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Abstract With Omicron sweeping the world, it has brought huge pressure on the 
healthcare system, and quick diagnosis of pneumonia caused by COVID-19 using 
chest computed tomography (CT) scans plays a key role in saving lives. Image 
processing techniques have been widely used to analyze CT scans and other medical 
images, which also facilitate the diagnosis and treatment of Coronavirus disease. 
This article introduces several image segmentation models that are used to facilitate 
the diagnosis of COVID-19 and applies several recently proposed deep learning 
(DL) models to the task, including UNEt TRansformers (UNETR++) and Dual 
Attention-guided Efficient Transformer (DAE-Former). We compare the perfor-
mance of these models and provide a thorough analysis of different methods. The 
experimental results show that for the task of segmenting COVID-19 lesion areas, 
both Transformer-based models obtained better performance in terms of the value of 
mIoU compared with U-Net, a CNN-based model, while U-Net obtained higher accu-
racy. The DAE-Former model has superior anti-noise ability to UNETR++, whereas 
UNETR++ is more robust in terms of domain transfer. 
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1 Introduction 

According to the latest data provided by the World Health Organization (WHO), 
as of 18th December 2022, over 649 million confirmed cases and over 6.6 million 
deaths have been reported globally since the outbreak of COVID-19 [1]. All viruses, 
including SARS-CoV-2, the virus that causes COVID-19, change over time. Since 
the beginning of the coronavirus pandemic, a number of prominent variants have 
been seen, including Alpha, Beta, Delta, and Omicron. According to recent studies 
on coronavirus variants, the Omicron variant has higher transmission rate and brings 
a significant risk of neutralizing antibody escape from convalescent patients [2, 3], 
catalyzing the fourth wave of the pandemic in many countries worldwide. 

The early identification of COVID-19 cases plays a crucial role to provide fast and 
efficient treatment to the effected patients. Reverse transcription polymerase chain 
reaction (RT-PCR) is widely used to detect infectious agents, for example, SARS-
CoV-2 [4]. In spite of its simplicity, specificity and sensitivity, RT-PCR still suffers 
from the long processing time (4–8 h) as well as false-negative and false-positive 
results [5]. Therefore, the use of chest radiographs and chest CT scans in the clinical 
diagnosis of COVID-19 becomes a necessary addition, especially in severe cases of 
pneumonia, as shown in Fig. 1. 

With the increase in confirmed and suspected COVID-19 cases, manually 
analyzing such a large amount of CT scans in a limited time may incur errors. 
Automatic analysis of CT scans using image processing techniques provides an effi-
cient alternative approach [7]. We present a review of machine learning approaches 
related to the task of image segmentation, which is a crucial step in the automatic 
diagnosis of COVID-19 [8]. We also apply several recently proposed deep learning

Fig. 1 Examples of normal and COVID-19 infected chest CT scans [6] 
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models to the task and compare the performance of different models. The experi-
mental results show that for the task of segmenting COVID-19 lesion areas, both 
Transformer-based models (DAE-Former and UNETR++) obtained better perfor-
mance in terms of the value of mIoU compared with U-Net, a CNN-based model, 
while U-Net obtained higher accuracy. The DAE-Former model has superior anti-
noise ability to UNETR++, whereas UNETR++ is more robust in terms of domain 
transfer. 

The rest of the paper is organized as follows: first, we introduce several image 
segmentation techniques that are widely used in medical image processing and the 
diagnosis of COVID-19; second, we apply two recently proposed deep learning 
models to the task, then compare and analyze the experimental results; finally, we 
end with concluding remarks. 

2 Machine Learning Approaches Used in the Task of Image 
Segmentation 

Image segmentation is the process of partitioning a digital image into multiple image 
segments, which is an important step in the automatic diagnosis of COVID-19. It 
locates regions of interest (ROI) in chest X-ray or CT images, for example, lungs, 
lobes, bronchopulmonary segments and infected regions or lesions. Image segmenta-
tion techniques can facilitate the diagnosis of COVID-19 by locating infected regions 
in X-ray and CT images, thus helping radiologists to make clinical decisions [9]. This 
section summarizes related works in image segmentation and its applications in the 
diagnosis of COVID-19. 

2.1 Evaluation Metrics for Image Segmentation 

In general, image segmentation evaluation methods can be divided into two main 
categories: empirical evaluation and analytical evaluation methods. The empirical 
methods analyze a segmentation method with respect to its findings and outputs, 
whereas the analytical methods assess the method based on its complexity, function-
ality, and utilities. In this paper, we focus on the empirical methods. In addition to 
accuracy, there are four basic quantitative metrics, which are true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN). 

Some other metrics are also widely used in image segmentation. For example, 
true positive rate (TPR), also known as sensitivity or recall, measures the fraction of 
pixels that are true positives among the total class-relevant pixels. 

Recall = Sensi ti  vi t y  = T P  R  = T P  

T P  + FN  
(1)
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False positive rate (FPR), also known as specificity, measures the ability of 
predicting negative examples. 

Speci  f  i ci t y  = FPR  = T N  

T N  + FP  
(2) 

Precision is the proportion of positive samples that are predicted to be positive. 

Precision  = T P  

T P  + FP  
(3) 

F1-score is the harmonic average of precision and recall, with the maximum value 
being 1 and the minimum value being 0. 

F1 = 2 ∗ 
Precision  ∗ Recall 
Precision  + Recall 

(4) 

ROC-AUC refers to the area under the ROC curve, which is a curve formed by 
connecting the points of FPR and TPR, where the horizontal axis is FPR, and the 
vertical axis is TPR. 

Similarly, PR-AUC refers to the area under the PR curve, which is a curve formed 
by the points of precision and recall, with recall on the horizontal axis and precision 
on the vertical axis. 

Dice Similarity Coefficient (DSC) is used to measure the similarity between 
predicted labels and true labels; the larger the value, the higher the segmentation 
accuracy is 

DSC = 2T P  

2T P  + FP  + FN  
(5) 

Hausdorff distance (HD) indicates the maximum distance between the boundary 
of the predicted segmentation region and the boundary of the manually labeled region; 
the smaller the value, the better the segmentation quality is. Let X and Y be two 
nonempty sets, then define their Hausdorff distance as dH (X, Y ) . 

dH (X, Y ) = max{dXY  , dY X } = max

{
max 
x∈X min 

y∈Y d(x, y), max 
y∈Y min 

x∈X d(x, y)
}

(6) 

In order to eliminate unreasonably large distances caused by outliers and obtain 
a more robust estimate of the maximum error, 95% Hausdorff distance (HD95) is 
used instead, also known as 95th percentile of the ordered distance measures. 

Mean Intersection over Union (mIoU): A standard measure of image segmentation 
calculates the average of the ratio of the intersection of the segmentation results and 
the true labels to the union of the two, across all classes. Let k represent the number 
of categories, and (k + 1) means that the background class is added.
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mIoU  = 1 

k + 1 

k∑
i=0 

T P  

FN  + FP  + T P  
(7) 

2.2 Image Segmentation Methods 

Various techniques have been applied to the task of image segmentation, ranging from 
the inversion technique, active contour models, and the threshold method to the edge 
flow method and the clustering technique. The broad success of deep learning models 
has prompted the development of new image segmentation approaches leveraging 
DL models, among which CNN-based and Transformer-based models are widely 
used and proved to be effective. 

CNN-based segmentation methods: With the success of the U-Net architecture 
[10], variants of the U-Net model have been proposed to solve the image segmenta-
tion task, which are also used to detect lesion regions of lungs in medical images of 
COVID-19 patients. Table 1 shows the image segmentation performance of different 
CNN-based models. Zheng et al. [11] identified the lung region using a pre-trained 
U-Net, and the resulting segmentation mask is fed into a deep neural network to 
diagnose COVID-19 automatically. Gaál et al. [12] proposed the attention U-Net 
model to accomplish the task of image segmentation. Naqvi et al. [13] modified 
the U-Net architecture by adding a new block that applied morphological opera-
tions and binarization to the segmentation output from U-Net, which performed well 
in automatic lung segmentation. Qi et al. [14] applied logistic regression (LR) and 
random forest (RF) to features extracted from pneumonia lesions, and predicted 
hospital stay in patients with pneumonia associated with COVID-19. Wang et al. 
[15] introduced COPLE-Net, a noise-robust framework, to learn from noisy labels 
for segmentation of pneumonia lesions. Mishra et al. [16] developed a fully convo-
lutional neural network (FCNN) to solve segmentation of ultrasound (US) images. 
Traditional methods of tuning hyperparameters in these models are time-consuming 
and unstable. To address this, [17] used a Particle Swarm Optimization algorithm to 
build a PSO-guided Self-Tuning Convolution Neural Network (PSTCNN), allowing 
the model to automatically tune hyperparameters. This approach reduces human 
involvement and improves the selection of hyperparameter combinations to achieve 
a stable solution closer to the global optimum. Experimental results show that the 
PSTCNN performs exceptionally well, with high accuracy, sensitivity, specificity, 
precision, F1-score, Matthews Correlation Coefficient, and Fowlkes-Mallows Index. 
Compared to traditional methods, this optimization algorithm for hyperparameter 
tuning is faster and more effective. It is worth pointing out that CNN-based methods 
have been also widely explored in the diagnosis of other diseases, for example, lung 
cancer [18] and visual impairment [19].
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Table 1 Image segmentation performance of different CNN-based models 

Refs. Technique Image types Performance 

Zheng et al. [11] U-Net CT ROC-AUC = 95.9%, PR-AUC = 97.6% 

Gaál et al. [12] Attention 
U-Net 

X-ray DSC = 97.5% 

Naqvi et al. [13] U-Net-based X-ray DSC = 98.3% 

Qi et al. [14] LR, RF CT Sensitivity = 100%, specificity = 89% 

Wang et al. [15] COPLE-Net CT DSC = 80.29%, HD95 = 18.72 mm 

Mishra et al. [16] FCNN US DSC = 79%, F1 = 83%, mIoU = 83% 

In addition to the use in 2D images, CNN-based models have been explored in 
3D image segmentation. Milletari et al. [20] designed a volumetric, fully convo-
lutional neural network to accomplish 3D image segmentation. Çiçek et al. [21] 
proposed a network for volumetric segmentation which learned from sparsely anno-
tated volumetric images by replacing 2D operations with 3D counterparts. Isensee 
et al. [22] introduced a segmentation framework called nnU-Net, which automat-
ically configures itself, from preprocessing, network architecture, training to post-
processing for any new task. The approaches above have been shown to perform well 
in the study of CT image segmentation to detect pneumonia caused by COVID-19 
[23]. However, incorporating shape representations into CNN-based architectures, 
requires modeling long-range dependencies, which remains a challenge and affects 
the system performance [24]. 

Transformer-based segmentation methods: Vision Transformers (ViTs) have 
shown superior performance over CNN-based models by incorporating self-attention 
[25, 26]. Although ViT is applicable to image classification, it is challenging to 
directly adapt it to pixel-level dense predictions, for example, object detection and 
segmentation, mainly due to the high computational and memory costs even for 
common input image sizes. Therefore, the Pyramid Vision Transformer (PVT) was 
proposed, as shown in Fig. 2 [27]. ViT contains one Transformer encoder and was 
designed for image classification specifically; while PVT has several Transformer 
encoders resulting in multiple feature maps, which can be applied to different down-
stream tasks, for example, image classification, objection detection as well as image 
segmentation. Liu et al. [28] introduced shifted window based self-attention, which 
brought greater efficiency by limiting self-attention computation to non-overlapping 
local windows.

In addition to further improvement of CNN and Transformer based models [20, 
22, 28], efforts were made to combine the two into hybrid models, for example, 
UNETR [29] and not-another Transformer nnFormer [30], and better performance 
has been achieved.
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Fig. 2 Architectures of ViT and PVT. TF-E stands for transformer encoder, CLS stands for 
classification, DET stands for detection, and SEG stands segmentation

3 Automatic Diagnosis of COVID-19 Using DAE-Former 
and UNETR++ 

As described in the previous section, Transformer-based models as well as hybrids of 
Transformer and CNN have become state-of-the-art techniques for image segmenta-
tion. Therefore, we experiment with two recently proposed models for image segmen-
tation to accomplish automatic diagnosis of COVID-19, which are DAE-Former [31] 
and UNETR++ [32]. DAE-Former is a Transformer-based model and UNETR++ is a 
hybrid model of CNN and Transformer. We introduce the two models and COVID-19 
datasets as well as our experiments in detail in the following subsections. 

3.1 Models 

DAE-Former: A convolution-free U-Net-like hierarchical Transformer, incorporates 
the patch embedding module [33], efficient attention [34], transpose attention [35], 
efficient dual attention as well as skip connection cross attention (SCCA). As shown 
in Fig. 3, the encoder takes the tokenized output from the patch embedding module 
as input, and consists of 3 stacked encoder blocks, each of which is composed of two 
consecutive dual Transformer layers and a patch merging layer. The decoder expands 
the tokens by a factor of 2 in each block. SCCA is then used to fuse the output of 
each patch expanding layer with the features filtered by the skip connection from the 
corresponding encoder layer. The SCCA module cross-attends the features from the 
encoder and decoder layers, instead of simple concatenation, using efficient attention. 
The combined features go through two consecutive dual Transformer layers. Finally, 
a linear projection layer generates the resulting segmentation image.

Efficient attention drastically reduces the computational complexity, compared 
with the standard self-attention mechanism, with equally high representational power. 
Therefore, efficient attention is used to capture the spatial context of the input feature. 
Transpose attention scales quadratically with the embedding dimension, which is
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Fig. 3 The architecture of DAE-Former [31]

usually more computationally efficient than the standard self-attention mechanism, 
especially for larger images. The transpose attention is then used to capture the 
channel context of the input feature. As shown in Fig. 4, the dual Transformer block 
combines the transpose attention and efficient attention mechanism to capture the 
spatial and channel context simultaneously. 

Fig. 4 The structure of dual transformer. It consists of an effective attention block followed by a 
Norm and FFN, and a channel attention block followed by a Norm and FFN to perform spatial and 
channel attention [31]
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Fig. 5 Hierarchical encoder-decoder structure of the UNETR++ model [32] 

UNETR++: A hybrid model for 3D medical image segmentation, achieves both high 
segmentation quality and efficiency in terms of parameters and computational cost. 
As  shown in Fig.  4, the encoder takes the 3D patches as input, which are fed into an 
efficient paired-attention (EPA) block; the rest of the encoder are 3 stacked blocks, 
composed of downsampling layers and EPA. Skip connections are used between the 
encoder outputs and the decoder. The decoder consists of 4 stages, each of which 
contains an upsampling layer followed by the EPA block, except the last stage. 
Convolutional blocks are applied to the output of the last stage to generate the final 
segmentation masks. 

The core component of the model is the EPA block, which incorporates both 
spatial and channel attention. Compared with the standard self-attention, the spatial 
attention module is able to reduce the complexity from quadratic to linear. The 
channel attention module is aimed to learn the relations between channel feature 
maps. As shown in Fig. 5, the weights of query and key mapping functions are shared 
between the two attention modules, which enables better feature representation and 
reduces the overall parameters as well. The spatial attention and channel attention 
outputs are fused and transformed by convolution blocks. 

3.2 COVID-19 Datasets 

Table 2 lists the datasets used in the following experiments. Morozov et al. [36] 
constructed a dataset which contains CT scans annotated with COVID-19 related 
findings or without such findings. Ma et al. [37] built three benchmark datasets for 
lung and infection segmentation of CT scans of COVID-19 patients. COVID-19 [38] 
is a COVID-19 CT segmentation dataset, each image of which was segmented by 
experts using 3 labels: ground-glass, consolidation and pleural effusion. Soares et al. 
[39] annotated a large dataset of real patients CT scans, each of which was labeled 
as positive or negative for COVID-19.
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Table 2 COVID-19 datasets 

Type Dataset Description 

CT-scans Morozov et al. [36] Chest CT scans with or without COVID-19 related findings 

Ma et al. [37] COVID-19 CT lung and infection segmentation dataset 

COVID-19 [38] COVID-19 CT segmentation dataset 

Soares et al. [39] CT scans annotated as positive or negative for COVID-19 

We combined the four datasets by using slice-level annotations to obtain segmen-
tation labels and converted all images to 8-bits to have consistent depth. Finally, in 
order to reduce noise, we remove images that do not contain key information about 
lungs and deleted images that lack clear category labels or patient information. As 
a result, the dataset consists of 2729 pairs of images and segmentation masks of 
COVID-19 lesion areas. 

3.3 Experiments 

As mentioned in previous sections, CNN-based and Transformer-based models have 
been proven to be effective in image segmentation. We experiment with one CNN-
based (U-Net) and two Transformer-based models (DAE-Former and UNETR++) to 
segment COVID-19 lesion areas. Even though DAE-Former and UNETR++ have 
achieved state-of-the-art performance in image segmentation, no experiments 
have been done to show their performance in the segmentation of COVID-19 
lesion areas. U-Net is used as a baseline model. 

Experiment setup: The models were implemented in Pytorch and trained using the 
AdaBelief optimization algorithm. The workstation used for the experiments has an 
i7 CPU @ 2.3 GHz, 16 GB RAM and NVIDIA GeForce GTX 3060. The dataset was 
split as 60% for training, 20% for validation and 20% for testing. 

Quantitative and qualitative analysis: We adopt standard evaluation metrics 
for image segmentation, and report results in terms of mean Intersection over 
Union (mIoU), Dice Similarity Coefficient (DSC), accuracy (AC) and precision (P) 
(Table 3). 

Table 3 Experimental results of segmentation of COVID-19 lesion areas 

Technique results 

U-Net mIoU: 83.36%, DSC: 91.48%, AC: 99.44%, P: 91.44% 

UNETR++ mIoU: 85.16%, DSC: 89.95%, AC: 99.31%, P: 91.02% 

DAE-Former mIoU: 86.45%, DSC: 90.93%, AC: 98.34%, P: 90.16%
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The results show that although U-Net has higher accuracy, its mIoU is the lowest 
among the three models, which indicates that U-Net obtains smaller segmented lesion 
area. As shown in Fig. 6, U-Net discarded part of the lesion area, which resulted in 
the segmented lesion area being smaller than the other two models. 

Subsequently, we changed the noise rate and noise type, and the segmentation 
performance of the three models all deteriorated. As shown in Fig. 7, the mIoU value 
of UNETR++ dropped more than that of the other two models. It indicates that its 
anti-noise ability is inferior to the other models. 

Fig. 6 Comparison of segmentation results from different models 

Fig. 7 Comparison of the 
mIoU value of different 
models with or without noise
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Table 4 Comparison of 
segmentation performance of 
different models on Synapse 

Technique #Params [M] DSC↑ (%) HD↓ 
nnFormer [30] 150.5 86.57 10.63 

TransUNet [40] 105.28 77.48 31.69 

Swin-Unet [33] 27.17 79.13 21.55 

UNETR++ [32] 42.96 87.22 7.53 

DAE-Former [31] 48.1 82.43 17.46 

In addition to the dataset presented in this paper, the common Synapse dataset, 
consisting of multiple organ segmentation datasets, was widely used for the evalua-
tion of image segmentation. In Table 4, the results of several models are added for 
comparison, and the results show that UNETR++ and DAE-Former achieve better 
segmentation performance with a low parameter number. 

UNETR++ obtains a DSC value of 87.22% on the Synapse dataset, while reaching 
89.95% of DSC on the COVID-19 dataset, which may be caused by the fact that the 
Synapse dataset is more diverse in terms of types of organs. DAE-Former behaves 
similarly and obtains the DSC value of 82.43% and 90.93% on the Synapse and 
COVID-19 dataset respectively. This comparison also shows that UNETR++ is more 
robust in terms of domain transfer. 

4 Conclusion 

We review recent deep learning models for the task of image segmentation, most 
of which performed well in automatic diagnosis of COVID-19, i.e., accurate identi-
fication of lung infections. We also apply two state-of-the-art Transformer-based 
models (DAE-Former and UNETR++) to segment COVID-19 lesion areas. The 
experimental results show that for the task of segmenting COVID-19 lesion areas, 
both Transformer-based models obtained better performance in terms of the value 
of mIoU compared with U-Net, a CNN-based model, while U-Net obtained higher 
accuracy. The DAE-Former model has superior anti-noise ability to UNETR++, 
whereas UNETR++ is more robust in terms of domain transfer. In future, we would 
experiment with generative adversarial network (GAN) as well as geometric data 
enhancement technologies to enrich and preprocess datasets, in order to generate 
data with high quality and quantity, which may further improve the performance of 
the system.
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