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Abstract. Transformer-based neural machine translation (NMT) mod-
els have achieved performance close to human-level on some languages,
but still suffer from poor interpretability and scalability of the models.
Many advanced studies enhance the model’s translation ability by build-
ing external memory modules and utilizing retrieval operations, however,
it suffers from poor robustness and low decoding efficiency while improv-
ing the model performance, especially for low-resource translation tasks.
In this paper, we propose a confidence-based gating mechanism to opti-
mize the decoding efficiency by building a sub-network to determine the
confidence of the model’s own translation capability and then decide
whether the current translation needs to be retrieved from the memory
module. By reducing the number of retrievals to improve the model’s
translation speed without degrading the translation quality as much as
possible. In addition, we use a nonparametric dynamic Monte Carlo-
based algorithm to fuse retrieval probabilities and model predictions to
improve the generalization and robustness of the model. Extensive exper-
iments on different datasets demonstrate the effectiveness of our method.

Keywords: Memory Module · Gate Mechanism · Monte Carlo ·
Low-Resource Translation

1 Introduction

Neural machine translation (NMT) [5,14] has achieved levels comparable to
human translation on multiple large-scale datasets. However, the neural net-
work’s neuron parameters have an upper limit on the “memory” of the corpus,
and it has poor interpretability of the machine translation model for the learned
knowledge. Moreover, when encountering new “knowledge”, the model requires
large-scale parameter updates and the scalability of the model is limited, espe-
cially obvious for low-resource tasks. The recently proposed kNN-MT and its
variants [7,15,19,20] combine the traditional NMT model with a token-level
memory retrieval module. These methods decouple the memory ability of the
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model from the model parameters by storing the training data in the memory
module, realizing it to directly access the domain-specific datastore to improve
translation accuracy without fine-tuning the entire model, gentle to cope with
the discrepancy across domain distributions and improve the generality of the
trained models.

Previous works usually use simple linear interpolation to fuse external knowl-
edge guidance and NMT prediction, and use a hyperparameter to control the
fusion ratio to obtain the final probability distribution. However, using the same
fusion ratio for all sentences may bring some problems, while it is proved through
our experiments that the model translation results are quite sensitive to the
selection of hyperparameter, which affects the robustness and stability of the
model. Furthermore, although kNN-MT and its related models greatly improve
the model performance, there is a huge drawback in the practical application,
that is, the slow decoding efficiency of the model. The main reason for this
phenomenon is that the memory module capacity is quite large, the similarity
calculation of high-dimensional vectors is required in finding similar sentences,
and the whole memory module must be searched for each retrieval probability
during decoding.

This paper aims to improve the performance of low-resource machine trans-
lation model by solving the above problems. For the former, in the process
of retrieval and fusion of external memory module, we abandon the tradi-
tional linear interpolation and adopt non-parametric dynamic fusion method
based on Monte Carlo, which improves the robustness and generalization of
the model. For the latter, we optimize the translation speed by reducing
the retrieval frequency. Specifically, a sub-network is used to judge the confi-
dence of the model’s prediction results, and retrieval is performed only with
the low confidence of the model’s prediction results, and the decoding effi-
ciency is improved by filtering some unnecessary retrieval operations. Exten-
sive experiments on low-resource translation task CCMT2019 and medium-high
resource task CCMT2022 Mongolian-Chinese demonstrate the effectiveness of
our method.

2 Background and Related Work

2.1 Memory-Augmented NMT

Mark [2] first applies memory-augmented neural network to machine translation.
He combines word correspondences from statistical machine translation in the
form of “memory” to the decoder to increase the probability of occurrence of rare
words, which is particularly effective on small data sets. Akiko [4] enhances the
model’s translation capability by constructing a sentence-level memory bank.
Zhang [18] constructs a fragment-level memory bank that allows the model to
obtain more information from it and collect n-gram translation fragments from
the target side with higher similarity and alignment scores.

Khandelwal proposes kNN-MT [7] builds a token-level memory module on
the basis of the traditional NMT, which stores the contextual representation of
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the training data and the key-value pairs of target words, so that the matching
degree of memory library retrieval is higher. Figure 1 illustrates of how to employ
the kNN algorithm to retrieve from the memory module. The key idea is to
query the corresponding word of neighboring sentences similar to the current
sentence in the external memory module when translating the current word to
obtain reference and guidance from the module, and then use a simple linear
interpolation to probabilistically fuse with the translation results of NMT to
obtain the final translation results:

p (yt | x, ŷ1:i−1) = λpNMT (yt | y<t, x) + (1 − λ) pMem (yt | y<t) (1)

After that, many variant models have been proposed, such as Adaptive kNN-
MT [19], which trains a meta-k network by artificially constructing features to
generate the nearest neighbor hyper-parameter k. Fast kNN-MT [12] introduces
efficient hierarchical retrieval to improve the slow translation speed. Moreover,
many researchers apply this idea to other natural language processing fields,
such as question answering tasks and dialogue systems.

2.2 Decoding Efficiency Optimization

During the development process of memory-augmented NMT, the decoding effi-
ciency of these models remains slowly even though vector retrieval tools like
Faiss [6] are available. We summarize three mainstream decoding optimization
algorithms in recent years:

1. Dimensionality reduction algorithms such as PCA and SVD are used to reduce
the high-dimensional vectors of the memory module. These algorithms are
simple to operate, but the disadvantage is that some of the high-dimensional
position information will be lost during the dimensionality reduction process,
which has a certain negative impact on the translation performance [15].

2. Reducing the memory module capacity by merging key-value pairs [11] or
clustering high-dimensional vectors and discarding redundant entries [15],
thereby narrowing the scope of retrieval and improving decoding efficiency.
Experiments show that both methods can greatly reduce the capacity of
memory module, but the disadvantage is that the performance of the model
decreases significantly.

3. Narrowing the retrieval frequency by saving a certain amount of retrieval
history [16] or adjusting the retrieval granularity [10]. The former imitates the
caching technology in computer architecture, while the latter draws on space-
for-time operation in algorithm design to reduce the number of retrievals
by retrieving more tokens at once, and uses heuristic rules to decide which
retrieval processes need to be discarded.

3 Methodology

The overall architecture of the model is shown in Fig. 1, and this section describes
the methodology of this paper specifically.
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Fig. 1. The Illustration of the proposed method. The confidence network generates
a confidence estimate ct at each step of decoding, and outputs the model prediction
directly if ct is larger than the set threshold c, otherwise, constructs a retrieval probabil-
ity pMem to represent the “guidance” of the memory module to the model by retrieving
similar contexts from it. Then, dynamically fuses pMem and pNMT based on Monte
Carlo algorithm to obtain the final prediction yt.

3.1 Monte Carlo Non-parametric Fusion

Vanilla kNN-MT [7] uses simple linear interpolation to fuse pNMT and pMem,
however, due to the long tail effect of the dataset, some sentences have many
similar sentences and some sentences have few. It may cause insufficient informa-
tion for some sentences and noise for others by applying the same fusion ratio
to all sentences. To solve this problem, this paper proposes a non-parametric
dynamic fusion method based on Monte Carlo algorithm, which abandons the
fixed fusion of linear interpolation and alleviates the problem that the fixed
fusion ratio cannot adapt to all fusion scenarios. Our method mainly applies to
the inference stage, the prediction retrieved from the memory module and the
prediction of NMT placed in a large sample collection. According to Y < T uses
the Monte Carlo algorithm to simulate the entire sentence, and the prediction of
the sentence with the highest BLEU is selected as the current word and output.

Specifically, we use the generator parameters θ of an already trained Con-
ditional Sequence Generative Adversarial Nets [17] and apply the Monte Carlo
search under the policy gradient of Gθ to sample the unknown tokens.

{
y1
1:T1

, ..., yN
1:TN

}
= MCGθ

((y1:t−1, x) , N) (2)

where Ti represents the length of the sentence sampled by the i’th Monte Carlo
search. y1:t−1 is the previously generated tokens and yN

t:TN
is sampled based on

the policy Gθ. We calculate the BLEU of N sentences and take the current word
yt as the final prediction, which simulates sentence has the highest BLEU.

3.2 Gating Mechanism Based on Confidence Estimation

To enhance the decoding efficiency without affecting the model’s translation
quality, this paper proposes a decoding efficiency optimization algorithm based
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on the idea of reducing the retrieval frequency with a confidence-based gating
mechanism. The model output is used directly without retrieval from the memory
module if the confidence level is higher, and vice versa with retrieval to assist
the model in generating words with higher confidence.

Inspired by DeVries [3] and Lu’s [9] study, we interpret the confidence as
how many prompts the NMT model needs to make a correct prediction. During
training, the model can use groud-truth to generate complex translations, but
each prompt comes at the cost of a certain penalty. We encourage the model to
translate independently in most cases to avoid penalties, but when the model’s
own capabilities are insufficient to generate tokens with high confidence, the ref-
erence’s help is available to ensure that the loss function is reduced. Therefore,
this paper utilizes a confidence network (Fig. 3) to learn the word-level confi-
dence, which takes the hidden variable of the decoder as the input and outputs
a single scalar between 0 and 1 as the current generated word’s confidence, and
takes the confidence estimate as the threshold indicator for the gating mecha-
nism, ct closer to 1 indicates the model is confident that it can translate correctly,
otherwise output ct closer to 0 for more prompts:

ct = σ(W ′ht + b′) (3)

where W ′ and b′ are trainable parameters. σ(·) is the sigmoid function. To supply
the model “prompts” during training, we employ ct as an interpolation ratio to
weight fusion the one-hot encoding of ground-truth yt with the model prediction
to adjust the original prediction probability, and the translation loss is calculated
using the adjusted prediction probabilities:

p′
t = ct · pt + (1 − ct) · yt (4)

LNMT =
∑T

t=1 − ytlog(p′
t) (5)

Furthermore, we add a penalty in the loss function to prevent the model from
minimizing the loss by setting ct → 0. The final loss is the weighted sum of the
translation loss and the confidence loss. Since the model is “fragile” during early
training stage and cannot provide prompts in the initial training stage, the value
of λ is dynamically controlled using the training step, and λ0 and β0 control the
initial value and the declining speed of λ.:

LConf =
∑T

t=1 − log(ct) (6)

L = LNMT + λLConf λ(s) = λ0 ∗ e
−s
β0 (7)

Gating mechanism is a psychological concept, which refers to the mechanism
of screening and filtering input information in people’s memory and cognitive
systems. The main purpose of the gating mechanism proposed in this paper is
to filter some unnecessary retrievals of the model, so as to reduce the retrieval
times and improve the decoding efficiency. The confidence network conducts
synchronous training with the NMT model. During the decoding process, the
confidence network generates a confidence estimate ct(ct ⊆ [0, 1]) at each step
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to determine whether the current retrieval operation needs to be performed, it’s
output directly if ct is larger than the set threshold. We set λ0 = 30, β0 = 45000
and the threshold c = 0.9 in the settings of the confidence network.

4 Experiment

4.1 Datasets, Baselines and Configurations

This paper mainly improves on the Mongolian-Chinese translation task. The
experiment’s corpus comes from CCMT2019 and CCMT2022 to explore the
model performance in low-resource and medium-high-resource scenarios respec-
tively. Table 1 shows the specific size of two corpus. According to previous
research and experimental verification on this translation task, we use the pre-
processing operations of ULM and word segmentation+ULM for Mongolian and
Chinese respectively.

We compare our method against the traditional Transformer-base [14]
and some classical or leading memory-augmented NMT baselines including:
MANN [2], TM-augmented [1], kNN-MT [7], Adaptive kNN-MT [19], Fast kNN-
MT [12]. Due to the characteristics of Chinese, different segmentation methods
may cause huge differences in BLEU scores, so we use SacreBLEU [13] to eval-
uate the results. We adopt Adam optimizer [8] and set 2000 warm-up steps. All
the above baselines and our method are based on fairseq1 implementation.

Table 1. The information table of experimental corpus.

Corpus CCMT2019 CCMT2022

train valid test train valid test

Mongolian sentence 247,829 1,000 1,000 962,986 10,000 10,000

token 7,024,958 52,966 11,516 17,945,237 220,585 218,743

unk 0.0% 0.0189% 0.0347% 0.0% 0.0372% 0.0261%

Chinese sentence 247,829 1,000 1,000 962,986 10,000 10,000

token 4,733,603 32,807 9,462 13,507,680 154,431 153,875

unk 0.0% 0.0183% 0.0% 0.0% 0.0246% 0.0227%

4.2 Main Results

Table 2 shows the comparative experimental results of our method and different
baselines. MANN [2] adds a memory module on the basis of RNN, but the effect
is still far behind the Transformer. TM-augmented [1] uses monolingual corpus
to build translation memory and augments the NMT model with a learnable
cross-lingual memory retriever, which performs better on low-resource datasets
because the large-scale monolingual corpus can compensate for the model’s own
under training in low-resource scenarios. kNN-MT [7] constructs a token-level
1 https://github.com/pytorch/fairseq.

https://github.com/pytorch/fairseq
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Table 2. Comparison experiments of different memory enhancement models.

Models CCMT2019 CCMT2022
valid test valid test

Transformer [14] 27.85 36.56 34.69 36.81
MANN [2] 25.30 34.92 32.42 34.26
TM-augmented [1] 31.21 43.84 35.74 36.51
kNN-MT [7] 31.37 42.06 36.02 37.58
Adaptive kNN-MT [19] 32.52 42.68 36.49 37.81
Fast kNN-MT [12] 30.11 41.24 35.09 36.24
Ours 34.09 43.78 37.26 39.05

memory module to guide model generation by retrieval during decoding, but the
optimal choice of k is different when using different data stores, leading to poor
robustness and generalizability of the method. Adaptive kNN-MT [19] trains
a meta-k network by artificially constructing features to generate the nearest
neighbor hyper-parameter k. It performs well in various translation tasks. Fast
kNN-MT [12] introduces hierarchical retrieval to improve decoding efficiency,
but has certain damage to performance. Our method utilizes a Monte Carlo non-
parametric dynamic fusion method to further improves the model robustness.
Meanwhile, we introduce a confidence-based gating mechanism to accelerate the
decoding, so our method obtains consistent improvement in all scenarios.

4.3 Ablation Study

To verify the effect of different components on the model performance, this
paper conducts ablation experiments based on Transformer, and the experimen-
tal results are shown in Table 3. It is clear that memory module plays a critical
role, in the CCMT2019 low-resource Mongolian-Chinese translation, there is a
maximum of 5 BLEU improvements, while in the CCMT2022 high-resource sce-
narios, there is an average of less than 2 BLEU improvements, indicating that the
improvement of the memory module to the model is affected by the model’s own
capabilities, the stronger the model capability, the smaller the additional achieve-
ments of the memory module on the model. Since the test set of CCMT2019 is
mostly simple and short sentences, while the validation set has more long diffi-
cult sentences. Therefore, the improvement rate on the valid set is not as large
as that on the test set, which also reflects the effectiveness of our method in
complex translation scenarios to a certain extent. Line 4 represents the utilize of
Monte Carlo non-parametric fusion on ordinary kNN-MT, which also has some
improvement, indicating the effectiveness of this algorithm. The introduction
of the confidence network is also shown to be benefit of improving performance
(Line 3), the reason is that it can calibrate the confidence estimates of the model
itself during training, mitigating the confidence bias in the testing phase due to
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exposure bias. Moreover, it also has a cumulative effect on translation results
when combined with Monte Carlo fusion (Line 5).

Table 3. The results of ablation study, “◦” means utilize this method and “×” means
not. MM, MC and CE represent Memory Module, Monte Carlo and Confidence Esti-
mation respectively.

ID Method CCMT2019 CCMT2022
MM MC CE valid test valid test

1 × × × 27.85 36.56 34.69 36.81
2 ◦ × × 31.19 42.29 36.24 37.69
3 × × ◦ 28.01 36.74 34.83 36.94
4 ◦ ◦ × 33.71 42.96 36.74 38.52
5 ◦ ◦ ◦ 34.09 43.78 37.26 39.05

4.4 Effect of Memory Module Capacity and Threshold c

Fig. 2 shows the effect of memory module capacity. It can be seen that the
translation quality improves with the increase of the external memory module
size, but for memory modules containing tens of millions of tokens, the retrieval
speed slows down with the increase of memory module size. It also demonstrates
that the model is not necessary to be retrained when encountering new training
data, and directly storing the data in the memory module can also improve the
translation performance. In addition, the external memory module can signifi-
cantly improve the translation results in low-resource scenarios. For middle-high
resource scenarios, there is a very obvious bottleneck in the improvement rate.
After reaching this value, the improvement in translation effect brought about
by increasing the memory module capacity is far less than the negative impact
on slower retrieval speed. Therefore, for middle-high resource scenarios, it is nec-
essary to balance the direct relationship between memory module capacity and
translation speed.

To explore whether the model can improve the translation ability for unfa-
miliar data by modifying the memory module when it encounters new data, we
design a test of an extreme scenario and use the model trained on the CCMT2019
dataset to translate the CCMT2022 test set. It can be seen from Table 4 that
after adding the test set to the external memory module, the model translation
ability for this data has been significantly improved, which proves that the model
can be updated by storing unfamiliar data into the external memory module. The
translation quality improved significantly after adding a large amount of training
data into the memory module, indicating that the performance of “small” models
can also be improved by increasing the capacity of the memory module rather
than retraining on a large amount of data. We explore the model performance
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Fig. 2. The effect of memory module
capacity on translation quality.

Fig. 3. Effect of different thresholds on
BLEU and total translation time.

and decoding time under different threshold c on CCMT2022, and the results
are shown in Fig. 3. It can be seen that the model quality does not fluctuate
greatly under different threshold settings, but the total decoding time of the
model decreases as the threshold keeps increasing. It indicates that our method
can’t affect the translation quality of the model too much while optimizing the
decoding efficiency.

Table 4. The effect of updating memory module on translation quality.

Model Memory Module BLEU

CCMT2019 – 28.36
CCMT2022 test set 29.71
CCMT2022 train set 32.68

4.5 Decoding Efficiency Verification in Different Dimensions

This paper measures the decoding efficiency from three dimensions on the test
set of CCMT2022, namely the total translation time, the number of sentences
translated per second, and the number of tokens translated per second. Exper-
imental results are shown in Fig. 4. The decoding efficiency of the proposed
method is about 2 times that of the original method when the retrieval nearest
neighbor number k is small. With the increase of k, the improvement range of
the proposed method becomes smaller and smaller. However, since the optimal k
of the experimental model is less than 24, the decoding efficiency of this method
is better than that of the traditional method in general. Moreover, this method
does not affect the model quality while improving the decoding efficiency.

4.6 Domain Adaptation and Robustness Analysis

To verify the effectiveness of our approach in domain adaption, we according
to Adaptive kNN-MT conduct experiments in four domains including, IT (I),
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Fig. 4. Decoding efficiency comparison chart.

Medical (M), Koran (K) and Laws (L) in German-English. The main results are
shown in Table 5, where the hyperparameter k are 8, 4, 8 and 4, respectively,
and this paper’s approach has obtained consistency improvement in all domains.
In IT→Medical (I→M) setting, we use the IT domain hyperparameters and the
memory module to translate the medical test set. The kNN-MT encounters dras-
tic performance degradation due to the retrieved “neighbors” are highly noisy.
In contrast, Adaptive kNN-MT can filter out noises and therefore prevent per-
formance degradation as much as possible. The performance of this paper is
further improved by Monte Carlo nonparametric fusion and gating mechanism
compared to Adaptive kNN-MT.

Table 5. Our method on domain adaptive experiments and robustness evaluation.

Model IT Medical Koran Laws I→M M→I

Transformer 32.05 36.25 14.38 41.78 36.25 32.05
kNN-MT 36.68 51.27 17.55 57.55 15.81 12.31
Adaptive kNN-MT 39.22 51.84 18.25 58.46 24.62 20.14
Ours 39.43 52.07 18.46 58.72 24.93 20.48

5 Conclusion

In this paper, we propose a non-parametric method based on Monte Carlo to
dynamically integrate memory module’s prediction and NMT prediction, which
improves model performance and robustness in various scenarios. In view of the
slow retrieval speed in kNN-MT, this paper proposes a gating mechanism based
on confidence estimation to filter the unnecessary retrieval behavior of the model,
so as to improve the decoding efficiency. Our method is effective in low resource
scenarios, but marginal utility appears in high resource scenarios. Therefore,
future work will further study the optimization and promotion in high resource
tasks.
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