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Abstract With a large number of observation objects and diverse scene environ-
ments, limited fixed monitoring points and views make the traffic monitoring a 
complex and difficult task. UAVs, as mobile and agile vehicles, provide an aid for 
the dynamic implementation of traffic monitoring. Similar to many other applica-
tion areas, the development of intelligence is mainly driven by deep learning. This 
paper reviews how UAVs can use deep learning methods for dynamic traffic moni-
toring. In particular, for detection and recognition, which fall under the umbrella of 
computer vision techniques, several high-performance methods are brought together, 
typically represented by the Yolo family of algorithms. For navigation and localiza-
tion, deep learning methods can be combined into planning and scheduling as an 
overall control scheme for monitoring a swarm of drones. As for fusion and analysis, 
the detection results will be abstracted into real-time traffic flow states. It will also be 
integrated with the weather, time, and other related information, and heterogeneous 
data processing will be performed using deep learning methods to achieve intelligent 
analysis and decision-making. In addition, the UAV simulation platform is introduced 
to address the problem of insufficient actual training data. The types, performance, 
and typical application cases of traffic monitoring drones are also summarized and 
explained. With the continuous development of technology, the three aspects involved 
in dynamic traffic monitoring will form a more functional and cohesive closed-loop 
system with UAVs as the driving platform and intelligent processing algorithms as 
the core technology. 
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1 Introduction 

Most current traffic monitoring methods use fixed sensor devices such as fixed 
cameras, induction loops, or radar sensors for real-time monitoring of traffic condi-
tions. But this faces the problems of damage not easy to repair, high mainte-
nance costs, and, most importantly, the traffic information collected by these fixed 
equipment sensor devices is only for the specific area of installation, which is a 
passive collection method. The monitoring information contained in this way cannot 
accurately find the root cause of traffic congestion. 

Uncrewed aerial vehicles (UAVs), also called drones, are used in various appli-
cations due to their mobility, flexibility, and low cost [1]. It is this flexibility and 
mobility that makes them particularly suitable for applications in the field of trans-
portation, which have been implemented in various ways, such as traffic monitoring 
and surveillance, accident monitoring, and road safety [1–3]. 

This paper divides UAV-based traffic monitoring technology into three main 
aspects: navigation and localization, detection and identification, and fusion and anal-
ysis. Intelligent traffic monitoring has been extensively developed in recent years, 
and its intelligence is mainly fused with deep learning. Especially for detection 
and recognition, with the tremendous success of the AlexNet deep neural network 
proposed by Krizhevsky [4] in 2012 for image classification tasks, deep learning 
based on a convolutional neural network (CNN) has rapidly emerged. CNN-based 
architectures in target detection have been developed to different degrees in terms 
of accuracy and speed, which is impressive. R-CNN and YOLO series are computer 
vision’s commonly used target detection algorithms. Detection and recognition are 
vital parts of implementing dynamic traffic monitoring. Traffic targets detected by 
UAVs can be well used for navigation and positioning of UAVs to achieve accurate 
monitoring of specific areas; picture data or video data of traffic conditions collected 
by UAVs can be transformed into real-time traffic flow status and prediction of future 
traffic flow through data fusion and analysis. Regarding navigation and positioning, 
the current collection of traffic information mainly relies on fixed sensor devices 
installed on the road to collect. Still, this method contains traffic information only 
for the specific area where the device is installed. Given this, using UAVs with high 
mobility, flexible type, and high altitude overhead characteristics for traffic moni-
toring is more effective than traditional ground monitoring methods. Then navigation 
and positioning play a non-negligible role, and most UAVs use GPS for navigation 
and positioning. The vigorous development of deep learning methods in recent years 
has made it possible to fuse them with the onboard cameras carried by UAVs to use 
vision for navigation and localization. Especially for traffic monitoring, if a UAV 
detects a vehicle blockage, it can use imagination to locate and gather to the blocked 
area for a better view of the traffic conditions on the ground. In terms of fusion and 
analysis, with the deployment of intelligent transportation systems and the devel-
opment of sensor technologies in recent years, UAVs are gradually being used in 
traffic monitoring, and it has become possible to collect multi-source spatiotemporal 
traffic data from different platforms. These spatiotemporal data provide data support
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for traffic prediction, and how to analyze and make decisions intelligently on these 
data has become the focus of scholars’ attention, in which data-driven traffic flow 
prediction methods are proposed, and the most representative model is the deep 
learning-based method. 

This paper is organized as follows. Chapter 2, Navigation and Positioning, intro-
duces current UAV navigation and positioning methods and future trends. Chapter 3, 
Detection and Identification, overviews current deep learning-based target detection 
algorithms and discusses future directions. Chapter 4, Fusion and Analysis, intro-
duces the commonly used data fusion methods and focuses on the current state 
and future trends of deep learning-based traffic flow prediction analysis. Chapter 5, 
UAVs, provides a general classification of the types of UAVs and application cases 
and introduces commonly used UAV simulation platforms, and Chap. 6 concludes. 

2 Navigation and Positioning 

2.1 Current Status 

Traditional traffic monitoring methods only target areas where specific equipment 
is installed and are reactive monitoring. UAV-based traffic monitoring can reach the 
target area quickly according to the wishes of traffic managers and is a kind of active 
monitoring. UAV navigation technology is crucial in advancing the target area by 
UAV. 

Various navigation techniques have been proposed so far, divided into three main 
categories: satellite, inertial, and vision-based navigation [5, 6] (see Fig. 1). 

Satellite navigation relies mainly on GNSS and is received and processed by UAVs 
to navigate according to pre-planned routes. Still, once the GPS signal is blocked 
or interfered with, it can significantly lead to inaccurate UAV navigation and posi-
tioning. Gyagenda et al. [7] have pointed out that GNSS is susceptible to spoofing,

Fig. 1 Navigation techniques 
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interference, and environmental effects. Vanegas et al. [8] showed that GPS navi-
gation could be limited or unavailable in dense outdoor environments, i.e., GNSS 
rejection interference. 

Inertial navigation, where accelerometer and gyroscope measurements obtain 
the position and orientation of the device, is not dependent on the external environ-
ment and can be used for its navigation in case of loss of GPS, but only for short 
periods. The error increases over time due to the presence of cumulative mistakes 
and the presence of noise and drifts in the sensor itself, leading to deviations in 
navigation [9]. 

From the above, it is easy to find that both inertial navigation and satellite navi-
gation have certain shortcomings, so navigation techniques based on GPS denial 
conditions have been widely studied [10–12]. 

Based vision navigation, UAV vision navigation is mainly a navigation technique 
that uses the combination of cameras carried by UAVs and computer vision tech-
nology to capture the external environment using cameras, obtain visual information, 
and extract and match features through computer vision algorithms based on pre-
stored global or local maps to serve as the basis for UAV flight. Lu et al. [5] reviewed  
vision-based UAV navigation, pointing out that vision sensors can obtain richer visual 
information and have a solid anti-interference capability, showing significant advan-
tages in UAV navigation. Zhang et al. [13] formulated the navigation problem as a 
tracking problem and solved it using particle filters to construct a vision-based UAV 
navigation method. Mittal et al. [14] proposed a vision-based autonomous naviga-
tion and landing system that uses depth information from stereo cameras to sense the 
surrounding environment and generate low-resolution maps for faster UAV naviga-
tion. Kumar et al. [15] proposed a novel approach to achieve UAV navigation using 
only the camera carried by the UAV and PID controller, applied edge detection and 
homography techniques to extract key features, and obtained good robustness. Su 
et al. [16] introduced the image feature extraction algorithm of SIFI and ORB to 
UAV vision navigation to estimate the pose and position of the camera by matching 
feature points and images. 

Due to the wave of artificial intelligence and deep learning, autonomous UAV 
navigation and deep understanding are becoming more and more closely integrated. 
Amer et al. [17] used visual input from the UAV’s onboard camera for visual localiza-
tion to achieve autonomous navigation based on the use of a deep convolutional neural 
network and a regressor to predict the steering angle of the UAV along a specified 
path. Pandhy et al. [18] used video information extracted from the UAV’s onboard 
camera by extracting video information, classified it by convolutional neural network 
and controlled the UAV flight commands by the classification results to achieve 
autonomous navigation in indoor environments without GPS signals. Chindhe et al. 
[19] introduced the mainstream UAV navigation methods, pointing out that vision-
based navigation techniques have a very high potential. Using a combination of UAV 
on-board cameras and deep learning can ensure Huang et al. [20] combined deep rein-
forcement learning with UAV navigation, designed a deep neural network, proposed a



Drone for Intelligent Traffic Monitoring: Current Status and Future Trends 1137

Q-learning learning strategy for UAV navigation, and obtained superior UAV naviga-
tion performance. Guo et al. [21] developed a deep reinforcement learning framework 
for autonomous UAV navigation in complex environments, dividing the navigation 
task into two subtasks, each solved by a DRL network of LSTM. 

Regarding positioning, UAV positioning refers to determining the position and 
attitude information of the UAV in space, etc. By positioning the UAV position to 
make more accurate control of UAV navigation further, navigation can, in turn, feed-
back to positioning, UAV navigation, and setting combined. In the drone application, 
traffic monitoring is essential; it can reach the desired target monitoring area through 
accurate positioning, hovering, and shooting to collect traffic data. 

The most commonly used positioning methods are based on inertial sensors and 
GNSS, which are usually used in combination with each other to constrain the cumu-
lative error of INS through GNSS. Still, GNSS faces the problem of signal loss, which 
makes it much less reliable. Based on such issues, researchers have started to use 
vision-based positioning to compensate for the shortcomings of GNSS and INS. 

There are two main approaches for vision-based UAV localization: relative vision 
localization and absolute vision localization. 

Relative to visual localization, popular methods are visual odometry (VO) and 
simultaneous localization and map building (SLAM) [22]. Visual odometry is an 
estimation of the camera motion based on the captured images, and by sampling 
a specific time interval, the movement of the moving object at each time interval 
can be estimated. Its motion estimates can be used for navigation purposes and 
with information from other data sources such as GPS, inertial sensors, etc. [23]. 
SLAM is a simultaneous localization and map-building technique that updates its bit 
estimation and map-building from previous motion trajectories and current sensor 
data. It performs this process to optimize it to obtain more accurate positioning 
continuously. It has been used more often in the autonomous navigation of UAVs 
[24, 25]. 

Absolute visual localization is used for localization by matching the current view 
acquired by the UAV with the graphical view established from the reference data. 
The benefit of this approach is that it reduces the effect of cumulative error, i.e., drift, 
in relative visual localization. Still, it requires a large amount of data and matching 
data, and with the rise of deep learning, image matching can be well combined in 
absolute visual localization. 

In summary, different UAV navigation technologies are proposed so traffic 
managers can choose the appropriate navigation technology for other environmental 
conditions and guide the UAV to the designated target area for traffic monitoring. 
For example: in outdoor open and good GPS conditions, a combination of iner-
tial navigation and satellite navigation technology can be selected to achieve the 
UAV flight plan. But in areas where GPS signals are disturbed, such as underground 
tunnels, culverts, etc., the UAV cannot achieve accurate navigation and positioning, 
thus affecting traffic monitoring. Vision-based technology makes up for this short-
coming, and more and more scholars are beginning to study vision-based navigation 
and positioning.



1138 H. Cao et al.

2.2 Future Trends 

In terms of navigation and positioning, more and more vision-based technologies 
will be proposed in the future, and the following trends will emerge: 

UAV clustering. In the face of the increasingly complex traffic environment and 
UAV clustering, research has been continuously brought up in recent years; in the 
future, a UAV network can be deployed for traffic monitoring through the UAV cluster 
[21, 26] in at least two neighboring UAVs to communicate and share each other 
sensing information, improve the sensing range of each UAV and report on traffic 
conditions, and further improve the overall navigation through clustering capability. 

Vision-based autonomous navigation is a key area of advancement in artificial intel-
ligence, especially for Unmanned Aerial Vehicles (UAVs). This technology merges 
environmental sensing with vision-based navigation, offering a reliable alternative 
in areas with poor GPS signal. Such advancements are crucial for intelligent traffic 
monitoring and represent a significant step towards more sophisticated autonomous 
flight systems. 

Image feature extraction. Thanks to the development of the GPU, deep learning 
algorithms can be well applied to the autonomous navigation of UAVs, and convo-
lutional neural networks can be used to feature extraction of images to achieve more 
accurate matching of environmental views, thereby improving the accuracy of UAV 
navigation and positioning. 

3 Detection and Identification 

3.1 Current Status 

Traditional traffic monitoring mainly relies on equipment such as detectors and 
cameras to detect traffic flow, vehicle speed, traffic operation conditions, etc. 
However, there are disadvantages such as limited traffic monitoring range, prac-
tical only for the area where specific equipment is installed, and requiring a lot of 
manual processing methods that cannot achieve intelligent monitoring. 

The use of UAV airborne cameras combined with advanced target detection algo-
rithms in computer vision can achieve intelligent detection and identification of traffic 
data, such as traffic flow, traffic composition of motor vehicles, non-motorized vehi-
cles, and pedestrians, detection of traffic accidents and other data, creating great 
convenience for subsequent analysis and mining of traffic data, while due to the 
high mobility of UAVs and the characteristics of high altitude overlooking, they can 
monitor a larger At the same time, due to the increased mobility and high altitude 
view of the UAV, it can monitor a more extensive range and respond more flexibly 
to the traffic situation of unexpected situations.
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Fig. 2 Target detection method 

Target detection is a significant core direction in computer vision, which requires 
two tasks classification and localization, i.e., determining whether there is an object 
of interest on a pair of images, and, if so, giving the class and location of all things 
of interest. The classification task is to determine whether an image contains objects 
matching the desired category when it is acquired and, if so, to output a series of labels 
with confidence scores to indicate the probability that the target object is present in 
the input image. The role of the target localization task is mainly to determine the 
location and range size of the target category in the input image and output the range 
frame of the object, i.e., target recognition. 

Target detection is mainly divided into traditional target detection algorithms and 
deep learning-based target detection algorithms (see Fig. 2). 

Traditional target detection is performed by manually adding features and clas-
sifiers and setting sliding windows of different scales and aspect ratios to traverse 
the entire image. This “brute force” approach includes all possible locations of the 
target, but its disadvantages are apparent: no targeting, high computational time and 
complexity, and redundant windows. 

Deep learning-based target detection methods are mainly divided into anchor-
based and anchor-free. Among them, anchor-frame-based methods are divided into 
single-stage and multi-stage forms. 

Multi-stage method, which generates a series of candidate frames as samples, and 
then classifies the models by convolutional neural networks, standard algorithms by 
the RCNN family (R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN). Zhang 
et al. [27] used UAV-based video and deep learning methods for traffic analysis to 
alleviate urban traffic congestion problems using Mask RCNN for recognition and 
tracking. Wang et al. [28] studied the application of deep learning in UAVs, using 
an embedded system installed in UAVs for image recognition and target detection
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recognition, and applied the Faster R-CNNN target detection algorithm to achieve 
target detection and UAV flight control finally. 

Single-stage method, characterized by a fast, direct target frame localization 
problem, is transformed into a regression problem without generating candi-
date frames, the most representative algorithms YOLO series [29–32] (YOLOv1, 
YOLOv2, YOLOv3, and YOLOv4, etc.).YOLO, full name You Only Look Once 
[29], all roughly follow the following algorithmic ideas: Firstly, the input image is 
divided into S × S grids, and each grid is responsible for detecting the targets falling 
into it, using a non-great suppression algorithm to filter the redundant targets, and 
finally outputting the borders of the contained marks, the position information of the 
localization, and all the class confidence levels. Tan et al. [33] take the starting point 
that the aerial images of UAVs are affected by the flight height and speed, etc., and 
the photos present smaller targets, and improve the YOLOv4 algorithm and propose 
the YOLOV4_Drone model to enhance the ability to detect small targets. Luo et al. 
[34] analyzed the shortcomings of current detection methods based on the fact that 
UAV aerial images have a large number of minor marks and complex backgrounds 
and proposed the YOLOD structure based on YOLOv4 to obtain better average accu-
racy than YOLOv4. Sun et al. [35] improved YOLOv3 to improve the accuracy of 
small target detection for the characteristics of small size and high density of images 
collected by UAVs. 

Some scholars also compared the representative algorithms of the above two 
methods in experiments and concluded that YOLO is faster in terms of speed. Gupta 
et al. [36] proposed using UAV cameras to collect visual information on traffic status 
using a deep learning object detection model for traffic monitoring by comparing 
Faster R-CNN, YOLO v3, and v4 for the shortcomings of traditional traffic detec-
tion methods. Through experiments, YOLOv4 is considered to have more muscular 
efficiency and better adaptability. Benjdira et al. [37] proposed using aerial drone 
images to accurately detect and identify cars for traffic monitoring purposes in the 
context of drones being increasingly used for traffic monitoring. Analysis and two 
state-of-the-art target algorithms, Faster R-CNN and YOLOv3, point out that their 
accuracies are comparable, but the processing speed of YOLOv3 is better than that 
of Faster R-CNN. 

Anchor free uses the idea of semantic segmentation to solve the target detection 
problem. Compared with anchor-based algorithms, it does not require the artificial 
design to design anchor-related hyperparameters, which avoids the calculation of 
IoU between a large number of anchor frames and real frames and saves computa-
tional costs. Current anchor-free detection algorithms are mainly divided into two 
categories: keypoint-based and semantic map-based. The core idea of CornerNet is 
to represent the target area as a pair of key points; the upper left corner point and the 
lower right corner point, i.e., to predict the pair of key points while establishing corre-
spondence with each other. The semantic map based on FCOS as an example proposes 
a pixel-by-pixel fully convolutional target detection network, which combines the 
single-stage and no-anchor-frame algorithms to predict the offset between the current
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pixel and the corresponding target centroid, introduces more positive samples, elimi-
nates low-quality prediction results to accelerate model convergence, and has a higher 
accuracy of the prediction frame. 

3.2 Future Trends 

In summary, deep learning-based target detection has been widely used under the 
UAV-based traffic monitoring system because of the great advantage of convolutional 
neural networks in image processing, which significantly eases the difficulty of traffic 
data collection for traffic managers and planners. In the future, UAV-based detection 
and identification technology will present the following trends: 

YOLO algorithm. YOLO-based target detection algorithm is widely used due to 
the fast speed of YOLO, is incredibly applicable to traffic monitoring, can quickly 
detect and identify traffic monitoring data, which also produces a new technology— 
YOLO-based drone technology. 

Lightweight network. Traffic is a complex composition, and most of the existing 
research is on the detection and analysis of cars or pedestrians, with the increase 
in the number of detection will lead to the detection algorithm requiring increased 
computing power and the hardware resources of the UAV platform is limited, the 
future can prune the model or design a more lightweight network structure to better 
deploy to the embedded system of little computing power carried by the UAV. 

Small target detection. UAV aerial images will cause such characteristics as small 
image targets and high density, and the YOLO algorithm has certain shortcomings 
for small target objects; there are already many scholars using the existing YOLO 
target detection algorithm to improve it so that it can be better applied to the detection 
of small target objects, and this trend will continue in the future. 

Label assignment. The process of distinguishing between positive and negative 
samples when training a target detection network to assign and learning targets to 
the network. This is important in target detection and is the key to improving speed 
and accuracy. An imbalance between positive and negative samples will make the 
model produce undesirable results, which is worth investigating in the future and 
can be applied in target detection networks using dynamic adaptive label assignment 
methods, such as ATSS and OTA. 

Anchor free. Most of the current UAV-based target detection algorithms are based on 
the anchor frame, no anchor frame can avoid the impact of hyperparameter settings 
based on the anchor frame, saving computational costs and more balanced positive 
and negative samples, while maintaining high accuracy, the future can use CenterNet, 
FCOS, and other algorithms without anchor free for target detection.
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4 Data Fusion and Analysis 

4.1 Current Status 

The most important thing to achieve intelligent traffic monitoring is that thoughtful 
analysis and decision-making can be reached from the monitored traffic data. With 
the development of communication technology, the massive use of sensors, and 
the application of drones, traffic data can be collected and analyzed from multiple 
sources, presenting characteristics such as heterogeneity, diversity, large scale, and 
high complexity. This requires data fusion from various sources to achieve comple-
mentary goals, reduce the problems of singularity and insufficient data generalization 
from a single source, and better understand the monitored data. 

There are three mainstream data fusion methods: statistical, probabilistic, and 
artificial intelligence [38]. 

Probabilistic methods: data fusion based on the Kalman filter is one of the frequently 
used algorithms, Kalman filter can achieve more accurate information from noisy 
sensor data, and this method is well suited to handle multi-sensor heterogeneous 
data [39]. Wang et al. [40] proposed a fusion method for heterogeneous traffic data 
based on the Kalman filter and Gaussian mixture model, using data from GPS and 
remote traffic sensors, which cover the accuracy of traffic state estimation. Byon et al. 
[41] used a single constraint time Kalman filter to estimate the current traffic state 
for multiple data sources. However, the Kalman filter can only accurately estimate 
models in linear scenarios [42]. 

Artificial intelligence methods: neural networks in deep learning are widely used 
in various prediction models that can be trained to produce predictions by extracting 
features from the data. It is now commonly used in traffic data fusion and predic-
tion. However, this technique requires higher computing power equipment and data 
quality requirements. Peng et al. [43] proposed a model based on convolutional 
neural networks for extracting spatiotemporal features of traffic flows to predict 
urban passenger flows. Essien et al. [44] used extended and short-memory neural 
networks combined with traffic and weather data from road networks and employed 
a data-into-data exo data fusion technique to fuse traffic data with weather data to 
produce better data quality. 

After the data is fused, the most critical thing is to use the data for deeper mining 
and analysis. Traffic analysis determines the current traffic condition and predicts 
the future traffic flow trend through historical and real-time traffic data to provide a 
basis for traffic management and planners to make decisions. 

Among them, predicting traffic flow has been a popular topic of research in the 
field of transportation, and the methods of traffic flow prediction can be broadly 
divided into traditional methods, traditional machine learning methods, and deep 
learning-based methods.
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Statistical methods: Based on previous observations, time series analysis is used to 
predict future values but cannot reflect the nonlinear characteristics of traffic flow. 

Traditional machine learning methods: can learn nonlinear patterns from traffic 
data and external factors, can handle high-dimensional data, and capture complex 
nonlinear relationships, but their application is greatly hindered by artificially 
designed features based on them. 

Deep learning-based approaches: apply neural networks end-to-end for training and 
show superior performance in traffic prediction. Researchers have proposed several 
architectures for deep learning, generally employing convolutional neural networks 
to extract spatial correlations of grid-structured data described by images or videos; 
graph convolutional networks and attention mechanisms have also been applied to 
process non-Euclidean spatial data, and LSTM has been used to model temporal 
dependencies. Ma et al. [45] proposed a deep learning-based daily traffic flow predic-
tion method. The technique deployed a specific convolutional neural network (CNN) 
to extract daytime and intra-day traffic flow patterns. Wu et al. [46] proposed a 
deep neural network-based traffic flow forecasting model (DNN-BTF). The model 
uses convolutional and recurrent neural networks to mine traffic flow’s spatial and 
temporal characteristics. Ma et al. [47] proposed a short-time traffic flow prediction 
model based on traffic flow temporal analysis combined with an improved extended 
short-term memory network (LSTM). The improved LSTM network connects the 
traditional long- and short-term memory network with a bidirectional long- and short-
term memory network to overcome significant prediction errors effectively. However, 
most approaches use a hybrid deep learning framework that combines different deep 
learning techniques to obtain spatial and temporal correlations of traffic data. Shi 
et al. [48] proposed a novel attention-based period-time neural network (APTN) 
to model spatial, short-term, and long-term period dependencies. Zheng et al. [49] 
proposed a short-time traffic flow prediction model with an attention mechanism as a 
hybrid deep learning model. Zhang et al. [50] proposed a graph-based temporal atten-
tion framework, GTA, which considers spatial and temporal correlations to predict 
traffic flow based on data collected from multiple sensors. To address the difficulty 
of existing studies in making short-term traffic flow predictions for isolated points. 

4.2 Future Trends 

From the above, it is easy to see that deep learning-based approaches are becoming 
increasingly popular, can well fuse heterogeneous traffic data, and have significant 
superiority in traffic flow prediction. However, there are still sufficient research 
challenges, and future development directions are as follows: 

Real-time forecasting. The purpose of real-time traffic forecasting is to perform data 
processing and traffic condition assessment quickly. However, as the scale of traffic 
data increases, this comes to the point where deeper models with more parameters are
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required to predict more accurate results, which leads to an increase in computing time 
and cannot ensure the requirement of real-time prediction. The proposed lightweight 
model improves the speed under the guarantee of sure accuracy, so an efficient, light 
neural network can be designed to improve the speed and achieve the purpose of 
real-time prediction. 

Data set construction. UAV traffic data for acquisition collection is greatly affected 
by adverse weather conditions; obtaining clear pictures or video data is complex 
and non-periodic, making the training sample size smaller than in normal traffic 
conditions and more challenging to learn. The data determines the upper limit of the 
model, which can be optimized by some image or video processing techniques to 
ensure sufficient data. 

Model interpretability. It is well known that a neural network is a black box; how 
each part of the network works and why it can play a powerful predictive perfor-
mance has been a question worthy of deeper investigation. If its interpretability 
is somewhat solved, traffic flow prediction will achieve a more accurate forecast 
for a more extended period, thus promoting the further development of intelligent 
transportation. 

5 Drones  

5.1 Types of Drones 

Due to the diversity of drones with their different specifications, sizes, shapes, etc., 
drones can be classified according to flight structure as fixed-wing, rotary-wing, etc. 
According to the size classification, they can be further divided into micro, light, 
small, and large drones. Multi-rotor drones are divided into tri-rotor, quad-rotor, 
hexa-rotor, etc. Quad-rotor drones (Fig. 3) are the most commonly used, with the 
characteristics of vertical landing, high mobility, simple and stable structure, low 
cost, and small size.

It is due to these characteristics of quadrotor UAVs that they are widely used in 
traffic monitoring systems. Barmpounakis et al. [51] applied DJI 7 Spreading Wings 
S900 hexacopter to extract natural trajectory data from aerial video of intersections 
and sidewalks, demonstrating the accuracy of UAV data collection. Gao et al. [52] 
proposed a new method based on quadrotor UAVs. Niu et al. [53] proposed a new 
vehicle trajectory detection method based on quadrotor UAVs, which can acquire 
vehicle trajectories and collect data such as vehicle speed for road traffic analysis. 
Niu et al. [53] proposed an aerial traffic monitoring system based on quadrotor UAVs 
to overcome the limitations of static cameras for traffic monitoring.
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Fig. 3 Quad-rotor drones

In summary, UAVs have become the most promising new tool for collecting road 
traffic status data and conducting traffic monitoring in areas such as detecting vehicle 
speeding, detecting vehicles and giving vehicle paths, detecting road traffic accidents, 
etc. 

5.2 Simulation Platform 

UAV simulation platforms can help users perform various tests and verifications in 
a virtual environment to ensure that no one is as effective and safe as expected. In 
the real world, it often takes a lot of time and money to achieve the desired testing 
environment, especially for UAVs used in traffic monitoring; using simulation plat-
forms for testing and verification is undoubtedly one of the best ways to accomplish 
this. For example, they are testing UAVs for autonomous navigation and obstacle 
avoidance, simulating their reliability and stability in different traffic environments, 
etc. Here are a few common UAV simulation platforms. 

AirSim: an open-source UAV simulation platform developed by Microsoft, which 
can simulate different types of UAVs and various scenarios, and supports a variety 
of hardware and software platforms.
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Gazebo: Open source simulation platform developed by OSRF (Open Source 
Robotics Foundation), which can simulate various robots and drones, widely used 
in ROS, and supports a variety of sensors and controllers. 

DJI Simulator: A simulation platform developed by DJI that simulates different types 
of DJI drones and provides high simulation and accuracy in actual flight. 

All the simulation platforms have advantages and disadvantages, and users can 
choose the right venue according to their needs when facing specific problems. 

6 Conclusion 

This paper divides the UAV-based traffic monitoring technology into three main 
aspects: navigation and localization, detection and identification, and fusion and 
analysis. 

In terms of navigation, there are the following future trends: 

(1) Vision-based autonomous navigation, UAVs using visual information to 
achieve autonomous navigation has become a trend that does not depend on 
signal interference, while visual information data has a rich planning path on 
the characteristics of the visual data and can be well combined with algorithms in 
deep learning to improve the accuracy of UAV navigation and achieve intelligent 
autonomous navigation. 

(2) UAV clusters, through the UAV cluster share sensing information to improve 
the overall navigation capability. 

In terms of detection and recognition, deep learning-based target detection 
methods are widely used in UAVs to achieve detection and recognition of specific 
traffic targets, providing for subsequent data fusion and analysis, presenting the 
following trends in the future: 

(1) Small target detection capability, UAV aerial images will cause such charac-
teristics as small image targets and high density, there are already many scholars 
based on the YOLO algorithm to improve, improve the small target detection 
capability, the future with the widespread use of UAVs, methods to improve the 
effectiveness of small target detection will be increasingly proposed. 

(2) Label assignment, which is important in target detection, is the key to improving 
accuracy and speed, in the future can be used in the target detection network 
using dynamic adaptive tag assignment methods, such as ATSS and OTA. 

(3) In anchor free algorithm, no anchor frame can avoid the impact of hyper-
parameter settings based on the anchor frame, saving computational costs and 
more balanced positive and negative samples, which can be applied to embedded 
devices such as UAVs in the future.
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In terms of fusion and analysis, the methods in deep learning can well fuse 
traffic data characterized by heterogeneity, diversity, large scale, and high complexity, 
and combine with neural networks to achieve predictive analysis of traffic flow for 
intelligent analysis and decision-making. The following trends are presented in the 
future: 

(1) Real-time prediction, in the future, an efficient lightweight neural network 
can be designed to improve the speed of predicting traffic flow and achieve the 
purpose of real-time prediction. 

(2) Data set construction, the data determines the upper limit of the model and can 
be optimized by some image or video processing techniques to ensure sufficient 
data. 

(3) Model interpretability, if we can know how the neural network is so effective 
in prediction, the traffic flow prediction will achieve a longer period of accurate 
prediction, thus promoting the further development of intelligent transportation, 
the study of its interpretation is of practical significance. 

Through analyzing the current situation of these three main aspects and future 
trends, with UAVs as the driving platform and intelligent processing algorithms as 
the core technology, the three aspects involved in dynamic traffic monitoring will 
form a more functional and cohesive closed-loop system. 
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