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Abstract Drilling in complex formations in new exploration areas poses the chal-
lenge of accurately predicting downhole engineering risks before drilling. To address 
this issue, researchers are exploring the use of intelligent algorithms to analyze the 
complex relationship between multi-source data and underground engineering risks. 
However, due to the limited number of drillings in these areas, there are few risk 
samples, which can result in insufficient generalization ability of the training model 
and poor prediction effect. To overcome these challenges, this paper introduces a 
quantitative evaluation method for drilling well engineering risk, which enables the 
construction of a complex underground risk probability profile rich in geological-
engineering information. This risk profile provides reliable risk samples for subse-
quent model training. Additionally, the paper proposes the concept of virtual wells 
and its deployment method. The LSTM deep learning model is used to mine the quan-
titative relationship between multi-source data, such as seismic interval velocity, 
well logging, and rock mechanics parameters, and the downhole risk probability 
profile. To achieve a quantitative prediction of underground engineering risk prob-
ability profiles of virtual wells, relevant parameters of virtual wells are calculated 
using Depth Adjustment and Kriging interpolation method. The example calculation 
demonstrates that the addition of virtual wells can significantly improve the regional 
drilling engineering risk understanding compared to the 3D drilling engineering risk 
body constructed only based on wells. The prediction accuracy of engineering risks 
in unexplored areas can be increased by up to 23.6%. 
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1 Introduction 

1.1 A Subsection Sample 

Oil and gas exploration and development are increasingly focusing on deep strata and 
deep water, which present significant challenges such as strong formation informa-
tion uncertainty, well control risks, and complex underground accidents. To reduce 
the risk of encountering such challenges during drilling, pre-assessment of downhole 
engineering risks is crucial. Several methods have been proposed, including Interval 
Analysis [1], Fault Tree Analysis [2], Tree Naive Bayes Algorithm modeling [3], and 
Fuzzy Bow-tie Model Method [4], which can qualitatively assess the regional drilling 
engineering risk and safety of engineering scheme before drilling. However, qualita-
tive or semi-quantitative methods are inadequate for meeting the safety requirements 
of drilling engineering in complex formations due to real factors and model limita-
tions [5]. To address the uncertainty of deep formation information and the difficulty 
of quantitative evaluation of downhole engineering risks before drilling, Sheng et al. 
[5] proposed a quantitative method based on credibility to characterize the uncer-
tainty of formation pressure. This technique builds on the wellbore pressure balance 
criterion to evaluate underground engineering risks, including lost circulation, kick, 
borehole collapse, and pipe sticking, to achieve good application results. However, 
this method requires precise formation pressure profile and drilling construction plan 
information, limiting its use for pre-drilled wells. Yi et al. [6] proposed a 3D geome-
chanical model of the entire block using the rock mechanical properties and pressure 
profile of adjacent wells obtained from logging data and drilling logs. However, this 
approach relies on well logging data and well history records, making it challenging 
to achieve quantitative evaluation of the graded risk level. With the development of 
machine learning and artificial intelligence technologies, there has been a growing 
interest in applying these techniques to the field of petroleum engineering. Several 
approaches, including support vector regression machine using particle swarm opti-
mization algorithm [7], MLP algorithm [8], and gradient decision tree algorithm [9], 
have been proposed to construct complex relationships between various data and 
downhole risks for quantitative evaluation of drilling risks. However, these methods 
depend on the number and quality of samples used for data training, and for a well 
or block, the risk specimens of downhole drilling engineering are limited. Therefore, 
how to gain sufficient quality and quantity of risk samples is a critical bottleneck for 
current data-driven risk assessment methods. 

In order to solve the above issues, this paper proposes the following solutions. 
First, using the risk assessment method based on wellbore pressure balance criteria 
[10], we construct a downhole engineering risk probability profile rich in geological 
and engineering information, which can greatly improve the quantity and quality 
of risk samples. Second, based on the machine learning algorithm, the quantitative
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relationship between the interval velocity, formation lithology, physical properties, 
drilling parameters and the downhole engineering risk probability profile were also 
established, and virtual wells were added in the undrilled areas in the block. Besides, 
the underground engineering risk probability profile of virtual well was quantitatively 
predicted by using the quantitative relationship of drilled wells. So as to solve the 
problem of less drilling and uneven spatial distribution in new exploration areas. 
Third, use spatial interpolation, depth adjustment, and other methods, based on the 
underground engineering risk probability profile of drilled wells and virtual wells, a 
regional 3D (three-dimension) risk model was built. The 3D risk body constructed 
in this way fully considers the influence of regional geology, engineering design 
and construction level, which is of great significance to improve the understanding 
level of drilling engineering risk in deep complex strata before drilling, optimize the 
engineering design scheme to be drilled, and reduce risks of underground engineering 
in the drilling process. 

2 Quantitative Risk Assessment Method of Drilled 
Engineering Based on Wellbore Pressure Balance 
Criterion 

2.1 Basic Principle of Method 

In view of the problems of strong uncertainty of deep formation information and diffi-
culty in quantitative evaluation of underground engineering risks, Sheng et al. [10, 
11] and Sheng and Guan [12] proposed a method to characterize the uncertainty of 
formation pressure by using reliability quantitative table. On this basis, according to 
the wellbore pressure balance criterion, a quantitative evaluation method for down-
hole engineering risks such as lost circulation, kick, borehole collapse and pipe 
sticking was constructed, the basic principle is shown in Fig. 1, which can quantita-
tively evaluate the type and specific depth of downhole complex occurrence. Field 
application has proved that this method has a coincidence rate of more than 92% for 
the risk assessment of drilled wells.

Since this approach judges the complex underground situations based on the 
equilibrium relationship between formation pressure and wellbore pressure, its risk 
assessment results are rich in geological (formation pressure and its uncertainty) and 
engineering (drilling fluid density, wellbore structure scheme, construction level, etc.) 
information. Compared with the risk information recorded in well history including 
complex occurrence, well depth, surface monitoring overflow/lost circulation, etc., 
the quantity and quality of samples used for data training are greatly enriched.
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Fig. 1 Basic principle and effect of pore pressure calculation of formation with credibility [13]

2.2 Analysis of Drilling Examples 

This paper takes a block in the South China Sea as the instance, which has the 
characteristics of ultra-high temperature, high pressure and narrow density window. 
Also, 6 wells have been drilled, kick, lost circulation and other downhole complex 
multiple, drilling risks are prominent, and the distribution of these wells in the seismic 
area is shown in Fig. 2. Using the method of 1.1, we can obtain the complex risk 
probability profiles of 6 drilled wells. In the future, dozens of development wells will 
be drilled in the seismic area shown in Fig. 2. However, it can be seen from the figure 
that in this seismic area, the number of wells drilled in this seismic area is small and 
unevenly distributed. If only the risk probability profile data of 6 drilled wells is used 
to assess the risk of regional drilling engineering, it is difficult to fully reflect the 
overall situation of the block. Especially, when the well location of the development 
well is far away from the drilled well, it is difficult to obtain a relatively accurate risk 
assessment in the prior art. Therefore, we propose the concept of virtual wells and 
its deployment method in this paper. By adding virtual wells in the undrilled area 
of the block, the problem of few wells drilled and uneven spatial distribution can be 
solved.
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Fig. 2 Distribution map of 
drilled wells in the seismic 
area 

3 Determination Method of Virtual Well Location 
and Related Attributes 

3.1 Determination Method of Virtual Well Location 

It can be seen from Fig. 2 that the distribution of drilled wells in the block is relatively 
dispersed, and there is a large area of undrilled areas. It is difficult to predict the risk 
characteristics of the whole block with high precision if only relying on the well-
drilled data. Therefore, it is necessary to insert virtual wells in the undrilled area to 
enrich the block information and improve the prediction accuracy of drilling risks in 
the whole block. In order to ensure that the selected virtual wells are randomly and 
evenly distributed in the undrilled area, a random function [14] is used to generate 
virtual wells. Figure 3 shows the well location of the virtual wells in the seismic area.

3.2 Determination Method of Virtual Well Depth 

According to the well history data, all six drilled wells are vertical wells, and the 
virtual wells are also set as vertical wells. Meanwhile, in order to ensure that the data 
that has been drilled can be fully considered when using the interpolation method 
to obtain the relevant attributes of the virtual wells, the depth of the virtual well is 
uniformly set to the bottom boundary of the deepest formation encountered by the 
six wells.
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Fig. 3 Distribution of 
drilled wells and virtual 
wells in the block

Table 1 Depth of virtual 
wells Well Depth (m) Well Depth (m) 

XN1 4382.36 XN5 3890.62 

XN2 4279.54 XN6 3953.33 

XN3 4266.8 XN7 3920.19 

XN4 3942.59 XN8 4251.6 

The bottom boundary of the deepest stratum that has been drilled in this aera is 
T41. Based on this stratum level, the well depths of eight virtual wells in Fig. 3 are 
determined. Table 1 shows the depth of the virtual wells. 

3.3 Calculation Method of Seismic Interval Velocity Virtual 
Well 

The virtual well information involves various data such as seismic interval velocity 
and rock mechanics parameters, and the seismic interval velocity can be extracted 
from 3D seismic interval velocity volume. Based on the geodetic coordinates of the 
virtual wells, combined with the SEGY seismic body of the block, a 3D seismic 
interval velocity model is established, as shown in Fig. 4. The single-well seismic 
interval velocity of the drilled wells and virtual wells were extracted from the model 
according to the well trajectory.

The interval velocity of drilled and virtual wells are shown in Fig. 5.
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Fig. 4 3D seismic interval 
velocity model

3.4 Calculation Method of Rock Mechanical Parameters 
in Virtual Well 

Virtual well’s rock mechanics parameters can be quantitatively calculated using 
logging data, depth adjustment method and Kriging interpolation method [15]. The 
depth adjustment method corrects the depth of each well to establish a correspon-
dence between the data points before and after processing. The Kriging interpolation 
method considers the distance between drilled wells and the location of virtual wells 
to calculate a weight coefficient that reflects their spatial relationship more reasonably 
[16]. 

By applying the depth adjustment and Kriging interpolation methods to the rock 
mechanics parameters of drilled wells, comprehensive calculations can be made 
to determine the rock mechanics parameters of virtual wells. Figure 6 is the rock 
mechanical parameters of both drilled and virtual wells.
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(a) Well number 1 (b) XN1 

Fig. 5 Interval velocity of drilled wells and virtual wells

4 Regional Drilling Risk Prediction Method Based on Deep 
Learning 

To predict drilling risk in a region, deep learning can be employed using the following 
steps. Firstly, a LSTM model is utilized to evaluate the correlation between rock 
physical parameters, seismic interval velocity, and downhole risk. LSTM, a variant 
of RNN, has a unique characteristic where neurons can be re-fed as inputs after 
output, maintaining data dependencies. This model is capable of processing data 
with sequence changes. Subsequently, the obtained correlation is employed to predict 
the risk of virtual wells, based on the rock physical parameters and seismic interval 
velocity of the virtual wells. Figure 7 is the basic process of regional drilling risk 
assessment process.

4.1 Construction Method of LSTM Model 

The first step in training an LSTM model for prediction is to establish correla-
tions between input and output attributes. In this paper, the input xt consists of 
rock mechanical parameters of a drilled well, along with seismic interval velocity,
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(a) Rock mechanics parameters 

of the drilled wells 

(take static poisson's ratio of 

Well number 1 as an example) 

(b) Rock mechanics parameters 

of the virtual wells 

(take static poisson's ratio of 

XN1 as an example) 

Fig. 6 Rock mechanics parameters

Fig. 7 Basic process of regional drilling risk assessment

with each attribute corresponding to a specific depth. The output ht represents the 
corresponding risk level. However, the risk section of most wells is relatively short, 
resulting in a majority of the risk probability data being ‘0’. To reduce the amount of 
calculation and shorten the training time, some of the ‘0’ data is eliminated, so that 
the final non-‘0’ risk data accounts for around 90–95% of the total data. The data is 
deleted from both ends of the dataset to ensure continuous depth data in the training 
section with a consistent step size of 0.1 m for both the training and prediction sets. If 
a well has multiple risks, each risk is predicted separately. To minimize the influence
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Fig. 8 LSTM network prediction framework 

of unknown factors, the data set is randomly sorted, and the first 90% of the new 
sorted data set is used as the training section, while the last 10% is applied as the 
verification section. 

To build a risk prediction model, it’s crucial to standardize the data to avoid the 
dimension’s influence on model learning, leading to a significant improvement in 
the model’s training speed [17]. The input feature has seven dimensions, and the 
output feature has one dimension. Consequently, the input layer has seven cell units, 
the output layer has one cell unit, and the number of cell units in the hidden layer 
is determined using an empirical formula [18]. To speed up the network learning, 
the Adam optimization algorithm is utilized, and the model undergoes 500 rounds 
of training. Moreover, to prevent gradient explosion, the gradient threshold is set to 
one, and the initial learning rate is 0.001. After the first 20 rounds of training, the 
learning rate is reduced by a factor of 0.9. The computation of the hidden layer is 
the core of the network’s structure [19], as illustrated in Fig. 8. 

4.2 Prediction Effect Analysis 

Taking the prediction of lost circulation as an example, five drilled wells (Well 
number 2, Well number 3, Well number 4, Well number 5 and Well number 6) were 
used as the training set, and the Well number 1 was used as the test set to analyze the
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Fig. 9 Comparison of risk test results 

prediction accuracy of the constructed LSTM model. The training results of the five 
drilled wells are as shown in Fig. 9. 

It can be seen that the test data curves of LSTM is not only similar to the actual 
data curves, but also have similar values, indicating that LSTM has high reliability in 
the prediction of 10% of the training data segment. The quantitative relationship is 
used to predict the Well number 1, and the predicted risk profile of the Well number 
1 is compared with the actual risk profile that is shown in Fig. 10.

Based on Fig. 10, the forecasted occurrence depth and probability of each risk 
in Well number 1 aligns well with the actual risk profile and complex situation. By 
computing the prediction error using the maximum of the actual and predicted risk 
profile as the benchmark, the model’s relative error is determined to be 11.04%. 

4.3 Virtual Well Risk Probability Profile Prediction 

Taking the prediction of lost circulation as an example, and using the trained model 
to foresee the risk of virtual wells, the risk probability profile of the virtual well is 
shown in Fig. 11.
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Fig. 10 The lost circulation 
of Well number 1

5 Construction Method of Regional 3D Risk Body 

In order to more intuitively analyze the impact of adding virtual wells on the accuracy 
of block risk prediction, one of the six drilled wells was selected as the control well. 
Based on the sequential Gaussian simulation method, the block risk model was 
established by using the remaining five wells, and the block risk model after adding 
eight virtual wells is established by using the geological modeling software. The risk 
data of the control well are extracted from the two models and compared with the 
actual risk location obtained from the well historical data to determine the impact of 
the virtual well on the risk prediction accuracy. Sequential Gaussian simulation is the 
most widely used stochastic modeling method for continuous geological variables, 
and the basic idea is to perform sequential simulation on conditional data to normal 
distribution [20].
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Fig. 11 Virtual well risk  
probability profile (take XN1 
as an example)

5.1 Comparative Analysis 

A 3D (three dimension) risk model was established for a block with six drilled wells 
using the sequential Gauss simulation method. Well number 1 was selected as the 
control well, and the risk data of the other five wells were used to establish the model 
layer by layer. The risk data of Well number 1 was extracted from this model. Next, 
eight virtual wells were added to the five drilled wells, and the risk model of the entire 
block was established using the hierarchical group of sequential Gaussian simulation 
method. The risk data of Well number 1 was again extracted from this model. The 
extracted risk data of Well number 1 was then compared with the actual risk location 
based on well history data. Taking the lost circulation as an example, the findings 
were presented in Fig. 12.

It can be seen from Fig. 12 that the location interval of the risk of Well number 1 
extracted by only five drilled wells for the first time is obviously far from the location 
of the actual risk, while the risk interval of Well number 1 after the second increase 
of eight virtual wells is not much different from the location of the actual risk. Using 
the maximum value of the risk distribution extracted from the two times to calculate 
the accuracy, the second highest prediction accuracy increased by 23.6%.
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Fig. 12 Risk comparison of 
Well number 1

6 Conclusion 

In this paper, by introducing the quantitative evaluation method of underground engi-
neering risk before drilling, a complex underground risk probability profile rich in 
geological-engineering information is achieved, which solves the issue of insuffi-
cient generalization ability of the data-driven model due to less risk samples. Also, 
the concept and deployment method of virtual wells are proposed, and the quantita-
tive calculation of rock mechanics parameters of virtual wells is realized by means 
of depth adjustment and Kriging interpolation, which provides data basis for model 
training. 

Moreover, according to the timing series characteristics of multi-source data, the 
confusion matrix is applied to optimize the LSTM model, which is employed to 
excavate the quantitative relationship between the multi-source data such as well-
drilling seismic, logging, rock mechanics parameters and the risk probability profile 
of downhole. The accuracy of the model is verified by drilled wells, and the relative 
error is 11.04%. On this basis, using the quantitative relationship constructed by 
LSTM, the risk probability profile of virtual wells is quantitatively predicted.
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The computed findings of the case indicate that compared with the three-
dimensional drilling engineering risk body built only by drilling, adding virtual wells 
can significantly improve the awareness of regional drilling engineering risks, and 
the prediction accuracy of unexplored regional engineering risks can be increased 
by 23.6%. 
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