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Abstract. Accurately forecasting the COVID-19 spread across all states
is crucial for implementing effective measures to control its transmission
and minimize its impact. Since the virus’ spread in one state can signif-
icantly affect other states over time through connections between them,
a graph structure with temporal data is needed to capture the interde-
pendence of COVID-19 spread among the states in the United States. In
forecasting tasks that involve complex spatial and temporal dependen-
cies, it is crucial to ensure that the model captures these dependencies
accurately. In this study, we implemented an Attention Temporal Graph
Convolutional Network based model for COVID-19 mortality long-term
prediction which can effectively capture these dependencies. This model
incorporates attention that enables us to weigh the significance of differ-
ent time points and focus on the most informative data, including both
adjacent and distant time points that capture the temporal dynamics
accurately. For capturing spatial dependencies, we assessed the impact
of using Pearson’s correlation and Mutual Information to establish con-
nections between highly dependent states. Our experiments showed that
our model, particularly when utilizing mutual information, outperformed
the existing baselines and the models that only consider neighboring
states resulting in lower sMAPE and MAE values. This emphasizes the
importance of selecting the appropriate technique for accurate COVID-
19 forecasting in each state. Furthermore, our model achieved the second-
highest performance among the forecasting models submitted to the Cen-
ters for Disease Control and Prevention.
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1 Introduction

The first case of COVID-19 in the United States (US) was reported in the state
of Washington on January 20, 2020. Since then, the virus has spread rapidly
across all 50 states, resulting in over 104 million confirmed cases and 1 million
deaths as of May 4, 2023 [1]. The availability of daily and weekly COVID-19 data
from various countries and states has provided opportunities to develop improved
time-series models. Several statistical and machine learning (ML) models [2–4]
have been used for COVID-19 forecasting. These methods either use the epidemic
data of a single region to predict the future trend of the epidemic situation
or establish a generalized model to predict the trend of all regions. Extensive
research [5,6] has confirmed the highly contagious nature of the virus, and these
studies have identified factors that contribute to its rapid spread across regions.
Consequently, the spread of COVID-19 within a particular state can exert a
substantial influence on neighboring states over time. This influence arises from
various interconnected factors such as travel, trade, and social connections. To
accurately forecast the spread of the virus in a particular state, it is important to
consider the graph structure to capture these interconnections between states.

Recent studies [7–9] have developed spatiotemporal Graph Neural Networks
(GNNs) that operate on graphs, representing regions as nodes and capturing spa-
tial and temporal dependencies between them. In forecasting tasks that involve
complex spatial and temporal dependencies, it is crucial to ensure that the model
captures both types of relationships accurately. These GNNs combine Graph
Convolutional Networks (GCNs) to capture spatial dependencies and Recur-
rent Neural Networks (RNNs) or their variants to model temporal dependencies.
RNNs process sequential data over time, and their hidden states carry the latest
information from the past. However, this sequential processing can restrict the
model’s access to global information present throughout the input sequence. To
address this issue, Attention mechanisms offer a solution by allowing the model
to focus on relevant parts of the sequence and assign different weights, providing
a means to learn and leverage global correlations. We utilize an attention-based
model from PyTorch Geometric Temporal library (PyGT) [10] to capture global
information for COVID-19 weekly mortality prediction.

Another crucial aspect of GNN-based models is to accurately capture
strong connections between different regions. Many existing GNN-based mod-
els [9,11,12] for epidemic prediction rely on data such as mobility or social
connections to establish connections between regions and capture spatial depen-
dencies. However, acquiring and utilizing such data can pose challenges related
to data availability, privacy, and accuracy. In contrast, we utilize both correlation
and mutual information (MI) to capture both linear and nonlinear dependencies
between the state’s features. For instance, our approach shows a high correlation
between Ohio and Illinois, which suggests there is a strong linear relationship
between the deaths or confirmed cases in these two states. Specifically, it suggests
that as deaths or confirmed cases increase in one state, they tend to increase in
the other state as well. This relationship can be seen in Fig. 1.

The contributions of our proposed method are as follows:
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Fig. 1. Rescaled Deaths and Confirmed Cases in Ohio and Illinois indicating a strong
linear relationship

1. We use the Attention Temporal Graph Convolutional Network (A3T-GCN)
model from PyGT on the state graph for COVID-19 forecasting. The complete
model allowed us to capture both local and global information about all the
regions in the model, allowing us to capture temporal dependencies effectively.

2. We use correlation and MI to capture both linear and nonlinear dependen-
cies and establish connections between highly dependent states in a graph,
allowing us to effectively capture spatial dependencies. We use these graphs
in the A3T-GCN model and compare these techniques with A3T-GCN based
on adjacent states (states that share a border). We also compare our best
models with the baselines.

3. We compared and achieved the second-highest performance among the fore-
casting models submitted to the Centers for Disease Control and Prevention
(CDC).

2 Related Work

Several studies have applied statistical, ML, and deep learning methods to pre-
dict COVID-19 forecasting based on various clinical, laboratory, and epidemio-
logical data. Infectious disease prediction is often modeled as a time-series predic-
tion problem in many studies, so many time-series methods have been studied [3].
Chimmula et al. [2] analyzed the important factors and applied a Long Short
Term Memory (LSTM) model to forecast the patterns and probable end date
of the COVID-19 pandemic in Canada and also around the world. Cramer et
al. [13] conducted a study that evaluates the effectiveness of both individual and
ensemble probabilistic forecasts for predicting COVID-19 mortality in the US.
The study focuses on evaluating the accuracy and reliability of these forecasts
to provide insights into the effectiveness of different forecasting methods. Their
work has been used by CDC for COVID-19 cases and death forecasts.

Kapoor et al. [7] presented a forecasting method for COVID-19 cases using
a spatiotemporal GNN that aims to capture the intricate dynamics involved
in disease modeling by incorporating mobility data. In their proposed model,
nodes in the graph represent county-level human mobility, spatial edges depict
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inter-regional interactions, and temporal edges account for the evolution of node
features over time. Panagopoulos et al. [9] introduced MPNN-TL, a GNN for
COVID-19 dynamics across four European countries. By integrating mobility
data and reported cases, the model aims to comprehend complex transmission
patterns. It recognizes the vital role of mobility patterns in the disease’s spread,
emphasizing the significance of a graph-based representation for studying trans-
mission dynamics and its impacts. Fritz et al. [14] proposed a fusion approach
that combines GNN with epidemiological models to forecast the infection rate
of COVID-19. The study utilized data from Facebook, including mobility and
association information, as well as structural and spatial details of cities and
districts in Germany. Cao et al. [15] developed StemGNN, a model for multi-
variate time series that captures inter and intra-temporal correlations using the
Graph Fourier Transform (GFT) and Discrete Fourier Transform (DFT). With a
graph structure representing different countries, the study evaluated the model’s
performance in forecasting confirmed cases across multiple horizons.

3 Methodology

In this work, we utilized the A3T-GCN model from PyGT on the state graph to
predict COVID-19 outcomes. This model allowed us to effectively consider both
local and global information from all regions, capturing temporal dependencies.
To capture both linear and nonlinear dependencies and establish connections
between highly dependent states, we incorporated correlation and MI. By inte-
grating these graphs into the A3T-GCN model, we compared its performance
with the version that only considered adjacent states. Our evaluation showed
a significant improvement when using different association techniques beyond
adjacency. In this section, we will discuss the PyGT library, the model archi-
tecture with a customized dataset, and the association techniques used for the
model.

3.1 PyGT

PyGT is an extension library for PyTorch Geometric. It is specifically designed
for handling spatiotemporal data, such as dynamic graphs where edges and nodes
change over time. PyGT includes various tools for creating, manipulating, and
visualizing temporal graphs, as well as implementing GNN architectures for spa-
tiotemporal data. This library provides several data iterators. We use Static-
GraphTemporalSignal which is used when the underlying graph is fixed, but
the features on each node or edge change over time. This data iterator provides
an efficient way to iterate over temporal snapshots of a graph in batches. The
library also comes with a train-test splitter that creates temporal splits of the
data using a fixed split ratio and some benchmark datasets. In addition to that, it
includes several types of existing Neural network models that operate on graphs.
We use the model A3T-GCN which is based on the paper “A3T-GCN: Attention
Temporal Graph Convolutional Network for Traffic Forecasting” [16].
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3.2 A3T-GCN

We implement an A3T-GCN (the second version of A3T-GCN) based model
which is capable of handling batches. Our objective with this model is to use
past values of COVID-19 deaths and confirmed cases to predict the weekly death
counts for each state. This model, shown in Fig. 2, is a combination of GCN and
Gated Recurrent Unit (GRU) and features an attention mechanism.

Fig. 2. Customized PyGT dataset based A3T-GCN architecture

The library requires a customized PyTorch Geometric-based dataset that is
tailored to the problem of predicting COVID-19 deaths for the states. To achieve
this, we define an adjacency matrix (based on adjacent states as an example
in this figure) and a feature matrix with information on timesteps, number of
states, and features. These matrices are passed to the model expanded from the
A3T-GCN [16] paper as shown in Fig. 2.

1. Adjacency Matrix: A graph G = (V,E) defines the graph structure of the
US states where each node v ∈ V represents a state in the US and each
edge e ∈ E represents the edge between two states. This whole information
is defined by an adjacency matrix A ∈ RN×N with N vertices (states in our
case) and all the rows i and columns j are indexed by the states. The entry
in i and j of the matrix, denoted by A[i, j], represents the weight or degree
of interdependence between state i and state j.
We use correlation and MI described in the next section to construct the
matrices based on the degree of dependency between pairs of states. The
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procedure involves calculating the correlation and MI scores between the
variables. We consider all pairs of states with a score greater than a cer-
tain threshold to be highly dependent and connect them in the adjacency
matrix. Conversely, we set the weight of the edge to zero for all pairs of states
with the scores below the threshold, indicating that they are not strongly
interconnected.

2. Feature Matrix: COVID-19 deaths and confirmed cases are shown as the
features of the nodes represented by a feature matrix X ∈ RN×F , where N is
the number of states and F is the number of features. These features change
over time, Xt is the features matrix at time t. We passed the historical val-
ues of all the features Xt−n, ·,Xt−1,Xt along with the adjacency matrix A
through the StaticGraphTemporalSignal iterator which returns PyTorch
Geometric Data object for a single time period i.e., a week, which represents
a snapshot of the graph for that time period. These temporal snapshots rep-
resent different feature values for the same underlying graph structure and
are passed as historical inputs to the GCN layers of the A3T-GCN model,
which perform computations on the graph structure and associated features
to produce output representations of the hidden state.

GCN. In a GCN, each node in the graph is associated with a feature vector, and
the goal is to learn a new set of feature vectors that capture the relationships
in the graph through a message-passing process. Specifically, at each layer of
the GCN, the feature vector of each node is updated by taking a weighted sum
of the feature vectors of its neighbors, where the weights are learned by the
network. This weighted sum is then combined with the feature vector of the
node itself to produce a new feature vector. This enables the model to capture
spatial dependencies. A two-layer GCN model [17] can be defined in (1) below:

f(X,A) = σ(A Sigmoid (A X W0) W1) (1)
A = D′−.5A′D′−.5 (2)
A′ = A + IN (3)

Here X is a feature matrix and A is an adjacency matrix defined above, A
defined in (2) is a preprocessing step, where A′ is an adjacency matrix with
self connectivity defined in (3), IN is an identity matrix, D′ is a degree matrix.
W0 ∈ RK×H is a weight matrix from the input layer to the hidden unit layer
where K is the length of time and H is hidden unit numbers, and W1 ∈ RH×T is
a weight matrix from the hidden layer to the output layer, where T is the length
of forecasted points. f(X,A) ∈ RN×T is the output of the GCN model of the
length T . The updated vectors are then passed to GRU.

GRU. GRUs have two gates, namely an update gate and a reset gate. The
update gate determines how much of the previous hidden state should be retained
for the current time step, and the reset gate controls how much of the new input
should be incorporated into the new hidden state.
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In our case, the gated mechanism of GRU allows them to capture the mor-
tality information at the current moment while retaining the variation trends
of historical COVID information. As a result, this model can effectively capture
the dynamic temporal variation features of COVID data.

Attention. The Attention model, which is a modified version of the Encoder-
Decoder model, was initially developed for use in neural machine translation
tasks [18]. In this particular study, a soft Attention model was employed to
determine the importance of COVID information at each moment. This infor-
mation was then used to calculate a context vector that captured the overall
trends in the COVID mortality state, which could be utilized for predicting
future mortality conditions.

In order to calculate the weight of each hidden state, a scoring function is
designed, followed by an attention function that computes the context vector to
capture the global COVID data variation information.

ei = W2(W1H + d1) + d2 (4)

ai =
exp(ei)∑n

k=1 exp(ek)
(5)

Ct =
n∑

i=1

ai × hi (6)

Here H is the set of hidden states {h1, h2, . . . , hn}, W1 and d1 are the weight
and deviation of the first layer and W2 and d2 are the weight and deviation of
the second layer. The context vector Ct ∈ RN×T captures global COVID data
information and lastly, a linear layer is used to produce the final output results.
In this study, a Feed Forward Neural Network (FFNN) was used instead of a
scoring function to determine the weight of each hidden state resulting from the
GRU.

3.3 Correlation

Correlation is used to measure the linear relationships between the variables.
However, it does not measure the strength of a nonlinear relationship between
variables. Figure 3a shows the adjacency matrix based on correlation. To connect
the states/nodes, we only selected those with high correlation coefficients.

3.4 MI

MI [19] measures the mutual dependence between two random variables. It mea-
sures the amount of information that one random variable provides about the
other random variable. It can measure both linear and nonlinear relationships
between two random variables. MI is derived from the definition of entropy and
is defined as:

I(X;Y ) =
∑

x∈X

∑

y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
(7)



Graph Convolutional Network for COVID-19 Forecasting 25

Fig. 3. Association matrices

Let X and Y be two random variables over the space X × Y . I(X;Y ) is
the MI calculated between the two variables, P (X,Y ) is their joint distribution
and P (X) and P (Y ) is the marginal distribution of X and Y , respectively.
The MI score is greater than or equal to zero. If it is zero, it means that the
two variables are independent, i.e., knowing the value of one variable does not
provide any information about the other variable. If the MI score is greater than
zero, the two variables are dependent, and the larger the MI score, the stronger
the dependence.

Figure 3b shows the MI-based matrix. To create edges between the states, we
only selected those with high MI scores. Additionally, we rescaled the MI values
by dividing each value by its maximum.

For both techniques, we experimented with different thresholds and selected
the ones that yielded the best results. We used 0.6 for correlation and 0.85 for MI
which preserved the strong connections between states while discarding weaker
ones that fell below the threshold. For creating a weighted graph, we assigned
the scores as edge weights for connected edges and assigned 0 for disconnected
ones. Figure 4 shows how the graph changes based on the association techniques.

4 Experiments and Results

4.1 Data and Code

The weekly dataset used for this study is available on GitHub https://github.
com/scalation/data/blob/master/COVID-State/2023-05-02-17-53-
19-State_Weekly.csv. It contains 19 columns and 8819 rows corresponding to
weekly reporting for each region in the US from April 18th, 2020, to March 11th,
2023. We only consider the data for states and drop other regions. For features,
we use Confirmed and Deaths because other features have missing values.

The data was extracted from the COVID-19 Dataset by COVID-19 Data
Repository by the Center for Systems Science and Engineering (CSSE) at

https://github.com/scalation/data/blob/master/COVID-State/2023-05-02-17-53-19-State_Weekly.csv
https://github.com/scalation/data/blob/master/COVID-State/2023-05-02-17-53-19-State_Weekly.csv
https://github.com/scalation/data/blob/master/COVID-State/2023-05-02-17-53-19-State_Weekly.csv
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Fig. 4. Connection between states with different association techniques

Johns Hopkins University [20] (JHU) https://github.com/CSSEGISandData/
COVID-19. Daily data were cumulative and produced some negative values
when converted to non-cumulative, for instance, Maryland’s dataset showed 1140
deaths on 04/30/2020 and 1080 on 05/01/2020 which resulted in -60 deaths
on May 1st, 2020. To resolve this issue, we opted to aggregate the data on
a weekly basis instead. Once converted, we removed the initial missing val-
ues and divided the dataset into an 80/20 split using the PyGT Temporal
Signal Train-Test Split for training and testing, which returns train and test
data iterators. We employed the sliding window approach for model training,
where each window consisted of 114 weeks in the training set and forecasted 4
weeks in the testing set. We then shifted the window by 1week and repeated
the process until the end of the dataset. Moreover, for CDC comparison, the
data was extracted from https://covid.cdc.gov/COVID-DATA-TRACKER/?
submenu-select=national-lab#datatracker-home. Our code is available on:
https://www.github.com/Subasranaa/COVID-19-A3T-GCN2.

4.2 Implementation Details

We implemented our model in Python using PyTorch [21] and PyGT. The hyper-
parameters shown in Table 1 are fine-tuned using grid search. The activation
function is ReLU, 100 epochs, and a 1e-4 learning rate using the ADAM opti-
mizer. We used the mean squared error (MSE) as the loss function. The data
were standardized (subtracting the mean and dividing by the standard deviation)
and transformed back to the original data scale for evaluation. The model was
evaluated on the symmetric mean absolute percentage error (sMAPE) and the
mean absolute error (MAE). sMAPE measures the absolute difference between
the actual and forecast values normalized by absolute values of both [22]. It is a
bounded metric where 0% indicates a perfect model with no errors, while 200%
indicates an erroneous model of opposite actual and forecast values [23]. The

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://covid.cdc.gov/COVID-DATA-TRACKER/?submenu-select=national-lab#datatracker-home
https://covid.cdc.gov/COVID-DATA-TRACKER/?submenu-select=national-lab#datatracker-home
https://www.github.com/Subasranaa/COVID-19-A3T-GCN2
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sMAPE is calculated using (8)

sMAPE =
200
n

n∑

t=1

|yt − ŷt|
|yt| + |ŷt| (8)

where yt is the true value, and ŷt is the forecast value. MAE measures the mean
absolute error between the actual and forecast values.

Statistical and ML Baselines. To compare our A3T-GCN model, we
employed several baselines. Auto-Regressive(1) (AR) model is sufficient when
the future is mainly dependent only on the most recent value. SARIMA is a time
series forecasting model that combines AR, integrated (I), and moving average
(MA) components to capture the patterns and seasonality in data. LSTM is
designed to process and retain information over long sequences, enabling it to
capture and learn from long-term dependencies in data. It uses a gating mecha-
nism to selectively remember or forget information based on relevance. GRU is
similar to LSTM but has fewer gates, making it faster to compute and easier to
train. FFNN is where information flows in one direction, from the input layer
through hidden layer(s) to the output layer, without any loops. We experimented
with these models using various hyperparameters as shown in Table 1.

Table 1. Optimal hyperparameters for A3T-GCN and all the baselines. A3T-GCN,
LSTM, GRU, and FFNN hyperparameters are listed in the sequence of [past values,
batch size, hidden dimensions, learning rate]. FFNN utilized ELU and Tanh activation
functions and four linear layers.

Virginia Georgia Illinois Pennsylvania Kentucky

A3T-GCN [6,16,4,0.0001] [6,16,2,0.0001] [6,16,32,0.0001] [6,16,2,0.0001] [6,16,16,0.0001]
SARIMA (6, 0, 1)× (0, 1, 1)10 (3, 1, 2)× (1, 0, 1)10 (0, 1, 0)× (1, 1, 1)10 (4, 0, 0)× (5, 1, 1)10 (3, 1, 1)× (1, 1, 1)10

LSTM [6,16,256,0.0006] [6,16,32,0.0006] [6,16,128,0.0006] [6,16,256,0.0006] [6,16,512,0.0006]
GRU [6,16,128,0.0007] [6,16,512,0.0007] [6,16,64,0.0007] [6,16,256,0.0007] [6,16,128,0.0007]
FFNN [4,16,256,0.0004] [4,16,32,0.0004] [4,16,32,0.0004] [4,16,16,0.0004] [4,16,512,0.0004]

Maryland Massachusetts Minnesota Ohio Washington
A3T-GCN [6,16,8,0.0001] [6,16,32,0.0001] [6,4,32,0.0001] [6,16,16,0.0001] [6,16,32,0.0001]
SARIMA (0, 1, 2)× (1, 0, 1)10 (1, 1, 0)× (0, 0, 2)10 (1, 1, 1)× (0, 0, 1)10 (2, 0, 0)× (0, 1, 2)10 (4, 0, 1)× (0, 0, 1)10

LSTM [6,16,8,0.0006] [6,16,128,0.0006] [6,16,64,0.0006] [6,16,256,0.0006] [6,16,512,0.0006]
GRU [6,16,512,0.0007] [6,16,32,0.0007] [6,16,4,0.0007] [6,16,512,0.0007] [6,16,256,0.0007]
FFNN [4,16,16,0.0004] [4,16,32,0.0004] [4,16,32,0.0004] [4,16,16,0.0004] [4,16,16,0.0004]

4.3 Results Analysis

Comparison of A3T-GCN Models Using Adjacent, Correlation, and
MI Matrices. We implemented five A3T-GCN models using Adjacent, Correla-
tion, MI, Correlation with adjacent (Corr_Adj), and MI with adjacent (MI_Adj)
matrices. The reason behind this is each state was showing different trends when
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they were connected to different states based on their relation. We are using the
adjacent-based A3T-GCN model as the baseline here to compare it with other
association technique-based models. Tables 2 and 3 show sMAPE and MAE
results respectively, of 1week, 2 weeks, 3 weeks, and 4 weeks ahead forecast
for our best models and the baseline in this case.

Virginia, Ohio, Pennsylvania, and Washington demonstrate improved out-
comes when using the MI-based A3T-GCN model, suggesting that quantifying
the interdependence among these states through MI yields favorable results.
The MI_Adj-based model gives us the best results for Georgia, Kentucky, Mas-
sachusetts, and Minnesota indicating that the involvement of neighboring states
is significant for these particular states. For instance, in the case of Georgia, 21
more states got added along with adjacent states using MI which improved the
predictions, showing a strong impact of linear and nonlinear dependencies with
other states.

In the case of Maryland and Illinois, the Corr_Adj-based model shows supe-
rior performance than all the other models indicating that correlation plays an
important role in them. Here adding correlated states led to superior results
instead of just using adjacent states, our models give a slightly higher MAE
score for Maryland even though it has a lower sMAPE score when we compare
it with the adjacent-based model. Moreover, we also get competitive scores for
Arizona, Iowa, Michigan, New York, Texas, and Indiana with sMAPEs as 25.52,
28.74, 26.87, 26.90, 25.25, and 27.53, respectively by using MI. Overall, using
these association techniques over using only adjacent states shows significantly
better performance in terms of forecasting.

Table 2. sMAPE results for 1-week, 2-weeks, 3-weeks, and 4-weeks ahead forecast for
the states using Adjacent states-based A3T-GCN (Adjacent) and Correlation/MI-based
A3T-GCN models (A3T-GCN). The lower the sMAPEs, the better the forecasting
performance.

Virginia Georgia Illinois Pennsylvania Kentucky
Weeks Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN

1 39.96 13.02 22.82 15.07 23.12 11.38 88.93 17.14 20.74 14.28
2 45.36 12.58 27.50 13.77 21.57 9.37 90.10 28.46 19.14 12.37
3 48.41 11.14 33.24 17.77 16.98 10.81 91.32 15.89 16.53 11.23
4 53.60 13.55 22.27 26.38 19.93 14.66 95.40 23.07 14.75 11.83
Average 18.36 12.57 26.46 18.25 20.40 11.56 47.24 21.14 17.79 12.43

Maryland Massachusetts Minnesota Ohio Washington
Weeks Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN
1 23.47 14.11 15.44 13.65 18.38 12.31 16.16 14.81 28.27 12.90
2 18.87 14.34 17.16 13.91 14.10 12.04 18.16 6.52 27.31 13.95
3 14.45 18.04 18.09 13.33 21.43 14.35 16.26 7.28 30.05 13.90
4 15.83 23.34 20.84 13.45 19.45 13.94 16.59 14.63 31.79 12.77
Average 18.16 17.46 17.88 13.58 18.34 13.16 16.79 10.81 29.35 13.38
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Table 3. MAE results for 1-week, 2-weeks, 3-weeks, and 4-weeks ahead forecast for
the states using Adjacent states-based A3T-GCN (Adjacent) and Correlation/MI-based
A3T-GCN models (A3T-GCN). The lower the MAEs, the better the forecasting per-
formance.

Virginia Georgia Illinois Pennsylvania Kentucky
Weeks Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN

1 32.76 12.36 27.10 17.38 18.55 9.11 46.32 19.92 12.94 10.35
2 36.37 11.84 34.41 15.76 16.05 7.27 47.59 30.70 11.78 8.65
3 38.81 10.61 43.93 20.69 12.78 8.52 48.63 18.90 10.91 7.86
4 42.57 12.81 26.31 32.69 15.49 11.64 52.66 29.60 10.68 8.27
Average 37.63 11.90 32.94 21.63 15.72 9.13 48.80 24.78 11.58 8.78

Maryland Massachusetts Minnesota Ohio Washington
Weeks Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN Adjacent A3T-GCN
1 9.53 5.75 14.46 8.70 7.70 5.99 13.99 11.34 19.11 8.62
2 7.75 5.90 15.65 8.87 6.14 5.83 15.63 5.14 18.33 9.32
3 5.81 7.90 15.90 8.47 9.09 7.00 14.20 5.85 20.69 9.22
4 6.62 10.71 19.25 8.56 9.20 6.83 14.48 12.14 22.20 8.52
Average 7.43 7.57 16.32 8.65 8.03 6.41 14.57 8.62 20.08 8.92

Baselines Comparison. In this work, we compare our best-performing A3T-
GCN models against the baselines. Figure 5 displays the average results of
sMAPE and MAE for our best A3T-GCN models and the baselines across the
states. A3T-GCN achieves a 52.96% reduction in sMAPE and a 46.84% reduc-
tion in MAE compared to AR and a 37.99% reduction in sMAPE and a 36.32%
reduction in MAE compared to SARIMA. Although LSTM performs slightly bet-
ter than A3T-GCN for Maryland, when considering the average results across
all states, A3T-GCN demonstrates a 15.86% lower sMAPE and a 16.26% lower
MAE. Compared to GRU, A3T-GCN achieves a 22.55% lower sMAPE and a
26.72% lower MAE, despite GRU outperforming in the case of Massachusetts
and Minnesota (for MAE only). Finally, when compared to FFNN, A3T-GCN
shows a 35.03% lower sMAPE and a 38.51% lower MAE.

This is likely due to the model’s use of Attention, GCN, and GRU, which
can capture non-linear dependencies and temporal relationships between distant
data points. In contrast, AR and SARIMA may not be able to capture these non-
linear dependencies and relationships, leading to lower performance. The findings
also highlight that relying solely on historical data from a single state may not be
sufficient for accurately predicting deaths, as the interactions and relationships
between different states can impact the results. Therefore, it is crucial to consider
these relationships in the model, which A3T-GCN can capture. This becomes
particularly significant when dealing with time series data. While LSTM, FFNN,
and GRU performed well, their limitations in capturing these relationships might
have hindered their performance for some states.

CDC Analysis. We compared our best A3T-GCN models with the models
submitted to CDC for the states. The evaluation of these models was based
on the sMAPE definition, and Table 4 shows the average sMAPE score for all
states, excluding Virginia and Pennsylvania because the data for those two states
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Fig. 5. Average of prediction results of the best A3T-GCN and the baselines

was unavailable. We limited our selection to only those models with matching
forecasting dates. A3T-GCN ranked second overall, outperforming most other
models. In addition, our model demonstrated superior performance for Ohio, as
depicted in Fig. 6.

Fig. 6. A3T-GCN comparison with CDC models for Ohio using sMAPE

5 Conclusion and Future Work

Our work highlights the importance of accurately capturing both spatial and
temporal dependencies in COVID-19 forecasting. The MI and correlation-based
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Table 4. Comparison of A3T-GCN with the models forecast submitted to CDC using
sMAPE

Model sMAPE Model Method

JHU-IDD [24] 82.67 Metapopulation Susceptible-
Exposed-Infected-Recovered (SEIR)
model

LUcompUncertLab [25] 66.33 A Bayesian Vector Auto Regression
model

Microsoft [26] 53.1 SEIR model on a spatiotemporal
network

USC [27] 48.82 Discrete heterogeneous rate model

ESG [28] 36.04 Fitting reported data to multiple
skewed gaussian distributions

Masaryk 35.59 ARIMA models with outlier
detection applied to transformed
series

UCSD-NEU [29] 26.54 Age-structured metapopulation
model with deep learning

JHU-APL [30] 25.73 Metapopulation SEIR model

Karlen [31] 23.33 Discrete time difference equations

MOBS [32] 21.3 Metapopulation, age-structured
Susceptible-Latent-Infected-Removed
(SLIR) model

GT-DeepCOVID [33] 20.22 Deep Learning

BPagano [34] 15.97 Susceptible-Infected-Recovered (SIR)
model

Ensemble [35] 14.28 Combination of several forecasts

A3T-GCN 13.82 Our Model

Columbia [36] 10.51 Metapopulation SEIR model

A3T-GCN model proposed in this work addresses this challenge by leveraging the
attention mechanism to focus on the most informative data that includes both
recent and distant data points to capture temporal dependencies and correlation
and MI to capture the spatial dependencies effectively. We found utilizing MI
to be the most effective technique to create the graph that the model uses for
the US state’s weekly mortality predictions. Our model outperforms the existing
baselines and fairly competes with the models adopted by CDC.

Future work can explore various association techniques for COVID-19 fore-
casting and extend the study to other diseases with complex spatiotemporal
dynamics. Further research can focus on separate state-specific models, consid-
ering inherent differences and inter-state impacts. Overall, this work has the
potential to provide accurate COVID-19 forecasting for spatiotemporal data,
aiding in implementing effective measures to control the virus’s spread.
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