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Abstract. With the increasing popularity of online videos, research on
video corpus retrieval (VCR) has made significant progress. However,
existing VCR models have not performed well in the medical field due to
the unique characteristics of medical VCR task. Specifically, the open-
ended queries used in medical VCR are more challenging compared to
image-caption style queries, and the long duration of medical videos poses
a great burden on model retrieval efficiency. To address these challenges,
we propose a two-stage framework based on GPT-3.5 and cross-modal
contrastive global-span (CCGS) for medical video VCR (termed GPT-
CMR). In the first stage, we leverage the powerful natural language
processing capabilities of the large language model (LLM) GPT-3.5 to
improve retrieval efficiency. In the second stage, we use CCGS model to
further enhance retrieval accuracy. Additionally, we developed a CCGS-
VCR Analyzer to leverage the characteristics of the CCGS model’s out-
put without additional training costs. According to the official result,
our method achieve first place in Track 2 of the NLPCC 2023 Task 5
competition. Experiments show that our method has retrieval efficiency
and accuracy far exceeding the official baseline.

Keywords: Video corpus retrieval · Large language model ·
Cross-modal contrastive global-span

1 Introduction

In recent years, the rise of online videos has fundamentally changed the way
people acquire knowledge and access information [12,24]. However, in the case
of medical videos, individuals often lack the necessary medical expertise to effec-
tively navigate the vast array of resources available on the internet. Therefore,
it is highly meaningful to explore a video retrieval system that can assist people
in efficiently and accurately obtaining targeted medical videos.
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Video Corpus Retrieval (VCR) is a complex task that requires a deep under-
standing of both language and video. The majority of current VCR datasets,
such as MSVD [2], ActivityNet [7] and MSR-VTT [25] consist of short video
clips accompanied by a few queries. These queries are often in the form of image
captions like “a dog is running in the grass.” However, in the medical video
domain, the goal of Video Corpus Retrieval is to retrieve target videos based on
open-ended queries like “How can I ease my neck pain?” This demands models
with a more profound comprehension of the videos. Medical videos also tend to
be longer, with an average duration of 388.68 s in the proposed medical video
dataset by [6]. Open-ended problems and extended video duration require models
with robust overall capabilities. Models that prioritize efficient reasoning, such
as the dual-tower structure utilized in [17], may not be well-suited for medical
video retrieval. While span-based models like [13] have shown good performance,
they suffer from low reasoning efficiency.

To address the aforementioned challenges, we present a two-stage retrieval-
rerank framework aimed at improving both reasoning efficiency and accuracy. In
the first stage, we utilized large language model [1] GPT-3.5 due to its excellent
performance in natural language processing tasks to generate video summaries
based on video subtitles. As the length of the summary is much shorter than that
of the subtitles, we can use pretrained language models [4,9,11,21] like RoBERTa
[16] for efficient retrieval. However, due to the loss of local key text information
during the process of subtitles conversion into summarizes, further reranking was
necessary to improve retrieval accuracy. In the second stage, we made the fol-
lowing enhancements to the cross-modal contrastive global-span (CCGS) model
[13] : (1) We designed a CCGS-VCR Analyzer for the VCR task that lever-
ages the characteristics of the CCGS model’s output without training cost. This
CCGS-VCR Analyzer utilizes a simulated annealing algorithm [10] to weigh the
position and quantity sequences to obtain the final prediction sequence; (2) To
address the scarcity of training samples in medical video datasets, we employed
projected gradient descent(PGD) [19] for adversarial training to improve model
robustness.

In summary, our contributions include:

– To balance efficiency and accuracy for Chinese medical long video retrieval, we
designed a two-stage retrieval-rerank framework using GPT-3.5 and CCGS.
To the best of our knowledge, we are the first to attempt using large language
model to assist with the retrieval of Chinese medical videos.

– In this study, we propose a novel CCGS-VCR Analyzer without training cost
specifically designed for the VCR task that leverages the output characteris-
tics of the CCGS model. The results of the ablation experiments demonstrate
the effectiveness of the CCGS-VCR Analyzer.

– Our solution achieve first place in Track 2 of the NLPCC 2023 Task 5 compe-
tition, with significantly improved retrieval accuracy and efficiency compared
to the official baseline.



A Two-Stage Chinese Medical Video Retrieval Framework with LLM 213

2 Related Work

With the growing popularity of online videos, VCR task has emerged as a crucial
research topic in the field of multimodal learning. With the expansion of pre-
training data such as Laion-400m [23] and Laion-5b [22] and the emergence of
contrastive learning [8], multimodal pre-training models [3,14,15] such as CLIP
[20] have gained prominence in video retrieval due to their robust image-text
matching capabilities. Typically, clip-based method [18] utilize the CLIP model
for image-text encoding, followed by cosine similarity calculation to generate the
output. One advantage of this approach is that visual features can be computed
beforehand and stored as vectors, enabling efficient inference by encoding the
query and computing cosine similarity with the visual feature vectors. However,
although effective for short videos and image-caption queries, this method may
not be suitable for lengthy medical videos with open-ended queries.

Li et al. [13] developed the CCGS method for medical video retrieval to
tackle the challenge of lengthy medical videos. The CCGS method first extracts
features to obtain positive and negative pairs of video samples, and then feeds
them into a language model along with their corresponding positive subtitle
samples to extract text features. The resulting text feature pairs are then fused
with visual feature pairs through cross-modal fusion, which generates a Global-
span Matrix that is used for prediction purposes. Although CCGS achieve good
results on the MedVidCQA dataset [6], its inference efficiency is limited by the
long input subtitles. In the domain of natural language processing, text retrieval
tasks usually follow a retrieval-rerank two-stage framework, which includes initial
sorting using simple methods like the dual-tower model proposed by [5] in the
retrieval stage to ensure efficiency and more complex methods in the rerank stage
to improve retrieval accuracy. Works within such a framework have demonstrated
good retrieval efficiency and accuracy. Additionally, previous studies like [1] have
showcased the remarkable ability of large language models for text-related tasks
such as Text Summarization.

3 The Proposed Approach

3.1 Task Definition

Formally, Video Corpus Retrieval(VCR) task comprises a set of queries
Q = {q1,q2,q3,q4,...,qk} and a video corpus V = {v1,v2,v3,...,v4}, where k denotes
the total number of queries and n represents the number of videos in the video
corpus. Each query q corresponds to a unique video v, while each video may
correspond to multiple queries. The primary objective of the VCR task is to
accurately identify the specific video v that corresponds to each query q.

3.2 Method

Figure 1 illustrates our two-stage framework comprising retrieval and rerank
stages. The retrieval stage employs GPT-3.5 and RoBERTa [16] for preliminary
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Fig. 1. The overall framework of GPT-CMR.

retrieval ranking, while the rerank stage utilizes the CCGS model [13] in con-
junction with an CCGS-VCR Analyzer that we developed to selectively reorder
the results obtained from the retrieval stage.

Retrieval Stage. We utilized GPT-3.5 to generate a video summary from the
subtitles of a single video. To do so, we used a manually crafted prompt that
instructed the model to retain key information for ease of retrieval tasks. We
then combined this prompt with the video subtitles and input it into GPT-3.5
to produce the video summary. The output of this process is a new video corpus
V = {v1 : s1;v2 : s2;v3 : s3;...;vn : sn}, where videnotes the video ID and
si represents the corresponding video summary. Subsequently, we concatenated
each query qi in the set Q={q1,q2,q3,q4,...,qk} with every video summary si in V
to construct the Inputi={qi + s1, qi + s2, qi + s3, ..., qi + sn} for RoBERTa [16].
This input was employed to generate Pi={v1 : p1, v2 : p2, v3 : p3, ..., vn : pn},
where pi signifies the probability score of each video in V given the query qi.
Finally, we sorted the Pi in descending order based on Pi values, which enabled
us to rank the videos in V according to their relevance to the queries in Q.

Rerank Stage. After the first stage, each query can retrieve a list of video ID
sorted in descending order by their relevance score. For instance, let Ri = {v7,
v1, v15, ..., vq} represent such a list. In this stage, we select the top k videos from
Ri and feed them, along with their corresponding subtitles and video features,
into the CCGS model [13]. To improve robustness against adversarial attacks, we
incorporate PGD [19] perturbations into the text embedding layer of the CCGS
model during training.

CCGS-VCR Analyzer. Considering that the CCGS model [13] is a span-based
model, we have designed a CCGS-VCR Analyzer for the VCR task based on the
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characteristics of the CCGS model’s output. For example, let’s assume that
the original prediction obtained from CCGS is Predictorig=[video1 : segment1,
video3 : segment2, video3 : segment24, video3 : segment15, video2 : segment28].
For the assessment of Predictorig, a comprehensive analysis can be con-
ducted from two perspectives: positional order and segment count. Positional
order refers to the relative position of a video within Predictorig. A higher
position indicates greater relevance to the query. As such, we can generate
Predictpos=[video1, video3, video2] by organizing the videos in Predictorig based
on their positional order. Similarly, the frequency of appearance of a video within
Predictorig is indicative of its relevance to the query. Thus, we can generate
Predictnum=[video3, video1, video2] by organizing the videos in Predictorig
based on their frequency of appearance.

Finally, we will calculate the weighted sum of Predictpos and Predictnum to
obtain the final prediction, which is defined as:

Prediction = α ∗ Predictpos + β ∗ Predictnum (1)

where the parameters α and β are obtained through a simulated annealing algo-
rithm [10] with the overall metric on the validation set as the optimization target.

4 Experiments

4.1 Dataset and Evaluation

We utilized Chinese Medical Instructional Video Question Answering(CMIVQA)
dataset, which was released by NLPCC 2023 Shared Task 5, to assess the effec-
tiveness of our method. Table 1 presents the composition of the training and
testing datasets in CMIVQA, as well as the average video length. During train-
ing, we randomly selected four hundred samples from the training set to use as
the validation set. To evaluate the system’s performance, we used R@1, R@10,
R@50, MRR, and overall value as metrics, where overall is the sum of R@1,
R@10, R@50, and MRR. In addition, to explore reasoning efficiency, we will also
calculate the average reasoning time for each query, which is the total reasoning
time divided by the number of queries.

4.2 Experimental Settings

All of our experiments were conducted on a single NVIDIA 3090 GPU. The train-
ing process consisted of retrieval and rerank stages, and the detailed parameters
can be found in Table 2. In terms of experimental settings, we considered both
retrieval accuracy and efficiency. To investigate the best retrieval accuracy, we
selected the top 150 of the retrieval stage as the input for the rerank stage in the
comparative and ablation experiments. To evaluate the impact of our framework
on retrieval accuracy while improving efficiency, the retrieval stage’s top k val-
ues were set to top 5, top 10, top 20, top 50, top 100, and top 150, respectively.
Retrieval accuracy and average search time were then computed on the test set.
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Table 1. Composition of the CMIVQA Dataset.

Dataset Videos QA pairs Vocab Nums Question Avg. Len Video Avg. Len

Train 1,228 2,937 3125 17.16 263.3

Test 200 492 2171 17.81 242.4

Table 2. Main hyper-parameter setting

Retrieval stage Rerank stage

Epoch num 100 Epoch num 30

Batch size 32 Batch size 1

Optimizer AdamW Optimizer AdamW

Learning rate 3e-6 Learning rate 1e-5

Weight decay 0.01 PGD ε/α 1/0.3

4.3 Results and Discussions

To assess the efficacy of our framework, we conducted ablation experiments and
compared our method with the official baseline and CCGS [13]. The detailed
experimental results are documented in Table 3. We carried out a comparison
between our framework and the baseline model in terms of retrieval efficiency
and retrieval accuracy under the condition of top k=top 10 to demonstrate its
superiority, as presented in Fig. 2. Moreover, we investigated the influence of
retrieval efficiency on retrieval accuracy using our method by testing different
values of top k separately, and the results are outlined in Table 4 and Fig. 3.

Table 3. Comparison experiment and ablation experiment results. The experimen-
tal results of the official baseline were obtained from official, while the experimental
parameters of CCGS were consistent with GPT-CMR’s reranking stage, except for the
absence of PGD.

Model R@1 R@10 R@50 MRR Overall

Official baseline 0.3943 0.5366 0.6423 0.4412 2.0144

CCGS 0.4012 0.8024 0.8696 0.4991 2.5723

GPT-CMR(Ours) 0.5764 0.8391 0.9431 0.6710 3.0296

W/o Analyzer 0.5163 0.8374 0.9431 0.6323 2.9290

From the results, it is evident that our proposed GPT-CMR framework out-
performed all other models in every metric. When compared to the official base-
line, GPT-CMR presented significant improvements across all metrics. Further-
more, when compared to CCGS, GPT-CMR demonstrated enhancements across
all metrics, especially with 17.52% increase in R@1, indicating superior retrieval
accuracy performance.
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The last row of Table 4 presents the ablation experiment results of GPT-CMR
after removing CCGS-VCR Analyzer. We used simulated annealing algorithm
[10] to optimize the overall value as the optimization objective on the validation
set and determined the weights in formula (1) to be α =0.9 and β=0.1. From the
ablation experiment results, it can be seen that removing CCGS-VCR Analyzer
led to a significant decrease in both R@1 and MRR, indicating the effectiveness
of CCGS-VCR Analyzer.

Furthermore, we evaluated the retrieval efficiency and accuracy of GPT-
CMR, CCGS, and the official baseline by setting top k as top 10, and the compar-
ative results are depicted in Fig. 2. As shown in Fig. 2(a), although the retrieval
accuracy decreased after reducing top k from top 150 to top 10, GPT-CMR still
outperformed all baseline models in overall retrieval accuracy. Additionally, as
seen in Fig. 2(b), the retrieval time of GPT-CMR was significantly faster than
that of all baseline models.

Fig. 2. Experimental results of retrieval efficiency time. Figure 2(a) shows the compar-
ison of the Overall metrics between GPT-CMR and other models under the top 10
condition, with the horizontal axis indicating the Overall value. Figure 2(b) shows the
comparison of retrieval time, with the horizontal axis representing the average retrieval
time of queries in seconds.

Table 4. The retrieval metrics and retrieval time results of GPT-CMR under different
top k conditions.

Top k R@1 R@5 R@10 R@50 MRR time(s)

top 5 0.5609 0.7296 0.7825 0.8699 0.6455 1.3076

top 10 0.5508 0.7744 0.7886 0.8719 0.6465 2.0879

top 20 0.5569 0.7886 0.8089 0.8719 0.6568 4.2988

top 50 0.5565 0.7906 0.8292 0.8719 0.6590 11.8995

top 100 0.5535 0.7947 0.8321 0.9021 0.6627 23.6831

top 150 0.5764 0.7947 0.8391 0.9429 0.6710 34.1863
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Fig. 3. The experimental results under different top k conditions. Figure 3(a) shows
the statistics of retrieval accuracy under different values of k, while Fig. 3(b) illustrates
the trend of retrieval time under different values of k.

From the experimental results in Table 4, it can be observed that the increase
of k value has a small impact on R@1 before k=150. However, the overall metrics
including R@5, R@10, R@50 and MRR show an increasing trend as k value
increases. This trend is more evident in Fig. 3(a) where there is a slow but
steady growth. As for retrieval efficiency, it is clear that the average retrieval
time significantly increases with an increase in k value. This is evident from the
line chart in Fig. 3(b) showing an overall increasing trend.

Taking the comparison between top 10 and top 100 as an example, we can
observe that top 100 only increases by 0.0027% in terms of R@1 compared to
top 10, and MRR also only improves by 0.0162%. However, the retrieval time
for top 100 is 11.343 times that of top 10. This phenomenon indicates that the
improvement in retrieval accuracy brought about by the increase in top k is not
proportional to the decrease in retrieval efficiency.

In addition, in terms of the R@5 metric, there is a significant improvement
of 4.48% in accuracy when comparing top 10 to top 5. However, the retrieval
time for top 10 is only 0.7803 s longer than that of top 5. Therefore, selecting
a reasonable top k can achieve decent retrieval accuracy on the basis of fast
retrieval efficiency.

5 Conclusion

In this paper, we propose a two-stage framework called GPT-CMR (Chinese
Medical Video Retrieval with CCGS and GPT-3.5) for medical VCR task. To
improve the efficiency of medical video retrieval, we use the large language
model GPT-3.5 in the first stage to generate video summaries based on the
video subtitles, which are then used for initial retrieval. In the second stage, we
employ CCGS [13] in conjunction with CCGS-VCR Analyzer to rerank the top k
retrieval results obtained in the first stage. This process yields the final retrieval
results. Comparative experiments demonstrate the superiority of GPT-CMR in
terms of retrieval accuracy and time efficiency. Ablation experiments also con-
firm the effectiveness of the CCGS-VCR Analyzer. Furthermore, the retrieval
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accuracy and efficiency of GPT-CMR can be impacted by varying values of top
k. To address this, we conducted an analysis of GPT-CMR’s performance using
different top k values. Our data analysis indicates that GPT-CMR can maintain
excellent retrieval accuracy while sustaining efficient retrieval performance.

We believe that there are some directions for future exploration. Firstly, there
is a need to explore more effective ways of leveraging large language models to
improve the performance of the VCR task. While we have attempted to gener-
ate video summaries to assist in VCR, other techniques such as keyword-based
retrieval can also be explored. Secondly, given that the GPT-CMR model heav-
ily relies on textual information, there is a pressing need to investigate how
audio and visual information can be integrated more effectively to assist in VCR
tasks. Finally, although GPT-CMR has demonstrated notable progress in terms
of retrieval efficiency compared to baseline models, it still falls short of meeting
the requirements of practical applications. As such, further research is necessary
to enhance retrieval efficiency.
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