
A Multi-Armed Bandits Learning-Based
Approach to Service Caching in Edge

Computing Environment

Jinpeng Li1, Jiale Zhao1(B), Peng Chen2, Yunni Xia1(B), Fan Li3, Yin Li4,
Feng Zeng5, and Hui Liu6

1 School of Computer, Chongqing University, Chongqing 400030, China
zhaojiale0415@163.com, xiayunni@hotmail.com

2 School of Computer and Software Engineering, Xihua University,
Chengdu 610039, China

3 Key Laboratory of Fundamental Synthetic Vision Graphics and Image Science for
National Defense, Sichuan University, Chengdu 610065, China

4 Guangzhou Institute of Software Application Technology, Guangzhou 510990,
China

5 Discovery Technology (Shenzhen)Limited, Shenzhen 518129, China
6 School of Computer Science and Technology, Beijing Institute of Technology,

Beijing 100083, China

Abstract. Mobile edge computing (MEC) is a newly emerging concept
that provides significant local computing power and reduces end-to-end
latency. In MEC environments, caching frequently accessed services on
edge servers effectively reduces latency and improves system responsive-
ness. An ongoing research topic in such a cachable MEC context is to
design novel algorithms for yielding high-quality caching decision that
guarantee high user-perceived quality-of-service (QoS) and high system
responsiveness of delivery of cached content with the difference of caching
capacities of edge servers and diversified content popularity appropriately
addressed. In this article, we propose a multi-armed bandits learning-
based method busing a Thompson sampling for generating caching deci-
sions. We introduce a genetic multi-armed bandits algorithm (GMAB),
which synthesizes the genetic algorithm (GA) and multi-armed bandits
(MAB), for optimizing caching effectiveness with timing and space con-
straints. The experiment results show that GMAB outperforms tradi-
tional methods in terms of multiple aspects.

Keywords: Edge computing · Multi-armed bandits learning · Service
caching · Thompson sampling · Genetic algorithm

1 Introduction

The world today is witnessing a rapid growth in the number of smart Internet-
of-Things (IoT) devices including mobile phones, smart watches, mobile com-
puters and autonomous cars [1]. These devices introduce massive data com-
puting requirements, especially for delay-sensitive services, which brings great
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Zhang and L.-J. Zhang (Eds.): ICWS 2023, LNCS 14209, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-44836-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44836-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-44836-2_1


4 J. Li et al.

challenges to the mobile cloud computing (MCC). In a traditional centralized
environment, computation-demanding tasks are offloaded to the resource-rich
cloud center, resulting in significant contents transmission delays for sending
and receiving data from IoT to the cloud, which seriously affects efficiency of
content delivery. MEC enables intelligent content caching at the network edge
to reduce traffic and enhance content delivery efficiency. In MEC architecture,
popular content can be deployed at the MEC server to improve users’ quality of
experience (QoE). The edge servers with a certain cache of computing resources
are attached to base stations or access points close to users, providing users with
real-time computing and data storage services at the edge of network. In the
MEC environment, tasks can be offloaded from IoT devices to the optimal edge
servers to avoid data transmission from the cloud.

Despite its benefits, caching at MEC faces several challenges, such as unpre-
dictable user mobility, limited storage space of edge nodes, and unpredictability
of content requests. One critical challenge is to achieve good tradeoffs among
efficiency of content delivery (in terms of, e.g., cache hit rate and response time)
and system overhead (in terms of, e.g., backhaul traffic).

In this study, we propose a genetic multi-armed bandits (GMAB) learning-
based method to yielding dynamic service caching schemes in MEC, the main
contributions are as follows:

1) We design a decentralized decision-making mechanism, where each edge server
runs a GMAB in a decentralized manner.

2) We accelerate convergence speed by leveraging a genetic reinforcement learn-
ing algorithm, which is capable of adapting caching schemes to real-time
changes of task types.

3) To evaluate the performance of GMAB, we conduct extensive simulations by
using a real-world data set and show that our proposed method outperforms
its peers in terms of multiple performance indicators.

This paper is organized as follows: In Sect. 2, we review some related work.
The system models and problem definition are given in Sect. 3. The proposed
method is described in Sect. 4, and performance evaluation is presented in Sect. 5.

2 Related Work

Caching data on the edge server, which is near the user, is a evolving technique
used in various areas. In recent years, it has attracted many researchers’ attention
as an active research topic.

Least Recently Used (LRU) and Least Recently Visited (LFU) are the two
most used strategies in this direction [2,3]. Xia et al. [4] provided an online algo-
rithm for the collaborative problem in MEC environment by modeling the edge
caching problem as a constrained optimization matter. Zhao et al. [5] introduced
a service placement method over vehicular to address the challenge of improving
the caching hit rate. Zeng et al. [6] integrated user behavioral preferences and



A Multi-Armed Bandits Learning-Based Approach 5

contextual zoom to develop a heuristic intelligent caching scheme. The objec-
tive is to optimize the priority content under the historical request count of the
corresponding content.

Recently, machine learning models and algorithms showed their ability in
yielding and optimizing MEC caching schemes. Sengupta et al. [7] addressed
the distributed caching problem in mobile edge networks from the perspective of
reinforcement learning. Zhong et al. [8] proposed an actor-critic (AC) learning
framework to optimize content delivery latency. Song et al. [9] studied the collab-
orative shared cache problem of static users in the MEC environment, modeled a
single agent learning mechanism for optimizing caching decisions. Wu et al. [10]
formulate the resource allocation strategy as a joint optimization problem, and
they use deep Q-learning network (DQN) for solving this problem. Recently, the
shortcoming of DQN has also gained considerable deliberation because of the
difficulties in handing a large action space. Qiao et al. [11] proposed a coopera-
tive edge caching scheme suitable for complicated action space relying on a deep
deterministic policy gradient (DDPG) model.

Multi-armed bandits (MAB)-based methods is frequently seen in this direc-
tion as well. Malazi et al. [12] proposed a distributed caching strategy that
describes the edge service placement problem as a multi-armed bandit problem
and used the upper confidence bound (UCB1) algorithm for optimization. Wu
et al. [13] considered MEC caching mechanisms over multi-rat heterogeneous
networks and extracted the parts that can be measured in real-time when they
used UCB1 to calculate rewards for reducing the workload. Chen et al. [14] stud-
ied the spatial-temporal edge service caching problem of an application service
providers under a limited budget and proposed an contextual bandit learning
algorithm to optimize the edge computing performance. Xu et al. [15] proposed
a collaborative cache management algorithm that maximizes cache service traf-
fic while minimizing bandwidth costs. Jiang et al. [16] studied a collaboration
scheme between MEC servers to optimize content caching and delivery perfor-
mance between MEC and mobile devices. Ren et al. [17,18] proposed a grouping-
based caching strategy and considered allocating storage resources to reduce the
average latency and total energy consumption in content retrieval.

3 System Models and Problem Formulation

3.1 System Model

In this article, we consider a MEC environment built upon a remote cloud and
a set of base stations equipped with edge servers linked to the cloud through
a backhaul network. As shown in Fig. 1, our caching model is built upon the
MEC environment and it comprises a task offloading model and a service cache
model. When a task request reaches the edge server, it can only be executed if
the corresponding type of service is cached there. Our aim is thus to optimize
the schedules for updating the service cache with satisfactory performance.



6 J. Li et al.

Fig. 1. Edge computing system model.

The central cloud is capable of handling all types of tasks and cic is the capac-
ity for service si in the cloud. E = {e1, e2, ..., em} denotes the set of edge servers
deployed in the current area. Each edge server can be described by a 5-tuple
ei = (Li, ri, bi, Ci, Ni), where Li = (lot, lat) denotes the geographical position
of ei, ri the radius of its signal coverage, bi the capacity of caching services for
ei, Ci = {c1i , c

2
i , ..., c

n
i } a set of the ability to handle tasks, cji the computational

capacity of edge server ei for task kj and Ni = {ei1 , ei2 , ..., eis} the set of neigh-
boring and wireless network-reachable servers of ei. S = {s1, s2, ..., sk} is defined
as the set of all services. K(t) = {k1, k2, ..., kn} denotes the set of all tasks for
ei at time t. Each task can be described by a 4-tuple kj = (qj , sl, dj , pj), where
qj denotes the location of task kj , sl the required service type by task kj , dj
the up-link data size and pj the computational overhead. A user and a base
stations are connected with Standalone (SA) or Non-Standalone Access (NSA)
5G network. Base stations themselves are inter-connected via X2 or Xn links
[19]. We(t) denotes the bandwidth of 5G at time t, and Wc(t) the bandwidth of
the inter edge-cloud backbone network at time t. All symbols appearing in this
paper are shown in Table 1.



A Multi-Armed Bandits Learning-Based Approach 7

Table 1. Notion table

Variable Description

cic The capacity for handling si in the cloud

E A set of edge servers

ei The i-th edge server

Li The geographical position of ei

ri The signal radius of ei

bi The capacity of caching services for ei

Ci A set of the ability of ei to handle tasks

Ni A set of neighboring and wireless network-reachable servers of ei

S A set of all services

K(t) A set of all tasks for ei at time t

kj The j-th task in Kt

qj The location of kj

sl The required service by kj

dj The up-link data size of kj

pj The computational overhead of kj

We(t) The bandwidth of 5G at time t

Wc(t) The bandwidth of the inter edge-cloud backbone network at time t

yi,j(t) A binary variable showing whether the service sj is cached in ei at time t

q(sj) The data size of sj

tcori,j(t) The transmission time when kj is offloaded to ei and no malfunctioning

terri,j(t) The transmission time when kj is offloaded to ei and failure occurs

tti,j(t, u) The transmission time between kj to ei

tci,j(t) The calculation delay of the kj

rai(t) The average hit rate of ei

3.2 Service Caching Model

Due to limited storage and computing capacity, edge servers can only cache
a portion of services and thus cached content is updatable and replaceable. A
binary variable yi,j(t) denotes whether the service sj is cached in ei at time t
according to (1).

yi,t(t) =
{

1, if sj is cached in ei
0, otherwise (1)

Instead of using traditional virtual machines, we consider that the caching
system is empowered by containerization technologies (e.g., Docker), which can
reduce cache costs and improve service utilization by enabling quick adaptation
to request pattern variability. The maximum number of storage services for edge
servers is limited by the container size according to (2). (2) implies that a service
sd can be cached in ei at time t when the corresponding container size is sufficient.



8 J. Li et al.

k∑
j=1,j �=d

(yi,j(t) · q(sj)) + q(sd) ≤ bi (2)

where q(sj) denotes the data size of sj .

3.3 Task Offloading Model

Task offloading model specifies how tasks are allocated for requesting cached
content nearby. Each user can only be connected to one edge server ei at a time.
When receiving a request kj , which requires service sl to be processed, edge
server ei checks the availability of requested content. If ei fails to hit sl, this
request is forwarded to the neighboring server Ni. When both ei and Ni fail
to offer si, the request is forwarded to the cloud. In addition, we assume that
content delivery can fail, e.g., unstable wireless connection. In case of failure,
ei forwards kj to the cloud as well. (3) specifies the transmission delay under
different conditions when kj is offloaded to ei and the edge server is not mal-
functioning.

tcori,j(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dj

We(t) log2(1+
ρjτij

λ2 )
, (yi,l(t) = 1)

2dj

We(t) log2(1+
ρjτNij

λ2 )
, (yi,l(t) = 0)&(∃yNi,l(t) = 1)

dj

We(t) log2(1+
ρjτcj

λ2 )
, otherwise

(3)

where ρj denotes the transmission power of user devices, τij the channel gain
between the device requesting kj and ei, τcj the channel gain between the device
requesting kj and cloud and λ2 the background noise power. If failure occurs, ei
forwards kj to the cloud and the transmission delay of ei is:

terri,j(t) =

⎧⎪⎪⎨
⎪⎪⎩

tcori,j(t) + dj

Wc(t) log2(1+
ρjτcj

λ2 )
, (yi,l(t) = 1)

tcori,j(t) + dj

Wc(t) log2(1+
ρjτNcj

λ2 )
, (yi,l(t) = 0)&(∃yNi,l(t) = 1)

tcori,j(t), otherwise

(4)

Therefore, the transmission time between user to ei for offloading kj at t is:

tti,j(t, u) = u · terri,j(t) + (1 − u) · tcori,j(t) (5)

where u is the error rate of edge servers, terri,j(t) and tcori,j(t) are defined in
(3) and (4) respectively. The calculation delay of the kj is represented by (6),
and the average hit rate of ei is defined as (7).

The calculation delay tci,j(t) is determined by the computational overhead
and the capacity for handling tasks, and the hit rate rai(t) is the ratio of the
number of tasks hit on the edge side to the total number of tasks.

tci,j(t) = βi,j(t) · pj
cli

+ (1 − βi,j(t)) · pj
clc

(6)



A Multi-Armed Bandits Learning-Based Approach 9

rai(t) =

∑n
j=1(βi,j(t) + βNi,j(t))

n
(7)

where βi,j(t) is a boolean indicator of whether kj is executed at ei, and n is the
number of elements in K(t), which represents the total number of tasks accessing
ei at time t.

3.4 Problem Formulation

In the MEC environment, edge servers can cache only a portion of services as
mentioned earlier. Given the system model described above, our goals are as
follows:

1. Minimize the average response delays according to (8).
2. Maximize hit rate according to (9).

Min :
1
n

m∑
i=1

n∑
j=1

tmax∑
t=0

(tti,j(t, u) + tci,j(t)) (8)

Max :
m∑
i=1

tmax∑
t=0

rai(t) (9)

s.t. C1.
k∑

j=1

yi,j(t) < bi ∀i,∀t

C2.
√

(qj − Li)2 < ri ∀i,∀j,∀t

C1 indicates the size of the stored services is bounded by the caching size of
the edge server. C2 represents the data transmission between edge servers and
users occurs within the radius of the ei signal coverage.

The above formulation can be considered as a capacitated facility location
problem (CFLP) with a set of facilities (edge servers) and a set of customers
(users). Facilities have a caching capacity, and their establishment process is
similar to caching a service. Building a facility has the same cost as caching a
service. The serving cost of customers includes both the service response time
and the hit rate. The objective is to build facilities with constraints to minimize
customer service costs. CFLP is NP-hard [20] and thus (8–9) is also an NP-hard
as well.

4 The Proposed Method

This section outlines the genetic multi-armed bandits (GMAB) for yielding high-
quality solutions to the formulation given above. The real-time service caching
problem can be interpreted as a multi-armed bandits problem with n unknown
and independent bonus probability distributions. Each edge server operates a



10 J. Li et al.

multi-armed bandits algorithm where each arm represents a different service.
Selecting an arm is equivalent to caching a service and an edge server periodically
evaluates the current policy, as well as making caching replacements. An edge
server selects multiple arms during each decision round based on the highest
expected reward and the current caching state.

Fig. 2. Framework of GMAB for yielding the caching strategy.

As shown in Fig. 2, the bandit mechanism is deployed on each MEC server
and it generates a new caching strategy for each time epoch to update the
cache content from the cloud. The MEC environment generates a reward for
the current strategy at each time epoch and provides feedbacks to Thompson
Sampling, which ultimately determines the caching strategy for the next epoch.

4.1 Genetic Multi-armed Bandits Algorithm

At every epoch (with input T ), Algorithm 1 determines if a caching update is
necessary (Line 3). When an update is required, Qmax and Rmax are checked for
updates (Lines 4–7). The Bandit mechanism takes a new reward from beta(α, β)
(Line 9) and searches for a new caching queue based on the reward through: 1)
selecting the services with the largest reward to Q2 (Lines 13–15); 2) shifting the
focus to the uncached remaining services (Lines 17–20) for delayed opportunities
of being selected. A genetic algorithm is used as well to cross Q2 and Qmax for an
improved convergence (Line 21). Finally, the MEC server caches the services that
are placed in Q2 and notifies its neighbors(Line 22). R is updated every epoch
(Line 25). The modified genetic algorithm and the task offloading algorithm are
discussed in Sect. 4.2 and 4.3, respectively.



A Multi-Armed Bandits Learning-Based Approach 11

Algorithm 1: Genetic Multi-armed Bandits Algorithm
Input: time interval T , tasks of users K, MEC server ei, application services S

1 Initialize beta distribution b(α, β), current optimal strategy Qmax, caching
reward R

2 foreach episode do
3 if t mod T == 0 then
4 if R > Rmax then
5 Qmax ← Q2

6 Rmax ← R

7 end
8 R ← 0
9 foreach s ∈ S do

10 Sampling reward value Rs from b(α, β)
11 end
12 Q1 ← Sort services in descending order of R
13 Q2 ← ∅, c ← 0

14 while c < ei[2]
2

do
15 Select the service sc with the highest R from Q1 to place in Q2 and

remove sc from Q1 c ← c + 1
16 end
17 c ← 0

18 while c < ei[2]
2

do
19 Select the uncached service sc with the highest R from Q1 to place

in Q2 and remove sc from Q1
20 c ← c + 1

21 end
22 Genetic crossover()
23 Cache Q2 into the server and synchronize information from adjacent

servers
24 end
25 Rq ← Environment interaction()
26 R ← R + Rq

27 end

4.2 Modified Genetic Algorithm

As mentioned earlier, a modified genetic algorithm is incorporated for improving
the convergence. As shown in Algorithm 2, it: 1) extracts services that are in
Q2 but not in Qmax (Lines 2–6); 2) extracts services that are in Qmax but not
in Q2 (Lines 7–11) and 3) puts them into S1 and S2.



12 J. Li et al.

Algorithm 2: Modified Genetic Algorithm
Input: services list Q2, pre-optimal strategy Qmax

1 Initialize S1 ← ∅, S2 ← ∅
2 foreach q ∈ Q2 do
3 if q �∈ Qmax then
4 Put q into S1

5 end

6 end
7 foreach q ∈ Qmax do
8 if q �∈ Q2 then
9 Put q into S2

10 end

11 end
12 foreach s ∈ S2 do
13 a ← Random()
14 if a < 0.1 then
15 Remove S1[0] form Q2

16 Remove S1[0] form S1

17 Q2 ← Q2 ∪ {s}
18 end

19 end
20 return Q2

4.3 Task Offloading Algorithm

We provided a detailed introduction of the task offloading process in Algorithm
3. When a task request arrives, the edge node ei that is connected to the user, the
neighbor Nei

or the cloud can all respond and provide the required computing
services. If ei fails to hit the cache, this request is forwarded to Nei

(Lines 2–7).
When both ei and Nei

fail to hit or some errors occur on the edge side, the
request is forwarded to the cloud (Lines 8-11). After all tasks are completed at
the current time, the reward value Rs will be calculated by (10), and b(α, β)
will be updated according to (11) (Lines 14–16). Finally, the reward value Rq
of the caching strategy is calculated by (12) and returned to GMAB along with
b(α, β)(Lines 18-19).

Ri =
nsi

nmax
· (

k · osi∑k
j=1 osj

+
k · dsi∑k
j=1 dsj

) (10)

where nsi
and nmax are the times of requesting service si and the max times

in all services, respectively, osi
the average latency sensitivity of all tasks that

requesting si and dsi
the average up-link data size of all tasks that requesting

si.

b(α, β) =

{
b(α + 1, β), (Rss = 1)
b(α, β + 1), (Rss = 0)

(11)



A Multi-Armed Bandits Learning-Based Approach 13

Algorithm 3: Task Offloading Algorithm
Input: tasks of users Kt, application services S

1 foreach k ∈ Kt do
2 if the required services for k are cached in server ei then
3 forward k to ei
4 end
5 else if the required services for k are cached in server ej ∈ Nei then
6 forward k to ej
7 end
8 else
9 forward k to cloud

10 end
11 If the error occurs at the edge, the task will be forwarded to the cloud.

12 end
13 foreach s ∈ S do
14 calculate reward Rs for service s according to (10)
15 map Rs to Rss which can only be number 0 or 1
16 update parameters for b(α, β) according to (11)

17 end
18 calculate reward Rq for current strategy according to (12)
19 return Rq, b(α, β)

Rq =
k∑

j=1

(yt
i,j · Ri · uj

bi
) (12)

where uj is the size of sj .

5 Performance Evaluation

We build a real-world simulation environment based on the Shanghai Telecom’s
base station data set, which contains 7.2 million internet access logs from 3,233
edge stations for 9,481 mobile users over 6 months. If a user has access to the
internet, we can know when it sends a request and which base station the user is
connected to. Figure 3 shows the distribution of nodes on the edge of Shanghai.
We use Python to implement the proposed method. Chen et al. reported the
round-trip time to the public cloud is 74 milliseconds, which we also used in our
evaluation. We set the task’s error rate at the edge to 1% and check for updates
to caching every 5 epochs. To study the effect of the modified genetic algorithm,
we design an experiment to compare the convergence speed of the algorithm,
with and without the modified genetic algorithm. The parameters related to the
simulation are shown in Table 2.

All the experiments are conducted on the same computer with an AMD
Ryzen7 6800H 3.20 GHz processor, 16.0 GB of RAM, and using Python 3.10.



14 J. Li et al.

Table 2. Parameter table

Parameters Value

Type of requests 800

Caching size of edge servers 0–450

Up-link data size(MB) 0.5–50

Channel bandwidth between edge servers(MHz) 20

Channel bandwidth between edge servers and cloud(MHz) 500

Signal transmission power(W) 0.5

Channel gain [D(ei, rj)]
4

Computing amount of tasks(TFLOPs) 1.2-3.6

Computing capability of edge servers(TFLOPS) 0.4–1.2

Total rounds of simulation 500

Fig. 3. Distribution of all 3,233 base stations in Shanghai. Each node denotes a base
station.

We compared the performance of our proposed method with four baselines.
We consider using the Oracle method as the first baseline, which possesses com-
plete and accurate information about future service requests (i.e. has sufficient
knowledge about future task types). This baseline is used to evaluate the effec-
tiveness of our proposed methods in adapting to future changes in service require-
ments. The second baseline is the DCC-MAB algorithm proposed by Malazi et al.
[12], which uses a modified UCB1 method to drive the bandit algorithm. The
third method is based on the centralized multi-armed bandit method introduced
by Chen et al. [14]. This method allows for the placement of each service in a
fixed number of edge servers to meet budget constraints. The last baseline is the
distributed collaborative service placement method presented in Yu et al. [21].



A Multi-Armed Bandits Learning-Based Approach 15

Figure 4 shows the caching hit rates of different strategies under different
caching capacities of the MEC servers. It is obvious that the caching hit rate
increases with increasing MEC server capacity. The Oracle method performs 2%
higher than GMAB, while GMAB beats DCC-MAB/Chen et al./Yu et al. by
5.2%/6.3%/
11.1%, respectively.

Figure 5 reveals that our proposed method has made significant improvement
in response latency. The average response time of the Oracle method is 4%
lower than GMAB, while GMAB produces an average response time that is 2%
lower than that of the DCC-MAB method, and is 5.4%/15.6% lower than Chen
et al./Yu et al., respectively.

Fig. 4. Capacity and Hit Rate. Fig. 5. Capacity and Response Time.

Figure 6 shows that the backhaul traffic of different algorithms shows a
decreasing trend with the increase of caching capacity. The proposed GMAB
approach has a backhaul traffic reduction of 7.1% compared to the baseline Ora-
cle. The GMAB achieves the best performance in comparison with the other
algorithms. Specifically, the backhaul traffic of GMAB averages 3.1% lower than
DCC-MAB, 14.9% lower than that of Chen et al., and 44.5% lower than that of
Yu et al..

Furthermore, we design an experiment to analyze the effectiveness of the
modified genetic algorithm for MAB. The O-MAB refers to the GMAB method
lacking the modified genetic algorithm. The plot in Fig. 7 illustrates that, despite
the fact that both O-MAB and GMAB achieved the same hit rate eventually,
the convergence speed of O-MAB was substantially lower than that of GMAB.
Moreover, DCC-MAB performed even worse than O-MAB in terms of both con-
vergence speed and hit rate.



16 J. Li et al.

Fig. 6. Capacity and Backhaul Traffic. Fig. 7. Training Rounds and Hit Rate.

6 Conclusion

In this paper, we study the service caching problem in an MEC environment
and present a Multi-Armed Bandits Learning-based caching method, GMAB. It
comprises a genetic multi-armed bandits model for yielding high-quality caching
schedules and a genetic algorithms for optimizing the convergence speed. The
experimental results obtained upon a real-world date set of Shanghai Telecom’s
base station demonstrate that GMAB outperforms its peers in terms of multiple
performance aspects.

References

1. Xu, X., Chen, P., Xia, Y., Long, M., Peng, Q., Long, T.: Mroco: a novel approach to
structured application scheduling with a hybrid vehicular cloud-edge environment,
in. IEEE Int. Conf. Serv. Comput. (SCC) 2022, 84–92 (2022)

2. Ioannou, A., Weber, S.: A survey of caching policies and forwarding mechanisms in
information-centric networking. IEEE Commun. Surv. Tutorials 18(4), 2847–2886
(2016)

3. Ahlehagh, H., Dey, S.: Video caching in radio access network: impact on delay and
capacity, in. IEEE Wirel. Commun. Network. Conf. (WCNC) 2012, 2276–2281
(2012)

4. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., Jin, H.: Online collaborative
data caching in edge computing. IEEE Trans. Parallel Distrib. Syst. 32(2), 281–294
(2021)

5. Zhao, J., Sun, X., Li, Q., Ma, X.: Edge caching and computation management
for real-time internet of vehicles: an online and distributed approach. IEEE Trans.
Intell. Transp. Syst. 22(4), 2183–2197 (2021)

6. Zeng, Y., et al.: Smart caching based on user behavior for mobile edge computing.
Inf. Sci. 503, 444–468 (2019)



A Multi-Armed Bandits Learning-Based Approach 17

7. Sengupta, A., Amuru, S., Tandon, R., Buehrer, R.M., Clancy, T.C., Learning dis-
tributed caching strategies in small cell networks. In: 11th International Sympo-
sium on Wireless Communications Systems (ISWCS). IEEE 2014, pp. 917–921
(2014)

8. Zhong, C., Gursoy, M.C., Velipasalar, S.: Deep reinforcement learning-based edge
caching in wireless networks. IEEE Trans. Cogn. Commun. Network. 6(1), 48–61
(2020)

9. Song, J., Sheng, M., Quek, T.Q., Xu, C., Wang, X.: Learning-based content caching
and sharing for wireless networks. IEEE Trans. Commun. 65(10), 4309–4324 (2017)

10. Wu, P., Li, J., Shi, L., Ding, M., Cai, K., Yang, F.: Dynamic content update
for wireless edge caching via deep reinforcement learning. IEEE Commun. Lett.
23(10), 1773–1777 (2019)

11. Qiao, G., Leng, S., Maharjan, S., Zhang, Y., Ansari, N.: Deep reinforcement learn-
ing for cooperative content caching in vehicular edge computing and networks.
IEEE Internet Things J. 7(1), 247–257 (2020)

12. Malazi, H.T., Clarke, S.: Distributed service placement and workload orchestration
in a multi-access edge computing environment. IEEE Int. Conf. Serv. Comput.
(SCC) 2021, 241–251 (2021)

13. Wu, B., Chen, T., Yang, K., Wang, X.: Edge-centric bandit learning for task-
offloading allocations in multi-rat heterogeneous networks. IEEE Trans. Veh. Tech-
nol. 70(4), 3702–3714 (2021)

14. Chen, L., Xu, J., Ren, S., Zhou, P.: Spatio-temporal edge service placement: a ban-
dit learning approach. IEEE Trans. Wireless Commun. 17(12), 8388–8401 (2018)

15. Xu, H., Chen, R., Xu, M., Jiang, M., Lu, X.: Device-to-device collaborative caching
strategy based on incentive mechanism. IEEE/CIC Int. Conf. Commun. China
(ICCC) 2021, 612–617 (2021)

16. Jiang, W., Feng, G., Qin, S.: Optimal cooperative content caching and delivery pol-
icy for heterogeneous cellular networks. IEEE Trans. Mob. Comput. 16(5), 1382–
1393 (2017)

17. Ren, D., Gui, X., Lu, W., An, J., Dai, H., Liang, X.: Ghcc: grouping-based and
hierarchical collaborative caching for mobile edge computing. In: 16th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Net-
works (WiOpt). IEEE, pp. 1–6 (2018)

18. Ren, D., et al.: Hierarchical resource distribution network based on mobile edge
computing, in 2017 IEEE 23rd International Conference on Parallel and Dis-
tributed Systems (ICPADS). IEEE, 2017, pp. 57–64 (2017)

19. Lin, X., et al.: 5G new radio: unveiling the essentials of the next generation wireless
access technology. IEEE Commun. Standards Mag. 3(3), 30–37 (2019). https://doi.
org/10.1109/MCOMSTD.001.1800036

20. Wu, L.Y., Zhang, X.S., Zhang, J.L.: Capacitated facility location problem with
general setup cost. Comput. Oper. Res., vol. 33, pp. 1226–1241, 2006. https://doi.
org/10.1016/j.cor.2004.09.012

21. Yu, N., Xie, Q., Wang, Q., Du, H., Huang, H., Jia, X.: Collaborative service place-
ment for mobile edge computing applications. In: IEEE Global Communications
Conference, GLOBECOM 2018, Abu Dhabi, United Arab Emirates, December 9–
13, 2018. IEEE, 2018, pp. 1–6. https://doi.org/10.1109/GLOCOM.2018.8647338

https://doi.org/10.1109/MCOMSTD.001.1800036
https://doi.org/10.1109/MCOMSTD.001.1800036
https://doi.org/10.1016/j.cor.2004.09.012
https://doi.org/10.1016/j.cor.2004.09.012
https://doi.org/10.1109/GLOCOM.2018.8647338

	A Multi-Armed Bandits Learning-Based Approach to Service Caching in Edge Computing Environment
	1 Introduction
	2 Related Work
	3 System Models and Problem Formulation
	3.1 System Model
	3.2 Service Caching Model
	3.3 Task Offloading Model
	3.4 Problem Formulation

	4 The Proposed Method
	4.1 Genetic Multi-armed Bandits Algorithm
	4.2 Modified Genetic Algorithm
	4.3 Task Offloading Algorithm

	5 Performance Evaluation
	6 Conclusion
	References




