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Abstract. Due to unreasonable virtual machine (VM) resource plan-
ning and complex load variation, the waste of VM resource has become
a significant issue for many enterprises. Although existing technical solu-
tions have proven to have certain ability to identify idle VMs, most of
them are researched in private cloud or public cloud scenarios. And it
lacks an effective method customized for managed clouds, where the
previous work still suffers from the challenges of fewer labels, poor data
quality and large scale of VMs in production environments. For this rea-
son, we first investigate the resource usage data of thousands of VMs
from a real managed cloud. Based on the analysis results, we propose an
innovative and practical method to identify idle VMs. Through elaborate
data processing, feature engineering, and model training, the proposed
method enables to achieve excellent performance. Sufficient experiments
based on real data from the managed cloud of Sangfor company also
prove its practicality and effectiveness in the production environment.
Up to now, this service has been deployed in Sangfor cloud for more
than 5 months, continuously detecting over 10K VMs, and helping to
save at least 1K vCPU cores, 2.5 TB memory and 100 TB disk space.

Keywords: idle virtual machine · machine learning · managed cloud
data center · micro-service · random forest model · semi-supervised
learning

1 Introduction

Managed cloud is an emerging cloud service mode [1]. It runs as a 2B service
mode and serves a wide range of industries, such as education, government, com-
mercial enterprises, etc. The operators of managed cloud provide an exclusive or
shared resource pool for those enterprises to choose from. However, due to the
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Fig. 1. Empirical cumulative distribu-
tion function (ECDF) of resource uti-
lization of approximately 4K VMs in
Sangfor cloud.

(a) CPU (b) Memory

Fig. 2. Probability density function
(PDF) of average resource utilization of
200 idle VMs pre-determined by SREs.

unreasonable allocation and management of Virtual Machines (VMs) by tenants,
a large amount of VM resources are wasted, greatly increasing the IT operating
costs. For example, some tenants are used to allocate far more resources than
they actually need when creating a new VM; software developers may temporar-
ily open multiple VMs for testing purposes, but forget to release them afterwards.
Figure 1 shows the resource utilization distribution of CPU, memory and disk of
approximately 4K VMs from Sangfor cloud for a week, which owns more than
3000 physical servers and 10000 VMs. The analysis results reveal an extremely
serious waste of VM resources in this cloud, especially CPU and disk resources.

To eliminate this problem and provide better cost management services, Site
Reliability Engineers (SREs) will regularly clean up the infrequently used VMs
or those with long-term low resource occupancy. Unfortunately, when it involves
thousands of VMs, manual identifying the idle ones is quite time-consuming
and costly. Moreover, the services or processes running on different VMs vary
greatly, which makes it be impossible to accurately detect all idle VMs by setting
a static threshold or simple rules [2–4]. To be more effective, a functional idle VM
detection method is therefore fundamental for managed cloud. Although a large
amount of existing work has been proposed to use dynamic thresholds [5], or
bring in some machine learning (ML) models [6–9] to learn the variation pattern
of the VM resource or performance metrics, these methods either produce too
large overhead or require enough positive sample labels, or do not consider the
impact of operating system (OS) type on the identification model. Consequently,
these methods are hard to be applied to production environment.

To this end, we investigate the application of ML methods in the identifi-
cation of idle VMs, and present an idle VM identification algorithm based on
the Random Forest model [10] and the corresponding micro-service deployment
framework. The entire study is conducted on Sangfor cloud, and the service has
been successfully deployed for a period of time. We first elaborately perform
feature engineering to improve the accuracy and efficiency of idle VM detection
by referring to the daily experience of SRE in identifying idle VMs. We then
experimentally compare various prevalent ML models and select the best one as
the final model to detect idle VMs. Interestingly, we train two detection models
separately depending on the type of VM OS (Linux and windows). Consider-
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(a) Memory usage
dominating

(b) Disk usage dom-
inating

(c) Fluctuation with
little burst

(d) Occurrence of
system anomalies

Fig. 3. Typical resource usage patterns of idle VMs.

ing the labor-intensive labeling work, we also present a semi-supervised learning
algorithm to help train the model, in which we particularly propose a sample aug-
mentation algorithm to address the problem of insufficient positive samples. We
conduct plenty of online data exception handling, so as to reduce the influence
of data quality on identification results. Last but not least, the implementation
of the entire system follows the principle of micro-service design, where the idle
VM identification model runs stateless and retrain periodically, which facilitates
rapid online expansion and update after deployment.

The contributions of this paper include:

– We analyze real VM resource occupancy data and design 15 kinds of key time-
series features to detect idle VMs, and we also find that idle VMs installed
with Linux generally have lower memory occupancy than idle VMs installed
with windows.

– We investigate in depth how to identify idle VMs using resource metrics of
VMs along with ML models, and propose a practical and lightweight idle
VM detection method based on random forest-based model, as well as the
corresponding micro-service detection framework.

– The proposed method has been applied to the production environment for
several months, and the results of a large number of offline experiments and
online service running data prove its effectiveness and efficiency.

The following paper is organized as follows. We first introduce the motiva-
tion and challenges of this work in Sect. 2, and propose a ML-based idle VM
detection method in Sect. 3. We evaluate the proposed method in Sect. 4. We
further analyze its performance and overhead after it is deployed to production
environment in Sect. 5. Some related work is described in Sect. 6. We state the
limitations of this work in Sect. 7 and draw a conclusion in Sect. 8.

2 Background

Idle VMs in this work refer to inactive VMs (or sprawled [11]), not just that it is
not running any user programs. We expect to find idle VMs by analyzing their
resource or performance indicators, which can be used as a basis for shrinking
their capacity or closing them to save costs. In this section, we begin by present-
ing several findings from the analysis of VM resource usage data. The analysis
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results serve as the main motivation for our method. Next, we summarize the
main challenges of solving this problem in a production environment.

2.1 Observations

In order to better understand the characteristics of idle VMs, SREs randomly
select several VMs in advance, and manually label 200 VMs that they think are
idle based on their experience. Two thirds of these VMs have linux OS installed
and the remaining have windows OS installed. We analyze the resource usage of
all these idle VMs and make the following two findings.

– Observation I: The resource utilization of idle VMs running linux signifi-
cantly differs from that of idle VMs running windows. We compare the average
CPU and memory resource utilization distributions of idle VMs with windows
and linux. The statistical probability density distribution (PDF) results are
displayed in Fig. 2. According to the results, we can find that the average
resource utilization of idle VMs with linux presents a long-tail distribution,
while that of idle VMs with windows show an obvious crest change. This
change may be caused by two types of windows services, Virtual Desktop
Infrastructure (VDI) service [12] and traditional office service. The difference
in resource distribution between VMs with windows and linux leads to the
need for a differentiated model to identify idle VMs with different types of
OS.

– Observation II: Idle VMs have similar patterns of resource usage and varia-
tion. Figure 3 shows four typical resource usage trends of idle VMs. Figure 3(a)
and Fig. 3(b) respectively represent idle VMs dominated by memory occu-
pancy and disk occupancy, and the curves are relatively stable. Figure 3(c)
shows that the resource occupancy curve of idle VM fluctuates with little
burst, and Fig. 3(d) indicates the idle VM is experiencing some kind of anoma-
lies. Note that these idle VMs are manually marked by SREs, which means
SREs believe that the resource occupancy of a idle VM should be similar to
these patterns. We further analyze the commonalities between these patterns
and find that all VMs labeled as idle by SREs generally have low resource
utilization (CPU utilization, memory utilization, and disk utilization in Fig. 3
are all below 30%). Moreover, all these curves are not consistently volatile.
These findings show the major differences between idle and non-idle VMs and
become the primary basis for determining whether a VM is idle.

2.2 Challenges

Although a large amount of methods [2–5,13–15] have been proposed to detect
inactive VMs, these methods are rarely applied to real production environments.
For better application performance in the production environment, we summa-
rize several key challenges that require to be broken through.
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Fig. 4. The proposed idle VMs detection framework.

– Challenge I: High performance. A key point to accurately identify idle
VMs through ML models is to select appropriate VM resource features.
Although there are some public libraries (e.g. tsfresh [16]) that can extract
thousands of temporal features , these features not only cause a large extrac-
tion overhead, but also requires sufficient samples to ensure the success
of model training. More importantly, labeling the idle VMs is very time-
consuming, some supervised classification models is thus unable to be applied
directly, which further increases the difficulty of identifying idle VMs.

– Challenge II: Lightweight design. Unlike large-scale public cloud envi-
ronments, the available resources in managed cloud environments are insuf-
ficient, which requires the designed detection method to be as lightweight
as possible. Although the detection speed can be improved by multi-process
or multi-threading techniques, these methods also bring about extra resource
cost. As a result, the current outstanding large neural network models [17,18]
are difficult to be practically applied to addressing this problem, which is also
the main reason for this work focusing on the classical ML models.

– Challenge III: Robust and extensible framework. For one thing, the
idle VM identification method needs to be able to proactively detect and elim-
inate online data quality problems caused by potential bugs, design defects
and irregular updates and upgrades of the monitoring system, as well as the
network congestion and device failure. For another thing, it also needs to
automatically recognize some long-term holidays (e.g., China’s National Day,
Spring Festival) to avoid false positives. Furthermore, the design of this detec-
tion service must be stateless for a highly scalable capability to better adapt
to large-scale VM scaling scenarios.

We set out how to solve above challenges in following Sect. 3.

3 Proposed Method

In this section, we propose a ML model based and micro-service framework
to address the challenges mentioned above. Section 3.1 depicts an overview of
the proposed idle VM detection framework. We introduce the metrics used to
detect idle VMs in Sect. 3.2. We describe the extracted key features from these
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metrics in Sect. 3.3. A probabilistic idle VM detection model and the associated
semi-supervised training algorithm are respectively presented in Sect. 3.4 and
Sect. 3.5. We state how to detect and deal with idle VMs in Sect. 3.6.

3.1 Overview

Figure 4 displays the proposed idle VM detection framework. The relevant data
used to detect idle VMs will first be uploaded through the agent deployed in
the VM. Static VM information will be stored in a configuration management
database (CMDB), and other time series data (such as CPU utilization, memory
utilization) will be stored in a time series database (TSDB). The idle VM detec-
tion service will pull these data to complete offline training and online detection.

The training phase is composed of step 2 to step 6. In this phase, the VM
data will first undergo noise reduction and normalization, and then will be trans-
formed into feature vectors. The feature vectors will be used as the input of the
detection model. After that, SREs will manually mark few positive and negative
samples. Based on these samples, this idle VM detection service will automati-
cally generate more samples through the presented sample augmentation algo-
rithm to improve the generalization capability. The trained model will be stored
in the model warehouse and updated periodically. The phase of online detection
mainly corresponds to step 7 to step 10, where the detection service regularly
pulls the VM data and make identification. It will first preprocess the input data
and further filter out those during a long-term holiday or in the agent upgrade
stage. Next, it extracts the idle features and selects the appropriate model for
detection based on the type of VM OS. The detection results will be updated to
UI interface, and users can perform different treatments according to the detec-
tion results and mark the detected VMs as correct or incorrect. The feedback
will be converted into training samples to participate in the next model update.

3.2 VM Data Collection

We mainly choose three VM resource indicators to detect idle VMs, including
CPU utilization, memory utilization, and disk utilization. Unlike some previous
researches, in addition to selecting these resource indicators, they also consider
several more complex indicators, such as network connection, application-related
system calls and key service processes. The main reason why we only select these
indicators is to consider that the current user needs are mainly concerned with
these types of VM resources, and the use of these indicators is more in line with
the manual identification habits of SRE personnel. Moreover, too many features
will not only cause high collection overhead, but also easily lead to degradation of
detection efficiency. Note that our method is also suitable for rapid expansion and
application to other metric data. Besides, we also collect the indicators of system
uptime and the number of keyboard and mouse operations for those VMs with
windows OS. These metrics are beneficial to compensate for the shortcomings
of the ML-based detection model through several predefined rules.
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To obtain these VM indicator data, we developed an agent that runs in VM in
the form of a process and uploads the relevant data in real time. When collecting
these data of tenant’s VMs, we will strictly abide by the negotiation agreement
with tenant, so there will be no data privacy issues.

3.3 Determining Idle Features

Although we have reduced the complexity of idle VM detection to a certain
extent by controlling the number of participating detection indicators, due to
the diversity of time series, each VM resource indicator can still extract up to
thousands of features, which will inevitably lead to high performance loss and
time overhead. Based on the observation 2 mentioned in Sect. 2.1, we summa-
rize two kinds of key features for detecting idle VMs: statistical features and
fluctuating features. In particular, we screen out 9 basic statistical features and
6 time-series fluctuation features from more than 1,000 features generated by
tsfresh [16] through correlation test, variance test, and P-value test. The infor-
mation description of the extracted features can be found in Table 1, and their
detailed calculation process can refer to tsfresh [16].

Table 1. The extracted features from each kind of VM resource utilization sequence.

Categories Feature names Description

Basic statistical
features

Minimum The minimum value of the sequence.

Maximum The maximum value of the sequence.

Mean The mean of the sequence.

Median The median of the sequence.

Variance The variance of the sequence.

Standard deviation The standard deviation of the sequence.

Root mean square The root mean square of the VM resource
utilization sequence.

Var larger than std A boolean value indicating whether the
variance of the sequence is greater than the
standard deviation of it.

Ratio larger than mean The proportion of the objects that are
greater than the mean value in the sequence.

Sequence
fluctuation features

Variation coefficient The discrete degree of the sequence
calculated under a unified numerical
dimension.

Sample entropy Measuring the probability of generating new
patterns in the sequence.

Permutation entropy Quantitative assessment of random noise
contained in the sequence.

Binned entropy The binned entropy of the power spectral
density of the sequence.

Complexity invariant distance The degree of chaos in the sequence.

Absolute sum of changes The magnitude of the change in the
sequence.
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3.4 Detection Model Design

Intuitively, idle VM detection is a 0–1 binary classification problem. However,
directly determining whether a VM is idle may confuse SREs, so that it is impos-
sible to make the best disposal action. The main reason for this confusion is that
the so-called idle VM also needs to consider issues such as idle time period and
idle degree. Therefore, to eliminate this confusion, we turn this problem into a
detection probability problem. Specifically, we define an idle probability P to
indicate how likely a VM to be idle. In fact, we also predefined a set of idle prob-
ability thresholds, each of which corresponds to a different processing method for
idle VMs (such as resource scaling, shutdown, etc.). The formal mathematical
expression for this detection process is as follows:

P (Vk) = Func(
−→
f1
Vk

,
−→
f2
Vk

, . . . ,
−→
fN
Vk

)

where f i
Vk

means the extracted feature vector of i-th indicator of VM Vk.
Although many deep learning models have been widely used in image recognition
[17], text classifications [18], they will also bring huge training and prediction
costs. For this reason,our work concentrates on the classical ML models. After
evaluating 10 kinds of ML models, and considering that the Random Forest (RF)
model [10] naturally conforms to the characteristics of probability selection, we
finally chose it to detect idle VMs. Moreover, RF model has a recognized good

Algorithm 1. An automated sample augmentation algorithm
Input: The mean distribution (λk

m) and the deviation distribution (λk
d) of k-th indi-

cator of labeled idle VM samples, total number of generated samples (N), total
number of indicators (M) and the length of generated indicator series (L)

Output: New generated idle VM sample set (Θ)
1: Set i, k ← 0;
2: Sampling function Φ;
3: while i ≤ N do
4: Initiate a new null sample θi;
5: while k ≤ M do
6: Generate an equivalent sequence ski with length of L, ski [0 : L] ← Φ1(λ

k
m);

7: Update ski ← ski + ΦL(λk
d);

8: Update ski ← ski + ΦL(N (0, σ2));
9: if Φ1(U(0, 1)) ≤ p then

10: New variables x1, x2 ← �(Φ2(U(0, L)))�;
11: Set ski [min(x1, x2) : max(x1, x2)] ← 0;
12: end if
13: Add ski to sample θi;
14: k ← k + 1;
15: end while
16: Add θi to sample set Θ;
17: i ← i + 1;
18: end while
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interpretability, which is very friendly for users. Detailed experimental compar-
isons between different models can be found in Sect. 4.

3.5 Semi-supervised Training

Labeling VM as idle is actually a very labor-intensive task, which leads to a lack
of positive samples, that is, the samples marked as idle. Consequently, the trained
detection model tends to identify VMs as active, resulting in a low precision. To
address this issue, we propose an empirical sample augmentation algorithm to
automatically generate idle VM samples. The core principle of this algorithm
is to generate new samples after certain data perturbation on the basis of the
original marked sample data distribution. The pseudo code of the algorithm is
shown in Algorithm 1.

Fig. 5. Procedure of detecting and recommended dispose of idle VMs.

The input of this algorithm mainly includes: The mean distribution (λk
m) and

the deviation distribution (λk
d) of k-th indicator, which are derived from manually

labeled idle VM sample data; Total number of generated samples (N), total
number of indicators (M) for identifying idle VMs and the length of generated
indicator series (L). This algorithm outputs newly generated idle VM samples.
For each indicator in any newly generated sample, this algorithm first produces
an equivalent sequence ski with length of L based on the mean distribution λk

m

(Line 1–6). The symbol of Φl(λ) in Algorithm 1 represents the random generation
of l values based on the distribution λ. It then superimposes on the sequence ski a
deviation sequence randomly generated according to the distribution λk

d (Line 7).
In order to enhance the generalization ability of trained model, we superimposes
on the sequence ski a noise sequence randomly generated according to a normal
distribution of N (0, σ2) (Line 8). Besides, we further select a continuous partial
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sequence from the sequence ski and set its value as 0, which is used to simulate
the actual data loss caused by machine failure and system upgrade (Line 9–12).
The generated data is then gradually added to the sample set Θ (Line 13–17).
The parameters of σ and p are set to 0.002 and 0.01 respectively.

After generating enough training and testing samples, we adopt 10-fold cross
validation method to train the model. It should be emphasized that the samples
detected online and marked by users will also be regularly added to the training
set to improve the accuracy of the model.

3.6 Online Detection

According to long-term observation, we find that changes such as system upgrade
and network adjustment occasionally occur in the production environment. It
will lead to the loss of a large amount of monitoring data, and misleads the
model to mistakenly identify active VMs as idle, resulting in large false positives.
To distinguish the data loss caused by such large-scale changes from the data
loss caused by small-range equipment failures, we define a support degree q to
represent the proportion of VMs that lose data in the same time period. If q
is greater than a predetermined threshold (such as 60%), events such as batch
system upgrade are considered to occur in the production environment with a
high probability. In this case, the detection service will directly filter out these
loss data, that is, they will not participate in the detection process.

To facilitate SRE to handle the identified idle VMs, we not only use the
predicted results of the detection model, but also design some rules based on
the on/off state of the VM and the operation of the mouse and keyboard (MK
operation) to comprehensively decide the disposal method for idle VMs. The
detailed design is shown in Fig. 5. We will first simply ignore to detect those
VMs that are in the long holiday period, such as National Day, Labor Day.
Next, we will continue to judge the online duration of the VM. If the VM has
been shut down for more than one month, we will regard it as a zombie VM
and recommend recycling it directly. Otherwise, we will use the trained model
to further infer whether the VM is idle. If P (Vk) is greater than or equal to 90%,
we believe that this VM has a high probability of being inactive, and recommend
reducing its allocated resources. Note that we have added an additional judgment
rule for those VMs with windows OS, that is, if the VM has not been operated
through the keyboard and mouse for more than a week, we consider this VM to be
inactive, and recommend shutting it down. All threshold parameters mentioned
in Fig. 5 can be adjusted according to actual requirements.

4 Experiment and Evaluation

For comprehensively evaluating the effectiveness of IdleVMDetector, we first con-
duct a large number of experiments in an offline environment. In these exper-
iments, we not only compare the impact of selecting different ML models on
performance and overhead, but also illustrate the benefits of our proposed fea-
ture engineering technique and sample enhancement algorithm.
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4.1 Experimental Setup

We totally compare 10 different popular ML models: Decision Tree (DT), Bag-
ging, AdaBoost, Gradient Boosting Decision Tree (GBDT), Random Forest
(RF), Support Vector Classification (SVC) with rbf kernel, Logistic Regression
(LR), and 3 kinds of Multilayer Perceptron (MLP) models. MLP(a, b) means
the model has b layers of neural networks, and each layer has a neurons. All
these models are implemented by python-3.8.4 and sk-learn library [19]. The
training set consists of 45 manually labeled positive samples (idle VMs), 65 neg-
ative samples (busy VMs), and 500 samples generated by the proposed sample
augmentation algorithm. We also generate 500 labeled VMs for validation. Con-
sidering the high labor costs, these idle and busy VMs are determined by IT
personnel purely based on their historical resource usage. That is, these labels
do not really reflect whether these VMs is being used. Therefore, we generate
additional 500 labeled samples to participate in the validation set to improve the
accuracy of the evaluation. The performance metrics used in this work include:
precision, recall and F1-Score, which have been widely used in various classi-
fication problems. The overhead indicators include time consumption of model
training and prediction, as well as the resource occupancy when running online.

All experiments are conducted in a VM by taking use of 2 processes. The
VM is configured with 8 CPU cores and 16G memory. The configuration of each
CPU core is Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz. To eliminate the
influence of experimental error, each experiment is repeated by 10 times.

Table 2. Performance and time overhead comparison of IdleVMDetector using different
ML models (The model we finally adopt is highlighted in red).

Evaluation metrics DT Bagging AdaBoost BGDT RF SVC LR MLP-(50, 1) MLP-(50, 2) MLP-(50, 3)

Precision 0.929 0.931 0.935 0.938 0.946 0.784 0.900 0.897 0.870 0.855

Recall 0.928 0.932 0.941 0.936 0.941 0.934 0.971 0.897 0.903 0.912

F1-Score 0.928 0.932 0.938 0.937 0.944 0.852 0.934 0.896 0.883 0.882

Average training time (s) 0.011 0.066 0.199 0.677 0.094 0.021 0.066 0.628 0.700 0.994

Average prediction time (s) 0.003 0.009 0.028 0.004 0.008 0.052 0.003 0.003 0.003 0.011

4.2 Comparison Between ML Models

Table 4 shows the performance and overhead of the selected 10 kinds of ML
models in identifying idle VMs. The experimental results show that the f1-score
of the tree-based models (DT, Bagging, AdaBoost and GBT) is better than that
of SVC and MLP models. The main reason for this phenomenon is that the
features selected by our feature engineering are relatively independent, which is
more suitable for tree-structured models to learn. That is also why LR model
enables to achieve better F1-Score performance than SVC and MLP. On the
contrary, SVC and MLP models will comprehensively consider the correlation
between different features, leading to learning some irrelevant knowledge. Among
these tree-based models, RF slightly outperforms other models (1% ∼ 3%), and
considering that the average time consumption of a single prediction of RF is
extremely low (≤ 10 ms), we finally choose RF to detect idle VMs.
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4.3 The Impact of Feature Engineering

According to the experimental results in Fig. 6, the efficiency of feature extrac-
tion, training, and prediction has been significantly improved after feature engi-
neering. Among them, the time consumption of single feature extraction and
prediction is reduced by nearly 65.2% compared to that before feature engi-
neering. The reason for such progress is that a large number of useless features
are eliminated through feature engineering, that is, only 15 of the original 2361
features are retained. More importantly, from Fig. 6(a), we can find that the
removal of 99.4% features has little impact on the performance, and F1-Score
drop rate is less than 1% after feature engineering. This is a good news for us and
is within our expectations, because removing features also means that some valu-
able underlying information may be eliminated. It also proves that the feature
engineering we have carried out not only improves the detection efficiency, but
also preserves the valuable information in the original data as much as possible.

4.4 The Impact of Sample Augmentation Algorithm

Figure 7 shows the curve of the performance of IdleVMDetector changing with
the number of constructed samples. When the number of newly generated sam-
ples is less than 1000, the detection performance improves significantly with the
increase of the number of samples, the F1-Score of which is improved by about
17% compared to the model directly trained without generating any samples.
The main reason for this improvement is that the newly generated samples not
only solve the imbalance problem between positive and negative samples in the
training process, but also expand the sample knowledge boundary that the model
can learn, thus greatly improving the generalization ability of the model. This
is also why the sample augmentation algorithm improves the performance of
recall more significantly than the performance of accuracy. After the number of
samples exceeds 1000, the marginal effect of the new knowledge that the model
can learn decreases, so the detection performance gradually tends to be stable.

(a) Performance (b) Time overhead

Fig. 6. Comparison of effect on
whether IdleVMDetector uses feature
engineering (FE) techniques.

Fig. 7. Impact of the number of aug-
mented training samples on detection
performance.
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5 Implementation and Deployment

Considering that there are over 10K VMs in production environment, we have
taken use of multi-process technology to improve the detection efficiency, and
the entire service is packaged separately into a container image, managed by
K8s [20], so as to ensure high scalability. In the process of interacting with the
front-end, we also bring in the technique of asynchronous data transmission. The
detection results will first be cached into Redis [21], and the front-end does not
directly request the results from the detection service, but reads it from Redis.
In order to assist SRE confirm the detection results, the front-end interface also
provides some other statistical information of VM resources. The final interface
interaction effect of our service is shown in Fig. 8.

We randomly record the results of one detection to introduce the effect of
this service in production environment, where the number of configured process
and the hardware configuration of the server are the same as the experimental
configuration in Sect. 4.1. A total of nearly 3000 VMs are detected in this pro-
cess, and among these detected VMs, only those VMs (133 VMs in total) with
an identified idle probability greater than 95% are taken for disposal. All the
detailed analysis results are presented in the following sections.

5.1 Performance Analysis

Table 3 shows 5 kinds of methods for handling the identified idle VMs. The
results show that among all 133 identified idle VMs, 71.5% of the VMs have
actually been dealt with, including 62.6% of VMs have been de-allocated, 2.2%
have been shut down, 6.7% have been recycled. In addition, 16.5% of the VMs
are not confirmed whether they really need to be handled due to user-related
problems. The remaining 12% of the VMs have not been executed any action,
because they all have special individual circumstances, for example, some VMs
are newly created, so that their resources should remain unchanged in the short
term. We summarize 6 typical scenarios where idle VMs should not be handled,
as shown in Table 4. In fact, these idle VMs can be filtered out through the black

Fig. 8. An example of the effect of
our idle VM detection service running
online.

(a) Detection time (b) Resource overhead

Fig. 9. Analysis of IdleVMDetector in
production environment.
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and white list mechanism before service detection. Overall, these results strongly
demonstrate the effectiveness of our proposed idle VM detection method.

5.2 Efficiency and Overhead Analysis

Figure 9(a) and Fig. 9(b) respectively show the change of detection time of
IdleVMDetector as the VM increases and the resource overhead of running for
a period of time. The results in 9(a) prove that the detection time spent by our
method shows a linear growth trend with the expansion of the scale of VMs, so
that it can be effectively extended to larger cloud environments. As we expected,
the resource utilization of the service during running process shows obvious peri-
odicity, and the peak of the resource utilization curve corresponds to the interval
for performing idle VM detection. As shown in Fig. 9(b), the CPU resources and
memory resources occupied by the service when detecting tens of thousands
of VMs per round are less than 20% and 30% respectively, which satisfy the
resource occupation requirements we have set in advance.

6 Related Work

The idle VM identification methods can be classified into two categories: Rule-
based method and ML-based method. The former set several rules (or annota-
tions) to identify idle VMs, and the latter takes use of several machine learning
algorithms to train a model based on the predefined indicators’ features, and use
this trained model to infer whether a VM is idle.

Rule-Based Method: Early work identifies idle VMs by intuitively setting a
static threshold [2,4] or a simple rule [3]. PULSAR [4] only considers the CPU
resource of a VM when identifying this VM as an idle VM, and as long as the
CPU resource of this VM is lower than a predefined certain threshold. Snadpiper
[2] determines idle VM by extending one kind of VM resource into a combina-
tion of three utilization factors (CPU, memory, network usage). Differing from
PULSAR and Snadpiper, the work [3] directly recognize the earliest instance
as inactive when the utilization of data center is low enough. Due to its nature
of simplicity and intuition, rule-based methods are usually the first choice for
SREs. This is also the main reason why some recent works still choose rule-based
detection methods [5,13,15]. Nevertheless, these methods lack an accurate per-
ception of the change of VM resource occupancy, leading to varying degrees of
false negatives and false positives in the process of judging idle VMs.

Table 3. Disposition methods actually performed for identified idle VMs.

Disposition methods Resource degradation Shutdown Resource recycling Do nothing Unknown

Proportions 62.6% 2.2% 6.7% 12.0% 16.5%
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Table 4. Several typical scenarios of idle VMs that cannot be disposed of.

Categories Explanation

New environment Newly purchased and deployed VMs by
users.

Resource redundancy Some VMs need to ensure sufficient
resources to meet sudden business loads.

Load balance The VMs adjusted by the load balancing
mechanism.

Authorization requirement The authorization of some application
software is affected by the configured
resource size.

System configuration requirement The VMs that deploy distributed
applications, such as Redis or Message
Queue.

Test environment The User Acceptance Test environment
needs to be consistent with the user
environment.

ML-Based Method: Compared to rule-based methods, ML-based methods
provide a more powerful ability to learn VM behavior and its resource variation
patterns. The work in [14] leverage kinds of primitive information (e.g., running
process, login history, network connections) and a linear support vector machine
(SVM) to find the fingerprints of inactive VMs. To better identify cloud garbage
instances, the authors in [22] argue that simply using resource metrics to make
judgments may be misleading, and then bring in a a weighted reference model
based on application information to capture dependency information between
users and cloud instances. The iCSI system [6] combines rule-based approaches
and ML based approaches to improve the accuracy of idle VM identification.
It also chooses SVM as the basic learning model, and additionally adds several
judging rules based on the analysis of VM functions and VM network affinity
analysis. The work [7] detect underutilized VM through comparing the results of
weighted ensemble resource predictions with a predefined threshold. The authors
in [8] compare various statistical metrics of all performance data with repeatedly
tuned threshold coming from a decision tree learning algorithm to identify idle
VM by producing an idleness score. Other researchers in [9] believe that idle VMs
should have similar resource change patterns, and they thus propose a clustering
method to determine idle VMs based on the VM resource utilization metrics.

Although we also adopt a ML model to infer idle probability, the biggest
difference from the existing work is that they do not consider the lack of idle
VM labels in real situations, making them difficult to be widely used. Moreover,
we train different detection models for different types of VM OS. This is also
not considered in the previous work.
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7 Limitation

This work starts from the perspective of VM resource occupancy and aims to
take use of the relevant metrics to indirectly infer whether VMs are inactive.
During online detection process, the proposed system also utilizes some VM
running status metrics, such as VM startup duration and the number of key-and-
mouse operations, to improve decision-making efficiency. The proposed method
conforms to the manual detection idea of SREs. We do not consider the busi-
ness behavior characteristics of VMs (e.g. VM access relationship, TCP or UDP
connections, and process remote calls), which will lead to some network resource-
intensive VMs being misreported. Besides, our study focuses on resource usage
rather than real business load, and therefore does not consider metrics that is
able to more accurately reflect VM service load, such as disk IOPS or business-
related system calls. Despite the fact that this proposed method does not take
these factors into account, they can be easily extended by drawing into relevant
metric data, which is also one of the main goals of our future work.

8 Conclusion

This paper systematically proposes a lightweight idle VM identification method
based on a ML model. The proposed method has been successfully applied to a
real cloud network environment. This method focuses on analyzing the relation-
ship between the variation pattern of VM resource occupancy and idle status.
Based on the observations from real VM data, we design 9 basic statistical fea-
tures and 6 sequence fluctuation features, and bring in RF model to identify
idle VMs. We present a sample augmentation algorithm to solve the problem
of lack of positive samples, and introduce several online detection optimization
strategies to improve the accuracy and robustness of identifying idle VMs. More
importantly, we also summarize 6 scenarios where idle VMs unable to be pro-
cessed, and further provide some thoughts on optimizing the accuracy of idle
VM detection, which will also be the main point in our future work.

This system is deployed in the form of micro-services. Sufficient experiments
demonstrate the effectiveness of our proposed idle VM detection method. The
system has been running online for several months, showing excellent perfor-
mance and has helped Sangfor cloud to save large VM resources by far.
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