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Abstract In this paper, a cooperative control scheme based on the small spacecraft 
cluster is proposed for the takeover control of the failed flexible spacecraft in space. In 
order to overcome external disturbance, inertia uncertainty and controller gain pertur-
bation, the controller spacecraft calculates the control torque which can stabilize the 
combined spacecraft in theory, and generates the desired control signal according 
to the robust H∞ non-fragile control law set in advance. Based on the communi-
cation topology, the actuator spacecraft restores the control signal according to the 
distributed control torque allocation scheme considering the saturation state of all 
reaction wheels, and implements it to achieve the attitude stabilization and vibration 
suppression of the combined spacecraft. Simulation results show that the distributed 
control torque allocation scheme can implement the desired control signal with rela-
tively small error. Under the condition that the external disturbance, controller gain 
perturbation and inertia uncertainty coexist, the angle and angular velocity of the 
combined spacecraft can be stabilized quickly. Moreover, the vibration of the flex-
ible appendages can also be suppressed effectively. During the whole takeover control 
process, the dynamic allocation scheme can always ensure that all reaction wheels 
of each actuator spacecraft never reach saturation. 

Keywords Cluster takeover · Attitude stabilization · Robust H∞ · Non-fragile 
control · Control allocation

X. Yue (B) · Z. Yang · H. Yu 
National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics, Northwestern 
Polytechnical University, Xi’an 710072, China 
e-mail: xkyue@nwpu.edu.cn 

P. Huang 
Science and Technology on Space Intelligent Control Laboratory, Beijing Institute of Control 
Engineering, Beijing 100094, China 

Y. Liu 
Beijing Institute of Remote Sensing Information, Beijing 100011, China 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
S. Li (ed.), Computational and Experimental Simulations in Engineering, Mechanisms 
and Machine Science 146, https://doi.org/10.1007/978-3-031-44947-5_4 

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44947-5_4&domain=pdf
mailto:xkyue@nwpu.edu.cn
https://doi.org/10.1007/978-3-031-44947-5_4


40 X. Yue et al.

1 Introduction 

The acquisition of non-cooperative spacecraft is the focus of research in recent years, 
which is mainly divided into two stages: pre-capture and post-capture [1]. The focus 
of the post-capture stage is how to realize the attitude and orbit takeover of the 
combination by the service spacecraft. As the disadvantages of large single integrated 
function spacecraft in taking over non-cooperative targets are gradually emerging, 
researchers tend to use modular spacecraft clusters to implement this mission [2]. 
Because the control force and torque provided by a single module spacecraft is 
limited, it is far from being able to meet the requirements of the control for the post-
capture combination, which introduces the distribution of control torque. In addition, 
the input saturation problem is also different from the conventional spacecraft input 
saturation problem. In the control allocation, it is necessary to consider not only 
the overall control capability of the cluster, but also the reaction saturation of every 
single service spacecraft in the cluster. 

In the current literature, the takeover of non-cooperative spacecraft has been 
widely discussed. Inertia unknown is the main parameter feature of the non-
cooperative spacecraft, and the cost of high-precision parameter identification is 
very expensive, so inertia uncertainty is a problem that must be considered during 
the process of takeover mission [3]. Aiming at the inertia unknown problem of post-
capture flexible spacecraft, an inertia-independent output feedback control strategy 
is designed in [4]. On the other hand, [5] uses the neural network to approach the 
unknown dynamic characteristics of the spacecraft and designs an event-triggered 
adaptive fuzzy controller which can overcome the inertia uncertainty. However, the 
input saturation is not explicitly considered in the above work. In the scenario where 
the multi-service spacecraft takes over the non-cooperative target, a distributed allo-
cation strategy considering the angular momentum saturation of each reaction wheel 
of the service spacecraft is proposed in [6]. This strategy can always ensure that 
the allocation target can be satisfied and finally converge to the optimal allocation 
solution. On the basis of [7], an allocation strategy considering the maximum output 
torque of the service spacecraft is proposed in [8]. This scheme ensures that each 
service spacecraft will not be assigned control torque beyond its capability, but the 
allocation scheme cannot guarantee the allocation accuracy. In addition, an alloca-
tion scheme that does not rely on the iteration step size is proposed in [9] to make  
up for the shortcomings of the current allocation algorithm. Although the problem 
of input saturation in the process of control allocation has been properly dealt with, 
the saturation problem of the expected control torque has not been considered in 
the controller design. Moreover, because of the information transmission among 
multiple spacecraft, the perturbation of control signals has to be considered [10]. 
At present, the controller gain additive perturbation is the main problem discussed 
by researchers, but the control gain multiplicative perturbation is often ignored. In 
some cases, the multiplicative perturbation of the control gain will have a greater 
adverse impact on the performance of the control system [11]. Therefore, both types 
of controller gain perturbations need to be considered simultaneously.
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Inspired by the above key issues and challenges, this paper captures the unknown 
and nonlinear terms as disturbances in the case of considering the inertia uncertainty 
of flexible spacecraft. On this basis, a robust H∞ controller is designed considering 
both types of controller gain perturbation, and the conditions for explicit limiting of 
the desired control signal are given. Then the solution of controller gain is transformed 
into an optimization problem based on linear matrix inequalities. Finally, a distributed 
control torque allocation scheme is adopted, and the reasonable allocation is carried 
out considering the saturation of each reaction wheel of all the service spacecraft. 

The text of this paper is as follows. In the second part, the dynamic model of 
flexible combination, the form of robust H∞ controller, the relevant lemmas and 
assumptions required for controller design as well as the control objectives of this 
paper are given. The third part shows the main results of this paper, including the 
theorem of controller design and the control torque allocation scheme. The simulation 
results in the fourth part verify the effectiveness of the theory in this paper. The last 
part gives the conclusion. 

2 Problem Formulation 

2.1 Dynamics Modeling 

The attitude control system of the post-capture flexible combination can be expressed 
as follows [12, 13]:

(
ẋ(t) = )

A + ΔAp
(
x(t) + B1u(t) + B2w(t) 

y(t) = Cx(t) + v(t) 
(1) 

where x(t) =
[

ΘT ωT qT η̃T
]T 

is the defined state vector with q = ˙̃η + Δ̃T 
ω, 

u(t) = T c is the control input, and y(t) is the output vector with measure-
ment error v(t); w(t) = w0(t) + B∗ 

2(ΔAx(t) + ΔB1u(t) + ΔB2w0(t) + E f  (t)) 
is the constructed lumped disturbance capturing external disturbance w0(t) = 
T d − ω×( J0ω + Δ̃q) with T d denoting the external disturbance torque, inertia 
unknown matrices ΔA, ΔB2 and actuator fault E f  (t). B∗ 

2 denotes the pseudoin-
verse matrix of B2 and E denotes the distribution matrix of fault signal f (t). The  
related coefficient matrices in (1) are  

A = 

⎡ 

⎢⎢⎢⎢⎣ 

0 I 0 0  

0 − J−1 
0n Δ̃C̃ Δ̃

T 
J−1 
0n Δ̃

(
C̃ + Δ̃p F2

)
J−1 
0n Δ̃

(
K̃ + Δ̃p F1

)
0 C̃ Δ̃

T −
(
C̃ + Δ̃p F2

)
−

(
K̃ + Δ̃p F1

)
0 − Δ̃T 

I 0 

⎤ 

⎥⎥⎥⎥⎦,
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B1 = B2 = 

⎡ 

⎢⎢⎣ 

0 
J−1 
0n 

0 
0 

⎤ 

⎥⎥⎦, C = I . 

The matrices containing unknown inertia are

ΔA = A( J ) − A( Jn ) 

= 

⎡ 

⎢⎢⎢⎢⎣ 

0 0 0 0  

0
(
J−1 
0n − J−1 

0

)
Δ̃C̃ Δ̃

T (
J−1 
0 − J−1 

0n

)
Δ̃

(
C̃ + Δ̃p Fb

) (
J−1 
0 − J−1 

0n

)
Δ̃

(
K̃ + Δ̃p Fa

)
0 0 0 0  

0 0 0 0  

⎤ 

⎥⎥⎥⎥⎦,

ΔB1 = ΔB2 = B1( J ) − B1( Jn) 

= 

⎡ 

⎢⎢⎣ 

0 
J−1 
0 − J−1 

0n 

0 
0 

⎤ 

⎥⎥⎦ 

in which J is the inertia matrix; ω =
[

ωx ωy ωz

]T 
represents the angular velocity 

vector; Δ̃ ∈ R3×k is the rigid-flexible coupling matrix, and k is the order of flexible 
modes; η̃ ∈ Rk is the modal displacement; C̃ = diag

{[
2ξ̃1Ω1 2ξ̃2Ω2 · · ·  2ξ̃kΩk

]}
is 

the modal damping matrix;Ωi (i = 1, 2, . . . ,  k) and ξ̃i denote the natural frequencies 
and damping ratios respectively; u p = F1η̃ + F2q is the piezoelectric input with 
the feedback coefficients F1 and F2 of the piezoelectric actuators, working through 
the coupling matrix Δ̃p to help suppress vibration; K̃ = diag

{[
Ω2 

1 Ω2 
2 · · · Ω2 

k

]}
is 

the stiffness matrix. In addition, J0n = Jn − Δ̃Δ̃
T 
with J0 = J − Δ̃Δ̃

T 
, and Jn 

denotes the introduced the nominal inertia matrix.
ΔAp is the model parameter uncertainty expressed as

ΔAp(t) = MF(t)N, ||F(t)|| ≤ 1, ∀t (2) 

where M and N are known real matrices, and F(t) is the Lebesgue function matrix 
[14]. 

Different from the previous non-fragile controllers, a more general hybrid non-
fragile state feedback controller is adopted in this paper: 

u(t) = (K + ρ(ΔK a + ΔKm))x(t) (3) 

where K is the controller gain matrix, and ρ represents the mean of the probability 
of random occurrence of controller gain perturbation. ΔK a and ΔKm represent two 
types of controller gain perturbation and have the following forms respectively:
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ΔK a(t) = Ma Fa(t)Na, ||Fa(t)|| ≤ 1, ∀t (4)

ΔKm(t) = Mm Fm(t)Nm K , ||Fm(t)|| ≤ 1, ∀t (5) 

The definitions of Ma, Na, Fa(t), Mm, Nm and Fm(t) are  similar to those in (2). 
It is worth mentioning that the input constraint problem in this paper is described 

by the following formula:

||u(t)|| ≤ λ (6) 

where λ = √
λ0 denotes the maximum value of 2 norm of control input and λ0 > 0. 

Substitute the controller (3) into the system (1), and one has

(
ẋ(t) = )

A + ΔAp + B1 K + ρ B1(ΔK a + ΔKm)
(
x(t) + B1w(t) 

y(t) = Cx(t) + v(t) 
(7) 

2.2 Preliminaries 

Before giving the main results of the required solution, some necessary assumptions 
and lemmas need to be given first. 

Assumption 1 w(t) is piecewise bounded and continuous, and v(t) ∈ L2[0, ∞]. 

Remark 1 The disturbance and uncertainty are bounded, which is one of the basic 
assumptions in robust control. The piecewise boundedness and continuity of the 
lumped disturbance have been proved in [15]. Moreover, the controller design in this 
paper does not need the norm bound of w(t) and v(t) [16]. 

Lemma 1 (Schur Complement Lemma [17]). The equivalent condition of a negative 

definite block symmetric matrix Θ =
[

Θ11 Θ12 

∗ Θ22

]
are 

(1) Θ < 0; (2)  Θ11 < 0, Θ22 − ΘT 
12Θ

−1 
11 Θ12 < 0; (3)  Θ22 < 0, Θ11 − 

Θ12Θ
−1 
22 Θ

T 
12 < 0. 

Lemma 2 [18] For matrices M̂, N̂ and F̂(t) with matching dimensions, and||||||F̂(t)|||||| ≤ 1, then M̂ F̂(t) N̂ + N̂ 
T 
F̂ 

T 
(t) M̂ 

T ≤ ξ̂ −1 M̂ M̂ 
T + ξ̂ N̂ 

T 
N̂ will hold for 

any scalar ξ̂ >  0.
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Lemma 3 [11] Provided matrices M̃ and Ñ have appropriate dimensions, then for 
all ε̃ >  0, the following inequality will hold

[
0 Ñ M̃ 

T 

∗ 0

]
≤

[
ε̃ Ñ Ñ T 0 

∗ ε−1 M̃ M̃ 
T

]

Lemma 4 [11, 15] Suppose that there exist symmetric positive definite matrix X, 
matrix W and scalars λ0, γ0, ε  and η0 satisfying inequalities (8)–(9), then the control 
input constraint expressed by Eq. (6) is satisfied. 

⎡ 

⎣− X WT XT 

∗ −  λ0γ −1 
0 I + ε−1ρ2 η2 

0 I 0 
∗ ∗ −  ε−1 I 

⎤ 

⎦ < 0 (8)

[− γ0 xT(0) 
∗ −  X

]
< 0 (9)  

where W = KX  with K denoting the controller gain matrix, x(0) is the initial state 
of the system, ||ΔK a + ΔKm|| < η0, and xT(0)Px(0) ≤ γ0 with P denoting the 
Lyapunov matrix in the Lyapunov function. 

2.3 Control Objectives 

1. When w(t) = 0 and v(t) = 0, the closed-loop attitude stabilization system (7) 
is quadratically stable. 

2. For a given scalar γ >  0, G ŵy(s) is the transfer function from ŵ(t) to y(t), where 
ŵ(t) = 0 and

||||G ŵy(s)
||||∞ < γ  should be satisfied. 

3. The control input satisfies inequality (6). 

3 Main Results 

3.1 Robust H∞ Controller Design 

This section presents a robust H∞ controller scheme for small cluster spacecraft, 
which can output the control signal that can stabilize the system (1) on the premise 
of satisfying the input saturation condition (6). The following theorem will give the 
calculation of the desired control signal.
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Theorem 1 When two perturbations of controller gain coexist, if there are posi-
tive definite symmetric matrix P and matrix W , such that linear matrix inequalities 
(9)–(10) hold, then the system (7) can be quadratically stable under the action of 
the controller (3), the output y(t) satisfies the H∞ performance constraint and the 
desired control signal u(t) satisfies the input saturation condition.

[
Ξ 11 Ξ 12 
∗ Ξ 22

]
< 0 (10)  

where 

Ξ 11 = AX + XAT + B1W + WT BT 
1 

Ξ 12 =
[
B2 XCT M X  NT B1 Ma XNT 

a B1 Mm XKT NT 
m XCT

]T
Ξ22 = diag

)[− γ̂ I − )
1 − γ̂

(
I − ξ −1 I − ξ I − (ρ̄ξa)

−1 I 

− ρ̄−1 ξa I − (ρ̄ξm)−1 I − ρ̄−1 ξm I − I
](

Under the constraints of (9)–(10), γ̂ = γ 2 is minimized to find feasible solutions, 
and the controller gain is obtained by K = WX−1 . 

Proof First, the quadratic stability of the system is proved when w(t) = 0 and 
v(t) = 0. Choose the following Lyapunov function 

V (t) = x(t)PxT (t) 

where P = X−1 . Then, the derivative of V(t) with respect to time is 

V̇ (t) = ẋT (t)Px(t) + xT (t)P ẋ(t) 

= xT (t)
[)
A + ΔAp + B1 K + ρ B1(ΔK a + ΔKm)

(T 
P 

+P
)
A + ΔAp + B1 K + ρ B1(ΔK a + ΔKm)

(]
x(t) 

= xT (t)
[
(A + B1 K )T P + P(A + B1 K )

]
x(t) 

+ xT (t)PMF(t)Nx(t) + xT (t)NT FT (t)MT Px(t) 
+ ρxT (t)PB1 Ma Fa(t)Na x(t) + ρxT (t)NT 

a F
T 
a (t)M

T 
a B

T 
1 Px(t) 

+ ρxT (t)PB1 Mm Fm(t)Nm Kx(t) + ρ xT (t)KT NT 
m F

T 
m(t)MT 

m B
T 
m Px(t) 

= xT (t)
[
(A + B1 K )T P + P(A + B1 K )

]
x(t) + 2xT (t)PMF(t)Nx(t) 

+ 2ρ xT (t)PB1 Ma Fa(t)Na x(t) + 2ρxT (t)PB1 Mm Fm(t)Nm x(t) 
≤ xT (t) Q0x(t)
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where Q0 = (A + B1 K )T P + P(A + B1 K ) + ξ PM  MT P + ξ −1 NT N + ξaρ 
PB1 Ma MT 

a B
T 
1 P + ξ −1 

a ρ NT 
a Na + ξmρ PB1 Mm MT 

m B
T 
1 P + ξ −1 

m ρ KT NT 
m Nm K 

Based on the  above, if  Q0 < 0, one has V̇ (t) ≤ 0 and 

V̇ (t) ≤ xT (t) Q0x(t) ≤ λmax( Q0)x
T (t)x(t) 

Choose α = −  λmax( Q0) >  0, one has 

V̇ (t) ≤ −  α||x(t)||2 2 
Thus, when w(t) = 0 and v(t) = 0, the closed-loop attitude stabilization system 

(7) is quadratically stable. 
Consider the following functional 

J = 
∞∫
0

[
y(t)T y(t) − γ 2 ŵT 

(t) ̂w(t)
]
dt  

Because of the quadratic stability, for any ŵ(t) /= 0 ∈ L2[0, ∞), under zero initial 
condition, it can be obtained that 

J = 
∞∫
0

[
y(t)T y(t) − γ 2 ŵ(t)T ŵ(t) + V̇ (t)

]
dt  − V (∞) + V (0) 

= 
∞∫
0

[
x(t)T Ĉ 

T 
Ĉx(t) + 2x(t)T Ĉ 

T 
v(t) + v(t)T v(t) 

− γ 2
)
w(t)T w(t) + v(t)T v(t)

( + x(t)T Q0x(t) + 2x(t)T PB2w(t)
]
dt  

≤ 
∞∫
0

[
x(t)T w(t)T v(t)T

]⎡ 

⎣ 
Q0 + CT C P  B2 CT 

∗ −  γ 2 I 0 
∗ ∗ (1 − γ 2)I 

⎤ 

⎦ 

⎡ 

⎣ 
x(t) 
w(t) 
v(t) 

⎤ 

⎦dt  

It is easy to know when the following inequality holds, J < 0. 

⎡ 

⎣ 
Q0 + CT C P  B2 CT 

∗ −  γ 2 I 0 
∗ ∗ )

1 − γ 2
(
I 

⎤ 

⎦ < 0 (11)
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According to Lemma 1, (11) is equivalent to 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

(A + B1 K ) P + P(A + B1 K )T PB2 CT PM NT 

∗ − γ 2 I 0 0 0  
∗ ∗  − )

1 − γ 2
(
I 0 0  

∗ ∗ ∗ − ξ −1 I 0 
∗ ∗ ∗ ∗  −  ξ I 
∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗  

PB1 Ma NT 
a PB1 Mm KT NT 

m CT 

0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  

− (ρ̄ξa)
−1 I 0 0 0 0  

∗ −  ρ̄−1 ξa I 0 0 0  
∗ ∗ − (ρ̄ξm)−1 I 0 0  
∗ ∗ ∗ −  ρ̄−1 ξm I 0 
∗ ∗ ∗ ∗ −  I 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

< 0 (12)  

Multiplying both sides of Inequality (12) by  diag
)[
P−1 , I , I , I, I , I , I , I, I , I

](
, 

and choosing P−1 = X , one has 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

AX + XAT + B1 KX  + XBT 
1 K

T B2 XCT M X  NT 

∗ −  γ 2 I 0 0 0  
∗ ∗  − )

1 − γ 2
(
I 0 0  

∗ ∗ ∗ −  ξ −1 I 0 
∗ ∗ ∗ ∗  −  ξ I 
∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗  
∗ ∗ ∗ ∗ ∗
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B1 Ma XNT 
a B1 Mm XKT NT 

m XCT 

0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  

− (ρ̄ξa)
−1 I 0 0 0 0  

∗ −  ρ̄−1 ξa I 0 0 0  
∗ ∗ −  (ρ̄ξm)−1 I 0 0  
∗ ∗ ∗ −  ρ̄−1 ξm I 0 
∗ ∗ ∗ ∗ −  I 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

< 0 (13) 

Substitute W = KX , and (13) can be converted to (10). This completes the proof. 

3.2 Control Torque Allocation Scheme Design 

The controller spacecraft calculates the control signal u(t) which can stable the 
combination according to the scheme in the previous section, and then transmits it 
to the actuator spacecraft. Based on the distributed allocation scheme in this section, 
the actuator spacecraft will get the control torque they need to generate to stabilize 
the combination together. 

It is assumed that the direction of the control torque ui(t) allocated to the ith 
actuator spacecraft is consistent with the direction of the control signal u(t), that is, 

ui (t) = τi u(t), i = 1, 2, . . .  n. (14) 

where τi ∈ (0, 1) denotes the allocation coefficient and
∑n 

i=1 τi = 1. 
The working state matrix of the reaction wheel of actuator spacecraft is defined 

as 

D = diag(d1, d2, d3, . . .  dn) (15) 

di ∈ (0, 1), i = 1, 2, 3, . . .  n denotes the state factor. Moreover, there may be 
potential faults in the reaction wheel of each actuator spacecraft, so the effectiveness 
matrix is introduced and defined as 

G = diag(g1, g2, g3, . . .  gn) (16) 

where gi ∈ (0, 1), i = 1, 2, 3, . . .  n is positively related to the effectiveness of the 
reaction wheel. 

Similar to that described in Ref. [6], the allocation of the control torque can be 
described as an optimization problem.
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min τ T DGτ 
s.t. ατ = 1 
f or τ 

(17) 

where τ = [τ1, τ2,  . . .  τn]T, α = 11×n . 
The optimal solution of the above weighted least squares problem is [19] 

τ ∗ = [
l−1 
1 , l−1 

2 , l−1 
3 , . . .  l−1 

n

]T 
/ 

n∑
i=1 

l−1 
i (18) 

where li = di gi , i = 1, 2, 3, . . .  n. 
From the form of the optimal solution, it can be seen that the optimal allocation 

coefficient of each actuator spacecraft is coupled with the state information and 
actuator effectiveness information of all other spacecraft in the cluster. However, 
each spacecraft can only communicate directly with its neighbor spacecraft, so a 
distributed allocation strategy is proposed. 

τ̇i (t) =
∑

j∈N (i)

)
l j τ j (t) − li τi (t)

(
, i = 1, 2, 3, . . .  n. (19) 

where N (i) is the neighbor set of the ith actuator spacecraft. 
Then the allocation equation of all actuator spacecraft can be expressed in the 

following matrix form 

τ̇ (t) = −  LDGτ (t) (20) 

L is the Laplacian matrix corresponding to undirected graph G, and G denotes the 
topology of the actuator spacecraft. τ (t) constrained by Eq. (20) will always have 
the following two properties, and the proof can be found in [6]. 

(1)
∑n 

i=1 τi (t) = 1, ∀t ≥ 0, if
∑n 

i=1 τi (0) = 1. 
(2) limt→∞ τ (t) = τ ∗ = [

l−1 
1 , l−1 

2 , l−1 
3 , . . .  l−1 

n

]T 
/
∑n 

i=1 l
−1 
i . 

Remark 2 (1) Ensures that the control torque generated by the actuator spacecraft 
is always equal to the desired control signal before the allocation coefficient reaches 
the optimal solution. (2) Shows that the allocation coefficient will reach its optimal 
solution eventually. 

The misalignment of the coordinate frame must be considered in the control torque 
allocation, so it is necessary to convert the control torque allocated to the ith actuator 
spacecraft to its body-fixed frame: 

uai = [uai1, uai2, uai3, . . . ,  uaim]T = D̃∗ 
i R

T 
i ui (21) 

where uai denotes the control torque allocated to the ith actuator spacecraft, and Ri 

is the direction cosine matrix from the body-fixed frame of the ith actuator spacecraft
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to the body-fixed frame of the post-capture combination. D̃
∗ 
i ∈ Rm×3 denotes the 

pseudoinverse of the reaction wheel distribution matrix and m is the number of 
reaction wheel of each actuator spacecraft. 

The working state of reaction wheel reflects its saturation trend. When a reaction 
wheel tends to be saturated, the corresponding control torque allocated to it should be 
reduced. Therefore, the working state factor of the ith spacecraft should be negatively 
related to the control torque allocated to it, as defined below: 

di = max 
j=1,2,3...m

(
abs

(
Li j  (t) 
Lmax

))
(22) 

where Li j  (t) is the angular momentum of the jth reaction wheel of the ith actuator 
spacecraft. Lmax is the saturation angular momentum. 

4 Simulation Results 

The effectiveness of the Robust H∞ controller and the control torque allocation 
scheme are verified by the simulations in this section. k = 4, that is, four bending 
modes are considered in the simulations as shown in Table 1. 

The nominal inertia matrix and the coupling matrices are chosen as follows 

Jn = 

⎡ 

⎣ 
350 3 4 
3 280 10 
4 10 190 

⎤ 

⎦ kg m2 

Δ̃ = 

⎡ 

⎣ 6.45637 − 1.25619 1.11687 1.23637 
1.27814 0.91756 2.48901 − 0.83674 
2.15629 − 1.67264 − 0.83674 − 1.12503 

⎤ 

⎦ √kg m 

Δ̃p =
[
2.342552 − 0.422537 3.912984 7.026176

]T × 10−2 
√
kg m/s2 /V 

The initial state of the post-capture flexible combination is taken as x(0) =[
ΘT (0) ωT(0) qT(0) η̃T 

(0)
]T 

with Θ(0) = [
0.18, 0.15, − 0.15

]T 
(rad), ω(0) =[− 0.02, − 0.02, 0.02

]T 
(rad/s), q(0) = [0, 0, 0, 0]T and η̃(0) = [0, 0, 0, 0]T .

Table 1 Flexible dynamic 
parameters Natural frequency (rad/s) Damping 

Mode 1 0.7681 0.005607 

Mode 2 1.1038 0.008620 

Mode 3 1.8733 0.012830 

Mode 4 2.5496 0.025160 
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The difference between the nominal inertia and the actual inertia is assumed as
ΔJ = (0.1 + 0.02 sin(0.11πt)) Jn . Take the external disturbance Td as [20] 

T d = 5 ×
[
sin(0.11πt) cos

(
0.11πt + 

π 
4

)
cos

(
0.11πt + 

π 
3

)]T × 10−4 Nm 

The measurement error of the sensor is 

v(t) = [4 5 6 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.2]T × sin(0.01πt) × 10−4 

where the units of error corresponding to angle and angular velocity are rad and rad/ 
s. 

The feedback coefficient matrices are chosen as 

Fa = [3.1533 − 0.5714 5.3674 9.3389] 
Fb = [1.0976 0.1965 1.8086 3.0873] 

and the other parameters are shown as follows: 

M = 0.01 × [8 11 13 15 16  − 18 8 11 13 15 16 18 8 11]T , 
F = sin(0.11πt) 

N = 0.01 × [1 2 3  4  2 10 1  2 3 4 2 10  1  2], 

Ma = 0.1 × 13×1, Fa = sin
(
0.11πt + 

π 
4

)
Na = 0.01 × 11×14, Mm = 0.1 × 13×1, Fm = cos(0.11πt), Nm = 0.01 × 11×3 

ρ = 0.6, η0 = 0.8083, ξ  = 0.002, ξa = 0.22, ξm = 0.22 

ε = 0.05, γ0 = 0.65, λ0 = 27 

Assume that n = 6, that is, there are 6 actuator spacecraft. The effectiveness 
factors are shown in Table 2. 

Table 2 Effectiveness factors 
Effectiveness factors gi 

Actuator spacecraft 1 0.65 + 0.35e−0.088t 

Actuator spacecraft 2 0.81 + 0.19e−0.078t 

Actuator spacecraft 3 0.74 + 0.26e−0.064t 

Actuator spacecraft 4 0.66 + 0.34e−0.042t 

Actuator spacecraft 5 0.56 + 0.44e−0.068t 

Actuator spacecraft 6 0.88 + 0.12e−0.038t
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The Euler angles between the body-fixed frame of the ith actuator spacecraft and 
the body-fixed frame of the post-capture combination are shown in Table 3. 

The fault signal fd (t) is shown in Table 4, and actuator faults f (t) =[
0.003 fd (t) 0.004 fd (t) 0.005 fd (t)

]T 
. 

The communication topology of the controller and actuator spacecraft is shown in 
Fig. 1. “C” is the controller spacecraft which is connected to the actuator spacecraft 
2, 4 and 6, and other numbers also denote the actuator spacecraft. 

The Laplacian matrix L corresponding to Fig. 1 is 

L = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

2 − 1 − 1 0 0 0  
− 1 3  − 1 − 1 0 0  
− 1 − 1 4 0  − 1 − 1 
0 − 1 0 2  − 1 0  
0 0  − 1 − 1 3  − 1 
0 0  − 1 0  − 1 2  

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦

Table 3 Euler angles 

Euler angles (rad) 

Actuator spacecraft 1 π/180 × [8.60, 2.10, 9.66]T 

Actuator spacecraft 2 π/180 × [− 0.31, − 2.34, 6.72]T 

Actuator spacecraft 3 π/180 × [− 9.22, 7.44, 2.88]T 

Actuator spacecraft 4 π/180 × [− 6.99, 8.36, 9.13]T 

Actuator spacecraft 5 − π/180 × [10.01, 2.33, 5.55]T 

Actuator spacecraft 6 π/180 × [0.88, − 7.65, − 8.88]T 

Table 4 fd (t) 

t (s) [0, 5] (5, 35] (35, 70] (70.0, 120.0] (120.0, 150.0] 

fd (t) (Nm) 0 cos(0.1πt) 1.0 1 0 

Fig. 1 Communication 
topology 
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Assume that each actuator spacecraft is equipped with four reaction wheels and 
the distribution matrix is 

Di = 

⎡ 

⎢⎣ 
− 1 √

3 
− 1 √

3 
1 √
3 

1 √
3 

1 √
3 

− 1 √
3 

− 1 √
3 

1 √
3 

1 √
3 

1 √
3 

1 √
3 

1 √
3 

⎤ 

⎥⎦, i = 1, 2, 3, 4. 

The initial momentum of every reaction wheel of each actuator spacecraft is shown 
in Table 5. In addition, the saturated momentum is Lmax = 20

)
kg m2

(
/s. 

Substitute the relevant parameters into Theorem 1, and solve the optimization to 
obtain the controller gain K as 

K = 

⎡ 

⎢⎣− 10.9179 − 5.3450 6.2522 − 176.6787 − 42.1617 − 35.7863 2.4703 
− 4.7984 − 8.9688 2.6129 − 86.0076 − 181.6544 12.5528 14.3448 
− 4.0037 − 1.1768 − 27.5459 − 62.9165 − 43.4558 − 73.9154 3.8657 

− 17.3200 10.8289 1.8054 7.4823 − 18.4810 − 3.8505 − 2.2469 
32.1448 10.8867 − 9.5563 11.0959 10.7721 17.3920 12.7571 
8.4216 11.2888 1.1193 6.0801 − 6.8043 − 6.9163 − 6.4342 

⎤ 

⎥⎦ 

and the minimum value of the optimized variable is γ 2 min = 1.1112. 
Apply the controller to the closed-loop control system for simulation, and the total 

control torque generated by actuator spacecraft is shown in Fig. 2, and the allocation 
error is defined as the difference between the desired control torque signal and the 
total control torque generated by the actuator spacecraft, which is plotted in Fig. 3. 
Figure 2 shows that the control torque is always limited to ± 0.5 Nm, which meets 
the control objective. The torque allocation error is always less than 2 × 10−15 Nm, 
which shows the success of the allocation scheme. The high-precision control torque 
allocation scheme can also be used in conjunction with other controller schemes.

The convergence time of attitude angle and angular velocity is 32.2 s and 16.4 s 
respectively, and their steady-state control accuracy can reach 3 × 10−5 rad and 
1 × 10−5 rad/s. The first four modes can be stabilized within 18.5 s and finally 
suppressed within 2 × 10−5. In addition, the total energy consumption and vibration

Table 5 Initial momentum 

Initial momentum Li j  (0) ((kg m2)/s) 

Actuator spacecraft 1 [− 5.20, 18.50, 35.55, 24.00]T × 10−2 Lmax 

Actuator spacecraft 2 [26.70, 25.74, − 10.21, 12.36]T × 10−2 Lmax 

Actuator spacecraft 3 [− 35.34, − 28.56, − 14.52, 34.12]T × 10−2 Lmax 

Actuator spacecraft 4 [9.44, − 33.33, 26.26, 35.55]T × 10−2 Lmax 

Actuator spacecraft 5 [− 29.38, 21.45, 30.02, 12.58]T × 10−2 Lmax 

Actuator spacecraft 6 [1.88, − 9.02, − 4.08, 5.66]T × 10−2 Lmax 
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Fig. 2 The total control torque 
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Fig. 3 Allocation error

energy are defined as E0 = 1 
2

∫ t0 
0 ||u||dt  and Ev = ∫ t0 

0

( ˙̃η 
T ˙̃η + η̃T K̃ η̃

)
dt  with t0 

denoting the simulation time. It can be clearly seen that the vibration energy of post-
capture flexible combination is very small, indicating that the elastic vibration of 
flexible appendages is well suppressed, “which is consistent with Fig. 6”.
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Fig. 4 The curve of attitude angle 
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Fig. 5 The curve of angular velocity

The angular momentum curves of the four reaction wheels of the first three 
actuators spacecraft are drawn in Fig. 8, and the last three are drawn in Fig. 9. 
The two pictures show that during the whole torque allocation process, all reac-
tion wheels are not saturated, and their maximum angular momentum is less than 
Lmax = 20

)
kg m2

(
/s, which shows that the dynamic torque allocation strategy is 

successful.
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Fig. 6 The curve of modal displacement 
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Fig. 8 The angular momentum of the 1–3rd actuator spacecraft 
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Fig. 9 The angular momentum of the 4–6th actuator spacecraft 

5 Conclusions 

In this paper, a robust H∞ control scheme is proposed for the cluster takeover of 
non-cooperative flexible spacecraft, which is preset on the controller spacecraft in 
the cluster. The controller spacecraft is responsible for calculating the control signal 
that can stabilize the post-capture flexible combination, while the actuator spacecraft 
implement the allocated control torque based on the torque allocation strategy. The 
control scheme provides a feasible solution for realizing the attitude stabilization and 
vibration suppression of the flexible combination simultaneously, while the torque 
allocation scheme restores the desired control signal scheme with high precision. 
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