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Preface 

Soft computing is a wide term which consists of many methods which includes 
fuzzy logic, neural networks, evolutionary algorithms, etc., then the algorithms 
which provides solution with a tolerant of imprecision or approximation. 

Complex real-world problems are always difficult to cast into well-defined 
problems and then solve by analytical methods. This book aims to collect the 
works from real world which deals with difficult problems which are unsolved by 
traditional methods. Our book is an attempt to promote the women in the field of 
soft computing which is an integral part of science and engineering. 

In Chap. 1, particle swarm optimization with different mutation strategies is 
applied to solve real-world problems, i.e., camera calibration problem. Chapter 
2 describes differential evolution algorithm for solving non-linear optimization 
problem. In Chap. 3, a cooperative analysis of nature-inspired algorithms is given 
in context of load balancing in cloud environment. 

Chapter 4 introduces a novel entropy TOPSIS approach for selection of sustain-
able logistics center location under Pythagorean fuzzy environment. 

Chapter 5 presents an improved and novel Jaya algorithm with inertia weight 
factor. Chapter 6 is the literature survey on drone optimization. In Chap. 7, role of  
metaheuristic algorithms for search results clustering is given. 

This book is useful for the researchers from academia and industry to get insight 
into soft computing for real-world problems. 

Given the caliber of the authors’ contributions, the editors’ hopes for this volume 
have been much exceeded. 

The editors would like to extend their sincere gratitude to all of the book’s 
authors, reviewers, and Springer, without whose assistance they would not have 
been able to maintain the book’s caliber and standards. 

Noida, Uttar Pradesh, India Vanita Garg 
Roorkee, Uttarakhand, India Kusum Deep 
Arad, Romania Valentina E. Balas
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Embedded Mutation Strategies 
in Particle Swarm Optimization to Solve 
Camera Calibration Problem 

Vanita Garg, Aarti Singh, and Sagar Joshi 

1 Introduction 

Optimization is considered as the most studied subject in the field of real-life appli-
cations. Every decision-making criterion is based on optimization techniques. The 
optimization problem is often separated into categories termed local optimization 
and global optimization. 

The objective of local optimization is to identify the greatest or lowest value 
within a limited area of the function value space. Finding the highest or lowest 
value across the entire region of the function value space is the goal of the global 
optimization. 

Without loss of generality, a single-objective optimization problem is formulated 
as follows: 

. min x∈s f (x), x = Li ≤ xi ≤ Ui

. s.t.gi (x) ≤ 0, j = 1, 2, . . . , j

. hk (x) = 0, k = 1, 2 . . . ., k

where 

f (x) is objective function 
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2 V. Garg et al.

x is D-dimensional decision vector 
j shows the number of inequality constraints 
k indicates the number of equality constraints, and Li, Ui are the lower and upper 

bound of the ith variables, respectively. 

The objective and constraint functions might be explicit or implicit, and they can 
be linear or nonlinear. Any of the side constraints will never be violated by a good 
algorithm. There are no equality or inequality constraints in an unconstrained opti-
mization problem, although there may be side constraints. Constrained optimization 
problem has one or more equality and or inequality constraints. 

The technique requires determining the design variable values that produce 
the best objective function value while satisfying all equality, inequality, and side 
constraints. It is worth noting that for many issues, multiple optimums (also known 
as local or relative optima) may occur. 

Over the time period, methods of optimization have evolved. There are many 
traditional and conventional method of optimization available in the literature. The 
traditional methods require the conditions of convexity and differentiability of the 
functions. However, in real-world problems, there is no well-behaved functions. 
Thus, it gives rise to nature-inspired optimization techniques. 

Garg and Deep [4] have given a detailed review on biogeography-based optimiza-
tion algorithm. Garg and Deep [3, 7] have proposed LX-BBO and tested on various 
benchmark functions. Garg and Deep [3, 7] have proposed LX-BBO and embedded 
mutation strategies. Garg and Deep [5] have extended LX-BBO for constrained 
optimization problems. 

Moreover, Garg and Deep [6] have applied the constrained version of LX-BBO 
on portfolio optimization problem. Garg et al. (2022) have applied constrained LX-
BBO for economic load dispatch problems. 

The paper is organized as follows: Section 2 gives a brief introduction to PSO 
and proposed versions of PSO. Section 3 gives the introduction of the camera model 
for image formulation and the mathematics of the camera calibration problem for 
formulating the optimization problem. Section 4 gives the solution and numerical 
analysis of the camera calibration problem using all the six versions of PSO 
proposed and Blended BBO. Section 5 gives the conclusion and some future ideas 
are suggested. 

2 Proposed Versions of Particle Swarm Optimization 

Nature, which has evolved over a billion of years, provides a great source of 
inspiration and curiosity among academics from numerous fields to build a diverse 
spectrum of nature-inspired optimization algorithm. The majority of real-world 
application include optimization problem with a large number of nonlinear con-
straints.
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Traditional optimization methods like gradient-based methods are not up to the 
task. Consequently, nature-inspired optimization methods are employed to handle 
the highly nonlinear issues. Nature-inspired algorithms have a high success rate 
because of their adaptability and capacity to solve NP-hard tasks. Birds, insects, 
fish, ants, and lions have all been used as inspiration for the development of these 
algorithms. 

Nature-inspired algorithm can be classified into two broad categories: (1) 
evolutionary algorithm and (2) swarm-based algorithm. 

PSO (particle swarm optimization) is considered to be one of the most popular 
among them. The details of the algorithm are given as follows. 

2.1 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a swarm foregoing behavior-based optimiza-
tion technique. PSO is given by Kennedy and Eberhart in 1995. Fishes or birds 
collect their food using the social and individual skills. This phenomenon gives 
rise to a stochastic optimization algorithm which is popularly known as PSO. The 
natural tendency to find the best solution among the given choices is formulated 
mathematically using two update equations, which are given as follows. 

Velocity Update Equation 
Swarm of particles move in multidimensional search space to find the optimised 
solution. Each particle in swarm is affected by its neighbor and individual under-
standing. The velocity by which the particle moves from one place to another is 
given in the following equation: 

. vt+1 = vt + C1 ∗ rand (Pbest − xt ) + C2 ∗ rand ∗ (Gbest − xt )

where 

vt = velocity of x particle at tth iteration 
C1 = the individual factor 
C1 = social factor 
Pbest = the individual best particle 
Gbest = the global best particle 
Rand is the uniform random number between 0 and 1. 

Particle Update Equation 
The direction a particle is traveling in quest of an optimal path is determined by its 
velocity. The following is the particle update equation for PSO: 

.xt+1 = xt + vt+1
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The solution will be updated as a result of these two equations, which will be 
repeated until a predetermined termination threshold is met. 

PSO is a population-based strategy that includes multiple candidate solutions in 
the solution optimization process. Every solution is driven by the local and global 
top results throughout the whole search area. Thus, it strikes a perfect balance 
between exploration and exploitation for a robust algorithm. 

2.2 Literature Review of PSO 

A popular optimization method that has been altered throughout time is particle 
swarm optimization. PSO is also available in a variety of hybrid forms in the 
literature. PSO has also been used to solve a variety of actual optimization issues. 
To comprehend the mechanism of PSO, a brief examination of the relevant literature 
is required. 

In Shi and Eberhart [23], a modified PSO is proposed in which a new parameter 
inertia weight is introduced. This parameter has proved to be a winner addition to 
PSO and has been used since then in many of the modified versions of PSO. 

Kennedy and Eberhart [22] have proposed a discrete binary version of PSO. It is 
an initial attempt to solve discrete optimization problems. Many real-life problems 
have been solved using this version of PSO. 

In Liang et al. [1], PSO is used with comprehensive learning to solve multimodal 
optimization. Multimodal problems most of the time have a drawback to trap into 
local optima. PSO for multimodal problems has solved these problems convincingly. 

In Robinson and Rahmat-samii [2], PSO is used in electromagnetics. It is applied 
to solve antenna design problems as well. 

In Trelea [8] convergence analysis and parameter selection of PSO has been 
studied where exploration and exploitation of the search space in PSO is also 
discussed. Convergence analysis gives the idea if the algorithm is approaching 
toward the best solution through iterations. 

Eberhart and Kennedy [21] have given a detailed discussion about the com-
parison of GA and particle optimization. Both algorithms are population-based 
techniques and are considered to be the best in solving complex optimization 
problems. However, these techniques are different in structure. GA is known as an 
evolutionary algorithm and PSO is a swarm intelligence-based technique. Solutions 
tend to improve in PSO and in GA new solutions take place of dead or worse 
solution. 

Parsopoulos and Vrahatis [9] have given PSO for various approaches like 
integer programming problems, tackling minimax problems, and finding multiple 
minimizers. A composite PSO is also given in which DE approach has been 
incorporated. Sun et al. [10] have studied individual particle of PSO using quantum 
behavior. 

In Bonyadi and Michalewitz [11], a detailed review of PSO is given for single-
objective continuous optimization problems. In this article, the limitations of PSO
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in terms of local optimal solution and low convergence rate are discussed. These 
issues are very common in heuristic approaches which needs to be addressed so that 
PSO can be applied to a wide set of real optimization problems. 

PSO is used to optimize the weights used in neural networks as a parameter. 
Kennedy [12] is an excellent work which gives detailed examples and applications 
of PSO and its limitations as well. Poli [13] has a brief study of applications of PSO. 

Shi and Eberhart [23] analyzed the parameter inertia weight and its effect on 
PSO. They have given a detailed set of guidelines for how to select inertia weight 
and maximum velocity. 

Eberhart and Shi [25] have given the comparative performance of PSO using 
inertia weight and constriction factor. The performance is tested on five benchmarks, 
and the comparison concludes that using constriction factor gives better results with 
a dynamic velocity range. 

Carlisle and Dozier [14] have proposed an off the shelf PSO. Clerc and Kennedy 
[15] have analyzed particle’s path in discrete time and then in continuous time. Trela 
[8] has discussed the performance of PSO in context to its convergence behavior and 
parameter selection. 

Evers [16] has put light on a very important aspect of PSO. The stagnation in 
PSO is harmful to finding the global optimal solution. An automatic regrouping 
mechanism is proposed to overcome stagnation and to avoid local optimal solution. 

Kennedy and Mendes [26] have discussed population structure in PSO. All 
nature-inspired optimization techniques deal with set of solutions instead of a single 
solution. Hence, the idea of the population in PSO is considered in this paper. 
Suganthan [24] discussed PSO with a neighbor operator. 

Yin et al. [17] have introduced a complementary cyber swarm algorithm. 
Liu has produced another analysis of PSO on order 2 stability. It brings the 

theoretical aspects of PSO which proves that PSO is not only a metaheuristic 
algorithm but also works well in theoretical aspect of a robust algorithm. 

Kennedy and Eberhart [22] have used PSO for discrete value problems using 
binary coding. In Chen et al., PSO is used for discrete set of problems. Jarboui et 
al. [18] have allied PSO to combinatorial problems. Clerc [19] has given PSO for 
discrete PSO. 

Xinchao [20] has proposed a perturbed PSO to find the global optima. Lovbjerg 
and Krink [27] have extended PSO with self-organizing criticality. 

2.3 Version of PSO Using Mutation Strategies 

One of the fundamental and initial optimization techniques inspired by nature is 
the genetic algorithm. The mutation operator is regarded as the primary operator 
in genetic algorithms to improve the algorithm’s exploratory nature. In this study, 
we looked into the incorporation of the GA mutation operator into PSO. Real 
programmed mutation operators were successfully applied by Garg and Deep 
considering the earlier work’s improved performance of mutation operators. The
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mutation operators Cauchy, Gaussian, polynomial, random, and power are being 
embedded into the particle swarm optimization algorithm. The following are the 
five different mutation operators. 

PSO with Power Mutation (PM-PSO) 
PSO is imbedded with the power mutation reported by Garg and Deep [3]. Referred 
to as power mutation, its distribution function is given by: 

.f (x) = pxp−1, 0 ≤ x ≤ 1 (1) 

And the density function is presented by: 

.F(x) = xp, 0 ≤ x ≤ 1 (2) 

The index of the distribution is denoted by p. The PM is used to generate a 
solution y near a parent solution z that follows the previously mentioned distribution. 
The mutated solution is then created using the following formula: 

.y =
{

x − z (x − xl) if r < t

x − z (xu − x) if r ≥ t
(3) 

where t = . x−xl

xu−xl
and xiand xu are lower bound value and upper bound value of 

the decision variable respectively and r is a random number uniformly distributed 
between zero and one. The power distribution function p = 0.25 & p = 0.50. The 
probability of mutation used in PM-PSO is 0.5. 

PSO with Polynomial Mutation (Poly-PSO) 
A new version of PSO proposed the name Poly-PSO that incorporates in PSO 
by Garg and Deep [3]. Using power mutation on the provided solution x∈[xl, xu], 
mutated solution x is constructed. 

. x' =
{

x + δl (x − xl) if u ≤ 0.5
x + δr (xu − x) if u > 0.5

,

where u∈[0, 1] is a random number. The values δl and δr are computed as given by 
the formula: 

. δl = (2u)
1

1+ρm − 1, u ≤ 0.5

. δr = 1 − (2 (1 − u))
1

1+ρm , u > 0.5

where ρm ∈ [20,100] is a user-defined parameter.
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PSO with Random Mutation (Rand-PSO) 
A new version is suggested called Rand PSO which is proposed by integrated Rand 
mutation in PSO. Suppose x is any given solution than a rand mutation operator is 
used as x ∈ [xl,xu], and a random solution h is created using a neighbourhood of the 
replaced solution. 

. h = xl + (xu − xl) ∗ rand

where rand∈[0, 1] represents a uniform distribution 

PSO with Gaussian Mutation (G-PSO) 
Gaussian mutation causes a small random change in the population. A random 
number from Gaussian distribution N (0,1) with parameter 0 as a mean and 1 as 
std dev. is generated. 

PSO with Cauchy Mutation(C-PSO) 
Cauchy mutation is defined in SCA as the same way as G-SCA. Suppose a random 
number is generated from Cauchy distribution and defined by δi(t). The scale 
parameter is represented by t, where t > 0. Consider the value t = 1 as used in  
LX C-BBO in this paper. 

3 Mathematical Formulation of Stereo Camera Calibration 
Problem 

In order to formulate the camera calibration problem mathematically, there are 
two procedures to follow. First, the camera model for image generation is defined. 
Second, camera calibration problem is defined as a nonlinear optimization problem. 

3.1 Camera Model for Image Formation 

Using a pinhole camera model for binocular vision, the geometry of image 
generation is defined in this study (stereo camera system). 

We consider world reference frame (X, Y, Z), the camera frame (Xi, Yi, Zi), and 
the image frame (ui, vi) for  i = 1 and 2 the five coordinate frames. O1 and O2 are 
the cameras’ origins in terms of coordinate systems, and they coincide with their 
respective optical centers, while their Z coordinate axes are parallel to and intersect 
their respective picture planes’ respective optical axes at their respective principal 
points. Each camera’s picture plane and optical center are spaced apart by a factor 
of i = 1, 2 called fi (the focal length) (see Fig. 1). 

An object point P, whose 3D world reference coordinates are (X, Y, Z). Four steps 
are involved in the conversion of its world coordinates into image coordinates:
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Fig. 1 Image formation by two cameras with pinhole model (Reproduced from Garg and Deep 
[3])

1. Applying the following relation, the three-dimensional world coordinates are first 
converted to camera coordinates: 

.

⎛
⎝Xc

Yc

Zc

⎞
⎠ = R

⎛
⎝X

Y

Z

⎞
⎠ + T (4) 

A 3 × 3 rotation matrix, R, and a translation vector, T, represent the camera’s 
position in relation to the world coordinate system. 

R and T can also be written as: 

.R =
⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ T =

⎛
⎝Tx

Ty

Tz

⎞
⎠ (5) 

It is also possible to represent the matrix R’s elements rij in terms of the angles 
of swing, tilt, and pan (α, β, γ ) as:  
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. R =
⎡
⎣ cosα cosβ sinα cos γ + cosα sinβ sin γ sinα sin γ − cosα sinβ cos γ

− sinα cosβ cosα cos γ − cosα sinβ sin γ cosα sin γ + sinα sinβ cos γ

sinβ − cosβ sin γ cosβ cos γ

⎤
⎦

(6) 

2. Perspective projection equations are used to convert the 3D camera coordinates 
(Xc, Yc, Zc) into the ideal retinal coordinates (Xu, Yu) of the camera: 

.Xu = f
Xc

Zc

, Yu = f
Yc

Zc

(7) 

3. It’s therefore possible to turn these ideal retinal coordinates into actual retinal 
coordinates (Xd, Yc) by taking into account lens distortion coefficient: 

.Xd = Xu

(
1 + kr2

)−1
and Yd = Yu

(
1 + kr2

)−1
(8) 

4. As a last step, the retinal coordinates are converted into pixel coordinates (u, v) 
using the following relation: 

.u = XdNx + u0 v = YdNx + v0 (9) 

Nx and Ny represent the number of pixels that are contained in a unit distance 
of the image plane along the X and Y axes, respectively, in (u0, v0), the image 
center. Images of a 3D point can be formed by following the four processes 
outlined above: 

.u = f Nx(
1 + kr2

)
(

r11X + r12Y + r13Z + Tx

r31X + r32Y + r33Z + Tz

)
+ u0 (10) 

.v = f Ny(
1 + kr2

)
(

r21X + r22Y + r23Z + Ty

r31X + r32Y + r33Z + Tz

)
+ v0 (11) 

Equations (10) and (11) represent the conversion of a single camera’s 3D 
world coordinates (X, Y, and Z) to pixel coordinates (u, v). Point P’s 3D 
position cannot be reconstructed using only its pixel data since this procedure 
is irreversible (u, v). It is possible to discover the exact location of a point P(X, Y, 
Z) in 3D space by comparing the stereo images pl(ul, vl) and pr(ur, vr) captured 
by two distinct cameras (one on each side) or by a single camera in two different 
locations.
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3.2 Camera Calibration Problem as an Optimization Problem 

This is the 3D world coordinates (X, Y, and Z) to pixel coordinates conversion for a 
single camera (u, v). Using only pixel data, it is impossible to rebuild the 3D position 
of point P because this method is irreversible (u, v). The precise location of a point 
P(X, Y, Z) in 3D space can be determined by comparing the stereo pictures pl(ul, 
vl) and pr(ur, vr) taken by two separate cameras (one on each side) or by a single 
camera at two different places. 

The problem is to find the best values for the 24 camera parameters (12 
parameters (f, Nx, Ny, u0, v0, k, Tx, Ty, α, β, γ for each camera) so that the objective 
function given by the following equation is minimized: 

. F =
√

1

N

∑N

i

[(
uil − u'

il

)2 + (
uir − u'

ir

)2 + (
vil − v'

il

)2 + (
vir − v'

ir

)2]
(12) 

where . p'
lj (.u

'
lj , v

'
lj ) and . p

'
rj (.u

'
rj , v

'
rj ) are using the predicted parameters; the corre-

sponding pixel coordinates were determined. Based on the camera’s understanding, 
any relevant search range for variables can be selected. For instance, it would be 
a difficult task to find the global minimum of the objective function with all 24 
parameters changing. 

4 Numerical Analysis of the Solution by Proposed Method 

To solve the camera calibration problem, a vector S is defined which consists of 
unknown intrinsic and extrinsic parameters of left and right cameras respectively. 

.

S = (
u0l , v0l , Nxl, Nyl, fl, kl, αl, βl, γl, Txl, Tyl, Tzl, u0r , v0r , Nxr , Nyr ,

fr , kr , αr , βr , γr , Txr , Tyr , Tzr

) (13) 

where Tx, Ty, Tz, α, β, and γ are the extrinsic parameters which denote the 
location and direction of the camera in a world coordinate system (WCS). (u0, 
v0) Image center, (f ) focal length, (k) radial lens distortion, and (Nx and Ny) 
off-axis lens distortion are intrinsic parameters which represent camera optical 
and geometry features. Extrinsic parameters give the relationship between world 
coordinate system (WCS) and camera coordinate system (CCS). Then internal 
parameters can be used to set the relationship between the coordinate systems, i.e., 
camera coordinate system (CCS) and ideal coordinate system. 

Camera calibration is an unconstrained, nonlinear optimization problem, where 
objective function is given by Eq. (12) and decision variables or independent 
variables are given by Eq. (13).
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Camera calibration problem is solved by all the variants of Laplacian 
biogeography-based optimization (LX-BBO) proposed in Chaps. 2 and 3 with 
varying numbers of control points. 

Camera mistakes are used to measure calibration accuracy. It is defined as the 
Euclidean distance between ground truth and the estimated value of a parameter 
by the camera. “Ground truth values,” or the values utilized to generate data, are 
the intrinsic and extrinsic parameters of the left and right cameras that are used 
to calculate 2D picture coordinates from 3D grid points. Ground truth values and 
parameter bounds are shown in Table 1. 

4.1 Generation of Synthetic Data 

A calibration chart with 8 × 8 grids in the X and Y axes created the synthetic 
data. This generates 64 grid points. This graph has been shifted eight times in the Z 
direction to produce a 3D space with 512 points Pi(Xi,Yi,Zi). 

4.2 Parameter Settings 

The parameters for all the algorithms are set as in Garg and Deep [3]. However, the 
termination criterion for this problem is set according to two conditions: when the 
maximum iterations (5000) are reached and when the absolute error value is less 
than 10−6. Here absolute value is referred to the pixel error which is considered 
as the objective function itself. Out of these two conditions, whichever is attained 
earlier become the required termination criteria. 

Table 1 Ground truth value of left and right camera 

Parameter Left camera Right camera 
Ground truth value Bounds Ground truth value bounds 

f 10 [5,15] 25 [20,40] 
Nx 200 [170,230] 144 [100,200] 
Ny 200 [170,230] 144 [100,200] 
u0 20 [15,25] 256 [200,300] 
v0 19 [15,25] 192 [150,250] 
k 0.15152 [0,0.5] 0.15152 [0,0.5] 
Tx 60 [20,80] −38 [−100,80] 
Ty 35 [25,45] 35 [25,45] 
Tz 1210 [1000,1400] 1210 [1000,1400] 
α 0 [−π/2,π/2] −1.90146 [−π,π] 
β 0 [−π/2,π/2] 0.20916 [−π/2,π/2] 
γ 0 [−π/2,π/2] 0.15152 [−π/2,π/2]
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4.3 Experimental Results 

The performance of all six versions of PSO on camera calibration problem is 
compared with the performance of Blended BBO and PSO. The results of minimum 
camera errors of 50 independent runs for different number of control points are 
shown in Tables 2 and 3, respectively. 

Simulations are performed on varying number of control points: 10, 50, 100, 200, 
and 500. When the number of control point is 10, PSO gives value of six camera 
parameters which are nearer to their ground truth value. For 50 control points, LX-
L PSO gives four camera parameters nearer to ground truth value than the other 
variants of LX-PSO. LX-L PSO gives better camera error values for six camera 
parameters than the other variants of LX-PSO. 

LX-Rand BBO gives better camera error than the other variants in three 
parameters when the number of control points is 100. Whereas when the control 
points are 100, LX-L PSO gives minimum camera error in six camera parameters. 
When the number of control points is 200, then five camera parameters are showing 
better camera error using LX-G PSO. LX-L PSO behaves better than all other 
variants of LX PSO when the number of control parameters is 500. 

Tables 2 and 3 give the analysis based on results obtained by all the variants of 
LX-PSO. It gives the number of parameters which have optimal value obtained by 
all the variants of LX-PSO. 

PSO has obtained the minimum camera error than all the variants of LX-PSO for 
all control points. LX-L PSO has proved to be the better algorithm than the other 
version of LX-PSO for camera calibration problem. LX-PSO with random mutation 
which is proved to be the best algorithm in Chap. 3 is not able to produce good 
results for this problem. 

Rand PSO and C PSO have the best results, but this doesn’t mean that the other 
types of PSO aren’t also important. Depending on the difficulty of the optimization 
problem, any version can be shown to be useful. 

In Fig. 2, convergence graphs of all the variants of PSO and Blended BBO are 
shown for camera calibration problem. Horizontal axis is the number of generations 
and vertical axis is the objective function value. Here, objective function value 
of camera calibration problem is the pixel error obtained. All the algorithms are 
performed with same initial population to make a fair comparison. It can be 
observed that Blended BBO has the poorest convergence as compared to other 
variants of PSO. L PSO has better convergence than all the other variants of PSO.
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Table 2 Camera errors for left camera for varying numbers of control points 

Parameter Algorithm 10 50 100 200 500 

f Rand PSO 0.076868 0.024334 0.157513 0.124538 0.024437 
PM PSO 0.0344981 0.434759 0.121133 0.046615 0.047882 
Poly PSO 0.04324238 0.008042 0.028207 0.01648 0.07599 
G PSO 0.048427 0.103863 0.144257 0.069504 0.006694 
C PSO 0.0030938 0.092509 0.007664 0.187033 0.139281 
L-PSO 0.0279277 0.04823 0.069935 0.022762 0.052066 
Blended BBO 0.0322 0.02618 0.00495 0.00671 0.02101 

Nx 

Rand PSO 1.67 0.385597 0.382618 0.548318 0.730356 
PM PSO 0.29898 1.159758 0.059637 0.998098 0.31041 
Poly PSO 0.08727 1.39171 0.071564 1.197718 0.372492 
G PSO 0.87745 1.670052 0.085877 1.437261 0.44699 
C PSO 0.5623 2.004062 0.103053 1.724713 0.536388 
L-PSO 0.07651 2.404874 0.123663 2.069656 0.643666 
Blended BBO 0.3934 2.885849 0.148396 2.483587 0.772399 

Ny 

Rand PSO 2.3093973 11.82527 1.319943 1.9135 0.369863 
PM PSO 0.387762 30.39693 8.714069 19.66042 22.65397 
Poly PSO 4.893 0.975087 18.41438 1.575908 38.95181 
G PSO 1.838734 0.683595 2.605886 1.110187 2.891485 
C PSO 10.3938 8.050961 28.01932 6.066603 0.534862 
L-PSO 0.873 0.490529 6.037532 5.533563 4.518829 
Blended BBO 0.40837 0.17199 0.23465 0.16406 0.16835 

u0 

LX-Rand BBO 0.0292 0.031997 0.256192 0.18951 0.073873 
LX-PM BBO 0.04847 0.2431 0.061802 0.177463 0.337853 
LX-Poly BBO 0.1983 0.21491 0.404932 0.479892 0.068281 
LX-G BBO 0.09837 0.128807 0.052503 0.354757 0.940733 
LX-C BBO 0.112938 0.024072 0.040034 0.05118 0.582759 
LX-l BBO 0.0178398 0.000705 0.014607 0.429354 0.280561 
Blended BBO 0.08989 0.06981 0.00988 0.02119 0.00104 

v0 

Rand PSO 1.34265 0.741057 0.682209 1.015719 4.175725 
PM PSO 0.3357 4.119933 1.733164 0.481672 0.086142 
Poly PSO 0.4598 0.805775 0.251563 2.922266 3.639468 
G PSO 0.30877 0.065042 0.004492 0.007795 0.040118 
C PSO 0.6988 0.392656 1.841579 0.570943 0.191385 
L-PSO 0.9766 0.017161 0.03813 0.64016 0.021408 
Blended BBO 0.018927 0.13884 0.02613 0.17277 0.07241 

k 

Rand PSO 0.0012892 0.007537 0.005751 0.022836 0.003475 
PM PSO 0.00824 0.001756 0.002176 0.007588 0.012832 
Poly PSO 0.002872 0.00354 0.001167 0.001895 0.008437 
G PSO 0.002988 0.001249 0.022905 0.005643 0.000103 
C PSO 0.00092761 0.005876 0.004667 0.03083 0.033955 
L-PSO 0.00792 0.006664 1.17E-05 0.029757 0.003078 
Blended BBO 0.004982 0.01027 0.01677 0.01729 0.00156 

(continued)
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Table 2 (continued) 

Parameter Algorithm 10 50 100 200 500 

Tx Rand PSO 0.11972 0.026052 0.297564 0.864591 0.066409 
PM PSO 0.59272 0.065632 0.63135 0.598079 0.020628 
Poly PSO 0.735091 1.010329 0.371582 0.435924 0.032583 
G PSO 0.073639 1.21052 0.646933 0.530257 0.029168 
C PSO 0.1938 0.221803 0.260677 0.222334 0.104469 
L-PSO 0.31838 1.00999 0.167359 0.351686 0.112323 
Blended BBO 0.6583 0.66404 1.00126 0.89232 0.23205 

Ty 

Rand PSO 1.23983 5.142888 0.790665 0.912582 2.035849 
PM PSO 7.40292 9.213382 2.426164 2.357414 0.510078 
Poly PSO 1.89202 8.029741 1.62026 4.407579 0.419929 
G PSO 0.076939 0.72936 0.941844 1.703283 0.935087 
C PSO 6.9802 5.560166 7.603574 4.731641 0.104048 
L-PSO 0.2639839 0.394265 0.576217 0.488848 0.505852 
Blended BBO 0.1527 1.312987 0.217567 0.457192 0.14602 

Tz 

Rand PSO 0.67292 0.863252 1.301638 1.160016 0.301665 
PM PSO 1.40292 6.685754 1.027865 1.186357 2.646604 
Poly PSO 0.0919187 11.9774 3.154013 3.064638 0.663101 
G PSO 3.9282 10.43866 2.106338 5.729853 0.545908 
C PSO 6.3938 0.948168 1.224397 2.214268 1.215613 
L-PSO 0.18484 7.228216 9.884646 6.151133 0.135262 
Blended BBO 0.093983 0.512545 0.749082 0.635502 0.657608 

alpha 

Rand PSO 0.01383 1.706883 0.282837 0.594349 0.189826 
PM PSO 0.012928 1.122228 1.692129 1.508021 0.392165 
Poly PSO 0.000084749 8.691481 1.336224 1.542264 3.440585 
G PSO 0.000017 15.57062 4.100217 3.98403 0.862032 
C PSO 0.030038 13.57026 2.738239 7.448809 0.70968 
L-PSO 0.024849 1.232618 1.591716 2.878548 1.580297 
Blended BBO 0.000298 9.396681 12.85004 7.996473 0.175841 

beta 

Rand PSO 0.073332 0.666308 0.973807 0.826153 0.85489 
PM PSO 0.047565 2.218948 0.367688 0.772654 0.246774 
Poly PSO 0.007292 1.458896 2.199768 1.960427 0.509814 
G PSO 0.045428 11.29892 1.737091 2.004943 4.47276 
C PSO 0.0375675 20.2418 5.330282 5.179239 1.120641 
L-PSO 0.01284575 1.458896 2.199768 1.960427 0.509814 
Blended BBO 0.0059 11.29892 1.737091 2.004943 4.47276 

gamma 

Rand PSO 0.245493 20.2418 5.330282 5.179239 1.120641 
PM PSO 0.0158373 17.64134 3.559711 9.683451 0.922584 
Poly PSO 0.0013847 1.602404 2.069231 3.742113 2.054386 
G PSO 0.00001987 12.21568 16.70505 10.39542 0.228593 
C PSO 0.008387 0.8662 1.265949 1.073999 1.111357 
L-PSO 0.03629874 2.884632 0.477994 1.00445 0.320806 
Blended BBO 0.00598 1.896565 2.859699 2.548555 0.662758
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Table 3 Camera errors for right camera for varying numbers of control points 

Parameter Algorithm 10 50 100 200 500 Average 

f Rand PSO 0.044406 0.18 0.11172 0.052761 0.043144 0.0864062 
PM PSO 0.074132 0.079752 0.080253 0.106694 0.014889 0.071144 
Poly PSO 0.066342 0.159004 0.007878 0.149157 0.101876 0.0968514 
G PSO 0.05697 0.056588 0.025016 0.100576 0.022319 0.0522938 
C PSO 0.034158 0.139876 0.077253 0.18627 0.059315 0.0993744 
L-PSO 0.478059 0.045168 0.015363 0.001168 0.162348 0.1404212 
Blended BBO 0.31616 0.33453 0.133498 0.000769 0.271253 0.211242 

Nx 

Rand PSO 1.373803 0.044301 0.197815 0.164958 0.129119 0.3819992 
PM PSO 0.004764 0.084025 0.976119 0.815793 1.198443 0.6158288 
Poly PSO 0.477428 0.100776 0.172758 0.487176 0.06959 0.2615456 
G PSO 0.312556 0.41266 0.231014 0.113208 0.299791 0.2738458 
C PSO 0.262216 0.036426 0.088562 0.241455 1.205115 0.3667548 
L-PSO 2.27699 0.219725 1.106474 0.240857 0.25447 0.8197032 
Blended BBO 0.26576 0.00432 0.424428 0.518146 0.122522 0.2670352 

Ny 

Rand PSO 0.193095 1.06913 0.317453 1.553951 0.387519 0.7042296 
PM PSO 0.42701 0.883951 0.844218 1.545705 0.079553 0.7560874 
Poly PSO 0.520066 1.239188 1.031169 0.595897 0.628988 0.8030616 
G PSO 0.020741 0.352441 0.316507 0.672235 0.914089 0.4552026 
C PSO 0.188418 0.128667 1.190323 0.398805 0.923642 0.565971 
L-PSO 1.417966 0.475952 0.121807 0.99797 1.566333 0.9160056 
Blended BBO 0.19728 0.18135 0.416902 0.346858 0.05602 0.239682 

u0 

LX-Rand BBO 0.967718 0.477842 0.065884 2.642091 3.782402 1.5871874 
LX-PM BBO 0.020769 0.066174 0.429793 0.173863 1.01068 0.3402558 
LX-Poly BBO 0.382444 0.56381 0.460645 2.242422 0.881862 0.9062366 
LX-G BBO 0.151233 1.192916 0.674603 1.118233 0.143079 0.6560128 
LX-C BBO 0.353092 1.189723 0.197002 0.611511 0.321765 0.5346186 
LX-l BBO 1.684685 0.113715 1.654228 0.499089 1.230732 1.0364898 
Blended BBO 0.26704 0.32139 0.213977 0.30217 0.494239 0.3197632 

v0 

Rand PSO 0.189348 0.243143 0.283194 0.667557 0.206054 0.3178592 
PM PSO 0.711386 0.960224 0.126378 0.057336 0.228718 0.4168084 
Poly PSO 0.311976 0.07163 0.354237 1.536039 0.121138 0.479004 
G PSO 1.030991 0.158625 143.2231 0.861066 0.315927 29.117942 
C PSO 0.306065 0.619149 0.774449 0.278219 1.236844 0.6429452 
L-PSO 0.535554 0.719699 0.148611 0.021479 0.34391 0.3538506 
Blended BBO 0.15408 0.15939 0.044477 0.524075 0.821402 0.3406848 

k 

Rand PSO 0.001876 0.000481 0.000738 0.006913 0.001189 0.0022394 
PM PSO 0.004312 0.001092 0.005227 0.012322 0.000652 0.004721 
Poly PSO 0.002155 0.006408 0.001389 0.000578 0.005187 0.0031434 
G PSO 0.000886 0.00783 0.00995 0.000677 0.003373 0.0045432 
C PSO 0.010874 0.000252 0.007142 0.00085 0.002382 0.0043 
L-PSO 0.004796 0.013398 0.001453 0.008632 0.002341 0.006124 
Blended BBO 0.01096 0.00108 0.003254 0.019105 0.000546 0.006989 

(continued)
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Table 3 (continued) 

Parameter Algorithm 10 50 100 200 500 Average 

Tx Rand PSO 0.655016 0.921915 0.385354 0.776072 0.484104 0.6444922 
PM PSO 0.502832 0.023805 0.159177 0.440791 0.136339 0.2525888 
Poly PSO 0.220064 0.033263 0.162125 0.06153 0.207657 0.1369278 
G PSO 0.486602 0.186402 0.200331 0.075301 0.443852 0.2784976 
C PSO 0.376899 0.403617 0.282945 0.57978 0.195036 0.3676554 
L-PSO 0.009539 0.163548 0.223046 0.270093 0.089128 0.1510708 
Blended BBO 0.72184 0.03222 0.113701 0.067198 0.237947 0.2345812 

Ty 

Rand PSO 0.348973 0.112831 0.121461 0.464107 0.214681 0.2524106 
PM PSO 0.058383 0.602893 0.101501 0.016955 0.094817 0.1749098 
Poly PSO 0.404024 0.052901 0.133641 0.708794 0.410576 0.3419872 
G PSO 0.032359 0.123519 0.154569 0.276816 0.138895 0.1452316 
C PSO 0.077124 0.042046 0.062864 0.63851 0.120051 0.188119 
L-PSO 0.027562 0.058642 0.096728 0.240211 0.165829 0.1177944 
Blended BBO 0.00296 0.00702 0.035731 0.013615 0.010156 0.0138964 

Tz 

Rand PSO 4.558761 1.423436 4.806374 3.697145 0.909133 3.0789698 
PM PSO 1.558562 0.160899 0.263311 6.910535 3.17732 2.4141254 
Poly PSO 0.906546 7.254022 1.185153 3.026315 2.322818 2.9389708 
G PSO 0.637114 3.056054 6.319311 4.290712 3.641515 3.5889412 
C PSO 2.812785 8.606612 0.132218 1.825775 5.913478 3.8581736 
L-PSO 0.519471 1.312794 3.318024 0.965552 2.608121 1.7447924 
Blended BBO 0.14104 0.29457 1.555332 1.102941 0.027628 0.6243022 

alpha 

Rand PSO 0.264531 0.297598 0.226021 0.366034 0.361085 0.3030538 
PM PSO 0.264531 0.297598 0.226021 0.363069 0.361085 0.3024608 
Poly PSO 0.264531 0.297598 0.226021 0.366034 0.361085 0.3030538 
G PSO 0.264531 0.297598 0.226021 0.366034 0.361085 0.3030538 
C PSO 0.264531 0.297598 0.226021 0.366034 0.364033 0.3036434 
L-PSO 0.264531 0.297598 0.226021 0.366034 0.361085 0.3030538 
Blended BBO 0.1748 0.03852 0.018035 0.021191 0.00819 0.0521472 

beta 

Rand PSO 0.217726 0.253488 0.115886 0.1006 0.483546 0.2342492 
PM PSO 0.213613 0.511743 0.194694 0.775676 0.23811 0.3867672 
Poly PSO 0.24171 0.380763 0.170667 0.347232 0.147447 0.2575638 
G PSO 0.246247 0.527518 0.474766 0.747659 0.780586 0.5553552 
C PSO 0.238898 0.648911 0.268385 0.104427 0.219637 0.2960516 
L-PSO 0.225727 0.640835 0.48925 0.867623 0.822768 0.6092406 
Blended BBO 0.01392 0.00072 0.004543 0.024705 0.008408 0.0104592 

gamma 

Rand PSO 0.000946 0.00022 0.000057 0.000121 0.010253 0.0023194 
PM PSO 0.010277 0.001793 0.000175 0.00033 0.012286 0.0049722 
Poly PSO 0.002064 0.001163 5.76E-05 0.000182 0.011406 0.0029745 
G PSO 0.009871 0.013056 0.000168 0.000272 0.010915 0.0068564 
C PSO 0.002473 0.000184 4.14E-05 0.000386 0.011693 0.0029555 
L-PSO 0.006225 0.013733 1.42E-05 0.000586 0.010614 0.0062344 
Blended BBO 0.00176 0.00288 0.00061 0.004502 0.005023 0.002955
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Fig. 2 Convergence behavior for stereo camera calibration problem solved by PSO 

5 Conclusion and Future Scope 

On the basis of above analysis, it can be concluded that all the six versions of PSO 
can be used to solve any unconstrained optimization problem. Camera calibration 
problem is considered as a complex problem in computer vision study. Evolutionary 
algorithms have not been quite successful in solving camera calibration problem. 
However, due to their wide applicability on optimization problems, the present study 
is an attempt to solve such kind of problems using PSO. The problem has been 
solved using Rand PSO, Poly PSO, PM PSO, C PSO, G PSO, and L PSO. L PSO 
is proved to be a better version among all the other variants considered. In future, 
other unconstrained optimization problems can also be solved by using the variants 
of PSO. 
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and R. Rajalakshmi 

1 Preamble 

In 1996, Storn and Price developed the differential evolution algorithm (DEA). 
This method is a stochastic population-based hunt practice that illustrates admirable 
potential in resolving an extensive collection of optimization issues from numerous 
areas and a lot of real-world application problems [1]. It is a class of evolutionary 
computation technique that endures the processes of mutations, crossovers, and 
operators selection during every generation to attain the overall best possible 
solution. The current generation’s parent vector is also named the objective vector. 
To generate a mutant vector through the differential mutation, operation mutation 
is used which is named as the contributor vector. The contributor vector of 
every objective vector is obtained from the contemporary population by random 
selection of three distinct parameter vectors from the current population. The 
weighted difference between two population vectors to a third vector is added 
using the mutation process, to generate a mutant vector. The crossover process 
creates the test vector through merging specifications of the mutation vector to the 
specifications of a target vector chosen out of population. The appropriateness level 
and assortment process decide the vectors chosen for the next generation, which 
depend on the engendered test vectors as well as the consequent parent’s vectors. 
This mutation approach and the crossover process have the most influence on the 
DEA’s efficacy. The most significant intrinsic regulatory attributes that regulate the 
population’s diversity and the algorithm’s growing of convergence are the scaling 
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factor, population dimension, and crossover rate. The advantages of this algorithm 
are ease of implementation, reliability, fast operation, and robustness [2–3]. DEA is 
found to be efficient on a huge range of standard optimization problems. In studies 
[1], it was found that DEA performed better than simulated annealing as well as 
genetic algorithms. This method is also more accurate than the controlled random 
search strategy. 

In [4], it is proven that DEA is more accurate than several other optimization 
methods like simulated annealing and evolutionary programming. The trial vector 
generation strategies should be properly chosen along with their associated control 
parameter values to acquire the best possible outcomes for a particular problem. 
In this approach, several experimental vector generation strategies are available, 
among which only some are appropriate in working out a specific problem. Control 
parameters like crossover rate, population size, and scaling factor are important to 
improve the efficacy of the algorithm. To work out a precise optimization issue, it 
is necessary to adjust the relevant variables and conduct a time-conserving tryout 
and miscalculation-incisive process. In the process of evolution, the population 
of DE moves throughout various areas in the exploration space. In the searching 
process, definite approaches connected to precise parameter settings possibly will 
be further efficient than other methods. Hence, an adaptive strategy along with its 
allied constraint values should be used at diverse phases of the progression process. 
DEA has emerged as one among the most essential metaheuristics nowadays owing 
to its ability to resolve various industrial optimization issues. The concert of this 
method is limited by the following factors: it can easily converge to a local optimum 
and is dependent on the control parameters. The parameters used for control vary 
for numerous areas of the space being explored and depend on the situation at 
hand. It also entails a time-consuming process of trial and error in finding the best 
parameters for an issue that exists. 

Optimization approach is essential in various domains such as statistics, finance, 
and engineering. Most of the realistic systems have fitness functions with features 
called noncontinuity, nonlinearity, multidimensionality, and nondifferentiability. 
They also exhibit problems such as convergence within local minima and stochas-
ticity. Analyzing and solving problems are difficult. DEA belongs to the class of 
genetic algorithms, and evolutionary programming. Metaheuristic search algorithms 
(MSAs) are considered to resolve complex contemporary optimization issues 
through adapting their survey methods based on inspiration from various natural 
phenomena. MSAs conduct searches through various stages of investigation and 
development throughout the optimization procedure to obtain the overall best 
results. Exploration engages the progression of determining varied clarifications 
within the exploration space. Utilization focuses on the exploration process con-
tained by the neighborhood for the best results. An appropriate balance of the 
investigation and utilization phases is essential to succeeding with numerous 
categories of optimization issues. MSAs locate the near-global optimum solution 
without significant modifications to the algorithmic frameworks. The stochastic 
environment of MSAs facilitates enhanced sturdiness against confined fit-up chal-
lenges.
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Metaheuristics [5] are potential methods which are exploited when conventional 
optimization approaches cannot crack multifaceted issues efficiently. Metaheuristics 
may resolve problems with different characteristics and arrive at an acceptable 
solution, in a reasonable time when matched up to conventional approaches. 
Metaheuristics for optimization were able to classify trajectory-related approaches 
as well as population-related methods. Trajectory-related approaches formulate 
alterations from a potential elucidation to an assorted one, like simulated annealing, 
hill climbing, gradient descent, simplex method, and tabu search. Some of the mul-
tiple trajectory-based algorithms are the iterative local hunt, variable neighborhood 
search, as well as greedy adaptive exploration strategy. 

In population-related methods like evolutionary algorithms (EAs), groups of 
findings, also named the population, are used on the similar occasion, by means of 
a latest population being breed from an elderly one. They obtain a good solution 
to a nonlinear programming problem in a feasible time. Some of the important 
evolutionary algorithms are particle swarm optimization, genetic algorithms, and 
differential evolution. Amalgamation of EAs with local search approaches [6] are  
capable of constraining the exploration into an enhanced region more from confined 
optima. They boost the utilization of a little potential region of the exploration space 
consequently to increase the rapidity of convergence in the searching process. 

2 Literature Survey and Associated Works 

Several researchers have taken efforts to review the substantial progress made in 
the differential evolution algorithm for various applications since its introduction 
in 1997. In [7], the progress of differential evolution-based research is discussed. 
It focuses on the detailed analysis of various modified DE structures and their 
performance evaluation. The application of DE to solving rotated problems with 
different dimensional sizes is discussed in [8]. The authors did not concentrate 
on DEA in engineering applications, current trends, or future research directions 
of differential evolution method. The key topics covered in papers [8, 9] are the  
changes made to the available DE variants to resolve optimization problems related 
to engineering applications. The theoretical analysis of the differential evolution 
algorithm, along with future research directions for DE, was elaborated. The study 
in paper [10] is concentrated on the purpose of differential evolution to resolve 
fixed and variable cost-effective dispatch issues. Here, problem formulation with 
equality and inequality constraints considering the objective function for various 
economic dispatch problems is described along with an outline of the conventional 
DE alternatives for problem-solving. 

Theoretical studies on differential evolution algorithms, like convergence charac-
teristics, computational complication, and population assortment, were substantially 
discussed in [11]. In [12], the DE alternatives and its functions in energy administra-
tion issues were discussed. In most of the literature studies [10–12], the descriptions 
of the methodology and databases used for data collection are not clearly discussed.
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The impact of DE variant’s parameter settings to obtain the best possible solution 
in engineering applications is discussed. Recent research on the modification of DE 
algorithms were comprehensively described and analyzed in [13]. An elaborated 
study of the best possible control specifications for DE in various classes of 
optimization issues to boost the overall seek-out strategy of DE is also elaborated. 
Open research issues from various viewpoints on the DE variants are also discussed. 
In addition, upcoming research areas and the ability to deal with open investigation 
challenges are addressed. In order to address high-dimensional problems, some 
modifications are required in the conventional DE for performance enhancement. 
The concert of this approach is dependent on an assortment of control variables such 
as stagnation, premature junction, and sensitivity. Stagnation occurs in a condition 
where the assortment of population is large but still not able to congregate to a 
suboptimal solution [14]. 

If the control specifications turn into ineffective in support of a particular issue 
in the assessment space, then stagnation takes place. Many of the researchers 
have adopted various techniques like differential mutations to perturbations and 
mutations to assortment pressure, as well as operator amendment techniques toward 
advancing the concert of the conventional DE approach [15–16]. The performance 
of differential evolution and the optimal solution attained were based on either 
binomial or exponential techniques. Adjustable differential evolution algorithm 
using fuzzy logic approach is proposed in [17]. This technique adapts the control 
variables like crossover rate and mutation factor of this method with inputs such 
as the individuals of successive generations and objective function values. A novel 
approach with an extension of individuals in the population with constraint values 
is studied in [18]. The key factor in this algorithm is that the adjustment of control 
parameters by evolution results in individuals of higher quality having a higher 
probability of propagating them. 

An effectual evolutionary approach for global optimization design includes a 
local search (LS) heuristic. In [19], it is suggested to combine this method with 
chaos local search (CLS) technique. This method uses local search based on chaos 
to identify the top players in the process of evolution. Merely the top performers in 
this iterative process will be taken into account for the following generation. The 
other individuals are dismissed shortly after which a random generation of them 
is generated. The proposed work in [20] uses a similar CLS approach after each 
production for the finest individual. The perturbation is first done in one direction, 
and based on the result obtained, the disruption will be accomplished in the converse 
track. The current step size will be shortened to half the size of the prior iteration 
if the ultimate solution fails to arrive to a universal optimal level. Since this search 
strategy utilizes a huge number of utility estimations, a neighboring constraint has 
to be finished to prevent the overuse of assessing resources. Two other alternative 
techniques to progress the concert of the DE approach are illustrated in [21]. DETLS 
approach utilizes a trigonometric local seek-out technique. Here, a weighted mean 
of the three points, including the preeminent as well as two different arbitrary 
individuals from the population, is considered the latest individual. In the quadratic 
interpolation approach named DEILS, the same three individuals as in the DETLS
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method are selected. Additionally, the DEILS method generates a parabolic curve 
before locating its minimum point. Both algorithms apply a local search after each 
generation and keep doing so until the best outcome is found. 

A differential evolution through Taguchi local hunt methods (THDE) is sug-
gested in [22]. In this method, a halfway point among two arbitrarily chosen people 
from the population is utilized. 

In this technique, each parent is split into four pieces to produce nine new people. 
The portion of the parent producing good results is replicated to the children based 
on the consequence of three parents being estimated for every factor. The offspring 
produced at the same moment replaces a random member of the population. This 
type of approach is distinct from the conventional local search method, which 
substitutes the weakest descendent of the population for the worst descendent in 
it. Commonly used techniques apply local search strategies to the best individuals. 
There are several other techniques, as in [19, 22], where LS is utilized to a portion 
of the preeminent peoples in the population or to individuals with higher fitness 
values. There are also other methods where LS is utilized with a possibility to 
every individual in the population. New techniques for the process of mutation 
in a differential evolution algorithm have a good impact over the concert of the 
DE approach. For instance, a novel alternate of DE named DE/current to p best 
is proposed in [23], where p ∈ (0, 1). In this method, the highest percentage of 
individuals is considered the best individuals that afford a steadiness among both 
investigation and utilization phases. In another method for DE/current to gr-best, as 
in [24], the set of descendants providing good results such as q% of total population 
are selected randomly. As a substitute of tuning the constraint parameters and 
adopting new methods for mutation, researchers have also suggested integrating 
ensemble strategies and parameters into evolutionary algorithms. 

A hybrid mutation method has been proposed [25] as a new alternate of DE. In a 
hybrid mutation technique, two kinds of mutation and self-adapting control param-
eters are incorporated. In many of the research works, impression of compound 
mutation approaches and binomial crossover for generating experimental vectors 
are utilized for finding solution in embarrassed optimization issues. The adaptive 
method, when combined with the conventional differential evolution algorithm, 
improves system performance but has the problem of a slow convergence rate 
[26]. The self-adaptive and adjustable variable controls in a DEA were able to 
increase the resilience and rate of divergence with proper design so that the system 
spontaneously adjusts to the parameters. The parameter adaptation is an approach 
named the adaptive DE method (ADE), and it is essential to be attuned. The 
self-adaptive variable adjusts them in a dynamic manner and controls the value 
assignments over processing according to certain predefined rubrics. Thus, in an 
optimization problem, the parameter can be dynamically adjusted by utilizing self-
adaptive and adaptive controls, or a mixture of both [27]. 

The adaptive DE assists in the exploitation phase to prevent the convergence 
issue and attain the final global optimum value. Many research studies have been 
suggested by various authors for hybridizing the traditional evolutionary algorithm 
in order to resolve various optimization issues. The primary population of the
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DE algorithm is produced through problem-oriented algorithms. The successive 
explanations from various iterations are obtained using a different evolutionary com-
putation technique improved through a local hunt strategy. This kind of grouping 
is named a memetic approach. In addition, mutation operations can be modified 
to obtain solutions for individuals in the population with higher probabilities than 
those of others. There is no crossover or mutation operation in an estimation of 
distribution algorithm (EDA) [28], which is the special category of the existing 
progression computation techniques. The innovative outcomes are sampled based 
on the possibility of distribution. This process takes place by utilizing the prevailing 
descendants acquired in the preceding creations. 

Many research works have progressed in EDA and its variants since it proved to 
be an effective algorithm in combined as well as perpetual realms. In this algorithm 
the main factor to be considered is the construction of outstanding probability 
distribution models to define the essential features of the issue. To define favorable 
regions in the exploration phase, the probability model is used. EDA-FL is the 
new EDA alternate proposed in [29]. In this work, Kalman filtering is used to 
improve the modeling accuracy, and a training approach is utilized to enhance the 
efficacy of sampling. A novel multifactorial variant of this method named PMFEA-
EDA is proposed by means of introducing a novel sampling approach to handle 
huge combinatorial demands of Internet-based jobs. In an estimation-distribution 
differential evolution (EDDE), the control variables are sampled from the reduced 
Gaussian PDFs which adjust to the most favorable values in the optimization 
process. 

3 The Differential Evolution Algorithm 

This algorithm is different from other computation techniques in the way it 
combines responses utilizing a difference factor rate of specified single vectors, and 
the recombination of individuals takes place through a method based on probability. 
The differential mutation process is the key factor that differentiates DEA in 
comparison to various population-based approaches. The mutation rule is applied 
to every parameter within the vector space and enhances the exploration phase, 
depending on the other solutions. Thus, mutation strategies improve the capacity 
to find new potential descendant according to the spreading of solutions inside the 
vector space [30]. DEA belongs to the category of genetic algorithms. It is used 
for solving real-world problems in an effective manner. It is a convenient design 
tool that can be easily accessed for practical applications. DE is useful in finding 
the optimum solution for various science and engineering applications to deal with 
complex problems without the need for expert knowledge or complex algorithmic 
design. In this method, the process of mutation is used as the search strategy, which 
leads the investigate toward the probable province during the search. They are 
dependent on crossover mechanisms, which swap information among solutions to
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Fig. 1 Steps involved in the differential evolution algorithm 

attain the optimum result, while other evolutionary computation techniques utilize 
the primary search method called mutation. 

The performance of the DEA is based on the selected approach as well as the 
constraints. The DEA utilizes mutation, crossover, and selection operators in its 
activities to identify the global optimum resolution for every successive generation. 
The basic differential evolution technique is depicted in Fig. 1 alongside its various 
phases. The size of population, crossover rate, and scaling factor are parts of 
the constraints. The objective function is elected arbitrarily from the beginning 
population to begin the differential evolution method, which is population-based and 
initiated with a remedy to the issue at hand. In this initial population, the number of 
vectors population (N) is elected within the limits. 

An arbitrary number creator for every vector inside the specified parameter limits 
are defined by the equation given as 

.xi = random (0, 1) .
(
xU
j − xL

j

)
+ xL

j (1) 

The random function yields a constant arbitrary number in the sort (0, 1). A 
function is optimized using R real parameters; N is the population size, which should 
have a minimum value of at least 4. The parameter vector is of the form: 

. xi,G=[x1,i,G x2,i,G x3,i,G xD,i,G]

where i = 1, 2 . . .  N and G is the generated number.
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The lower and higher limits of every variable is defined as 

.xL
j ≤ xj,i,1 ≤ xU

j (2) 

Initial parameter values are arbitrarily selected at regular gap. All the parameter 
vectors encounter the processes of recombination, mutation, and selection. The 
search space gets expanded by mutation. From this parameter vector, three vectors 
are arbitrarily elected with some indicator. In the next step, add the biased variation 
of these vectors to the third vector, resulting in the donor vector. The donor vector 
is defined as 

.vi,G+1=xr1,G+F
(
xr2,G − xr3,G

)
(3) 

The range of mutation factor is [0, 2]. The recombination process includes the 
dominant outcomes from the earlier creation. In the recombination process, the 
experimental vector ui, G + 1 is formed by the elements of the donor vector vi, G + 1 
and the variables of the target vector xi, G.Then the variables of the donor vector form 
the experimental vector through likelihood CR. In order to regulate the differential 
mutation exploration method, the algorithm follows a uniform crossover method to 
create the experimental vectors. An experimental vector is obtained from the values 
of two diverse vectors. The crossover probability is denoted as CR, and fraction 
of the CR value is duplicated from mutant vector. The crossover probability value 
is evaluated with an arbitrary number randj, i whose value lies within [0, 1]. If an 
arbitrary number is a smaller amount or identical to the experimental variable is 
innate from the mutant vector the variable is obtained from Vj, i, G + 1 or else the 
variable is obtained from the vector Xi, j. 

.uj,i,G+1=
⎧

vj,i,G+1 if randj,i ≤ CR or j = Irand

xj,i,G if randj,i > CR or j /= Irand
(4) 

where randj, i~ U [0, 1], Irand is an arbitrary integer commencing [1, 2 . . . ,D] also  
Irand assure that vj, i, G + 1 /= xj, i, G. In the next step, the intention vector xi, G is 
contrasted with the experimental vector vi, G + 1, and the one with the least possible 
function assessment is passed on to the upcoming evolution. In the selection stage, 
there is a process to find out when the trial vector uj, i, G + 1 has a significance of 
the fitness function less than or equal to that of its intention vectorxj, i, G. In the next 
iteration, by contrasting each of the experimental vectors with the objective vector 
from that the variables are duplicated, the algorithm either switches the objective 
vector in or retains the same position in the population: 

.xi,G+1=
⎧

ui,G+1 if f
(
ui,G+1

) ≤ f
(
xi,G

)
i = 1, 2 . . . N

xi,G otherwise
(5)
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After updating the population, selection, recombination, and mutation prolong 
in anticipation of certain end clause is accomplished. To attain the best possible 
solutions with this method, the above steps are to be followed. The concert of the 
DEA is inclined through the constraints like crossover rate as well as mutation. 
There are three types of parameter control: deterministic parameter control, self-
adaptive parameter control, and adaptive parameter control. Self-adaptive parameter 
control and adaptive parameter control can vary the control parameters without 
previous knowledge about the problem behavior in the searching phase. Some of 
the recent applications of the DE approach include:

• DE algorithm is used in electricity market applications to find best possible offers 
based on day by day bidding action.

• It is used in the optimization of strategies for checkers.
• It is used in the multicast direction-finding approach for the subsequent genera-

tion of internet to improve the superiority of service.
• Power plant control applications.
• Digital filter design.
• The DE algorithm occupies an eminent part in network system configuration of 

distributing systems.
• Maximization of profit in an industrial process.
• It is used in the controller design of an aircraft stability control system.
• Optimization of the process involved in alcohol fermentation
• DEA is used in color image quantization to lessen the amount of image colors. 

The DE approach has the features such as simple structure, speed, robustness, 
and ease of use. The effectiveness of the traditional DE approach is greatly relying 
on the experimental vector creation procedure and the connected variable values are 
utilized. Thus, an improper selection of these would result in premature convergence 
or stagnation. 

4 New Techniques and Algorithm to Improve the Standard 
DE Algorithm 

For a successful optimization procedure, the differential evolution method links 
numerous control factors, such as mutation and crossing rates. In the adaptive DE 
algorithm (ADE), the parameters are adjusted, which relies on a feedback factor 
that is dynamically adapted. In self-adaptive parameter control, specific parameters 
are altered according to a set of predefined rules. Diverse characteristics, including 
the crossover percentage, variation rate, and size of the population, are fine-tuned 
through differential evolution in a population that is self-adapting. The fuzzy 
adaptive differential evolution (FADE) method is a type of DE strategy that uses 
fuzzy logic controllers to control the variables involved in the crossover as well as 
mutation processes. In this algorithm, the amount of the population is supposed to
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be attuned and is fixed all through the progression process. The parameters required 
for both mutation and crossover operations are determined for each generation using 
the current generation and the fitness value acquired in the adaptive DE algorithm 
provided in [31]. For every parent of a creation, the children are built using the 
mutation as well as crossover rates. In an algorithmic framework proposed in [32], 
various mutations as well as crossover approaches are used. In this method, a sole 
mutation strategy is adapted by choosing one from the available mutation strategies. 
In this work, the concert of the mutation approach is based on the progress of 
development during the searching process. 

When the DE algorithm is used for optimization, there is no specific value for 
the crossover rate and scaling factor that is effectual in all the seek-out phases. 
In practice, numerous possible groupings of cross over rate as well as scaling 
factor were able to be efficient all through various phases of the investigate 
progression. One of the most effective DE variants is differential evolution with 
a multipopulation-based ensemble of mutation methods (MPEDE). The control 
parameters in a traditional DE algorithm are fixed, and only one mutation approach 
is used. As a result, the performance of DE might vary substantially depending on 
the optimization problem [33]. Many research works have addressed issues related 
to automatic parameter tuning and the construction of exceptional ensembles of 
mutation strategies. The SaDE algorithm, which includes a combined set of two 
transformation strategies and self-adapted factors; the DE [34] algorithm with self-
adaptive tuning parameters; the CODE algorithm, which includes an arrangement 
of transformation approaches with their own factors; and the MMRDE algorithm, 
which encompasses multiple transformation strategies determined by the roulette 
wheel selection, are some of the improved DE variants. 

MPEDE [35] is a variation on the traditional differential evolution algorithm 
that is based on the multipopulation notion. It separates the entire population into 
four subgroups and employs various tactics. This approach employs three distinct 
mutation mechanisms. There are three equal indicator subpopulations of small size 
and a reward subpopulation of considerable size in this system. A novel sequence 
is used to adjust the mutation probability and crossover rate throughout time. 
After a certain number of generations, the optimal mutation strategy is assigned 
to the reward subpopulation. The control parameters and mutation strategy used are 
significant in improving the performance of the DE algorithm. Tracking the state of 
convergence during the procedure allows for improvement. In a DE algorithm, a low 
recombination rate (F) assists in the exploitation phase, whereas a high F improves 
the exploration process. 

The crossover rate (CR) is important for preserving population variety. During 
the initial phase of the process of iteration, a higher CR value can be used, which 
is then steadily decreased using a controlled sequence. This is done to maintain 
diversity so that system performance is not reduced. Linear decreasing mode and 
linear increasing mode are the two different control sequences of the crossover 
rate used. The variation in the mean fitness value is calculated, and if the fitness 
value does not change between iterations, the sequence will switch from declining 
to growing or growing to declining mode. If the fitness score of the objective
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function remains stable for a given procedure, there is a chance of diversity issues, 
exploration issues, or trapping in the local optimum. To conquer this issue, the 
control parameter value must be tuned accordingly. Thus, the tracking convergence 
over time based on the mathematically adjusted version of the DEA enhances 
the system’s performance. The concert of the new DE can be improved through 
varying the mutation operator by means of adjustable mutation factors and mixed 
mutation approaches. In the adjustable mutation scheme, the value of the mutation 
factor is adjusted from a larger significance to a smaller significance based on the 
convergence characteristics to pass up early union during the initial investigating 
phase and to improve convergence to the best possible solution during the future 
phase of the investigating process. 

An integrated substitution strategy (IMS) combines three distinct mutation 
approaches. IMS increases the assortment of arbitrary exploration and prevents 
early convergence to a confined bare minimum. Various local search methods 
can be integrated with the DEA to increase the rate of convergence. In restart 
differential evolution (RDE) approaches with a restricted investigate mechanism, 
a novel proposed local mutation rule is based on the location of the best and worst 
individuals in the population at large. In this method, each vector learns from the 
position of the greatest and weakest people in a given generation’s total population. 
The location of the best and worst vectors of a specific generation determines each 
mutant vector’s new location, which tracks the same direction as the best vector. 
RDE supports global exploration at the start of the search process based on the 
likelihood of employing the local mutation strategy. In [36], a crossover-based 
adaptive local search (LS) strategy is developed to improve the performance of 
the basic DE approach. This algorithm employs a hill-climbing heuristic, which 
modifies the length of the search as needed. In [37], new variants of the DE 
algorithms are implemented using two alternative local search techniques called 
trigonometric local search (TLS) and interpolated local search (ILS). The system’s 
performance is improved by using this strategy without modifying the convergence 
characteristics. The system’s performance is improved by using this strategy without 
modifying the convergence characteristics. 

An adjustable local hunt strategy balances the scale of global and local hunt 
involved. It compares the performance of both global and local search methods 
to determine its preference for optimization. The local hunt operation based on 
the Hadamard matrix is named the Hadamard local strategy (HLS). HLS searches 
can enhance the likelihood of investigating the best results in the search area by 
creating large number of children. This step is useful to balance the investigation 
and development phases. The parameter adaptation mechanism incorporated into 
HLS is used to resolve huge optimization issues. The hybridization of DEA with the 
inclusion of local search techniques would increase system efficiency [38]. In this 
technique, the local exploration method is adapted to the most excellent character 
in every creation to explore the major favorable areas all through the stages of 
evolution. This step increases the speed of convergence and reduces the chance of 
trapping within the local minimum. An important factor to be considered in the local
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search strategy is to find out which individuals in the population must go through 
the local search technique. 

Recent literature works reveal that local search techniques can be utilized to the 
finest descendants in the population or the proportion of descendants producing 
best possible solutions. It can also be related to descendants with higher suitability 
values than the average or with a possibility to every descendants of the entire 
population. The purpose of developing a new crossbreed DE approach is to enhance 
the optimization method to resolve various issues in the production fields and 
machining operations. There are many approaches to hybridize a traditional differ-
ential evolutionary approach to resolve optimization issues. To conduct parameter 
optimization in industrial process, various evolutionary computation techniques 
have been modified with other optimization techniques. A parallel genetic simulated 
annealing (PGSA) algorithm [39] is used to find the optimal machining parameters 
for milling operations. The results of this algorithm reveal its effectiveness in 
a milling operation. The integration of the differential evolution and estimation 
of distribution algorithm (DE/EDA) is used to resolve the transmission network 
expansion planning (TNEP) problem. The TNEP problem aims to find the new 
transmission circuits to be included in the electrical system with the minimum 
investment cost and meet future power demand. TNEP takes into account various 
methods like mathematical programming and metaheuristic techniques. In every 
generation, the probability vector is updated and then sampled to produce the 
next population. The first step involves initializing the probabilistic model. The 
probabilistic model is characterized by p which is depended on a normal distribution 
function p (μ, σ). The initial value of the mean μ is created arbitrarily in the search 
space [ Xmin,Xmax ]: 

.μG=0
j = round

(
Xmin,j + (

Xmax,j − Xmin,j

) ∗ rand
)

(6) 

The initial standard deviation σ is set to a higher value to attain the diversity of 
individuals. Let n be the dimension of the problem. For the entire set of iterations, 
the values are updated as follows: 

.μG+1
j = (1 − η) ∗ μG

j + η ∗
(
xG

1,j + xG
2,j − xG

worst,j (7) 

where ŋ is called the learning rate ∈ (0, 1)., xG
1,j andx

G
2,j represents the first two 

individuals with the best solutions, and .xG
worst,j represents the individual with the 

worst solution of the current population. 

.σG+1
j = (1 − η) ∗ σG

j + η ∗
√||√ m∑

i=1

(
xG

1,j − μG
best

)2/
NG

best
(8) 

where .NG
best is the amount of descendants with the preeminent results from the up 

to date generation and .μG
best is the mean of .NG

best individuals. Once the probability



Analysis of Nonlinear Optimization Problems Using Differential Evolution Algorithm 33

vector p is updated, it is utilized to create the subsequent generation through a 
random normal distribution N (μ, σ). Then the new population is generated by 
the sampling process. Then the population is evaluated to find the optimal power 
flow for the TNEP problem. The results tested on an IEEE 118 bus system and 
a Garver 6 bus system illustrate that hybridization of DE-EDA is proficient and 
improves the efficiency and robustness of metaheuristics. It is also found that 
hybridization is an efficient way to solve complex optimization problems. A hybrid 
differential evolution algorithm based on the gaining-sharing knowledge algorithm 
and Harris hawk optimization (DEGH) [40] accomplishes brilliant performance 
even with a fixed scaling factor. Harris hawk optimization (HHO) is an innovative 
swarm-based algorithm that replicates the cooperative behavior and chase pattern of 
Harris hawks in the hunting process. It involves three phases known as exploration, 
transition from exploration to exploitation, and exploitation. DEGH includes a dual-
insurance mechanism in the mutation operation with four mutation strategies to 
realize a balance between the exploration and exploitation phases. The crossover 
probability has a positive effect on the choice of the mutation operator for each 
individual. The internal phases of the differential evolution algorithm are closely 
interrelated, such that the crossover probability is closely associated with mutation 
and selection operations. The crossover probability self-adaption strategy used in 
this algorithm strengthens the interconnection between the mutation, crossover, 
and selection stages of the algorithm. The crossover probability and scaling factor 
adapt the evolution strategy of each individual to make the algorithm more suitable 
for numerous applications. Recent research trends in the differential evolution 
algorithm use substantial heuristic techniques to enhance their search strategy and 
parameter adaptation. 

The smart sampling (SS) method is proposed in [41] to detect the favorable areas 
of the exploration space anywhere the best possible solution exists. In this method, 
depended on the appropriate value, the preliminary population is filtered to choose 
the most promising solutions based on a trained classifier. The better solutions are 
appended to the population, and the classifier is used to recognize the downsized 
population in order to preserve a predetermined cardinality via discarding the other 
members. This progression is continual until a convergence norm is met and DE is 
initialized with members from the favorable region in the search space. This method 
is suitable for multimodal and high-dimensional problems. 

The rotation matrix for this is constructed up of the eigenvectors of the popula-
tion’s covariance matrix. By combining the target and contributor vectors with the 
eigenvector matrix, the vectors are rotated. The conjugate transpose of the rotation 
matrix is multiplied once the trials have been created. The individuals go through 
a crossover procedure once every generation with a predetermined likelihood; the 
likelihood is referred to as the control variable [42]. 

Parallel computing is a form of high-performance computing. In parallel com-
puting, simultaneous solving is depended on the rule that a great issue is split 
into reduced ones and solved concurrently. Parallel DE algorithms are used to 
improve the speed and accuracy of exclusive optimization problems. Differential 
evolution algorithms are used on modern parallel computing platforms based
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on super parallel SIMD (single-instruction, multiple-data) devices like graphical 
processing units. The essential conditions needed for convergence, the variations 
of the DE population, and the computational complication of the DE approach are 
interlinked and considered important aspects of the algorithm. Hence, a combined 
method of addressing these three issues concurrently is needed to walk around their 
intercorrelation. DEA offers the users a strong set of offspring generation methods 
and is thus a robust optimizer in solving difficult optimization scenarios. 

5 Methods to Enhance DE by Controlling the Population 
Diversity 

DE improves a candidate solution depended on an evolutionary progression iter-
atively in order to optimize an issue. Such algorithms are capable of rapidly 
navigating very large design spaces and make little to no assumptions about the 
underlying optimization problem. By carefully selecting a subclass of the strategy 
pursuit, contemporary optimization techniques can efficiently explore the collection 
of all potential solutions or plan pursuit space. However, time taken for computation 
increases substantially toward the size of the proposed exploration space simply for 
an adequate expanse of deliberate appraisals which are required to stay convinced 
in the caliber of the solutions that are identified. This makes impossible for these 
recent approaches to take massive design issues into account at once. Developing 
engineers use their expertise, experience, and creativity to solve problems related to 
building design in the real world; however, these concepts are tough and terrible to 
replicate and device in systematized optimization approaches [44]. 

The concert of DE approach named the linear population size reduction (LPSR) 
control approach can be significantly enhanced by the advancement of more 
sophisticated population size based techniques. During the iterative process, the 
LPSR method controls the population size using a linear reduction scheme. 
Conversely, when the algorithm enters a local optimum, the population declines 
and the population diversity decreases, making it challenging for LPSR to assist the 
approach in exiting restricted best solution. Increasing the population appropriately 
all through the iterative process is a clear solution to this issue. However, in order to 
boost the population, the population’s size must be under control, and an expansion 
plan must be created. 

This study makes an effort to balance DE’s capacity for both exploration and 
exploitation while also regularly increasing the population through the iterative 
progression, adjusting the population assortment adaptively. This study does not 
take into consideration creating population control approaches dependent on popu-
lation assortment because doing so is a complex task. As an alternative, we seek to 
regulate the population using a straightforward periodic function. A sawtooth-linear 
population size adaptive (SLPSA) approach is suggested to achieve this. In general, 
the size of population displays a sliding trend throughout the iterative process. The
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local trend can, however, change to the positive side by sporadic population growth. 
The additional subjects are drawn from outside records that contain experimental 
vectors that were previously abandoned. The ability of DE to explore and exploit 
is improved by this novel population control technique. Relying on the distance-
based factor adaptations for DISH, the weight upgrade formulas for F and CR are 
also enhanced. The algorithm’s capability for exploring will be strengthened by 
increasing the weights given to F and CR in proportion to the divergence between 
the parent and trial vectors. Based on SLPSA and amended apprise formulas for F 
and CR, this paper suggests a brand-new variation approach dubbed SLDE. 

A distinctive population adapted technique called SLPSA incorporates the traits 
of sawtooth and linear functions to govern alterations in population size. SLPSA 
utilizes the sawtooth-linear function’s modifying properties across the iterative 
procedure to mitigate the likelihood that the approach will reach an optimal location 
and to increase the algorithm’s ability to perform a global search. In DISH, 
the apprise algorithms for F and CR weights have been updated. The enhanced 
apprise formulas substitute the squared Euclidean distance between the parent and 
experiment vectors for the Euclidean distance between the parent and trial vectors. 
The technique is superior to DISH at exploring high-dimensional environments 
because of the detachment between the parent and experimental vectors. 

6 DE for Applications Relating Single and Multi-objective 
Optimization Model 

An approach to stochastic optimization is the multi-objective evolutionary algorithm 
[50, 51]. MOEAs help to predict the best Pareto outcomes for particular issues, 
much like other optimization algorithms. However, they are not the same as 
population-based methods. The widespread of the current MOEAs employs the idea 
of dominance in its operations, though some do not. As a result, this article focuses 
on the MOEA class, which is based on dominance. With the exception of the use of 
superiority relationships, the MOEA’s optimization mechanism is very comparable 
to evolutionary algorithms. To select the best option for the creation of the inherited 
peoples, the impartial value is specifically premeditated for every descendant at each 
iteration and utilized to find the bond of governance among peoples. It is possible to 
combine this population with its parent to create populations for the following peer 
group. Objective space may also allow MOEA the freedom to use some established 
sustenance procedures, like niching. 

Finding the ideal solution values for multiple desired goals is discussed to as 
multi-objective optimization (MOO). The MOO is chosen because it simplifies 
problems by avoiding complex equations, which is one of the reasons for its use 
in optimization. A compromise (trade-off) on some incompatible issues is possible 
due to the decision-making problem in MOOs. Vilfredo Pareto first popularized 
MOO. An MOO has a vector representing the objective function. Every vector of
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the fitness function is a vector representative outcome. In MOO, numerous solutions 
are available rather than a single one that serves all purposes best. 

The optimization procedure can be used to identify the best value or solution. 
The optimization issues can involve using a single objective or multiple objectives, 
incisive for the large and small value. MOO describe issues with multiple objectives, 
which occurs in many places such as mathematics, economics, social studies, 
aviation, engineering, automotive industry, and agriculture. 

The fisheries bioeconomic model can be improved using the MOO in the 
economics field [52]. It can be used as evaluation tool for resource manipulation 
and organizing plan efficacy. The theory of public property, depending on the 
population evolution logistics approach, helps as the groundwork for this model. 
The case that the author is analyzing encompasses fashioning a model for North 
Sea fisheries with four goals in mind: maximizing profits, keeping historical quota 
shares among countries, continuing industry hire, and minimizing surplus. This 
approach is contrasted with four others, including goal programming (GA1, GA2, 
and GA3) and genetic algorithms (GA). Here, the gain objective stood out as the 
most significant difference because it did so in the GP model. This objective’s 
weight in the GA approach was 20 times higher than it was in the GP approach. 
In addition, all undesirable GA deviations received a 100-fold weighting increase. 
This was accomplished to make the population’s people distinct and to make it 
harder to determine the most effective people through a particular practice. When 
creating a GA model, a number of things are to be considered, including the variable 
specification, tight bounds among variables, weighting, and constrictions. There are 
sundry standard constraints that can be changed to mark how well the optimization 
performs. Unconstrained problems are especially well suited for GA deliberation 
because restriction call for the organization of potential impossibility, which can 
significantly slow down the optimization process. For the specific development of 
the problem under investigation, a standard genetic algorithm is typically used, 
where the modeler should take gain of model arrangement for efficient execution. 

Although the GP and GA models have a similar basic structure, the weights 
vary in an effort to produce comparable outputs and, consequently, valid analogous 
significance. This results from the fundamental differences between the methodolo-
gies: GA is a probabilistic search approach, whereas GP is an exact optimization 
methodology, and the final solution that is found may be the global optimum. In 
light of this, it is similar to that the GA will choose an elucidation path that leads to 
the most “better” solutions, even though it may initially favor less significant goals. 

Metaheuristics Multi-objective Optimization: Because of their success in mono-
objective optimization, metaheuristics have been extensively modified to handle 
multi-objective combinatorial problems, exclusively for issues wherever knowledge 
of the issue is frequently reachable. Contrary to proactive techniques, metaheuristics 
focus on the answer and allow for an accessible trade-off between the solution’s 
quality and time taken for execution. Metaheuristics are also projected to offer 
an adaptable framework for a variety of issues. In this study, the vector assessed 
genetic procedure [43], which modified the genetic algorithm for the multi-objective 
optimization scenario, was the first multi-objective metaheuristic to be described.
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The multi-objective Tabu search [44], the multiple ant colony approach for routing 
of vehicle issues with time windows [45], the MOSA [46], and the MOSS [47] are  
only a few of the additional multi-objective metaheuristics that have been developed 
since then. 

One run and multi-runs are the two main metaheuristic paradigms that have 
been developed. The idea behind one-run-based approaches is to modify the unique 
metaheuristic so that it returns a batch of outcomes after just one accomplishment. 
One of this archetype’s key benefits is that it adheres to the fundamental idea of 
metaheuristics, which is to deal with a solution to a certain extent than a resolution 
constituent at each iteration. In the context of multi-objective optimization, this 
refers to a set of resolutions with a particular level of performance. However, 
it is difficult to control how many solutions are returned. It is true that every 
single solution that gets offered should go through an assessment stage in which 
it gets contrasted to the formerly conserved likely near-optimal solutions in order to 
delete any dominated ones. This is valid if the potential near-optimal outcomes are 
archived in increments. If, for population-based meta-heuristics, namely, genetic 
algorithms, the near-optimal outcomes get returned unpredictably at algorithm 
departure, the near-optimal solutions are assessed against one another at this point. 

Multi-runs-based techniques, which are based on the a priori multi-objective 
approach, involve utilizing the creative metaheuristic to a particular grouping of 
the fitness functions being taken into account. The objective of the metaheuristic is 
to invent one problem outcome that satisfies a specific preference structure at the 
end of each run. It is assumed that the algorithm will run as many times as there are 
near-optimal solutions needed. The existence of two distinct near-optimal solutions 
under two different preference structures is, regrettably, not guaranteed. Once more, 
the collected solutions are contrasted with one another to weed out any favored ones. 
The near-optimal solutions should, nevertheless, be varied or distributed across 
the Pareto front [48] which demonstrated that still with a uniformly disseminated 
set of weights, evenly distributed solutions are not always possible. Determining 
appropriate and effective preference structures beforehand is therefore not simple, 
at least for a widespread of multi-objective issues, despite the fact that the idea that 
multi-runs-based approaches go behind is moderately uncomplicated. 

MOSA method: It is a subclass of SA extensions to multi-objective optimization 
that physiques an assessed Pareto anterior by compiling nondominated outcomes 
revealed while scouring the reasonable province. One who maintains those effective 
solutions is thought of as maintaining an archive. 

A MOSA method has been designed by [46] that uses a list of potentially 
effective solutions to identify nondominated solutions. This list includes all the 
generated solutions that have not yet been conquered via some additional built 
solutions. This approach measures the effectiveness of transitions using weighted 
functions. Every scalarizing function would prompt a preferred investigate path 
toward a suboptimal outcome. If the ideal resolution is not found, some nearly ideal 
solutions would be taken into consideration. With the intention of covering every 
effective front, the use of a broad assortment of weights has been suggested. Every 
time a new solution is accepted, the list of potentially efficient solutions is presumed
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to be updated, at which point any dominated solutions are taken off the list. The list 
of potentially effective solutions gets longer if no dominated solution is found [49]. 

A Pareto simulated annealing, a population-based metaheuristic inspired by 
genetic algorithms, considers a set of sample solutions produced at each temperature 
as potentially improving. Each result of the trial is modified in such a way that 
the accepted innovative result ought be far from the previous outcome’s adjoining 
match. In this method, weights are increased for objectives where the closest 
solution outperforms the current one, while weights for objectives where the closest 
solution is superior to the current one are decreased. In the following iteration, 
both the evaluation and probabilistic acceptance steps will use the new weights 
combination. 

7 Improved Differential Evolution Using Whale Algorithm 

The combination of differential evolution algorithm and the whale algorithm called 
the improved DE whale optimization algorithm (IDEWOA) is used to overcome the 
issue of trapping within local minimum. The significant features of the improved DE 
approach are nonlinear convergence, balance among global hunt and local manip-
ulation, crossover mechanism, and enhanced accuracy for solving the optimization 
problem. The whale optimization algorithm (WOA) has unique strategy of attaining 
at an optimal solution. The disadvantages of this algorithm are less accuracy and 
search speed. In a DE algorithm, the initial population selection is very important to 
prevent limited feebleness at the initial phase. However, the advantages of these two 
algorithms are used in the DEWOA [53]. The population information is updated 
based on predation and bubble net techniques in the IDEWOA. The exploration 
phase is developed by amending the convergence factor. The population diversity 
is improved by using the crossover as well as selection mechanisms of the DE 
algorithm. The efficiency of this approach is upgraded by using the elimination 
mechanism in the crossover strategy to show its superiority in solving various 
capacity optimization issues. The process of IDECWOA algorithm is described as 
follows. 

The initialization process involves fixing the size of the population (N), dimen-
sion of the solution (D), and count of iterations Tmax with the present count of 
iteration (t). Chaotic mappings are used to generate ergodic and stochastic-natured 
arbitrary systems from deterministic structures. Logistic and sine mappings are 
some examples for one-dimensional chaotic mapping with high speed of compu-
tation. It is shown in [54] that sine chaos exhibit noticeable chaotic possessions than 
logistic chaos. Therefore, in the population initialization method of IDECWOA, 
sine chaos self-mapping is used. The sine mapping is used to initialize the whale 
population as {Xi, i = 1, 2, · · · ,N}. Self-mapping sine chaotic is revealed in 
expression below as
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.xn+1 = sin
(

2
/

xn

)
, n = 0, 1, · · · , N (9) 

where the base value xn is not zero to prevent fixity as well as zero point in range 
[−1, 1]. 

Three mutually dissimilar target vectors {Xi1, Xi2 , Xi3} are selected randomly 
from the people. An innovative variant vector is engendered via the discrepancy 
aspect as per the expression given below: 

.Vi = Xi1 + F. ( Xi2 − Xi3) (10) 

where variance factor (F) which occupies the range [0, 1]. 
Further, the crossover operation between the original target vector and the 

variation vector is used to generate the test vector. In this algorithm the binomial 
crossover method is more commonly used as per the equation 

.Ui,j =
⎧⎨
⎩ Vi.j, rand i, j [0, 1] ≤ CR

xi,j , otherwise
(11) 

where Vi. j is the jth dimension of the ith distinct created in the former phase r and 
i, j is the random number generated among [0, 1]. The crossover aspect is denoted 
by CR which is also a random number within [0, 1]. 

The fitness value of the generated test vectors is related to target vectors, and 
those with higher value of appropriateness are chosen for the succeeding group. 
The mathematical equation of the appropriateness role is given as 

.Xi (t + 1) =
⎧

Ui(t), ffit (Ui(t)) < ffit (Xi(t))

Xi(t), otherwise
, (12) 

where ffit is the fitness function. The asynchronous method of selection approach 
is used in this algorithm. Here, the best experimental vector is exchanged via the 
corresponding target vector in each step after comparing the target vector with 
the newly generated experimental vector. The selected best test vector is used 
in updating the available population. This makes the algorithm to have a faster 
convergence speed. Then adaptive inertia weight ω value is calculated as per the 
expression in Eq. (13). The optimum inertia weight strategy ensures strong global 
search capability of the algorithm. 

.ω = 0.5 + exp

(
−ffit(x)

u

t)
(13) 

where ffit is the objective value of the whale x and u is the top aptness value in the 
first iteration of the population. The adaptive inertia weight has a nonlinear property
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which has control over the position. The smaller values of the inertia weight will 
lead to larger adaptation values with global optimization performance. The proper 
whale site is taken as the best outcome. It is denoted by Xbest with its alike global 
objective value taken as Fbest. This approach is encouraged through the predatory 
behavior of humpback whales. The selection is dependent on an arbitrary probability 
factor p∈ r and [0,1] and a factor |A|. An arbitrarily nominated specific whale is 
chosen as the target in the food pursuit point of the whale algorithm that is illustrated 
through the equation 

.X (t + 1) = Xrand(t) − A.D1 (14) 

In the Eq. 14, the value of  D1 is given by 

.D1 = |C.Xrand(t) − X(t)| (15) 

In Eq. (15) Xrand(t) is the whale appointed arbitrarily using the entire people. The 
instantaneous position of the contemporary individual whale is taken as X(t). C is 
a vector in random distribution between [0,2]. The coefficient |A| is denoted by the 
expression 

.A = 2a.r − a (16) 

.a = 2 − 2t

Tmax
(17) 

In the above equations, r is an arbitrary number ranging [0, 1] and the control 
parameter a. 

After finding the random probability factor, the position of distinct whales is 
updated as per expressions 14–17. Then the fitted value is evaluated for all whale 
descendants. If the finest appropriateness in a current generation t is greater than the 
previous value, it is taken as the optimal solution. 

8 Novel Clustering-Based Mutation Operator-Based 
Enhanced Differential Evolution Algorithm 

The clustering-based DE approach (CDEA) uses a new operator dependent on 
the human mental search (HMS) optimization approach [55]. In this enhanced 
differential evolution algorithm, the existing population is categorized as groups. 
The potential region which has preeminent mean objective function value has been 
elected as the cluster. The initial vector of mutation operator is chosen as the robust 
outcome of convergence area. Here innovative descendent outcomes are included 
in the present population based on a novel method. Clustering is an unsupervised
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pattern recognition technique in which the samples are split into various groups 
such that the descendants of a similar group show huge similarity when match 
up to the descendants of other groups. K-means clustering algorithm [56] is more  
commonly used in many of the applications based on Euclidean distance as the 
similarity measure. The enhanced mutation operator used in the CDEA is utilized to 
find a potential area in exploration space as in the HMS algorithm. It is encouraged 
from the investigation techniques in online auction. It uses a mental seek-out that 
finds the space about all promising outcomes dependent on Levy flight along with 
a grouping in CDEA. Then the conventional K-means approach is used to group 
the existing population. In this algorithm, the cluster number is taken between 2 
and .

√
population size [57]. After the clustering process, the average fitness function 

of the cluster is determined, and the one which has the robust outcome is used to 
categorize the field of interest in the area of exploration. Here, the individual which 
produces the eminent results in the succeeding cluster cannot be the robust solution 
in the present population. Therefore, grouping of mutation is conducted till M using 
good mutation and crossover strategies. The number of new candidate solutions is 
taken as M. 

The clustering-based mutation generates M new offspring and with a generic 
population-based algorithm (GPBA) is used to update this algorithm [58]. The 
population updation is included in this algorithm to add latest descendent outcomes 
in the existing population. The vcluster consists of M number of new descendants: 

.vcluster = w + F ( ur1 − ur2) (18) 

To assess this approach, it duplicates the searching approaches of the proffer 
space in online auctions. This approach comprises the following: (1) the exploration 
of each solution should be dependent on Levy flight, (2) clustering finds the eminent 
region, and (3) make the solution as robust. 

In above equation 

ur1 and ur2are arbitrarily elected candidate outcomes 
w is the best candidate solution in the promising region 

In the replacement phase of the algorithm, the M descendent outcomes arbitrarily 
chosen in present population are taken as B. In the set  vcluster ∪ B, the best M 
individuals are taken as. B. The new population is then updated as (P − B) ∪ B. 
This process is iterated to attain the optimal solution. The DE-based clustering 
algorithm is used in unsupervised categorization and segmentation of different 
image modalities. In such applications the approach is used to reduce quantization 
error and intra-cluster distances and increase inter-cluster distances concurrently. 
The exploration of differential evolution approach with other approaches helps to 
proceed from one outcome to other in finding the best. Recent research work in this 
approach is focused on combining the mutation and fitness functions proportionately 
and lacking crossover.
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9 Recent Advances in Differential Evolution in Real-Time 
Applications 

A new heuristic approach called the differential evolution (DE) algorithm has 
three foremost benefits: it discovers the real overall least amount of a multimodal 
investigation space despite of the preliminary parameter significances; it converges 
quickly; and it only utilizes a small number of control constraints. It is frequently 
employed for resolving multidimensional global optimization issues in continuous 
spaces and has been effective in resolving a variety of issues. In recent decades, 
it has undoubtedly emerged as one of the majority potent as well as adaptable 
latest optimizers for constant parameter spaces. DE is employed in many different 
scientific and technological fields. After providing a thorough overview of the 
fundamental DE categories, we move on to discuss current proposals regarding 
parameter variation of DE; single-objective DE-dependent global optimizers; DE 
used in a variety of optimization situations, together with embarrassed, extensive, 
multimodal, multi-objective, and variable optimization; fusion of DE with erstwhile 
optimizers; as well as extensive study on relevance of DE. 

Each iteration of DE proceeds all the way through the identical computational 
procedure as used in a typical evolutionary algorithm, opening through a consis-
tently arbitrary set of candidate findings sampled as of the sufficient investigate 
dimensions. DE, however, differs significantly from other well-known EAs like 
evolutionary programming (EP) and evolutionary strategies (ESs) in which it 
modifies the support vectors using scaled differences of the diverse affiliates of the 
present population. These variations typically adjust with the objective landscape’s 
base scales as iterations progress. The sampled difference vectors will be lesser in 
the first variable while higher in the second, for instance, the population becomes 
condensed in one constraint although stay on as distributed in erstwhile. The search 
moves of the algorithm are significantly improved by this automatic adaptation. 
Another name for this characteristic is the self-referential mutation. To put it another 
way, whereas EP, ES, and erstwhile genuine-coded genetic algorithms (GAs) 
demand the requirement or adjustment of the unconditional step dimension for every 
variable on iterations, the canonical DE needs the requirement of a comparative 
scale factor F for each and every variables. Basic DE stands out as being a very 
straightforward algorithm with a minimal amount of code needed to implement it in 
the general coding, contrasting several erstwhile approaches. The canonical DE also 
has a feature that makes it simple for the professionals to use: it only needs a small 
number of control specification. However, DE performs admirably when optimizing 
an ample range of fitness functions in requisites of concluding accuracy, robustness, 
and working-out speed.
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10 Conclusion 

This chapter reviewed and used a new multi-objective optimization problem to 
illustrate how to develop several performance evaluation approaches. This chapter 
is devoted to differential evolution like a category of metaheuristic processes 
intended for finding appropriate findings for optimization problems of genuine 
parameters. Latest approaches and techniques are explored toward improvement of 
the typical DE algorithm to solve various complex problems. This chapter discusses 
classification that aided DE by incorporating classification rather than ranking or 
regression for pairwise comparisons in DE to solve complex features. Various 
methods to improve the effectiveness of the conventional DE approach are studied, 
like diversity organizing of the DE population through inserting novel constraints 
to calculate the assortment throughout the progression. The DE is discussed for 
specific applications related to single and multiple objective optimization model. 
This chapter studies the effectiveness of an adaptation scheme for DE parameters 
using standard techniques to improve overall performance over algorithms. Recent 
advances in differential evolution algorithm along with real-time application case 
studies are also analyzed in this chapter. Therefore, in this chapter, the DE approach 
for working out nonlinear optimization issues is studied elaborately. 
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comparison of self-adaptive and adaptive differential evolution algorithms. Soft Computing 
Journal, 11(7), 617–629. 

28. Armañanzas, R., Inza, I., Santana, R., Saeys, Y., Flores, J. L., Lozano, J. A., & Van de Peer, Y. 
(2008). A review of estimation of distribution algorithms in bioinformatics. BioData Mining 
Journal, 1(1), 6–15. 

29. Li, Y., Han, T., Tang, S., & Huang, C. (2023). An improved differential evolution by 
hybridizing with estimation-of-distribution algorithm. Information Sciences, 619(3), 439–456. 

30. Neri, F., & Tirronen, V. (2010). Recent advances in differential evolution: A survey and 
experimental analysis. Artificial Intelligence Review, 3(2), 61–106. 

31. Ling, M. X., Wang, F. Y., Ding, X., Hu, Y. H., Zhou, J. B., Yang, R. E., & Sun, X. Y. (2009). 
Cretaceous ridge subduction along the lower Yangtze River belt. Economic Geology, 104(2), 
303–321. 

32. Qian, W., Chai, J., Xu, Z., & Zhang, Z. (2018). Differential evolution algorithm with multiple 
mutation strategies based on roulette wheel selection. Applied Intelligence, 48(4), 3612–3629.



Analysis of Nonlinear Optimization Problems Using Differential Evolution Algorithm 45

33. Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional 
external archive. IEEE Transaction on Evolutionary Computing, 13(5), 945–958. 

34. Qin, A. K., & Suganthan, P. N. (2005). Self-adaptive differential evolution algorithm for 
numerical optimization. Proceedings of the IEEE Congress on Evolutionary Computation, 2, 
1785–1791. 

35. Mallipeddi, R., Suganthan, P. N., Pan, Q., & Tasgetiren, M. F. (2011). Differential evolution 
algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 
Journal, 11(2), 1679–1696. 

36. Simplicio Viana, M., Morandin Junior, O., & Colnago Contreras, R. (2020). A modified genetic 
algorithm with local search strategies and multi-crossover operator for job shop scheduling 
problem. Sensors Journal, 20(18), 5440–5454. 

37. Ali, M., Pant, M., & Nagar, A. (2010). Two local search strategies for Differential Evolution. 
IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications 
(BIC-TA), 2, 1429–1435. 

38. Durakbasa, M. N., Akdogan, A., SerdarVanli, A., & GunayBulutsuz, A. (2015). Optimization 
of end milling parameters and determination of the effects of edge profile for high surface 
quality of AISI H13 steel by using precise and fast measurements. Measurement Journal, 68(5), 
92–99. 

39. Wang, Z.-G., Wong, Y., & Rahman, M. (2010). Development of a parallel optimization method 
based on genetic simulated annealing algorithm. Parallel Computing Journal, 31(08), 839– 
857. 

40. Birogul, S. (2019). Hybrid Harris Hawk Optimization Based on Differential Evolution 
(HHODE) Algorithm for optimal power flow problem. IEEE Access, 99(12), 1–13. 

41. Melo, V., & Delbem, A. (2012). Investigating smart sampling as a population initialization 
method for differential evolution in continuous problems. Information Sciences, 193(06), 36– 
53. 

42. Ras, M., Wilke, D., & Groenwold, A. (2014). On rotationally invariant continuous-parameter 
genetic algorithms. Advances in Engineering Software journal, 78(12), 52–59. 

43. Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algo-
rithms. In J. J. Grefenstette (Ed.), Proceedings of the 1st international conference on genetic 
algorithms (pp. 93–100). Lawrence Erlbaum Associates, Inc. 

44. Hansen, P. M. (1996). Tabu search for multiobjective optimization: MOTS. In Proceedings of 
the 13th International Conference on Multiple Criteria Decision Making (MCDM 97), Cape 
Town, South Africa. 

45. Gambardella, L. M., Taillard, É., & Agazzi, G. (1999). MACS-VRPTW: a multiple ant colony 
system for vehicle routing problems with time windows. In D. Corne, M. Dorigo, F. Glover, et 
al. (Eds.), New Ideas in Optimization (pp. 63–76). Maidenhead, UK. 

46. Zeng, Z., Zhang, M., Zhang, H., & Hong, Z. (2022). Improved differential evolution algorithm 
based on the sawtooth-linear population size adaptive method, 608, 1045–1071. 

47. Beausoleil, R. P. (2006). ‘MOSS’ multiobjective scatter search applied to non-linear multiple 
criteria optimization. European Journal of Operational Research, 169(2), 426–449. 

48. Das, I., & Dennis, J. E. (1997). A closer look at drawbacks of minimizing weighted sums 
of objectives for Pareto set generation in multicriteria optimization problems. Journal of 
Structural Optimization, 14(1), 63–69. 

49. Czyz̈ak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealinga metaheuristic technique for 
multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 
7(1), 34–47. 

50. Ulungu, E. L., Teghem, J., & Fortemps, P. (1995). Heuristic for multi-objective combinatorial 
optimization problems by simulated annealing. In J. Gu, G. Chen, Q. Wei, & S. Wang (Eds.), 
MCDM: Theory and applications (pp. 229–238). Sci-Tech. 

51. Lam, T. B., & Sameer, A. (2008). Multi-objective optimization in computational intelligence: 
Theory and practice. Information Science Reference. 

52. Mardle, S., Pascoe, S., & Tamiz, M. (2000). An investigation of genetic algorithms for the 
optimization of multi-objective fisheries bioeconomic models. Int Trans Oper Res, 7(2000), 
33–49.



46 K. Ramalakshmi et al.

53. Li, H., & Fu, C. (2022). An improved differential evolution whale algorithm for economic load 
distribution. Journal of Computer and Communications, 10(10), 132–143. 

54. Liu, L., & Zhang, R. (2022). Multistrategy improved whale optimization algorithm and its 
application. Computational Intelligence and Neuroscience Journal, 5(2), 1–14. 

55. Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2017). Human mental search: a new 
population-based metaheuristic optimization algorithm. Applied Intelligence, 47(3), 850–887. 

56. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observa-
tions. In 5th Berkeley symposium on mathematical statistics and probability (pp. 281–297). 

57. Cai, Z., Gong, W., Ling, C. X., & Zhang, H. (2011). A clustering-based differential evolution 
for global optimization. Applied Soft Computing, 11(1), 1363–1379. 

58. Deb, K. (2005). A population-based algorithm-generator for real-parameter optimization. Soft 
Computing, 9(4), 236–253.



A Comparative Analysis Report 
of Nature-Inspired Algorithms for Load 
Balancing in Cloud Environment 

Yogita Yashveer Raghav and Vaibhav Vyas 

1 Introduction 

Nature-inspired algorithms have several advantages over traditional algorithms 
when it comes to load balancing. First, traditional algorithms may not be able 
to handle the complexity of large-scale load-balancing problems, where there 
are many resources to manage and many constraints to consider. Nature-inspired 
algorithms, unlike traditional ones, are tailored to address intricate problems and 
can unearth solutions that traditional algorithms may overlook. Second, nature-
inspired algorithms are often more flexible than traditional algorithms, allowing 
them to adapt to changing conditions and to explore a wider range of solutions. This 
can be particularly useful in load balancing, where resource demands may fluctuate 
over time and where there may be multiple objectives to optimize (e.g., minimizing 
response time and maximizing throughput). Third, nature-inspired algorithms can 
often find better solutions than traditional algorithms, especially when the solution 
space is large and complex. For instance, particle swarm optimization has been 
shown to outperform traditional algorithms in finding optimal load-balancing 
solutions for large-scale data centers. Finally, nature-inspired algorithms are often 
more scalable than traditional algorithms, meaning that they can handle larger and 
more complex load-balancing problems with reasonable computational resources. 
The capability to scale is essential for load balancing in modern computing 
environments, where the number of resources and the complexity of applications 
are expanding rapidly [1, 2]. 
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1.1 Characteristics of Nature-Inspired Algorithms 

Nature-inspired algorithms (NIAs) are a type of optimization algorithm that applies 
principles from natural and biological systems to solve complex problems that are 
challenging to address using traditional methods. Due to their effectiveness, NIAs 
have become popular in numerous fields such as engineering, finance, computer 
science, and medicine. Some of the key characteristics of NIAs include: 

Search-based: NIAs are algorithms based on search, which means they attempt to 
find the best solution to a given optimization problem. They work by exploring 
the solution space and evaluating the fitness of potential solutions. 

Population-based: NIAs often utilize a population-based approach, where a set of 
potential solutions is maintained and evolved over time. Various operators such 
as selection, crossover, and mutation are applied to the population to generate 
new candidate solutions. 

Stochastic: NIAs are characterized as stochastic algorithms, utilizing randomization 
to direct the search process. The incorporation of randomness is employed to 
prevent premature convergence and introduce diversity in the population. 

Parallelizable: NIAs are often parallelizable algorithms that can be executed simul-
taneously on multiple processors or nodes. This feature makes them suitable for 
optimization problems that require a significant amount of computation. 

Robust: NIAs are known for their robustness and ability to handle noisy and 
uncertain optimization problems. They are capable of finding high-quality 
solutions even in complex fitness landscapes or with large search spaces. 

Easy to implement: NIAs are relatively easy to implement compared to traditional 
optimization methods. They often require only a few lines of code and can be 
easily adapted to different optimization problems [3, 4]. 

In summary, nature-inspired algorithms have demonstrated their effectiveness 
and efficiency in optimizing a diverse range of problems. They provide a potent 
alternative to conventional optimization techniques and have the potential to 
transform many fields by facilitating the optimization of complex systems that were 
previously challenging or impractical to optimize. 

2 Literature Review 

Due to their effectiveness in addressing complex optimization problems, nature-
inspired algorithms have become a popular class of optimization algorithms. These 
algorithms draw inspiration from biological and natural processes such as evolution, 
swarm behavior, and animal behavior. As a result, numerous researchers have 
conducted literature reviews on different nature-inspired algorithms. 

In a research paper [1], a new algorithm has been introduced that uses ant colony 
optimization (ACO) to distribute workloads among nodes in a cloud network with
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the goal of achieving load balancing. The modified ACO approach is customized to 
meet the specific requirements of cloud or grid networks, with the aim of optimizing 
node performance. In contrast to the original ACO method, where ants construct 
individual result sets that are subsequently merged into a complete solution, the 
modified algorithm continually updates a single result set. The proposed algorithm 
is designed to address the need for effective load distribution and sustained system 
functionality. 

The utilization of ant colony optimization for load balancing in cloud networks 
is introduced in this paper [2] through a novel algorithm. The algorithm aims to 
achieve a balanced workload distribution by searching for underloaded nodes. The 
effectiveness of the proposed load-balancing strategy is evaluated using CloudAn-
alyst, and the experimental results demonstrate superior performance compared 
to conventional approaches like first come first serve (FCFS), soft computing 
techniques such as genetic algorithm (GA), local search algorithms like stochastic 
hill climbing (SHC), and existing ant colony-based strategies. 

The paper [5] aims to improve the resource utilization of a cloud computing 
platform by accomplishing multidimensional load balancing of resources across all 
physical machines. To tackle the intricacy of this challenge, the authors suggest 
an ant colony optimization algorithm for allocating virtual machines. This algo-
rithm employs a personalized ant colony optimization approach and introduces an 
improved physical machine selection strategy to avoid getting stuck in local optima 
and premature convergence. The authors conducted comprehensive simulations to 
display the efficacy of the suggested algorithm in load-balancing virtual machine 
allocation and enhancing resource utilization in cloud computing platforms. 

The research paper [6] introduces a new approach for load balancing, named 
LBMPSO, which employs a personalized task scheduling technique based on parti-
cle swarm optimization (PSO) to distribute tasks across accessible cloud resources. 
The primary objective is to improve resource utilization and minimize makespan. 
The proposed algorithm ensures efficient communication and coordination between 
resources and tasks within the data center. The CloudSim simulator is employed 
for the implementation, and simulation findings demonstrate that the proposed 
technique outperforms current methods by reducing makespan and improving 
resource utilization. 

In paper [7], a novel load-balancing method called LBMPSO is introduced. This 
method utilizes a customized task scheduling approach based on particle swarm 
optimization (PSO) to allocate tasks to the available cloud resources. The primary 
objective is to achieve optimal resource utilization while minimizing makespan by 
ensuring efficient communication and coordination among the resources and tasks in 
the data center. The proposed algorithm is implemented in the CloudSim simulator, 
and its effectiveness is demonstrated through simulations, showing its superiority 
over existing techniques in reducing makespan and improving resource utilization. 

The author of paper [8] introduces an enhanced version of the particle swarm 
optimization (PSO) algorithm. The initial PSO algorithm was found to have the 
slowest algorithm speed based on the experimental results, which was somewhat 
alleviated by the improved PSO algorithm. In terms of task solving, the enhanced
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PSO algorithm outperformed the original PSO, while the red-black and Naïve Bayes 
algorithms exhibited significantly slower performance. With regard to load balanc-
ing, both PSO and the improved PSO algorithms showed efficient performance, 
while the other two algorithms demonstrated poor performance. 

In paper [9], a novel technique for load balancing in cloud infrastructure is 
introduced, which leverages genetic algorithm (GA) to distribute the workload. The 
primary aim is to achieve a well-balanced workload distribution while minimizing 
the task completion time. To evaluate the effectiveness of this approach, the study 
employs the cloud analyst simulator to simulate the proposed algorithm. The results 
demonstrate that the GA algorithm outperforms existing methods such as FCFS, 
round robin, and stochastic hill climbing, a local search algorithm. The comparison 
is based on simulating a typical sample application. 

This research paper [10] compares the performance of a proposed algorithm, 
HMMGA, with other existing algorithms, including Max-Min, IBPSO-LBS, and 
TOPSIS-PSO. Experimental simulations are conducted, and the results demonstrate 
that HMMGA outperforms Max-Min and TOPSIS-PSO in terms of reducing 
makespan. For five VMs, it achieves an average of 1.63 and 3.88 seconds less 
makespan. Additionally, HMMGA improves resource utilization by 10–40% com-
pared to Max-Min and TOPSIS-PSO. Another experiment shows that HMMGA 
significantly reduces the average waiting time compared to Max-Min and IBPSO-
LBS by approximately 1.7–25.99 s. 

This paper [11] review presents a comprehensive examination of load balancing 
in cloud computing utilizing the ABC algorithm. Additionally, it defines fundamen-
tal concepts of swarm intelligence and its properties. 

The primary aim of this research paper [12] is to investigate the use of the 
grey wolf optimization (GWO) algorithm to enhance load balancing in cloud 
computing environments by considering resource reliability. The proposed approach 
involves detecting idle or overloaded nodes using the GWO algorithm and then 
determining the fitness function and threshold for each node. Simulations conducted 
with CloudSim indicate that this approach is highly effective in producing optimal 
solutions, as demonstrated by its ability to reduce costs and response times 
compared to other methods. 

In this research paper [13], a new concept is proposed which involves equipping 
nodes with the ability to comprehend incoming workloads, evaluate various work-
load and node parameters, and then balance the workload accordingly. To determine 
the degree of balancing, a probabilistic balancing factor is computed. Additionally, 
fuzzy logic is used during the accumulation phase to account for any temporal 
uncertainties that may arise after the initial load-balancing phase. The study shows 
that incorporating this logic improves performance in terms of computational time, 
workload, task migration, and cost. 

The objective of the study [14] is to introduce a load-balancing (LB) strategy for 
cloud computing that incorporates the evaluation of the capacity and workload of 
each virtual machine (VM). When the load of a VM surpasses a certain threshold, 
the LB algorithm assigns tasks to allocate workload. The proposed approach, 
referred to as the CS-FA algorithm, identifies the most suitable VMs for task



A Comparative Analysis Report of Nature-Inspired Algorithms for Load. . . 51

delegation and relocates overburdened VM tasks to less burdened ones to prevent 
imbalances in workload. Results show that CS-FA outperforms HDLB by migrating 
fewer tasks, with only two tasks migrated compared to seven tasks in HDLB. 
Additionally, in a scenario with 40 loads, CS-FA migrated only two tasks, while 
the existing method migrated six tasks. 

3 Load Balancing 

Load balancing is a strategy employed in distributed systems and computer net-
works to evenly distribute network traffic or workloads across a range of servers, 
devices, or other resources. Load balancing aims to optimize resource utilization, 
improve throughput, minimize response times, and ensure system reliability and 
availability. Load balancing can be applied at various levels of the system, including 
the network layer, transport layer, and application layer. For instance, a load balancer 
can be utilized to distribute incoming network traffic over multiple servers, or it can 
be utilized to distribute database queries over multiple database servers. 

All in all, load balancing is a vital approach to guarantee the efficient and 
dependable functioning of computer networks and distributed systems, particularly 
in high-traffic environments where the workload can vary significantly over time. 
By distributing workloads across several resources, load balancing helps to enhance 
system performance, minimize response times, and ensure high availability and 
reliability of the system. 

3.1 Various Nature-Inspired Algorithm for Load Balancing 

Ant colony optimization, particle swarm optimization, and genetic algorithms, 
which are inspired by nature, can potentially enhance load balancing in computer 
systems. Load balancing entails distributing workloads among several servers or 
resources to enhance performance and avoid overloading. There are several ways 
nature-inspired algorithms can be utilized for load balancing. For instance, ant 
colony optimization uses pheromones to communicate and locate the optimal path 
for distributing workloads, where each ant represents a task or workload and the 
pheromones represent server load. As more tasks are assigned to a server, its 
load increases, making it less attractive to future tasks. Similarly, particle swarm 
optimization treats each server as a particle and adjusts its position to reduce overall 
load imbalance. Genetic algorithms replicate natural selection to find the best load-
balancing strategies, evolve them into new generations, and combine them to create 
an optimal solution. 

Table 1 provides a comparison of various nature-inspired algorithms, considering 
different parameters. Table 2 discusses the applications of nature-inspired algo-
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rithms. The subsequent section delves into a detailed discussion of nature-inspired 
algorithms, including their attributes and equations. 

3.1.1 Ant Colony Optimization 

The ACO algorithm is a metaheuristic method that is capable of resolving combina-
torial optimization problems. It imitates the actions of real ant colonies and utilizes 
synthetic ants to systematically explore the search space and gradually create a 
solution. The primary equations utilized in the ACO algorithm are as follows: 

Pheromone trail update equation: 

.au (i, j) = (1 − evaporationrate)∗ tau (i, j) + sum (deltatau (k, l)) (1) 

The variables in this equation have specific meanings: tau (i,j) refers to the 
quantity of pheromone present on the edge between nodes i and j. The constant 
evaporation_rate represents the rate at which pheromone evaporates. Meanwhile, 
delta_tau(k,l) refers to the amount of pheromone deposited on the edge between 
nodes k and l by the ant that discovered the best solution. This pheromone trail 
update equation modifies the pheromone quantity on the edges depending on the 
quality of the solutions obtained. 

Probabilistic decision rule equation: 

. p (i, j) = ⎡
tau (i, j) ˆalpha⎤∗ ⎡

eta (i, j) ˆbeta⎤
/sum

(⎡
tau (k, l) ˆalpha⎤∗ ⎡

eta (k, l) ˆbeta⎤) (2) 

The variables in this equation have specific meanings. The variable p(i,j) 
represents the likelihood that an ant will move from node i to node j. tau(i,j) indicates 
the quantity of pheromone present on the edge between nodes i and j, while eta(i,j) 
is a heuristic value that measures the desirability of moving from node i to node j. 
Additionally, alpha and beta are constants that control the impact of the pheromone 
trail and the heuristic value on the decision rule. The probabilistic decision rule 
equation determines the probability that an ant will opt for a particular path by 
considering both the pheromone trail and the heuristic value. 

Ant solution construction equation: 

.J = sum
(
c(i, j)∗ x (i, j)

)
(3) 

The variables in this equation have specific meanings. J represents the objective 
function value of the solution constructed by the ant. c(i,j) refers to the cost of 
moving from node i to node j, while x(i,j) is a binary variable that has a value of 1 if 
the ant moves from node i to node j and 0 otherwise. The ant solution construction 
equation determines the objective function value of the solution created by the ant 
by considering the cost of movement and the paths chosen by the ant [15].
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3.1.2 Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is a robust metaheuristic algorithm that is widely 
utilized to solve optimization problems. The algorithm is influenced by the collab-
orative actions of bird flocks or fish schools, where individuals work collectively 
toward a shared objective based on their own and their peers’ experiences. PSO 
employs a group of particles that represent possible solutions to the optimization 
problem, and each particle strives to discover the best solution by modifying 
its position in the search space. The PSO algorithm employs the following key 
equations: 

Particle positions update equation: 

.xi (t + 1) = xi (t) + vi (t + 1) (4) 

Here, x_i(t) denotes the current position of particle i at time t, v_i(t+1) represents 
the velocity of particle i at time t+1, and x_i(t+1) is the updated position of particle 
i at time t+1. This equation is used to update the position of each particle based on 
its current position and velocity. 

Particle velocity update equation: 

The velocity of each particle is updated using Eq. (5), which takes into account 
the particle’s current velocity (v_i(t)), personal best position (pbest_i), and global 
best position (gbest). The equation is expressed as: 

. vi (t + 1) = w∗ vi (t) + c1∗ rand1∗ (pbesti − xi (t)) + c2∗ rand2∗ (gbest − xi (t))
(5) 

The inertia weight, w, determines the influence of the particle’s previous velocity 
on its new velocity. The constants c1 and c2 determine the impact of the particle’s 
personal best and global best positions, respectively. To introduce randomness into 
the algorithm, random numbers between 0 and 1, rand1 and rand2, are used. 

Objective function evaluation equation: 

.f (xi (t)) (6) 

The fitness of a solution, represented by the particle’s position x_i(t), is evaluated 
using the objective function f. This function is applied to determine the adequacy of 
each particle based on its present location in the search space. 

Personal best update equation: 

.
if f (xi (t)) < f (pbesti) :
pbesti = xi (t)

(7)
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To update the personal best position of particle i, Eq. (7) checks if the fitness of 
its current position, f(x_i(t)), is less than its previous personal best. If this condition 
is met, pbest_i is updated to x_i(t). 

Global best update equation: 

.gbest = xj (t) where j = argmin (f (xi (t))) (8) 

To update the global best position based on the particle with the best fitness at 
time t, the equation gbest = x_j(t) is used, where j is the index of the particle with 
the minimum value of the objective function among all particles, obtained using the 
argmin() function [16]. 

3.1.3 Genetic Algorithm 

Genetic algorithms are a type of optimization algorithm that draw inspiration from 
the principles of natural selection and evolution. To solve a problem, a population 
of candidate solutions is created and iteratively improved using selection, crossover, 
and mutation principles. The following steps are involved in the process. 

Initialization: Randomly create an initial population of candidate solutions. 
Evaluation: Evaluate the adequacy of each candidate solution within the population. 
Selection: Select the most suitable candidate solutions from the population by uti-

lizing a selection strategy such as tournament selection, roulette wheel selection, 
or rank-based selection. 

Crossover: Generate new candidate solutions by combining the genes of selected 
parents. The likelihood of a crossover happening between two parents is deter-
mined by the crossover rate. 

Mutation: Introduce small random changes to the genes of the offspring population. 
The likelihood of a gene undergoing mutation is determined by the mutation rate. 

Replacement: Replace the old population with the new offspring population. 
Termination: Continue the process until a satisfactory solution is obtained or a 

termination criterion is met. The effectiveness of a genetic algorithm depends 
on the choice of selection, crossover, and mutation strategies [17]. 

3.1.4 Artificial Bee Colony 

Artificial bee colony (ABC) is a swarm-based optimization algorithm inspired by the 
behavior of honeybees. ABC employs a population of bees to represent candidate 
solutions to an optimization problem and communicate with each other to find the 
best solution. The algorithm involves the following basic steps: 

1. Initialization: Create an initial population of candidate solutions randomly.
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2. Employed bees phase: Each employed bee explores a neighbor solution and 
evaluates its fitness based on the problem’s objective function. 

3. Onlooker bees phase: Select onlooker bees to evaluate the fitness of solutions 
based on the probabilities calculated from the fitness values. Solutions with 
higher fitness have a higher probability of being selected. 

4. Scout bees phase: If a solution has not improved after a certain number of 
iterations, it is abandoned, and a new solution is generated randomly. 

5. Termination: Repeat the process until a satisfactory solution is found or a 
termination criterion is met. 

The ABC algorithm leverages the information exchange within the hive to 
improve solution quality, with employed and onlooker bees exploiting this com-
munication and scout bees promoting population diversity. The algorithm’s efficacy 
is affected by the selection of both the search range and the number of scout bees 
utilized [18–20]. 

3.1.5 The Grey Wolf Optimizer 

The GWO is a metaheuristic optimization algorithm that emulates the social hier-
archy and hunting behavior of gray wolves in nature. By utilizing the positions of 
wolves as candidate solutions to an optimization problem, the algorithm replicates 
the process of a wolf pack hunting and seeks to identify the optimal solution. The 
GWO algorithm comprises several fundamental steps, including: 

1. Initialization: Generate an initial population of candidate solutions randomly. 
2. Evaluation: Calculate the fitness of each candidate solution in the population 

based on the objective function. 
3. The positions of the alpha, beta, and delta wolves are updated based on their 

fitness values and the positions of other wolves in the pack. The alpha wolf, 
which represents the current best solution, the beta wolf, which represents the 
second-best solution, and the delta wolf, which represents the third-best solution, 
are given priority during the update. 

4. The locations of the other wolves within the pack are adjusted by considering the 
positions of the alpha, beta, and delta wolves. 

5. Boundary handling: Check if any wolf has gone beyond the boundary of the 
search space and move it back to the boundary if required. 

6. Termination: Repeat the process until a satisfactory solution is found or a 
termination criterion is met. 

The alpha wolf takes charge in the GWO algorithm, leading the pack and guiding 
other wolves to explore the search space. The beta and delta wolves follow the 
alpha’s lead and also scour the search space to identify superior solutions. The GWO 
algorithm’s efficacy is contingent on various factors, including the choice of search 
range, the number of wolves, and striking the right balance between exploration and 
exploitation.
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3.1.6 Firefly Algorithm 

The firefly algorithm (FA) is a metaheuristic optimization algorithm that takes 
inspiration from the flashing behavior of fireflies found in nature. As a population-
based algorithm, FA imitates the flashing behavior of fireflies to locate the global 
optimum of a given problem. The algorithm follows a simple procedure as detailed 
below: 

1. Begin by initializing a population of fireflies randomly in the search space. 
2. Evaluate the fitness of each firefly using the objective function. 
3. Adjust the brightness of each firefly based on the distance to other fireflies and 

their attractiveness. 
4. Move the fireflies toward the brighter ones. 
5. Repeat steps 2–4 until a stopping criterion is satisfied. 

To compute the attraction between two fireflies, we can use the equation: 

.A (i, j) = exp
(−γ∗ r (i, j) ˆ2) (9) 

This equation calculates the attractiveness of firefly i toward firefly j, where r(i,j) 
is the Euclidean distance between them and γ is a scaling parameter that governs 
the rate at which the attractiveness decays. 

To determine the brightness of a firefly, the algorithm uses the fitness function of 
the problem being optimized. The movement of a firefly i toward a brighter firefly j 
is represented using the following equation: 

.r (i, j) = r (i) + β∗ (r (j) − r (i)) + α∗ ε (10) 

Here, r(i) denotes the position of firefly i, β is the attractiveness parameter, ε 
is a random vector with Gaussian distribution, and α regulates the step size of the 
movement. By continuously adjusting the brightness and position of the fireflies, the 
firefly algorithm strives to find the global optimum of the objective function [21]. 

3.1.7 Cuckoo Search Algorithm 

The cuckoo search algorithm (CSA) is a metaheuristic optimization algorithm based 
on the brooding behavior of cuckoo birds in nature, with the aim of finding the global 
optimum of a given problem. The algorithm involves the following steps: 

1. Initialize a population of candidate solutions randomly within the search space. 
2. Evaluate the fitness of each candidate solution using the objective function. 
3. Select a cuckoo nest randomly and generate a new candidate solution using Lévy 

flight, a type of random walk that utilizes heavy-tailed distributions.
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4. If the fitness of the new candidate solution is superior to that in the nest, replace 
it. 

5. Repeat steps 3–4 until a stopping criterion is reached. 

The cuckoo search algorithm (CSA) employs Lévy flight to efficiently explore 
large search spaces, making it particularly suitable for high-dimensional optimiza-
tion problems. In CSA, cuckoo nests represent the best solutions discovered so 
far, and cuckoos lay eggs in these nests to generate new candidate solutions. If a 
cuckoo finds a better nest than its own, it replaces its egg with the new one. The 
CSA algorithm employs the “cuckoo fraction” parameter to control the quantity of 
nests that are substituted with fresh eggs during each iteration, thereby balancing 
the trade-off between exploration and exploitation. By iteratively generating and 
replacing candidate solutions, the algorithm aims to locate the global optimum of 
the objective function [16]. 

4 Conclusion 

Nature-inspired algorithms are a category of optimization algorithms that imitate 
the behavior of natural systems, such as biology, physics, and chemistry. These 
algorithms have gained popularity recently because of their ability to solve complex 
optimization problems efficiently. Several nature-inspired algorithms have been 
created, each possessing distinct features and benefits. Among the commonly used 
nature-inspired algorithms are genetic algorithms, particle swarm optimization, 
ant colony optimization, and artificial bee colony optimization. When comparing 
these algorithms, it is essential to consider factors such as their convergence 
speed, robustness, and ability to handle complex optimization problems. In general, 
genetic algorithms are often better suited for problems with a large search space, 
while particle swarm optimization is more efficient when the objective function 
is smooth and continuous. Ant colony optimization is often used for problems 
involving graph optimization, and artificial bee colony optimization is known 
for its robustness and ability to handle noisy objective functions. To summarize, 
every nature-inspired algorithm has its own advantages and disadvantages, and the 
selection of an algorithm will rely on the particular optimization challenge being 
addressed. Therefore, it is essential to carefully evaluate the problem requirements 
and characteristics before selecting an appropriate nature-inspired algorithm. 
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1 Introduction 

Yager [1] proposed the fundamental theory of Pythagorean fuzzy sets (PyFS) to 
address the shortcoming of Intuitionistic (InFS) fuzzy sets [1, 2], i.e., when the sum 
of membership (MBV) Ψ value and non-membership (NMBV) π value is more 
than one, i.e., Ψ + π > 1 (0.7  + 0.6 > 1). MBV and NMBV in a Pythagorean 
fuzzy set satisfy the requirement Ψ2 + π2 ≤ 1. Since the PyFS membership value 
domain is larger than the InFS membership value domain, this impression has a 
wider range than InFS. It is a controlling mechanism to communicate confusing 
thoughts. Compared to other fuzzy models, it offers more flexibility in dealing 
with decision-making in the actual world. Yager [1, 2] and Yager and Abbasov 
[3] investigated the fundamental ideas behind PyFS and clarified the connection 
between PyFNs and complex numbers. After that, a variety of Pythagorean fuzzy 
aggregation operators, including PyFWAO, are also suggested. Zhang and Xu 
[4] then explained the fundamental mathematical procedures for PyFNs. For the 
selection of the location of distribution centres, a variety of models and approaches, 
including fuzzy logic, mathematical models, heuristic meta-heuristic methods, and 
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the multi-criteria decision-making (MCDM) method, have recently been developed 
[5]. The selection difficulties, however, typically include a wide range of qualitative 
and quantitative factors. Applying MCDM approaches to create MCDM models is 
thus a workable solution to such issues. To help decision-makers choose the best 
distribution centre, a variety of MCDM techniques are available, including AHP, 
VIKOR, ELECTRE, PROMETHEE, ANP, DEMATEL, WASPAS, and TOPSIS 
(Technique for Order Preference by Similarity to an Ideal Solution). The current 
market’s fierce competition has forced companies to concentrate on and increase 
their investments in logistics networks. As a result, researchers and practitioners 
are increasingly focused on finding ways to reduce logistics expenses and boost the 
effectiveness of logistics processes [6]. Distribution centres are important nodes in 
the logistics network that link all logistics-related activities [7]. Therefore, in order 
to effectively manage the logistics operations and develop the logistics network, it 
is crucial to handle the logistics distribution centre. The efficiency of a logistics 
distribution centre is influenced by various factors. One of them, the logistics 
distribution site, has the biggest impact on the enterprise’s overall management costs 
since it influences the optimization of the logistics distribution system. In order 
to reduce expenditures and increase profits in a logistics system, it is crucial to 
select an appropriate distribution centre location [8]. But there isn’t enough data 
to suggest a thorough distribution centre placement and selection model for the 
logistics sector. This study attempted to construct a hybrid model based on a novel 
Pythagorean fuzzy entropy measure and the TOPSIS approach to aid in the selection 
of a distribution centre site. Thus, an integrated entropy-TOPSIS approach is used 
to compute criterion weights and select the best location for the distribution centre. 
One of the key objectives of any site selection is to identify the most suitable location 
that could minimize the total costs. In their research, Agrebi et al. [9] employed the 
ELECTRE I approach in their study to examine the choice of distribution facilities. 

Distribution centre location selection is a significant process in any business and 
should be done with care. The process of selecting a location for a distribution 
centre can involve a variety of criteria, such as proximity to customers, access to 
transportation networks, availability of resources, and cost. To effectively evaluate 
these factors, the decision-makers must have a comprehensive understanding of 
the method of decision-making. Accordingly, a literature review of the selection 
of distribution centre locations can provide useful insight into the various factors 
that must be considered. 

The TOPSIS approach was first introduced by C.L. Hwang and K. Yoon in 
1981. This approach successfully addresses the issue of ranking the alternatives. 
The TOPSIS approach and fuzzy set theory are thus frequently coupled to address 
problems involving multiple criteria decision-making (MCDM). Han et al. [10] 
modified the TOPSIS method using entropy and linguistically hesitant Pythagorean 
fuzzy sets to assess the contribution rates of WSoS- weapon system-of-systems. 
In order to evaluate the ranks and risk, Akram et al. [11] used the ELECTRE-
I technique in a hesitant Pythagorean fuzzy setting. Ulutaş et al. [12] attempted 
to address the logistic centre location problem for Siva province in Turkey by 
applying the MCDM model with fuzzy SWARA and the CoCoSo method. Shafiee
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et al. [13] employed Pythagorean fuzzy sets with the DEMATEL method to analyse 
the risk of the consumable product supply chain network during the COVID-19 
outbreak. Erdogan and Ayyildiz [14] applied novel AHP-integrated EDAS technol-
ogy to evaluate pharmaceutical warehouse location selection to address pandemic 
conditions. Sagnak et al. [15] found transportation cost to be the most important 
criteria by applying fuzzy best-worst and TOPSIS methods, among several other 
criteria such as land cost, storage cost, energy cost, investment, etc., in the selection 
of sustainable collection centres. Yang et al. [16] applied the Pythagorean fuzzy 
MULTIMOORA method for determining complex criteria weights and selecting 
the electric vehicle power battery. Yin et al. [17] used IVPyFN to deal with the 
uncertainty concerning sustainability in rail transit photovoltaic power station site 
selection, and IVPyFN-TOPSIS was used to aggregate the decision matrix. The 
Stepwise Weight Assessment Ratio Analysis (SWARA)-TOPSIS in Pythagorean 
fuzzy environment approach, according to Saeidi et al. [18], is extremely successful 
and capable of handling the Sustainable Human Resource Management issue in 
manufacturing organizations. Based on an evaluation model based on Pythagorean 
fuzzy sets and the TOPSIS method, Li et al. [19] construct an evaluation index 
system with four aspects using the dispatching results of power systems with 
a high proportion of renewable energy under four different dispatching modes 
as the evaluation object. Ayyildiz [20] applied Pythagorean fuzzy SWARA and 
Pythagorean fuzzy CODAS to estimate the location of the charging station for 
an electric scooter. Using an integrated methodology based on entropy, Complex 
Proportional Assessment (COPRAS), and Step-wise Weight Assessment Ratio 
Analysis (SWARA) methodologies in a Pythagorean fuzzy environment, Alipour 
et al. [22] addressed supplier selection for fuel cells paired with hydrogen FCH. 
The supplier selection problem was solved by Yu et al. [23] using the extended 
fuzzy TOPSIS approach in an interval-valued Pythagorean setting. Parveen et al. 
[24, 25] applied the entropy-TOPSIS approach to the MCDM problem of selecting 
an online payment system and ranking the academic institute. Han et al. [26] solved  
the MCDM problem using TOPSIS based on entropy for Linguistic Pythagorean 
fuzzy soft sets. The research review indicates that PyFSs are better functionally 
equipped than InFSs to deal with uncertainty in difficult real-world decision-
making situations. As a result, the standard TOPSIS technique that corresponds 
to the proposed entropy measure in PyFS was expanded in this article. This 
method is really straightforward and simple to comprehend. The traditional TOPSIS 
technique has been applied to a wider spectrum of issues. Although several MCDM 
approaches have been created under the PyFS environment, there have been few 
studies using PyFS entropy and the TOPSIS approach to evaluate the location of 
distribution centres. In order to solve this issue, this chapter provides the integrated 
entropy-TOPSIS technique, which may be used to examine the implicit uncertainty 
and ambiguity connected to the decision maker’s perspective. Here is a quick 
synopsis of this chapter: 

1. A novel PyFS entropy metric is suggested, and it is contrasted with the existing 
ones.
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2. The Integrated Entropy-TOPSIS approach combines Entropy and the Technique 
for Order Preference by Similarity to Ideal Solution (TOPSIS), two well-known 
MCDM techniques. While TOPSIS is used to rank the alternatives according to 
how well they perform on the criteria, entropy is used to assign weights to the 
criteria based on their relative importance. 

3. Use the new Pythagorean entropy measure to determine the decision experts’ 
weights in PyFS. 

4. Calculate the criteria weights using the suggested entropy. 
5. A Pythagorean fuzzy-integrated entropy-TOPSIS model has been utilized to 

solve the multi-criteria decision-making problem of selecting the location of a 
sustainable distribution centre. 

6. A comparison of the suggested method with the existing methodologies is 
provided to demonstrate the precision and practicality of the integrated PyF 
entropy-TOPSIS approach. 

This chapter is divided into five sections: Section 1 is devoted to the introduction 
and literature review. Section 2 presents the fundamental principles and preliminary 
concepts in relation to Pythagorean fuzzy sets. Section 3 proposes the novel entropy 
measure and proves its validity. Further, Sect. 4 presents the Pythagorean fuzzy 
MCDM algorithm based on Entropy-TOPSIS and discusses its application to the 
problem of distribution centre location selection. Section 5 discusses the result and 
the conclusion. 

2 Preliminaries 

This section goes through the fundamental definitions of fuzzy sets, intuitionistic 
fuzzy sets, and Pythagorean fuzzy sets. Some of the PyFS features, operations, and 
existing entropy measures employed in this chapter are also discussed. 

Definition 1 [21] An InFS ξ in C is defined as the following: 

.ξ = {〈b , μp (b), νp(b)
〉 |b ∈ C

}
(1) 

where 

.0 ≤ μp(b) + νp(b) ≤ 1∀b ∈ C (2) 

and the functions μp(b) : C  → [0, 1] denote the degree of membership and 
νp(b) : C  → [0, 1] denote the degree of non-membership of b in C. The degree 
of indeterminacy of b in C indicated by λ and defined as 

.λp(b) = 1 − {μp(b) + νp(b)
}

(3)
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Definition 2 A PyFS proposed by Yager [1] in finite universe of discourse C is an 
object having the Form 

. ξ = {〈b , μp (b), νp(b)
〉 |b ∈ C

}

where 

.0 ≤ μ2
p(b) + ν2

p(b) ≤ 1∀b ∈ C (4) 

and the functions μp(b) : C  → [0, 1] denote the degree of membership and 
νp(b) : C  → [0, 1] denote the degree of non-membership of b in C. The degree 
of indeterminacy of b in C is denoted by λ and defined as 

.λp(b) =
√

1 −
{
μ2

p(b) + ν2
p(b)
}

(5) 

Definition 3 [1, 4] Let  P = (μp(b), νp(b) ) and Q = (μq(b), νq(b) ) be two PyFN, 
then 

(a) P ⊂ Q if ∀ b ∈ C μp(b) ≤ μq(b) and νp(b)≥ νq(b) 
(b) (P)b = {〈b, νp(b), μp(b)〉b ∈ C} 
(c) P = Q if P ⊂ Q and Q ⊂ P 

(d) . P
⋃

Q =
{〈

b, max
[(

μp(b), μq(b)
]
,

min
[
νp(b) ≥ νq(b)

] |b ∈ C

〉}

(e) . P ∩ Q =
{〈

b, min
[(

μp(b), μq(b)
]
,

max
[
νp(b) ≥ νq(b)

] |b ∈ C

〉}

(f) . P ⊕ Q =
{〈

b,
√

μ2
p(b) + μ2

q(b) − μ2
p(b)μ2

q(b), νp(b)νq(b)|b ∈ C
〉}

(g) . P ⊗ Q =
{〈

c, μp(b)μq(b),
√

ν2
p(b) + ν2

q(b) − ν2
p(b)ν2

q(b)|b ∈ C
〉}

Definition 4 Zhang [27] defined the operators based on Yager’s [2] PyFWA and 

PyFWG for PyFNs .Pj =
(
μpj

, νpj

)
for (j = 1, 2, . . . . ., n) as follows: 

PyFWA: Let .Pj =
(
μpj

, νpj

)
for (j = 1, 2, . . .  . ., n) be a collection of PyFNs, 

then PyFWA operator is defined as: 

. PyFWA (P1, P1, . . . .., P1) = j=1
n ⊕ (wjPj

)

=
⎛
⎝
√√√√1 −

n∏
j=1

(
1 − μ2

pj

)wj

,

n∏
j=1

(
νpj

)wj

⎞
⎠ (6) 

PyFWG: Let .Pj =
(
μpj

, νpj

)
for (j = 1, 2, . . . . ., n) be a PyFNs collection, then 

PyFWG operator is as follows:
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. PyFWG(P1, P1, . . . .., P1) = j=1
n ⊗ (Pj

)wj

=
⎛
⎝ n∏

j=1

(
μpj

)wj

,

√√√√1 −
n∏

j=1

(
1 − ν2

pj

)wj

⎞
⎠ (7) 

Where wj indicates the weight of Pj, such as wj ≥ 0 for (j = 1, 2, . . . . ., n) &  
.
∑n

j=1wj = 1. 

3 Novel Pythagorean Fuzzy Entropy Measure 

Entropy is an essential tool for measuring uncertain information. Less entropy 
means less uncertainty. PyFS is a more powerful structure to represent an infor-
mation where the existing structure fails. Therefore, establishing the measure of 
entropy for PyFS is significant in the present situation. The axiomatic formulation 
of the entropy measure of fuzzy sets was provided by De Luca and Termini [28]. 
Later, it was expanded to include InFS entropy by Szmidt and Kacprzyk [29]. As an 
extension of the entropy measure of Pythagorean fuzzy sets [1], we proposed a new 
concept of the fuzzy entropy measures of PyFS as follows: 

Definition 5 For the Pythagorean fuzzy set ξ = {〈b, μp(b), νp(b)〉|b ∈ C}, the  
Pythagorean fuzzy entropy of ψ is defined as 

.Ep (ξ) = 1

n

n∑
i=1

⎡
⎣√

2 cos

⎧⎨
⎩

1 +
∣∣∣μ2

p(b) − ν2
p(b)

∣∣∣
4

⎫⎬
⎭π

⎤
⎦ (8) 

Axioms for Pythagorean Fuzzy Entropy Measure 
The relation Ep : PFS(C) → [0, 1] is stated as Pythagorean fuzzy entropy if it 
satisfies: 

(i) . 0 ≤ Ep (ξ) ≤ 1
(ii) Ep(ξ ) = 0, if and only if ψ is a crisp set 

(iii) Ep(ξ ) = 1, if and only if μp(b) = νp(b), ∀ b ∈ C 
(iv) Ep(ξb) = Ep(ξ ) 
(v) Ep(δ) ≤ Ep(ξ ), if δ is less fuzzy than ψ , i.e., μp(δ) ≤ μp(ξ ) and νp(δ) ≥ νp(ξ ) 

for μp(ξ ) ≤ νp(ξ ), or, μδ(b) ≥ μξ (b) and νδ(b) ≤ νξ (b) for μξ (b) ≥ νξ (b) ∀ 
b ∈ C. 

Theorem 1 Ep(ξ ) is a Pythagorean fuzzy entropy 
Proof. (E1) Since .0 ≤ μξ (b), νξ (b) ≤ 1 ⇒ 0 ≤ μ2

ξ (b), ν2
ξ (b) ≤ 1 so that . 0 ≤∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣ ≤ 1

. ⇒ 1 ≤ 1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣ ≤ 2
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. ⇒ π

4
≤

1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣
4

≤ π

2

. ⇒ 1√
2

≤ cos

⎧⎨
⎩

1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣
4

⎫⎬
⎭π ≤ 0

. ⇒ 0 ≤ √
2 cos

⎧⎨
⎩

1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣
4

⎫⎬
⎭π ≤ 1 i ⇒ 0 ≤ Ep (ξ) ≤ 1.

(E2) If Ep(ξ ) = 0 . ⇒ cos

{
1+
∣∣∣μ2

ξ (b)−ν2
ξ (b)

∣∣∣
4

}
π = 0

. ⇒
1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣
4

= 1

2
⇒
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣ = 1.

We have, μξ (b) = 0, νξ (b) = 1 or  μξ (b) = 1, νξ (b) = 0. Hence ξ is a crisp set. 
If ξ is a crisp set, then Ep(ξ ) = 0. 
(E3) If .μξ (b) = νξ (b) = 1√

3
, then, 

. ⇒ √
2 cos

⎧⎨
⎩

1 +
∣∣∣μ2

ξ (b) − ν2
ξ (b)

∣∣∣
4

⎫⎬
⎭π = 1

. ⇒ Ep (ξ) = 1

(E4) As . Ep (ψ) =∑n
i=1

[√
2 cos

{
1+
∣∣∣μ2

ξ (b)−ν2
ξ (b)

∣∣∣
4

}
π

]

. =
n∑

i=1

⎡
⎣√

2 cos

⎧⎨
⎩

1 +
∣∣∣ν2

ξ (b) − μ2
ξ (b)

∣∣∣
4

⎫⎬
⎭π

⎤
⎦ = Ep

(
ξb
)

(E5) To prove axiom, we construct a function 

.f (x, y) = √
2 cos

{
1+∣∣y2−x2

∣∣
4

}
π , where x, y ∈ [0, 1]
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Case I: When x ≤ y,then . f1 (x, y) = √
2 cos

{
1+∣∣y2−x2

∣∣
4

}
π

Now we need to prove that f1(x, y) increases with x and decreases with y. 
Therefore, 

. 
∂f1

∂x
= 2 × π × x

4
sin

{
1 + ∣∣y2 − x2

∣∣
4

}
π = πx

2
sin

{
1 + ∣∣y2 − x2

∣∣
4

}
π;

. 
∂f1

∂y
= −2 × π × y

4
sin

{
1 + ∣∣y2 − x2

∣∣
4

}
π = −πy

2
sin

{
1 + ∣∣y2 − x2

∣∣
4

}
π

Now, when x ≤ y, .
∂f1
∂x

> 0 and .
∂f1
∂y

< 0. Therefore, we can say that 
f1(x, y) increases with x and decreases with y. In other words, μδ(b) ≤ μξ (b) and 
νδ(b) ≥ νξ (b) for  μξ (b) ≤ νξ (b)∀ b ∈ C, i.e., Ep(δ) ≤ Ep(ξ ). 

Case II: When x ≥ y,then . f2 (x, y) = √
2 cos

{
1+∣∣x2−y2

∣∣
4

}
π

Now we need to prove that f2(x, y) decreases with x and increases with y. 
Therefore, 

. 
∂f2

∂x
= −2 × π × x

4
sin

{
1 + ∣∣x2 − y2

∣∣
4

}
π = −πx

2
sin

{
1 + ∣∣x2 − y2

∣∣
4

}
π;

. 
∂f2

∂y
= 2 × π × y

4
sin

{
1 + ∣∣x2 − y2

∣∣
4

}
π = πy

2
sin

{
1 + ∣∣x2 − y2

∣∣
4

}
π;

Now, when x ≥ y, .
∂f1
∂x

< 0 and .
∂f1
∂y

> 0. Therefore, we can say that 
f2(x, y) decreases with x and increases with y. In other words, μδ(b) ≥ μξ (b) and 
νδ(b) ≤ νξ (b) for  μξ (b) ≥ νξ (b) ∀ b ∈ C, i.e., Ep(δ) ≤ Ep(ξ ). 

4 Pythagorean Fuzzy MCDM Algorithm Based 
on Entropy-TOPSIS 

To estimate the weight of the criterion, TOPSIS is modified using the Pythagorean 
entropy metric in the proposed study. Zhang and Xu [6] applied the TOPSIS 
method to the Pythagorean fuzzy environment to solve the MCDM problem. The 
chosen alternative must be the furthest away from the NIdS and nearest to the 
PIdS to establish the TOPSIS method. In this technique, PIdS and NIdS are initially 
calculated in terms of PyFNs. Following that, the distances of PIdS and NIdS from
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each alternative are determined. Using the above distances, the closeness index of 
each alternative is determined. The rank is then determined using the closeness 
indices in descending order. The proposed framework uses linguistic variables to 
evaluate alternatives. To accommodate uncertainty, the PyFN counterparts of those 
options are then established using the Pythagorean fuzzy weighting scale, as shown 
in Table 3. Based on the inputs gathered from decision-makers in terms of linguistic 
factors, the Pythagorean fuzzy decision matrix of criteria is constructed. 

Let P = {P1, P2, . . .  . . . . Pm} indicates the collection of m options from which 
decision-makers will select one using a set of criteria Z = {Z1, Z2, . . .  .  . . . Zn} 
consisting of n criteria. The various steps involved in the hybrid Pythagorean 
Entropy-TOPSIS method are described as follows. 

Decision-Making Algorithm Using PyFS 
Step 1: Estimate the Decision-Maker’s Weight 
Using linguistic terms, Very Very Bad (ls1), Very Bad (ls2), Bad (ls3), Medium Bad 

(ls4), Fair (ls5), Good (ls6), Very Good (ls7), Very Very Good (ls8), Extremely 
Good (ls9), Exactly Equal (ls10), determines the significance of the ‘r’ decision-
maker and are stated in Pythagorean fuzzy numbers. Let the PyFN to rate 
the uth decision-maker be θu=[μu, νu, πu]. So, the decision-maker’s weight is 
determined as follows: 

.Δk =
(

μu + πu

(
μu

μu+νu

))
∑l

u=1

(
μu + πu

(
μu

μu+νu

)) (9) 

and .
∑l

u=1 Δu = 1 
Step 2: Construct an aggregated PyFDM 

Consider .P (k) =
(
p

(k)
ij

)
m×n

to be a fuzzy Pythagorean decision matrix for 

each decision-maker. Where Δ = {Δ1, Δ2, . . .  .  . . Δl} represents the decision-
maker’s weight and .

∑l
k=1Δk = 1,Δk ∈ [0, 1]. 

For aggregation, Zhang’s [27] PyFWA operator is utilized, P = (pij)m × n, where 

.P =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1n

p21 p22 · · · p2n

...

pm1

...

pm2

. . .

· · ·
...

pmn

⎤
⎥⎥⎥⎦ (10) 

where, . pij = PFWAΔ

(
p

(1)
ij , p

(2)
ij , . . . . . . . . . , p

(l)
ij

)

. =
⎛
⎝
√√√√1 −

l∏
k=1

(
1 − μ2

ij

)Δk

,

l∏
k=1

(
νij

)Δk

⎞
⎠ (11)
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Here . pij = (μIi

(
zj

) • νIi

(
zj

)
, πIi

(
zj

))
i = 1, 2, . . .  . . . . . ,  m, and j = 1, 2, . . .  . . . . . ,  n 
Step 3: Evaluate Criteria Weight Utilizing Proposed Entropy Measure 
Here, the weight vector W = (. 
e

1 , . 
e
2 , . 
e

3 , . . . .,. 
e
n ) is obtained using the 

Pythagorean fuzzy entropy measure Ep for criteria Cj (j = 1, 2, . . . , n) proposed 
in Eq. (8), where .
e

j ≥ 0 and .
∑n

j=1 
e
j = 1. The Pythagorean fuzzy entropy 

measure for each column of P is evaluated using Eqs. (8, 9, and 11), and thus to 
determine the weights .
e

j of criteria Cj (j = 1, 2, . . .  , n), the following expression 
is used: 

.
e
j = 1 − Ep

(
Cj

)
n −∑n

j=1Ep
(
Cj

) (12) 

Step 4: Weighted Aggregated PyFDM 
As a result, the weight vector W can be calculated and aggregated with the fuzzy 

Pythagorean decision matrix P [30] to create the weighted PyFDM, H. 

.H̄ = W ′ ⊗ P̄ = WT ⊗ [z̄ij

]
m×n

=
[=
zij

]
(13) 

Where .W = (
e
1 , . . . . . . 
e

n

)
and .

=
zij = 〈=

μij ,
=
νij 〉 = 〈1−(1−μij )


e
j , ν


e
j

ij 〉, wj > 0  
Step 5: Evaluate PIdS and NIdS 
Apply TOPSIS to the newly constructed aggregated PyFDM to resolve the MCDM 

problem. According to Zhang and Xu’s [4] definitions, the extrema score values 
are utilized to determine the Positive Ideal Solution (PIdS) and Negative Ideal 
Solution (NIdS). 

.PISj = max
i

{
s
(
αij

)}
(14) 

.NISj = min
i

{
s
(
αij

)}
(15) 

Where s(αij) is PyFN’s score function 
Step 6: Determine the Separation Measures 

.δPQ+ = 1

n

∑n

i=1
max
{∣∣∣μP

2 − μ+
Q

2
∣∣∣ , ∣∣∣νP

2 − ν+
Q

2
∣∣∣} (16) 

.δPQ− = 1

n

∑n

i=1
max
{∣∣∣μP

2 − μ−
Q

2
∣∣∣ , ∣∣∣νP

2 − ν−
Q

2
∣∣∣} (17) 

Step 7: Evaluate the Closeness Coefficient
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The coefficient of closeness for each alternative is determined w.r.t. the Pythagorean 
fuzzy ideals using the following expression: 

.Cj = δPQ−

δPQ+ + δPQ−
(18) 

Where 0 ≤ Cj ≤ 1 and j = 1, . . . . ,  m 
Step 8: Ranking of Alternatives 
Depending on their Cj value, the alternatives are ordered in descending order. 

Application of the Entropy-TOPSIS Technique to Choose the Distribution 
Centre Location 
Ten evaluation criteria and four alternatives were considered for the selection 
of distribution centre location based on a thorough literature review, which are 
as follows. Human resources availability (CHR), i.e., the availability of labourers 
to work at the distribution centre; i.e., the needed space must be suitable for a 
distribution facility. Ample surrounding space must also be available for future 
development. Distribution centres must have access to a variety of modes of 
transportation to enable easy and quick transit because transportation is one of the 
most crucial factors determining their success. Storage Convenience (CSTC): the 
proximity of the distribution centre to the location where storage services are offered 
is important. Distance to suppliers (CDS) has to do with suppliers’ closeness to the 
distribution centre. To reduce transit time and ensure supply, the distribution centre 
should be close to the suppliers. Distance to market (CDM) has to do with how close 
the marketplaces are to the distribution hub. Due to transportation considerations, 
distribution centres should be close to markets. Distance to airport (CDA) is the  
distribution centre’s close proximity to airports. Air transportation is appropriate 
for the delivery of urgent packages and precious cargo. As a result, the distribution 
centre should be near airports. Distance to other transport facilities (CDTF) is the  
distribution centre’s close access to roads, ports, and railways. Highways make it 
simple and quick for businesses to convey their goods. The issue of large shipments, 
particularly economical freight, may be solved by transportation by sea or interior 
waterways. Railways should be nearby since they are a reliable and affordable form 
of transportation. Land cost (CLC) refers to the amount of property wherever the 
distribution centre will be situated. The minimization criterion is the land cost 
because it influences the overall investment expenses. Logistics cost (CLGC) is  
the expense incurred to make the items available to the customers. This cost has 
an impact on the outcomes of corporate performance; hence, minimization is a 
requirement. Labour cost (CLBC) serves as the remuneration for the labourers who 
work in the distribution centre. Labour cost is the minimization criterion since it 
influences company performance outcomes. 

Step 1: Estimate the Decision-Maker’s Weight 
The Pythagorean fuzzy technique integrates the weights of each decision-maker 

using Eq. (9), and the decision-maker’s significance is evaluated. The linguistic
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Table 1 Linguistic terms LTs PyFNs 

Extra significant 0.9 0.2 
Significant 0.8 0.35 
Average 0.65 0.45 
Insignificant 0.35 0.8 
More insignificant 0.2 0.9 

Table 2 Weight of 
decision-makers 

Decision makers Linguistics term Weight (Δ) 

I Very Important 0.4044 
II Medium 0.2583 
III Important 0.3372 

Table 3 Linguistic terms ls1 0 1 
ls2 0.2 0.9 
ls3 0.35 0.8 
ls4 0.45 0.65 
ls5 0.55 0.55 
ls6 0.65 0.45 
ls7 0.8 0.35 
ls8 0.9 0.2 
ls9 1 0 
ls10 0.1965 0.1965 

terms used for rating decision makers are displayed in Tables 1 and 2 lists the 
resulting decision-makers’s weights. 

Step 2: Construct Aggregated PyFDM 
The aggregated Pythagorean fuzzy decision matrix is constructed using the linguis-

tic terms shown in Table 3; the results of the decision-maker’s evaluation of 
each of the four distribution centre locations under consideration are displayed 
in Table 4. Based on the viewpoint of the typical decision-maker, Eq. (11) was  
utilized to generate the aggregated PyF decision matrix, which is shown in 
Table 5. 

Step 3: Evaluate Criteria Weight Utilizing Proposed Entropy Measure 
In order to calculate the proposed entropy measure for PyFS using Eq. (8) and to 

estimate the weights for each criteria using Eq. (12), decision-makers calculated 
10 independent criteria. The aggregated results of their assessments are shown in 
Table 6, along with the resulting entropy measure and weights. 

Step 4: Weighted Aggregated PyFDM 
Using Eq. (13), a weighted aggregate PyFDM is constructed, and thus Table 7 is 

obtained.
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Table 4 Weight of 
alternative’s based on criteria 

Decision-makers 
Criteria Distribution centre location I II III 

CHR T1 ls6 ls7 ls6 

T2 ls8 ls7 ls7 

T3 ls6 ls6 ls6 

T4 ls5 ls6 ls4 

CIR T1 ls6 ls6 ls6 

T2 ls7 ls6 ls7 

T3 ls7 ls7 ls6 

T4 ls6 ls6 ls6 

CSTC T1 ls7 ls6 ls7 

T2 ls7 ls7 ls6 

T3 ls7 ls7 ls6 

T4 ls6 ls6 ls6 

CDS T1 ls5 ls6 ls5 

T2 ls7 ls7 ls8 

T3 ls6 ls7 ls7 

T4 ls7 ls6 ls6 

CDM T1 ls6 ls7 ls6 

T2 ls8 ls6 ls7 

T3 ls6 ls5 ls5 

T4 ls7 ls ls6 

CDA T1 ls6 ls7 ls6 

T2 ls7 ls6 ls8 

T3 ls6 ls6 ls6 

T4 ls5 ls4 ls6 

CDTF T1 ls6 ls7 ls7 

T2 ls8 ls6 ls7 

T3 ls7 ls6 ls6 

T4 ls4 ls4 ls6 

CLC T1 ls6 ls6 ls7 

T2 ls8 ls8 ls7 

T3 ls7 ls6 ls7 

T4 ls6 ls7 ls7 

CLGC T1 ls7 ls6 ls7 

T2 ls8 ls6 ls8 

T3 ls6 ls6 ls6 

T4 ls5 ls4 ls6 

CLBC T1 ls6 ls6 ls6 

T2 ls7 ls6 ls7 

T3 ls6 ls6 ls6 

T4 ls4 ls4 ls6
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Table 5 Decision-maker’s evaluation in PyFNs in decision matrix 

C/A T1 T2 T3 T4 

CHR <0.6942,0.425> <0.8491,0.28> <0.6503,0.45> <0.5458,0.559> 
CIR <0.6503,0.45> <0.7733,0.371> <0.7556,0.384> <0.6503,0.45> 
CSTC <0.7733,0.371> <0.7556,0.384> <0.7556,0.384> <0.6503,0.45> 
CDS <0.5761,0.525> <0.8461,0.284> <0.7523,0.387> <0.7218,0.407> 
CDM <0.6942,0.425> <0.8294,0.297> <0.5941,0.508> <0.7218,0.407> 
CDA <0.6942,0.425> <0.8264,0.301> <0.6503,0.45> <0.5735,0.531> 
CDTF <0.7556,0.384> <0.8294,0.321> <0.7218,0.412> <0.5412,0.586> 
CLC <0.7176,0.415> <0.871,0.259> <0.772,0.375> <0.75,0.392> 
CLGC <0.7733,0.371> <0.8683,0.267> <0.6503,0.45> <0.5735,0.543> 
CLBC <0.6503,0.45> <0.7733,0.371> <0.6503,0.45> <0.3646,0.4830> 

Table 6 Evaluation of proposed entropy measure and criterion weights 

Criteria CHR CIR CSTC CDS CDM CDA CDTF CLC CLGC CLBC 

Entropy (Ep) 0.7415 0.8694 0.8098 0.6985 0.7545 0.7686 0.7121 0.8088 0.6991 0.8519 

Weights (.
e
j

)
0.1131 0.0571 0.0832 0.1319 0.1074 0.1012 0.1259 0.0837 0.1316 0.0648 

Table 7 Aggregated weighted PyFDM 

C/A A1 A2 A3 A4 

CHR 0.1254, 0.9077 0.1925, 0.8659 0.112, 0.9136 0.0854, 0.9363 
CIR 0.0582, 0.9554 0.0813, 0.9449 0.0773, 0.9467 0.0582, 0.9554 
CSTC 0.1161, 0.9207 0.1106, 0.9234 0.1106, 0.9234 0.0837, 0.9357 
CDS 0.1070, 0.9185 0.2187, 0.847 0.1681, 0.8822 0.1552, 0.8881 
CDM 0.1195, 0.9121 0.1730, 0.8777 0.0923, 0.9298 0.1284, 0.9079 
CDA 0.1130, 0.917 0.1624, 0.8855 0.1009, 0.9223 0.0826, 0.9379 
CDTF 0.1460, 0.8994 0.1813, 0.8793 0.1347, 0.9045 0.0843, 0.9413 
CLC 0.1332, 0.9053 0.2067, 0.8583 0.1539, 0.8949 0.1451, 0.8994 
CLGC 0.1545, 0.8949 0.2049, 0.8612 0.1120, 0.9136 0.0918, 0.9332 
CLBC 0.1120, 0.9136 0.1545, 0.8949 0.1120, 0.9136 0.0500, 0.9209 

Step 5: Evaluate PIdS and NIdS 
Now, using Eqs. (14 and 15), PIdS and NIdS are estimated in accordance with Zhang 

and Xu’s [4] definitions, and the outcomes are displayed in Table 8. 

Step 6, 7, and 8 Calculate the separation measures of each alternative from the 
PIdS, NIdS, Closeness Coefficient, separation measure, and relative closeness. The 
coefficients are assessed using Eqs. (16)–(18), and the findings are shown in Table 9. 
The separation measure is calculated, and alternatives are thus ordered in decreasing 
order.
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Table 8 PIdS and NIdS for 
Pythagorean fuzzy set 

Criteria A+ A- Criteria A+ A-

CHR 0.1292 0.0561 CDA 0.9583 0.9111 
0.9111 0.9583 0.0784 0.1532 
0.1532 0.0784 0.0755 0.1464 

CIR 0.1275 0.0921 CDTF 0.9292 0.9129 
0.9129 0.9292 0.1281 0.1504 
0.1504 0.1281 0.1201 0.1439 

CSTC 0.116 0.084 CLC 0.921 0.936 
0.921 0.936 0.139 0.117 
0.139 0.117 0.1324 0.1102 

CDS 0.1174 0.0556 CLGC 0.919 0.958 
0.919 0.958 0.1408 0.0793 
0.1408 0.0793 0.1356 0.0759 

CDM 0.124 0.065 CLBC 0.913 0.95 
0.913 0.95 0.151 0.0923 
0.151 0.0923 0.14363 0.0889 

Table 9 Separation measure 
and ranking of alternative 

Alternatives S+ S− Ci+ Rank 

T1 0.32854 0.29507 0.473 3 
T2 0.1864 0.43721 0.701 1 
T3 0.30691 0.3167 0.508 2 
T4 0.38921 0.23441 0.376 4 

Table 10 Entropy 
comparison 

Entropy measure Rank 

E1 (C) [31] T2 > T3 > T1 > T4 
E2 (C) [32] T2 > T3 > T1 > T4 
E3 (C) [33] T2 > T3 > T1 > T4 
EP (C) Proposed T2 > T3 > T1 > T4 

5 Result and Discussion 

From the above table, alternative A2 was chosen as the best option based on the 
selected criteria, and alternative A4 is the least preferred distribution centre location 
as it received the worst rating from the four alternatives taken into consideration 
for the study. The rank obtained through the application of the proposed Entropy-
TOPSIS method is compared with the few Pythagorean fuzzy entropy measures 
taken from the latest literature. The results thus obtained through the different 
entropy measures are shown in Table 10. 

The following factors make the new PyFS-based entropy measures far more 
effective: 

• The new Pythagorean entropy measure is in perfect agreement with the axiomatic 
definition of entropy measures. 

• TOPSIS is defined using the information for PyFS.
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• A hybrid entropy-TOPSIS approach is applied to solve the multi-criteria 
decision-making problem. 

• The use of linguistic variables and PyFSs assures that this approach can better 
address the uncertainty in the decision-making method. 

• The suggested integrated methodology, which uses a newly defined Pythagorean 
entropy measure, is more appropriate and efficient for ranking alternatives than 
the current MCDM approaches. 

6 Conclusion 

Research pertaining to the selection of sustainable logistics centre locations has 
suggested that the application of the Pythagorean fuzzy entropy measure (PyFEM) 
can be advantageous. The use of PyFEM yields a set of weights, which are then 
used to evaluate the multiple criteria associated with the selection of a sustainable 
logistics centre location. This approach eliminates the need for subjective and time-
consuming assessments, which may be prone to bias. Additionally, the application 
of PyFEM can help identify complex relationships between criteria and provide 
insights into the best location for a sustainable logistics centre. PyFS provides 
a tremendous ability to effectively regulate uncertainties and fuzziness. A hybrid 
entropy-TOPSIS model approach to solving the Pythagorean fuzzy MCDM problem 
is considered. The selection of a sustainable logistics centre location is used as an 
example, and Pythagorean fuzzy inputs in the form of linguistic data are used. A 
comparison of the existing entropy measures with the proposed measure reflects 
the efficiency of the proposed method. PyFS has the capability to handle the 
uncertainty in the system. The proposed methodology can be used to choose the 
best option when there are competing criteria in a variety of real-world decision-
making situations in a fuzzy Pythagorean environment. The Pythagorean fuzzy set 
is a generalization for more effectively incorporating uncertainty in the data, and 
it is similar to other current fuzzy sets. In addition, a decision-making algorithm 
is applied to resolve decision-making complications when a group of experts is 
involved. The results of the case show the potential of the recommended entropy in 
the field of decision-making with linguistic data. The proposed measurement can be 
used as a component of new objective methods for setting attribute weights utilizing 
Pythagorean fuzzy sets in an upcoming analysis on multi-criteria decision-making. 
Future applications for the proposed Pythagorean fuzzy method are numerous. 
Additionally, the proposed measurement can be employed in subsequent studies 
by including various fuzzy systems into decision matrices and employing them to 
address various MCDM issues with unknown weights.
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Improved Jaya Algorithm with Inertia
Weight Factor

Sonal Deshwal, Pravesh Kumar, and Sandeep Kumar Mogha

1 Introduction

The constrained optimization problem in mathematical form can be defined as:

.

Min f (X) : X = [x1, x2, . . . , xN ] ∈ RN

s.t. : gj (X) ≤ 0, j = 1, 2, . . . , m
hk(X) = 0, k = 1, 2, . . . , n
lowi ≤ xi ≤ uppi , i = 1, 2, . . . , N

of efficiency, that is, the objective is to find the candidate solution X∗ ∈ RN to
minimize the function while satisfying all constraints. lowi represents the lower
bound and uppi represents the upper bound for xi.

The optimization strategy is crucial in determining how to maximize or minimize
a function in terms of the decision variables. Numerous nonlinear constraints
provide a huge number of solution spaces for many real-world issues. These
issues are nonconvex, complex, and come with a significant computing cost.
Therefore, it is exceedingly difficult to solve problems with such a vast number
of variables and constraints. Additionally, local optimal solutions produced from
several conventional approaches might not always suggest the best choice. To
solve these issues, the researchers propose a number of metaheuristic optimization
strategies [1] which are extremely effective in solving extremely complex situations
[2]. The invention of simple, flexible, and inexpensive metaheuristic algorithms has
received more attention from researchers.
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The two main categories of population-based methods are algorithms based
on swarm intelligence (SI) and evolutionary algorithms (EA). Different EA take
ideas from natural processes, including reproduction, mutation, recombination, and
selection. The basis for each of these EA is the candidate’s population-level survival
fitness. Several well-known evolutionary algorithms include DE (Differential Evolu-
tion) [3], Bacterial Foraging Optimization (BFO) [4], and GA (Genetic Algorithm)
[5]. There are numerous algorithms based on swarm intelligence that are well
known. Grey Wolf Optimizer (GWO) [6], PSO (Particle Swarm Optimization) [7],
ACO (Ant Colony Optimization) [8], Fire Fly (FF) technique [9], SFL (Shuffled
Frog Leaping) [10], Artificial Bee Colony [11], and others are a few of them. In
addition to algorithms based on swarm intelligence and evolution, certain other
algorithms are built on the fundamentals of many different natural phenomena.
Biogeography-Based Optimization (BBO) [12], APA [13], IRA [14], GFA [15],
Harmony Search (HS) method [16], Charged System Search Algorithm (CSSA)
[17] and others are among them.

It is also essential for one to understand that many of these metaheuristic
techniques rely on a small number of (often fine-tuned) parameters, the impacts
of which might drastically alter the algorithmic functioning hinge on the individual
optimization problem. As opposed to that, from the viewpoint of a user, it would
be desirable to have a method that requires the fewest parameters to generalize
its usage without necessitating extra labor to adjust the parameter value for each
particular circumstance. As a result, one current path in metaheuristic algorithms
is to design self-adaptive techniques that can be utilized to instantly resolve any
optimization problem. One illustration of this pattern is the Teaching Learning
Based Optimization (TLBO) [18] approach. Only two parameters are needed: the
population size and the maximum number of generations, which appear to be
prerequisites for all swarm intelligence algorithms. TLBO has recently served as
an inspiration for several algorithms, including the Jaya algorithm, which was
constructed on a similar idea.

The Jaya algorithm is a recently established method proposed by Rao [19].
It is a population-based technique developed to address both constrained and
unconstrained issues. The Jaya algorithm version is used to address both single
and multi-objective real-world optimization issues. A few newly developed Jaya
algorithm forms and their applications are presented in [20–28]. The most notable
feature of Jaya is that when an individual’s position in the population is updated,
both the one with the global best function value and the one with the global worst
function value are taken into consideration. Jaya provides a broad search area in
the search space by using both the global best and global worst positions. Using
Jaya’s organizational structure, local minimums may be avoided. However, there
is space for improvement in terms of exploration, accuracy, and speed to a better
answer. In order to increase its exploration, exploitation capacities, and convergence
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speed, the inertia weight factor is presented in this study. The effectiveness of
the upgraded Jaya method is examined for parameter optimization of literature-
available benchmark functions. According to the experimental findings, the Jaya
with inertia weight performs better than the Jaya and three other well-known
algorithms named GA, PSO, and DE.

Following is the organization of the remaining sections: A brief description of
Jaya is provided in Sect. 2. The suggested W-Jaya algorithm is briefly described in
Sect. 3. Results and comparisons are presented in Sect. 4, and Sect. 5 concludes
with inferences made from the current study.

2 Jaya Algorithm

Jaya algorithm is a stochastic search technique based on a population that addresses
constrained as well as unconstrained optimization problems. Every solution
obtained by Jaya is termed as particle. Each particle within the searching zone
chooses the best objective solution and avoids the worst.

The name Jaya means “victory” in Sanskrit. Its cornerstone is the “survival of
the fittest” theory of natural selection. This demonstrates how the best worldwide
outcomes are pursued while the worst ones are disregarded within the Jaya
population. As a result, better solutions are placed over the worst solutions in each
iteration.

Let f (x) be the objective function that has been minimized (or maximized).
Consider a population with a size of N (i.e., i = 1, 2, 3, . . . , N) and design variables
D (i.e., j = 1,2,3, . . . , D). Let Xworst, j(g) and Xbest, j(g) be the current global worst
and optimum vectors in the search space, then Eq. 1 creates the new position for any
vector Xi, j(g).

.

Xi,j (g + 1) = Xi,j (g) + rand1
∗ (Xbest,j (g) − |Xi,j (g)|)

− rand2
∗ (Xworst,j (g) − |Xi,j (g)|) (1)

where rand1 and rand2 are any uniform random numbers with values between [0,1].
g means the current generation number. Xi, j(g + 1) represents Xi, j(g)’s most recent
value. Xi, j(g + 1) is retained if it has better fitness value than Xi, j(g). If not, Xi, j(g)
will be kept for the upcoming iteration.
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Working of Jaya Algorithm

3 Jaya Algorithm with Inertia Weight Factor

The challenging aspect of optimization algorithm is striking a balance between
diversification and intensification. In order to develop a balance between exploration
and exploitation more effectively and to obtain a fast convergence speed, an
inertia weight factor is combined with Jaya and its name is suggested as “W-Jaya
Algorithm.” Next, inertia weight factor and W-Jaya are defined in detail as follows:

3.1 Inertia Weight Factor

The idea of an inertia weight factor is generally used in the PSO algorithm to
balance diversification and intensification. The optimization technique may balance
exploitation and exploration using time-varying inertia weight (TVIW). The idea
of TVIW has been successfully implemented in PSO [29–32], where it has been
proven that a high TVIW makes exploration easier, while a relatively small TVIW
makes exploitation easier. The inertia weight may be changed to dynamically alter
the search capacity. Therefore, it would be important to test this modification on a
variety of problems and compare its performance to the original Jaya algorithm and
other optimization algorithms.
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The following is the mathematical equation for the time-varying inertia weight:

.W(g) = Wmax − (Wmax − Wmin) × g

gmax
(2)

where W(g) is the weight of inertia at g iteration, Wmax is the inertia weight’s
maximum value, Wmin is the inertia weight’s minimum value, and gmax is the
maximum number of iterations.

3.2 Planned Jaya with Inertia Weight Factor

Step 1: The W-Jaya algorithm’s settings are established in the first phase of the run.
The algorithmic parameters are the population size N, Wmax,Wmin and gmax.

Step 2: The initial population of the W-Jaya method is constructed using Eq. 3 and
saved in an augmented matrix of size N × D, where N is the population size &
D denotes the number of design variables, as shown in Eq. 4.

.Xij = lowj + (uppj − lowj

)× rand,where i = 1, 2, . . . , N& j = 1, 2, . . . ,D
(3)

The uniform function rand produces random values between 0 and 1, with
lowj and uppj denoting the lower and upper boundaries of the search region,
respectively.

.X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1D

x21 x22 · · · x2D
...

... · · · ...

xN1 xN2 · · · xND

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f1

f2
...

fN

⎤
⎥⎥⎥⎦ (4)

The objective function f(x) for each solution is evaluated. Thereafter, Xg

best,j and

X
g
worst,j are determined, whereas X

g

best,j is the global best vector in the search

space for generation g and X
g
worst,j is the global worst vector.

Step 3: Evolution of W-Jaya in process. All choice variables for all solutions in the
X are modified iteratively using Eq. 5.

.

X
g+1
i,j = W(g) × rand1 × X

g
i,j + rand2 ×

(
X

g

best,j − |Xg
i,j |
)

− rand3

×
(
X

g
worst,j − |Xg

i,j |
) (5)

where rand1, rand2 and rand3 are any uniform random numbers with values
between [0,1]. The updated value for X

g
i,j is X

g+1
i,j .
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Step 4: The X solutions given in (4) will be revised after each iteration g. As
indicated in Eq. 6, X

g
i,j will be replaced by the newly produced vector X

g+1
i,j

if it has the best optimized value, else previous valueXg
i,j remains the same for

the upcoming generation. Then the updated values of X are given by:

.X
g+1
i,j =

{
X

g+1
i,j , if f

(
X

g+1
i,j

)
< f

(
X

g
i,j

)
X

g
i,j else

}
(6)

Step 5: Steps 3 and 4 are continued until the W-Jaya algorithm reaches the
termination criteria, which is often the maximum number of generation gmax.

3.3 Flow Chart of W-Jaya

A flowchart is a graphical representation of a process, system, or algorithm using
symbols, shapes, and connecting lines to illustrate the sequence of steps, decision
points, and interactions involved. W-Jaya’s flowchart is shown in Fig. 1.

Explanation of Steps:

1. Start: This is the initial point of the process. The flowchart begins here.
2. Initialize W-Jaya algorithm’s parameters: This step involves setting up the

parameters required for the W-Jaya algorithm.
3. Create the first population: Generate the initial population for the optimization

problem using Eq. 3.
4. Locate the population’s best and worst solutions: Evaluate the fitness of each

solution to determine the best and worst solutions based on the problem’s
objective function. The best solution is the one with the highest fitness, while
the worst solution has the lowest fitness.

5. Using Eq. 5, update the existing solution: Apply Eq. 5 to update the existing
solution.

6. Is new solution better than old solution: It’s checked whether the newly updated
solution is better than the old solution by comparing the fitness of the new
solution with that of the old solution.

I. Accept the new solution and replace it: If the new solution is better (higher
fitness) than the old solution, accept the new solution and replace the old one
with it.

II. Keep the old solution: If the new solution is not better than the old solution,
retain the old solution.

7. Is there fulfillment of the termination requirement: Check whether the termination
criteria for the algorithm have been met. These criteria determine when the
algorithm should stop running.
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Start

Initialize the W-Jaya algorithm’s parameters.

Create the first population

Using equation 5, update the
existing solution.

Is new solution better than
old solution?

Accept the new
solution and replace it.

Keep the old
solution

yes

yes

No

No

Optimum solution.

End

Is there fulfilment of the termination
requirement?

Locate the population’s best and
worst solutions.

Fig. 1 Flowchart of W-Jaya

I. Report the optimum solution: If the termination criteria are met, report the
best solution found by the algorithm as the optimum solution for the given
problem.

II. If not, repeat steps from locating the population’s best and worst solutions: If
the termination criteria are not met, the process goes back to Step 4 to locate
the best and worst solutions in the updated population.

8. Steps 4 through 7 are repeated until the termination criteria are fulfilled.
9. End: The process ends.

4 Experimental Results and Discussion

A total of 30 standard functions are being used to test the effectiveness of the W-
Jaya algorithm. Out of which 20 are unconstrained and 10 are constrained. These
functions are the traditional ones that are frequently used nowadays. We’ve selected
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these test functions so that we can compare our results to those of the standard JAYA
approach and three meta-heuristics methods (GA, PSO, DE). This section covers
the interpretation of experimental data and a thorough explanation of functions,
parameter settings, and statistical analysis of results.

4.1 Unconstrained and Constrained Benchmark Problems

There are two main categories of optimization problems: constrained and uncon-
strained problems. The optimization algorithm of the unconstrained type searches
for an objective function’s minimum or maximum value. As shown in Appendix
1, the three different unconstrained benchmark function types—unimodal, mul-
timodal, and fixed-dimension multimodal—are presented in Tables 5, 6, and 7,
respectively, where Dim denotes the function’s dimension, range is the variation
in functional value, and fmin denotes the optimal one.

A constrained type of problem has a more complicated approach. The optimum
solution for this type of problem must meet the conditions (constraints) given for the
problem. In this study, the W-Jaya method and four additional algorithms were used
to optimize 10 constrained benchmark problems. The article’s Appendix 2 has more
details on the functions. Table 3 shows the optimal average values. It is clear that the
algorithm has achieved ideal or very close to optimal results, and its performance
has been acceptable.

Constrained Handling Technique
A way of handling methodology is required to apply constraint conditions in the
optimization process while optimizing constrained problems. The literature offers
a variety of techniques for dealing with constraints [33–35]. This chapter uses
the method of applying a penalty to the value of the objective function. The
mathematical form of penalty is shown in Eq. 7 to Eq. 10. The fitness function
Q(x) is described as the sum of a penalty term and the objective function f (x). P(x)
is defined as the constraint values given in Eq. 8. The total number of constraints is t,
the number of inequality constraints is m, and the number of equality constraints is
n. To manage equality constraints, they are often converted to inequality constraints,
as shown in Eq. 8. The parameter δ represents a small positive number (10−4 in this
chapter).

.Q(x) = f (x) + 1020
tE
1

(Pt (x))2 (7)

where

.Pt(x) =
{
max (0, gt (x)) , if 1 ≤ t ≤ m

max (0, (|ht (x)| − δ)) , if 1 ≤ t ≤ n

}
(8)
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Table 1 Setup of parameters S. no Name Parameter setting

1 Maximum Generation 500
2 Population Size (N) 30
3 Total Run 20
4 rand1, rand2 & rand3 [0,1]
5 Wmax 0.9
6 Wmin 0.4

.gt (x) ≤ 0, t = 1, 2, 3, 4, . . . , m (9)

.ht (x) = 0, t = 1, 2, 3, 4, . . . , n (10)

4.2 Parameter Setting

The test’s parameter settings are shown in Table 1. The maximum number of
generations and the population size were chosen to be 500 and 30, respectively,
to ensure that all functions in optimization problems could be adequately compared.
The suggested method was implemented in MATLAB version R2016a on a laptop
with the following specifications: Windows 11, 12th Gen Intel(R) Core (TM) i7-
1255U @ 1.70 GHz, 16GB RAM, 512GB SSD.

4.3 Results and Comparison

In this part, the effectiveness of the suggested W-Jaya is assessed through compari-
son to other optimization techniques, such as Jaya, PSO, GWO, and DE (Table 2).
We have executed each technique on each function 20 times in order to minimize
the effects of randomness. After the same number of runs, the average results are
compared to those of other methods. Here, it is evident that when compared to
alternatives, the recommended W-Jaya obtained the desired results for all functions.
In addition, Table 4 displays the results of a nonparametric Wilcoxon statistical test.

The results of Table 3 show that W-Jaya outperforms all other methods for
functions G01, G02, G03, G05, G06, and G10. Its performance in the G04, G07,
and G09 functions is on par with DE and better than Jaya, PSO, and GWO. W-Jaya
performs better than Jaya but is equivalent to PSO, GWO, and DE for function G08.
It should be noted that boldface is used to highlight the best outcomes.
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Table 4 Wilcoxon test
results for unconstrained
optimization problem

Functions Wilcoxon test
1/2 1/3 1/4 1/5

F1 + + + +
F2 + + + +
F3 + + + +
F4 + + + −
F5 + + + −
F6 + + + =
F7 + + + +
F8 + + + −
F9 + + + +
F10 + + + +
F11 + + + =
F12 + + + +
F13 + + + +
F14 = + + =
F15 = = = =
F16 = = = =
F17 = = = =
F18 = = = =
F19 = = = +
F20 + + + +

Comparing the performance of different algorithms on a set of benchmark
instances using the Wilcoxon test is a common statistical method in the field of
optimization. The Wilcoxon test is a nonparametric test used to determine if there
are significant differences between the performances of two or more algorithms.
Here’s a step-by-step guide on how to perform this comparison:

1. Collect the results of the different algorithms on the set of benchmark instances.
For each algorithm, you should have a set of performance measurements (e.g.,
optimum value) for each benchmark instances.

2. Select the algorithm that will be compared with others. For example, W-Jaya has
been compared with Jaya, PSO, GWO, and DE in Table 4. We put W-Jaya as
number one and Jaya, PSO, GWO, and DE as 2, 3, and 4, accordingly.

3. Now reintroduce the signs. If for a function algorithm 1 performed better
than algorithm 2, assign a positive (+) sign to the corresponding function. If
algorithm 1 performed worse than algorithm 2, assign a negative (−) sign. If the
performance is identical for the algorithms 1 and 2, assign a equal to (=) sign.

The Wilcoxon test indicates that for functions F1, F2, F3, F7, F9, F10, F12, F13,
and F20, W-Jaya surpasses all other algorithms. Its performance for functions F6
and F11 is comparable to DE but superior to Jaya, PSO, and GWO.W-Jaya performs
worse than DE for functions F4, F5, and F8 but better than Jaya, PSO, and GWO.
W-Jaya performs better than Jaya but less than PSO, GWO, and DE for function F9.
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Fig. 2 Convergence graph of
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Fig. 3 Convergence graph of
F2
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For functions F15, F16, F17, and F18, comparable to Jaya, PSO, GWO, and DE. For
F19, Jaya, PSO, and GWO are equivalent. For function F14, W-Jaya is on par with
Jaya but better than DE, PSO, and GWO.

4.4 Convergence Graph

This section presents the Jaya and suggested W-Jaya convergence graphs for the
functions F1, F2, F9, and F11. Fig. 2, 3, 4, and 5 show the convergence graphs
for the functions F1, F2, F9, and F11, respectively. These graphs over Jaya make it
simple to examine the rate of W-Jaya’s convergence.
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Fig. 4 Convergence graph of
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Fig. 5 Convergence graph of
F11
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By the graphs it can be easily seen that W-Jaya’s rate of convergence on the
benchmark functions is unquestionably faster than that of traditional Jaya.

5 Conclusion

In this chapter, an Improved Jaya (W-Jaya) algorithm with time-varying inertia
weight factor is introduced to determine unconstrained and constrained optimization
problems. The proposed idea of time-varying inertia weight (TVIW) with Jaya
helps to improve the exploitation and exploration capacity of the algorithm. The
performance of W-Jaya algorithm has been tested on 20 unconstrained and 10
constrained test functions and compared with well-known optimization techniques,
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such as conventional Jaya, PSO, GWO and DE. Finally, the results reveal that the
W-Jaya offers high-quality solutions in a reasonable timeframe and enhances the
exploitation-exploration capabilities of Jaya.

A.1 Appendices

A.1.1 Appendix 1: List of Unconstrained Test Problems (Tables
5, 6, and 7)

A.1.2 Appendix 2: List of Constrained Test Problems (Table 8)

Problem-1: G01

.Min f (x) = 5
4E

i=1

xi − 5
4E

i=1

x2
i −

13E
i=5

xi

Table 5 Unimodal benchmark problems

Function Dim Range fmin

F1 =
nE

i=1
x2
i 30 [−100,100] 0

F2 =
nE

i=1
| xi | +

n||
i=1

xi 30 [−10,10] 0

F3 =
nE

i=1

(
nE

i=1
xi

)2

30 [−100,100] 0

F4 = max { | xi | , 1 ≤ i ≤ n 30 [−100,100] 0

F5 =
n−1E
i=1

[
100
(
xi+1 − x2

i

)2 + (xi − 1)2
]

30 [−30,30] 0

F6 =
nE

i=1
([xi + 0.5])2 30 [−100,100] 0

F7 =
nE

i=1
ix4

i + random [0, 1) 30 [−1.28,1.28] 0
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Table 6 Multimodal benchmark problems

Function Dim Range fmin

F8 =
nE

i=1
−xi sin

(√| xi |) 30 [−500,500] −418.9829 × 5

F9 =
nE

i=1

[
x2
i − 10 cos (2πxi) + 10

]
30 [−5.12,5.12] 0

F10 = −20 exp

(
−0.2

/
1
n

nE
i=1

x2
i

)
−

exp

(
1
n

nE
i=1

cos (2πxi)

)
+ 20 + e

30 [−32,32] 0

F11 = 1
4000

nE
i=1

x2
i −

n||
i=1

cos
(

xi√
i

)
+ 1 30 [−600,600] 0

F12 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π
n

⎧⎨
⎩

10 sin (πy1) +
nE

i=1
(yi − 1)2

[
1 + 10sin2 (πyi+1)

]+ (yn − 1)2

⎫⎬
⎭

+
nE

i=1
u (xi , 10, 100, 4)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

yi = 1 + xi+1
4

u (xi , a, k,m) =

⎧⎪⎨
⎪⎩

k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

⎫⎪⎬
⎪⎭

30 [−50,50] 0

F13 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2 (3πx1) +
nE

i=1
(xi − 1)2

[
1 + sin2 (3πxi + 1)

]
+(xn − 1)2

[
1 + sin2 (2πxn)

]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
nE

i=1
u (xi , 5, 100, 4)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

30 [−50,50] 0

Subject to:

.

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0
g4(x) = −8x1 + x10 ≤ 0
g5(x) = −8x2 + x11 ≤ 0
g6(x) = −8x3 + x12 ≤ 0
g7(x) = −2x4 − x5 + x10 ≤ 0
g8(x) = −2x6 − x7 + x11 ≤ 0
g9(x) = −2x8 − x9 + x12 ≤ 0
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Table 7 Fixed multidimensional benchmark problems

Function Dim Range fmin

F14 =
⎛
⎜⎝ 1

500 +
25E

j=1

1

j+
2E

i=1
(xi−aij )

6

⎞
⎟⎠

−1

2 [−65,65] 1

F15 =
11E
i=1

[
ai − x1

(
b2i +bix2

)
b2i +bix3+x4

]2
4 [−5,5] 0.00030

F16 = 4x21 − 2.1x4
1 + 1

3x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5,5] −1.0316

F17 =
(
x2 − 5.1

4π2 x2
1 + 5

π
x1 − 6

)2 + 10
(
1 − 1

8π

)
cos x1 + 10 2 [−5,5] 0.398

F18 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1 + (x1 + x2 + 1)2(

19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)
]

×
[
30 + (2x1 − 3x2)2

× (18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)
]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2 [−2,2] 3

F19 = −
4E

i=1
ci exp

(
−

3E
j=1

aij

(
xj − pij

)2) 3 [1,3] −3.86

F20 = −
4E

i=1
ci exp

(
−

6E
j=1

aij

(
xj − pij

)2) 6 [0,1] −3.32

Table 8 Constrained benchmark problems

Function name Number of constraints Dimension Global best

G01 9 13 −15
G02 2 20 0.803619
G03 1 3 −1
G04 6 5 −30 665.539
G05 5 4 5126.4981
G06 2 2 −6961.81388
G07 8 10 24.3062091
G08 2 2 0.095825
G09 4 7 680.6300573
G10 6 8 7049.3307

Properties:

.

0 ≤ xi ≤ 1 (i = 1, 2, .. . . . , 9) , 0 ≤ xi ≤ 100 (i = 10, 11, 12) , 0 ≤ x13 ≤ 1
x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)
Constraints g1, g2, g3, g7, g8, g9 are active.
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Problem-2: G02

.Max f (x) =

||||||||

nE
i=1

cos4 (xi) − 2
n||

i=1
cos2 (xi)

nE
i=1

ix2
i

||||||||

Subject to:

.

g1(x) = 0.75 −
D||

i=1
xi ≤ 0

g2(x) =
DE

i=1
xi − 7.5D ≤ 0

Properties:

.0 ≤ xi ≤ 10 (i = 1, 2, . . . . ., D) ,D = 20

The known best value is f (x*) = 0.803619
Constraint g1 is an active constraint.

Problem-3: G03

.Min f (x) = −(√n
)n n||

i=1

xi

Subject to:

.h1(x) =
nE

i=1

x2
i − 1 = 0

Properties:

.
0 ≤ xi ≤ 10 (i = 1, 2, .. . . . , n)

x∗ =
(

1√
n

)
, n = 10

Problem-4: G04

.Min f (x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141
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Subject to:

.

g1 (x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5
g2 (x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 − 0.0021813x2

3
g3 (x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4

0 ≤ g1(x) ≤ 92
90 ≤ g2(x) ≤ 110
20 ≤ g3(x) ≤ 25

Properties:

.
78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5)
x∗ = (78, 33, 29.995256025682, 45, 36.775812905788)

Problem-5: G05

.Min f (x) = 3x1 + 0.000001x3
1 + 2x2 +

(
0.000002

3

)
x3
2

Subject to:

.

g1(x) = −x4 + x3 − 0.55 ≤ 0
g2(x) = −x3 + x4 − 0.55 ≤ 0
h3(x) = 1000 sin (−x3 − 0.25) + 1000 sin (−x4 − 0.25) + 894.8 − x1 = 0
h4(x) = 1000 sin (x3 − 0.25) + 1000 sin (x3 − x4 − 0.25) + 894.8 − x2 = 0
h5(x) = 1000 sin (x4 − 0.25) + 1000 sin (x4 − x3 − 0.25) + 1294.8 = 0

Properties:

.
0 ≤ xi ≤ 1200 (i = 1, 2) ,−0.55 ≤ x2 ≤ 0.55 (i = 3, 4) .

x∗ = (679.9463, 1026.067, 0.1188764,−0.3962336) .

Problem-6: G06

.Min f (x) = (x1 − 10)3 + (x2 − 20)3

Subject to:

.
g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0
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Properties:

.
13 ≤ xi ≤ 100, 0 ≤ x2 ≤ 100
x∗ = (14.095, 0.84296) .

Problem-7: G07

.Min f (x) = x2
1 + x2

2+x1x2−14x1−16x2+(x3 − 10)2+4(x4 − 5)2+(x5 − 5)2

+2(x6 − 1)2+5x2
7+7(x8 − 11)2+2(x9 − 10)2+(x10 − 7)2 + 45

Subject to:

.

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
g5(x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
g6(x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0
g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

Properties:

.

−10 ≤ xi ≤ 10 (i = 1, 2, . . . . . . , 10)

x∗ =
(
2.171996, 2.363683, 8.773926, 5.095984, 0.99065481, 1.430574,

1.321644, 9.828726, 8.280092, 8.375927
)

Constraints g1, g2, g3, g4, g5 and g6 are active.

Problem-8: G08

.Max f (x) = sin3 (2πx1) sin (2πx2)

x3
1 (x1 + x2)
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Subject to:

.
g1(x) = x2

1 − x2 + 1 ≤ 0
g2(x) = 1 − x1 + (x2 − 4)2 ≤ 0

Properties:

.
0 ≤ xi ≤ 10 (i = 1, 2) .

x∗ = (1.2279713, 4.2453733) .

Problem-9: G09

.

Min f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 0x6

5 + 7x2
6

+ x4
7 − 4x6x7 − 10x6 − 8x7

Subject to:

.

g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + +3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0
g4(x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0

Properties:

.

−10 ≤ xi ≤ 10 (i = 1, 2, . . . . . . . , 7)

x∗ =
(
2.330499, 1.951372,−0.4775414, 4.365726,
−0.624487, 1.038131, 1.5942270

)
.

Problem-10: G10

.Min f (x) = x1 + x2 + x3
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Subject to:

.

g1(x) = −1 + 0.0025 (x4 + x6) ≤ 0
g2(x) = −1 = 0.0025 (x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01 (x8 − x5) ≤ 0
g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

Properties:

.

−100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3) ,

10 ≤ xi ≤ 1000 (i = 4, . . . . , 8) .

x∗ =
((

579.19, 1360.13, 5109.5979, 182.0174, 295.5985,
217.9799, 286.40, 395.5979

)
.
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A State-of-the-Art Literature Review 
on Drone Optimization 

Vanita Garg and Dimple Kumari 

1 Introduction 

Drones, also known as unmanned aerial vehicles (UAVs), are flying devices that can 
be controlled remotely or programmed to fly autonomously. They come in various 
sizes and shapes, from small handheld models to larger ones that resemble airplanes 
or helicopters. 

Drones have become increasingly popular in recent years due to their versatility 
and usefulness in various industries such as photography, videography, agriculture, 
search and rescue, and surveillance. They are also commonly used for recreational 
purposes such as racing and aerial photography. 

One of the advantages of using drones is their ability to access and navigate 
areas that are difficult or dangerous for humans. For example, drones can be used to 
inspect infrastructure such as bridges, power lines, and wind turbines without risking 
the lives of workers. They can also provide valuable data in emergency situations 
such as natural disasters or accidents. 

Overall, drones have the potential to be a valuable tool in various industries, but 
their use should be regulated to ensure they are used safely and responsibly. 

Abraham Kareem is the inventor of drone. He is regarded as “ the father of UAV 
technology.” 
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2 Drone Anatomy 

Frame 
The frame is the body of the drone, which holds all the other components together. 
It is usually made of lightweight materials like carbon fiber or plastic. 

Motors 
The motors are the powerhouses of the drone. They spin the propellers to generate 
lift and propel the drone in the air. There are usually four motors on a drone, one for 
each propeller. 

Propellers 
The propellers are attached to the motors and spin rapidly to create lift and thrust. 
They come in different shapes and sizes, depending on the drone’s intended use. 

Battery 
The battery provides power to the drone’s electronics, motors, and propellers. It is 
usually a rechargeable lithium-ion battery. 

Flight Controller 
The flight controller is the brain of the drone. It receives input from the pilot’s 
controller and uses sensors like accelerometers, gyroscopes, and GPS to maintain 
stability and control the drone’s movements. 

Camera 
Many drones come with a built-in camera, which can be used for aerial photography 
or videography. The camera is usually mounted on a gimbal to keep it steady during 
flight. 

Transmitter 
The transmitter is the handheld controller that the pilot uses to fly the drone. It sends 
signals to the flight controller, which translates them into the drone’s movements. 

3 Four Main Types of Drones 

3.1 Multi-Rotor Drones 

Multi-rotor drones offer an economical and straightforward way to get a bird’s eye 
view. They have limited capacity to adjust location and design, making them ideal 
for aerial photography and monitoring. These are referred to as multi-rotor because 
they possess more than one motor, with quadcopters being the most common type 
of multi-rotor drone.
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3.2 Fixed-Wing Drones 

A fixed wing drone has a single, solid wing that is designed to resemble an airplane, 
providing lift through aerodynamic forces rather than rotors pointing upward. 
Consequently, this type of drone only requires energy to propel it forward and not 
to remain aloft. This renders them efficient in terms of energy usage. 

3.3 Single-Rotor Drones 

Single-rotor drones are known for their robustness and longevity. They resemble real 
helicopters in both form and function. A single-rotor aircraft has one large rotating 
section and a tail rotor to maintain directional control and steadiness. 

3.4 Fixed-Wing Hybrid VTOL 

Combining the advantages of fixed-wing and rotor-based structures, the Wing 
Hybrid VTOL drone class offers a powerful combination. This particular drone has 
rotors affixed to the main frame which enable it to hover and ascend/descend in a 
vertical direction. This new grouping of mixed breeds is just a demand right now, 
but as technology progresses, this option can become far more widespread in the 
near future. 

4 Optimization 

Optimization means finding the best possible solution to a problem or situation 
using the available resources. It involves maximizing or improving certain criteria 
or objectives, such as efficiency, cost, quality, or speed. 

Optimization is used in many areas, such as business, engineering, mathematics, 
and computer science, to achieve the best possible results with the resources at hand. 

4.1 Optimization in Drones 

Drone optimization means making drones work better by improving their design, 
components, sensors, software, and control systems. This can involve making 
drones faster, more efficient, more stable, and more effective at their intended tasks. 
Some common areas where optimization is applied in drones include the following.
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Flight Path Planning 
Optimization techniques can be used to plan the most efficient flight path for a 
drone to complete a task, such as surveying a large area or delivering a package. 
This involves considering factors such as wind, weather, altitude, and battery life to 
minimize the time and resources required to complete the task. 

Battery Life 
Optimization techniques can be used to extend the battery life of a drone, which is a 
crucial factor in determining its flight time and range. This can involve minimizing 
the weight of the drone, using more efficient motors, or adjusting the flight path to 
reduce energy consumption. 

Payload Capacity 
Optimization techniques can be used to maximize the payload capacity of a drone, 
which is the amount of weight it can carry while still maintaining stable flight. This 
can involve adjusting the drone’s design, such as using stronger materials or more 
powerful motors or optimizing the flight path to minimize the energy required to 
carry the payload. 

Data Processing 
Optimization techniques can be used to process and analyze data collected by 
drones, such as aerial images or sensor readings. This involves using algorithms 
to identify patterns and insights from the data, which can help to improve decision-
making and optimize drone operations. 

Overall, optimization plays a crucial role in the efficient and effective use 
of drones, allowing them to perform tasks more quickly, accurately, and cost-
effectively. 

4.2 Drone Flocking Optimization 

Drone flocking optimization refers to the process of making a group of drones work 
together in a coordinated manner, like a flock of birds. This involves optimizing the 
algorithms and software that control the drones’ flight paths, so that they can fly in 
formation and avoid collisions with each other. By optimizing drone flocking, we 
can make the group of drones work more efficiently, accomplish tasks more quickly, 
and achieve better results. This technology has various applications, such as search 
and rescue missions, precision agriculture, and aerial surveillance. 

5 Commercial Uses of Drones 

Almost every industry now uses drones, extending their reach and expanding their 
areas of expertise. Here is a brief overview of the application of drones.
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Aerial Photography and Videography 
Drones equipped with high-resolution cameras can capture stunning aerial footage 
for a wide range of applications, including films and real estate listings. They can 
also provide real-time monitoring for live events and sports. 

Agriculture 
Drones can be equipped with sensors and cameras to monitor crop health and 
identify pests and diseases. This can help farmers make data-driven decisions to 
improve crop yields and reduce costs. 

Construction 
Drones can provide real-time aerial surveys and inspections, track progress, and 
create 3D models of construction sites. 

Infrastructure Inspection 
Drones can inspect bridges, power lines, pipelines, and other infrastructure for 
maintenance and safety purposes. This can help reduce the need for human 
inspection and improve safety by identifying potential issues before they become 
problems. 

Delivery 
Drones can deliver packages, food, and medical supplies to remote or hard-to-reach 
areas, reducing delivery times and improving accessibility. 

Search and Rescue 
Drones equipped with thermal imaging cameras can locate missing persons or 
survivors in search and rescue operations, even in low light or difficult terrain. 

Environmental Monitoring 
Drones can monitor wildlife, track changes in land use, and measure pollution levels 
in the environment. 

Surveying and Mapping 
Drones can provide detailed topographic and geographic data for surveying and 
mapping purposes, allowing for more accurate and efficient land management and 
development. 

Overall, drones have many potential commercial uses that can help improve 
efficiency, reduce costs, and provide valuable insights and data. 

6 Flocking Rules of Drones 

The flocking rules of drones are a set of algorithms and rules that are used to 
coordinate the flight of a group of drones in a flock-like formation. These rules 
are typically based on three key behaviors: 

Separation Each drone maintains a safe distance from its neighbors to avoid 
collisions.
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Alignment Each drone adjusts its velocity and heading to match its neighbors, so 
they move in the same direction. 

Cohesion Each drone moves toward the center of the flock, so they stay together. 

The flocking rules are implemented using sensors, such as GPS and cameras, 
to enable each drone to track its position and the positions of its neighbors. These 
rules allow the drones to fly in a coordinated manner and accomplish tasks more 
efficiently, such as surveying an area or inspecting a structure. 

7 Literature Review 

Paper 1: Drone Flocking Optimization Using NSGA-II and PCA 
Bansal et al. [1] proposed an efficient drone flocking in a constrained area with 
several conflicting objectives. Avoiding collisions, moving quickly, correlating data, 
and communicating are the goals. The paper proposes a method for optimizing 
drone flocking behavior using a combination of two techniques: NSGA-II and 
principal component analysis (PCA). 

NSGA-II is a type of evolutionary algorithm that can find optimal solutions to 
multi-objective problems by generating and evolving a set of candidate solutions. 
The authors use NSGA-II to optimize two objectives: minimizing the distance 
between drones and maximizing the angle between their velocities. This helps 
ensure that the drones stay close together while avoiding collisions. 

PCA is a statistical technique that can reduce the complexity of high-dimensional 
data by identifying the most important variables that contribute to the data’s 
variability. The authors use PCA to extract the most significant features from the 
drones’ sensor data, such as position, velocity, and acceleration. This helps simplify 
the input data for NSGA-II and improve the optimization results. 

The proposed method is tested on a simulated drone flocking scenario, where 
multiple drones need to move together while avoiding obstacles and maintaining 
formation. The results show that the NSGA-II and PCA approach outperforms 
other optimization methods in terms of convergence and diversity of solutions. The 
authors also demonstrate how the optimized flocking behavior can be applied to 
real-world applications, such as surveillance and monitoring. 

The proposed method has potential applications in various domains that require 
coordinated and efficient drone operations. 

Paper 2: Optimized Flocking of Autonomous Drones in Confined Environment 
Vásárhelyi et al. [2] proposed a flocking model for actual drones that uses an evo-
lutionary framework with carefully selected order parameters and fitness function. 
They numerically showed that the induced swarm behavior remained stable under 
realistic conditions for high flock numbers and particularly for big velocities. 

Early microscopic agent-based models claim that initiating and maintaining 
collision-free cohesive flocking only need three straightforward interactions
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between idealistic agents: repulsion in the short range, velocity alignment in the 
medium range, and attraction in the long range. Therefore, we used this algorithm 
to find good settings for our model. The populations in our evolutionary algorithm 
consisted of parameter vectors whose fitness was determined by a 10-min-long 
realistic simulation of the system. Each partial fitness, as well as the final fitness 
value, takes values between 0 (worst case) and 1 (ideal case). 

Evolutionary optimization produced a huge number of stochastic fitness eval-
uations, which also contain precious information about the reasonable parameter 
ranges where fitness is expected to be high. 

Overall, we achieved our first goal: The overall model could be successfully 
recreated in simulation with the right parameter values; the optimal setup showed 
a strong and efficient flock in the studied velocity range, which can act as the 
foundation for actual field investigations. 

Paper 3: Vision-Based Drone Flocking in Outdoor Environment 
Schilling et al. [5] present a study on how drones can be programmed to fly together 
in a coordinated manner using visual information. 

The researchers focused on outdoor environments and developed a system that 
allows drones to flock, imitating the behavior of birds flying together. They utilized 
vision-based techniques, meaning the drones used their onboard cameras to gather 
information about their surroundings. 

To achieve flocking behavior, the drones employed algorithms that allowed them 
to estimate their positions relative to each other and maintain a desired distance and 
formation. The drones communicated with each other through wireless connections, 
exchanging information to make collective decisions. 

The experiments conducted by the researchers demonstrated successful drone 
flocking, showing that the drones could fly in formation while adapting to changes 
in the environment. This technology has potential applications in various areas such 
as surveillance, search and rescue missions, and even package delivery. 

Paper 4: Optimization for Drone and Drone-Truck Combined Operations: A 
Review of the State-of-the Art and Future Directions 
Chung et al. [3] provide a survey on the optimization method for drone operations 
(DO) and drone truck combined operations (DTCO) research that focus more 
on DTCO. As discuss earlier, drone can play an important role in a variety of 
application areas such as construction, agriculture, logistics, security management, 
and entertainment. A well-planned drone operation with the aid of state-of-art 
optimization techniques solves the above problems and maximizes such potential 
benefits. This paper also discusses the brief review of DO and DTCO research and 
associates such cases to the variant of traveling salesman problem (TSP) and vehicle 
routing problem (VRP) using their taxonomy. 

We observe that combining drones with other vehicles, such as trucks, can 
considerably increase the effectiveness and efficiency of DO. The development of 
drone research, however, is still in its early stages and will take some time.
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Paper 5: Optimization Approaches for Civil Applications of Unmanned Aerial 
Vehicles (UAVs) or Aerial Drones: A survey 
Otto et al. [6] provide a literature survey on optimization approaches to civil 
applications of drones. This article is the first to provide a comprehensive general 
overview of optimization problems arising in operations planning of civil drone 
applications. 

They discussed that drones are an emerging technology, and new concepts and 
inventions are constantly appearing, such as floating (flying) warehouses, automated 
battery switching, and in-flight payload switching between drones. They also give 
a short summary of the technological characteristics of drones. Understanding the 
economic and social benefits of drones in different applications and developing thor-
ough business cases are crucial. More broadly, it’s important to develop technology 
and regulations that will address public concerns about privacy and safety without 
impeding the use of drones to create value. According to several experts, the largest 
market potential may be related to drone applications in monitoring of infrastructure 
and construction sites, agriculture, and delivery applications. 

In some civil applications, like disaster management, transport of medical 
supplies or environmental monitoring, drones may even help reduce human injuries 
and save lives. 

Paper 6: Prospect and Recent Research & Development for Civil Use 
Autonomous Unmanned Aircraft as UAV and MAV 
Nonami [7] explore the potential and advancements in the field of autonomous 
unmanned aircraft for civil applications, specifically focusing on unmanned aerial 
vehicles (UAVs) and micro air vehicles (MAVs). 

This paper highlights the increasing importance of UAVs and MAVs in various 
civil domains such as surveillance, aerial photography, environmental monitor-
ing, and disaster management. It emphasizes the advantages offered by these 
autonomous systems, including cost-effectiveness, increased safety, and the ability 
to access hard-to-reach areas. 

It discusses the challenges and technical requirements associated with the 
development of autonomous UAVs and MAVs. These include navigation and control 
algorithms, sensing and perception technologies, communication systems, and 
power supply considerations 

This paper provides an overview of recent research and development efforts in the 
field. It discusses advancements in autonomy, including sensor fusion techniques, 
obstacle avoidance algorithms, and path planning strategies. Furthermore, the 
integration of UAVs and MAVs with other systems, such as ground control stations 
and satellite networks, enhanced their capabilities and data transmission. The 
authors emphasize the potential of swarm intelligence, where multiple autonomous 
vehicles work collaboratively to achieve complex tasks.
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Paper 7: The Flying Sidekick Traveling Salesman Problem – Optimization 
of Drone-Assisted Parcel Delivery 
Murray and Chu [8] discuss the potential benefits of using drones for parcel delivery 
in combination with traditional delivery methods. The authors propose a new 
optimization model for the “flying sidekick traveling salesman problem,” which 
involves determining the most efficient route for a delivery person to visit multiple 
locations while being assisted by a drone. 

The authors argue that using drones for delivery can significantly reduce the time 
and cost associated with traditional methods, particularly in remote or hard-to-reach 
areas. However, they also note that the integration of drones into existing delivery 
systems poses several challenges, such as regulatory and technical issues, which 
need to be addressed for the implementation of such systems. 

To address these challenges, they propose a new optimization model that takes 
into account the location of the delivery person, the weight and size of the packages, 
and the range and capacity of the drone. The model aims to minimize the delivery 
time and cost while also ensuring that the drone operates within its range and 
capacity limits. 

Overall, the paper provides insights into the potential benefits and challenges of 
using drones for delivery and proposes a new optimization model for solving the 
“flying sidekick traveling salesman problem.” 

Paper 8: Impact of Drone Delivery on Sustainability and Cost – Realizing 
the UAV Potential Through Vehicle Routing Optimization 
Chiang et al. [9] propose a mixed-integer multi-vehicle green routing model for 
UAVs to incorporate the sustainability aspects of the use of UAVs for last-mile 
parcel deliveries as well as cost savings. The paper explores the potential impact 
of using drones for delivery services on both sustainability and cost, with a focus on 
vehicle routing optimization. The authors argue that drone delivery can significantly 
reduce carbon emissions and costs, but its potential can only be fully realized 
through effective optimization of routing strategies. 

To evaluate the impact of drone delivery, the authors conducted a case study 
on a hypothetical delivery network in Taiwan, comparing the use of traditional 
delivery vehicles with drone delivery. They analyzed various factors such as delivery 
distance, load capacity, and battery life to determine the optimal drone route for each 
delivery location. 

The results of the study showed that drone delivery can significantly reduce 
carbon emissions and costs compared to traditional delivery vehicles. However, 
to achieve maximum efficiency, it is essential to optimize routing strategies, 
considering factors such as battery life, delivery distance, and load capacity. 

Paper 9: Development of a Fuel Consumption Optimization Model for 
the Capacitated Vehicle Routing Problem 
Xiao et al. [10] focus on developing a fuel consumption optimization model for the 
capacitated vehicle routing problem. The authors address the need for optimizing 
fuel consumption as it is a crucial factor in the transportation industry, not only for 
environmental reasons but also for economic purposes. The proposed model uses a
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combination of genetic algorithms and a mathematical programming technique to 
develop a routing solution that minimizes fuel consumption while considering the 
vehicle capacity constraints. The authors provide a detailed description of the model, 
including the problem formulation and the optimization process. The results of the 
experiments conducted to validate the proposed model demonstrate its effectiveness 
in achieving significant fuel savings while maintaining feasible routes that meet the 
vehicle capacity constraints. 

The paper highlights the importance of considering fuel consumption in the 
vehicle routing problem and provides a useful framework for optimizing fuel 
consumption in transportation planning. 

Paper 10: Vehicle Routing Problem with Fuel Consumption and Carbon 
Emission 
Zhang et al. [11] addresses the vehicle routing problem (VRP) with the considera-
tion of fuel consumption and carbon emissions. The authors propose a mathematical 
model for the problem, which aims to minimize the total cost of the VRP while 
satisfying capacity and time window constraints. The model considers the fuel 
consumption and carbon emissions of the vehicles, which depend on various factors 
such as the load, speed, and terrain of the routes. They propose a solution method 
based on a two-stage approach, where the first stage determines the optimal routes 
and the second stage optimizes the vehicle assignments to the routes. 

The proposed method is tested on benchmark instances from the literature and 
compared to other VRP models that do not consider fuel consumption and carbon 
emissions. The results show that the proposed model can significantly reduce 
the fuel consumption and carbon emissions compared to the other models while 
maintaining a similar level of cost and service quality. 

The paper concludes that incorporating fuel consumption and carbon emissions 
into VRP models can lead to more sustainable and efficient transportation opera-
tions. 

Paper 11: Strategic Design for Delivery with Drones and Trucks 
Campbell et al. [12] discuss the potential benefits of using a combination of drones 
and trucks for delivery services. The paper focuses on the strategic design of 
the delivery network, taking into consideration factors such as customer demand, 
delivery locations, and delivery times. 

The authors argue that the use of drones for last-mile delivery can significantly 
reduce delivery times and costs. Drones can be used to deliver packages to 
customers in hard-to-reach areas, such as rural regions or congested urban areas. 
However, drones have limited payload capacities, and their range is restricted by 
battery life. Therefore, the authors propose the use of trucks as a base for the drones, 
where the trucks can be used to transport the drones and recharge their batteries. 

The paper also discusses the potential challenges of integrating drones into 
the delivery network, such as regulatory issues, safety concerns, and operational 
complexities. The authors suggest that a hybrid delivery system, consisting of both 
drones and trucks, can address these challenges and provide a more efficient and 
effective delivery service.
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Paper 12: A Multi-Objective Approach for Unmanned Aerial Vehicle Routing 
Problem with Soft Time Windows Constraints 
Guerriero et al. [13] proposed a new approach for solving the unmanned aerial 
vehicle (UAV) routing problem with soft time window constraints. 

The objective of this problem is to find optimal routes for multiple UAVs 
to deliver packages to different locations within specific time windows while 
minimizing the total distance traveled and missed deliveries. 

Their approach was multi-objective, considering several objectives at once, 
including the two mentioned above and the flexibility in the delivery times to 
account for uncertainty in the time windows. The proposed method was tested 
on various instances of the problem, and it was found to outperform existing 
approaches in terms of solution quality and time required to find them. 

The authors tested their approach on a set of randomly generated instances 
of the problem, and the results showed that their approach outperformed existing 
approaches in terms of both the quality of the solutions and the time required to find 
them. This paper presents an innovative approach to the UAV routing problem with 
soft time window constraints, which could have practical applications in logistics 
and transportation industries. 

Paper 13: Multi-Objective Optimization Model for a Green Vehicle Routing 
Problem 
Jabir et al. [14] present a model for optimizing the routing of green vehicles. The 
authors aim to minimize the total travel distance and fuel consumption of the 
vehicles while also minimizing their carbon footprint. The proposed model is a 
multi-objective optimization model that considers the distance, fuel consumption, 
and carbon emissions of the vehicles. 

The authors used a genetic algorithm to solve the optimization problem and com-
pared the results with those obtained from a traditional single-objective optimization 
approach. The results showed that the multi-objective optimization model was able 
to generate better solutions than the single-objective optimization model in terms of 
both distance and emissions. 

This paper provides insights into how green vehicle routing problems can be 
optimized using multi-objective optimization models. It highlights the importance 
of considering multiple objectives while optimizing the routing of green vehicles 
and shows that a multi-objective approach can lead to better outcomes compared to 
a single-objective approach. 

Paper 14: The Design Challenges of Drone Swarm Control 
Saffre et al. [15] discuss the challenges of controlling drone swarms. The authors 
argue that as drone technology advances and their usage become more widespread, 
controlling a large number of drones will be critical to ensure their safe and efficient 
operation. 

The paper identifies several crucial design challenges that must be addressed to 
control drone swarms effectively. These include developing communication, coor-
dination, and control systems, addressing issues related to power and propulsion, 
navigation, and sensing.
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The authors also emphasize the importance of considering ethical and legal issues 
when designing drone swarm control systems. They argue that these systems must 
be designed to protect privacy and security, prevent harm to people or property, and 
adhere to relevant laws and regulations. 

Overall, the paper sheds light on the complex design challenges associated with 
controlling drone swarms, highlighting the need for interrelated coordination to 
develop effective solutions. 

Paper 15: Flocking Algorithm for Autonomous Flying Robots 
Virágh et al. [16] present an algorithm for controlling the motion of autonomous 
flying robots in a flocking behavior inspired by the behavior of birds. 

The algorithm proposed in this paper is based on three main rules: separation, 
alignment, and cohesion. The separation rule ensures that the robots maintain a 
minimum distance from each other to avoid collisions. The alignment rule ensures 
that the robots move in the same direction as their neighbors. The cohesion rule 
ensures that the robots move toward the center of the flock. 

To implement these rules, the authors propose a decentralized control archi-
tecture where each robot communicates with its nearest neighbors to exchange 
information about their positions and velocities. Based on this information, each 
robot calculates its own acceleration using the three rules mentioned above. 

The authors demonstrate the effectiveness of their algorithm through simulation 
experiments where a group of autonomous flying robots successfully perform 
flocking behavior. They also show that their algorithm is robust to changes in 
the number of robots, initial positions, and velocities. The paper presents a well-
designed algorithm that can be used to control the motion of autonomous flying 
robots in a flocking behavior, which could be useful in various applications such as 
search and rescue missions and environmental monitoring. 

Paper 16: Optimal Path Planning for Drones Based on Swarm Intelligence 
Algorithm 
Saeed et al. [17] present a new approach for drone path planning using a swarm 
intelligence algorithm. The authors highlight the importance of finding efficient and 
optimal paths for drones in various applications. 

The authors begin by highlighting the significance of path planning in drone 
applications, emphasizing the need for efficient and optimal routes to minimize 
energy consumption and ensure timely completion of tasks. 

The proposed algorithm, based on swarm intelligence, consists of three main 
phases: initialization, exploration, and exploitation. In the initialization phase, the 
drones are deployed in the search space, and the algorithm initializes the parameters 
and variables required for path planning. The exploration phase involves the drones 
searching the environment and sharing information about their positions and the 
quality of their paths. This information exchange enables the drones to collectively 
explore the search space and avoid redundant search efforts. The exploitation phase 
focuses on exploiting the gathered information to converge toward the optimal path. 

To evaluate the performance of the proposed algorithm, the authors conduct 
several experiments and compare the results with other state-of-the-art algorithms
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used for drone path planning. The experiments involve scenarios with different 
complexities and obstacles, and performance metrics such as path length, energy 
consumption, and convergence speed are considered. It leads to shorter paths, 
reduced energy consumption, and faster convergence. 

The algorithm demonstrates superior performance, contributing to improved 
efficiency and effectiveness in drone applications. 

Paper 17: Binary Drone Squadron Optimization Approaches for Feature 
Selection 
Singh et al. (2022) propose an efficient approach to select the most relevant features 
from a given dataset, with the goal of optimizing the performance and capabilities 
of a drone squadron. 

The authors propose three optimization algorithms: Binary Bat Algorithm 
(BBA), Binary Whale Optimization Algorithm (BWOA), and Binary Particle 
Swarm Optimization (BPSO). These algorithms help choose the most relevant 
features from a given dataset, improving the overall performance of the drone 
squadron. 

The BBA algorithm mimics the behavior of bats to explore the solution space. 
The BWOA algorithm draws inspiration from whale social behavior to identify 
relevant features. The BPSO algorithm simulates the movement of particles in a 
swarm to search for the best feature combination. 

The experiments show that the proposed algorithms effectively reduce the 
dimensionality of the feature space while maintaining or even improving the 
classification accuracy. The authors also analyze the convergence speed and stability 
of their algorithms, highlighting their effectiveness in finding near-optimal feature 
subsets. 

Paper 18: The Fast Flight Trajectory Verification Algorithm for Drone Dance 
System 
Kung et al. [18] introduce a novel algorithm specifically designed to verify the flight 
trajectories of drones in a Drone Dance System. Drone Dance Systems involve the 
coordinated and synchronized flight of multiple drones to create visually captivating 
performances. In such systems, it is crucial to ensure that the drones follow their 
planned flight paths accurately, maintaining synchronization and achieving the 
desired visual effects. 

To address this requirement, the authors propose a fast flight trajectory veri-
fication algorithm that efficiently compares the planned flight trajectories of the 
drones with the actual flight data. The algorithm aims to quickly detect any 
discrepancies or deviations between the planned and actual trajectories, enabling 
real-time adjustments to be made during the performance. 

The algorithm’s primary focus is on speed and efficiency, as it needs to operate 
in real time to verify the flight trajectories effectively. 

The authors conducted experiments to evaluate the performance of their proposed 
algorithm. The results demonstrated the algorithm’s effectiveness in accurately 
verifying the flight trajectories of the drones. It successfully detected deviations and 
inconsistencies, enabling timely adjustments to be made during the Drone Dance
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System performances. The algorithm’s speed and efficiency make it a valuable 
tool for ensuring the synchronization and precision of drone flights in various 
performance settings. 

Overall, the paper presents a fast flight trajectory verification algorithm that plays 
a crucial role in ensuring the accuracy and synchronization of drone flight paths in 
a Drone Dance System. 

Paper 19: Optimal Route Planning for Truck–Drone Delivery Using Variable 
Neighborhood Tabu Search Algorithm 
Tong et al. [19] introduce a Variable Neighborhood Tabu Search (VNTS) algorithm 
to optimize the route planning process. 

The aim of the study is to address the challenges of last-mile delivery, where 
the integration of drones with traditional delivery vehicles (trucks) can significantly 
enhance efficiency and reduce costs. The VNTS algorithm is designed to find the 
most optimal routes by considering various factors such as delivery time, energy 
consumption, and the capacity of both trucks and drones. 

The algorithm utilizes a Tabu search approach combined with different neigh-
borhood structures to explore different solutions. By applying the VNTS algorithm, 
the researchers were able to find better routes that minimized the total delivery time 
and energy consumption while satisfying the constraints of the delivery system. 

Overall, the paper approaches to optimize route planning for truck-drone delivery 
systems, offering potential benefits in terms of improved efficiency and reduced 
costs. 

Paper 20: Outdoor Flocking of Drones with Decentralized Model Predictive 
Control 
Yuan et al. [4] investigate the use of decentralized model predictive control (MPC) 
for achieving coordinated flocking behavior in outdoor quadcopter drones. The 
objective of their study is to design a control strategy that allows multiple drones 
to navigate and move together as a flock without relying on a centralized control 
system. 

The authors propose a decentralized MPC approach where each drone makes 
autonomous decisions based on its local information and the predicted behavior 
of its neighboring drones. This approach eliminates the need for explicit com-
munication or coordination between the drones, making it suitable for outdoor 
environments where communication constraints may exist. 

The decentralized MPC framework consists of two key components: a local 
model predictive controller and a consensus-based algorithm. The local controller 
generates optimal control inputs for each individual drone based on its own 
dynamics and local objectives. The consensus algorithm ensures that all drones 
converge to a common velocity vector while maintaining a desired inter-drone 
spacing. 

The authors conducted experiments to validate the effectiveness of their 
approach. The results demonstrated that the decentralized MPC strategy allowed the 
quadcopter drones to achieve coordinated flocking behavior in outdoor scenarios.
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The drones successfully maintained a desired formation while avoiding collisions 
and adapting to environmental changes. 

In conclusion, the paper presents a decentralized model predictive control 
approach for outdoor flocking of quadcopter drones. 

Paper 21: Combining Stigmergic and Flocking Behaviours to Coordinate 
Swarms of Drones Performing Target Search 
Cimino et al. [20] explores the integration of two techniques, stigmergy and 
flocking, to effectively coordinate a group of drones in searching for targets. 
Stigmergy refers to a type of indirect communication where individuals interact 
with their environment by leaving traces or markers that influence the behavior of 
others. 

Flocking behavior, on the other hand, is a collective motion observed in bird 
flocks or fish schools, where individuals align their movement with neighbors and 
maintain cohesion. In this study, the authors propose combining these two behaviors 
to enhance the coordination and efficiency of swarms of drones during target search 
operations. 

By using stigmergic communication, drones can leave markers or information in 
the environment, such as the presence of a target or obstacles. Other drones can then 
detect and interpret these markers to make informed decisions. 

The flocking behavior is incorporated to ensure that drones maintain a certain 
degree of cohesion and alignment in their movement. This helps in avoiding 
collisions and enables efficient exploration of the search area. 

The authors conducted experiments to validate their approach, and the results 
showed improved coordination and search performance compared to individual 
drone search strategies. The combination of stigmergy and flocking allowed the 
drones to effectively communicate and adapt their search patterns based on the 
information shared among them. 

Paper 22: Towards Drone Flocking Using Relative Distance Measurements 
Brandstätter et al. [21] explore the concept of drone flocking by utilizing relative 
distance measurements. Flocking refers to the behavior of a group of drones that 
move in a coordinated manner, similar to how birds fly together. 

The development of a flocking algorithm allows drones to maintain a specific 
formation based on relative distance measurements between neighboring drones. 
By considering the distances and positions of nearby drones, the algorithm enables 
drones to adjust their flight trajectories to maintain a cohesive flock. 

The proposed algorithm utilizes a combination of artificial potential fields and 
a coordination mechanism based on relative distance measurements. Artificial 
potential fields guide the drones toward desired locations while avoiding collisions. 
The coordination mechanism ensures that drones maintain a certain distance from 
their neighbors, leading to a cohesive formation. 

To evaluate the effectiveness of their approach, the authors conduct experiments 
using a set of simulated drones. The experiments demonstrate that the proposed 
algorithm successfully enables drones to flock and maintain formation while
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avoiding collisions. The algorithm also exhibits robustness in the face of dynamic 
scenarios, such as drones entering or leaving the flock. 

The authors provide valuable insights into the development of drone flocking 
systems using relative distance measurements. Their proposed algorithm shows 
promise in achieving coordinated flight and maintaining formation among a group 
of drones. 

Paper 23: Multi-Agent Spatial Predictive Control with Application to Drone 
Flocking 
Brandstätter et al. [22] developed the concept of multi-agent spatial predictive 
control and its application to drone flocking. 

The authors present an extended version of their research, which focuses on 
developing a control system for coordinating the movements of multiple drones in 
a flock. The key objective is to enable the drones to navigate and maintain a desired 
formation while avoiding collisions and dynamically responding to changes in the 
environment. 

The proposed control system incorporates spatial predictive control, which 
involves predicting the future positions and trajectories of the drones based on their 
current states and dynamics. By considering these predictions, the control system 
can make proactive adjustments to the drones’ flight paths, ensuring smoother and 
more coordinated movements within the flock. 

To validate their approach, the authors conduct simulations and experiments 
using a set of drones. The results demonstrate that the multi-agent spatial predictive 
control system effectively enables the drones to flock, maintain formation, and adapt 
to changing circumstances. The system also showcases robustness in the face of 
disturbances or perturbations in the environment. 

This research contributes to the advancement of drone flocking by introducing 
a multi-agent spatial predictive control system. By leveraging predictive modeling 
and proactive adjustments, the system enhances the coordination and responsiveness 
of drones in a flock. 

Paper 24: Distributed Three-Dimensional Flocking of Autonomous Drones 
Albani et al. [23] explore the concept of flocking behavior in autonomous drones 
and propose a distributed approach to achieve three-dimensional flocking. 

This paper focuses on developing a system that enables autonomous drones 
to flock together and move in a coordinated manner. Flocking refers to the 
collective behavior of a group of drones, similar to how birds fly in a flock. The 
proposed approach utilizes a distributed control system, where each drone operates 
autonomously and communicates with neighboring drones to maintain flocking 
behavior. By exchanging information about their positions and velocities, the drones 
coordinate their movements to achieve a cohesive flock. They demonstrate their 
approach through simulations and experiments. The results show that the distributed 
control system effectively enables the drones to achieve three-dimensional flocking 
while avoiding collisions and maintaining a desired formation. The system also 
exhibits robustness in the presence of perturbations or changes in the environment.
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This approach allows drones to exhibit flocking behavior in three-dimensional 
space, enhancing their coordination and collective movements. The findings have 
potential applications in various domains, including swarm robotics, aerial surveil-
lance, and collaborative tasks requiring multiple drones to work together. 

Paper 25: An Optimized Flocking Starling Algorithm for Autonomous Drones 
Chen et al. [24] present an innovative approach for achieving flocking behavior 
in autonomous drones using an optimized algorithm inspired by the behavior of 
starlings. 

This paper focuses on developing a system that enables drones to mimic the 
collective behavior observed in flocks of starlings. Flocking behavior involves 
drones moving in a coordinated manner, maintaining formation, and responding to 
environmental changes as a cohesive unit. 

The proposed approach introduces an optimized version of the Starling Algo-
rithm specifically tailored for autonomous drones. The algorithm utilizes principles 
derived from the behavior of starlings, such as alignment, cohesion, and separation, 
to guide the drones’ movements and achieve flocking behavior. 

To evaluate the performance of the optimized algorithm, the authors conduct 
experiments using autonomous drones. The results demonstrate that the algorithm 
effectively enables the drones to exhibit flocking behavior while maintaining a 
desired formation, avoiding collisions, and adapting to dynamic scenarios. 

They provide valuable insights into achieving flocking behavior in autonomous 
drones through an optimized algorithm inspired by the natural behavior of starlings. 
This approach contributes to the advancement of swarm intelligence and has 
practical applications in various fields, including search and rescue operations, 
surveillance, and coordinated tasks requiring multiple drones to work together. 

Paper 26: Autonomous Cooperative Flocking for Heterogeneous Unmanned 
Aerial Vehicle Group 
Wu et al. [25] present a study on achieving autonomous cooperative flocking 
behavior in a group of heterogeneous unmanned aerial vehicles (UAVs). 

The authors propose a novel framework that combines a virtual leader-based 
approach with a potential field method to enable effective coordination and navi-
gation within the UAV group. The system utilizes a distributed control scheme that 
allows each UAV to adjust its flight parameters based on the positions and velocities 
of nearby neighbors. 

Through extensive simulations and experiments, the proposed framework 
demonstrates improved flocking performance and robustness in scenarios involving 
heterogeneous UAVs. The findings of this research contribute to the development 
of cooperative control strategies for UAV swarms and have potential applications 
in various domains, including surveillance, search and rescue, and environmental 
monitoring. 

Paper 27: Learning Vision-Based Cohesive Flight in Drone Swarms 
Schilling et al. [30] focus on the concept of cohesive flight in drone swarms and 
propose a learning-based approach to achieve it using vision-based techniques.
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They address the challenge of coordinating multiple drones in a swarm to 
fly in a cohesive manner, where they maintain a desired formation and avoid 
collisions with each other. They argue that vision-based methods can provide rich 
sensory information for swarm coordination, allowing the drones to perceive their 
environment and make informed decisions. 

To tackle this problem, the authors propose a learning-based approach that 
combines deep reinforcement learning and computer vision techniques. They train 
a neural network to predict the optimal control actions for each drone based on 
visual inputs. The network takes raw image frames captured by the drones’ onboard 
cameras as input. 

The experimental setup used for training and evaluation involves a simulated 
environment with multiple drones and various visual cues. They employ a deep Q-
network (DQN) algorithm to train the neural network, using a reward function that 
encourages cohesive flight behavior and penalizes collisions. 

The results of their experiments demonstrate the effectiveness of the proposed 
approach. The trained drones successfully learn to fly in a cohesive manner, 
maintaining a desired formation while avoiding collisions. The authors compare 
their approach to other baseline methods and show that it outperforms them in terms 
of both formation maintenance and collision avoidance. 

Overall, the paper presents a learning-based approach to achieve cohesive flight 
in drone swarms using vision-based techniques. The authors demonstrate the 
effectiveness of their method through experiments and comparisons with baseline 
methods. The work contributes to the field of swarm robotics and provides insights 
into the use of deep reinforcement learning and computer vision for coordinated 
drone flight. 

Paper 28: Robust Aerial Robot Swarms Without Collision Avoidance 
Mulgaonkar et al. [26] explore the concept of aerial robot swarms and propose an 
approach that does not rely on traditional collision avoidance techniques. 

The authors argue that existing collision avoidance methods often result in 
conservative behavior, limiting the efficiency and agility of aerial robot swarms. 
Instead, they propose a robust swarm control framework that focuses on system-
level performance and resilience. 

In their approach, they leverage the decentralized nature of swarm systems 
by allowing individual robots to rely on local sensing and communication. By 
maintaining a specific distance threshold between neighboring robots, they achieve 
a form of implicit collision avoidance. This strategy enables the swarm to maintain 
a cohesive structure while avoiding direct collisions. 

To demonstrate the effectiveness of their approach, the conducted experiments 
using a swarm of quadrotor robots evaluated the swarm’s performance in various 
scenarios, including obstacle avoidance and dynamic environmental conditions. The 
results showed that the proposed framework successfully enabled the swarm to 
navigate and accomplish complex tasks without explicit collision avoidance. 

In conclusion, the paper presents a robust swarm control framework for aerial 
robot swarms that does not rely on traditional collision avoidance methods.
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Paper 29: Self-Organized UAV Traffic in Realistic Environments 
Vásárhelyi et al. [2] explore the concept of self-organized traffic for unmanned aerial 
vehicles (UAVs) in realistic environments. 

The authors propose an approach to coordinate UAVs without relying on 
centralized control or predefined routes. They argue that traditional methods based 
on centralized control or predefined routes can be impractical and limiting in 
complex environments. Instead, they propose a self-organized traffic system where 
UAVs can adapt their flight paths based on local interactions. The authors utilize 
a decentralized control algorithm inspired by swarm intelligence. Each UAV in the 
system is considered an autonomous agent that perceives its environment and makes 
decisions based on local information. By considering the positions and velocities 
of neighboring UAVs, each agent adjusts its flight path to avoid collisions while 
maintaining a smooth and efficient flow of traffic. 

To evaluate their approach, the authors conducted simulations in realistic envi-
ronments. They compared the performance of their self-organized traffic system 
with a centralized control approach. The results demonstrated that the self-organized 
system was capable of efficiently managing UAV traffic, adapting to dynamic 
situations, and effectively avoiding collisions. 

Overall, the paper presents a self-organized traffic system for UAVs in realistic 
environments by leveraging decentralized control and local interactions. 

Paper 30: Survey on Unmanned Aerial Vehicle Networks for Civil Applications 
Hayat et al. [27] provide a comprehensive survey of unmanned aerial vehicle (UAV) 
networks from a communications perspective, focusing on their civil applications. 

The increasing use of UAVs in various civil domains such as disaster manage-
ment, surveillance, infrastructure inspection, and communication relay highlights 
the importance of reliable and efficient communication systems to enable the 
successful deployment and operation of UAV networks in these applications. 

The survey covers several key aspects related to UAV networks, including 
communication architectures, channel models, spectrum management, multiple 
access techniques, and networking protocols. The authors discuss the unique 
challenges and requirements posed by UAV communications such as mobility, 
limited energy resources, dynamic network topologies, and quality-of-service con-
siderations. Furthermore, the paper examines various communication technologies 
and their suitability for UAV networks, including cellular networks, ad hoc net-
works, wireless sensor networks, and satellite communication systems. The authors 
analyze the advantages, limitations, and potential integration strategies of these 
technologies in UAV networks. Additionally, the survey discusses the state-of-the-
art research and development efforts in UAV communications, including ongoing 
standardization activities and experimental testbeds. The authors identify open 
research challenges and provide insights into future directions for the design and 
optimization of UAV communication systems. 

In conclusion, it provides a valuable resource for researchers, practitioners, 
and policymakers interested in understanding the communication requirements, 
challenges, and technologies associated with UAV networks.
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Paper 31: A System for the Design and Development of Vision-Based Multi-
Robot Quadrotor swarms 
Sanchez-Lopez et al. [28] focus on the development of a system that facilitates the 
design and implementation of vision-based multi-robot quad-rotor swarms. 

They recognize the growing interest in multi-robot systems, particularly quad-
rotor swarms, for various applications such as surveillance, exploration, and moni-
toring. However, designing and developing these swarms can be challenging due to 
the complex coordination and control requirements. 

To address these challenges, the authors propose a system that integrates several 
components for the design and development of vision-based quad-rotor swarms. 
The system consists of hardware, software, and communication modules that work 
together to enable coordinated flight and interaction among the quad-rotors. The 
hardware component includes quad-rotor platforms equipped with cameras for 
vision-based sensing. The software component comprises modules for perception, 
control, planning, and communication. These modules enable the quad-rotors to 
sense their environment, make decisions, and communicate with each other to 
achieve coordinated behavior. The authors also describe a centralized ground 
station that serves as the control interface for the quad-rotor swarms. The ground 
station provides a user-friendly graphical interface for mission planning, real-time 
monitoring, and data visualization. To validate the effectiveness of their system, the 
authors conducted experiments with a quad-rotor swarm. The experiments involved 
tasks such as formation flying, target tracking, and obstacle avoidance. The results 
demonstrated the system’s capability to enable coordinated flight and efficient 
execution of complex missions. 

In conclusion, the integrated hardware, software, and communication modules 
facilitate coordinated flight and interaction among the quad-rotors. 

Paper 32: Flocking of Multi-Agents with Time Delay 
Yang et al. [29] focus on the study of flocking behavior in multi-agent systems that 
experience time delays. 

Investigate the flocking phenomenon, which refers to the coordinated motion of a 
group of agents, such as birds or robots, to achieve a common goal. They specifically 
address the impact of time delays in the communication between agents and how it 
affects the flocking behavior. 

The paper proposes a control framework for achieving flocking behavior in the 
presence of time delays. The control algorithm takes into account the local infor-
mation and the delayed information from neighboring agents to guide the agents’ 
motion. They analyze the stability of the flocking system under different delay 
conditions and provide mathematical proofs to support their findings. Furthermore, 
the paper discusses the application of the proposed control framework to practical 
scenarios. It explores the use of the flocking behavior in tasks such as formation 
control, cooperative target tracking, and obstacle avoidance. The authors provide 
simulations and experimental results to demonstrate the effectiveness of the control 
algorithm in achieving desired flocking behaviors in real-world scenarios.



A State-of-the-Art Literature Review on Drone Optimization 127

In conclusion, the proposed algorithm incorporates local and delayed information 
to guide the agents’ motion and ensures the stability of the flocking system. 

8 Conclusion 

After studying the papers related to drone optimization, we have to conclude 
that drone optimization is one of latest research paths for various researchers 
and academician. There are numerous tasks which can be executed using drone 
technology. Despite all the uses, it should be noted that some limitations of 
drones needs to be addressed. These limitations are formulated as multi-objective 
optimization problems. 

There are many nature-inspired optimization techniques, which in future can be 
applied to solve these optimization problems. 
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Metaheuristics Algorithm for Search 
Result Clustering 

Sushil Kumar , Sunny Parihar, and Vanita Garg 

1 Introduction 

Search Result Clustering (SRC) is the technique that requires the grouping of the 
results into a cluster and labels the clusters with some meaningful sentence which 
can be described as the results included in a cluster. Since, SRC is the most known 
problem of retrieving information and clustering into the groups based on some 
measure which gives the similarity among the web snippets in a cluster. In the field 
of computer science and mathematical optimization, a Metaheuristics is a higher 
level of heuristic designed to find, generate, or select a heuristic that is used to 
get the good solution of the optimization problems such as clustering, analysis 
etc. Metaheuristics Algorithms are also known as optimization methods designed 
according to the strategies laid out in a Metaheuristics framework. These heuristics 
are used in order to find a good solution in efficient computing time. 
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1.1 Data Clustering 

Data Clustering is a technique which is used to cluster the data points or population 
into a particular group or cluster according to some techniques in such a way that 
data points or populations that belong to a particular group have similar properties 
or nature. In other words, segregation of the similar items into one cluster is known 
as clustering. There are various clustering algorithms that are used to perform 
clustering of data. In Metaheuristics, there are certain algorithms that are used to 
perform clustering, and these algorithms mainly improve the clustering accuracy in 
an efficient way. Similarly, Particle Swarm Optimization is used for data clustering 
because PSO optimizes the problem by iterative in nature to improve the solution 
with respect to the measured quality. 

2 Literature Review 

SRC is a most popular problem in the fields of information retrieval method. A 
Multi-Objective Binary Differential Evolution (MBDE) framework is proposed by 
Van der Merwe and Engelbrecht [1]. Syntactic and semantic measures are taken 
into consideration for performing clustering. An experimental analysis is done on 
three datasets and computed the F-score value, and the results show that the MBDE 
performs better. The main limitation of multi objective optimization approach is that 
the number of queries increases the length of solution. 

DE algorithm was proposed [2] based on some self-adaptation of adjustment 
mechanism. The proposed algorithm applies DE to adjust the mutation strategy 
during the evolution stage. 

EWMA-DE [3] is basically a mutation adapting mechanism for DE. In this 
proposed algorithm Mutation Scale Factor was used for modification, while the 
other remains fixed. This algorithm performs better in the majority of the test cases. 

EWMA-DECrF [4] uses two parameters that are Mutation Scale Factor and 
Crossover Factor. Both the parameters are used to adapt the modification based on 
some exponential weighting moving average. The third parameter is fixed, the same 
as classical DE, i.e., keeping population size constant. This algorithm is compared 
with classical DE, and the result shows that EWMA-DECrF performs better than 
classical DE. 

The proposed method by Yang et al. [5] checks the population adaptation regard-
ing population diversity and proposed a method named auto-enhanced population 
diversity (AEPD) which is used to increase the number of population diversity auto-
matically. The result shows an improvement compared to the original algorithms 
and differential evolution has a superior performance over the other algorithms. 
This proposed approach [6] is compared with DErand and compared with other 
algorithms as well, to study the clustering ability of each algorithm. Experiments are 
done on the five different datasets and the result shows that the DE with a modified
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mutation approach is efficient. A hierarchical DE algorithm [7] suggested for 
unsupervised algorithm. This approach can identify the number of clusters as well 
as their centers. Results show that this algorithm is feasible. A modified threshold 
ridge regression-based subspace clustering method was proposed [8] using  K-
means algorithm and differential evolution. This proposed method is compared with 
six different techniques, and the experimental data results show that this method 
performs better in terms of accuracy as well as normalized mutual information. 
A modification of Differential Evolution [9] for automatic clustering using large 
unlabeled datasets. This proposed method does not need any information regarding 
the data which is to be classified. This performs better than two algorithms and can 
be applied to real-world application like image segmentation. 

A DE-based algorithm with cluster number oscillation for automatic crisp 
clustering ACDE-O was proposed [10]. This algorithm does not require information 
regarding the number of clusters to be formed in the dataset, since it finds the 
number of clusters with stable and fast convergence. This algorithm performs better 
compared to the partitional clustering algorithm. Automatic clustering using DE 
is found to be the most efficient considering all the features of DE. The work [11] 
proposes a novel (ACFSDE), which is an improved method of ACDE, which defines 
the structures for finding the optimal clusters and selecting optimal features. Cluster 
identification and feature selection [12] are done at the same time. Experimental 
results are compared with the various clustering approaches using the real-world 
benchmarks datasets from UCI. Improved DE [13] to determine similarity based 
clustering. The main objective of this method is to find an optimal number of clusters 
by decreasing the similarity matrix’s uncertainty. An automatic clustering using DE 
(ACDE) [14] proposed to an optimal number of clusters is determined by encoding 
the activation value of each cluster. This proposed method activates the clusters 
into the chromosomes. Clustering Algorithm in Wireless Sensor Networks Based 
on Differential Evolution Algorithm was proposed [15], and clustering is done on 
the wireless sensor networks using DE. This method improves the performance by 
decreasing the amount of calculation and energy consumption. 

Particle Swarm Optimization based on the initial population of clustering was 
proposed [16]. A method is proposed in which Particle Swarm Optimization is 
done by initializing the population for clustering purpose. Initial population and 
other parameters are set in such a way that it performs the optimized calculation. 
The simulation results show that this method effective and feasible. A new fitness 
function is used in the standard Particle Swarm Optimization methods. The work 
[17] was proposed with a new fitness function since this fitness function can further 
be improved by using an improved FCM function. An Improved version of Particle 
Swarm Optimization [18] is used for fast clustering research. Since the traditional 
clustering algorithms converge readily which falls into the local optimum in solution 
space and also efficiency is low as well hence a fast improved PSO method is used 
in this chapter. 

A combined version of K-means and combinatorial Particle Swarm Optimization 
known as (KCPSO) was proposed in [19]. This approach does not require any 
knowledge on the clusters’ counts, i.e., how many clusters should be formed.
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Experimental results show that the KCPSO algorithm is effective as well as efficient 
for dynamic clustering problems. The proposed PSO [20] takes more time than the 
basic Particle Swarm Optimization and K-means, but it gives better results in the 
form of mean square error, entropy, and purity but takes more average CPU time. 
A simple version of Particle Swarm Optimization [1] is used. This chapter uses two 
methods to perform the clustering of the data since it is known that Particle Swarm 
Optimization can be used to get the centroids for each clusters formed from the 
dataset, but the number of clusters must be given to the user. 

Research article [21] proposed a novel Particle Swarm Optimization approach. 
In this chapter randomly occurring distributed delayed PSO is used, and in each 
iteration of this method an evolutionary factor is calculated based on some various 
factors such as velocity. Shen et al. [22] proposed multi-swarm particle swarm 
optimization algorithm based on clustering dynamic grouping (DGMSPSO) which 
solves the problem of readily getting struck at local optima in optimization process 
and very low precision value as well. Hence, by the help of clustering grouping 
strategy local information of particle to each in search process can be enhanced 
which helps in improving the diversity of algorithm. 

A combined version of hybrid firefly and Particle Swarm Optimization (PSO) in 
research article [23]. This firefly algorithm is the important regarding the solution 
of most difficult optimization problems in the field of global optimization. Its 
performance is based on the parameter tuning. 

An hybrid firefly optimization algorithm is proposed in research article [24]. 
Since the algorithm is very powerful as well as effective swarm intelligence method 
when it comes to solving the optimization problems. 

For high-dimensional data clustering, one approach is proposed [25] which is 
better than other algorithms when it comes to find the solutions as early as possible. 
The result is calculated using the modified version of three algorithms and compared 
with a simplified version, and the modified one performs significantly better. 

A hybrid discrete artificial bee colony—GRASP algorithm [26] for clustering. 
The author used for clustering N objects into K clusters. This proposed method has 
two phases in which artificial bee colony is used for feature selection and GRASP is 
used for clustering the data. This proposed method gives the accuracy greater than 
98%. 

The hybrid approach [27] is the high level of hybridization where genetic 
algorithms represents the initialization phase (Global Search) while the Black Hole 
algorithm represents the searching phase (Local Search). This combination GA-BH 
is examined based on the various optimization problems, and hence it performs 
better than individual BH and GA algorithm. This proposed method gives the better 
global search space only because of GA as GA is capable of exploring search space. 

An algorithm [28] is used for the multi-objective clustering problem. This 
proposed method is basically used for coupling and cohesion. It is the fast and 
effective algorithm for the search for a cluster which maximizes cohesion and 
minimizes the coupling of the software modules. The experimental results show 
that the proposed method is better than other methods in terms of the solution’s 
quality and better computation time.
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A modified version of Black Hole and Levy flight technique in research article 
[29]. The proposed method the black hole optimization method simulates the black 
hole phenomenon of the universe. At every iteration in the solution space can be seen 
as an individual star. Since simple BlackHole lacks in exploration in some datasets 
so to overcome this problem, this method includes levy flight into BlackHole named 
as Levy Flight Black Hole (LBH). This approach is tested on six datasets from UCI 
machine learning. This algorithm shows effectiveness and robustness and this is 
suitable for data clustering. 

3 Proposed Methodology 

Particle Swarm Optimization is the Metaheuristics mature inspired swarm-based 
algorithm which optimizes the problem. In each iteration of this algorithm, it tries 
to improves the solution search space in terms of measured quality. This algorithm 
solves the problem with the help of population of the candidate solutions and such 
particles move around the search space with respect to its velocity and position. 
Every particle present in the swarm is influenced by its local best position which 
helps in guiding to best known location in the solution search space, which is being 
updated as a better solution/position found by any other particle in the solution 
space. Since this algorithm requires a population of particles also known as swarm 
of particles, and these particles in the algorithm are a potential candidate to the 
solution of an optimization problem. The main motive of this PSO algorithm is 
to find those positions of particles, which gives best result with respect to the 
given fitness function. Here, swarm represents a number of solutions which has the 
potential to become a solution in an optimization problem. Each potential solution 
here represents a particle (Fig. 1). 

Let us take a number of particles as N, and they are all move in a Q-Dimensional 
solution space. Each particle is considered as a Q-Dimension .q = (q1, q2, . . . , qd ) 
in location of .S = (s1, s2, . . . , sq) and each particle moves with the velocity .V el =

Fig. 1 Location of particle 
changed in solution space due 
to velocity

Velocity 

Previous Location 

New Location 
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Fig. 2 Detailed movement of 
particle in solution space 
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(vel1, vel2, . . . , velq) in the solution space. The velocity is bounded by . V elmax =
(V elmax1, V elmax2 . . . V elmaxd), and if any particle is found with velocity greater 
than .V elmax , then its velocity is being replaced with .V elmax . Each particle p has the 
following properties (Fig. 2):

– .xi = Position of a particle p currently. 
– .veli = Velocity of the particle p currently. 
– .yi = Perbest position of the particle p. 
– ŷ . = Global best position found so far. 

Using these notations, any particle position can be found using Eqs. 2 and 3, 
where u is the inertial weight and . c1 and . c2 are acceleration constants. The velocity 
is calculated according to three factors which are: 

1. Previous Velocity 
2. Distance between the particle p’s personal best position and its current position 

is known as cognitive component 
3. Distance between the particle p’s current position to the best position found thus 

far known as social components. 
Equation (1) represents the variable inertia weight where two maximum . w2

and minimum . w1 are used to calculate the variable inertia weight at each iteration 
i where itr is the total number of iterations used in algorithm. 

.w = w2 − w1 ∗ (itr − i + 1)

itr
+ w1 (1) 

.F1 = Je =
∑Ne

j=1

[∑
∀zp∈Cij

, d(zp.mj )/|Cij |
]

Nc

(2) 

.veli,k(T + 1) = wveli.k(T ) + c1r1.k(T )(yik(T ) − xik(T ))
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+ c2r2,k(T )(ŷk(T ) − xik(T ) (3) 

.xi (T + 1) = xi (T ) + veli (T + 1) (4) 

where . Zp shows the .pth data vector, . Ci is the number of data vectors belonging 
to cluster i, and d is Euclidean distance between . Zp and . mj . Equation (2) fitness 
function shows good and approving results, but the results were not good enough, 
and also it was time consuming, since a standard fitness function has the following 
problems: Sometimes a particle that is not a good solution is mistakenly found as a 
good cluster. In order to solve this, fitness function is updated to solve the problem. 

.

F2 = F1 ∗ (|Cik| − |Cil | + 1)
|Cik| = max

∀j=1...,Nc

{|Cil |}, {|Cil |} = min
∀j=1',Nc

{|Cij |} (5) 

4 Methodology 

4.1 Initialization 

In the first step, Initialization of each of the particle’s velocity as well as the 
particle’s position and then calculate the fitness value for of the each particle which 
give .pid and . pgd . Then the updated value of each particle’s velocity as well as 
position with respect to fitness function value. 

4.2 Calculation 

Map each particle location into the clustering position and then calculation of the 
fitness value for each of the particle p. Use max as the maximum number of iteration 
in a loop to calculate the global best position and update it. 

4.3 Updation 

If the cost is less than pbest, then update the pid and pbest, else check if the personal 
best of a particle is less than the best position (globally in solution space) of overall 
all particles, then update this best position. Do this process until the maximum 
iteration is reached, else check again from step 3 via updating velocity and position 
of particle (Fig. 3).
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Fig. 3 Flow chart diagram 

4.4 Flow Chart Diagram 

1. Initialize a group of particles in the solution space with some random value which 
must be within the given required range. 

2. Evaluate the personal best position for each particle via updating the location 
which can be done by change in the velocity of the particle. 

3. Check if the new personal best is better than the global best, i.e., a position that is 
the best among all the particles in the solution space. If better, then assign pbest 
to the gbest. 

4. Now calculate the new velocity of the particle which depends upon the three 
values which are velocity of that particle earlier, social, and cognitive component. 

5. Use the velocity calculated above, and find the new position of the particle. 
6. Go to step no. 2 until all iterations are finished.
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5 Algorithms 

5.1 PSO Algorithm 

Algorithm 1 PSO 
for Each Particle p do 

Initialization of each particle pi with some random value within 
required range. 

end for 
for q = 1 to  itrmax do 

for Each particle a do 
Compute the fitness function value. 

end for 
Select the Best Particle as GlobalBest . 

for Each particle p do 
Updating the value of the Velocity for each particle p using equation 
no. (3). 
Updating the value of the Position for each particle p using equation 
no. (4). 

end for 
end for 

5.2 PSO Data Clustering 

Algorithm 2 PSO clustering 
for Each particle p in solution space do 

Initialize particle p to contain Wc randomly selected number of cluster 
centroids. 

end for 
for itr ← 0 MaxIteration - 1 do 

for every particle p do 
for every data vector zp do 

calculation of the value of Euclidean distance dist(zp ,mpb) with 
respect to the all cluster centroids Cpb 
assign zp to cluster c such that dist (za,mab) = min(f orallc = 1 
toW,  dist (za,mac)) 
calculate the fitness function value F2 using Eq. (5) 

end for 
end for 

end for 
Updating the value of global and local best positions by best values 
found so far respectively 
Updating the value of each cluster by using Eqs. (3) and  (4).
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5.3 Clustering Methodology 

1. Let the number of particles present in the solution space be P (Fig. 4). 
2. Initialize the position and the velocity of each particle in the solution space. 
3. Calculate the value of fitness function F1 as well as F2 (both in different 

executions) to get the value of the pid and pgd. 

Fig. 4 Methodology
Start 

update v and x 

map particle’s 
location to cluster’s 

nodes location 

Calculate fitness of 
each particle 

Update Pid and 
Pbest 

Pbest<gbest 

Iteration 
==max 

yes 

End 

no 

Update pgd and 
gbest 

cost < pbest yes 

no 

Limitation on v and x 

Initialize position and 
velocity of each particle 

Calculate fitness of 
each particle to get 

pid and pgd 



Metaheuristics Algorithm for Search Result Clustering 139

4. Update the value of velocity and location in the solution space for each particle, 
and check if both values are within the given required range. 

5. Now map the particle’s location to the clusters’ nodes location. And calculate the 
fitness value for each particle p. 

6. Update the value of pBest as well as gBest when a better value is encountered. 
7. Repeat this process starting from step no. (4) until the number of iterations is 

reached the maximum given value.

5.4 Text Data Clustering Using TF-IDF Vectorization 

TF-IDF is Term Frequency-Inverse Document Frequency which is a numerical value 
of a word that shows how important the word is to corpus. Here, Frequency refers 
to the number of current words to the total number of words in a document. 

.tf (t, d) = Nt∑
k Nk

(6) 

where . Nt is the count of current words in the document/string, and the sum of . Nk is 
the sum of count of all words in the document/string. Inverse Document Frequency 
is taking log of the ratio of the total number of documents present in the corpus to 
number of documents/strings in which a particular term or word is present . ti . 

.idf (t,D) = log
D

{di ∈ D t ∈ di} (7) 

td-idf(t,d,D) is the product value of the above-mentioned two equations as 

.tf − idf (t, d,D) = tf (t, d) × idf (t,D) (8) 

Steps to perform text clustering of data using tf-idf vector method are as 
follows: 

1. Cleaning of dataset (removing numbers, stopwords, and punctuation) 
2. Making bag of words using dataset for corpus as well for words 
3. Calculation of the term frequency for each word in the corpus 
4. Calculation of the Inverse Document Frequency which signifies that how much 

a particular word used in the string 
5. Taking product of the above two values for each word in corpus as td-idf 

weight vector. This vector gives the significance about which word is important 
compared to the other words 

6. Transforming the vector into the required form for the clustering using the fit-
transform method 

7. Using this method for each of the columns present in the dataset and vectorization 
gives an output
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8. Sparse Concatenation of each vector produced by the using every column 
9. Using the clustering algorithm to perform the clustering on the concatenated 

vector formed 

5.5 Text Data Clustering Using Word2Vec Model 

Word2Vec algorithm is an NLP invented at Google. The Word2Vec model is used 
for mapping of a word to a vector of a number (generating embeddings). The basic 
idea used for embeddings of word is that those words that occur in a similar context 
in a text are more likely to be closer to each other in a vector space. Since the 
vector representations of word which are generating using word2vec model must 
put semantically similar words closer to each other in a 2D space. Using a clustering 
algorithm, one can group similar words from the text and can form clusters. 

Steps to perform text clustering of data using Particle Swarm Optimization 
Algorithm are as follows: 

1. Cleaning of dataset (removing numbers, stopwords, and punctuation) 
2. Training of Word2Vec Model 
3. Dimensionality reduction using PCA (Principal Component Analysis) 
4. Applying PSO Algorithm for the cleaned dataset 
5. Comparing the of results using fitness function in Eqs. (2) and (5) 

6 Results 

The PSO algorithm is trained for 5 datasets in which there are 3 numerical datasets 
and 2 text datasets. 

6.1 Dataset Description (Table 1) 

These 3 datasets contain only numerical data, and the number of clusters to be 
formed is given as well (Table 2). 

Table 1 Dataset description 
for numerical data 

Dataset Number Number Number 

name of rows of columns of clusters 

Iris dataset 150 4 3 

Wine dataset 178 13 3 

Glass dataset 214 9 7
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Table 2 Dataset description Dataset Queries Snippets 

AMBIENT 44 4400 

ODP-239 239 25580 

Here the number of queries represents the total number of clusters that can be 
formed. And the snippets are the texts that belong to the particle number of clusters 
to be formed. 

6.2 Output 

For the clustering using PSO with two different fitness functions F1 and F2, data 
points are plotted on the graph and different colors are used for each cluster type to 
distinguish between them. In these images of data points, dark gray circular points 
represent the cluster’s centroid. This graph is plotted at each 200th iteration in the 
implementation, and final 1000th iteration plotting of data points is given below. 
This is done by using both fitness functions F1 and F2. So, for each dataset the 
first image of data points shows the 1000th iteration’s final result using F1 and the 
second image for each dataset shows the 1000th iteration’s final result using F2. 

6.3 Iris Dataset Result 

Initialize swarm with the 10 particles, and it is divided into 3 clusters with 1000 
maximum iterations. Clustering diagrams show clustering results at fitness function 
F1 and fitness function F2, since Iris-setosa represents 0 in the cluster diagrams, 
Iris-versicolor represents 1 in the cluster diagrams, and Iris-virginca represents 2 in 
the clustering diagrams. The global best position for the data using fitness function 
F1 is given below: 

1. At Iteration 0 global best . = inf., no cluster at all. 
2. At iteration number 200th global best position has changed to . =

1.2607582879775. 
3. At iteration number 400th global best position has changed to . =

1.2516052460662213. 
4. At iteration number 600th global best position has changed to . =

1.2516033022038895. 
5. At iteration number 800th global best position has changed to . =

1.251603302200107.
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Fig. 5 Clustering found by Iris dataset with F1 fitness function 

The global best position for the data using fitness function F2 is given below 
(Fig. 5): 

1. At Iteration 0 global best . = inf., no cluster at all. 
2. At iteration number 200th global best position has changed to . =

0.4284694709026384. 
3. At iteration number 400th global best position has changed to . =

0.4166974191684821. 
4. At iteration number 600th global best position has changed to . =

0.41667600698181073. 
5. At iteration number 800th global best position has changed to . =

0.4166634921453492 (Fig. 6). 

6.4 Wine Dataset Result 

Initialize swarm with 10 particles, and it is divided into 3 clusters with maximum 
1000 iterations. Clustering diagrams show clustering results at fitness function F1 
and fitness function F2. Clusters are named as 1, 2, and 3. 

The global best position for the data using fitness function F1 is given below: 

1. At Iteration 0 global best . = inf., no cluster at all. 
2. At iteration number 200th global best position has changed to . =

1.5468292195294364. 
3. At iteration number 400th global best position has changed to . =

1.4363927211650254.
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Fig. 6 Clustering found by Iris dataset with F2 fitness function 
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Fig. 7 Clustering found by wine dataset with F1 fitness function 

4. At iteration number 600th global best position has changed to . =
1.4280505080846657. 

5. At iteration number 800th global best position has changed to . =
1.4280480044212478 (Fig. 7).

The global best position for the data using fitness function F2 is given below: 

1. At Iteration 0 global best . = inf., no cluster at all. 
2. At iteration number 200th global best position has changed to . =

0.6440276048489663.
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Fig. 8 Clustering found by wine dataset with F2 fitness function 

3. At iteration number 400th global best position has changed to . =
0.6396057502156508. 

4. At iteration number 600th global best position has changed to . =
0.6389733713896532. 

5. At iteration number 800th global best position has changed to . =
0.6389733713896532 (Fig. 8).

6.5 Glass Dataset Result 

Initialize swarm with 10 particles, and it is divided into 7 clusters with maximum 
1000 iterations. Clustering diagrams show clustering results at fitness function F1 
and fitness function F2. Clusters are named as 1, 2, 3, 4, 5, 6, and 7. 

The global best position for the data using fitness function F1 is given below 
(Fig. 9): 

1. At Iteration 0 global best . = inf., no cluster at all. 
2. At iteration number 200th global best position has changed to . =

1.0648539933120984. 
3. At iteration number 400th global best position has changed to . =

0.6817927458232369. 
4. At iteration number 600th global best position has changed to . =

0.6781102172151403. 
5. At iteration number 800th global best position has changed to . =

0.6764198237313302.
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Fig. 9 Clustering found by glass dataset with F1 fitness function 
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Fig. 10 Clustering found by glass dataset with F2 fitness function 

The global best position for the data using fitness function F2 is given below 
(Fig. 10): 

1. At Iteration 0 global best . = inf., no cluster at all. 
2. At iteration number 200th global best position has changed to . =

2.3553043532612294.
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3. At iteration number 400th global best position has changed to . =
0.8487277072946797. 

4. At iteration number 600th global best position has changed to . =
0.8484994116264498. 

5. At iteration number 800th global best position has changed to . =
0.8484994116086169. 

6.6 Output of Ambient Dataset 

AMBIENT (AMBIgous ENTries) is a text dataset which is made for information 
retrieval process. It has 44 topics and each topics has its set of subtopics and a 
document list. It is one of the simplest datasets in which each query contains only 
single word. 

6.6.1 Using TF-IDF (Figs. 11 and 12) 

6.6.2 Using Word2Vec Model 

The global best position for the data using fitness function F1 is given below 
(Fig. 13): 

1. At Iteration 0 global best . = inf., no cluster at all. 
2. At iteration number 200th global best position has changed to . =

0.006310132702471327. 
3. At iteration number 400th global best position has changed to . =

0.006310132702471327. 

Fig. 11 Clusters centers’ 
position for ambient dataset
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Fig. 12 Pie chart of ambient 
dataset which shows the 
percentage of snippets 
belonging to each queries 
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Fig. 13 Clustering found by ambient dataset with F1 fitness function 

4. At iteration number 600th global best position has changed to . =
0.006310132702471327. 

5. At iteration number 800th global best position has changed to . =
0.006310132702471327.

The global best position for the data using fitness function F2 is given below 
(Fig. 14): 

1. At Iteration 0 global best . = inf., no cluster at all.
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Fig. 14 Clustering found by ambient dataset with F2 fitness function 

2. At iteration number 200th global best position has changed to . =
0.003095565329400458. 

3. At iteration number 400th global best position has changed to . =
0.003095565329400458. 

4. At iteration number 600th global best position has changed to . =
0.003095565329400458. 

5. At iteration number 800th global best position has changed to . =
0.003095565329400458.

6.7 Output of ODP-239 Dataset 

ODP is also a text data which is used for information retrieval as well. It has 239 
topics and each topic has its set of subtopics and a document list. Each topic has 10 
subtopics in dataset. In this dataset, subtopics are complex in nature and tough to 
distinguish as they have almost the same meaning. Thus, it is very difficult to cluster 
this dataset. 

6.7.1 Using TF-IDF (Figs. 15 and 16)
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Fig. 15 Clusters centers’ 
position for ODP-239 dataset 0.05 
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Fig. 16 Pie chart of ODP-239 dataset which shows the percentage of snippets belonging to each 
queries 

6.7.2 Using Word2Vec 

The global best position for the data using fitness function F1 is given below 
(Figs. 17 and 18): 

At Iteration 0 global best . = inf., no cluster at all. 
At iteration number 200th global best position has changed to . =

0.15706948111635832. 
At iteration number 400th global best position has changed to . =

0.15706948111635832.



150 S. Kumar et al.

0.06 

0.04 

0.02 

0.00 

–0.02 

–0.5 0.5 1.5 2.0 2.51.00.0 

Fig. 17 Clustering found by ODP-239 dataset with F1 fitness function 
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Fig. 18 Clustering found by ODP-239 dataset with F2 fitness function 

At iteration number 600th global best position has changed to . =
0.15706948111635832. 

At iteration number 800th global best position has changed to . =
0.15706948111635832. 

The global best position for the data using fitness function F2 is given below: 

1. At Iteration 0 global best . = inf., no cluster at all. 
2. At iteration number 200th global best position has changed to . =

0.003095565329400458. 
3. At iteration number 400th global best position has changed to . =

0.003095565329400458.
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4. At iteration number 600th global best position has changed to . =
0.003095565329400458. 

5. At iteration number 800th global best position has changed to . =
0.003095565329400458. 

In Figs. 1, 2, 3, 4, 5, 6, 9, 10, 13, 14 show the different clusters formed by the 
PSO algorithm using the mentioned datasets. Each sub-figure shows the graphical 
representation of the data points, and dark circle represents the cluster centroid. Data 
points having the same color show that these points belong to the same cluster. In 
each figure there are two sub-figures which show the cluster formation using PSO 
with fitness functions F1 and F2, respectively. It can be clearly seen from the figure 
that the clusters formed by modified fitness function which is F2 are better compared 
to the fitness function F1. 

7 Comparison 

7.1 Inter-cluster Distance (Table 3) 

Table 3 Comparison of F1 
and F2 for inter-cluster  
distance 

Inter-cluster distance 

Dataset F1 F2 

Iris 2.8135964819607278 1.029499701009877 

Glass 12.912154766366982 12.021969574285691 

Wine 10.77802997479919 10.75324414021391 

Ambient 0.18278666080563996 0.3008418225727529 

ODP-239 1.1388159506862974 0.7853967202005553 

7.2 Intra-cluster Distance (Table 4) 

Table 4 Comparison of F1 
and F2 for intra-cluster 
distance 

Intra-cluster distance 

Dataset F1 F2 

Iris 1.029499701009877 1.0267426511778508 

Glass 1.317904622674718 0.8242524627939393 

Wine 1.570892216599712 1.568551430263879 

Ambient 0.2181429533467094 0.3304259906933688 

ODP-239 1.2188990146953118 0.8782585766503267
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7.3 Global Best Position 

7.4 Average Frequency of Clusters for Text Datasets Using 
TF-IDF 

Since clustering is the most well-known problem in terms of optimization, several 
Metaheuristics algorithms (particle swarm optimization, Differential evolution, 
genetic algorithm, Cuckoo search, Black hole, hybrid algorithms, etc.) are applied 
to find optimal clusters numbers and how an algorithm can be used by modifying 
some parameters in order to improve the convergence speed and not to struck in 
local optima (Tables 5 and 6). 

In Particle Swarm optimization inertial weight is added with 2 acceleration 
constants . c1 and . c2 in order to improve the PSO, and improved PSO shows a 
significant result compared to the standard PSO. It can also be improved by initial 
population clustering and other parameters as initial population is designed as a 
combination of fitness value and search space. Another improvement of PSO can 
be hybrid PSO in which FCM function can be improved, and this algorithm gives 
comparable results to the improvement of initialization of algorithm. PSO can be 
improved as multi-swarm optimization as well, this approach can improve the 
convergence speed compared to other PSO approaches, and it also enhance the 
diversity of the algorithm. Differential evolution framework has three parameters 
which can be modified to improve the optimization process by modifying the 
mutation factor, crossover constant, and population size. This (multi-objective multi 
view-based clustering using Differential Evolution Framework) approach performs 
better than the DE/rand/1. Here DE/rand/1 best denotes to the DE variant where 
rand denotes about the base vectors are chosen at random and 1 shows that the only 
one vector difference is used to form the mutated operation. 

Table 5 Comparison of F1 
and F2 for global best 
position 

Global best comparison 

Dataset At F1 At F2 

Iris 1.251603302200107 0.4166634921453492 

Wine 1.4280480044212478 0.6389733713896532 

Glass 0.6764198237313302 0.8484994116086169 

Ambient 0.006310132702471327 0.005176546664728095 

ODP-239 0.15706948111635832 0.003095565329400458 

Table 6 Frequency of 
clusters average 

Average frequency Average percentage 

Dataset per cluster per cluster 

AMBIENT 98.1590909090909 2.230888429752066 

ODP-239 107.0376569037657 0.4184427556832122
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