
TiBERT: A Non-autoregressive
Pre-trained Model for Text Editing

Baoxin Wang1,2, Ziyue Wang2, Wanxiang Che1, Dayong Wu2(B), Rui Zhang3,
Bo Wang3, and Shijin Wang2,3

1 Research Center for SCIR, Harbin Institute of Technology, Harbin, China
car@ir.hit.edu.cn

2 State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Hefei, China
{bxwang2,zywang27,dywu2,sjwang3}@iflytek.com
3 iFLYTEK AI Research (Hebei), Langfang, China

{ruizhang19,bowang3}@iflytek.com

Abstract. Text editing refers to the task of creating new sentences by
altering existing text through methods such as replacing, inserting, or
deleting. Two commonly used techniques for text editing are Seq2Seq and
sequence labeling. The Seq2Seq method can be time-consuming, while
the sequence labeling method struggles with multi-token insertion. To
solve these issues, we propose a novel pre-trained model called TiBERT,
which is specially designed for Text Editing tasks. TiBERT addresses
these challenges by adjusting the length of the hidden representation to
insert and delete tokens. We pre-train our model using a denoising task on
a large dataset. As a result, TiBERT provides not only fast inference but
also an improvement in the quality of text generation. We test the model
on grammatical error correction, text simplification, and Chinese spelling
check tasks. The experimental results show that TiBERT predicts faster
and achieves better results than other pre-trained models in these text
editing tasks.

Keywords: Text Editing · Non-autoregressive Model · Pre-trained
Language Model

1 Introduction

Text editing [12] is a form of text generation task, in which new sentences are cre-
ated by replacing, inserting, or deleting words. The source and target sentences
are often quite similar, making it appropriate to generate the target sentence by
making modifications to only specific words. Typical text editing tasks include
grammatical error correction (GEC) [2], text simplification (TS) [7], and Chinese
spelling check (CSC) [3,8], etc.

Text editing is typically accomplished through the use of Seq2Seq and
sequence labeling methods. Seq2Seq methods require the entire text to be
regenerated, making them relatively slow and not fully utilizing the similari-
ties between input and output. On the other hand, sequence labeling methods
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Liu et al. (Eds.): NLPCC 2023, LNAI 14304, pp. 15–26, 2023.
https://doi.org/10.1007/978-3-031-44699-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44699-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-44699-3_2


16 B. Wang et al.

tend to be faster but often have difficulty handling multiple token insertions due
to their limitation of inserting only one token at a time.

We propose a novel pre-trained model named TiBERT as an effective solution
to enhance the performance of text editing tasks. This model is more powerful
than sequence labeling methods and faster than Seq2Seq methods. Specifically,
our model consists of three parts, namely, Encoder, Locator, and Editor. The
Encoder is responsible for encoding the context information of the input. The
Locator generates a sequence of numbers with the same length as the input. Each
number of the sequence indicates the number of tokens to be generated at this
position. The hidden representation of the last layer of the Encoder is edited (i.e.,
kept, inserted or deleted) according to the predicted editing number sequence.
Then combined with a new position representation, the resulting representation
is fed to the Editor. Finally, the output is generated by a non-autoregressive
transformer. In this way, the problem that only one token can be added at a
time for the sequence labeling method can be avoided. As shown in Fig. 1, the
Locator predicts a “2” for the second input position, indicating there is one extra
token to be inserted. While the “0” represents a deletion operation, meaning no
token should be generated at this position.

We train our model on large-scale English and Chinese data by a denoising
task. To test the effect of our model, we conduct experiments on four tasks,
including English and Chinese GEC, text simplification, and CSC. The exper-
imental results show that TiBERT runs faster and achieves better scores than
other pre-trained models in all the text editing tasks.

The main contributions of this paper are as follows:

– We are the first to propose a novel pre-trained model for text editing tasks,
which fills the gaps in the pre-trained model of text editing tasks.

– Our TiBERT model achieves the best results in both English and Chinese
text editing tasks.

– We conduct a detailed experimental analysis and introduce application scenes
for TiBERT.

2 Related Work

2.1 Text Editing Methods

Text editing methods are becoming popular solutions to natural language gen-
eration tasks with a large overlap between inputs and outputs, such as sen-
tence fusion, style transfer, TS, and GEC. Most of these methods need to con-
struct tag sets of editing operations before training. LaserTagger [12] and FELIX
[11] employ three editing operations (the tags): token-independent keep, token-
independent delete and token-dependent add/insert. GECToR [14] expands the
tag set to 5000 token-level transformations, including basic transformations for
keep, delete, insert, replace, and 29 task-specific grammatical transformations.
EditNTS [7] is a two-stage method consisting of a programmer to generate an



TiBERT: A Non-autoregressive Pre-trained Model for Text Editing 17

Fig. 1. The architecture of TiBERT. The input and output are translated as “Do you
like apples?”. The incorrect characters in the input and the corresponding corrections
are shown in red. (Color figure online)

edit-operation sequence and an interpreter to recover the target text. It adds
an extra operation, stop, to the interpreter to indicate the termination of the
editing process.

Compared to other text editing models, our model can handle multi-word
insertions without the need for iterative refinement. This allows our model to
achieve better performance and faster prediction speed.

2.2 Pre-trained Language Models

Pre-trained language models promote the NLP tasks markedly since the presence
of BERT [6]. BERT adopts the pre-training and fine-tuning mechanism. It has
two pre-training tasks, next sentence prediction (NSP) and masked language
model (MLM), and can be adapted to downstream tasks through task-specific
fine-tuning. BERT belongs to the autoencoding model category which is better
at natural language understanding (NLU) tasks such as text classification and
information extraction. Contrarily, autoregressive pre-trained models, such as
GPT [15] and BART [10], perform better on generation-based tasks. GPT and
its improvements [16] are uni-directional models consisting of the decoder of
transformers. BART includes both the encoder and the decoder. Its encoder
introduces noise functions to interfere with the training data and its decoder
learns to recover the original sequence. As far as we know, we are the first to
pre-train a model specifically for text editing tasks.

3 Method

To enhance inference speed and tackle the challenge of inserting multiple tokens,
we introduce a non-autoregressive pre-trained model, named TiBERT, to solve



18 B. Wang et al.

the text editing task. TiBERT consists of three modules: Encoder, Locator, and
Editor. The Encoder reads and comprehends the input sentences; the Locator
predicts the editing number sequence to indicate the number of tokens at each
position for editing; the Editor generates edited tokens according to the edit-
ing number sequence and the Encoder outputs. The overall architecture and
examples of outputs of each module are illustrated in Fig. 1.

3.1 Encoder

The Encoder module is responsible for encoding the context information of the
input. Similar to BERT, our Encoder employs the structure of the transformer
encoder, so that our model can be trained on the basis of BERT. Moreover,
the input embeddings also include position embeddings, token embeddings, and
segment embeddings. The outputs of the TiBERT encoder are sent to Locator
and Editor modules respectively.

H = Transformer(Et + Ep + Es) (1)

Here, Et, Ep and Es represent the token embeddings, position embeddings
and segment embeddings respectively; H denotes the hidden representation of
Encoder outputs.

3.2 Locator

The output sentences of text editing tasks are usually similar to the input sen-
tences. Consequently, we can obtain the output by several editing operations
while leaving the rest input tokens unchanged. The editing operations involve
keeping, replacement, insertion, and deletion. In addition, the lengths of out-
put and input sentences are usually unequal. In this paper, we use Locator to
predict the editing number for each token from the input. The editing number
is a non-negative integer, indicating the number of tokens to be generated at
the corresponding location. As shown in Fig. 1, the Locator predicts the number
of output tokens at each input position. Concretely, if the editing number at a
position is predicted to be 0, the hidden representation at this position will not
participate in the subsequent process. If the number is 3, the hidden represen-
tation of the token at that position will be extended to three copies and will
participate in the subsequent operation. The equations are as follows:

Hl = Transformer(H)
H′

l = FFN(Hl)
P = softmax(WH′

l)
ti = argmax(pi)

(2)

where H is the output of Encoder, FFN is a feed-forward network used by
Vaswani et al. [18]. W is the trainable weight; pi is the predicted probability
of the editing number at position i, and t is the editing number, indicating the
number of tokens to appear at position i in the output.



TiBERT: A Non-autoregressive Pre-trained Model for Text Editing 19

3.3 Editor

The input of the Editor module consists of three parts: the hidden representa-
tions of the last layer of the Encoder, the input embeddings, and the reordered
position embedding. We feed the sum of the three representations into an atten-
tion layer and get the consequential hidden representation Hi as follows:

He = LayerNorm(E′
p + E′ + H′)

Q = WQHe,K = WKH,V = WVH

Hi = Attention(Q,K,V)

(3)

where E′ is the input embedding, which is the sum of token embedding, position
embedding, and segment embedding. E′

p is the reordered position embedding
ranging from 0 to T , T is the sum of editing numbers, H′ is hidden representation
of Encoder. E′, E′

p and H′ are transformed from E, Ep and H respectively.
Eventually, the output tokens are predicted through an n-layer transformer.

H′
i = FFN(Hi)

Ho = Transformer(H′
i)

(4)

where Ho is the output representation of Editor.

3.4 Pre-training

To acquire a language model with stronger modeling and understanding ability,
we pre-train TiBERT by the denoising task [10]. The denoising task requires
interfering with the original sentences via extra noises and then telling the lan-
guage model to denoise them. The model is trained in a more challenging manner
than trained using the original data. By this means, the language modeling abil-
ity of TiBERT is enhanced. The detailed noising process is as follows:
Step 1. Input the original sentence, and randomly stream the editing number
of each position from 0 to 5 according to the following probabilities, 7.5%, 80%,
7.5%, 2.5%, 2%, 0.5%, until the sum of editing numbers is greater than or equal
to the length of the original sentence. If the sum grows greater than the length,
we reassign the editing number of the last token to ensure that the final sum
equals to the length of the original sentence. In this situation, the editing number
at the last position is calculated as subtracting the sum of previous positions
from the length.
Step 2. For each position, tokens are generated randomly based on the editing
number. If the editing number is 0, 30% of the tokens will come from the original
sentence and 70% will be randomly selected from the vocabulary. If the editing
number is 1 or higher, 80% of the tokens will remain the same, 15% will be
randomly selected from the vocabulary, and 5% will be taken from the original
sentence.

TiBERT needs to predict the editing numbers and the editing tokens at the
same time, so the final loss is a combination of the two parts, Locator and Editor.
The loss function of Locator and Editor are both cross-entropy loss.



20 B. Wang et al.

Loss = λLosslocator + (1 − λ)Losseditor (5)

where λ is a hyper-parameter varying from 0 to 1. For pre-training stage, we set
λ to 0.5.

3.5 Fine-Tuning

After the pre-training stage, we fine-tune TiBERT with four text editing tasks.
First of all, we need to convert parallel sentence pairs into editing number
sequences and editing tokens. We obtain the editing numbers and the corre-
sponding tokens at each position by Levenshtein distance. For all the editing
tasks, we fine-tune our model by the loss in Equation (5). For tasks with dif-
ferent input and output lengths such as GEC and TS, we first generate the
editing numbers by Locator and then generate the editing tokens according to
the editing numbers and input tokens. For the CSC task, whose input and out-
put lengths are the same, we input the standard editing number (all “1”s) in the
test stage.

4 Experiments

We conducted experiments on various types of text editing tasks, including
English and Chinese GEC, TS, and CSC. In text editing tasks, our pre-
trained model works better than the autoregressive pre-trained models such as
BART, and also better than the non-autoregressive models such as BERT and
RoBERTa.

4.1 Settings

We use a 6-layer transformer for Encoder, a 1-layer transformer for Locator, and
a 6-layer transformer for Editor. The hidden layer dimension is 768, and the
intermediate size of FFN is 3072. We restrict the editing number as an integer
from 0 to 5. For English pre-training, we use Colossal Cleaned CommonCrawl
Corpus (C4) dataset with a total size of 305GB. For Chinese pre-training, we
use Wikipedia and Wudaocorpora [25] with a total size of 152GB after data
cleaning. We perform further pre-training based on BERT for English TiBERT
and based on RoBERTa-wwm [4] for Chinese TiBERT. Encoder is initialized
with the first 6 layers, and Editor is initialized with the last 6 layers. TiBERTs
for both languages are trained with 1 million steps using batch size 2048. For
the fine-tuning, 10 epochs are trained and the hyper-parameter λ is set to 0.5.

4.2 Data Conversion

Conventionally, the training data for text editing tasks are often in the form
of parallel sentence pairs. Therefore, we need to convert the paired sentences
into the form required for TiBERT, i.e., input token sequence, editing numbers
at each position, and output token sequence. The length of output tokens and



TiBERT: A Non-autoregressive Pre-trained Model for Text Editing 21

Table 1. Experimental results on CoNLL 2014 GEC dataset. All the results are from
single models.

Model P R F0.5

CopyNet [28] 65.2 33.2 54.7

PIE [1] 66.1 43.0 59.7

GECToRBERT [14] 72.1 42.0 63.0

GECToRRoBERTa [14] 73.9 41.5 64.0

TiBERT 74.5 42.1 64.6

Table 2. Experimental results on NLPCC 2018 GEC dataset. The best results are
bolded, and the second best results are underlined.

Model P R F0.5

BLCU [27] 47.63 12.56 30.57

HRG [27] 36.79 27.82 34.56

Seq2Edit [27] 39.83 23.01 34.75

Seq2Seq [27] 37.67 29.88 35.80

POL-Pc [23] 46.45 23.68 38.95

TiBERT 47.21 24.86 40.02

the sum of editing numbers should be the same. In this paper, we convert the
data format by Levenshtein, which generates a transformation between input and
output. For keeping and replacing operations, the edit numbers remain 1. For the
insertion operation, we add the number of inserted tokens to the origin editing
number “1”. For example, if adding one token to a position, the editing number
of that position will be added to 2. For deletion operation, the corresponding
number is 0. By the above method, we can convert the paired data form into
TiBERT’s input form.

4.3 Grammatical Error Correction (GEC)

The GEC task takes an erroneous sentence as the input and produces a correct
version without changing the meaning. For English GEC task, we use Lang-8
[17], NUCLE [5], FCE [24] and W&I+LOCNESS1 [2] as our training set and
CoNLL 2014 as the test data. For Chinese GEC task, we conduct experiments
on the training set and test set from NLPCC 2018 GEC shared task. We filter out
the sentences without corrections, and use OpenCC2 to convert all traditional
characters into simplified characters. The final training data includes 1,019,371
sentence pairs. We follow the previous work and adopt F0.5 based on MaxMatch
as our evaluation method.
1 https://www.cl.cam.ac.uk/research/nl/bea2019st/data/wi+locness v2.1.bea19.tar.
gz.

2 https://github.com/BYVoid/.

https://www.cl.cam.ac.uk/research/nl/ bea2019st/data/wi+locness_v2.1.bea19.tar.gz
https://www.cl.cam.ac.uk/research/nl/ bea2019st/data/wi+locness_v2.1.bea19.tar.gz
https://github.com/BYVoid/


22 B. Wang et al.

Table 3. Experimental results on WikiLarge of Text Simplification. The best results
are bolded, and the second best results are underlined.

Model SARI↑ ADD↑ DELETE↑ KEEP↑ FKGL↓
PBMT-R [22] 35.92 5.44 32.07 70.26 10.16

NTS [13] 33.97 3.57 30.02 68.31 9.63

DRESS-LS [26] 32.98 2.57 30.77 65.60 8.94

EditNTS [7] 34.94 3.23 32.37 69.22 9.42

FELIX [11] 38.13 3.55 40.45 70.39 8.98

TiBERT 38.98 3.77 38.10 75.07 8.89

We compare our models with selected models based on Seq2Seq and sequence
labeling methods. From the experimental results for English GEC task in Table 1,
we can see that the performance of our model is better than that of CopyNet.
TiBERT achieves 4.9% higher than that of PIE, which is a BERT-based text
editing method. GECToR has designed dozens of special heuristic transforma-
tions for English grammatical error correction and achieves good results. Even
so, our TiBERT still achieves better performance than the single model of GEC-
ToR based on BERT and RoBERTa.

Table 2 shows the experimental results of Chinese GEC. Seq2Edit is based
on the sequence labeling method and trained from StructBERT [21]. Seq2Seq
is a generation method based on BART. The effect of our model is higher than
that of StructBERT and BART models, even though they are large models,
whose parameters are much more than that of TiBERT. Experimental results
show that our pre-trained model achieves better results than other generation
methods and sequence labeling methods on the Chinese GEC task.

4.4 Text Simplification (TS)

Text simplification is a type of paraphrasing task. It reduces the content of the
original text while preserving the key ideas and making it more concise. We use
WikiLarge and WikiSmall [29] as our training set for the text simplification task.
The test set consists of 359 source sentences taken from Wikipedia. Each source
sentence contains eight references which are simplified using Amazon Mechanical
Turkers. We utilize SARI and FKGL [9] as the evaluation metrics.

Table 3 shows the experimental results. EditNTS achieves good results by the
editing-based method, and Felix achieves good scores based on BERT. TiBERT
outperforms all the other models on the overall SARI score and the FKGL score.
In addition, TiBERT performs better than FELIX on the SARI-ADD score,
which implies that TiBERT has a stronger ability in adding operations.

4.5 Chinese Spelling Check (CSC)

Chinese spelling check is an important task in the field of Chinese proofreading.
The numbers of input and output characters of this task are the same. We use the



TiBERT: A Non-autoregressive Pre-trained Model for Text Editing 23

Table 4. The performance on SIGHAN 2015. The best results are bolded, and the
second best results are underlined.

Model Detection-level Correction-level

D-P D-R D-F C-P C-R C-F

FASPell [8] 67.6 60.0 63.5 66.6 59.1 62.6

BERT [3] 73.7 78.2 75.9 70.9 75.2 73.0

SpellGCN [3] 74.8 80.7 77.7 72.1 77.7 74.8

RoBERTa [19] 74.7 77.3 76.0 72.1 74.5 73.3

DCN [19] 76.6 79.8 78.2 74.2 77.3 75.7

TiBERT 76.3 81.8 79.0 71.9 77.1 74.4

large automatically generated corpus [20]3 as our training data for CSC task. In
addition, the training sets of SIGHAN 2013, SIGHAN 2014, and SIGHAN 2015
are included. We evaluate our proposed model on the test sets from SIGHAN
2015 benchmarks. Similar to the previous works, we convert the traditional char-
acters to simplified characters by OpenCC. To compare with the state-of-the-art
models, We use the widely adopted sentence-level precision, recall, and F1-score
as our evaluation metrics, which have been used by Hong et al. [8]4.

We compared our model with other state-of-the-art models. As shown in
Table 4, our model achieves the best performance on detection-level F1-score.
TiBERT achieves 3 points higher than other pre-trained models such as BERT
and RoBERTa on detection-level F1. Compared with SpellGCN and DCN mod-
els, our proposed model achieves higher detecting performance. This indicates
that our model has strong detection capability in CSC tasks. However, the cor-
rection results are slightly lower than these two models’. This is because TiBERT
does not use any Chinese phonetic and glyph information. As a result, TiBERT
can properly detect the errors, while the predicted corrections are not the optimal
answers. By contrast, SpellGCN and DCN use phonetic and glyph information
to improve their performance. Even without the incorporation of additional pho-
netic and glyph information, TiBERT still achieves comparable performance on
correction-level F1 against these models which depend on phonetic and glyph
information.

5 Analysis

Generally, larger and more complex models tend to perform better. We evalu-
ate the inference speed of several pre-trained models and find that TiBERT is
slightly slower than BERT but much faster than BART. The detailed results
are shown in Table 5. Additionally, our model can complete text editing tasks in
a single inference, unlike other non-autoregressive models such as Levenshtein
3 https://github.com/wdimmy/Automatic-Corpus-Generation.
4 https://github.com/iqiyi/FASPell.

https://github.com/wdimmy/Automatic-Corpus-Generation
https://github.com/iqiyi/FASPell


24 B. Wang et al.

Table 5. Inference time (in ms) for BERT, BART and TiBERT on GPU (Nvidia Tesla
M40). We get the average time across 100 runs.

batch size BERT BART TiBERT

1 15 621 26

8 49 2480 76

32 189 5981 288

Table 6. Examples from TiBERT on text editing tasks.

Dataset Source Sentence TiBERT Results

CoNLL 2014 Although it looks like no laws and it is
your own space to speak and do anything
you want, you are actually wrong

Although it looks like there are no laws
and it is your own space to speak and do
anything you want, you are actually wrong

SIGHAN 2015 我真不好意可是今天不能参加。
Translation: I’m sor, but I can’t attend
today

我真不好意意意思思思是今天不能参加。
I’m sorry, I can’t attend today

transformer and GECToR which require multiple iterations. This makes our
model more efficient for text editing tasks in terms of inference speed.

We analyze the predicted results of TiBERT in the text editing task. We
observe that TiBERT can effectively insert multiple tokens at a time. As shown
in Table 6, for the CoNLL 2014 task, TiBERT can correctly predict that it is
necessary to add two tokens and insert “there are” before “no laws” to make the
sentence more fluent.

Since the SIGHAN 2015 dataset not only includes spelling errors, but also
involves some extra missing errors, which may confuse TiBERT in certain sit-
uations. In Table 6, “不好意” (sor) should be changed to “不好意思” (sorry),
but this will lead to the missing of “但” (but). Because SIGHAN 2015 strictly
limits the consistency of input and output lengths, there are no better means to
correct these two errors at the same time.

6 Conclusion

In this paper, we present a new pre-trained non-autoregressive model named
TiBERT for text editing tasks. TiBERT not only guarantees the inference speed
but also enhances the generation performance. It demonstrates superior per-
formance in various text editing tasks, including GEC, text simplification, and
CSC. We also conduct detailed experimental analysis and introduce application
scenes for TiBERT. In the future, we will continue to explore the application of
TiBERT in natural language understanding (NLU) tasks.



TiBERT: A Non-autoregressive Pre-trained Model for Text Editing 25

References

1. Awasthi, A., Sarawagi, S., Goyal, R., Ghosh, S., Piratla, V.: Parallel iterative edit
models for local sequence transduction. In: Proceedings of the EMNLP-IJCNLP,
pp. 4260–4270. Association for Computational Linguistics, Hong Kong, China
(2019)

2. Bryant, C., Felice, M., Andersen, Ø.E., Briscoe, T.: The BEA-2019 shared task on
grammatical error correction. In: Proceedings of the Fourteenth Workshop on Inno-
vative Use of NLP for Building Educational Applications, pp. 52–75. Association
for Computational Linguistics, Florence, Italy (2019)

3. Cheng, X., et al.: SpellGCN: incorporating phonological and visual similarities
into language models for Chinese spelling check. In: Proceedings of the ACL, pp.
871–881. Association for Computational Linguistics, Online (2020)

4. Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z.: Pre-training with whole word masking
for Chinese BERT. IEEE/ACM Trans. Audio, Speech Lang. Process. 29, 3504–
3514 (2021)

5. Dahlmeier, D., Ng, H.T., Wu, S.M.: Building a large annotated corpus of learner
English: the NUS corpus of learner English. In: Proceedings of the Eighth Work-
shop on Innovative Use of NLP for Building Educational Applications, pp. 22–31.
Association for Computational Linguistics, Atlanta, Georgia (2013)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the NAACL,
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(2019)

7. Dong, Y., Li, Z., Rezagholizadeh, M., Cheung, J.C.K.: EditNTS: an neural
programmer-interpreter model for sentence simplification through explicit edit-
ing. In: Proceedings of the ACL, pp. 3393–3402. Association for Computational
Linguistics, Florence, Italy (2019)

8. Hong, Y., Yu, X., He, N., Liu, N., Liu, J.: FASPell: a fast, adaptable, simple,
powerful Chinese spell checker based on DAE-decoder paradigm. In: Proceedings
of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pp. 160–169.
Association for Computational Linguistics, Hong Kong, China (2019)

9. Kincaid, J.P., Jr, R.P.F., Rogers, R.L., Chisson, B.S.: Derivation of new readability
formulas (automated readability index, fog count and flesch reading ease formula)
for navy enlisted personnel (1975)

10. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880.
Association for Computational Linguistics, Online (2020)

11. Mallinson, J., Severyn, A., Malmi, E., Garrido, G.: FELIX: flexible text editing
through tagging and insertion. In: Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 1244–1255. Association for Computational Linguis-
tics, Online (2020)

12. Malmi, E., Krause, S., Rothe, S., Mirylenka, D., Severyn, A.: Encode, tag, realize:
high-precision text editing. In: EMNLP-IJCNLP (2019)

13. Nisioi, S., Štajner, S., Ponzetto, S.P., Dinu, L.P.: Exploring neural text simplifica-
tion models. In: Proceedings of the ACL, pp. 85–91. Association for Computational
Linguistics, Vancouver, Canada (2017)

14. Omelianchuk, K., Atrasevych, V., Chernodub, A., Skurzhanskyi, O.: GECToR -
grammatical error correction: Tag, not rewrite. In: Proceedings of the Fifteenth



26 B. Wang et al.

Workshop on Innovative Use of NLP for Building Educational Applications,. pp.
163–170. Association for Computational Linguistics, Seattle, WA, USA Online
(2020)

15. Radford, A., Narasimhan, K.: Improving language understanding by generative
pre-training (2018)

16. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

17. Tajiri, T., Komachi, M., Matsumoto, Y.: Tense and aspect error correction for ESL
learners using global context. In: Proceedings of the ACL, pp. 198–202. Association
for Computational Linguistics, Jeju Island, Korea (2012)

18. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4–9, 2017, Long Beach, CA, USA, pp.
5998–6008 (2017)

19. Wang, B., Che, W., Wu, D., Wang, S., Hu, G., Liu, T.: Dynamic connected net-
works for chinese spelling check. In: Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 2437–2446 (2021)

20. Wang, D., Song, Y., Li, J., Han, J., Zhang, H.: A hybrid approach to automatic
corpus generation for Chinese spelling check. In: Proceedings of the EMNLP, pp.
2517–2527. Association for Computational Linguistics, Brussels, Belgium (2018)

21. Wang, W., et al.: StructBERT: incorporating language structures into pre-training
for deep language understanding. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020. OpenRe-
view.net (2020)

22. Wubben, S., van den Bosch, A., Krahmer, E.: Sentence simplification by monolin-
gual machine translation. In: Proceedings of the ACL, pp. 1015–1024. Association
for Computational Linguistics, Jeju Island, Korea (2012)

23. Xie, H., Lyu, X., Chen, X.: String editing based Chinese grammatical error diag-
nosis. In: Proceedings of the 29th International Conference on Computational Lin-
guistics, pp. 5335–5344. International Committee on Computational Linguistics,
Gyeongju, Republic of Korea (2022)

24. Yannakoudakis, H., Briscoe, T., Medlock, B.: A new dataset and method for auto-
matically grading ESOL texts. In: Proceedings of the ACL, pp. 180–189. Associa-
tion for Computational Linguistics, Portland, Oregon, USA (2011)

25. Yuan, S., et al.: WuDaoCorpora: a super large-scale Chinese corpora for pre-
training language models. AI Open 2, 65–68 (2021)

26. Zhang, X., Lapata, M.: Sentence simplification with deep reinforcement learning.
In: Proceedings of the EMNLP, pp. 595–605. Association for Computational Lin-
guistics (2017)

27. Zhang, Y., et al.: MuCGEC: a multi-reference multi-source evaluation dataset for
Chinese grammatical error correction. In: Proceedings of NAACL-HLT. Associa-
tion for Computational Linguistics, Online (2022)

28. Zhao, W., Wang, L., Shen, K., Jia, R., Liu, J.: Improving grammatical error cor-
rection via pre-training a copy-augmented architecture with unlabeled data. In:
Proceedings of the NAACL, pp. 156–165. Association for Computational Linguis-
tics, Minneapolis, Minnesota (2019)

29. Zhu, Z., Bernhard, D., Gurevych, I.: A monolingual tree-based translation model
for sentence simplification. In: Proceedings of the COLING, pp. 1353–1361. Coling
2010 Organizing Committee, Beijing, China (2010)


	TiBERT: A Non-autoregressive Pre-trained Model for Text Editing
	1 Introduction
	2 Related Work
	2.1 Text Editing Methods
	2.2 Pre-trained Language Models

	3 Method
	3.1 Encoder
	3.2 Locator
	3.3 Editor
	3.4 Pre-training
	3.5 Fine-Tuning

	4 Experiments
	4.1 Settings
	4.2 Data Conversion
	4.3 Grammatical Error Correction (GEC)
	4.4 Text Simplification (TS)
	4.5 Chinese Spelling Check (CSC)

	5 Analysis
	6 Conclusion
	References




