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1 Introduction 

Yager [1] proposed the fundamental theory of Pythagorean fuzzy sets (PyFS) to 
address the shortcoming of Intuitionistic (InFS) fuzzy sets [1, 2], i.e., when the sum 
of membership (MBV) � value and non-membership (NMBV) π value is more 
than one, i.e., � + π > 1 (0.7  + 0.6 > 1). MBV and NMBV in a Pythagorean 
fuzzy set satisfy the requirement �2 + π2 ≤ 1. Since the PyFS membership value 
domain is larger than the InFS membership value domain, this impression has a 
wider range than InFS. It is a controlling mechanism to communicate confusing 
thoughts. Compared to other fuzzy models, it offers more flexibility in dealing 
with decision-making in the actual world. Yager [1, 2] and Yager and Abbasov 
[3] investigated the fundamental ideas behind PyFS and clarified the connection 
between PyFNs and complex numbers. After that, a variety of Pythagorean fuzzy 
aggregation operators, including PyFWAO, are also suggested. Zhang and Xu 
[4] then explained the fundamental mathematical procedures for PyFNs. For the 
selection of the location of distribution centres, a variety of models and approaches, 
including fuzzy logic, mathematical models, heuristic meta-heuristic methods, and 
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the multi-criteria decision-making (MCDM) method, have recently been developed 
[5]. The selection difficulties, however, typically include a wide range of qualitative 
and quantitative factors. Applying MCDM approaches to create MCDM models is 
thus a workable solution to such issues. To help decision-makers choose the best 
distribution centre, a variety of MCDM techniques are available, including AHP, 
VIKOR, ELECTRE, PROMETHEE, ANP, DEMATEL, WASPAS, and TOPSIS 
(Technique for Order Preference by Similarity to an Ideal Solution). The current 
market’s fierce competition has forced companies to concentrate on and increase 
their investments in logistics networks. As a result, researchers and practitioners 
are increasingly focused on finding ways to reduce logistics expenses and boost the 
effectiveness of logistics processes [6]. Distribution centres are important nodes in 
the logistics network that link all logistics-related activities [7]. Therefore, in order 
to effectively manage the logistics operations and develop the logistics network, it 
is crucial to handle the logistics distribution centre. The efficiency of a logistics 
distribution centre is influenced by various factors. One of them, the logistics 
distribution site, has the biggest impact on the enterprise’s overall management costs 
since it influences the optimization of the logistics distribution system. In order 
to reduce expenditures and increase profits in a logistics system, it is crucial to 
select an appropriate distribution centre location [8]. But there isn’t enough data 
to suggest a thorough distribution centre placement and selection model for the 
logistics sector. This study attempted to construct a hybrid model based on a novel 
Pythagorean fuzzy entropy measure and the TOPSIS approach to aid in the selection 
of a distribution centre site. Thus, an integrated entropy-TOPSIS approach is used 
to compute criterion weights and select the best location for the distribution centre. 
One of the key objectives of any site selection is to identify the most suitable location 
that could minimize the total costs. In their research, Agrebi et al. [9] employed the 
ELECTRE I approach in their study to examine the choice of distribution facilities. 

Distribution centre location selection is a significant process in any business and 
should be done with care. The process of selecting a location for a distribution 
centre can involve a variety of criteria, such as proximity to customers, access to 
transportation networks, availability of resources, and cost. To effectively evaluate 
these factors, the decision-makers must have a comprehensive understanding of 
the method of decision-making. Accordingly, a literature review of the selection 
of distribution centre locations can provide useful insight into the various factors 
that must be considered. 

The TOPSIS approach was first introduced by C.L. Hwang and K. Yoon in 
1981. This approach successfully addresses the issue of ranking the alternatives. 
The TOPSIS approach and fuzzy set theory are thus frequently coupled to address 
problems involving multiple criteria decision-making (MCDM). Han et al. [10] 
modified the TOPSIS method using entropy and linguistically hesitant Pythagorean 
fuzzy sets to assess the contribution rates of WSoS- weapon system-of-systems. 
In order to evaluate the ranks and risk, Akram et al. [11] used the ELECTRE-
I technique in a hesitant Pythagorean fuzzy setting. Ulutaş et al. [12] attempted 
to address the logistic centre location problem for Siva province in Turkey by 
applying the MCDM model with fuzzy SWARA and the CoCoSo method. Shafiee
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et al. [13] employed Pythagorean fuzzy sets with the DEMATEL method to analyse 
the risk of the consumable product supply chain network during the COVID-19 
outbreak. Erdogan and Ayyildiz [14] applied novel AHP-integrated EDAS technol-
ogy to evaluate pharmaceutical warehouse location selection to address pandemic 
conditions. Sagnak et al. [15] found transportation cost to be the most important 
criteria by applying fuzzy best-worst and TOPSIS methods, among several other 
criteria such as land cost, storage cost, energy cost, investment, etc., in the selection 
of sustainable collection centres. Yang et al. [16] applied the Pythagorean fuzzy 
MULTIMOORA method for determining complex criteria weights and selecting 
the electric vehicle power battery. Yin et al. [17] used IVPyFN to deal with the 
uncertainty concerning sustainability in rail transit photovoltaic power station site 
selection, and IVPyFN-TOPSIS was used to aggregate the decision matrix. The 
Stepwise Weight Assessment Ratio Analysis (SWARA)-TOPSIS in Pythagorean 
fuzzy environment approach, according to Saeidi et al. [18], is extremely successful 
and capable of handling the Sustainable Human Resource Management issue in 
manufacturing organizations. Based on an evaluation model based on Pythagorean 
fuzzy sets and the TOPSIS method, Li et al. [19] construct an evaluation index 
system with four aspects using the dispatching results of power systems with 
a high proportion of renewable energy under four different dispatching modes 
as the evaluation object. Ayyildiz [20] applied Pythagorean fuzzy SWARA and 
Pythagorean fuzzy CODAS to estimate the location of the charging station for 
an electric scooter. Using an integrated methodology based on entropy, Complex 
Proportional Assessment (COPRAS), and Step-wise Weight Assessment Ratio 
Analysis (SWARA) methodologies in a Pythagorean fuzzy environment, Alipour 
et al. [22] addressed supplier selection for fuel cells paired with hydrogen FCH. 
The supplier selection problem was solved by Yu et al. [23] using the extended 
fuzzy TOPSIS approach in an interval-valued Pythagorean setting. Parveen et al. 
[24, 25] applied the entropy-TOPSIS approach to the MCDM problem of selecting 
an online payment system and ranking the academic institute. Han et al. [26] solved  
the MCDM problem using TOPSIS based on entropy for Linguistic Pythagorean 
fuzzy soft sets. The research review indicates that PyFSs are better functionally 
equipped than InFSs to deal with uncertainty in difficult real-world decision-
making situations. As a result, the standard TOPSIS technique that corresponds 
to the proposed entropy measure in PyFS was expanded in this article. This 
method is really straightforward and simple to comprehend. The traditional TOPSIS 
technique has been applied to a wider spectrum of issues. Although several MCDM 
approaches have been created under the PyFS environment, there have been few 
studies using PyFS entropy and the TOPSIS approach to evaluate the location of 
distribution centres. In order to solve this issue, this chapter provides the integrated 
entropy-TOPSIS technique, which may be used to examine the implicit uncertainty 
and ambiguity connected to the decision maker’s perspective. Here is a quick 
synopsis of this chapter: 

1. A novel PyFS entropy metric is suggested, and it is contrasted with the existing 
ones.
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2. The Integrated Entropy-TOPSIS approach combines Entropy and the Technique 
for Order Preference by Similarity to Ideal Solution (TOPSIS), two well-known 
MCDM techniques. While TOPSIS is used to rank the alternatives according to 
how well they perform on the criteria, entropy is used to assign weights to the 
criteria based on their relative importance. 

3. Use the new Pythagorean entropy measure to determine the decision experts’ 
weights in PyFS. 

4. Calculate the criteria weights using the suggested entropy. 
5. A Pythagorean fuzzy-integrated entropy-TOPSIS model has been utilized to 

solve the multi-criteria decision-making problem of selecting the location of a 
sustainable distribution centre. 

6. A comparison of the suggested method with the existing methodologies is 
provided to demonstrate the precision and practicality of the integrated PyF 
entropy-TOPSIS approach. 

This chapter is divided into five sections: Section 1 is devoted to the introduction 
and literature review. Section 2 presents the fundamental principles and preliminary 
concepts in relation to Pythagorean fuzzy sets. Section 3 proposes the novel entropy 
measure and proves its validity. Further, Sect. 4 presents the Pythagorean fuzzy 
MCDM algorithm based on Entropy-TOPSIS and discusses its application to the 
problem of distribution centre location selection. Section 5 discusses the result and 
the conclusion. 

2 Preliminaries 

This section goes through the fundamental definitions of fuzzy sets, intuitionistic 
fuzzy sets, and Pythagorean fuzzy sets. Some of the PyFS features, operations, and 
existing entropy measures employed in this chapter are also discussed. 

Definition 1 [21] An InFS ξ in C is defined as the following: 

.ξ = {〈b , μp (b), νp(b)
〉 |b ∈ C

}
(1) 

where 

.0 ≤ μp(b) + νp(b) ≤ 1∀b ∈ C (2) 

and the functions μp(b) : C  → [0, 1] denote the degree of membership and 
νp(b) : C  → [0, 1] denote the degree of non-membership of b in C. The degree 
of indeterminacy of b in C indicated by λ and defined as 

.λp(b) = 1 − {μp(b) + νp(b)
}

(3)
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Definition 2 A PyFS proposed by Yager [1] in finite universe of discourse C is an 
object having the Form 

. ξ = {〈b , μp (b), νp(b)
〉 |b ∈ C

}

where 

.0 ≤ μ2
p(b) + ν2

p(b) ≤ 1∀b ∈ C (4) 

and the functions μp(b) : C  → [0, 1] denote the degree of membership and 
νp(b) : C  → [0, 1] denote the degree of non-membership of b in C. The degree 
of indeterminacy of b in C is denoted by λ and defined as 

.λp(b) =
√

1 −
{
μ2

p(b) + ν2
p(b)
}

(5) 

Definition 3 [1, 4] Let  P = (μp(b), νp(b) ) and Q = (μq(b), νq(b) ) be two PyFN, 
then 

(a) P ⊂ Q if ∀ b ∈ C μp(b) ≤ μq(b) and νp(b)≥ νq(b) 
(b) (P)b = {〈b, νp(b), μp(b)〉b ∈ C} 
(c) P = Q if P ⊂ Q and Q ⊂ P 

(d) . P
⋃

Q =
{〈

b, max
[(

μp(b), μq(b)
]
,

min
[
νp(b) ≥ νq(b)

] |b ∈ C

〉}

(e) . P ∩ Q =
{〈

b, min
[(

μp(b), μq(b)
]
,

max
[
νp(b) ≥ νq(b)

] |b ∈ C

〉}

(f) . P ⊕ Q =
{〈

b,
√

μ2
p(b) + μ2

q(b) − μ2
p(b)μ2

q(b), νp(b)νq(b)|b ∈ C
〉}

(g) . P ⊗ Q =
{〈

c, μp(b)μq(b),
√

ν2
p(b) + ν2

q(b) − ν2
p(b)ν2

q(b)|b ∈ C
〉}

Definition 4 Zhang [27] defined the operators based on Yager’s [2] PyFWA and 

PyFWG for PyFNs .Pj =
(
μpj

, νpj

)
for (j = 1, 2, . . . . ., n) as follows: 

PyFWA: Let .Pj =
(
μpj

, νpj

)
for (j = 1, 2, . . .  . ., n) be a collection of PyFNs, 

then PyFWA operator is defined as: 

. PyFWA (P1, P1, . . . .., P1) = j=1
n ⊕ (wjPj

)

=
⎛

⎝

√√√√1 −
n∏

j=1

(
1 − μ2

pj

)wj

,

n∏

j=1

(
νpj

)wj

⎞

⎠ (6) 

PyFWG: Let .Pj =
(
μpj

, νpj

)
for (j = 1, 2, . . . . ., n) be a PyFNs collection, then 

PyFWG operator is as follows:
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. PyFWG(P1, P1, . . . .., P1) = j=1
n ⊗ (Pj

)wj

=
⎛

⎝
n∏

j=1

(
μpj

)wj

,

√√√√1 −
n∏

j=1

(
1 − ν2

pj

)wj

⎞

⎠ (7) 

Where wj indicates the weight of Pj, such as wj ≥ 0 for (j = 1, 2, . . . . ., n) &  
.
∑n

j=1wj = 1. 

3 Novel Pythagorean Fuzzy Entropy Measure 

Entropy is an essential tool for measuring uncertain information. Less entropy 
means less uncertainty. PyFS is a more powerful structure to represent an infor-
mation where the existing structure fails. Therefore, establishing the measure of 
entropy for PyFS is significant in the present situation. The axiomatic formulation 
of the entropy measure of fuzzy sets was provided by De Luca and Termini [28]. 
Later, it was expanded to include InFS entropy by Szmidt and Kacprzyk [29]. As an 
extension of the entropy measure of Pythagorean fuzzy sets [1], we proposed a new 
concept of the fuzzy entropy measures of PyFS as follows: 

Definition 5 For the Pythagorean fuzzy set ξ = {〈b, μp(b), νp(b)〉|b ∈ C}, the  
Pythagorean fuzzy entropy of ψ is defined as 

.Ep (ξ) = 1

n

n∑

i=1

⎡

⎣
√

2 cos

⎧
⎨

⎩

1 +
∣∣∣μ2

p(b) − ν2
p(b)

∣∣∣

4

⎫
⎬

⎭
π

⎤

⎦ (8) 

Axioms for Pythagorean Fuzzy Entropy Measure 
The relation Ep : PFS(C) → [0, 1] is stated as Pythagorean fuzzy entropy if it 
satisfies: 

(i) . 0 ≤ Ep (ξ) ≤ 1
(ii) Ep(ξ ) = 0, if and only if ψ is a crisp set 

(iii) Ep(ξ ) = 1, if and only if μp(b) = νp(b), ∀ b ∈ C 
(iv) Ep(ξb) = Ep(ξ ) 
(v) Ep(δ) ≤ Ep(ξ ), if δ is less fuzzy than ψ , i.e., μp(δ) ≤ μp(ξ ) and νp(δ) ≥ νp(ξ ) 

for μp(ξ ) ≤ νp(ξ ), or, μδ(b) ≥ μξ (b) and νδ(b) ≤ νξ (b) for μξ (b) ≥ νξ (b) ∀ 
b ∈ C. 

Theorem 1 Ep(ξ ) is a Pythagorean fuzzy entropy 
Proof. (E1) Since .0 ≤ μξ (b), νξ (b) ≤ 1 ⇒ 0 ≤ μ2

ξ (b), ν2
ξ (b) ≤ 1 so that . 0 ≤∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣ ≤ 1

. ⇒ 1 ≤ 1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣ ≤ 2
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. ⇒ π

4
≤

1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣

4
≤ π

2

. ⇒ 1√
2

≤ cos

⎧
⎨

⎩

1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣

4

⎫
⎬

⎭
π ≤ 0

. ⇒ 0 ≤ √
2 cos

⎧
⎨

⎩

1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣

4

⎫
⎬

⎭
π ≤ 1 i ⇒ 0 ≤ Ep (ξ) ≤ 1.

(E2) If Ep(ξ ) = 0 . ⇒ cos

{
1+
∣∣∣μ2

ξ (b)−ν2
ξ (b)

∣∣∣
4

}

π = 0

. ⇒
1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣

4
= 1

2
⇒
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣ = 1.

We have, μξ (b) = 0, νξ (b) = 1 or  μξ (b) = 1, νξ (b) = 0. Hence ξ is a crisp set. 
If ξ is a crisp set, then Ep(ξ ) = 0. 
(E3) If .μξ (b) = νξ (b) = 1√

3
, then, 

. ⇒ √
2 cos

⎧
⎨

⎩

1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣

4

⎫
⎬

⎭
π = 1

. ⇒ Ep (ξ) = 1

(E4) As . Ep (ψ) =∑n
i=1

[√
2 cos

{
1+
∣∣∣μ2

ξ (b)−ν2
ξ (b)

∣∣∣
4

}

π

]

. =
n∑

i=1

⎡

⎣
√

2 cos

⎧
⎨

⎩

1 +
∣∣∣ν2

ξ (b) − μ2
ξ (b)

∣∣∣

4

⎫
⎬

⎭
π

⎤

⎦ = Ep

(
ξb
)

(E5) To prove axiom, we construct a function 

.f (x, y) = √
2 cos

{
1+∣∣y2−x2

∣∣
4

}
π , where x, y ε [0, 1]
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Case I: When x ≤ y,then . f1 (x, y) = √
2 cos

{
1+∣∣y2−x2

∣∣
4

}
π

Now we need to prove that f1(x, y) increases with x and decreases with y. 
Therefore, 

. 
∂f1

∂x
= 2 × π × x

4
sin

{
1 + ∣∣y2 − x2

∣∣

4

}

π = πx

2
sin

{
1 + ∣∣y2 − x2

∣∣

4

}

π;

. 
∂f1

∂y
= −2 × π × y

4
sin

{
1 + ∣∣y2 − x2

∣∣

4

}

π = −πy

2
sin

{
1 + ∣∣y2 − x2

∣∣

4

}

π

Now, when x ≤ y, .
∂f1
∂x

> 0 and .
∂f1
∂y

< 0. Therefore, we can say that 
f1(x, y) increases with x and decreases with y. In other words, μδ(b) ≤ μξ (b) and 
νδ(b) ≥ νξ (b) for  μξ (b) ≤ νξ (b)∀ b ∈ C, i.e., Ep(δ) ≤ Ep(ξ ). 

Case II: When x ≥ y,then . f2 (x, y) = √
2 cos

{
1+∣∣x2−y2

∣∣
4

}
π

Now we need to prove that f2(x, y) decreases with x and increases with y. 
Therefore, 

. 
∂f2

∂x
= −2 × π × x

4
sin

{
1 + ∣∣x2 − y2

∣∣

4

}

π = −πx

2
sin

{
1 + ∣∣x2 − y2

∣∣

4

}

π;

. 
∂f2

∂y
= 2 × π × y

4
sin

{
1 + ∣∣x2 − y2

∣∣

4

}

π = πy

2
sin

{
1 + ∣∣x2 − y2

∣∣

4

}

π;

Now, when x ≥ y, .
∂f1
∂x

< 0 and .
∂f1
∂y

> 0. Therefore, we can say that 
f2(x, y) decreases with x and increases with y. In other words, μδ(b) ≥ μξ (b) and 
νδ(b) ≤ νξ (b) for  μξ (b) ≥ νξ (b) ∀ b ∈ C, i.e., Ep(δ) ≤ Ep(ξ ). 

4 Pythagorean Fuzzy MCDM Algorithm Based 
on Entropy-TOPSIS 

To estimate the weight of the criterion, TOPSIS is modified using the Pythagorean 
entropy metric in the proposed study. Zhang and Xu [6] applied the TOPSIS 
method to the Pythagorean fuzzy environment to solve the MCDM problem. The 
chosen alternative must be the furthest away from the NIdS and nearest to the 
PIdS to establish the TOPSIS method. In this technique, PIdS and NIdS are initially 
calculated in terms of PyFNs. Following that, the distances of PIdS and NIdS from
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each alternative are determined. Using the above distances, the closeness index of 
each alternative is determined. The rank is then determined using the closeness 
indices in descending order. The proposed framework uses linguistic variables to 
evaluate alternatives. To accommodate uncertainty, the PyFN counterparts of those 
options are then established using the Pythagorean fuzzy weighting scale, as shown 
in Table 3. Based on the inputs gathered from decision-makers in terms of linguistic 
factors, the Pythagorean fuzzy decision matrix of criteria is constructed. 

Let P = {P1, P2, . . .  . . . . Pm} indicates the collection of m options from which 
decision-makers will select one using a set of criteria Z = {Z1, Z2, . . .  .  . . . Zn} 
consisting of n criteria. The various steps involved in the hybrid Pythagorean 
Entropy-TOPSIS method are described as follows. 

Decision-Making Algorithm Using PyFS 
Step 1: Estimate the Decision-Maker’s Weight 
Using linguistic terms, Very Very Bad (ls1), Very Bad (ls2), Bad (ls3), Medium Bad 

(ls4), Fair (ls5), Good (ls6), Very Good (ls7), Very Very Good (ls8), Extremely 
Good (ls9), Exactly Equal (ls10), determines the significance of the ‘r’ decision-
maker and are stated in Pythagorean fuzzy numbers. Let the PyFN to rate 
the uth decision-maker be θu=[μu, νu, πu]. So, the decision-maker’s weight is 
determined as follows: 

.�k =
(

μu + πu

(
μu

μu+νu

))

∑l
u=1

(
μu + πu

(
μu

μu+νu

)) (9) 

and .
∑l

u=1 �u = 1 
Step 2: Construct an aggregated PyFDM 

Consider .P (k) =
(
p

(k)
ij

)

m×n
to be a fuzzy Pythagorean decision matrix for 

each decision-maker. Where � = {�1, �2, . . .  .  . . �l} represents the decision-
maker’s weight and .

∑l
k=1�k = 1,�k ∈ [0, 1]. 

For aggregation, Zhang’s [27] PyFWA operator is utilized, P = (pij)m × n, where 

.P =

⎡

⎢⎢⎢
⎣

p11 p12 · · · p1n

p21 p22 · · · p2n

...

pm1

...

pm2

. . .

· · ·
...

pmn

⎤

⎥⎥⎥
⎦

(10) 

where, . pij = PFWA�

(
p

(1)
ij , p

(2)
ij , . . . . . . . . . , p

(l)
ij

)

. =
⎛

⎝

√√√√1 −
l∏

k=1

(
1 − μ2

ij

)�k

,

l∏

k=1

(
νij

)�k

⎞

⎠ (11)
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Here . pij = (μIi

(
zj

) • νIi

(
zj

)
, πIi

(
zj

))

i = 1, 2, . . .  . . . . . ,  m, and j = 1, 2, . . .  . . . . . ,  n 
Step 3: Evaluate Criteria Weight Utilizing Proposed Entropy Measure 
Here, the weight vector W = (. e

1 , . e
2 , . e

3 , . . . .,. e
n ) is obtained using the 

Pythagorean fuzzy entropy measure Ep for criteria Cj (j = 1, 2, . . . , n) proposed 
in Eq. (8), where .e

j ≥ 0 and .
∑n

j=1 e
j = 1. The Pythagorean fuzzy entropy 

measure for each column of P is evaluated using Eqs. (8, 9, and 11), and thus to 
determine the weights .e

j of criteria Cj (j = 1, 2, . . .  , n), the following expression 
is used: 

.e
j = 1 − Ep

(
Cj

)

n −∑n
j=1Ep

(
Cj

) (12) 

Step 4: Weighted Aggregated PyFDM 
As a result, the weight vector W can be calculated and aggregated with the fuzzy 

Pythagorean decision matrix P [30] to create the weighted PyFDM, H. 

.H̄ = W ′ ⊗ P̄ = WT ⊗ [z̄ij

]
m×n

=
[=
zij

]
(13) 

Where .W = (e
1 , . . . . . . e

n

)
and .

=
zij = 〈=

μij ,
=
νij 〉 = 〈1−(1−μij )

e
j , ν

e
j

ij 〉, wj > 0  
Step 5: Evaluate PIdS and NIdS 
Apply TOPSIS to the newly constructed aggregated PyFDM to resolve the MCDM 

problem. According to Zhang and Xu’s [4] definitions, the extrema score values 
are utilized to determine the Positive Ideal Solution (PIdS) and Negative Ideal 
Solution (NIdS). 

.PISj = max
i

{
s
(
αij

)}
(14) 

.NISj = min
i

{
s
(
αij

)}
(15) 

Where s(αij) is PyFN’s score function 
Step 6: Determine the Separation Measures 

.δPQ+ = 1

n

∑n

i=1
max
{∣∣∣μP

2 − μ+
Q

2
∣∣∣ ,
∣∣∣νP

2 − ν+
Q

2
∣∣∣
}

(16) 

.δPQ− = 1

n

∑n

i=1
max
{∣∣∣μP

2 − μ−
Q

2
∣∣∣ ,
∣∣∣νP

2 − ν−
Q

2
∣∣∣
}

(17) 

Step 7: Evaluate the Closeness Coefficient
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The coefficient of closeness for each alternative is determined w.r.t. the Pythagorean 
fuzzy ideals using the following expression: 

.Cj = δPQ−

δPQ+ + δPQ−
(18) 

Where 0 ≤ Cj ≤ 1 and j = 1, . . . . ,  m 
Step 8: Ranking of Alternatives 
Depending on their Cj value, the alternatives are ordered in descending order. 

Application of the Entropy-TOPSIS Technique to Choose the Distribution 
Centre Location 
Ten evaluation criteria and four alternatives were considered for the selection 
of distribution centre location based on a thorough literature review, which are 
as follows. Human resources availability (CHR), i.e., the availability of labourers 
to work at the distribution centre; i.e., the needed space must be suitable for a 
distribution facility. Ample surrounding space must also be available for future 
development. Distribution centres must have access to a variety of modes of 
transportation to enable easy and quick transit because transportation is one of the 
most crucial factors determining their success. Storage Convenience (CSTC): the 
proximity of the distribution centre to the location where storage services are offered 
is important. Distance to suppliers (CDS) has to do with suppliers’ closeness to the 
distribution centre. To reduce transit time and ensure supply, the distribution centre 
should be close to the suppliers. Distance to market (CDM) has to do with how close 
the marketplaces are to the distribution hub. Due to transportation considerations, 
distribution centres should be close to markets. Distance to airport (CDA) is the  
distribution centre’s close proximity to airports. Air transportation is appropriate 
for the delivery of urgent packages and precious cargo. As a result, the distribution 
centre should be near airports. Distance to other transport facilities (CDTF) is the  
distribution centre’s close access to roads, ports, and railways. Highways make it 
simple and quick for businesses to convey their goods. The issue of large shipments, 
particularly economical freight, may be solved by transportation by sea or interior 
waterways. Railways should be nearby since they are a reliable and affordable form 
of transportation. Land cost (CLC) refers to the amount of property wherever the 
distribution centre will be situated. The minimization criterion is the land cost 
because it influences the overall investment expenses. Logistics cost (CLGC) is  
the expense incurred to make the items available to the customers. This cost has 
an impact on the outcomes of corporate performance; hence, minimization is a 
requirement. Labour cost (CLBC) serves as the remuneration for the labourers who 
work in the distribution centre. Labour cost is the minimization criterion since it 
influences company performance outcomes. 

Step 1: Estimate the Decision-Maker’s Weight 
The Pythagorean fuzzy technique integrates the weights of each decision-maker 

using Eq. (9), and the decision-maker’s significance is evaluated. The linguistic
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Table 1 Linguistic terms LTs PyFNs 

Extra significant 0.9 0.2 
Significant 0.8 0.35 
Average 0.65 0.45 
Insignificant 0.35 0.8 
More insignificant 0.2 0.9 

Table 2 Weight of 
decision-makers 

Decision makers Linguistics term Weight (�) 

I Very Important 0.4044 
II Medium 0.2583 
III Important 0.3372 

Table 3 Linguistic terms ls1 0 1 
ls2 0.2 0.9 
ls3 0.35 0.8 
ls4 0.45 0.65 
ls5 0.55 0.55 
ls6 0.65 0.45 
ls7 0.8 0.35 
ls8 0.9 0.2 
ls9 1 0 
ls10 0.1965 0.1965 

terms used for rating decision makers are displayed in Tables 1 and 2 lists the 
resulting decision-makers’s weights. 

Step 2: Construct Aggregated PyFDM 
The aggregated Pythagorean fuzzy decision matrix is constructed using the linguis-

tic terms shown in Table 3; the results of the decision-maker’s evaluation of 
each of the four distribution centre locations under consideration are displayed 
in Table 4. Based on the viewpoint of the typical decision-maker, Eq. (11) was  
utilized to generate the aggregated PyF decision matrix, which is shown in 
Table 5. 

Step 3: Evaluate Criteria Weight Utilizing Proposed Entropy Measure 
In order to calculate the proposed entropy measure for PyFS using Eq. (8) and to 

estimate the weights for each criteria using Eq. (12), decision-makers calculated 
10 independent criteria. The aggregated results of their assessments are shown in 
Table 6, along with the resulting entropy measure and weights. 

Step 4: Weighted Aggregated PyFDM 
Using Eq. (13), a weighted aggregate PyFDM is constructed, and thus Table 7 is 

obtained.
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Table 4 Weight of 
alternative’s based on criteria 

Decision-makers 
Criteria Distribution centre location I II III 

CHR T1 ls6 ls7 ls6 

T2 ls8 ls7 ls7 

T3 ls6 ls6 ls6 

T4 ls5 ls6 ls4 

CIR T1 ls6 ls6 ls6 

T2 ls7 ls6 ls7 

T3 ls7 ls7 ls6 

T4 ls6 ls6 ls6 

CSTC T1 ls7 ls6 ls7 

T2 ls7 ls7 ls6 

T3 ls7 ls7 ls6 

T4 ls6 ls6 ls6 

CDS T1 ls5 ls6 ls5 

T2 ls7 ls7 ls8 

T3 ls6 ls7 ls7 

T4 ls7 ls6 ls6 

CDM T1 ls6 ls7 ls6 

T2 ls8 ls6 ls7 

T3 ls6 ls5 ls5 

T4 ls7 ls ls6 

CDA T1 ls6 ls7 ls6 

T2 ls7 ls6 ls8 

T3 ls6 ls6 ls6 

T4 ls5 ls4 ls6 

CDTF T1 ls6 ls7 ls7 

T2 ls8 ls6 ls7 

T3 ls7 ls6 ls6 

T4 ls4 ls4 ls6 

CLC T1 ls6 ls6 ls7 

T2 ls8 ls8 ls7 

T3 ls7 ls6 ls7 

T4 ls6 ls7 ls7 

CLGC T1 ls7 ls6 ls7 

T2 ls8 ls6 ls8 

T3 ls6 ls6 ls6 

T4 ls5 ls4 ls6 

CLBC T1 ls6 ls6 ls6 

T2 ls7 ls6 ls7 

T3 ls6 ls6 ls6 

T4 ls4 ls4 ls6
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Table 5 Decision-maker’s evaluation in PyFNs in decision matrix 

C/A T1 T2 T3 T4 

CHR <0.6942,0.425> <0.8491,0.28> <0.6503,0.45> <0.5458,0.559> 
CIR <0.6503,0.45> <0.7733,0.371> <0.7556,0.384> <0.6503,0.45> 
CSTC <0.7733,0.371> <0.7556,0.384> <0.7556,0.384> <0.6503,0.45> 
CDS <0.5761,0.525> <0.8461,0.284> <0.7523,0.387> <0.7218,0.407> 
CDM <0.6942,0.425> <0.8294,0.297> <0.5941,0.508> <0.7218,0.407> 
CDA <0.6942,0.425> <0.8264,0.301> <0.6503,0.45> <0.5735,0.531> 
CDTF <0.7556,0.384> <0.8294,0.321> <0.7218,0.412> <0.5412,0.586> 
CLC <0.7176,0.415> <0.871,0.259> <0.772,0.375> <0.75,0.392> 
CLGC <0.7733,0.371> <0.8683,0.267> <0.6503,0.45> <0.5735,0.543> 
CLBC <0.6503,0.45> <0.7733,0.371> <0.6503,0.45> <0.3646,0.4830> 

Table 6 Evaluation of proposed entropy measure and criterion weights 

Criteria CHR CIR CSTC CDS CDM CDA CDTF CLC CLGC CLBC 

Entropy (Ep) 0.7415 0.8694 0.8098 0.6985 0.7545 0.7686 0.7121 0.8088 0.6991 0.8519 

Weights (.e
j

)
0.1131 0.0571 0.0832 0.1319 0.1074 0.1012 0.1259 0.0837 0.1316 0.0648 

Table 7 Aggregated weighted PyFDM 

C/A A1 A2 A3 A4 

CHR 0.1254, 0.9077 0.1925, 0.8659 0.112, 0.9136 0.0854, 0.9363 
CIR 0.0582, 0.9554 0.0813, 0.9449 0.0773, 0.9467 0.0582, 0.9554 
CSTC 0.1161, 0.9207 0.1106, 0.9234 0.1106, 0.9234 0.0837, 0.9357 
CDS 0.1070, 0.9185 0.2187, 0.847 0.1681, 0.8822 0.1552, 0.8881 
CDM 0.1195, 0.9121 0.1730, 0.8777 0.0923, 0.9298 0.1284, 0.9079 
CDA 0.1130, 0.917 0.1624, 0.8855 0.1009, 0.9223 0.0826, 0.9379 
CDTF 0.1460, 0.8994 0.1813, 0.8793 0.1347, 0.9045 0.0843, 0.9413 
CLC 0.1332, 0.9053 0.2067, 0.8583 0.1539, 0.8949 0.1451, 0.8994 
CLGC 0.1545, 0.8949 0.2049, 0.8612 0.1120, 0.9136 0.0918, 0.9332 
CLBC 0.1120, 0.9136 0.1545, 0.8949 0.1120, 0.9136 0.0500, 0.9209 

Step 5: Evaluate PIdS and NIdS 
Now, using Eqs. (14 and 15), PIdS and NIdS are estimated in accordance with Zhang 

and Xu’s [4] definitions, and the outcomes are displayed in Table 8. 

Step 6, 7, and 8 Calculate the separation measures of each alternative from the 
PIdS, NIdS, Closeness Coefficient, separation measure, and relative closeness. The 
coefficients are assessed using Eqs. (16)–(18), and the findings are shown in Table 9. 
The separation measure is calculated, and alternatives are thus ordered in decreasing 
order.
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Table 8 PIdS and NIdS for 
Pythagorean fuzzy set 

Criteria A+ A- Criteria A+ A-

CHR 0.1292 0.0561 CDA 0.9583 0.9111 
0.9111 0.9583 0.0784 0.1532 
0.1532 0.0784 0.0755 0.1464 

CIR 0.1275 0.0921 CDTF 0.9292 0.9129 
0.9129 0.9292 0.1281 0.1504 
0.1504 0.1281 0.1201 0.1439 

CSTC 0.116 0.084 CLC 0.921 0.936 
0.921 0.936 0.139 0.117 
0.139 0.117 0.1324 0.1102 

CDS 0.1174 0.0556 CLGC 0.919 0.958 
0.919 0.958 0.1408 0.0793 
0.1408 0.0793 0.1356 0.0759 

CDM 0.124 0.065 CLBC 0.913 0.95 
0.913 0.95 0.151 0.0923 
0.151 0.0923 0.14363 0.0889 

Table 9 Separation measure 
and ranking of alternative 

Alternatives S+ S− Ci+ Rank 

T1 0.32854 0.29507 0.473 3 
T2 0.1864 0.43721 0.701 1 
T3 0.30691 0.3167 0.508 2 
T4 0.38921 0.23441 0.376 4 

Table 10 Entropy 
comparison 

Entropy measure Rank 

E1 (C) [31] T2 > T3 > T1 > T4 
E2 (C) [32] T2 > T3 > T1 > T4 
E3 (C) [33] T2 > T3 > T1 > T4 
EP (C) Proposed T2 > T3 > T1 > T4 

5 Result and Discussion 

From the above table, alternative A2 was chosen as the best option based on the 
selected criteria, and alternative A4 is the least preferred distribution centre location 
as it received the worst rating from the four alternatives taken into consideration 
for the study. The rank obtained through the application of the proposed Entropy-
TOPSIS method is compared with the few Pythagorean fuzzy entropy measures 
taken from the latest literature. The results thus obtained through the different 
entropy measures are shown in Table 10. 

The following factors make the new PyFS-based entropy measures far more 
effective: 

• The new Pythagorean entropy measure is in perfect agreement with the axiomatic 
definition of entropy measures. 

• TOPSIS is defined using the information for PyFS.
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• A hybrid entropy-TOPSIS approach is applied to solve the multi-criteria 
decision-making problem. 

• The use of linguistic variables and PyFSs assures that this approach can better 
address the uncertainty in the decision-making method. 

• The suggested integrated methodology, which uses a newly defined Pythagorean 
entropy measure, is more appropriate and efficient for ranking alternatives than 
the current MCDM approaches. 

6 Conclusion 

Research pertaining to the selection of sustainable logistics centre locations has 
suggested that the application of the Pythagorean fuzzy entropy measure (PyFEM) 
can be advantageous. The use of PyFEM yields a set of weights, which are then 
used to evaluate the multiple criteria associated with the selection of a sustainable 
logistics centre location. This approach eliminates the need for subjective and time-
consuming assessments, which may be prone to bias. Additionally, the application 
of PyFEM can help identify complex relationships between criteria and provide 
insights into the best location for a sustainable logistics centre. PyFS provides 
a tremendous ability to effectively regulate uncertainties and fuzziness. A hybrid 
entropy-TOPSIS model approach to solving the Pythagorean fuzzy MCDM problem 
is considered. The selection of a sustainable logistics centre location is used as an 
example, and Pythagorean fuzzy inputs in the form of linguistic data are used. A 
comparison of the existing entropy measures with the proposed measure reflects 
the efficiency of the proposed method. PyFS has the capability to handle the 
uncertainty in the system. The proposed methodology can be used to choose the 
best option when there are competing criteria in a variety of real-world decision-
making situations in a fuzzy Pythagorean environment. The Pythagorean fuzzy set 
is a generalization for more effectively incorporating uncertainty in the data, and 
it is similar to other current fuzzy sets. In addition, a decision-making algorithm 
is applied to resolve decision-making complications when a group of experts is 
involved. The results of the case show the potential of the recommended entropy in 
the field of decision-making with linguistic data. The proposed measurement can be 
used as a component of new objective methods for setting attribute weights utilizing 
Pythagorean fuzzy sets in an upcoming analysis on multi-criteria decision-making. 
Future applications for the proposed Pythagorean fuzzy method are numerous. 
Additionally, the proposed measurement can be employed in subsequent studies 
by including various fuzzy systems into decision matrices and employing them to 
address various MCDM issues with unknown weights.
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