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Abstract In recent years, the emergence of Ethereum has brought people a new 
way of life. Many users tend to deposit funds into different smart contracts, but 
the smart contracts are actually different computer programs, so there may be some 
bugs and vulnerabilities in the smart contract that cause economic losses or bring 
potential dangers. Since the infamous attack on the “TheDAO” smart contract in 
2016 until now, re-entrancy attacks, as one of the main attack methods on Ethereum, 
have caused serious losses. In response to this problem, many works of literature have 
proposed off-chain auditing of undeployed smart contracts and on-chain detection of 
deployed smart contracts, but re-entrancy attacks still emerge endlessly. In this paper, 
we introduce the limitations of Ethereum re-entrancy attack detection from the causes 
of re-entrancy attacks, behavioral characteristics, and the shortcomings of existing 
detection methods. First, we analyze the causes of re-entrancy attacks based on the 
execution characteristics of smart contracts in actual transactions, and then propose 
two deficiencies in the run-time attack detection method. Secondly, we selected 
re-entrancy attack transactions that actually occurred and were officially reported, 
manually analyzed the smart contracts and call sequences involved in these trans-
actions, summarized two key factors of re-entrancy attacks, and analyzed different 
re-entrancy attacks, summarizing their behavioral characteristics at the theoretical 
level. 

Keywords Ethereum · Smart contracts · Re-entrancy · Attack behaviors analysis

J. Fu · W. Huang 
Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 51006, China 

W. Liu (B) 
NSFOCUS Technologies Group Co., Ltd., Beijing 100089, China 
e-mail: liuwenmao@nsfocus.com 

C. Zeng 
National Computer System Engineering Research Institute of China, Beijing 102699, China 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
S. Li (ed.), Computational and Experimental Simulations in Engineering, Mechanisms 
and Machine Science 146, https://doi.org/10.1007/978-3-031-44947-5_5 

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44947-5_5&domain=pdf
mailto:liuwenmao@nsfocus.com
https://doi.org/10.1007/978-3-031-44947-5_5


60 J. Fu et al.

1 Introduction 

As a computer program, the smart contract runs on Ethereum, which is a bridge 
between the blockchain and users. Users use smart contracts to complete operations 
such as deposits and loans. After the smart contracts perform these operations, the 
final results are stored permanently in the blockchain. 

As a way to directly operate user assets, smart contracts must provide users with 
sufficient security guarantees, but because smart contracts cannot be modified once 
they are deployed on the blockchain, and the characteristics of arbitrary calls between 
contracts have attracted many attackers to use these features steal funds from users 
or various projects. 

Re-entrancy attack is one of many attack methods. Starting from theDAO in 
2016, it has evolved into different types, such as Lendf.me, Rari Capital, etc., and 
each attack has caused huge economic losses. 

In order to reduce the occurrence of re-entrancy attacks, many studies [1–10] 
have proposed different re-entrancy attack detection tools, some for the run-time 
detection of on-chain transactions, and some for off-chain audits of undeployed 
contracts. However, some of these tools use a certain attack event as a reference 
case to analyze the behavior of re-entrancy attacks and formulate a detection plan, 
which will lead to too strict detection conditions and cannot be applied to detect 
new reentrancy attacks; some tools do not distinguish between re-entrancy attacks 
and normal re-entrancy behaviors. Such detection rules are too broad and prone to 
misjudgment, which will bring unnecessary trouble to tool users to a certain extent. 

Contributions. In this article, we first analyze the cause of the re-entrancy attack, 
and conclude that the re-entrancy attack is not only due to random calls between 
contracts, but because of the characteristics of smart contracts that make the victim 
contract call unknown contracts during execution. Secondly, from the perspective 
of the attacker, analyze the two key factors in the re-entrancy attack: how to select 
the attack target and how to operate the state in the victim’s contract to successfully 
complete the transaction. Re-entrancy attacks are classified and covered in depth 
based on these two factors and the attack transactions that have occurred. Finally, 
we summarize and analyze the omissions in detection of existing runtime attack 
detection tools. 

Here is a brief introduction to the structure of the paper. In Sect. 3, we introduce the 
concepts of re-entry and re-entrancy attacks, and analyze the causes of re-entrancy 
attacks; in Sect. 4, we classify re-entrancy attacks from two key points of attack 
behavior; in Sect. 5, we introduce several existing re-entrancy attack detection tools, 
and analyze possible deficiencies in these detection methods.
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2 Background 

Ethereum Virtual Machine. EVM  [11, 12] is the environment in which the smart 
contract runs. When the smart contract is deployed on the blockchain, it will be 
compiled into a piece of bytecode. When an external user invokes a transaction, 
EVM will execute the smart contract according to the input data of the transaction 
and it will revert the transaction or put the execution result on the blockchain, and 
change the state stored on the Ethereum by executing the transaction. EVM is a 
stack-based state machine that operates according to a series of opcode instructions 
[13], such as ADD, CALL, MLOAD, SSTORE, etc. 

Smart contract. The smart contract is a computer program written in a high-level 
language, which is used to implement various functions provided by Ethereum to 
users. When it is deployed on the blockchain, it cannot be changed, and it can only 
be executed when called by EOA (external owned account) or other smart contracts. 

Transaction. A transaction invoked by an EOA is called an external transaction, and 
the callee can be other EOA or smart contracts, which can be transfer operations, 
contract creation operations, or smart contract calls on the blockchain; after the 
contract is deployed on the blockchain, it cannot be automatically executed at any 
time but requires an external transaction to call these contracts. When the contract 
called by the external transaction invokes other contracts on the blockchain, it is 
called an internal transaction. 

State. The contract state is stored in the storage [14]. Once each contract is deployed, 
a part of the storage space will be allocated to permanently store the contract data. 
The data and changes will be recorded on the blockchain and stored in the form of 
key-value. EVM can use SLOAD and SSTORE read and write storage, however, they 
read and write data on the blockchain, so the cost of these two operations is relatively 
high. Generally, smart contracts store important data in storage, for example, token 
contracts store user-user balances in storage. 

Message call. When an external call to other contracts from the running contract, 
the execution of the caller contract will be interrupted, and the EVM turns to execute 
the callee contract. After the execution of the callee contract, it will return to the 
caller contract and continue to execute until the execution ends. However, there is 
uncertainty in the call sequence among contracts, so predicting the call relationship 
between contracts in advance is difficult. 

Call stack. The call stack is used to record the calls among all contracts in a trans-
action, so as to determine the caller and callee in each call. When a new contract is 
called, it will be pushed into the stack and popped out after the execution returns. If 
the same contract appears in the call sequence, it can also be distinguished by the 
call stack.
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3 Re-entrancy Attack 

3.1 The Problem of Re-entrancy 

Due to the feature of allowing smart contracts to call each other in the internal 
transaction, if contract A is interrupted during execution, and a call to contract A 
appears again in the call stack after contract A is interrupted, then it is considered 
that there is a re-entrant call or normal re-entrancy behavior. Re-entrancy attacks 
occur in re-entrant calls. For example, an attacker can use re-entrant calls to interrupt 
the modification of certain states of the contract or successfully pass judgment on 
certain conditions, transfer the assets of the victim’s contract, and obtain funds that 
are more than the value of the funds invested in the attack. 

3.2 Causes of Re-entrancy Attacks 

In order to increase the reuse of contract codes and separate functions, different 
contracts need to call each other to provide users with a complete service. Therefore, 
during the execution of functions, external contracts need to be called to complete 
certain operations. The external contract may be a contract that is determined when 
the caller contract is deployed, or it may be a contract that changes dynamically when 
the function is executed. Therefore, there is uncertainty in the call sequence between 
contracts, and the callee contract also has uncertainty. 

The reason why re-entrancy attacks can occur is that the function calls the contract 
deployed by the attacker during execution and runs the attack code to re-entrancy 
call the contract specified by the attacker. Usually, in order to complete a service, 
the call relationship between contracts is clear, but in some scenarios, contracts with 
unknown security will also interact with the caller contract to complete the operation. 
We will give two examples to illustrate that the feature of calling each other between 
contracts also provides attackers with the possibility of re-entrancy attacks. 

ETH transfer. When ETH transfer is involved between contracts, the sender needs 
to use receiver.call.value(amount)(“”) to send ETH to the receiver, and the receiver 
sets the fallback() inside its own contract to receive ETH. The fallback() [15] is a  
special function in Solidity. It is a function with no function name, no parameters, and 
no return value. When a call does not have any data or the called function is a function 
that does not exist in the callee contract, fallback() will be executed automatically. 
When sending ETH between contracts, if calling with no call data, the caller will 
invoke callee’s fallback() to accept ETH. There is no strict standard for the content 
of fallback(), so the attacker can write the re-entrancy attack code into fallback(), 
and when the control flow returns to the attacking contract and invokes fallback(), 
the attacking code will be executed to call other contracts, to steal funds from these 
contract.
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Malicious token transfers. In addition to the circulation of ETH, there are also some 
tokens that can be traded with each other on Ethereum, so there are token contracts 
to realize token-related operations and store token-related states. If a transaction 
involves the transfer of tokens, the corresponding token contract will be invoked to 
complete the relevant operations during the execution of the transaction and record 
the state changes. If the token contract is constructed by the attacker, and there is a 
transfer of tokens in this transaction, then when the contract calls the function of the 
malicious token contract, the attack code will be executed to re-enter the contract 
specified by the attacker. 

3.3 Shortcomings of Run-Time Detection 

Some detection tools choose to perform run-time detection on the transaction, the 
advantage of this method is that it can obtain the call relationship of the contract 
when the transaction is executed, and directly detect some operations at the bytecode 
level when the call sequence is known, without listing all possible calling sequences 
between functions in a contract or between different contracts, reducing the cost of 
detection. But this runtime detection method also has some shortcomings. 

States transfer between contracts. Different contracts each implement different 
functions and maintain their own contract states, but if they want to call each other and 
fulfill the user’s needs, they need to transfer state data between contracts. For example, 
in the Rari Capital attack transaction introduced in Sect. 4, when analyzing the 
transaction in-depth, we found that although the attacker re-entrant called different 
contracts, the victim contract A still appeared in the re-entrant call sequence and read 
its state and returned to the victim contract. None of these tools take this situation 
into account, but only limit the use of state reading and writing in the same contract. 

The opcodes lack some smart contract semantics. The smart contract is written in 
a high-level computer language, compiled into bytecode, and executed by the EVM. 
Therefore, the bytecode level can provide more detailed information. For example, 
there are three opcodes in the EVM to reflect the calling relationship between 
contracts. They are CALL, DELEGATECALL, and STATICCALL. The function of 
each call-opcode is different, and the calling relationship between contracts is also 
different. However, when detecting the bytecode level, there will be omissions in the 
understanding of the contract semantics level. For example, among the several detec-
tion tools we introduced, SLOAD and SSTORE are used to determine whether there 
are read and write operations on the same state in the contract. But if multiple asso-
ciated states are involved, their association cannot be judged from a single SLOAD 
or SSTORE.
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4 Classification of Re-entrancy Attacks 

Since re-entrancy attacks appeared in 2016, they have occurred continuously and 
their attack behaviors are constantly changing. Attackers need to plan carefully to 
avoid transaction rollback due to a wrong operation in a certain step. There are two 
key points to consider in re-entrancy attacks. First, what kind of target does the 
attacker choose to avoid defense measures when re-entrancy calls, and can make 
a profit; what unreasonable use or operations have been carried out in the contract 
state so that the transaction can be executed normally without being rolled back. We 
classify re-entrancy attacks according to these two points and combine the actual 
attack transactions to understand different attack behaviors in-depth. 

4.1 Classification by Target of Re-entrancy Calls 

When the control flow returns to the attacking contract, the attacking code will be 
executed and the contract will be called again. Although some contracts have taken 
re-entrancy attack defense measures, there may still be vulnerabilities exploited by 
attackers. We discuss the callee contracts and functions that may be re-entered by an 
attacker into three situations. 

Type I. Single-Function Re-entrancy 

The earliest incident of theDAO attack was this type. The attacker only targeted the 
same function in the same contract every time the re-entrant call was made, and this 
function was related to the user states in the contract. Through an in-depth analysis 
of theDAO re-entrancy attack transactions [16], we introduce the characteristics of 
this type of attack behavior. 

TheDAO was a decentralized autonomous organization of crowdfunding 
campaigns, it used to be one of the most popular projects. However, on June 17, 
2016, theDAO suffered a re-entrancy attack, losing 3.6 million Ether, which eventu-
ally led to a hard fork of the Ethereum network. This is the first re-entrancy attack 
incident in Ethereum, and there have been more re-entrancy attacks and studies on 
re-entrancy attacks since then. 

Investors deposit their ETH into theDAO to obtain tokens, which they can use to 
vote on proposals they are interested in, and investors make profits through investment 
proposals. However, if the user disagrees with the existing proposal, he can split a 
new child DAO by calling splitDAO() in the DAO contract [17], and the DAO contract 
will calculate the rewards that the user can obtain, and transfer them to the new child 
DAO together with the ETH he initially deposited in the child DAO contract. The 
re-entrancy attack occurs when ETH is transferred. 

Figure 1 shows the process of this attack. (1) The transaction starts. This transac-
tion was invoked by an external attacker, calling the pre-deployed attacking contract 
to carry out the attack. (2) Call splitDAO(). The attacking contract first calls a normal
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Fig. 1 TheDAO re-entrancy attack 

call to the DAO contract. (3), (4) ETH transfer. Before the DAO contract updates 
the balance states of the attacking contract in this contract, splitDAO() must first 
send funds to the attacking contract through payOut(). (5) Re-entrancy attack. The  
attacker writes the attacking code into fallback(), so when the call returns to the 
attacking contract, the malicious code in fallback() calls splitDAO() in the DAO 
contract again. Since the balance state of the attack contract has not been modified in 
(2), that is, although the DAO contract has sent ETH to the attack contract, the DAO 
contract still stores the old balance state of the attacking contract, so the re-entry call 
can pass the transfer condition again. Repeating the above operations, the attacking 
contract gets a large amount of ETH that does not belong to itself from the DAO 
contract. 

From this incident, we can see that the Single-function Re-entrancy Attack is 
aimed at the same function in the same contract. This function includes user state 
reading, condition judgment, external calls, and user state modification so that the 
attacker can change the execution order of the contract through re-entrant calls to 
complete the theft of funds. 

Type II. Cross-Function Re-entrancy 

Different from Type I, in this type, the attacker re-entrant calls different functions 
in the same contract, and these functions operate on the same state. Attackers can 
use re-entrant calls to disrupt the state modification operations of multiple functions, 
thereby stealing funds that do not belong to them. 

We introduce the behavioral characteristics of Cross-function Re-Entrancy 
Attacks through an in-depth analysis of Lendf.me re-entrancy attack transactions. 
On April 19, 2020, a Re-Entrancy Attack occurred in Lendf.me, and the total loss of 
this attack was about $25 million. 

Lendf.me is an instant lending platform. All accounts of Lendf.me are managed by 
the MoneyMarket contract [18]. Users can deposit assets into the platform through 
supply() in the contract, and withdraw their own deposits through withdraw(). In 
supply(), the contract first calculates the changes in states after the user deposits 
money, and stores the result in a temporary variable. After transferring the user’s
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assets to the MoneyMarket contract, it will use the calculated temporary variable 
content to modify the user state. When assets are transferred, the corresponding 
token contract will be called to record the changes of the user’s assets. 

Figure 2 shows the process of this attack. (1) The transaction starts. The attacker 
calls the deployed attacking contract. (2) Calls supply() to deposit ImToken tokens. 
The ImToken token protocol is compatible with the ERC777 standard. When the 
token is transferred, tokensToSend() and tokensReceived() in the spender and receiver 
contracts will be called respectively, so as to complete the token transfer, the signature 
of both parties, and the notification of the completion of the transaction in one transac-
tion. (3), (4) Transfer ImToken token. The attacking contract is a token spender, and 
the ImToken contract calls tokensToSend() in the attacking contract. Since there is no 
specific implementation requirement for tokensToSend(), the attacker can construct 
malicious tokensToSend(). (5) Re-entrancy attack. We cannot obtain the specific 
content of the attacking contract, but through in-depth analysis of the transaction 
[19] execution process, we can find that the attacking contract re-enters the with-
draw() in the MoneyMarket contract when executing tokensToSend(). This function 
will withdraw the previous deposit of the attacking contract in the MoneyMarket 
contract. 

After the re-entry call is completed, it will return to (2) to continue to execute 
supply(), but because the change value of the user state has been calculated in supply() 
before the token transfer, and the result stored in a temporary variable, after the re-
entrancy attack, the function did not recalculate, but directly updated the user state 
with the content of the temporary variable, ignoring the withdraw() that occurred in 
the re-entrant call.

Fig. 2 Lendf.me re-entrancy attack 
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Type III. Cross-Contract Re-entrancy 

In this type of re-entrancy attack, the contract that the attacker re-entrant calls is 
different from the contract that was called for the first time. There may be a certain 
relationship between the states of these two contracts. The attacker changes the effect 
of the state on the function execution through the re-entrant call. The Rari Capital 
re-entrancy attack transaction that occurred on April 30, 2022, was a Cross-Contract 
Re-Entrancy attack. The following is our specific analysis of this attack. 

Rari Capital is a lending project, users can mortgage the assets they own to obtain 
the right to borrow. In this project, the Comptroller contract [20] manages the user’s 
information in the lending market. Users can mortgage or redeem assets from the 
market by calling enterMarket() or exitMarket(). Each asset contract implements 
operations such as depositing and lending assets. 

Figure 3 shows the process of this attack. (1) The transaction starts. The attacker 
calls the deployed attacking contract. (2) Calling borrow(). The attacking contract 
calls borrow() in the cEtherDelegate contract to lend ETH. (3) Send ETH to the 
attacking contract. The cEtherDelegate contract uses to.call.value(amount)(“”) to 
send ETH to the attacking contract, calls fallback() in the attacking contract, and 
executes the attacking code in fallback(). (4) Re-entrancy attack. When executing the 
fallback(), the attacking contract did not re-enter the function in the cEtherDelegate 
contract but called exitMarket() in the Comptroller contract to exit the market and 
redeemed the mortgaged assets. exitMarket() counted the total amount of loans of 
the attacking contract before redeeming the assets. Due to the fallback() call, the 
borrow() called in (2) had not yet written the loaned amount of the attacking contract 
into its borrowing state, so exitMarket() calculates that the loan of the attacking 
contract is 0, and finally the attacking contract successfully redeemed its mortgage 
assets and obtained additional loan assets. 

Fig. 3 Rari Capital re-entrancy attack
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In this transaction, the same contract was not repeatedly called when the attacking 
contract was called again. However, after an in-depth analysis of this transaction [21], 
we found that after the re-entry call to the Comptroller contract, the cEtherDelegate 
contract appeared in the call stack as a sub-call branch of the Comptroller contract, 
returned the loan state of the attacking contract and used it for the Comptroller 
contract to count the total loan amount of the attacking contract. 

4.2 Shortcomings of Run-Time Detection 

The function of the contract will modify the state stored in the storage during execu-
tion, and will also read the data in the storage to complete important operations. The 
states of user assets are often recorded in the storage. If the attacker only starts an 
attack transaction to read the state, there is no benefit to be obtained. Therefore, the 
modification operation of the state is also a key operation used by the attacker during 
the attack. 

Type I. Updating State After Re-entrancy 

In this type, the external call occurs before the operation of the victim contract 
recording the state in the contract storage. Therefore, when the victim contract of 
the re-entrant call executes the function, the state read from the storage is still not 
updated. 

This is the case for all three attack transactions we introduced in Sect. 4.1. For  
example, in theDAO attack transaction in Fig. 1, under normal operation, after the 
DAO contract sends the user’s assets to the designated contract, it will immediately 
return to this contract to record the user’s new asset states in storage for subsequent 
function execution used when. However, after the attacking contract received the 
assets, it re-entered and called the DAO contract, which interrupted the normal state 
modification operation, causing the DAO contract to read the old attacker’s asset state 
in the storage when executing the function again, and then sent ETH to the attack 
contract. The DAO contract does not record the attacker’s asset states in the storage 
until the re-entry call ends, at which point the attacker has successfully received 
multiple transfers. 

Type II. Without State Update After Re-entrancy 

Different from Type I, this type does not modify the state after the re-entrant call 
returns, that is, the attacker does not use the un-updated state in the storage during 
the re-entrant call, but modifies the state during the re-entrant call. After the call 
returns, the updated state will be read, but this state will affect the execution result 
of the original contract, making the result inconsistent with expectations. 

We introduce this type of re-entrancy attack through an in-depth analysis of 
Akropolis re-entrancy attack transactions [22]. The Akropolis reentrancy attack 
occurred on November 13, 2020, with a loss of approximately $2 million.
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Akropolis is an investment aggregator. Users invest their funds and invested proto-
cols in Akropolis, and the platform will automatically choose the path with the highest 
income for investment to earn the maximum profit for users. 

Users can enter the selected protocol, deposited tokens, and their amount into 
the AdminUpgradeabilityProxy contract [16] through deposit(), and deposit() will 
calculate the balance of all assets in this contract before and after the user deposits 
tokens and store the result in temporary variable balanceBefore and balanceAfter, 
after determining the user’s deposit amount through the difference of the total contract 
balance, the funds are deposited into the contract and deposit certificate tokens are 
issued to the user, and the user can use these tokens to withdraw his deposit at any 
time. 

Figure 4 shows the process of this attack. (1) The transaction starts. The attacker 
calls the deployed attacking contract. (2) Calls deposit(). The attacking contract 
calls deposit() to deposit the malicious token constructed by the attacker. (3) Token 
transfer. When transferring tokens, it is required to call back to the token contract 
and execute transferFrom() to record the tokens transfer from the attacking contract 
to the AdminUpgradeabilityProxy contract. (4), (5) Re-entrancy attack. Since the 
token contract is constructed by the attacker, when entering the malicious token 
contract, the attacking code constructed by the attacker is executed, and the deposit() 
in the AdminUpgradeabilityProxy contract is called again. This call deposits legal 
tokens and fully executes deposit(), changes the total balance of the AdminUp-
gradeabilityProxy contract, and issues a corresponding amount of deposit certificate 
tokens to the attacker. Return to (2) after the re-entry call to continue to calculate the 
balanceAfter in the deposit() contract. 

Since the total balance of the contract changes during the re-entry call, when using 
to balanceAfter-balanceBefore calculate the user’s deposit amount, balanceBefore is 
the balance of the contract before the re-entry call executed, balanceAfter is the total 
balance after successfully depositing legal tokens in the re-entrancy attack. After 
an in-depth analysis of this transaction, we found that although the attacker did not

Fig. 4 Akropolis re-entrancy attack 
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actually deposit assets in the first deposit(), the contract is still based on the result of 
balanceAfter-balanceBefore and issued a deposit certificate token for the attacker. 
The attacker deposited one asset but got two deposit certificate tokens. 

5 Related Work 

Starting from the DAO incident, various researches have studied re-entrancy attacks 
more and more deeply and used many different methods to detect re-entrancy attacks. 
In this part, we introduce several re-entrancy attack detection tools and analyze their 
deficiencies or omissions that may occur when detecting attacks. 

Akropolis is an investment aggregator. Users invest their funds and invested proto-
cols in Akropolis, and the platform will automatically choose the path with the highest 
income for investment to earn the maximum profit for users. 

In Sereum [6], state inconsistency is judged as a re-entrancy attack. The so-called 
state inconsistency means that the contract already in the call stack is called again. If 
there is a state that affects the control flow during the execution of this contract, and 
this state is not modified until it returns to the original contract, it will be considered 
as an impact. The control flow of the victim contract uses an inconsistent state, so it 
is determined to be a re-entrancy attack. In the detection, Sereum sets a write-lock 
for the states that appear in the re-entrant call. If a write operation is performed on a 
locked state after the call returns, an alarm will be triggered. 

SODA [2] believes that if a loop is executed cyclically in a call and ETH is trans-
ferred every time the loop is executed, a reentrancy attack occurs in this transaction. 
A loop means that a call to contract A occurs again in the call sequence initiated by 
contract A. 

Horus [3] also detects circular calls. It thinks that two contract calls in a call stack 
have the same transaction hash, caller, callee, etc., and they are at different depths 
of the call stack. In addition, if the contract called for the first time has an operation 
on SLOAD and SSTORE in the same state during execution, and SLOAD appears 
before the re-entrant call, and SSTORE appears after the re-entrant call, then it is 
judged as a re-entrancy attack. 

6 Conclusion 

In this paper, we discuss re-entrancy attacks from the three aspects of occurrence 
principle, type, and detection method. Through in-depth analysis, we found that 
due to the immutability of deployed smart contracts and the characteristics that the 
contracts can call each other cannot be changed, that’s why re-entrancy attacks that 
cannot be detected by detection tools continue to appear. Therefore, in order to 
improve the security of smart contracts and blockchains, developers should carefully
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use statements or logic that are prone to problems, and use defensive measures appro-
priately; project parties need to do off-chain audits before contracts are deployed; 
attack detectors are supposed to conduct comprehensive research on attack behavior 
before attack detection. 
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