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Abstract. The representation of events in text plays a significant role
in various NLP tasks. Recent research demonstrates that contrastive
learning has the ability to improve event comprehension capabilities of
Pre-trained Language Models (PLMs) and enhance the performance of
event representation learning. However, the efficacy of event represen-
tation learning based on contrastive learning and PLMs is limited by
the short length of event texts. The length of event texts differs sig-
nificantly from the text length used in the pre-training of PLMs. As a
result, there is inconsistency in the distribution of text length between
pre-training and event representation learning, which may undermine the
learning process of event representation based on PLMs. In this study, we
present PromptCL, a novel framework for event representation learning
that effectively elicits the capabilities of PLMs to comprehensively cap-
ture the semantics of short event texts. PromptCL utilizes a Prompt
template borrowed from prompt learning to expand the input text dur-
ing Contrastive Learning. This helps in enhancing the event representa-
tion learning by providing a structured outline of the event components.
Moreover, we propose Subject-Predicate-Object (SPO) word order and
Event-oriented Masked Language Modeling (EventMLM) to train PLMs
to understand the relationships between event components. Our experi-
mental results demonstrate that PromptCL outperforms state-of-the-art
baselines on event related tasks. Additionally, we conduct a thorough
analysis and demonstrate that using a prompt results in improved gener-
alization capabilities for event representations (Our code will be available
at https://github.com/YuboFeng2023/PromptCL).

Keywords: Event representation · Prompt learning · Contrastive
learning

1 Introduction

Distributed event representations are a widely-used machine-readable represen-
tation of events, known to capture meaningful features relevant to various appli-
cations [1,2,13]. Due to event texts are too short, capturing their semantic rela-
tionships is a challenging task. For example, despite the greater lexical overlap
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between “military launch program” and “military launch missile” their semantic
similarity is limited, but “military launch program” and “army starts initiative”
display a certain degree of semantic similarity, even though they share no lexical
overlap.

In previous studies [3–5,19], Neural Tensor Networks (NTNs) [16] have
been commonly utilized to construct event representations by composing the
constituent elements of an event, i.e., (subject, predicate, object). Neverthe-
less, these approaches entail a substantial compositional inductive bias and are
inadequate for handling events that possess additional arguments [6]. Recent
research has demonstrated the effectiveness of employing powerful PLMs, such
as BERT [9], to create flexible event representations instead of using static word
vector compositions [17,21]. Nevertheless, utilizing PLMs alone to learn event
representations is insufficient to capture the complicated relationships between
events. Therefore, in order to tackle the challenge of capturing complex rela-
tions between events, some researchers have proposed the use of graph neural
networks in event representation learning. This approach has shown to yield
better performance, as demonstrated in recent studies [22,23]. But graph neu-
ral networks are often associated with high computational complexity, which
can lead to significant difficulties in training the models [24]. To fully capture
complicated event relations and efficiently learn event representations, Gao et
al. proposed SWCC [6], which leverages contrastive learning [7] to improve the
event comprehension ability of PLMs. It has achieved state-of-the-art results on
event similarity tasks and downstream tasks.

In our work, we argue that there is a rich amount of event comprehension
ability in PLMs, but previous works did not make fully use of such abilities.
Inspired by the advancements in prompt learning [14,15], we have realized that
providing task descriptions to PLMs can help to elicit the knowledge embedded
within them. And then, this knowledge can be utilized to enhance event repre-
sentation learning. To learn event representations, previous works [6,21] leverage
contrastive learning to improve the event comprehension capacity of PLMs. How-
ever, they share three common limitations. Firstly, the length of event text is
relatively short, which differs significantly from the text length used in the pre-
training of language models. As a result, the distribution of text length between
pre-training and event representation learning is inconsistent. This inconsistency
may undermine the learning process of event representation based on PLMs.
Secondly, the Predicate-Subject-Object (PSO) word order, which is adopted by
PLMs-based event representation models [6,21], is significantly different from
the natural language word order used during the pre-training [9]. In PSO word
order, the inversion of subject and predicate can potentially undermine the per-
formance, as the pre-trained MLM knowledge may have a counterproductive
effect. Because MLM in pre-training predicts a masked token based on its con-
text [9], a change in word order can also cause the position of the context to
change. Therefore, the pre-trained MLM knowledge may be a burden for event
representation learning in PSO word order. Finally, the state-of-the-art model
utilizes MLM loss to prevent the forgetting of token-level knowledge during
the training of event representation in the PLM [6]. However, the model only
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randomly masks one sub-word, which may not provide sufficient understanding
of complex event texts [20].

We are motivated to address the above issues with the goal of eliciting
the event comprehension capabilities from PLMs. To this end, we present
PromptCL: a Prompt template-based Contrastive Learning framework for
event representation learning. To address the first issue, we propose a novel
prompt template-based contrastive learning method. In this approach, we incor-
porate a prompt template borrowed from prompt learning into contrastive learn-
ing, which comprises a description outlining the event components. The injec-
tion of the prompt template serves two purposes: it extends the length of event
texts and provides semantic guidance to PLMs. To address the second issue,
we propose using the SPO word order to solve the problem of subject-predicate
inversion, which aligns with the natural language word order. To address the
final issue, we present an approach called EventMLM, which focuses on the
structure of events and aims to increase the masking rate. EventMLM not only
masks entire words but also masks the complete subject, predicate, or object of
the event. This approach trains PLMs to understand the relationships between
event components. Overall, our study makes the following noteworthy contribu-
tions:

• We propose PromptCL, a simple and effective framework that improves
event representation learning using PLMs. To the best of our knowledge, this
is the first study that utilizes prompt learning and contrastive learning to
elicit event representation abilities from PLMs.

• We introduce prompt template-based contrastive learning that extends the
length of event texts and provides semantic guidance to PLMs. Addition-
ally, we introduce the SPO word order and the EventMLM method, which
are designed to train PLMs to comprehend the relationships between event
components.

• Our experimental results demonstrate that our framework outperforms pre-
vious state-of-the-art methods on event-related tasks. We conduct a thorough
analysis of the proposed methods and demonstrate that they generate simi-
larity scores that are more closely aligned with the ground truth labels.

2 The Proposed Approach

This section details our proposed approach that aims to enhance event represen-
tations by eliciting the event comprehension capabilities of PLMs. Our approach
is illustrated in Fig. 1, comprising three parts: the prompt template-based con-
trastive learning (left), and the SPO word order (middle), and the EventMLM
(right).

2.1 Prompt Template-Based Contrastive Learning

The proposed contrastive learning method based on prompt templates involves
augmenting an event text by randomly inserting a template using a Bernoulli
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Fig. 1. Architecture of PromptCL.

distribution. This augmentation results in a modified event that serves as a
positive example during the training of contrastive learning.

Prompt Template. Given an event x = {xs, xp, xo}, the function prompt(·)
inserts a template into the event with a probability π following a Bernoulli
distribution:

x+ = prompt(x, π) (1)

and the resulting prompt-augmented event is denoted as x+:

x+ = {subject is xs, predicate is xp, object is xo} (2)

For example, if x = {military, launch,missile}, the augmented event x+ could
be :

x+ = {subject is military, predicate is launch, object is missile} (3)

The random insertion of the template ensures that the model is trained on a
slightly diverse set of events, improving its ability to capture the core semantic
meaning of events.

Dual Positive Contrastive Learning. To augment the impact of prompt
templates and enhance the diversity of positive examples, we introduce an addi-
tional positive sample, whereby an input event xi is compared not only with
its prompt-augmented text x+

i,1 = prompt(xi, π), but also with another prompt-
augmented text x+

i,2 = prompt(xi, π). Drawing inspiration from [10] and based
on in-batch negatives [7], we extend InfoNCE objective [12] to:

LCL =
∑

α={h+
i,1,h+

i,2}
− log

g(hi, α)
g(hi, α) +

∑
k∈N (i) g(hi, hk)

(4)

where h+
i,1 and h+

i,2 correspond to event representations of x+
i,1 and x+

i,2 respec-
tively. k ∈ N (i) is the index of in-batch negatives and g(·) is a function:
g(hi, hk) = exp(h�

i hk/τ), where τ ∈ R+ is temperature.



PromptCL for Event Representation 265

2.2 Subject-Predicate-Object Word Order

Unlike prior studies [6,21], where PSO word orders were used to construct the
input events, we use the Subject-Predicate-Object (SPO) word order in our
study. The event text x consists of three components, namely the subject xs,
predicate xp, and object xo. Specifically, we utilize the PLM to process an event
text that consists of a sequence of tokens, following the input format represented
below:

[CLS] xs xp xo [SEP] (5)

Let s = [s0, s1, ..., sL] be an input sequence, where s0 corresponds to the [CLS]
token and sL corresponds to the [SEP] token. When given an event text as input,
a PLM generates a sequence of contextualized vectors:

[v[CLS], vx1 , ..., vxL
] = PTM(x) (6)

The representation of the [CLS] token, denoted by v[CLS], serves as the first
input to downstream tasks in many PLMs. Typically, the final representation of
an input sequence is obtained by taking the [CLS] representation as the output,
that is, h = v[CLS].

2.3 Event-Oriented Masking Language Modeling

To fully utilize the text comprehension ability of PLMs, we present a novel
event-oriented masking function, denoted by em(·), which randomly masks a
component of the input event using a uniform distribution. For a given event
x = {xs, xp, xo}, the resulting masked event is denoted as x′:

x′ = em(x) (7)

For example, if the predicate xp is randomly selected to be masked using
a uniform distribution, we replace it with special tokens [MASK]. Note that
multiple tokens may be replaced by the [MASK] tokens.

x′ = {xs, [MASK]...[MASK], xo} (8)

Distinctively, our EventMLM method differs from previous work [6], which
merely masks a single token. Our proposed method not only masks several tokens
but also considers the components of the event. Moreover, our method focuses on
the event structure and trains the PLM to comprehend the relationships between
the components, thus enhancing the event representation. In this example, the
PLM needs to accurately predict the masked tokens (predicate xp) by under-
standing the semantic relationship between the subject xs and object xo.

2.4 Model Training

The overall training objective comprises three terms:

Loverall = LCL + LEventMLM + LCP (9)
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Firstly, we have the prompt template-based contrastive learning loss (LCL),
which effectively incorporates prompt templates into event representation learn-
ing. Secondly, the EventMLM loss (LEventMLM ) aims to improve the text com-
prehension ability of PLMs and teaches the model to comprehend the rela-
tionships between the components of input events. Finally, we introduce the
prototype-based clustering objective (LCP ) as an auxiliary loss to cluster the
events while enforcing consistency between cluster assignments produced for
different augmented representations of the input event [6].

3 Experiments

Consistent with conventional practices in event representation learning [3,6,19,
21], we conduct an analysis of the event representations acquired through our
approach on two event similarity tasks and one transfer task.

3.1 Dataset and Implementation Details

For the event representation learning models training and event similarity tasks,
we utilize the datasets released by Gao et al. [6]1. For the transfer task, we use
the MCNC dataset that was previously employed by Lee and Goldwasser [11]2.
It is noteworthy that above datasets explicitly specify the components of the
event, indicating that they support the arbitrary organization of word order.

Our model begins with the checkpoint of BERT-based-uncased [9], and we
utilize the [CLS] token representation as the event representation. During train-
ing, we employe an Adam optimizer with a batch size of 256. The learning rate
for the event representation model is set to 2e-7. The value of temperature is set
to τ = 0.3. Furthermore, we select the probability of prompt template insertion
to be π = 0.2.

3.2 Event Similarity Tasks

Hard Similarity Task. The objective of the hard similarity task is to assess
the ability of the event representation model to differentiate between similar and
dissimilar events. Weber et al. [19] created a dataset (referred to as”Original”)
comprising two types of event pairs: one with events that have low lexical over-
lap but should be similar, and the other with events that have high overlap but
should be dissimilar. The dataset consists of 230 event pairs. Ding et al. [3] sub-
sequently expanded this dataset to 1,000 event pairs (denoted as ”Extended”).
We evaluate the performance of our model on this task using Accuracy(%) as the
metric, which measures the percentage of instances where the model assigns a
higher cosine similarity score to the similar event pair compared to the dissimilar
one.

1 https://github.com/gaojun4ever/SWCC4Event.
2 https://github.com/doug919/multi relational script learning.

https://github.com/gaojun4ever/SWCC4Event
https://github.com/doug919/multi_relational_script_learning
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Table 1. Evaluation performance on the similarity tasks. The Hard Similarity Task is
represented by the Original and Extended datasets. The Transitive Sentence Similarity
is evaluated using the Transitive dataset.

Model Original(%) Extended(%) Transitive(ρ)

Event-comp [19] 33.9 18.7 0.57

Predicate Tensor [19] 41.0 25.6 0.63

Role-factor Tensor [19] 43.5 20.7 0.64

NTN-IntSent [3] 77.4 62.8 0.74

UniFA [21] 75.8 61.2 0.71

UniFA-S [21] 78.3 64.1 0.75

HeterEvent[W+E] [22] 76.6 62.3 0.73

MulCL[W+E] [23] 78.3 64.3 0.76

SWCC [6] 80.9 72.1 0.82

PromptCL(Ours) 81.7 78.7 0.82

Transitive Sentence Similarity. This dataset [8] (denoted as ”Transitive”)
is comprised of 108 pairs of transitive sentences containing a singular subject,
object, and verb (e.g., “military launch missile”). Each pair is annotated with a
similarity score ranging from 1 to 7, with higher scores indicating greater sim-
ilarity between the two events. To evaluate the performance of the models, we
employ Spearman’s correlation(ρ) to measure the relationship between the pre-
dicted cosine similarity and the manually annotated similarity score, consistent
with prior work in the field [3,19,21].

Comparison Methods. In our study, we conduct a comparative analysis of
our proposed approach with various baseline methods. We group these methods
into four distinct categories:

(1) Neural Tensor Networks: The models, Event-comp [19], Role-factor
Tensor [19], Predicate Tensor [19], and NTNIntSent [3], employ Neural
Tensor Networks to learn event representations. (2) Pre-trained Language Model:
Two event representation learning frameworks that leverage PLMs are Uni-
FAS [21] and UniFA-S [21]. (3) Graph Neural Network: The utilization of
graph neural networks for event representation learning is employed by Het-
erEvent [22] and MulCL [23]. (4) Contrastive Learning: SWCC [6] is a state-
of-the-art framework that is based on a PLM and combines contrastive learning
and clustering.

Results. Table 1 presents the results of various methods on the challenging
similarity tasks, including hard similarity and transitive sentence similarity. The
findings reveal that the proposed PromptCL outperforms other approaches in
terms of performance. Compared to the UniFA-S approach that simply utilizes
PLMs, PromptCL exhibits superior performance due to its innovative features
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Table 2. Evaluation performance on the MCNC task. *: results reported in Gao, et
al. [6]

Model Accuracy(%)

Random 20.00

PPMI* 30.52

BiGram* 29.67

Word2vec* 37.39

SWCC [6] 44.50

PromptCL(Ours) 47.06

such as prompt template and contrastive learning that better explore the text
comprehension ability. PromptCL outperforms state-of-the-art event represen-
tation methods, such as SWCC, that leverage a PLM and contrastive learning.
The observed enhancements can be attributed to PromptCL’s thorough explo-
ration of PLM’s text comprehension capabilities via its prompt template-based
contrastive learning and EventMLM techniques. This finding emphasizes the lim-
ited exploration of text comprehension ability in prior research and underscores
the efficacy of our proposed framework, PromptCL.

3.3 Transfer Task

We conduct an evaluation of the generalization ability of event representations
on the Multiple Choice Narrative Cloze (MCNC) task, which involves selecting
the next event from a small set of randomly drawn events, given a sequence
of events. We adopt the zero-shot transfer setting to ensure comparability with
prior research [6].

Results. The performance of various methods on the MCNC task is reported
in Table 2. The table indicates that the PromptCL method exhibits the highest
accuracy on the MCNC task in the unsupervised setting. This result suggests
that PromptCL has superior generalizability to downstream tasks compared
to other methods in the study. We believe that the use of a prompt template
can enhance the generalization capabilities of event representation models, as
discussed in the section “Content of prompt”.

4 Analysis

Ablation Study. To evaluate the effectiveness of each component in the pro-
posed approach, we conduct an ablation study as presented in Table 3. We begin
by investigating the impact of the prompt template method by setting the prob-
ability of inserting templates to zero. Removing the prompt template component
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Table 3. Ablation study for several methods evaluated on the similarity tasks. *:
degenerate to PSO word order.

Model Original(%) Extended(%) Transitive(ρ)

PromptCL 81.7 78.7 0.82

w/o Prompt Template 80.0(−1.7) 70.8(−7.9) 0.81(−0.01)

w/o SPO Word Order* 79.9(−1.8) 74.1(−4.6) 0.80(−0.02)

w/o EventMLM 80.9(−0.8) 76.7(−2.0) 0.76(−0.06)

BERT(InfoNCE) 72.1 63.4 0.75

resulted in a significant drop of 7.9 points in the model’s performance on the
extended hard similarity task. Furthermore, we examine the effect of the SPO
word order method on the similarity tasks. Removing this component led to a
drop of 1.8 points in the model’s performance on the original hard similarity
task. We also study the impact of the EventMLM method. Removing this com-
ponent causes a 0.06 (maximum) point drop in performance on the transitive
sentence similarity task. The BERT (InfoNCE) is trained using the InfoNCE
objective only.

Fig. 2. Effect of prompt insertion prob-
ability.

Fig. 3. To plot the align loss and uni-
form loss. (lower is better)

Probability of Prompt Insertion. The influence of the probability of insert-
ing prompt templates during the training process is depicted in Fig. 2. We have
observed that as the probability of prompt template insertions increases, the
model’s overall performance in intrinsic evaluation steadily improves. The inser-
tion of prompt templates during the training of event representation models
enhances the generalization of event representation in intrinsic evaluation tasks.



270 Y. Feng et al.

Table 4. To demonstrate the semantic clarity of prompts and evaluate their perfor-
mance.

prompt Original(%) Extended(%) Transitive(ρ)

xs xp xo 80.0 70.8 0.81

subject xs predicate xp object xo 79.1 72.4 0.82

subject : xs predicate : xp object : xo 81.7 76.7 0.82

subject is xs predicate is xp object is xo 81.7 78.7 0.82

Uniformity and Alignment. Figure 3 displays the uniformity and alignment
of various event representation models, along with their Transitive Sentence Sim-
ilarity results. In general, models that exhibit better alignment and uniformity
achieve superior performance, which confirms the findings in Wang, et al. [18].
Additionally, we observe that the insertion of prompt templates during event
representation learning significantly improves alignment compared to baselines.

Content of Prompt. Table 4 illustrates the impact of adjusting prompt content
on the training process. As shown in the table, an increase in prompt semantic
clarity results in a better performance on the Hard Similarity Tasks. The gen-
eralization of event representation models is closely related to the clarity of the
prompt template used during training. Specifically, a clearer prompt template
provides enhanced semantic guidance, leading to more effective event represen-
tation models with better generalization capabilities.

Table 5. A case study on the Extended dataset of Hard Similarity Task.

Event A Event B BERT (InfoNCE) PromptCL (Ours) Label

we focus on issues he pay attention to problems 0.46 0.61 1

we focus on issues we focus on people 0.72 0.57 0

he flee city i leave town 0.62 0.72 1

he flee city he flee hotel 0.68 0.41 0

he explain things she analyze problems 0.44 0.50 1

he explain things he explain love 0.51 0.31 0

Case Study. Table 5 shows the case study of randomly sampling several groups
of events from the Extended dataset of the Hard Similarity Task. The perfor-
mance of BERT(InfoNCE) and PromptCL in predicting the similarity scores of
these events was evaluated. A closer alignment between the predicted and ground
truth similarity scores indicates a deeper understanding of the event by the
model. The results are presented in Table 5, which demonstrate that PromptCL
outperforms BERT(InfoNCE) in predicting similarity scores that more closely
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align with the ground truth labels. This suggests that the proposed prompt
template-based contrastive learning, and SPO word order, and EventMLM can
aid in comprehending short event texts and provide semantic guidance for PLMs.

5 Conclusion

This study presents a novel framework called PromptCL, which aims to improve
the learning of event representations through the use of PLMs, without the need
for additional features such as co-occurrence information of events as used in
SWCC. In particular, we introduce a prompt template-based contrastive learning
method and SPO word order that allow us to easily elicit the text comprehension
ability of PLMs, and an EventMLM method that trains the PLM to comprehend
the relationships between event components. Our experiments demonstrate that
PromptCL achieves superior performance compared to state-of-the-art baselines
on several event-related tasks. Moreover, our comprehensive analysis reveals that
the utilization of a prompt leads to enhanced generalization capabilities for event
representations.
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Science Foundation of China (No. 62076048), the Science and Technology Innovation
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