
MyKSC: Disaggregated Containerized
Supercomputer Platform

Ju-Won Park(B) , Joon Woo, and Taeyoung Hong

Korea Institute of Science and Technology Information,
245 Daehak-ro, Daejeon 34141, Republic of Korea

{juwon.park,wjnadia,tyhong}@kisti.re.kr

Abstract. Recently, with the emergence of cloud-based machine learn-
ing application services such as ChatGPT and big data analytics,
which require high-volume data learning, demand for large-scale high-
performance computing (HPC) resources has significantly increased.
However, there are many difficulties in providing cloud-based services
owing to the differences in existing HPC resource operation and execu-
tion environments. To address these challenges, there are many ongoing
research efforts to support cloud application services on HPC systems
using container technology. However, there are fundamental differences
between traditional HPC and cloud applications that make administra-
tors hesitant to adopt them in actual operating environments. To solve
these problems, this paper introduces MyKSC, which provides a uni-
fied user interface based on a loosely-coupled architecture. MyKSC is
a system applied to Nurion, a supercomputer operated by the Korean
National Supercomputing Center (KISTI). Nurion users can use new
cloud application services such as Jupyter and RStudio along with exist-
ing HPC application services like MPI through MyKSC. To achieve this,
MyKSC divides the entire system into Kubernetes and HPC clusters
and selects suitable cluster resources to run the application based on
user preferences. This paper proposes the loosely-coupled containerized
supercomputer platform and introduces its current implementation.

Keywords: Loosely-coupled · containerization · unified interface

1 Introduction

Recently, with the emergence of cloud-based machine learning application ser-
vices such as ChatGPT and big data analytics, which require high-volume
data learning, the demand for large-scale high-performance computing (HPC)
resources has significantly increased. However, supporting cloud application ser-
vices through existing HPC resources is challenging owing to the rigid software
stack [8,13]. Container technology can be a very good alternative to solving

This work was supported by the Korea Institute of Science and Technology Information
(Grant No. K-23-L02-C01-S01).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Zhang and L.-J. Zhang (Eds.): ICWS 2023, LNCS 14209, pp. 83–91, 2023.
https://doi.org/10.1007/978-3-031-44836-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44836-2_6&domain=pdf
http://orcid.org/0000-0003-1388-1583
https://doi.org/10.1007/978-3-031-44836-2_6


84 J.-W. Park et al.

these problems. Because it shows very good performance through a lightweight
virtualization layer, many studies are being conducted to introduce container
technology in the HPC field [3,4,9]. However, despite these efforts, there are
restrictions due to fundamental differences between typical HPC and cloud appli-
cations, including resource utilization, the scale of tasks and service execution
times, and the way services are executed.

To solve these problems, this paper introduces MyKSC, which provides a
unified user interface based on a loosely-coupled architecture. MyKSC is a system
applied to Nurion, a supercomputer operated by KISTI. Nurion users can use
new cloud application services such as Jupyter and RStudio along with existing
HPC application services like MPI through MyKSC. MyKSC divides the entire
system into a Kubernetes cluster for providing cloud application services and
a traditional scheduler-based HPC cluster. Based on these divided resources,
MyKSC selects suitable cluster resources to run the application depending on
the type of service chosen by the user. That is, new cloud application services
such as Jupyter and RStudio are executed on the Kubernetes cluster, while
for traditional HPC applications, it generates a job script file based on user
interaction (e.g., file selection, parameter input) and submits it to the existing
HPC cluster’s batch job scheduler to perform the actual task on the HPC cluster.

The remainder of this paper is organized as follows. Section 2 introduces
Nurion and related studies. In Sect. 3, we present the architecture of the proposed
platform. We next present the implementation of MyKSC in Sect. 4. Finally, we
present our conclusions in Sect. 5.

2 Background

2.1 Specifications and Structure of the 5th Supercomputer

Nurion is the 5th HPC system built by the Korean National Supercomputing
Center (KISTI) in 2018. It is a cluster system consisting of 8,305 Intel Xeon Phi-
based KNL CPU nodes and 132 Intel Xeon SKL CPU nodes, with a theoretical
performance of 25.7 PFlops. The user data are stored in a 20 PBytes Lustre
parallel file system, and all compute nodes and parallel file systems are connected
with a 100 Gbps omni-path architecture (OPA) interconnector that provides
ultra-high-speed/low-latency communication. Nurion provides users with two
personal folders: (/scratch) and (/home). /home provides 64 GB of storage
space for user-specific data and has no file deletion policy. By contrast, /scratch
is a temporary storage space for all files needed for task execution: it provides
up to 100 TB of space but automatically deletes unused files every 15 days.
To prevent performance degradation in the parallel file system, a burst buffer
was introduced. The burst buffer is a cache layer for I/O acceleration between
compute nodes and storage, preventing performance degradation due to small
I/O or random I/O in the parallel file system and maximizing parallel I/O
performance. In addition, Nurion uses the portable batch system (PBS) as the
batch job scheduler for workload management, and an exclusive node allocation
policy is applied by default to ensure that only one user’s task can be executed
per node to guarantee the maximum application performance.



MyKSC: Disaggregated Containerized Supercomputer Platform 85

2.2 Related Work

Existing HPC cluster systems are built and operated in a form optimized for
parallel programs, which imposes many restrictions on supporting new types of
services. To overcome these rigid utilization problems and provide users with a
more diverse service environment, researchers have conducted numerous stud-
ies to configure clusters using cloud virtualization technology. Virtualization
technology can be divided into hypervisor-based virtualization technology and
container-based virtualization technology. However, as many recent studies have
shown, hypervisor-based virtualization technology inevitably results in perfor-
mance degradation, whereas container-based virtualization technology is known
to achieve performance close to native [5,6,11]. Consequently, researchers are
conducting many studies to secure the flexibility of HPC resources by utilizing
container technology in the HPC field. Notable container application technolo-
gies in the HPC field are Singularity, Shifter, and Charliecloud [3,4,9]. Singu-
larity was specifically designed from the outset for HPC systems. Singularity [4]
has a special file format (called the Singularity Image Format or SIF) to sup-
port novel features such as security, extreme portability, and guaranteed repro-
ducibility. Shifter [3] is a prototypical implementation of container engine for
HPC developed by NERSC. Shifter allow to deploy user-created images at large
scale. It can support Docker images as well as several other standard image
formats (vmware, ext4, squashfs, etc.) and is tied into the batch system at
NERSC. CharlieCloud [9] is an open-source container technology developed by
Los Alamos National Laboratory for supercomputing clusters. It uses the Linux
user and mount namespaces to run industry-standard Docker containers with no
privileged operations or daemons.

Recently, there has been an increase in cases of HPC operating centers run-
ning Kubernetes clusters alongside HPC clusters [2,10]. For example, the Ohio
Supercomputer Center has deployed a Kubernetes cluster with tight integration
to a high performance computing (HPC) environment [2,7]. Purdue University
provide a composable infrastructure to launch container-based applications with
Kubernetes [10]. Oak Ridge National Laboratory also operate the OpenShift
environment with kubernetes [7].

3 Loosely-Coupled Integration of Kubernetes
on Supercomputer

Many previous studies have attempted to integrate cloud applications with HPC
systems in a tightly-coupled structure [3,4,9]. However, there are limitations due
to fundamental differences between typical HPC and cloud applications. First,
there are differences in how resources are utilized. Typical HPC applications
require very large resources and high performance, mainly relying on exclusive
resource allocation. By contrast, cloud application services mainly employ on-
demand, shared resource allocation. Therefore, batch job schedulers such as PBS
Pro and SLURM, widely used in HPC systems, are insufficient to meet these
requirements.



86 J.-W. Park et al.

Second, there are differences in the scale of tasks and service execution times.
HPC applications usually execute very large-scale tasks, allocating large amounts
of resources and running for very long periods. Therefore, most supercomputer
operation centers set a wall-time limit to ensure fair resource usage and prevent
tasks from running beyond the limit. Consequently, users must save checkpoints
at regular intervals to resume their tasks from the saved point if the work-
load manager forcibly terminates them. By contrast, cloud applications usually
involve multiple micro-services connected and executed through REST APIs.
These micro-services flexibly start and stop as needed, and connections may
frequently break due to various issues; hence, the service dynamically finds and
connects to another micro-service. Therefore, rather than checkpoint techniques,
cloud applications require methods that periodically monitor the execution sta-
tus of services and dynamically create, connect, and terminate services.

Third, there are differences in the way services are executed. Performance
is the most critical factor in HPC applications. To satisfy performance require-
ments, all compute nodes have the packages and libraries necessary for running
HPC applications preinstalled, and even kernel parameters are customized. As
a result, HPC applications execute jobs in batches within this optimized, closed
environment. By contrast, cloud applications require a highly flexible execution
approach, dynamically providing the execution environment to meet diverse user
requirements. Specifically, in the cloud, rather than customizing all nodes for spe-
cific applications, flexibility is enhanced through a hypervisor layer to provide
diverse application environments, even if it sacrifices performance.

Due to these fundamental dissimilarities between HPC and cloud applica-
tions, supercomputing centers operating actual systems are hesitant to adopt
tightly-coupled container technologies. To address this issue, we introduce
MyKSC, a loosely-coupled architecture. MyKSC is a platform that applies con-
tainer technology to support the cloud-based AI and data analytics applications,
which are increasing in popularity, on the supercomputer Nurion. It provides
both traditional HPC applications and cloud-based applications through a uni-
fied interface. The architecture of MyKSC has three primary objectives: first, to
minimize changes to existing operational HPC systems and software structures;
second, to provide both HPC and cloud applications through a unified interface;
and third, to enable access to the same data across all services.

Figure 1 shows the architecture of MyKSC. To provide cloud services, the
entire system’s resources are divided and operated between Kubernetes and tra-
ditional HPC clusters, isolating them from each other. Thus, the existing HPC
cluster software remains unchanged and coexists with the Kubernetes cluster.
MyKSC also controls and manages the resources of the two clusters through a
web-based unified interface. It selects the appropriate cluster resources to exe-
cute applications based on the type of service that users require and delivers the
results to users through a web browser. Traditional HPC applications create a
job script file using the web-based interface provided by MyKSC and submit it
to the batch job scheduler. The submitted job is executed through the HPC clus-
ters, then the executed results are saved in the parallel file system. The saved
results can be accessed directly allowing users to add, modify, or delete their
data in MyKSC.



MyKSC: Disaggregated Containerized Supercomputer Platform 87

Fig. 1. Architecture of MyKSC.

On the other hand, cloud-based applications are provided in a containerized
manner through a Kubernetes cluster. In MyKSC, the services provided as cloud
services are jupyter, RStudio, and VNC. These applications are dynamically
created through kubernetes when a user requests a service and deleted when the
service is terminated.

4 Implementation

In MyKSC, the Kubernetes infrastructure is built using the software stack for
cloud application services as shown in Table 1.

Table 1. MyKSC software stack

Software Application Name Version

OS CentOS 7.9

Container Runtime Interface (CRI) docker 20.10.17

CRI for GPU nvidia-docker 2.11.0

container orchestrator Kubernetes 1.23.9

Container Network Interface plugin Calico 3.24.5

Service Mesh Istio 1.15.1

Load Balancer MetalLB 0.13.9

Kubernetes is the de facto standard framework for container orchestrators,
with a rapidly growing community and ecosystem. Recently, it is also widely
used in HPC systems [1,2,12]. Kubernetes consists of masters and workers, and
services are executed as pods comprising one or multiple containers. In MyKSC,
we chose Docker and Nvidia-docker as the container runtime interfaces. Docker is
the most widely used container runtime engine, and Nvidia-docker is a container



88 J.-W. Park et al.

runtime engine developed by Nvidia for managing NVIDIA GPU-based con-
tainers (Docker will no longer be supported as a CRI from Kubernetes Version
1.24, and it will be replaced with cri-o or containerd in future upgrades). Cal-
ico was used for pod networking and policy management. Calico supports both
L2 connections based on XVLAN and L3 connections through BGP routing,
making it a suitable choice for KISTI’s current network environment. MetalLB
was installed and configured to provide load balancing and high availability of
services, while Istio was chosen for the ingress controller.

Fig. 2. MyKSC dashboard.

After logging in with a basic ID/password and two-factor authentication,
users can view the dashboard shown in Fig. 2, which is the Graphical User
Interface (GUI) of the implemented MyKSC. The MyKSC dashboard is divided
into three sections. On the left, icons of favorites are placed for users to easily cre-
ate and navigate their desired services. The top right section displays the user’s
contract period and remaining resources, along with statistics on Kubernetes
cluster resources (CPU, Memory, GPU). The bottom right section shows the
services currently provided through MyKSC, and users can create new services
by clicking the “+” button. As shown in Fig. 3, created services are provided to
users within the same browser frame in multiple windows.

Figure 4 shows the configuration and service creation method of MyKSC.
Services are executed as pods in the Kubernetes infrastructure and created as
a deployment type with three replicas for high availability and load balanc-
ing of network traffic. The created deployment connects to the outside through
Istio’s secure gateway, using the public IP assigned by MetalLB. SSL certificates



MyKSC: Disaggregated Containerized Supercomputer Platform 89

Fig. 3. The screenshot of MyKSC.

for secure communication are stored in Istio. By utilizing Istio’s secure gate-
way, services created through MyKSC can run without an SSL certificate. In
other words, users establish secure connection using the HTTPS secure proto-
col up to the secure gateway, and the connection between the secure gateway
and the actual service uses the HTTP protocol. Also, since MyKSC does not
use database, sessions cannot be shared between the created replicas. Therefore,
Istio’s DestinationRule fuction is used to maintain connections to the same pod
for requests with a certain session.

The service creation method of MyKSC is as follows. First, when a user logs
in, MyKSC retrieves the user’s UID, GID, and username from LDAP and creates
a namespace in the Kubernetes cluster for the logged-in user. After logging in,
all Kubernetes resources created by the user are created and managed within
the user’s namespace. MyKSC provides a total of six services; five of them,
excluding the webTerminal service that simply connects to the login node as a
web terminal, are divided into the following three categories:

Jupyter, RStudio, and VNC: When a user creates Jupyter, RStudio, or VNC
services, MyKSC creates pods and services through the kube-API server.
When creating a pod, the “runAsUser” and “runAsGroup” values are set
to the user’s UID and GID values obtained from LDAP for security. These
created pods are connected to clients in a sub-path format through the API
Gateway implemented within MyKSC. Thus, a page requested with /jupyter
connects to the Jupyter pod, and a page requested with /rstudio connects to
the RStudio pod.



90 J.-W. Park et al.

Fig. 4. The service creation process of MyKSC.

FileManager: FileManager provides a web-based file upload/download fea-
ture to manage files based on a GUI. MyKSC offers access control to
two private directories provided by Nurion in the form of hostPath with
the FileManager pod. As mentioned in Sect. 2, in Nurion, all compute
nodes have the parallel file system, Lustre mounted as /home/{userName}
and /scratch/{userName}. Therefore, when creating a FileManager pod
in MyKSC, it is possible to directly access the two private directo-
ries of the parallel file system by attaching /home/{userName} and
/scratch/{userName} as hostPath volume types to the FileManager pod,
along with setting the “runAsUser” and “runAsGroup” values.

Batch Job: In this study, for batch job services, integration is performed in a
loosely-coupled structure with the existing HPC cluster system, as presented
in Sect. 3. That is, the batch job pod created in the Kubernetes cluster receives
user input through a web browser and generates a job script file. The created
job script file is submitted to the job scheduler’s master with the user’s UID,
and the actual job is executed on the existing HPC cluster. However, the
executed results can be verified by the user through the batch job pod.

5 Conclusion

Due to the fundamental differences between HPC application services and cloud
application services, tightly-coupled integration approaches have clear restric-
tions, causing hesitation in their adoption by administrators. To address these
challenges, this paper presented MyKSC, which provides a unified user interface
based on a loosely-coupled architecture. MyKSC is applied to Nurion, a super-
computer operated by KISTI, allowing Nurion users to use new cloud application
services such as Jupyter and RStudio, along with traditional HPC application
services like MPI, through MyKSC.



MyKSC: Disaggregated Containerized Supercomputer Platform 91

References

1. Beltre, A.M., Saha, P., Govindaraju, M., Younge, A., Grant, R.E.: Enabling HPC
workloads on cloud infrastructure using kubernetes container orchestration mech-
anisms. In: 2019 IEEE/ACM International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC),
pp. 11–20. IEEE (2019)

2. Dockendorf, T., Baer, T., Johnson, D.: Early experiences with tight integration
of kubernetes in an HPC environment. In: Practice and Experience in Advanced
Research Computing, pp. 1–4 (2022)

3. Gerhardt, L., et al.: Shifter: containers for HPC. In: Journal of physics: Conference
Series, vol. 898, p. 082021. IOP Publishing (2017)

4. Godlove, D.: Singularity: simple, secure containers for compute-driven workloads.
In: Proceedings of the Practice and Experience in Advanced Research Computing
on Rise of the Machines (learning), pp. 1–4 (2019)

5. Kozhirbayev, Z., Sinnott, R.O.: A performance comparison of container-based tech-
nologies for the cloud. Futur. Gener. Comput. Syst. 68, 175–182 (2017)

6. Le, E., Paz, D.: Performance analysis of applications using singularity container on
SDSC comet. In: Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact, pp. 1–4 (2017)

7. Papadimitriou, G., Vahi, K., Kincl, J., Anantharaj, V., Deelman, E., Wells, J.:
Workflow submit nodes as a service on leadership class systems. In: Practice and
Experience in Advanced Research Computing, pp. 56–63 (2020)

8. Park, J.W., Hahm, J.: Container-based cluster management platform for dis-
tributed computing. In: Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA), p. 34. The
Steering Committee of The World Congress in Computer Science, Computer ...
(2015)

9. Priedhorsky, R., Randles, T.: Charliecloud: unprivileged containers for user-defined
software stacks in HPC. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–10 (2017)

10. Smith, P.M., et al.: The “geddes” composable platform-an evolution of community
clusters for a composable world. In: 2020 IEEE/ACM International Workshop on
Interoperability of Supercomputing and Cloud Technologies (SuperCompCloud),
pp. 33–38. IEEE (2020)

11. Torrez, A., Randles, T., Priedhorsky, R.: HPC container runtimes have mini-
mal or no performance impact. In: 2019 IEEE/ACM International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), pp. 37–42. IEEE (2019)

12. Zhou, N., et al.: Container orchestration on HPC systems through kubernetes. J.
Cloud Comput. 10(1), 1–14 (2021)

13. Zhou, N., Zhou, H., Hoppe, D.: Containerisation for high performance computing
systems: Survey and prospects. IEEE Trans. Softw. Eng. 49, 2722–2740 (2022)


	MyKSC: Disaggregated Containerized Supercomputer Platform
	1 Introduction
	2 Background
	2.1 Specifications and Structure of the 5th Supercomputer
	2.2 Related Work

	3 Loosely-Coupled Integration of Kubernetes on Supercomputer
	4 Implementation
	5 Conclusion
	References




