
An Adaptive Learning Method
for Solving the Extreme Learning Rate

Problem of Transformer

Jianbang Ding1(B), Xuancheng Ren1, and Ruixuan Luo2

1 MOE Key Laboratory of Computational Linguistics,
Peking University, Beijing, China

{jianbangding,renxc,luoruixuan97}@pku.edu.cn
2 Center for Data Science, Peking University, Beijing, China

Abstract. Transformer, a neural sequence model entirely based on
attention, has achieved great success in natural language processing and
become the de facto default model for multiple NLP tasks. Albeit its
prevalence, the attention-based structure poses unmet challenges that
the widely-used adaptive optimization methods, e.g., Adam, have seri-
ous difficulty in learning and often fail to converge if applied alone. In this
work, we illustrate the problem that the adaptive optimization methods
produce extremely-large learning rates that break the balance of stability.
We further propose AdaMod, which smooths out extremely-large learn-
ing rates with adaptive and momental upper bounds on a per-parameter
basis, instead of the uniform scaling in the warmup scheme. We empiri-
cally demonstrate AdaMod can improve the learning stability and bring
significant improvements to the performance of Transformers and CNNs.
Moreover, empirical results verify its effectiveness and robustness across
different applications.

Keywords: Transformer · Optimization · AdaMod

1 Introduction

Gradient-based optimization forms the core of first-order optimization algorithms
to train deep networks. Remarkably, stochastic gradient descent (SGD) [18], one
of the most dominant methods, performs well across many applications, despite
its simplicity. However, one shortcoming of SGD is that it scales the gradient uni-
formly in all directions. This strategy requires a subtle tuning of the learning rate
and limits the training speed in the early stage. To address this issue, several adap-
tive methods have been proposed to achieve faster convergence by computing indi-
vidual learning rates for different parameters. Examples of such methods include
AdaGrad [3], Adam [7], RMSProp [20] and AdaDelta [25]. In particular, Adam is
regarded as the default algorithm used across many frameworks [23].

Although adaptive methods have gained great popularity, they still stumble
on the stability problem of complex models. It has been observed that they may

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-44693-1 29.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Liu et al. (Eds.): NLPCC 2023, LNAI 14302, pp. 361–372, 2023.
https://doi.org/10.1007/978-3-031-44693-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44693-1_29&domain=pdf
https://doi.org/10.1007/978-3-031-44693-1_29
https://doi.org/10.1007/978-3-031-44693-1_29


362 J. Ding et al.

converge to bad local optima when training Transformers and have to resort to
the warmup scheme [16,21], which starts with small learning rates for all the
parameters until the system reaches stability and is hence used as a common
heuristic in practice [5]. However, different parameters play different roles in the
model so scaling all the parameters uniformly in the early training stage is not
the best. The warmup scheme also introduces some additional hyperparameters
and needs tedious fine-tuning. Recent work has put forward some algorithms such
as AMSGrad [17] and RAdam [10] to tackle this issue but they failed to achieve
considerable improvement over existing methods. In this paper, we first illustrate
that the extremely-large learning rates lead to the non-convergence problem and
expect to bound large learning rates on a per-parameter basis throughout the
training stage.

Under this premise, we propose a new variant of Adam, that is AdaMod,
to restrict the adaptive learning rates with adaptive and momental bounds.
This endows learning rates with “long-term-memory” historical statics. With
this framework, we can balance the gradients across layers to improve learning
stability. Finally, we conduct further experiments on Transformers. Empirical
results demonstrate that our method can effectively eliminate unexpected large
learning rates and hence fix the non-convergence problem. Moreover, it can bring
consistent and significant improvement over the vanilla Adam across different
architectures such as ResNet and DenseNet.

The contributions are summarized as follows:

– We propose AdaMod, which eliminates extreme learning rates with adaptive
momental bound on a per-parameter basis and brings significant improve-
ments to the performance of Transformers without warmup.

– Experiments demonstrate that AdaMod can be used in various applications
such as machine translation, document summarization, and image classifica-
tion due to its robustness and effectiveness.

2 Background

2.1 A Brief Review of Adam

Algorithm 1. Adam
Input: initial parameter θ0, step sizes {αt}T

t=1, first moment decay β1, second moment
decay β2, stochastic objective function f(θ)

1: Initialize m0 = 0, v0 = 0
2: for t = 1 to T do
3: gt = ∇ft(θt−1)
4: mt = β1mt−1 + (1 − β1)gt
5: vt = β2vt−1 + (1 − β2)g

2
t and Vt = diag(vt)

6: θt = θt−1 − αtmt/
√

Vt

7: end for



An Adaptive Learning Method 363

Fig. 1. Training loss and learning rate distribution of Transformers on the IWSLT’14
De-En dataset. “Adam-” in (a) denotes Adam without warmup. For (b) and (c), X-axis
is the original value in the log scale; Y-axis is training iterations and the height stands
for frequency. Red line to show 0 centerlines. Adam fails to converge without warmup
due to extremely-large learning rates, while AdaMod can fix this issue and perform
better. (Color figure online)

Algorithm 1 provides a brief review of Adam for reference, and for brevity,
bias-correction operations are not included. The setup is elaborated as follows.
We first compute the gradient gt of the loss function with respect to previous
parameters. Second, we update the low-order moments of gradient mt, vt by
adopting exponential averaging and computing bias-corrected versions for them.
Finally, we refresh the parameter to get a new θt. This process needs to iterate
T steps until we return the learned parameters. Noting that we refer to α/

√
V

as the learning rate in the paper.

2.2 Extremely-Large Learning Rates Leading to Instability Issues

We first illustrate that the extremely-large learning rates will cause the non-
convergence problem. For example, in the NMT experiment in Fig. 1a, the train-
ing loss converges to around 9.5 without warmup, and it decreases to below
3.5 after using warmup. In addition, the learning rate histogram is shown in
Fig. 1b and Fig. 1c, where the X-axis is the original value in the log scale, Y-axis
is the iteration steps and the height stands for frequency. We can observe that
without warmup, there are lots of learning rates soaring over 10,000 compared to
applying it. Such extremely-large learning rates may lead to the oscillation of the
sequence and trap the adaptive method in exceptionally bad local optima. Mean-
while, they cannot help the optimizer escape from that, resulting in a series of
non-convergence problems. Similar phenomena are observed in other tasks such
as Transformer-XL [2] language modeling.

3 Related Work

Exploring how to tackle the non-convergence issue of adaptive methods is an
important research interest of current machine learning research. In recent years,



364 J. Ding et al.

many remarkable works have provided us with a better understanding of this
problem with the proposal of different variants of Adam. [17] first indicated
that Adam may not converge due to the lack of “long-term-memory” of past
gradients and provided a theoretical guarantee of convergence. Following this
track, most of the previous studies focused on how to modify the re-scaling
term vt. [26] argued that there exists an inappropriate correlation between gt
and vt, which may result in unbalanced updates of step size. Therefore, the
authors proposed decorrelating them by temporal shifting, i.e. replacing gt with
gt−n for some manually chosen n to calculate vt. In a similar vein, [6] discussed
that the past gradients {g1, ..., gt−1} are more reliable than gt. And the authors
proposed to weigh more of all past gradients when designing vt. However, these
methods do not radically avoid the non-convergence problem in practice due
to the existence of unexpected large learning rates. To solve this problem, [19]
considered dropping momentum and removing the larger-than-desired updates
by selecting a threshold d for update clipping. However, as their main goal is to
minimize the memory cost of optimization algorithms, this technique remains
less explored and has limited improvement in generalization performance. To
this end, [10] proposed automatic variance rectification of the adaptive learning
rate based on derivations. [12] implemented a gradual transition from Adam to
SGD by employing dynamic bounds on learning rates to avoid extremely-larger
ones. However, its bound function is manually designed and the performance
relies heavily on the selection of the final learning rate α∗ of SGD.

By contrast to the original Transformer with post-norm residual units (Post-
Norm), some work [1,22,24] use pre-norm residual units (Pre-Norm) which locate
the layer normalization inside the residual units to obtain well-behaved gradients.
Although the Pre-Norm architecture can alleviate the non-convergence problem
by normalizing the large gradients at initialization, the extreme learning rates
are still found by the end of training on ResNet with Pre-Norm [12]. Although
these learning rates do not cause serious non-convergence as in Transformers,
they do harm the generalization performance.

4 Methods

This section describes the AdaMod method as well as its properties. Concisely,
AdaMod casts dynamic upper bounds on the adaptive learning rates that prevent
the calculated learning rates from escalating too fast and becoming undesirably
larger than what the historical statistics suggest. This controls the variance of
the adaptive learning rates and smooths out the larger-than-expected fluctua-
tions, hence getting more stable and reliable learning rates. AdaMod names from
Adaptive and Momental Bound. The pseudocode is provided in Algorithm 2.

4.1 Smoothing Adaptive Learning Rates

Based on Adam, which computes adaptive learning rates with estimates of first
and second moments (i.e., expectation and uncentered variance) of the gradients,



An Adaptive Learning Method 365

Algorithm 2. AdaMod
Input: initial parameter θ0, step sizes {αt}T

t=1, first moment decay β1, second moment
decayβ2, smoothing coefficient γ, stochastic objective function f(θ)

1: Initialize m0 = 0, v0 = 0, η̂0 = 0
2: for t = 1 to T do
3: gt = ∇ft(θt−1)
4: mt = β1mt−1 + (1 − β1)gt
5: vt = β2vt−1 + (1 − β2)g

2
t and Vt = diag(vt)

6: η̂t = γη̂t−1 + (1 − γ)αt/
√

Vt

7: ηt = min(η̂t, αt/
√

Vt)
8: θt = θt−1 − ηt � mt

9: end for

our method further estimates the first-order moments of the individual adaptive
learning rates αt/

√
Vt. Inspired by exponential moving average (EMA) which

enjoys popularity in estimating the lower-order moments of the gradients. We do
average directly on the learning rates αt/

√
Vt computed by Adam. Specifically,

we apply the following operation:

η̂t = γη̂t−1 + (1 − γ)αt/
√

Vt, (1)

where αt/
√

Vt are the learning rates computed by Adam at step t. Thus, the
current momental value η̂t is an interpolation between the previous momental
value η̂t−1 and the current learning rates. Since the average range of the data in
the exponential moving average is 1/(1 − γ), which can be proven by evaluating
an infinite series, the new hyperparameter γ controls the memory of η̂t. For
example, when γ = 0.9 the average range is 10 periods; when γ = 0.999 the
average range is 1,000 periods, so on and so forth. It is worth noting that when
γ → 0, AdaMod degenerates to Adam.

Equation 1 can be expressed in another version, where the current momental
value is an exponentially weighted moving average with discount factor γ:

η̂t = (1 − γ)
t∑

i=1

γt−i · αi/
√

Vi. (2)

This endows the current value η̂t with “long-term-memory” of past values
αi/

√
Vi. For general cases, we set η̂0 = 0 and γ = 0.9999.

4.2 Bounding Adaptive Learning Rates

For the current momental value η̂t, we further take it as the adaptive upper
bound for αt/

√
Vt to eliminate extremely-large learning rates:

ηt = min(η̂t, αt/
√

Vt). (3)

where ηt is the final learning rate obtained by the bounding operation. Intu-
itively, this can be seen as clipping the learning rates element-wisely so that the



366 J. Ding et al.

output is constrained by the different current momental values. Our proposed
momental bounding strategy is significantly different from previous work such
as Adafactor and AdaBound. These methods rely on manually chosen thresh-
olds or bounding functions to truncate learning rates or updates. Compared to
AMSGrad, AdaMod replace the absolute maximum of previous vt values with a
running average.

θt = θt−1 − ηt � mt, (4)

Then, we use ηt and mt to make a parameter update. This process needs to
iterate T steps until an approximate solution is returned.

5 Experiments

This section performs a thorough evaluation of AdaMod optimizer on different
deep learning tasks against fine-tuned baselines. We refer to several benchmarks
for Transformers: IWSLT’14 De-En/WMT’14 En-De for neural machine
translation, and CNN-DailyMail for document summarization. To verify the
versatility of AdaMod, we also add image classification on CIFAR-10/CIFAR-
100 [8] with CNN and language modeling on Penn Treebank [13] with LSTM.
We compare our method with popular optimization algorithms including SGDM,
AdaBound, Adam, AMSGrad and RAdam [10]. We classify AdaMod, RAdam,
AMSGrad, and Adam into Adam-like algorithms, and the others into SGD-
like methods. It is worth noting that except SGDM, the rest belong to adaptive
methods. To achieve better performance, we apply decoupled weight decay to all
adaptive methods in our experiments on the basis of [11]’s work, and adopt the
warmup scheme for all the methods except AdaMod and RAdam when train-
ing Transformers. For statistical significance, we conduct each experiment for
5 random trials and report p − value for the significance test. Noting that full
hyperparameter tuning details and more experiments results (running Pre-Norm
Transformers on IWSLT’14, CNN on CIFAR-10/CIFAR-100, and LSTM on Penn
Treebank) are reported in the supplementary material.

5.1 Neural Machine Translation

Machine translation is one of the most important applications in NLP [21]. To
evaluate the effectiveness of AdaMod, we train Transformer-based models on
two widely used datasets: IWSLT’14 De-En and WMT’14 En-De.

Our experiments are based on the vanilla Transformers [21] implementation
from the fairseq open library [14]. Due to the limited size of the IWSLT’14
dataset, we use a relatively small model in training. The size of embeddings and
hidden states is set to 512 and the number of heads in multi-head attention
is set to 4. For WMT’14, we train the transformer base version and the big
version respectively. Both the two models consist of a 6-layer encoder and a 6-
layer decoder. The size of the embedding is set to 512 for the base model and
1024 for the big. We set β1 = 0.9, β2 = 0.98 and ε = 1e − 9. We use a linear
warmup for Adam in the first 4000 updates. For IWSLT’14, we run training on



An Adaptive Learning Method 367

Fig. 2. Validation loss for Transformer-based model. For (a) is trained on IWSLT’14
De-En, (b) and (c) on WMT’14 En-De. AdaMod without warmup shows both faster
convergence and strong final performance compared with Adam with warmup.

Table 1. BLEU score on Neural Machine Translation. We train the small Transformer
on IWSLT’14 De-En, the base and the big model on WMT’14 En-De. Report for
Median(Mean ± Std).

Method Trans-Small Trans-Base Trans-Big

SGDM 29.52 (29.53 ± 0.26) 23.33 (23.35 ± 0.22) 24.47 (24.57 ± 0.24)

AdaBound 34.28 (34.32 ± 0.18) 27.02 (27.05 ± 0.13) 28.24 (28.25 ± 0.09)

Adam 34.62 (34.58 ± 0.15) 27.11 (27.10 ± 0.13) 28.31 (28.31 ± 0.12)

AMSGrad 33.81 (33.84 ± 0.08) 25.98 (26.01 ± 0.10) 27.46 (27.45 ± 0.05)

RAdam 34.72 (34.71 ± 0.06) 27.15 (27.17 ± 0.06) 28.17 (28.20 ± 0.05)

AdaMod 34.88 (34.85 ± 0.05) 27.39 (27.39 ± 0.04) 28.58 (28.57 ± 0.05)

1 NVIDIA RTX 2080Ti GPU, the maximum tokens per batch is set as 4000,
weight decay as 1e-4, and dropout rate as 0.3. As for WMT’14, we conduct
training on 4 T V100 GPUs and set the maximum tokens as 8192. Note that
γ is set as 0.999 for the base model, and 0.9999 for the other two. To make
the experiments more convincing, We also compare AdaMod with Adam on the
Pre-Norm Transformers in the supplementary material.

Performance Comparison. We use BLEU [15] as the metric to evaluate the per-
formance and give the results in Table 1. We also report p-value between Adam
and AdaMod for the significance test (5.42e−3, 1.92e−3, 1.85e−3, all less than
0.01). As discussed above, Adam relies on the warmup scheme when training
Transformers to avoid the non-convergence problem (The same goes for other
methods except AdaMod and RAdam). As for AdaMod, it can train Transform-
ers without warmup and achieve higher BLEU scores (around 0.3 gains) on both
two datasets. Moreover, valid loss values are shown in Fig. 2. It can be seen that
AdaMod converges faster against other methods throughout the training stage.

Learning Rates Comparison. We further compare the learning rates histogram
of Transformers on the IWSLT’14 De-En between Adam and AdaMod. As shown



368 J. Ding et al.

Fig. 3. The learning rate comparison of Transformers on the IWSLT’14 De-En.
AdaMod subtly restrains extremely-large learning rates throughout the training.

Table 2. F1-ROUGE score for CopyTransformer on CNN-DailyMail. Report for
Median(Mean ± Std).

CNN-DM ROUGE-1 ROUGE-2 ROUGE-L

SGDM 38.34 (38.30 ± 0.15) 16.53 (16.58 ± 0.16) 35.35 (35.29 ± 0.22)

AdaBound 37.75 (37.72 ± 0.09) 16.07 (16.04 ± 0.11) 34.83 (34.86 ± 0.14)

Adam 39.22 (39.24 ± 0.08) 17.19 (17.18 ± 0.13) 36.38 (36.34 ± 0.11)

AMSGrad 39.04 (39.05 ± 0.02) 16.85 (16.86 ± 0.03) 36.07 (36.06 ± 0.05)

RAdam 39.42 (39.44 ± 0.04) 17.23 (17.25 ± 0.05) 36.44 (36.45 ± 0.03)

AdaMod 39.51 (39.51 ± 0.03) 17.37 (17.37 ± 0.03) 36.80 (36.82 ± 0.06)

in Fig. 3, where the X-axis is the original value in the log scale, and Y-axis is
iteration steps and the height stands for frequency. As mentioned above, the
histogram of Adam is distorted seriously due to the extremely-large learning
rates. This phenomenon has been alleviated after adopting warmup, while there
is still a spike of learning rates between e8 to e10. Although they are not enough
to fail to converge, they still hurt the generalization performance. In contrast,
AdaMod filters the unexpected large learning rates without warmup. Specifi-
cally, in the early stage, AdaMod successfully suppressed the abnormal upward
trend in learning rates, and keep them within a reasonable range to balance the
gradients across layers

5.2 Document Summarization

We also consider abstractive document summarization task on the CNN-
DailyMail corpus, which is a standard news corpus and widely used for text
summarization. Following [4]’s work, our experiment is based on a Transformer
containing 4 layers in each block, and one of the attention-heads is selected as
the copy-distribution. Apart from this, the size of the word embedding is set to
512 and the model shares it between the encoder and decoder. We set β1 = 0.9,
β2 = 0.998, and a linear warmup in the first 8000 updates for all the methods
except AdaMod and RAdam. The dropout rate is set as 0.2 and the batch size is



An Adaptive Learning Method 369

4096. The gradients are accumulated 4 times for each update. For AdaMod, the
memory coefficient γ is set as 0.9999. All the models are trained on 2 NVIDIA
RTX 2080Ti GPUs.

We evaluate by F1-ROUGE [9], i.e., ROUGE-1, ROUGE-2, ROUGE-L, and
show the results in Table 2. Note that all the p-values between Adam and
AdaMod are less than 0.01 (1.1e−4, 9.6e−3, 2.3e−5). As we can see from the
table, AdaMod brings a significant improvement over Adam, and outperforms
the rest methods across all three scores, despite without warmup. That is, not
only in terms of Rouge-1 related to content but the fluency of the language is
also ameliorated by applying AdaMod. It indicates that our method improves
the performance of the model on the basis of solving the non-convergence prob-
lem and demonstrates the versatility of AdaMod on different natural language
tasks based on Transformers.

6 Analysis

Robustness to Different α. To investigate the robustness of AdaMod, we con-
duct experiments with the Transformer-small on the IWSLT’14 De-En as in the
Sect. 5.1. We test Adam with warmup and AdaMod with different α (i.e. initial
step size), which is chosen from multiples of 5e−4. The scores are reported in
Table 3. It can be found that Adam is very sensitive to α when training Trans-
formers, and a slight disturbance to α will cause poor convergence (below 10).
At this time Adam has to resort to other strategies such as gradient clipping
or accumulation to get more stable learning rates. However, AdaMod can still
converge to highly similar results in the interval of twice the original step size
(34.90 ± 0.1). For example, when α is increased by 2.5 times, it can achieve
relatively good performance (above 30).

Table 3. BLEU score of Adam and AdaMod with different α using Transformer-small
on IWSLT’14 De-En. “×” denotes divergence.

Method α = 5e − 4 α = 7.5e − 4 α = 1e − 3 α = 1.25e − 3 α = 1.5e − 3

Adam 34.62 6.70 1.84 × ×
AdaMod 34.88 34.99 34.86 32.09 ×

Training with Small Batches. We also show that AdaMod enables warmup-
free, validation-based training even for small batches. Table 4 demonstrates that
Adam depends on a large batch size to obtain stable gradients. As the batch
size decreases, the performance of the model drops rapidly until Adam fails to
converge. In the case of a small batch, the unexpected gradient fluctuations



370 J. Ding et al.

become more drastic, further exacerbating the negative effect of the large learn-
ing rates. This gap will become even greater when training complex models.
However, AdaMod can converge to similar results (34.85 ± 0.05) by endowing
learning rates with long-term memory evne if the batch size has dropped to
nearly one-third of the original.

Table 4. BLEU score of Adam and AdaMod with different batches using Transformer-
small on IWSLT’14 De-En. “×” denotes divergence.

Method bz = 4000 bz = 2000 bz = 1500 bz = 1000 bz = 500

Adam 34.62 33.72 4.43 3.78 ×
AdaMod 34.88 34.89 34.83 34.31 3.64

How Momental Bounds Regulate Learning Rates? As discussed above, α/
√

Vt

have a large variance in the early training stage, leading to extremely-large
learning rates, which could hamper performance and even cause stability issues.

Fig. 4. How momental bounds regulate learning rates? The learning rates of a param-
eter were randomly sampled from the encoder of the Transformer. As γ increases, the
growth trend of α/

√
Vt is suppressed by momental bound η̂t, and a new stable learning

rates ηt is returned. Noting that when γ = 0, AdaMod degenerates to Adam.

By computing the momentum η̂t, historical statistics of learning rates could
be fully considered. Employing it as the momental bound could adaptively sup-
press the growth trend of learning rates. To visualize this process, we supplement



An Adaptive Learning Method 371

an analysis experiment on IWSLT’14. Specifically, we randomly sample a param-
eter from the self-attention layer to observe its learning rate, and the phenomena
are shown in Fig. 4. It can be seen that when historical statistics are not con-
sidered (i.e. γ = 0) or statistics insufficient (i.e. γ = 0.9, 0.99), the effect of
momental bounds is not obvious. The parameter’s learning rate surges to 50000
in the early term and collapses dramatically in the later period. However as γ
increases, the growth trend of α/

√
Vt is suppressed by momental bound (i.e.

γ = 0.999, 0.9999), and a new stable learning rates ηt is returned, eliminating
large rates from the root, which verifies our motivation. When γ → 1, ηt becomes
more stable and reliable, which can be approximated as a tailor-made learning
rate applied to each parameter of the model, rather than scales all the param-
eters uniformly like SGD. It is likely that AdaMod combines the advantages
of both types of adaptive and non-adaptive methods. We recommend a γ in
{0.999,0.9999} as preferred for its usually behaving a good performance across
most models in practice.

7 Conclusion

In this paper, we illustrate that popular adaptive algorithms fail to converge
when training Transformers due to the large learning rates. For that, we design
a concise strategy to constrain the spikes to avoid the non-convergence issue.
Our proposed algorithm, AdaMod, exerts momental bounds on a per-parameter
basis to prevent them from becoming undesirably larger than what the historical
statistics suggest, hence getting more stable and reliable learning rates. Empiri-
cal results demonstrate our method gains steady performance improvements to
Transformers across different applications.

References

1. Chen, M.X., et al.: The best of both worlds: Combining recent advances in neu-
ral machine translation. In: ACL (1), pp. 76–86. Association for Computational
Linguistics (2018)

2. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q.V., Salakhutdinov, R.:
Transformer-xl: attentive language models beyond a fixed-length context. In: ACL
(1), pp. 2978–2988. Association for Computational Linguistics (2019)

3. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

4. Gehrmann, S., Deng, Y., Rush, A.M.: Bottom-up abstractive summarization. In:
EMNLP, pp. 4098–4109. Association for Computational Linguistics (2018)

5. Gotmare, A., Keskar, N.S., Xiong, C., Socher, R.: A closer look at deep learn-
ing heuristics: Learning rate restarts, warmup and distillation. In: ICLR (Poster).
OpenReview.net (2019)

6. Huang, H., Wang, C., Dong, B.: Nostalgic adam: weighting more of the past gradi-
ents when designing the adaptive learning rate. In: IJCAI, pp. 2556–2562. ijcai.org
(2019)



372 J. Ding et al.

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR
(Poster) (2015)

8. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep, Citeseer (2009)

9. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Sum-
marization Branches out, pp. 74–81 (2004)

10. Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J.: On the variance of
the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019)

11. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv
preprint arXiv:1711.05101 (2017)

12. Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic
bound of learning rate. In: ICLR (Poster). OpenReview.net (2019)

13. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated cor-
pus of English: the penn treebank. Comput. Linguist. 19(2), 313–330 (1993)

14. Ott, M., et al.: fairseq: a fast, extensible toolkit for sequence modeling. In:
NAACL-HLT (Demonstrations), pp. 48–53. Association for Computational Lin-
guistics (2019)

15. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 311–318. Association for Compu-
tational Linguistics (2002)

16. Popel, M., Bojar, O.: Training tips for the transformer model. Prague Bull. Math.
Linguistics 110, 43–70 (2018)

17. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. In:
ICLR. OpenReview.net (2018)

18. Robbins, H., Monro, S.: A stochastic approximation method. The annals of math-
ematical statistics, pp. 400–407 (1951)

19. Shazeer, N., Stern, M.: Adafactor: adaptive learning rates with sublinear memory
cost. In: ICML. Proceedings of Machine Learning Research, vol. 80, pp. 4603–4611.
PMLR (2018)

20. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks Mach. Learn. 4(2),
26–31 (2012)

21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

22. Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D.F., Chao, L.S.: Learning
deep transformer models for machine translation. In: ACL (1), pp. 1810–1822.
Association for Computational Linguistics (2019)

23. Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht, B.: The marginal value of
adaptive gradient methods in machine learning. In: Advances in Neural Information
Processing Systems, pp. 4148–4158 (2017)

24. Xiong, R., et al.: On layer normalization in the transformer architecture. CoRR
abs/2002.04745 (2020)

25. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

26. Zhou, Z., Zhang, Q., Lu, G., Wang, H., Zhang, W., Yu, Y.: Adashift: decorrelation
and convergence of adaptive learning rate methods. In: ICLR (Poster). OpenRe-
view.net (2019)

http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1212.5701

	An Adaptive Learning Method for Solving the Extreme Learning Rate Problem of Transformer
	1 Introduction
	2 Background
	2.1 A Brief Review of Adam
	2.2 Extremely-Large Learning Rates Leading to Instability Issues

	3 Related Work
	4 Methods
	4.1 Smoothing Adaptive Learning Rates
	4.2 Bounding Adaptive Learning Rates

	5 Experiments
	5.1 Neural Machine Translation
	5.2 Document Summarization

	6 Analysis
	7 Conclusion
	References


