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Abstract. In research, automatic service composition (ASC) has been a widely
studied academic subject for many years. However, this field still contains topics
and issues that remain unidentified or uninvestigated. In this paper, we focus on
one such unsolved problem of the ASC, elaborating on a current effort and future
plan.

This recognized problem is caused by the difference between the formation of
service descriptions used by human composers and that used by ASC approaches.
In practice, engineers are used to write various development-related documents
in natural language, such as their requirement specifications and software compo-
nent descriptions. However, an exhaustive survey found that most existing ASC
studies are assumed to take their required service descriptions in a tuple-based for-
mat. Although this difference and problem in theory can be sufficiently addressed
using manual processing techniques (e.g., human transformation or extraction),
we consider such human intervention to be inefficient, costly, and, most impor-
tantly, harmful to the level of automation of ASC. Thus, this study develops an
automated solution to this problem.

We first introduce some necessary background knowledge and foundation
so that the targeted problem can be fully understood and motivated. Then, the
specific problem to be studied is clearly defined and exemplified along with a
detailed explanation. Finally, the three key components to explore and address
this research problem (dataset, approach, and evaluation) are discussed in detail,
including the current work of the authors and proposals for future research.

Keywords: automatic service composition · service description · natural
language processing · rule-based extraction · conditional random field · deep
learning

1 Introduction

In academia, automated (Web) service composition (ASC/AWSC) has been a hotly
and widely studied research subject for many years, and there are already plenty of
ASC approaches and related tools, theories, and (reference) standards that have been
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published and are available. However, there remain issues and topics that have never
been identified or studied in ASC research. To improve the applicability and successful
implementation of ASC, these unsolved problems must be clearly defined, thoroughly
investigated, and properly addressed. This paper first identifies one such ASC issue – the
tuple-based service descriptions used and assumed in most existing ASC studies – and
then discusses its remedy. Because the proposed and targeted issue is in ASC, to ensure
clear understanding, we introduce service composition (SC) and its automation (i.e.,
ASC/AWSC) in the remainder of this section. Then, the problem of interest is formulated
and explained in detail in the next section.
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Fig. 1. Graphical process and comparison of design-time manual SC and ASC/AWSC.

Overall, the lifecycle of an SC can be divided into two stages: the design-time phase
and runtime execution. A more complex model could exist, but for simplicity, in this
study we introduce SC based on this basic model. More specifically, the discussion
and introduction below exclusively focus on the first stage of SC, which concentrates
on the entire and complete generation of a composite service (CS) from scratch to
meet a received user request or customer requirement and, according to the proposed
investigation, is also the primary concern and target of most surveyed ASC studies.
As shown in Fig. 1, on its left-hand side, the creation of a CS (i.e., its design-time
composition process) begins with a software requirement (service request), which is
identical tomost development processmodels proposed and used in software engineering
[1]. Typically, such a requirement or request would be expressed using at least one of



20 Y. Syu and C.-M. Wang

the formations widely used and developed in software requirement engineering, such
as free-form texts, use case descriptions defined in UML, and user stories proposed in
agile methods. The commonality between these different forms of demand expression is
that they all consist of natural language statements to describe their writers’ intentions:
natural language is used prevalently for expressing systems and software requirements
[2]. After having this stimulative information about what is required, a human composer,
who is represented at the center of Fig. 1, takes time to read and analyze the message;
assess and consider the available component services; and finally select and integrate a
set of appropriate component services to design and produce a service orchestration or
choreograph, which forms the desired CS, as shown on the right-hand side of Fig. 1.
Regarding component services, the composer must understand and comprehend their
specifications because programmers must carefully read the documents of their used
program APIs before loading and calling them (e.g. functionality and nonfunctional
properties) by inspecting their text-based service descriptions (on top of Fig. 1) because
these available component services are often developed, offered, and owned externally
by others.

Instead of manually composing services, researchers work on its automation, ASC,
which is also shown in Fig. 1. Although ASC is a broad research field that includes and
is associated with many different topics and aspects in detail, such as service discovery,
matchmaking, and QoS prediction, overall, the basic elements involved in this automatic
procedure resemble its manual version that we have explained in the previous paragraph.
However, compared with regular/manual SC, some of these elements are different in
their forms in ASC research, as shown in the figure and explained below. First, the most
significant difference is that an ASC is performed automatically rather than by a human
service composer, as shown at the center of Fig. 1. Second, the service descriptions
involved in this automated process, which are the primary inspiration of this paper and
this study work, including both the information of an intended/required service (i.e.,
a service requirement or composition request on the left-hand side of Fig. 1) and the
descriptions for the available component services (on the top), are in forms of tuples, not
in any of those natural language sentence-based formations introduced previously for
software requirement engineering. In addition, the outcome and result of an instance of
ASC (i.e., a CS) could be presented in a tuple-based way as well. Finally, for semantic
ASC/AWSC, which has been widely considered a more sophisticated and advanced
manner of automatic aggregation of services, at least one knowledge base, such as a
self-defined domain ontology or a general WordNet, is required to have a reference
or source of common/domain knowledge, as shown at the bottom of Fig. 1. As an
exemplification, the above three types of service (description) correspond to the tuple-
based required, component, and provided service types defined and used in anASC study
[3]. This process identified important differences between the formation of the service
descriptions of ASC and the one used in the software development practice motivates
this study.

Certainly, this problem, the processing (e.g., transformation or extraction) of natu-
ral language texts into their corresponding tuple-based elements, which is defined and
explained in detail in Sect. 2, can be solved and addressed by human labor. However, this
manual solution is inefficient and even ineffective. First, the biggest shortcoming of the
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involvement and intervention of humans is that it markedly decreases ASC’s extent of
automation and removes the goal and appeal of ASC, which is to reduce (or even entirely
eliminate), as much as possible, manual tasks. Second, manually performing the han-
dling process defined in Sect. 2 for the problem is both costly and time-consuming (and
even impractical) because, as a set of materials/resources for composition, there could be
numerous component services. For example, on ProgrammableWeb, over 15,000 WSs
andWebAPIs are registered and available. Similarly, themany incoming human-written,
natural language sentence-based service requests and software requirements poses the
same dilemma. Thus, a human labor-free solution for the problem is required to reach
and have a fully automated composition of services. To our knowledge, this problem has
never been identified, considered, or studied before; therefore, in Sect. 3, we elaborate
on the authors’ current effort and future research plan.

2 Problem

This section explains the identified and targeted problem in detail. One of the major
findings of the proposed previous survey [4] of the service description approaches in
ASC indicates the extensive adoption of a tuple-based formation for different types of
service descriptions in this field of research. As reviewed and listed in [4], the set of
tuple elements assumed and considered in an ASC study depends on its concern and
coverage (awareness), and after a thorough investigation of existing ASC papers, as a
universal service description model for ASC research, a generic, tuple-based paradigm
proposed and used in the survey is:

<I,O,P,E,NF,ON>

where I, O, P, E, and NF are a described service’s input, output, precondition, effect
(postcondition), and nonfunctional property sets, respectively; and ON connects to a
knowledge ontology (or base) that formally and semantically defines the elements con-
tained in other tuples [4] (i.e., the component at the bottom of Fig. 1). Overall, as men-
tioned, which tuple elements are considered and used in an ASC study is determined by
relevant aspects, and because different ASC considerations and their combinations have
been studied in the past, a number of disparate groupings of these tuple elements have
been used, such as<I, O, P, E>,<I, O,QoS> and<I, O, P, E,QoS>, as comprehensively
described in Table 1 of [4]. Due to limited space, we now provide an explanation with
an assumption, where the most basic functional service description model is considered
and used: <I and O>.

As an example taken from an ASC study, a request that is acceptable to existing ASC
approaches would be in the following format:

I = (Book title, Book author, Credit card information, Address that the book will
be shipped to),

O = (Payment from a credit card for the purchase, Shipping dates, Customs cost
for the specific item)

However, as explained in the Introduction, human demanders are used and preferable
to, as below, express their intention as text in natural language:
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“The user wishes to provide as inputs a book title and author, credit card informa-
tion and the address that the book will be shipped to. The outputs of the desired
composite service are a payment from the credit card for the purchase, as well as
shipping dates and customs cost for the specific item.”

Similarly, also sampled from an ASC research paper, the natural language sentence,
which is PatientByIDService takes as input a patient ID to return the patient’s descrip-
tion, describes the function of a component service. However, as mentioned before, to
be usable in and compatible with most current ASC approaches, a tuple-based version
of this service description, such as I = (Patient ID) and O = (Patient’s description), is
required.

More specifically and formally, this study’s goal is to seek an effective and accu-
rate automation (F) that takes a received natural language text-based service/software
description (X ) as its input and working foundation and then produces a set of corre-
sponding tuple elements (Y ) of the description as its processing result for subsequent
ASC operations:

F : X → Y

3 Solution

To solve this research problem, we consider three major issues that must be properly
addressed: a dataset of ample natural language sentence-based service descriptions and
their corresponding tuple-based labels; an automated process that can perform the task
defined in the previous section or, in a more advanced and handy way, a technique or
approach that is capable of finding such an automation automatically; and a quantitative
standard for performance assessment for the developed automations upon an established
dataset. Below, we discuss each of these issues in detail in dedicated sections, including
this study’s plan and current ongoing effort.

3.1 Dataset

First, before being able to develop an approach andmeasure its performance, an essential
foundation is a collection comprising a sufficient number of problem instances and their
corresponding labeling (i.e., answers). In this case, the instances and labels are natural
language service descriptions and their tuple-based elements, respectively. Because we
are the first to identify and investigate this research problem, to our knowledge, an
available and valid dataset matching this study’s goal does not exist before us; thus,
we must build one. Regarding its construction, there are several considerations for the
effectiveness, usability, and representativeness of such a dataset, including its scale,
diversity, type of description, and labeling.

The first two concerns, each of which can also be viewed and used as a (quantitative)
criterion of dataset, are critical to the development of an automation for the defined prob-
lem. As discussed in the next section, if such an automation is manually created, which
we consider is a relatively primitive and inefficient way of solving the problem, then a
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small- or middle-scale dataset with at most hundreds of instances may be sufficient and
more appropriate because manually observing and inducting from more cases probably
would overload human developers. Thus, diversity, such as the variation of the structures
and phrasing of natural language sentences, would be more critical and important for an
automation’s generality rather than quantity. However, if a meta-automation is used for
the generation of automations, such as a machine learning-based technique or method,
then it is likely that both the scale and diversity of the dataset matter. For example,
due to the enormous number of neurons (weight values) comprised in their neural net-
works, deep learning (DL) techniques usually require tens of thousands, even millions,
training cases (learning samples) to work. Overall, for both approach development and
performance evaluation, we consider these two properties of the dataset as the higher
the better.

Fig. 2. Alternative sources of the planned under-construction service description dataset.

As mentioned in the Introduction, ASC involves three types of service descrip-
tions. However, only two of them likely must be processed for ASC approaches and
are therefore studied with this research problem. Also, we consider the descriptions of
service/composition requests (requirements) and component services because these two
types of information are indispensable when an ASC approach works to compose ser-
vices. For the gathering and collection of such service descriptions, existing ASC papers
and their illustrating composition examples can be a source, including both their demon-
strated composition requests and component service specifications. However, insuffi-
cient quantities have been found to be a problem [5] (i.e., a threat to both diversity and,
primarily, scale) because most ASC studies only present a few (typically only one) illus-
trations of composition upon a small set of component services. Thus, certainly, valid
alternatives must be sought and used. Specifically, considering the two concerned prop-
erties, for service demands (i.e., composition requests), we plan to use existing software
requirement datasets as an additional supplement because they are similar in essence
(service/composition requests are also a type of software requirement). Regarding soft-
ware requirements, a review of the literature and this study’s data collection showed
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that such datasets can be written down and expressed in different formations in soft-
ware engineering, including use case scenarios in UML, user stories in agile methods,
and free-form texts (i.e., texts with specific restrictions/templates) [2], as introduced in
Sect. 1. For both dataset diversity and approach generality, we consider that requirements
in these paradigms (and the others that are also commonly used in software engineer-
ing practice but not mentioned in this study) should all be considered, included, and
addressed properly, as has been done in some previous studies for the automated extrac-
tion and generation of graphical software (e.g., domain [2]) models from various forms
of (i.e., unrestricted) natural language software requirements. When using a developed
approach, no assumptions about the syntax and structure of its processable descriptions
must be made. Finally, we discuss one more provider (alternative) of service demands
in the next paragraph, Leetcode, which has been seen and used in a study as a massive
collection of intended software functionalities. Conversely, regarding the descriptions
of component services, current service repositories (e.g., ProgrammableWeb) and the
textual explanations of their registered services are a straightforward and ample origin
of this type of information. In addition, we consider that program API documents may
be another abundant source for the proposed dataset construction because, as human-
written descriptions of component services, these documents are also natural language
declarations of (program) components in nature. The entire idea and big picture of the
proposed planned under-construction service description dataset are shown in Fig. 2.
Eventually, with a dataset built in this manner with the above roots, we believe that an
adequate scale, diversity, and types of service descriptions for future research can be
reached.

In a preliminary study [5], an extraction of the Leetcode problem set consisting
of approximately 160 functionality statements and 10 composition requests from the
ASC literature are used for both approach development and performance evaluation.
However, apparently, this aggregation is deficient in all the aspects discussed previously
(i.e., diversity, scale, and type). Thus, as a remedy and enhancement, the establishment of
a complete service description dataset obeying prior ideas is ongoing. While the tagging
of the input andoutput elements (IO tuples) for the functionality demands contained in the
aggregation has been manually performed, we consider that two disparate perspectives
regarding data labeling are worth discussing in more detail, including the detailedness
of data labeling and untagged data. First, in the above data aggregation, the tokens
(words and symbols) of sentences are marked in binary, and thus, a token is either an
extraction target (i.e., part of an intended input/output element) or not. As an example,
this/0 service/0 generates/0 the/1 location/1 of/1 customer/1 (or this service generates
(the location of customer)TargetOutput), for which the result of extraction should be like
O = (the location of customer). However, this method lacks specifics and distinctions,
which we consider might be a disadvantage or even an obstacle, particularly when
using machine learning-based solutions, such as those using conditional random fields
(CRFs), which we discuss and explain in the next section, because they provide users
with insufficient details and poor variation. For example, for CRF, this leads to fewer
distinguishable and definable features that likely would deteriorate the extraction result
and performance. To investigate and solve the proposed problemmore completely, more
detailed and advanced remarking of problem instances could be helpful and useful, such
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as this service generates ((the location)CoreOutput (of customer)AdjectivePhrase)EntireOutput .
However, this process certainly increases the cost of dataset establishment and tagging
that we discuss below for the second perspective. As anticipated, manual labeling of
a dataset is time-consuming, tedious, and error-prone, particularly when its scale is
large, as is required in the proposed study. However, unfortunately, carefully reviewing
and tagging data is necessary when referred to as answers and supervised learning.
To solve this issue, cutting-edge machine/deep learning technologies, such as pretrained
models, which required training with large untagged data; and fine-tuning, which adjusts
a pretrained model with a small amount of mission-specific labeled data, may be worth
trying and investigating for this study and application.

3.2 Approach

Regarding the resolution of this research problem, because it is basically a case and
application of natural language processing (NLP) involving information extraction (e.g.,
IO tuple elements) from human-written (service) descriptions, no matter what specific
(paradigm of) solution is used, a reliable NLP tool is indispensable for parsing and
providing essential linguistic knowledge for a subsequent solution (either an automation
or meta-automation) to perform as expected. Thus far, Stanford CoreNLP [6] has been
widely recognized as the best performing of such NLP tools. Therefore, this study uses
this tool as the foundation and provider of linguistic information for the proposed planned
and developed approaches, as shown at the top of Fig. 3.

Fig. 3. Proposed research plan with an increasing level of automation.

The remainder of Fig. 3 shows a path that visualizes the proposed study plan. As
explained, the proposed ultimate goal aims to eliminate, as much as possible, human
intervention in the creation of a method or model for the problem defined in Sect. 2
so that a true automation (truly automated solution) with a minimized manual effort
can be obtained. However, such a goal is quite challenging and not instantly reachable
due to the complexity and difficulty of the targeted problem. Thus, when developing
the proposed method, we plan to explore the proposed problem step by step along a
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route of increasing level of automation to have an insightful understanding and com-
prehensive solving (studying) of the problem, as shown in Fig. 3 and as described in
detail below. The proposed research plan can be discussed and viewed as having several
disparate dimensions, which are the method of production (manual, semiautomatic, and
automatic), form (representation, such as if-then-else-based rules or neural networks),
and understandability (explanability and/or interpretability) of a generated model.

For this targeted problem, [5] is the proposed first published research work, which
can be characterized as, in terms of the three considered dimensions, a manually devel-
oped, NLP extraction rule-based, and human-understandable-model approach. In this
research, as an initial study, the most straightforward and basic (primitive) paradigm for
the resolution and addressing of such NLP applications has been used to preliminar-
ily investigate this problem. More specifically, after an iterative and exhaustive human
observation and analysis of the dataset established in [5], a set of NLP extraction rules
were manually and incrementally developed and verified by the authors of [5]. Based
on the experimental results of this preliminary study, the accuracy and performance of
transforming functionality descriptions into their corresponding tuple-based elements is
acceptable. However, the biggest weakness (also the deficiency of this type of solution)
of this process is that the observation, analysis, enactment, and implementation of these
NLP extraction rules is both time-consuming and labor-demanding, which we consider
can and should be improved due to its inefficiency and heavy cost. To address this issue
and research direction, we decide to take advantage of machine learning techniques, as
shown in the two branches of Fig. 3.

Before diving into the left branch of Fig. 3, we first discuss the figure’s smaller
right branch. Considering the third concerned dimension (i.e., the understandability
of a model), although the machine learning-based approaches on the left branch could
significantly decrease (CRF) or even entirely eliminate (DL technology) human labor and
intervention in the production of an intended model, unlike handcrafted NLP extraction
rules, such as those proposed in [5], common machine learning models are hard to
understand and explain by humans. To address this concern, as indicated in the right
branch of Fig. 3, it is possible to automatically (genetically) evolve and generate a set of
NLP processing rules for a problem or application, as has been tried and demonstrated
in [7], where the advantages, benefits, usefulness, and applications of highly explainable
and human-readable rule-based models can be found and seen. Thus, with a well-labeled
dataset, theoretically human-understandable NLP extraction rules for the problem can
be generated and obtained without manual effort, which we consider the best case on
the two proposed dimensions (i.e., the first and last ones) and, thus, is worth trying and
investigating (i.e., one of the proposed future research directions).

Conversely, along the left branch of Fig. 3, with a rising extent of automation, a
planned track of solutions is shown and includes three separate stages/approaches. How-
ever, instead of the conditional random field (CRF), which appeared first on the branch,
after [5], we first used the neural network models of DL to address the problem due to
its powerful capability and many successful applications reported. Following the order
of the left branch, we consider CRF to have a lower level of automation compared with
DL because it requires its users to intervene to design and define a set of suitable feature
functions before learning and running. However, with the small dataset built and used
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in [5], the evaluation of the generated neural network models discloses that they are
nearly perfect in training performance (nearly 100 percent accurate) but poor in testing
with unseen cases, which suggests that overfitting has occurred. We believe that this
overfitting phenomenon is probably caused by the two contrary circumstances, the large
number of variables (i.e., the weight values of neurons, usually hundreds of thousands of
them at least) contained in a deep neural network model and the small dataset consisting
of fewer than 200 problem instances for learning and fitting (i.e., an underdetermined
system). Thus, before a large-scale dataset described in Section III A is available for the
development and investigation of a DL-based solution, we decide to take one step back
in terms of the level of automation and study the application of CRF to the proposed
problem, as described in the next paragraph.

As with most techniques and models, CRF has advantages and disadvantages. Com-
pared with DL networks, one of the advantages of CRF is that depending on the designed
and used feature functions (the number of considered feature instances), its number of
(weight) parameters that must be fitted and adjusted with training materials is typically
much lower. Thus, in theory, unlike DL techniques and models that frequently require
at least tens of thousands of instances and their tags to work due to their enormous
neurons, CRF takes fewer cases to learn and fit, which matches the proposed current
research circumstance and limitation that only a small dataset is available. However,
this advantage of CRF also comes with a cost of poorer automation because for each
specific problem, a set of appropriate feature functions must be manually identified and
formulated in advance. Thus far, the ongoing and unpublished research of the authors
that uses CRF can reach the same level of extraction performance as [5]. However, in
[5], we spend dozens, even a few hundreds, of hours on developing its NLP extraction
rules and approach, while by contrast, it takes a shorter time to identify a set of valid
feature functions of CRF. More specifically, compared to the handcrafted rules-based
approach in [5], CRF performs better in both the efficiency of approach development and
the extent of automation, but one of its disadvantages is that evenwithmuch fewermodel
parameters, a CRF model is still not easy to explain and understand by humans. Overall,
we consider that the model understandability of CRF is worse than that of handcrafted
rules and better than that of DL networks. Regarding the level of automation, however,
CRF is higher than handcrafted rules and lower than deep learning networks. Finally,
regarding CRF, we are still working on the identification and formulation of its more
efficient and important feature functions for the proposed application problem so that
better performance and further insight can be obtained.

As shown in Fig. 3, the proposed next stage of approach development goes into deep
learning. As discussed before, we have already tried and applied a DL neural network
to address the proposed problem, although this preliminary trial presents a problematic
result that suggests that more effort and deeper investigationmust be performed. Regard-
ing its technical details, in this initial study of DL for the proposed problem, we use the
long short-term memory (LSTM) model, which is a type of recurrent neural network
(RNN) in DL, because it can process both single data points and entire sequences of
data (e.g., the dependencies across the disparate points of a data sequence), which is an
important property that is naturally and intensively required in the proposed application
and research because human sentences and descriptions, in essence, are sequences of
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words and phrases (units) that, except for the individual units, their entire context and
the relationships between themmust also be considered and handled as a whole. In addi-
tion, LSTM has also been successfully applied in many other NLP tasks and sequence
labeling/learning applications, which is another reason for its adoption. Regarding the
improvement and correction of this current failure of LSTM on the problem, as men-
tioned before, we consider that this result is probably caused by an overfitting LSTM
model, for which three different solutions and potential directions have been planned
or studied: (1) a larger dataset offering a greater number of training/learning cases, as
discussed in Sect. 3. A; (2) decreasing the complexity of the model or adopting a model
with a lower complexity (e.g., the proposed employment and trial with CRF); and (3)
reducing the noise among data (i.e., denoising). Concerning the third point, because the
currently available dataset comprises merely a small number of problem instances for
learning and training, any type of noise likely causes severe overfitting and negatively
affects the proposed approach and the resulting DL models. Thus, the identification and
handling of the noises within the dataset would probably be necessary. For example, the
replacement of a set of semantically or functionally equivalent words and phrases with
a general term during the preprocessing stage could be helpful in avoiding overfitting.

Last, as an advanced study of the application of DL to solve the proposed problem,
due to its recent popularity and success in various NLP tasks and applications [8], we
plan to take advantage of pretrained models and their fine-tuning. More specifically,
instead of training and fitting a DL model from scratch for a specific mission, such as
what we have done before with LSTM, pretrained large-scale NLP neural models, such
as BERT and GPT, could be used for the proposed problem. In this case, if applicable
and useful, we no longer must work to generate a mission/task-specific DL model from
scratch, which is both costly and time-consuming. Also, the gathering and labeling of
a large-scale dataset for the proposed problem, which is also expensive and typically
requires long computation times, such as that described in Sect. 3.1, likelywould become
unnecessary and avoidable. Regarding the fine-tuning of a pretrained model for the pro-
posed purpose and application, because this training (transferring) takes only a relatively
smaller mission/task-specific dataset, the proposed current data collection established
and used in [5] might be instantly and directly applicable and triable. Overall, we con-
sider that this study and application will likely markedly benefit from these cutting-edge
DL technologies, as analyzed above. Thus, as drawn in the last stage of the left branch
of Fig. 3, they are worth trying and investigating.

3.3 Evaluation

For this research subject, the criteria of the proposed assessment incorporate both time
and accuracy. Regarding time, two different stages must be considered and measured
separately, how long it takes to automate the problem (e.g., developing a set of extraction
rules or fitting a CRF/DL model) and to generate a set of adequate tuple elements using
a specific automation (a set of developed rules or a fitted CRF/DL model), respectively.
At the first stage, the current observation is that the higher the level of automation is, the
shorter the time taken to achieve automation. As mentioned previously, it takes a lot of
time (e.g., dozens of hours) to observe and develop the rule-based approach presented in
[5], while the training and generation of a CRF/DLmodel takes a much shorter duration.
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Considering the pure model generation (training) time of ML, CRF is actually faster
than LSTM (i.e., DL model) according to the proposed experiments because the former
approach has fewer parameters (weight values) to adjust and fit. As explained before,
however, CRF requires additional time for human involvement because it requires its
human developers/users to manually identify and design a set of feature functions before
running, which is typically time-consuming. Applying a pretrained model is expected
to be more efficient in time because rather than creating a new DL model from scratch,
only fine-tuning is required, which explains why a manner with superior automation is
preferably wanted in this study. Regarding the second stage, we consider it unimportant
because, regardless of which solution is used, it would not take too long to produce a
result (i.e., much faster than the speed of human processing and extraction, at least),
even with a DL model containing millions of neurons (or a pretrained model reaching a
billion-level).

The second criterion, which is likely the primary concern of the performance eval-
uation of this research problem, measures both the correctness and completeness of
the produced tuple elements with their corresponding ground truth data (i.e., labeled
answers). Overall, this type of evaluation, which is common and regularly used in
information retrieval and extraction, consists of two consecutive phases. First, a con-
fusion/error matrix including four separate categories – true positive (TP), false-positive
(FP), true negative (TN), and false-negative (FN) – must be counted and acquired. Then,
based on the values of these four cases, we can easily calculate and obtain ultimate
performance metrics (indicators), such as accuracy (TP + TN/TP + TN + FP + FN),
precision (TP/TP + FP), recall (TP/TP + FN), and F1 score, as done in [5]. However,
there is a potential problem found during the proposed evaluation. As an example, for
a service description with a customer ID, this service generates the public information
of this customer, and the correct and complete element of the output tuple should be
the public information of this customer. However, in reality, different approaches may
give different results with different levels of completeness (or correctness), such as the
information, the public information, and the information of this customer. Without a
common standard or consensus, different studies may treat and consider these incom-
plete outcomes differently (e.g., how to punish and count an incomplete element when
making a confusion/error matrix and to what extent for each possible case), which would
produce inconsistent scores, makes different studies incomparable with each other and
is why we want to develop a utility providing, with the planned dataset, an impartial and
handy performance evaluation for this research subject, as explained in detail below.

The last thing about the performance evaluation of this research topic is that as a
public, large-scale dataset described in Sect. 3.1, a utility for making and facilitating
a consistent, convenient, and quick performance assessment for researchers working
on this problem is an important future goal. With the proposed planned dataset and
this utility, the developers of different approaches can quickly and accurately calculate
and understand the quantitative performance of their work, making precise and fair
comparisons with others.
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4 Conclusion

In this paper,wefirst introducemanual service composition and its automation, automatic
service composition. Then, based on this introduction, we compare and describe the
major differences between manual and automatic service composition, which may be
a threat to automation due to the necessity of human intervention and processing, the
formations of their used descriptions of services. After the targeted research issue has
been defined and explained in detail, the proposed current achievement and future plan
on the issues are presented exhaustively, including the dataset, approach, and evaluation
of the issue.

During the proposed collection and observation of the current service descriptions
and their alternatives, an important issue is identified: the desired targets, such as the input
elements of a service, do not always explicitly appear in the text of its depiction; they
can be considered and called implicit elements. More specifically, a software component
(e.g., a Web API/service) can be explained and described from disparate perspectives,
in different ways, and at unidentical levels of detail. For example, both the sentence
this hotel searching service takes a specific location as its input and generates a list of
candidate hotels as output for its user and the statement this service provides a hotel
searching functionality could be describing the same service. However, the approaches
introduced and planned in this paper can only process and obtain the targeted tuple
elements from the former description and cannot address the second statement because
the targets are not literally and explicitly contained in the statement. With sufficient
domain knowledge and development experience, we believe that human engineers and
developers can comprehend and manage both types of component/service descriptions
adequately, manually determining what material is required (input) and what would
be produced (output) with a service offering a hotel searching functionality. However,
with the automations discussed in Section III B, it is impossible to extract and identify
elements from a text that contains none of them. Such limitations and the inability to
implicit elements,which can be processed, generated, and added by human engineers and
developers with proper domain experience and knowledge, can be found in many past
studies, such as [9], where only the concepts and their relationships that explicitly appear
in the stated requirements will be extracted for the automatic construction and creation
of a corresponding conceptual model. Because a large proportion of the surveyed and
collected service descriptions and functionality statements are in this style (the majority
of them, actually), we consider it a more challenging problem and advanced issue that
must be deeply considered and properly addressed in the future for a better applicability
and usefulness of the proposed solution.

Acknowledgment. This paperwas partially sponsored by theMinistry of Science andTechnology
(Taiwan) under Grants Most111-2222-E-152-001-MY3 and Most110-2221-E-001-006-MY2.



A Gap Between Automated Service Composition Research 31

References

1. Sommerville, I.: Software Engineering, 9/E. Addison-Wesley, Boston (2010)
2. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Extracting domain models from natural-

language requirements: approach and industrial evaluation. In: Presented at the Proceedings of
the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and
Systems, Saint-Malo, France (2016). https://doi.org/10.1145/2976767.2976769

3. FanJiang, Y.-Y., Syu, Y.: Semantic-based automatic service composition with functional and
non-functional requirements in design time: a genetic algorithm approach. Inf. Softw. Technol.
56(3), 352–373 (2014). https://doi.org/10.1016/j.infsof.2013.12.001

4. Fanjiang,Y.-Y., Syu,Y.,Ma, S.-P., Kuo, J.-Y.:An overview and classification of service descrip-
tion approaches in automated service composition research. IEEE Trans. Serv. Comput. 10(2),
176–189 (2017)

5. Syu, Y., Tsao, Y.-J., Wang, C.-M.: Rule-based extraction of tuple-based service demand from
natural language-based software requirement for automated service composition. In: Katangur,
A., Zhang, L.J. (eds.) SCC 2021. LNCS, vol. 12995, pp. 1–17. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-96566-2_1

6. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford
CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

7. Shahrzad, H., Hodjat, B., Miikkulainen, R.: Evolving explainable rule sets. Presented at the
Proceedings of the Genetic and Evolutionary Computation Conference Companion, Boston,
Massachusetts (2022). https://doi.org/10.1145/3520304.3534023

8. Han, X., et al.: Pre-trainedmodels: past, present and future. AIOpen 2, 225–250 (2021). https://
doi.org/10.1016/j.aiopen.2021.08.002

9. Vidya Sagar, V.B.R., Abirami, S.: Conceptual modeling of natural language functional
requirements. J. Syst. Softw. 88, 25–41 (2014). https://doi.org/10.1016/j.jss.2013.08.036

https://doi.org/10.1145/2976767.2976769
https://doi.org/10.1016/j.infsof.2013.12.001
https://doi.org/10.1007/978-3-030-96566-2_1
https://doi.org/10.1145/3520304.3534023
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1016/j.jss.2013.08.036

	A Gap Between Automated Service Composition Research and Software Engineering Development Practice: Service Descriptions
	1 Introduction
	2 Problem
	3 Solution
	3.1 Dataset
	3.2 Approach
	3.3 Evaluation

	4 Conclusion
	References




