � is a strictly positive parameter and Œ Ox; Op� D i1.H� is manifestly non self-
adjoint. However, with some algebra, it can be easily diagonalized in terms of PBs.

For that, we start introducing the (standard) bosonic operators c D 1p
2

� Ox C d
dx

�
,

c�D 1p
2

� Ox � d
dx

�
, Œc; c��D1, and the related operatorsA�D c� 1

�
, andB�D c�C 1

�
.

Then we can rewriteH� D �.B�A� C �� 1/, where �� D 2C�2
2�2

. It is clear that, for all

� > 0, A�� ¤ B� and that ŒA�; B��D 1. Hence we are dealing, at least formally, with
pseudo-bosonic operators. Indeed, we can check that Assumptions D-pb1, D-pb2
and D-pbw3, are satisfied, while Assumption D-pb3 is not, see [6, 10].

The Swanson Model

The starting point is here the non self-adjoint Hamiltonian,

H	 D 1

2

� Op2 C Ox2� � i
2
tan.2	/

� Op2 � Ox2�;

where 	 is a real parameter taking value in
���

4
; �
4

� n f0g DW I , [9, 11]. As before,
Œ Ox; Op� D i1. Of course, 	 D 0 is excluded from I just to avoid going back to the
standard, self-adjoint, harmonic oscillator, which is not so interesting for us. Notice
also thatH	 can be rewritten as

H	 D 1

2 cos.2	/

� Op2e�2i	 C Ox2e2i	� D e�2i	

2 cos.2	/

� Op2 C Ox2e4i	�;

which has, except for an unessential overall complex constant, the same form con-
sidered in [12],H D � d2

dx2
C z4 Ox2, z 2 C, taking z D ei	 .
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Introducing now the bosonic annihilation and creation operators c, c�, and their
linear combinations

(
A	 D cos.	/ c C i sin.	/ c� D 1p

2

�
ei	 Ox C e�i	 d

dx

�
;

B	 D cos.	/ c� C i sin.	/ c D 1p
2

�
ei	 Ox � e�i	 d

dx

�
;

we can write H	 D !	
�
B	 A	 C 1

2
1
�
, where !	 D 1

cos.2	/ is well defined because

cos.2	/ ¤ 0 for all 	 2 I . It is clear that, for 	 in this set, A�	 ¤ B	 and that
ŒA	 ; B	 �D 1. Again, we have rewritten the Hamiltonian in terms of PBs, and again,
we can check that Assumptions D-pb1, D-pb2 and D-pbw3, are satisfied, while
Assumption D-pb3 is not, see [6, 10].

Two Coupled Oscillators

The next example we want to briefly mention was originally introduced by Carl
Bender and Hugh Jones in [13] and then considered further in [14]. The starting
point is the following, manifestly non self-adjoint, Hamiltonian:

H D . Op21 C Ox21/C . Op22 C Ox22 C 2i Ox2/C 2
 Ox1 Ox2; (15)

where 
 is a real constant, with 
 2� � 1; 1Œ. Here the following commutation rules
are assumed: Œ Oxj ; Opk� D iıj;k1, 1 being the identity operator on L2.R2/. All the
other commutators are zero.

In order to rewrite H in a more convenient form it is possible to perform some
changes of variables, [14], starting by introducing the operators Pj , Xj , j D 1; 2,
via

P1´ 1

2a
. Op1 C � Op2/; P2 ´ 1

2b
. Op1 � � Op2/;

X1´ a. Ox1 C � Ox2/; X2´ b. Ox1 � � Ox2/;
where � can be˙1, while a and b are real, non zero, arbitrary constants. These oper-
ators satisfy the same canonical commutation rules as the original ones: ŒXj ; Pk�D
iıj;k1. Next we put

˘1 D P1; ˘2 D P2; q1 D X1 C i a�

1C 
 � ; q2 D X2 � i b�

1 � 
 � ;

and it is clear that q�j ¤ qj , j D 1; 2. However, the commutation rules are preserved:
Œqj ;˘k� D iıj;k1. Finally, we introduce the operators:

8
ˆ̂<

ˆ̂:

a1 D a
4
p
1C
 �

�
i˘1 C

p
1C
 �
2a2

q1

�
;

a2 D a
4
p
1�
 �

�
i˘2 C

p
1�
 �
2b2

q2

�
;

(16)
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and 8
ˆ̂<

ˆ̂:

b1 D a
4
p
1C
 �

�
�i˘1 C

p
1C
 �
2a2

q1

�
;

b2 D a
4
p
1�
 �

�
�i˘2 C

p
1�
 �
2b2

q2

�
:

(17)

It may be worth remarking that bj ¤ a�j , since the qj ’s are not self-adjoint. These
operators satisfy, at least formally, the pseudo-bosonic commutation rules

Œaj ; bk� D ıj;k1; (18)

the other commutators being zero.
Going back to H , and introducing the operators Nj ´ bj aj , we can write

H DH1CH2C 1

1 � 
2 1; H1D
p
1C 
 �.2N1C1/; H2D

p
1 � 
 �.2N2C1/:

(19)
In [6, 15] it has been proved that these operators provide a two-dimensional version
of the general framework described in Sect. 2: we are dealing with PBs, but in 2D.

Another 2D Example

The last quantum mechanical model of this short (and very minimal!) list was orig-
inally introduced, in our knowledge, in [16]. The starting point is the following
manifestly non self-adjoint Hamiltonian,

H D 1

2
. Op21 C Ox21/C

1

2
. Op22 C Ox22/C i ŒA. Ox1 C Ox2/C B. Op1 C Op2/�; (20)

where A and B are real constants, while Oxj and Opj are the self-adjoint position and
momentum operators, satisfying Œ Oxj ; Opk� D iıj;k1. Notice that in [6] a noncommu-
tative version of this system has also been considered.

Let us introduce the shifted operators

P1 D Op1 C iB; P2 D Op2 C iB; X1 D Ox1 C iA; X2 D Ox2 C iA;

and then

aj D 1p
2
.Xj C iPj /; bj D 1p

2
.Xj � iPj /; (21)

j D 1; 2. It is easy to check that ŒXj ; Pk� D iıj;k1, Œaj ; bk� D ıj;k1, and that, since
(if A¤ 0 or B ¤ 0)X�

j ¤Xj and P �
j ¤Pj , bj ¤ a�j . Introducing furtherNj D bj aj

we can rewriteH as follows:H D N1 CN2 C .A2 C B2 C 1/1. Also in this case,
we can rewrite H in diagonal form in terms of pseudo-bosonic number operators.
We refer to [6] to see the details of our computations, and for the mathematical
subtleties connected with the Hamiltonian in (20).
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We conclude here this list of concrete appearances of PBs in some quantum me-
chanical models already existing in the literature, before the analysis given in Sect. 2
was undertaken. It is useful to add that PBs have shown to be useful in the analysis
of many other models, and in connection with other interesting situations. We refer
to [7], in particular, for some applications of PBs to path integrals.

3 Weak PBs

From now on we will concentrate on a specific class of PBs, the so-called weak PBs,
WPBs. These are ladder operators acting on distributions, rather than on square-
integrable functions. They have, as we will see, similar properties as those of ordi-
nary PBs, but are maybe more intriguing for their mathematical properties.

We start introducing here, as before, two operators a and b which, together with
their adjoints a� and b�, map a certain dense subset of H , D, into itself. Then we
assume that a and b can be extended to a larger set, E �H , which is again stable
under their action, and under the action of their adjoints. The existence of such a
set E is, of course, very much model-dependent. Some explicit example will be
discussed later in Sect. 3. With this in mind, we propose the following

Definition 2 The operators a and b are weak E-pseudo bosonic if

Œa; b� F D F; (22)

for all F 2 E. When the role of E is clear we will simply call a and b weak pseudo
bosonic operators.

As in Sect. 2, the commutator in (22) is just the starting point to construct an inter-
esting mathematical framework. This is exactly what we will do here. In particular,
the following two assumptions reflect Assumptions D-pb 1 and D-pb 2:

Assumption E-wpb 1 there exists a non-zero '0 2 E such that a '0 D 0.

Assumption E-wpb 2 there exists a non-zero �0 2 E such that b� �0 D 0.

As before, the invariance of E under the action of the operators a, b, a� and b� im-
plies that '0 2D1.b/´\k�0D.bk/ and �0 2D1.a�/, in the sense of generalized
domains, so that the vectors

'n´ 1p
nŠ
bn'0; �n´ 1p

nŠ
a�
n
�0; (23)

n�0, can be defined and they all belong to E. Defining now the setsF Df n; n�
0g and F' D f'n; n � 0g, from (22) and from the definition in (23) we easily de-
duce the same raising and lowering relations as in (8), together with the eigenvalue
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equations N'n D n'n and N��n D n�n, n � 0. In the attempt to generalize what
we have proved for PBs, it is now natural to assume that, with a suitable choice of
the normalization of '0 and �0 which implies that h'0; �0i D 1, then

h'n; �mi D ın;m; (24)

for all n;m � 0. This means that F� and F' are requested to be biorthonormal,
with respect to a bilinear form h:; :i which extends the ordinary scalar product to E,
and which needs to be identified in concrete situations.

Of course, since the vectors of F� and F' are not, in general, in H , it makes
not much sense to require any strong version of the basis property forF� orF' . On
the other hand, what seems natural to require is that a set C � E exists, consisting
of “sufficiently many” functions, such that

hF;Gi D
1X

nD0
hF; nih'n;Gi D

1X

nD0
hF; 'nih n;Gi; (25)

for all F;G 2 C. A pragmatic view on C is that it should contains all those (gener-
alized) functions which are interesting for us, for some specific physical or mathe-
matical reason.

As in Sect. 2, we can use F' and F to introduce two operators, S' and S , as
follows: let

D.S'/ D fF 2 EWS'F 2 Eg; D.S / D fF 2 EWS F 2 Eg:

These are to be understood as generalized domains of S' and S , respectively.
Most of the properties found for ordinary PBs are recovered. Calling L' and L 
respectively the linear spans of the vectors 'n and  n, we see that L' � D.S /,
L � D.S'/, S' WL ! L' , and S WL' ! L . In particular we have

S'

 
NX

kD0
ck k

!

D
NX

kD0
ck'k; S 

 
NX

kD0
ck'k

!

D
NX

kD0
ck k; (26)

as well as
S'S F D F; S S'G D G; (27)

and
NS'G D S'N �G; N �S F D S NF: (28)

Moreover

a F D S'b�S F; b F D S'a�S F; a�G D S bS'G; b�G D S aS'G;
(29)

for all F 2 L' and G 2 L . Using the same notation proposed in [6], the oper-
ators a and b� could be called S -conjugate. Conjugate operators are sometimes
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considered in a Hilbertian context, and produce several interesting results. For this
reason, a deeper investigation of these similarities conditions in the distributional
sense could be interesting, and this analysis is in progress.

We can then conclude that there is no particular obstacle, in principle, in ex-
tending the main ideas and results deduced for PBs to WPBs. Of course, the rather
abstract construction proposed so far in the section becomes more interesting if it
can be really used, that is if there are (physical) systems which can be analysed in
terms of WPBs. This is indeed the case, as we will show in the rest of this section.

3.1 Weak PBs for Ox and Op

Let us consider the following operators defined on H D L2.R/: Oxf .x/ D xf .x/,
. ODg/.x/ D g0.x/, the derivative of g.x/, for all f .x/ 2 D. Ox/ D fh.x/ 2 L2.R/W
xh.x/ 2 L2.Rg and g.x/ 2 D. OD/ D fh.x/ 2 L2.RW h0.x/ 2 L2.R/g. Of course,
the set of test functions S.R/ is a subset of both sets above: S.R/ � D. Ox/ and
S.R/ � D. OD/. The adjoints of Ox and OD in H are Ox� D Ox, OD� D � OD. We have
Œ OD;x�f .x/ D f .x/, for all f .x/ 2 S.R/. This suggests that Ox and OD could be
thought as S.R/-pseudo bosons, since they satisfy Definition 1 and since S.R/ is
stable under their action, and the action of their adjoints. However, if we look for
the vacua of a D OD and b D Ox, we easily find that '0.x/ D 1 and  0.x/ D ı.x/,
with a suitable choice of the normalizations5. It is clear, therefore, that neither '0.x/
nor  0.x/ belong to S.R/. Also, they not even belong to L2.R/. Nonetheless, it is
interesting to see what can be recovered of the framework proposed in Sect. 2, or if
it can be extended, and how. In fact, we will show how the general settings proposed
in the first part of Sect. 3 work for our operators Ox and Op.

First of all, let us check if (7) still makes some sense. We have

'n.x/ D bnp
nŠ
'0.x/ D xnp

nŠ
;  n.x/ D .a�/np

nŠ
 0.x/ D .�1/np

nŠ
ı.n/.x/; (30)

for all n D 0; 1; 2; 3; : : : Here ı.n/.x/ is the n-th weak derivative of the Dirac delta
function. We can check that 'n.x/;  n.x/ 2 S0.R/, the set of the tempered distri-
butions, [17], that is the continuous linear functionals on S.R/. This suggests to
consider a� and b as linear operators acting on S0.R/. This is possible since the ac-
tion of Ox and OD can be extended outside L2.R/, to S0.R/, which is stable under the
action of these operators. In other words: a; b; a� and b� all map S0.R/ into itself.
This is exactly what required before Definition 2, with S0.R/ playing the role of E.
Then we can extend the pseudo-bosonic commutation relation, originally defined

5 In fact, to talk of normalization we should have a scalar product but, for the moment, it is not
clear what such a scalar product could be in the present context. This will be clarified later in this
section.
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as ŒD; x�f .x/ D f .x/, for all f .x/ 2 S.R/, to the space of tempered distributions:

Œa; b�'.x/ D '.x/; (31)

for all '.x/ 2 S0.R/.
From (30) it follows that b and a� act as raising operators, respectively on the

sets F' D f'n.x/g and F D f n.x/g:

b'k.x/ D
p
k C 1'kC1.x/; a� k.x/ D

p
k C 1 kC1.x/; (32)

k D 0; 1; 2; 3; : : : Moreover, from (31), we deduce that b� and a act as lowering
operators on these sets:

a'k.x/ D
p
k'k�1.x/; b� k.x/ D

p
k k�1.x/; (33)

k D 0; 1; 2; 3; : : :, with the understanding that a'0.x/ D b� 0.x/ D 0. It is now
clear that, calling N D baD Ox OD, N'k.x/D k'k.x/, for all k D 0; 1; 2; 3; : : : This
is because N'k.x/ D b.a'k.x// D

p
k b'k�1.x/ D k'k.x/. But the same result

can also be found in a different, more explicit, way:

N'k.x/ D Ox OD xkp
kŠ
D Ox kx

k�1
p
kŠ
D kxkp

kŠ
D k'k.x/:

The distributions  k.x/ are also (generalized) eigenstates of a number-like opera-
tor. In fact, calling N� D a�b�, and using formulas (32) and (33), one proves that
N� k.x/ D k k.x/. Again, this can be checked explicitly by computing

N� k.x/ D � OD Ox
�
.�1/kp
kŠ

ı.k/.x/

�
D .�1/kC1p

kŠ
.xı.k/.x//0 D k k.x/;

since the weak derivative of xı.k/.x/ can be easily computed and we have
.xı.k/.x//0 D �kı.k/.x/, for all k D 0; 1; 2; 3; : : : Summarizing, we have that

N'k.x/ D k'k.x/; N � k.x/ D k k.x/; (34)

for all k D 0; 1; 2; 3; : : : This formula, together with (32) and (33), are analogous to
those deduced in Sect. 2. Hence, this suggests that a framework close to that of PBs
can be extended, for Ox and OD, from the Hilbert space L2.R/ to the set of tempered
distributions.

The next step consists in checking, if possible, the biorthogonality of the sets
F' and F , and their basis properties, if any. In other words, we are interested in
understanding whether equations (24) and (25), or some similar expressions, can be
deduced for our families of tempered distributions.

Of course, to talk of biorthogonality, we should first define some sort of scalar
product. But this is impossible for distributions, in general. However, there are pairs
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of distributions for which such an operation can be defined, as we will discuss now.
We should also stress that this extended scalar product is not unique: other choices
are possible, and a different choice was recently proposed in [18].

First we observe that the scalar product between two good functions, for instance
f .x/; g.x/ 2 S.R/, can be written in terms of a convolution between f .x/ and the
function Qg.x/ D g.�x/. Indeed we have hf; gi D .f � Qg/.0/. In the same way we
define the scalar product between two elements F.x/;G.x/2S0.R/ as the following
convolution:

hF;Gi D .F � QG/.0/; (35)

whenever this convolution exists. This existence issue is discussed, for instance, in
[19]. As we will see, this will not be a problem for us. In order to compute hF;Gi,
it is necessary to compute .F � QG/Œf �, f .x/ 2 S.R/, and this can be computed by
using the equality6 .F � QG/Œf � D hF;G � f i.

In our situation we have F.x/ D xn and G.x/ D ı.m/.x/, n;m D 0; 1; 2; 3; : : :
Hence .G � f /.x/ D RR ı.m/.y/f .x � y/dy D f .m/.x/, where f .m/.x/ is the or-
dinary m-th derivative of the test function f .x/. Then we have

.F � QG/Œf � D hF;G � f i D
Z

R

F.x/f .m/.x/ dx D
Z

R

xn
dmf .x/

dxm
dx

D .�1/m
Z

R

dmxn

dxm
f .x/ dx:

But

dmxn

dxm
D

8
<̂

:̂

0 if m > n

nŠ if m D n
nŠ

.n�m/Š x
n�m if m < n;

and therefore

.F � QG/Œf � D

8
<̂

:̂

0 if m > n

.�1/nnŠ RR f .x/ dx if m D n

.�1/m nŠ
.n�m/Š

R
R x

n�mf .x/ dx if m < n:

Hence

.F � QG/.x/ D

8
<̂

:̂

0 if m > n

.�1/nnŠ if m D n

.�1/m nŠ
.n�m/Šx

n�m if m < n;

and therefore that .F � QG/.0/ D .�1/nnŠın;m. Putting all these results together, we
conclude that not only h'n;  mi exists, but also that

h'n;  mi D ın;m; (36)

6 We stress once more that .F � QG/Œf � is not always defined, but there exist useful situations when
it is. This is the case when hF;G � f i exists. It is maybe useful to stress that .F � QG/Œf � represents
the action of .F � QG/.x/ on the function f .x/.
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as claimed before. Notice that our original choice of normalization for '0.x/ and
 0.x/ guarantees the biorthonormality (and not only the biorthogonality) of the
families F' and F .

Remark It is clear that h:; :i cannot satisfy all the properties of an ordinary scalar
product. In particular, it could be impossible to check that hF;F i � 0 for all tem-
pered distributions F , and that hF;F i D 0 if, and only if, F D 0. The reason is
simple: there is no guarantee that hF;F i does even exist, indeed. However, h:; :i
has all the properties of an ordinary scalar product when restricted, for instance, to
S.R/ since, in this case, h:; :i coincides with the ordinary scalar product in L2.R/.

It is clear that it makes no much sense to check ifF' orF , or both, are bases inH .
This is because none of the 'n.x/ and  n.x/ even belongs to L2.R/. However, the
pair .F';F / can still be used to expand a certain class of functions, those which
admit expansion in Taylor series. In fact we have

1X

nD0
h n; f i'n.x/ D

1X

nD0

.�1/n
nŠ

˝
ı.n/; f

˛
xn D

1X

nD0

1

nŠ
f .n/.0/ xn D f .x/;

for all f .x/ admitting this kind of expansion. However, if we invert the role of F 

and F' , the result is more complicated:

1X

nD0
h'n; f i n.x/ D

1X

nD0

.�1/n
nŠ
hxn; f iı.n/.x/:

This is, in principle, an infinite series of derivatives of delta, called dual Taylor
series, see [20, 21], for instance. It is known that the series does not define in general
an element ofD0.R/, a distribution, (hence it cannot define a tempered distribution)
except when the number of non zero moments of f .x/, hxn; f i, is finite, since,
in this case, the series above returns a finite sum, which is indeed a (tempered)
distribution.

This preliminary analysis shows that the pair .F';F / obeys a sort of weak
basis property, at least for very special functions or distributions. What we will do
next is to check if, and for which objects, a formula like that in (25) can be written.
In this perspective, let us introduce the following set of functions:

D D L1.R/ \ L1.R/\ A.R/; (37)

where A.R/ is the set of entire real analytic functions, which admit expansion in
Taylor series, everywhere convergent in R. It might be useful to notice that D con-
tains many functions of S.R/, but not all.

Let now f .x/; g.x/ 2 D, and let us consider the following sequence of func-

tions:RN .x/Df .x/ PN
nD0

g.n/.0/

nŠ
xn. It is clear, first of all, thatRN .x/ converges to

f .x/ g.x/ almost everywhere (a.e.) in R. Of course, it also converges with respect
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to stronger topologies, but this is not relevant for us. The second useful property is
that RN.x/ can be estimated as follows:

jRN .x/j � R.x/ 	 jf .x/j.M C kgk1/; (38)

for some fixedM > 0 and for all N large enough. It is clear that R.x/ 2 L1.R/. To
prove the estimate in (38) it is enough to observe that, a.e. in x,

jRN.x/j � jf .x/j
 ˇ̌
ˇ̌
ˇ

NX

nD0

g.n/.0/

nŠ
xn � g.x/

ˇ̌
ˇ̌
ˇ
C jg.x/j

!

� jf .x/j.M C kgk1/;

where M surely exists (independently of x) due to the uniform convergence of
PN

nD0
g.n/.0/

nŠ
xn to g.x/. Then we can apply the Lebesgue dominated convergence

theorem to conclude that

lim
N;1

Z

R

RN .x/dx D
Z

R

f .x/ g.x/dx D hf; gi:

Incidentally we observe that, since f; g 2 D, jhf; gij � kf k1kgk1, which ensures
that hf; gi is well defined. Now,

hf; gi D lim
N;1

Z

R

RN.x/dx D
1X

nD0

1

nŠ
g.n/.0/hf; xni D

1X

nD0

.�1/n
nŠ
hf; xni˝ı.n/; g˛ D

D
1X

nD0
hf; 'nih n; gi:

In a similar way we can also check that, for the same f .x/ and g.x/,

hf; gi D
1X

nD0
hf; nih'n; gi:

Hence we conclude that .F';F / are D-quasi bases. It should be stressed that
it is not clear if D is dense or not in H , but this is not particularly relevant
in the present context, where the role of the Hilbert space is only marginal.
Moreover, there are also distributions which satisfy (half of) formula (25). For
instance, if f .x/ DPM

kD0 ak k.x/ for some complex ak and fixed M , the equal-
ity hf; gi D P1

nD0 hf; 'nih n; gi is automatically satisfied, while it is not even
clear if

P1
nD0 hf; nih'n; gi does converge or not. Similarly, if we take g.x/ DPL

kD0 bk'k.x/ for some complex bk and fixed L, hf; gi DP1nD0 hf; 'nih n; gi is
true, while

P1
nD0 hf; nih'n; gi could be not even convergent.

In analogy with what we have done in Sect. 2, we can useF' andF to introduce
two operators, S' and S , which we formally write, for the moment,

S' D
X

n

j'n >< 'nj; S D
X

n

j n ><  nj: (39)
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We have seen that these operators have interesting properties, and it makes sense to
understand if they can be extended, and in which sense, to the present distributional
context. In particular, it is interesting to check formulas (26)-(29).

First of all, we introduce the following subsets of S0.R/:

D.S'/ D fF.x/ 2 S0.R/W .S'F /.x/ 2 S0.R/g

and
D.S / D fF.x/ 2 S0.R/W .S F /.x/ 2 S0.R/g:

As always, we call these sets the generalized domains of S' and S , respectively.
It is easy to see that L' � D.S / and L � D.S'/ and that S' WL ! L' , while
S WL' ! L . In particular we have

S'

 
NX

kD0
ck k

!

D
NX

kD0
ck'k; S 

 
NX

kD0
ck'k

!

D
NX

kD0
ck k; (40)

as well as
S'S F D F; S S'G D G; (41)

and
NS'G D S'N �G; N �S F D S NF; (42)

for F.x/ 2 L' , G.x/ 2 L . Furthermore, it is possible to see that L ¤ D.S'/. In
fact, for F to belong to D.S'/, it is sufficient that the series

P1
nD0h'n; F i'n.x/ DP1

nD0 ˛nx
n, ˛n D 1

nŠ
hxn; F i, converges. For instance, if F.x/ is equal to 1 for x 2

Œ0; 1� and zero otherwise, the series converges for all x 2 R, even if F.x/ … L .
We refer to [22] for more results on this specific example of WPBs.

3.2 Weak PBs for the Inverted Quantum Harmonic Oscillator

This section is devoted to another appearance of WPBs. In this case, this will occur
while studying a particular Hamiltonian which looks like a rotated version of the
harmonic oscillator. Once again, we will see that distributions are relevant for our
system.

We start considering the Hamiltonian

H	 D 1

2

� Op2 C e2i	�2 Ox2�; (43)

for 	 2 Œ��; ��, for the moment, and � > 0. Here, as usual, Œ Ox; Op� D i1, Ox D Ox�
and Op D Op�. It is clear that, if 	 D˙�

2
,H	 becomes the Hamiltonian of the IQHO,

HC D H� D 1
2

� Op2 ��2 Ox2� DW H , which is what we are really interested in.
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Let us introduce the operators

A	 D 1p
2�

�
ei	=2� Ox C i e�i	=2 Op�; B	 D 1p

2�

�
ei	=2� Ox � i e�i	=2 Op�; (44)

for all admissible 	 . It is clear that A	 and B	 are densely defined in L2.R/, since
in particular any test function f .x/ 2 S.R/ belongs to the domains of both these
operators: S.R/�D.A	 / and S.R/�D.B	/, for all 	 . It is also clear thatA�	 ¤B	 .
Indeed we can check that, for instance on S.R/,

A
�

	 D
1p
2�

�
e�i	=2� Ox � i ei	=2 Op�; B

�

	 D
1p
2�

�
e�i	=2� Ox C i ei	=2 Op�: (45)

The set S.R/ is stable under the action of all these operators. Formulas (45) show
that

A
�

	 D B�	 ; B
�

	 D A�	 : (46)

Moreover, it is easy to see that these operators obey pseudo-bosonic commutation
rules, [6]:

ŒA	 ; B	 �f .x/ D f .x/ (47)

for all f .x/ 2 S.R/, and for all values of 	 2 Œ��; ��. This is in agreement with
the fact that, if 	 D 0, we go back to the ordinary bosonic operators d D � OxCi Opp

2�
and

d� D � Ox�i Opp
2�

, Œd; d �� D 1. Indeed we have

A0 D B�
0 D d; B0 D A�0 D d�:

In terms of the operators in (44)H	 can be rewritten as

H	 D �ei	
�
B	A	 C 1

2
1

�
: (48)

Then, because of (46), we have that

H
�

	 D �e�i	
�
A
�

	B
�

	 C
1

2
1

�
D H�	 ; (49)

on S.R/. Now the eigensystems of H	 and H�

	 can be constructed by using the
strategy adopted for PBs, see Sect. 2, and for WPBs, as shown in the first part of
Sect. 3: we should first look for the ground state of the two annihilation operators
A	 and B�

	 . But, since B
�

	 D A�	 , it is sufficient to solve the differential equation

A	'
.	/
0 .x/D 0, since the solution of B�

	 
.	/
0 .x/ D 0 is simply  .	/

0 .x/D '.�	/0 .x/.
Hence, recalling that Op D �i d

dx
, we find:

'
.	/
0 .x/ D N .	/e�

1
2 �e

i	 x2 ;  
.	/
0 .x/ D N .�	/e�

1
2 �e

�i	 x2 ; (50)
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where N .˙	/ are normalization constants which will be fixed later. From (50) we
see that the vacua are in L2.R/ if <.e˙i	 /D cos.	/ > 0. For this reason, from now
on, we will restrict to 	 2 I D ���

2
; �
2

�
. This constraint reminds very much the

similar one for the Swanson model, where it was needed both for ensuring square-
integrability of the eigenstates of the Hamiltonian, but also to work with a well
defined Hamiltonian, [9, 10].

With this in mind, and using again the usual pseudo-bosonic approach, we can
construct two families of functions, F .	/

' D f'.	/n .x/; n D 0; 1; 2; : : :g and F .	/
 D

f .	/
n .x/; n D 0; 1; 2; : : :g, where

'.	/n .x/ D Bn
	p
nŠ
'
.	/
0 .x/ D N .	/

p
2n nŠ

Hn

�
ei	=2
p
�x

	
e�

1
2 �e

i	 x2 ; (51)

 .	/
n .x/ D A

�

	

n

p
nŠ
 
.	/
0 .x/ D '.�	/n .x/ D N .�	/

p
2n nŠ

Hn

�
e�i	=2

p
�x

	
e�

1
2 �e

�i	 x2 :

(52)

Here Hn.x/ is the n-th Hermite polynomial. The proof of these formulas is given
in [26].

It is clear that, for 	 2 I , '.	/n .x/;  
.	/
n .x/ 2 L2.R/, for all n � 0. Also, these

functions belong to the domain of A	 , B	 and of their adjoints, and we have ladder
and eigenvalue equations as those in Sect. 2, see (8) in particular:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

B	 '
.	/
n .x/ D pnC 1 '.	/nC1.x/; n � 0;

A	 '
.	/
0 .x/ D 0; A	 '

.	/
n .x/ D pn'.	/n�1.x/; n � 1;

A
�

	  
.	/
n .x/ D pnC 1 .	/

nC1.x/; n � 0;
B
�

	  
.	/
0 .x/ D 0; B

�

	  
.	/
n .x/ D pn .	/

n�1.x/; n � 1;
N .	/'

.	/
n .x/ D n '.	/n .x/; n � 0;

N .	/� 
.	/
n .x/ D n .	/

n .x/; n � 0;

(53)

whereN .	/DB	A	 andN .	/� is its adjoint. Then, using (48) and (49), we conclude
that

H	'
.	/
n .x/ D E.	/

n '.	/n .x/; H
�

	  
.	/
n .x/ D E.�	/

n  .	/
n .x/; (54)

whereE.	/
n D!ei	

�
nC 1

2

�
. Notice thatE.�	/

n DE.	/
n . Hence the eigenvalues ofH	

andH�

	 have, for generic 	 2 I , a non zero real and a non zero imaginary part.

Remark If 	 D 0 everything collapses to the usual quantum harmonic oscillator,

as it is clear from (43). In this case, if we take N .0/ D ��
�

�1=4
,

'.0/n .x/ D  .0/
n .x/ D en.x/ D 1p

2n nŠ

�
�

�

�1=4
Hn

�p
�x

	
e�

1
2 �x

2

; (55)
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which is the well known n-th eigenstate of the quantum harmonic oscillator, as
expected.

Another, also expected, feature of the families F .	/
' and F .	/

 is that, with a proper
choice of normalization, their vectors are mutually biorthonormal. Indeed if we fix

N .	/ D
�
�

�

�1=4
ei	=4; (56)

we can check that
h'.	/n ;  .	/

m i D ın;m; (57)

for all n;m � 0 and for all 	 2 I . Incidentally we observe that (56) gives back the
right normalization of en.x/ when 	 D 0.

It is interesting to observe that the functions '.	/n .x/ and  .	/
n .x/ are essentially

the rotated versions of the eigenstates en.x/ in (55):

'.	/n .x/ D ei	=4en.ei	=2x/;  .	/
n .x/ D e�i	=4en.e�i	=2x/; (58)

for all n � 0. This is in agreement with (57):

h'.	/n ;  .	/
m i D

Z

R

'
.	/
n .x/ .	/

m .x/dx D
Z


	

en.z/em.z/dz

D
Z

R

en.x/em.x/dx D hen; emi D ın;m;

using well known results in complex integration, see [26] for the details.
Next we can check that F .	/

' and F .	/
 are complete (or, as some authors prefer,

total) in L2.R/. This follows from a standard argument adopted in several papers,
see [6] for instance, and originally proposed, in our knowledge, in [27]: if �.x/ is
a Lebesgue-measurable function which is different from zero almost everywhere
(a.e.) in R, and if there exist two positive constants ı; C such that j�.x/j � C e�ıjxj
a.e. in R, then the set fxn �.x/g is complete in L2.R/. We refer to [6] for some
physical applications of this result. Because of their completeness, the sets L.	/' D
l:s:f'.	/n .x/g and L.	/ D l:s:f .	/

n .x/g, i.e. the linear spans of the functions in F .	/
'

and in F .	/
 , are both dense in L2.R/. Now, (57) implies that

1X

nD0
hf; '.	/n ih .	/

n ; gi D hf; gi; (59)

8f .x/ 2 L.	/ and 8g.x/ 2 L.	/' , which is our usual weak version of the resolution
of the identity.
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Incidentally we observe that what we have discussed here is, in fact, another
concrete example of PBs, not particularly different from the Swanson model briefly
described in Sect. 2.1.

We refer to [26] for more result on coherent states and for the analysis of a
similarity operator which can be used in the analysis of the Hamiltonian in (43).
Here we are more interested in discussing how to connect what we have deduced
forH	 to similar results for the IQHO.

From L2.R/ to Distributions

The Hamiltonian we want to consider in this section is the following:

H D 1

2

� Op2 ��2 Ox2�; (60)

where, as in (43), � > 0. This is what, in the literature, is called an inverted har-
monic oscillator: we have a quadratic potential that, rather being convex, is concave,
see, e.g., [23–25]. Hence it is reasonable to expect that there are no bound, square
integrable, eigenstates. This is, indeed, what we are going to deduce here. We have
already seen thatH can be formally deduced by H	 fixing 	 either to �

2
or to � �

2
.

For this reason it is natural to define, see (58),

'.˙/n .x/ D '.˙
�
2 /

n .x/ D e˙i�=8p
2n nŠ

�
�

�

�1=4
Hn

�
e˙i�=4

p
�x

	
e


i
2 � x

2

(61)

and

 .˙/
n .x/ D  .˙

�
2 /

n .x/ D '.
/n .x/

D e
i�=8p
2n nŠ

�
�

�

�1=4
Hn

�
e
i�=4

p
�x

	
e˙

i
2 �x

2

: (62)

It is clear that
k'.˙/n k D k .˙/

n k D 1;
so that none of these functions is square-integrable. However, even if they are not
in L2.R/, they are connected to the operators A˙, B˙ and their adjoints, where

A˙ D A˙ �
2
D 1p

2�

�
e˙i�=4� Ox C i e
i�=4 Op�;

B˙ D B˙ �
2
D 1p

2�

�
e˙i�=4� Ox � i e
i�=4 Op�; (63)

and
B
�
˙ D A
; A

�
˙ D B
: (64)
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These operators can all be written in terms of the ordinary bosonic operators d and
d� introduced before as follows:

A˙ D d ˙ id �p
2

; B˙ D d� ˙ idp
2

; (65)

with A�˙ and B�
˙ deduced as in (64). All these operators leave S.R/ stable. Then we

have
ŒA˙; B˙�f .x/ D f .x/; (66)

for all f .x/ 2 S.R/. Moreover, these operators can also be applied to functions
which are outside S.R/, and even outside L2.R/. In fact, these operators can also
act on '.˙/n .x/ and  .˙/

n .x/ and satisfy ladder equations of the same kind as those
given in (53):

(
A˙ '

.˙/
0 .x/ D 0; A˙ '

.˙/
n .x/ D pn'.˙/n�1.x/; n � 1;

B˙ '
.˙/
n .x/ D pnC 1 '.˙/nC1.x/; n � 0; (67)

and (
B
�
˙ 

.˙/
0 .x/ D 0; B

�
˙ 

.˙/
n .x/ D pn .˙/

n�1.x/; n � 1;
A
�
˙  

.˙/
n .x/ D pnC 1 .˙/

nC1.x/; n � 0: (68)

Hence the set E in Definition 2 surely contains S.R/ and the set of all the finite
linear combinations of the functions  .˙/

n .x/ and '.˙/n .x/.
Some easy computations show that H in (60) can be written in terms of these

ladder operators. To simplify the notation we give the results in an operatorial form7.
Specializing H	 in (43) by taking 	 D ˙�

2
we put

H˙ D ˙i�
�
B˙A˙ C 1

2
1

�
: (69)

We have, as expected,
H D HC D H�: (70)

Using (64) we conclude thatHC D H�
C, at least formally. Furthermore

H˙'.˙/n .x/ D ˙i�
�
nC 1

2

�
'.˙/n .x/; (71)

8n � 0. Hence the eigenvalues of the IQHO are purely imaginary with both a pos-
itive and a negative imaginary part. Of course the functions  .˙/

n .x/, which are
usually the eigenstates of the adjoint of the original Hamiltonian, see (54), are not

7 All the operators we are considering in this section can be applied to functions of S.R/, but not
necessarily: they can also act on '.˙/n .x/ and  .˙/n .x/, and to their linear combinations.
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so relevant here since the adjoint of HC is HC itself. This is not surprising since,
see (62),  .˙/

n .x/ D '.
/n .x/.
To put the eigenfunctions of H in a more interesting mathematical settings we

start defining the following quantities:

˚.˙/
n Œf � D h'.˙/n ; f i; � .˙/

n Œg� D h .˙/
n ; gi; (72)

8f .x/; g.x/ 2 S.R/ and 8n � 0. Here h:; :i is the form with extend the ordinary
scalar product to compatible pairs, i.e. to pairs of functions which are, when mul-
tiplied together, integrable, but separately they are not (or, at least, one is not).
Compatible pairs have been considered in several contributions in the literature.
We refer to [28] for their appearance in partial inner product spaces, and to [7] for
some consideration closer (in spirit) to what we are doing here.

It is not hard to prove that ˚.˙/
n Œf � and �.˙/

n Œg� are well defined, linear, and
continuous in the natural topology �S in S.R/. In few words, they are tempered
distributions, ˚.˙/

n ; �
.˙/
n 2 S0.R/. We will only prove this claim for ˚.C/

n , since for
˚
.�/
n and for �.˙/

n not many differences appear.
To check that ˚.C/

n Œf � is well defined, we observe that

ˇ̌
˚.C/
n Œf �

ˇ̌� .�=�/
1=4

p
2n nŠ

Z

R

ˇ̌
ˇHn

�
ei�=4
p
�x

	
f .x/

ˇ̌
ˇ dx �Mn sup

x2R
.1Cjxj/nC2jf .x/j:

(73)
Here we have defined

Mn D .�=�/1=4p
2n nŠ

Z

R

jHn.e
i�=4
p
�x/j

.1C jxj/nC2 dx:

As we see, in this computation we have multiplied and divided the original inte-

grand function
ˇ̌
ˇHn

�
ei�=4
p
�x

	
f .x/

ˇ̌
ˇ for .1C jxj/nC2. In this way, since the ratio

jHn.ei�=4
p
�x/j

.1Cjxj/nC2 has no singularity and decreases to zero for jxj divergent as jxj�2, we
can conclude thatMn is finite (and positive). Moreover,

sup
x2R

.1C jxj/nC2jf .x/j D sup
x2R

nC2X

kD0

 
nC 2
k

!

jxjkjf .x/j D
nC2X

kD0

 
nC 2
k

!

pk;0.f /;

wherepk;0.:/ is one of the seminorms defining the topology �S, see [29] for instance:
pk;l .f / D supx2R jxjkjf .l/.x/j, k; l D 0; 1; 2; : : : Of course, all these seminorms
are finite for all f .x/ 2 S.R/.

Summarizing we have

ˇ̌
˚.C/
n Œf �

ˇ̌ �Mn

nC2X

kD0

 
nC 2
k

!

pk;0.f /;

so that ˚.C/
n Œf � is well defined for all f .x/ 2 S.R/, as we had to check.
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The linearity of ˚.C/
n is clear: ˚.C/

n Œ f̨ C ˇg� D ˛˚.C/
n Œf �C ˇ˚.C/

n Œg�, for all
f .x/; g.x/ 2 S.R/ and ˛; ˇ 2 C.

To conclude that ˚.C/
n 2 S0.R/we still have to prove that˚.C/

n is continuous. For
that we have to consider a sequence of functions ffk.x/ 2 S.R/g, �S-convergent to
f .x/ 2 S.R/, and check that ˚.C/

n Œfk�! ˚
.C/
n Œf � for k!1 in C, for all fixed n.

The proof of this fact is based on the following lemma, whose proof can be found
in [26].

Lemma 1 Given a sequence of functions ffk.x/2S.R/g, �S-convergent to f .x/2
S.R/, it follows that jxjl jfk.x/j converges, in the norm k:k of L2.R/, to jxjl jf .x/j,
8l � 0.

Then we have

ˇ̌
˚.C/
n Œfk � f �

ˇ̌ D ˇ̌h'.C/n ; fk � f i
ˇ̌ D

ˇ̌
ˇ̌
ˇ

*
'
.C/
n

.1C jxj/nC1 ; .1C jxj/
nC1.fk � f /

+ˇ̌
ˇ̌
ˇ
;

with an obvious manipulation. Now, since both '
.C/
n .x/

.1Cjxj/nC1 and .1C jxj/nC1.fk.x/�
f .x// are in L2.R/, for all n; k, we can use the Schwarz inequality and we get

ˇ̌
˚.C/
n Œfk � f �

ˇ̌ �







'
.C/
n

.1C jxj/nC1








.1C jxj/nC1.fk � f /



! 0

when k !1, for all fixed n � 0, because of Lemma 1.
The role of tempered distributions in the context of the IQHO is further clarified

by the following result.

Theorem 1 For each fixed n � 0 the vector '.˙/n .x/ is a weak limit of '.	/n .x/, for
	 !˙�

2
:

'.˙/n .x/ D w � lim
	;˙ �

2

'.	/n .x/: (74)

Analogously,
 .˙/
n .x/ D w � lim

	;˙ �
2

 .	/
n .x/: (75)

Proof It is sufficient to prove that '.C/n .x/ D w � lim	;C �
2
'
.	/
n .x/, i.e. that

h'.C/n � '.	/n ; f i ! 0 (76)
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when 	 ! �
2
, for all fixed n � 0 and for all f .x/ 2 S.R/. First of all we observe

that,

j'.C/n .x/ � '.	/n .x/j � .�=�/1=4p
2n nŠ

�ˇ̌
ˇHn.e

i�=4
p
�x/

ˇ̌
ˇC

ˇ̌
ˇHn.e

i	=2
p
�x/

ˇ̌
ˇ
	

� .�=�/1=4p
2n nŠ

pn.x/;

where pn.x/ is a suitable polynomial in jxj of degree n, independent of 	 , whose
expression is not particularly relevant8. This estimate implies that the function

�.	/n .x/ D
'
.C/
n .x/� '.	/n .x/

.1C jxj/nC1

is square integrable for all fixed n and for all 	 2 I . Therefore, since .1 C
jxj/nC1f .x/ 2 L2.R/ as well, due to the fact that f .x/ 2 S.R/, we have

ˇ̌h'.C/n � '.	/n ; f iˇ̌ D
ˇ̌
ˇ̌
ˇ

*
'
.C/
n � '.	/n

.1C jxj/nC1 ; .1C jxj/
nC1f

+ˇ̌
ˇ̌
ˇ
� k�.	/n k k.1C jxj/nC1f k;

using the Schwarz inequality. Now, to conclude as in (76), it is sufficient to show
that k�.	/n k ! 0 when 	 ! �

2
, i.e. that

lim
	; �2

Z

R

j�.	/n .x/j2 dx D 0:

This is a consequence of the Lebesgue dominated convergence theorem, since it is
clear first that lim	; �2

�
.	/
n .x/ D 0 a.e. in x and since j�.	/n .x/j2 is bounded by an

L1.R/ function, in view of what we have shown before. Indeed we have

j�.	/n .x/j2 D
j'.C/n .x/ � '.	/n .x/j2
.1C jxj/2nC2 � .�=�/1=2

2n nŠ

p2n.x/

.1C jxj/2nC2 ;

which goes to zero for jxj divergent as jxj�2. �

Summarizing the results proved so far we can write that the eigenstates of the
IQHO are not square integrable. They define tempered distributions and can be ob-
tained as weak limits of the eigenstates of the Swanson-like Hamiltonian introduced
in (43).

We refer to [26] for more results also on coherent states associated to the IQHO.

8 To clarify this aspect of the proof, let us consider, for instance H3.x/ D 8x3 � 12x. Hence
jH3.x/j � 8jxj3C 12jxj and, therefore jH3.e

i	=2
p
�x/j � 8.�/3=2jxj3C 12p�jxj D p3.x/, for

instance.
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3.3 A General Class of Pseudo-Bosonic Operators

Another interesting class of first order differential operators connected to PBs and
to WPBs are of the form

a D ˛a.x/ d
dx
C ˇa.x/; b D � d

dx
˛b.x/C ˇb.x/; (77)

for some suitable functions j̨ .x/ and ǰ .x/, j D a; b, which, for convenience,
will be assumed to be C1 functions. This is what happens in concrete models: for
ordinary bosons, for instance, we have ˛a.x/D ˛b.x/D 1p

2
, and ˇa.x/D ˇb.x/D

1p
2
x. For the shifted harmonic oscillator, see [6] and references therein, we have

aD cC ˛1 and b D c�Cˇ1, for some complex ˛ and ˇ with ˛ ¤ ˇ, and therefore
˛a.x/ D ˛b.x/ D 1p

2
as before, while ˇa.x/ D 1p

2
x C ˛ and ˇb.x/ D 1p

2
x C ˇ.

For the Swanson model, see again [6] and Sect. 2.1, ˛a.x/ D ˛b.x/ D e�i	p
2
, while

ˇa.x/ D ˇb.x/ D ei	 xp
2
.

More recently, [7, 30], a rather general class of pseudo-bosonic operators A and
B have been considered, where A D d

dx
C wA.x/ and B D � d

dx
C wB.x/. In this

case ˛a.x/D ˛b.x/D 1, while wA.x/ and wB.x/ have been called pseudo-bosonic
superpotentials (PBSs) and they must satisfy .wA.x/ C wB.x//0 D 1, where the
prime is the first x-derivative. In particular, in this last example, different choices of
C1 functions wA.x/ and wB.x/ give rise to different families of functions, 'n.x/
and �n.x/, constructed as in Sect. 2, which may, or may not, be square-integrable.
However, see [30], we have proven the following result:

Proposition 1 IfwA.x/ andwB.x/ are C1 PBSs, then 'n.x/�m.x/2L1.R/ and
h�m; 'ni D ın;m, for all n;m � 0. �

This is another case, see also (72), in which the functions 'n.x/ and �n.x/ are
called compatible, in the sense of PIP-spaces, [28]. In this perspective it is useful
to recall that two functions h1.x/ 2 Lp.R/ and h2.x/ 2 Lq.R/ can be multiplied
producing a third function h.x/D h1.x/h2.x/which is integrable, h.x/ 2L1.R/, if
1
p
C 1

q
D 1. Hence, a compatibility form between h1.x/ and h2.x/ can be introduced,

whose functional expression is the same as a scalar product in L2.R/, to which it
reduces if p D q D 2. It is clear that, for those functions which are compatible, a
generalized notion of biorthonormality can also be introduced.

In what follows, we are interested in extending all the particular cases listed
above using the general forms of the operators in (77). Of course, our results will
be strongly connected to the functions j̨ .x/ and ǰ .x/.

To proceed in this direction we first compute the commutator Œa; b� on some suf-
ficiently regular function f .x/. In particular, if not explicitly said, we will assume
f .x/ to be at least C2, while we will not insist much on f .x/ being or not square-
integrable. Of course, this requirement could be relaxed if we interpret d

dx
as the
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weak derivative, but this will not be done here. An easy computation shows that, un-
der this mild condition on f .x/, Œa; b�f .x/ does make sense, and Œa; b�f .x/Df .x/
if j̨ .x/ and ǰ .x/, j D a; b, satisfy the following equalities

(
˛a.x/˛

0
b.x/ D ˛0a.x/˛b.x/;

˛a.x/ˇ
0
b.x/C ˛b.x/ˇ0a.x/ D 1C ˛a.x/˛00b.x/:

(78)

It is easy to check that all the examples listed at the beginning of this section sat-
isfy indeed these two conditions, in agreement with their nature of pseudo-bosonic
operators. In particular the first equation in (78) is clearly satisfied by any constant
choice of ˛a.x/ and ˛b.x/. Moreover, in this case, the second equation in (78) can
be rewritten as .˛aˇb.x/C˛bˇa.x//0 D 1, which implies that ˛aˇb.x/C˛bˇa.x/D
xCk, for some constant k. This is essentially the situation described in terms of the
PBSs wA.x/ and wB.x/ in [30]. Incidentally it is also clear that, if ˛a.x/D ˛a ¤ 0,
constant, then (78) implies that ˛a.x/˛0b.x/D˛a˛0b.x/D0, which means that ˛b.x/
must also be constant. For this reason, to avoid going back to PBSs, in the rest of
this section we will mainly focus on the situation in which both ˛a.x/ and ˛b.x/
depend on x in a non trivial way. Moreover, it is convenient for what follows to
assume that they are never zero: j̨ .x/ ¤ 0, 8x 2 R, j D a; b.

Under this assumption it is easy to deduce the vacua of a and of b�, as in Sects. 2
and 3. In what follows the following expressions are used for the adjoint in H of a
and b:

a� D � d
dx

˛a.x/C ˇa.x/; b� D ˛b.x/ d
dx
C ˇb.x/: (79)

The vacua of a and b� are the solutions of a'0.x/ D 0 and b� 0.x/ D 0, which
turn out to be:

'0.x/ D N' exp
�
�
Z
ˇa.x/

˛a.x/
dx

�
;  0.x/ D N exp

(

�
Z
ˇb.x/

˛b.x/
dx

)

; (80)

and are well defined under our assumptions on j̨ .x/ and ǰ .x/. Here N' and N 
are normalization constants which will be fixed later. If we now introduce 'n.x/
and  n.x/ as in (7),

'n.x/ D 1p
nŠ
bn'0.x/;  n.x/ D 1p

nŠ
a�
n
 0.x/; (81)

n � 0, we can prove the following, see [31]:

Proposition 2 Calling 	.x/ D ˛a.x/ˇb.x/C ˛b.x/ˇa.x/ we have

'n.x/ D 1p
nŠ
�n.x/'0.x/;  n.x/ D 1p

nŠ
�n.x/ 0.x/; (82)
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n � 0, where �n.x/ and �n.x/ are defined recursively as follows:

�0.x/ D �0.x/ D 1; (83)

and

�n.x/ D
�
	.x/

˛a.x/
� ˛0b.x/

�
�n�1.x/� ˛b.x/� 0n�1.x/; (84)

�n.x/ D
�
	.x/

˛b.x/
� ˛0a.x/

�
�n�1.x/ � ˛a.x/ � 0n�1.x/; (85)

n � 1. �

A Special Case: Constant j̨ .x/

We have already commented that taking ˛a.x/ D ˛a and ˛b.x/ D ˛b is not new,
compared to what was done in [30]. However, it is still an interesting exercise,
and for this reason we briefly discuss this case first. In this situation, ˛a.x/ and
˛b.x/ are always different from zero, at least if ˛a˛b ¤ 0. Formulas (84) and (85)
simplify significantly now since, in particular, as we have already deduced before,
	.x/ D ˛aˇb.x/C ˛bˇa.x/ D x C k. Hence we find

�n.x/ D 1

˛a
.x C k/ �n�1.x/ � ˛b � 0n�1.x/;

�n.x/ D 1

˛a
.x C k/ �n�1.x/� ˛a � 0n�1.x/; (86)

The case ˛aD ˛b D 1 has been considered in [30], while ˛aD ˛b D 1p
2
is discussed

in [7]. If ˛a is not necessarily equal to ˛b, similar conclusions can still be deduced.
In particular from (86) we find that

�n.x/D
s�

˛b

2˛a

�n
Hn

�
x C kp
2˛a˛b

�
; �n.x/D

s�
˛b

2˛a

�n
Hn

 
x C kp
2˛a˛b

!

: (87)

Here Hn.x/ is the n-th Hermite polynomial, and the square root of the complex
quantities are taken to be their principal determinations.

As for the functions in (80) we get '0.x/ D N' exp
n
� 1

˛a

R
ˇa.x/ dx

o
, and

 0.x/ D N exp
n
� 1
˛b

R
ˇb.x/ dx

o
, where ˇa.x/ and ˇb.x/ are only required to

satisfy the condition ˛aˇb.x/ C ˛bˇa.x/ D x C k. Now, it is easy to show that
'n.x/�m.x/ 2 L1.R/, for all n;m � 0, as in Proposition 1 above, if ˛a˛b > 0. The
proof is based on the fact that 'n.x/�m.x/ is (a part some normalization constants),
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the product of a polynomial of degree nCm times the following exponential

exp

�
�
Z �

ˇa.x/

˛a
C ˇb.x/

˛b

�
dx

�
D exp

�
� 1

˛a˛b

Z
	.x/ dx

�

D exp

�
� 1

˛a˛b

Z
.x C k/ dx

�

D exp

�
� 1

˛a˛b

�
x2

2
C kx C Qk

��
;

for some integration constant Qk. Notice that this is a gaussian term under our as-
sumption on ˛a˛b. We refer to [30] for the analysis of the biorthonormality (with a
little abuse of language) of F' D f'n.x/g and F D f n.x/g in this specific case
of constant j̨ .x/.

A General Example

The situation we will now consider is when ˛a.x/D ˛b.x/D ˛.x/, where ˛.x/¤ 0
for all x 2 R. In this case the first equation in (78) is automatically true, inde-
pendently of the particular form of ˛.x/. The second equation becomes .ˇa.x/C
ˇb.x//

0 D 1
˛.x/
C ˛00.x/, so that

ˇa.x/C ˇb.x/ D
Z

dx

˛.x/
C ˛0.x/: (88)

From now on we will identify ˇa.x/ and ˇb.x/ as follows:

ˇa.x/ D
Z

dx

˛.x/
; ˇb.x/ D ˛0.x/: (89)

Of course, other possible choices exist, like that in which the role of ˇa.x/ and
ˇb.x/ are simply exchanged. But we could also consider ˇa.x/ D

R
dx
˛.x/
C ˚.x/

and ˇb.x/ D ˛0.x/ � ˚.x/, for some fixed, sufficiently regular, ˚.x/. This can
produce interesting results, depending on how ˚.x/ is fixed. However, to simplify
our analysis here, we will take ˚.x/ D 0 in what follows. Similarly, we will also
fix to zero all the integration constants, except when explicitly stated. The function
	.x/ introduced in Proposition 2 becomes 	.x/ D ˛.x/.ˇa.x/C ˇb.x//, so that

	.x/ D ˛.x/
�Z

dx

˛.x/
C ˛0.x/

�
; (90)

which, when replaced in (84), produces the following sequence of functions:
�0.x/ D 1 and

�n.x/ D
�Z

dx

˛.x/

�
�n�1.x/ � ˛.x/� 0n�1.x/: (91)
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Calling �.x/ D R dx
˛.x/

we can rewrite (91) in the following alternative way:

�n.x/ D �.x/�n�1.x/� 1

�0.x/
� 0n�1.x/; (92)

n � 1, which can be used to deduce the following expression for �n.x/:

�n.x/ D 1p
2n
Hn

�
�.x/p
2

�
; (93)

for all n � 0, [31].

Remarks

(1) Equation (93) returns the first equation in (87) if ˛.x/ D ˛, constant in x, as it
should.

(2) If ˛.x/ is real then, using (89), ˇb.x/ is also real. Also, ˇa.x/ is real if the
integration constant is chosen to be real, as we will do always here9. In these
conditions, �n.x/ D �n.x/, 8n � 0.

(3) We believe (but we don’t have a rigorous result for that) that Hermite polyno-
mials of some “complicated” argument always appear in connection with PBs
and WPBs because these are connected to deformed CCR, and CCR gives rise
to Hermite polynomials. This is indeed what we have observed along the years,
in all the models we have analysed so far.

As for the vacua in (80), using the fact that ˛a.x/D ˛b.x/D ˛.x/, together with
formulas (89), we deduce that

'0.x/ D N' exp
�
�1
2
.�.x//2

�
;  0.x/ D N 

˛.x/
; (94)

or simply  0.x/ D N 
˛.x/

if ˛.x/ is real, as we will assume from now on, to simplify
the notation. Putting all together we conclude that

'n.x/ D N'p
2nnŠ

Hn

�
�.x/p
2

�
e
�
�
�.x/p
2

	2

;  n.x/ D N p
2nnŠ

Hn

�
�.x/p
2

�
1

˛.x/
: (95)

These formulas suggest that, for many possible choices of ˛.x/, it is quite easy that
 n.x/ … L2.R/, even if maybe not for all the values of n. On the contrary, we could
easily imagine that, for the same choice of ˛.x/, 'n.x/ 2 L2.R/.

It is now very easy to prove that, under very mild assumption on ˛.x/, the
families F' and F are compatible and biorthonormal (in our slightly extended
meaning), even when the functions 'n.x/ or  n.x/ do not both belong to L2.R/. To
prove this claim, it is useful to assume that �.x/ is increasing in x and that, calling

9 Actually, as already stated, we will often fix to zero this integration constant.
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s D �.x/p
2
, s ! ˙1 when x ! ˙1. It is clear then that � can be inverted, and

that x D ��1.p2s/. Since �0.x/ D 1
˛.x/

, it follows that �.x/ is always increasing if
˛.x/>0. However, this is not enough to ensure that s diverges with x, and therefore
this must also be required.

Now, to prove that 'n.x/ and  m.x/ are compatible (and biorthonormal), we
compute the compatibility form:

h m; 'ni D N N'p
2nCm nŠmŠ

1Z

�1
Hm

�
�.x/p
2

�
Hn

�
�.x/p
2

�
e
�
�
�.x/p
2

	2
dx

˛.x/
:

This integral can be easily rewritten in terms of s. In fact, recalling the definition of
�.x/, we first observe that ds

dx
D 1p

2˛.x/
, so that dx

˛.x/
D p2 ds. Hence we have

h m; 'ni D N N'p
2nCm�1 nŠmŠ

1Z

�1
Hm.s/Hn.s/e

�s2ds D p2� N N' ın;m;

which returns

h m; 'ni D ın;m; if N N' D 1p
2�
; (96)

as will be assumed in the rest of this section. This is what we had to prove.

An Example Let us fix ˛.x/D 1
1Cx2 . This function is always strictly positive, and

produces, using (89) and the definition of �.x/, the functions ˇa.x/D�.x/DxC x3

3

and ˇb.x/ D �2x
.1Cx2/2 . We see that �.x/! ˙1 when x ! ˙1. Also, the inverse

of � exists and can be computed explicitly looking for the only real solution of the
equation

p
2s D x C x3

3
. We get

xD��1.p2 s/D
�

2

�3p2s Cp2p2C 9s2
�1=3
�
 
�3p2s Cp2p2C 9s2

2

!1=3
:

The functions in (94) turn out to be

'0.x/ D N' exp
�
�1
2
.x C x3=3/2

�
;  0.x/ D N .1C x2/: (97)

It is clear that '0.x/ 2 L2.R/, while  0.x/ is not square-integrable. Furthermore,
see (92), we have

�n.x/ D
�
x C x3

3

�
�n�1.x/� 1

.1C x2/ �
0
n�1.x/;
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with �0.x/ D 1, and a similar expression for �n.x/. More explicitly we get

�n.x/ D �n.x/ D 1p
2n
Hn

�
x C x3=3p

2

�
;

and

'n.x/ D N'p
2nnŠ

Hn

�
x C x3=3p

2

�
e�

1
2 .xCx3=3/2 ;

 n.x/ D N p
2nnŠ

Hn

�
x C x3=3p

2

�
.1C x2/; (98)

n � 0. Hence 'n.x/ 2 L2.R/, while  n.x/ … L2.R/, for all n D 0; 1; 2; : : :
The fact that these functions are compatible follows from the speed of decay

of 'n.x/, when compared with the speed of divergence of  m.x/. In particular, for-
mula (96) shows that these functions are biorthonormal ifN N'D 1p

2�
: h m; 'niD

ın;m, 8n;m � 0.

Notice that, for our particular operators in (77), there is no need to move to S0.R/.
However, we see that L2.R/ is not enough, in general, and we have to use compat-
ible spaces, with a compatibility form which extends the ordinary scalar product in
L2.R/. This is different fromwhat we have seen in Sects. 3.1 and 3.2, where the role
of S0.R/ was more relevant, if not essential. In other words, WPBs are not intrinsi-
cally connected with distributions; they can appear when L2.R/ is not sufficient in
the analysis of our pseudo-bosonic operators.

Since, as the example above shows, the functions 'n.x/ and n.x/ are not neces-
sarily square-integrable, it is clear that there is no reason forF' and F to be bases
for L2.R/. However, despite of the fact that 'n.x/ and  n.x/ are not necessarily
square-integrable, we will show that a set W , dense in L2.R/, does indeed exist
such that F' and F are W -quasi bases.

Let us introduce the set

W D
n
h.s/ 2 L2.R/W h�.s/´ h.��1.

p
2s// es

2=2 2 L2.R/
o

(99)

This set is dense in L2.R/, since it contains the set D.R/ of all the compactly
supported C1 functions, [31]. It is useful to observe that, if h.x/ 2W , then the
function hC.s/´ h.��1.

p
2s// ˛.��1.

p
2s// e�s2=2 2L2.R/ as well, at least under

very general conditions on ˛.x/. This is because jhC.s/j2 D jh�.s/j2jg.s/j2, where
g.s/ D ˛.��1.p2s// e�s2 . Now, it is sufficient that g.s/ 2 L1.R/ to conclude that
hC.s/ 2 L2.R/. But, because of the presence of e�s2 in g.s/, this is true for many
choices of ˛.x/, like for instance the one proposed in the previous example, ˛.x/D
1

1Cx2 . However, even if ˛.x/ diverges very fast, if h.x/2D.R/ then hC.s/ 2L2.R/
anyhow, which is what we will use in the following.
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Theorem 2 .F';F / are W -quasi bases.

Proof Let us take f .x/; g.x/2W . It is possible to check that the following equal-
ities hold:

hf; 'ni D N' �1=4
p
2hfC; eni; h n; gi D N �

1=4
p
2hen; g�i: (100)

Here en.s/ D 1p
2nnŠ
p
�
Hn.s/e

�s2=2 is the n-th eigenstate of the quantum harmonic

oscillator already considered several times in this chapter, while fC.s/ and g�.s/
should be constructed from f .s/ and g.s/ as shown before. The equalities in (100)
show, in particular, that the pairs .f .x/; 'n.x// and .g.x/;  n.x// are compatible,
8n � 0, since all the functions involved in the right-hand sides of the equalities in
(100), en.s/, fC.s/ and g�.s/, are square integrable. The proof of these identities
is based on the change of variable s D �.x/p

2
, which has already been used before, to

prove (96). Now, since Fe D fen.s/; n � 0g is an orthonormal basis for L2.R/, we
have

1X

nD0
hf; 'nih n; gi D N N' 2

p
�

1X

nD0
hfC; enihen; g�i D

p
2hfC; g�i;

using (96) and the Parseval identity for Fe . Next we have

hfC; g�i D
1Z

�1
fC.s/ g�.s/ ds

D
1Z

�1
f .��1.

p
2s// ˛.��1.

p
2s//e�s

2=2g.��1.
p
2s//es

2=2 ds

D
1Z

�1
f .��1.

p
2s// ˛.��1.

p
2s//g.��1.

p
2s// ds D 1p

2
hf; gi;

introducing the new variable x D ��1.p2s/ in the integral. Summarizing,

1X

nD0
hf; 'nih n; gi D hf; gi;

and, with similar computations,
P1

nD0hf; nih'n; gi D hf; gi. �

The conclusion is therefore that, even if .F';F / are not necessarily made of
functions in L2.R/, they can be used, together, to deduce a resolution (better, two
resolutions) of the identity on W .

More results and explicit examples of these WPBs, together with some applica-
tion to bi-coherent states, can be found in [31].
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4 Conclusions

In this chapter we have reviewed some general aspects and applications of WPBs,
and we have discussed how distribution theory and compatible spaces are relevant in
this context, and how ladder operators can be extended outside a purely Hilbertian
settings. We have not discussed here several aspects of this general framework. In
particular, we have not considered the role of coherent states in connection with
lowering operators of pseudo-bosonic type. We refer to [6, 7] for many results on
this, but more recent results can also be found, for instance in [22].

As we have noticed, biorthonormality of the eigenstates of our number-like op-
erators refers to some bilinear form which cannot be the ordinary scalar product in
L2.R/. In particular, the one proposed in Sect. 3.1 is only one possibility, among
many. In [32] we have proposed a new extension of the scalar product not related to
convolutions, and we proved that this class of multiplications can be flexible enough
to succeed where the convolution cannot really be useful. More on this new defini-
tion of multiplication, and its role in connection with the properties of the adjoint
of an operator and with the consequences of its definition, is work in progress.

Our approach, thought being mathematically already interesting by itself (in our
opinion, at least!), needs some extra effort in the attempt of connecting it with
physics, and in particular with the probabilistic interpretation of the wave function.
This is another open aspect of our approach, and surely deserve further investiga-
tion. This is also an active line of research.
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1 Outline

Mathematicians admire the ingenuity of physicists in using mathematical con-
cepts and results and their virtuosity in switching between seemingly different
approaches: the one day, e.g., they achieve their success by variational calculus,
i.e., optimizing functionals like the energy functional. The other day, they choose a
different approach, e.g., looking for ground solutions of differential operators.

In this Note, we shall elaborate on some of the intimate purely mathematical cor-
respondences and cross connections between these two mindsets of physicists, the
variational and the steady state approach, roughly speaking: forms and operators.

Our approachmay be considered as a first, purely technical step towards bridging
the dichotomy between variational approaches, based on the concept of forms, like
the Hessian of the energy integral, and operator approaches, yielding, e.g., spectral
invariants, the Maslov index, and Morse indices for critical points (i.e., curves and
surfaces) of the forms. Then we obtain left Green’s form (see (15) below) and right
Green’s form (see (14) below). The classical Green’s form is just the difference
between them (see (16) below).

Clearly, we wish that our calculations will be used for a particular part of Gi-
anni Morchio’s legacy expressed at the end of [14] in a common program with
his collaborators, to study “the variation of the �-determinant under the change of
the boundary conditions”. At that time, we could not find a suitable frame for go-
ing forward with Gianni’s program. Now, 25 years later, it seems to us that it may
be helpful to consider our old and unfinished program just as another variational
problem for functionals with the �-regularized determinants as criticl points of the
Hessian of energy integrals on the Grassmannian of pseudodifferential projections
over the boundary of a smooth compact Riemannian manifold.

Actually, C. Zhu offered in 2006 in [15] a 1-dimensional pilot study of such a
program (dealing only with curves). A. Portaluri and N. Waterstraat provided in
2015 in [12] a related higher-dimensional case study. For a wider encouragement
of our endeavour see [4]: V.I. Girsanov’s lecture notes are devoted to a like-minded
approach to classical extremal problems of optimisation and control, the discovery
“that, notwithstanding the great diversity of these problems, they can be attacked
by a unified functional-analytic approach.”

In this Note, our path of assumptions and arguments wiggles forward between
the open plains of abstract generalization and the rugged cliffs of concrete spe-
cialization. In Sect. 2, we summarize various classical representation theorems for
sesquilinear forms, whose role will become clear in the sequel. Mostly we follow
Kato [8, VI.2.6, pp. 331 ff] and Lions and Magenes [9]. In Sect. 2.1, we shall
recall and explain the bijective, isometric—and elementary—correspondence be-
tween bounded operators between Hilbert spaces X; Y and bounded, sesquilinear
forms on X � Y (our Lemma 1, taken from Pedersen [11, Sect. 3.2]). With con-
crete applications in mind, we generalize that simple result to the more advanced
not necessarily bounded case and, at the same time, specialize it by demanding
additional and rather restrictive conditions to be satisfied. In that way we achieve
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(reproduce) the corresponding result for unbounded forms (called by T. Kato The
First Representation Theorem, our Lemma 2).

In Sect. 2.2, we shall recall and explain a much sharper result obtainable in a
concrete analytic setting, here with forms and operators over open subsets of Rn.
Interestingly, by that specialization and concretisation we get rid of the costs of
generalization, i.e., the restrictive assumptions of Lemma 2

In Sect. 2.3, we shall turn to the main object of our interest, Green’s formula for
differential operators over smooth Riemannian manifolds with boundary, though in
this section in the classical setting only, i.e., with a given differential operator and
not yet beginning with a form.

In Sect. 3 we address the representation problem of forms and operators for the
special case of these objects acting over a Ck Riemannian manifold with boundary
and present our new results regarding the related generalized Green’s form. Here
the point is the transition of results, achieved in local coordinates in the style of
Sect. 2.2, to global results. Exploiting the geometric data admits the wanted sharp-
ening of the results obtained previously in [8, 9].

2 Classical Correspondences Between Sesquilinear Forms and
Operators

Main theorems of functional analysis like The Second Representation Theorem (see
Kato [8, VI.2.6, pp. 331 ff], Lions and Magenes [9, Ch. 2, Sect. 2.2 and Sect. 2.4])
point to various correspondences between sesquilinear forms and operators.

In mathematics, we like representation theorems. We recall: For a mathematical
system A, a mapping from A to a similar (but in general “more concrete”) system
preserving the structure of A is called a representation of A. In this Note, we
consider the representation of linear operators by sesquilinear forms and vice-versa.

2.1 The Purely Functional-Analytic Setting

Throughout this section, .X; h�; �iX/ and .Y; h�; �iY / will denote two complex Hilbert
spaces and B.X; Y / the Banach space of bounded operators between X and Y . We
denote by h�; �i ´ h�; �iX if there is no confusion. We denote by B.X/´ B.X;X/.

As usual in mathematics, we call a form tWX � Y ! C sesquilinear, if it is
linear in the first variable and conjugate linear in the second. Recall Pedersen’s
definition, [11, p. 80]: “A mathematical physicist is a mathematician believing that
a sesquilinear form is conjugate linear in the first variable and linear in the second.”
We say that a form t is bounded”ktk´ supfjtŒx; y�jI kxk� 1; kyk� 1g<1.

Much analysis in Hilbert spaces bears on the following simple representation
theorem:
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Lemma 1 There is a bijective, isometric correspondence between operators in
B.X; Y / and bounded, sesquilinear forms X � Y ! C given by A 7! tA , where
tAŒx; y� ´ hAx; yiY . �

For our application to differential operators, considered as unbounded opera-
tors in L2 we need a wider version. Many authors generalized Lemma 1 for an
unbounded form t, assuming that t is densely defined, sectorial and closed with do-
main of its components D.t/�X . The operatorAWX �D.A/!X that appears will
be sectorial as is expected from the sectorial boundedness of t. Actually,A turns out
to be m-sectorial (for the basic concepts of the spectral theory of unbounded oper-
ators, like accretive, m-accretive, and m-sectorial, see [8, V, Sect. 3.10]), which
implies that A is closed and the resolvent set P.A/ covers the exterior of the numer-
ical range �.A/´ fhAu; uiI u 2 D.A/; kuk D 1g. In particular, A is selfadjoint
and bounded from below if t is a densely defined, closed sectorial symmetric form.

We recall: If A is closed, then �.A/ is always a connected convex subset of
C with �.A/ � �.A/, where �.A/´ C n P.A/ denotes the spectrum of A. We
distinguish four special cases for�.A/: it can be bounded; sectorial; making a kind
of halfplane; or a vertical band.

The precise result is given in [8, Ch. 6, Sect. 2.1] by

Lemma 2 (First Representation Theorem) Let tW .u; v/ 7! tŒu; v� be a densely
defined, closed, sectorial sesquilinear form in X . There exists an m-sectorial oper-
ator A such that

i) D.A/ � D.t/ and tŒu; v� D hAu; vi for every u 2 D.A/ and v 2 D.t/;
ii) D.A/ is a core of t (it is well-defined, e.g., in [8, Ch. 6, Sect. 1.4], when we call

a linear submanifold of the domain of a closed sectorial form t a core of that
form);

iii) if u 2 D.t/, w 2 X and tŒu; v� D hw; vi holds for every v belonging to a core
of t, then u 2 D.A/ and Au D w. In particular, the m-sectorial operator A is
uniquely determined by the condition i). �

2.2 The Euclidean Case

Going over from the abstract Hilbert space representation theorems to the more
concrete case of functions, forms and operators over open sets in Euclidean Rn

widens the field of investigation and opens up for separating events happening at
the boundary from events happening in the interior of the underlying space.

The strong side of the abstract purely functional-analytic approach in the pre-
ceding subsection is the validity and simplicity of the representation formula

tŒu; v� D hAu; vi for every u 2 D.A/ and v 2 D.t/; (1)
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that connects forms and corresponding operators and vice versa. The weak side
of the abstract approach is that its validity is severely restricted: for Lemma 1 to
bounded operators and forms; for Lemma 2 to operators and forms satisfying a sec-
torial condition, that, e.g., excludes operators with an infinite number of eigenvalues
on both sides of the real line like the Dirac operator.

In [9, Ch. 2, Sect. 2.2 and 2.4], J.L.Lions and E. Magenes succeeded and gave
a generalized representation formula for forms and operators on functions over Rn

of wide validity, without sectorial assumptions, by adding an error term to (1) and
achieving that operators and associated forms act on identical domains, while the
abstract Lemma 2 ii), only obtained that D.A/ is a core of t. Lions andMagenes paid
for their strong results, however, by demanding a concrete Euclidean setting with
ellipticity and even order of an operator acting only on functions; and compactness
and smoothness of the underlying submanifold of Rn with boundary.

More precisely, this is the classical Euclidean setting for the correspondence
between sesquilinear forms and operators, taken from [9, Ch. 2, Eq. 2.19]: Let �
be an open set in Rn. We assume � to be bounded with boundary 
 , a .n � 1/-
dimensional manifold, � being locally on one side of 
 , i.e. we consider � to be
a compact submanifold of codimension 0 with boundary. Here we follow [9, Ch. 2,
Sect. 2.3] and impose very strong regularity conditions on� and on the coefficients
of A, namely smoothness.

Theorem 1 (Euclidean Representation Theorem) Let A be a linear elliptic dif-
ferential operator of order 2m,m � 1 over a compact smooth submanifold� � Rn

of codimension 0 with boundary 
 . We assume that A is given in divergence form
as

Au D
X

jpj;jqj�m
.�1/jpj@p�apq.x/@qu

�
;

where apq 2 C1.�/. Then
1. We assign to A the sesquilinear form aŒ�; �� defined as

aŒu; v� D
Z

�

X

jpj;jqj�m
apq.x/@

pu@qvdx for all u; v 2 C1.�/:

By definition, A and a have the same domain C1.�/.
2. We can define a Dirichlet system of order m

˚
Fj

m�1
jD0 with smooth coefficients

on 
 , and a system
˚

j̊


m�1
jD0 which is normal on 
 and with smooth coefficients

and order.Fj /C order. j̊ / D 2mC 1, such that

aŒu; v� D
Z

�

.Au/vdx �
m�1X

jD0

Z




j̊ uFj vd� for all u; v 2 C1.�/: (2)
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Remark 1 Roughly speaking, the technical achievement of this Note is that we
prove a much wider validity of the preceding theorem, namely for not-necessarily
smooth neither compact Riemannian manifolds, not-necessarily elliptic operators,
not-necessarily with smooth coefficients, and that act on sections of vector bundles
and not-necessarily solely on functions, see our Sect. 3 below.

2.3 Green’s Formula

Green’s formulae and Green’s functions appear at many different places in the
treatment of linear partial differential equations. Particularly, for hyperbolic and
parabolic equations, they are a mean to establish uniqueness of solutions and to
provide solutions, at least in integral form. The idea is always to provide a desus-
pension formula, i.e., to relate (typically differential) expressions on the whole of a
manifold to (typically Riemannian symplectic and integral-)forms on the boundary,
i.e., descending one dimension.

The classical result is easily explained in the following set-up. Let .M; g/ be
a complete Riemannian manifold, 
 is the smooth boundary of a compact sub-
manifold � � M of codimension 0. Let �1WE ! M , �2WF ! M be Hermitian
vector bundles. We set E 0 ´ Ej
 , F 0 ´ F j
 . Then for all j � 0, the j -th jet
trace map �j WC1.M IE/! C1.
 IE 0/ is defined as �ju´ .rE� /j uj
 , where �
denotes the inward unit normal vector, yielding the trace map of order d � 1� 0 by
�d ´ .�0; � � � ; �d�1/.

It is well known that Green’s Formula is an important theorem about differential
operators, see [3, Proposition 1.1.2]:

Theorem 2 For each differential operator A W C1.M IE/! C1.M IF / of order
d , there exists a unique differential operator J WC1.
 IE 0d /! C1.
 IF 0d / such
that for any u 2 C1.�IE/; v 2 C1.�IF / we have

hAu; viL2.�;F / � hu;AtviL2.�;E/ D hJ�du; �dviL2.
;F 0d /

There are many proofs of the preceding Green’s Formula, typically reducing it to
the classical Euclidean claim that is proved, e.g., in [9, Ch. 2, Sect. 2.2]. For a short
suggestive proof for Dirac type operators we refer to [1, Proposition 3.4]. There
is a rich literature of calculating Green’s forms in special and even very delicate
situations, see for example [2, 5, 6, 10, 13]. All these calculations take their point of
departure with an operator, as it is usual with PDEs, while our start point is a given
form, as it is usual in variational calculus.
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3 A Variant of Green’s Formula

We consider sesquilinear forms on sections of a Hermitian bundle over a (not nec-
essarily compact) Ck Riemannian manifold with boundary.We assume that in local
coordinates, the forms can be written as the integral of the inner product of differ-
ential expressions of the sections with compact supports. We call them differential
sesquilinear forms (see Definition 1 below).

We assign a linear operator to each differential sesquilinear form. Then we show
that it is a uniquely determined differential operator. We prove the existence and
uniqueness of a differential operator on the boundary which makes that a variant of
Green’s formula holds.

3.1 Differential Sesquilinear Forms

Let .M; g/ be an n-dimensional Ck Riemannian manifold, where n and k are
positive integers. For a Ck local chart .'; U / of p0 2 M and p 2 U , we denote
by x D .x1; : : : ; xn/ D '.p/, gij ´ g.@xi ; @xj /, jgj ´ det.gij /, and the density
dvol´pjgjjdxj respectively. We denote by L.X; Y / the space of complex linear
maps X ! Y for two complex linear spaces X and Y and by L.X/ D L.X; Y /.

Let r; s2Z be two non-negative integers with maxfrCs; sC1g�k. Let �1WE!
M be anm-dimensional Hermitian vector bundle of class C rCs and �2WF !M be
anm-dimensional Hermitian vector bundle of class C s . For a Ck local chart .'; U /
of p0 2M and p 2U such that EjU is trival with trivalization  1 and F jU is trival
with trivalization  2, we denote by '�; 1 W Ep ! Cm, '�; 2 W Fp ! Cm the linear
isomorphism maps induced by ', and

.'�; 1u1; '�; 1u2/Ex ´ .u1; u2/Ep for u1; u2 2 Ep;
.'�; 2v1; '�; 2v2/Fx ´ .v1; v2/Fp for v1; v2 2 Fp:

For integers h1 2 Œ0; r � and h2 2 Œ0; s�, we denote by Ch1
c .M IE/ the h1 times

continuously differentiable sections of E with compact support and by Ch2.M IF /
the h2 times continuously differentiable sections of F respectively. For each section
u we denote by supp.u/ the closure of the set fx 2M I u.x/ ¤ 0g.

Definition 1 A sesquilinear form tŒ�; ��WC r
c .M IE/ � C s.M IF / ! C is called

a differential sesquilinear form of type .r; s/ on .E; F /, if there exists an atlas
fU˛; '˛g˛2ƒ of M , C r trivilizations  1˛W��11 .U˛/! U˛ � Cm, C s trivilizations
 2˛W��12 .U˛/ ! U˛ � Cm and a Ck partition of unity f�˛g˛2ƒ subordinate to
fU˛; '˛g˛2ƒ such that

tŒu; v� D
X

˛

t˛Œ�˛u; v�: (3)
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Here the local form t˛ has the form

t˛Œu; v� ´
Z

U˛

X

ji j�r;jj j�s

�
a˛j i .x/@

iu˛.x/; @
j v˛.x/

	

Fx
dvol; (4)

where a˛j i 2 C jj j.U˛;L.Cm// for multiple indices i; j with ji j � r; jj j � s if u 2
C r
c .M IE/, supp.u/ � U˛, v 2 C s.M IF /, and u˛, v˛ denote the expression of
u and v in local charts .U˛; '˛/ respectively. We denote by DSMr;s.M IE;F /
the linear space of all differential sesquilinear forms of type .r; s/ on .E; F / and
DSMr;s.M IE/ ´ DSMr;s.M IE;E/.

Remark 2 (a) Note that with some possibly different coeffients, we can always
assume that

tŒu; v� D t˛Œu; v� (5)

if supp.u/ � U˛ , v 2 C s.M IF /. We assume (5) in the rest of the Note.
(b) Definition 1 is consistent if we make different choices of local charts and

local trivilizations of Hermitian bundles.

The following lemma shows that the right hand side of (3) is a finite sum.

Lemma 3 Let X be a topological space. Let fU˛g˛ be a locally finite family of
subsets of X . LetK be a compact subset of X . Then the set f˛ 2 ƒI U˛ \K ¤ ;g
is finite.

Proof Since fU˛g˛ is a locally finite family of subsets of X , for each x 2 X there
exists a neighborhood Vx of x such that the set ƒx ´ f˛ 2 ƒI U˛ \ Vx ¤ ;g is
finite. Since K is a compact subset of X , there exists a finite subset B of X such
that K � [x2BUx .

Note that

U˛ \K � U˛ \ .[x2BVx/ D [x2B.U˛ \ Vx/:

Then the set f˛ 2 ƒI U˛ \K ¤ ;g is a subset of [x2Bƒx . So it is finite. �

The differential sesquilinear forms satisfy the following local property.

Lemma 4 Let u 2 C r
c .M IE/, v 2 C s.M IF / be two sections. Assume that

supp.u/ \ supp.v/ has measure 0. Then we have

tŒu; v� D 0: (6)
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Proof For each ˛ 2 ƒ we have supp.�˛u˛/ � supp.u/ and supp.v˛/ � supp.v/.
Since supp.u/ \ supp.v/ has measure 0, supp.�˛u˛/ \ supp.v˛/ also has measure
0. By (4) we have t˛Œ�˛u; v� D 0. By (3) we have t˛Œu; v� D 0. �

3.2 The Existence and Uniqueness of the Assigned Differential
Operator

For the form defined by Definition 1, we will assign a linear operator to each dif-
ferential sesquilinear form and show that it is a uniquely determined differential
operator. As usual we denote byHh.M IE/ the Soblev space of sections of E with
exponent h and by L2.M IE/ the L2 space of sections of E respectively. Then
Hh
0 .M IE/ denotes theHh closure of Ck

0 .M IE/ with k � h,Hh
loc.M IE/ denotes

the space of sections of E with finiteHh norms on each compact subset ofM . We
denote by DOh.M IE;F / the linear space of differential operators of order h from
E to F .

Theorem 3 Let .M; g/ be an n-dimensional Ck Riemannian manifold with Ck�1
Riemannian structure g. Let r; s2Z be non-negative integers such that k�maxfrC
s; sC1g. Let �1WE!M be am-dimensional Hermitian vector bundle of class C rCs
and �2WF !M be am-dimensional Hermitian vector bundle of class C s . Then we
have the following.

(a) There is a linear injective map which assigns a differential operator At 2
DOrCs.M IE;F / to each t 2 DSMr;s.M IE;F / such that

tŒu; v� D
Z

K

.Atu; v/Fx dvol; 8u 2 HrCs
0 .KIEjK/; v 2 Hs

loc.M IF / (7)

holds for each compact subset K �Mo, whereMo denotes the interior ofM .
(b) Assume further that the form t satisfies (5). If supp.u/ � U˛ holds, we have

Atu D
p
jgj�1

X

ji j�r;jj j�s
.�1/jj j@j �

p
jgja˛j i.x/@i .u/

�
: (8)

Note The space DSMr;s.M IE;F / and the mapping t 7! At depend on the metric
structures onM , E and F .

Proof We divide the proof into five steps.

Step 1. Denote by At;˛u the right hand side of (8). If supp.u/ � U˛ \K holds, the
operator At;˛u makes (7) holds if we replace At by At;˛ .
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Since supp.u/ � U˛ \K, by (4) and (5) we have for v 2 C s.M;F /,

tŒu; v� D
Z

U˛

X

ji j�r;jj j�s

�
a˛j i.x/@

i .u˛.x//; @
j .v˛.x//

	

Fx
dvol

D
Z

U˛

p
jgj�1

X

ji j�r;jj j�s
.�1/jj j

�
@j
�pjgja˛j i .x/@i .u˛.x//

�
; v˛.x/

	

Fx
dvol

D
Z

K

.At;˛u; v/Fx dvol:

Then our claim follows.

Step 2. Given a compact subset K � Mo, there exists a unique bounded linear
operator At;K W HrCs

0 .KIEjK/! L2.KIF jK/ such that

tŒu; v� D
Z

K

.At;Ku; v/Fx dvol:

By Lemma 3, the setDK´ f˛ 2ƒI supp.�˛/\K ¤ ;g is a finite subset ofƒ.
Note that A˛j i 2 C jj j.U˛;L.Cm// and jgj 2 C s.U˛;R/. By (3), Step 1 and Cauchy–
Buniakowsky–Schwarz inequality we have

ˇ̌
tŒu; v�

ˇ̌ �
X

˛2DK
C˛k�˛ukHrCs

0 .KIEjK/kvkL2.KIF jK/

� CkukHrCs
0 .KIEjK/kvkL2.KIF jK/

with some finite set fC˛g˛2DK of positive constants and a single positive constantC .
Note that C s.M IF / is dense inHs

loc.M IF /. By Riesz’s representation theorem [8,
p. 253], for each u 2HrCs

0 .KIEjK/ there exists a uniqueAt;Ku 2L2.KIF jK/ sat-
isfying tŒu; v� D R

K
.At;Ku; v/Fxdvol. Moreover, At;K is a bounded linear operator

(see Lemma 1) with kAt;Kk � C .

Step 3. Existence, uniqueness and locality of At.
Let K1 and K2 be two compact subset of M . Then K1 [ K2 is compact. Let

u 2 HrCs
0 .K1IEjK1/\HrCs

0 .K2IEjK2/. By Step 2 we have

At;K1u D At;K1[K2u D At;K2u:

Then we define Atu´ At;Ku if u 2HrCs
0 .KIEjK/ for some compact subset K of

M . Thus At is a well-defined operator and satisfies (7).
For each p 2 M , let Up be a neighborhood of p in M with Up � Ko

3 � K3 �
Ko
4 � U˛ for some compact subsets K3 and K4 of p and ˛ 2 ƒ. Then there exists

two Ck function �h onM , where h D 1; 2 such that

0 � �h � 1; �1jUx D 1; �1jMnK3 D 0; �2jK4 D 1; �2jMnK4 D 0:
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Then we have �1.1 � �2/ D 0. Therefore we obtain

hAt;K4.1 � �2/u; �1viL2.K4IF / D tŒ.1 � �2/u; �1v� D 0

for all v 2Hs
loc.M IF /. Thus we have �1At;K..1��2/u/D 0, �1At..1��2/u/D 0

and .Atu/jUx D .At�2u/jUx . By Step 1, At is a differential operator of order r C s
such that (8) holds.

Step 4. By Lemma 4 and properties of At;˛ , we obtain the required properties of
At. Then the assignment t 7! At is a well-defined map.

Step 5. Since (7) is linear, the assignment t 7! At is a linear map. If At D 0, by (7)
we have t D 0. So the assignment t 7! At is a linear injective map. �

Remark 3 We denote by i W D p�1 and �i W D �i11 : : : �inn . For p 2 U˛ with ˛ 2ƒ,
� 2 T �p M and x D '˛.p/, we have

.'˛/�; 1˛ ı �rCs.At/.p; �/ ı ..'˛/�; 2˛ /�1 D .�1/s irCs
X

ji jDr;jj jDs
�iCj a˛j i .x/:

Denote by 0M the zero section of T �M . We recall that if the principal symbol
�rCs.At/.x; �/ of At is nondegenerate for each .x; �/ 2 T �M n0M , the operatorAt

is an elliptic differential operator of order r C s.

Remark 4 Assume that k�maxfrCs; rC1; sC1g and �1WE!M , �2WF !M

are two m-dimensional Hermitian vector bundle of C rCs . The formal adjoint of At

is the operator with local expression

Att D
p
jgj�1

X

ji j�r;jj j�s
.�1/ji j@i�

p
jgja˛j i .x/t@j

�
: (9)

Indeed, we have

Z

K

.Atu; v/Fx dvol

D
X

ˇ

Z

Uˇ

X

ji j�r;jj j�s

�
a
ˇ
j i.x/@

i .�ˇu.x//; @
j v.x/

	

Fx
dvol

D
X

ˇ

Z

Uˇ

X

ji j�r;jj j�s

�
�ˇu.x/; .�1/ji j

p
jgj�1@i�

p
jgja˛j i .x/t@j .v.x//

�	

Ex
dvol
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D
X

ˇ

Z

U˛

X

ji j�r;jj j�s

�
�ˇu.x/; .�1/ji j

p
jgj�1@i�

p
jgja˛j i .x/t@j .v.x//

�	

Ex
dvol

D
Z

K

.u;Attv/Ex dvol

for all u 2HrCs
0 .KIE/, v 2HrCs.KIF / such that supp.v/ � U˛. Then we obtain

Z

K

.Atu; v/Fxdvol D
Z

K

.u;Attv/Ex dvol (10)

for all u 2 HrCs
0 .KIEjK/, v 2 HrCs

loc .M IF /.

3.3 A Variant of Green’s Formula

Let .M; g/ be an n-dimensional Ck Riemannian manifold with Ck�1 boundary 

and Riemannian metric g. By Theorem 3, for each differential sesquiliinear form t
we assign a uniquely-determined differential operatorAt to it such that (7) holds. In
this section, we want to study the error terms of (7) for those sections with support
not necessary in the interiorMo ofM , namely the Green’s form. Then the Green’s
forms yields the correction term between differential sesquilinear forms and differ-
ential operators.

Let r; s 2Z be non-negative integers and k �maxfrC s; sC1g. Let �1WE!M

be a m-dimensional Hermitian vector bundle of C rCs and �2WF ! M be a m-
dimensional Hermitian vector bundle of C s .

We denote byE 0 ´ Ej
 ; F 0 ´ F j
 . The trace map �l WCh.M IE/! Ch�l .
 I
E 0/ is defined by �lu´ .rE� /luj
 , where � is the unit inner vector, l; h 2 Z and
l � h� k. For vector bundle �2WF !M , we can define the corresponding map �l .
We set �d ´ .�0; � � � ; �d�1/ for a positive integer d � k.

We denote by Hh
c .M IE/ the set of sections u 2 Hh

c .M IE/ with compact sup-
port. Set

Xh´
h�1M

jD0
Hh�1�j
c

�

 IE 0�; Yh´

h�1M

iD0
Hh�1�i
c

�

 IF 0�: (11)

Theorem 4 (a) There is a linear map which assigns a linear operator J Lt WXrCs!
Ys to each t2DSMr;s.M IE;F / such that, for all u2HrCs

c .M IE/, v2Hs
loc.M IF /

we have
hAtu; viL2.M IF / � tŒu; v� D hJ Lt �rCsu; �sviL2.
 IF 0s / (12)

(b) The operator J Lt D .J Lt;q1;p1 /0�p1�rCs�1;0�q1�s�1 is a matrix of differential oper-
ators of order r C s � 1 � p1 � q1. If p1 C q1 > r C s � 1, we have J Lt;q1;p1 D 0.
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Assume further that the form t satisfies (5). If q1 D rC s� 1�p1 and x0 2 U˛ \
 0
for some ˛ 2 ƒ, we have

J Lt;rCs�1�p1;p1 .x
0/ D .�1/r�p1a˛sr.x0/:

Note Note the pecularity of our Green’s formula (12): While the conventional
Green’s form yields an error between the action of the operators At and Att, as
wanted in work with PDEs, searching for solutions, our Green’s form (12) yields
an error between the operator action and the action of the underlying differential
sesquilinear form, as wanted in variational analysis, searching for critical points of
functionals.

Proof If s D 0, the left hand side of (12) is 0 and the unique operator J Lis 0. For
the case s > 0, we divide the proof into five steps.

Step 1. Local charts near the boundary. Let ˛ 2 ƒ be such that U˛ \ 
 is not an
empty set. By the proof of [3, Proposition 1.1.2] (see also[7, Theorem 4.6.1]), we
may assume the following. Denote byHn´ f.x1; : : : ; xn/ 2 RnI x1 � 0g the half
space. We have a local chart '˛ W U˛!Hn. For p 2 U˛/ we denote by xi D 'i˛.p/.
We assume that x1.p/D d.p; 
 / and @1? @j .j � 2/. Denote by xD .x1; x0/where
x0 D .x2; � � � ; xn/. Denote by @al D @a22 � � � @ann , where a D .a2; � � � ; an/ 2Nn�1. For
each z 2 N, we denote by z D .z; 0; � � � ; 0/ 2 Nn.

We denote by g0 ´ g.x1; �/. We have jgj D jg0j if x1 D 0. We denote by
dvol.x/´pjgjjdxj the density onM and dvol.x0/´pjg0j jdx0j the density on
fx1g � 
 respectively.

Step 2. Let ˛ 2 ƒ be such that U˛ \ 
 is not an empty set. We calculate the left
hand side of (12) when supp.u/ � U˛ is compact.

By (3), (5) and (8), we integrate by parts and get

hAtu; viL2.M;F / � tŒu; v�

D
Z

Hn

X

ji j�r;jj j�s

�
.�1/jj j

p
jgj�1@j �

p
jgjA˛j i .x/@iu.x/

�
; v.x/

	
dvol.x/

�
Z

Hn

X

ji j�r;jj j�s

�
A˛j i .x/@

iu.x/; @j v.x/
	
dvol.x/

D
Z

Hn

X

ji j�r;jj j�s

�
.�1/jj j

p
jgj�1@j �

p
jgja˛j i.x/@iu.x/

�
; v.x/

	

Fx
dvol.x/

�
Z

Hn

X

ji j�r;j 0�jj j�s

p
jg0j�1

�
.�1/jj j�j 0@j�j 0l

�pjg0ja˛j i.x/@iu.x/
�
; @
j 0
1 v.x/

	

Fx
dvol.x/
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D
Z

@Hn

X

ji j�r
j 0�jj j�s

X

0�z�j 0�1
.�1/jj j�j 0Cz

�
�
�0@

z
1

�pjg0j�1@j�j 0l

�pjg0ja˛j i .x/@iu.x/
��
; �0@

j 0�z�1
1 v.x/

	

Fx
dvol.x0/:

We arrange the right hand side and get

hAtu; viL2.M;F / � tŒu; v�

D
Z

@Hn

X

i 0�ji j�r
j 0�jj j�s

X

0�z�j 0�1
.�1/jj j�j 0Cz

�
�
�0@

z
1

�pjg0j�1@j�j 0l

�pjg0ja˛j i.x/@i�i
0

l @i
0
1 u.x/

��
; �0@

j 0�z�1
1 v.x/

	

Fx
dvol.x0/

D
Z

@Hn

X

i 0�ji j�r
j 0�jj j�s

X

0�z�j 0�1
jj 00j�jj�j 0j

.�1/jj j�j 0Cz

�
�
�0@

z
1

�pjg0j�1.@j�j 0�j 00l .
p
jg0ja˛j i.x///.@i�i

0Cj 00
l @i

0
1 u.x//

�
;

�0@
j 0�z�1
1 v.x/

	

Fx
dvol.x0/

D
Z

@Hn

X

i 0�ji j�r
j 0�jj j�s

X

0�z0�z�j 0�1
jj 00j�jj�j 0j

.�1/jj j�j 0Cz

�
�
�0
��
@z�z

0
1 .

p
jg0j�1.@j�j 0�j 00l .

p
jg0ja˛j i .x////

�
.@
i�i 0Cj 00
l @z

0Ci 0
1 u.x//

�
;

�0@
j 0�z�1
1 v.x/

	
dvol.x0/:

Finally we obtain

hAtu; viL2.M;F / � tŒu; v�

D
Z

@Hn

X

i 0�ji j�r
j 0�jj j�s

X

0�z0�z�j 0�1
jj 00j�jj�j 0j

.�1/jj j�j 0Cz

�
��
�z�z0.

p
jg0j�1.@j�j 0�j 00l .

p
jg0jA˛j i .x////

��
@
i�i 0Cj 00
l �z0Ci 0u.x0/

�
;

�j 0�z�1v.x0/
	

Fx
dvol.x0/:

Step 3. The formula (12) holds in the case of Step 2 if we replace J Lt by J L;˛t .
Set p1´ z0 C i 0; q1´ j 0 � z � 1, where i 0 � ji j � r , j 0 � jj j � s, and 0� z0 �

z � j 0 � 1. Then we have 0� q1 � s � 1/ and 0 � p1 � r C s� 1� q1 � r C s � 1.
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For �p1 C q1 � r C s � 1, we define the operator

J
L;˛
t;q1;p1

´
X

i 0�ji j�r
j 0�jj j�s

X

p1�i 0
q1�0

jj 00j�jj�j 0j
p1Cq1�i 0Cj 0�1

.�1/jj j�q1�1

� ��i 0Cj 0�1�p1�q1.
p
jg0j�1.@j�j 0�j 00l .

p
jg0ja˛j i.x///

�
@
i�i 0Cj 00
l : (13)

Then the operator J L;˛t;q1;p1
is a differential operator of order r C s � p1 � q1 � 1. If

q1D rCs�1�p1 , we have J L;˛t;rCs�1�p1;p1 D .�1/r�p1a˛sr.x0/. If p1Cq1 >rCs�1,
we set J L;˛t;q1;p1

´ 0. We define J L;˛t W D .J L;˛t;q1;p1
/s�.rCs/. By Step 2 we have

hAtu; viL2.M;F / � tŒu; v� D
Z

@Hn

.J
L;˛
t �rCsu; �sv/F sx dvol.x

0/:

Step 4. Existence, uniqueness and locality of J Lt .
Denote by bLt .u; v/ the left hand side of (12). Let K be a subset of M . By

Lemma 3, the setDK ´ f˛ 2 ƒI supp.�˛/\K ¤ ;g is a finite subset of ƒ. Note
that A˛j i 2 C jj j.U˛;L.Cm// and jgj 2 C s.U˛;R/. Denote by

XrCs;K W D
rCs�1M

jD0
H rCs�1�j �
 \KIE 0j
 \K

�
;

Ys;K W D
s�1M

iD0
H s�1�i �
 \KIF 0j
 \K

�
:

For sections u 2 HrCs.KIEjK/ and v 2 Hs.KIF jK/, by (3), Step 3 and Cauchy–
Buniakowsky–Schwarz inequality we have

jbLt .u; v/j D
X

˛2DK
jbLt .�˛u; v/j

�
X

˛2DK
C˛k�˛�rCsukXrCs;Kk�sukYs;K

�Ck�rCsukXrCs;Kk�sukYs;K
with some finite set fC˛g˛2DK of positive constants and a single positive constant
C . From the proof of [3, Theorem 1.1.4] we obtain that the maps

�rCs W HrCs.KIEjK/! XK; �s W Hs.KIF jK/! YK

are surjective with continuous right inverse �rCs W XK ! HrCs.KIEjK/ and �s W
YK!Hs.KIF jK/ respectively. By Lemma 1, there exists a unique bounded linear
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operator J Lt;K W XrCs;K ! Ys;K such that

bLt .u; v/ D hJ Lt;K�rCsu; �suiL2.
 IF 0s /:
Similar to Step 3 of the proof of Theorem 3, we define J Lt uD J Lt;Ku for each com-
pact subset K with supp.u/ � K and obtain the existence, uniqueness and locality
of J Lt .

Step 5. By the locality of J Lt and properties of J L;˛t , we obtian the required prop-
erties of J Lt . �

We have the following analog of Theorem 4.

Corollary 1 Assume that k �maxfrC s; rC1; sC1g and �1WE!M , �2WF !
M are two m-dimensional Hermitian vector bundle of C rCs . Then the following
hold.

(a) There is a linear map which assigns a linear operator JRt W YrCs ! Xr to each
t 2 DSMr;s.M IE;F / such that, for all u 2 Hr

c .M IE/, v 2 HrCs
loc .M IF / we

have
hu;AttviL2.M IE/ � tŒu; v� D h�ru; J R�rCsviL2.
 IE0rCs / (14)

(b) The operator JRt D
�
JRt;p2;q2

	

0�p2�r�1;0�q2�rCs�1
is a matrix of differential op-

erators JRtp2;q2 of order r C s � 1 � p2 � q2. If p2 C q2 > r C s � 1, we have
JRt;p2;q2 D 0. Assume further that the form t satisfies (5). If q2 D r C s � 1� p2
and x0 2 U˛ \ 
 for some ˛ 2 ƒ, we have

J
R;˛
t;rCs�1�p2;p2 D .�1/r�p2�1a˛sr .x0/t :

Proof Apply Theorem 4 to the form tŒu; v�. and interchange the role of E
and F . �

Corollary 2 Assume that k �maxfrC s; rC1; sC1g and �1WE!M , �2WF !
M are two m-dimensional Hermitian vector bundle of C rCs . Then the following
hold.

(a) There is a linear map which assigns a linear operator JtWXrCs ! YrCs to each
t 2 DSMr;s.M IE;F / such that, for all u 2HrCs

c .M IE/, v 2HrCs
loc .M IF / we

have

hAtu; viL2.M IF / � hu;AttviL2.M IE/ D hJtAt�
rCsu; �rCsviL2.
 IF 0rCs / (15)

where

Jt D
 

J Lt
0r�.rCs/

!

� �.J Rt /t 0.rCs/�s
�

(16)
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(b) Assume further that the form t satisfies (5). If x0 2 U˛ \ 
 for some ˛ 2ƒ, we
have

J ˛t;rCs�1�p;p D .�1/r�pa˛sr .x0/:

Proof By (12) and (14) we obtain (15) for J defined by (16). The properties of Jt
is obtained from those of J Lt and JRt . The proof of the uniqueness of Jt is the same
as Step 4 of the proof of Theorem 4. �

Remark 1 Under the condition of Theorem 2, we have r D d; s D 0. Then we
have

J
R;˛
t;p2;q2

D
X

i 0�ji j�d

X

0�p2�i 0�1
0�q2�i 0�1
p2Cq2�i 0�1

.�1/ji j�p2�1
p
jg0j�1@i�i 0l .

p
jg0ja˛j i.x/t /; (17)

and J Lt D 0. So there exists a unique linear operator

Jt D �.J Rt /t WC1.
 IE 0d /! C1.
 IF 0d /

makes Green formula holds. Then Theorem 2 follows.

Corollary 3 Assume that k � 2d , r D s D d , E D F are two m-dimensional
Hermitian vector bundle of class C2d . Assume that the form t 2 DSMd;d .M IE/ is
symmetric. Then the following hold.

(a) The operator At is formally self-adjoint and J Lt D JRt . Moreover, the matrix Jt
is an upper skew-triangular matrix

Jt D
 
J Lt
0d�2d

!

� �.J Rt /t 02d�d
�

(18)

of order 2d and Jt D �J tt .
(b) Assume further that the form t satisfies (5). If x0 2 U˛ \ 
 for some ˛ 2ƒ, we

have

J ˛t;2d�1�p;p D
(
J
L;˛
t;2d�1�p;p ; 0 � p � d � 1
�.J L;˛t;2d�1�p;p/

t ; d � p � 2d � 1
D .�1/d�pa˛dd .x0/: (19)

Proof (a) Since the form t is symmetric, by Theorem 3 we have At D Att. By
Theorem 4 and Corollary 1 we have J Lt D JRt . By Corollary 2 we have Jt D �J tt .

(b) If x0 2 U˛ \ 
 for some ˛ 2 ƒ, by (16) we obtain (19). �
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Abstract Within the framework of the universal algebra of the electromagnetic
field, the impact of globally neutral configurations of external charges on the field
is analyzed. External charges are not affected by the field, but they induce localized
automorphisms of the universal algebra. Gauss’s law implies that these automor-
phisms cannot be implemented by unitary operators involving only the electromag-
netic field, they are outer automorphisms. The missing degrees of freedom can be
incorporated in an enlargement of the universal algebra, which can concretely be
represented by exponential functions of gauge fields and an abelian algebra de-
scribing the external charges. In this manner, gauge fields manifest themselves in
the framework of gauge invariant observables. The action of the automorphisms
on the vacuum state gives rise to representations of the electromagnetic field with
vanishing global charge, which are locally disjoint from the vacuum representation.
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This feature disappears in the enlarged universal algebra of the electromagnetic
field. The energy content of the states is well defined in both cases and bounded
from below. The passage from these globally neutral states to charged states and
the determination of their energy content are also being discussed.

1 Introduction

Gauss’s law, relating the electric charge to the surrounding flux of the electromag-
netic field, is the most distinctive feature of quantum electrodynamics. Its numerous
implications for the structure of the theory have been widely discussed in the liter-
ature, most thoroughly by G. Morchio and his longtime scientific companion F.
Strocchi, cf. [13] and references quoted there. One of the fundamental insights
gained in these studies is the observation that field operators, creating electrically
charged states as well as their Coulomb fields from a vacuum state, cannot be lo-
calized in compact spacetime regions. Charged states are limits of neutral states,
involving pairs of opposite charges, where one of the charges is shifted to spacelike
infinity. In contrast to massive theories, there remains in this limit a Coulomb field
as an inevitable memory effect that requires a description by non-local operators.

These features are commonly attributed to the fact that quantum electrodynamics
is a gauge theory. Yet gauge fields do not have a direct physical significance. So one
had to clarify on one hand how these fields can be eliminated in computations of
the physical observables of the theory. On the other hand, it raised the question
whether the usage of gauge fields is really necessary for the formulation of the
theory, or whether it is just a convenient calculational tool without further physical
significance, cf. for example the novel approach to quantum electrodynamics in
[15].

Morchio and Strocchi commented on this issue by a thoughtful closing remark
in Ref. [14]. They wrote: “The validity of local Gauss’ laws appears to have a more
direct physical meaning than the gauge symmetry, which is non-trivial only on non-
observable fields. It is therefore tempting to regard the validity of local Gauss’ laws
as the basic characteristic feature of gauge field theories, and to consider gauge
invariance merely as a useful recipe for writing down Lagrangian functions which
automatically lead to the validity of local Gauss’ laws.”

It is the aim of the present article to shed further light on this issue. In order
to understand whether gauge fields are an indispensable part of the theory, one
must proceed from observables, while avoiding a priori assumptions about non-
observable structures. In the case at hand, the basic observable ingredient is the
electromagnetic field, satisfying the homogeneousMaxwell equation. It is related to
the electric current by the divergence of its Hodge dual. Being an observable, it has
also to comply with the condition of locality (Einstein causality). It has been shown
in [3] that these features can consistently be incorporated in a universal C�-algebra
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of the electromagnetic field that underlies every theory of electromagnetism. This
general framework provides the basis for our analysis of the problem at hand.

To analyze the effects of Gauss’s law on the structure of the theory, one must
first understand whether matter which carries an electric charge can be sufficiently
well localized, as opposed to the infinitely extended Coulomb-like field that em-
anates from it. In a long-term project, Morchio, along with four close colleagues,
has been working on this problem. They showed that a sharp localization in com-
pact spacetime regions is possible in the classical Maxwell–Dirac theory and also in
some non-interacting quantized models [5, 6]. It turned out, however, that realistic
quantized and electrically charged matter cannot be localized in such a manner [6].
This led to a new, but rather heavy general framework covering electrically charged
systems [7].

These complications are not necessary, however, to clarify the role of gauge
fields. We can rely here on the idealization that the matter, carrying an electric
charge, is of an external nature (i.e. it is not affected by interactions with the elec-
tromagnetic field). As has been shown in [4], one can then describe the impact of the
electric charges on the electromagnetic field by automorphisms of the correspond-
ing universal algebra. In case of pairs of opposite charges located in compact space-
time regions, the corresponding automorphisms are well-localized. Even though
their global charge is zero, they cannot be unitarily implemented, however, by oper-
ators involving only the electromagnetic field; they are outer automorphisms. This
shows that the dipole field, connecting the charges, comprises some additional de-
grees of freedom, indicating the presence of gauge fields. In fact, the automorphisms
can be implemented by exponential functions of gauge fields in the Gupta–Bleuler
framework, which thus generate the dipole field. The accompanying charged mat-
ter can be described by an abelian algebra of local fields which commute with the
electromagnetic field, but have non-trivial commutation relations with the gauge
charges. The resulting algebra of gauge and matter fields is an improved version of
a preliminary proposal made in [4].

It is the aim of the present article to elaborate on these observations in detail.
In particular, we will analyze the properties of the states which are obtained by
composing the basic (charge-free) vacuum state on the universal algebra with the
localized charge-containing automorphisms. The resulting states give rise to repre-
sentations which are disjoint (even locally) from the basic vacuum representation,
in spite of the fact that they have a vanishing global charge. This apparent conflict
with the Doplicher–Haag–Roberts approach to sector analysis [8] resolves if one
recalls that the local subalgebras of the universal algebra are not weakly closed,
i.e. they are not factors of type III, as is frequently taken for granted in algebraic
quantum field theory. In fact, these algebras contain a primitive two-sided ideal. It
is generated by the current, which vanishes in the basic vacuum representation but
becomes non-trivial in the presence of genuine charge distributions.

To remedy this undesirable feature, we enlarge the algebra by adding operators
which are complementary to the current. It leads again to a version of the univer-
sal algebra. The charge-containing states on this algebra are then locally normal
relative to each other. Despite these differences, the states have in both cases a well-



74 D. Buchholz et al.

defined energy content that is bounded from below. We will also discuss how states
with non-vanishing global charge arise as limits of these globally neutral states and
determine their energy content.

Models of the latter type have been previously discussed in the literature. There
gauge and matter fields are generally taken as input, cf. for example [11, 12]; we
do not add much to that issue. The principal subject of our investigation is the
longstanding question of whether the presence of gauge fields and their physical
significance can be uncovered from the local observables [10]. An affirmative an-
swer would corroborate the view that the physically relevant information of a theory
is encoded in the observables and can be extracted from them. Such an analysis has
been exceedingly successful in case of fields carrying a global gauge charge in mas-
sive theories [8, 9]. However, similar convincing results have not been obtained up
to now in case of local gauge fields. The present results are a modest step, pointing
into the direction of an affirmative answer. Yet they are far from giving a complete
solution.

Our article is organized as follows. In the subsequent Sect. 2 we recall the def-
inition of the universal algebra of the electromagnetic field, presented in [3], and
improve on the construction of local, charge-containing automorphisms and their
unitary implementers, proposed in [4]. In Sect. 3, being the central part of our ar-
ticle, we illustrate the abstract framework by various concrete examples, based on
the Gupta–Bleuler formalism. Within this setting, we discuss the properties and the
relations between the resulting charge-containing representations of the universal
algebra. We establish the existence of meaningful dynamics and determine the en-
ergetic properties of the charge-containing states. In Sect. 4 we discuss how charged
states are obtained as limits of these globally neutral states and we summarize our
findings in the conclusions.

2 Universal Algebra and External Charges

For the convenience of the reader, we recall in this section the definition and basic
properties of the universal C�-algebra V of the electromagnetic field, introduced
in [3]. We outline how local charge measurements are described in this setting and
improve on the construction of localized outer automorphisms, considered in [4].
These automorphisms describe the impact of external charges on the electromag-
netic field and are shown to be unitarily implemented by the action of local gauge
and matter fields.

In heuristic terms, the universal algebra is generated by exponential functions of
the electromagnetic field F , which can conveniently be represented by an intrinsic
(gauge invariant) vector potential AI , viz. eiF.f / D eiAI .g/. Here f 2 D2.R4/ is
any real, skew-tensor-valued test function with compact support. The corresponding
function g is a solution of the equation g D ıf , where ı D ?d? is the exterior
co-derivative, ? denotes the Hodge operator, and d is the exterior derivative. The
space of the real, vector-valued test functions g, satisfying ıg D 0, is denoted by
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C1.R4/. Since F satisfies the homogeneous Maxwell equation, the potential AI .g/
is unambiguously defined for any given F.f / by Poincaré’s Lemma.

The exponentials of the intrinsic vector potential are described by unitary oper-
ators V.ag/, where a 2 R and g 2 C1.R4/; they generate a *-algebra V0. These
operators are subject to relations, expressing basic algebraic and locality properties
of the potential, where g� 2 C1.R4/, f� 2 D2.R4/,

V.a1g/V.a2g/ D V..a1 C a2/g/ ; V .g/� D V.�g/ ; V .0/ D 1 ; (1)

V.ıf1/V .ıf2/ D V.ıf1 C ıf2/ if supp f1 ? suppf2 ; (2)

bV.g1/; V .g2/c 2 V0 \V00 if suppg1 ? supp g2 : (3)

Here the symbol? between two regions indicates that they are spacelike separated,
V0 \V00 is the center of V0, and bX1;X2c ´ X1X2X

�
1 X
�
2 denotes the group the-

oretic commutator of X1;X2. We refer to [3, 4] for a discussion of the physical
significance of these relations.

On the algebraV0 there exists a particular faithful state which has all unitaries in
its kernel, apart from 1 (counting measure). The corresponding GNS-representation
determines a C�-norm on this algebra. Proceeding to the completion of V0 with
regard to its maximal C�-norm, resulting from the set of all of its states, one arrives
at the C�-algebra V, the universal algebra of the electromagnetic field [3]. This
algebra admits an automorphic action of the proper orthochronous Poincaré group
which is fixed by the relations

˛P .V.g//´ V.gP / ; P 2 L"C Ë R4 ; g 2 C1.R4/ ; (4)

where x 7! gP
�.x/´ L�� g

�.L�1.x � y// 2 C1.R4/ for P D .L; y/.
Whereas the algebraV does not include elements which create electric charges,

it contains all ingredients for their analysis. To recall this fact, we resort to the
heuristic picture (being meaningful in regular states) that the underlying unitaries
are exponential functions of the electromagnetic field F . It determines the electric
current J by the inhomogeneous Maxwell equation,

J.h/´ F.dh/ D AI .ıdh/ ; h 2 D1.R4/ : (5)

HereD1.R4/ is the space of real, vector-valued test functions with compact support.
The zero component of the current determines local charge operators for suitable
choices of the test functions h. Its expectation values can be changed by linear maps
of the intrinsic vector potential of the form

AI .g/ 7! AI .g/C '.g/1 ; g 2 C1.R4/ ; (6)

where 'WC1.R4/ ! R is any real linear functional. Applying these maps to the
current, one obtains

J.h/ 7! J.h/C '.ıdh/1 ; h 2 D1.R4/ : (7)
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The choice of functions h 2 D1.R4/, corresponding to charge measurements
in a given spacetime region, and of functionals 'WC1.R4/ ! R, describing con-
figurations of external charges, were discussed in detail in [4], cf. also Sect. 4.
Choosing a Lorentz frame, charge measurements are described by test functions
h 2 D1.R4/ with vanishing spatial components and time components of the form
x 7! �.x0/�.x/, where � and � fix the time and spatial region where charges are
to be determined. The resulting test functions for the intrinsic vector potential are
given by

x 7! ıdh.x/ D .�.x0/��.x/; P�.x0/r�.x// : (8)

Here r denotes the spatial gradient, � the Laplacian, and the dot P indicates a time
derivative.

The functionals of interest here have the form

'm.g/´ �
Z
dxdy m�.x/D.x � y/ g�.y/ ; g 2 C1.R4/ ; (9)

where m 2 D1.R4/ and D denotes the zero mass Pauli–Jordan commutator func-
tion. Note that they vanish if m and g have spacelike separated supports. The
co-derivative ım can be interpreted as a density of external charges, which are not
affected by the electromagnetic field, and 'm describes their impact on this field.
(We restrict ourselves to well-behaved functions m for the sake of simplicity, but
signed measures can be admitted.) Since m has compact support, the global charge
determined by 'm is zero. Yet if the support of ım consists of spacelike separated,
compact regions, each of them may contain a charge which is different from zero.
The external charge content in these subregions can be precisely determined by
means of the local charge operators, defined above, and Gauss’s law, cf. [4] and
Sect. 4.

These observations can be transferred to the algebraic framework. The maps 'm,
defined in relation (9), determine automorphisms ˇm of the universal algebra V
which act on the generating unitaries, i.e. the exponential functions of the electro-
magnetic field, according to

ˇm.V.g//´ ei'm.g/ V .g/ ; g 2 C1.R4/ : (10)

The composition of these automorphisms with Poincaré transformations P satisfies
˛Pˇm D ˇmP ˛P , wheremP .g/ D m.gP�1/ for g 2 C1.R4/.

Identifying the exponential functions of the local charge operators J.h/ with the
unitaries V.ıdh/, where ıdh is given by (8), it follows that

ˇm.V.ıdh// D ei'm.ıdh/ V .ıdh/ ; h 2 D1.R4/ : (11)

It was shown in [4] that for functionals 'm, based on non-trivial charge distributions
ım, and for suitable test functions h, the phase factors in (11) are different from 1.
In these cases the maps ˇm define outer automorphisms of the universal algebraV.
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The latter assertion follows from the existence of a vacuum representation of V,
describing the non-interacting electromagnetic field [3]. There all unitaries V.ıdh/
are represented by 1, whence all local charge operators are equal to zero. This fact
excludes the existence of unitary operators in the universal algebraV which imple-
ment the action of ˇm in (11). In order to implement it, one must extend the algebra
V, which is accomplished as follows.

One considers a family of operatorsW.m/,m2D1.R4/, satisfying for a1; a2 2R
and m;m1;m2 2 D1.R4/ the equalities

W.a1m/W.a2m/ D W..a1 C a2/m/ ; W.m/� D W.�m/ ; W.0/ D 1 ; (12)

W.m1/W.m2/ D W.m1 Cm2/ if suppm1 ? suppm2 : (13)

These relations encode the information that each W.m/ is a unitary operator with
causal localization properties, determined by the support of m. One can also define
Poincaré transformations, putting ˛P .W.m// D W.mP /, wheremP is defined sim-
ilarly to (4). The assumption that the unitariesW.m/ induce the automorphisms ˇm
is encoded in the equalities

W.m/V D ˇm.V /W.m/ ; V 2 V ; m 2 D.R4/ : (14)

One then proceeds from the unitary groups generated by V.g/, g 2 C1.R4/, respec-
tively W.m/, m 2 D1.R4/, to their semi-direct product, fixed by (14). By a similar
procedure as in case of the universal algebra (existence of a counting measure), one
obtains a C�-algebraW �V. Note that its elementsW.m/ only describe the effects
of external charges. In addition, there could be dynamical charges present which
would manifest themselves by further relations within the universal algebra of the
electromagnetic field, depending on details of the dynamics.

It turns out that the unitaries W.m/, implementing the automorphisms ˇm, are
not fixed by (14). There exists an abundance of operators inducing the same action.
It is an indication that the charged system bears additional local degrees of freedom.
From our present point of view, this fact manifests itself by the existence of local
gauge transformations. Picking any scalar distribution s on R4, these transforma-
tions are given by

�s.W.m//´ ei
R
dx .ds/�.x/m

�.x/ W.m/ D e�i
R
dx s.x/ ım.x/ W.m/ : (15)

So �s acts trivially on W.m/ if ım D 0, and this triviality of action holds similarly
for all elements ofV.

These in the formalism still missing degrees of freedom are described by charged
matter fields, which compensate for the gauge charges carried by the operators
W.m/. Their combined action then defines a unique (i.e. gauge-invariant) local op-
eration, inducing automorphisms creating the charge distributions. In the present
simple case of external charges, the charged matter fields can be described by the
elements of an abelian algebra. Given any real, scalar test functions �2D0.R4/, this
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algebra is generated by unitary operators  .�/, the matter fields, which are subject
to the relations

 .�1/ .�2/ D  .�1 C �2/ ;  .�/� D  .��/ ;  .0/ D 1 : (16)

The Poincaré transformations P act on the fields by ˛P . .�// D  .�P / and, most
importantly, they transform under gauge transformations according to

�s. .�// D ei
R
dx s.x/�.x/ .�/ : (17)

Thus the operators  .ım/W.m/ and W.m/ .ım/ are gauge invariant and we as-
sume that they are equal. Yet, in contrast to the discussion in [4], we do not assume
from the outset that the matter fields commute with all elements of W. We only
require that they commute with the electromagnetic field,

 .�/V D V .�/ ; � 2 D0.R4/ ; V 2 V : (18)

The physical picture behind this assumption is the idea that the impact of the exter-
nal charged matter and its electromagnetic tail on the electromagnetic field is fully
described by the automorphisms ˇm of the universal algebra V. There are no other
interactions between the external matter and the electromagnetic field.

The relations given above define a consistent extension of the universal algebra
V by gauge and matter fields. This becomes apparent if one notices that all rela-
tions involve unitary operators, i.e. they determine a unitary group. One can then
proceed to a corresponding C�-algebra by the same token as in case of the universal
algebra V, i.e. one makes use again of the existence of a faithful state (counting
measure). The resulting algebra has a local net structure, fixed by the supports of
the underlying test functions, Poincaré transformations act on it covariantly, and the
algebra is stable under the automorphic action of gauge transformations. We refrain
from proving these statements here. Instead, we present in the subsequent section a
concrete representation of the present abstract algebraic framework.

3 Neutral States with Varying Charge Densities

We construct in this section concrete representations of the abstract universal alge-
bra that describe external charge distributions with vanishing global charge. As in
[4], we make use of the Gupta–Bleuler formalism. Since this setting does not fix
a gauge, i.e. incorporates operators that generate non-trivial gauge-transformations,
we must also specify commutation relations between the Gupta–Bleuler fields and
the matter fields. This step was missing in [4].

We begin by briefly recalling the Gupta–Bleuler framework, cf. [17, 18]. The
exponentials of the Gupta–Bleuler fields are denoted by the symbols

eiA.f / ; f 2 D1.R4/ : (19)
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They satisfy the equations for a 2 R and f; g 2 D1.R4/

eiA.f /eiaA.g/ D e�i.a=2/hf;Dgi eiA.fCag/; �eiA.f /�� D e�iA.f /; eiA.0/ D 1 ; (20)

where we made use of the shorthand notation

hf;Dgi ´
Z
dxdy f�.x/D.x � y/ g�.y/ : (21)

Note that we do not assume that the Gupta–Bleuler fields are solutions of the
wave equation. However, since D is a bi-solution of the wave equation, the op-
erators eiA.�f /, where � is the d’Alembertian, commute with all other operators,
i.e. they are central elements of the Weyl algebra generated by the Gupta–Bleuler
fields.

We represent now the abstract operators, defined in the preceding section, by
these fields and deal with them in the remainder of this article. With this under-
standing we put, by some slight abuse of notation,

W.m/´ eiA.m/ ; m 2 D1.R4/ : (22)

Assuming that there are only external charges present, we can identify the exponen-
tials for functions in the subspace C1.R4/ � D1.R4/ with the generating elements
of the universal algebraV,

V.g/´ eiA.g/ D W.g/ ; g 2 C1.R4/ : (23)

In view of the underlying (20), the latter unitaries comply with relations (1) to (3).
Note that the exponentials of the current V.ıdh/, cf. (5), are elements of the center
ofV. The former unitariesW.m/ satisfy (12), (13). They generate the algebraW in
the present setting and induce the action of the automorphisms ˇm, in accordance
with (14).

The algebraic properties of the Gupta–Bleuler fields imply that for s 2 D0.R4/
and m 2 D1.R4/ one has

W.ds/W.m/W.ds/� D e�i
R
dx .Ds/.x/ .ım/.x/ W.m/ : (24)

Hence the operators W.ds/ induce non-trivial gauge transformations of the uni-
taries W.m/ if ım ¤ 0. They amount to shifts of the underlying potential by dDs.
Note that the function x 7! .Ds/.x/, obtained by convolution of D with s, is a
solution of the wave equation, whence not a test function.

The matter field  .�/, � 2 D0.R4/, introduced in the preceding section, was
assumed to commute with the electromagnetic field but not with gauge fields. This
requires to postulate in the present setting specific commutation relations between
the matter fields and the Gupta–Bleuler fields. There we rely on the fact that the
Pauli–Jordan distribution D can uniquely be split into a retarded and an advanced
part,D DDr �Da, which are Riesz distributions, cf. [1, Sect. 1.2]. Their products
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D2
r ´ Dr �Dr and D2

a ´ Da �Da, defined by convolution, also belong to this
class. Making use of this fact, we impose for m 2 D1.R4/ and � 2 D0.R4/ the
relations

W.m/ .�/W.m/� D e�ihım;D[�i  .�/ ; (25)

where

hım;D[�i ´
Z
dxdy .ım/.x/ .D2

r .x � y/ �D2
a.x � y// �.y/ : (26)

Thus  .�/ commutes withW.m/ if ımD 0. Since hım;D[�i D �h�;D[ımi, it is
also clear that  .ım/ and W.m/ commute for all m 2 D1.R4/. Finally, if m D ds
with s 2D0.R4/, whence ımD�s, one has hım;D[�i D hs;�D[�i. The relation
�D[ D D, cf. [1, Prop. 1.2.4], then implies

W.ds/ .�/W.ds/� D ei
R
dx .Ds/.x/�.x/  .�/ : (27)

Hence the unitaries W.ds/ induce on the matter fields the gauge transformations
Ds, in accordance with their action on the potentials in (24). In particular, the opera-
tors .ım/W.m/DW.m/ .ım/ are gauge invariant for any choice ofm2D1.R4/.
So, within the present framework, the matter field has all properties postulated
in the preceding section. Moreover, since D[ is a causal distribution, the opera-
tors  .ım/W.m/ are local, i.e. their commutators vanish for test functions m with
spacelike separated supports.

We denote by Z the algebra that is generated by the gauge invariant operators
 .ım/W.m/,m 2D1.R4/. It is a proper extension of the algebraV, which is gen-
erated by the restriction of these operators to the subspace of functionsm satisfying
ım D 0. The preceding relations and the algebraic properties of the matter fields
imply, m;m1;m2 2 D1.R4/,

 .ım1/W.m1/ .ım2/W.m2/ D � .ı.m1 Cm2//W.m1 Cm2/

. .ım/W.m//� D W.�m/ .�ım/ D  .�ım/W.�m/ ; (28)

where � are phase factors. It follows that the linear span of these gauge invariant
operators is norm dense in Z.

We rearrange their sums into groups of operators creating the same charge
density: any pair of functions m1;m2 2 D1.R4/ satisfying ım1 D ım2 dif-
fers by some element of C1.R4/. Thus every sum of gauge invariant operatorsP
j cj  .ımj /W.mj /, where all charge densities coincide, ımj D ım, can be

presented with the help of relation (20) in the standard form

S.ım/´  .ım/W.m/
X

i

ci �iV .gi / ; gi 2 C1.R4/ : (29)

An arbitrary sum of gauge invariant operators can be presented as a sum
P
j S.ımj /

of operators S.ımj / with different charge densities ımj .
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We are now in the position to exhibit a Poincaré invariant state !0 on Z, which
extends the non-interacting vacuum state onV. It is given by linear extension of the
functional

!0. .ım/W.m//´
(
e .1=2/hm;DCmi if ım D 0
0 if ım ¤ 0 ; (30)

where the Pauli–Jordan distribution D in (21) has been replaced by its positive
frequency partDC. That !0 is a positive functional is a consequence of the fact that
!0.S.ımj /

�S.ımk// D 0 if ımj ¤ ımk . Thus

!0

��X

j

S.ımj /
	��X

k

S.ımk

		

D
X

j

!0.S.ımj /
�S.ımj // D

X

j

!0

� ˇ̌
ˇ
X

l

cj;l�j;lV .gj;l /
ˇ̌
ˇ
2 	 � 0 : (31)

This lower bound obtains since !0 is a state on V, proving that its extension to Z
is a state as well. Moreover, it follows from this relation that the (non-separable)
Hilbert space, which arises by the GNS-representation from the functional !0 on Z,
decomposes into sectors labeled by ım. These sectors are stable under the action of
V.

It is also clear from relation (30) that !0 is invariant under Poincaré trans-
formations. Hence these transformations are unitarily implemented in the GNS-
representation of Z. But the resulting unitaries do not depend continuously on these
transformations. This is a consequence of the fact that we have chosen in defini-
tion (30) as a state the matter fields the singular counting measure. Since we are
primarily interested in the properties of the electromagnetic field in the presence of
external charges, we do not need to examine here the question of whether there are
more regular extensions of the vacuum state on V to the algebra Z.

We turn now to the analysis of the states onV which are obtained by the adjoint
action of the operators  .ım/W.m/ on the vacuum state !0. Since the matter field
commutes with all elements ofV, the states are given by, cf. (14) and (10),

!m.V.g//´ !0.ˇm.V.g// D ei'm.g/!0.V .g// ; g 2 C1.R4/ : (32)

Considering exponentials of the current, i.e. gDıdhwith h2D1.R4/, definition (9)
yields

'm.ıdh/ D �
Z
dxdy .ım/.x/D.x � y/.ıh/.y/ : (33)

Thus, unless ım D 0, the functional does not vanish for suitable test functions h.
On the other hand one has !0.V.ıdh//D 1 for any choice of h. It therefore follows
from (32) that the states !m and !0 onV are disjoint on regions of Minkowski space
where Dım is different from 0. The fact that they are disjoint can also be seen
by noticing that both states are pure and that ˇm acts non-trivially on the central
elements ofV.
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Turning to the energetic properties of the states !m, m 2 D1.R4/, we make use
of the fact that the GNS-representation of V, induced by !m, is equivalent to the
representation on the vacuum Hilbert given by

ˇm.V.g//´ ei'm.g/V .g/ ; g 2 C1.R4/ : (34)

Assuming for a moment that the time translations onV act in these representations
by unitary operators eitHm , t 2 R, one would have that

Ad.eitHm/.ˇm.V.g// D ˇm.V.gt //
D ei'm�t .g/Ad.eitH0 /.V .g// D Ad.eitH0 /.ˇm�t .V .g// :

(35)

Thus the representations given by ˇm and ˇm�t would necessarily be equivalent.
Since m and m�t have different supports, this is impossible by the preceding re-
marks if ım¤ 0, i.e. in the presence of a non-trivial charge distribution. That result
is also expected on physical grounds: shifting the external charges by operations
involving only the electromagnetic field requires an ill-defined amount of energy.
In order to cope with this problem, there are two possible strategies.

(I) One may focus on the energy carried by the transversal part of the electro-
magnetic field (the photons) and ignore the energy needed to shift the elements
of the center of V, such as the current (5). This is accomplished by relying on
the operator determining the energy density in the vacuum representation of V. It
is given by the (normal ordered) operator .1=2/ WE2 CB2W, where E j ´ F 0j and
Bj´ .1=2/
jklF

kl are the components of the electric, respectively magnetic, field,
j; k; l D 1; 2; 3. This density is a local observable which can be used in any repre-
sentation ofV in order to determine the energy content of the transversal part of the
electromagnetic field. The density commutes with the elements of the center of V
and thus is insensitive to their energetic properties.

(II) Alternatively, one can enlarge the universal algebra V to a gauge invariant al-
gebra with non-trivial center. This is accomplished by fixing a Lorentz frame and
proceeding to the algebra W0 that is generated by the exponentials of .A � r �/.
These operators consist of the spatial components of the vector potential, amended
by the generator � of the matter field, i.e.  .�/ D ei �.�/. Putting E ´�. PA �r P�/
and B ´ r � .A � r �/, it is apparent that E and B satisfy the homogeneous
Maxwell equations, hence they also generate a concrete version of the universal al-
gebra V �W0. It follows from relation (25) and the commutativity of the matter
fields that the three components of .A � r �/ satisfy canonical commutation rela-
tions with their time derivatives. Apart from achieving gauge invariance, the matter
field � has no further algebraic impact on the electromagnetic field and potential.
We can therefore proceed from .A � r �/ to A again in the following discussion.

Disregarding the action of Lorentz transformations, the fields A and PA may be
regarded as the canonical data of three scalar massless fields, satisfying the wave
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equation. It is clear then that there exists a vacuum state on W0. The resulting time
translations on W0 preserve the subalgebra V �W0, generated by E D � PA and
B D r � A. It acts covariantly on the current, which is no longer an element of
the center of V, however. As a matter of fact, a covariant action on an abelian
algebra would not be compatible with the existence of a positive generator of the
time translations according to the Borchers–Arveson theorem [2, Thm. 3.2.46]. In
the present case, this generator is obtained by integration of the energy density
.1=2/ WE2 CPk rAk rAkW at fixed time over space. With this input, one can then
study the dynamics and energy of both, the electromagnetic field and the external
charges, which are created by the automorphisms ˇm.

We discuss in the following both strategies. Turning to approach (I), we make use
of the normal ordering procedure in Minkowski space, relying on the local fields,
i.e. we put

WE 2 CB2 W .x/´ lim
"

�
E.x C "/E.x � "/CB.x C "/B.x � "/

� !0.E .x C "/E.x � "/CB.x C "/B.x � "/�1 : (36)

Here " is a suitable sequence of spacelike translations, tending to 0. In any state,
where this sequence converges to an operator-valued distribution, it defines its elec-
tromagnetic energy density relative to the vacuum representation. Proceeding to the
representation ˇm ofV on the vacuum Hilbert space, we obtain for the energy den-
sity after a straightforward computation

ˇm
�
.1=2/ WE2 CB2 W .x/�

D .1=2/ WE2 CB2 W .x/CE .x/
�
@0m � rm0

�
.x/CB.x/

�r �m/.x/

C .1=2/�.@0m� rm0

�2 C .r �m/2
�
.x/ 1 : (37)

Herem´Dm, thusm is a solution of the wave equation, andm0 and m are its time
and spatial components. The spatial integral of this density at any given time t is
well defined as a quadratic form. Making use of the fact that on the vacuum Hilbert
space one has ıE D 0 and r �B D @0E , one obtains by partial integration

Hm.t/´ .1=2/

Z
dx ˇm

� WE2 CB2 W .t;x/�

D H0 C
Z
dx

�
E @0m� .@0E /m/

�
.t;x/

C .1=2/
Z
dx

�
.@0m � rm0

�2 C .r �m/2
�
.t;x/ 1 : (38)

Since both, E and m, are solutions of the wave equation, the term in the second
line does not depend on t . Thus the time dependence of the Hamiltonian Hm.t/ is
completely contained in the c-number contribution. It describes the mean energy of
the perturbed vacuum state. Apart from this term, Hm.t/ is constant in time, so it
induces a time independent (autonomous) dynamics of the transversal components
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of the electromagnetic field. But it leaves the current invariant (being an element
of the trivially represented center of ˇm.V//, hence the obstructions arising from
relation (35) do not come into play.

Dynamics of this type have been thoroughly discussed in the literature by func-
tional analytic methods, cf. for example [16] and the discussion in Sect. 4. In the
present algebraic setting their properties follow more easily from the representation
of the algebra Z, considered above. Restricting the algebra V, acting on the non-
separable representation space, to the sector corresponding to ım D 0, one obtains
the standard irreducible vacuum representation of the electromagnetic field. There
the time translations are implemented by a continuous unitary group t 7! U0.t/

with positive generator. By the adjoint action of the unitary operatorsW.m/ .ım/
on this group one obtains continuous unitary representations t 7! Um.t/ of the time
translations on the algebras ˇm.V/ in the sectors attached to ım,m2D1.R4/. Their
generators coincide with the operatorsHm.t/ given in (38), apart from the c-number
term.

Turning to the second approach (II), the corresponding normal-ordered energy
density is defined similarly as in (36), where !0 is to be replaced by the extended
vacuum functional on W0. And, similarly as in the preceding discussion, we con-
sider the representations ˇm of W0 on the corresponding vacuum Hilbert space. In
contrast to approach (I), these representations are now given by the adjoint action
of unitary operators, i.e. they are equivalent to the vacuum representation of W0.
Hence, the embedding of V into the bigger algebra W0, involving gauge fields,
cures the subtle dependence of its representations on ım.

This assertion requires a comment if m has a non-trivial zero-component m0

since the component A0 of the Gupta–Bleuler field is not represented on the under-
lying Hilbert space. The corresponding map ˇm0 does not change A, but it induces
an action on the electric field E given by

ˇm0.e
iE.f // D e i

R
dx m0.x/.ıf /.x/ eiE.f / ; f 2 D1.R4/ ; (39)

where f are the spatial components of f . It turns out that in the present representa-
tion these maps are induced by exponentials involving only the spatial components
of the vector potential. To see this, we make use of the fact that the map g 7! eiA.g/

is continuous in the strong operator topology for g 2D1.R4/ varying continuously
with respect to the single particle seminorm

kgk20´
Z
dp

2jpj jeg.jpj;p/j
2 ; g 2 D1.R4/ : (40)

Note that the kernel of this seminorm consists of functions which vanish on the
zero-mass shell. So the fields, being solutions of the wave equation, also vanish on
these functions. Whence the unitary operators eiA.g/ can continuously be extended
to all real functions in the single particle space. After a moment of reflection, it
follows that the (real, vector-valued) function

x 7! n.x/´ r@0��1m0.x/ (41)
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is contained in this space and the adjoint action of the unitaries eiA.n/ on W0 coin-
cides with the action of ˇm0 . Thus all automorphisms ˇm,m2D1.R4/, are unitarily
implemented in the vacuum representation ofW0, as claimed.

In view of this result it is clear from the outset that the time translations are uni-
tarily implemented in all representations ˇm ofW0 and their generators are bounded
from below. Nevertheless, it is of interest to have a look at the corresponding Hamil-
tonians and to compare them with the results in (I). This is accomplished by noting
that the unperturbed energy density, given above, can be recasted, disregarding par-
tial derivatives of local operators which vanish upon integration over all space. One
has, up to such negligible terms,

.1=2/ WE2 C
X

k

rAk rAkW .x/ D .1=2/ WE 2 CB2 C .ıA/2W .x/ : (42)

Comparing this with (I), it is apparent that the energy density related to proper
time translations of the current is encoded in the last term. The spatial integral
of this density yields the Hamiltonian in the vacuum representation of W0. The
Hamiltonians in the representations ˇm are obtained from it by the adjoint action of
the unitaries eiA.n�m/, where m are the spatial components of m and n was defined
in (41). In particular, the mean energy of the perturbed vacuum states is in general
bigger than the proportion of the transversal electromagnetic field, determined in
(I). We refrain from presenting here these straightforward computations.

Let us point out in conclusion that the case of external charges, considered here
in the Gupta–Bleuler formalism, can also be studied in other approaches to the
treatment of gauge fields, which inevitably accompany the charges. The Gupta–
Bleuler formulation has the advantage that the localization properties of charge-
containing operators can be described in a simple, transparent manner. It leads to
a completely local formulation in case of states with vanishing global charge. In
the subsequent section we will show how states carrying a non-vanishing global
charge can be approximated by these neutral states, thereby developing the long-
range localization, known from physical gauges.

4 Passage to Charged States

Using the framework of the preceding Sect. 3, we consider now sequences of neu-
tral states which describe bi-localized external charge distributions. Thereby, one of
these distributions is kept fixed and the other (compensating) charge distribution is
moved to spacelike infinity. In this way, the influence of the compensating charges
on local observables is suppressed and the resulting limit states are charged. We
adopt in this analysis arguments given in [4], where we need to appropriately in-
crease the localization regions occupied by the compensating charges in order to
maintain control on the energetic properties of the states. As a result, the charged
limit states typically differ from the vacuum state in spacelike cones, where fields
with an asymptotic behavior of Coulomb-type appear.
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Proceeding to the construction, the essential step consists of the proof of exis-
tence of suitable functions m 2 D1.R4/ that enter in the automorphisms ˇm. We
begin with the distributions, where a; b 2 R4,

x 7! m�.a; b/.x/´ .b � a/�
1Z

0

du ı.ubC .1 � u/a � x/ : (43)

They satisfy the equation @�m�.a; b/.x/D ı.x�a/�ı.x�b/, where ı is the four-
dimensional Dirac measure. Integrating m�.a; b/ with test functions depending on
a; b and having compact support, one obtains a test function with regard to x whose
support is contained in the convex hull of all pairs of points a; b in the support of the
chosen functions. We pick now a smooth charge distribution a 7! #.a/ with com-
pact support, which is kept fixed, and real test functions b 7! �.b/ whose supports
will be moved to spacelike infinity, while their integrals are kept equal to 1. Putting

x 7! m.�/�.x/´
Z
dadb #.a/�.b � a/m�.a; b/.x/ ; (44)

equation (43) implies

@�m.�/
�.x/ D #.x/ � # � �.x/ : (45)

In the situation of interest here, these distributions occupy two spacelike separated
regions, where both components have fixed spacetime integrals with opposite signs.
So they compensate each other.

The charge content in the regions can be determined by the current (5) with test
functions of the form x 7! h.x/´ �.x0/�.x/. Here one chooses smooth charac-
teristic functions � of the regions in R3 in which the charge is to be determined and
test functions � with support in a small time interval about the time where this is to
happen; the integrals of the latter functions are to be equal to 1.

Let Oh be the causal completion of the convex hull of supp h. It is the space-
time region where the operation of charge measurement takes place. Due to the
unavoidable choice of smoothed characteristic functions � and Dirac measures � ,
the charge measurements become effective only in certain specific subregions of
Oh. These subregions come close to the surrounding regionOh by a suitable choice
of � and � , cf. [4]. Whenever a region O0 � R4 is contained in such a subregion,
we write O0 b Oh. By arguments given in the proof of [4, Lem. 2.2], one obtains
for the functionals (9), depending on the given charge distribution (45),

'm.�/.h/ D
8
<

:

R
dx #.x/ if supp# b Oh ; supp# � � ? Oh

0 if supp# [ supp# � � b Oh ;

� R dx #.x/ if supp# � � b Oh ; supp# ? Oh

(46)

These relations are a distinctive consequence of Gauss’s law. Since the regions Oh

are bounded, it is apparent that by moving the support of � to spacelike infinity,
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only the charge in supp# remains visible in the limit. Thus, composing the vac-
uum functional with the automorphisms ˇm.�/, the resulting limits describe charged
states. That these limit states exist for suitable sequences of � can be seen as fol-
lows.

Picking any test function � with compact support in the spacelike complement
of the origin of R4 and integral 1, one proceeds to the scale-transformed functions
x 7! �r.x/´ .1=r4/ �.x=r/ for r > 0. The support of these functions approaches
spacelike infinity in the limit of large r and the resulting functionals 'm.�r / con-
verge on D1.R4/ in this limit. For the proof one needs to determine the Fourier
transforms of m.�r/. Putting n´ .1=jpj/ p, where jpj is the Euclidean length of
p, and b 7! ��.b/´ �.b/b�, they are given by

p 7! em.�r/�.p/ D e#.p/
Z
db ��.b/

eirbp � 1
ibp

D .2�/2e#.p/ jpj�1
r jpjZ

0

due��.u n/ : (47)

Thus one obtains for p ¤ 0 in the limit of large r the singular function

p 7! em.�1/�.p/ D .2�/2e#.p/ jpj�1%�.n/ ; (48)

where n 7! %�.n/´ R1
0
due��.un/ is continuous and bounded. By a routine com-

putation this yields for f 2 D1.R4/

'm.�1/.f /´ � lim
r!1

Z
dxdy m.�r/

�.x/D.x � y/ f�.y/

D �i.2�/3
Z
dp 
.p0/ı.p

2/ Q#.p/jpj�1%�.n/ef �.�p/

D .2�/3 Im
� Z dpp

2 jpj2
e#.p/%�.n/ef �.�p/

	
: (49)

Here we have put p´ .jpj;p/ and n´ .1=
p
2/.1;p=jpj/. The singularity in the

integral on the last line is absolutely integrable, so the limit functionals are well-
defined on D1.R4/.

It follows that the automorphisms ˇm.�r / converge pointwise on V in the strong
operator topology for asymptotic r on the vacuum Hilbert space. The states appear-
ing in the resulting limit representation carry the global charge

R
dx #.x/. Yet the

underlying unitary operatorsW.m.�r// .ım.�r//, which implement the automor-
phisms, do not have a meaningful limit. Thus, in order to determine the energetic
properties of the limit states, one cannot proceed as in Sect. 3. Instead, one has to
rely on functional analytic methods.

We consider first the electromagnetic energy content of the limit states, as de-
scribed in approach (I) in Sect. 3. In doing so, we make use of the fact that the
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middle term in the Hamiltonian (38) remains unchanged if one replaces the spatial
components m of m by

x 7! gm.x/´ .m� r��1ım/.x/ : (50)

The gradient term does not contribute to the integral as one sees by partial integra-
tion, making use of the fact that ıE D 0 in the vacuum representation of V. The
functions gm are smooth and satisfy ıgm D 0. Moreover, their seminorm (40) is
finite. So the unitary operators V.g/, g 2 C1.R4/, can continuously be extended
to unitary operators V.gm/ in the strong operator topology on the vacuum Hilbert
space. By a routine computation, one finds that the adjoint action of V.gm/ on the
density (26) yields the Hamiltonian (36) after integration, disregarding again the
c-number term.

Given any sequence m.�r/, r > 0, these observations put us into the position to
use the results in [16] for the determination of the electromagnetic energy content
of the limit states. Whereas the functions gm.�r /

do not converge for large r with
regard to the seminorm (40), they have limits with regard to its mollified version,

kgm.�r /
k21´

Z
dp

2jpj
� p2

1C p2

	1=2 jegm.�r /.jpj;p/j2 : (51)

(The kernel of this seminorm likewise consists of functions that do not contribute
in the fields.) Due to the mollifying factor in the integral (51), the singularity of the
limit function egm.�1/ at zero momentum is tamed, cf. (48). In fact, the sequence
egm.�r /, r > 0, converges with respect to the mollified seminorm toegm.�1/.

Making use of arguments in [16, Prop. 3], it follows that the energy densities, ob-
tained by applying the automorphism ˇm.�r / to the vacuum density (36), determine
by integration over all space a meaningful limit dynamics. In more detail: let H0

be the Hamiltonian in the vacuum representation ofV. Because of the convergence
properties of the functions gm.�r /

for asymptotic r , the sequence of cocycles

t 7! V.gm.�r /
/ eitH0V .gm.�r /

/�e�i tH0 D V.gm.�r /
/V .gm.�r /;t

/�

D e�.i=2/hgm.�r /;D .gm.�r /�gm.�r /;t /i V.gm.�r /
� gm.�r /;t

/ (52)

converges in this limit in the strong operator topology. Note that the Fourier trans-
forms of the differences .gm.�r /

�gm.�r /;t
/ vanish at zero momentum and converge

for large r with regard to the single particle seminorm (40), uniformly on compact
subsets of t . These facts imply that the limit dynamics exists in approach (I). It is
given as a limit in the strong operator topology

t 7! eitH.I /.m.�1//´ lim
r!1V.gm.�r /

/ eitH0 V .gm.�r /
/�

D lim
r!1V.gm.�r /

/V .gm.�r /;t
/� eitH0 : (53)
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The limit dynamics is strongly continuous, has a positive generator, but leaves the
center of ˇm.�1/.V/ pointwise fixed. So it does not act properly on the charge op-
erators. But it fully describes the dynamics and energy content of the transversal
components of the electromagnetic field in the charged sectors.

In a similar manner one proceeds in approach (II). There the dynamics in the
vacuum sector of W0 leavesV �W0 invariant and acts covariantly on the current.
The representations in the locally charged sectors are obtained by acting on W0

in the vacuum sector with the automorphisms ˇm. One then chooses sequences of
functions m.�r/, describing as above bi-localized charge distributions, and consid-
ers the resulting automorphisms ˇm.�r /, r > 0. As was explained in Sect. 3, these
automorphisms are implemented on the vacuum Hilbert space by unitary operators
eiA.n.�r /�m.�r //, r > 0. Here m.�r / denotes again the spatial components of m.�r/,
and n.�r/ is determined by the time componentm0.�r/ according to (41).

One then determines the Fourier transforms of .n.�r / �m.�r // and finds that
these sequences have similar convergence properties as those of the sequences
gm.�r /

in approach (I), r > 0. They also develop a singularity at zero momentum
in the limit whose restriction to the zero-mass shell has the same form as in (48).
Thus, by applying the preceding arguments, one arrives at the conclusion that the
limit dynamics exists in approach (II) in all charged sectors. It is given by

t 7! eitH.II/.m.�1//´ lim
r!1 e

iA.n.�r /�m.�r // eitH0 e�iA.n.�r /�m.�r // ; (54)

where H0 is the Hamiltonian in the vacuum representation of W0. The resulting
unitary group is continuous and has a positive generator. We omit the proof since it
completely parallels the preceding discussion.

Let us finally mention that the globally charged representations, obtained in this
manner, are locally normal relative to the vacuum representation. Yet, depending on
the choice of the approximating functionsm.�r/, r >0, there exists an abundance of
limit states that carry the same global charge, but are mutually disjoint, nevertheless.
These states differ by the asymptotic configurations of the electromagnetic field or,
alluding to the particle picture, by infinite clouds of low energy photons. Since
these “infrared problems” are widely known, we do not dwell here on this issue any
further.

5 Conclusions

Proceeding from the universal algebra of the electromagnetic field, providing a
general framework for the discussion of electromagnetism, we have studied the
question of whether the presence of gauge fields can be uncovered from the gauge
invariant observables. All basic features of the electromagnetic field are encoded in
this algebra, in particular the homogeneous Maxwell equations, the existence of a
current operator, and the condition of locality. These features are conveniently ex-
pressed in a C�-algebraic framework, from which the underlying unbounded field
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operators can be recovered in regular representations. In order to uncover in this
setting possible traces of gauge fields, we have studied the impact of compactly
localized external charge distributions on the algebra; they give rise to a vanishing
global charge. These charge distributions can be traced and analyzed by means of
the current operator in the algebra, making use of Gauss’s law.

It turned out that the external charge distributions induce outer automorphisms
of the universal algebra. This fact reveals the presence of local degrees of freedom,
which are not incorporated in the algebra. In order to represent the automorphisms
by the adjoint action of unitary operators, describing these additional degrees of
freedom, the universal algebra had to be extended. Yet this first extension did not un-
ambiguously describe the unitaries: they can be modified by an abundance of local
transformations without changing their action on the observables. These transfor-
mations can be interpreted as local gauge transformations, whereby the generating
elements of the extended algebra correspond to the exponentials of gauge fields.

In order to completely fix the unitary implementers (up to phase factors), one
has to introduce further operators, which can be interpreted as charged matter fields.
Theymay be of a bosonic, fermionic, or classical nature. In the present case of exter-
nal charges, we considered the simple case of classical charged matter. It affects the
quantized electromagnetic field only through the accompanying tail of gauge fields.
The gauge invariant combinations of gauge and matter fields define a physically
meaningful extension of the universal algebra. It is generated by local, Poincaré co-
variant implementers of the charge-containing automorphisms. The appearance of
gauge and matter fields is thus encoded in the structure of the universal algebra and
manifests itself already in the simple case of external charges.

We have illustrated this abstract framework by representing the gauge and matter
fields concretely in a setting of Gupta–Bleuler type. There the universal algebra is
canonically embedded in the Weyl algebra generated by the Gupta–Bleuler fields.
Moreover, the framework is enriched by some dynamical input, deriving from the
underlying wave equation. In this formalism the current does not vanish, but it is
affiliated with the center of the universal algebra as a consequence of the dynami-
cal input. Since the Gupta–Bleuler fields incorporate operators which induce gauge
transformations, we had also to impose for the sake of consistency commutation re-
lations between the Gupta–Bleuler and matter fields. To the best of our knowledge,
these commutation relations have not been considered before in the literature.

Applying the implementers of the charge-containing automorphisms to the non-
interacting vacuum state of the universal algebra, one obtains further irreducible
representations of this algebra. They are mutually disjoint, even locally, for differ-
ent choices of charge distributions. Nevertheless, there exist energy operators in
these representations that are bounded from below and induce a dynamics on the
transversal degrees of freedom of the electromagnetic field (the photons). Let us
mention as an aside that these dynamics, together with their spectral properties, ex-
ist in all Lorentz frames. In other words, the spacetime translations are unitarily
implemented in the representations and satisfy the relativistic spectrum condition.
However, they act trivially on the current operator which, being an element of the
center, is represented by multiples of the identity.
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It is clear from the outset that one cannot have a dynamics with positive gen-
erator that acts non-trivially on an abelian algebra. We have therefore enlarged the
concretely given universal algebra to ensure a covariant action of the dynamics on
the current. This enlargement was accomplished by adding to the algebra the spatial
components of the Gupta–Bleuler field. The resulting algebra complies again with
the defining properties (axioms) of the universal algebra. As a result of this step, all
representations, obtained by applying the charge-generating unitary operators to the
vacuum state of the extended algebra, become unitarily equivalent. Moreover, the
resulting dynamics has a positive generator, it leaves the universal algebra invari-
ant, and it acts covariantly on the current. Again, this property obtains in all Lorentz
frames.

For completeness, we have also discussed the passage from neutral states to
states carrying a global charge. This was accomplished by the well-known method
to create pairs of compensating charges and to move one of them to spacelike in-
finity. Just as for localized charge distributions, the resulting representations of the
universal algebra have a dynamics with positive generator. In case of the extended
algebra, the charged representations are also locally normal with respect to each
other. But, for given value of the global charge, they are in general disjoint, re-
membering the localization properties of the approximating states. This feature is
in accordance with the poor localization properties of charged states, known from
physical gauges. It is the origin of the notorious infrared problems in quantum elec-
trodynamics.

In summary, starting from the local gauge invariant observables, we have es-
tablished the occurrence of gauge fields as an inherent feature of the quantized
electromagnetic field. First of all, gauge fields inevitably accompany operations
that generate local and global charge distributions. They must be amended by local
charged matter fields which compensate the gauge charges carried by the gauge
fields. Secondly, the gauge fields also enter in a fundamental way into the de-
scription of the dynamics. They are needed to describe the temporal evolution of
the current operator, which is essential for the verification of Gauss’s law. Thus,
whereas the gauge fields cannot be observed directly, their impact on observables
can be determined by observations. In this way, they become an integral part of
physics.

Acknowledgements DB gratefully acknowledges the support and hospitality of Roberto Longo
and the University of Rome Tor Vergata, which made this collaboration possible. He is also grateful
to Dorothea Bahns and the Mathematics Institute of the University of Göttingen for their continu-
ing hospitality. FC and GR acknowledge the MIUR Excellence Department Project awarded to the
Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006, the ERC
Advanced Grant 669240 QUEST “Quantum Algebraic Structures and Models” and GNAMPA-
INdAM. FC was supported in part by MIUR-FARE R16X5RB55W QUEST-NET “Operator Al-
gebras and (non)-equilibrium Thermodynamics in Quantum Field Theory”.



92 D. Buchholz et al.

References

1. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization.
EMS ESI Lect. Math. Phys., vol. 3 (2007)

2. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I.
Springer (1979)

3. Buchholz, D., Ciolli, F., Ruzzi, G., Vasselli, E.: The universal C*-algebra of the electromag-
netic field. Lett. Math. Phys. 106, 269–285 (2016)

4. Buchholz, D., Ciolli, F., Ruzzi, G., Vasselli, E.: The universal algebra of the electromagnetic
field III. Static charges and emergence of gauge fields. Lett. Math. Phys. 112, 27 (2022)

5. Buchholz, D., Doplicher, S., Morchio, G., Roberts, J.E., Strocchi, F.: A model for charges
of electromagnetic type. In: Doplicher, S. (ed.) Proceedings of the conference on Operator
Algebras and Quantum Field Theory Rome, 1996. International Press (1997)

6. Buchholz, D., Doplicher, S., Morchio, G., Roberts, J.E., Strocchi, F.: Quantum delocalization
of the electric charge. Ann. Phys. 290, 53–66 (2001)

7. Buchholz, D., Doplicher, S., Morchio, G., Roberts, J.E., Strocchi, F.: Asymptotic abelian-
ness and braided tensor C*-categories. In: Rigorous Quantum Field Theory. A Festschrift for
Jacques Bros, Progr. in Math., vol. 251, pp. 49–64 (2007)

8. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I. Commun.
Math. Phys. 23, 199–230 (1971)

9. Doplicher, S., Roberts, J.E.: Why there is a field algebra with a compact gauge group de-
scribing the superselection structure in particle physics. Commun. Math. Phys. 131, 51–107
(1990)

10. Haag, R.: Local algebras. A look back at the early years and at some achievements and missed
opportunities. Eur. Phys. J. H 35, 255–261 (2010)

11. Herdegen, A.: Semidirect product of CCR and CAR algebras and asymptotic states in quantum
electrodynamics. J. Math. Phys. 39, 1788–1817 (1998)

12. Morchio, G.: Charged fields, Higgs phenomenon and confinement. Lesson from soluble mod-
els. Ann. H. Poincaré Sect. A 64, 461–478 (1996)

13. Morchio, G., Strocchi, F.: A non-perturbative approach to the infrared problem in QED: Con-
struction of charged states. Nucl. Phys. B 211, 471–508 (1983)

14. Morchio, G., Strocchi, F.: Localization and symmetries. J. Phys. A: Math. Th. 40, 3173–3187
(2007)

15. Mund, J., Rehren, K.-H., Schroer, B.: Gauss’ Law and string-localized quantum field theory.
J. High Energy Phys. 2020, 1 (2020)

16. Roepstorff, G.: Coherent photon states and spectral condition. Commun. Math. Phys. 19, 301–
314 (1970)

17. Steinmann, O.: Perturbative Quantum Electrodynamics and Axiomatic Field Theory. Springer
(2000)

18. Strocchi, F.: Selected Topics on the General Properties of Quantum Field Theory. LNP, vol.
51. World Scientific (1993)



Classical Representability for Partial
Boolean Structures in Quantum
Mechanics

Costantino Budroni

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2 Hidden Variable Models and the Problem of Classical Representability for Quantum

Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3 Unified Approach to the Extension of the Partial Boolean Algebraic and Probabilistic

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4 Automatic Extensions Based on Compatibility Relations . . . . . . . . . . . . . . . . . . . 109
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

1 Introduction

The quantum mechanical description of a physical system provides a set of predic-
tions for all possible experiments that can be performed on it. Given an observable
A, representing a physical quantity, e.g., energy, its expectation value hAi, or the
probability for the observation of a certain outcome, can be obtained from the
knowledge of the quantum state through the Born rule

hAi� D
X

i

�iProb.�i / D
X

i

�i trŒ�Pi � D trŒ�A�; with Prob.�i / D trŒ�Pi �; (1)

whereA has spectral decompositionADPi �iPi . A remarkable property of quan-
tum mechanics (QM) is that not all physical observable can be jointly measured,
the most famous example being the position and momentum of a particle. Such
observables are said to be incompatible [19, 40, 43]. In the most general experi-
ment on a physical system, then, each round consists in the joint measurement of a
set of compatible observables. For each set of compatible observables, a quantum
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state defines a classical probability distribution over all possible outcomes of their
measurement. For projective measurements, the textbook QM observables, this is a
direct consequence of the spectral theorem applied to a set of mutually commuting
observables. The same structure arises for set of jointly measurement generalized
measurements, i.e., positive operator-valued measures (POVMs); see e.g., [44]. In
the following, when we speak about observables we refer to projective measure-
ments, sometimes called sharp measurements, unless explicitly stated otherwise.

Following the original criticism of QM by Einstein, Podolsky, and Rosen [33],
several attempts have been made to interpret such a collection of classical prob-
ability distributions in terms of a global probability distribution over all physical
observables of a system. This is the so-called hidden-variable program: to com-
plete QM with additional variables, in order to recover a classical description of
the system analogous to the one obtained in classical statistical mechanics. The fact
that each set commutative subalgebra of observables allows for a classical descrip-
tion, corresponding to the distribution of outcomes in an experiment where they are
jointly measured, motivates the study of partial classical structure in quantum me-
chanics. For subalgebras of projectors, these commutative structures corresponds to
partial Boolean algebras, to which a quantum state assigns a probability measure.
These are the central objects in the work of Gleason [38], Kochen and Specker
[52], and Bell [10]. In particular, the results of Kochen–Specker (KS) and of Bell
significantly constrain the possible hidden-variable models to be, respectively, con-
textual and nonlocal. More precisely, KS show that any classical description of the
statistics of a collection of measurements must depend on the measurement con-
text, i.e., which set of compatible measurements are jointly performed. In contrast,
Bell considered a special type of measurement context, namely, a collection of lo-
cal measurements each performed on a different particle such that all the spacetime
regions associated with the measurement events are spacelike separated.

A crucial difference in these results is the fact that KS dealt with the algebraic
relations among the quantum mechanical projectors, whereas Bell focused more on
the existence of a probability distribution, as the algebraic problem is straightfor-
wardly solved in his scenario. The less constrained notion of measurement context
used by KS allows them to prove results that are state-independent: they depend
only on the (partial Boolean) algebraic relations between the observables. The two
problems are of course related, as KS discussed in detail, since in order to reproduce
the probabilistic predictions of QM, one first needs to reproduce (some of) its alge-
braic structures. For many years, however, these result were treated very differently,
with some authors even claiming the impossibility of experimentally test Kochen–
Specker contextuality, the so-called nullification of KS theorem; see [8, 29, 50, 60]
and the reply by [2–5, 20, 42, 56, 59, 62, 67]; see also the discussion in [16].

The work with Gianni on the classical representability of partial Boolean struc-
tures in QM addresses the problem of the difference between the Bell and Kochen–
Specker approaches to classical representability [18]. In particular, it shows that we
can restrict ourselves to the problem of just reproducing the probabilistic structure
of the theory, ignoring the problem of representability of the associated algebraic
structure, since such a representation is then automatically recovered once the prob-
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ability representation is obtained. Finally, this work also explored the conditions for
the existence of classical representations based only on the compatibility relations
among the considered observables. In particular, it was proven that whenever com-
patibility relations have the structure of a tree graph, in a sense that will be clarified
below, a classical representation always exist. This result turned out to be a special
case of a general theorem formulated by Vorob’ev [74, 76]. This result was redis-
covered several times, within and outside the quantum information community. In
recent years, however, it became relatively well known, especially in relation with
quantum contextuality; see the discussion in [16].

The formalism used in [18] is that of Boolean algebras and their measures. This
allowed us to present the results in a mathematically rigorous form, at the cost,
however, of decreasing the accessibility of the results for readers not familiar with
this formalism. In this contribution to the volume in memory of Gianni, I would like
to review our work from a more modern perspective on classical representations of
quantum predictions, and in particular in the framework of Kochen–Specker con-
textuality, also with the goal of making it accessible to a broader audience. There
is a vast literature on Kochen–Specker contextuality and classical representation of
QM predictions, but the goal here is to provide a self-contained introduction that
provides the reader with the framework and the motivation needed to understand
the results that follows and their implications. The rigorous formulation provided in
[18] is accompanied by examples and informal discussions.

This chapter is structured as follows. In Sect. 2, we recall some basic facts about
the problem of a hidden variable description of QM predictions: From their defini-
tion to the celebrated results of Bell and Kochen–Specker. In Sect. 3, we introduce
the notion of partial Boolean algebras and formulate the two approaches, that we
name Bell-like and Kochen–Specker-like, in this language showing their equiva-
lence for the problem of HV models. In Sect. 4, we address the problem of the
existence of classical representations for sets of incompatible observables, which
can be derived solely from the structure, more precisely, the graph, of their compat-
ibility relations. In Sect. 5, we present our conclusions and final remarks.

2 Hidden Variable Models and the Problem of Classical
Representability for QuantumMechanics

In this section we provide an introduction to the problem of hidden variable (HV)
models and explain its connection with Bell and KS theorems. The goal of the
hidden variable program is to reproduce all QM predictions, described above as
a collection of probability distributions each associated with a compatible set of
measurements, in terms of a single probability distribution. Notice that this is the
minimal requirement for a classical model of QM predictions, in line with the ap-
proach formulated by Gleason [38], and in contrast with previous attempts to no-go
theorems on HV models such as the one of von Neumann [72, 73], which consider
relations among incompatible observables.
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One construction of a HVmodel is straightforward and it was pointed out already
by KS in their seminal paper [52] one can take as a global probability the product
distribution of all the distributions over compatible sets of observables. Let us dis-
cuss a simple example to clarify this point. Consider three observables A;B , and
C , such that A and B can be measured together and the same holds for B and C .
QM then provides two distributions pAB.a; b/ and pBC .b; c/. We could construct a
global distribution as pABC .a; b; b0; c/´ pAB.a; b/pBC .b

0; c/. The problem with
this construction is that now B is represented by two variables, b and b0, depending
on whether it is jointly measured with A or with C . We say that the representation
of B is contextual, i.e., it depends on which other observables are jointly measured
with it. As we will see, these observables could be even spatially distributed in
such a way that this context-dependence at the level of the classical model requires
faster-than-light communication to be described [10, 14]. The notion of context-
independence or noncontextuality formulated above in general terms, then, amounts
to locality for spatially distributed observables.

2.1 General Formulation of Noncontextual Hidden Variable
Models

The question of the existence of a noncontextual hidden variable (NCHV) model
can be formulated as the so-called marginal problem. Given a set of observables
G D fA1; : : : ; Ang, we denote byM, with M� 2G, the collection of sets of observ-
ables that can be jointly measured, i.e., a collection of contexts, where 2G denotes
the power set of G. M is called the marginal scenario [26]. The observed data
from measurements in each context is interpreted as a marginal of a global prob-
ability distribution on all observables. For each context fAigi2C 2 M, i.e., with
C � f1; : : : ; ng, we have a distribution pC of the outcomes over it. A necessary
but not sufficient condition for the existence of a global distribution is for these
marginals to be locally consistent. In other words, for each C and C0 we have that

pCjC\C0 D pC0jC\C0 ; (2)

where jC \ C0 denotes the restriction of the distribution to observables in the inter-
section of the two contexts, obtained simply by marginalization, i.e., by summing
over the variables not in C \C0. This condition is satisfied in QM as a consequence
of the Born rule; for instance, one can think about a pair of commuting observables.

There exist two main formulations of a NCHV model. One is the marginal prob-
lem discussed above, the other one is more related to the original idea of a “hidden
variable”. In a NCHV, we assume the existence of a hidden variable, let us denote it
by �, that determines the outcomes of each observable regardless of the context. For
each context, given by the observables fAigi2C and C�f1; : : : ; ng and the outcomes
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faigi2C, this corresponds to

pC.faigi2C/ D
X

�

p.�/
Y

i2C
p.ai j�/; (3)

with p.�/�0;P� p.�/D1, p.ai j�/�0,
P

ai
p.ai j�/D1, for i 2C. The outcomes

as are arbitrary, but to simplify the exposition we often consider the case of two-
valued measurements, i.e., as 2 f0; 1g or as 2 f�1; 1g.

One can show that (3) is equivalent to the existence of a global probability
distribution over all observables A1; : : : ; An, such that P.faigi2C/ is obtained by
summing over all possible outcomes for the other observables, namely,

pC.faigi2C/ D
X

as Ws…C
pG.a1; : : : ; an/: (4)

In other words, the formulation in terms of the hidden variable is equivalent to the
one in terms of the marginals of a global distribution. Intuitively, from (3) one can
construct a global distribution just by multiplying together the p.ai j�/ for all pos-
sible fAigi such that the distribution over all contexts are recovered as marginal.
Conversely, every global distribution can be written as a convex mixture of deter-
ministic assignments, which factorizes similarly to (3) since f0; 1g-valued measures
are multiplicative. This general argument is known in the literature as Fine’s the-
orem [34], although Fine stated it only in a special scenario and a complete proof
appeared elsewhere [1, 36, 71], see the discussion in [16].

This is the modern formulation of the NCHV models. Notice that the problem
here is formulated solely in terms of the reproducibility of the statistics, observed
separately in each context, in terms of a global distribution. No question about the
algebraic structure of the observables is addressed here. One can say that, implic-
itly, the algebraic structure is that of a free Boolean algebra [41], i.e., no algebraic
relations are assumed between the observables.

From the definition of (4), one can derive conditions for the existence of such
a global probability distribution pG. Geometrically, i.e., interpreting each probabil-
ity as an entry of a vector Ep, we have that Ep lies within the convex hull of a finite
number of vectors, which represent the deterministic assignments of values to each
variable ai . The problem of reproducibility of a set of observed statistics Ep, then,
amounts to the membership problem for that vector with respect to the convex hull
of the vectors of deterministic assignments. This problem can be solved for a given
vector Ep as a linear program [13]. Alternatively, a finite set of necessary and suf-
ficient conditions can be derived by computing the boundaries of such a convex
hull. A convex hull of a finite number of points, in fact, is a polytope [39], which
is also described by a finite number of hyperplanes, i.e., the facets of the polytope.
Each hyperplane defines an inequality, which, when violated, certifies that a point is
outside of the polytope. Such inequalities corresponds to Bell or noncontextuality
inequalities, depending on the scenario considered. A general characterization of
the set of classical probability distributions, in the sense of distribution admitting
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a NCHV model description, can be obtained via the correlation polytope method
[36, 37, 63]; see also the book [64]. In the following, we present examples of Bell
inequalities and more general noncontextuality inequalities.

2.2 Bell’s Theorem

The simplest Bell scenario is arguably the Clauser–Horne–Shimony–Holt (CHSH)
[28] Bell scenario. It consists of two experimenters, let us name them Alice and
Bob, making local measurements on their half of a bipartite system, e.g., a pair of
photons or spin-1/2 particles. They perform local measurements A1 and A2 (Alice)
and B1 and B2 (Bob), e.g., they measure the spin component of their particle along
a certain direction, with possible outcomes ˙1. In the language introduced above,
Bell’s theorem can be formulated as the impossibility of a NCHV model for the
set of observables fA1;A2; B1; B2g with contexts f.Ai ; Bj /gi;jD1;2. In this case, the
experimental setting involves two distant parties. In particular, it is assumed that
the choice of the measurement settings, i.e., 1 or 2, by Alice cannot influence the
measurement outcome of Bob, since the events are located in space-like separated
regions. The context-independence, then, amounts to locality, the NCHV model is,
thus, called local hidden variable (LHV) model. From the condition in (4), one can
obtain the so-called CHSH inequality

hA1B1i C hA1B2i C hA2B1i � hA2B2i
LHV� 2; (5)

where hAiBj i D
P

ai ;bjD˙1 aibjp.ai ; bj / and
LHV� denotes the fact that the bound

holds for all LHV models. Using (4) one can easily show that the bound holds for
any LHV model, since the probability is a convex mixture of deterministic assign-
ments to all the variables, the bound 2 can be computed simply by trying all possible
˙1 assignments to a1; a2; b1; b2.

In contrast, it is well known that in QM for a pair of particles prepared in the
entangled state

j i D 1p
2
.j00i C j11i/; (6)

where fj0i; j1ig is the eigenbasis of �z, and the measurements

A1 D �x ˝ 1; A2 D �z ˝ 1; B1 D 1˝ �x C �zp
2

; B2 D 1˝ �x � �zp
2

; (7)

one can compute the mean values as hAiBj i D h jAiBj j i and obtains

hA1B1i C hA1B2i C hA2B1i � hA2B2i D 2
p
2 > 2; (8)

which proves the impossibility of reproducing the QM statistics via a LHV model.
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Equation (5) is an example of a Bell inequality: when experimentally violated
it certifies the impossibility of explaining the observed correlations in terms of
LHV model. Satisfying a Bell inequality is, therefore, a necessary condition for the
observed statistic to be reproducible via a LHV model. Interestingly, if “enough”
inequalities, always in a finite number, are satisfied, they provide also sufficient con-
dition for the existence of the LHV model, as discussed in the previous subsection.

Notice how in the above discussion no algebraic relations among the observables
appear, and the discussion is based solely on the reproducibility of the probability
distribution via a LHV model. On the one hand, one can easily see that there are
no specific algebraic relations among the compatible pair. If we consider the pro-
jectors associated with the observables fAi ; Bj g, denoting them as Ai D PCi � P �i
and Bj D QCj �Q�j , we have that there are no algebraic relations among compat-
ible ones, i.e., ŒP˙i ;Q

˙
j � D 0 and P˙i Q

˙
j ¤ 0. We have that for each pair, e.g.,

fPC1 ;Q�1 g the Boolean algebra generated by them is a free algebra [41]. On the
other hand, one can argue that the minimal requirement for the existence of a LHV
(or NCHV) model is the reproducibility of the observed statistics, irrespectively of
what algebraic relations among the observables appear in the QM formalism. We
come back to this point in Sect. 4.

2.3 Kochen–Specker Theorem

The Kochen–Specker theorem was originally formulated in terms of the impossibil-
ity of a context-independent value assignment to a set of QM projectors that respects
the algebraic relations among the sets of compatible ones. As shown by KS [52],
this was a prerequisite for the existence of any representation of QM predictions via
a NCHV model. Intuitively, such a value assignments are the extreme probability
distributions, from which all other distributions are obtained as convex mixtures, as
discussed above. Thus, at least some of them must exist.

Let us fix the basic objects of the theorem. Consider a Hilbert space H of
dimension d and consider d rank-1 projectors P1; P2; : : : ; Pd associated with d
orthogonal vectors in H . They satisfy the following relations

(O) PiPj D 0 for any i ¤ j (orthogonality).
(C)

Pd
iD1 Pi D 1 or, equivalently, using (O),

Qd
iD1.1 � Pi/ D 0 (completeness).

Such relations can be interpreted in terms of yes-no questions (or truth assignments)
Q1; : : : ;Qd as follows:

(O0) Qi andQj are exclusive; i.e., they cannot be simultaneously “true“ for i ¤ j .
(C0) Q1; : : : ;Qd cannot be simultaneously “false”; one of them has to be true.

For the case of rank-1 projectors commutativity corresponds to orthogonality,
and each collection of commuting projectors generates a Boolean algebra. This
means that maximal sets of compatible projectors are in a one-to-one correspon-
dence with orthogonal bases ofH . Value assignments, in this case yes/no or f0; 1g,
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Table 1 Table of vectors and contexts for the 18-vector KS sets of [24]. The vectors are unnor-
malized and, for better alignment, N1 denotes �1. Each row represents a context and each vector
appears in exactly two contexts. As a consequence, assigning a noncontextual value of “C1“ (or
green) to some vectors, one obtains always an even number of “C1”, whereas by construction one
should get exactly nine “C1”, one for each context

v12 D .1; 0; 0; 0/ v16 D .0; 0; 1; N1/ v17 D .0; 0; 1; 1/ v18 D .0; 1; 0; 0/
v12 D .1; 0; 0; 0/ v23 D .0; 1; N1; 0/ v28 D .0; 0; 0; 1/ v29 D .0; 1; 1; 0/
v23 D .0; 1; N1; 0/ v34 D .N1; 1; 1; 1/ v37 D .1; 1; 1; N1/ v39 D .1; 0; 0; 1/
v34 D .N1; 1; 1; 1/ v45 D .0; 1; 0; N1/ v47 D .1; 1; N1; 1/ v48 D .1; 0; 1; 0/
v45 D .0; 1; 0; N1/ v56 D .1; 1; 1; 1/ v58 D .1; 0; N1; 0/ v59 D .1; N1; 1; N1/
v16 D .0; 0; 1; N1/ v56 D .1; 1; 1; 1/ v67 D .1; N1; 0; 0/ v69 D .1; 1; N1; N1/
v17 D .0; 0; 1; 1/ v37 D .1; 1; 1; N1/ v47 D .1; 1; N1; 1/ v67 D .1; N1; 0; 0/
v18 D .0; 1; 0; 0/ v28 D .0; 0; 0; 1/ v48 D .1; 0; 1; 0/ v58 D .1; 0; N1; 0/
v29 D .0; 1; 1; 0/ v39 D .1; 0; 0; 1/ v59 D .1; N1; 1; N1/ v69 D .1; 1; N1; N1/

v12 D .1; 0; 0; 0/ v16 D .0; 0; 1; N1/ v17 D .0; 0; 1; 1/ v18 D .0; 1; 0; 0/
v12 D .1; 0; 0; 0/ v23 D .0; 1; N1; 0/ v28 D .0; 0; 0; 1/ v29 D .0; 1; 1; 0/
v23 D .0; 1; N1; 0/ v34 D .N1; 1; 1; 1/ v37 D .1; 1; 1; N1/ v39 D .1; 0; 0; 1/
v34 D .N1; 1; 1; 1/ v45 D .0; 1; 0; N1/ v47 D .1; 1; N1; 1/ v48 D .1; 0; 1; 0/
v45 D .0; 1; 0; N1/ v56 D .1; 1; 1; 1/ v58 D .1; 0; N1; 0/ v59 D .1; N1; 1; N1/
v16 D .0; 0; 1; N1/ v56 D .1; 1; 1; 1/ v67 D .1; N1; 0; 0/ v69 D .1; 1; N1; N1/
v17 D .0; 0; 1; 1/ v37 D .1; 1; 1; N1/ v47 D .1; 1; N1; 1/ v67 D .1; N1; 0; 0/
v18 D .0; 1; 0; 0/ v28 D .0; 0; 0; 1/ v48 D .1; 0; 1; 0/ v58 D .1; 0; N1; 0/
v29 D .0; 1; 1; 0/ v39 D .1; 0; 0; 1/ v59 D .1; N1; 1; N1/ v69 D .1; 1; N1; N1/

Fig. 1 Graphical represen-
tation for the contexts in the
18-vector KS set of Table 1
from [24]. Each smooth line,
i.e., straight or ellipse, rep-
resents a context, vectors in
each context are mutually
orthogonal
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must then satisfy the conditions O0 and C0. Orthogonality relations can be repre-
sented as a graph, as depicted in Fig. 1: Each node represents a vector, orthogonal
vectors are connected by an edge (condition O), and complete sets of vectors lie
on a smooth line (straight line or an ellipse, condition C). The goal is to provide
an assignment of f1; 0g, equivalently .true; false/, to these vectors such that condi-
tions O0 and C0 are satisfied. This problem has also been formulated in terms of an
assignment of colors, e.g., green for true and red for false. Referring to Fig. 1, the
constraints are therefore that in each smooth line exactly one vertex is colored green
and all the others red. Sets of vectors that do not admit any assignment satisfying
these rules are called KS sets. The example in Fig. 1 has been found by [24] in d D 4
and has been proven to be the KS set with the minimal number of vectors [79]. Con-
sider the list of vectors in Table 1. There are 9 contexts, corresponding to the rows
of the table, and each vector belongs to two contexts, as can be seen from Fig. 1. If
we color green some nodes and we count the total number of green nodes appearing
in all contexts, i.e., with repetitions since nodes appear in multiple contexts, we get
an even number. However, the contexts are 9 so it should be exactly 9 assignments
of green, which give us the contradiction.
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The fact that there exists no value assignment that respects condition O0 and C0
implies that there exist no NCHV reproducing the probability associated to these
projectors by any quantum state. This is the phenomenon of state-independent con-
textuality (SI-C) [7, 21, 82]. In particular, this phenomenon can be certified by the
violation of noncontextuality inequalities. Similarly to the Bell-CHSH inequality in
(5), these are inequalities satisfied by the predictions of any NCHV model, but vi-
olated by QM predictions. Interestingly, these phenomenon appears also for sets of
projectors that are not KS sets, i.e., they admit some value assignments [12, 80, 81].
As we see in Sect. 3, this possibility is implicit in the discussion of KS vs Bell ap-
proaches, namely, there could exist sets of projectors that admit some assignments,
but “not enough“ to provide an embedding into a Boolean algebra. This should also
be a possibility for SI-C, but curiously sets such as [81] are not of this form, and no
such example is known. Finally, we remark that necessary and sufficient conditions
for SI-C have been investigated, see [25, 65].

3 Unified Approach to the Extension of the Partial Boolean
Algebraic and Probabilistic Structures

In the previous section, we briefly recalled the main concepts involved in the Bell
and Kochen–Specker theorems. The main difference is that Bell’s theorem con-
cerns the extension of a collection of classical distribution (one for each set of local
measurements), whereas Kochen–Specker theorem involves the extension of a col-
lection of Boolean algebras (one for each set of commuting projectors). We also
discussed how the impossibility of an extension of the algebraic structure implies
an impossibility of the extension of all the probabilistic structures associated with a
quantum state, i.e., state-independent contextuality. Here, we present the connection
between these two problems formulated in terms of the notion of partial Boolean
algebra and partial probability theory and following the presentation of [18].

3.1 Partial Probability Theories

We start with the definition of partial Boolean algebra. This notion goes back to
the original paper of Kochen and Specker [52]. However, they consider a special
class of partial Boolean algebras that satisfy a property, indicated in the following
as (K–S) property, which we do not include in our definition. See below for more
details.

A partial Boolean algebra (PBA) is a set X together with a non-empty family
F of Boolean algebras, F 	 fBigi2I , such that

S
i Bi D X , for which Boolean

operations coincide on the intersections, namely

.P1/ for everyBi ;Bj 2 F , Bi \Bj 2 F and the Boolean operations .\i ;[i ;ci /,
.\j ;[j ;cj / of, respectively,Bi andBj coincide on it.
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Without loss of generality we can also assume the property

.P2/ for all Bi 2 F , each Boolean subalgebra ofBi belongs to F .

By .P1/, Boolean operations, when defined, are unique and will be denoted by
.\;[;c /; we denote a partial Boolean algebra by .X; fBigi2I /, or simply by
fBigi2I . In the following we consider only finite partial Boolean algebras. We call
their elements observables. Given a PBA .X; fBig/, a state is defined as a map
f WX �! Œ0; 1�, such that fjBi

is a normalized measure on the Boolean algebra
Bi for all i . Equivalently, a state is given by a collection of compatible probability
measures f�ig, i.e. measures coinciding on intersections of Boolean algebras, one
for eachBi .

A partial probability theory (PPT) is a pair ..X; fBig/If /, where .X; fBig/ is
a partial Boolean algebra and f is a state defined on it. Equivalently, a PPT can be
denoted with ..X; fBig/I f�ig/, where �i D fjBi

, or simply by .fBigI f�ig/. It can
be easily checked that the above properties are satisfied by the set of all orthogo-
nal projections in a Hilbert space of arbitrary dimension, with Boolean operations
defined by

P \Q 	 PQ; P [Q 	 P CQ � PQ; P c 	 1 � P; (9)

for all pairs P;Q of commuting projections. If one considers a finite set of pro-
jections, the result of the iteration of the above Boolean operations (on commuting
projections) is still a finite set and a partial Boolean algebra.

Moreover, given a set of projections, the corresponding predictions given by a
QM state define a PPT on the generated PBA. In fact, given a PBA of projections on
a Hilbert space H , by the spectral theorem, a quantum mechanical state  defines
a state f on it, given by f .P /D . ; P /. The generalization to density matrices
is obvious. We name such PPTs projection algebra partial probability theories.
We see in Sect. 3.2 that they are not the only PPTs that can be associated to QM
predictions, other choices being implicit in different approaches to contextuality in
QM. As mentioned above, in QM, PBAs of projections also satisfy the following
property

(K–S) if A1; : : : ; An are elements of X such that any two of them belong to a com-
mon algebraBi , then there is a Bk 2 F such that A1; : : : ; An 2 Bk .

In the following, we do not assume (K–S). On the one hand, this is not necessary
for the result that we present. We note that in a general theory of measurements,
it makes perfect sense to consider, for instance, three measurements such that ev-
ery pair can be performed jointly, but it is impossible to perform jointly all the
three. This is indeed what happens when we move from projective measurements
to general measurements, i.e. positive operator-valued measures (POVMs). Such a
property, also called Specker’s principle [22, 52, 70], plays a central role in quan-
tum mechanics, in particular the discussion of physical principle that recovers the
bounds for the set of quantum correlations; see [22, 23, 35, 45] for more details.

We now introduce several definitions that are helpful later on. Some of them are
simply a reformulation in algebraic terms of concepts that we already encountered,



Classical Representability for Partial Boolean Structures in Quantum Mechanics 103

such as the notion of context. Given a PBA .X; fBig/, we call a context each maxi-
mal, with respect to inclusion, Boolean algebra of fBig. Moreover, givenA;B 2X ,
we say that A and B are compatible if they belong to a common context. Given a
subset G�X , we say thatG generates, or thatG is a set of generators for .X; fBig/,
if each maximal Boolean algebra of fBig is generated by a subset of G. Given two
PBAs .X; fBig/ and .X 0; fB0j g/; we say that a function 'WX ! X 0 is a homomor-
phism if for eachBi the image '.Bi / belongs to fB0j g and 'jBi

is a homomorphism
of Boolean algebras; moreover, if ' is invertible, we say that ' is an isomorphism.
If .X 0; fB0j g/ is a Boolean algebra (notice that a Boolean algebra is also a PBA)
and the homomorphism ' is an injection, we say that ' is an embedding. Homo-
morphisms of .X; fBig/ into the Boolean algebra f0; 1g definemultiplicative states,
corresponding to the deterministic assignments previously encountered.

The following definitions concerns the possibility of extending a PPT to addi-
tional algebras, therefore enlarging the contexts and reducing their total number.
We say that .X 0; fB0j g/ contains .X; fBig/ if X � X 0 and fBig � fB0j g. We
say that .X 0; fB0j g/ extends .X; fBig/ if .X 0; fB0j g/ contains .X; fBig/ and X
generates .X 0; fB0j g/. Similar notions apply to states. Given two PPTs C D
..X; fBig/I f�ig/ and C0 D ..X 0; fB0j g/I f�0j g/, we say that C0 contains C if
.X 0; fB0j g/ contains .X; fBig/ and f�ig � f�0j g; we say that C extends C0 if
.X 0; fB0j g/ extends .X; fBig/ and C0 contains C. By classical representation of
a PPT C D ..X; fBig/I f�ig/ we mean a Boolean algebra B and a (normalized)
measure � such that .BI�/ extends C.

The central point of the KS theorem is precisely the impossibility of an em-
bedding of a PBA of projectors into a Boolean algebra, where this impossibility is
shown by the impossibility of constructing an homomorphism from the PBA to the
Boolean algebra f0; 1g, i.e., a deterministic, assignment. The notion of extension
presented here concerns the minimal extension, in contrast to the one of KS. The
two approaches, however, are equivalent since a PBA is extendable to a Boolean
algebra if and only if it is embeddable into a Boolean algebra.

When a PBA fBig extends to a Boolean algebra B, the problem of a classical
representation of a PPT reduces to the extension problem of a function, induced
by the corresponding state, defined on a subset of B; the solution of this extension
problem (with necessary and sufficient conditions) is then implicit in the work of
Horn and Tarski [47]. Their approach turned out, see [31], to be equivalent to the
correlation polytope approach of [36, 37, 63, 64]. For this reason, we call a PPT
CD .fBigI f�ig/ such that fBig extends to a Boolean algebra a Horn–Tarski (H–T)
partial probability theory.
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3.2 Reduction to Horn–Tarski PPTs

Empirical Quotients of Partial Probability Theories

Our goal is to provide a unification of Bell-type and KS-type approaches to classical
representability. In particular, we want to show that it is enough to focus on the
representability of the probabilistic structure ignoring the algebraic one, or more
precisely, substituting the PBA of projectors with a a free Boolean algebra and
investigating the probability measures induced on it by quantum states. The idea is
that, if a representation for the probability measures on such a free algebra exists,
the original algebraic structure, and the associated extension to a Boolean algebra,
can always be recovered as a quotient with respect to some equivalence relation
induced by the probability measures.

The first notion we introduce is that of empirical quotient; we briefly discuss it in
classical probability theory and then we generalize it to PPTs. Consider a classical
probability theory defined by a finite Boolean algebraB and a probability measure
�. If for two elements A;B 2B it holds �.A\Bc/D�.Ac \B/D 0, equivalently
�.A/D�.B/D�.A\B/, it follows that every timeA happens alsoB happens and
conversely. In terms of conditional probabilities, this can be written as P r.AjB/D
P r.B jA/ D 1. It thus makes sense to identify the events A;B and A \ B with a
single event since they cannot be distinguished by any experiment. This procedure
induces an equivalence relation
I onB, given by the ideal I DfA2Bj�.A/D 0g,
giving rise to the empirical quotient algebra eB 	 B=
I . The measure � induces
a normalized measure Q� on eB. Similar notions, with identical interpretation, apply
to the case of a finite Boolean algebra B and a collection of normalized measures
f�kgk2K , whereK may be any set of indices, through the ideal IDfA2Bj�k.A/D
0 for all k 2 Kg (any K being admissible sinceB is finite).

The extension of the above notions to the case of PPTs is not automatic and
requires further conditions. Given two collections of PPTs fCkgk2K D f.fBigi2I I
fk/gk2K and feCkgk2K D f.feBj gj2J I Qfk/gk2K , we say that feCkgk2K is an empirical
quotient of fCkgk2K if there exists an equivalence relation 
 on X D S

i Bi such
that

(i) when restricted to each Boolean algebra Bi , 
 coincides with the equivalence
relation induced by the ideal Ii 	 fA 2 Bi jfk.A/ D 0 for all k 2 Kg;

(ii) givenA2Bi andB 2Bl , withBi andBl maximal, if A
B , then there exists
C 2 Bi \Bl such that A 
 C (and B 
 C by transitivity);

(iii) the quotient set X=
 is a PBA isomorphic to the PBA eX DSj
eBj ; by (i), this

implies that the quotient preserves Boolean operations, namely for all A;B 2
X , with A and B compatible, it holds ŒA�\ ŒB�D ŒA\B�, where ŒA� denotes
the equivalence class of A with respect to 
, and analogous properties hold for
[ and c;

(iv) denoted with 'WX=
 �! eX the isomorphism in (iii), it holds fk.A/ DQfk.'.ŒA�//, for all k 2 K and for all A 2 X .
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The above definition clearly applies in the classical case, i.e. when both X and
eX are Boolean algebras; we provide below less trivial examples. We remark that,
unlike the classical case, an equivalence relation on a PPT satisfying .i/ and .iv/
does not in general give rise to an empirical quotient; a counterexample can be
constructed by considering a PPT given by the PBA consisting of three maximal
Boolean algebras, generated respectively by the pairs of observables fA;Bg, fB;C g
and fA;C g, together with the corresponding subalgebras, and a state f that induces
in the above Boolean algebras the identification A 
 B , B 
 C and C 
 Ac . In
fact, if an empirical quotient exists, then by transitivity A is identified with Ac and
therefore, by .i/, both are identified with ;; this contradicts Qf .'.Œ1�// D 1. This
example is a version of the the triangle scenario introduced by Specker [70].

The above notion of quotient may look too restrictive; on the contrary, it will
turn out that all PPTs with a PBA admitting a complete set of states (see below) can
be identified with quotients of PPTs associated to a collection of freely generated
Boolean algebras, which are automatically embeddable into a Boolean algebra. This
will imply that all extension problems in QM can be put in the H–T form.

Classical Representations of Partial Probability Theories and of Their
Empirical Quotients

We want to connect the classical representation of a PPT with that of its empirical
quotient with respect to a set of states. Intuitively, this means that we can recover the
embedding of the original algebra of projectors (KS approach), from the classical
representation of the unconstrained (i.e., free) algebra that we considered instead
(Bell approach). An intermediate step is provided by Prop. 1 below.

Given a PBA fBigi2I and a collection of states ffkgk2K , we say that ffkgk2K is
complete with respect to fBigi2I if for all A 2X D

S
i Bi , with A¤ ; there exists

fk such that fk.A/ ¤ 0. If, in addition, for all A ¤ B , with A;B 2 X , there exists
fk such that fk.A/ ¤ fk.B/ then ffkgk2K is said to be separating for fBigi2I .
Notice that for an empirical quotient feCkgk2K D f.feBj gj2J I Qfk/gk2K , by .i/ and
.iv/, f Qfkgk2K is always complete with respect to feBj gj2J . The following result
relates classical representations of PPTs with embeddings of PBAs associated to
empirical quotients.

Proposition 1 Given fCkgk2K Df.fBigi2I Ifk/gk2K and feCkgk2K D f.feBj gj2J I
Qfk/gk2K , with feCkgk2K an empirical quotient of fCkgk2K , if there exists k0 2K such
that Ck0 admits a classical representation, then there exists a multiplicative state on
feBig, i.e. a homomorphism ı0W eX D

S
j
eBj �! f0; 1g.

Moreover, if there existsK 0 �K such that f Qfkgk2K 0 is separating for feBj gj2J and
Ck admits a classical representation for every k 2 K 0, then feBj gj2J is embeddable
into the Boolean algebra 2N , the power set of a N -element set, where N is the
number of multiplicative states induced by classical representations of the states
ffkgk2K 0 .
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Proof Let the Boolean algebra B together with the normalized measure � be a
classical representation for Ck0 , then � can be written as a convex combination of
multiplicative measures, namely

� D
X

i

�i ıi ; (10)

where the ıi ’s are multiplicative measures and f�igi satisfy �i > 0 and
P

i �i D 1.
It follows that �.A \ Bc/ D �.Ac \ B/ D 0 for all A;B 2 X such that A 
 B
and A and B belong to a common algebra Bi0 2 fBig; therefore ıi .A \ Bc/ D
ıi .A

c \ B/ D 0 for each ıi that appears in (10). Actually, the same holds even
if A and B do not belong to a common maximal algebra of fBig. In fact, by
.i i/, there exists an element C in the intersection of the two maximal algebras
containing A and B such that A 
 C 
 B and the above statement follows from
A \Bc D .A \ Bc \ C/[ .A \ Bc \ Cc/.

It follows that ıi .A/ D ıi .B/ for all A;B 2 X such that A 
 B and for all ıi
appearing in (10); therefore each ıi induces a well defined f0; 1g-valued function
on eX . To conclude, we prove that such functions are homomorphisms when re-
stricted to each algebra of feBj g. This follows from the isomorphism between eX
and X=
 and the fact that each ıi defines a multiplicative measure on Bi =
 for all
Bi . In fact, given A;B 2 Bi , ŒA�\ ŒB�D Œ;� implies ıi .A\B/D 0 and therefore
ıi .A/C ıi .B/ D ıi .A[B/; each ıi defines, therefore, a f0; 1g-valued function on
Bi =
 which is additive on disjoint elements, i.e. a multiplicative measure, which
is a homomorphism with the Boolean algebra f0; 1g. The proof of the second part
follows easily from the first part together with Theorem 0 of [52]. �

Partial Probability Theories as Empirical Quotients of Free H–T Theories

We now show that any complete set of states on a PBA can be regarded as an
empirical quotient of a collection of PPTs on a PBA which is embeddable in a
(free) Boolean algebra, i.e a collection of H–T PPTs.

Consider a collection of PPTs feCkgk2K D f.feBj gj2J I Qfk/gk2K such that f Qfkgk2K
is complete, and take a subset eG D feA1; : : : ;eAng � eX D S

j
eBj of generators of

feBj gj2J satisfying the following property

(G) given k � 1maximal Boolean algebras eBi1 ; : : : ;
eBik , generated respectively by

maximal subsets of compatible generators eGi1 ; : : : ;eGik � eG, such that eBi1 \
: : :\eBik ¤ f;; 1g, the seteGi1:::ik 	eGi1 \ : : :\eGik is not empty and it generates
the Boolean algebra eBi1 \ : : :\ eBik ;

notice that each maximal algebra is generated by a maximal subset of compat-
ible generators and that the above choice is always possible since one can take
eG D eX . The role of this property is clarified below. Denote with feGlg the collec-
tion of subsets of compatible observables of eG, eGl D f QAs1 : : : QAsnl g. Now consider
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the PBA fBigi2I consisting of Boolean algebras freely generated by subsets Gl 	
fAs1 : : : Asnl g.

The role of such generators is to define a state fk on the the free Boolean al-
gebra fBigi2I from a state Qfk , such that the original PPTs feCkgk2K become their
empirical quotient. To do so, we start by showing how each state Qfk induces a
state fk on fBigi2I . First, notice that, since each state on a PBA is a collection of
normalized measures, it is sufficient to define it as measures on maximal Boolean
algebras. Each measure on a maximal algebra Bl of fBigi2I , generated by a set
Gl D fAs1 ; : : : ; Asnl g, is completely determined by its values on elements of the

form .�1/1�"1As1 \ : : :\ .�1/1�"nl Asnl , where�A	Ac and "i 2 f0; 1g, since each
element of the algebra can be written as a disjoint union of elements of that form.
Now, fk is defined as fk..�1/1�"1As1 \ : : :\ .�1/1�"nl Asnl / 	 Qfk..�1/1�"1eAs1 \
: : : \ .�1/1�"nleAsnl / for all maximal subsets of compatible observables eGl of eG,
and extended as a measure on each maximal algebra. It can be verified that such
measures are normalized and they coincide on intersection of Boolean algebras;
therefore, they define a state.

In this way, we obtain a collection of PPTs fCkgk2K 	 f.fBigi2I Ifk/gk2K such
that the initial collection feCkgk2K D f.feBj gj2J I Qfk/gk2K is an empirical quotient of
it. The equivalence relation 
 can be, in fact, defined as follows: to each element
A of X , generated by a subset of compatible generators Gl � G there corresponds,
via the correspondence Ai 7! eAi , a unique element eA of eX , defined as the element
generated byeGl �eG by means of the same operations that generateA from Gl ; then
an equivalence relation 
 can be defined on X as A 
 B iff eA D eB .

It can be easily verified that 
 is an equivalence relation and that it defines an
empirical quotient:

(i) it is sufficient to consider each Boolean algebras Bl , generated by Gl D
fAl1; : : : ; Als g, and notice that, there,
 coincides with the equivalence relation
induced by the ideal I	fB 2Bl j

S
"2HB .�1/1�"1eAl1 \ : : :\ .�1/1�"seAls D;g

withHB 	 f"D ."1; : : : ; "n/ 2 f0; 1gnj.�1/1�"1Al1 \ : : :\ .�1/1�"sAls � Bg;
now, since f Qfkgk2K is complete and by construction of ffkgk2K , I coincides
with the set fB 2 Bl jfk.B/ D 0 for all k 2 Kg.

(ii) given A;B 2X , belonging respectively to maximal algebrasBl1 , generated by
Gl1 , andBl2 , generated by Gl2 , with Gl1 and Gl2 maximal, if A 
 B , then there
exists C 2 Bl1 \ Bl1 , which is the Boolean algebra generated by Gl1 \ Gl2 ,
such that A
 C 
 B . In fact, A
B implies, with the same notation as above,
eA D eB; therefore the two maximal algebras generated respectively by eGl1 and
eGl2 have a non-empty intersection containing eA, then, by .G/, Gl1 \ Gl2 ¤ ;
and an element C satisfying the above conditions exists.

(iii) by construction, X=
 is in a one-to-one correspondence with eX ; that such a
bijection is also an isomorphism follows from the coincidence, within each
Boolean algebra, of 
 with the equivalence relation induced by the ideal I
discussed above.

(iv) it follows by construction of ffkgk2K .
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The above partial Boolean algebra fBigi2I is embeddable into the Boolean algebra
freely generated by the set G. The PPTs fCkgk2K are therefore of the Horn–Tarski
type and we name fCkgk2K the collection of free H–T partial probability theories
associated to feCkgk2K and eG.

Classical Representations and Free H–T Theories

We can finally prove the main result of this section.

Theorem 1 Given a collection of PPTs feCkgk2K D f.feBj gj2J I Qfk/gk2K with
f Qfkgk2K complete with respect to feBj gj2J , a set of generators eG D f QA1; : : : ; QAng
satisfying property .G/ and the associated collection of free H–T PPTs fCkgk2K D
f.fBigi2I Ifk/gk2K , then
(a) if, for a given k 2 K, eCk admits a classical representation, then Ck admits a

classical representation;
(b) if there exists K 0 � K such that f Qfkgk2K 0 is separating for feBj gj2J and Ck

admits a classical representation for all k 2 K 0, then eCk admits a classical rep-
resentation for all k 2 K 0.

Proof (a) Let the Boolean algebra eB together with the normalized measure
Q�k be a classical representation for eCk . By the definition of extension, the
set eG is a set of generators for eB; therefore the Boolean algebra eB is iso-
morphic to the quotient algebra B=
, where B is the Boolean algebra freely
generated by n generators fA1; : : : ; Ang and the equivalence relation 
 is that in-
duced by the ideal I 	 fB 2 BjS"2HB .�1/1�"1eA1 \ : : :\ .�1/1�"neAn D ;g with
HB 	 f" D ."1; : : : ; "n/ 2 f0; 1gnj.�1/1�"1A1 \ : : : \ .�1/1�"nAn � Bg. Then,
denoted with ' the isomorphism betweenB=
 and eB, a measure �k extending the
state fk on B can be defined as �k.A/ 	 Q�k.'.ŒA�// for all A 2 B, where ŒA� is
the equivalence class of A with respect to 
. It can be easily verified that .BI�k/
is a classical representation for Ck .

(b) Let the free Boolean algebraB, defined as above, together with a normalized
measure �k be a classical representation for Ck, for all k 2 K 0. By Proposition 1,
feBj gj2J is embeddable into the Boolean algebra 2N , N as in Proposition 1; let
us denote with eB the subalgebra of 2N generated by eG and with S the set of all
homomorphism ıW eX �! f0; 1g induced by the normalized measures �k, k 2 K 0
(see Proposition 1). Such homomorphisms are, by construction (see Theorem 0 in
[52]), in a one-to-one correspondence with the multiplicative measures of 2N and
can be extended to multiplicative measures on eB in a way uniquely determined
by the values assumed on the set of generators eG. It follows that each elementS
"2H.�1/1�"1eA1 \ : : : \ .�1/1�"neAn, with H � f0; 1gn, generated by eG is the

zero element if and only if
P

"2H
Qn
iD1 "i ı.eAi/C .1 � "i /.1 � ı.eAi// D 0, i.e. the

extension of ı is zero on such an element, for all ı 2 S . Since the homomorphisms
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in S are induced by multiplicative measures associated, see (10), to the normalized
measures �k , k 2 K 0, it follows that the ideal I defined as in .a/ coincides with
the ideal I 0 	 fB 2 Bj�k.B/ D 0 for all k 2 K 0g. This implies, as in the proof of
Proposition 1, that �k induces a normalized measure on B=
, and consequently a
normalized measure Q�k on eB, for all k 2 K 0. It can be easily checked that .eBI Q�k/
is a classical representation foreCk for all k 2 K 0. �

In simple terms, we may say that the problem of classical representability can
be solved with or without taking into account the algebraic relations between the
observables. The latter is the path implicitly taken in several approaches to Kochen–
Specker contextuality [7, 21], but not all. For instance, some authors derived non-
contextuality inequalities that assume some of the algebraic properties of the QM
projectors, often as an alternative version of an inequality that do not assume that.
A typical example is the Klyachko–Can–Binicioğlu–Shumovsky (KCBS) [51] in-
equality. It was provided both in the form

hA0A1i C hA1A2i C hA2A3i C hA3A4i C hA4A0i � �3; (11)

in which the observables Ai are fC1;�1g-valued and the possible contexts are
fAi ;AiC1gi (with sum mod 5) and in the form

4X

iD0
p.ai D 1/ � 2; (12)

which assumes the exclusivity of the events ai D 1 and aiC1 D 1, from the or-
thogonality relations of the projectors fPig4iD0, on the eigenvalue C1 for Ai , i.e.,
Ai D 2Pi � 1 and PiPiC1 D 0. These two variants of noncontextuality inequalities
appear in parallel several other works, see, e.g., [12, 81] and in the original propos-
als of noncontextuality inequalities, called Kochen–Specker inequalities [56, 67],
which explicitly included in the definition of the NCHV model conditions such
as O0 and C0, discussed in Sect. 2.3 above. From the perspective of experimental
tests of NCHV models and noncontextuality inequalities, it is clear that the ideal
approach is to minimize the assumptions involved in the interpretation of the ex-
periment, so that the largest set of NCHV can be disproven; see [16] for a detailed
discussion. Theorem 1, then, proves that there is no loss of generality in considering
just the probabilistic approach.

4 Automatic Extensions Based on Compatibility Relations

We discussed the problem of classical representability of quantum mechanical pre-
dictions from the perspective of the algebraic and probabilistic structures. A natural
question is whether there exist properties of these structures that guarantees that
the classical representation always exists. Two trivial cases come immediately to
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mind. The first is the case in which all observables are compatible. In this case,
QM already provides a classical representation, i.e., a global probability distribu-
tion over all considered observables. In the language of the previous section, we
have a Boolean algebra and a measure on it. The extreme opposite, namely, the
case of all observables being incompatible, also admits a classical representation,
as already noted by Kochen–Specker [52] in the general case and by Bell for two-
level quantum systems [11]. In fact, since everything is incompatible there are no
algebraic or probabilistic relations to be satisfied, one can thus take as a global dis-
tribution the product of the distribution of all observables. These two examples are
specials cases of a more general result that connects the graph-theoretic properties
of the compatibility relations with the existence of a classical representation for the
associated QM predictions. We start by introducing some basic definition and then
we present the general result.

We fist need some basic definitions from graph theory. See [9, 32] for more
details. A graph is a pair G D .V;E/ where V is the set of vertices, or nodes, and
E is the set of edges, i.e., unordered pairs .i; j / for some i; j 2 V . Two vertices
i; j 2 V of a graph are adjacent, or connected, if .i; j / 2 E. A set of mutually
connected vertices is called a clique of the graph. A path is a sequence of distinct
vertices v0; : : : ; vn such that vi is connected to viC1, for i D 0; : : : ; n � 1. A cycle
is defined in the same way, but with v0 D vn. A graph is an acyclic, or a tree, graph,
if it contains no cycle. A graph is triangulated, or chordal, if every cycle of length
n � 4 contains a chord, i.e., an edge connecting .vi ; viC2/.

A hypergraph is a generalization of the above idea obtained by allowing edges
to connect more than two vertices, namely, a pair H D .V;E/, where V is the set
vertices and E the set of hyperedges, i.e., E � 2V , with 2V the power set of V .
Hypergraphs can also arise from graphs; for instance, the clique hypergraphH of a
graph G is defined by the same set of vertices and has as hyperedges the cliques of
G. If a hypergraph contains only maximal hyperedges, i.e., for each hyperedge E
there is no hyperedgeE 0 such that E 0 � E, the graph is said to be reduced. Given a
hypergraphH , we say thatH 0 is the reduced hypergraph ofH if it is obtained from
H by removing all nonmaximal hyperedges. The notion of acylicity for hypergraphs
that is relevant for us (many are possible) is given by the following two equivalent
definitions. A hypergraph is acyclic [9] if it has the running intersection property,
i.e., if there exists an ordering of the hyperedges, E1; : : : ; En, such that

Ei \ .E1 [ � � � [ Ei�1/ � Ej ; with j < i; for all i: (13)

An equivalent definition is that a hypergraph is acyclic if it is the clique hypergraph
of a triangulated graph.

We defined a marginal scenario M as the set of of all contexts for a given set
of observables A1; : : : ; An. A natural representation of a marginal scenario is given
by a hypergraph H D .V;E/: Each vertex v 2 V D fA1; : : : ; Ang represents an
observable, whereas hyperedges h 2 E D M � 2G represent contexts. Given its
relevance, we often discuss the specific case of sharp measurements. For projec-
tive measurements in quantum mechanics the K-S property, or Specker’s principle,
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A2B2

A1 B1

Fig. 2 Compatibility graph associated with the observables of the CHSH scenario corresponding
to the marginal scenario f.Ai ; Bk/gi;jD1;2. This graph can also be used to illustrate the basic no-
tions of path and cycles. A path is given by any sequence of sequentially connected vertices, such
as .A1; B1; A2/. A cycle is a closed path such as .A1; B1; A2; B2/. Notice that this graph is not
triangulated, as there exists a cycle of length 4 without a chord

defined in Sect. 3 holds, hence, pairwise compatibility is equivalent to global com-
patibility. As a consequence, for the case of projective measurements, it is enough
to represent the marginal scenario as a graph, interpreting edges as pairwise com-
patibility relations and cliques as contexts. For the case of sharp measurements, we
call such graphs compatibility graphs. Interestingly, any graph can be interpreted
as a compatibility graph, i.e., there always exists a set of sharp observables that
realizes it [46], and the a similar result holds when considering hypergraphs and
POVMs [54]. An example of a compatibility graph is given in Fig. 2 for the CHSH
scenario. Each vertex represents an observable A1;A2; B1; B2, and edges connect
vertices corresponding to the joint measurements, or contexts, hAiBj i appearing in
(5).

The connection between acyclicity properties of the compatibility graph and the
existence of classical representation for the associated marginal scenario was in-
vestigated in [18] and independently in [55, 66]. It was shown that for any set of
observables such that their compatibility graph is acyclic, i.e., a tree graph, a classi-
cal representation always exists independently of the assigned probabilities, i.e., for
any quantum state. Moreover, in [18] an extra condition was considered, namely the
possibility of a graph representation where nodes represent larger contexts instead
of single observables. These represent special cases of a general result for marginal
scenario hypergraphs that follows from a theorem by Vorob’ev, originally devel-
oped in the context of coalition games [76]. In our terminology, the result can be
stated as follows:

Theorem 2 ([74]) Any marginal scenario represented by an acyclic hypergraph
admits a joint probability distribution.

Sketch of the Proof An elementary proof of the theorem can be obtained as
follows. Let M be the marginal scenario hypergraph, with hyperedges (contexts)
C1; : : : ; Cn. To each of them is associated a probability distribution, let us denote
it by pi .Ci /, such that the distributions coincide on their intersection. Since M
is acyclic, we can assume, up to a relabelling of the contexts, that the ordering
C1; : : : ; Cn respects the running intersection property. To prove that a global distri-
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bution exists, we proceed by induction on n. For nD 1, p1.C1/ is a valid probability
distribution. We then apply the inductive hypothesis. Let us assume that for n � 1
p.1;n�1/.C1 [ : : :[Cn�1/ is a valid probability distribution extending the marginals
pi .Ci / for 1 � i � n� 1. We want to extend it to P.C1 [ : : :[Cn�1 [Cn/. By the
running intersection property, Cn \ .C1 [ : : : [ Cn�1/ DW Sn � Cj for j < n. We
define Rn ´ CnŸSn and

p.RnjSn/´ pn.Cn/

pj .Sn/
; (14)

defining p.RnjSn/ D 0 when pn.Cn/ D pj .Sn/ D 0, and we define the joint distri-
bution as

p.1;n/.C1[ : : :[Cn�1[Cn/´ p.RnjSn/p.1;n�1/.C1[ : : :[Cn�1ŸSnjSn/pj .Sn/:
(15)

It can be straightforwardly verified that this is a valid probability distribution and its
marginals coincide with pi .Ci / for 1 � i � n, so it is an extension of the marginal
scenario. �

The theorem was originally stated in [76] [translate into English as [77]] and later
proven in [74]; see also [75]. The same result was also independently proven in
[48, 49, 57]. Intuitively, Vorob’ev’s result can be understood as the construction
of a global probability by “gluing together” probability distributions on their in-
tersection, the so-called “adhesivity” property [58]. Due to the acyclicity property,
i.e., the running intersection property, such a construction can always be made in a
consistent way.

In recent year, Vorob’ev’s result has been rediscovered in different areas of
quantum information and quantum foundations, from contextuality [68, 69, 78]
and causal discovery methods [17], and entanglement theory [61]. This result has
implication for the computation of correlation polytopes and entropic cones associ-
ated with noncontextuality scenarios [6, 15, 53] and more general causal structures
[17, 27]. The problem of classical representability for sharp observables, then, can
be discussed simply in terms of compatibility graphs. In this case, it is sufficient to
verify that the graph is triangulated, since this corresponds to an acyclic hypergraph
of the marginal scenario; see the discussion given by [78] for additional details.

We can now comment on the examples we have seen so far. First, the two exam-
ples discussed at the beginning: the case of all observables being compatible and
all observable being incompatible. In one case, we have a fully connected graph,
i.e., consisting of a single clique, which is triangulated, and in the other we have
a fully disconnected graph, which is, again, triangulated since there are no paths.
In the latter case, Vorob’ev’s theorem also tells us that the global distribution is
just the product distribution. Another interesting example is the case of a marginal
scenario consisting only of nondegenerate observables. In this case, compatibility
becomes a transitive relation [30], giving rise only to a graph consisting of discon-
nected cliques, again admitting a classical representation by Vorob’ev’s theorem.
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It is not a coincidence that the two simplest example of scenarios not admitting a
classical representation form a cycle of length greater than 3, namely, the CHSH
scenario, whose compatibility graph is a square (see (5) and Fig. 2), and the KCBS
scenario, whose compatibility graph is a pentagon (see (11)).

5 Conclusions

We provided a review of the main results of [18], presented in the modern perspec-
tive of Kochen–Specker contextuality and with connections with recent progress in
the field. First, we showed that two approaches of classical representability, what we
called the KS-type, i.e., classical representation of the algebraic structure and then
the probabilistic one, and the Bell-type, i.e., classical representation of the proba-
bilistic structure without algebraic constraints, are fundamentally equivalent. This
implies that the general problem can be solved by considering only the problem for
the probabilistic structure on a relaxed algebraic structure, i.e., a free algebra. The
classical representation for the original algebra can, then, be recovered as a quotient.
Over the years, this approach became the standard one in the discussion of noncon-
textuality, especially in relation with experimental tests, due to the minimality of
the assumptions involved in the definition of the associated NCHV model, since no
algebraic relations need to be assumed. The results presented here show that there
is no loss of generality in this choice. Second, we discussed how the compatibil-
ity relations, more precisely, their graph-theoretic structure, guarantee the existence
of a classical representation independently of the assigned probability. The result
presented in [18] turned out to be a special case of a theorem by Vorob’ev with sev-
eral implications both for the identification of interesting experimental scenarios,
leading to the violation of classical constraints, and the explicit computation of the
boundaries of the classical set of correlations (Bell and noncontextuality inequali-
ties), as well as implications even beyond the field of quantum foundations.
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51. Klyachko, A.A., Can, M.A., Binicioğlu, S., Shumovsky, A.S.: Simple test for hidden variables

in spin-1 systems. Phys. Rev. Lett. 101, 20403 (2008)
52. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math.

Mech. 17, 59–87 (1967)
53. Kujala, J.V., Dzhafarov, E.N., Larsson, J.-Å.: Necessary and sufficient conditions for an ex-

tended noncontextuality in a broad class of quantum mechanical systems. Phys. Rev. Lett. 115,
150401 (2015)

54. Kunjwal, R., Heunen, C., Fritz, T.: Quantum realization of arbitrary joint measurability struc-
tures. Phys. Rev. A 89, 52126 (2014)
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66. Ramanathan, R., Soeda, A., Kurzyński, P., Kaszlikowski, D.: Generalized monogamy of con-
textual inequalities from the no-disturbance principle. Phys. Rev. Lett. 109, 50404 (2012)
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Abstract The physical principles at the basis of an “elementary derivation” of the
General Relativity (GR) effects in a static centrally symmetric field are reexamined.
We propose a theoretical framework in which all the GR results follow from the EP,
local SR and Newton law in intrinsic coordinates.

1 Introduction

The deviations from Newtonian gravity [1] in the centrally symmetric static case,
i.e. slowing of time, light deflection and precession of orbits have played a funda-
mental role for the confirmation of General Relativity (GR) [2].

It is not clear to which extent the full GR theory is necessary for the prediction
of such effects. In particular, the possibility that the above three crucial tests could
be derived only or mainly from Special Relativity (SR) was first explored in [3],
but its conclusions have been criticized in [10, 11]. The problem of a derivation of
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the above effects from a restricted number of assumptions has been reconsidered in
many other investigations [4–9] and ref.s therein.

While Schiff’s analysis consists substantially in the attempt of a direct intepre-
tation of the metric of the popular Schwarzschild (Ss) solution, the subsequent
work has been directed to a similar interpretation of the (less widespread) Painlevé–
Gullstrand (PG) solution.

For the Ss solution, as we shall see, the attempt to identify the correponding
terms as Special Relativity (SR) effects [3] is only tenable for time, whereas the
factor given by SR for the radial coordinate is the inverse of that. The simplicity of
the Ss solution, in particular the separation between time and space effects in the
invariant interval, both given by Lorentz factors, is in this sense misleading.

The PG metric (originally interpreted as a physically different solution of the GR
equations) has also been obtained without recurring to Eintein equations, by argu-
ments which seemed so “elementary” to be considered as purely heuristic even by
the authors themselves. This sounds indeed a bit paradoxical since the “elementary”
and GR approaches lead to the same results, so that the different ingredients of the
first cannot be discarded as fortuitous because they are not complicated enough.
This judgement is rather the result, in our opinion, of an uncomplete control of
the proposed theoretical framework, related to the ambiguities in the identification
of the components of the metric tensor as physical objects (see the discussion in
Sect. 4.3).

The purpose of the present paper is to reexamine the problem and clarify the
ingredients substantiating an elementary derivation of the GR effects in the static
centrally symmetric case.

While Schiff’s considerations, based on the Ss solution, try to reconstruct the GR
results as SR effects, in the approach based on the PG solution the Equivalence Prin-
ciple (EP) plays the most important role, the metric being the result of an argument
involving radial free fall trajectories, provided by a velocity field v.r/ associated to
gravity and common to all particles in free fall from infinity.

Free fall trajectories can be interpreted as defining a “modified inertial law”.
They have therefore nothing to do with accelerations in Minkowski space and they
should rather be regarded as transporting to all the space-time points the metric of
local Minkovski structure assumed at infinity.

This amounts to use the EP in the form that, to the first order in the displace-
ments, the metric remains Minkowski for a free falling observer, in the space and
time variables defined by free falling clocks and rods.

The determination of the metric then depends on the free fall law and on a pa-
rameter describing a possible space curvature, and the essential question is whether
they are affected by the velocity of light. One might indeed conceive a relativis-
tic modification of Newton’s law; as we shall see, the result is sensitive to such
corrections in the case of Mercury’s precession, which disproves their presence.

On the basis of the above interpretation of free fall as a modified inertial law,
the basic idea is that only the Newton constant must be relevant for the velocity of
radial free fall and for the space geometry parameter [6], in the intrinsic variables
mentioned above.
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This fixes the free fall law, which holds at all distances and even provides a
common description of the outer an inner regions of the Schwarzschild black hole.
The velocity of light of course enters, but only in the construction of the invariant
interval, which is at the basis of local relativistic physics.

We will show that indeed, in the static centrally symmetric case, the ordi-
nary Minkowski structure at space infinity and the Newton constant uniquely
identify radial trajectories and a metric on space-time, determined in physically
constructed (“intrinsic”) coordinates and coinciding with the one given by the
Painlevé–Gullstrand [16, 17] solution of the Einstein equations.

The presentation will be elementary, starting from the modifications of Newton’s
treatment required by an “operational” construction of the space and time coordi-
nates, which will be done on the basis of the EP for radial free fall trajectories
(Sect. 2). The local Minkowski structure will be determined in such coordinates in
Sect. 3. To better clarify the elementary character of our arguments, in Sects. 4 and 5
the predictions of the main GR effects will be derived directly from our approach.

The results will be compared to other approaches, and a discussion of the Sagnac
effect along similar lines will follow.

2 Newtonian Time and the Equivalence Principle

2.1 Absolute Time from the EP

Newtonian space-time consists of Euclidean space and “absolute” time, a notion
which clearly conflicts with the basics of Special Relativity. This justifies the gen-
eral consensus about the fact that the inclusion of SR into Newton’s theory be
forbidden from the beginning, leaving as the only solution a complete reformulation
of the entire problem of gravity, which is in fact the case of the General Relativity
approach. However, it is our aim to show that there is a simple and direct way to give
a meaning to “relativistic corrections to Newton gravity”, on the basis of the Equiv-
alence Principle and Special Relativity. This can be done in a substantially unique
way, and reproduces all the General Relativity results for static central gravitational
fields.

The basic form of the EP is that feathers and lead balls experience the same
gravitational effects. All objects acquire the same free fall velocity: their inertial
and gravitational masses are equal.

In general, the purpose of the EP is to use frames associated to free falling
observers to “eliminate” gravity locally, to the first order in the space-time dis-
placements from a given point.

In the following, we will use the EP to include gravity effects in the Newtonian
notion of time. We assume central symmetry and the validity at large distances of
the Newtonian description: space is Euclidean and time satisfies, in that limit, all
the synchronization properties defining Minkowski frames in the absence of gravity.
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We also assume stationarity with respect to the time at infinity. Then, the EP, which
asserts that gravity effects are not felt by free falling observers, suggests to define
time by clocks in free fall from infinity.

We assume therefore that clocks can be arranged to fall freely from infinity,
starting at all times, along radial trajectories, with zero initial velocity; they provide
a unique notion of time, defined for all space-time points. We will adopt such a
notion of time as the “EP absolute time” t with a similar role as Newton’s absolute
time.

Let us also remark that, by the above stationarity assumption, the time needed
for free falling clocks to reach a given point in space from infinity is independent
from the starting time and that therefore in this sense time intervals at any space
point “coincide with time intervals at1”.

We assume invariance of all the physical laws with respect to the translations of
the EP absolute time.

Notice that no velocity parameter appears in such a construction, due to the
null velocity of the clocks at infinity. Other possible constructions, with a non-zero
velocity at infinity, would require the use of SR to account for the initial motion
near infinity, preventing a clear separation of roles between SR and EP.

Clearly, the introduction of the above notion of time has important consequences,
even on the description of space alone, since the very identification of the space
variables and of space geometry concerns, by definition, space-time points at the
same time. This affects in particular the notion of space distances, which will be
defined as measured by sequences of small rods, with their ends taken at the same
time.

The same construction can be performed for radial trajectories reaching infin-
ity (at time C1) with zero velocity. Our results will be independent of the choice
between the corresponding (alternative) notions of time. To be definite we will con-
sider in the following the case of infalling velocities i.e. v.r/ < 0.

2.2 Newton Laws

Adopting the above reformulation for time, we now endorse the Newton principles
of gravitation, for a centrally symmetric static gravitational field:

1. space is assumed to be Euclidean. This amounts, due to central symmetry, to the
Euclidean relation between radial and angular distances

I
d l D 2�r (1)

2. radial free fall is asserted to be given by the Newtonian velocity law

v2.r/ D 2GM

r
D �2˚.r/ (2)
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As well known, since the same law applies to all bodies, (1) includes, for the case
of radial free fall from infinity, the basic form of the EP, i.e. the uniqueness of free
fall trajectories for given initial position and velocity.

We emphasize that all the above notions refer to measured space and time inter-
vals; as a consequence of assumption 1), space distances are given by the Euclidean
expression in Cartesian coordinates x; the velocity in (2) is defined by the above
measurements of space distances and by time intervals given by free falling clocks.

Opposite to the ordinary GR point of view, we do not start from coordinate in-
dependence, but rather identify coordinates allowing for a description in the spirit
of Newton gravitation. We have therefore

1. chosen to discuss the property of space and time in presence of gravity in “in-
trinsic coordinates”, obtained in terms of Euclidean coordinates near infinity,
extended by using times and distances measured by radially free falling ob-
servers.

2. assumed Euclidean space and Newton’s free fall law in such coordinates.

The velocity of light does not appear in the above considerations: only the Newton
constant G and the mass M enter in the above description of space and time. On
such a basis (1) and (2) are forced by dimensional analysis and space flatness at
infinity, which determines in particular the value 2� in (1).

2.3 Free Falling Frames and the EP

So far the EP has only been used to derive a notion of time, in which Newton laws
have been expressed. Let us now formulate the complete EP. To this purpose, the es-
sential step is to introduce, around each space-time point, local variables associated
to Free Falling Frames.

Observers falling along radii starting at infinity (at time minus infinity) with
zero velocity employ, around a trajectory X.t/, time intervals measured by free
falling clocks, and space distances from X.t/, measured by (small) rods with ends
at the same time and therefore given by Euclidean expressions in x � X.t/. Using
dX=dtDv.X.t//, v.r/ given by (2), the corresponding differentials at a space-time
point r0, t0 are (see Fig. 1)

dt 0 D dt
dr 0 D dr � v.r0/dt
dx0? D dx? (3)

with dx0? the space displacements in the directions orthogonal to r , given by the
differential dx? of local Newton cartesian coordinates orthogonal to the radius.

Even if (3) have the form of Galilei transformations, they have a very different
nature, since they describe “small” (infinitesimal) displacements in Free Falling
Frames, on the l.h.s., in terms of global coordinates in the r.h.s.
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Fig. 1 The clocks of the
infinitesimal Equivalence
Principle Inertial Frames
(EPIFs), starting at any time,
associate to each point the
time t 0 D t . The relativis-
tic space-time effects of
gravitation are determined
by the infinitesimal invari-
ant Minkowski interval
ds2 D c2dt 02 � dr 02 in the
EPIFs coordinates, which
gives the metric in the global
coordinates .r; t / through (3)

It is a fundamental fact that the above relations are not given by Lorentz trans-
formations. They have the form of Galilei transformations because they arise from
the use of a common, “absolute”, notion of time.

Equation (3) should not be interpreted therefore as a low velocity approximation
of Lorentz transformations (as in [7]). They are exact in our approach, for all values
of the free fall velocity. By the above derivation, they hold independently of (2),
which only fixes the value of v; morever, only the third equation should be modified
(by an r dependent factor) in the absence of the Euclidean relation, (1).

In fact, in the present Section we are only discussing the modifications to the
inertia principle, which holds both in relativistic and non relativistic physics and
has little to do with the velocity of light, which was in fact never mentioned in the
above discussion.

Clearly, the use of a Lorentz transformation in (3) would lead to a trivial local
Minkowski structure, excluding gravity effects on clocks and light deflection.

The differentials dx0 and dt 0 representing the description of space and time in
Free Falling Frames, to the first order in the displacements from a free fall trajec-
tory, are the substitute of coordinates satisfying the inertia principle. They will be
denoted as (infinitesimal) Equivalence Principle Inertial Frames (EPIFs) and are the
object of the following form of the Einstein’s Equivalence Principle:
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All the physical laws which can be written, in the absence of gravity, in inertial
frames in terms of local variables and their first order variations around each point,
hold true in the presence of gravity in terms of the same variables in EPIFs.

It is important to notice that the differentials defining EPIFs do not in general
define coordinates, even locally. In fact the differential form

dr 0 D dr � v.r/dt

is not integrable, unless the velocity field v.r/ is constant (the trivial inertial case),
since

@v

@r
D �@ 1

@t
D 0

is precisely its integrability condition.
On the contrary for the time variable the restriction to the infinitesimal interval

is not essential and in fact t D t 0 is the “gravity free” time measured by clocks on
EPIFs, which does not suffer from the limitations produced by gravity on the space
variables.

Clearly, even if the formulation of the EP only uses EPIFs, its implications cru-
cially depend on the relation between the above differentials at different points,
given by (3). In other terms, the introduction of global coordinates and the expres-
sion of the EPIF differentials in terms of them is an essential step for an effective
use of the EP.

3 Relativistic Physics

3.1 Basic Gravitational Effects

a) Newton’s Mechanics from the Principle of Least Action in EPIFs

Let us first show how the use of the EP reproduces classical non-relativistic me-
chanics for a particle in the gravitational field of a massM .

Classical Mechanics can be indeed formulated in terms of the principle of least
action in inertial frames. The implementation of the EP in the non relativistic free
Lagrangian L D m=2 Px2 is immediate. Following (3), it is enough to express the
velocity in

Pr ! Pr � v.r/
The principle of least action in EPIFs for a free particle in the presence of gravity
is thus given by

ı

Z
dt
�m
2
Œ.Pr � v.r//2 C r2 P	2�

	
(4)
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The Lagrange equations yield for the radial coordinate

d

dt
.Pr � v.r//C .Pr � v.r//dv

dr
� r P	2

D Rr � d

dr

�
v2.r/

2

�
� r P	2 D 0 (5)

Since 1=2 v2.r/ D GM=r the Newton’s radial equation of motion is obtained, and
the same holds also for the angular variables. A constant v would only amount to a
change of inertial frame.

b) The Invariant Minkowski Interval

Relativistic physics is governed by the “infinitesimal” invariant interval. By the
EP, the invariant interval has the standard Minkowski form in EPIFs, in which the
ordinary inertial frame laws hold and light propagates isotropically and always with
velocity c, to first order in space-time displacements:

ds2 D c2dt 02 � dr 02 � dx02? (6)

The local (first order) validity of the principles of SR implies that ds2 is still given
by the same expression, (6), in the coordinates employed by any observer around
the given space-time point, to the first order, independently of his motion. All the
SR results hold locally, for all observers (on arbitrary trajectories) to first order in
the coordinates defined by their clocks and rods, with the Minkowski interval given
by the ordinary expression.

The above expression of the EPIF differentials in terms of globally defined vari-
ables allows to write the Minkowski intervals, all of the same form in their EPIF
variables around different points, in global coordinates:

ds2 D c2dt2 � .dr � v.r/dt/2 � dx2?
D c2.1 � v2.r/=c2/dt2 C 2v.r/ dt dr � dr2 � dx2? (7)

(7) gives nothing else than the Painlevé [16]–Gullstrand [17] metric (P–G), a so-
lution of the GR equations in a central field, obtained here (as a solution of no
whatsoever equation other than Newton’s law) on the pure basis of Euclidean space
and absolute “free fall” time. Even if built on Euclidean space and absolute time, it
represents a non-Minkowskian space-time, due to the crossed term. The P–G metric
is equivalent to the Schwarzschild [18] metric, the relation being given by a change
of the time variable (see Sect. 4.2).

Clearly, in our approach, SR enters at a different stage with respect to the de-
scription of radial free fall. The latter is given by the Newton free fall velocity in
global coordinates; the velocity of light enters in the local relativistic structure of
space time, which is trivial in EPIFs and globally determined by (6) and (3).
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c) Clocks Ticking and Red Shift

How time flows in a gravitational field for observers at rest, in the above (P–G)
coordinates, is immediately got from the P–G metric. Actually, the notion of rest
is independent of coordinate transformations preserving stationarity of the metric
tensor. By setting dr D 0,

d�2 D .1 � v2.r/=c2/dt2 D .1 � 
.r//dt2 (8)

relates the (P–G) Newtonian free fall absolute time t to the relativistic invariant
interval d� measured by observers at rest in the P–G coordinates, thus defining
their proper time.

The parameter


.r/ 	 2GM=rc2 D v2.r/=c2 	 �2˚.r/=c2 (9)

does not appear for non relativistic mechanics and enters in our approach only
through the invariant interval.

By time translation invariance and linearity of propagation, the frequency of light
propagating from infinity remains constant in (the above, P–G) time, and therefore
frequencies observed by observers at rest are given by (the inverse of) the above
relation. Because the velocity of light remains the same for all observers, this can
also expressed in terms of wavelengths, relating the one at 1, �1 to the one at r
�r ,

�r D .1 � 
.r//1=2 �1 ' .1 � 
.r/=2/�1
For small radial distances h,

�!=! ' 
.r/=2 .h=r/

i.e. the well known red shift. For moving sources, one has to add the usual Doppler
effect.

d) Light Cones

Light velocity is obtained by setting to zero the invariant interval (7). The velocity
in directions orthogonal to the radius takes the value

c? D rd	=dt D c.1 � v2=c2/1=2 : (10)

Along the radius, the velocity is

cr D dr=dt D ˙c C v.r/ ; (11)
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v D v.r/, given by (2) (v < 0). Both equations directly follow from (3) by ordinary
(Galilean) vector composition of the (isotropic) velocity c in EPIFs with the EPIF
velocity v,

cPG D cC v.r/ : (12)

For comparison, we recall the results for the Schwarzschild metric

ds2 D .1 � v2=c2/c2 dt2S � dr2S=.1 � v2=c2/ � r2d�2 : (13)

There the radial velocity is

dr=dt D ˙c .1 � v2=c/ (14)

whereas the tangential one is the same as in the P–G coordinates.
Thus the Schwarzschild light cones shrink for decreasing distances down to a

pseudo singularity at RS D 2MG=c2. In the P–G coordinates, they rotate, without
any singularity. If one believes in the validity of the extrapolation of Newtonian
dynamics to such extremes (to be discussed later), a physical effect emerges from
the SR constraints in EPIFs.

Indeed, when v.r/ <�c light cannot propagate outwards for positive times. This
happens below R S, where the P–Gmetric describes a black hole. Reversing the sign
of time is equivalent to reversing the free fall velocity in the above construction. In
this case, light cannot propagate inwards (since this time v.r/� c > 0), for positive
times and the corresponding P–G metric describes a “white hole”.

Notice that the result only depends on the free fall velocity (in intrinsic coordi-
nates) exceeding c at some radius, and has therefore nothing to do with any “interior
dynamics” below such a radius.

e) Relativistic Mechanics

The formulation of relativistic mechanics is immediate via the EP, which only
amounts to substitute in the variational principle the ordinary Minkowski intervals
with the Minkovski intervals in EPIFs. The corresponding action is therefore ob-
tained, as in the non-relativistic case, by the substitution Pr ! Pr � v.r/

ıAD dt D ı
Z
ds D ı

Z
L ı

Z
dt .mc2/

q
.1 � 1=c2Œ.Pr � v.r//2 C r2 P	2�/ (15)

The equation of motion are given by the corresponding Euler Lagrange equations.
They are equivalent to the geodesic equations in the metric defined by the above
invariant interval, i.e. in the P–G metric.

Both solve in fact the same variational problem, the ordinary geodesic equa-
tions being obtained from a parametrization of trajectories with the proper time
and the substitution of the Lagrangian with its square (which is allowed since the
Lagrangian associated to the proper time parametrization takes the value 1 on the
solution of the stationarity problem). Let us also mention that the use of proper
times is inappropriate in the many body case.
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3.2 Light Deflection

Since our invariant interval coincides with the one of the Painlevé–Gullstrand so-
lution of the Einstein equations and the principle of stationary action amounts to
geodesic motion in the corresponding metric, all the results of GR for the dynamics
of particles and light follow.

We show below that these results can also be derived directly in a rather elemen-
tary way.

The problem of light bending has been paramount in assessing the view of space
distortion associated to the Schwarzschild solution. Indeed, classically, (see e.g.
[19]) it is well known that Newtonian mechanics can account for light deflection,
at variance however by a factor of 2 from the GR result and from experimental
data. This is explained in Schwarzschild coordinates by saying that Newton just
reproduces the time part (g00) of the metric tensor and that the space part gii is the
new fundamental contribution of GR.

Let us first recall the classical treatment and then discuss the contributions arising
from the EP. We restrict to first order in the (relativistic) parameter 
.R/, which
completely covers the experimental situation.

Take a luminous ray grazing the sun, coming from infinity and calculate the light
deflection observed at large distances (on the earth, practically at infinity).

a) Newtonian Light Deflection

To first order, the bending angle of light associated to the unperturbed trajectory
(xD ct , yDR), is given by 	.x/D�cy=c, cy the y component of the light velocity,
c the unperturbed velocity. If light is assumed to accelerate according to Newton’s
law

	.x/ ' �cy.x/=c D
tZ

�1

@

@R
˚.ct 0; R/ dt 0=c D

xZ

�1

@

@R
˚.x0; R/ dx0=c2 (16)

˚ the Newton potential, (2). The deflection angle is then obtained by integration
over the whole x axis in terms of the relativistic weak field parameter 2GM=c2RD

.R/ as

	 D 	.1/ D 
.R/ (17)

b) Wave Fronts and Light Velocity

In order to discuss light deflection as a refraction effect produced by position de-
pendent velocities, let us see how it can be obtained in general, for small angles, in
terms of wave fronts. The Newtonian result will be shown to follow from the light
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Fig. 2 Light cones as a function of r in the Painlevé–Gullstrand and Schwarzschild metric respec-
tively. A singularity at RS only arises for the second metric; in the P–G coordinates, because of
the distorted light cone, nothing can simply get out of the hypothetical black hole

velocity given by the pure time component of the Schwarzschild metric, while the
full GR result will follow from the above (very elementary) P–G light velocity.

We will consider the propagation of light in a first approximation along straight
lines (see Fig. 2)) at different heights, with velocity dx=dt D c.x; y/ and calculate
the orientation of wave fronts, at y ' R.

Since, as motivated before, light frequency ! remains constant in the P–G time
t (and also for the Schwarzschild time, see below), the phase ' of the wave changes
with the time it takes a wavefront to travel in the x direction

d' D dx=d�.x/ D !dx=cx.x; y/ :

cx the velocity of propagation along the x axis. Thus, to first order, the difference
of the wavefronts at different heights

@

@y
'.x; y/ ' �

xZ

�1
cx.x

0; y/�1! dx0 (18)



Relativistic Newtonian Gravitation 129

determines the bending. With the same sign convention as above the bending angle
	 of the wavefront at y ' R is given by

	.x/ D � @
@R
'.x; R/ �.x/ ' �

xZ

�1
.
@

@R
cx.x

0; R/�1/cx.x; R/dx0 (19)

and the deflection angle is 	 D 	.1/.

c) Schwarzschild

The modifications of the light velocity given by the “pure time component” of the
Schwarzschild metric, ds2 D c2.1 � v.r/2=c2/dt2 � dx2, are independent of the
direction and given by

c.x; y/ D c.1 � v2.r/=c2/1=2 ' c.1 � 
=2/ (20)

and therefore (19) gives the deflection angle

	 '
1Z

�1

@

@R
˚.x; R/=c2 dx ; (21)

which coincides with the Newtonian expression, (16) and (17). The Newtonian
equation of motion is in fact equivalent to the stationarity principle for the opti-
cal length in such a metric.

For the complete Schwarzschild metric, the velocity of propagation of light along
the x axis, with y D R D r cos˛, is given by

c2dx2..1 � v2=c2/�1 sin2.˛/C cos2 ˛/ D .1 � v2=c2/dt2

which gives

cx.x;R/
�1 ' c�1.1C 
.r/.1 �R2=.x2 CR2/=2// : (22)

The integral of the last term is finite and independent ofR, so that the result changes
by the well known factor of 2.

d) Deflection from EPIF Galilean Light Velocity Composition

In our approach light velocity is given by the Galilei formula, (12).
By imposing to first order its propagation along the x axis, the y components

cancel in (12) and therefore the x component is given by (see Fig. 3)

cx D .c2 � v2y.r//1=2 C vx.r/
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Fig. 3 Spherically symmetric light propagation in the EPIFs is vectorially composed with the
free fall velocity v.r/ to yield a resultant cx along the unperturbed trajectory. The phase variation
and hence the bending of the wave front as a mirage effect comes from the dependence of the x
velocity cx on the height y

Since v.r/=c is of order 
.R/1=2, to first order in 


c�1x D c�1..1 � v2y.r/=c2/1=2 C vx.r/=c/�1
' c�1.1C v2y=2c2 � vx.r/=c C v2x.r/=c2/
D c�1.1 � v2y=2c2 � vx.r/=c C 
.r// (23)

The second term is proportional to ˚.r/R2=.x2 C R2/ and its integral is indepen-
dent of R, as above. The third is antisymmetric in x and its integral vanishes; the
last term gives the GR result,

	 D 	.1/ D 2
.R/

The factor 2 has emerged from the second order expansion of the inverse of the
velocity in the parameter 
.r/1=2.
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Notice that in the P–G coordinates light velocity is different on its way towards
and away from the source of gravitation, due to the linear dependence on the free
fall velocity. As we have seen, light deflection arises as a second order effect in the
free fall velocity. Linear terms are present in the deflection angles at finite distances
from the source; they depends crucially on the notion of simultaneity implicit in the
definition of wave fronts, which is different in different coordinate systems.

3.3 Perihelion Precession

Let us show how the perihelion precession can be calculated directly, for motion
close to a circular orbit and to first order in 
, from the above equations of
motion.

The relativistic Lagrangian is given by (15). The angular equation of motion is

d=dt @L=@ P	 D �d=dt.L�1r2 P	/ D 0 ; (24)

i.e.,
L 	 r2 d	=dt L�1 D r2d	=ds D const (25)

The radial motion is given by

d=dt .@L=@ Pr/ � @L=@r D 0 : (26)

By using the proper time, here denoted by s, ds=dt D L, we obtain

d2r=ds2 D v.r/.d=dsL�1/ � L�2d˚=dr C L2=r3 D 0 :

This equation is equivalent to the Schwarzschild equation

d2r=ds2 D �d˚=dr C L2=r3 .1 � 3=2
/ (27)

since they solve the same variational problem in the same variables, and therefore
implies the GR result for the perihelion. Even if the P–G radial equation is more
involved (a dependence on r and dr=ds being hidden in the terms involving the
Lagrangian), a calculation of the precession effect in the above approximations is
straightforward.

Let us derive it directly from the equations of motion in our (P–G) time variable.
The radial equation (26) reads

�d=dt.L�1 Pr/C .d=dtL�1/v.r/ � L�1d˚=dr C LL2=r3 D 0 :

Multiplying by L,

d2r=dt2 D �.Pr � v/Ld=dtL�1 � d˚=dr C L2 L2=r3 (28)
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Circular orbits are given by

� d˚=dr C L2 L2=r3 D 0 (29)

and their frequency is

!2	 	 P	2 D L2 L2=r4 D GM=r3 ; (30)

the same as in the Newton case.
(29) differs from Newton’s equation by the term

L2 D 1C 3

For small oscillations around a circular orbit the term PrL PL�1, quadratic in Pr , can be
dropped; using v2 D �2˚ ,

L 
 1C .˚ C v Pr � L2=2r2/=c2

and the circular orbit constraint, the terms linear in Pr of (28) are readily seen to
cancel, corresponding to the absence of damping. As a result, the only contribution
of the first term in the r.h.s of (28) is

�v2=c2d2r=dt2 D �
d2r=dt2 :
(28) therefore reduces to

.1C 
/d2r=dt2 D �d˚=dr C L2 L2=r3

D �d˚=dr C .1 � 
 � L2=r2c2/L2=r3 : (31)

The frequency for circular orbits is thus given by

!2r .1C 
/ D d2˚=dr2 � L2d=drL2=r3 C L2=r3d=dr.
.r/C L2=r2c2/

 !2	 C d˚=dr 2d
=dr

so that
!2r 
 !2	.1 � 3
/ D GM=r3.1 � 3
/

i.e.
!r=!	 ' .1 � 3=2
/

and the precession angle is therefore

��

2�
D 3

2

 D 3GM

rc2
(32)

Since GM=rc2 D v2=c2, v the Newtonian velocity for circular orbits, the result
can be interpreted as a correction given by the relativistic equation of motion, in a
gravity field which is described by Newton law (in intrinsic coordinates).
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A “relativistic” (O.GM=rc2/) correction to Newton law would result in an ad-
ditional term, of the same order, in (32). On the contrary, such a correction would
give a second order contribution to time ticking and light bending; therefore, the
perihelion precession, usually interpreted as the test of GR (see e.g. Schiff [3]), can
be equally seen as the test of Newton law in intrinsic coordinates.

Notice, in connection to MOND [20], that the relativistic corrections appearing
in the above equations have nothing to do with effects of order O.v2=r/. In other
words comparable velocities (e.g. Earth and orbiting HI lines), even at very different
radii, have the same sort of relativistic corrections (with negligible effect in the
second case).

4 Dynamics, Metrics, Observables and all that

4.1 The Newtonian Fall Velocity and the Mass

So far our treatment has relied on a somewhat abstract framework, assuming that
the free fall velocity is given by Newton’s law. Here we want to ascertain to which
extent this assumption follows from dynamical considerations in Minkovski space.

To start with, assuming that energy is the source of gravitation, the mass in the
potential term in Newton formula should be corrected both by the self energy and
by the kinetic term.

Energy conservation for our free falling particle would thus read

m0v
2=2 D GMm0

r
.1 �GM=c2r C v2=2c2/ (33)

or

v2=2 � GM
r
D GM

c2r
.v2=2�GM=r/ (34)

whence
v2 D 2GM=r (35)

The result only uses conservation of energy. This puts Newton’s law on a some-
what safer ground in the sense that the above energy corrections cancel out. It is
paramount to underline that the self energy correction to the mass, which embod-
ies the fact that the graviton is itself a source of gravity, a relativistic effect, is
cancelled for radial trajectories by the relativistic kinetic corrections of the gravi-
tational mass.

This has to be contrasted with what happens in the PPN parametrization (see e.g.
[21]), where the non linearity of Einstein equations appears in the form (destitute
of any measurement prescription)

h00 D 2GM=c2x.1�GM=c2x/
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Thus one concludes that, remarkably, the non linearity of gravitation may depend
on the formulation.

We also notice that the Newtonian 1=r2 form of the force is crucial in canceling
possible contributions from external masses, within a reasonable schematization of
the outer world as a homogeneous sphere.

One might inquire about other relativistic corrections to the preceding expres-
sion. A possible relativistic extension of (35) is

m0p
1 � v2=c2 �

GMm0

c2r
.1=
p
1 � v2=c2 �GM=c2r/ D m0 (36)

The terms in brackets sum up to 1 as in (33)-35 so that the only possible correction
is given by the l.h.s. It is important to notice that the inertial mass in the l.h.s. cannot
be gravitationally corrected by an additional factor �GM=c2r since one would get
in this case for the escape velocity v2 D 4GM=r

Additional higher order terms in v2=c2 in the l.h.s. of (36) are therefore the only
possible modification of the free fall law for radial trajectories. They would result
in first order corrections to Mercury’s precession, which are ruled out.

In that respect the LLR experiments [22] of the free falling Earth–Moon system
in the gravitational field of the Sun should also exclude such relativistic corrections
with higher accuracy. Gravitational quantum interference experiments [23] are very
far from providing possible additional information.

The above arguments imply that free fall is determined only by GM without
kinetic and self energy corrections and that gravity does not contribute to the inertial
mass m0. Thus all GR corrections to Newtonian dynamics simply follows from the
treatment of free fall where one mass is enough, and cancels out in the motion in a
given field. This can be summarized as

mI D m0 D m0.1 �GM=c2r C v2=2c2/ D m0 D mG

I standing for inertial.
In conclusion our treatment based on Newton’s law and the free falling frames

gets validated beyond expectations and all the geometrical relations of GR are di-
rect consequences. Of course the possible distinction between different substances
(WEP), ruled out by the terrestrial experiments of Eöt–Wash [24], is automatically
implemented here. Let us finally comment on the role of moving frames which
play such a fundamental role in SR and GR, although sometimes with a misleading
interpretation.

In the former case they represent a physical entity: e.g., in the flying muon frame
the atmosphere thickness is shorter than the one measured on earth and the time
needed to reach it is correspondingly shorter.

In the latter the accelerating falling frame is the basis for a construction which
describes gravity in terms of local “inertial” frames. Thus the popular expression
that GR dilates spacial distance has no relation with the physical fact that in SR dis-
tances for moving particles are shorter. That statement should be supplemented by
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the phrase: in the Ss metric, whereas in the P–G it does not happen as also stressed
by Mizony [25]. In that sense the P–G metric, with its clear and physically founded
combination of local SR with a global “Galilean” free fall law (also preserving at
infinity the gravity free absolute time), has an interpretation which is “closer to
reality”.

4.2 From the P–G to the Ss Metric

In this paragraph the relation of the Ss metric the P–G one will be elucidated by
explicitly considering the combination of Galilean transformations for the free fall
with the local space time Minkowski structure which yield the physical time and
length measured at rest. In short:

.dr; dt/global coord. H)Galilei .dr0; dt0/EPIF

H)Lorentz Tranf. .d�; d�/at rest (37)

i.e., on the basis of the globally defined coordinates .r; t/, extending the Newto-
nian coordinates at infinity, EPIF differentials are given by (3), (eliminating gravity
through free fall) and then a SR transformation yields the frame at rest at a given
point. Time and space coordinates at rest, d� , d�, are thus obtained as

d� D �.v/.dt0 C vdr0/ D �.v/.dt C v.dr � vdt// D dt=�.v/C �.v/vdr
(38)

d� D �.dr0 C vdt0/ D �.dr � vdt C vdt/ D �dr (39)

where �.v/ D �Œv.r/� D 1p
1�v2=c2 D

1p
1�2GM=c2r

We stress the role of the Galilei transformation in the above derivation. The last
equation shows a dilation of lengths, contrary to the ordinary SR effect.

According to the second to last, times are indeed shortened, as in SR, were it not
for a space dependent term. Since that term does not alter the time rate at a given
space point, it can be dropped through a redefinition of the global time:

dt ! dt C v=c2=.1 � v2=c2/dr D �d� 	 dtS (40)

Together with drS 	 dr , this gives the Schwarzschild coordinates and the Schwarz-
schild metric

ds2 D c2d�2 � d�2 D .1 � v2=c2/c2dt2S � dr2S=.1 � v2=c2/ � r2d�2 (41)

The difference between the two notions of time is particularly evident in the treat-
ment of light deflection, where in the P–G metric a linear factor in the velocity
shows up, with a presumed huge effect when observed half way (e.g. on earth in the
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measurement of parallaxes). The point is that one must not confuse the P–G notion
of simultane- ity with the one defined by clocks at rest (and therefore on earth apart
from an easy relativistic correction for its motion).

It should also be noticed that the Ss metric has spurious singularities not only at
the S radius r D 2GM=c, as well known, but also at r D1 where the Newton time
t and tS differ by' pr .

In conclusion the P–G coordinates have the advantage of the underlined phys-
ical foundation, the lack of singularities, no necessity of an equation of motion
beyond Newton’s law and can be directly and simply applied to all processes, apart
from the discussion of equal time geometrical effects, as the parallax, where the Ss
coordinates give a notion of simultaneity which coincides with the one at rest.

Let us recall that the requirement to eliminate the off diagonal term of the P–G
metric is generally accomplished just by redefining time in an ad hoc way, as in
(40), without any discussion about its physical meaning, nor about its effects in the
interpretation of experiments.

Finally, let us underline an inherent “paradox” of GR. The pretension that coor-
dinate independence of the formulation is fundamental backfires, in the sense that
Newton’s absolute time not only has the right of citizenship, but gives rise to an
independent description based on fundamental physical motivations.

4.3 On Alternative Derivation

Ever since the appearance of GR, the endeavor to find other solutions than
Schwarzschild’s, to “derive” it from SR and to eventually propose alternative
theories has been paramount.

To start with, let us recall that Einstein’s rebuttal of the Painlevé–Gullstrand so-
lution has led to an ostracism (their metric is not even mentioned in most textbooks)
which has lasted till almost the end of the last century. Only recently the P–G metric
has been reevaluated as a singularity-free solution. In addition, it has been realized
that it could be obtained directly from basic principles, without recursion to GR.

This possibility has provoked a heap of warnings: that it could be only heuristic,
that it only may apply to the weak field case, accompanied as well by the (trivial)
argument that it cannot reproduce all of GR results. In connection with the first
points we want to comment on some of the most relevant and cited articles.

Schiff’s [3] work had already been criticized by Schild [10]. The usual result for
time had been obtained by using a SR argument, comparing local time with that of
gravity free infinity via a flying, time-shortened, clock. However his (incomplete)
argument about space cannot be correct since in the end, contrary to SR, the velocity
of light is not constant nor isotropic. His statement aboutMercury’s perihelion being
the crucial test of GR has already been commented upon above.

Kassner’s [9] work is relevant in the present context because of his discussion
of the necessity of supplementary assumptions in order to derive the Ss metric on
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the basis of pre-general-relativistic physics alone, i.e., SR, the Einstein EP and the
“Newtonian limit”.

This is not contradictory with our findings. As a matter of fact, the Newton law
is used by us globally, not only to first order at infinity, supplemented by the two
(almost unescapable because of our motivations) subsidiary conditions on space
(length of the circumference) and absolute time. They can be seen as substitutes of
Kassner’s two additional “postulates”, which serve the same aim but which are, in
our opinion, less transparent and motivated.

Czerniawsky’s point of view [4, 5] is the closest to ours. Our assumption on the
Euclidean properties of space, at equal “free fall” times, is somewhat hidden in his
considerations about the EP. As a result, his treatment does not include the depen-
dence on two functions of the radius ((1) and (2)), a general fact already recognized
in [6]. On the other hand we agree with Czerniawsky’s considerations on the dif-
ference in the notion of simultaneity between the Ss and PG metrics and on the
physical significance of the time-reversed PG metric.

Finally Visser [7] and Padmanabhan [8] have strived to maintain the inadequacy
of the free fall approach for the following reasons: to be only a weak field approx-
imation of a more general theory and to be heuristic since it does not reproduce
the Kerr metric. The first point has already been commented upon. The second is
irrelevant in the present context. For rotating masses results have been reproduced
successfully via gravitomagnetism in a parameter free way just from SR without
the need to invoke GR [26].

In general, it is important to underline the peculiarity of proper time effects,
with respect to those involving space. is is clear already to first order, since time
contraction can be obtained as a SR effect, while the treatment of space depends on
the overall analysis, see (37).

Their effect to first order has been evaluated by Einstein using only mass energy
equivalence and is as follows:

Consider an atom at B D r0 D r C h and an identical one at A D r . Then the
photon emitted by B reaches A, because of the coupling between its energy and the
gravitational field, with a greater energy due to the effect of the gravitational field.
The photon frequencies at the two places are related by

¯!.1 �GM=c2r/ D ¯! 0.1 �GM=c2r 0/ (42)

from which trivially follows

! D ! 0 1 �GM=c
2r 0

1 �GM=c2r ' !
0.1C gh=c2/ (43)

This implies the reverse relatation for times

t 0 D t 1 �GM=c
2r 0

1 �GM=c2r (44)

i.e. that time runs quicker in regions of smaller gravitational field. When the com-
parison is made with respect to1, where gravity is absent, one gets the proper time
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at r denoted by �
t 0 D t1 D �=.1�GM=c2r/ (45)

and this agrees to first order with the above result from the invariant interval.
Notice that a basic form of principle of equivalence has been tacitly assumed:

atoms are the same (as locally measured) in different points of a gravitational field.
Otherwise a correction factor would arise.

This goes along with the parallel argument about atomic energy levels. The mass
m at rest in a gravitational field ofM at the height RT has an energy

E0 D m0c
2.1 �GM=c2RT / (46)

and at RT C h
E 0 D m0c

2.1 �GM=c2.RT C h// (47)

It follows that at the earth surface

E 0 � E0 ' m0c
2GM=c2R2T h D m0gh (48)

This energy difference exactly corresponds in classical terms to the gravitational
potential energy difference or, in other words, to the work done against the stan-
dard Newtonian force F D mg. The two arguments are consistent because of local
energy conservation of the atom-photon systems. They also show that the use of
the gravitational interaction energy is consistent, to first order, with the dynamical
treatment based on the elimination of gravity in free fall motion.

Independently of the first order approximation, the peculiarity of pure time ef-
fects is that they are physical, i.e. coordinate independent. In fact, time effects are
given by the invariant interval at a fixed point in space, and, as observed above, such
a notion is independent of coordinate transformations preserving stationarity of the
metric tensor. This does not happen (not even to first order) for the other compo-
nents of the metric tensor, which are in fact different in the Ss and PG formulation.

5 Rotating Frames and the Sagnac Effect

We pass now to a subject, not directly related to gravitation, whose treatment may
help in shedding some more light on the use of metrics and of synchronization. The
Sagnac effect has a long history, remarkable practical applications and has caused
a considerable amount of discussions concerning its connection with SR and GR.
In its standard form two counter propagating photon beams in a circular waveguide
mounted on a disk are made to interfere after having traveled one circumference.
When the disk is put in rotation with angular velocity �, the interference figure is
seen to shift by an amount proportional to �.

Let us consider the problem from the point of view of the external observer
(inertial frame). For him, light propagates of course with velocity c; however when
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the disk rotates the interference of the two light waves is observed at a moving
angle, 	 D �t . The lenghts l1;2 of the two paths satisfy

l1 � l2 D 2	 r

where 	 is the shift of the angle in the traveling time and r the radius of the disk
(with time and distances measured in the fixed frame). This corresponds, for light
of frequency !, to a shift in phase

�' D 2	 r!=c

To first order in �, the traveling time of the two rays is t ' 2�r=c and therefore

�' ' 4�r2!�

c2
D 4!�S

c2
(49)

S standing for the area perpendicular to the rotation axis enclosed by the given
contour.

This is all, since the effect is frame independent. However for the sake of the
argument and in order to make contact with the previous treatment of gravity, let us
consider it from another point of view.

On the Invariant Interval in Rotating Frames
The above kinematical constraint about the meeting of two rays at a moving point
can of course be written as the condition of meeting at the same point in a rotat-
ing coordinate system and can be therefore discussed in terms of light propagation
in such coordinates. This does not mean that quantities measured “on a rotating
body” enter the discussion and in fact the introduction of such “physical frames”,
in particular of local frames associated to observers at each point on the disk, is not
necessary.

Consider then a uniformly rotating reference system, whose local cylindrical
coordinates are denoted by .t; r; z; �R/ connected to those of the fixed inertial one
.t; r; z; �/ by

�R D � ��t I (50)

the invariant interval in the rotating system reads

ds2 D c2dt2 � .rd�R C�rdt/2 � dz2 � dr2 ; (51)

in complete analogy with gravity in our Newtonian coordinates. This immediately
yields that light propagates tangentially with velocity

c? D ˙c ��r

as in the composition of light velocity with that of the free fall frame in gravity.
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The previous equation can be rewritten in terms of v D �r and dy D rd�R
ds2 D c2.1 � v2=c2/dt2 � 2vdtdy � dy2 � dr2 � dz2 (52)

The similarity with the P–G formula is once more apparent. The essential difference
is that now v is independent of y, and in fact the differential rd� D dyC vdt from
(50), corresponding to the EPIF differential dr 0 D dr � v.r/dt , is now exact.

The above difference between light velocities in the two directions easily leads
to the same result as before. We emphasize that the analysis applies to first order in
�, that no relativistic effect appear to that order and that the above discussion of the
relativistic interval has nothing to do with Lorentz transformations, rather express-
ing the interval in the inertial frame in terms of different coordinates (intervals in
such coordinates coinciding with measured intervals “on the moving disk” only in
the non-relativistic limit).

It is also of some interest to write the above relativistic interval in “Schwarzschild
coordinates”: the off-diagonal term can be disposed of along the previous lines via
the transformation

dtS D dt C v=.1 � v2=c2/dy
dyS D dy (53)

and for the relevant part (i.e. apart from dr2 and dz2 terms) the invariant interval
takes the “Schwarzschild form”

ds2 D c2.1 � v2=c2/dt2S � dy2S=.1 � v2=c2/ (54)

In both forms, the invariant interval is notMinkovskian, and in fact light velocity is
different from c both in the “P–G” and in the “Schwarzschild” coordinates, where
the tangential velocity is direction independent:

cS D c.1 � v2=c2/
This is compatible with the Sagnac effect because (53) only gives rise to a local
notion of time and global, topological, effects are hidden in the angular nature of the
y variable. In Ss coordinates the Sagnac effect comes in fact from the difference in
time coordinates obtained after following closed paths. The time difference between
two path enclosing the circle in opposite directions is

�tS D 2=c2
I

�r2

1 ��2r2=c2

which for low angular velocities yields

�T D 4�S

c2

corresponding to the result obtained via elementary considerations at the beginning
of the paragraph.



Relativistic Newtonian Gravitation 141

6 Conclusions

In the present work Einstein’s equations have been shown to be unnecessary in the
static symmetric case, where all GR results have been obtained via EP, Newton’s
law and local SR.th The result is the PG metric, which realizes the Einstein program
of “eliminating gravity locally” through free fall motion.

The calculational ingredient has been the usual variational principle (like the
Fermat one for light) applied to the infinitesimal invariant non Minkovskian interval
and the associated Euler–Lagrange equations realizing what usually appears as the
result of a rather complicated and formal description of gravitation.

The connection with the Ss GR solution, which is superfluous given the explicit
calculations of the present approach (and which had been considered as a neces-
sary endorsement for the Painlevé–Gullstrand solution) only helps in clarifying the
arbitrariness of attaching physical significance to the metric. In particula, space-
time curvature is perfectly compatible with Newtonian absolute time and Euclidean
space.

The treatment of rotating frames, which played a role in the genesis of GR, leads,
at each point, to a metric of the same form, with the same role of local frames as
in the case of gravitational free fall. The only difference is here the existence of a
global Minkovski frame.
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1 Introduction and Summary of Contents

In this paper, we present two mathematical results of relevance to the quantum
theory of measurements,1 which we treat in a spirit close to the Copenhagen inter-
pretation/heuristics of quantum mechanics (QM), as amended in [1–3].

Let E be a large ensemble of physical systems identical (isomorphic) to a spe-
cific system, S , of finitely many degrees of freedom to be described quantum-
mechanically. We are interested in understanding the effect of measurements of a
physical quantity, bX , characteristic of S for all systems inE. In text-book QM, one
tends to invoke von Neumann’s measurement postulate (see [4]) to predict proper-
ties of the resulting state, averaged over all systems in E, right after a successful
completion of the measurements of bX . The standard formulation of this postulate
appears to be afflicted with some problems, which we will discuss and attempt to
clarify in the following.

We begin this paper by describing the systems' S we have in mind. A physical
quantity, bX , characteristic of S is represented by a self-adjoint operator, X D X�,
acting on a separable Hilbert space, H . An average over E of states of these sys-
tems is called an “ensemble state” and is given by a density matrix, i.e., by a
positive, trace-class operator, �, on H of trace tr� D 1. To mention an exam-
ple, a system S 2 E might consist of a particle, such as an electron, propagating in
physical space E3, bX might be a component of the spin or a bounded function of a
component of the position- or the momentum of the particle, and

H D L2.R3; d 3x/˝C2sC1;

where x 2 R3 is the position and s the spin of the particle.
The purpose of this paper is to clarify what is meant by the statement that a

measurement of the quantity bX has been completed successfully. Since we will try
to follow the spirit of the Copenhagen Interpretation/heuristics of QM, where ap-
propriate, we will usually adopt an ensemble point of view, emphasizing statements
that are obtained by taking averages over all systems in the ensemble E. But when
combined with results in [2, 3], our results have implications relevant for the theory
of measurements carried out on individual systems.

Next, we outline the contents of this paper. In Sect. 2, we recall von Neumann’s
measurement postulate and point out some problems with it. We then formulate
a revised version of this postulate and state the main result proven in this paper.
In Sect. 3 we sketch how measurements are described in the ETH-Approach to
quantum mechanics [1–3]. In Sect. 4, we present the proof of our main result.

1 As far as we remember, Gianni Morchio had an interest in the foundations of quantum mechanics;
so he would probably have appreciated our results.
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2 Von Neumann’s Measurement Postulate

We imagine that the initial ensemble state when measurements of bX set in, for all
systems in E, is described by a density matrix �in. In his book [4] on the founda-
tions of QM, von Neumann postulated that, when averaging over E, the effect of
measuring bX for all systems belonging toE amounts to replacing the state�in by a
certain ensemble state, �out, describing the average of states of systems belonging
to E right after the measurements of bX have been completed, where �out satisfies
the following postulate.

Von Neumann’s Postulate Let X D X� be the self-adjoint operator on H repre-
senting the physical quantity bX , and let

X D
Z

R

� d˘.�/ (1)

be the spectral decomposition of X , with ˘.�/ its spectral projection associated
with an arbitrary Borel set � � R. The ensemble state �out right after completion
of the measurements of bX has the properties that

Œ�out; X� D 0; and

tr
�
�in �˘.�/

� D tr
�
�out �˘.�/

�
; 8 Borel sets � � R (Born’s Rule) (2)

Remark We will see shortly that this formulation of von Neumann’s postulate is
inadequate, except if the operator X has pure point spectrum (for which case it was
originally formulated)—but even then it is problematic, as will become apparent in
Sect. 3.

The spectral decomposition of a density matrix � has the form

� D
NX

nD1
!n �n; 1 � !1 > !2 > � � � > !N > 0;

�n D ��n ; �n � �m D ınm�n ; 8 n;m D 1; 2; : : : ; N; (3)

for someN �1. The operators �n are disjoint orthogonal projections of finite rank
(the eigen-projections of�), and

tr
�
�
� D

NX

nD1
pn D 1; where pn D !n � dim�n; n D 1; 2; : : : ; N :

We set

�1 ´ 1 �
NX

nD1
�n :
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If, as in the formulation of von Neumann’s postulate given in (2), the operator X is
assumed to commute with �out, then it satisfies the identity

X D
NX

nD1
�nX�n C �1X�1; (4)

where �nX�n is of finite rank, 8n D 1; 2; : : : ; N , where the operators �n are the
eigenprojections of�out.

We observe that, for every n D 1; 2; : : : ; N , �nX�n is a selfadjoint, finite-
dimensional matrix; hence its spectrum consists of finitely many (discrete) eigen-
values. Let HC be the subspace of H given by the range of 1 � �1. It follows
that if X satisfies (2) then the operator X

ˇ̌
HC has pure-point spectrum. (Of course,

if the range of �1 is infinite-dimensional then �1X �1 may have continuous
spectrum; but this is irrelevant for measurements of bX that result in states occupied
by the systems inE whose average is given by�out.) Thus, at best, von Neumann’s
postulate in the formulation of (2) can only be applied to measurements of physical
quantities with pure-point spectrum. However, a component of the position or of the
momentum of a quantum particle propagating in physical space E3 has continuous
spectrum occupying the entire real line R.

We conclude that (2) cannot be valid verbatim when physical quantities repre-
sented by operators with continuous spectrum are measured, and we should find out
how to modify them in such instances.

2.1 An Amended Form of von Neumann’s Postulate

We imagine that measurements of a physical quantity bX are carried out for all sys-
tems belonging to a large ensemble E of systems identical to a system S , with the
result that the average over E of the final states of these systems after completion
of the measurements of bX is found to be close (but not necessarily equal) to an
ensemble state given by a density matrix�out with the property that

ˇ̌ˇ̌�
�out; X

�ˇ̌ˇ̌
< " ; (5)

for some " smaller than the error margin of the instrument used to measure bX .
One may add the assumption that, for�out, Born’s Rule holds, as formulated in the
second equation of (2). We will establish the following

Main Result If condition (5) holds for a sufficiently small " � 1 then one may
replace�out by a modified density matrix�0out and X by a modified operator X 0,

X 0 D
KX

kD1
�k ˘k ; for some K � 1 ; (6)
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where �1 > �2 > � � � > �K > �1 are the eigenvalues of X 0 and ˘1; : : : ;˘K the
corresponding eigen-projections, with the properties that

(i) the operator X 0 has pure-point spectrum and is close to the operator X repre-
senting bX in the operator norm;

(ii) the density matrix �0out is close to the density matrix �out in the trace norm;
and

(iii) the operators X 0 and�0out commute, i.e.,
�
�0out; X

0� D 0 : (7)

The closeness of X 0 to X and of �0out to �out depends on the size of the com-
mutator of X with �out: the smaller the norm, kŒ�out; X�k, of this commutator the
closer areX 0 toX and�0out to�out. The size of kŒ�out; X�k is thus a measure for the
precision of the instrument used to measure bX—the smaller this norm, the higher
the precision of the instrument.

The proof of the Main Result stated above is given in Sect. 4. At the end of the
present section, we sketch the very easy proof in the special case where dim.H / <

1.

Remarks

(1) Another possible amendment of von Neumann’s postulate can be formulated as
follows. We cover the spectrum, spec(X), of the operator X with small closed
intervals �k � R; k D 1; 2; : : : ; K, for some K <1, with the properties that
�k\�k0 is empty or consists of a single point (assumed not to be an eigenvalue
of X) whenever k 6D k0, andSK

kD1 �k � spec.X/. These intervals are assumed
to be determined by properties of the instrument used to measure bX . One may
then assume that the E-average of the states of the systems after completion of
the measurements of bX is given by a density matrix �out satisfying

�out D
KX

kD1
˘k�out˘k; where ˘k D ˘.�k/; 8 k D 1; 2; : : : ; K : (8)

The operator X 0 is chosen to be given by

X 0 D
KX

kD1
�k ˘k;

where �k is the midpoint of the interval �k � R, for all k. Assuming that the
length of all the intervals �k is bounded above by 2", we conclude that

ˇ̌ˇ̌�
�out; X

�ˇ̌ˇ̌
< " ;

�
�out; X

0� D 0 ; and kX �X 0k < " : (9)

This amendment of von Neumann’s postulate is somewhat arbitrary and in-
volves assumptions on what is meant by a measurement of a physical quantity
that are more detailed than condition (5).
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(2) The Main Result stated above is reminiscent of a theorem that says that if two
bounded self-adjoint operators almost commute then there are two operators
close in norm to the original ones that do commute; see [5–7].

(3) We conjecture that our Main Result is a special case of the following more
general statement: Let A be a von Neumann algebra with unit 1, and let ! be a
normal state onA. For an operatorX 2A, we define a bounded linear functional
on A by

adXŒ!�.Y /´ !.ŒY;X�/ ; 8 Y 2 A : (10)

Suppose now that ! and X are such that
ˇ̌
adXŒ!�.Y /

ˇ̌
< "kY k; 8 Y 2 A; for some "� 1 : (11)

Then there exist a normal state ! 0 onA and an operatorX 0 2A, with k! 0�!k<
ı."/ and kX 0 �Xk < ı."/, for some ı."/& 0, as "& 0, such that

adX 0 Œ!
0� D 0 : (12)

OurMain Result shows that this conjecture holds in the special case whereA is
isomorphic to the algebra of all bounded operators on a separable Hilbert space.

As a warm-up we prove the Main Result in the special case of a finite-
dimensional Hilbert space H , which is very easy. In items (i) through (iii), one
may then set �0out D �out and only slightly modify the operator X , or one may set
X 0 D X and only slightly modify�out, and end up with (7).

Let H D CM , withM <1. Then

X D
KX

kD1
�k ˘k; K �M ; and

� D
NX

nD1
!n �n; N �M ; (13)

where �1 > �2 > � � � > �K > �1 are the eigenvalues of X and ˘1;˘2; : : : ;˘K
are the corresponding eigen-projections, and !1 > !2 > � � � > !N > 0 are the non-
zero eigenvalues of �, with �1; �2; : : : ; �N the corresponding eigen-projections.
We define �NC1´ 1 �PN

nD1 �n, and

��´ min
1�n�N

�
!n � !nC1

�
> 0; with !NC1´ 0 ; (14)

to be the smallest gap between distinct eigenvalues of �. Let us assume that
ˇ̌ˇ̌�
X;�

�ˇ̌ˇ̌ � "; for some "� �� : (15)

We define an operator X 0 by setting

X 0 ´
NC1X

nD1
�n X �n : (16)
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Obviously X 0 commutes with �, and we claim that

kX 0 �Xk < const. " : (17)

Proof of (17) Clearly

X D
X

n;n0D1;2;:::;NC1
�n X �n0 : (18)

By (15) we have that

kŒ�n X �n0 ;��k D k�nŒX;���n0k � "; 8 n; n0 : (19)

Plainly Œ�n X �n;�� D 0 ; 8 n D 1; 2; : : : ; N C 1. If n 6D n0 then
Œ�n X �n0 ;�� D .!n0 � !n/ �n X �n0 :

By (14) and (19), we have that

k�n X �n0k � ��1� " ; for n 6D n0 :
Thus, using (18) we find that

kX �X 0k � .N C 1/N ��1� " < M2��1� " ; (20)

as claimed in (17).
In the calculations just shown we can obviously exchange the roles of X and �.

We set
�X ´ min

1�k<K
�
�k � �kC1

�
> 0 ;

and we then replace the density matrix � by

�0 ´
KX

kD1
˘k �˘k :

Clearly �0 is a non-negative operator, and tr.�0/ D 1, becausePK
kD1 ˘k D 1; i.e.,

�0 is a density matrix; and it obviously commutes with X . Repeating the arguments
shown above, we find that

tr.j� ��0j/ �M .K � 1/K ��1X " < M3 ��1X " : (21)

Of course, the problem with the estimates in (20) and (21) is the dependence of the
right sides on the dimension,M , of the Hilbert spaceH . This problem is addressed
in Sect. 4, where we state a result that is uniform in the dimension of the Hilbert
space, but at the price that we have to slightly modify both, X and �. This result
enables one to modify von Neumann’s measurement postulate so as to avoid the
shortcomings of the original version, as indicated above.
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3 The Description of Measurements in the ETH-Approach
to QM

In this section we sketch how measurements can be described in the formulation of
QM proposed in [1–3] under the name of “ETH-Approach to QM” (assuming some
familiarity with these papers).

We begin with the obvious observation that a successful measurement of a phys-
ical quantity bX characteristic of a system S (belonging to an ensemble E) results
in an event, namely the event that bX takes a—possibly somewhat imprecise—value
belonging to some small interval contained in the real line whose length depends on
the accuracy of the instrument used to measure bX . To understand the significance
of this statement it is necessary to clarify what, in the ETH-Approach to QM, is
meant by an “event”. We recall the definition proposed in [2, 3]. Abstractly, a “po-
tential event”, e, associated with a physical system S 2 E is a partition of unity,
e D ˚�n


1
nD1, by orthogonal projections satisfying

�n D ��n ; �n � �n0 D ınn0 �n; 8 n; n0 D 1; 2; : : : ;
1X

nD1
�n D 1 : (22)

An operatorX representing a physical quantity bX characteristic of a system S 2 E
at some time � t and the projections � 2 e of an arbitrary potential event e that may
occur in S at a time � t are supposed to belong to some algebraAD E�t , which, in
general, depends non-trivially on time t . For systems, S , with finitely many degrees
of freedom,A is the algebra,B.H /, of all bounded operators on a separable Hilbert
space H and is independent of t . But, for systems with infinitely many degrees of
freedom, including those describing the quantized electromagnetic field,2 the time-
dependence of A D E�t tends to be non-trivial, and A is a more exotic (type-III1)
algebra. Our analysis in this section does not require any specific assumptions onA.
(It is only assumed that the algebraA is weakly closed, i.e., that it is a von Neumann
algebra; but it need not and usually will not be isomorphic to B.H /.) States at time
t are states on A D E�t (i.e., positive, normalized linear functionals on E�t ). They
are denoted by lower-case Greek letters, !; : : : .

In the following discussion we fix a time t and suppress explicit reference to
time-dependencewherever possible. We suppose that a state,!, onA is an ensemble
state, i.e., that it has the meaning of being an average over the ensembleE of states
of individual systems, all' S . If a potential event e D ˚�n


1
nD1 � A is actualizing

(i.e., is observed to happen) at some time t then, according to the ETH-Approach to
QM, the state ! D !t has the property that

!.X/ D
X

�2e
!.� �X � �/ ; 8 X 2 A ; (23)

2 The only systems for which (in our opinion) the “measurement problem” has a satisfactory solu-
tion.
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i.e., ! is a convex combination of states in the images of the projections � 2 e. Po-
tential events actualizing at some time are called “actualities”. (For a more precise
characterization of actualities, see, e.g., [3].) If A D B.H / then

!.X/ D tr
�
� �X� ; 8 X 2 A ;

for some density matrix � on H , and the projections � belonging to the event e
that actualizes, given the state !, are the spectral projections of the density matrix
�.

If e is an event actualizing at some time t then the state at time t of an individual
system in the ensemble E is expected to belong to the image of a projection � 2 e,
with a probabilty, prob!.�/, given by Born’s Rule, namely

prob!.�/ D !.�/ ;

where ! is the ensemble state at time t .
We are interested in characterizing actualities e D ˚

�n

N
nD1 � A; N � 1, that

can be interpreted as corresponding to the completion of the measurement of a
certain physical quantity bX . We thus consider a state ! satisfying (23). Given a
non-negative number "� 1, there exists an integer N0 <1 such that

N0�1X

nD1
!.�n/ > 1 � " ; i.e., !

�
�.N0/

�
< " ; where �.N0/´

NX

nDN0
�n : (24)

It is then very unlikely that an individual system in E is found to occupy a state in
the range of a projection � ��.N0/. If e is the potential event actualizing at a certain
time t and ! is the ensemble state at time t satisfying (23) then the slightly coarser
event e0 ´

˚
�1; �2; : : : ; �N0�1; �

.N0/


can be viewed to be an actuality at time t ,

too. To avoid irrelevant complications, we henceforth replace e by e0 throughout
the following discussion, and we simplify our notations by writing e, instead of e0,
and �N0 , instead of �.N0/, with N0 <1.

We assume that the operatorX representing the physical quanitiy bX has the form

X D
KX

kD1
�k˘k; for some K <1 ; (25)

where the real numbers �k are the eigenvalues of X and the operators ˘k are the
corresponding eigen-projections, kD 1; 2; : : : ; K. (We should mention that the pro-
jections ˘k may be given by ˘k D ˘.�k/, where the sets �k are intervals of the
real line of length < 2" whose union covers spec.X/, and �k may be (e.g.) the
midpoint of the interval�k , for all k, as discussed in Remark (1) of Subsect. 2.1.)

If the actuality e can be interpreted to correspond to the likely completion of a
measurement of bX , with an accuracy measured by ", then there must exist a decom-
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position of
˚
1; 2; : : : ; N0



into disjoint subsets Ik , k D 1; 2; : : :K, such that

kŒ�n;˘k�k < O
�
N �20 "

�
; 8 n � N0; and

X

n 62Ik;n<N0
k�n ˘k �nk < O."/; 8 k D 1; 2; : : :K : (26)

The second equation tells us that if a system is found in a state in the range of
a projection �n; n 62 Ik; n < N0, then the quantity bX is very unlikely to have the
measured value �k. By (24), if the ensemble state is given by ! then it is very
unlikely that an individual system inE is found in a state belonging to the range of
the projection �N0 .

Since
PN0

nD1 �n D 1, one obviously has that

X D
X

n;n0D1;2;:::;N0
�n X �n0 :

Since �n ��n0 D0, for n 6Dn0, the first inequality in (26) then implies that the operator
X is approximated in norm by

X 0 ´
N0X

nD1
�n X �n ; (27)

up to an error of O."/; and (24) tells us that the Born probability of picking up a
correction in determining the outcome of the measurement of bX that is due to the
operator �N0 X �N0 is bounded by O."/, hence very small. One may then wonder
whether the actuality e could occur as the result of a measurement of a slightly
different physical quantity' bX .

The second inequality in (26) implies that X 0 is well approximated by the oper-
ator

X 00 ´
KX

kD1

X

n2Ik
�k �n ˘k �n C �N0 X �N0 (28)

with
kX 00 �X 0k < O.K "/ : (29)

Next, we note that the first inequality in (26) implies that

ˇ̌ˇ̌�
�n ˘k �n

�2 � �n ˘k �n
ˇ̌ˇ̌
< O

�
N �20 "

�
:

This estimate enables us to apply the following

Lemma Let P be a self-adjoint operator in a von Neumann algebra A, and let
ı < 1

2
. If kP 2 � P k < ı then there exists an orthogonal projection bP 2 A whose

image belongs to the range of P such that

kbP � P k < ı :
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See Lemma 8 and Appendix C of [8]. This lemma implies that if N �20 " is small
enough then there exists an orthogonal projection �k;n with the property that the
image of �k;n is contained in or equal to the image of �n and such that

k�k;n � �n ˘k �nk < O
�
N �20 "

�
:

We define

X 000 ´
KX

kD1
�k
�X

n2Ik
�k;n

�C �N0 X �N0; and Xfin´ X 000 � �N0 X �N0 : (30)

We are ready to state a result in the theory of measurements, according to the
ETH-Approach to QM.

Theorem 1 We assume that the bounds in (24) and (26) hold for some " � 1.
Then we have that

(i) the Born probability of finding an individual system in the ensemble E in a
state that belongs to the range of the projection �N0 D �.N0/ is bounded above
by ";

(ii) the operatorX 000 defined in (30) is reduced by the projections �N0 and 1��N0;
(iii) the norm of X 000 �X is bounded by

kX 000 �Xk < O."/;

i.e., the physical quantity bX is well approximated by a slightly modified physi-
cal quantity represented by the operator X 000;

(iv) the eigenvalues of Xfin D X 000 � �N0 X �N0 are contained in or equal to the

spectrum,
˚
�k

K
kD1, of the operator X and the eigen-projection of Xfin corre-

sponding to �k is given by the projection
P

n2Ik �k;n
�
which is dominated by

the projection
P

n2Ik �n
�
, for k D 1; 2; : : : ; K; and

�
Xfin; �n

� D 0; 8 �n 2 e :

We conclude that, under the hypotheses of Theorem 1, one may interpret the actu-
alization of the event e as being accompanied by the completion of a measurement
of a physical quantity bX 000 � bX , where bX 000 is represented by an operatorX 000 that is
a tiny modification of the operator X representing bX .

In this section, we have not tried to optimize our estimates; we have attempted
to outline the basic ideas of how measurements can be interpreted in the ETH-
Approach described in [1–3].
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4 Proof of the Main Result

In this section we prove theMain Result announced in Sect. 2. We consider a density
matrix � on a separable Hilbert space H with spectral decomposition

� D
1X

nD1
!n �n ; !1 > !2 > � � � : (31)

as in (3) of Sect. 2. We define pn ´ !n � dim�n; n D 1; 2; : : : Given a positive
number "� 1, we define �" by

�"´
X

n W!n�"1=4
pn : (32)

Clearly, �" & 0, as " & 0. The Main Result is a consequence of the following
theorem.

Theorem 2 Let � and �" be as in (31) and (32), respectively, and let X be a
self-adjoint operator on H , with kXk � 1. We assume that

ˇ̌ˇ̌�
�;X

�ˇ̌ˇ̌ � " : (33)

Then, for sufficiently small values of " and �", there exist a density matrix �0 and
a self-adjoint operator X 0 such that Œ�0; X 0� D 0 and

kX �X 0k � "1=4; and tr
ˇ̌
� ��0 ˇ̌ � 2�" CO."1=4/ : (34)

Proof As announced in the theorem, our goal is to construct a density matrix �0
close to� in the trace norm and a self-adjoint operatorX 0 close toX in the operator
norm such that Œ�0; X 0� D 0. We begin with the construction of �0.

In the following it is convenient to rewrite the spectral decomposition of � as
follows:

� D
1X

jD1
!j juj

˛ ˝
uj j ; !1 � !2 � � � � � 0;

1X

jD1
!j D 1 ; (35)

where
˚
uj

1
jD1 is an orthonormal system of eigenvectors of �, and juj

˛ ˝
uj j is the

orthogonal projection onto uj , for all j . Then assumption (33) implies that

kŒ�;X�uik2 D
1X

jD1
.!i � !j /2j

˝
ui ;Xuj

˛j2 � "2; 8i : (36)

In the following steps, we construct a positive trace-class operator e� � �, (hence
tre� � 1).
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1) We preserve the eigenvectors of the density operator�, but—where necessary—
modify the corresponding eigenvalues in such a way that the spectrum of the
modified operator e� consists of (possibly degenerate) eigenvalues separated by
gaps of specified size. To begin with we choose two exponents, ı and ˇ (later
set equal to 1=4 and 3=4, respectively), with

0 < ı < ˇ < 1 and ˇ > 2ı ; (37)

and we modify the spectrum of e� in such a way that the gaps between the non-
coinciding modified eigenvalues, i.e., between the distinct eigenvalues of e�, will
be larger than "ˇ .

1-i) We observe that, since � � 0;with tr� D 1, the dimension of the direct
sum of the eigenspaces of � corresponding to eigenvalues larger than or
equal to "ı is bounded above by O.1="ı/.

1-ii) Next, we define !i1 to be the smallest eigenvalue of � larger than "ı with
the property that its separation from the previous (next larger) eigenvalue is
bounded below by "ˇ. It is not assumed that an eigenvalue with the proper-
ties of !i1 exists.

But if such an eigenvalue !i1 exists then we denote by .!i1/� its precursor. By
construction, we have that .!i1/� � "ı C O."ˇ�ı/, because there are at most
O."�ı/ eigenvalues separated by gaps bounded by � "ˇ in between "ı and !i1 ,
as follows from 1-i).
We define

� an interval I0 by I0´ Œ0; .!i1/��,
� and a subspace H0 �H as the direct sum of the eigenspaces of � corre-

sponding to eigenvalues contained in the interval I0.

If an eigenvalue with the properties of !i1 does not exists then we conclude that
the largest eigenvalue, !max, of � must be smaller than O."ı C "ˇ�ı/. In this
case, we define I0 ´ Œ0; !max�.
We define e� to vanish on the subspace H0.

1-iii) We next assume that I0 ¤ Œ0; !max�, i.e., that an eigenvalue with the prop-
erties of !i1 exists. Then we consider the smallest eigenvalue of � larger
than !i1 with the property that its separation from the previous eigenvalue
is larger than "ˇ .

If such an eigenvalue exists we denote it by !i2 and its precursor by .!i2/�, and
we then have that !i2 � !i1 CO."ˇ�ı/. We also define

� I1 ´ Œ!i1 ; .!i2/��;
� n1 ´ number of eigenvalues (with multiplicity) of� contained in I1;
� H1´ direct sum of the corresponding eigenspaces (notice that dimH1Dn1).
If an eigenvalue with the properties of !i2 does not exist we conclude that the
largest eigenvalue, !max, of � is smaller than !i1 C O."ˇ�ı/, and we define
I1´ Œ!i1; !max�.
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On the subspace H1 we define

e�
ˇ̌
H1
´ e!1 � 1

ˇ̌
H1
;

where e!1´ !i1 .

1-iv) We iterate these arguments: If Im�1 ¤ Œ!im�1 ; !max�, then, starting from
!im , we consider the eigenvalue of � with the property that its separation
from the previous one is bounded below by "ˇ.

If an eigenvalue of � with these properties exists we denote it by !imC1 and the
previous one by .!imC1/� � !imO."ˇ�ı/. We also define

� Im ´ Œ!im ; .!imC1/��;
� Hm ´ direct sum of eigenspaces of � corresponding to eigenvalues con-

tained in the interval Im; and nm´ dimHm.

If this eigenvalue does not exists we conclude that the largest eigenvalue, !max,
of� is bounded above by !im CO."ˇ�ı/, and we define Im´ Œ!im; !max�

On the subspace Hm we define the operator e� by e�
ˇ̌
Hm
´ e!m � 1

ˇ̌
Hm

, where
e!m´ !im .

1-v) The construction described above must necessarily stop at some step m �
0, because � is trace-class and "ˇ > 0. The spectrum of the operator e�
constructed above consists of the points

f!i0 ´ 0 ; !i1 ; : : : ; !img : (38)

1-vi) We note that e� has been defined as the operator whose eigenspaces are
the subspacesHm and the corresponding eigenvalues are given bye!m. (To
avoid possible confusion we stress that the eigenvalues e!m of Q� are in-
creasing in m whereas the eigenvalues !i of � are decreasing in i .) The
operator e� enjoys the property

trj� � e�j � o.1/CO
�
"ˇ�ı.n1 C � � � C nm/

� � o.1/CO."ˇ�2ı/ ; (39)

which holds, because
0 <

X

!i�"ı
!i � o.1/ I (40)

(recall that � is trace-class and that, in (32), we have noticed thatP
i W!i�"1=4 !i DW �" � 1). Moreover, we use the facts that any eigenvalue

of � corresponding to an eigenvector in Hm is included in the interval
Œ Q!m ; Q!m C 
ˇ�ı �, by construction of Hm, and that

n1 C � � � C nm � O.1="ı/ ; (41)

as shown in 1-i).
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2) Next, we modify the operator X . The modified operator is denoted by X 0 and is
defined by its matrix elements in the basis,

˚
uj

1
jD1, of eigenvectors of�, which

are given by
.X 0/i ; j ´ hui ; X uj i ; (42)

provided that ui and uj belong to the same subspace Hp; p � m, and

.X 0/i ; j ´ 0 ; (43)

if ui and uj belong to different eigenspaces, Hp , Hp0 , of e�.
We thus have by construction that

Œe� ; X 0 � D 0 : (44)

Next, we show that kX�X 0kD o.1/. This follows from the following inequality
proven below:

sup
i

1X

jD1
jhuj ; .X �X 0/ ui ij2 � "2.1�ˇ/ ; (45)

where the summands are non-zero only if ui and uj belong to different
eigenspaces Hpi , Hpj of e�, so that

1X

jD1
jhuj ; .X �X 0/ uiij2 D

X

j Wuj 2Hpj
; pj 6Dpi

jhuj ; X uiij2 : (46)

But if pj 6D pi then j!i � !j j � "ˇ , where !i and !j are the eigenvalues of �
on the vectors uj 2Hpj and ui 2Hpi , respectively. Next, we exploit the bound
assumed in (33), namely

"2 � k Œ � ; X � ui k2 (47)

D
1X

jD1
.!i � !j /2jhui ; X uj ij2 (48)

� "2ˇ
X

j Wuj 2Hpj
; pj 6Dpi

jhui ; X uj ij2 (49)

To conclude the proof of the theorem, we normalize e� by dividing by its trace,
defining�0 ´ e�

tre� . Setting ı D 1
4
and ˇ D 3

4
, and using that

trj�� e�j � �" CO." 14 / ;

we conclude that
trj� ��0j � 2�" CO." 14 / :
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Abstract The path integral for the Fermi oscillator defined by the evolution kernel
U.t jx; y/, with x; y D ˙1, is analysed in detail. We derive a polar decomposition
of the complex-valued cylinder measures dWN governing N time steps of length
� D T=N and show how it survives the continuous time limit, N !1. Moreover,
we confront the formulae with those for the corresponding imaginary time Markoff
process.

1 Introduction

Two level quantum systems are very useful to describe interesting aspects of real
physical phenomena like tunneling of the N atom in the Ammonium molecule NH3
within the lowest energy states [1].

Moreover, they allow to discuss basic ideas of quantummechanics (QM) without
very difficult mathematics. The aim of this paper is to demonstrate how naturally
emerge path integrals in “physical” and imaginary time.
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Let us briefly review the history. As well known the first formulation of QM in
terms of matrices was given by W. Heisenberg 1923. But it was confronted soon
with the theory of E. Schrödinger. He introduced a so called wave function '.t jx/
which must solve his famous equation.

Using an idea of P. Dirac 1933 concerning the possible role of Lagrangean for
quantum theory R. Feynman 1946 gave a recipe for explicit calculation of the prop-
agator U.t jx; y/ which allows to get '.t jx/. His path integral reformulation of QM
meanwhile is standard.

But this was not yet the end of the story. In 1972 E. Nelson showed how for
certain QFT models the propagator may be recovered from the transfer matrix
p.t j:; :/; t � 0, governing a stochastic process “at imaginary time” [2]. Later the
crucial Markoff property could be relaxed, also the requirement of having a posi-
tive measure, ergodicity and even regularity [3–5].

In fact the trick of analytic continuation to imaginary time was originally in-
troduced in the opposite direction and described by J. Schwinger 1958 with “Eu-
clidean” fields related to positive metric as rather miraculous objects. It stimulated
constructive QFT also including gauge fields.

2 Model

The pure states of our two level QM system are described by vectors f D .a; b/ in
Hphys D C2, often normalized by jaj2 C jbj2 D 1. We will denote the ground state
by � D .0; 1/ and the excited state by h D .1; 0/ corresponding to energy levels
E0 D 0, and E1 D ! > 0.

The Hamiltonian then readsH D!P1, where P1 is the 2�2-matrix of projection
onto h. Introducing the operatorA sending h to� and annihilating� and its adjoint
A� we getA�ADP1 and henceH D!A�A. Moreover,AADA�A� D0,AA� DP0
and AA� C A�A D I .

ForQ D .ACA�/ it holdsQQ D I and hence its eigenvalues are x D˙1. Let
P D i!.A� � A/ D iŒH;Q�

and
U.t/ D exp.�i tH/ D P0 C exp.�i t!/P1 ; �1 < t < C1 ;

denote the group of unitary operators governing time evolution. The resulting for-
mula

Q.t/ D U �.t/QU.t/ D cos.t!/QC sin.t!/
P

!

suggests to interpret Q as position, P as momentum and the name “Fermi oscil-
lator” for this quantum system. Observe that PQCQP D 0. Instead of CCR one
finds an interesting operator

.QP � PQ/
2i!

D R D P0 � P1
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implementing reflections RQR D �Q. Hence R intertwines the eigenstates of Q
and also of P . Moreover, it holds R� D � and one finds the representation of the
Hamiltonian

H D !

2
.I �R/ :

Explicitly:

P0 D
 
0 0

0 1

!

; P1 D
 
1 0

0 0

!

; P D !
 
0 i
�i 0

!

;

A D
 
0 0

1 0

!

; Q D
 
0 1

1 0

!

;

U.t/ D
 
r 0

0 1

!

; R D
 
�1 0

0 1

!

;

with r D exp.�i t!/.
In fact, H is renormalized. In most textbooks one considers the energy levels

˙!=2, i.e. the naive Hamiltonian H0 D !=2.P1 � P0/ D �!R=2. Hence H D
H0 C !=2. Also for the momentum operator P using R we find another formula

P D �i!=2ŒR;Q� D i!QR :

3 Schrödinger Equation

The matrix algebra generated by Q and P (with PP D !2I / contains the com-
mutative subalgebra generated by the position operatorQ with spectrum f�1;C1g.
So we may realize vectors in the physical Hilbert space Hphys as functions f .x/ D
a1C bx, where x D ˙1, equipped with scalar product

hg; f i D 1

2

X
g.x/� f .x/ ;

summing over x. The factor 1=2makes

f D .a; b/! a1C bx
an isometry, in particular �! 1 and h! x. In this representation eigenfunctions
ofQ are given by

ıC D 1C x
2

; ı� D RıC D 1 � x
2

:

It holds ıC.1/ D C1; ıC.�1/ D 0 and hıC; ı�i D 0.
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The eigenfunctions of the momentum operatorP read .1� i x/=2 and .1C i x/=2
with the corresponding eigenvalues ˙!. It holds PıC D �i!ı�. Moreover, the
eigenstates of H are just the symmetric and antisymmetric superpositions of those
forQ with x D ˙1

� D .ıC C ı�/ ; h D .ıC � ı�/ :

All operators are defined by their “integral kernels” where integral here means
sum. In particular we obtain A.x; y/ D y, A�.x; y/ D x, Q.x; y/ D .x C y/,
P.x; y/ D i!.x � y/ and R.x; y/ D .1 � xy/. Moreover, P0.x; y/ D 1 and
P1.x; y/ D xy so that I.x; y/D .1C xy/. Here we did not include the factor 1=2.
This leads to

Pf .x/ D i!xf .�x/ ;
Hf .x/ D !

2

�
f .x/ � f .�x/� :

Below we will include the factor 1=2 appearing in the scalar product of Hphys.
So in particular for the evolution kernel we obtain the expression

U.t jx; y/ D 1

2

�
1C exp.�i t!/ xy� ; x; y D ˙1:

Given f in Hphys, '.t j�/ D exp.�i tH/f with initial condition '.0j�/ D f sat-
isfies the Schrödinger equation i d'.t j�/= dt D H'.t j�/. For f D ıC as above we
obtain

'.t jx/ D exp.�i tH/ıC
D 1C exp.�i t!/x

2
D uC.t/ıC C u�.t/ı� ;

with the complex coefficients

uC.t/ D hı�; '.t jx/ihıC; ıCi D
1C exp.�i t!/x

2

and

u�.t/ D 1 � exp.�i t!/x
2

;

respectively.
As vectors uC.t/; u�.t/ are orthogonal to each other. In Fig. 1 we have drawn

their geometry. The corresponding probabilities (which sum up to 1) are

ju˙.t/j2 D 1˙ cos.t!/

2
:

Hence '.t j�/, starting at '.0j�/ D ıC, after time t D �=! is equal to the state
vector ı�, i. e. “the quantum system moves from x D 1 to x D �1”. And after
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Fig. 1 Complex u˙-plane

Fig. 2 Circulation of '.t j�/
within 0 � t � 2�=!

time t D T0 D 2�=! “it returns to x D C1” i. e. the original one. We easily check
'.t j�/ D .1 � i x/=2 for t D �=2 and '.t j�/ D .1C i x/=2 for t D 3�=2.

More precisely, the corresponding vector of the Bloch sphere [6] associated to
our QM system moves around its equator, which is a circle in theQ;P=!-plane of
mean energy

h'.t j�/;H'.t j�/i=h'.t j�/; '.t j�/i D !=2 :

For the mean values of Q and P in these states '.t j�/ we calculate q.t/ D cos t!
and p.t/=! D sin t!, as one may expect from an oscillator, see Fig. 2.

The amplitudes u˙.t/ tell us that '.t j�/! ıC; ı� respectively with probabili-
ties ju˙.t/j2, for any time t > 0. Naively one would expect that within time t D
kT0=2 ; k D 0; 1; 2; 3; : : : a number k of flips x D �1$ x D C1 would happen.
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These flips are virtual and cannot be observed. But they allow to get an intuitive
picture of what happens with the QM system Fermi oscillator. Although

'.t j�/ 	 exp.�i tH/ıC D ı�; ıC
for t D T0=2 respectively t D T0 there is no probability for finding it in a state
such that �1 < x < C1 which contradicts our classical logic and understanding of
physics.

4 Feynman Integral

The a priori probability for the quantum system to be in a state with eigenvalue
x D ˙1 ofQ is equal to 1=2 and we rewrite

Hphys D L2.S0; dP0/ ; where S0 D f�1;C1g :

Below we consider the N -point vacuum expectation values of time ordered
operators Q.tn/, n D 0; 1; 2; : : :; N . Using U.t/� D �, for N D 1 we obtain
< �;Q.t/� >D 0 becauseQ�D h is orthogonal to�. Next, for N D 2 we have

h�;Q.t1/Q.t2/�i D h�;Q exp.i �H/Q�i D exp.i �!/ ;

where � D .t2 � t1/ > 0.
We will always have the variable x0 D x.t0/ for some starting time t0 with prob-

ability dP0.x0/ D 1=2. Let t0 < t1 < t2 and x1 D x.t1/, x2 D x.t2/, �1 D .t1 � t0/,
�2D .t2� t1/. The Feynman path integral measure which will be shown to reproduce
the above expression is given by

dW2.x0; x1; x2/ D dP0.x0/w.�1jz1/w.�2jz2/

with

w.� jz/ D 1C exp.i �!/z

2
D U.�� jx; y/

2
; z D xy D ˙1 :

One verifies
X

dW2.x0; x1; x2/ D 1 ;

summing over x0; x1; x2 D ˙1.
“Integrating out x2” we obtain dW1 equal to dP0.x0/w.�1jz1/. By iteration we

obtain dWN defined on points .x0; x1; x2; : : : ; xN / in S0 � SN , where

SN D
NO

nD1
f�1;C1g :
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There are exactly 2 �2N elements in S0�SN and these can be interpreted as discrete
time trajectories tn!xnD˙1. One easily checks a consistency condition for “sum-
ming out” any of the variables and hence dWN ;N D 0; 1; 2; : : :, define so called
cylinder measures [7] on continuous time trajectories t ! x.t/ D ˙1 “controlling
their values only sometimes”.

Let 0� t�T , with finite T . Then the trajectories are elements in SŒ0; T �which is
an uncountable set. The idea of R Feynman was to define a complex-valuedmeasure
dW Œ0; T � on such set of “classical” trajectories. For simplicity, in the following we
put tnDn� , nD0; 1; 2; : : : ; N so that all time steps .tn�tn�1/ are equal to �DT=N .

Now t0D0< t1 < t2 : : : < tN DT . To prove the existence of a measure dW Œ0; T �
lurking in the background we must find an upper bound for the total variations

kdWNk D
X
jdWN .x0; x1; x2; : : : ; xN /j

independent of N . Above the sum runs over all x0; x1; : : : ; xN D ˙1. The measure
factorizes in the variables x0 and zn, nD1; 2; : : : ; N . Hence the modulusmay be put
to every factor w.� jzn/. We find jw.� jz/j D p

.1C z cos �!/=2 so that summing
over z D ˙1

C.�/ D
X
jw.� jz/j D

p
.1C cos �!/=2C

p
.1 � cos �!/=2

D j cos.�!=2/j C j sin.�!=2/j D
p
1C j sin �!j

and
kdWNk D C.�/N :

Lemma 1 The total variations of the cylinder measures dWN ;N D1; 2; : : : satisfy
the estimate

kdWNk < kdW Œ0; T �k D exp.CT!=2/ :

Proof By a simple argument it is sufficient to show ŒC.�/�2 <C.2�/when we dou-
bleN step by step. We check C.�/ > 1, except for �! equal to multiples of � when
C.�/ D 1 which is also seen by Pythagoras’ theorem. So we obtain a monotone
increasing sequence kdWNk.

From CN � .1C T!=N /N=2 for small � D T=N , we obtain the required upper
bound. �

Since kdW Œ0; T �k diverges to infinity when T ! 1 we suspect that only for a
finite time interval the measure is well defined.



166 J. Löffelholz

5 Flip Number Sets

The expressions dWN , for N D 1; 2; 3; : : :, are complex-valued. We observe that
w.� jz/Du˙.��/, zD˙1 because of U.t/D exp.�i tH/, i. e. these complex num-
bers circulate in the opposite direction with time. Clearly, w.� jz/ are real (equal 0
or 1) only when �! is equal to multiples of � . How looks like the polar decompo-
sition and what about the phase? We obtain

dWN

dP0
D w.� j � 1/k w.� j C 1/N�k

with

k D N �P zn

2
:

Indeed, the variables kn D .1� zn/=2, nD 1; 2; : : : ; N , take values 0 or 1 and their
sum k DP kn counts the number of “flips” xn D�xn�1 when zn D�1. This leads
to

Lemma 2 If tn D n�; nD 0; 1; 2; : : : ; N so that all time steps .tn � tn�1/ are equal
to � D T=N the Feynman measure of a path .x0; x1; : : : ; xN / depends only on

k D N �P zn

2
, where zn D xn�1xn and is given by the expression

dWN D dP0 ˝
�
.sin.�!=2//k.cos.�!=2//N�k

�
exp.iˇk/

with angle

ˇk D N�! � k�
2

:

Proof

w.� j C 1/ D cos.�!=2/ exp.i �!=2/ ;

w.� j � 1/ D �i sin.�!=2/ exp.i �!=2/ :
These identities are visualized in Fig. 3a. We used �iD exp.�i�=2/ and of course
T D N� is the total length of the time interval. For 0 � T!=2N � �=2 both terms
in the square brackets are nonnegative so that forN large enough the above formula
gives the required decomposition into modulus and phase factor. �

We observe that the set a � SN of trajectories .a; x1; : : : ; xN / with fixed x0 D
aD˙1may be devided into disjoint classes fa�SN.k/g; kD 0; 1; 2; : : : ; N which
contain precisely those elements with .N �P zn/=2 D k.

Now we are ready to perform the limit N !1 and simultaneously � D T=N
! 0.
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Fig. 3 Geometry of w.� j ˙
1/. a V0 D exp.iˇ0/, b v0; v1
for T small

b

a

Theorem The Feynman integral measure of the set of trajectories t!x.t/ starting
at x0 D a and having k D 0; 1; 2; : : : “flips” within the time interval .0; T � is given
by

dP0.a/
.T!=2/k

kŠ
exp.i.T! � k�/=2/ :

Proof With help of Stirling’s formula wemay approximate the number of elements
in fa � SN .k/g for large N by Nk=kŠ so that

.cos.T!=2N //N�k ! 1 and Œ.sin.T!=2N /N �k ! T!=2 :

Moreover
Œsin.T!=2N /�k ! 0 ;

except k D 0. �

Hence when N ! 1 only the single elements with k D 0 (i. e. no flips at all)
survive with measure non zero which are exactly the trajectories x.t/ D �1 for all
0 � t � T , respectively x.t/ D C1. The flip number sets remain measurable and
we denote them by fa � S.0; T �.k/g, where k D 0; 1; 2; : : : with a D ˙1.

Also subsets of trajectories and their measures dW ŒT1; T2� for arbitrary intervals
ŒT1; T2� are easily defined because of time translation invariance, i. e. the expression
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depends only on T D .T2�T1/. Applying the usual operations\; n for intersection
and complement we obtain a rich algebra of subsets in SŒ0; T � which contains also
the standard cylinder sets as we will see just now.

In the following we concentrate on the flips and neglect the factor dP0.a/D 1=2
remembering that every trajectory may start from two points with equal probability.
Then we have a complex-valued Poisson distribution with parameter .�iT!=2/ for
the variable k

vk D exp
�
iT!

2

�
exp

��i k�
2

�
ck ;

where

ck D .T!=2/k

kŠ
D jvkj ; k D 0; 1; 2; : : :

It holds c0 D 1. If T > 0 then ck > 0, for k D 1; 2; 3; : : : . The sum of all vk
is equal to the measure of all paths an hence equal to 1. But jv0j D 1 and henceP jvkj2 > 1, except T D 0, the expressions jvkj2 do not define probabilities. The
vk are also defined by v0 D exp.iT!=2/ and the recursion formula

vk D exp.�i�=2/T!
2k
vk�1 :

For small T compared with the period T0 D 2�=! of the Fermi oscillator we
verify

v0 D exp
�
iT!

2

�
� 1C iT!

2
v1 D �iT!

2
exp

�
iT!

2

�
� � iT!

2

as drawn in Fig. 3b above for T! � 1. We observe that the phase vanishes exactly
for T D k.T0=2/ i. e. when there are in mean just two flips within one period. By a
simple argument one can show that the modulus .T!=2/k=kŠ acquires its maximum
kmax near T!=2, see Fig. 4.

We have v0D exp iˇ0, ˇ0DT!=2. This defines the line in the complex plane for
all vk with k even. In fact, the factors exp.�i k�=2/ D .�i/k implement rotations
by the angles �k�=2. Therefore, from the recursive formula in particular we obtain
v1 D �i.T!=2/ v0, v2 D �.T!=2/2=2 v0, etc.

Every trajectory in fa�S.0; T �.k/g, for k even, connects x0D a with x.T /D a.
Because all those contribute to the QM transition their amplitudes should sum up to
w.T jz/, z D a a D 1. Indeed, the sum of factors .T!=2/k=kŠ with k even is equal
to cos.T!=2/.

Similar for k odd, any trajectory in fa � S.0; T �.k/g connects x0 D a with
x.T / D b D �a. Hence we have reconstructed the cylindersets fa � S.0; T / � bg,
b D ˙a, as

[
fa � S.0; T �.k/g ; union over k even/odd;

and their Feynman path integrals. It seems worthwhile to compare all this with the
formulae for the imaginary time stochastic process associated to our QM model.
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Fig. 4 Arrows vk

6 Ferromagnetic Measure

Substituting formally �i � ! t � 0 in the QM amplitudes
�
1C exp.i �!/xy

�
=2 we

obtain

p.t jx; y/ D 1˙ r
2

; y D ˙x

with rD exp.�t!/. The expression 0�p.t jx; y/� 1 defines the transition function
of a Markoff process t ! x.t/ D ˙1. We will denote the measure by dP . The
identity (Chapman–Kolmogoroff equation)

X
p.sjx; y/p.t jy; z/ D p.s C t jx; z/ ;
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summing over y D 1, means that p.t j:; :/, t � 0, build a semi-group. The pair
x.t/; x.0/ shows “ferromagnetic” correlation because p.t jx; y/ > 1=2 for xy D 1.
If we think about a spin chain it is more likely they are parallel directed. The corre-
lation decays exponentially

p.t jx; y/! 1=2 for t !1 :

As for physical time let us start with discrete tn D n� , n D 0; 1; : : : ; N , where
� D T=N . The set a � SN may be interpreted as family of linear chains .x0; x1; x2;
: : : ; xN / of N C 1 spins xn D ˙1 at “distances” � . We may rewrite

p.� jx; y/ D exp.J xy/

exp.J /C exp.�J /
and

dPN D dP0.x0/ expJ
P
zn

.expJ C exp.�J //N
with zn D xy, x D xn�1 and y D xn, n D 1; 2; : : : ; N . This is the well known
expression used first by W. Lenz and E. Ising to describe ferromagnetism in d D
1; 2 dimensions. About 1973 a group of theoreticians around the world initiated
the reconstruction of QFT models from stochastic processes with “ferromagnetic
measures” [8].

The function J D J.�/ involves the Caley transformation

exp.�2J / D 1 � r
1C r ;

mapping the unit interval onto itself and is its own inverse. For small � > 0 spins
nearby are strongly correlated i.e. we get big values of J and vice versa. What gives
the analytic continuation r ! exp.i t!/? We find

exp.�2J /! �i tan.t!=2/ ;
which leads to the above formula for dWN within the QM model.

In the variables x0; zn; nD 1; 2; : : : ; N , the measure dPN factories into dP0.x0/
and the product of

dM.zn/ D 1C rzn
2

Therefore x0 and all z1; z2; : : : ; zN are mutually stochastic independent. The mean
value of z is

P
dM.z/z D r . We may rewrite xn D x0z1z2 : : : zn and similar for

xm. Hence

EŒxn� D
X

dP0.x0/x0

hX
dM.z/z

in D 0 :
and

EŒxm xn� D
X

dP0.x0/
hX

dM.z/z
in�m D rn�m :
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Remark The dynamics of our system is described in terms of the flip variables
zn, whereas x0 D a is a reference variable which we can fix. This remembers the
stochastic process called one-dimensional random walk

N ! xN D aC .z1 C z2 C : : : C zN /

in terms of an initial position x0Da and steps znD˙1, nD1; 2; : : : ; N forward and
back with equal probability 1=2. Unfortunately, here no translation invariant regular
measure exists when N !1 because the xN become unbounded. The counterpart
of dP0.x0/ is the “flat” ergodic mean measure [9].

The measure dPN of a chain .x0; x1; : : : ; xN / depends only on the initial value
x0 D a and on the total number of flips k DP

kn, where again kn D .1 � zn/=2
with n D 1; 2; : : : ; N , see Fig. 5. For fixed x0 D a it holds

pk D dPN .a; x1; x2; : : : ; xN /

dP0.a/
D qk.1 � q/N�k ;

where

q D EŒkn� D 1 � r
2
D 1 � exp.�T!=N /

2
:

Now kn D 0; 1 and hence their sum k are true random variables. In fact, .k1; k2;
: : : ; kN / is a Bernoulli chain [10] defined by the parameter q. As above multiply-
ing the pk by NŠ=.kŠ.N � k/Š/ we obtain the probabilities for flip number sets
fa � SN .k/g, k D 0; 1; : : : ; N . And finally, if we add these for all k even/odd by
induction starting with N D 1 we recover the correct expressions .1˙ rN /=2 for
the cylindersets SN .a � b/ i. e. the subset of paths in SN with x0 D a and xN D b.

Fig. 5 Trajectory with 3 flips
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For small � D T=N the parameter q becomes close to T!=2N . As well known
one may perform the limit N !1 when keeping Nq finite. In result the random
variable k D .k1 C k2 C : : :C kn C : : :/ yields a Poisson distribution

�k

kŠ
exp.��/ ; k D 0; 1; 2; : : :

with

� D lim
N!1

N.1 � exp.�T!=N //
2

D T!

2
:

7 Axioms

Within the 1960 years QFT models were reformulated in terms of vacuum expec-
tation values called “Wightman functions” [11]. The possibility of their analytic
continuation to imaginary time essentially results from the spectrum of the Hamil-
tonian.

The vacuum is the ground state�D 1withH�D 0. In our QMmodel the fields
are the time dependent position operators Q.t/. Using U.t/� D �, substituting
�i t ! � � 0 we obtain

h�;Q.t/�i !
X

dP.x/x D 1

2

X
1x D 0

Next

h�;Q.0/Q.t/�i ! h�;Q exp.��H/Q�i D EŒx.0/x.�/�
D
X

dP.x; y/xy D exp.��!/ ; � � 0 :

We observe that

D D Q.s/Q.t/ D exp.i �!R/; � D .t � s/ :
This follows from the explicit formulae for Q.t/ in terms of Q;P using QQ D
PP=!2 D I;QP D i!R and the identity cos.�!/I C i sin.�!/R 	 exp.i �!R/.
Therefore time ordered products of pairs of “fields” Dn D Q.tn�1/Q.tn/, n D
2; 4; : : :, commute. This implies

O
Dn D exp

�
i!R

X
�n

	
; n D 2; 4; : : : :

We conclude that˝Dn applied to the vacuum� gives a phase factor leading to the
well-known expression for the even N -point functions

< �;Q.t1/Q.t2/ : : :Q.tN /� >D exp
�
i!
X

�n

	
:
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Conversely, the moments of the measure dP called “Euclidean Green’s func-
tions”

EŒx1x2 � � �xN � D
X

dPx1x2 � � �xN
satisfy axioms equivalent to those for physical time postulated by Osterwalder and
Schrader [12]. Again, the reconstruction of the quantum dynamics crucially de-
pends on a positivity condition. In order to formulate it we should symmetrize the
probability space with respect to time reflection �W t ! �t , glueing the interval
Œ0; T � together with Œ�T; 0� to Œ�T; T �. Then the limit T !1 may be performed
and one obtains a stationary process t ! x.t/ with measure dP according to the
general theory of Kolmogoroff.

We will identify QM vectors f D a1 C bx in Hphys with functions F in
L2.S; dP / defining F D f .x0/. For a pair f; g in Hphys respectively their images
F;G in

E0L
2.S; dP / D L2.S0; dP0/

we have
hg; f i D

X
dPG�F D .G; F / :

We denote by EŒ�� the expectation with respect to the measure dP . Let F D a1C
bx.t/ be a function of one single “future time” t � 0 and �F .x.t// D F .x.�t//
be its mirror image.

Then it should hold

EŒ�F �F � D
X

dP�F �F � 0 :
Explicitly

X
dP.�F �/F D

X
dP.z; x; y/F.z/�F.y/

D
�
1

2

�3X
.1C rzx/.1C rxy/.a1C bz/�.a1C by/

D hg; gi
where

g.x/ D 1

2

X
.1C rxy/f .y/ D aC rbx ;

r D exp.�t!/ and z D x.�t/, x D x.0/, y D x.t/ all summed over˙1. Hence
the expression in question becomes non-negative. With V.t/, �1 < t < C1, the
imaginary time translations acting as unitaries in L2.S; dP / we may rewrite

g D exp.�tH/f D E0V.t/F ; t � 0 :
Conversely, according to the reconstruction of B. Szekefalvi-Nagy [13] the

Hamiltonian semi-group admits a unique minimal dilation which are just the uni-
taries V.t/ in the big “Euclidean“ Hilbert space. If dP is ergodic then V.t/F D F
implies F D c1 which implies exp.�tH/� D � [14].
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E Nelson gave a rigorous derivation of the Feynman–Kac formula when the
stochastic process t!x.t/ governed by the measure dP satisfies the Markoff prop-
erty and also the reflection property. The latter means that functions F D F.x0/ in
L2.S0; dP0/ are �-invariant which is the case in our model.

Let t0 < t1 < t2 < � � � < tN , rewrite xn D V.tn/x0V .tn/�, for n D 0; 1; 2; : : : ; N
and define F D x1x2 � � �xN . Using the above mentioned properties of the measure
dP and repeatetly the above definition of the Hamiltonian semi-group it follows

EŒF � D .1;E0ŒF �/
D< �; exp.��1H/Q exp.��2H/Q � � � exp.��NH/Q� >

D exp.�
X

�n!/ ;

with �n D .tn� tn�1/, for nD 2; 4; : : : ; N even and otherwise zero. We observe that
on the left side the function 1 representing the vacuum vector� may be substituted
by any element in the time zero subspace L2.S0; dP0/ which leads to the formula

E0ŒF � D exp.��1H/Q exp.��2H/ � � �Q exp.��NH/Q� :

For N odd we obtain an additional factor exp.��!/x0 so that the correlation
functions must vanish because of .1; x0/ D 0.

8 Final Remarks

These notes are based on a lecture with title “Imaginary time path integrals with
complex valued measure in QM models” given by the author October 12, 1994, in
a seminar at the Dipartimento di Fisica a Pisa.

The main motivation for this work was to show “how natural are probabilistic
methods in QFT”, as wrote E Nelson. Certainly Gianni Morchio would have agreed.
He very liked the functional integral point of view.

I suspect that several facts concerning the imaginary time formulation are hidden
in the paper [8]. Nevertheless it was worthwhile to work out them myself and to
present them in detail. Why? Unfortunately, for many interesting QM and QFT
models the “physical” time Feynman path integral does not define a measure. We
learned that for the Fermi oscillator the term W Œ0; T � in question, for T <1, is
well defined as limit of complex- valued cylinder measures.
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Abstract There is an odd tension in electroweak physics. Perturbation theory is
extremely successful. At the same time, fundamental field theory gives manifold
reasons why this should not be the case. This tension is resolved by the Fröhlich–
Morchio–Strocchi mechanism. However, the legacy of this work goes far beyond
the resolution of this tension, and may usher in a fundamentally and ontologically
different perspective on elementary particles, and even quantum gravity.

1 Introduction

Non-Abelian gauge theories of Yang–Mills type [1–3], no matter the matter content,
have a highly interesting feature. They are based on gauge (Lie-)groups, which do
not form simple manifolds. This has far reaching consequences. Probably the most
important one is that it is not possible to introduce global coordinate systems [4–
6], an issue known as the Gribov–Singer ambiguity. This feature stems from the
group structure, and is thus independent of the parameters of the theory, especially
the value of any coupling constants. On top of this, non-Abelian gauge theories are
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affected, as any other quantum field theory, by Haag’s theorem [7], which implies
that a non-interacting theory and an interacting one are not unitarily equivalent. In a
Yang–Mills theory, this is amplified by the fact that the free gauge theory would
have a different character, namely to be reduced to Ng non-interacting Abelian
gauge theories, where Ng is the number of generators of the gauge group.

This appears to imply that a conventional perturbative treatment [2] should not
be possible at all. The elementary particles cannot act as asymptotic states due to
Haag’s theorem. And the required gauge-fixing for the employed saddle-point ap-
proximation in perturbation theory is not well-defined due to the Gribov–Singer
ambiguity.

This appears to have “just” the consequence that genuine non-perturbative meth-
ods are required, and especially non-trivial asymptotic states are needed. The prime
example is QCD. Here, asymptotic states are hadrons, and perturbation theory can
at best be applied in special kinematics, where the involved field amplitudes are
small enough that the group manifold is only probed within a single patch. Due to
the strong coupling, however, this is generally agreed upon anyways [2, 3, 8, 9].

In the weak interactions, the situation is, on conceptual grounds, the same [3, 10–
14]. Thus, it is not surprising that, e.g., there is no qualitative distinction between
the strong-coupling case and the weak coupling case, as they are analytically con-
nected states of the theory [10, 11]. But ignoring these fundamental questions and
just applying perturbation theory turns out to be extremely successful in describ-
ing experimental results to high quantitative precision [2, 15]. This is attributed to
the Brout–Englert–Higgs (BEH) effect [16–22]: It ’breaks’ the gauge symmetry,
effectively turning it into a non-gauge theory which does not need to take care of
these issue. But, formally, a gauge symmetry cannot be broken by virtue of Elitzur’s
theorem [23], nor does this alleviates Haag’s theorem.

It is precisely here, where Giovanni Morchio’s legacy in form of the Fröhlich–
Morchio–Strocchi (FMS) mechanism [13, 14] is the decisive puzzle piece. It ex-
plains how both aspects, the phenomenological success and the formal insights, can
both be correct at the same time. How this happens will be discussed in Sect. 2.
But while the original papers [13, 14] were mainly concerned with resolving this
paradox, the legacy and implications of this work transcends in its importance the
resolution of the paradox by far. In fact, it creates a framework, the FMS framework,
to deal with a quite large class of theories effectively.

In the following, the FMS framework and the FMS mechanism, and some of
their consequences, are presented, as there are:

� Experimental testability of the field theoretical underpinnings, Sect. 3.
� Consequences for non-Abelian Yang–Mills–Higgs theories beyond the standard

model, Sect. 4.
� Applications beyond Yang–Mills–Higgs theories, Sect. 5.
� Ontological implications, Sect. 6.

In fact, the FMS mechanism, and the formal aspects on which it is build, have the
potential to fundamentally transform our view of ’elementary’ particle physics [24],
and thus the way how we perceive reality. While the need to take gauge invariance
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seriously has been pointed out repeatedly before, and in fact on formal grounds
[4, 5, 7, 10–12, 23, 25], it has been the work of Morchio and his collaborators
[13, 14] to show how the subtleties work out in practice. They thereby paved the
way for a more holistic picture of gauge symmetries, and how they are (not) relevant
[24].

Given all these implications, it appears surprising that this has found so far no
entry even in specialized textbook, much less has become the standard approach.
Especially as the necessary additional effort is at best moderate, see Sect. 2. And
the original papers [13, 14] are now more than 40 years old. While a full historical
and sociological investigations is not (yet) available, superficial investigations [26]
show that the insidious combination of the properties of the standard model and the
success of the FMS mechanism itself appear to be the reason for that. Because in
the particular case of the standard model, the FMS mechanism explains why only
slight deviations can be expected, compared to a perturbative treatment. In fact, so
slight, that they have not yet been observable in experiment, see Sect. 3. As a con-
sequence, its additional layer of complexity has not been needed, as perturbation
theory alone was sufficient. Thus, it got almost forgotten, and the (formally incor-
rect) idea of gauge symmetry breaking by the BEH effect has become accepted
lore. Only within the philosophy of science community the challenged posed to our
understanding by Elitzur’s theorem and its contradiction to the BEH effect has re-
mained a matter of importance [24, 27–33]. Especially, within the philosophy of
gauge symmetry literature, even disbelief about the treatment of the issue by physi-
cists was expressed.

Turning the whole story around, there is an important discovery awaiting. Either
we are able to experimentally discover the correctness of the consequences of the
FMS mechanism, or not. In the former case, this will make the FMS mechanism
the accepted approach for treating the BEH effect, and will have far-reaching con-
sequences for model building [26], see Sects. 4 and 5. Or, this will disprove our
fundamental understanding of quantum gauge theories, as encoded in [4, 7, 10, 11,
13, 14, 23, 26], sending us back to the drawing board, and perhaps open entirely new
avenues. As the effects are predictable and entirely fixed by the known parameters
of the standard model, this decision can be performed. Even if it is a formidable,
though manageable, task, see Sect. 3.

The only thing, which is not an option, is to ignore this tension. Because if the
understanding of quantum gauge theories is correct, the consequences of ignoring
the tension could easily be mistaken for signatures of physics beyond the standard
model [26, 34–36]. Indeed, there is an off-chance that this may have already hap-
pened [37].
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2 The FMS Mechanism

The starting point of the FMS framework is a simple statement. Given any expres-
sion O, which transforms in a linear representation of a (continous) non-Abelian1

gauge group G, an invariant group measure D�, and an invariant action as weight
factor exp.iS/, it follows2 that [13, 14]

Z
D�OeiS D 0; (1)

because

hOi D
Z

D�OeiS D
Z

D�g�1OeiS D
Z

D�OgeiS D hOgi;

where g is a gauge transformation. This can only be true for arbitrary g if hOgi D
hOi D 0. This statement is a generalization of Elitzur’s theorem [23]. Thus, there
can be no spontaneous breaking of a gauge symmetry by formation of a gauge-
dependent condensate like in the BEH effect, which in turn would break the gauge
symmetry. Thus, the gauge symmetry remains unbroken.

Additionally, this approach closes a loop hole in the original derivation, which
assumed analyticity of the free energy in external sources, which is not necessarily
the case [45]. In fact, this statement also applies to global groups [26, 46]. As a
consequence, expectation values of gauge-dependent quantities necessarily vanish,
if the gauge symmetry is unbroken. But this can then happen only by gauge-fixing
[13, 14, 23].

Thus, without breaking gauge symmetry explicitly by gauge fixing, it remains
necessarily unbroken. The BEH effect is therefore not a physical effect, but rather
only a particular useful gauge choice implemented by, e.g., the ’t Hooft-R� gauges
[47]. As a consequence, the Higgs vacuum expectation value is introduced by the
gauge-fixing and thus gauge-dependent. Its actual value needs still to be determined
from the gauge-fixed quantum effective potential, and whether it can be non-zero
remains a dynamical, albeit gauge-dependent [48–51], question.

As a consequence, the Gribov–Singer ambiguity still applies, and thus the clas-
sification of physical states using BRST symmetry fails [52]. Rather, fully and
manifestly gauge-invariant operators are needed to construct asymptotic states [12–
14]. Fortuitously, this also elegantly satisfies Haag’s theorem, as the asymptotic
states are no longer necessarily non-interacting elementary particles.

1 In fact, similar arguments do hold also in the Abelian case [38–40], and are then augmented by
the usual subtleties of Abelian gauge theories [7]. This will not be detailed here, but follows along
very similar lines, including the confirmation in lattice simulations [41, 42].
2 The original work [13, 14] used a lattice regularization in Euclidean space-time to carefully
bound expressions. While important on a formal level, this turns out to be transparent to the follow-
ing, and therefore will be suppressed. Especially, behavior at sufficiently low energies compared
to a (lattice) cutoff is likely independent on such details [43, 44].
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While this is a field-theoretically satisfying prescription, this implies effectively
to work with bound states. While non-perturbative methods exist to do so, they are
much more demanding than perturbation theory. They work very well for theories
like QCD [3, 9, 53, 54]. But the large hierarchy of the standard model, covering
at least twelve orders of magnitude, make them practically not (yet) applicable.
Moreover, the CP-breaking character of the weak interactions poses still conceptual
challenges for some of them [26, 55].

It is here, where the second part of the FMS framework becomes central, the
FMS mechanism [13, 14]. It can be argued that the Gribov–Singer ambiguity is
quantitatively not important in the presence of a BEH effect [56], for which at least
some circumstantial evidence exists [57, 58]. Similarly, the success of perturbation
theory [2, 15] ignoring all of these issues requires understanding, but indicate that
there exists some suppression mechanism.

The FMS mechanism now utilizes that any kind of perturbation theory is indeed
also a small field-amplitude expansion [59]. Thus, if the dominating field configu-
rations in the path integral are characterized by small-field amplitude fluctuations
around some fixed field configuration, an expansion should be still quantitatively
good. This could happen, e.g., due to a BEH effect, where the Higgs field devel-
ops after gauge fixing a vacuum expectation value as dominating field configu-
ration. Hence, it should be possible to still expand accordingly, i.e. performing a
saddle-point expansion around the Higgs vacuum expectation value. However, fol-
lowing the FMS framework, the expansion needs to be performed around the correct
asymptotic states, which are manifestly gauge-invariant.

Consider as an example the simplest theory having all of these features, the Higgs
sector of the standard model. Its Lagrangian is [2]

L D �1
4
trW��W

�� C .D�X/
�D�X C V.detX/

W�� D @�W� � @�W� C ig
�
W�;W�

�

D� D @� C gW� (2)

where g is the gauge coupling, W� D �aW a
� are algebra-valued gauge fields with

the generators of the gauge group �a, in the standard model SU(2). X is the matrix-
valued Higgs field derived from the complex doublet h [26]. This form makes
explicit that the Higgs field is in the fundamental representation of the gauge group
under left-multiplications, and also in a fundamental representation with respect to
a right-multiplication of an additional global SU(2) group. It should be noted that
X itself is not SU(2)-valued. The potential V is required to be invariant under both
symmetries, which is ensured by construction.

The BEH effect is made possible by a suitable gauge-fixing, which explicitly
breaks the gauge symmetry completely [2, 26]. After gauge-fixing, the Higgs field
is then split conveniently as

X.x/ D V C �.x/ (3)
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where V is a constant. It is convenient, but not necessary, to choose V D v1. If the
quantum-effective action allows for v ¤ 0, a BEH effect takes place3.

The FMS framework demands to formulate matrix elements of physical observ-
ables in terms of gauge-invariant operators. To interpret them as particles in terms
of asymptotic states requires them to be local. Local, manifestly gauge-invariant op-
erators in a non-Abelian gauge theory are necessarily composite [6, 26]. Especially,
this implies the split (3) is not applied at the level of the Lagrangian, like in pertur-
bation theory. Rather, the FMS mechanism works by first writing down the desired
matrix element in terms of local, composite operators and only then the split (3)
is applied. Of course, the local composite operators can still carry global quantum
numbers, especially spin or the those from the global SU(2) symmetry in (2).

The simplest case is the propagator of a scalar singlet. A suitable operator4 would
be detX . The simplest, non-trivial, matrix element of this operator is the propagator.
Taking only the connected part yields

hdetX.x/ detX.y/i D v2htr�.x/tr�.y/i (4)

Cvhdet�.x/tr�.y/Ctr�.x/ det�.y/iChdet �.x/ det �.y/i:
(5)

Since the left-hand side is gauge-invariant, so the sum on the right-hand side needs
to be. However, the individual terms are not necessarily so. So far, this is an exact
rewriting, and thus not a priori progress.

Because any kind of perturbative expansion is assuming that the quantities are
analytic in the expansion parameter, a perturbative expansion cannot spoil the
gauge-invariance of the right-hand side, if order-by-order the sum in powers of v
is kept [60]. The first term (4) is the propagator of the elementary Higgs particle.
Dropping the remaining terms (5) and expanding the elementary Higgs propagator
in a perturbative series in the couplings yields that the bound-state propagator in
this approximation is identical to the elementary Higgs propagator to all orders in
perturbation theory. Especially, the poles coincide and thus the bound state mass
is the same as the elementary one to all orders in perturbation theory5. Of course,
at loop-level the elementary Higgs propagator is gauge-dependent [60, 62]. This
was expected, as only the sum would be gauge-invariant. This gauge-invariance of
the full sum has indeed been demonstrated explicitly at one-loop order [60, 62].
Furthermore, it was seen explicitly that only at energy scales much larger than
v deviations from ordinary perturbative result arise. This explicitly shows how
the perturbative success can be recovered by the FMS mechanism, at least in

3 It is important to note that this is not [13, 14, 26] a background-field approach [2], as the split-
ting happens after gauge fixing and not before. Especially, there is no additional classical gauge
symmetry of the split-off field. The previous gauge-fixing has already broken the gauge symmetry.
4 At first sight, this appears to be the same as the fields appearing in unitary gauge [2]. However,
unitary gauge introduces a non-trivial Faddeev–Popov operator due to gauge defects, and is thus
different [26].
5 At loop order, it is necessary to chose a pole scheme to fix the pole position, which is independent
of the gauge parameter by virtue of the Nielsen identities [26, 61].
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principle: The term (4) dominates over (5) in the experimentally probed regime.
This is how the FMS mechanism resolves the paradox: The composite state has a
FMS-dominant contribution, which coincides with one of the elementary particles.

Of course, this is only a self-consistency statement. While the agreement with
experiment is certainly strong support, explicitly evaluation of both sides with non-
perturbative methods provides another stringent tests. This has been done using
lattice methods, confirming the FMS mechanism, see [26] for a review. Especially,
no additional poles due to further bound states or resonances are observed below
the inelastic threshold in this theory in all investigated channels, confirming the
experimental findings.

Another important structure is visible when considering the triplet vector chan-
nel. Consider the following operator and its FMS expansion

tr�iX�D�X D v2ıiaW a
� C : : : (6)

Thus, this gauge-invariant vector operator, which is a triplet under the global SU(2)
symmetry carried by the Higgs field, is mapped to the gauge boson field. With
the same reasoning as before, this yields that the mass of the composite physical
particle is the same as the one of the elementary particle. TheW is hence the FMS-
dominant contribution of the composite state. More importantly, there is a matrix
cia D ıia, carrying both global group i and local gauge group a indices, which yields
a map of the global triplet to the gauge triplet. This is the mechanism by which
the degeneracy from the gauge fields is transported to the gauge-invariant physical
states. This mapping will be of special importance in Sect. 4. This structure was
again confirmed at one-loop order [62] and on the lattice [26].

The whole construction can be repeated for the remainder of the standard model.
This includes left-handed leptons [13, 14, 26, 37, 64] and hadrons [26, 37]. It turns
out that only the very special structure of the standard model ensures the correct
assignment of degeneracies and further quantum numbers like electric charge. Fur-
thermore, always the physical, gauge-invariant states map to elementary states, if
the latter exist, and to scattering states otherwise. Unfortunately, as noted before,
the whole standard model cannot be yet treated non-perturbatively. Within simpli-
fied models of the lepton sector, however, also agreement is found [63], see Fig. 1.
Hence, all possible theoretical tests of the FMS mechanism so far have confirmed
it. Not to mention that it explains why perturbation theory and experiment agree so
well. It should be noted in passing that the FMS mechanism implies at tree-level
or in a pole scheme that most bound states have mass defects between 50% (for
the Higgs) to 75% (for weak gauge bosons) to almost 100% (electrons and left-
handed neutrinos). It is thus a highly relativistic effect, not accessible [26, 65] to
quantum-mechanical models or heavy-particle effective field theories such as e.g.
in [66].

All of this resolves the contradiction between the field-theoretical arguments and
the success of perturbation theory, at least on the theoretical level.
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Fig. 1 A sample lattice spectrum for quenched vectorial fermions compared to the predictions
from the FMS mechanism, alongside the elementary particle properties [63]. Note that a right-
handed ungauged fermion is in addition necessary to construct in such a theory power-counting
renormalizable Yukawa interaction with the Higgs [63]

3 Phenomenological Implications and Experimental Tests

Of course, it is not sufficient that analytical expressions and lattice results coin-
cide. To ensure that this is actually the correct description of the standard model,
experimental tests are needed. This needs to detect experimentally consequences of
additional terms like (5). Since experiments usually involve scattering, it is required
to address the scattering of composite states.

This is not a conceptual issue per se, as composite state scattering can be ad-
dressed within the LSZ formalism in the same way as the scattering of elementary
states [2, 7, 67]. In particular, the choice of asymptotic operators does not matter.

But it furthermore needs a possibility to calculate such processes, as the appear-
ing matrix elements and wave functions are intricate objects. Fortunately, the FMS
mechanism can also be applied in such a case [37, 65, 68, 69]. Of course, there are
now many more matrix elements on the right-hand side as in (4–5). Even for the
simplest case at a lepton collider, i.e. two incoming, massless left-handed leptons
described by composite operators L and likewise two outgoing composite fermion
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operators F [13, 14, 37, 63]

L D X�l D vl C ��l
F D X�f D vf C ��f; (7)

where l and f are the elementary left-hand fermion fields, this becomes highly
complicated6. Symbolically, in the center-of-mass frame [37],

˝
L.�p/L.p/F .�q/F.q/˛ D v4

D
l.�p/l.p/f .�q/f .q/

E
C : : : :

The remaining terms have less powers in v, but always one or more composite
operator of type .��a/.k/, where a and k can be l and p or f and q, respectively.
Taking only the leading term in the FMSmechanism recreates the usual perturbative
results to all orders in the coupling constants [26, 37], again confirming the reason
for perturbation theory to work quantitatively well.

Calculating the remaining terms requires to take the composite nature of the
external fields into account. Such an augmented perturbation theory [68] works
along the same lines as for matrix elements [60, 62]. In addition, it is necessary
to supplement for the external states Bethe–Salpeter/Faddeev amplitudes [67, 68],
instead of the non-interacting wave-functions of perturbation theory [2]. They also
need to be calculated consistently using the FMS mechanism [68]. Furthermore,
the FMS mechanism introduces in the amputated, connected matrix elements an
additional vertex, a bound-state splitting vertex [60, 62, 68], which corresponds to a
replacement of the composite states with elementary fields in the FMS mechanism
[60, 62]. While these are only minor additions to the Feynman rules of perturbation
theory to create an augmented perturbation theory, in practice this creates many
more loop diagrams [60, 62, 70] for the additional 15 matrix elements involved.
Thus, a full expression for any process is a formidable task, and remains still to be
obtained.

However, there exist already a number of partial results [37, 71] as well as some
lattice results [36, 72]. They indicate that the interactions of the electroweak com-
posite bound states will work in a similar vain as the interactions of hadrons in
(deep) (in)elastic scattering (DIS). This is depicted schematically in Fig. 2. There
are three relevant energy regions, where energy here corresponds to some relevant
energy scale

p
s. This could be, e.g., indeed the center-of-mass energy.

At very low energies,m2
bound state < s �N2

constituentm
2
constituent� v2, the composite

states are probed as a whole. This implies that their composite nature becomes
readily apparent, e.g. the fact that they are not point-like [36, 72]. Similar to the case
of hadron physics, the probed extension depends on the involved probe particles [9].

6 Note that likewise to the vector triplet (6) this yields doublets of the global symmetry carried
by the Higgs field X [13, 14, 37, 63]. Thus, left-handed electrons and electron neutrinos in the
standard model are really distinguished by the same quantum number as the physical W and
Z. The right-handed electron and electron neutrinos carry an independent right-handed flavor
symmetry. The Yukawa couplings of the standard model eventually break both symmetries down
to a common diagonal group [37, 63]. The same reasoning applies to quarks [26, 37].
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Fig. 2 A cartoon sketch of the behavior of interactions between gauge-invariant composite states,
given as the ratio to perturbative results as a function of an arbitrary energy value above threshold.
For a bound state like detX D h�h, at low energies the bound state as whole is probed. At interme-
diate energy, effectively only the first term in the expansion is relevant, giving the results closest to
perturbation theory, as only the FMS-dominant contribution matters, here h. At very high energies
the contribution of other valence particles and sea particles become probed

Since the extension is generated in the combination of weak and Higgs interactions,
it likewise needs corresponding particles to probe it. While this information should
be readily accessible from the Bethe–Salpeter/Faddeev amplitudes, these have not
yet been calculated using augmented perturbation theory. However, lattice results
indicate an effective size parameter of order a few inverse tens of GeV, both for the
vector triplet and the scalar singlet [36, 72].

Such an extension provides also a decisive test for the composite nature of the
observed particles, and thus of the FMS mechanism. Vector boson scattering (VBS)
[75] appears as one suitable process to probe it [36]. Here, for extensions of a few
1=10GeV�1 as suggested by lattice simulations [36, 72], deviations within a few
tens of GeV above the elastic threshold at 2mV in the vector boson center of mass
frame are expected, provided the vector bosons are on-shell, see Fig. 3.

This could be experimentally tested. Indeed, both the ATLAS experiment [73]
and CMS experiment [74] at the LHC have shown that they can probe, in principle,
the interesting regime. However, at the moment the contribution of VBS to the total
yield is at most the same size as the uncertainties in the relevant kinematical regime
[73, 74], and thus this awaits future improvements. At the same time, the theoretical
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Fig. 3 The deviation of the
cross section with respect
to the (Born-level) cross
section for on-shell vector
boson scattering [36]. The
three panels correspond to
the integrated total cross
section in three center of
mass regions: Between 1 and
1.2 times the elastic threshold
(a), between 1.2 and 1.5
times the elastic threshold
(b), and the remainder up
to the inelastic threshold at
2 (c). The choice of range
corresponds at low energies
to that of ATLAS in [73] and
at intermediate energies to
CMS in [74] for their control
regions in the ZZ ! 4l final
states. Size and softening
correspond to the scattering
length and the suppression
of bound states effect at the
first non-vanishing term in
the threshold expansion,
respectively, see [36] for
details.
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c

estimates shown in figure 3 are from a truncated standard model, and will also need
to be pushed to quantitative precision for a final evaluation.

In the intermediate momentum regime with s 
 v2, the states appear to be dom-
inated entirely by the component which leads to the two-point function, e.g. the
W in (6) or the lepton l in (7). Thus, only a single valence particle dominates the
state, the FMS-dominant constituent. Except for states like the scalar (4) this is the
non-Higgs valence particle. The Higgs valence particles act as spectators to this
FMS-dominant constituent [36, 60, 62, 72]. This is again very different from the
QCD case, where all valence particles play qualitatively equal roles [8, 9]. It is here
where the results resemble closest the non-augmented perturbative ones. In particu-
lar, if the particle is produced as a resonance in this regime, this implies little to no
change close to the pole [26, 36, 60, 62].



188 A. Maas

At very high energies s � v2, the other valence contributions [37, 71, 76], as
well as sea contributions [77], start to become relevant. Depending on the colliding
particles, this can have various impacts.

For colliding leptons, there will be additional contributions due to Higgs interac-
tions [37]. Especially, perturbative violations [78] of the Bloch–Nordsieck theorem
[79] will be canceled, as now full weak multiplets are present. This allows the
treatment of collinear and soft radiation in the same way as in QCD [71]. This
deviation from non-augmented perturbative results increases like a double Sudakov-
logarithm, i.e. roughly like ln2.s=m2

W /, at large energies. It can thus be a substantial
effect at future lepton colliders [80].

At the current LHC, where hadrons collide, consequences are less obvious due
to the strong interaction background. Still, at the very least, changes in the parton
structure of the hadrons will be needed [71, 76] as most hadrons, and especially
protons, need a Higgs valence contribution for gauge invariance [26, 37, 71]. These
changes to the parton distribution functions may influence reactions involving par-
ticles coupling strongly to the Higgs, like top quarks and weak bosons [76]. But due
to the need to include this information in parton distribution function fits, this is far
from being really testable [71, 76] yet.

4 Applications Beyond the Standard Model

The decisive feature for perturbation theory to work so well in the standard model
is the one-to-one mapping of the gauge multiplet structure to the global multiplet
structure of the global Higgs symmetry, e.g. in (6) and (7). This similarly applies to
all other standard model particles [13, 14, 26, 37]. In addition, there appear to be no
additional bound states and resonances due to the weak bound state substructure,
see [26]. However, this may not be generally true [37, 81].

It is natural to ask [35] whether the same applies to general Yang–Mills–Higgs
theories, with or without further matter. In the original works [13, 14], it was al-
ready conjectured that adding further Higgs doublets to the standard model case
would not alter the outcome qualitatively. Indeed, a detailed application of tree-
level augmented perturbation theory to 2-Higgs doublet models [82] and the min-
imal supersymmetric standard model [83] confirm this conjecture. A check using
non-perturbative methods has, however, not yet been performed. But it would be
feasible to do so, e.g. using lattice methods [84–86]. Such models enlarge the global
group, while leaving the gauge group fixed. However, because any phenomenolog-
ical viable version of these theories supports global SU(2) multiplets [87, 88], the
underlying FMS mechanism still works [82, 83].

The situation is potentially very different when enlarging the gauge group, while
keeping or reducing the global group [26, 35]. This is the situation typical for grand
unified theories (GUTs) [89, 90]. There are two separate aspects to be taken care
of [91]. One is that such theories offer usually multiple breaking patterns in the
BEH effect instead of the single one in the standard model. The other is that the
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accompanying change of the global group with respect to the standard model alters
the possible multiplet structure of observable, gauge-invariant states.

Because the FMS mechanism is a map between the gauge-invariant operators
and gauge-dependent operators, it needs a prescription to which gauge states it
should map, a choice of gauge. If different breaking patterns can be realized by
different gauge choices, this yields different possibilities for the map, and thus po-
tentially different results of the FMS mechanism for the physical spectrum. This
would jeopardize the usability of the FMS mechanism [91].

The simplest example for which this happens is an SU(3) gauge group with a
single Higgs in the adjoint representation [90]. At tree-level, two equivalent break-
ing patterns occur, SU(2)�U(1) and U(1)�U(1), which differ, e.g. in the number
of massless gauge bosons [50, 90, 91]. In such a case multiple possibilities exist
how to set up the FMS mechanism [91], which will lead to different, and inequiv-
alent, predictions for the physical spectrum. However, in general already one-loop
corrections will lift the tree-level degeneracy [50, 51, 90]. Thus, there is again only
one gauge choice in which the field fluctuations can be considered small, yielding
again a unique setup for the FMS mechanism [50, 91, 92]. Thus, this appears to be
not an issue, as long as no exception is found. However, this also implies that to
apply augmented perturbation theory in such cases requires to first determine the
corresponding allowed breaking pattern at the same order for the parameter set in
question. This will be assumed to have happened in the following.

The physical spectrum can only form representations of the global symmetry
groups. If these do not support the same multiplicities as the unbroken gauge
groups, it cannot be expected that the one-to-one mapping of the standard model
still works [35]. This is indeed the case.

The simplest example is a SU(3) Yang–Mills theory coupled to a Higgs field � in
the fundamental representation. The BEH effect creates the pattern SU(3)!SU(2),
as the only possible little group in this case. Thus, this yields 3 massless gauge
bosons in the adjoint of the unbroken SU(2), as well as 5 massive ones, of which
four are degenerate and form two doublets under the unbroken SU(2), and one sin-
glet under the unbroken SU(2) [2, 90, 91]. At the same time, the global symmetry
is merely a U(1) acting as a global phase on the Higgs field [93]. Hence, in absence
of accidental degeneracies, it can at most support two particles of the same mass.
They form a particle and an antiparticle with respect to the U(1) group.

Augmented perturbation theory is in agreement with this analysis. The decisive
ingredient is the matrix c from (6). The simplest operator to understand the differ-
ence creates a U(1)-neutral vector state. Using the FMS mechanism it follows that
[93]

�iD
ij
� �j D v2caW a

� C : : : ;
where the mapping ’matrix’ c now has the form ca D ıa8, if the Higgs vacuum
expectation value has been given the real 3-direction. In this way, the FMS mech-
anism maps the physical state to the most massive gauge boson, the singlet under
the unbroken SU(2) gauge subgroup. This pattern continues to other channels [91].
Especially, as no symmetry exists to create a gauge-invariant triplet, the prediction
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from augmented perturbation theory is that the theory is gapped [91, 93, 94], in
stark contrast to the gauge-dependent, ungapped spectrum. Again, augmented per-
turbation theory has been confirmed for this theory in lattice simulations [93–96].

Moreover, similar to QCD, it is not possible to construct a gauge-invariant state
with only a single unit of U(1) charge, but at least 3 units are required. This is
again in stark contrast to the perturbative case. Such states should perturbatively
not appear asymptotically in a different way than as a scattering state. But non-
perturbatively, because the U(1) charge is conserved, at least the lightest state with
3 units of U(1) (as well as its antistate) needs to be necessarily stable. Such a state
is indeed observed in lattice simulations [94, 96]. However, because there is no
charge-3 elementary state, its gauge-invariant operator cannot be mapped by the
FMS mechanism onto an elementary state. Thus, the first non-zero matrix element
in the FMS expression is not a propagator, but a higher n-point function [91]. At
lowest order in a constituent-like model, this matrix element seems to provide at
least the correct order of magnitude of the mass [91, 94, 96], but a detailed investi-
gation is yet required. In total, the spectrum becomes indeed very involved and rich,
once more channels are taken into account [95, 96], see Fig. 4.

Going beyond this simplest example, it becomes quickly apparent that one big
difference is the number of physical degrees of freedom in contrast to the gauge de-
grees of freedom. Consider an SU(N ) gauge theory coupled to a single fundamental
Higgs. While the former is determined, up to internal excitations, by the possible
multiplet structure of the global symmetry, which is fixed to U(1), the latter quickly
increases with increasing dimension of the gauge group [91, 92]. Thus, the low-
energy physics remains very similar, just as is the case with the glueball physics of
large-N Yang–Mills theory. Also there the number of physical states remains fixed,
and essentially unaltered, even when moving towards an infinite number of gauge
degrees of freedom [97]. Thus, such a behavior is not without precedent.

Going beyond this case, many aspects of the spectrum become quickly depen-
dent on the details of the representations of the Higgs fields and breaking patterns
[91, 92]. But two more general features stand out.

The first is that any GUT [89, 90] needs to also include electromagnetism and
thus the photon. The photon is exceptional, as it is a physically observable, mass-
less vector state. This is well understood, but non-trivial, in QED [7, 98]. But in a
GUT setting the requirement of gauge invariance requires that the photon is also a
composite state, which is gauge-invariant with respect to the single unified gauge
group. Hence, this requires that there exists a massless, uncharged composite vector
bound state. This is indeed predicted with augmented perturbation theory [91, 92],
but requires as minimal Higgs content a Higgs in the adjoint representation. While
the calculation is involved, the appearance of such a state was confirmed in lattice
gauge theory at an exploratory level [51, 99, 100]. This also provides an explicit
example for the possibility to build a massless vector boson from massive con-
stituents, without involving a Goldstone-type mechanism. In particular, given the
explicit mass scale in the Lagrangian, even the usual argument of interpreting the
photon as the Goldstone mode of broken dilatation symmetry [98] does not apply
here.
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Fig. 4 The lowest level of SU(3) with a fundamental Higgs in the BEH Higgs region in vari-
ous quantum number channels in units of the lightest state using lattice methods. The results are
infinite-volume extrapolated and used a variational analysis. Simulations have been performed at
ˇ D 6:85535, � D 0:456074, and � D 2:3416, see [94–96] for further technical details. Results,
partially preliminary, are from [95, 96]. Red dashed lines indicate upper limits and the horizontal
blue lines correspond to the gauge-dependent mass scales, with the solid line the elementary Higgs
mass, the dashed line the heavy gauge boson mass, and the dotted line the lighter gauge bosons´
mass, as well as integer multiples. “(Un)Charged” refers to the U(1) charge and the label to the
J PC and J P quantum numbers for the charged and uncharged states, respectively.

The second feature is the low-energy behavior. If the ideas of GUTs should work,
it is required that the physical, gauge-invariant low-energy spectrum of the stan-
dard model is reproduced. While this is well reproduced in a perturbative approach
[89], this is not true for the gauge-invariant spectrum [91, 92]. Here, the pattern
of the simplest example repeats itself. Especially, many popular GUT candidates
with minimal Higgs content are explicitly ruled out on a qualitative mismatch of
the spectrum [92]. In fact, no qualitatively working candidate has yet been found
[91, 92], not to mention obeying quantitative constraints like proton decay [2, 89].
Whether it is possible at all is a difficult question, and it could be even impossible in
the conventional way [92]. At the very least it appears not possible without having
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Fig. 5 The tree-level scattering cross-section in arbitrary units for Bhabba scattering at zero ra-
pidity in units of the singlet 1� mass in Fig. 4 for the theory described in the text [26]. Perturbative
results are given in gold, and augmented perturbative results in blue

a Higgs content able to completely break the gauge group, while at the same time
having a suitable global symmetry structure [92].

There are further far-reaching implications for searches for new physics because
of the different spectrum. Consider again as the simplest example an SU(3) gauge
theory with a Higgs in the fundamental representation and coupled in addition to a
fermion in the fundamental representation coupled vectorially to the gauge interac-
tion. This allows for an explicit mass, and does not require a Yukawa coupling to
the Higgs. Performing Bhabba scattering it would usually be assumed that in the
s-channel in the intermediate states all gauge bosons would show up, already at
tree-level [2, 26]. However, treating the fermions correctly as bound states changes
this qualitatively [26, 101]. The fermion bound state does no longer couple to all of
the gauge bosons at tree-level, as the corresponding matrix element of bound states
now contains a Higgs vacuum expectation value, which projects out all couplings,
which are not mapped by the FMS mechanism to a vector bound state. Thus, only
those vector states show up as resonances, which also appear in the physical spec-
trum. This is shown in Fig. 5. It is very satisfying that the resonances in the cross
section are indeed only the physical ones. However, if experimental searches would
not be based on augmented perturbation theory, but on perturbation theory, such a
theory could be wrongly excluded. Especially if the energy reach is too small, where
the gapped nature of the physical spectrum makes itself felt. Besides that, the fake
resonances coming from unphysical degrees of freedom could easily misguide ex-
perimental searches. This does need to be taken properly into account. It should
also be noted that close to the physical s-channel resonance (and the correspond-
ing t-channel resonance) the results are nonetheless essentially indistinguishable.
This had also been observed at next-to-leading order for two-point matrix elements
[60, 62].



The Fröhlich–Morchio–Strocchi Mechanism: An Underestimated Legacy 193

5 Applications Beyond Yang–Mills–Higgs Theory

While the FMS mechanism proper requires a BEH effect to work as described, the
FMS framework can be extended far beyond. This potential has almost not been
tapped at all yet.

5.1 Theories Without a Higgs

The FMS mechanism requires something to expand around. This is the reason, why
it does not work, e.g., in QCD7. But the FMS framework still requires to take man-
ifest gauge invariance into account, and always start from there.

To understand the implications, consider the idea that the Higgs is a composite
state of new fermions [103–105], either in the context of technicolor or some other
scenario. While the additional sector is strongly interacting, the weak interactions
remains what it is. Thus, there are still weak gauge bosons, which need to be dressed
to obtain the observable gauge-invariant (almost degenerate) vector state triplet (6),
the physical version of the W -bosons and the Z boson [35].

If foregoing the possibility to construct a low-energy effective theory [105] and
rather work with the ultraviolet theory, this immediately shows a problem. At least
some of the additional fermions  need to be charged under both, the weak in-
teractions and the new interactions. The former, because otherwise the new sector
decouples. The latter, because otherwise the Higgs cannot be a bound state.

While the Higgs can be constructed as a straightforward singlet, the situation
becomes involved for the vector bosons. The simplest possibility is to have two
non-degenerate fermions, and to build an operator like

�aij
N i
ru�

�DruIsv
�
N i
ru (8)

where aij are flavor indices, rs are new interaction indices, and uv are weak in-
dices. The covariant derivative therefore contains both the weak gauge bosons and
the new gauge bosons. This creates a state similar to the � meson of QCD, where
the mass-splitting of the fermions can create the difference in theW and Z masses,
and the SU(2) generator counts with a these states.

While this is formally working, this leads to two problems. On the one hand,
phenomenology tends to require rather a large number of flavors [104, 105]. Their
mass splitting must therefore be substantial to the lightest doublet, to avoid creating
further vector states. At the same time, this is at odds with the foundational prin-
ciple [103–105] of using a scaled-up version of QCD [106] to create masses by a
condensate. In this scenario the pseudo-Goldstones would be absorbed as longitu-
dinal degrees of freedom from the vector states, to avoid having light pseudoscalars
around. With an operator like (8) this is neither possible, nor necessary. Also, such

7 Though similar ideas can be pursued [102].
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Goldstone bosons could not be defined in a gauge-invariant way with respect to
the weak interactions, if they should play this role. Thus, such a scenario appears
to be inconsistent with gauge symmetry. Moreover, quantitatively it would be re-
quired that a state created by (8) is the lightest (visible) state in the spectrum of
the new sector. Whether this is possible, is unknown. At least, no working exam-
ple has been found yet [26]. But essentially no dynamical investigations respecting
manifest gauge symmetry with both sectors coupled have been conducted yet either.

Thus, also here the FMS framework shifts qualitatively the way how scenarios
of this type needs to be addressed. Perhaps this will also open quite different possi-
bilities, as this alleviates some of the problems due to light states in such theories.

5.2 Gravity and Supergravity

Gravity

The FMS mechanism relies on the single-field expansion (3). Therefore, only scalar
fields can be used for the expansion, as long as global Poincaré invariance should be
maintained. This is true in all quantum field theories. Hence, in many theories the
FMS mechanism is not applicable. There is, however, a further exciting possibility
beyond quantum field theory: Gravity.

General relativity can be considered a gauge theory of translations [107–109].
Local Lorentz symmetry in the tangent space can then be considered to be either
dependent on the translation gauge symmetry, or can be considered as a second
gauge interaction, leading to torsion [107]. Correspondingly, a quantum gravity the-
ory will also be a quantum gauge theory. It is yet unclear if a, more or less extended,
version of canonical gravity can be quantized using a path-integral, or similar, ap-
proach. But there is encouraging mounting circumstantial evidence that this is the
case [110–119]. It will therefore be assumed here. The FMS framework then ap-
plies as well, requiring to start out with manifestly diffeomorphism-invariant (and
local Lorentz-invariant) quantities as observables [110, 111, 120]

Observationally, at long distances, quantum gravity is indeed dominated by a
special field configuration in our universe, a de Sitter metric8. This suggests that it
should at least be possible to apply also the FMS mechanism in this case [120, 121].
Conceptually, this creates a BEH effect in quantum gravity. Similarly to the BEH
effect in quantum field theory, the classical minimum will be the starting point.
For the observational value of Newton’s constant and the cosmological constant
[15], this is indeed de Sitter. This is in agreement with the metric structure at long
distances, supporting the possibility that the FMS mechanism should be possible.

There is one particularity which makes it different from the situation so far.
In the previous cases, the field developing the vacuum expectation value and the

8 On the question whether this should rather be a Friedmann–Lemâitre–Robertson–Walker metric
see [121].
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gauge fields were not the same. Here, they are. While this does not introduce any
conceptual obstacles, it makes it technically more involved. This is amplified by
involvement of the gauge field, the metric, itself in all expressions.

Probably the most cumbersome feature is that a BEH effect in quantum gravity
requires necessarily the use of a non-linear gauge condition. The FMS mechanism
can only be applied after gauge-fixing and quantization is complete, and therefore
does not alter it.

Consider as a minimal case the Einstein–Hilbert action

S D 1

2�

Z
d4x

p
det.�g/.RC l/


��� D 1

2

�
@�g�� C @�g�� � @�r��

�

R D g��R�� D g��g��R����
R���� D @�
��� � @�
��� C g˛ˇ
�˛�
ˇ�� � g˛ˇ
�˛�
ˇ��

where g�� is the metric, R the curvature scalar, and � and l suitably normalized
versions of Newton’s constant and the cosmological constant, respectively.

There is now a choice to be made, which was not previously present: Should
the gauge condition be obeyed by the field configuration to be expanded around in
the FMS mechanism? Before that, any choice here could be compensated by the
gauge field. But now the vacuum expectation field and the gauge field is identical.
It appears to be technically convenient [121] to choose a gauge, which is satisfied
by the vacuum expectation value, in the present case the de Sitter metric gdS�� . Due to
reparametrization invariance, this can furthermore substantially alter the technical
feasibility. One possible practical choice appears to be the Haywood gauge [121],

g��@�g�� D 0;
which is fulfilled by a flat metric, and the maximal symmetric de Sitter and anti-de
Sitter metrics in standard Cartesian parametrization. This condition already shows
the issue of non-linearity. In particular, because the inverse metric is not indepen-
dent. This relation is in general highly non-linear.

The FMS mechanism constitutes now in splitting off the “vacuum expectation
value” gdS�� [120]. Again, there is no unique way to do so. But if any approximations
are good, the split-off part ��� needs to be small, and thus at linear order many
possibilities coincide [121], yielding

g�� D gdS�� C ���:
The inverse of � is not a metric, and determined by a Dyson-like relation

��� D �.gdS/�����g��: (9)

Because ��� is assumed small, the right-hand side can be expanded in a series in
��� . This creates an infinite series of tree-level vertices [121], but establishes a
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formulation in ��� only. And a similar step is necessary for most observables as
well.

While this is technically more cumbersome than in the quantum-field theory
case, it is straightforward to use [120, 121]. At tree-level, it yields agreement with
results from dynamical triangulation [110, 111, 121, 122] as well as a well-defined
systematic limit to flat-space quantum-field theory as the lowest order in the FMS
mechanism [120, 121].

The latter is probably best seen by considering how distances are measured in
quantum gravity. Distance itself becomes in quantum gravity an expectation value
[110, 117, 120]. A possible definition is given by

r.x; y/ D
*
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x
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where x and y are points in the R4 underlying the manifold and the minimiza-
tion requires to find the geodesic distance9 between these points in the manifold
configuration. This is averaged over the manifold configurations. The second line
implements the FMS mechanism, which shows how the result splits between the
contribution from the vacuum expectation value and the fluctuation field. Espe-
cially, if the fluctuations vanish, � ! 0, this smoothly changes into the ordinary
fixed curved-background quantum field theory distances.

Supergravity

Following the FMS framework through often leads to very surprising insights.
Consider the concept of supersymmetry [88, 123]. In quantum field theory, super-
symmetry appears to be essentially transparent for the FMS mechanism [83]. This
is not surprising, as supersymmetry is a global symmetry, and thus should behave
like, e.g., flavor symmetries.

However, despite all efforts and its inherently appealing nature [88, 123], no
sign of supersymmetry in nature has been observed [15]. This leads to the claim
that supersymmetry must be necessarily broken, at the expense of loosing some of
its appeal [88, 123].

It is here were the FMS framework provides a possible way out. In our actual
universe, it is not valid to consider supersymmetry as a stand-alone global sym-
metry, due to the existence of gravity. Because supersymmetry is part of the super
Poincaré symmetry, this forces supersymmetry to become a local gauge symmetry,

9 If singularities appear, or geodesics become incomplete, a suitable deformation has to be intro-
duced.
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supergravity [124, 125]. According to the FMS framework, physical observables
cannot be gauge-dependent, and cannot change under the local supersymmetry
transformations. Thus, the physical, observable spectrum is not and, in fact, can-
not be supersymmetric. This alleviates the need to find a superpartner for, e.g., the
electron, which is the usual argument for requiring supersymmetry to be broken
[88]. Thus, it is possible to retain supersymmetry, and supergravity, as an intact
symmetry of nature, without the need to observe a supersymmetric spectrum at ex-
periments. Given the importance of supersymmetry to string theory [126], this can
have far-reaching consequences.

In addition, similar to canonical quantum gravity, this implies the possibility to
use the FMS mechanism on the same reasoning, this time introducing a BEH effect
for the vierbein ea�. Consider the simplest N D 1 supergravity theory [123]

S D
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with the Rarita–Schwinger graviton � and Œi; j � implies antisymmetrization of i
and j . Under a supersymmetry transformation ıS

ıSe
a
� D

1

2
N
�a��

ıS�� D D�
;

with local transformation function 
.x/. As this is a gauge transformation, any phys-
ical observable needs to be invariant under it.

A possible example is the local composite operator10

e�a �
a��:

It is invariant under a supersymmetry transformation due to the compatibility of
the tetrad and the Grassmann nature of the graviton. It therefore does not have a
superpartner.

At the same time, applying the FMS mechanism in Haywood gauge with ea� D
ıa� C "a� for flat space and a small fluctuation field " yields

e�a �
a�� D ���� C "a��a��:

10 Torsion will require a similar treatment for the � matrices, probably using position-dependent �
matrices [127, 128] and another FMS mechanism for them [120].
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Neglecting, as usual, the fluctuation part, the state describes a massless spin 1/2
particle. While promising to be more involved than the ordinary gravity case [121],
it appears very appealing to follow-up on these exploratory heuristics.

6 Ontological Implications

The FMS framework is from the point of view of philosophy of physics quite
remarkable from two perspectives [24, 27–33]. One is from the resolution of am-
biguities in the BEH effect using the FMS mechanism. The other concerns the
implications for the laws of nature by the FMS framework.

The FMS mechanism resolves the apparent paradox [29, 30, 33] of the gauge-
dependence of the BEH effect and its apparent phenomenological success when
treated as if it would be physical [26, 47–49]. It shows that the paradox is an artifact
of the special structure of the standard model [26], which allows for a quantitatively
effective possibility to ignore the issue of non-perturbative gauge invariance. Still,
it was, and is, a source of some consternation in the philosophy of physics literature
[24, 30, 31, 33], why this paradox has not been taken seriously, not realized, or even
denied in large parts of the particle physics community. In fact, this dissonance even
led to the odd situation that lattice approaches, which need by construction to take
non-perturbative gauge invariance seriously and manifestly into account, denoted
the composite states Higgs,Z,W , and so on [129–133], in obvious contradiction to
their nature. Hence, despite having with the FMS mechanism a conceptually clean
approach, the underestimation of the mechanism leaves still a kind of quagmire in
notations in contemporary literature. Philosophically, of course, posing the question
what is real, and what the role of gauge symmetry is, leads immediately to the
necessity to find a resolution of the paradox.

This leads to the even more important perspective, this time with respect to the
FMS framework. The question for the role of gauge symmetries is a very funda-
mental one. Since it appears possible to remove them from some theories explicitly
[13, 14, 133–139], it is questionable whether they have any ontological relevance at
all. This has already been formulated in terms of the Kretschmann objection [140],
which in its generalized form states that any theory can be turned into a gauge the-
ory, and in its inverse form that every gauge theory can be rewritten in terms of
a (possibly non-local) non-gauge theory [24]. It is a most remarkable feature that
such non-gauge theories seem at first sight to be again a theory of point-particles.
However, due to the appearance of either an infinite series of polynomials in the
Lagrangian and/or non-localities, it becomes quickly evident that this is just an ar-
tifact of tree-level perturbation theory [26]. In this context, it is important to note
that the Aharanov–Bohm effect [141], often cited as supporting that gauge fields
are physically real, can indeed also be described entirely without resorting to gauge
degrees of freedom [24, 139].
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It thus appears that gauge symmetries are merely redundant degrees of free-
dom11, which are however technically indispensable. However, this is not a very
precise phrasing, see [24] for a more detailed discussion.

A possible stance is that only measurable, and thereby at least gauge-invariant,
entities should be ontological, i.e. possible candidates for being part of reality. If
one accepts this premise, the FMS framework fundamentally reshuffles the build-
ing blocks of nature. Aside from hypothetical right-handed neutrinos, all observed
particles are necessarily extended, and described by composite, gauge-invariant
operators. This is a fundamental paradigmatic shift compared to the idea of fun-
damental point particles. It was also the latter idea, which gave rise to string theory
[146], due to the problems entailed by the point-like nature of elementary particles.
Having as fundamental entities composite ones would change this premise at least
partly.

Furthermore, allowing the fundamental laws of nature to be build from extended
objects would possibly open up alternatives to the idea of ever smaller structures,
or higher energies. Especially, as the concept of energy itself becomes in quantum
gravity ontologically doubtful, as energy is no longer gauge-invariant. Such a recast
of the approach to the fundamental laws of nature would be nothing but transfor-
mative, and would even affect school textbooks and popular science fundamentally.

7 Summary

The most obvious consequence of the FMS framework [13, 14], and with this one
aspect of Giovanni Morchio’s legacy, is to reconcile the foundations of field theory
with the phenomenological success of the perturbative treatment of the BEH effect.
With the FMS mechanism, this delivered a tool to turn the very fundamental consid-
erations of the FMS framework into phenomenological applications and even paved
the way to experimental tests. In fact, it will allow a guaranteed discovery. Either,
experimental tests will confirm the FMS framework, and will show that elementary
particles like the Higgs are actually composite, extended objects even within the
framework of the standard model of particle physics. Or, this will show that the cur-
rent formulation of the standard model of particles as a quantum gauge field theory
is insufficient, either on formal grounds or because the model is incomplete. Either
way, the decision will change drastically our view of the world.

While even this aspect has been drastically underestimated, the far-reaching con-
sequences of the FMS framework are even more so. The insistence on forcing a
manifestly and non-perturbative gauge-invariant approach even at arbitrarily weak
coupling and a convenient hiding of the gauge symmetry by the BEH effect shows
that it was possibly to take field theory seriously without loosing the technical

11 It has been claimed, see e.g. [142] for an introduction, that semi-classical considerations of
black holes make gauge symmetries physical. It could not yet been substantiated whether this
holds true in full quantum gravity [143], and gauge-invariant formulations of canonical quantum
gravity appear to disfavor such a possibility [110, 111, 120, 144, 145].



200 A. Maas

ability to be predictive. In fact, in view of the Gribov–Singer ambiguity and the
theorems of Haag and Elitzur, it provides a much better understanding of why (and
when) perturbation theory can be a quantitatively viable approach.

At the same time, this reasoning is a role model. The FMS framework showed
how further quantum gauge theories beyond the standard model should be ap-
proached: From the question of physical observables, and maintaining formal con-
sistency. Approximations need to maintain consistency to a much better degree as
standard perturbation theory does, which even in non-gauge theories runs afoul of
Haag’s theorem. Applications beyond the standard model showed explicitly that
results based on the FMS framework are in much better agreement with full, non-
perturbative results, even at very weak coupling, than those which break formal
consistency like perturbation theory.

Moreover, the FMS framework shows that what is usually called confinement
is not a distinct phenomena, but could really be viewed as an aspect of manifest
gauge invariance [6]. This unifies the way how physical observable particles in
the standard model should be treated, and removes the necessity to separate be-
tween the strong interaction and the electroweak one in conceptual terms [26]. This
generalizes then to arbitrary other theories, up to and including quantum gravity
ones. Especially, it implies that any gauge theory needs to be considered ontologi-
cally to be a theory of extended objects, rather than point-like elementary particles.
Confirming this in the standard-model case experimentally would indeed change
disruptively the way how we think about the laws of nature. Thus, Giovanni Mor-
chio’s legacy could very well become a crucial stepping stone in particle physics
and the search for the most fundamental laws of nature and what reality is.
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Abstract Details are given on the zeta function metric and connection on the deter-
minant line bundle over the Grassmannian associated to boundary value problems
over an interval.

1 Introduction

In the collaboration [2] of Giovanni Morchio with coauthors Bernhelm Booss-
Bavnbek and Krzysztof Wojciechowski, in which the author here was kindly in-
cluded, aspects of the global analysis of elliptic boundary value problems were
analysed. The topic presented in this note are some details of one particular evolu-
tion of those ideas towards geometric index theory but restricted to the toy-model
case of a 1-dimensional manifold. Specifically, though these results appeared else-
where in greater generality on higher dimensional manifolds, what is given here
are the computations for the case of the finite dimensional Grassmannian of global
boundary problems for a compact 1-manifold, but which were not submitted to the
arXiv or elsewhere.
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1.1 Relative Zeta-Determinants

Let A be an operator on a Hilbert space H . If A is bounded of the form I C ˛ with
˛ of trace class, then it has a Fredholm determinant detF A D

P
Tr .^k˛/, equal

by Lidskii’s Theorem to the product of its eigenvalues, and satisfying the charac-
teristic properties of the determinant in finite-dimensions. If A is an unbounded
operator, then to make sense of its determinant a choice of regularization procedure
is needed. To define the zeta-determinant regularization we assume that A has dis-
crete spectrum with principal angle 	 , meaning there is a neighbourhood of the ray
R	 D frei	 j r � 0g disjoint from spec.A/, and that the operator norm of .A��/�1
decays like 1=j�j as �!1 along R	 . For Re.s/ > 0 one then has the convergent
integral

A�s	 D
i

2�

Z


	

��s	 .A � �I/�1 d�;

where ��s	 D j�j�se�is arg.�/; 	 � arg� � 	 C 2� , is the branch of ��s defined by
R	 , and 
	 is the contour beginning at 1, traversing R	 to a small circle around
the origin, and then back along R	 to1.

Assume .A� �/�m is trace class form > �˛0 > 0 and that as �!1 along R	
there is an asymptotic expansion of the form

Tr .A � �/�m 

1X

iD0

kiX

kD0
aik�

�m�˛i logk �; (1)

where�1< ˛0 < ˛1 < : : : and ˛i !1. This means that the spectral zeta function

z	 .s; A/ D TrA�s	

defined in the standard way for Re.s/ > �˛0 extends meromorphically to all of C.
If furthermore for ˛J D 1 one has aJ;k D 0 for k > 0, A is said to be admissible.
z	 .s; A/ is then holomorphic near s D 0, and the z-determinant is defined by

detz;	A´ exp

�
� d
ds jsD0

z	 .s; A/
�
: (2)

Seeley [9] showed that any elliptic (pseudo-)differential operator D of positive
order over a closed manifold is admissible, and z	 .0;D/ is then a local invariant
depending only on the leading symbol of D which can be read off from (1). In
contrast log detz;	 D D�z0	 .0;D/ is highly non-local (its first variation is also non-
local) and this makes it a hard invariant to compute, except on certain symmetric
spaces where an exact identification of the eigenvalues is possible.

An instructive example is the Laplacian�a DD�aDa on the interval Œ0; 2��with
Da D id=dxC a and 0 < a � 1 and subject to period boundary conditions �.0/D
�.2�/; note that this is a global boundary condition – it is not specified pointwise
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but rather depends on the entire boundarymanifold (just two points in this case).�a

has eigenvalues f.nCa/2 j n2Zg and so in terms of the classical Riemann–Hurwitz
zeta function z.s; a/DP1nD0 1=.nCa/s, one has z�.�; s/D z.2s; a/Cz.2s; 1�a/
for Re.s/ > 1=2. The meromorphically continued value z

0
.0; a/D log.
 .a/=

p
2�/

then yields detz�a D 4 sin2 �a. On the other hand, one can completely ignore zeta
functions and formally compute

det�a D
Y

n2Z
.nC a/2 D

0

@
Y

n2Zn0
n2

1

A:a2:
Y

n2Zn0
.1 � a

2

n2
/2

D
0

@
Y

n2Zn0
n2

1

A sin2 �a

�2
;

so that for a1; a2 2 .0; 1/

det�a1

det�a2

D sin2 �a1
sin2 �a2

D detz�a1

detz�a2

; (3)

identifying the ratio of the ad-hoc but canonical determinant det�a with the ratio
of the rigorous z-function regularized determinant for �a.

Equation (3) portrays a certain relativity principle for determinants of admis-
sible operators, which asserts that for comparable operators A1;A2 the relative
z-determinant detz;	 .A1; A2/ can be computed as a Fredholm determinant of an
operator canonically determined by the relative resolvent. Here, comparable means
that A1;A2 have the same principal angle 	 and that the relative resolvent .A1 �
�/�1 � .A2 � �/�1 is trace class with

Tr
�
.A1 � �/�1 � .A2 � �/�1

� D �@� log detF S�; (4)

where the scattering matrix S� D S�.A1; A2/ is an operator on a certain Hilbert
space with a Fredholm determinant detF S�. For large enough real s one has the
relative zeta function

z.s; A1; A2/ D i

2�

Z




��sTr
�
.A1 � �/�1 � .A2 � �/�1

�
d�:

If we further assume that the relative resolvent trace has an expansion as �!1

Tr ..A1 � �/�1 � .A2 � �/�1/ 

1X

jD1

1X

kD0
bj;k.��/� j̨ logk.��/; (5)

where j̨ % C1, then this defines the meromorphic continuation of z.s; A1; A2/
to all of C.
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For a function with an asymptotic expansion

f .�/ 

1X

jD0

1X

kD0
cjk.��/� ǰ logk.��/C c0 log.��/C c1

as �!1 in ƒ	;", where ǰ % C1 and ǰ ¤ 0, its regularized limit is defined
to be the constant term in the expansion: LIM	

�!1f .�/ D c1. Then (with S´ S0)
there is the following precise form of the relativity principle for determinants:

Theorem [7] For operatorsA1;A2 which are z-comparable and z-admissible, one
has

detz;	A1
detz;	A2

D detF S : e�LIM
„
–!1 log detF S� : (6)

Here, we show that for a family of boundary problems over an interval this princi-
ple is also central in understanding the Hermitian structure on the determinant line
bundle defined by zeta-function.

1.2 Families of Global Boundary Problems

Let X D Œ0; ˇ� where ˇ is a positive real number and let E be a complex Her-
mitian vector bundle over X of rank n. Relative to a choice of trivialization of
E, a first-order elliptic differential operator D acting on C1.X IE/ has the form
A.x/d=dx C B.x/, where A;B are complex n � n matrices and detA.x/ ¤ 0.
The space Ell1;n of all first-order elliptic operators on E is therefore identified
with C1.X;Gln.C// � C1.X;End.Cn//. The operator D extends to a continu-
ous map DWH1.X IE/! L2.X IE/ on the first Sobolev completion. The bundle
over the boundary for the Cauchy data is the 2n-dimensional graded vector space
C0.@X; .E0 ˚ Eˇ// Š E0 ˚ Eˇ, and we have the restriction map to the boundary

� WH1.X IE/ �! E0 ˚Eˇ; �. / D . .0/;  .ˇ//:
A global boundary condition for D 2 El l1;n is specified by a projection P on

E0 ˚Eˇ , where by projection we mean self-adjoint indempotent. The pair .D; P /
combine to define the elliptic boundary value problem:

DP D DW dom.DP / �! L2.X IE/;
where

dom.DP / D f 2 H1.X IE/ j P� D 0g :
The parameter space of global boundary conditions for D is therefore the com-

plex Grassmannian Gr.E0 ˚Eˇ/, consisting of one component

Grk.E0 ˚Eˇ/ D fP 2 End.E0 ˚Eˇ/ j P 2 D P; P � D P; tr.P / D kg;
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for each integer k D 0; : : : ; 2n. A point P of the k.2n � k/-dimensional complex
manifold Grk.E0˚Eˇ/ is equivalently specified byW D range .P /�E0˚Eˇ. In
particular, the Calderon projection P.D/ onto the Cauchy data subspace K.D/ D
fv 2 E0 ˚ Eˇ j 9 2 C1.X IE/; D D 0; � D vg defines a distinguished el-
ement of Grn.E0 ˚ Eˇ/. More precisely, any element of Ker.D/ is of the form
h.x/v for some v 2E0, where h.x/ 2 End.E0;Ex/ is the fundamental solution ma-
trix uniquely solving Dh.x/ D 0 subject to h.0/ D I . Hence there is a canonical
isomorphism � WKer.D/! K.D/ and

K.D/ D graph.h´ h.ˇ/WE0 ! Eˇ/ � E0 ˚Eˇ: (7)

For any two P1; P2 2 Gr.E0 ˚Eˇ/ we have a finite-rank operator
.P1; P2/´ P2 ı P1WW1 ! W2;

where Wi D range .Pi /, and ind .P1; P2/ D dimW1 � dimW2. The pivotal fact is
that the unbounded operatorDP is modeled by the finite-rank operator on boundary
data

S.P /´ .P.D/; P /WK.D/! W :

The operator DP is a Fredholm operator with kernel and cokernel consisting of
smooth sections, and Grk.E0 ˚Eˇ/ parameterizes EBVPs of index

indDP D ind S.P / D n � k: (8)

This implies the relative index formula indDP1 � indDP2 D ind .P2; P1/.

Definition 1 By a smooth family of first-order elliptic differential operators over
Œ0; ˇ� parameterized a manifold B we shall mean an element D 2 C1.B;Ell1;n/. A
Grassmann section means an element P 2 C1.B;Grk.E0˚Eˇ//´Gr.B;E; k/.
A smooth family of elliptic boundary value problems means a pair .D;P /.

For each b 2 B , .D;P / parameterizes Db 2 Ell1;n and Pb 2 Grk.E0 ˚Eˇ/ and
hence the EBVPDPb DDbW dom.DPb /�!L2.X IE/. Equivalently one may think
of .D;P / as a bundle homomorphism

.D;P /WHP �!H ;

where H is the trivial bundle H D B � C1.X ICn/ and HP is the weak vector
bundle with fibre dom1.DPb / D f 2 C1.X IE/ j Pb� D 0g.

Proposition 1 A Grassmann section P 2 Gr.B;E; k/ is equivalent to a smooth
rank k complex bundle W �! B with fibre Wb ´ range .Pb/. The bundle W
is endowed with a natural Hermitian metric gW and compatible connection rW D
P �d �P with curvature 2-formRW DPdPdP 2�2.B IEnd.W //. The induced con-
nection on the complex line bundle Det .W / has curvature tr.RW /D tr.PdPdP /2
�2.B/.

We omit the proof.
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To each pair of Grassmann sections P 0;P 1 there is thus the smooth finite-rank
family

.P 0;P 1/ 2 C1.B IHom.W 0;W 1//; .P 0;P 1/b 	 P 1
b P

0
b WW0;b �! W1;b;

where W i are the bundles of Proposition 1. In particular, associated to D 2
C1.B;Ell1;n/ is a preferred Calderon section P.D/ 2 Gr.B;E; n/, defined by
b 7! P.Db/ and constructed from global data. The bundle K.D/! B associated
to P.D/ is canonically trivial by (7).

Abstractly, the determinant associated to a smooth family of Fredholm operators
A D fAbWH1

b �!H 2
b j b 2 Bg arises as a canonical section b 7! det.Ab/ of the

determinant line bundle DETA D [b2BDetAb . the fibre DetAb of the complex
line bundle DETA is canonically isomorphic to DetKer.Ab/� ˝ Det Coker.Ab/,
where Det V ´^maxV . See [3, 6] for details.

For each smooth family of EBVPs .D;P / we have a determinant line bun-
dle DET .D;P / equipped with its determinant section b 7! det.DPb /, and for
.P 1;P 2/WW1 !W2, we have a determinant bundle DET .P 0;P 1/. In particular,
associated to .D;P / is the finite rank family S.P / D .P.D/;P / with determinant
bundle DET .S.P // and canonical section b 7! det.S.Pb//. There is a canonical
line bundle isomorphism

DET .D;P / Š DET .S.P // D Det K.D/� ˝ DetW ; (9)

preserving the determinant sections det.DPb / !det.S.Pb//. DET .D;P / is there-
fore classified by the isomorphism class of the complex line bundle DetW : in terms
of Chern classes, c1.DET .D;P // D c1.DetW /.

1.3 Statement of Results

The identification (9) means that by pull-back DET .D;P / inherits a metric k : kC
and compatible connection rC from DET .S.P //. Over the open subset U of B
where the operators DPb are invertible the canonical metric on DET .D;P / is de-
fined by

k detDPbk2C D detC.�Pb /

where �P D .DP /
�DP , and the canonical regularization of det.�P / is the finite-

rank determinant on K.D/, detC.�P / ´ det.S.P /�S.P //. On the other hand,
DET .D;P / has a Quillen metric defined over U by k detDP k2z D detz.�P /.

Theorem 1 Let P 1, P 2 be Grassmann sections forD and letDP1 2 .D;P 1/;DP2 2
.D;P 2/ be invertible at b 2 B . Then

kdet.DP1/kz
kdet.DP2/kz

D kdet.DP1/kC
kdet.DP2/kC

: (10)
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That is,
detz.�P1/

detz.�P2/
D detC.�P1/

detC.�P2/
: (11)

Equivalently, since S.P.D// D Id ,
detz.�P / D detz.�P.D//detC.�P /: (12)

The canonical metric is the natural metric on DET .D;P / induced from the Her-
mitian metrics on the bundlesK.D/ and W . We therefore obtain by functoriality a
canonical connection on DET .D;P / compatible with k: kC, defined over U by

rC;P det.DP / D Tr C.D�1P rDP / det.DP /;

where1 Tr C.D�1P rDP /´ trK
�
S.P /�1rK;WS.P /

�
. HererK;W is the induced con-

nection on Hom.K.D/;W /,

rK;W .B/.�/ D rW .B.�//� BrK�; (13)

for B 2 Hom.K.D/;W /, where rK ;rW are the connections of Proposition 1.
On the other hand, we can use P to define a modified Bismut connection erP on

Hom.H ;HP /. A z-function connection on DET .D;P / can then be defined over
U analogously to [3, 6] by setting

rz;P detDP

detDP

D Tr z.D�1P rDP /´ d

ds jsD0
.s	P .s// (14)

where, with e�P D DPD�P � ,

	P .s/ D �Tr .e��sP DerPD�1P /;

is defined around zero by analytic continuation2.

Theorem 2 Let P 1, P 2 be choices of Grassmann sections. Let �P1

C ;�P1

z be the
curvature 2-forms of the canonical and zeta connection on DET .D;P 1/, and let
�P2

C ;�P2

z be curvature forms on DET .D;P 2/. Then one has

�P1

z ��P2

z D �P1

C ��P2

C : (15)

Equivalently,

�P
z D �P.D/

z C�P
C (16)

D �P.D/
z C tr.RW / � tr.RK.D//: (17)

1 Throughout, tr D trV denotes the trace on a finite-dimensional vector space V , Tr an operator
trace, and Tr C ;Tr z the canonical and zeta regularized traces.
2 We differ from [3] by a sign since we use the form on the dual bundle.
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The second identity (16), which says that �P
z consists of an interior part plus a

boundary correction term, follows from (15) because rC;P.D/ is the trivial connec-
tion. (17) then follows from Proposition 1 and the definition of rC;P .

As an example, consider the case of the ‘universal’ family of EBVPs

.D;P / D fDP WP 2 Gr.E0 ˚Eˇ/g

relative to a fixed operatorD. Let�z be the z curvature of the corresponding deter-
minant bundle. Then the first and third terms in (17) vanish, and we obtain:

Corollary 1
�z D i!Gr ;

where !Gr is the Kahler form on the Grassmannian. �

2 Relative Zeta-Function Metric: Proof of Theorem 1

For smooth sections  ; � of E one has the Green’s form

< D ; � >X � <  ;D�� >XD< �� ; �� >; (18)

where, if A.x/ is the leading coefficient ofD, � D �A.0/˚A.ˇ/ 2 Gl.E0˚Eˇ/.
By definition, (18) vanishes for all  2 dom .DP / if and only if � 2 dom .D�P �/,
where P � denotes the adjoint boundary problem. If A.x/ is unitary then

P � D �.I � P /��1 (19)

(cf. [4]). In order to simplify some of the formulas, we will assume this to be the
case, so that (19) holds, but this assumption is easily removed.

To study the Laplacian boundary problem

(
�P D D�DW dom .�P / �! L2.X IE/

dom.�P / D f 2 H2.X IE/ j P ��D D 0; P � D 0g ;

observe that dom.�P / is a subspace of the domain of the first-order EBVP

b�P D b�W dom.b�P /! L2.X IE ˚E/ :

Here

b�´
 
D �I
0 D�

!

WH1.X IE ˚E/ �! L2.X IE ˚E/;
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with dom.b�P / D f. ; �/ 2 H1.X IE ˚ E/ j bPb�. ; �/ D 0g, where bP ´ P ˚
P � and b�. ; �/´ .� ; ��/. The map  7�! b D . ;D / defines a canonical
embeddingH2.X IE/ �! H1.X IE ˚ .X IE/ and we have

b�b D
 
0

� 

!

; (20)

identifying the solution spaces of the operators� and b�: if f 1; : : : ;  kg is a basis
for Ker.�/ then fb 1; : : : ;b kg is a basis for Ker.b�/. Moreover, there is a preferred
such basis formed by the columns of the fundamental solution matrixbh.x/WE0 ˚
E0 ! Ex ˚Ex for b�, solving uniquely b�bh.x/ D 0; bh.0/ D I . We define

S.bP /´ bP ı P.b�/WK.b�/ �! bW D range .bP / ; (21)

whereK.b�/ D graph.bhDbh.ˇ/WE0˚E0! Eˇ ˚Eˇ/ is the Cauchy space for b�.
For a linear operator AWE0˚E1! F0 ˚F1 considered as a block 2� 2 matrix

relative to the direct sums, ŒA�.1;2/WE1!F0 refers to the top-right entry in the .1; 2/
position. From (20)

.�P � �/�1 D
h
b�
�1
P;�

i

.1;2/
; (22)

where b�P;� D b�� D
 
D �I
�� D�

!

, with domain dom .b�P /. Indeed, we compute

b�
�1
P;� D

 
D�P . Q�P � �/�1 .�P � �/�1
�. Q�P � �/�1 DP .�P � �/�1

!

; (23)

where Q� D D�D, Q�P D DPD�P .
The Poisson operator of � is the operator

bKW .E0 ˚ E0/˚ .Eˇ ˚Eˇ/! C1.X;E/;
bK.v/.x/ Dbh.x/p0P.b�/v;

(24)

where p0 is the projection map .E0˚E0/˚.Eˇ˚Eˇ/! .E0˚E0/. The restriction
of bK to K.b�/ is an isomorphism bKWK.b�/ �! Kerb� Š Ker� while

b� ı bK D P.b�/ (25)

as operators on .E0 ˚E0/˚ .Eˇ ˚Eˇ/.
The invertibility of the operators DP ;�P ;b�P ;S.bP/ are equivalent statements

and in this case we can define the Poisson operator of �P by

bK.bP / D bKS.bP/�1bP W .E0 ˚ E0/˚ .Eˇ ˚Eˇ/! C1.X;E/: (26)
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The restriction bK.bP /W range .bP / ! Ker.b�/ is an isomorphism with left-inverse
bP�jKer.b�/, for

bP� bK.bP / D bP� bKS.bP /�1bP D P.b�/S.bP /�1bP D bP : (27)

The following relative inverse formula holds:

Proposition 2 If �P1;�P2 are invertible, then

��1P1 D ��1P2 � ŒbK.bP 1/b�b�
�1
P2
�.1;2/: (28)

In particular, ��1P1 ���1P2 is a smoothing operator.

Proof We have
b�
�1
P
b� D I � bK.bP /� (29)

and hence

��1P1 D Œb�
�1
P1
�.1;2/ D Œb��1P1 b�b�

�1
P2
�.1;2/

D Œ.I � bK.bP 1/�/b�
�1
P2
�.1;2/ D ��1P2 � ŒbK.bP 1/b�b�

�1
P2
�.1;2/ :

To see (29), one can either check it directly using (41), or invariantly as in [8]. �

For later use, note that there is a similar relative inverse for the EBVP DP . D
has Poisson operator

KWE0 ˚Eˇ �! C1.X;E/; K.u/.x/ D h.x/p0P.D/u;

with p0 the projection map E0 ˚ Eˇ ! E0, which restricts to an isomorphism
KWK.D/! Ker.D/. If DP is invertible

D�1P D D I �K.bP /� ; (30)

where K.P / DKS.P /�1P WE0 ˚Eˇ �! C1.X;E/, and by a similar argument
to Proposition 2

D�1P1 D D�1P2 �K.P1/�D�1P2 : (31)
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2.1 Stiefel Coordinates

An element of Hom.E0 ˚ Eˇ;E0/ can be written M D �
M0 Mˇ

�
where M0 2

Hom.E0;E0/ andMˇ 2 Hom.Eˇ;E0/. The complex Stiefel manifold Stk param-
eterizes elements of Hom.E0 ˚ Eˇ;E0/ of rank k (at least one invertible k � k
minor), and the projection map

� WStk �! Grk.E0 ˚Eˇ/;

M 7�! PŒM0;Mˇ� D
 
M �
0 M

�1
0;ˇM0 M �

0 M
�1
0;ˇMˇ

M �
ˇM

�1
0;ˇM0 M �

ˇM
�1
0;ˇMˇ

!

; (32)

whereM0;ˇ´MM �DM0M
�
0 CMˇM

�
ˇ , defines Stk as a principalGl.C

k/ bundle
over Grk.E0 ˚ Eˇ/, the Stiefel frame bundle. Over the index zero component of
the Grassmannian dom .DP / has the following description in Stiefel coordinates
ŒM0;Mˇ�:

Lemma 1 For P D PŒM0;Mˇ� 2 Grn.E0 ˚Eˇ/ one has

dom.DP / D
˚
 2 H1.X IE/ jM0 .0/CMˇ .ˇ/ D 0



: (33)

Proof The lemma states that

P

 
 .0/

 .ˇ/

!

D 0 and M0 .0/CMˇ .ˇ/ D 0 (34)

are the same statement. But from (32) the first equality gives

(
M �
0 M

�1
0;ˇ.M0 .0/CMˇ .ˇ// D 0

M �
ˇM

�1
0;ˇ.M0 .0/CMˇ .ˇ// D 0;

while multiplying these equations respectively by M0 andMˇ and summing them
is the second equation in (34). The reverse implication is obvious. �

Note that (33) has a Gl.Cn/’s worth of ambiguity in describing dom.DP / corre-
sponding to a choice of generator ŒM0 Mˇ� in the fibre of Stn over P .

We have the following Stiefel coordinate formula for the canonical metric:

Proposition 3 Let P D PŒM0;Mˇ� 2 Grn.E0 ˚ Eˇ/ and let M D M0 CMˇh 2
End.E0/. Then

detC�P D detQ�1h detM�1
0;ˇ jdetMj2: (35)
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Proof We have S.P /�S.P / D P.D/PP.D/WK.D/ ! K.D/ and K.D/ D
f.�; h�/W � 2E0g �E0˚Eˇ . End.E0/ acts onK.D/ by q:.�; h�/D .q�; hq�/. So,
using (32),

P.D/PP.D/
 
�

h�

!

D
 
Q�1h Q�1h h

�

hQ�1h hQ�1h h
�

! 
M �
0 M

�1
0;ˇ M �

M �
ˇM

�1
0;ˇ M �

!

D Q�1h M�M�1
0;ˇ M

 
�

h�

!

:

Hence detC� D det.Q�1h M
�1
0;ˇM�M/, and we reach the conclusion. �

We also need a Stiefel coordinate formula for b�
�1
P . First:

Lemma 2 Let P D PŒM0;Mˇ�. Then

dom .�P / D
(

 2 H2.X IE/ jcM0

 
 .0/

D .0/

!

CcMˇ

 
 .ˇ/

D .ˇ/

!

D 0
)

; (36)

where

cM0 D
 
M �
0 M

�1
0;ˇM0 M �

0 M
�1
0;ˇM0A

�1
0 �A�10

M �
ˇM

�1
0;ˇM0 M �

ˇM
�1
0;ˇM0A

�1
0

!

;

cMˇ D
 
M �
0 M

�1
0;ˇMˇ �M �

0 M
�1
0;ˇMˇA

�1
ˇ

M �
ˇM

�1
0;ˇMˇ A�1ˇ �M �

ˇM
�1
0;ˇMˇA

�1
ˇ

!

; (37)

are canonically defined by bP . Here A0 ´ A.0/; Aˇ ´ A.ˇ/. With respect to the
decomposition .E0 ˚ E0/˚ .Eˇ ˚Eˇ/ of the space of boundary data, one has

bP D P
ŒbM0;bMˇ�

: (38)

Proof From (19) we have P� D 0; P ��D D 0 is equivalent to

P

 
 .0/

 .ˇ/

!

C ��1P �
 
D .0/
D .ˇ/

!

D 0: (39)

But � D �A0 ˚ Aˇ , and from (32) we obtain (37) by substituting in (39). The
identity (38) follows as in Lemma 1. �

Letbh�.x/WE0 ˚E0 ! Ex ˚Ex be the fundamental solution matrix for b��,

b��
bh�.x/ D 0; bh�.0/ D I: (40)

Then we have:
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Proposition 4 Let P D PŒM0;Mˇ�. Then �P;� is invertible if and only if

bM� DcM0 CcMˇ
bh�;

is invertible, and in that case ��1P;� has kernel

kP;�.x; y/ D

8
<̂

:̂

�
h
bh�.x/.bM

�1
�
cMˇ

bh�/bh�.y/�1bA.y/�1
i

.1;2/
x < y ;

h
bh�.x/.I � bM�1

�
cMˇ

bh�/bh�.y/�1bA.y/�1
i

.1;2/
x > y ;

(41)

where bA.x/ D A.x/˚�A�.x/. In particular, if P1 D PŒM0;Mˇ�, P2 D PŒN0;Nˇ� then
��1P1;� ���1P2;� has smooth kernel

�
h
bh�.x/.bM

�1
�
cMˇ �cN �1

�
bNˇ/bh�bh�.y/�1bA.y/�1

i

.1;2/
:

Proof For each fixed y, bkP .x; y/ must satisfy bP

 
bkP .0; y/v
bkP .ˇ; y/v

!

D 0, for all v 2

Ey . By Lemma 2 this is equivalent to cM0
bkP .0; y/ CcMˇ

bkP .ˇ; y/ D 0. On the

other hand, from (40) we have b�
�1
P;� Dbh�.x/

�
d
dx

��1
P
0bh�.x/�1bA.x/�1, where P

0
is

the gauge transformed boundary condition with respect tobh
�1
� . Since the derivative

of the Heaviside function is the Dirac delta distribution (41) now follows.
For the first statement, note that �P;� is invertible if and only if S�.bP / D bP ı

P.b��/ is invertible, while by a direct computation

S�.bP /�1 D
 
bM�1
�
cM0

bM�1
�
cMˇ

bhbM�1
�
cM0

bhbM�1
�
cMˇ

!

: (42)

�

Note that the Stiefel coordinate formula (41) also follows from (28) by a direct
substitution using (42).

2.2 Proof of Theorem 1

We know that .�P � �/�1 is trace class. In fact, there is the following precise for-
mula:

Proposition 5

Tr .�P � �/�1 D � @
@�

log det bM�; (43)
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Proof The proof follows Prop. 3.1 of Lesch and Tolksdorf’s article [5].
For C.x/WCn ˚ Cn ! Cn ˚Cn one has

trŒC.x/�1;2 D �tr.
@

@�
.b��/C.x//;

while from (40)
@

@�
b�� �bh�.x/ D �b��

@

@�
bh�.x/:

Therefore

Tr .�P � �/�1

D
ˇZ

0

trfkP;�.x; x/g dx

D
ˇZ

0

tr
�h
bh�.x/bM

�1
�
cMˇ

bh�bh�.x/�1bA.x/�1
i

.1;2/

�
dx

D �
ˇZ

0

tr

�
@

@�
b��
bh�.x/bM

�1
�
cMˇ

bh�bh�.x/�1bA.x/�1
�
dx

D �
ˇZ

0

tr

�
b��

@

@�
.bh�.x//bM

�1
�
cMˇ

bh�bh�.x/�1bA.x/�1
�
dx

D �
ˇZ

0

tr

�
.bh�.x/�1bA.x/�1b��

bh�.x//:bh�.x/�1
@

@�
.bh�.x//bM

�1
�
cMˇ

bh�

�
dx

D �
ˇZ

0

tr
�
d

dx

�
bh�.x/�1

@

@�
.bh�.x//bM

�1
�
cMˇ

bh�

��
dx

D �
�
tr
�
bh�.x/�1

@

@�
.bh�.x//bM

�1
�
cMˇ

bh�

��ˇ

xD0

D �tr
�
bh
�1
�

@

@�
.bh�/bM

�1
�
cMˇ

bh�

�
since

@

@�
bh�.0/ D 0

D � @
@�

log det bM�: �

If �P1;�P2 are invertible, with P1 D PŒM0;Mˇ�; P2 D PŒN0;Nˇ�, then from (43) we
have

Tr
�
.�P1 � �/�1 � .�P2 � �/�1

� D � @
@�

log
det bM�

detcN �

; (44)
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so the scattering matrix is S� D cN �1
�
bM�. Because the boundary problems �Pi

are elliptic in the classical sense of Seeley [9], they have asymptotic expansions as
�!1 in ƒ�;"

Tr .�Pi � �/�1 
 c.i/�1.��/1=2 C
X

k�1
c
.i/

k .��/�k=2 : (45)

Hence we find that �P1;�P2 are z-comparable and z-admissible, and so by (6) (or
by [5]) we have

detz.�P1/

detz.�P2/
D det bM

detcN
: exp

"

�LIM�!1 log det
det bM��
detcN ��

#

: (46)

Proposition 6

det bM D det.A0/
�1 det.h�/�1 detM�1

0;ˇjdetMj2 (47)

Proof We compute that

bh.x/ D
 
h.x/ J.x/

0 A.x/.h.x/�/�1A�10

!

;

where h.x/ is the parallel transport for D, and J.x/ is the unique solution to

DJ.x/ D A.x/.h.x/�/�1A�10 ; J.0/ D 0:
Hence sincebh Dbh.ˇ/, and setting J ´ J.ˇ/, we have from Lemma 2

bM D
 
M �
0 M

�1
0;ˇM M �

0 M
�1
0;ˇMˇJ CM �

0 M
�1
0;ˇ.M0 �Mˇ.h

�/�1/A�10 � A�10
M �
ˇM

�1
0;ˇM M �

0 M
�1
0;ˇMˇJ CM �

ˇM
�1
0;ˇ.M0 �Mˇ.h

�/�1/C .h�/�1A�10

!

D
 

0 I

.h�/�1M� �.h�/�1
!

�
 
I M�1

0;ˇ.MˇJ CM0 �Mˇ.h
�/�1/

M �
0 M �

0 M
�1
0;ˇ.MˇJ CM0 �Mˇ.h

�/�1/ � I

! 
M�1
0;ˇM 0

0 A�10

!

: (48)

Since a 2 � 2 block matrix
�
A B
C D

�WE0 ˚ E1 �! E0 ˚ E1 where AWE0 ! E0,
B WE1 ! E0 etc, has determinant det.A/:det.D � CA�1B/ if A is invertible, and
determinant det.D/:det.A�BD�1C / ifD is invertible, we find that the determinant
of the second matrix in (48) reduces to det.�I /, in particular the J term disappears,
and term by term we obtain

det bM D det.�.h�/�1M�/: det.�I /:
�
det.M�1

0;ˇM/ det.A0/
�1
	
;

and this is (47). �
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In view of (35) and (47), we can rewrite (46) as

detz.�P1/

detz.�P2/
D detC.�P1/

detC.�P2/
exp

 

�LIM�!1 log det
det bM��
detcN ��

!

: (49)

It remains to show that the LIM term vanishes. Consider first the case where D
is self-adjoint. Then h.x/ 2 U.n/ and we can gauge transform �P to �0

U�1PU ,
where �0 is a flat Laplacian and U D �h.x/ D I ˚ h. By continuity it is enough
to work over the dense open subset UGl � Gr2n.E0 ˚ Eˇ/, parameterizing graphs
of invertible T WE0! Eˇ , defining Stiefel coordinatesM0 D I andMˇ´ T �. Set
P1´ PT . Then detcMˇ D det.Q�1T T

�/ and socMˇ is invertible, and we have

log det bM� D log detcMˇ C log det.cM
�1
ˇ
cM0 Cbh�/:

A similar computation to [5], Prop. 3.4, yields for � �!1

log det.cM
�1
ˇ
cM0 Cbh�/ D nˇ

p
�C log 2�n � log detcMˇ CO. 1p

�
/;

and hence that log det bM�D nˇ
p
�C log 2�nCO.1=p�/. Repeating the argument

forcN � we therefore have

log det
det bM��
detcN ��

D O. 1p
�
/;

as � �!1, and hence (49) reduces to (11).
We extend this to general D through a variational method:

Proposition 7 LetDr be a one parameter family of Dirac operators. Let P1; P2 2
Grn.E0 ˚Eˇ/ with Dr

Pi
invertible. Then the �Pi D �r

Pi
are invertible and

d

dr
log

detz.�P1/

detz.�P2/
D d

dr
log

detC.�P1/

detC.�P2/
: (50)

Proof Let hr ;bhr denote the respective paths of parallel transport operators of the
first-order elliptic operatorsDr ;b�

r
. LetMr DM0CMˇhr ,Nr DN0CNˇhr , and

let bMr DcM0 CcMˇ
bhr , cN r D bN0 C bNˇ

bhr . Then, from (47),

d

dr
log

detC.�P1/

detC.�P2/
D d

dr
log

det.M�
rMr /

det.N �
r Nr /

: (51)

On the other hand, a straightforward application of Duhamel’s Principle yields

d

dr
log

detz.�P1/

detz.�P2/
D Tr

n
PD�
�
.D�P �1 /

�1 � .D�P �2 /
�1
	o
C Tr

˚ PD˚D�1P1 �D�1P2
�

;



Curvature of the Determinant Line Bundle for Elliptic Boundary Problems over an Interval 223

while from (23) and Pb� D PD˚ PD� we find

Pb�
�
b�
�1
P1
� b��1P2

	
D
 PD�D�1P1 �D�1P2

�
��1P1 ���1P2

0 PD�
�
.D�

P �1
/�1 � .D�

P �2
/�1
	
!

;

and hence that
d

dr
log

detz.�P1/

detz.�P2/
D Tr

n Pb�
�
b�
�1
P1
� b��1P2

	o
: (52)

We haveb�
�1
P1
Db��1P2 �bKr .bP 1/b�b�

�1
P2
, where bKr .bP 1/b�D bHrp0P.b�/Sr .bP 1/

�1bP 1� ,

and .bHrv/.x/ Dbhr.x/v, and since b�
r bHr D 0, then Pb�bHr D �b� PbHr . Therefore

using (29)

Tr
n Pb�
�
b�
�1
P1
� b��1P2

	o

D �Tr
n Pb�bHrp0Sr .bP 1/

�1bP 1�b�
�1
P2

o

D Tr
n
b� PbHrp0Sr .bP 1/

�1bP 1�b�
�1
P2

o

D Tr
n
bP 1�b�

�1
P2
b� PbHrp0Sr .bP 1/

�1bP 1

o

D Tr
n
bP 1�

�
I � bKr .bP 1/b�

	 PbHrp0Sr .bP 1/
�1bP 1

o

D Tr
n
bP 1�

PbHrp0Sr .bP 1/
�1bP 1

o
� Tr

n
bP 1� bKr .bP 1/b�

PbHrp0Sr .bP 1/
�1bP1

o

D Tr

�
Sr .bP 1/

�1bP 1

d

dr
P.b�/

�
� Tr

�
Sr .bP 1/Sr .bP 2/

�1bP2

d

dr
P.b�/Sr .bP 1/

�1
�

D Tr

�
Sr .bP 1/

�1 d
dr

Sr .bP 1/

�
� Tr

�
Sr .bP 2/

�1 d
dr

Sr .bP 2/

�
;

using the symmetry of the trace, and d
dr

S.bP i/ D bP i
d
dr
P.b�/ and (25).

Now choose Stiefel coordinates for P D PŒM0;Mˇ�. The finite-rank operator

Sr .bP /WK.b�r
/!W ˚W �, whereW D range .P /;W � D range .P �/, has deriva-

tive
d

dr

n
Sr .bP /

o
vr D d

dr

n
Sr .bP /vr

o
� Sr .bP /

d

dr
vr :

An element vr 2 K.b�r
/ has the form .�;bhr�/; � 2 E0 ˚ E0, and so using Stiefel

coordinate representation for bP D bP
ŒbM0;bMˇ�

, we have

d

dr

n
Sr .bP /

o
vr D d

dr

 
cM
�
0
cM
�1
0;ˇ
bMr �

cM
�
ˇ
cM
�1
0;ˇ
bMr �

!

� Sr .bP /
 
0
Pbhr�

!

D
0

@
cM
�
0
cM
�1
0;ˇ

�
cMˇ � bMrQ

�1
bh
bh
�	 Pbhr�

cM
�
ˇ
cM
�1
0;ˇ

�
cMˇ � bMrQ

�1
bh
bh
�	 Pbhr�

1

A;
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and so (42) implies Sr .bP /�1 ddr Sr .bP /vr D
�
bM�1
r

�
cMˇ � bMrQ

�1
bh
bh
�	 Pbhr

�
vr . There-

fore

Tr
�
Sr .bP /�1

d

dr
Sr .bP /

�
D tr

�
bM�1
r
cMˇ
Pbhr
�
� tr

�
Q�1bh

bh
� Pbhr

�

D d

dr
log det bMr � tr

�
Q�1bh

bh
� Pbhr

�

D d

dr
log det .M�

rMr /C ˛.b�r
/;

where ˛.b�
r
/D�trf.h�r Ar0/�1 ddr .h�r Ar0g � trfQ�1bh bh

� Pbhrg, and we use (47). The term
˛.b�

r
/ depends only on the operator b�

r
, not on bP , and therefore

Tr

�
Sr .bP 1/

�1 d
dr

Sr .bP 1/

�
� Tr

�
Sr .bP 2/

�1 d
dr

Sr .bP 2/

�
D d

dr
log

det.M�
rMr /

det.N �
r Nr /

;

which completes the proof. �

Next, let Dr be a path of operators in El l1;n connecting D´ D1 with a self-
adjoint first-order elliptic operator D0 with D0

Pi
invertible. The path can always be

chosen such thatDr
P1

is invertible for each r ; equivalently, such thatMr is invertible
for each r . If it occurs that anNr is not invertible at some point along the path, then
the path can be perturbed slightly to remove the singularity without affecting the
invertibility of Mr , since that is an open condition. Hence we can integrate (50)
along this path to obtain

detz.�P1/

detz.�P2/

 
detz.�0

P1
/

detz.�0
P2
/

!�1
D detC.�P1/

detC.�P2/

 
detC.�0

P1
/

detC.�0
P2
/

!�1
;

where �0 D .D0/�D0. Since D0 is self-adjoint and we know that (10) holds for
such operators, this completes the proof of Theorem 1.

3 Relative Zeta Function Curvature: Proof of Theorem 2

We define a z-function connection on DET .D;P / following a modified version of
the prescription of Quillen–Bismut–Freed. The z-function connection form (14) is
defined over U � B by

!z´ d

ds jsD0
.s	P .s//; (53)

where 	P .s/D�Tr .e��sP DerPD�1P / is defined around zero by analytic continuation.
Here erP is a connection on the infinite-dimensional smooth bundle Hom.H ;HP /
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induced (13) from connections on H and HP . Since H is the trivial bundle we
can choose the trivial de-Rham connection ‘d ’. The bundle HP , however, with
fibre dom1.DPb / is non-trivial whenever the finite-rank bundle W defined by the
Grassmann section P is non-trivial. Indeed, a section of H is the same thing as
a C1 section of the trivial finite-rank vertical bundle E� ! B � X equal to E
along the fibres of the trivial fibration B �X ! B . A section of HP , on the other
hand, is a C1 section of a non-trivial finite-rank vertical bundle E�

P ! B � X ;

a section of E�
P is required to satisfy Pb

 
s.b; 0/

s.b; ˇ/

!

at each b 2 B . Consequently,

the trivial connection d on H does not descend to a connection on the subbundle
HP due to the variation of Pb . Hence a modified connection rP is needed which
takes sections of HP to sections of HP . Defining rP is the same thing as defining
an ‘honest’ connection on the finite-rank bundle E�

P and one can work entirely in
that framework. Here we shall work directly with the bundle HP and define rP as
follows.

First, we define the bundle restriction map

� WH �! C2n; �sb D
 
sb.0/

sb.ˇ/

!

(54)

for sb 2Hb D C1.X;E/, where C2n is the trivial complex bundle over B of rank
2n (with fibre Š E0 ˚ Eˇ). Next, fix a smooth non-decreasing function �WX D
Œ0; ˇ�! Œ0; 1� with

�.x/ D 0 in Œ0; ˇ=4�; �.x/ D 1 in Œ3ˇ=4; ˇ�;

and define the extension operatorm� WC2n!C1.X;Cn/ by .
v/.x/D�.x/v. Let
p0; pˇ be the projection mapsC2n Š E0˚Eˇ to E0 ŠCn, Eˇ ŠCn, respectively.
Then we define M� WC2n !H , v 7�!M�v by .M�v/.x/ D m1��p0v C
pˇv.
We then have

�.M�v/ D
 
.1 � �.0//p0v C �.0/pˇv
.1 � �.ˇ//p0v C �.ˇ/pˇv

!

D
 
p0v

pˇv

!

D v : (55)

The bundle maps �;M� induce the corresponding maps between the spaces
C1.B IH / and C1.B IC2n/, and we also denote these by � and M� .

We now define a connection on HP by

rP D d CM�PdP�; (56)

or pointwise on B , rP D d CM�PbdPb� . We may drop the b subscript in the
following.
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Proposition 8 rP defines a connection on the bundle HP . Let P 1;P 2 be Grass-
mann sections, then

rP1 � rP2 DM�.P
1dP 1 � P 2dP 2/� : (57)

Proof We have rP W�0.B;HP / �! �1.B;H /, and one easily checks that rP

satisfies the Leibnitz rulerP .f s/Ddf:sCf rP s, for f 2C1.B/; s2�0.B;HP /,
noting that f WB ! C is not affected by the restriction map � . We need to see that
rP has range in �1.B;HP /. But if s 2 �0.B;HP /, then Pb�s.b/ D 0 and hence
dPb:�s.b/ D �Pb�ds.b/, so that

PbdPb:�s.b/ D �Pb�ds.b/ : (58)

Therefore using (55) and (58)

Pb�rP s D Pb�ds C Pb�M�PbdPb�s D �PbdPb�s C PbdPb�s D 0;

and hence rP s 2 �1.B;HP /. Finally, the identity (57) is immediate from the def-
inition of rP . �

With the connections rP ;r triv D d on HP ;H at hand we have an induced
connection erP (pointwise erP ´ erPb ) on Hom.H ;HP /. For large Re.s/ > 0,
e��sP DP

erPD�1P D e��sP DerPD�1P is trace class, and for small t

�t .s/´ Tr ..I C tDerPXD�1P /e��sP /;

whereX 2Vect.B/, has a meromorphic continuation toC which is regular at sD 0.
Hence (by [1], Prop 2.9)

d

dt tD0
�t .s/´ �sTr .e��.sC1/P DerPXD�1P e�/ D s	P .s/.X/

has a meromorphic continuation to C with a simple pole at s D 0.

Proposition 9 Let P 1;P 2 be Grassmann sections and for i D 1; 2 let

	i .s/ D Tr .e��s
P i

Der iD�1
P i
/;

where er i ´ erP i . Then
	1.s/ � 	2.s/ D Tr

˚e��s
P 1

Der1.K.P 1/�D�1
P 2
/



� Tr
˚e��s

P 1
DM�.P

1dP 1 � P 2dP 2/�D�1
P 2




� Tr
˚
.e��s

P 1
� e��s

P 2
/Der2D�1

P 2
/


: (59)
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Proof The relative connection form is the 1-form

	1.s/ � 	2.s/ D Tr .e��s
P 1

Der1D�1
P 1
/� Tr .e��s

P 2
Der2D�1

P 2
/ :

We have from (31) that

D�1
P 1
�D�1

P 2
D �K.P /�D�1

P 2
;

e��s
P 1
� e��s

P 2
D i

2�

Z


�

��s ŒeK�.eP 1/�e��1
P 2;�

�.1;2/ d� (60)

are smoothing operators, where the terms eK� and so on, are the operators for e�
corresponding to those in (28) for �.

For a section A of Hom.H ;HP / one has erP .A/.s/ D rP .A.s// � Ads, s 2
C1.B;H /, and we can extend this to Hom.H ;H / by the same formula. Then

er1.D�1
P 2
/.s/ D r1.D�1

P 2
.s// �D�1

P 2
ds;

er2.D�1
P 2
/.s/ D r2.D�1

P 2
.s// �D�1

P 2
ds:

Hence from (57)

er1.D�1
P 2
/.s/ � er2.D�1

P 2
/.s/ D .r1 � r2/.D�1

P 2
.s//

D .M�.P
1dP 1 � P 2dP 2/�D�1

P 2
/.s/ :

And so

Der1D�1
P 2
�Der2D�1

P 2
D DM�.P

1dP 1 � P 2dP 2/�D�1
P 2
: (61)

We have

	1.s/ D �Tr
˚e��s

P 1
Der1D�1

P 1




D �Tr ˚e��s
P 1

Der1.D�1
P 2
�K.P /�D�1

P 2
/



D �Tr ˚e��s
P 1

Der1D�1
P 2


C Tr
˚e��s

P 1
Der1.K.P /�D�1

P 2
/



(62)

since the terms are trace class. From (61) we have that the first term of (62) is

� Tr
˚e��s

P 1
Der2D�1

P 2


 � Tr
˚e��s

P 1
DM�.P

1dP 1 � P 2dP 2/�D�1
P 2




D �Tr ˚e��s
P 2

Der2D�1
P 2


 � Tr
˚
.e��s

P 1
� e��s

P 2
/Der2D�1

P 2




� Tr
˚e��s

P 1
DM�.P

1dP 1 � P 2dP 2/�D�1
P 2



; (63)

recalling that e��s
P 1
� e��s

P 2
is trace class. Substituting (63) into (62) completes the

proof. �
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Proposition 10 Let !1z ; !
2
z be the z-function connection forms associated to the

Grassmann sections P 1;P 2. Then

!1z � !2z D Tr
˚
Der1.K.P 1/�D�1

P 2
/



C Tr
˚
DM�.P

2dP 2 � P 1dP 1/�D�1
P 2



: (64)

Proof For the first term on the right-side of (59) we have

�1.s/´ Tr
˚e��s

P 1
Der1.K.P 1/�D�1

P 2
/



D Tr
˚e��s�1

P 1
e�P1Der1.K.P 1/�D�1

P 2
/


: (65)

But e��s�1
P 1

is norm continuous for Re.s/ > �1 and e�P1Der1.K.P 1/�D�1
P 2
/ is a

smoothing and so trace class operator. �1.s/ is therefore holomorphic for Re.s/ >
�1 and this allows us to go down to s D 0 in (65). Thus,�1.s/ is regular at at s D 0
and is given there by

�1.0/ D Tr
˚
Der1.K.P 1/�D�1

P 2
/


: (66)

Similarly, �2.s/´ �Tr
˚e��s

P 1
DM�.P

1dP 1 � P 2dP 2/�D�1
P 2



is regular at s D 0

and given there by

�2.0/ D �Tr
˚
DM�.P

1dP 1 � P 2dP 2/�D�1
P 2




D Tr
˚
DM�.P

2dP 2 � P 1dP 1/�D�1
P 2



: (67)

For Re.s/ >> 0 the remaining term is .s�3.s//jmer
sD0, where

�3.s/´ �Tr
˚
.e��s

P 1
� e��s

P 2
/Der2D�1

P 2



;

which vanishes by a similar argument using (60).
Thus 	1.s/� 	2.s/D�1.s/C�1.s/C�1.s/ is holomorphic for Re.s/ > 0 with

a meromorphic continuation to all of C, and we have

!1z � !2z D
d

ds jsD0
fs.	1.s/ � 	2.s//g

D �1.0/C�2.0/C d

ds jsD0
.s�3.s/jmer/ : (68)

By (66), (67), the Proposition is proved. �
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Since P 1dP 1 � P 2dP 2 is finite-rank and �D�1
P 2

is bounded we have using (30)

Tr
˚
DM�.P

2dP 2 � P 1dP 1/�D�1
P 2




D Tr
˚
�D�1

P 2
DM�.P

2dP 2 � P 1dP 1/



D Tr
˚
�.I �K.P 2/�/M�.P

2dP 2 � P 1dP 1/



D tr
˚
.I2n � PKS.P 2/�1P 2/�M�.P

2dP 2 � P 1dP 1/



D tr
˚
.I2n � PKS.P 2/�1P 2/.P 2dP 2 � P 1dP 1/




D tr.P 2dP 2/� tr.P 1dP 1/

� tr
˚
PKS.P 2/�1P 2.P 2dP 2 � P 1dP 1/PK



(69)

where PK ´ P.D/, I2n denotes the identity on C2n and we use (55). Note that the
trace tr D trC2n in the third line equals the trace tr D trW ?2 over range .P 2/? since

P 2.I � PKS.P 2/�1PK// D 0.

For the first term �1.0/ in (64) one has to work a little harder. To study the trace
Tr
˚
Der1.K.P 1/�D�1

P 2



, we consider the operatorK.P 1/�D�1

P 2
WHb �! Ker.Db/

as the composition

K.P 1/�D�1
P 2
DK.P 1/P 1 ı P 1�D�1

P 2
WHb �! W 1

b �! Ker.Db/ �Hb ;

whereW 1
b D range .P 1

b / is the fibre of the bundleW 1 at b 2B . The bundlesH ,W 1

have the connections r triv D d and rW1
, while the bundle Ker.D/ in�1.0/ has the

induced connection r1jKer.D/. Let r.W
1;ker/;rH ;W1

denote the induced connections

on Hom.W 1;Ker.D// and Hom.H ;W 1/. Then we have3

er1.K.P 1/�D�1
P 2
/ D er1..K.P 1/P 1 ı P 1�D�1

P 2
/

D r.W1;ker/.K.P 1/P 1/: P 1�D�1
P 2
CK.P 1/P 1:rH ;W1

.P 1�D�1
P 2
/ : (70)

Now since K has range in Ker.D/, the second term in (70) is killed by D and so

Tr
˚
Der1.K.P 1/�D�1

P 2


 D Tr
n
Dr.W1;ker/.K.P 1/P 1/:P 1�D�1

P 2

o

D tr
n
P 1�D�1

P 2
Dr.W1;ker/.K.P 1/P 1/

o

D tr
n
P 1.I2n � PKS.P 2/�1P 2/�r.W1;ker/.K.P 1/P 1/

o

D tr
n
.P 1 � S.P 1/S.P 2/�1P 2/�r.W1;ker/.K.P 1/P 1/

o
: (71)

3 Note that for bundles �i , i D 1; 2; 3, with connection inducing connections r i;j on Hom.�i ; �j /
one has for respective sections A;B of Hom.�2; �3/, Hom.�1; �2/, r1;3.AB/ D r1;2.A/B C
Ar2;3.B/, for any choice of connection r2 on �2.
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But for � 2 C1.B;W 1/ we have P 1� D � , pointwise, and rW1
.�/ D P 1d� , and

so
r.W1;ker/.K.P 1/P 1/.�/ D r.W1;ker/.KS.P 1/�1P 1/.�/

D r1jKer.D/.KS.P 1/�1P 1�/� .KS.P 1/�1P 1/rW1

.�/

D .d CM�P
1dP 1�/.KS.P 1/�1P 1�/ � .KS.P 1/�1P 1d.�/

D d.K/:S.P 1/�1P 1� CKd.S.P 1/�1P 1/�

C M�.P
1dP 1/PKS.P 1/�1P 1� : (72)

Since �K D PK we have .P 1 � S.P 1/S.P 2/�1P 2/�Kd.S.P 2/�1P 1 D 0 (or we
could use DK D 0 in the previous step), so

�r.W1;ker/.K.P 1/P 1/ D �d.K/:S.P 1/�1P 1P 1dP 1PKS.P 1/�1P 1

D dPK:S.P 1/�1P 1 C P 1dP 1PKS.P 1/�1P 1 ;

and we now have from (71)

Tr
˚
Der1.K.P 1/�D�1

P 2




D trW 1

˚
.P 1 � S.P 1/S.P 2/�1P 2/.dPKPKS.P 1/�1P 1

CP 1dP 1PKS.P 1/�1P 1/



D trW 1

˚
P 1dPKPKS.P 1/�1P 1 C P 1dP 1PKS.P 1/�1P 1




� trW 1

˚
S.P 1/S.P 2/�1P 2dPKS.P 1/�1P 1

�S.P 1/S.P 2/�1P 2P 1dP 1PKS.P 1/�1P 1



D trK
˚
PKS.P 1/�1P 1.P 1dPK C P 1dP 1/PK




� trK
˚
PKS.P 2/�1P 2dPKPK


 � trK
˚
PKS.P 2/�1P 2P 1dP 1PK



: (73)

We consider next the canonical connection rC;P on DET .D;P /, defined by the
1-form !C ´ tr

�
S.P /�1rK;WS.P /

�
over U � B .

Lemma 3 Let PK D P.Db/; P D Pb. One has
!C D trK

˚
PKS.P /�1.PdP C PdPk/PK



: (74)

Proof Observe first that PK� D � for � 2�0.B IK/ and so dPK:�CPkd� D d� .
Hence

Pd� � PPKd� D PdPk�: (75)

But

rK;W .S.P //.�/ D rW .S.P /.�// � S.P /rK�

D Pd.P �/� PPKd.PK�/
D PdP:� C Pd� � PPKdPK:PK� � PPKd�
D PdP:� C PdPk:� D PdP:PK� C PdPk:PK�;

using (75) and since PKdPKPK D 0. Equation (74) now follows. �
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From (73) and (74)

Tr
˚
Der1.K.P 1/�D�1

P 2




D !1C � trK
˚
PKS.P 2/�1P 2dPKPK




� trK
˚
PKS.P 2/�1P 2P 1dP 1PK




D !1C � !2C C trK
˚
PKS.P 2/�1P 2dP 2PK




� trK
˚
PKS.P 2/�1P 2P 1dP 1PK




D !1C � !2C C trK
˚
PKS.P 2/�1.P 2dP 2 � P 2P 1dP 1/PK



: (76)

Putting together (64), (69) and (76), we have proved that the z and C connection
forms are related over U by

!1z � !2z D !1C � !2C C tr.P 2dP 2/ � tr.P 1dP 1/ : (77)

We have from (77)

�1
z ��2

z D �1
C ��2

C C d tr.P 2dP 2/ � d tr.P 1dP 1/

D �1
C ��2

C C tr.dP 2 ^ dP 2/ � tr.dP 1 ^ dP 1/ ;

and by the symmetry of the trace tr.dP i ^ dP i / D 0. This completes the proof of
Theorem 2.
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Abstract Local gauge symmetries reduce to the identity on the observables, as
well as on the physical states (apart from reflexes of the local gauge group topol-
ogy) and therefore their use in Quantum Field Theory (QFT) asks for a justification
of their strategic role. They play an intermediate role in deriving the validity of
Local Gauss Laws on the physical states (for the currents which generate the re-
lated global gauge group); conversely, we show that local gauge symmetries arise
whenever a vacuum representation of a local field algebra F is used for the de-
scription/construction of physical states satisfying Local Gauss Laws, just as global
compact gauge groups arise for the description of localizable states labeled by su-
perselected quantum numbers. The above relation suggests that the Gauss operator
G, which by locality cannot vanish in F , provides an intrinsic characterization of
the realizations of a gauge QFT in terms of a local field algebraF and of the related
local gauge symmetries generated by G.

1 Introduction

Since by definition a gauge symmetry reduces to the identity on the observ-
ables, its physical meaning has been questioned and debated from a founda-
tional/philosophical point of view.(For the conceptual and philosophical discussions
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on the empirical meaning of gauge symmetries, which appear to be relevant for
our understanding of the physical world, see [1]). Clearly, the final description of
a physical system should be written in a gauge invariant language and therefore
gauge symmetry are bounded to play only an intermediate role.

The following physical principles help to properly set the problem of under-
standing the strategic role of gauge symmetries. The operational/experimental de-
scription of a physical system (not necessarily quantum!) makes reference to the
following elements:

A) the set A of its measurable quantities, briefly called observables;
B) the measurement of the time evolution of the observables;
C) the set ˙ of configurations or states in which the system may be prepared, ac-

cording to well defined protocols of experimental preparations; the measurement
of an observable A, when the system is in the state !, is operationally defined
by the experimental expectation < A >! .

Given a state !, the set of states which can be prepared starting from !, through
physically realizable operations, is denoted by 
! and called the phase of !. This
means that the protocols of preparations of states belonging to different phases
are not related by physically realizable operations. Clearly, by definition, differ-
ent phases describe disjoint realizations of the system (or disjoint ”worlds”) which
cannot communicate through realizable observable operations.

The above operational framework has an essentially unique mathematical tran-
scription. General physical considerations indicate that the set of the observables
generate a normed algebra, actually a C�-algebra with identity, called the alge-
bra of observables, for simplicity still denoted by A. The time evolution defines a
one-parameter group of transformations (technically automorphisms) ofA: t WA!
˛t .A/.

By its experimental expectations, each state !, defines a linear positive func-
tional !.A/ 	< A >!; 8A 2 A, and by the GNS theorem a representation �!
of A (as operators �!.A/) in a Hilbert space H! ; ! is represented by a vector
�! 2H! and the experimental expectations are represented by the matrix elements
<A>!D .�!; �!.A/�!/. (For a discussion of the general description of a physical
system, see [2]).

The set of states �!.A/ �! are dense in H! , from which one may obtain also
the mixed states associated to �! . The set of all such states is called the folium
associated to !, which may be considered as the mathematical description of 
! .
The family of physical states on A is denoted by ˙.A/.

In the following, we shall consider infinitely extended systems, which generi-
cally display the occurrence of different phases and the related role of gauge sym-
metries (see below). For this kind of systems a very relevant property is the local
structure ofA: each observable is identified by the experimental apparatus used for
its measurement and, since the physically realizable operations, as well as the cor-
responding experimental apparatuses, are inevitably localized in space, the algebra
of observables is generated by localized observables. This means that the algebras
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A.V / of observables localized in bounded regions V , generateA,AD[V A.V /,
(hereafter called local algebra).

Another relevant property is the stability of A under the group of space trans-
lations ˛a; a 2 R3, with ˛a.A/ denoting the a-translated of A. (For lattice systems
the space translations are replaced by the lattice translations).

For a reasonable physical interpretation, the measurement of a localized observ-
able A should not be influenced by measurements of observables at infinite space
separations, i.e. the following condition, called asymptotic abelianess, must hold,
(B a localized observable): limjxj!1 Œ A; ˛x.B/ � D 0.

A distinguished role is played by the pure homogeneous states !0, characterized
by being invariant under a subgroup T of translations

!0.˛a.A// D !0.A/; 8A 2A (1)

and by satisfying the cluster property

lim
n!1 !0.A˛n a.B// D !0.A/!0.B/; (2)

where n a denote the group parameters of T . Typically, but not necessarily, !0 is a
ground state. The set of such states !0 on A is denoted by ˙0.A/.

A very important consequence is that:

!0 is the unique T invariant state in the pure homogeneous phase 
!0 .

The interest of considering the phases defined by such states is twofold.
In relativistic quantum field theory, the vacuum state is invariant under space

translations and the validity of the cluster property is a necessary condition for the
possibility of defining the scattering matrix, which requires the factorization of ex-
pectations of infinitely (space) separated clusters (describing scattering processes).
Thus, the phase defined by a vacuum state in quantum field theory is a homogeneous
pure phase in the above sense.

Quite generally, in a homogeneous pure phase the macroscopic observables,
defined by space averages of local observables, take sharp (classical) values in
agreement with the characteristic property of the standard pure phases in thermo-
dynamics.

In conclusion, general physical principles characterize the mathematical descrip-
tion of a physical system, in terms of the local algebra of observables A, its time
evolution ˛t .A/; t 2 R, and the family of states ˙.A/ in which the system may
be prepared. The task of theoretical physics is to devise concrete effective strate-
gies for implementing and controlling such a general structure by determining the
representations of the observable algebra corresponding to the various (physically
realizable) states.

In quantum field theory, as advocated by Wightman, the standard and well estab-
lished strategy is to study the vacuum representations of the relevant field algebra,
provided by the vacuum correlation functions. However, already in the case of a
system of free particles, physically important particle states are not present in the
vacuum representation of the observable algebra, called the vacuum sector.
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A simple example is provided by the system of free massive Dirac fermions,
since the observable algebra and therefore its vacuum representation have zero
fermionic charge; a complete QFT description is obtained by introducing the local
field algebra F generated by the fermionic fields, whose (unique) vacuum repre-
sentation contains the representations of the observable sub-algebra Fobs, labeled
by the quantum number of the fermionic charge.

This is the standard strategy adopted in the formulation and control of QFT mod-
els. One studies the vacuum representation of a local field algebra F generated by
local fields, which describe the degrees of freedom inferred and borrowed from the
limit of vanishing interaction. Such a local field algebra contains a (suitably charac-
terized) observable field sub-algebra Fobs and one looks for the representations of
Fobs contained in a vacuum representation of F .

Therefore, the assumed role of the field algebra F is to provide the building
stones of the theory: the fields ofF describe the relevant states, generate the observ-
able algebra and allow for a direct and simple definition of the dynamics (through a
Hamiltonian or Lagrangian which is a polynomial function of the fields of F).

In conclusion, the difficult problem of determining the representations of the
local observable algebra and its time evolution, beyond the vacuum sectors, i.e.
the solution of the problem .A; ˛t .A/;˙.A//, is attacked by finding the vacuum
representations of a local field algebra F �A, i.e. by solving the relatively easier
problem .F ; ˛t .F/;˙0.F//.

Behind such a strategic choice there is the implicit assumption (extrapolated
from the non-interacting case) of considering the states outside the vacuum sector
which are local states, i.e. may be obtained by applying the local fields of F to the
vacuum; this property allows for their localizability in the DHR sense (for general
discussion of such an important property, see [3]): the state ! is localized in the
double cone O if

!.A/ D !0.A/; 8A 2A.O0/; (3)

whereO0 denote the set of points which are spacelike w.r.t O andA.O0/ the algebra
of observables localized in O0.

The quantum numbers which characterize the inequivalent representations of
A contained in the Hilbert space H!0.F/ of a vacuum representation of F , define
superselection rules; they identify a global gauge groupG, which defines non-trivial
symmetries of F and it is represented by the states of H!0.F/ (if !0.F/ is invariant
under G).

Under general assumptions (namely the absence of infinite degeneracy of par-
ticle types with equal mass and the completeness of the asymptotic states) the so
derived global gauge group is compact. These deep results, which explain the origin
of compact gauge groups from general physical principles were obtained in a series
of papers by Doplicher, Haag and Roberts. (For a comprehensive account see [3],
esp. Section IV.4, and references therein.)

In conclusion, the experimentally detectable existence of localizable states la-
beled by superselected quantum numbers imply that (under general assumptions)
there is a local field algebra which generates them from the vacuum has the sym-
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metry of a global compact gauge group; this explains why such gauge groups arise
in the theory of infinitely extended systems, typically in quantum field theory, where
locality plays a crucial role and vacuum representations of local field algebras are
the object of the standard approach.

More subtle is the problem of justifying the role of local gauge symmetries on
the basis of general physical principles, since they reduce to the identity both on
the observables and on the (physical) states. There is no doubt that local gauge
symmetries proved to be useful for the formulation of the quantum field theory of
elementary particles, but an interesting question is whether their raison d’être may
be traced back to general a priori arguments beyond their a posteriori successful
use.

The standard justification of local gauge symmetries, in particular in the proto-
typical case of quantum electrodynamics, is tight to the introduction of redundant
degrees of freedom through the vector potential, used either for describing a mass-
less spin one particle (the photon) or for defining the electron-photon interaction [4].

These reasons do not appear to be rooted in general principles better than the ori-
gin of local gauge symmetries they should explain. Actually, the photon is equally
well described by the electromagnetic (quantum) field F�� , whose Lorentz transfor-
mation does not require a gauge transformation. As a matter of fact, already for the
solution of the free field equations @�F�� D 0, the introduction of the quantum field
A� as a Hilbert space operator is not free of problematic choices, since it cannot be
done without giving up covariance and/or locality (see [5], Chapter 7, Appendix 8).

Moreover, a Lagrangian invariant under the group G of local gauge transfor-
mations, labeled by the set of infinitely differentiable gauge functions localized in
space, does not define a deterministic time evolution of the field algebra and there-
fore G must be broken by a gauge fixing; such a breaking need not to be down to
the identity, as might be inferred from the functional integral argument, but only up
to the extent of restoring deterministic evolution (see [6]).

In the standard approach to gauge theories (particularly in the perturbative treat-
ment) the identification and construction of the physical states is usually obtained
by starting with a Lagrangian invariant under a group G of local gauge transfor-
mations and by adding a gauge fixing which preserves the invariance under the
related global gauge group G and allows to use a local field algebra F . Then, the
(infinitesimal) transformations of G on F may be generated by local currents J a� ,
(a D 1; : : : ; n, n D the dimension of G).

As a consequence of the gauge fixing, the second Noether theorem does not
apply and such currents do not satisfy a Local Gauss Law, i.e. they are not the
divergence of antisymmetric tensors F a

� �. Nevertheless, one may show that a char-
acteristic property of the physical states constructed in a vacuum representation of
F is that the currents J a� satisfy Local Gauss laws on them [5, 6]; i.e. for any phys-
ical state � obtained through a vacuum representation of F

.�; .J a� � @�F a
� �/ �/ D 0; (4)
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(with F a
�� actually the field strength) or, in a manifestly gauge invariant way,

.�;
X

a

.Ga
�/
�Ga

� �/ D 0; Ga
� 	 J a� � @�F a

� �: (5)

Such a form of the Local Gauss Law is obviously satisfied in QED and may be easily
checked to hold in the (local) BRST quantization of Yang–Mills theories, thanks to
the nillpotency of the BRST charge. Actually, for the same reasons, any monomial
of Ga

� has vanishing expectation on the physical states. For brevity, such physical
states shall be called LGL states. Clearly a prototypical example is provided by the
charged states in QED.

Thus, one may argue that even if local gauge symmetries reduce to the iden-
tity on the physical states, they play an intermediate role in the construction of the
representations of the observable algebra by guaranteeing that they are defined by
physical states obeying LGL.

Conversely, given the existence of LGL states, one may investigate which gauge
symmetries emerge for a local field algebra F which allows for their construction
through its vacuum representation; we shall argue that in this way one obtains local
gauge symmetries. This means that, in order to allow for the construction of LGL
states, the local algebraF must contains fields with non-trivial transformation under
a local gauge symmetry.

This offers a possible explanation of the emerge and strategic role of local gauge
symmetries, without ever mentioning the vector potential, which, being generically
determined up to a (local) gauge transformation, automatically and obviously brings
with it the freedom of local gauge symmetries.

In this perspective local gauge symmetries are not introduced by an a priori
ansatz or Local Gauge Principle, nor as a consequence of the introduction of re-
dundant degrees of freedom through the vector potential, but automatically arise as
symmetries of a local field algebra which allows for the realization of states satis-
fying Local Gauss Laws.

2 Local Gauss Laws and Local Gauge Symmetries

The aim of this Section is to argue that physical LGL states (e.g. the charged states
in QED or unconfined quark states in QCD) lead to the emergence of local gauge
symmetries if a local field algebra is used for their construction.

In the abelian case (QED) the characterization of the physical LGL states is sim-
ply provided by the electrically charged states, labeled by the superselected electric
charge (giving rise to a U.1/ global gauge group) and satisfying the LGL given by
the Maxwell equations.

Less obvious is the non-abelian case and we adopt the following characteristic
properties of LGL states, extracted from their actual construction:
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i) they carry superselected quantum numbers corresponding to a compact global
gauge group G, as in the DHR case,

ii) in contrast with the DHR states, LGL states cannot be described by local states
in a vacuum representation of an auxiliary local field algebra F which contains
the field strengths F a

�� , as well as the currents J
a
� , which generate the infinitesi-

mal transformations of F under G; for brevity, the corresponding charges shall
be called Gauss charges, to emphasize that as a consequence of the LGL they
are not localizable charges,

iii) in the abelian case of Quantum Electrodynamics (QED) they do not define local
states on the algebra of the observables and therefore they are not localizable in
the DHR sense.

Remark 1 Property ii) follows from the fulfillment of LGL, if the vacuum repre-
sentation of F satisfies semipositivity or the relativistic spectral condition. In fact,
(5) with � D �0, implies that Ga

� �0 is a null vector and therefore, if semipositivity
holds, .�;Ga

� �0/D 0, 8� 2H!0.F/. As a consequence of this last equation, given
a local state � D F �0, where F 2 F transforms non-trivially under G,

ıaF D i lim
R!1

ŒQa
R; F �; Qa

R D J a0 .fR ˛/; (6)

(with the standard notation for the smearing of J a0 , see e.g. [5], Chapter 7, Sec-
tion 2), by the locality of F one has

0 ¤ .ıaF �0; ıaF�0/ D i lim
R!1

.ıaF�0; Œ J
a
0 .fR˛/ � @iFi 0.fR˛/; F ��0/:

Then, if F�0, and therefore ıaF�0, satisfies LGL, the r.h.s. reduces to

i lim
R!1

.F � ıaF�0;Ga
0 .fR˛/�0/ D 0;

leading to a contradiction.
The same conclusion is reached even if the vacuum correlation functions of the

auxiliary local field algebraF do not satisfy semipositivity, but the relativistic spec-
tral condition holds. In fact, as above, by locality for a local state � D F �0 one
has

lim
R!1

< �; ŒQa
R; F ��0 >D lim

R!1
< �; Œ Ga

R; F ��0 >;

the limit is reached for finite R and, if � satisfies the LGL, the r.h.s reduces to
< �0; F

� F Ga
R �0 >, R large enough.

Now, by the relativistic spectral condition

W.y � x; z � x/ 	< �0; F �.x/ F.y/Ga
R.z/ �0 >;

(where F.y/ 	 U.y/F U.y/�1 denotes the y-translated of F , and similarly for the
other operators), is the boundary value of a function W.�1; �2/ analytic in the tube
T2. Such a function vanishes for �1; �2 real, �2 D .z2; z0;2/, jz2j sufficiently large,
since then Œ F .y/; Ga

R.z/ � D 0 and LGL applies. Then, by the edge of the wedge
theoremW.�1; �2/ D 0 and F �0 is chargeless, contradicting i).



240 F. Strocchi

Remark 2 In the QED case, the current, which generates the global gauge
group U.1/, and the field strength F�� are observable fields; then, if a state !
is localized in the DHR sense, say in a double cone O, for sufficiently large R,
@iF0 i .fR˛/ 2 Fobs.O0/, so that, according to the DHR criterion, !.@iF0 i .fR˛//D
!0.@

iF0 i .fR˛// D 0 and by the LGL ! is chargeless.

The embedding of the observable algebra into a larger algebra F for the descrip-
tion of LGL states, through a vacuum representation of F , is not unique and the
local gauge symmetries of F depend on F . As we shall see, the generators of the
infinitesimal local gauge transformations on F are provided by the Gauss opera-
tors Ga

0 . A limiting case in QED is the choice of the Coulomb gauge field algebra
FC , since in FC the Gauss operatorG0 vanishes, FC is non-local and the Coulomb
gauge fixing excludes any local gauge symmetry ofFC , (for the general structure of
the Coulomb gauge see [7, 8]. For the necessary ultraviolet regularization, see, for
a perturbative control, [10] and, for a general control which exploits the properties
of the Feynman–Gupta–Bleuler (FGB) gauge, [11]; see also the discussion in [6]
Section 2.3).

Actually, a crucial property for the strategy outlined above, leading to local gauge
symmetries, is the locality of the field algebra; this choice, motivated by the no-
interaction limit, is also suggested by technical reasons, since locality helps for the
control of the dynamics (it is well known that the renormalizable gauges are local
gauges). Also from a constructive point of view, the infinite volume limit is better
handled for a local field algebra with a local dynamics.1

For these reasons, the auxiliary local field algebraF should not satisfy the LGL;
otherwise, by locality,F would be pointwise invariant under the global gauge group
G. In fact, if the LGL hold in the local algebra F one would have

ıaF D lim
R!1

Œ J a0 .fR˛/; F � D lim
R!1

Œ @iF a
i 0.fR˛/; F � D 0; 8F 2 F ;

and, consequently, H!0.F/ D F �0 would not contain states carrying non-trivial
charges of G.

1 For the problems arising for a non-local dynamics, see e.g. [9], Appendix A.
In the case of DHR states the existence of a local field algebra for their description is guaranteed by
general principles; in the case of LGL states it may be motivated by the standard way of treating
gauge field theory models, e.g. in the perturbative treatment of QED or more generally of the
standard model. Some hint is provided, e.g. in QED, by giving a small mass � to the photon,
so that the charged states become DHR states and DRH analysis applies with the existence of
a local field algebra F for their description. As shown by Blanchard and Seneor the vacuum
correlations of F have a limit for �! 0 (preserving locality) and the problem is reduced to the
construction of the physical LGL states in terms of the vacuum representation of the local algebra
F . Actually, in Symanzik’s treatment of the Proca theory, with the use of the Stuckelberg field
B , in analogy with QED, (Lectures on Lagrangian Field Theory, DESY report T-71/1), the fields
 gDexp�ieŒ.��/�1@i Ai �  ,A�g DA��@�Œ.��/�1@iAi �, with ; A� the Proca fields, commute with
B , which in the limit �! 0 generates the local gauge transformations, (with gauge parameters
".x/ satisfying �" D 0), and should yield the (Coulomb) physical charged states.
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The different choices of the local algebra F are characterized by the way LGL
fail, i.e. by the non-vanishing Gauss operators Ga

0 . To this purpose, it is useful to
remark that LGL correspond to a combination of hyperbolic evolution equations
and constraint/elliptic equations for the field strengths F a

� � :

�F a
�� D @�J a� � @�J a� C Ca

��; @iF a
i 0 D J a0 : (7)

with Ca
�� a bilinear function A

c
�; F

b
� � and their first derivates. If, as required, LGL

do not hold in F , the above equations get modified by the non-vanishing Gauss
operators Ga

�, @
�Ga

� D 0.

a) Time Independent Local Gauge Symmetries

As remarked above, a non-trivial representation of the global gauge group G by
a local field algebra F requires that Ga

0 ¤ 0, since, by locality the infinitesimal
transformations of F by G are given by

ıaF D lim
R!1

Œ J a0 .fR˛/; F � D lim
R!1

Œ J a0 .fR˛/� @iF a
i 0.fR˛/; F �

D lim
R!1

Œ Ga
0 .fR˛/; F �: (8)

A possible realization of such a framework, which, in a certain sense, minimizes
the needed violation of the LGL in F , even at the expense of loosing manifest
covariance, is given by Ga

0 ¤ 0, Ga
i D 0, which plays the role of a gauge fixing;

then, the continuity equation for Ga
� requires that Ga

0 .x; t/ is time independent. As
a consequence, (7) are replaced by

�F a
i j D @iJ aj � @j J ai C Ca

i j ; @0F a
0 i D �@jF a

j i C J ai ; (9)

with the equal time constraint

@iF a
i 0 D J a0 �Ga

0 : (10)

This is the choice adopted by the temporal gauge; in fact, (9), (10) are the evolution
equations of the fields F a

�� in the temporal gauge.
Equation (5) imply that for any physical state � , .Ga

0 �; G
a
0 �/ D 0, i.e., if pos-

itivity holds, Ga
0 � D 0.

One should remark that a mathematical subtlety occurs in the standard local and
positive temporal gauge, namely the local field algebra F represented by a vac-
uum state is generated by the exponentials of the standard (non-observable) fields,
with algebraic relations corresponding to those of their formal generators. Then, the
condition which selects the physical states should rather read

V a.ƒ/� D �; ƒ 2 D.R3/;

where the unitary operator V a.ƒ/ is formally the unitary exponential of Ga
0 .ƒ/.
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Furthermore, since F is not covariant under relativistic transformations the rel-
ativistic spectral condition is not satisfied by the vacuum correlation function of
F , the Reeh–Schlieder theorem does not apply and Ga

0�0 D 0, or better .V a.ƒ/ �
1/ �0D 0 does not imply that the local operatorGa

0 or better .V
a.ƒ/�1/ vanishes.2

For simplicity, in the following discussion, we shall sometimes use the formal
generators of the exponential fields, the more accurate mathematical discussion be-
ing easy to obtain.

The operatorGa
0 plays the role of a static charge density which is not seen by the

physical states and compensates the vanishing flux of F a
i 0 at (space) infinity on the

local states of H!0.F/.
The non-vanishingGa

0 modifies the equal time constraint implied by the LGL on
the local states; the vanishing ofGa

0 on the physical states requires that the physical
states of H!0.F/, carrying a non-trivial charge of G, are non-local limits of local
states.

Now, for any test functionƒ.x/ 2D.R3/, the operatorGa
0 .ƒ; t/ generates a time

independent derivation on F

ıa;ƒF 	 i Œ Ga
0 .ƒ; t/; F �D i Œ Ga

0 .ƒ; h/; F �; h2D.R/;
Z
dt h.t/D 1: (11)

This is the basic property of the derivations generated by local (covariant) currents,
corresponding to infinitesimal symmetry transformations, where the time indepen-
dence is a consequence of current conservation and locality.

If the auxiliary local field algebra F contains the formal exponentials of Ga
0 ,

(as in the standard temporal gauge [5, 6]), the following local transformations are
defined on F :

ˇƒ.F / D V a.ƒ/F V a.ƒ/�: (12)

Moreover, since the subspace of physical state vectors must be pointwise in-
variant under the application of the observable operators, these operators should
commute with V a.ƒ/, so that the above transformation defines a local time inde-
pendent gauge transformation.

As a matter of fact, in the temporal gauge, where the local algebraF is generated
by canonical fields, the derivation (11) corresponds to the standard time independent
gauge transformations, with local gauge parameter ƒ.x/.

The time independence of the generators Ga
0 implies that the time evolution of

F commutes with such local gauge transformations; thus, the Hamiltonian, as a
function of the fields ofF , must be gauge invariant, a property which in the standard
approach corresponds to the requirement of minimal coupling.

Thus, by the above arguments, the strategic role of local gauge symmetries may
be traced back to the realization of LGL states through a vacuum representation
of a local field algebra F , where the necessarily non-vanishing Gauss operators
generate local gauge symmetries.

2 For a more detailed discussion see [5] Chapter 8, Section 2.1.
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b) Local Gauge Symmetries in QED

Another distinguished example of local gauge symmetries, arising according to the
pattern discussed above, is provided by Quantum Electrodynamics.3

This example is obtained by requiring that the time evolution of the observable
electromagnetic field as operator in F is not modified by the non-vanishing Gauss
operator G�, i.e. that

�F�� D @�J� � @�J�; (13)

the only effect of G� ¤ 0 being a modification of the equal time constraint

@iFi 0 D J0 �G0: (14)

This implies that @�G� � @�G� D 0 and in a Lorentz-covariant local field algebra
this is obtained by G� D @�L, with L.x/ a scalar field of F ; then, the continuity
equation obeyed by G� implies �L.x/ D 0.

Such a choice of the local field algebra corresponds to the Feynman–Gupta–
Bleuler (FGB) gauge, albeit in a more general context, since no reference is made
to the vector potential; in fact, (13), (14) coincide with the equations for F�� in that
gauge.

The relativistic covariance of F lead to the validity of the Reeh–Schlieder the-
orem and therefore positivity cannot hold, since otherwise (5) implies G� �0 D 0;
hence, by the Reeh–Schlieder theorem the local operatorG� vanishes,F commutes
with the charge and H!0.F / does not contain charged states.

A way out of this difficulty is to guarantee the validity of (5) on the vacuum state
by a non-local condition; since L.x/ is a free field, its negative energy part L.x/�
is well defined, it is a non-local operator and the equation

@�L.x/� � D 0 (15)

implies that � satisfies (5); then, such a condition may be chosen for selecting the
physical states.

As in the temporal gauge discussed above for the general case of a compact
gauge group G, one may show that in QED the Gauss operator generates a time
independent derivation on the local field algebra F .

To this purpose, one considers infinitely differentiable functionsƒ.x/ satisfying

�ƒ.x/ D 0; ƒ.x; 0/; @0ƒ.x; 0/ 2 D.R3/; (16)

3 For a general discussion of the occurrence of local gauge symmetries in QED, in a C�-algebra
setting, see F. Ciolli, G. Rizzi, E. Vasselli, QED Representation for the Net of Causal Loops,
Rev. Math. Phys., 27, 1550012 (2013); D. Buchholz, F. Ciolli, G. Rizzi, E. Vasselli, The univer-
sal algebra of the electromagnetic field. III. Static charges and emergence of gauge fields, arXiv:
2111.01538 [math-ph]. When the present note was in reparation a very important result was ob-
tained by the same authors, for QED in the presence of external charges [12].
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and the operator

G.ƒ/R.x0/ 	
Z
d3x fR.x/ .ƒ.x/

$
@0 L.x//; (17)

with .A
$
@0 B/ 	 .A@0B � @0AB/.

Since ƒ.x/ and L.x/ satisfy the free wave equation, by locality the following
commutator is independent of time, i.e.

i@0 lim
R!1

ŒG.ƒ/R.x0/; F � D 0; F 2 F : (18)

In fact,

@0 lim
R!1

ŒG.ƒ/R.x0/ D
Z
d3x fR.x/.ƒ.x/�L.x/ ��ƒ.x/L.x//

D
Z
d3x @ifR.x/.ƒ.x/@iL.x/ � @iƒ.x/L.x//:

Then, since supp @ifR.x/� .R � jxj � R.1C "//, by locality the commutator (18)
vanishes. In conclusion, one has a time independent derivation on F , labeled by the
infinitely differentiable functionsƒ.x/ of compact support in space

ıƒ F 	
Z
dx0 ˛.x0/i lim

R!1
Œ G.ƒ/R.x0/; F �: (19)

The stability of the subspace of physical states under application of observable
operators is guaranteed if the observables commute with L.x/�, (and therefore with
L.x/). Then the above derivation has the meaning of an infinitesimal local gauge
transformation with gauge function ƒ.x/.

Indeed, if the algebra F is generated by local canonical fields, as it is the case of
the FGB realization, one gets the standard (infinitesimal) local gauge symmetries
of the FGB gauge.

As discussed above in point a), the time independence of the derivation (19)
implies that, as a function of the local fields ofF , the Hamiltonian should be invari-
ant under (infinitesimal) local gauge transformations with gauge parameter ƒ.x/,
(satisfying �ƒ D 0).

3 Conclusion

In conclusion, a possible physical/empirical explanation of gauge quantum field
theories is the existence of (particle) states which carry the quantum numbers of a
(global) compact gauge group G and satisfy Local Gauss Laws, for the conserved
currents associated to G. The prototype is clearly Quantum Electrodynamics where
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the electric charge (the generator of the global compact U.1/ gauge group) labels
the (physical) charged states, which satisfy the Local Gauss Law corresponding to
the Maxwell equations. Quite generally, the description of such LGL states through
a vacuum representation of a local field algebra F leads to the emergence of local
gauge symmetries for F , which commute with the time evolution of F .

Thus, whereas states carrying localizable superselected charges lead to global
compact gauge groups for the local field algebra which obtains them from the
vacuum, the realization of states carrying Gauss charges through a vacuum rep-
resentation of a local field algebra F implies a local gauge symmetry for F , i.e.
such F must contains fields which transform non-trivially under local gauge trans-
formations. Therefore, the local extension of the global gauge group G (related to
the superselected quantum numbers) needs not to be a priori assumed with no
compelling physical motivations (as in the standard characterization/definition of
gauge theories), but it is required by the physical existence of states carrying Gauss
charges and their construction through the vacuum representation of a local field
algebra.

In our opinion, the role of the Gauss operator as the generator of the local gauge
symmetries suggests a classification of the possible local field algebras used for
realizing the LGL states, better than the gauge fixings which typically involve the
vector potential.

Acknowledgements I am indebted to Francesco Serra for a stimulating discussion.
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Part III
Remembering Gianni



“For the sake of culture”

Riccardo Adami

I retain a precise memory of when I first saw Gianni Morchio: it was in November
1992, when I was a third-year student in Physics at the University of Pisa. He was in
charge of the exercise sessions of the course of “Metodi Matematici della Fisica”,
held by Giampaolo Cicogna. He entered the room timidly, left his books and notes
on the desk, and suddenly started speaking and writing.

It became crystal clear that his style was defintely new to us: we were not used to
look at things from such a height. Gianni talked to us as he would to his colleagues:
it was for him the only possible way to talk about Mathematics and Phyiscs: with
the deepest respect for science as well as for the audience.

As a student, I greatly appreciated the way Giampaolo Cicogna introduced the
analysis of Hilbert spaces: fast but clear, so that everything seemed to be simple and
natural. Extremely pedagogical and effective, so how could one ask for more?

And then Gianni showed up and destabilized all my criteria of judgement. His
method was different from Cicogna’s: for him, everything had to be understood im-
mediately in full depth, far-reaching connections had to be drawn from the very be-
ginning, and all unnecessary tools, like heavy notation, collateral properties, pedan-
tic corollaries, could be avoided, and they always were. For such things, there were
books. Lectures were a matter of humans, and humans should not get lost in minor
technicalities. Gianni used to get right to the point, leaving to us the task of fixing
details. But, in spite of his concision, he used no shortcuts nor tricks. Important re-
sults and techniques were never easy nor natural, they could became as such only at
the expenses of an enormous work to be carried out after the lectures. A hard work
of reconstructing concepts and writing them down in perfectly rigrousmathematical
terms.

Were he another teacher, I would have given up on his course, as I did for most
of the university courses I was supposed to attend. But it proved impossible for me
to elude the strength of Gianni’s personality. It was a gentle strength: he never got
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upset nor angry, he used to smile and stare at the students with mildness and kind-
ness. Even when lectures seemed to be too dense, burdensome or abstract, trying
to decipher them was more than a good student’s duty: it was a moral categorical
imperative.

The only concession he made were his legendary pauses. He used to stop writ-
ing, quite unexpectedly, and to say these precise words: A scopo cultura, namely
“for the sake of culture”. And then, he opened a world of unprecedented connec-
tions: a deep meditation on Kolmogorov’s axioms of probability, an unforeseen but
strict connection between Kant’s philosophy and Quantum Mechanics, the idea of
generality developed during the French Revolution, the influence of China on the
present world . . . At the end of such digressions, he started writing again. Such
interruptions made mandatory not to skip a single moment of his lectures, and the
categorical imperative to meditate on them became even more stringent.

So, some of us started meeting during the afternoons with the only purpose of
getting through the notes we had taken at his morning lecture. These afternoons
stand among the most stimulating and worthwhile intellectual experiences I ever
lived. Reconstructing the line of Gianni’s lectures, that were sometimes too ambi-
tious to be entirely grasped “live”, made us aware of the depth and of the originality
of his vision. Another feature of this way of thinking emerged overwhelmingly and
sometimes unexpectedly: the absolute elegance of his reasoning, much beyond our
reach during the lectures, and also beyond the level of textbooks, sometimes already
advanced, that we used at the time. Years later, I discovered how such elegance was
recognized and appreciated worldwide. It was during an edition of the School on
Mathematical Methods of Quantum Mechanics in Bressanone, when Jürg Fröhlich
interrupted a lecturer giving a talk on Quantum Electrodynamics by quoting “one
of those incredibly beautiful papers by Morchio and Strocchi”, literaly.

We coined a specific vocabulary for the afternoons dedicated to the reconstruc-
tion of Gianni’s lectures: in Italian, the verb “smorchiare” refers to an agricultural
practice, but for us it meant to manage to get to the same intellctual height where
Gianni lived. The word arose unconsciously as a crasis between Gianni’s family
name, and the verb “scollinare” that means to overcross a hill. In my experience, no
hill had ever been so tough, but no view so awesome as the one from its top.

At that time, Gianni was also in charge of the course of Quantum Mechanics. It
was the only course of Mathematical Physics available for the Degree in Physics
in Pisa, and it was considered as a challenge: every year the number of students
attending the course oscillated between one and three, and not all of them were able
to take the final exam. Nowadays, a department could not afford to offer a course
like that: too few students, so the ratio between cost and benefit of the course would
not fit some parameters predetermined by the present bureaucratic obtusity.

In fact, should one accept such a ratio as a meaningful parameter to judge a
course, it would be honest to keep into account, as a benefit, the number of special-
ists for which that course proved crucial for their scientific life. Under this light, I
have no knowledge of university courses for which the ratio between cost and ben-
efit is as low as for Gianni’s. Nowadays, a significant fraction of Italian researchers
of my generation on the mathematics of Quantum Mechanics come from such a
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course: for instance Alessandro Pizzo, Michele Correggi, Alessandro Michelangeli,
Giuseppe De Nittis, myself, and many others who were able to enlarge their ex-
pertise, like Andrea Cintio and Fabio Acerbi, and others who, despite significant
contributions to scientific research, found other fields where to spend their educa-
tion, like Lucattilio Tenuta and Emanuele Costa.

I had the privilege to be the first to experience a path that later became classi-
cal: first Gianni’s course, then Degree in Pisa, and finally Ph.D. with Gianfausto
Dell’Antonio in Rome or Trieste. It was almost an obliged path, in those times
when PhD students on mathematical approach of Quantum Mechanics were as rare
as four-leaf clovers. The point is that twenty years ago courses like that of Gianni
were exceptional for Italy. Nowadays they are hosted in almost every Department of
Mathematics, as the unavoidable result of the inesorable importance of this field of
research. Italian university suffered from a heavy retard, if not in research, surely in
the teaching of such topics. Gianni’s course was one of the exceptions, and thanks
to these exceptions Italian research was later able to recover the delay.

I remember the sliding doors effect unchained in my life by one lecture of Gi-
anni’s. It was on the theory of self-adjointness. I was deeply unsatisfied with the
notion of hermitian operators supplied in previous courses. Already simple models
of quantum systems on the half-line or on finite intervals showed that the concept
of hermiticity was not well suited to guarantee the well-posedness of the dynam-
ics. But it sounded heretical to draw questions on that matters. I always received
vague answers and foggy sentences, even from books: “these are subtle questions
of domain”, I read once. I was explicitly discouraged to pursue such issues, and
this resulted for me in a deep frustration. Gianni showed that my unease was not
only legitmate, it was even definitely right! And the answer was already there since
decades, provided that someone knew it and aimed at disseminating it. That lecture
changed my life.

Furthermore, even though it seems now unbelievable, in those years most Italian
universities showed a strong closure towards the emerging field of Quantum Infor-
mation. Not only there were no courses on such subject, but as students we were
warned against losing time and energy in thinking of foundations of Quantum Me-
chanics, so that our prevailing feeling towards that newborn realm of science was
mistrust. Gianni did not directly speak of Quantum Information nor Communca-
tion, but he was fond of philosophy of Quantum Mechanics and gave me hints, like
reading the books by Bernard d’Espagnat, topics to study in deep, like Bell’s in-
equalities and Kochen–Specher’s Theorem, and I know that in that time he gave
theses on Nelson’s stochastic mechanics as well as on Bohmian Mechanics, that he
criticized. My mistake was to mix the two levels of mathematics and foundations,
so I left Gianni’s course convinced that every conceptual aporie of Quantum Me-
chanics could be healed by the rigorous use of Mathematics. Of course it was a
wrong conclusion, but to understand this I had to spend twenty years more in doing
research. It was not Gianni’s fault, it was my limit.

My regret is not to have been able to tell Gianni how lucky I had been to
meet him. I last met him one evening in Pisa, in 2005. I was Lizzanello Postdoc-
toral Fellow at the Centro di Ricerca Matematica Ennio De Giorgi, enthousiastic
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about the recent rigorous derivations of effective one-body nonlinear equations, like
Hartree’s, Hartree–Fock’s, or Gross–Pitaevskii’s. He patiently listened to me, trying
to overwhelm him with BBGKY hierarchies and estimates in Schatten spaces. He
smiled, and then he said: “Good. But do not exaggerate with fireworks”. I greatly
appreciated this suggestion, as a philosophical motto: quite hard for me, since I
really like fireworks.

This was his last a scopo cultura, that I will never forget.



Remembering Gianni

Fabio Bagarello

When I think to my youth, I still consider a real privilege the possibility of spending
some time with Gianni. I suspect he was not aware of how much he knew Math-
ematics and Physics, and how simple it was for him to understand things that are
very complicated for most of the human beings, and restate these things in some
much simpler form.

To me, Gianni was half of an single entity: Franco (Strocchi) and Gianni:
Franco&Gianni. I met Franco at SISSA as a doctoral student. When I had to choose
a supervisor for my thesis, I had no doubt: no one was as clear as him when teach-
ing. Every topic during my first two years in Trieste were new, and difficult, and I
still remember how hard I had to study to reach a reasonable level of knowledge.
Well, Franco was the only one I was able to understand from the beginning to the
end of his lectures, despite of my poor background. And this is why I asked him to
be my supervisor. And Franco introduced me Gianni, his own other half.

It was immediately clear that Gianni was a special person, different from many
others I had met before. First of all, he was far from being interested in his academic
career, a very rare attitude in the Italian panorama. In my eyes, he was mainly (if
not only) focused on a sort of personal Holy Trinity: Family, Politics and Science.
And career is not Science, as we all know. Sometimes they are connected, some-
times they are not. In Gianni’s case, they were not, since he was not interested in
improving his academic position.

Gianni was much more interested in discussing physics with Franco, and with
each student or colleague. And there was always something to learn when chat-
ting with him: once I was working on the fractional quantum Hall effect, and in
particular on the possibility of getting a wave function for the system with strong
localization properties. It took few weeks to me (with the help of Franco, in Trieste)
to deduce what we thought was an interesting theorem on this problem. When I
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went to Pisa to discuss this result with Gianni, just after few seconds my report on
what he had done, Gianni started laughing. It was unexpected, and I was a bit an-
gry, and I asked why he was laughing. He replied that it was quite easy to produce
a counterexample for our result, . . . and he did! Then, in few seconds, he destroyed
my hard work of several days. After a first shock, this was maybe one of the key
moments for my scientific growth: I realized that imagination is more important
than computations! And Gianni is still, in my mind, the perfect example of the man
full of ideas, happy to share and discuss his suggestions with anyone interested.

This brings me to another interesting episode that helps having an idea of Gi-
anni’s pure interest for Science. We (Franco, Gianni and myself) were working on
a problem in abstract differential equations, in connection with a spin chain, and
we (mostly Gianni and Franco, to be honest) proved an existence and uniqueness
result for a special class of operator-valued differential equations. I had to study
operator algebras, and topology to face with this problem and to become an active
member of the team. In the same period I started working with a colleague (and
friend) of mine in Palermo, Camillo Trapani, on a different, but related, problem in
statistical mechanics and I used with Camillo some of the techniques I was learning
from Gianni and Franco. Eventually my paper with Camillo appeared before the
one with Gianni, and Franco was quite unhappy with this: “Fabio, this way what
you did with Gianni looks like a sequel of what you did with Camillo! And this is
not correct!!”. Actually, it was not really like this: there is, and there cannot be, any
barrier between what you learn when working with somebody and what you can
use, or learn, when working with somebody else. But I understand Franco consid-
ered himself to be responsible of this specific “unpleasant time ordering between
papers”. However, and this is how Gianni considered the whole situation, Gianni
just replied: “I don’t see the problem! Fabio learned something, and he can (and
must!) use as he likes what he is learning from us, and from others scientists.”

Unfortunately, after my Ph.D. I had not many other possibilities to interact with
Gianni, but I am quite happy of the few years we spent working on the same prob-
lems, discussing Physics, and I am sure Gianni’s attitude toward Science, but also
toward his family, are now part of my personal history, and contributed to make of
me what I am now. Grazie Gianni.



With Gianni Morchio at the Interface
Between Mathematics and Physics

Bernhelm Booß-Bavnbek

I met Gianni Morchio around 1994 in Pisa. My collaborator Krzysztof P. Woj-
ciechowski and I came to work with him and Franco Strocchi on a fascinating
problem, the invariance of the Fermi determinant under global chiral transforma-
tions. Gianni posessed a rich mathematical culture. He had a very particular way of
combining factual thinking with far reaching scientific aims and visions. That and
his generosity and friendliness impressed everybody. We became friends, also on
the family level, and met again and again for the rest of his life.

HowWe Met
Gianni and I did not meet by chance. “Gott würfelt nicht” (“God does not play
dice”), as Einstein once held against Bohr. We met following a suggestion by the
Polish physicists and polymath Andrzej Trautman. Here is what happened.

Trautman Was There
Gianni and I were admirers, and I still am an admirer and follower of Trautman. In
1993, Krzystof P. Wojciechowski and I had published our monograph on “Elliptic
boundary problems for Dirac operators” [3]. Later that year I had given a talk on our
main results at a Clifford algebra conference in Belgium, where I met Trautman. A
few months later in Trieste, Franco Strocchi and Gianni discussed with Trautman a
1985 paper [7] by M. Ninomiya and C.I. Tan pointing to a peculiar case of seem-
ingly incompatibility between

1. the conventional wisdom on chiral symmetry and gauge invariance in quantum
chromodynamics (QCD),

1 Actually in a letter of 4 Dec. 1926 toMax Born, Einstein wrote: “Quantum mechanics is certainly
imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but
does not really bring us any closer to the secret of the ‘old one’. I, at any rate, am convinced that
He [God] does not play dice.” [4, page 91]

B. Booß-Bavnbek (�)
Department of Sciences and Environment, Roskilde University, Roskilde, Denmark
e-mail: booss@ruc.dk

255© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Cintio, A. Michelangeli (Eds.), Trails in Modern Theoretical and Mathematical
Physics, https://doi.org/10.1007/978-3-031-44988-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44988-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-44988-8_16


256 B. Booß-Bavnbek

2. the appearance of a non-necessarily vanishing integer, a topological term in the
conservation equation of the chiral current @�j� D �1=16�2 QFF , and

3. the wanted invariance of the fermion determinant under global (i.e., rigid) chiral
transformations.

The arguments by Ninomiya and Tan were based on the calculation of the index
of the (spectral, global, pseudo-differential) Atiyah–Patodi–Singer (APS) boundary
value problem for the partial Dirac operatorDCA , i.e., the one component of the full
Dirac operatorDA over the four-dimensional disc B4 of radiusR. The full Dirac op-
erator acts on sections of the Clifford bundle of Euclidean spinors with coefficients
determined by a chosen connection A acting on the trivial bundle. Then it is natural
to assume that in a collar neighbourhood of the boundary of B4 , the connection
takes the form d C h�1dh, where hWS3 ! SU.2/ is a smooth map. Determining
the tangential operator Bh of the partial Dirac operator D

C
A and imposing on it the

corresponding APS boundary condition P.DCA /, one finds

nC � n� D index.DC
A;P.DCA /

/ D deg.h/ ¤ in general 0:

Devastating Result: No Errors Found
When I arrived in Pisa and met all three, Morchio, Strocchi, and Trautman, they
were concerned, but only a little bit: all three, as I remember, were convinced that
the concept of the fermion determinant was sound and its invariance under global
chiral transformations could not be doubted. But they acknowledged at once that
the supposed lack of chiral symmetry was fatal.

Formally, 0-eigenvalues (i.e., a non-trivial kernel of DA;P.DA// are a nuisance
since they make the determinant vanish. Therefore physicists came up with a
regularization which takes care of this problem in the case nC WD dim kerDC˘ D
dimkerD�


 .Id�˘/
 �1 D n�, where 
 denotes the Green’s form. However, in the
case nC ¤ n� the imaginary part of the determinant appears, unnatural in the case
of an operator with symmetric spectrum.

With Trautman’s help [11] and a reference he passed on to us [9], I checked
Ninomiya’s and Tan’s arguments. I could not find an error and, even worse, I could
not understand the placidity of my new physicists friends. They had invited me; I
had traveled from Copenhagen to Pisa; and then we were together and one single
mathematical result diminished x years of their work and the aspirations of many
physicists, at a single stroke.

They were neither depressed nor tired. On the contrary, they were excited and
wide-awake. Their attitude, see also [6], was something like “Man hat schon Pferde
(vor der Apotheke) kotzen sehen” (“You never know, anything can happen”). Gian-
ni explained to me later, roughly recording: “Look, there you have the difference
between mathematics and physics. In mathematics, the validity of a single equa-
tion can be decisive for a wide field. After Euclid had shown the irrationality ofp
2, and Lindemann the transcendence of � , Abel had given an algebraic equation

of fifth degree with a solution that can not be expressed in elementary algebraic
terms, and D’Alembert the factorization of any real polynomial in monomials and
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binomials etc. Mathematics as a field of research has always changed. Physics is
different. Seldom do we attribute decisive importance to a single observation or a
single argument. Usually, we cover our results by multiple and preferably mutually
independent approaches. You are trained to draw the most far reaching conclusions
from minimal assumptions. Contrary to you, we wear both belts and suspenders.”

Our Main Result
Jointly and with help by Wojciechowski over phone, in writing, and in direct dis-
cussion we found that there are other pseudodifferential projectors beside the APS-
projection that

(i) defined a self-adjoint Fredholm extension of the full Dirac operator with finite
dimensional kernel, consisting only of smooth spinors;

(ii) with gauge-invariant domain;
(iii) with a symmetric spectrum, i.e., in physics terminology that the boundary con-

dition is �5 invariant.

Finally, for one of them, the Calderón projector, we proved the optimal result nC D
n� D 0.

I thought my job with Gianni was done. We wrote a nice report on that problem
and our lucky solution [2], and a follow-up paper devoted to the calculation of the
determinant. Suddenly, Franco and Gianni had new gripes, as Gianni formulated it
in [12, p. 431]:

From the point of view of physics this solution [our suggestion with the Calderón projec-
tor] is not completely satisfying because, unlike the Atiyah–Patodi–Singer condition, which
depends only on the boundary data, the Calderón projection varies with change of the oper-
ator inside of the manifold. Therefore some alternative choices [of the boundary projection]
have to be discussed.

Gianni proposed a joint work on the variation of the �-determinant under the change
of the boundary conditions. However, our own understanding of the �-determinant
was evolving, see [10]. We were not yet ready. Then Wojciechowski felt ill, and
now Gianni has passed away. Alas, for now nothing more to report. Surely, other
people will push Gianni’s vision forward!

Gianni’s Way of Commenting
To Wojciechowski and me, there was something solemn around having published
two papers with these outstanding physicists, Morchio and Strocchi. In the slip-
stream of the Manhattan Project, claiming a deep connection to physics helped
many mathematicians in their applications for funds or positions. In most instances
it would suffice to pay lip service. Since the 1960s, when the race to the Moon be-
came a dominant topic in science and technology financing, buffoons claimed to
prove an over-representation of functional analysis NSF funds for mathematics due
to the high frequency of the terms “space” and “research” in their applications.

When I met Gianni, I was not active on that playground. I was mostly interested
in certain teaching questions, such as: How much physics do I have to teach in a
class on PDEs? How much mathematics would Gianni have to teach in a class on
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electrodynamics or quantum field theory? And our teaching, how interchangeable
would it be? But foremost, what is the role of mathematical arguments in physics?

Various Views on the Interface Between Mathematics and Physics
As I remember Gianni, he was never dogmatic. He admitted, on one side, (I) the
negation role of mathematical arguments, the refutation, the falsification: “no way,
our idea does not work”, as we had (almost) experienced on the issues that had
brought us together, and others that led us to doubt on the physical meaning of the
Fermionic determinant. Historically, it seems that William Harvey (1578–1657), the
discoverer of the closed circulation of blood, was one of the pioneers of this new
way of using rigorous mathematical arguments (elementary arithmetical calcula-
tions in his case) to falsify common scientific wisdom—see Box 1!

Falsification, Gianni agreed, was and is one of the main roads of the application
of formal mathematical reasoning in science. However, at the same time Gianni
recognized (II) the heuristic power of mathematical calculations, evident already
with Harvey: refusing elder concepts as unfounded and erroneous invited to the
invention of new concepts and suggested new experiments. In Harvey’s case the
search for capillaries.

Box 1. Use of mathematical arguments. Harvey’s falsification road
Between 1616 and 1628 William Harvey refused the common wisdom in
medicine since Galen of Pergamon (131–201 CE), who taught: All blood
flows from the liver and the heart to all parts of the body where it is con-
sumed. In 1628 in [5], on the back of an envelope, (as one would later say),
Harvey just solved the following elementary arithmetic problem:

� Heart capacity > 1.5 ounces
� Blood expelled per heart pump > 1/8 of heart capacity, i.e. > 1/6 ounce
� Number of heartbeats > 1000 per half an hour
� Sum1: More than 10 pounds 6 ounces arterial blood are produced in half

an hour
� Sum2: More than sum1 � 48 = 540 pounds of arterial blood are produced

and consumed in a day
� Consequence: There must be capillaries.
� Marcello Malpighi’s light microscope histology confirmation (1661).

For Gianni, the mathematical results on the �-function regularization of the de-
terminant were an even better case of the heuristic value of rigorous mathematical
arguments, i.e., the partial justification of the crude infrared and ultraviolet approxi-
mations (chopping the eigenvalues near 0 and1)—see my attempt of an accessible
presentation of the basic ideas in [1].
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Gianni and I discussed also on the visibility and invisibility of the mathemat-
ical and physics content in engineering devices and that slick design can conceal
essential differences between the math content.

A simple case is the similarity between a CT engine and an MRI engine. The
principles of computed tomography scans are mathematically and physically fully
understood since the discovery of Cavalieri’s Principle in the 17th century and the
discovery of X-rays in the 19th century. The use of magnetic spin resonance imag-
ing has other challenges. Admittedly, in atomic physics and quantum mechanics
the physical principles are basically understood; moreover, in modern analytical
chemistry, and hence for small probes only, the implementation in devices has been
perfected for years. The delicacies of time length, magnetic field strength, and im-
age resolution seem, however, to keep challenging mathematically. (For advances
towards a coherent mathematical theory of MRI see [8].) Thus, CT scans provide
a type III of mathematics-physics interface, namely the perfect engineering design
that is fully understood also theoretically, while MRI provides a type IV, namely
the design of instruments that do function without being fully understood in all
their details and side aspects.

How Much Physics Understanding May We Demand fromMathematicians?
It was during a warm and bright midsummer week in Djursholm near Stockholm
at the Mittag-Leffler Institut (MLI) in 2016 that we met last time. I was initiator
and had, jointly with Matthias Lesch (Bonn), George Marinescu (Köln), Nicolai
Reshetikhin (Berkeley), and Boris Vertman (Oldenburg), organized a conference
on Interfaces between Geometric Analysis and Mathematical Physics at the MLI.

On the front page of our program I had set two quotes to emphasize the confer-
ence’s focus on interfaces and intelligibility for a mixed audience and to support the
preparation of talks devoted to that aim:

David Mumford: The thing that leaps to mind is something about the suicidal tendency
in math to get more and more technical and never to think about explaining one’s ideas to
mathematicians in other fields of math (let alone other scientists or even the general public).
The field has a strange psychology linked to the fear of being thought dumb if you don’t
know everything.

Norbert Wiener: . . . there has been a tendency, visible here and there, to give up the
search for a great stroke or a great aperçu and to be content with a sort of mathematical
embroidery . . . This reinforces the tendency toward the thin and the bodiless change, which
is one of the besetting sins of the pure mathematics of the present time and often burgeons
into mountains of triteness and bad taste.

I had asked Gianni to be the first speaker with a talk under the programmatic title
Topology and symmetries in quantum mechanics on manifolds he himself had cho-
sen for our conference. He did not feel comfortable with his opening role. After all,
he and Holger Bech Nielsen from Copenhagen were the two sole senior physicists
participating in the conference. But he ensured me: “I have appreciated very much
the quotations that you proposed for the spirit of the conference.”

Gianni was accompanied by his wife Antonella. Their children were too old at
that time to accompany their parents to Scandinavia. But for him and Antonella it
was the first time they were in Sweden—and in gorgeous weather!
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Two days later, we took the afternoon off and strolled together through the
historic center of Stockholm. Then he came back to my quotes with his typical
engaging smile—and a serious admonition: “As I wrote to you, I have appreciated
your quotes, but do not push your fellow mathematicians. That will only increase
the mountain of papers with physics terminology but without physics meaning.
You may deplore the abstract turn of mathematics, but it will not help to return
to times where math and physics were united. Now, we belong to different fields of
research, different working traditions, different quality criteria. You need not accept
the schism and, hopefully, keep on creating platforms where the two communities
may meet like in this conference. Yet, do not push your fellow mathematicians . . . ”

Gianni and I never discussed politics. I do not know why we avoided that topic.
Perhaps because I had the impression that Italian politics and the perpetual re-
shuffling of positions and social strata belong to the very, very few truly non-
intelligible subjects in the world. Gianni on his side may have felt uneasy to address
the interdiction, purely based on political reasons, from continuing working as
mathematician, as it was experienced in my home country. Reading now the bi-
ographic contribution Chi ha compagni non morirà (Part I), it strikes me how deep-
rooted Marx’s thinking about the past, the present, and the future must have been in
Gianni’s thoughts about physics and mathematics, as well, when he ridiculed my ro-
mantic yearning for more fully developed individuals and my recalling of a merely
local connection resting on blood ties, or on primeval, natural or master-servant
relations (such as between mathematics and physics, i.e., Marx’ Bluturenge), and at
the same time shared my discontent with this complete emptiness, i.e., the common
disregard for humans’ mutual relations and for the necessity of constant bridging
the gap, beyond lip service and occasional touch.

For comparison with my preceding quote from Gianni, I cite some lines on alien-
ation by Karl Marx, Grundrisse, p. 77–78, where Marx himself points to analogies
with our perception of science at the end of the quote:

In earlier stages of development the single individual seems to be developed more fully,
because he has not yet worked out his relationships in their fullness, or erected them as
independent social powers and relations opposite himself. It is as ridiculous to yearn for a
return to that original fullness as it is to believe that with this complete emptiness history
has come to a standstill. The bourgeois viewpoint has never advanced beyond this antithesis
between itself and this romantic viewpoint, and therefore the latter will accompany it as
legitimate antithesis up to its blessed end. (The relation of the individual to science may be
taken as an example here.)2

There Was No Gianni Without Antonella: Memories with a Generous Host
Couple
From our first meeting in Pisa I recall that we all were tired after some hours of
explaining things to each other in different terminology. Then Gianni had his smile
and announced: dinner is served in one hour. Trautman and I could shortly return
to our hotel, and then we met at Gianni’s and Antonella’s comfortable flat, also in

2 English translation from https://www.marxists.org/archive/marx/works/1857/grundrisse/ch03.
htm.

https://www.marxists.org/archive/marx/works/1857/grundrisse/ch03.htm
https://www.marxists.org/archive/marx/works/1857/grundrisse/ch03.htm
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picturesque downtown. From then on we met almost all evenings at Antonella’s
dining table. Nobody knows how she could be fresh after a days teaching in senior
high school, initiate intriguing conversations—and serve the most delicious food
for us. Usually, Franco’s wife Anna, an art historian and valuator, was with us, and
later Sussi as well, my late wife, a military historian. She accompanied me on all
my later travels to Pisa and we felt always welcome in Antonella’s and Gianni’s
home.

Talking about math was not forbidden. However, as I remember, we spoke
mostly about Antonella’s school—and about history, history of art and Italian
history. These evenings will remain unforgettable for me.
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Memories of Gianni

Costantino Budroni

I first met Gianni when I was an undergraduate student at the University of Pisa. I
attended his lectures on algebraic methods in quantum mechanics. Gianni was an
extraordinary teacher, as many remarked. From his lectures, which included top-
ics such as the Bell and Kochen–Specker theorems, I was particularly amazed by
the discovery that basic questions about quantum mechanics were still unanswered.
Encountering these problems, presented from Gianni’s perspective of doubting and
questioning everything, was a pivotal moment for me. After taking his course, I
asked him to be the supervisor of my MSc thesis, which ended up being on the
problem of classical representability for partial Boolean structures in quantum me-
chanics, i.e., commutative subalgebras of projectors and the associated probability
measures.

During the writing of my thesis, but also in the several months I spent in Pisa
after my graduation, we would meet once a week, sometimes even more often, and
discuss for hours. Gianni was an inexhaustible source of profound observations, al-
ways able to point at the root of a problem and formulate it in a clear and precise
way. After these meetings, I would come back home with several pages of notes
handwritten by Gianni during our discussions, and I would go through them in the
following hours and days, trying to reconstruct all that we said and all the details I
may have missed. After I left Pisa, we remained in contact, and I periodically came
to visit him. Gianni was always eager to discuss with collaborators and students
alike. One could talk or write to him, asking for his opinion or advice about any-
thing, and he would always have some acute observation, as if he already reasoned
about that problem for a long time.

Going back to our email exchange, I’m still astonished today by the depth of
his remarks, which may spread across the most diverse topics. I could mention
several examples, but I’ll just pick one, which is, in my opinion, representative of the
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combination of Gianni’s intellectual integrity and his awareness of (and approach
to) the social issues.

In one of our last email exchange, in which I was expressing my dissatisfaction
with some of the dynamics and practices of the academic system (in particular, in
theoretical physics), Gianni wrote:

Io credo che [. . . ] invece ci sia un grandissimo bisogno di un pensiero ‘scientifico’ vero
nel senso più largo [. . . ] che miri alla diffusione di strumenti critici, di applicazione univer-
sale, e in questo io credo che l’astrazione (direi quella RESPONSABILE, che non inventa
problemi, ma li RICONOSCE e li analizza) abbia un ruolo POSITIVO essenziale.

An approximate translation would be:

I believe that [. . . ] instead there is a great need for a true ‘scientific’ thought in the broadest
sense [. . . ] which aims at the dissemination of critical tools, of universal application, and in
this I believe that abstraction (I would say, the RESPONSIBLE one, which does not invent
problems, but RECOGNIZES them and analyzes them) has an essential POSITIVE role.

Meeting with Gianni had a significant impact on my scientific career and on my
life in general, as it was the case for many of his students and collaborators. I rarely
met scientists with such a capability of deep and clear thought, and its combination
with his kindness and human qualities is almost unique. I’m extremely grateful for
everything I learned from him, for his guidance and patience, and his dedication to
the role of teacher and mentor. Grazie Gianni.



Morchio’s Axe

Paolo Christillin

There are two anecdotes that I would like to add to what was said at Gianni’s funeral
and to the tribute paid to him back then, as on that occasion I didn’t feel like sharing
them, in order to avoid further emotion.

As at the physics department my office was in the same corridor as Gianni’s, I
happened to speak to him multiple times, and yet I had always had some sort of
restraint for possible joint scientific collaborations.

It seemed to me that he knew everything and that he was way better than me!—
even if I did appreciate the concreteness with which he didn’t disdain to make
numerical estimates, if necessary.

However, some time earlier I was contacted by a layman who, as typical, thought
he was revolutionising physics and was looking for someone from the academy
willing to listen to him. Naturally, I accepted to talk to that folk, and to my surprise
I discovered that the only other person in the department who had offered to do so
was Gianni.

So I dropped my previous reserve, and Gianni and I eventually started talking
about physics. This way we discovered that we were two iconoclasts—the both of
us, albeit in different ways: he, because he thought nothing was rigorous enough; I,
because I reckoned that nothing was derived along a simply enough path.

This common attitude lead us to deal with General Relativity. I think we were
both very proud of the result of this collaboration because it showed that results
of General Relativity could be obtained in a much simpler way in another metric
(Painleve–Gullstrand), using essentially only Special Relativity.

That turned out to be quite an onerous work, as I often used to tell him, jokingly:
“You see, Gianni, once there was Occam’s razor, but now we have to face Morchio’s
axe” (because his criticisms were always punctual and severe).

The reactions were obviously totally negative! How could we poor people even
think to commit such an act of treason. With one exception: once, reaching the
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printer to fetch a copy of the manuscript, I found a colleague who inadvertently had
already taken it as part of his printouts, and when he realised that below the title one
of the authors was Gianni he commented: but then it’s serious stuff!

Instead, at the umpteenth specious and insulting review report, Gianni blurted
out: goddamn! It was the only time I saw him over the top. This second episode
unsettled even his Savoy restraint. In fact, at home I thought: today it is as if I had
heard the Pope blaspheme.

Goodbye Gianni.



Years of Teaching Collaboration
with Gianni

Giampaolo Cicogna

I begin my contribution (actually, a brief contribution, Gianni would deserve much
more) with a personal memory going back several decades, when Gianni, a third-
year student, came to take the exam of my course of ‘Mathematical Methods of
Physics’.

Among the several thousand students I have examined in my long career, Gi-
anni’s is the oral exam I still remember well.

In fact, having checked that his written test was all correct, I had posed a rather
challenging question to him. His answer was prompt, but with the use of technical
terms far beyond the standard syllabus. I remember being almost annoyed by this
and was led to think that he was the “know-it-all student” trying to impress the
examiners by exhibiting big words he does not even know about. Then I tried to
delve deeper into the subject and, to my surprise, I found that Gianni had perfectly
mastered the topic, in which he moved with confident and correct language, even
in depth, and with absolute naturalness (to be precise, the argument concerned Lie
algebras, a topic that at that time was barely mentioned and only for a few simpler
cases).

Then, even as a student, Gianni demonstrated his characteristic gifts that we
have all come to appreciate: a deep knowledge and enormous culture concerning
any subject of physics and mathematics, together with a disarming naturalness in
discussing them.

Unfortunately, I never interacted with Gianni on matters of scientific research,
but in return I established with him a legendary ironclad partnership of teaching
collaboration.

When Gianni was assigned to my class on mathematical methods to run tutorials
and exercise sessions, I was obviously well pleased, knowing his outstanding prepa-
ration, but I was also somewhat embarrassed, as that role formally placed him in a
“subordinate” position with respect to the course’s lecturer. On the other hand (and
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this is another aspect of his character), Gianni never had ambitions for advancement
in his academic career: this was not for some sort of exhibition of nonconformism
or display of originality, but simply because he was perfectly happy as he was.

Our teaching collaboration lasted for several years until my retirement, and it
was exceptionally happy and fruitful.

Gianni was always precise and precious in helping the students of my courses
with illuminating examples and discussions, careful and scrupulous in the formu-
lation of the exercises to be proposed to the students (I do not recall ever having
presented assignments that were not well-balanced, instructive and meaningful—I
trust none of my past students would contradict me!), invaluable in correcting pa-
pers and in oral examinations, where our understanding was perfect and resulted
from the very beginning completely “spontaneous”.

Other endowments I remember: Gianni’s discretion and restraint in making judg-
ments. I do not think I ever heard from him a rave or heavy critique of people or
anything else.

And, in this regard, I want to end this contribution to Gianni’s memory just as
I began it, that is, with a personal recollection. I had assigned to a student, as a
topic for his B.Sc. thesis, an introduction to Noether’s Theorem; after carefully
reading the pages written by the student under my supervision, and after listening
attentively to the candidate’s exposition, Gianni stood pondering for a fewmoments,
also causing me some disquiet; finally, he simply said to me: “This thesis should be
read by all third-year students from now onwards.” In my career, I think this was
the best judgment of my teaching activity.



Stirring of the Conscience

Andrea Cintio

I got to speak with Gianni for the first time ever in the afternoon of one day in
Autumn. He had been running the exercise sessions of the one-year long course on
mathematical methods for physics taught by Giampaolo Cicogna. I was preparing
for the exam of that course and, particularly, I was studying the part of the program
on group theory. I was well aware of the elegance of the theory, yet not able to
grasp how its concepts could be applied. So I met with Gianni and together we
went through topics still unclear to me about representation theory and characters
of finite groups. I was impressed how Gianni’s explanation was as explicit as a
description of something in plain sight can be. I could appreciate his subtle ability
in easily moving through the topic using a language that provided me with the vivid
impression of “surgical” precision.

For their effective teaching collaboration, Cicogna–Morchio are an inseparable
pair in my imagination. Together they formed one thing, but at the same time they
were complementary. Giampaolo Cicogna was masterly in exposition, approaching
a topic through the analysis of various examples that were frequently chosen as of-
ten appearing in the literature, hence meaningful. However, this was a course on
applicable mathematics: the role of the physical applications herein was to illumi-
nate the mathematics, not the other way around. The aim was essentially to lead
students to the point where they can manage the quantum mathematical machinery
in the books and papers of physics. Gianni, on the other hand, was used to digress
in the course of an exercise, which was the occasion to trace connections to often
quite difficult questions that were explored introducing advanced topics: hence, the
original problem appeared in a different light and as a source of deeper insight.
Just as a small example, I remember a lecture when Gianni talked about Sobolev
spaces: the subject is of central importance for the study of differential equations
but it sounded rather “exotic” to me back then. Gianni’s approach would require a
significant workload and, maybe, more than the needed mathematical knowledge
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for the solution of an exercise for the exam. However, an audience receptive to it
was every student who both is interested in a conceptually clear and mathematically
precise understanding of physical problems and tries to avoid formally applying a
method only why it works. Gianni’s exercise sessions were an amazing opportunity
for a first acquaintance with some material that practicing (functional-)analysts and
operator-theorists put into their kit-bag.

When I had to choose an elective course for the M.Sc. study “program in the-
oretical physics” I had no hesitation in picking the one Gianni was delivering to
senior students interested in quantum mathematical physics. Unquestionably, I had
not been able yet to realize how privileged I was: more than twenty-five years ago, a
course like Gianni’s on mathematical structures of a rigorous formulation of Quan-
tum Mechanics was such a rare opportunity for a physics undergrad at an Italian
university. What likely guided my choice was the impression formed during the
previous class on mathematical methods: a good-natured and gentle person whose
lectures were an enhancement of an ordinary exercise session to something with
breadth and depth of approach to the field.

Gianni’s course on quantum mechanics was a real challenge to get through, but
more than worth the effort. The two-hour-long classes took place in the afternoon,
twice a week. I have a clear memory of when Gianni used to start each class with
a brief recap of key concepts from the previous class. He, then, began to write on
the blackboard and filled it from one side to the other, many times in the course of
the same class. Sometimes, he went back and wrote on a still blank small area in
order to make something more precise, thus making the blackboard completely full.
Gianni presented complete proofs of the theorems when it was not too onerous to
do so. He often simply sketched the technical parts of an argument but nevertheless
he always spent a bit of time for exploring the ideas behind the technicalities.

The course covered some mathematical structures required for the standard for-
mulation of Quantum Mechanics, with an ample perspective that included coherent
and conceptually rigorous pictures of both a relativistic field theory and a theory of
a large (infinite) system. The main topics of the course were the probabilistic inter-
pretation of the expectation values of operators in Hilbert space (spectral theorem),
the theory of self-adjoint extensions of symmetric operators, the identification of
observable algebras and the classification of the corresponding states, a discussion
on how a (partial) probabilistic interpretation of Quantum Mechanics departs from
a classical probabilistic one.

For my preparation for the exam I almost exclusively read through the priceless
lecture notes prepared by Gianni (my own ones were unhelpful, I was never able
to take adequate notes from class!). In them, the course topics were presented in a
condensed manner. Only by having an in-depth and thorough understanding of the
subject matter could one “distill” the course contents down to their core, as Gianni
managed to do with his lecture notes. I surely spent quite an amount of time going
through those pages, filling in routine arguments, trying to decipher all steps. It was
only after many further readings that precise concepts started arising naturally to
me, and I became able to distinguish fundamental points from side ones, making
the former crystal clear to me. Then, a glow of satisfaction welled up inside me.
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Similar experiences have been rare and implied invaluable boosts in my under-
standing. It was nearly the same as when I got through the third volume of the
Landau–Lifshitz series: the first time I browsed through it I believed I understood
everything but a much bigger world opened up to me only after much more work.
This personal “short list” also includes Arnold’s Mathematical methods and Local
Quantum Physics by Haag.

My inclination towards rigorous physical thinking had started before meeting
Gianni, but I tended to lean towards a misconception of the connection between
mathematical formalism and physical theory. Captivated by the “intrinsic beauty” of
a mathematical structure, I was spoilt by an overattention towards details, focussing
with missionary zeal on theorems’ proofs, collateral properties and the like, but
loosing the physical insight. “Theory”, meaning the study of the ideas underlying
the subjects and the reasoning behind the techniques, is not synonymous of “logical
rigor”, but the latter without the former is like Popeye without his spinach.

While supervising me for the M.Sc. thesis, Gianni, as respectful and consider-
ate of my views as he always was, often urged me to re-think such “unbalanced”
approach of mine. Also, it is thanks to Gianni’s determination that, after fumbling
around far too long in a fog, I was able to kick-start the writing of the thesis and
get the first ideas written down on paper, even when they were still anything but
rigorous.

The aim of the thesis was to determine the energy spectrum associated with
density waves, for large wavelength, in large quantum systems of nonrelativistic
fermions, from a minimal set of assumptions on dynamics. Energy spectra are
expressed in terms of time derivatives of commutators: I computed many many
commutators, but that was not the whole story. A part of the thesis contains some
results on the mechanism of gap generation associated to a spontaneous symmetry
breaking for systems with long range interactions that Gianni and Franco Strocchi
obtained adopting a somewhat different approach in previous articles.

I have an amount of recollections of when I used to visit him on a weekly basis
at his office on the first floor of the “Edificio C” (Building C) in the course of my
work on the final thesis, but without precise details of the specific circumstance. I
remember Gianni sitting at the desk, willing to answer any question and in front of
him a bunch of paper ready for experimenting with various ideas. While Gianni was
engaged in solving a problem I got the distinct impression that any single term of
the equations on the sheet gave a sort of “spoke” to him and Gianni got the message
. . . His mathematical manipulations looked as mere operations to me whereas, in
Gianni’s mind, I am sure they were a mirror of physically insightful steps, mecha-
nisms, underlying connections. Gianni’s penchant for “breaking down” a problem
into more fundamental blocks was the expression, it seems to me, of his impera-
tive to understand everything in the simplest possible way. This was reflected in the
elegant articulation of his arguments.

During our meetings, Gianni patiently answered the numerous questions I used
to pose to him—of course, I am the sole responsible if many of his answers were
comprehended by my brain in a possibly distorted or incomplete form. Every time
I left Gianni’s office I was enriched by the ideas he shared with me, but in the
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presence of an intelligence, a sensibility of such profundity and originality I realized
that I felt myself mostly filled with wonder and excitement.

After graduating, I maintained contacts with Gianni, only occasionally though. It
was customary that former students stayed in touch with Gianni, even though they
were far away from Pisa. After all, losing touch with a person such as Gianni would
have been no mean feat. When I visited him, Gianni was curious (“Tell me what
you are doing now”) and left me with the feeling of a genuine desire to learn, every
time. The questions about what I was doing were pertinent even if the subject was
far different from Gianni’s research work and I often got into trouble for answering
back.

When Gianni was engaged in a discussion with a student, it struck me that he
often talked about scientific (and not scientific) matter as he was speaking to some-
one on the same level as his. It was clear to me that Gianni had no intention of
causing difficulties to anyone. Only later I realised that that attitude of his was in
fact his actual belief in reason and human consciousness, in the ability of everyone
in understanding.

One day he told me that in the present times there would be an urgent need for
a reclamation of the views of the Enlightenment. The postmodernity, i.e., the cur-
rent phase in social organization, represents a resurgence of long running counter-
enlightenment ideas, such as that of “death of history”, the criticism of universalism
(as opposed to relativism), which had an influence on the theory of Right according
to the conception of “human nature” of the Enlightenment, the denial of normative
ideals, central for democratic action, the increasing public interest in anti-scientific
beliefs and myths. Kant spoke of reasoned knowledge as a means of achieving gen-
uine freedom and equality, that are now under threat of being weakened. I am not
an expert in political theory, but that was, I believe, what Gianni actually meant.

I last heard from him during the pandemic. In an email he wished there was a
“stirring of the conscience” after the pandemic and people would stage a serious
protest about what did not work. If Gianni was still here he would be disappointed,
as am I: not only people did not wake up but also they are in a “deep sleep”.



Gianni Morchio and SISSA

Gianfausto Dell’Antonio

Gianni Morchio had a central role in the development of the research activities
hosted at SISSA (the International School for Advanced Studies, Trieste) in the
field of the mathematical methods for quantum mechanics, even without ever being
a faculty member there.

He has been indeed the first “master” of many young students who entered
SISSA after completing their M.Sc. in Pisa and subsequently wrote valuable
Ph.D. theses for the doctoral degree in mathematical physics. Through his classes
of quantum mechanics and of mathematical methods for physics they arrived at
SISSA equipped with solid grounds with which they could successfully grapple
with the problems they later worked on in the course of their doctoral researches.

To better understand all this, it is worth recalling that SISSA had started its activ-
ities as a post-graduate school (“Advanced School of Physics”) after the M.Sc. de-
gree, at a time when no proper doctoral programmes were run in Italy. It was born
out of an idea of the physicist Paolo Budinich, inspired to the recent foundation of
the ICTP (the International Centre for Theoretical Physics), an institution operated
by the UNESCO. The goal was to convince the Italian government to establish, next
to the ICTP, a post-graduate school on scientific disciplines, somewhat linked to the
Italian academic system.

Initially SISSA was therefore a school connected to the ICTP, but belonging to
the Italian academy through the university of Trieste. The faculty was then formed
by a small group, very close-knit, of extraordinary lecturers and scientists (among
which, Ambrosetti, Cellina, Sciama, Tosatti, . . . ). Classes were attended by re-
searchers of the neighbouring ICTP, as well as by students and researchers of the
university of Trieste; the contact with lecturers was direct, and straightforward to
establish on every single day. This way SISSA soon became an autonomous in-
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stitution, granting doctoral degrees at the end of a study programme consisting of
courses and research activities, culminating in the defence of the Ph.D. thesis.

I joined SISSA “by chance”: in a fortuitous scientific meeting in Munich, Bu-
dinich asked me to visit SISSA for a few months and to deliver a graduate class
on quantum mechanics. Since then, I kept teaching courses on the mathematics
of quantum mechanics and quantum field theory; initially they were one-semester
long, later re-sized to a two-semester-long class, when for some years I was de-
tached full time to SISSA from La Sapienza (the university of Rome) in order to
supervise more closely a number of doctoral theses, and again after my retirement
from La Sapienza, where I had meanwhile become an emeritus professor.

SISSA was at that time a stimulating environment indeed. A few research groups
(the future “Sectors” of SISSA) of notable scientific calibre were then active in par-
ticle physics, solid state physics, mathematical analysis, astrophysics, neuroscience:
they shared small spaces, thereby naturally allowing for close interchange of ideas.
Under the impetus of Budinich additional internal structures were meanwhile tak-
ing shape: the Interdisciplinary Laboratory and the Science Centre Immaginario
Scientifico.

A few years later doctoral programmes were finally established in many Italian
universities, thus making SISSA formally a doctoral school “as the others”, albeit
without internal Bachelor and Master programmes prior to the doctorate.

In fact, the latter feature turned out to be an advantage for SISSA in that initial
phase. Indeed, at the beginning other universities’ new doctoral schools happened to
experiencemany difficulties and delays, both of organisation nature, and concerning
the choice of the research lines and the admission procedures to access fellowship
funds—clearly, on the long term the lack of internal B.Sc. and M.Sc. programmes
may turn into a disadvantage, as it limits the scientific offer, may constitute an
obstacle for the natural development of new research lines, and complicates the
organisation of more advanced classes for Ph.D. candidates.

Thus, while other Italian doctoral schools were initially struggling with organ-
isation, bureaucracy, choice of structures and curricula, SISSA was already well
structured and operational, and this resulted into the circumstance that for some
years excellent students coming from several Italian universities turned out as appli-
cants to enter SISSA. Among them, the students from Pisa coming from “Morchio’s
school”.

For a fistful of years in a row SISSA awarded the doctoral degree to a number of
Gianni Morchio’s former undergraduate students, including Riccardo Adami (now
at the university of Turin), Alessandro Pizzo (now in Rome),Michele Correggi (now
in Milan), Alessandro Michelangeli (now in Bonn), Giuseppe De Nittis (now in
Santiago de Chile), as well Lucattilio Tenuta and Emanuele Costa (who then had a
brilliant professional career outside of the academia), all supervised by me, and also
Fabio Bagarello (now at the university of Palermo), Dario Pierotti (now in Milan),
and Stefano Cavallaro, supervised by Franco Strocchi at SISSA and, externally,
by Morchio himself, to which one should also add Paola Ruggiero (who got her
Ph.D. in Statistical Physics at SISSA), and Luca Sciortino (who joined SISSA for
the Master in Science Communication, one additional flagship structure of SISSA).
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Of Riccardo Adami I have been also the supervisor for his M.Sc. thesis in Pisa
(Gianni Morchio then acting as “internal supervisor”), on a topic of particular in-
terest in quantum mechanics, the Bohm–Aharonov effect. This gave me the oppor-
tunity to get in contact with the department of physics of the university of Pisa and
to interact with Gianni more closely, as until then I had much enjoyed his works,
yet only getting to know him superficially. In fact, I already knew well a bunch of
mathematicians in Pisa, but I had no previous link with the physicists.

I had already read and appreciated what Gianni and Franco Strocchi had writ-
ten on gauge theories and the problems arising in particular from gauge invariance
and from indefinite metric. The discussions that I then had with Gianni during my
frequent visits in Pisa allowed me to deepen my knowledge of those topics and to
acknowledge the accuracy of Gianni’s reasonings and the depth of analysis of the
associated mathematical formalism.

It then became clear to me how it comes that Riccardo Adami, as well as, later,
the other students of Gianni who then wrote their doctoral thesis with me, did have
such a solid and not only formal knowledge of the quantum mechanical formalism
and mathematical structure, and did possess the capability of catching quickly es-
sential aspects to concentrate the main focus on, for the study of the problems under
investigation.

In the course of my visits in Pisa I could value Gianni’s ability of identifying
the core parts of a problem or of a theory and dealing with complex formalisms
with the greatest confidence. I also attended a number of local scientific meetings
organised by Gianni for students and researchers (at the “Domus Galileiana”, as far
as I remember) on particularly significant physical subjects. Always, during such
conferences, Gianni used to draw attention to the crucial, fundamental elements of
the physical and mathematical discussion.

What then followed were stimulating debates on “conceptual” aspects: they re-
flected Gianni’s desire to involve young people in conceptual problems and not just
in mathematical formulations. During these meetings it was underlined that for a
complete analysis the “foundational” issues should not be overshadowed. In other
words, I had a clean perception of the scientific environment which Gianni’s stu-
dents could move across, which accounted for their so refined preparation.



Just Give It a Go!

Giuseppe De Nittis

It was the end of 2004.
At that time, I was a disoriented and unmotivated student reaching the comple-

tion of the M.Sc. programme (‘laurea specialistica’) in theoretical physics at the
University of Pisa. My grade point average was excellent, but I had taken more
time than necessary and furthermore over the years my initial passion towards theo-
retical physics had given way to an exciting admiration towards the stringent rigour
of mathematics.

I remember myself as a not-so-young and somewhat confused senior in search
for a subject to write his M.Sc. thesis on, which cover a problem of interest in
physics and be at the same time mathematically deep rooted. In the physics depart-
ment quite an amount of professors had a profound knowledge of mathematics, but
“Professor Morchio knows much more”, as a fellow mate used to tell me to encour-
age me to fix a meeting with Gianni.

It was in such a position that one day I finally went to Gianni’s office and there,
after a brief conversation, my adventure in the world of mathematical physics actu-
ally began.

For one year, I worked under the careful supervision of Gianni on a problem
about the Return to Equilibrium for Large (i.e., Infinite) Systems. I cut my teeth on
classical literature (Reed–Simon, Bratteli–Robinson, etc.) and filled in my gaps in
spectral theory and operator algebras. And, most important of all, I learned from
Gianni how a mathematical physicist thinks and imagines. Gianni’s explanations
and reasoning were always of an impressive depth and a bewitching elegance. Under
his guidance I started loving his work and admiring his modus operandi.

After a little over a year I completed my thesis and I was awarded the final degree
with full marks. This was the last act of my academic career—at least, that was what
I was convinced of!
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Indeed, having concluded my studies with a delay of a couple of years, and that
making me somewhat “older” than my colleagues, I felt doubtful about the idea
of pursuing a doctorate, which I was about to desist from. I had concocted other,
definitely more modest plans. Or, I would have settled for a position as a maths
teacher in high school.

Then, a fistful of days after defending my M.Sc. thesis, Gianni invited me to his
office to talk about my future and there I expressed my hesitations and uncertainties.
With his typical kindness, and with an initiative that looked to me both amiable and
uncommon, he asked me to to make at least one attempt: “just give a go to the
admission at SISSA in Trieste, and then what is meant to happen will happen”, he
said.

I accepted his invitation and trusted his words more than I trusted my own abili-
ties. The entrance examination went unexpectedly well, as I was offered a doctoral
scholarship at SISSA and there, against all my personal expectations, I eventu-
ally obtained my Ph.D. degree four years later, under the guidance of Gianfausto
Dell’Antonio.

What followed is the (probably uninteresting) story of my academic career, con-
sisting of some postdoctoral years, travels, conferences, papers, and finally a per-
manent academic position at the Pontificia Universidad Católica de Chile.

However, if today I am who I am, and if I achieved what I did achieve, the credit
goes to that lucky and distant beginning, when that nice and shy man with tousled
white hair addressed me and urged me to have faith in me and in my dreams.

Thank you for all this dear Gianni!



Reminescences of Gianni Morchio

Jürg Fröhlich

Gianni Morchio and I first met each other in Zurich, in 1971. His advisor Franco
Strocchi had organized a stay for him at ETH Zurich, so that he would have a chance
to profit from discussions and advice by Klaus Hepp. I was then one of Klaus’ PhD
students. Gianni and I shared an office in the theory institute on the Hönggerberg
campus of ETH. This gave us the chance to engage in countless discussions of var-
ious problems in mathematical physics and to develop a very friendly relationship.
We also discovered that we were both actively interested in matters of society and
politics.1 I liked Gianni’s soft-spoken, friendly manners in combination with his
clear, uncompromising views and opinions. Regrettably, we did not socialize much,
as we were both busy working on our theses.

After our first encounter we did not see each other anymore, for several years.
When I had completed my PhD degree, in the summer of 1972, I first spent a year
at the University of Geneva and then moved to the United States where, after a year
at Harvard, I got a research and teaching job at Princeton University. During my
stay at Princeton, I got to know Franco, who was invited to visit Princeton in order
to collaborate with the late Arthur S. Wightman on various problems in quantum
electrodynamics (QED). This was the beginning of a friendship between Franco
and myself that I have cherished ever since and that eventually also included our
wives.

At the beginning of 1978, my family and I moved to France, where I had been
offered a job at the IHES in Bures-sur-Yvette. At that time, Franco, Gianni and I
had discovered our common interests in various problems of QED, in particular in
the infrared problem2 and some of its consequences (e.g., concerning the action of
Lorentz boosts on the state space of QED). After some amount of long-distance

1 Gianni was much more courageous and committed to political activism than I was, and he payed
a price for his convictions.
2 A problem that Alessandro Pizzo and I returned to and worked on in more recent years.
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collaboration—at that time through the medium of hand-written letters—I had the
chance to invite Gianni to visit the IHES in order to speed up and deepen our col-
laboration. Franco, Gianni and I successfully completed some joint papers on QED
that, for all I know, are of good quality and are still of interest. We also wrote two
papers on a manifestly gauge-invariant formulation of the Higgs mechanism. This
work appears to have become quite popular in recent years. I found my collabo-
ration with Gianni and Franco very enjoyable. For a variety of reasons—not least
because our interests diverged somewhat—it did unfortunately not continue.

Gianni’s visit at IHES gave us a chance to socialize and talk about matters other
than physics. I discovered that Gianni was an excellent cook. For my family and
myself he prepared what have probably been the most delicious gnocchis I have
ever been served.

In 1982, I returned to ETH where I taught theoretical physics for almost three
decades. I kept up some connection to Franco, who kindly invited me to visit Trieste
and Pisa several times; but I lost sight of Gianni. When my retirement approached
I decided that I could and should finally work on problems of physics that, while
being truly fundamental, may never be solved to anybody’s satisfaction. Among
other such problems I started to think about how one might go ahead and complete
quantum mechanics to a theory with a clear ontology and without a measurement
problem. (A glimpse of some of our efforts in this direction is provided in my contri-
bution with Del Vecchio, Pizzo and Ranallo to this volume.) My ideas on quantum
mechanics have not gained much popularity, yet – actually, my situation reminds
me sometimes of the one of the man from the countryside who tries to get access to
the “Law”, described in Kafka’s short story entitled “Before the Law”—although,
with some optimism, this will surely change with time. Among the few people who
apparently decided that my ideas were of some interest were my friends in Italy,
including Gianni, Franco and one of their former students, namely my close friend
and collaborator Alessandro Pizzo. Gianni and Franco invited me to visit Pisa for
discussions and to give a talk about my ideas. Anna Strocchi took us on a won-
derful guided tour of some of the famous sites of art and architecture in Pisa, and
Gianni and his wife invited my wife, the Strocchi’s andme to spend an unforgettable
evening at their apartment. I found out that Gianni owned an impressive collection
of books including—not surprisingly—a good number of books on politics and po-
litical philosophy.

Sadly, those few days in Pisa were my last encounter with Gianni. I am glad that
destiny has made me meet and befriend him.



Thoughts of Gianni

Jürgen Löffelholz

I met Gianni precisely on 18 September 1983 in Leipzig during a conference. After
his evening lecture on “Local States in QED and Gauss Law” we had a short talk
about the subject. We agreed next day to skip lunch and go for a short excursion with
my car to the Monument to the Battle of the Nations. He showed up together with
his future wife Antonella. That was yet six years prior the fall of the Berlin Wall
and I did not have a passport for the West. But we were young and we somehow
believed in the future. For the time being we exchanged ideas by postal mail.

In 1991 I received an invitation to the department of physics in Pisa. When the
train stopped at Pisa Centrale (Pisa’s main rail station) Gianni was waiting for me
in the rain with his almost five years old son Iacopo at his side. We embraced each
other and from that moment I had a true friend.

Gianni was almost the same age as me. We both had young families and hence
we discussed about life. We tried to understand why East Germany and other coun-
tries did not really succeed with building an alternative with respect to capitalistic
economy. And what now?

At the University of Pisa a corso di lingua italiana per stranieri (Italian language
course for foreigners) was announced for the period February-April 1994. I had lost
my job in Leipzig like about three thousand other scientists at the former Karl-
Marx-Universität. So I could come again to Pisa.

Usually, we used to meet in Gianni’s office or at the Scuola Normale Superiore
together with Franco Strocchi. Our common interest was to analyze gauge QFT
models within the functional integral formulation at imaginary time. In a further
paper we analyzed a gauge model of QED with Theta-vacua given by a complex-
valued Euclidean functional measure. We worked together over 15 years, which
was wonderful and I will never forget. From the both of them I benefited very much
in science and human relations, something I will never forget and I am infinitely
grateful for.
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Gianni was very creative, not only in his scientific activity. Once he wrote a
computer program in PASCAL for Iacopo based on game theory, this way perhaps
enticing his son to later study Economics. He was also very proud of “Ceci” (his
daughter Cecilia), who has now become a medical doctor. My impression was that
Gianni also had a very fine wire to his wife Antonella, while often she preferred to
remain in the background.

In multiple occasions I had the pleasure to be invited to their ranch near Fauglia
(in the hinterland of Pisa) for relax. There already in the 1990’s Gianni had managed
to connect a washing machine installed inside to a water drain black hose winding in
a spiral on the dash: of course also the pumping system was his own construction . . .

Once, on a weekend, he asked me for help to repair the steering of the old FIAT
126, which turned out to be an actually subtle task. Yet, after some hours of work the
car could move again as desired: however, in the meanwhile we had totally screwed
out an amount of pieces without fitting them back into their original position, on
which Gianni commented: “I suspect they were all useless” . . .

Sometimes he let me use the old FIAT. Unfortunately, I could never understand
where in Italy parking was allowed. So one day, returning to the place where I
had left the car, I found that it wasn’t there any more. Looking around, on a wall
nearby I spotted a piece of paper—without doubt placed there by Gianni—with
“ATTENZIONE, MULTA!” written on it (“watch out! a fine!”), a sketchy drawing
of the FIAT, and an arrow pointing rightward with the words “100 metres”. There,
with great relief, I could retrieve the lost item . . .

I knew about the illness of Gianni, the surgery and the fears within medical
control after that. Years before I too was confronted with cancer, chemotherapy,
etc. Hence, really I believed in his rehabilitation. Unfortunately, after summer 2021
I lost contact with him and only later I understood why . . .

It is hard for me to realize that Gianni Morchio is no more here. He was such a
kind person.



At the Physics Department with Gianni

Pietro Menotti

Despite having been a senior colleague of Gianni for many years at the Department
of Physics in Pisa, I never wrote a paper in collaboration with him. Nevertheless
I had a rather deep interaction with him and I will try to summarize below a brief
history of it.

I became acquainted with Gianni Morchio in 1967. I was assistant professor at
the Scuola Normale Superiore in Pisa where I gave a course on classical physics for
the “normalisti” freshmen. They were a dozen of students which was the average
number for a class at Scuola Normale.

There were smart people in this selected audience. Among them there was Gianni
Morchio. He always sat in the back row and from the back row came the most
challenging questions.

Then for a period I lost contact with him until his coming back from the Univer-
sity of Turin and at the same time my coming back to Pisa from the University of
Naples. Gianni was assistant professor and recalling his great capabilities, I asked
him to give the exercise classes for the course of physics at the School of Mathe-
matics where I taught for two years.

Then I stated teaching quantum mechanics at the Institute of Physics and Gianni
followed me again as an assistant. In these years we had intense collaboration in
planning the course, preparing the exam papers and at the oral examinations. It
goes without saying how much the students profited from him.

Later he started his course on Advanced Quantum Mechanics which became
a cornerstone of the curriculum in theoretical physics in Pisa. It contained an in-
troductory part on advanced functional analysis an then developed the algebraic
formulation of quantum mechanics.

I was in the exam committee and I always let him to lead completely the exam.
A few times I appealed to him when stuck in my research work and I always

obtained some crucial help.
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Gianni had two main features: his absolute intellectual integrity and his gift,
when confronted with a new problem, to see immediately the clue.

Later in the years we had discussions on general relativity in particular in con-
nection with the work he was pursuing with Paolo Christillin.

Rarely we spoke about philosophy. Once he expressed to me his appreciation
of Spinoza’s “Ethics”, which Gianni considered a good starting point for the un-
derstanding of our world. A few times he expressed his admiration for Descartes’
urge for clear and distinct ideas; and actually Gianni had clear ideas. Also about
Descartes he pointed out the need to subject continuously our reasonings to repe-
titions and checks as we can always be wrong. A counsel which I think all of us
should follow.



Teachings and Legacy of a Theoretical
Physicist

Alessandro Michelangeli

Having met Gianni as an undergrad in theoretical physics, let alone having partici-
pated in his courses or having been supervised by him during the MSc thesis, was
one of the most stimulating opportunity and greatest privilege for several “chosen”
ones, and so was surely for me.

Among the many many recollections that I have now of my interaction with
Gianni, which itself sounds somewhat odd to me as I still imagine him at office like
all the uncountable times I used to visit him over the years when passing by Pisa,
my original hometown, a significant one is my participation in his one-year-long
course of the last year of the study programme in theoretical physics.

Actually, we all youngsters had already had to get to know Gianni in one or two
previous classes. The first was Giampaolo Cicogna’s “Mathematical Methods for
Physics” mandatory course, which Gianni was a crucial part of by running exercise
sessions and co-hosting the exams. That was a one-year long class that in retrospect
I still reckon to have been extraordinary and the very best of its type, as far as
I could see in my career so far, including when I myself taught something very
similar in other universities, for it managed to provide such a deep and rigorous
insight on complex analysis methods, Hilbert space methods, Fourier and Laplace
transforms, elements of harmonic analysis and PDE’s, by keeping at the same time
the most genuine “theoretical physicist” approach of understanding what each tool
was devised for and how each technique naturally emerged in appropriate contexts.
In particular, I remember Giampaolo Cicogna starting his course by introducing
Gianni as “my right-hand man, and in fact also my left-hand” . . .

In parallel to that, the other opportunity to encounter Gianni was in the “Funda-
mentals of Theoretical Physics” course (essentially, non-relativistic quantum me-
chanics), run at that time and for many years by Pietro Menotti (other parallel
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classes being run in those years alternatively by Riccardo Barbieri, Luigi E. Pi-
casso, or Paolo Rossi), again with Gianni centrally involved in exercise sessions
and final exams—a remarkably hard class, so much so that passing it would make
one quite rightfully an “almost graduate”. (At that time to obtain the final (Bach-
elor+Master unified) degree in theoretical physics the main remaining steps were
then Adriano Di Giacomo’s class on quantum field theory, Sergio Rosati’s class on
nuclear physics, a solid state physics class run by Ennio Arimondo or Salvatore
Carusotto, plus a class on general relativity and a variety of elective courses.)

Yet, through such two mandatory courses there was often the tendency to con-
sider Gianni some “super-human” being, not to say an alien, who simply knew
everything, with an aura of mystery and admiration that possibly discouraged stu-
dents from approaching him more systematically. This, together with the above-
mentioned non-trivial workload needed to complete the degree, might explain why
Gianni’s elective class of the last year of the study programme had usually just a
fistful of participants.

Nevertheless, we all students were made well aware that some “something real
deep” would occur around Gianni and his course. I remember, in this respect, an
old booklet compiled by previous students of physics in Pisa some years before I
enrolled in, which was still circulating at my time and was meant as a short guide for
freshmen, providing fair concise descriptions of all mandatory and elective courses
of the study programme in terms of content, difficulty, and workload. Gianni’s class
was clearly indicated as a tough one, but above all I remember this emblematic
comment: “in the [penultimate year’s] theoretical physics class you’d learn things,
in [last year’s] Morchio’s class you’d understand them” . . .

So, indeed, in these recollections of mine about Gianni I find it natural to spend
some words on what and how he taught us in that precious jewel which was his
course for senior students in theoretical physics.

The title itself was emblematic: merely “Quantum Mechanics”. That was proba-
bly due also to the circumstance that many other suitable titles were already booked
in the physics department (including the above-mentioned one-year-long course
on non-relativistic quantum mechanics) and that there was still the virtuous habit
to give short, weighty titles to courses; but certainly it also reflected Gianni’s all-
embracing approach to knowledge, a key feature of his throughout his life, I believe.

The course’s starting point required an already advanced acquaintance with all
standard aspects of non-relativistic quantum mechanics, its formalism, the main
one- and three-dimensional models and their spectral analysis, and furthermore evo-
lution, scattering, and perturbation theory. From those bases, the goal was to revisit
such a grand picture in its conceptual, mathematical, and physical pillars.

Recently, together with my friend and colleague Andrea Cintio we retrieved our
own notes from that class, as well as Gianni’s own concise, ultra-deep, impeccable
lecture notes (quite the opposite than a static document: Gianni kept making little
but fundamental updates every year), and in retrospect we really wondered how an
even one-year-long class could encompass such a vastness and depth of materials
that would be normally suited for PhD students or researchers in the field.
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By moving from a self-consistent treatment of classical measure theory (so as
to lay the rigorous grounds for the probabilistic interpretation of quantum mechan-
ics), participants were then brought into a deep survey of the functional-analytic
and operator-theoretic tools for the formalisation of quantum models, including
self-adjoint extension theory for the definition of physically meaningful observ-
ables (thus covering a large part of the first two volumes of the Reed–Simon series,
to have an idea), and eventually faced the general discussion of the complete-
ness/incompleteness of quantummechanics, locality/non-locality, hidden variables,
Bell’s inequalities, Bohm, Gleason’s theorem, . . .

Although I cannot diminish other greatly impacting classes for us novices of
physics, it is fair to claim that that course represented our first major cultural expe-
rience.

I should like to stress that Gianni’s class was deeply and eminently physical, even
if pervaded by advance mathematics throughout. A perspective completely poles
apart from, say, Franco Strocchi’s beautiful book on the mathematical structure for
quantum mechanics, which incidentally was taking shape in those very years and
was instead explicitly designed for mathematicians.

Among the main lessons, Gianni taught us the meaning of and the difference
between formalism (observables, states, dynamics) and interpretation (rules) of a
physical theory, also providing a most instructive comparison between classical and
quantum mechanics—funnily enough, it was precisely by presenting that line of
reasoning later at the interview to enter the PhD programme at the SISSA that quite
surely granted my admission, which I clearly owe to Gianni. Fortunately, another
contributor to this volume is Luca Sciortino, who graduated with Gianni some time
before me with a thesis on objectification, and has written more precise and deeper
words in this respect.

Besides, Gianni lectured us on the perils of deducing physically wrong con-
clusions from heuristically sound, yet ambiguous or ill-defined physical models,
a perspective that both the shut-up-and-calculate and the sophisticated, intuition-
driven theoretical physicists often tend to overlook, quite possibly with disastrous
outcomes. An enlightening example, which I happened to “recycle” multiple times
in my own teaching, was that celebrated discussion on Landau’s book about the
fall of a three-dimensional quantum particle onto the centre of a central force of in-
verse power-law magnitude. At that time, and for generations before, it was morally
mandatory for decent physics students in Pisa to digest the main volumes of the
Landau–Lifshitz series, and learning that the “bible” could be incomplete was a
kind of real shock and rise of awareness, I should say—the issue there was the
spectral analysis of the “natural” (i.e., Friedrichs extension) self-adjoint realisation
of a minimally defined Schrödinger operator with inverse power-law potential as
opposed to other realisations with boundary conditions at the origin ensuring the
lower semi-boundedness of the Hamiltonian (the particle “goes through”) or its un-
boundedness from below (the particle “falls onto the centre”).

In fact, while recollecting such teachings, I ask myself how many university
study programmes in physics offer such a deep presentation of the self-adjoint ex-
tension theory in application to quantum mechanics!
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In those days we used to joke among us students of physics, also to keep up with
the pressure arising from the great challenge of the course first, and later of the thesis
work with Gianni, by imagining fictitious phone calls by us to Gianni’s home—as
a matter of fact, Gianni used to share his private phone number with some of the
students writing their thesis with him, as an additional form of availability during
their work, although that never occurred to me as I was too shy for that. Such a
privilege, linking common mortals to a demigod, had become kind of legendary, but
evenmore legendary was the fact that occasionally it was Gianni’s young son to pick
up the phone (in fact, I even never met in person Gianni’s children, although I am
well aware that in the meanwhile they succeeded extremely well in Economics and
in Medicine, respectively). So, given their father’s scientific stature, it had become
common to joke on the possible answer of the kid, like: “Dad’s not at home, but
just tell me your problem, I would solve it right now . . . ”.

Each early afternoon lecture with Gianni in that two-semester-long course was a
genuine discovery, as I now remember with the eyes of the then-student fascinated
by that sort of omniscient alien who used to bike every day to the physical institute,
enter the lecture room with an apparently chaotic bunch of papers, and take full
possession of every square inch of the blackboard from the first to the last minute . . .

In that course Gianni initiated me, as many before and after me, to the rigorous
physical thinking and to the mathematical-physicist approach to theoretical physics,
let alone to the comprehension of a grand picture made of first principles, advanced
mathematical tools, rigorous conclusions, and driving physical insight. I owe to him
my subsequent passion and commitment to quantum mechanics and its mathemat-
ical methods, which then resulted in my choice to write the MSc thesis under his
supervision and in following his encouragement to proceed with my doctoral stud-
ies at SISSA, a path that was followed my many other students of his before and
after me.

That year and that class was the beginning of a beautiful, discrete, respectful,
acquaintance among me and him for the years to follow.

Of course, the MSc thesis represented the occasion that cemented such an ac-
quaintance. Gianni has always used to challenge his students with a fully research-
oriented work for the MSc thesis, which in my case consisted of examining certain
conditions that allow to discriminate between equilibrium (i.e., thermal, say, KMS)
states and merely steady states within the C�-algebraic formulation of quantum
statistical mechanics, moving from a very recent discussion of Ruelle, and a clas-
sical analysis by Haag and Trych–Pohlmeyer. It is unfortunate that the lack of time
which we both experienced back then right after my graduation prevented us from
writing even a short paper on it: in fact, we had identified certain mechanisms, that
were probably worth being advertised, for constructing non-trivial steady non-KMS
states. Yet, the analysis had a successful follow-up in the MSc thesis of Giuseppe
De Nittis, who then became a fellow PhD student of mine at SISSA.

In the years that followed, both during my doctoral studies and in the subsequent
development of my career, I kept regular contacts with Gianni, whom I used to meet
whenever I returned to Pisa, the town where I was born and grew up.
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That was the phase in which the “master” turned into a discrete mentor, who was
constantly eager to know what was being discussed in the math-phys circles abroad
and to share his thoughts on current research projects of his. There was never need
of any courtesy pleasantries when I entered his office, for Gianni was immediately
driving our conversation onto each and any topic he was most impatient to discuss.

It is in those years that to my great enjoyment our discussions encompassed
broader and broader subjects, including social trends, national and international
politics, academic politics, recent and future tendencies in science, in physics in
particular, as well as virtuous or wicked practices in the academia and academic
research.

Last time I met him he was so enthusiastic of his recent reading of Federico De
Roberto’s novel I Viceré, which by accident has always been one of my favourite
books: I have fond memories of our last chats on the so distinctive characters por-
trayed in that novel, where no aspect of society appears to be free from corruption,
and on the analogies we drew with our contemporary times.

I cannot but feel privileged to have had Gianni as a lecturer, supervisor, mentor,
while also recognising and having benefited from his boundless knowledge, scien-
tific rigour, physical comprehension, example, human generosity and kindness.

Whereas he left us way too early, I am glad to witness today his far-reaching
legacy through his friends, collaborators, colleagues, mentees, and former students
like me and many many others.



Remembering Gianni Morchio

Dario Pierotti

I first met Gianni when I was a Ph.D. student in Mathematical Physics. At that time,
I already knew Franco Strocchi, who had encouraged me to investigate mathemati-
cal problems related to gauge invariance in QED.

So, when Franco suggested starting a collaboration with Gianni and himself
based on their recent results on infrared and vacuum structure in local quantum
field theory, I was excited to work with them but also somewhat anxious.

In particular, since Franco told me how outstanding Gianni was as a mathe-
matical physicist, I figured he wasn’t very interested in interacting with a young
researcher with little experience.

On the contrary, right from our first meeting in Pisa, I felt totally at ease with
Gianni due to his kindness and friendly attitude. At the same time, I was astonished
by his impressive skills and the depth of his thought. Thus, I can say that having
had the opportunity to work under the guidance of Franco and Gianni represents a
fundamental step in my scientific experience.

In the several meetings that followed, besides the intense research activity on
the rigorous mathematical analysis of two-dimensional QFT models (the massless
scalar field, the Thirring model and the Schwinger model), I got to know Gianni
better.

In particular, I appreciated his pleasant character and the extent of his interests
and culture. I still remember many passionate discussions on historical, political,
and social issues.

Hence, besides his invaluable scientific heritage, it seems increasingly important
to me to recall Gianni’s sensitivity and vision regarding the problems of inequalities
and injustices, especially now that they are even farther from being solved.

D. Pierotti (�)
Politecnico di Milano, Milano, Italy
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Unfortunately, many years have passed since I last saw Gianni, but the more time
goes by, the more I realize how important it is to have known him.

Over the years, I have hardly met other people with such an extraordinary com-
bination of scientific and human qualities.



Gianni Morchio as Model and Mentor

Paola Ruggiero

In the course of my third undergrad year in physics at the Università di Pisa, the
moment came to look for a supervisor for the B.Sc. thesis, which usually was sup-
posed to be three-month long but instead in my case ended up to be six months long
(and all those months were definitely worth!). Among the professors I went to talk
to there was Gianni.

I was immediately struck by his politeness, his enthusiasm and the passion in his
words, besides the depth of the subjects he debated. It did not take long for me to
choose him.

Those months were fundamental for me and for my growth, both personal and
professional. I will never forget all the time Gianni dedicated to me: we used to meet
at least once per week (sometimes even more) and we spent hours together (don’t
remember howmany!), only interrupted by someone who at a certain point knocked
on the door to “claim” his favourite collaborator: it was prof. Franco Strocchi. At
that point I had to leave my place to him: ubi maior . . . .

Something I never dared to confess to Gianni is that during those hours he was
introducing me to the algebraic formulation of quantummechanics, I recorded him.
The reason is that what he wanted to tell me each time was simply too much infor-
mation for me, and, on my side, I did not want to lose a single word. By recording
him, I could enjoy our conversations more, while the following days were devoted
to re-listen word by word everything I could have missed, or I wanted to understand
better. And that was one of the most exciting parts of the learning: every time I dis-
covered something more, and I felt like I was understanding better and better, until
I was finally ready for a new meeting the week after!

Clearly, apart from physics, those recordings contained much more that Gianni
let escape him, from political considerations to the philosophical ones, and some
jokes.

P. Ruggiero (�)
Department of Mathematics, King’s College, London, UK
e-mail: paola.ruggiero@kcl.ac.uk
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Among all the lessons I got from our meetings and conversations of those
months, I want to mention the following one, using Gianni’s own words: “apprez-
zare l’ordine e le ‘simmetrie’ del mondo, ‘rassicuranti’ riguardo alla sua semplicità
e alla sua perfezione, quando ci sono; e viceversa ‘accettare’ e saper cogliere la
bellezza della complessità, laddove sia questa il denominatore comune.” (the trans-
lation goes more or less like this: “to value order and ‘symmetry’ in the world,
which are ‘reassuring’ about its simplicity and its perfection, when such conditions
are present; and instead, to be able to ‘accept’ and get the beauty of complexity,
when this is the common denominator”).

As undergrads at university, we all look for models to imitate and for mentors
to seek advice from. From those months on, Gianni has been for me model and
mentor at the same time. During all these years, I looked at him as a source of
inspiration, and I consulted him for each important work decision and in difficult
personal moments. And every time, he replied with the tenderness and affection
which characterised him.

While re-reading the e-mails we exchanged over the years, I realised they are all
full of insights and it would be worth to spend a word on each of them. However, a
recurring phrase in almost each of them, always after many considerations, towards
the conclusion, is this one: “dimmi, se vuoi, cosa fai e che cosa pensi” (“tell me,
if you wish, what you do and think”). A simple sentence, but it gives, I think, the
measure of how much Gianni used to care about people and life in general.

Grazie di tutto Gianni, mi mancherai.



Quantum Theory, Objectification and
Some Memories of Giovanni Morchio

Luca Sciortino

More than twenty-two years have passed by since, as a young student at the physics
department at the University of Pisa, I met Giovanni Morchio (1948–2021) for the
first time. After taking his courses on mathematical methods for physics and on
quantum mechanics, from 2000 to 2002 I have worked with him on a M.Sc. thesis
entitled “The Problem of Objectification in Quantum Theory: the Case of Pyramidal
Molecules” [10].

Even after so much time, some of his statements, expressed during our research
meetings, still flash through my mind from time to time. They are short, almost lap-
idary sentences, expressed in a very colloquial language, yet logically rigorous and
dense of meaning, which have generated reflections, produced ideas and suggested
ways of approaching problems throughout all my intellectual life, sometimes even
in my research work in philosophy of science and in my activity as a science writer.
I consider the ability of Gianni (as he was informally known) to be present in a
person’s mind and to fertilize it as the rare gift of a few teachers as well as of the
great masters of thought.

One of the main goals of this chapter is to explore Gianni’s approach to scientific
problems and his ideas regarding certain conceptual issues that arise in quantum
mechanics. I will pursue this goal by retracing the main stages of my research ex-
perience with him and by highlighting some personal memories. In so doing, I hope
to achieve another non-secondary goal: to offer some glimpses of Gianni’s com-
bination of human qualities that has contributed to earning him great esteem and
admiration among friends and colleagues.

Prior to starting working on my thesis, I had become passionate about the contro-
versies surrounding the interpretation of quantum mechanics. These debates began
around 1926, when Max Born (1882–1970) put forward the statistical interpre-
tation of the theory’s formalism, constructed between 1924 and 1926 by Erwin
Schrödinger (1887–1961) and Werner Heisenberg (1901–1976). Eventually, most
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physicists agreed on an interpretation that can be traced back to the Copenhagen
school and is called the probabilistic interpretation of quantum mechanics. How-
ever, a smaller number of physicists attempted to reformulate quantum mechan-
ics as a classical theory trying to demonstrate that the formalism was incomplete
and that the probabilities were “epistemic”, i.e., they reflected our lack of knowl-
edge, as happens in classical physics. What aroused my interest was the fact that
this disagreement was rooted in some fundamental epistemological questions: do
atomic objects exist independently of our observations? Is it possible to correctly
understand their behavior? Can formalism incorporate philosophical biases into its
structure? Indeed, Heisenberg wrote that “the opponents of the Copenhagen inter-
pretation all agree on one point. It would, in their view, be desirable to return to the
reality concept of classical physics or, to use a more general philosophic term, to
the ontology of materialism. They would prefer to come back to the idea of an ob-
jective real world whose smallest parts exist objectively in the same sense as stones
or trees exist, independently of whether or not we observe them” [5, 1958, p. 115].

In their lectures, many teachers preferred to avoid these conceptual problems by
focusing on the technical aspects of the formalism. Gianni, on the other contrary,
did not seem to shy away from these questions. If anything, he would delightedly
discuss the ideas on quantum theory of the great minds of scientific and philosophi-
cal thought of the twentieth century. In his course called Quantum Mechanics I had
learned that the works of John Von Neumann (1903-1957), Simon Kochen (1934),
Ernst Specker (1920–2011) and John Bell (1928-1990) provide constraints to the
possibility of a classical reformulation of quantum mechanics [1, 7, 12]. In partic-
ular, a global probabilistic interpretation is not possible, i.e., an interpretation such
that there exists a measure and a common space in which to represent the collection
of all possible observations as functions and whose points assign a defined value to
each variable [2, 8]. However, alongside these answers, many questions regarding
the possibility of obtaining the interpretation of quantum mechanics from weaker
hypotheses still remained unsolved. It was necessary to better understand on which
assumptions the probabilistic interpretation of quantum mechanics was based and
whether or not these assumptions could be inferred from the formalism.

When I asked Gianni to supervise my thesis on these issues, to my surprise, he
suggested that I take a course in the history of physics. Indeed, he considered his-
tory, among other things, as an extremely important subject for understanding the
true nature of scientific theories. Afterwards, the first preliminary discussions with
him convinced me even more that a crucial question concerned what is called the
problem of objectification. Gianni had an original way of formulating this prob-
lem: “it seems that the formalism of quantum mechanics does not contain certain
facts, which must be assumed”, he would say smiling, as he did when he was aware
of the depth of a statement. I reflected on that concise sentence for some time,
then I realized that the problem of objectification, as formulated by Gianni, could
be rephrased in these terms: in order to obtain the current interpretation of quan-
tum theory, the fact that a result of a measurement has been achieved (for example
through a very precise position of a display pointer of the equipment) must be as-
sumed. In other words, given the difficulty of deducing from the time evolution
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the empirical fact that a display pointer indicates a very precise result following a
measurement, everything seems to suggest that the formalism of quantum mechan-
ics never represents the notion of fact or event. That is, it seems that the current
interpretation of quantum theory needs a hypothesis of objectification, i.e., an on-
tological assumption that consists in assuming the reality of facts or events such as,
for example, having obtained a precise value in a measurement.

But, is it really so? Gianni and I wanted to question this general conclusion.What
we wished was to find cases in which it was possible to remove the hypothesis of ob-
jectification. In other words, we wanted to suggest reasons for removing or, at least,
weakening that assumption. The central aim of the thesis became to ask whether the
hypothesis of objectification, which is currently added to the formalism, is not, at
least in one case, deducible from it and in particular from the dynamics of the tem-
poral evolution. The case study we were looking for had to: 1) represent a situation
similar to that in which a macroscopic system such as a measurement apparatus,
following interaction with a system, assumes a well-defined state (which for exam-
ple represents the fact that the result of a measurement is a particular value), i.e
becomes objective; 2) represent a fact in Nature in which it is not clear whether its
explanation can be derived from the formalism of quantum mechanics or whether
a hypothesis of objectification is necessary for its explanation. Proving that such a
fact can be deduced from the time evolution of quantum mechanics would have al-
lowed us to conclude that there are cases in which the hypothesis of objectification
is superfluous or, in other words, obtainable from the formalism.

With these ideas in mind, after an exploratory phase in which we inspected a
number of examples which seemed particularly illuminating, we selected the case
of chiral molecules of the type XH3 as our case study. For these molecules, the
Schrödinger equation predicts that the two lowest-energy stationary states of the
nucleus X are symmetric or antisymmetric under reflection with respect to the
plane of the hydrogens. These states can be seen as superposition of localized states
which, in fact, correspond to molecules with different chemical properties. In this
case, one may ask whether quantum mechanics is compatible with the existence of
molecules of one type or another. It was important to find an answer to this question
because not only can a molecule of this kind be a good prototype of systems that are
never observed in states of superposition (measurement apparatuses, pointers and
macroscopic systems tout court), but it also has marked analogies with macroscopic
systems. What we wanted to do was to schematize this selected case study in order
to demonstrate that it is possible to deduce from the Schrödinger time evolution of a
quantum-mechanical system, defined in the formalism, that typically certain chiral
molecules of the type XH3 exhibit only localized states. This result would have
allowed us to conclude that there exist situations in Nature for which the formalism
of quantum theory implies that a particular physical system, despite having delo-
calized superposition states, assumes well-defined and localized states, in a certain
sense similar to those of a display pointer.

At that point the goals of the thesis were much clearer and my work, under
his supervision, began with an attempt to present an exposition of the probabilistic
interpretation of quantum mechanics. This was supposed to be the content of the
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first part of my dissertation. I wanted to accomplish this task by putting myself in
the best perspective to identify and expose the critical points of this interpretation.
Gianni was very generous with his time right from the start, as many students ac-
knowledge. He allowed me to call him at home in the evening, at around half past
nine, when I needed help. And once a week, in his office, I would discuss the work
done with him. I have many memories of that period. For example, one thing that
impressed me was this: during discussions in his office on matters that were some-
times extremely technical and complicated, while we were in the process of working
something out mathematically, the phone would ring. He would answer and speak
for several minutes. At the end of the phone call, he would resume speaking from
the exact point he had stopped, as if no one had ever interrupted him. His ability
to refocus his attention on a particular task was impressive. Anyone would have
had a hard time picking up again so quickly, after the phone call, the thread of the
reasoning.

What Gianni did make me understand was the importance of distinguishing
between physical formalism and its interpretation. “A theory?—he said once
smiling—it is a heap of symbols, some rules and an interpretation”. What he
wanted me to notice was the fact that, unlike in classical physics, where it is intu-
itive to represent the position of a planet as a vector of Euclidean space, in quantum
mechanics the empirical meaning of the symbols is not immediately intuitive—
there is a clear split between mathematical entities and the objects they represent.
As a consequence, the relationship between the symbols of quantum theory and
the language we use to describe experiments is a priori problematic. Chris Isham
has well expressed this point by saying that “in classical physics, the ‘realist’
and ‘instrumentalist’ views of science fit together seamlessly, whereas in quantum
physics they differ sharply, especially in their attitudes towards the idea of physical
properties. That such a distinction can arise at all is closely tied to the different
mathematical structures employed in the formulations of classical and quantum
physics” [6, p. 3].

On the basis of these considerations, my exposition of the interpretation of quan-
tum theory proceeded through these steps: 1) I distinguished two languages, on the
one hand an observational language with which we describe the experiments, and
on the other hand a theoretical language, which includes the mathematical entities
of quantum mechanics and classical physics; 2) I defined within this scheme what
to interpret a symbolic languagemeans (the probabilistic interpretation of quantum
mechanics associates propositions of the observational language with the terms of
the quantum theoretical language); 3) I clarified, using the two previous points, the
differences that exist, in the constitutive substance, between the classical and the
quantum language; 4) I defined in terms of points 1) and 2) the postulates of the in-
terpretation of the theoretical language of classical physics and of the probabilistic
interpretation of the theoretical language of quantum mechanics.

The idea of distinguishing and analyzing two languages, the theoretical lan-
guage, which contains the mathematical entities of classical physics and quan-
tum mechanics, and the observational language, which is used to communicate
the experimental results, was suggested to me by reading the works of proponents
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of logical positivism such as Rudolf Carnap (1891–1970) and Hans Reichenbach
(1891–1953) who, together with other philosophers of science from Vienna in the
first half of the 1900s, reflected on the problems raised by the crisis of classical
physics and the birth of quantum mechanics. However, it was the conversations
with Gianni that convinced me of the need for an analysis of the two formalisms
and of the very meaning of interpretation. According to Gianni, the problems of
interpretation of quantum mechanics still required a work of reformulation which
had necessarily to deal with problems of linguistic nature. In his mind, the interpre-
tation of quantum mechanics could be better understood if one first comprehended
how its theoretical language has been constructed, from what needs it has emerged
and why it has that particular structure. A view of this kind, which considers the
problem of language central to science, can be traced back to Wittgenstein. Not
surprisingly, the Tractatus Logico-Philosophicus [13] was once the subject of our
conversations. I still remember that, commenting on the statement 1.1 of Wittgen-
stein in that work, “The world is the totality of facts, not of things”, Gianni said:
“You see . . . what is taken for granted in philosophy, i.e., the claim that there are
facts, is under discussion in physics”.

After providing the general characteristics of the observational and the theoreti-
cal language, I was able to explain that the formalism of classical physics has a very
close relationship with the observational language by making clear that it is possible
to identify the logical structure of the statements concerning a physical system with
the structure of Boolean algebra of the subsets of a topological space that defines
that system. I then discussed classical probability and stated the postulate that de-
fines its interpretation. Afterwards, I explained that, when the topological spaces of
classical physics are replaced with Hilbert spaces, then the logical structure of the
observational statements acquires the property that in the classical case it acquired
from the Boolean algebra structure of the subsets of a topological space. There is a
profound link between statements that can be connected through logical connectives
and the commutativity of the operators. At that point I introduced the postulate that
interprets the notion of commutativity in quantum mechanics. Starting only from a
class of states and operators in a Hilbert space, it is possible to associate a measure
with certain functionals. In particular, the measurement of an interval can be inter-
preted as an output frequency of particular results of measurements performed on a
collection of systems prepared in the same way.

Classical physics poses no particular problem in terms of the interpretation of its
formalism. Not only can the theoretical language of classical physics be extended
to the description of the measuring apparatus itself, but it also “contains” its inter-
pretation, without requiring any external assumption—there are sequences of points
whose frequencies of visit of the intervals are equal to their measure �. For reasons
analogous to those of the classic case, the interpretation of the measure � of an
interval in terms of relative frequency implies that in every single measure of a set
of systems all prepared in the same way a fact occurs. What we elucidated was that
it is not clear whether the theoretical language of quantum mechanics, due to its
mathematical structure, allows the existence of specific cases in which the hypoth-
esis of objectification is not necessary. Maybe, we were wondering, it is possible to
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construct a factual model whose description in terms of the theoretical language of
quantum mechanics does not require an external hypothesis of objectification. Due
to the non-commutative structure of the theoretical language of quantummechanics,
the construction of a Bernoulli system is observable-dependent. From the quantum
description of the measurement process it is not possible to obtain the idea that an
event has occurred, for example the fact that the measuring apparatus indicates a
definite value. At first sight it seemed that one had to resign oneself to the idea
that the theoretical language of quantum mechanics predicts the facts and that the
hypothesis of objectification is always necessary. But, at this point, we asked our-
selves whether the phenomenon of the localization of certain pyramidal molecules
is a case in which the Schrödinger evolution implies the occurrence of an event and
does not require an external objectification hypothesis.

The chirality of a molecule can be considered to all intents and purposes a fact
described by the observational language. In our analysis, the problems of chiral-
ity were problems of localization since the chirality of a molecule corresponds to
the localization of the wave function of its component nuclei. It must be noted,
though, that molecules of type XY 3 are not necessarily right or left-handed: in a
multidimensional standard model for these molecules, the atom X is subject to a
double-well potential and the Schrödinger equation has symmetric and antisym-
metric eigenstates under reflection of the atom X with respect to the Y 3 plane.
In particular, the ground state and the first excited state are represented, respec-
tively, by a symmetric and an antisymmetric wave function. These wave functions
can be superimposed to give rise to two particular wave functions called right and
left, which are respectively located at the left and right side of the x axis and
which correspond to two localized configurations of the molecule. Among pyra-
midal molecules, ammonia exhibits configurations that are not localized and the
difference in energy between the ground and the first excited state can be obtained
by spectroscopic measurements. However, if the nitrogen atom is replaced by heav-
ier atoms, such as phosphorus or arsenic, to form arsine and phosphine, then such
molecules exhibit localized patterns.

In the language of Hilbert spaces, the problem is to explain whether, due to the
effect of time evolution, a system that has a space C2 available chooses two local-
ized states defined by special directions, which correspond to the location of the
molecule. Since chirality is a fact describable by observational language and since
it can be reduced to localization, the property of a system of being in a localized
state is a fact, in the same way as a pointer of an apparatus pointing in a certain
direction. In this sense, the problem of chiral molecules, reduced to the simplest
problem which consists in asking whether, due to the effect of time evolution, a
system always finds itself in two precise states of a dimensional space and not in
their superpositions, is a good prototype of the general objectification problem.

To explain the localization of molecules heavier than ammonia we took into
consideration two significant physical facts: first, the times of electromagnetic tran-
sition from a localized state to the fundamental state are much greater than the times
an atom X takes to oscillate from side to side of the plane of the atoms Y ; second,
contrary to ammonia, for heavy molecules such as arsine and phosphine, these times
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are much greater than the formation time of a molecule and the observation time.
Hence we conjectured that the reason why arsine and phosphine exhibit localized
configurations is that during the formation of these molecules the trivalent atom
ends up in a localized state, resulting in, for times which are long compared to our
times of observation, a localized configuration of the molecule.

Thus, the question we asked ourselves is whether, due to the effect of time evo-
lution, at a time t0 � t � � , where � is the transition time and t0 is the molecule
formation time, the atom X is in a localized state. To address this question, we first
wrote the one-dimensional Hamiltonian of a non-relativistic quantum particle inter-
acting with the electromagnetic field and subjected to the force field of the atoms
Ys. This Hamiltonian consists of: the sum of the particle kinetic energy and the
potential due to the Ys atoms (a symmetric double well potential, according to our
assumption); a term that represents the interaction energy between the particle and
the magnetic field, expressed through the creation and annihilation operators; fi-
nally, a term representing the energy of the radiation field, also expressed by means
of the creation and annihilation operators.

On the basis of the experimental data on pyramidal molecules, we hypothesized
that the gap ! between a level relative to an even eigenstate and to an odd eigenstate
is very small compared to all the energies involved, a hypothesis which allowed us
to state that �� t0. We showed that as the potential barrier V tends to infinity, the !
gap tends to zero; then we proved two essential points: the first consists in the fact
that the right-hand state, superposition of the even ground state and the first excited
odd state, has norm L1 to the left of zero which is of the order of !; the second
consists in the fact that the eigenstates of the continuum of the Hamiltonian H0,
which represent an incoming wave from the left, have upper limit on the positive x
axis of the order of !. Afterwards, we defined the initial state of the particle and we
showed that the formation time t0 of the molecule can be identified with the passage
time through the plane of the atoms Ys of the wave packet describing the atom X .

The term representing the interaction energy in the Hamiltonian of our problem
has been considered as a perturbation. I showed how the time evolution opera-
tion expands perturbatively in the interaction representation, I described the Hilbert
space of the problem and I introduced the scheme and the notation necessary to
calculate the amplitudes of the evolved state at first order of the Hamiltonian of
the perturbing interaction in the basis product between the symmetric states and
the one-photon Fock states. Our goal was now to establish the phase relationships
between the amplitudes of the vector resulting from the time evolution, at time
t0 � t � 1=!, of the initial state in the aforementioned basis. According to our
conjectures, for times t such that t0 � t � 1=!, i.e., for times in which the packet
“has finished interacting” but which are still less than the oscillation times, the atom
arriving from the left will end up in a left state. For times of the order of 1=!, the
oscillations between right and left will take place as predicted by quantum mechan-
ics. From a mathematical point of view, we expressed this conjecture by making
these points: the first is the fact that for t � t0 the state evolved at time t has “al-
most reached” its limit and can be replaced by its limit vector (up to errors in the
ratio between t and t0); the second is that, in Schrödinger’s representation, for times
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t such that t0 � t � 1=!, this vector has phase differences of the order of !t0
between the amplitudes in the product basis obtained by taking the symmetric and
antisymmetric states and the one-photon Fock states; and, for times of the order of
1=!, it oscillates between a right and a left state. In order to prove these two points
I estimated some expressions involving the amplitudes of the evolved vector at time
t . I calculated these amplitudes explicitly and discussed the properties of the func-
tions that compose them, then I calculated their punctual limit as t tends to infinity
and I estimated the difference between the amplitudes at time t and their punctual
limit in terms of t0=t . Finally, I estimated the differences between the amplitudes
showing that the state is localized. Given the observed values of !, our model was
inapplicable for ammonia molecules and we could not conclude that they are in lo-
calized states. However, our model was applicable for pyramidal molecules heavier
than ammonia such as arsine and phosphine: the fact that these molecules exhibit
localized states can be explained by referring to the dynamics of their formation.
We therefore concluded that Schrödinger’s temporal evolution implies, in a simple
case, the transition from potentiality to actuality without requiring a principle of
objectification external to the theory.

After my graduation, I visited Gianni several times in his office. I recall with
pleasure several conversations on the most disparate topics, including some on pop-
ular science books such as The Road to Reality by Roger Penrose [9] and A Brief
History of Time by Stephen Hawking [4]. Commenting on the latter’s popular sci-
ence works, Gianni said, half-jokingly, that they tended to “wrap some scientific
problems in mysteries”. My view is that Gianni believed that scientific dissemina-
tion must be done in a clear and rigorous way. When this is not possible, then it is
better to give up: for example, according to him, the problems of quantum mechan-
ics were so connected with the interpretation of his formalism that in some cases
they could not be clearly expressed in the ordinary language.

The content of those conversations as well as some points made in my thesis
have been of fundamental importance for my subsequent work [11]. However, after
the beginning my doctorate studies in the United Kingdom, I have had only spo-
radic meetings with him. The best memory I have of that period is this: I had to
write a popular article on quantum mechanics for a magazine aimed at the general
public. He gave me some valuable advice but, when I asked him if I could quote
him in the article, he replied that he preferred not to be quoted: “in my life I follow
the adage attributed to Epicurus: Λά™ε βιώσαζ”—he answered smiling. With that
adage, which means “live hidden”, he alluded to that kind of life based on gen-
uine values and away from the spotlight, as it is suggested in the 14th of Epicurus’
“sovran maxims”, as collected by Diogenes Laertius [3, p. 1297].

I believe that, beyond his outstanding scientific works, the most important thing
Gianni has left us is his example of a life “well lived”, mindful of others and focused
on what is authentic and meaningful.
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Collaboration and Friendship
with Gianni

Franco Strocchi

Both my wife and I have been bound by a deep friendship with Gianni, also involv-
ing his whole family.1 It is hard not to think with regret of the beautiful days spent
together in Sardinia, of the walks on the Apuan Alps and in the Fauglia countryside,
especially in the years when his sons Jacopo and Cecilia were children; all those are
happy and poignant memories that are an important part of our lives.

I met Gianni when he was an outstanding student of the course I was lecturing
at the University of Pisa and then in 1971 as the supervisor of his thesis. The result
was a scientific collaboration that continued until a few months before his death.

I have no words to express my deep gratitude for what I have received from
Gianni during our collaboration; his contributions and his role have always been
crucial to achieving results. I still regret not having been able to get him the recog-
nition from the scientific community and the right university position that he did
deserve.

In the course of my activity I have had the opportunity to meet illustrious and
prestigious personalities in the field of Mathematical and Theoretical Physics, but I
can affirm, without hesitation, that Gianni was no less, for his lucidity in grasping
the core of the problems on the fly and solving them with the simplicity of essential
logic, without resorting to gratuitous technicalities.

In his academic research, Gianni was mainly interested in understanding and
solving problems, without much interest in the related public recognition. On more
than one occasion, despite my advice, the important results he had obtained have
remained “unpublished“.

1 Original Italian version included in Appendix A.2.
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Another great gift of Gianni was his willingness to make himself available to
those who turned to him for help. I could personally witness his generosity in pro-
viding the solution of thesis problems to his undergraduates, leaving to them the
scientific credit.

We were lucky enough to know and have as a friend an exceptional person, in
terms of intelligence, generosity and great humanity and his loss has caused us
incurable pain.



In Memory of Giovanni (Gianni) Morchio

Simone Zerella

A cold day of February 2005. I am strolling across the department of physics’s
corridors as a first-year PhD student. I have recently arrived in Pisa while still dazed
by the change of city and life, and I am in search of doctoral courses to include in
the first year plan of my graduate study programme.

While passing by the open door of a lecture room where a class has already
started, I happen to notice a notification sheet posted at the entrance, laconically
saying “course on mathematical methods for quantum mechanics”.

Intrigued, I enter the room, apologising for the delay, and I am greeted by a shy
and good-natured lecturer. I sit down and start listening to his lecture. The sensation
I felt that day is the same that has always accompanied me during the years of study
and research that I had the privilege of sharing with Gianni.

I preserve with particular affection several memories of that period of my life.
A first one is related to the not so smart impression I made when, in a lecture,

Gianni introduced the fascinating topic of spontaneous Lorentz symmetry breaking
in the charged sectors. That caught me quite incredulous and I then asked him to
repeat that part of the discussion, somewhat convinced that he should be wrong.
And yet Gianni, after hinting a smile and without reminding me at all my own
inexperience, calmly unfolded again the main parts of the reasoning, additionally
providing enlightening clarifications.

A second memory is about the final oral exam of Gianni’s doctoral course: he
actually questioned me as if I was an “ordinary” candidate, even though the two of
us had already agreed that he would be my Ph.D. supervisor in the years to come,
thereby giving me one of the many proofs of his intellectual probity.

One further recollection that I cherish concerns one of the many afternoons I
spent in Gianni’s office discussing physics and any other subject of sort. At some
point, for a reason that I cannot remember now, the discussion switched from the

S. Zerella (�)
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infrared problem on to personal memories of Gianni’s military service, which even-
tually aroused quite an amount of hilarity in the both of us.

Regarding the scientific side of Gianni’s activity, I have nothing to add to what
other contributors to this volume, more qualified than mine, are surveying in depth.

Regarding the human sides, instead, I believe I can write words from a privileged
point of view. I do not think I ever met a more generous person than Gianni. Indeed,
I did admire his consideration of those social classes that have become victims of
the economic system we happened to live in, as much as his boundlessmathematical
culture.

In particular I can claim that from Gianni, beside all subtleties of the infrared
problem, the usefulness of algebras in the formulation and synthetic understanding
of field theories, of statistical mechanics, and of quantum mechanics on manifolds,
I learnt the quest for a mathematical rigour which be never an end in itself, the
predilection for reasoning in terms of concepts, and the scrupulous attention to ex-
pository clarity.

Those are gifts that I will always carry with me and that every day I try to return
to my students. Too bad not to be able to talk to him any longer about all that. For
sure, this would have made him happy.



Appendix—Original Sources in Italian

This appendix collects the original version in Italian of some of the pages of mem-
ory and tribute to Gianni which appear in their English translation in the main body
of the volume.

It was the wish of the authors to keep track of their original words, with all the
nuances of their native language, in order to fully express their praise and eulogy.

A.1 Chi ha compagni non morirà

(Original Italian version of the Chapter “Chi ha compagni non morirà” by Cornolti
et al.)

In un email di buon anno Gianni ci scrisse:

Ho trovato nell’Archivio Marxista Internazionale una cosa bella e semplice. La massima e
il motto credevo fossero i miei, ma sono stato preceduto.

La vostra massima: Humani nihil a me alienum puto.
Il vostro motto: De omnibus dubitandum.

Sono le risposte di Marx ad un questionario che gli sottoposero le figlie: era allo-
ra costume in Inghilterra che le ragazze strappassero delle “confessioni” a genitori
e amici.

Crediamo che qui ci sia tutto Gianni.
Humani nihil in tutta la sua generalità. Ogni singolo momento della storia umana

suscitava in Gianni maledizione ed entusiasmo. Maledizione per le sofferenze e le
devastazioni materiali e morali patite dalla stragrande parte dell’umanità nella sua
storia; entusiasmo per tutto quello che, nonostante tutto, l’uomo aveva prodotto e
poteva produrre e che avvicinava l’umanità al mondo sognato.

Gianni si riconosceva completamente in queste parole di Marx:

Si vedrà allora che da tempo il mondo custodisce il sogno di una cosa, del quale gli manca
solo di prendere coscienza, per possederla veramente. Si dimostrerà che non si tratta di
tirare una linea retta tra passato e futuro, bensì di portare a compimento i pensieri del
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passato. Si vedrà in ultimo che l’umanità non inizia un nuovo lavoro, ma porta a termine
con coscienza il proprio antico lavoro.1

Non una fede cieca, ma una fede fondata sulla ragione.
Non la ragione feticistica delle magnifiche sorti progressive dello sviluppo sto-

rico, o la razionalità strumentale di chi vede come unica possibilità la sua appli-
cazione per ottenere i migliori vantaggi personali in una società che è un fatto e
perciò accettatta come destino; non la posizione contemplativa di chi si vive se-
parato dalla società nel mondo delle idee o della scienza; ma la ragione che è a
fondamento dell’etica e del bene collettivo. La ragione come fondamento della pas-
sione e dell’attività politica. Per questo Gianni amava molto Spinoza e lo ha letto
fino all’ultimo, così come amava il napoletano Antonio Labriola.

Gianni era incrollabilmente convinto che ogni uomo sia in grado di poter capire
le cose più complesse. Era questa la principale eredità dell’Illuminismo. Bisogna
aver visto la pazienza e la passione con cui illustrava categorie astratte di economia
agli operai, con cui ha condiviso decenni di attività sindacale e politica, ma anche
nella convinzione che il confronto con loro lo arricchisse, perché il pensiero, le
conoscenze sono il prodotto della vita reale di uomini reali.

Grazie al semplice fatto che ogni nuova generazione trova davanti a sé le forze produttive
(ivi compresa la scienza) acquisite dalla vecchia generazione, che servono come materia
prima di una nuova produzione (in senso lato: materiale, artistica, scientifica, ecc.), si
forma un contesto nella storia degli uomini, si forma una storia dell’umanità, che è tanto
più storia dell’umanità quanto più le forze produttive degli uomini, e conseguentemente i
loro rapporti sociali, sono cresciuti. La necessaria conseguenza è: la storia sociale degli
uomini è sempre e soltanto la storia del loro sviluppo individuale, che ne siano coscienti
o no. I loro rapporti materiali formano la base di tutti i loro rapporti. Questi rapporti
materiali non sono altro che le forme necessarie, nelle quali si realizza la loro attività
materiale e individuale.2

De omnibus dubitandum: Gianni aveva la certezza che “non possono esserci
conoscenze tanto lontane da non potervi alfine pervenire, né conoscenze tante na-
scoste da non scoprirle”,3 ma anche che l’oggetto del conoscere e lo stesso soggetto
sono il prodotto dell’attività umana, momenti del processo sociale di produzione.

Perciò ogni verità deve essere considerara provvisoria, sottoposta continuamente
a critica, sia nella verifica della sua capacità di reggere i nessi interni, sia nella sua
rispondenza ai fatti storici o scientifici. La verità di una teoria sta innanzitutto nella
sua capacità di stimolare le azioni umane e le successive ricerche, nella sua capacità,
in definitiva, di condurre oltre se stessa.

Dubitare dunque di ogni proposizione o risultato acquisito è qui il contrario esat-
to del relativismo e dello scetticismo. Riflettere costantemente su ciò che viene
considerato assodato è il principio direttivo di ogni sviluppo del pensiero.

Gianni era un divoratore di libri, alla ricerca incessante di fatti storici che po-
tessero arricchire il materiale dell’esperienza con cui confrontarsi, di idee su cui
ragionare. Ogni qualvolta arrivava ad una conclusione, che arricchiva la compren-

1 Karl Marx (1818–1983), Lettera a Arnold Ruge, Settembre 1843.
2 Karl Marx, Lettera a Pavel Vasilevic̆ Annenkov, Dicembre 1846.
3 Cartesio, Discorso sul Metodo (1637).
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sione della storia e dei rapporti tra la classi, la comunicava con fervore, impaziente
di condividerla e di metterla alla prova, di sottoporla alle obiezioni e alla critiche.
Non di rado, però, nel momento stesso in cui ne parlava e l’oggettivava, sentivi l’in-
quietudine del pensiero ancora insoddisfatto di sé e di quanto raggiunto. E allora
riprendeva il problema da un’altra prospettiva.

Era bellissimo vedere e seguire il pensiero nel suo farsi.
Ma Gianni non ha mai pensato in nessun caso il pensiero come fine a se stesso.

Ciò che lo dirigeva in ogni momento della sua vita era la passione per la verità, con-
vinto fino all’ultimo nervo del suo corpo che la ricerca della verità facesse tutt’uno
con la lotta per una società futura come comunità di uomini liberi qual è possibile
con i mezzi tecnici oggi a disposizione, per la trasformazione di quei rapporti sociali
sotto i quali gli uomini soffrono e la loro anima è certo destinata a intristire.

La scissione tra uomo e società ha caratterizzato tutte le forme storiche della vita
sociale. L’esistenza della società si è fondata sinora o sull’oppresione immediata,
oppure è una cieca risultante di forze contrastanti; non è il risultato della spontaneità
cosciente di uomini liberi.

Era inossidabile convinzione di Gianni che la verità è sospinta innanzi solo in
quanto gli uomini che la possiedono parteggiano inflessibilmente per essa, la appli-
cano e la impongono, agiscono in conformità ad essa. “Il processo della conoscenza
implica il reale agire e volere storico nella stessa misura in cui implica l’esperien-
za e la comprensione.”4 Perciò il processo della conoscenza è sempre il processo
collettivo della lotta per la trasformazione dello stato delle cose esistenti.

Sul piano storico politico, in particolare, Gianni, insieme ai compagni con cui
lavorava, era arrivato alla conclusione della necessità di un bilancio del movimento
comunista e dei problemi che lo avevanomesso in difficoltà. Un bilancio che doveva
prendere in considerazione in modo unitario il processo che risale sul piano storico
all’estensione del capitalismo fuori dall’Europa occidentale e degli USA, su quello
politico alla crisi del movimento operaio tra gli ultimi anni della II Internazionale
e la crisi della III, da fare senza scorciatoie sulla base e nel quadro delle tesi di
Marx e dei loro sviluppi successivi. Non è qui il luogo per riassumere e discutere i
risultati di questo bilancio. Quello che qui importa evidenziare è che la ricostruzione
coerente della storia dell’ultimo secolo e mezzo dal punto di vista dei comunisti è
stata la principale attività teorica di Gianni. Non per mera curiosità intellettuale, ma
in quanto presupposto indispensabile per la lotta politica del movimento operaio.

Tutta la vita di Gianni è in fondo testimonianza di quanto dice Anatole France:

Noi non possediamo nulla in proprio tranne noi stessi; l’uomo dona veramente solo quando
dona il proprio lavoro, la propria anima, la propria intelligenza, e questa magnifica offerta
di tutto se stesso a tutti gli uomini arricchisce tanto il donatore quanto la comunità.5

4 Max Horkheimer (1895–1973), Sul problema della verità (1935).
5 Anatole France (1844–1924), Il signor Bergeret a Parigi (1901).
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E sottoscriverebbe ogni parola dell’Angelus Novus di Walter Benjamin:

La lotta di classe, che è sempre davanti agli occhi delle storico educato su Marx, è una
lotta per le cose rozze e materiali, senza le quali non esistono quelle più fini e spirituali. Ma
queste ultime sono presenti e vivono in questa lotta come fiducia, coraggio, umore, astuzia,
impassibilità, e agiscono retroattivamente nella lontananza dei tempi. Esse rimetteranno
in questione ogni vittoria che sia toccata nel tempo ai dominatori. Come i fiori volgono il
capo verso il sole, così, in forza di un eliotropismo segreto, tutto ciò che è stato tende a
volgersi verso il sole che sta salendo nel cielo della storia.6

Anche se tutto questo oggi ai molti appare impossibile e folle.
A noi resta il raro, e immenso, privilegio di averlo conosciuto.

Pompeo, Maurizio, Fulvio

A.2 Collaborazione e amicizia con Gianni

(Original Italian version of the Chapter “Collaboration and Friendship with Gianni”
by F. Strocchi)

A Gianni sia io che mia moglie siamo stati legati da una profonda amicizia coin-
volgendo anche tutta la sua famiglia. È difficile non pensare con rimpianto alle
belle giornate passate insieme in Sardegna, nelle camminate sulle Apuane e nella
sua campagna di Fauglia, sopratutto negli anni in cui i figli Iacopo e Cecilia era-
no bambini; sono ricordi felici e struggenti che fanno parte importante della nostra
vita.

Ho conosciuto Gianni quando è stato studente eccezionale del corso che te-
nevo all’Università e poi nel 1971 come relatore della sua tesi. Ne è nata una
collaborazione scientifica che è andata avanti fino a pochi mesi prima della sua
morte.

Non ho parole per esprimere la mia profonda riconoscenza per quanto ho rice-
vuto da Gianni nel corso della nostra collaborazione; i suoi contributi e il suo ruolo
sono sempre stati cruciali per il raggiungimento dei risultati. Mi resta il ramma-
rico di non essere riuscito a procurargli il riconoscimento da parte della comunità
scientifica e la giusta posizione universitaria che meritava.

Nel corso della mia attività ho avuto occasione di incontrare personaggi illustri
e prestigiosi nel campo della Fisica Matematica e della Fisica Teorica, ma posso
affermare, senza esitazione che Gianni non era da meno, per la lucidità di cogliere al
volo il nocciolo del problema e risolverlo con la semplicità della logica essenziale,
senza ricorso a tecnicismi gratuiti.

Nella ricerca Gianni era soprattutto interessato a capire e risolvere i problemi,
senza molto interesse ai relativi riconoscimenti pubblici. In più di un’occasione,
nonostante i miei consigli, gli importanti risultati che aveva ottenuto sono rimasti
“non pubblicati”.

6 Walter Benjamin (1892–1940), Tesi di filosofia della storia.
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Un’altra grande dote di Gianni è stata la sua disponibilità a mettersi a disposizio-
ne di chi si rivolgeva a lui per chieder aiuto. Ho potuto constatare di persona la sua
generosità nel fornire la soluzione dei problemi di tesi ai suoi laureandi, lasciando
a loro il relativo credito scientifico.

Abbiamo avuto la fortuna di conoscere e avere come amico una persona ecce-
zionale, per intelligenza, generosità e grande umanità e la sua perdita ci ha causato
un dolore insanabile.

Franco Strocchi

A.3 Il nostro babbo

(Original Italian version of the Chapter “Our Dad” by C. and I. Morchio)

Siamo stati molto indecisi se scrivere qualcosa per raccontare nostro padre, e il
motivo è che era una persona decisamente convinta che nessuno è mai davvero in
grado di giudicare, descrivere, raccontare le altre persone. Lo pensava sinceramente,
e non per un disinteresse nei confronti degli altri, ma perché provava un profondo
rispetto per le vite altrui, e in lui erano caratteristici il pudore e l’umiltà.

In tutti i suoi rapporti era la persona che ascoltava l’altro, diceva sempre che
sentire i pareri di chi la pensa diversamente è una delle cose più interessanti al
mondo.

Ci piacerebbe comunque trasmettere un’immagine del nostro babbo, che possa
in qualche modo aggiungere un lato magari meno noto alle pagine che seguono.

La prima visione che ci viene in mente quando pensiamo a lui è il momento in
cui tornava a casa dal lavoro, e ci sentivamo quasi come se ad accoglierci fosse
lui e non viceversa: entrava in casa con un sorriso enorme, desideroso di sentire
come era andata la nostra giornata e di scambiare con noi idee, opinioni e racconti
spesso abbastanza complessi da metterci in seria difficoltà, anche se sentivamo la
sua fiducia illimitata nell’intelligenza e nella capacità di capire, nostra e di tutti.

Del suo lavoro e della fisica parlava poco, e quando lo faceva era sempre e solo
in modo divertente, con battute su come secondo le leggi della fisica l’acqua bolle,
il gelato si compone, la frittata si gira.

Ne parlava poco anche perché condivideva con noi tante altre sue passioni: tradu-
ceva dal latino e dal greco senza vocabolario, conosceva a fondo la filosofia, sapeva
a memoria interi canti della Divina Commedia e poesie varie, era un grande amante
della musica classica, al punto da cantare arie delle sue opere preferite nei dialoghi
della vita quotidiana, spesso per stemperare nervosismi o litigi.

Oggi che siamo adulti con le nostre vite fatte di lavoro, amici e affetti, fatichiamo
ancora di più a capire dove trovasse le energie per fare tutto quello che faceva, con
riserve inesauribili di entusiasmo. Forse il modo più bello di condividere l’affetto è
trovare e dare tempo agli altri, e lui era sempre disponibile e aperto ad avere tempo
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per noi, sia da piccoli per giochi e fiabe inventate da lui, sia da grandi per confronti
e discussioni di ogni genere.

Babbo ci ha insegnato che è importante avere passioni, conoscere le cose in
profondità, pensare autonomamente, vivere in modo indipendente, lavorare con se-
rietà, avere tanti interessi, rimanere aperti al mondo e non smettere mai di imparare.
Ma soprattutto, con poche parole ma dando molto l’esempio, ci ha insegnato che è
fondamentale essere persone integre, coerenti con le proprie idee e i propri valori.

Il suo esempio ci ha aiutato a trovare la nostra strada, nella consapevolezza
che qualunque cosa avremmo fatto sarebbe andata bene, purché la facessimo con
passione e integrità.

Anche se a parole dichiarava di non credere all’importanza delle emozioni, ci
ha sempre fatto sentire la profondità dell’affetto che provava nei nostri confronti,
facendoci sentire apprezzati e amati per quello che siamo.

Ci manca tantissimo, ma tutto ciò che è stato vive in noi.

Iacopo e Cecilia
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