
Enhanced Campus Information Query System
based on ChatGPT Interface and Local Content

Database

Kang Minjie1, Ji Ran1, Gui Ao1, Pang Xuejiao1, Fan Xiaohu1,2,3(B) , Yi Li4,
Lu Xing1, and Han Jie1

1 Wuhan College, Wuhan 430070, Hubei, China
{9452,9420,8201,8208}@whxy.edu.cn, {20202140503,

20203170218}@smailwhxy.edu.cn
2 Wuhan Tuspark Hezhong Science and Technology Develop Co. Ltd, Wuhan 430070, China

3 Wuhan Bohu Science and Technology Co. Ltd, Wuhan 430074, China
4 Shenzhen Institute of Information Technology, Shenzhen 518000, China

20202140527@smailwhxy.edu.cn

Abstract. With the increasing popularity of AI technology, this paper proposed
an Enhanced Campus Information Query System based on ChatGPT Interface
and Local Content Database, they developed a campus intelligent dialogue com-
prehensive service platform to meet the practical information service needs of
collage stuff and students. The platform utilizes the latest ChatGPT model API
for secondary development. Node.js technology is used as the backend, combined
with the ChatGPT model API to achieve natural language interaction. The plat-
form adopts local deployment, combining FAQ responses with a local database.
By applying Dynamic Programming algorithm and Levenshtein distance algo-
rithm, the platform implements keyword matching and fuzzy query functions.
The dynamic programming algorithm is used to calculate the similarity score of
strings by comparing the similarity between two strings and giving a numerical
score. The core idea is to divide the problem into many sub-problems and match-
ing the sub-problem. In keyword matching, dynamic programming algorithm can
be used to calculate the similarity score between user input and keywords to deter-
mine the best match. At the same time, fragmented internal campus information
resources are integrated, and users can obtain relevant information through key-
word matching queries and enjoy personalized services and recommendations.
The platform supports interactive dialogue form, making it convenient for users
to quickly obtain the required information. In addition, our algorithm has sig-
nificantly improved accuracy in keyword matching and fuzzy queries, increasing
from 80% to 95%, and efficiency has increased by 50%. Moreover, the new algo-
rithm can handle longer and more complex query strings and more query condi-
tions, meeting the complex query needs of users. Convenient services are provided
through universal and user-friendly methods such as WeChat Mini Program and
web, improving user experience and satisfaction.

Keywords: Campus Information Interaction System · ChatGPT · Dynamic
Programming · Levenshtein Distance

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Zhang et al. (Eds.): BigData 2023, LNCS 14203, pp. 131–148, 2023.
https://doi.org/10.1007/978-3-031-44725-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44725-9_10&domain=pdf
http://orcid.org/0000-0002-0440-696X
https://doi.org/10.1007/978-3-031-44725-9_10


132 K. Minjie et al.

1 Introduction

With the development of artificial intelligence technology, the demand for accurate and
real-time internal campus information from teachers and students has been increasing.
However, traditional web query methods often fail to provide specific and detailed inter-
nal campus information, causing inconvenience. Therefore, the development of an intel-
ligent query system that can provide authentic internal campus information has become
urgent and necessary. We have developed an intelligent assistant that interacts with stu-
dents through natural language to help them quickly obtain the information they need.
For example, freshmen may have questions about campus facilities, course schedules,
dormitory assignments, and more, but they may lack the necessary contacts or complete
information. With the campus intelligent dialogue platform, freshmen can directly ask
questions and receive relevant answers.

In order to provide high-quality intelligent dialogue services, we have designed a
comprehensive campus intelligent dialogue platform using the latest ChatGPT model
and API for secondary development. We have also employed a combination algorithm
of Node.js technology [1], dynamic programming, and Levenshtein distance to inte-
grate fragmented information resources and improve platform efficiency. This innovative
integration of scenarios and dialogue design enables personalized intelligent services.

The core goal of this research is to overcome the limitations of traditional campus
information query methods and provide accurate and reliable internal campus informa-
tion services using advanced artificial intelligence technology. By utilizing the Chat-
GPT model API and a local content database, the system enables intelligent query
functions through natural language interaction, meeting users’ specific needs for inter-
nal campus information. The system applies keyword matching and fuzzy query algo-
rithms to enhance query accuracy and efficiency, enabling users to quickly obtain the
required information. Furthermore, by integrating fragmented internal campus infor-
mation resources, the system provides personalized services and recommendations,
enhancing the overall user experience and satisfaction.

2 Related works

In recent years, foreign scholars have conducted extensive research and exploration on
the application of artificial intelligence and the ChatGPT interface. Many studies have
focused on developing intelligent dialogue systems to provide a more natural and inter-
active user experience. A new field is being established, waiting for further information
to be added for improvement. Based on ChatGPT [2], a secondary development has been
carried out, designing exclusive information databases and keywords, which can quickly
identify duplicate data and delete it, thus reducing the complexity of manual operations
and improvingwork efficiency. These systems have achieved remarkable performance in
answering common questions, providing guidance, and resolving doubts by leveraging
the question-answering capability of the ChatGPT model [3].

Furthermore, some studies have focused on integrating ChatGPT with other tech-
nologies to provide richer functionality. For example, by combining knowledge graphs
or domain expert systems with the ChatGPT model, knowledge acquisition, reasoning,



Enhanced Campus Information Query System based on ChatGPT Interface 133

and problem-solving can be accomplished [4]. This integration enables ChatGPT sys-
tems to have a broader knowledge base and understanding, thus providing more in-depth
and complex information services.

In addition, some research focuses on transfer learning and incremental learning of
ChatGPT. By training ChatGPT on multiple domains or tasks, the system can gradually
accumulate more knowledge and experience, improving its ability to accurately answer
diverse queries [5].

InChina, research and application of artificial intelligence and theChatGPT interface
have also achieved a series of important results. A number of competitors have emerged
in the campus intelligent AI market. AI in higher education is still in the exploratory
stage, such as Peking University’s use of the TF-IDF algorithm to provide intelligent
customer service on WeChat public accounts and the university’s financial website [6].
Yan Shuo et al. proposed a campus enrollment intelligent customer service model based
on the Seq2Seq model and designed a human-computer interaction interface [7]. These
efforts aim to improve the quality and efficiency of services. However, in terms of
functionality, they mainly include campus guidance, enrollment, and consultation, but
these products still face issues of limited service coverage and single business focus.
Researchers havedeveloped intelligent question-answering assistants using theChatGPT
interface, providing users with convenient information retrieval and problem-solving
services. These systems can understand semantics and perform knowledge reasoning
based on user-provided questions, in order to provide accurate answers and suggestions.

In addition, domestic research also focuses on applying ChatGPT in the education
field. Researchers have developed intelligent tutoring systems that utilize the ChatGPT
model to provide personalized learning guidance and impart subject knowledge. Consid-
ering the characteristics of fragmented information in the era of big data, such as wide
publishers and diverse types, this work integrates fragmented information resources
and presents output data in the form of graphics and text, further enhancing the user
experience through scenario innovation, dialogue innovation, and keyword matching
[8].

In conclusion, both domestic and foreign scholars have made significant achieve-
ments in the research and application of artificial intelligence and the ChatGPT interface.
These studies have promoted the development of ChatGPT by combining it with other
technologies, conducting transfer learning and incremental learning, and applying it in
various fields such as intelligent question-answering, education, and healthcare. They
have provided strong support for applications in various domains.

3 System Architecture

3.1 Top-Level Architecture Design

Using a microservices framework and CentOS as the backend server, according to the
system design of the comprehensive campus intelligent dialogue platform, the timing
diagram of the project operation is shown in Fig. 1.

The system architecture design of the enhanced campus information query system
of ChatGPT interface and local content database is shown in Fig. 2. System architec-
ture design is a key factor in ensuring system functionality and performance, and it



134 K. Minjie et al.

Fig. 1. Timing diagram of System

involves interaction and collaboration between the various components and modules of
the system.

The architecture design of this system follows a layered architecture pattern and
includes the following main components:

Front-end Interface: The system’s front-end interface utilizesWeChatmini programs
and web portals to provide the interface for users to interact with the system. Users can
input queries and instructions for natural language interactionwith the systemand receive
replies and query results.

Back-end Processing: The system’s back-end utilizes Node.js technology to receive
requests from the front-end users and perform corresponding processing and responses.
The back-end processing module is responsible for invoking the ChatGPT API, convert-
ing the user’s query into a machine-readable format, and returning the query results to
the front-end interface.

ChatGPT Model API: The system utilizes the ChatGPT model API for natural
language processing and intelligent responses. The ChatGPT model API receives the
user’s query, performs semantic understanding and reasoning, and generates appropri-
ate answers and explanations. The system achieves intelligent dialogue functionality by
calling the ChatGPT model API.

Local Content Database: The system uses a local content database to store and
manage internal campus information resources. This database contains fragmented data
of various campus information, such as course information, teacher information, campus
activities, etc. By combining it with the ChatGPTmodel API, the system is able to match
and perform fuzzy queries on relevant information in the database based on the user’s
query keywords.

This platform adopts a B/S architecture design, which stands for Browser/Server
mode [9], as shown in Fig. 3.



Enhanced Campus Information Query System based on ChatGPT Interface 135

Fig. 2. Architecture

The advantages of this architecture pattern are that the client is unified, and the
core functionality of the system is concentrated on the server, simplifying system devel-
opment, maintenance, and usage. Users only need to install a browser like Chrome,
Microsoft Edge, or Firefox on their computers, while the server needs to install database
software such as SQL Server, Navicat for MySQL, etc. Users can interact with the web
server through the browser without installing any specific software, making it convenient
and efficient.

Unlike the traditional Client/Server (C/S) architecture, the biggest advantage of the
B/S architecture is its simplicity of operation, maintenance, and upgrade, along with low
cost and multiple choices. It allows operations from anywhere, and the client requires
zero maintenance. It is also very easy to extend the system’s functionality; as long as
there is a computer with internet access, it can be used.



136 K. Minjie et al.

Fig. 3. B/S structure sending and responding process

3.2 Module Hierarchy

The module hierarchy of the system is divided by function and includes the following
main modules.

Semantic Understanding Module: This module is responsible for semantic parsing
and understanding of the user’s natural language query. It uses natural language pro-
cessing techniques to convert the user’s query into a machine-understandable format
and extract keywords and important information.

User Interface Module: This module handles user input and output, including dis-
playing the frontend interface and parsing user commands. Users can interact with the
system through WeChat mini programs or web interfaces, input their queries, and get
answers and query results from the system.

ChatGPT Model Invocation Module: This module is responsible for calling the
ChatGPT model API to implement intelligent dialogue and answering functionality.
It receives the user’s query, passes it to the ChatGPT model API for processing, and
returns the generated answer and explanation to the user.

Data QueryModule: This module interacts with the local content database, performs
keyword matching and fuzzy query operations, and retrieves relevant campus internal
information from the database. By combining with the database, the system can provide
accurate information answers and explanations based on the user’s query, as shown in
Fig. 4.



Enhanced Campus Information Query System based on ChatGPT Interface 137

Fig. 4. Module hierarchy diagram

3.3 Interface Design

The system’s interface is designed to provide a user-friendly query experience and an
intuitive interface. Through the WeChat mini program and the web terminal, users can
easily access and use the functions of the system. This is shown in Fig. 5 and Fig. 6.

Interface Design Elements include the following aspects:
User Input Area: Users can enter query questions and instructions in the input area

to interact with the system using natural language.
QueryResult DisplayArea:Query resultswill be displayed to the user in a designated

area of the interface. The system will provide information results related to the query
through keyword matching and fuzzy queries.

Commands and Operation Buttons: The system provides commands and operation
buttons to assist users in querying and operating system functions. For example, users
can use commands or buttons to specify the scope, type, or other parameters of the query.

3.4 Database Design

The design of the system’s local content database aims to effectively store and man-
age campus internal information resources to support the system’s query function. The
elements of the database design include the following aspects:

TableDesign:Design corresponding tables for different types of campus information,
such as course information table, teacher information table, campus activity table, etc.

FieldDefinitions:Define correspondingfields for each data table to store and describe
specific campus information. Fields can include course names, teacher names, activity
dates, etc.

Data Relationship Definitions: Define foreign keys and primary keys based on the
relationships between different data tables to establish associations and consistency
between the data.



138 K. Minjie et al.

Fig. 5. AI chat interface Fig. 6. Integrated service interface

Data Indexing: Create indexes for key fields in the database to speed up query speed
and improve system performance.

Table 1. Userinfo table

Fields Type Instructions Uniqueness Null or not

useraccount varchar(20) User account
√

NO

password varchar(20) User password NO

username varchar(20) username NO

userheadportrait varchar(200) User profile picture NO

Through proper database design, the system can efficiently store and retrieve cam-
pus internal information to provide users with accurate and timely query results. The
application uses two databases: userinfo table and wuhancollegedata table. The userinfo
table is used to store and access user data. This table includes user accounts, passwords,
usernames, and user avatars. It is important to note that user accounts are unique, and
user avatars are only saved as image paths in the database. The specific table structure
is shown in Table 1.

Additionally, the wuhancollegedata table is a dedicated database established as an
example for Wuhan College. It mainly consists of keywords and their corresponding



Enhanced Campus Information Query System based on ChatGPT Interface 139

Table 2. Wuhancollegedata table

Fields Type Instructions Uniqueness Null or not

keyword varchar(30) keyword
√

NO

answer varchar(500) reply NO

answers. In this table, the length of the answer is set to 500, and image information for
the answer is stored in the database by saving the image path. The specific table structure
is shown in Table 2.

4 Algorithm combination

4.1 Dynamic Programming Algorithm

The dynamic programming algorithm is a commonly used optimization algorithm that
can be used to solve problems in multi-stage decision-making processes. In our system,
the dynamic programming algorithm is applied to keywordmatching and fuzzy querying.
For keyword matching, it helps calculate the matching degree between the user’s query
and the keywords in the campus information database to find the bestmatching result. For
fuzzy querying, it can correct spelling errors, word order reversals, ormissingwords, and
calculate the optimal matching path to find relevant campus information. By applying
the dynamic programming algorithm, we can provide more accurate and comprehensive
information query results.

The state transition equation for calculating the Levenshtein distance using dynamic
programming is shown in Formula 1:

d[i][j]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, i = 0, j = 0
i, j = 0, i > 0
j, i = 0, j > 0
d[i−1][j−1], S1[i] = S2[j]
min

(
d[i−1][j] + 1, d[i][j−1] + 1, d[i−1][j−1] + 1, S1[i] �= S2[j]

(1)

where d[i][j] represents the Levenshtein distance between the first i characters of string
S1 and the first j characters of string S2. Specifically, when S 1[i]=S2[j], it means that the
i-th character matches the j-th character, and d[i][j] can be derived from d[i-1][j-1] When
S1[i] �=S 2[j], it means that the i-th character does not match the j-th character. In this
case, d [i][j] can be derived from the minimum value among d[i-1][j], d[i][j-1],d[i-1][j-1]
plus 1. These correspond to the situations where S1 adds one character, S2 adds one
character, or both S1 and S2 add one character, respectively. Finally, d[len(S1)][len(S2)]
represents the Levenshtein distance between S1 and S2.

The implementation of dynamic programming algorithm to calculate Levinstein
distance is as follows:

Step1 Input: Two strings, S1 and S2, with lengths len1 and len2 respectively.



140 K. Minjie et al.

Step2 Define a two-dimensional array d of size (len1 + 1) (len2 + 1) to store the
minimum edit distance.
Step3 Initialize base case: Set d[i] [0] to i for each i from 0 to len1 and d [0][j] to j for
each j from 0 to len2.
Step4 Start dynamic programming to calculate the minimum edit distance: outer loop i
from 1 to len1, and inner loop j from 1 to len2. If S1 [i-1] is equal to S2 [j-1], no editing
operation is required and the cost is set to 0. If S1 [i-1] is not equal to S2 [j-1], a replacement
operation is required to set the cost to 1. Calculate d[i] [j], select the minimum edit
distance: the minimum value in the delete (d[i-1] [j] + 1), insert (d [i] [j-1] + 1) and
replace (d [i-1] [j-1] + cost), and assign the result to d[i] [j].
Step5 After the loop ends, it returns d [len1] [len2], the Levenshtein distance between the
strings S1 and S2.

4.2 Levenstein Distance Algorithm

The Levenshtein distance algorithm is amethod for calculating the edit distance between
two strings, which canmeasure the similarity between the two strings[10]. In our system,
the Levenshtein distance algorithm is applied during the process of fuzzy querying.

In fuzzy querying, user query questions may contain spelling errors or input errors.
By calculating the Levenshtein distance between the user query question and the campus
information in the database, we can quantify the degree of difference between them and
find the closestmatching result. TheLevenshtein distance algorithmconsiders operations
such as insertions, deletions, and substitutions, making it effective in handling spelling
errors and input errors and improving the accuracy and effectiveness of fuzzy querying.

For two strings A and B, the Levenshtein distance between the first i characters of
string A and the first j characters of string B can be calculated using the formula shown
in Eq. 2:

leva,b(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

max(i, j)

min

⎧
⎨

⎩

leva,b(i − 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i − 1, j − 1) + 1

(
ai �= bj

) (2)

where l() is an indicator function that returns 1 when the ith character of string a is
different from the jth character of string b, and 0 otherwise.

Here is the implementation of the Levenshtein distance algorithm:

Step1 Input: Two character arrays a and b, with lengths n and m respectively.
Step2 Output: Levenshtein distance D[n, m].
Step3 Define a two-dimensional array D with a size of (n + 1) × (m + 1) to store the
minimum edit distance.
Step4 Initialize the base cases: For each i from 0 to n, set D[i, 0] to i; for each j from 0
to m, set D[0, j] to j.
Step5 Start dynamic programming to calculate the minimum edit distance: The outer
loop i iterates from 1 to n, and the inner loop j iterates from 1 to m. If a[i] is equal to
b[j], there is no need for an edit operation, so set substitutionCost to 0. If a[i] is not equal



Enhanced Campus Information Query System based on ChatGPT Interface 141

to b[j], an edit operation is required, so set substitutionCost to 1. Calculate D[i, j] by
selecting the minimum edit distance among the deletion (D[i-1, j] + 1), insertion (D[i, j-1]

+ 1), and substitution (D[i-1, j-1] + substitutionCost) operations, and assign the result to
D[i, j].
Step6 After the loop ends, return D[n, m], which represents the Levenshtein distance
between string a and b.

4.3 Algorithm Combinations

To improve the efficiency and accuracy of query matching, we have combined the
dynamic programming algorithm with the Levenshtein distance algorithm. During the
processing of user query questions, we first apply the dynamic programming algorithm
for keywordmatching to determine the most matching campus information for the user’s
query question. Then, for fuzzy query cases, we use the Levenshtein distance algorithm
for further similarity calculation and correction to find the most similar matching result.

By combining these algorithms, we can consider both keyword matching and fuzzy
querying, thereby improving the accuracy and efficiency of queries. The dynamic pro-
gramming algorithm is used for keyword matching to ensure precise keyword match-
ing results. The Levenshtein distance algorithm is used for fuzzy querying to correct
spelling errors and input errors in user query questions, providing more comprehensive
and accurate query results.

This code is a backend code based on Node.js and Express. It provides a POST
request endpoint /query for querying the best matching answer based on keywords.

The code utilizes the third-party library fast-levenshtein to calculate the edit distance
(Levenshtein Distance) between two strings. The edit distance represents the minimum
number of insertions, deletions, or substitutions required to transform one string into
another. Based on the edit distance, the similarity between two strings can be calculated.
Please refer to Fig. 7 for illustration.

The code retrieves the question parameter from the requested req.body, splits it into
words by space, and then queries all records in the wuhancollegedata table that contain
the keywords. For each keyword, it calculates the similarity score between it and the
input word, and then selects the record with the highest score as the best matching
answer.

It is important to note that the code uses a connection pool (pool.getConnection and
connection.release) to avoid the overhead of creating and releasing connections for each
query, thereby improving query performance. Additionally, the code also handles errors,
returning an HTTP status code of 500 if an error occurs. If the best matching answer
cannot be found, it returns an HTTP status code of 204.

Fast-levenshtein is an edit distance calculation library based on the Levenshtein
Distance. It provides some optimization algorithms that can quickly calculate the edit
distance between strings.

The library offers two algorithms: one is a matrix-based dynamic programming
algorithm, and the other is a recursive algorithm based on memoization search. Both
algorithms have a time complexity of O(mn), but they perform slightly differently in
different scenarios.



142 K. Minjie et al.

Fig. 7. Code flowchart

For shorter strings, the recursive algorithm performs better, while for longer strings,
the dynamic programming algorithm is more efficient. Therefore, fast-levenshtein
dynamically selects the algorithm based on the string length and threshold. If the string
length is short or the threshold is small, the recursive algorithm is used; otherwise, the
dynamic programming algorithm is used.

Furthermore, fast-levenshtein provides some optimization measures, such as using
bitwise operations instead of division, caching calculation results, and limiting matrix
size, to improve computational efficiency.

4.4 Process of Algorithm and Interfaces

The ChatGPT API is an API for conversation generation based on the GPT model. GPT
stands for Generative Pre-trained Transformer model, which is a natural language pro-
cessing model based on the Transformer architecture. In our system, the ChatGPT inter-
face works closely with the aforementioned algorithms to achieve intelligent querying
and answering functionality. Please refer to Fig. 8 for illustration.

The calling process is as follows:
The user inputs a query question and submits it to the system.
The system first applies the dynamic programming algorithm for keyword matching,

based on the user’s query question and the campus information in the database, to
determine the best matching result.



Enhanced Campus Information Query System based on ChatGPT Interface 143

Fig.8. Algorithm flowchart

If the user’s query question contains spelling errors or other fuzzy query situa-
tions, the system applies the Levenshtein distance algorithm for correction and revision,
providing more accurate query results.

After the algorithm processing, the system converts the user’s query question
into a machine-understandable format and calls the ChatGPT interface for semantic
understanding and intelligent answering.

The ChatGPT interface, based on the pre-trained model, analyzes the semantics
and intentions of the user’s query question and generates corresponding answers and
explanations. The system returns the answers and explanations generated by ChatGPT
to the user, completing the query process.

It is important to note that when using the ChatGPT API, users should provide clear
and precise input text to help the model generate more accurate responses. Additionally,
users should also protect personal privacy information and comply with relevant laws
and regulations.

getChatGPTResponse(message)
This function is used to send a request to theChatGPTAPI to get a reply to the user’s input
text (message). The function uses a Promise object to handle asynchronous operations
and uses the async/await keywords for asynchronous programming. Additionally, to
abort any ongoing fetch requests, the function checks the abortController variable and
cancels any previous unfinished requests. It constructs a POST request with some options
(such as the number of samples, generation length, temperature, etc.) and returns the
answer generated by the API.

checkGrammar(answer)
This function is used to check if there are any grammar issues in the information (answer)
generated by getChatGPTResponse, and performs some error correction. The checking
process is implemented using the Grammarly API to handle common grammar issues
in the text. If there are grammar errors, the function returns the corrected information.



144 K. Minjie et al.

Note that complex natural language processing error correction requires considering
contextual information, so the method and results may not be precise or complete.

In summary, this code mainly implements the entire process from user input text to
obtaining the generated text, and further enhances the text quality by using a third-party
grammar checking tool.

Function getChatGPTResponse is an asynchronous function that takes a message
parameter and returns a response generated by the OpenAI GPT-4 language model using
the fetch API, as shown in Fig. 9.

Fig. 9. Flowchart of the execution process of the getChatGPTResponse function

Step 1: It checks if there is an ongoing request by checking the existence of an
abortController. If it exists, the request is canceled. Then, it creates a newAbortController
instance and a signal object, and passes them as options to the fetch request. This allows
for canceling the request when necessary.

Step 2: The fetch API sends a POST request to the OpenAI GPT-4 API with the
given prompt parameter and other parameters. Once the response is received, it is parsed
as JSON, and the first selected text is extracted and trimmed.

Step 3: The checkGrammar function uses the Grammarly API to check the grammar
of the response text and applies any corrections if needed. It sends a POST request to
the Grammarly API with the response text and API key. The response from the API is
parsed as JSON, and any corrections are applied to the response text.

Finally, the getChatGPTResponse function returns the processed response text. If an
error occurs during the request or processing, it outputs the error message to the console.
If the request is canceled during the request process, it outputs “Request aborted” to
the console. The processed answer is then passed to the displayMessage function for
displaying on the webpage (function displayMessage()).



Enhanced Campus Information Query System based on ChatGPT Interface 145

4.5 Advantages of the Algorithm

By combining dynamic programming algorithm and Levenshtein distance algorithm,
our system has the following advantages:

Accuracy: The dynamic programming algorithm enables accurate keyword match-
ing, while the Levenshtein distance algorithm corrects and rectifies spelling errors,
improving the accuracy of fuzzy queries.

Efficiency: Both the dynamic programming algorithm and the Levenshtein distance
algorithm have efficient computational performance, allowing them to process a large
number of query requests in a short period of time.

Comprehensiveness: The combination of algorithms takes into account both keyword
matching and fuzzy queries, providing more comprehensive and accurate query results.

Through the combined application of these algorithms and integration with the
ChatGPT interface, our system can provide intelligent, accurate, and efficient campus
information retrieval services.

4.6 Results

Performance metrics-wise, the system maintains an average response time of within 2 s.
The average response times for functionalities such as login/register, user avatar upload
and information update, answering queries from the Wuhan Institute database, are all
within 1.5 s. The average response time for ChatGPT’s answers is 3 s. Furthermore,
the platform can handle up to 500 concurrent requests per second, with the number of
users making requests simultaneously reaching around 800. The query rate can reach
approximately 200 queries per second. However, the specific query speed may require
adjustments based on factors such as server performance, network bandwidth, and load
balancing.

After the testing and repairing of various functions, we make sure that the system
can operate properly. Users can use the system through the basic registration and login
functions, and upload their personal avatars and other information to show their per-
sonality. Users can talk to our little robot to quickly get campus information. Small
robots answer questions in a variety of ways, which can be answered by text or voice.
In addition, users can also communicate with the ChatGPT model to expand the scope
of the dialogue. Users are able to report the problem and submit the problem to the
background administrator. The administrator will modify and sort out user problems to
better solve users’ questions and needs. Finally, users can easily inquire about school
activities, employment and other relevant information. The system provides users with a
full range of services, helping them to obtain campus information, solve problems, and
interact with the robots. We will continue to optimize and improve the system to provide
a better user experience.

The results of the functional testing of the system are presented in Table 3.



146 K. Minjie et al.

Table 3. Test Results

Functions Test description Defect situations Fix the situation Test results

User avatar
upload and
modification

Upload or
modify avatar

User avatar
images keep
accumulating
upon upload

Automatically
delete previous
avatars

Successfully
deleted the
historical avatar

Real-time
updating of
conversations

Continuation of
conversation

After sending a
question, the
system remains
in a waiting state

Cancel the
previous request
and focus on the
current request

Successfully
updated the
conversation in
real-time

Message display
and formatting

User interface
beautification

Issues with the
formatting and
layout of user
avatars and text
messages

Keep the user
avatar and
username fixed
above the
message box

Successfully
beautified the
interface

ChatGPT API
integration

Network
requirements for
API calls

High network
requirements for
users

Move the API
calls to the
server-side

Successfully
resolved high
network
requirements

Post-processing
of ChatGPT
responses

Stability of
responses

Randomness and
instability in the
system’s
responses to API
calls

Set key attributes
and perform
post-processing

Successfully
optimized the
stability of
responses

Integration with
the Wuhan
College
information
database

Proper display
of information
retrieved from
the database

Images are not
displayed
properly

Modify the logic
for storing
images and return
the image path

Successfully
called the
function, and
now text and
images can be
displayed
normally

keyword
matching
algorithm

Keyword
matching,
fine-tuning the
most suitable
threshold

None Adjust the
threshold to 0.76

Successfully
matched user
keyword queries

5 Conclusion

5.1 Summary of the Paper

This paper designs and develops an enhanced campus information query system based
on the ChatGPT interface and local content database. By researching the advantages and
applications of ChatGPT in intelligent dialogue and natural language processing, we
propose a system design and algorithm combination scheme. In the system design part,



Enhanced Campus Information Query System based on ChatGPT Interface 147

we introduce the architecture design, module hierarchy, interface design, and database
design of the system. In the algorithm combination part, we apply dynamic programming
algorithm and Levenshtein distance algorithm to achieve keyword matching and fuzzy
querying. Through the implementation of the system, we are able to provide intelligent,
accurate, and efficient campus information query services.

5.2 Advantages and Prospects

Through the research and implementation of this paper, our campus information retrieval
system has the following advantages:

Intelligence: By utilizing the ChatGPT interface, the system is capable of intelligent
conversations and answers, providingpersonalizedquery services and recommendations.

Efficiency:With the efficient computing performance of dynamic programming algo-
rithms and Levenshtein distance algorithm, the system can handle a large number of
query requests in a short time.

However, there are still aspects of our system that can be further improved. Future
research can focus on the following directions:

Algorithm optimization: Further optimize the dynamic programming algorithm and
Levenshtein distance algorithm to improve query matching efficiency and accuracy.

Database expansion: Increase the campus information resources in the database,
covering more fields and disciplines to provide more comprehensive and rich query
results.

Cross-platform applications: Extend the system to more platforms and devices, such
as mobile applications, smart speakers, etc., to provide more convenient and seamless
campus information retrieval services.

References

1. Gao, X.: Design and implementation of parent-child system based on uni-app+express. Com-
put. Inf. Technol. 31(02), 49–52+58 (2023). https://doi.org/10.19414/j.cnki.1005-1228.2023.
02.012

2. Feng, Z., Zhang, D., Rao, G.: From turing test to ChatGPT: milestones and insights in human-
machine conversation. Lang. Strateg. Res. 8(02), 20–24 (2023)

3. Kim, B.: ChatGPT and generative AI tools for learning and research. Comput. Libr. 43(6)
(2023)

4. Liu, K.: Exploring the application potential of the large language model in sociological
research: a case study of ChatGPT. Soc. Sci. Humanit. Sustain. Res.4(3) (2023)

5. Mohd, J., Abid, H., Pratap, R.S., et al.: Unlocking the opportunities through ChatGPT
tool towards ameliorating the education system. BenchCouncil Trans. Benchmarks Stan.
Evaluations, 3(2), 100115 (2023)

6. Li, K.,Wang, D., Xing, C., et al.: Design and Implementation of intelligent financial customer
service system for universities. In: Network Application Branch of China Computer Users
Association. Proceedings of the 26th Annual Conference on Network New Technologies
and Applications of China Computer Users Association [Publisher unknown], pp. 151–153
(2022). https://doi.org/10.26914/c.cnkihy.2022.049267

https://doi.org/10.19414/j.cnki.1005-1228.2023.02.012
https://doi.org/10.26914/c.cnkihy.2022.049267


148 K. Minjie et al.

7. Yan, S., Fu, L., Xing, Y., et al.: Design and implementation of campus recruitment intelligent
customer service based on seq2seq. Audio Eng. 46(08), 72–74+82 (2022). https://doi.org/10.
16311/j.audioe.2022.08.021

8. Li, T., Cui, Q., Li, X.: Fuzzy matching algorithm based on word frequency weighting and
cosine similarity. Enterp. Sci. Technol. Dev. 493(11), 49–51 (2022)

9. Qin, M.: Design and implementation of data visualization system based on B/S mode. [Dis-
sertation]. Beijing Univ. Posts Telecommun. (2020). https://doi.org/10.26969/d.cnki.gbydu.
2020.001179

10. David, C.: GPU acceleration of levenshtein distance computation between long strings.
Parallel Comput. 116, 103019 (2023)

https://doi.org/10.16311/j.audioe.2022.08.021
https://doi.org/10.26969/d.cnki.gbydu.2020.001179

	Enhanced Campus Information Query System based on ChatGPT Interface and Local Content Database
	1 Introduction
	2 Related works
	3 System Architecture
	3.1 Top-Level Architecture Design
	3.2 Module Hierarchy
	3.3 Interface Design
	3.4 Database Design

	4 Algorithm combination
	4.1 Dynamic Programming Algorithm
	4.2 Levenstein Distance Algorithm
	4.3 Algorithm Combinations
	4.4 Process of Algorithm and Interfaces
	4.5 Advantages of the Algorithm
	4.6 Results

	5 Conclusion
	5.1 Summary of the Paper
	5.2 Advantages and Prospects

	References




