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Abstract. Span-based methods have unique advantages for solving
nested named entity recognition (NER) problems. As primary informa-
tion, boundaries play a crucial role in span representation. However, aux-
iliary information, which assists in identifying entities, still needs to be
adequately investigated. In this work, We propose a simple yet effec-
tive method to enhance classification performance using boundaries and
auxiliary information. Our model mainly consists of an adaptive con-
volution layer, an information-aware layer, and an information-agnostic
layer. Adaptive convolution layers dynamically acquire words at differ-
ent distances to enhance position-aware head and tail representations
of spans. Information-aware and information-agnostic layers selectively
incorporate boundaries andauxiliary information into the span representa-
tion and maintain boundary-oriented. Experiments show that our method
outperforms the previous span-based methods and achieves state-of-the-
art F1 scores on four NER datasets named ACE2005, ACE2004, Weibo
and Resume. Experiments also show comparable results on GENIA and
CoNLL2003.
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1 Introduction

Named entity recognition (NER) has been regarded as a fundamental task in
natural language processing. Previously, flat NER was treated as a sequence
labeling that requires assigning a label to each word in a sentence accordingly
[12,25,34]. This requires an assumption that the entities should be short and
that there should be no overlap between them. However, in real applications, as
illustrated in Fig. 1(a), an organizational noun may be nested in a personal noun.
The emergence of nested entities makes the assumption no longer applicable.
Therefore, it is necessary to design a model that can identify flat and nested
entities. Recent methods of nested NER can be divided into four categories: 1)
sequence labeling methods has been improved for identifying nested entities. Some
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Fig. 1. (a) An example sentence with nested entities from ACE2005 (b) Information
that can help determine the entity.

works overlay flat NER layers [9,23] to identify nested entities. However, such
practice is prone to error propagation. 2) hypergraph-based methods represent all
entity segments as graph nodes and combine them to represent hypergraph [17].
However, such methods suffer from structural errors and structural ambiguities
during inference. 3) sequence-to-sequence methods generate entities directly [29],
which leads to inefficiencies in the decoding process and common drawbacks
of sequence-to-sequence(Seq2Seq) models, such as exposure bias. 4) span-based
methods enumerate all spans in a sentence and classify them accordingly. The
approach takes the boundaries as the key to constitute the span representation
[19,35]. However, only the boundaries cannot effectively detect complex nested
entities [32], so focusing only on the boundaries is not comprehensive.

As shown in Fig. 1, the information available for a span to be identified
includes not only the boundaries but also the auxiliary information such as inside
tokens, labels, related spans, and relative positions. The utilization of the above
information is helpful to solve the entity recognition problem. Although there
have been works to utilize them [6,27], some issues still need to be addressed.
Firstly, enumerating all possible spans in a sentence using related spans is compu-
tationally expensive. Secondly, they can only leverage part of the aforementioned
auxiliary information, and most overlook relative positions’ importance. Lastly,
the use of related spans involves the challenge of subjective selection, which can
lead to error.

In order to solve the problems mentioned above, we propose a simple but
effective method to simultaneously utilize all the above-mentioned auxiliary
information. The key of our model is to propose an Auxiliary Information
Enhanced Span-based NER (AIESNER) neural method. Specifically, our
research follows two steps: entity extraction and entity classification. In the
entity extraction stage, we design an adaptive convolution layer that contains a
position-aware module, a dilated gated convolutions (DGConv) module, and a
gate module. These three modules can not only dynamically acquire position-
aware head and tail representations of spans by applying two single-layer fully
connection layer, but also capture relationship between close and distant words.
Through the acquisition of connections at different distances between words, the
information-aware layer obtains auxiliary information, while the head and tail
representations are used to acquire boundaries and then incorporate relatively
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necessary parts into span representations. Because span representations have
different association strengths under different labels in the entity classification
stage, we design the information-agnostic layer to apply the multi-head self-
attention mechanism to establish the corresponding span-level correlation for
each label. To avoid excessive attention to auxiliary information, we emphasize
the boundaries at this layer with the use of only head and tail representations.

To prove the effectiveness of proposed model, we conducted experiments on
six NER datasets, three of them are nested datasets, and the other three are flat
datasets. For the nested datasets, proposed model achieves F1 scores of 87.73,
87.23, and 81.40 on ACE2004, ACE2005 and GENIA, respectively. For the flat
datasets, our model achieves F1 scores of 97.07, 73.81, and 93.07 on Resume,
Weibo and CoNLL2003, respectively. Using BERT as an encoder, proposed
model outperforms the state-of-the-art methods on ACE2005, ACE2004, Resume
and Weibo. And we get comparable results on the GENIA and CoNLL03. Our
contributions are summarized as:

– This is the first work of using boundary and complete auxiliary information
(i.e., inside tokens, labels, related spans, relative position) that is more effi-
cient and reduces subjective interference.

– This work has no artificially set rules. The research does not require any
external knowledge resources to achieve promising results. Thus it can be
easily adapted to most usage scenarios for domain-specific data.

– The experiments explore that our proposed method performs better than
the existing span-based methods and achieves state-of-the-art performance
on ACE2005, ACE2004, Resume, and Weibo.

2 Related Work

2.1 Nested NER

Here we mainly focus on four nested NER methods: sequence-tagging meth-
ods, hypergraph-based methods, sequence-to-sequence methods, and span-based
methods since they are similar to our work.

By stacking flat NER layers, sequence labeling methods can obtain nested
entities. However, this leads to the error propagation problem. By Using dynamic
stacking of flat decoding layers, [9] construct revised representations of the enti-
ties identified in the lower layers. Then provide identified entities to the next
layer. Some people have improved this method by designing a reverse pyramid
structure to achieve the reverse flow of information [23]. Others divide NER into
two steps: merging entities and sequence labeling [4].

Hypergraph-based method was first proposed by [14] as a solution to the
problem of nested entities. It has been further consolidated and enhanced by
subsequent work [16,22]. The methods requires complex structures to deal with
nested entities. The method also leads to structural errors and structural ambi-
guities during inference.

Span-based methods enumerate all span representations in a sentence and
predict their types. The span representation of an entity can be obtained in var-
ious ways [11,19,31]. Several works have proposed the use of external knowledge
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resources. Such as the introduction of machine reading comprehension (MRC)
[13] and dependency relations [10] for span prediction. The span-based methods
can identify entities and their corresponding types directly [11], or they can split
the process of identifying entities into two stages, including entity extraction
and entity classification [19,26,27]. Compared with these previous methods, our
method uses the auxiliary information that the span representation possesses.

Seq2Seq methods generate various entities directly. [5] first proposed a
Seq2Seq model, where the input is the original sentence and the output is the
entity start position, entity length, and entity type. [29] combines the Seq2Seq
model with a BART-based pointer network. There are other methods using con-
trast learning [33], generative adversarial networks [8] and reinforcement learning
[24] for entity recognition.

3 Approach

Figure 2 shows an overview of our approach, which consists of four main layers:
the encoder layer, the adaptive convolution layer, the information-aware layer,
and the information-agnostic layer.

Fig. 2. The architecture of our method. MLP represents multi-layer perceptron. ⊕ and
⊗ represent concatenation and dot-product operations.

3.1 Encoder Layer

We follow [11] to encode the text. Given the input sentence X = {x1, x2, . . . , xN}
of N tokens, we first generate contextual embeddings of word pieces using BERT
[3] and then combine them employing max-pooling to produce word representa-
tions. Then we adopt BiLSTM [7] to enhance the word representation. Finally,
our sentence X can be represented as word representations H :

H = {h1, h2, . . . , hN} ∈ R
N×dw (1)

where dw denotes the dimension of the word representation, and N is the length
of the input sentence.
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3.2 Adaptive Convolution Layer

Position-Aware Module. To represent the head and tail of a span, we use
two single full connection layers to transform each hi to the head and tail vector
space. At this point, we obtain the head and tail representation. In addition,
position plays an essential role in identifying entities [28], so we attach position
embedding from [20] to the word representation:

hs
i = (Wshi + b1) ⊗ Ri (2)

ht
i = (Wthi + b2) ⊗ Ri (3)

Hδ =
{
hδ
1, h

δ
2, . . . , h

δ
N

}
(4)

where Ws,Wt ∈ R
dw×dh and b1, b2 ∈ R

dh are trainable parameters and bias
terms, respectively. Ri is the position embedding of the i -th word, ⊗ is the
element-wise multiplication. δ ∈ {s, t}. s and t are the head and tail, respectively.

DGConv Module. We feed the head and tail representation into the same
convolution module, which allows the head and tail to learn each other’s word
representation without introducing additional parameters. For capturing the
interactions between words at different distances, we use multiple DGConv with
different dilation rates r(e.g.,r ∈ [1, 2, 5]). Gated convolution avoids gradient
vanishing and controls information flow while these interactions form auxiliary
information. The calculation of each dilated gated convolution can be expressed
as:

DGConv(Hδ) = D1 ⊗ Hδ + (1 − D1) ⊗ φ (D2) (5)
Cr

δ = σ (DGConv (Hδ)) (6)

where D1 and D2 are parameter-independent 1-dimensional convolution with
Hδ as input. σ and φ are relu and sigmoid activation functions, respectively. ⊗
is element-wise multiplication, and 1 is a 1-vector with its dimension matching
D1. After that, we combine the different dilatation rates of Cr

δ to get the final
result Cδ =

[
C1

δ ;C2
δ ;C5

δ

] ∈ R
N×3dh and feed it into the multi-layer perceptron

(MLP) to reduce the dimension:

Qδ = MLP (Cδ) ∈ R
N×dh (7)

Gate Module. Since the previous work [6,32] demonstrated that the bound-
aries are practical, we balance the word representation itself with the extracted
word representation at different distances. Then we can filter the unnecessary
information. The gate module is shown below:

rδ = W1Hδ + W2Qδ + b (8)
Oδ = rδ ⊗ Hδ + (1 − rδ) ⊗ Qδ (9)
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where Hδ and Qδ are from Eqs. 4 and 7. W1,W2 ∈ R
dh×dh and b ∈ R

dh are
trainable parameters and bias term, respectively. 1 is a 1-vector with its dimen-
sion matching Hδ. ⊗ is element-wise multiplication. Finally, we get head and
tail representation:

S = Qs = {s1, . . . , sN} ∈ R
N×dh (10)

T = Qt = {t1, . . . , tN} ∈ R
N×dh (11)

3.3 Information-Aware Layer

To integrate boundaries and auxiliary information into the span representation.
We obtain Span(i, j) by dot product sT

i and tj , T is for transposition:

Span(i, j) = sT
i tj (12)

Span(i, j) ∈ R
1×1 indicates the region of a candidate span from the i -th word

to the j -th word in a sentence. Due to the filtering of the gate module [1] and
the local attention of the convolution [2], the model can learn to discriminate
the importance of words acquired at different distances. Thus, si and tj itself
will yield the boundary, close and distant words that are strongly associated
with the current word pair (si, tj) will be the inside tokens and related spans,
respectively:

(A + B)T (C + D) = AT C + AT D + BT C + BT D (13)

Here we simplify the process and ignore the weights. As in Fig. 1, suppose the
current entity Span(i, j) is [U.S.Army ], A represents U, B represents Persian,
C represents Army, and D represents Gulf. A+B represents the word represen-
tation of U that obtains Persian information from upper layer. AT D represents
the boundary, and BT D represents the required related spans. Thus, instead
of enumerating all spans, Span(i, j) can obtain boundaries, inside tokens, and
related spans, while the model can learn weights to adjust their importance.
Additionally, the relative positions can be determined by using position embed-
ding attached to the word representation. We take the boundary as an example:

(Rih
s
i )

T (
Rjh

t
j

)
= hsT

i Rj−ih
t
j (14)

where Ri and Rj are the position embeddings of the i -th and j -th words men-
tioned earlier (Eq. 2), related spans and inside tokens can also acquire their
relative position.

3.4 Information-Agnostic Layer

Excess auxiliary information cluttering the span representation during entity
classification may cause incorrect boundary predictions. So the boundaries
become more significant in this layer. And in order to learn the correlation
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intensities of span representation to different labels, motivated by the multi-
head self-attention mechanism, we set the number of heads as the size of entity
types, then apply attention operations. We denote cα(i, j) as the correlation
intensities of Span(i, j) under the α tag and only use the boundaries to form
span representation.

cα(i, j) = WT
α

[
hs

i ;h
t
j

]
(15)

where α ∈ {1, 2, . . . , |T |}, |T | is the number of labels. Wα ∈ R(2×dh) is the
trainable parameters. [;] means concatenation operation. hs

i and ht
j are from Eq. 2

and Eq. 3. We combine the results of entity extraction and entity classification
to get the final span score:

pα
i,j = Span(i, j) + cα(i, j) (16)

3.5 Training and Inference Details

During training, we follow [21] which generalizes the softmax cross-entropy loss
to multi-label classification. The method effectively solved the problem of posi-
tive and negative label imbalance. In addition, as in [31], we set a threshold γ to
determine whether span belongs to label α. The loss function can be formulated
as follows:

Lα = log

⎛

⎝eγ +
∑

(i,j)∈Ωα

e−pα
i,j

⎞

⎠+ log

⎛

⎝eγ +
∑

(i,j)/∈Ωα

epα
i,j

⎞

⎠ (17)

where Ωα represents the set of entities span belonging to label α, γ is set to 0.
Finally, we add up the loss on all labels to get the total loss:

L =
∑

α∈ε

Lα (18)

where ε = {1, 2, ..., |T |}, [T ] is the number of labels.
During inference, The span satisfying pα

i,j > 0 is the output of the entity
belonging to the label α.

4 Experiments

4.1 Datasets

To evaluate the performance of our model on the two NER subtasks, we conduct
experiments on six datasets.

Flat NER Datasets. We conduct experiments on the English dataset
CoNLL2003 and the Chinese dataset Resume and Weibo. We employ the same
experimental setting in previous work [29].
Nested NER Datasets We conducted experiments on the GENIA, ACE2005,
and ACE2004. For ACE2005 and ACE2004, we used the same dataset split
as [14]. For GENIA, we followed [11] using five types of entities, dividing the
train/dev/test as 8.1:0.9:1.0.
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Table 1. Results for flat NER datasets. † represents our re-implementation with their
code.

CoNLL2003 Weibo Resume

P R F1 P R F1 P R F1

Span-based Methods

Locate and Lable [19] 92.13 93.70 92.94 70.11 68.12 69.16 – – –

W2NER [11] 92.71 93.44 93.07 70.84 73.87 72.32 96.96 96.35 96.65

Biaffine [31] † 92.91 92.13 92.52 – – – – – –

Baseline+BS [35] – – – 70.16 75.36 72.66 96.63 96.69 96.66

Others

TENER [28] – – – – – 58.17 – – 95

LSTM + Lexicon augment [15] – – – 70.94 67.02 70.5 96.08 96.13 96.11

FLAT [12] – – – – – 60.32 – – 95.45

AESINER [18] – – – – – 69.78 – – 96.62

BartNER+BART [29] † 92.56 93.56 93.05 – – – – – –

AIESNER(Ours) 93.08 93.06 93.07 74.45 73.19 73.81 97.58 96.56 97.07

Table 2. Results for nested NER datasets.

ACE2004 ACE2005 GENIA

P R F1 P R F1 P R F1

Span-based Methods

Briaffine [31] 87.30 86.00 86.70 85.20 85.60 85.40 81.80 79.30 80.50

A Span-based Model [10] – – – – – 83.00 – – 77.80

Locate and Lable [19] 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54

Triaffine [32] 87.13 87.68 87.40 86.7 86.94 86.82 80.42 82.06 81.23

CNN-NER [30] 87.82 87.40 87.61 86.39 87.24 86.82 83.18 79.7 81.40

W2NER [11] 87.33 87.71 87.52 85.03 88.62 86.79 83.1 79.76 81.39

Others

SH+LSTM [22] 78.00 72.40 75.10 76.80 72.30 74.50 77.00 73.30 75.10

Neural layered model [9] – – – 74.20 70.30 72.20 78.50 71.30 74.70

BartNER+BART [29] 87.27 86.41 86.84 83.16 86.38 84.74 78.87 79.6 79.23

SMHSA [27] 86.90 85.80 86.30 85.70 85.20 85.40 80.30 78.90 79.60

AIESNER(ous) 87.82 87.64 87.73 86.97 87.49 87.23 81.75 81.06 81.40

4.2 Results for Flat NER

We evaluate our model on CoNLL03, Weibo, and Resume. As shown in Table 1,
F1 scores of our model were 93.07, 73.81 and 97.07, respectively, outperforming
the representatives of other methods (+0.02 on CoNLL2003, +3.31 on Weibo,
+0.45 on Resume). Compared to other span-based methods, our model achieves
the best performance on the F1 scores of Resume (+0.41 vs. baseline+BS) and
Weibo (+1.14 vs. baseline+BS), reaching the state-of-the-art results and on
CoNLL03 (+0.00 vs. W2NER) we also achieved competitive results. Further-
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Table 3. Model ablation studies F1. DGConv(r=1) denotes the convolution with the
dilation rate 1. “-” means remove the module.

ACE2005 Weibo Genia

Ours 87.23 73.81 81.40

-Gate Module 86.74 (−0.49) 71.32 (−2.49) 80.98 (−0.42)

Gate replaced with Add 86.44 (−0.79) 70.56 (−3.25) 81.08 (−0.32)

DGConv replaced with DConv 86.71 (−0.52) 73.06 (−0.75) 81.05 (−0.35)

-Position Emb 86.64 (−0.59) 72.46 (−1.35) 80.33 (−1.07)

-DGConv 86.48 (−0.75) 71.38 (−2.43) 80.68 (−0.72)

more, our model achieves the best precision performance, demonstrating the
effectiveness of the auxiliary information we incorporated.

4.3 Results for Nested NER

Table 2 shows the performance of our model on ACE2004, ACE2005, and
GENIA. F1 scores of our model were 87.73, 87.23, and 81.40, respectively,
which substantially outperforms the representatives in other methods (+0.89
on ACE2004, +1.83 on ACE2005, +0.80 on GENIA), proving the advantage of
span-based methods in solving nested NER. Compared with other span-based
methods, our model outperforms previous state-of-the-art methods in terms of
F1 scores for ACE2004 (+0.12 vs. CNN-NER) and ACE2005 (+0.41 vs. Tri-
affine). Our model also achieved competitive performance for GENIA (+0.00 vs.
CNN-NER).

4.4 Ablation Study

As shown in Table 3, we ablate or replace each part of the model on ACE2005,
Weibo, and GENIA. First, we remove the gate module, and the performance
drop proves the importance of the boundaries. In contrast, changing the gates
to direct addition would make the model unable to use the information obtained
selectively. The overall performance drop is more pronounced than the weakening
of the boundaries information. The model’s performance drops after replacing
the DGconv with the Dconv. After removing the adaptive convolution layer or
position embedding, the performance of the model decreases significantly.

4.5 Case Study

To analyze the effectiveness of auxiliary information, we show two examples from
the ACE2005 and GENIA datasets in Table 4. We remove the position embed-
ding, DGConv module, and Gate module from the dynamic convolution layer
to eliminate the effect of auxiliary information. In the first example, the model
misclassifies “Sukhoi Su-27” as “None” and “Su-27” as “VEH” in the absence
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Table 4. Case study on ACE2005 and GENIA dataset. The colored brackets indicate
the boundary and label of the entity. “AUX infor” is the abbreviation for auxiliary
information.

AIESNER w/o AUX infor AIESNER

Span Gold label label pα
i,j label pα

i,j

. . . [several squadrons of [Sukhoi Su-27]VEH interceptors, considered [[the world]LOC’s
premier dogfighters]VEH]VEH.

several squadrons of Sukhoi Su-27 . . . dogfighters VEH VEH 2.00 VEH 7.08

Sukhoi Su-27 VEH None −0.29 VEH 4.98

the world LOC LOC 5.95 LOC 8.12

the world’s premier dogfighters VEH None −1.56 VEH 2.41

Su-27 None VEH 3.79 None −3.89

. . . [octamer element]DNA 5-ATGCAAAG-3, located in the [upstream region]DNA of
this [promoter]DNA and in the [promoters]DNA of ...

octamer element DNA DNA 0.94 DNA 2.79

upstream region DNA DNA 1.21 DNA 2.19

promoter DNA None −0.17 DNA 1.92

promoters DNA DNA 0.29 DNA 2.49

of auxiliary information. However, with the help of auxiliary information, the
model corrects them to “VEH” and “None”. In the second example, the model
successfully corrects “promoter” from the “None” to the “DNA”. In addition,
with the help of the auxiliary information, the confidence level pα

i,j of the model
for the correct label can be significantly improved.

5 Conclusion

In this paper, we propose a span-based method for nested and flat NER. We
argue that boundaries and auxiliary information including relative position,
inside tokens, labels, and related spans, should be used reasonably to enhance
span representation and classification. To this end, we design a model that auto-
matically learns the correlation between boundaries and auxiliary information,
avoiding the error and tedium of human-defined rules. Experiments show that
our method outperforms all span-based methods and achieves state-of-the-art
performance on four datasets.
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