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Abstract. Math word problems (MWPs) require analyzing text
descriptions and generating mathematical equations to derive solutions.
Existing works focus on solving MWPs with two types of solvers: tree-
based solver and large language model (LLM) solver. However, these
approaches always solve MWPs by a single solver, which will bring the
following problems: (1) Single type of solver is hard to solve all types
of MWPs well. (2) A single solver will result in poor performance due
to over-fitting. To address these challenges, this paper utilizes multi-
ple ensemble approaches to improve MWP-solving ability. Firstly, We
propose a problem type classifier that combines the strengths of the
tree-based solver and the LLM solver. This ensemble approach lever-
ages their respective advantages and broadens the range of MWPs that
can be solved. Furthermore, we also apply ensemble techniques to both
tree-based solver and LLM solver to improve their performance. For
the tree-based solver, we propose an ensemble learning framework based
on ten-fold cross-validation and voting mechanism. In the LLM solver,
we adopt self-consistency (SC) method to improve answer selection.
Experimental results demonstrate the effectiveness of these ensemble
approaches in enhancing MWP-solving ability. The comprehensive eval-
uation showcases improved performance, validating the advantages of
our proposed approach. Our code is available at this url: https://github.
com/zhouzihao501/NLPCC2023-Shared-Task3-ChineseMWP.
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1 Introduction

Math word problems (MWPs) are primarily solved by analyzing the text descrip-
tion of the problem and automatically generating mathematical equations to
derive the solution, as illustrated in Table 1(a). Initially, the solver extracts
the problem’s text description and applies pre-processing techniques, including
semantic parsing. Subsequently, leveraging the processed text description, the
solver examines the mathematical logic relationships with the associated con-
cepts and generates the relevant mathematical equations. Finally, by utilizing
the generated equations, the solver obtains the corresponding answers.
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Table 1. Examples of math word problem

(a) General MWP:

Text: Dingding has read 180 pages of a book and has 150 pages left to read.
How many pages are there in this book?

Equation: x = 180 + 150

Answer: 330

(b) Law Finding MWP:

Text: Find the pattern and fill in the numbers. 2, 6, 10, , 18

Equation: x = 14

Answer: 14

(c) Unit Conversion MWP:

Text: The ratio of bean paste to white sugar is 2:1. Now there are 450
grams of white sugar, how many kilograms of bean paste are needed?

Equation: x = 450 * 2 ÷ 1000

Answer: 0.9

In recent years, a multitude of natural language processing (NLP) techniques
have emerged to tackle MWPs [1], encompassing advancements in semantic pars-
ing and deep learning. Semantic parsing serves as a powerful approach to decom-
pose the textual content of a math problem into structured representations, facil-
itating the generation of corresponding mathematical expressions [8,14]. Numer-
ous methodologies have been proposed for semantic parsing, spanning rule-based
and statistical methods. With the boom of deep learning, the research on solv-
ing MWPs has recently made great progress. For example, tree-based models
[19,21] as well as large language models (LLM) [16,18,22] have been extensively
exploited to deal with MWPs, and increase the accuracy of prediction signifi-
cantly.

However, these approaches always solve MWPs by a single solver, which
usually brings the following two problems. (1) Single type of solver is hard to
solve all types of MWPs well. For example, the tree-based solver is unable to
solve some types of MWPs like law finding problems (e.g., Table 1(b)) because it
relies on combining numbers into MWP and operators (+-*/) to get an answer
equation, while the LLM solver is unable to solve complex MWPs due to lacking
calculation ability. (2) A single solver tends to result in poor performance due
to over-fitting.

To address these challenges, we adopt the following two approaches. (1) To
combine the abilities of the tree-based solver and the LLM solver, we propose
a problem type classifier. Specifically, we define some heuristic rules to divide
MWP types into two categories. One is for LLM solver such as law finding
problems and unit conversions problems (e.g., Table 1(c)), and the other is for
tree-based solver. (2) To avoid over-fitting and improve the performance of the
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LLM solver and tree-based solver, we apply ensemble techniques to both of
them. For the tree-based solver, we propose an ensemble learning framework
based on ten-fold cross-validation and voting mechanism. In the LLM solver, we
adopt the self-consistency (SC) method to select the most appropriate answer
and enhance the model’s overall performance. Figure 1 shows an overview of
our method (Ensemble-MWP). Firstly, the problem type classifier assigns each
MWP to one category. Then the corresponding solver (either the tree-based or
LLM solver) will process the MWP to obtain a preliminary result. Lastly, we
adopt a post-processing method to obtain the final answer. In summary, our
contributions are as follows:

– We propose a problem type classifier to combine the abilities of both the
tree-based solver and the LLM solver. To the best of our knowledge, this is
the first effort to integrate them.

– We propose an ensemble learning framework based on ten-fold cross-
validation and voting mechanism for the MWP solver.

– Experimental results demonstrate the effectiveness of these ensemble tech-
niques in enhancing the ability to solve MWPs.

Fig. 1. Overview of Ensemble-MWP. The Problem Type Classifier assigns each
MWP to either the Bert2Tree solver or the LLM solver based on a set of predefined
rules. Once the classification is determined, the respective solver is employed to process
the MWP and generate a preliminary result. The obtained result undergoes further
Post-processing to derive the final answer

2 Related Work

2.1 Ensemble Learning

Ensemble learning has gained popularity for its ability to enhance predictive
performance by combining multiple models. Bagging, a widely adopted ensem-
ble learning technique, aims to reduce learner variation by training multiple
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samples using the same learning algorithm. Lin [11] conducted a study demon-
strating the effectiveness of bagging methods in improving the performance of
NLP models. The ten-fold cross-validation we adopt when dividing the dataset
using the bagging technique.

Stacking represents another powerful ensemble learning technique, involving
the combination of several weak learners using meta-learners. These weak learn-
ers are trained independently, and their predictions are then employed as input
for the meta-learner, which makes the final decision. Nunes [12] conducted a
study utilizing stacking in a document classification task, showcasing its effi-
cacy. We use a problem type classifier that allows the different solvers to play to
their strengths.

Moreover, ensemble learning has shown promise in enhancing deep learning
models in NLP. Kim [7] conducted a study where they employed an ensemble
approach to improve the text classification performance of Convolutional Neural
Networks (CNNs). The SC method we utilize in LLM solver is more like a self-
ensemble, acting on a single language model.

2.2 Tree-Based MWP Solver

Early solvers in the field of MWP solving employed predefined patterns to map
problems. To address this, a slot-filling mechanism was developed, enabling the
mapping of problems into equation templates using slots [2–4]. Wang [17] intro-
duced a sequence-to-sequence (Seq2Seq) approach for generating mathematical
expressions. However, Huang [5] identified an issue with Seq2Seq models that
predicted numbers in incorrect positions and generated incorrect values.

To address the problem of equation repetition, Wang [15] employed equa-
tion normalization techniques. Additionally, Xie and Sun [19] proposed a goal-
driven tree structure (GTS) model, which greatly enhanced the performance
of traditional Seq2Seq methods by generating expression trees. More recently,
researchers have explored the utilization of pre-trained language models, such
as BERT [6], in MWP solving. Peng [13] proposed an extension of BERT by
incorporating numerical information into the input sequence, thereby enhancing
the power of BERT in handling MWPs. In this paper, we adopt the sequence-to-
tree approach with bert (Bert2Tree) to solve MWPs, leveraging its improved
performance over traditional methods.

2.3 LLM Solver

In recent years, LLMs have showcased their remarkable capabilities in the field
of NLP. Wei’s [22] research explored the emerging capabilities of LLMs in solving
MWPs through step-by-step reasoning, leveraging cues derived from the chain-
of-thought (CoT) [18]. Without avoiding the greedy decoding strategy in the
CoT, wang [16] proposed the SC method, which allowed multiple inference paths
to reach the correct answer for complex reasoning tasks. In this work, we utilize
ChatGLM-6B [20] as our LLM solver.



Solving Math Word Problem with Problem Type Classification 127

3 Research Methodology

Fig. 1 shows the overview of our method (Ensemble-MWP), which contains four
main components: problem type classifier, Bert2Tree solver, LLM solver, and
post-processing stage. Firstly, the problem type classifier assigns each MWP
to either the tree-based solver or the LLM solver. Once the classification is
determined, the respective solver is employed to process the MWP and generate
a preliminary result. Lastly, the final result is obtained through a post-processing
block. In the following, we will describe more details of each component.

3.1 Problem Type Classifier

In our proposed problem type classifier, we integrate the Bert2Tree solver and
the LLM solver. The main objective of the classifier is to categorize the MWPs
in the dataset into two categories. The first category comprises MWPs that
can be effectively solved by the Bert2Tree solver. Consequently, these MWPs
are directed to the Bert2Tree solver for further processing. The second category
consists of MWPs that are beyond the capabilities of the Bert2Tree solver. For
this category, we utilize the LLM solver to handle them.

The classification process is guided by specific heuristic rules to identify par-
ticular problem types. For instance, problems involving unit conversions (e.g.,
centimeters, decimeters, meters), law finding, and decimal point transformations
are categorized as MWPs that the Bert2Tree solver is unable to solve. As a
result, these specific problem types are directed to the LLM solver, which is bet-
ter equipped to address them. By employing these heuristic rules, we effectively
determine the appropriate solver for each MWP based on its characteristics.

3.2 Bert2Tree Solver

Model Structure: As illustrated in Fig. 2, the Bert2Tree model is employed
to solve the MWP. Firstly, we input the question text into the Bert2Tree model.
Secondly, the model encodes the question text and generates the corresponding
equation tree. Thirdly, we calculate 8 ÷ 2 = 4 according to the equation tree.
Finally, the Bert2Tree model returns the answer of 4.0.

For the structure of Bert2Tree, we adopt BERT as our encoder, we represent
the question Q as a sequence of T tokens: Q = [q1, q2, ..., qT ] and the process
of encoding is

[hq
1, h

q
2, ..., h

q
T ] = BERT ([q1, q2, ..., qT ]), (1)
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Fig. 2. The process of Bert2Tree solver. The MWP is fed into the Bert2Tree model,
which performs a comprehensive analysis of the MWP text. Bert2Tree generates an
equation tree that accurately captures the underlying mathematical structure of the
problem. By extracting the mathematical expression from the tree, the model is able
to compute the answer

where hq
i represents the embedding of token qi from the encoder. At last, the

representation of question is HQ :

HQ = [hq
1, h

q
2, ..., h

q
T ]. (2)

Then, we use a TreeDecoder to generate equation tree ET according to HQ :
ET = [et1, et2, ..., etn ], where n is the length of the pre-order of equation tree,
it can be written as:

[et1, et2, ..., etn ] = TreeDecoder
(
HQ

)
. (3)

Finally, calculate the equation tree can get the final Answer:

Answer = Calculate (ET ). (4)

Ten-Fold Cross-Validation: In this paper, we use a ten-fold cross-validation
method to avoid overfitting and improve the generalization performance of the
model. We break the dataset into 10 equal parts randomly: D0 − D9. In the
first model, D9 is used as the validation set, and the remaining 9 parts are used
as the training set to train the model and make predictions on the validation set.
The accuracy of the model on the validation set is calculated and recorded. For
the next 9 models, a different copy of the data is used as the validation set each
time, and the remaining 9 copies are used as the training set. Finally, we get the
accuracy of the 10 sets of models to evaluate the performance of the models.

Voting Mechanism: In the process of improving the answer accuracy, we use
the voting mechanism of ensemble learning to improve the probability of pre-
dicting the correct answer. When predicting the answer to the problem, there
are two cases in our voting mechanism: (1) Different models have different pre-
dictions, so we first choose the one with the most occurrences among the models
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as the final answer. (2) In cases where we have an equal number of voting results,
we compare the sum of the accuracy of the validation sets of the models with the
same prediction results, we set the accuracy of validation sets as the confidence
score and select the one with the largest sum of confidence score as the final
answer.

MWP-Bert and Data Augmentation: To further improve the ability of the
Bert2tree solver, we use better encoder and data augmentation strategies. For the
encoder, we use MWP-Bert [10], an MWP-specific pre-training language model.
For data augmentation, we use Li’s strategies [9]. They generate new MWPs by
knowledge-guided entity replacement and logic-guided problem reorganization.

3.3 LLM Solver

In this paper, we utilize ChatGLM-6B as our LLM solver. To improve the per-
formance of ChatGLM-6B, we use the Chain-of-Thought and Self-Consistency
techniques.

Chain-of-Thought (CoT): The LLM solver relies primarily on the widely
adopted CoT prompting [18], which has gained popularity in recent years. Few
chain of thought demonstrations provided as exemplars in prompting can signif-
icantly improve the ability of large language models to perform complex reason-
ing. Specifically, we provide 8 MWPs in prompt and manually annotate detailed
CoT for each MWP example. This enables the solver to acquire a comprehensive
understanding of the problem-solving process and develop the capacity to apply
logical thinking to mathematical challenges.

Self-Consistency (SC) Method: In the LLM solver, we leverage the SC
[16] method as an integral component of our approach. It samples a diverse
set of reasoning paths instead of only taking the greedy one and then selects
the most consistent answer by marginalizing out the sampled reasoning paths.
Specifically, we generated 20 answers for each MWP. By incorporating the SC
method into our LLM solver, we enhance the accuracy and robustness of the
generated solutions, enabling more reliable and effective MWP solving.

3.4 Post-processing

Upon obtaining results from both models, an additional step is carried out to
process the answers using uniform rules, leading to the derivation of the final
results. This post-processing stage plays a crucial role in improving the accuracy
rate by applying specific rules to refine the answers. For example, one common
rule involves retaining only two digits after the decimal point, ensuring precision
and consistency in the results. Additionally, certain rules may involve omit-
ting trailing zeros, eliminating any unnecessary redundancy or ambiguity in the
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final answers. These tailored rules provide a systematic approach to refine and
standardize the answers, addressing any potential inconsistencies or inaccuracies
generated by the individual models.

4 Experiments

4.1 Dataset Setting

We adopt Math23K [17] as our training dataset, which comprises 23,162 MWP
examples. To ensemble Bert2Tree models, we use ten-fold cross-validation and
obtain ten models. Each model’s training dataset consists of 20,844 MWP exam-
ples, and the remaining 2,316 examples are included in the validation dataset. To
evaluate our proposed Ensemble-MWP, we conduct experiments on a validation
set of the NLPCC2023 Shared Task3 completion1, which consists of 1,200 MWP
examples. It is challenging to solve these MPWs because they have a low over-
lap of lexicon and templates with the Math23K dataset. We call these samples
Challenging Examples, which make the models more difficult to generalize
from the patterns and relationships seen in the training data.

4.2 Experimental Settings

To compare the model performance, we adopt the answers’ accuracy as our
evaluation metric, which is calculated by comparing the predicted answer with
the correct answer. The higher the accuracy, the better the effect of the model
or method used. For the baseline MPW solver, we adopt Bert2Tree [19] without
voting mechanism and LLM solver [20] without SC as our baseline model in the
experiments.

4.3 Experimental Results

Bert2Tree Solver: Through ten-fold cross-validation, we obtain the accuracy
of each model, allowing us to compare the accuracy of different models. The
results are shown in Table 2, where we can see that the accuracy ranges from
23.2% to 25.2%. Furthermore, we adopt MWP-Bert and Data augmentation
on each Bert2Tree solver. In Table 3, we compared the accuracy of the model
with and without the voting mechanism. We observed that when we used the
voting mechanism, the accuracy improved from 24.1% to 26%. These results
demonstrate that the voting mechanism is useful in solving MWPs correctly.
When comparing Table 2 and 4, we see that the accuracy of the ten models are
all improved when using MWP-BERT and data augmentation. It shows that
using a domain-specific pre-trained language model like MWP-BERT and data
augmentation can lead to better performance. As shown in Table 5, the accuracy
was further improved by 2.8% when using the voting mechanism. It indicates
that our voting mechanism is also efficient in stronger models.
1 https://github.com/2003pro/CNMWP/tree/main/data.
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Table 2. The performance of ten Bert2Tree solvers

Model (BERT) M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

Accuracy (%) 23.9 24.8 23.9 23.2 23.8 24.4 23.4 24.4 23.8 25.2

Table 3. Comparison of different methods. The accuracy of the baseline is the average
of the ten models’ accuracy in Table 2. The accuracy of the VoteMWP is the accuracy
achieved by using the voting mechanism

Methods (BERT) Baseline VoteMWP

Accuracy (%) 24.1 26.0

Table 4. The performance of 10 Bert2tree solvers with MWP-Bert and data augmen-
tation (DA)

Model (MWP-BERT+DA) M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

Accuracy (%) 25.8 25.8 26.1 26.6 25.4 24.5 26.1 24.3 25.6 25.5

Table 5. Comparison of different methods. The accuracy of the baseline is the average
of the ten models’ accuracy in Table 4. The accuracy of the VoteMWP is the accuracy
achieved by using the voting mechanism

Methods (MWP-BERT+DA) Baseline VoteMWP

Accuracy (%) 25.6 28.4

LLM Solver: As we can see in Table 6, after incorporating the CoT prompting
technique, the LLM solver initially achieves an accuracy rate of 5%. With the
addition of the SC method, the accuracy rate of the LLM solver significantly
improves to 9.17%. This enhancement demonstrates the effectiveness of inte-
grating the SC method, as it directly contributes to the improved performance
and reliability of the LLM solver in solving MWPs.

Problem Type Classifier: In our comparative analysis, we evaluate the perfor-
mance of the Bert2Tree solver, the LLM solver, and the Ensemble-MWP solver.
The results demonstrate that the integrated Ensemble-MWP solver achieves sig-
nificantly higher accuracy compared to the individual solvers in Table 7.

By combining the strengths of multiple solvers and leveraging ensemble tech-
niques, our integrated Ensemble-MWP solver offers improved capabilities in
solving MWPs. The collaborative nature of the ensemble approach allows for
the aggregation of insights and decision-making from multiple solvers, resulting
in enhanced accuracy.
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Table 6. Comparison of different methods in the LLM Solver. CoT prompting is used
in the LLM solver, and we add the SC method later

Methods CoT CoT + SC

Accuracy (%) 5.00 9.17

Table 7. Comparison of different MWP Solvers. Three MWP Solvers: Bert2Tree
Solver, LLM Solver, Ensemble-MWP

Solvers Bert2Tree LLM Ensemble-MWP

Accuracy (%) 28.4 9.17 33.1

4.4 Case Study

In Fig. 3, we present a real case of Ensemble-MWP to illustrate the challenges
faced when using a single solver. When both questions are inputted into a single
solver, whether it is the Bert2Tree solver or the LLM solver, it is impossible
to answer both questions correctly. However, by employing Ensemble-MWP, we
utilize a problem type classifier that assigns each problem to the appropriate
solver, resulting in accurate and reliable solutions for both questions. Through
this ensemble approach, the final correct results are obtained, overcoming the
limitations of using a single solver for multiple math word problems.

Fig. 3. Two cases solved by Ensemble-MWP

5 Conclusion and Future Work

In this paper, we propose an ensemble technique to enhance the capability of the
MWP solver. By combining the strengths of the Bert2Tree solver and the LLM
solver, we significantly improve the overall MWP-solving performance. Our app-
roach capitalizes on the unique advantages offered by each solver, resulting in a
novel and effective solution. Within the Bert2Tree solver, we introduce a ten-fold
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cross-validation and voting mechanism to further enhance the model’s robust-
ness and reliability. Through multiple iterations of cross-validation, we rigorously
evaluate the performance of the solver on different subsets of the data. The inte-
gration of the voting mechanism ensures robust decision-making by considering
the collective insights of the model’s predictions. These enhancements not only
improve the accuracy of the Bert2Tree solver but also bolster its resilience to
handle diverse MWPs effectively.

In the future, our goal is to develop an automatic classifier that can pro-
ficiently identify the appropriate solver for MWPs. This innovative approach
aims to alleviate the reliance on predefined rules, consequently enhancing the
robustness of the system. By leveraging machine learning techniques, the clas-
sifier will autonomously categorize MWPs, assigning them to the most suitable
solver based on their unique characteristics.
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