
SoK: X-assisted BFT Consensus Protocols

Gang Wang1,2(B) and Mark Nixon1

1 Emerson Automation Solutions, Austin, USA
2 University of Connecticut, Storrs, USA

gang.wang.dr@gmail.com

Abstract. Blockchain, as an enabler of the current Internet infrastruc-
ture, has introduced a plethora of unique features, revolutionizing dis-
tributed systems and propelling us into a new era. Its core principles
of decentralization, immutability, and transparency have enticed numer-
ous applications to embrace the blockchain design philosophy and tai-
lor diverse replicated solutions. At the heart of the blockchain lies the
consensus protocols, which play a pivotal role in achieving distributed
replication systems. The distributed system community has invested sig-
nificant efforts in comprehensively studying the technical components
of consensus to enable agreement among a group of nodes. Nonethe-
less, the presence of various faults and trust issues poses challenges in
designing resilient systems for practical applications. To address this,
Byzantine fault-tolerant (BFT) state machine replication (SMR) emerges
as an ideal candidate capable of tolerating arbitrary faulty behaviors.
Despite its promise, the inherent complexity and rapid evolution of
BFT consensus protocols hinder their practical adaptation to differ-
ent application domains. Remarkably, there exists a wealth of excep-
tional Byzantine-based replicated solutions and innovative ideas that
have notably improved performance, availability, and resource efficiency.
This paper aims to conduct a systematic and comprehensive study of X-
assisted BFT consensus protocols, with a specific focus on the blockchain
era. For instance, numerous studies have explored the utilization of
trusted components and cryptographic primitives to assist in tolerating
Byzantine nodes and reducing the number of communication rounds.
We delve into the essentials of BFT consensus protocols for blockchains
in Byzantine settings. We then decompose the state-of-the-art solutions
to gain a comprehensive BFT consensus in detail. For each X-assisted
protocol, we conduct an in-depth discussion of its essential architectural
building blocks and the key techniques employed. We aim that this paper
can provide system researchers and developers with a concrete view of
the current design landscape and facilitate their quest for practical solu-
tions to specific problems.

1 Introduction

The consensus protocol serves as the core of the blockchain, providing essential
agreement services that significantly impact the performance and scalability of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Q. Wang et al. (Eds.): ICBC 2023, LNCS 14206, pp. 54–71, 2023.
https://doi.org/10.1007/978-3-031-44920-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44920-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-44920-8_4


SoK: X-assisted BFT Consensus Protocols 55

the entire system. In the absence of trusted intermediaries, participants in a
blockchain network may act arbitrarily and deviate from the established con-
sensus procedures, creating what can be described as a Byzantine environment.
While blockchain can leverage various technologies for consensus, state repli-
cation, and transaction broadcasting, uncertainties in network connectivity can
lead to node crashes or subversion by adversaries. To address these challenges,
proof-based protocols have been developed for blockchain, such as Proof-of-Work
(PoW) in Bitcoin [1]. However, these protocols often lack energy efficiency and
may lead to power shortages. Fortunately, Byzantine fault-tolerant (BFT) state
machine replication (SMR) offers promising opportunities to design consensus
protocols that can tolerate arbitrary faults [2]. The underlying BFT SMR repli-
cates the state of each replica in the system, rendering it capable of withstanding
diverse faults and making it suitable for practical and critical applications. How-
ever, designing a functioning BFT system remains a challenging task, primarily
due to its inherent complexity.

In general, a consensus protocol must satisfy three fundamental require-
ments [3]: (a) Non-triviality: If a correct entity outputs a value v, then some
entity proposed v. (b) Safety: If a correct entity outputs a value v, then all cor-
rect entities output the same value v. (c) Liveness: If all correct entities initiated
the protocol, then, eventually, all correct entities output some value. However,
Fisher, Lynch, and Paterson (FLP) [4] demonstrated the FLP impossibility, prov-
ing that a deterministic agreement protocol in an asynchronous network cannot
guarantee liveness if one entity may crash, even when links are assumed to be
reliable. In an asynchronous system, it is impossible to distinguish between a
crashed node and a correct one. Therefore, deciding the full network’s state
and deducing an agreed-upon output from it is deemed impossible. Neverthe-
less, several extensions have been developed to circumvent the FLP result and
achieve asynchronous consensus. These extensions include randomization, tim-
ing assumptions, failure detectors, and strong primitives [5]. Over the course
of two decades, BFT algorithms have evolved into a diverse array of protocols
and applications. However, this progress has been primarily designed for closed
groups based on specific application scenarios.

BFT consensus protocols form the crux of blockchain technology, determin-
ing its applicability to practical real-world scenarios. The literature encompasses
numerous works discussing different aspects of Byzantine-related protocols, rang-
ing from theoretical foundations to practical prototype deployments. While the
application of BFT protocols to blockchain holds promise, it also faces significant
design challenges when considering the specific requirements of the blockchain
environment. In the literature, some works have explored the integration of BFT
consensus protocols into the blockchain ecosystem, such as the work [6]. This
paper focuses on X-assisted BFT protocols, aiming to provide a comprehensive
survey of existing X-assisted Byzantine-related protocols and in-depth discus-
sions on their implementations. Our primary goal is to offer a concrete view of the
state-of-the-art literature in the domain of Byzantine-related consensus, thereby
aiding researchers and system designers in finding solutions tailored to their spe-



56 G. Wang and M. Nixon

cific needs. For each surveyed paper, we endeavor to provide detailed information
and identify potential issues when applying these protocols to blockchain sce-
narios. Notably, there is ample literature discussing BFT consensus protocols in
general forms or from architectural and theoretical perspectives.

The rest of this paper is organized as follows. Section 2 presents well-known X-
assisted BFT consensus protocols. In Sect. 3, we provide discussions and explore
future directions in this domain. Finally, Sect. 4 concludes the paper (Fig. 1).

2 X-assisted BFT Protocols

X-assisted BFT consensus is primarily employed to bolster robustness or enhance
scalability and efficiency. Here, the term ‘X’ can refer to software primitives (e.g.,
crypto-primitives) or hardware components (e.g., trusted hardware). The core
idea behind X-assisted BFT consensus revolves around ensuring the authenticity
of communicated messages. For example, certain protocols, such as SBFT [7],
utilize threshold signature schemes to ensure sufficient replicas can collabo-
ratively process requests. Similarly, protocols like Steroids [8] may leverage
trusted execution environments (e.g., Intel SGX) as trusted hardware to verify
message authenticity. Moreover, approaches incorporating both cryptographic
primitives and trusted hardware can work in tandem to improve efficiency. For
instance, FastBFT [9] integrates Trusted Execution Environments (TEEs) with
a lightweight secret-sharing scheme, enabling efficient message aggregation and
achieving scalable Byzantine consensus. This section provides an in-depth dis-
cussion of works on X-assisted BFT consensus protocols.

Fig. 1. Abstract of BFT replication system. Users send requests to replicas via client
interfaces (with a well-defined client library). Replicas together run an agreement pro-
tocol to obtain an order on clients’ requests, and then each replica executes them in
its stateful application [2].

2.1 X-assisted BFT in Details

A2M. A2M, short for Attested Append-Only Memory, was proposed by Chun
et al. in 2007 [10] to eliminate equivocation, a common source of Byzantine
headaches. A2M serves as a trusted system facility that is small, easy to imple-
ment, and verifiable formally. It provides a programming abstraction of a trusted



SoK: X-assisted BFT Consensus Protocols 57

log, leading to protocol designs immune to equivocation. Equivocation refers
to the ability of a faulty replica to lie in different ways to different clients or
servers. The A2M protocol can be an add-on component to existing Byzan-
tine fault-tolerant replicated state machines (e.g., PBFT, Q/U. HQ), enabling
A2M-enabled protocols. In replicated state machines, the target safety guaran-
tee is typically linearizability, which ensures that client requests appear to be
processed in a single, totally ordered, serial schedule consistent with the order
in which clients submitted their requests and received responses. A2M achieves
linearizability through a small trusted log abstraction as its primitive. One key
insight behind A2M is its provision of a mechanism (trusted log) that prevents
participants from equivocating, thereby improving the fault-tolerance of Byzan-
tine protocols to f out of 2f +1. Once an action is recorded in the log, it cannot
be overwritten, as A2M does not provide a modification interface.

The overall design of A2M is based on a classic client-server system, where
clients request authenticated operations, and the server responds to these
requests. A2M’s network model operates in the partially synchronous model,
where a finite upper bound exists for message delivery. A2M considers two fault
models: the faulty application model, where the node’s owner is well-intentioned
but unaware of the node’s compromised software, and the faulty operator model,
where the node exhibits Byzantine behavior due to malicious instructions from
its owner. For each fault model, A2M has a different trusted computing base.
In the first model, the service owner establishes the trusted computing base,
while in the second model, the owners cannot be trusted, and a third party is
responsible for setting up the trusted computing base. An A2M implementation
within the trusted computing base allows a protocol to assume that a seemingly
correct host can provide only a single response to each distinct protocol request.
Therefore, informally, A2M can be thought of as equipping a host with a set
of trusted, undeniable, ordered logs. An A2M log provides methods for append-
ing values, looking up values within the log or obtaining the end of the log, as
well as truncating and advancing the log suffix stored in memory. Importantly,
there are no methods to replace values that have already been assigned, as A2M
employs cryptography to enforce its properties and attest the log’s contents to
other machines. By incorporating A2M into its trusted computing base, reliable
service can mitigate the effects of Byzantine faults in its untrusted components
by relying on small fallback information about individual operations or histories
of operations that cannot be tampered with.

TrInc. TrInc, short for Trust Incrementer, is a small trusted component
designed to address equivocation in large-scale distributed systems, proposed
by Levin et al. in 2009 [11]. TrInc is motivated by the assumption that individ-
ual components in the system are completely untrusted, necessitating the use of
trusted technologies to ensure trustworthiness and eliminate equivocation. For
instance, A2M uses trusted logs for this purpose. However, trusted log mod-
ules often require substantial storage space and can be challenging to implement
and deploy in large distributed systems. The primary security goal of TrInc is



58 G. Wang and M. Nixon

to remove participants’ ability to equivocate. It achieves this through the use
of a non-decreasing trusted counter and a key, enabling it to provide a new
primitive: unique, once-in-a-lifetime attestations. With this primitive, TrInc can
support a broader range of protocols, including not only client-server systems
but also peer-to-peer systems. One advantage of TrInc is its smaller size and
simpler semantics, making it easier to deploy. It can be implemented on off-the-
shelf available trusted hardware, and its core functional elements are included
in a Trusted Platform Module (TPM) [12], commonly found in many modern
devices. This suggests that such a component could become widely available.
Additionally, TrInc utilizes a shared symmetric session key among all partici-
pants in protocol instances, significantly reducing cryptographic overhead.

One common approach to address equivocation is by using heavy-
communication protocols designed to handle a threshold number of faulty par-
ticipants, as exemplified by PBFT. However, TrInc aims to minimize both the
communication overhead and the required number of non-faulty participants. By
leveraging trusted hardware, TrInc can eliminate the ability of a malicious par-
ticipant to equivocate without necessitating communication among other partic-
ipants. For TrInc to be practical in distributed systems, the trusted component
must be small, allowing for feasible manufacturing and deployment. It is difficult
and costly to create tamper-resistant large components, making a small form fac-
tor essential. The “trinket” serves as such a trusted piece of hardware within the
TrInc system. The trinket’s API relies solely on its internal state, distinguishing
it from typical TPMs that need to access the state of host devices (e.g., com-
puters). Instead, the trinket requires only an untrusted channel through which
it can receive input and produce output.

MinBFT. Both MinBFT and MinZyzzyva are trust-assisted BFT protocols,
designed to tolerate f faulty replicas with only 2f + 1 replicas, and were pro-
posed by Veronese in 2011 [13]. While MinBFT is based on PBFT, MinZyzzyva
is based on Zyzzyva, both being asynchronous algorithms. For the purpose of this
discussion, we will focus on MinBFT, the PBFT version, to explore its techni-
cal advantages. MinBFT significantly improves efficiency compared to previous
algorithms in three key metrics: the number of replicas, the simplicity of trusted
services, and the number of communication steps. The main source of efficiency
in MinBFT lies in the use of a simple trusted component. More precisely, the
trusted services assisting in reducing the number of replicas are designed to be
straightforward, facilitating verified implementations and even feasibility using
commercial trusted hardware. Moreover, algorithms based on hardware tend to
be simpler, approaching the level of crash fault-tolerant replication algorithms.

The successful implementation of trusted services in MinBFT is based on
the usage of USIG (Unique Sequential Identifier Generator). USIG provides an
interface with operations to increment the counter and verify the correct authen-
tication of other counter values (incremented by other replicas). Each server has
a local USIG service responsible for assigning unique, monotonic, and sequential
identifiers to messages. Even if a server is compromised, USIG guarantees these



SoK: X-assisted BFT Consensus Protocols 59

properties, making it essential to implement the service in a tamper-proof module
or a trusted component. Fortunately, the trusted component can be implemented
even on commercially available trusted hardware, such as the trusted platform
module [14].

In MinBFT, one main role of the leader is to assign a unique sequence num-
ber to each request, and this number is the counter value returned by the USIG
service, ensuring the uniqueness, monotonicity, and sequentiality of identifiers.
These sequence numbers remain sequential as long as the leader does not change
but may change during a view change. To ensure fault-tolerance and the pos-
sibility of resending messages, servers keep a message log that stores sent mes-
sages. MinBFT employs a garbage collection mechanism based on checkpoints,
similar to PBFT, to discard unnecessary messages from the log. Besides, the
implementation of MinBFT and MinZyzzyva provides several levels of isola-
tion for a trusted component used to enhance BFT algorithms. They have also
implemented multiple versions of the USIG service, each using different crypto-
graphic mechanisms. These implementations are isolated in both separate virtual
machines and trusted hardware.

CheapBFT. CheapBFT is a resource-efficient BFT system based on a trusted
subsystem designed to prevent equivocation, proposed by Kapitza in 2012 [15].
CheapBFT can tolerate the failure of all but one of the replicas that are active
during normal case operation. In general, it runs a composite agreement pro-
tocol and utilizes passive replication to save resources. At a high-level perspec-
tive, the agreement protocol of CheapBFT consists of three sub-protocols: the
normal case protocol CheapTiny, the transition protocol CheapSwitch, and the
fall-back protocol MinBFT. Essentially, CheapBFT relies on an FPGA-based
trusted subsystem known as CASH to prevent equivocation and ensure the sys-
tem’s integrity and correctness during the consensus process.

CASH stands for Counter Assignment Service in Hardware, and it is designed
to assist CheapBFT with message authentication and verification. To prevent
equivocation, each replica in CheapBFT must be equipped with a trusted CASH
subsystem. Each CASH subsystem is initialized with a secret key and uniquely
identified by a subsystem ID, corresponding to the replicas that host the sub-
system. The primary function of CASH is to provide a trusted counter service,
achieved by issuing message certificates for protocol messages. These certifi-
cates contain the identity id of the subsystem, the assigned counter value, and
a MAC generated using the secret key. CASH employs symmetric-key crypto-
graphic operations for message authentication and verification. In its basic ver-
sion, CASH offers functions to create (via createMC ) and verify (via checkMC )
message certificates, tailored for single counter cases. For more complex scenarios
with distinct counter instances and several concurrent protocols, the full version
of CASH supports multiple counters, each specified by a different counter name.
To ensure practicality, CASH is designed with two primary goals: a minimal
trusted computing base and high performance. Keeping the code size of CASH
small reduces the probability of program errors that could be exploited by poten-



60 G. Wang and M. Nixon

tial attacks. Additionally, CASH ensures a high throughput during interactions
involving authenticated messages to meet the system’s performance require-
ments. Importantly, the trusted CASH subsystem is crash-fault tolerant, and
its key remains secret even in the presence of Byzantine replicas (Figs. 2 and 3).

Fig. 2. CheapBFT with two active replicas and a passive replica (f = 1) for normal-
case operation [15].

Hybster. Hybster is a hybrid BFT protocol proposed by Behl et al. in 2017 [8],
which leverages a trusted subsystem for message authentication to prevent equiv-
ocation. It demonstrates the ability to tolerate up to f Byzantine faults with
only 2f +1 replicas, thanks to the assistance of Intel SGX [16]. In modern multi-
core systems, new parallelization schemes have emerged, enabling traditional
BFT protocols to achieve unparalleled performance levels. Some state-of-the-art
general-purpose processors offer a trusted execution environment, safeguarding
software components even against the malicious behavior of an untrusted operat-
ing system. Hybster, being a highly parallelizable and formally specified hybrid
SMR protocol, takes advantage of this trend. In hybrid fault models, prior SMR
systems usually necessitate sequential processing of consensus instances to agree
on the execution order of commands or all incoming messages. Hybster, on the
other hand, explores the potential of parallelism. It abstractly presents a paral-
lelizable structure (shown in Fig. 4), wherein multiple instances can be executed
simultaneously on some physical replicas. This feature contributes to an accel-
erated throughput of the system. The central concept that ensures undetected

Fig. 3. CheapTiny protocol messages exchanged between a client, two active replicas,
and a passive replica (f = 1) [15].



SoK: X-assisted BFT Consensus Protocols 61

equivocation in Hybster involves cryptographically binding sensitive outgoing
messages to a unique monotonically increasing timestamp, accomplished through
the trusted subsystem. This approach enhances security while capitalizing on the
benefits of parallel processing.

Fig. 4. Hybster: A parallelizable Hybrid [8].

In more detail, Hybster is designed around a two-phase ordering process,
utilizing multiple instances of a TrInc-based trusted subsystem realized using
Intel SGX to prevent equivocation. While there are other trusted schemes like
A2M-PBFT and MinBFT, Hybster distinguishes itself with three key features:
relaxation, formal specification, and parallelizability. Hybster relies on a trusted
subsystem abstraction, known as TrInX, which is similar but not identical to
TrInc [11]. It is implemented in Java and employs a consensus-oriented paral-
lelization scheme, optimized to fully utilize multi-core CPUs. As a result, Hybster
achieves high performance, and its scalability improves as the number of NIC
and CPU cores increases.

FastBFT. FastBFT is a fast and scalable BFT protocol with the help of trusted
hardware, proposed by Liu et al. in 2018 [9]. Essentially, FastBFT utilizes a mes-
sage aggregation technique that combines a hardware-based trusted execution
environment (TEE) with a lightweight secret-sharing scheme. From a high-level
perspective, FastBFT also combines several other optimizations, such as opti-
mistic execution, tree topology, and failure detection, to achieve low latency and
high throughput even for large-scale networks. By using message aggregation,
it can reduce the message complexity from O(n2) to O(n), and the message
aggregation in FastBFT does not require any public-key operations (e.g., multi-
signatures), which can further reduce the computation/communication overhead.
With a tree topology design in arranging nodes, FastBFT can balance compu-
tation and communication load, so that inter-server communication and mes-
sage aggregation take place along the edges of the tree. Due to the optimistic
design, FastBFT only requires a subset of nodes to actively run the protocol.
Additionally, FastBFT utilizes a simple failure detection mechanism to handle
non-primary faults efficiently.



62 G. Wang and M. Nixon

Fig. 5. Message patterns of FastBFT [9].

In general, there are two main categories for improving BFT performance
when replicas rarely fail: speculative and optimistic mechanisms. The specula-
tive mechanism typically involves not running any explicit agreement protocol
(e.g., Zyzzyva). On the other hand, the optimistic mechanism only requires a
subset of replicas to run the agreement protocol, while other replicas passively
update their states and become actively involved only if the agreement protocol
fails. The FastBFT protocol adopts an optimistic mechanism by incorporating
a Trusted Execution Environment (TEE) environment. This allows replicas to
remotely verify (e.g., via remote attestation) the behaviors of other replicas, with
TEEs being capable of crashing but not acting in a Byzantine manner. FastBFT
guarantees safety in asynchronous networks but requires weak synchrony for live-
ness, and each replica holds a hardware-based TEE that maintains a monotonic
counter and rollback-resistant memory. The TEEs can verify one another using
remote attestation and establish secure communication channels among replicas.
Figure 5 illustrates the message communication pattern of the FastBFT con-
sensus protocol. Essentially, the consensus protocol of FastBFT consists of four
phases: pre-processing, request, prepare, and commit. The commit phase further
includes two sub-phases that are used to update the state of replicas, similar to
the execution phase in traditional BFTs. Besides, the overall FastBFT protocol
also includes failure detection and view-change processes.

SACZyzzyva. SACZyzzyva, short for Single-Active Counter Zyzzyva, is a pro-
tocol designed to provide resilience to slow replicas and requiring only 3f + 1
replicas, with just one replica needing an active monotonic counter at any given
time. It was proposed by Gunn et al. in 2019 [17]. Speculative BFT protocols,
such as Zyzzyva and Zyzzyva5, offer highly efficient speculative execution paths
when there are no faults or delays. However, these protocols come with trade-
offs. For instance, Zyzzyva requires 3f + 1 replicas to tolerate f faults, but
even a single slow replica can force Zyzzyva to fall back to a more expensive
non-speculative operation. Similarly, while Zyzzyva5 does not necessitate a non-
speculative fallback, it does require 5f + 1 replicas to tolerate f faulty replicas.
In realistic communication networks, like the Internet, which are only partially
synchronous, the presence of just a single slow but not faulty replica can trigger
non-speculative execution for each protocol run of Zyzzyva, undermining the



SoK: X-assisted BFT Consensus Protocols 63

efficiency promised by the speculative approach. SACZyzzyva addresses these
drawbacks by requiring only a single replica, the primary, to have an active
monotonic counter. This eliminates the need for a non-speculative fallback and
enables tolerance for a subset of replicas being slow while still requiring only
3f + 1 replicas. SACZyzzyva leverages the trusted hardware of some replicas
(not all replicas) to assist in its process, following a practical setting where only
some devices have the necessary hardware support. Furthermore, other BFT
protocols can also adopt the single active counter approach of SACZyzzyva to
reduce latency without the requirement of equipping all replicas with hardware-
supported monotonic counters.

In more detail, SACZyzzyva operates under a weak-synchrony model, which
allows for the analysis of liveness during a period of synchrony that will even-
tually occur. Additionally, SACZyzzyva assumes that some, but not all, replicas
are equipped with a trusted component, specifically a trusted monotonic counter.
The fundamental principle behind SACZyzzyva is to utilize a trusted monotonic
counter in the primary replica. This counter binds a sequence of consecutive
counter values to incoming requests, effectively ordering the requests without
the need for communication between replicas, either directly or via the client.
The primary achieves this by signing a tuple comprising the cryptographic hash
of the request and a fresh counter value, resulting in a single active counter. As a
result, SACZyzzyva only requires that f + 1 replicas have a trusted component,
ensuring that there will always be at least one correct replica that can serve as
the primary.

TBFT. TBFT is a TEE-based BFT protocol inspired by the structure of CFT
(Crash Fault Tolerant) protocols, aiming to provide simplicity and ease of under-
standing. It was proposed by Zhang et al. in 2021 [18]. Unlike most existing
TEE-based BFT protocols, which often involve complex operations to address
security challenges introduced by TEE, TBFT takes inspiration from CFT pro-
tocols to create a straightforward and comprehensible design. In practical sce-
narios, many TEE-based protocols assume adversaries similar to CFT, leading
to the elimination of Byzantine failures and focusing on crashed failures. The
authors identified key differences between TEE-based BFT and CFT protocols
and proposed four principles to bridge the gap between them. Building on these
principles, TBFT introduces several improvements to enhance both performance
and security. These enhancements include pipeline mechanisms, a TEE-assisted
secret sharing scheme, and a trusted leader election process, all contributing
to improved performance and scalability. By adopting the advantages of CFT,
such as a high resilient fault rate, TBFT offers a TEE-based BFT solution with a
clear and concise structure. This design approach makes TBFT more accessible
for understanding and implementation compared to traditional TEE-based BFT
protocols, which often tend to be more complex and challenging to grasp.



64 G. Wang and M. Nixon

2.2 Last but Not Least

In more detail, most protocols assume that TEE may crash but will never provide
malicious execution results, which makes TEE-based BFT more similar to CFT
rather than BFT. However, even with the existence of TEE, a Byzantine host
can still terminate TEE at any moment, schedule TEE arbitrarily, or drop,
reply, delay, reorder, or modify the I/O messages of TEE. This simply can be
stated that the host in TEE-based BFT may be Byzantine. Thus, it is necessary
to bridge the gap between TEE-based BFT and CFT. To bridge the gap, the
authors proposed four principles: one protocol, one vote, restricted commit, and
restricted log generation. For one proposal, the leaders need to call a function,
e.g., create counter for trusted monotonic counters based TEE, to assign a (c, v)
(c is a monotonic counter, v is the current view) for each proposal while other
replicas will keep track of the leader’s (c, v).

In addition to the above-mentioned representative X-assisted BFT protocols,
there are other notable works that utilize trusted hardware. Yandamuri et al. [19]
proposed a scheme that utilizes small trusted hardware without increasing com-
munication complexity, assuming the adversary controls a fraction of the network
that is less than one-half. This scheme builds upon a version of HotStuff to pre-
serve linear communication complexity while leveraging trusted hardware to tol-
erate a minority of corruptions. Wang et al. [20] introduced ENGRAFT, a secure
enclave-guarded Raft implementation designed to achieve consensus on a cluster
of 2f + 1 replicas, with up to f replicas exhibiting Byzantine behavior (while
operating within well-behaved enclaves). This solution provides an abstraction
of confidential consensus, enabling privacy-preserving State Machine Replication
(SMR) and facilitating the integration of a production-quality Raft implementa-
tion (BRaft). Aguilera et al. [21] proposed uBFT, a consensus protocol designed
to achieve microsecond-scale latency in data centers using only 2f +1 replicas to
tolerate up to f Byzantine failures. uBFT relies on a small, non-tailored trusted
computing base and leverages disaggregated memory, ensuring a practical and
bounded memory consumption. The protocol is built upon an abstraction named
Consistent Tail Broadcast, which prevents equivocation while efficiently man-
aging memory. By incorporating RDMA-based disaggregated memory, uBFT
achieves an impressive end-to-end latency as low as 10 microseconds. Feng et
al. [22] introduced a secure and trusted BFT (S2BFT) consensus, employing
trusted committees. This protocol generates anonymous numbers using TEE for
each server node and selects committees through a pseudo-random algorithm.

DAMYSUS is a streamlined protocol based on basic HotStuff, enhanced
by the utilization of two fundamental trusted services: Checker and Accumula-
tor [23]. The Checker service ensures that nodes cannot vote for conflicting blocks
or misrepresent the blocks they have previously voted for, while the Accumula-
tor service guarantees that leaders can only propose blocks consistent with past
votes. The protocol requires 2f+1 replicas to tolerate up to f Byzantine failures
and is capable of terminating within 2 communication phases. SplitBFT lever-
ages TEE-based compartmentalization technology to enhance the safety and
confidentiality guarantees of BFT systems, bolstering the trust in code-based



SoK: X-assisted BFT Consensus Protocols 65

deployments of permissioned blockchains [24]. Unlike traditional assumptions,
SplitBFT acknowledges that code protected by trusted expectations may still
fail. To address this, they propose to split and isolate the core logic of BFT
protocols into multiple compartments. This approach improves resilience and
confidentiality while simplifying the implementation of diversity. InterTrust is
an interoperable cross-blockchain communication architecture designed to facili-
tate interoperability and trustworthiness among diverse blockchain systems [25].
At its core, the architecture relies on a TEE-assisted BFT consensus proto-
col, enabling seamless interoperability within an autonomous system. InterTrust
incorporates two groundbreaking techniques: a threshold signature scheme and
trusted hardware. The threshold signature scheme ensures consistency and ver-
ifiability in the target blockchain systems, while the trusted hardware guar-
antees trusted services across distinct blockchain systems. The combination of
these techniques results in an efficient cross-chain communication protocol, fos-
tering atomic swaps and facilitating interoperable operations between different
blockchain systems.

3 Discussion and Future Directions

This section presents some discussion on applying BFT protocols to blockchains
and explores potential future directions.

3.1 Choices on Paxos Vs. BFT

Paxos is a well-known consensus protocol that achieves agreement under crash
failures [26]. Initially proposed as a solution to the FLP impossibility, Paxos can
forgo progress during temporary asynchrony. However, when the system returns
to synchrony, Paxos resumes its operation and ensures system consistency.

Classic Paxos (or more generally, CFT) and BFT consensus protocols explic-
itly model machine faults only and can be combined with orthogonal network
fault models, such as the synchronous and asynchronous models. Consequently,
the scope can be broadly classified into four categories [27]: synchronous CFT [28]
[29], asynchronous CFT [29] [26], synchronous BFT [30] [31], and asynchronous
BFT [32] [33]. Depending on the specific requirements of different blockchain
applications, system designers can choose the appropriate consensus protocols
from the above categories. Additionally, there exist some hybrid fault models,
such as XFT [27], Byzantine Paxos [34], and heterogeneous Paxos [35], which
aim to handle both CFT and BFT fault scenarios.

3.2 Hybrid Fault Models

The Byzantine fault model inherently poses difficulties in the development of
consensus protocols. Typically, a BFT system may assume a powerful adversary
or harsh network conditions, or even a combination of both, which introduces
complexity and overhead in designing a well-replicated system [2]. As a result,



66 G. Wang and M. Nixon

some designers have observed that it may not be worthwhile to design Byzantine
replicated systems for certain secure and reliable applications, such as use cases
in data centers [36] [37]. Some recent works have transitioned to hybrid fault
models [38] with weaker guarantees, where Byzantine replicas only account for a
small portion of all faulty replicas, allowing for more practical implementations.
There are several literature works that focus on these hybrid fault models, such
as UpRight [39], VFT [37], and XFT [27].

Trust plays a crucial role in ensuring the effectiveness of replicated systems
under hybrid fault models. In essence, a trusted system is equipped with a
small trusted computing base [40], which enables the identification of incor-
rectness. While a malicious replica may have the ability to operate on untrusted
components, it lacks the capability to control trusted components. With the
advancements in modern processors, implementing trust components in dedi-
cated hardware modules, such as Trusted Platform Module (TPM) [41] [13],
Intel’s SGX [42], and ARM’s TrustZone [43], to provide trusted execution envi-
ronments has become more favorable. Additionally, there are software-based
solutions to establish trusted components, such as via the proxy [44], a mul-
ticast ordering service [45] [46], or a virtualization layer [47] [48] [49]. In general,
trusted components ensure that replicas can recover even if they become compro-
mised [32]. They also prevent a faulty leader from successfully equivocating. As
a result, whether in the form of hardware or software, trusted components offer
a level of trustworthiness under hybrid fault models, helping replicated systems
reach consensus with fewer required replicas. This approach proves to be more
practical in certain application scenarios, such as data centers and permissioned
blockchain systems.

3.3 Liveness in Consensus

A BFT consensus protocol typically achieves progress through a sequence of
views, with each view having a designated leader responsible for driving the
entire consensus process. Liveness is one of the two fundamental properties that
consensus aims to achieve, along with safety. Liveness ensures that a trans-
action sent to all honest validators will eventually be executed. Theoretically,
consensus protocols can achieve liveness by assuming an unknown Global Stabi-
lization Time (GST). After some GST period, the network may enter a period
of synchrony, characterized by bounded but unknown constant message delay.
However, despite claims of providing liveness guarantees, most existing works
fail to offer a concrete value (e.g., latency) for this bound, making it challenging
to make informed decisions.

In the literature, some works propose approaches to address liveness issues
under diverse network conditions. For instance, Abraham et al. [50] intro-
duce the concept of clock synchronization [51,52] to achieve “view synchroniza-
tion,” wherein each correct replica can access hardware clocks with reliable and
bounded time drift. The HotStuff protocol [53] incorporates a component named
PaceMaker to achieve view synchronization and advance progress. However, it
does not provide a detailed specification of how this functionality is achieved.



SoK: X-assisted BFT Consensus Protocols 67

Bravo et al. [54] present a similar view synchronization scheme, which provides
a wrapper for BFT consensus procedures’ functionality but offers formal specifi-
cations only under partial synchrony. While significant progress has been made
in addressing liveness issues in BFT protocols, there is still a lack of practical
live Byzantine consensus protocols that can effectively operate under fully asyn-
chronous environments, such as the Internet. As a result, achieving a safe and
live BFT consensus protocol remains a challenging task.

3.4 Scalability

Scaling protocols for BFT consensus typically prioritize either reducing the num-
ber of nodes required to tolerate f Byzantine faults [10] or minimizing the pro-
tocol’s communication complexity to accommodate larger network sizes [55].

Reducing the Number of Nodes. To tolerate f Byzantine nodes that can equiv-
ocate in a quorum system like PBFT, quorums must be intersected by at least
f + 1 nodes [56]. Consequently, if a BFT protocol requires n = 3f + 1 nodes, its
quorum size is at least 2f + 1. A smaller n implies lower communication costs
incurred in tolerating the same number of faults. Additionally, for the same
number of nodes n, the network can tolerate more faulty nodes.

Reducing Communication Complexity. Despite reducing the network size, PBFT
still exhibits a communication complexity of O(n2). Byzcoin [55] proposed an
optimization using the collective signing protocol (CoSi) [57], wherein the leader
aggregates other nodes’ messages into a single authenticated message. This app-
roach allows each node to forward its messages to the leader and verify the aggre-
gate message, effectively reducing the communication complexity to O(n) by
avoiding broadcasting. Additionally, some works [58] explore leveraging trusted
execution environments (TEEs) such as Intel SGX [59] to scale distributed con-
sensus, like the topic presented in this paper. TEEs provide protected memory
and isolated execution, ensuring that regular operating systems or applications
cannot control or observe the data stored or processed inside them [60]. Although
trusted hardware can only crash and not act in a Byzantine manner, introduc-
ing it into consensus nodes is costly and requires specific knowledge for protocol
implementation. Moreover, the security in this category can be enhanced by
using cryptographic primitives, such as threshold signatures [61] [62].

Furthermore, several other intriguing research topics are emerging, such
as testing technologies to evaluate the efficiency of both BFT protocols and
blockchains, and schemes aimed at preventing malicious replicas’ collaboration
or centralization. The journey ahead for both BFT consensus protocols and
blockchains remains extensive and filled with opportunities for exploration and
advancement.

4 Conclusion

In recent years, research on BFT consensus has experienced a dramatic surge,
partially attributed to the emergence of blockchain technology. This paper



68 G. Wang and M. Nixon

presents a Systematization of Knowledge (SoK) for existing efforts on X-assisted
BFT consensus protocols. We meticulously studied the selected BFT proto-
cols and strived to provide a comprehensive review with detailed analysis. This
paper serves as a valuable starting point for exploring consensus in the realms of
both X-assisted BFT and blockchain. Additionally, we present several potential
research directions that can contribute to advancing reliable and robust BFT
consensus within the blockchain ecosystem.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. Rep, Manubot
(2008)

2. Distler, T.: Byzantine fault-tolerant state-machine replication from a systems per-
spective. ACM Comput. Surv. (CSUR) 54(1), 1–38 (2021)

3. Maric, O., Sprenger, C., Basin, D.: Consensus refined. In: 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pp.
391–402. IEEE (2015)

4. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one fault process. YALE UNIV NEW HAVEN CT DEPT OF COMPUTER
SCIENCE, Technical report (1982)

5. Aspnes, J.: Randomized protocols for asynchronous consensus. Distrib. Comput.
16(2–3), 165–175 (2003)

6. Wang, G.: Sok: understanding BFT consensus in the age of blockchains. Cryptology
ePrint Archive (2021)

7. Gueta, G.G., et al.: Sbft: a scalable and decentralized trust infrastructure. In:
49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 568–580. IEEE (2019)

8. Behl, J., Distler, T., Kapitza, R.: Hybrids on steroids: Sgx-based high performance
bft. In: Proceedings of the Twelfth European Conference on Computer Systems,
pp. 222–237 (2017)

9. Liu, J., Li, W., Karame, G.O., Asokan, N.: Scalable byzantine consensus via
hardware-assisted secret sharing. IEEE Trans. Comput. 68(1), 139–151 (2018)

10. Chun, B.-G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only
memory: making adversaries stick to their word. ACM SIGOPS Operating Syst.
Rev. 41(6), 189–204 (2007)

11. Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: Trinc: small trusted hard-
ware for large distributed systems. In: NSDI, vol. 9, pp. 1–14 (2009)

12. Kinney, S.L.: Trusted platform module basics: using TPM in embedded systems.
Elsevier (2006)

13. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P.: Efficient
byzantine fault-tolerance. IEEE Trans. Comput. 62(1), 16–30 (2011)

14. Ryan, M.: Introduction to the tpm 1.2. DRAFT of March, vol. 24 (2009)
15. Kapitza, R., et al.: Cheapbft: resource-efficient byzantine fault tolerance. In: Pro-

ceedings of the 7th ACM European Conference on Computer Systems, pp. 295–308
(2012)

16. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. Hasp@ isca, vol. 10, no. 1 (2013)



SoK: X-assisted BFT Consensus Protocols 69

17. Gunn, L.J., Liu, J., Vavala, B., Asokan, N.: Making speculative BFT resilient with
trusted monotonic counters. In: 2019 38th Symposium on Reliable Distributed
Systems (SRDS), pp. 133–13 309. IEEE (2019)

18. Zhang, J., et al.: Tbft: understandable and efficient byzantine fault tolerance using
trusted execution environment. arXiv preprint arXiv:2102.01970 (2021)

19. Yandamuri, S., Abraham, I., Nayak, K., Reiter, M.K.: Communication-efficient bft
using small trusted hardware to tolerate minority corruption. In: 26th Interna-
tional Conference on Principles of Distributed Systems (OPODIS 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2023)

20. Wang, W., Deng, S., Niu, J., Reiter, M.K., Zhang, Y.: Engraft: enclave-guarded raft
on byzantine faulty nodes. In: Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pp. 2841–2855 (2022)

21. Aguilera, M.K., Ben-David, N., Guerraoui, R., Murat, A., Xygkis, A., Zablotchi,
I.: UBFT: microsecond-scale BFT using disaggregated memory. In: Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, vol. 2, pp. 862–877 (2023)

22. Feng, L., Ding, Y., Tan, Y., Fu, X., Wang, K., sheng Chang, J.: Trusted-committee-
based secure and scalable BFT consensus for consortium blockchain. In: 2022 18th
International Conference on Mobility, Sensing and Networking (MSN), pp. 363–
370. IEEE (2022)

23. Decouchant, J., Kozhaya, D., Rahli, V., Yu, J.: Damysus: streamlined BFT consen-
sus leveraging trusted components. In: Proceedings of the Seventeenth European
Conference on Computer Systems, pp. 1–16 (2022)

24. Messadi, I., Becker, M.H., Bleeke, K., Jehl, L., Mokhtar, S.B., Kapitza, R.: Splitbft:
improving byzantine fault tolerance safety using trusted compartments. In: Pro-
ceedings of the 23rd ACM/IFIP International Middleware Conference, pp. 56–68
(2022)

25. Wang, G., Nixon, M.: Intertrust: towards an efficient blockchain interoperabil-
ity architecture with trusted services. In: 2021 IEEE International Conference on
Blockchain (Blockchain), pp. 150–159. IEEE (2021)

26. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

27. Liu, S., Viotti, P., Cachin, C., Quéma, V., Vukolić, M.: XFT: practical fault toler-
ance beyond crashes. In: 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pp. 485–500 (2016)

28. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast: From simple
message diffusion to byzantine agreement. Inf. Comput. 118(1), 158–179 (1995)

29. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

30. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

31. Berman, P., Garay, J.A., Perry, K.J., et al.: Towards optimal distributed consensus.
In: FOCS, vol. 89. Citeseer, pp. 410–415 (1989)

32. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

33. Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 bft protocols.
In: Proceedings of the 5th European Conference on Computer Systems, pp. 363–
376 (2010)

34. Lamport, L.: Byzantizing paxos by refinement. In: International Symposium on
Distributed Computing. Springer, pp. 211–224 (2011)

http://arxiv.org/abs/2102.01970


70 G. Wang and M. Nixon

35. Sheff, I., Wang, X., van Renesse, R., Myers, A.C.: Heterogeneous paxos. In: 24th
International Conference on Principles of Distributed Systems (OPODIS 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

36. Kuznetsov, P., Rodrigues, R.: Bftw3: why? when? where? workshop on the theory
and practice of byzantine fault tolerance. ACM SIGACT News 40(4), 82–86 (2010)

37. Porto, D., et al.: Visigoth fault tolerance. In: Proceedings of the Tenth European
Conference on Computer Systems, pp. 1–14 (2015)

38. Thambidurai, P., Park, Y.-K.: Interactive consistency with multiple failure modes.
In: Proceedings Seventh Symposium on Reliable Distributed Systems. IEEE Com-
puter Society, pp. 93–94 (1988)

39. Clement, A.: Upright cluster services. In: Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, pp. 277–290 (2009)

40. Rushby, J.M.: Design and verification of secure systems. ACM SIGOPS Operat.
Syst. Rev. 15(5), 12–21 (1981)

41. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C.: Ebawa: efficient byzantine
agreement for wide-area networks. In: IEEE 12th International Symposium on High
Assurance Systems Engineering. IEEE 2010, pp. 10–19 (2010)

42. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for security and privacy, vol. 13, p. 7.
ACM, New York (2013)

43. A. ARM: Security technology-building a secure system using trustzone technology.
ARM Technical White Paper (2009)

44. Rüsch, S., Bleeke, K., Kapitza, R.: Bloxy: providing transparent and generic bft-
based ordering services for blockchains. In: 2019 38th Symposium on Reliable Dis-
tributed Systems (SRDS), pp. 305–30 509. IEEE (2019)

45. Correia, M., Neves, N.F., Lung, L.C., Veŕıssimo, P.: Worm-it-a wormhole-based
intrusion-tolerant group communication system. J. Syst. Softw. 80(2), 178–197
(2007)

46. Correia, M., Veronese, G.S., Neves, N.F., Verissimo, P.: Byzantine consensus in
asynchronous message-passing systems: a survey. Int. J. Critical Comput.-Based
Syst. 2(2), 141–161 (2011)

47. Distler, T., Popov, I., Schröder-Preikschat, W., Reiser, H.P., Kapitza, R.: Spare:
replicas on hold. In: NDSS (2011)

48. Garcia, M., Bessani, A., Neves, N.: Lazarus: automatic management of diversity
in bft systems. In: Proceedings of the 20th International Middleware Conference,
pp. 241–254 (2019)

49. Reiser, H.P., Kapitza, R.: Hypervisor-based efficient proactive recovery. In: 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS 2007).
IEEE 2007, pp. 83–92 (2007)

50. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine
agreement with expected o (1) rounds, expected o(n2) communication, and opti-
mal resilience. In: International Conference on Financial Cryptography and Data
Security, pp. 320–334. Springer (2019)

51. Dolev, D., Halpern, J.Y., Simons, B., Strong, R.: Dynamic fault-tolerant clock
synchronization. J. ACM (JACM) 42(1), 143–185 (1995)

52. Simons, B.: An overview of clock synchronization. In: Fault-Tolerant Distributed
Computing, pp. 84–96 (1990)

53. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pp. 347–356 (2019)



SoK: X-assisted BFT Consensus Protocols 71

54. Bravo, M., Chockler, G., Gotsman, A.: Making byzantine consensus live. In:
34th International Symposium on Distributed Computing (DISC 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

55. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing. In:
25th usenix security symposium (usenix security 16), pp. 279–296 (2016)

56. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distrib. Comput. 11(4), 203–
213 (1998)

57. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: IEEE Symposium on Security and Privacy (SP). IEEE 2016, pp.
526–545 (2016)

58. Dang, H., Dinh, A., Chang, E.-C., Ooi, B.C.: Chain of trust: can trusted hardware
help scaling blockchains? arXiv preprint arXiv:1804.00399 (2018)

59. Costan, V., Devadas, S.: Intel sgx explained. IACR Cryptology ePrint Archive
2016(086), 1–118 (2016)

60. Ekberg, J.-E., Kostiainen, K., Asokan, N.: The untapped potential of trusted exe-
cution environments on mobile devices. IEEE Secur. Privacy 12(4), 29–37 (2014)

61. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

62. Stathakopoulous, C., Cachin, C.: Threshold signatures for blockchain systems.
Swiss Federal Institute of Technology (2017)

http://arxiv.org/abs/1804.00399
https://doi.org/10.1007/3-540-45682-1_30

	SoK: X-assisted BFT Consensus Protocols
	1 Introduction
	2 X-assisted BFT Protocols
	2.1 X-assisted BFT in Details
	2.2 Last but Not Least

	3 Discussion and Future Directions
	3.1 Choices on Paxos Vs. BFT
	3.2 Hybrid Fault Models
	3.3 Liveness in Consensus
	3.4 Scalability

	4 Conclusion
	References




