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Abstract In modern technologies, such as digital twin, it is essential to make 
real-time estimations of unknown time-varying boundary conditions from sensor 
measured data in given thermal systems, which leads to inverse heat transfer problems 
(IHTPs). However, due to the complexity of IHTPs, it’s quite challenging to obtain a 
stabilized solution for online estimation with affordable computational cost. In this 
work, a rapid yet robust inversion algorithm called ANN-based extended Kalman 
smoothing algorithm is developed to realize the online estimation of unknown time-
varying boundary conditions. Under the state-space representation of the extended 
Kalman smoothing algorithm, pre-trained fast ANN structures are deployed to 
replace the conventional CFD-based state transfer models, from which the computa-
tional process can be further accelerated by reducing the dimension of state variables. 
Two-dimensional tube convective heat transfer problem was employed as the case 
study to test the algorithm. The results show that the proposed algorithm is indeed a 
computational-light and anti-interference approach for solving IHTPs. The proposed 
algorithm can achieve estimation of unknown boundary conditions with a dimension-
less average error of 0.0580 under noisy temperature measurement with a standard 
deviation of 10 K and its computational cost is reduced drastically compared with 
conventional approach from 12.23 s per time step to 3.506 ms. 
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1 Introduction 

In many transient convective heat transfer problems, the unknown time-varying 
thermal boundary conditions (BCs) are difficult to be measured directly [1], yet 
whose online estimation is essential for improving the stability and performance of 
the thermal system in various engineering applications, such as aerospace thermal 
protection [2], chip cooling [3], metallurgical reactors [4, 5] and food engineering 
[6]. The inverse heat transfer problems (IHTPS) have been developed to estimate 
the unknown time-varying boundary conditions from the interior temperature fields. 
With the aid of the IHTP algorithm, it is possible to reconstruct the full temperature 
field as well as the thermal boundary condition from the online data measured by 
temperature sensors installed somewhere in the fluid domain. The technology is also 
known as digital twin. 

However, the traditional methods to solve IHTPs faces the following challenges 
and drawbacks. Firstly, it is difficult to obtain relatively stable and accurate solutions 
under noisy input data due to the inherent ill-posedness of IHTPs [7], which means 
it is difficult to obtain relatively stable and accurate solutions under noisy input 
data. Secondly, it is difficult to invert the unknown heat flux from delayed sensor 
measurements since the thermal disturbance decays at the downstream due to the 
diffusive nature of heat transfer. Thirdly, the traditional algorithm to solve IHTPs 
is a computation-intensive and time-consuming process [8], which is difficult to be 
applied to online estimations. 

The solutions for estimating time-varying BCs can be divided into two categories, 
namely, the whole domain algorithm and the sequential algorithm. The whole domain 
algorithm, by definition, is an offline method to calculate the unknown boundary 
conditions when all the time measurements in full time period are available. The 
algorithm transforms the IHTPs to an optimization problem, iteratively calculating 
the forward heat transfer process to minimize the error between the assumed and exact 
value of the unknown BCs by traditional optimization algorithms like Levenberg– 
Marquardt Method [9] or heuristic algorithms like repulsive particle swarm algorithm 
[10], ant colony optimization, and cuckoo search algorithm [11]. 

The sequential algorithms, on the other hand, work in the online mode. With 
continuously measured instantaneous temperature, the real-time or near real-time 
estimation of the unknown BCs can be achieved. Many sequential inversion methods 
have been brought up, including the sequential function specification method (SFSM) 
[12], dynamic matrix control method [13], multiple model adaptive inverse (MMAI) 
method [14], artificial neural network (ANN) algorithm [8, 15, 16], and digital filter 
(DF) approach [2, 4, 17–23], etc. 

Beck [12] firstly introduced the concept of future measurement into IHTPs, which 
tackles the sensing delay issues to ensure a stabilized solution without time-lag or 
distortion. In order to reduce the interference caused by the noises, the digital filtering 
approach [2, 4, 17–23] are employed. Owing to its statistical trade-off between the 
sensor measurement and model prediction towards a smoothed result, the Kalman 
filtering approach is relatively more robust under noisy input data, which serves
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as a valuable tool for tackling the ill-posed problem [7]. Scarpa and Milano [24] 
employed the Kalman filtering (KF) technique to solve a linear one-dimensional 
heat conduction problem, which shows the anti-interference ability of KF algorithms. 
The algorithm could be coupled with Rauch-Tung-Strieber (RTS) smoothing, which 
utilizes future time measurement to reduce the time lag in the prediction results. 
Although standard KF technique can be used to tackle liner IHTPs efficiently, it does 
not show pleasant for nonlinear IHTPs. Therefore, the extended version of Kalman 
filtering (EKF) technique [25], unscented Kalman smoothing algorithm [26], and 
other KF related methods [4, 17, 18, 21] are developed to deal with nonlinear IHTPs. 
Although the KF-related algorithms work well under noisy environment, but all of 
them share a common drawback, which is the prohibitively high computational cost 
caused by repetitive CFD forward calculations required in the sensitivity analysis. 

Other algorithm, such as the artificial neural network (ANN) algorithm, with its 
powerful mapping ability [27] and high computational efficiency, may help to reduce 
computational cost. For instance, Najafi et al. [15, 16] utilized ANN models to directly 
correlate unknown BCs with sensor-measured temperatures, while Huang et al. [8] 
utilized well-trained ANN structures as the rapid forward solver, coupled with inverse 
algorithm, indirectly realizing the online estimation of unknown BCs. Both works 
demonstrate that the ANN algorithm could accelerate the computation of IHTPs with 
satisfactory accuracy. However, the major drawbacks of ANN algorithm are that, the 
training of ANN requires vast amount of dataset under high representation load, and 
it tends to overfitting when the sensor measurements are contaminated with noises. 

To summarize, the KF-related approach is a robust method when measurement 
noise is non-negligible, but its high computational cost limits its applications towards 
online estimation task. The ANN models, on the other hand, as the universal approx-
imators, could be employed to improve the computational efficiency of KF-related 
algorithm. Thus, in this work, we try to combine the extended Kalman smoothing 
algorithm and ANN algorithm to establish a rapid yet robust solution to IHTPs. 
Moreover, to reduce the redundant calculation of sensitivity analyzes requires in 
the traditional EKF approach, we developed a reduced form of EKF state vector 
with the aid of ANN model to further improve the computational efficiency. A two-
dimensional convective heat transfer problem is selected as the case study for the 
implementation and evaluation of the proposed algorithm. 

2 Inversion Procedure by Extended Kalman Smoothing 

2.1 The Benchmark Problem 

The case study is showed in Fig. 1, which describes a convective heat transfer 
problem on a two- dimensional rectangular region. A sensor is placed in the field, 
providing us with real-time temperature measurement while a time-varying heat flux, 
as the unknown BCs, is applied on the upper boundary. The main objective of our
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Fig. 1 The schematic of a 2D heat convection inverse problem 

Table 1 Detailed parameters 
for the numerical example Symbol Quantity Value 

kc Coefficient of thermal conductivity 0.243 W/(mK) 
ρ Air density 1.29 kg/m3 

Cp Specific heat capacity 1005 J/(kg K) 
L Length 1m  

h Height 0.1m  

proposed algorithm is to estimate this unknown BCs in online mode by utilizing the 
continuously measured sensor temperatures. 

The lower boundary is considered to be adiabatic. On the left boundary, fully 
developed air with an initial temperature Tin  = 300 K and an average inlet velocity 
um = 0.033 m/s passes through the region. The default sensor location is (0.820, 
0.089) and other detailed parameters are showed in Table 1. 

Then, we give the governing equation for the above problem, 

ρCp 
∂T (X, Y, t) 

∂t
+ ρCpu(Y ) 

∂ T (X, Y, t) 
∂ X

= kc 
∂2T (X, Y, t) 

∂Y 2 
(1) 

where the boundary conditions and initial conditions are 

kc 
∂T (X, Y = h, t) 

∂Y
= q(t) (2) 

kc 
∂T (X, Y = 0, t) 

∂Y
= 0 (3)
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u(X = 0, Y, t) = u(Y ) = 6u
[
Y 

h

(
1 − 

Y 

h

)]
(4) 

T (0, Y, t) = Tin (5) 

2.2 Extended Kalman Filtering 

In this work, the IHTPs is solved by the ANN-based extended Kalman smoothing 
algorithm (ANN-EKS) which compose of two main parts, ANN-based forward solver 
and extended Kalman smoothing algorithm. The entire procedure is summarized as 
Fig. 2. The extended Kalman smoothing algorithm gives estimation of the unknown 
boundary conditions step by step and is accelerated based on the fast prediction of 
local temperature field and sensitivity analysis made by ANN-based forward solver. 

The extended Kalman smoothing algorithm can be further separated into two 
sections, namely, the extended Kalman filtering (EKF) algorithm and the Rauch-
Tung-Strieber (RTS) smoothing algorithm. The RTS smoothing algorithm enables 
the EKF algorithm to include future measurement into the estimation of unknown 
heat flux, which can address the sensing delay issue of IHTPs. 

As aforementioned, the IHTPs is ill-posed by nature [7], which means small 
disturbance of the input data may cause large error in the output result. To solve 
this challenge, the extended Kalman filtering algorithm is employed, which uses the 
state-space representation to describe this two-dimensional convective heat transfer 
process and statistically quantifies the model error and the measuring noises. The 
algorithm compromises between the original prediction and the noisy measurements 
so that a more precise estimation could be made.

Fig. 2 The procedure of estimating time-varying heat flux at t = k by the proposed algorithm 
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At first, the benchmark problem needs to be described under the state-space 
representation, whose nonlinear forms are respectively showed in Eqs. (6) and (7), 

xk+1 = [(xk, zk) + ωk+1 (6) 

yk+1 = H(xk+1) + υk+1 (7) 

where x is the state vector of the system describing its current state, y is the measure-
ment vector, and zk is the input of the system. The nonlinear operator [ describes the 
dynamics of the system over time. and the nonlinear measurement operator H maps 
the state vector to the measurement vector. The ω and are ν respectively the state 
transfer model error and measurement noise, which are assumed to be independent 
zero-mean Gaussian noises with covariance matrix Q and R. 

In order to apply the EKF algorithm for solving IHTPs, proper state variables 
need to be selected to fully describe the state of given thermal system. In literature 
[24–26], state vector x∗ 

k in the following form was employed, 

x∗ 
k = [T 1 k T 

2 
k . . .  T i k . . .  T N k qk]T (8) 

where T i k (i = 1, 2, . . . ,  N ) is the temperature of node i at time k, and N is the 
amount of mesh nodes used in the numerical computation of the benchmark problem, 
representing the temperature field in the discretized form. It is noteworthy that, the 
unknown boundary heat flux qk , which was predicted and corrected with the EKF 
approach in each time step, was augmented into the state vectors in order to estimate 
the unknown heat flux. 

In IHTPs, the measurement vector y is the sensor-measured temperature and the 
nonlinear measurement operator H is then reduced to a linear matrix H showed as 
follows, 

H =
[
0 0  . . .  1,,,,

i=ns 

. . .  0
]
1,N+1 

(9) 

where the node index ns corresponds to the sensor location in the temperature field. 
The EKF approach estimates the next-time-step unknown boundary heat flux in 

two phases, the prediction phase and the correction phase. 
In the prediction phrase, the EKF approach predict the unknown state vector 

as well as its probability distribution for the next-time step, which are realized by 
updating the means and covariance matrix of state vector x∗ 

k+1 based on the current 
x∗ 
k and the following state space model, 

x∗ 
k+1 = [

(
x∗ 
k

) + ωk+1 (10) 

yk+1 = Hx∗ 
k+1 + υk+1 (11)
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To calculate the means and covariance matrix of x∗ 
k+1, the EKF approach further 

linearize this problem by approximating [(x∗ 
k ) with first-order Taylor expansion at 

x̃∗ 
k ,

[
(
x∗ 
k

) = [
(
x̃∗ 
k

) + 
∂[

∂x∗ 
k

||||
x∗
k =x̃∗

k

(
x∗ 
k − x̃k

) + o
(
x∗ 
k − x̃∗ 

k

)
(12) 

where x̃∗ 
k is the corrected estimation result at last time step k, and ∂[

∂ x∗
k 
is the Jacobi 

matrix of the state vector, denoted as Fk , 

Fk = 
∂[

∂ x∗ 
k

||||
x∗
k =x̃∗

k 

= 

⎡ 

⎢⎢⎣ 

∂[1 
∂ x∗

k,1 
. . . ∂[1 

∂ x∗
k,N+1 

... 
... 

... 
∂[N+1 

∂ x∗ 
k,1 

· · ·  ∂[N+1 

∂ x∗ 
k,N+1 

⎤ 

⎥⎥⎦ 

(N+1)×(N+1) 

(13) 

It can be numerically calculated by the following means, 

∂[i 

∂ x∗ 
k, j 

≈
[i

(
x∗ 
k + e j εx∗ 

k, j

)
− [i

(
x∗ 
k − e j εx∗ 

k, j

)
2εx∗ 

k, j 
(14) 

where e j = 

⎡ 

⎣0 0  · · ·  1∗,,,,
j 

· · ·  0 

⎤ 

⎦ 
T 

N+1 

and ε = 10−4. 

Therefore, the final predicted results x̂∗ 
k+1(means of x∗ 

k+1) and its error covariance 
matrix Pk+1 are given below, 

x̂∗ 
k+1 = [

(
x̃∗ 
k

)
(15) 

ŷ∗ 
k+1 = H x̂∗ 

k+1 (16) 

Pk+1 = Fk P
'
k F

T 
k + Q (17) 

where ŷk+1 are the predicted measurement temperature at time step k + 1 and P' is 
the corrected error covariance matrix at time step k. 

In the correction phase, the Kalman gain is calculated as follows, which can be 
considered as the confidence level ratio between the model prediction and sensor 
measurements. 

K ' = Pk+1 H 
T (HPk+1 H 

T + R)−1 (18) 

Then the estimation results and the covariance matrix are corrected using the 
Kalman gain.
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x̃∗ 
k+1 = x̂∗ 

k + K '(yk+1 − H x̂∗ 
k+1

)
(19) 

P '
k+1 = Pk − K 'Hk Pk (20) 

2.3 RTS Smoothing 

The EKF approach is a real-time inversion algorithm, which utilizes the current 
available data to estimate the unknown boundary heat flux. However, due to the 
diffusive nature of heat transfer process, the thermal response at sensor location lags 
behind the changing boundary heat flux, which is difficult to be captured by EKF 
approach itself. 

In this work, a fixed interval smoothing algorithm called the Rauch-Tung-
Strieber (RTS) smoothing technique is employed to include the data of future time 
measurement into the algorithm for better estimations. 

As showed in Fig. 3, the RTS algorithm loops Kalman filtering procedures 
forwardly by n f times and then slides back by n f times to obtain a smoothed result. 
In the forward filtering procedures, we have already calculated the predicted x̂∗ 

k , 
the corrected estimation x̃∗ 

k , the corresponding predicted error covariance Pk , the  
corrected P '

k , and the Jacobi matrix Fk at time step k(k = k0 . . .  k0 + n f ). Thus, the 
backward recursion procedures can be proceeded as follows, 

Gk = P '
k F

T 
k (Pk+1)

−1 (21) 

x̃ ''∗ 
k = x̃∗ 

k + Gk( ̃x ''∗ 
k+1 − x̃∗ 

k+1) (22) 

where x̃ ''∗ 
k and x̃ ''∗ 

k+1 are the smoothed results at time step k, k + 1 and Gk represents 
the RTS version of Kalman gain.

Fig. 3 The procedure of RTS smoothing at time step k 
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3 The ANN-Based Rapid State Transfer Model 

In traditional KF-related approaches, the state transfer is usually achieved by CFD 
simulations, whose computation may take longer than the physical time in complex 
flow and heat transfer problems, thus being unsuitable for online inversion. 

Alternatively, the artificial neural network is employed as a surrogate model for 
temperature field prediction by CFD, which can significantly reduce computational 
cost while holds certain level of accuracy [27]. 

More importantly, given that the ANN prediction does not require the information 
of entire temperature field, it allows to reduce the dimension of state vector in the EKS 
algorithm, which can tremendously reduce the computational cost and eventually 
realize online predictions. 

3.1 The General Form of ANN-Based State Transfer Model 

The key model in EKS algorithm is the state transfer model, which is composed of 
two parts. The first part approximates the next time step heat flux from step k to step 
k + 1 as showed in Eq.  (23) 

qk+1 = qk + ωq (23) 

where we consider the induced error by this approximation as a part of the noise 
ω applied to the state transfer model. The second part forwardly calculates the 
next-time-step temperature field based on current temperature field and heat flux, 
which is achieved by ANN model. The input of ANN is the current state vector 
x∗ 
k = [T 1 k T 

2 
k . . .  T i k . . .  T N k qk]T , and the output is the next-time-step temperature 

field Tk+1 = [T 1 k+1 T 
2 
k+1 . . .  T i k+1 . . .  T N k+1]T . 

Despite the proven feasibility of this chosen state vector [24–26], the computa-
tional cost is still prohibitively expensive for online estimations. Large amounts of 
redundant sensitivity analysis are generated from this high-dimensional state vector 
containing the entire temperature field of all mesh nodes. 

To address this problem, a novel state transfer model of reduced dimension is 
designed here with the aid of ANN algorithm. The reduced form of state vector is as 
follows, 

x∗ 
k =

[
T ns k T ns+a 

k T ns−a 
k T ns+b 

k T ns+b 
k qk

]T 
(24) 

where the temperature value of sensor location T ns k is listed on the state vector along 
with the temperatures of four other points close to the sensor.
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Then, the structure of ANN surrogate model should be organized as follows, 

Inputs: [ T ns k T ns+a 
k T ns−a 

k T ns+b 
k T ns+b 

k qk
]T 

(25) 

Outputs: [ T ns k+1 T 
ns+a 
k+1 T ns−a 

k+1 T ns+b 
k+1 T ns+b 

k+1

]T 
(26) 

3.2 The Generation of Dataset and the Training Procedure 
of ANNs 

To train the ANN models, large amounts of numerical simulations are conducted to 
generate the training dataset. 

The transient temperature field are calculated by solving the covering equations 
described in Sect. 2.1 with finite volume method, which applies upwind differential 
scheme in x direction, central differential scheme in y direction, and the implicit 
scheme is adopted for the time marching [11]. The total mesh size is 25 × 50 with
Δx = 0.04 m and Δy = 0.002 m. 

To cover a variety of changing thermal boundary conditions on the heated wall, as 
shown in Fig. 4, a series of heat flux evolutions were adopted such as step functions, 
polynomial functions, sinusoid waves and triangular waves in different amplitudes 
and frequencies, which will generate rich state transfer information for the training of 
ANN models. Moreover, the training dataset could be furthered expanded by applying 
Eq. (14) during the above simulation, so as to simulate the sensitivity analysis by 
elevating and lowering one of the state variable’s value and then calculating the 
next-time results. 

Therefore, the final training heat flux, with a total times steps of 6794 (time 
duration of 67.94 s on the testing computer), is applied to the benchmark problem 
including the four above forms of heat fluxes showed in Fig. 4 with different ampli-
tudes and frequencies. The CFD predicted temperature field is then reorganized into 
the standard form of inputs and outputs of ANN for training purpose.

Fig. 4 The schematic of generating dataset by applying various form of heat flux and obtaining 
temperature distribution over time. a Step heat flux. b Triangular heat flux. c Parabolic heat flux. 
d Sinusoid heat flux 
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The final dataset includes state transfer data needed in Eq. (10) as well as the 
sensitivity analysis data needed in Eq. (14). However, the data volume of the former 
is only 1/12 of the latter. The unbalanced dataset may cause the ANN model fitting 
more closely to the pattern of sensitivity analysis but works poorly under state transfer 
scenario. To resolve this unbalanced dataset problem, we choose to divide the dataset 
and train two ANN models used for state transfer prediction and sensitivity analysis 
respectively. Therefore, 6794 sets of data are used for training the state transfer ANN 
model and the remaining 81,529 sets of data are used for training the sensitivity ANN 
model. 

The fully connected multi-layer perception (MLP) neural network is chosen in this 
work. Both ANN models compose of three layers, with 10 neurons in the hidden layer. 
The inputs and outputs are standardized in order to enhance training performance. 
The hyperbolic tangent (tanh) function is chosen as the active function and the Leven-
berg–Marquardt backpropagation algorithm is used to train the neural network. The 
training procedure of ANN model for state transfer prediction ends after 1422 itera-
tions when the performance of the network stops improving in the validation dataset 
for 6 consecutive epochs. To validate the training method, datasets are randomly 
divided into three parts, 70% of which are used for training, 15% for validation and 
15% for testing respectively. The pre-trained neural network eventually achieves a 
mean square error of 7.14 × 10−9 in the testing dataset and the regression R value 
reaches 0.99999, while the training procedure of ANN model for sensitivity anal-
ysis ends after 552 iterations and achieves a mean square error of 8.02 × 10−9 in 
the testing dataset and the regression R value reaches 0.99997, indicating that the 
training is successful and the obtained neural network can meet the accuracy criterion 
for surrogating the state transfer models. 

4 Results and Discussions 

4.1 Verification on the Feasibility of the Proposed Algorithm 
and Discussions 

In order to test the feasibility of the proposed algorithm, a transient CFD simulation is 
performed, in which the heat flux on the upper wall is varying in the manner showed 
in Fig. 5 (solid line). The CFD predicted temperature variation at the point (x, y), is 
then extracted to simulate the temperature measurements with a sensor.

Given that the sensor-measured temperature is inevitably contaminated with 
noises, a zero-mean Gaussian noise (σ ∼ N (0, 1)) with a noise level m is imposed 
on the simulated temperature evolution at the point (x, y) to simulate the noisy 
measurements yk , 

yk = Tk + mσ. (27)
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Fig. 5 Comparison between the real heat flux and the estimation results under noise level m = 2 
(Plot interval: every 11 time steps)

where Tk is the simulated real temperature value at sensor location of time step k. 
In this test, the noise level is set to be m = 2. Feeding the artificial measurements 

yk into the ANN-EKS algorithm as the input, one can get the output qk . Figure 5 
compares qk with the wall thermal boundary condition used in the CFD simulation 
q ''
k , which could be treated as the “true” value. The results show that the predicted 
heat flux evolution agrees well with the “true” value, indicating the ANN-EKS based 
IHTPs solver works well to predict the historical thermal boundary condition that 
varied with complex wave functions, such as step function, a triangular wave and an 
arbitrary smooth curve. 

To evaluate the algorithm’s performance quantitatively, the average error (AE) is  
defined to describe the accuracy of the estimation results, 

AE =
[||√1 

n 

n∑
k=1

(
q ''
k − qk

)2 
(28) 

where the q ''
k and qk are the dimensionless form of applied heat flux and estimation 

results and n is the number of total time steps. 
And the average computing time per time step is defined to evaluate the compu-

tational efficiency of our algorithm. All the simulations involved in this work are 
performed on a personal computer with 2.50 GHz Intel (R) Core (TM) i7-11700F 
processor and 32 GB of RAM.
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4.2 Comparison Study with Other Algorithms 

In order to highlight the advantage of the proposed algorithm, it is compared with 
the inverse ANN algorithm [15, 16] and the extended Kalman smoothing algorithm 
(EKS) [24, 25]. 

The inverse ANN algorithm [15, 16] mainly utilizes the artificial neural network 
model to directly map the sensor-measured temperature to the unknown boundary 
conditions. The inputs of the ANN model are the past and future temperature measure-
ment

[
Tk+n p . . .  Tk−1 Tk Tk+1 . . .  Tk+n f

]T 
at the sensor locations, and the outputs are 

the boundary heat flux [qk] in the current time step. The inverse ANN algorithm 
possesses high computational efficiency due to its direct ANN-aided prediction of 
unknown BCs from the sensor measurements, but it may tend to overfitting and 
performs poorly when the measurement noises are relatively high. 

The extended Kalman smoothing algorithm [24, 25] employs the full form of 
the state vector, the transfer of which is calculated based on the traditional CFD 
methods. Though this algorithm copes well under noisy measurement, the redundant 
sensitivity analysis, caused by the high-dimensionality of the full-form state vector, 
lead to tremendously high computational cost and limits its applications toward 
online estimations. 

It can be seen that the proposed algorithm has a lower accuracy than the traditional 
inverse ANN algorithm under relatively lower noise level. However, it outperforms 
the inverse ANN algorithm when the noise level is higher than 10, indicating that the 
proposed algorithm works robustly under noisy input data. Moreover, the AE of the 
proposed algorithm is close to that of the CFD-based EKS algorithm, which proves 
that the simplification of our work in the state vector is reasonable. 

Notably, Fig. 6 shows the inversion results of the above three algorithm (scatter) 
against the testing heat flux (solid line) under a relatively high noise level of m = 
10. The results of our ANN-EKS algorithm and traditional EKS algorithm match the 
real heat flux well with an AE of 0.0580 and 0.0609 respectively while the inverse 
ANN algorithm seemingly oscillates greatly under this high noise level and performs 
the worst with an AE of 0.0825. Also, we can notice that the proposed ANN-EKS 
algorithm possesses better ability to suppress overshooting and oscillation of the 
prediction compared with the other two methods, which further proves the robustness 
of our algorithm in noisy environments.

More importantly, our proposed algorithm also has great advantages in terms of 
computational efficiency. our ANN-EKS algorithm can drastically reduce the compu-
tational time of the conventional EKS approach from 11.3 s per time step to 5.43 ms 
in the comparison study. Since the primary goal of our algorithm is online estimation, 
we set a criterion to evaluate the algorithm’s online ability, which is the computing 
time per time step should not exceed the computational time interval (0.01 s in this 
case). Judged by the criterion for online estimation, 5.43 ms is significantly shorter 
than the time step interval of 0.01 s, which means our algorithm is fully capable of 
performing online estimation task while the conventional EKS approach cannot.
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Fig. 6 The estimation results of the three algorithms under noise level m = 10 k (Plot interval: 
every 9 time steps).  a The ANN-based EKS results with AE = 0.0580. b The EKS results with AE 
= 0.0609. c The inverse ANN results with AE = 0.0825

Based on the comparison results, it is safe to say that our proposed algorithm is 
indeed a robust and rapid approach and capable of achieving online estimation task 
for solving IHTPs.
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5 Conclusion 

A rapid yet robust inversion algorithm, ANN-based extended Kalman smoothing 
algorithm, is developed to realize the online estimation of time-varying thermal 
boundary conditions in a two-dimensional tube convective heat transfer problem. 
The major findings are summarized as follows: 

1. The proposed algorithm is a computational-light online approach for the estima-
tion of the unknown boundary conditions. Compared with conventional CFD-
based EKS algorithm, the computational costs of the proposed are reduced dras-
tically from 11.3 s per time step to 5.31 ms, which makes our algorithm fully 
capable of performing online estimation task. 

2. The proposed algorithm is relatively robust to handle measurement data with high 
noise-signal ratio. An average error of 0.0580 for estimating unknown boundary 
heat flux can be achieved via our algorithm, whose accuracy is basically equiv-
alent to the conventional EKS algorithm with an average error of 0.0609 and 
improves significantly compared to the inverse ANN algorithm with an average 
error of 0.0825. 
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