Chapter 4 Photocatalytic Degradation of Aqueous Organic Pollutants Using Iron Oxide-Based Photocatalysts

Yagna Prakash Bhoi and Weixin Huang

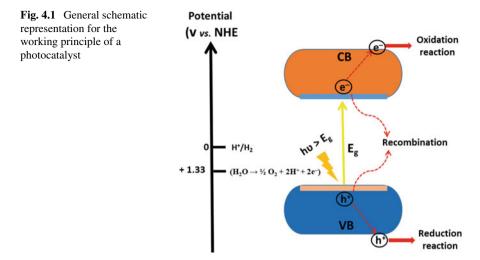
Abstract Pollution of water bodies arose due to invade of pollutants from various sector of society such as industries, agricultural field and domestic effluent water, etc. Heavy metals, pathogens and recalcitrant organic chemicals are typical examples of deleterious elements that adversely affect the health of aquatic environment. The removal of such pollutants has become an urgent need across the globe, which brings the discovery of various water treatment techniques in order to get clean water. In past few decade, outstanding result has been achieved in the field of water desalination. The application of heterogeneous photocatalysis route for the cleaning of water is reflected as one of the potential and sustainable approach since it makes use of renewable solar light as source of energy. In this chapter, we will discuss the application of iron oxide-based photocatalysts towards the removal of pollutants from aqueous source. Various research approaches progressed to improve the photocatalytic ability of iron oxide will be discussed in detail. The discussion of this chapter particularly focussed on the evolution of composite/heterostructure of iron oxidebased photocatalysts and their photocatalytic applications towards the removal of aqueous pollutants.

Keywords Photocatalysis \cdot Water pollutant \cdot Solar energy \cdot Iron oxide nanocomposite

4.1 Introduction

The water pollution and its impact on the all life on the earth is a global concern. The discharged water from the chemical and agrochemical industries contains substantially huge amount of toxic and carcinogenic organic chemicals such as VOC, pesticides, dyes, etc., which infused into water bodies. This water pollution is one of the

Y. P. Bhoi (🖂) · W. Huang


Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, P.R. China e-mail: yagnapbhoi@gmail.com

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 H. Sahoo and J. K. Sahoo (eds.), *Iron Oxide-Based Nanocomposites and Nanoenzymes*, Nanostructure Science and Technology, https://doi.org/10.1007/978-3-031-44599-6_4

responsible factor for many water-borne diseases and scarcity of portable water. In this perspective, development of low-cost and high efficient water treatment technologies to treat and recycle the wastewater in a sustainable way is prime importance in order to get portable water for our society. Various methodologies were developed in recent past, which includes wet air oxidation, UV photolysis, adsorption and biodegradation methods are available for wastewater treatment [1-3]. The adsorption or coagulation techniques are among the widely used desalination technique in order to remove organic and inorganic pollutants from contaminated water [2]. However, these techniques simply concentrate the pollutants by transferring them to other phases. Sedimentation, filtration, chemical and membrane technologies are some examples of some conventional water treatment techniques, which suffers with the limitations like high operational cost and could produce toxic by-products into the environment. It is highly essential to develop advanced water treatment technology, which can mineralize the organic pollutants completely by a simple and easy experimentation process, less expense of energy and cost. In this perspective, the complete mineralization of organic pollutants by heterogeneous photocatalytic process using solar light as energy source and semiconductor nanoparticles as catalyst is a sustainable strategy to deal.

4.2 Fundamental of Photocatalysis

Photocatalysis is the science, which employed a catalyst and light as energy source to speed up chemical reactions and photocatalyst is a material that is capable of absorbing light, producing electron-hole pairs that enable chemical transformations of the reactants and regenerate after each cycle. When light energy with greater than the band gap energy (E_g) of the photocatalyst falls on the photocatalyst surface, the electron gets excited to the conduction band (CB) leaving a hole in the valance band (VB). The electron hole migrates to the surface of the photocatalyst and participate in reaction with different substrate. On the other hand, some of the electron hole recombines themselves, which leads to the poor photocatalytic activity of the catalyst (Fig. 4.1). The splitting of water by Fujishima and Honda over TiO₂ surface in the presence of light and electricity put the foundation for the semiconductorbased photocatalysis [4]. Until now TiO₂ is the most widely studied photocatalyst with promising field of applications such as environmental cleaning, self-cleaning surfaces, air and water purification, sterilization, hydrogen evolution, and photoelectrochemical conversion of energy, etc. [4]. TiO₂ is a wide band gap photocatalyst with band gap of 3.2 eV. Although, TiO₂ photocatalyst possess advantages such as high oxidation ability, excellent chemical stability, nontoxicity and inexpensive, it suffers limitations like fast recombination of photogenerated electron-hole pair and poor utilization of solar spectrum [4, 5]. Moreover, the solar spectrum comprises only 5-7% of UV light, while 46% and 47% of the solar spectrum has visible light and infrared radiation, respectively [6].

In recent past, several research efforts has been put in order to design photocatalyst, which can able to absorb visible light of solar spectrum. MoS₂, CdS, Fe₂O₃, Bi₂WO₆, $Bi_2W_2O_9$, $BiFeO_3$ and bismuth oxyhalides (BiOX, X = Cl, Br, I) are few examples of metal oxide and metal sulphide-based visible light active photocatalyst widely studied for the degradation of a wide range of harmful aqueous organic pollutants into CO_2 and H_2O [7–13]. The pristine photocatalysts suffers with a poor separation of charge carriers, which leads to a poor photocatalytic efficiency of the photocatalysts. With time, noticeable research attempts have been devoted in order to minimize the recombination process of charge carriers and to enhance the light absorption ability of the photocatalyst, by adopting several strategies such as decoration of noble metal nanoparticles over photocatalyst surface, doping, and composite/heterojunction formation by coupling with suitable a semiconductor [14, 15]. Fe₂TiO₅/ α -Fe₂O₃/ TiO₂, α-NiS/Bi₂O₃, Bi₂S₃/BiFeO₃, CuS/Bi₂O₂CO₃, Bi₃S₃/β-Bi₂O₃/ZnIn₃S₄, CuS/ BiFeO₃, CuS/Bi₄Ti₃O₁₂, Bi₂S₃/Bi₂W₂O₉, CuS/Bi₂W₂O₉, Bi₂O₃/CuBi₂O₄, UiO-66/CdIn₂S₄, SnS₂/Bi₄Ti₃O₁₂, CdS/BiOBr/Bi₂O₂CO₃ and CdS/Bi₂₀TiO₃₂/Bi₄Ti₃O₁₂ are few examples of recently studied heterojunction photocatalytic systems with improved light absorption and charge carrier separation ability [12, 16-27].

4.3 Iron Oxide-Based Photocatalyst

The iron oxides are composed of Fe and O. Among eight different form of iron oxides, the hematite (α -Fe₂O₃), magnetite (Fe₃O₄) and maghemite (γ -Fe₂O₃) are widely studied oxides due to their unique biochemical, magnetic and catalytic properties. The Fe₂O₃ exists in three of different crystalline structures, such as hematite (α -Fe₂O₃), maghemite (γ -Fe₂O₃) and ϵ -Fe₂O₃ [6, 28]. The α - and γ -phases are extensively studied materials, while β -Fe₂O₃ phase is less studied material because of

the difficulty in the preparation of single-phase material. Rhombohedral-hexagonal α -Fe₂O₃ is highly stable and has significant potentials in photocatalytic applications, as it is nontoxic, inexpensive, earth abundance, corrosion resistance property with a suitable band gap value ($E_g = 2.0-2.2 \text{ eV}$) to harvest visible light of the solar spectrum, whereas the maghemite is a metastable phase between hematite and magnetite. It has similar crystal structure as magnetite and chemical composition similar to hematite. In the hematite crystal structure, iron occupies the octahedral sites where oxygen is hexagonally close packed. On the other hand in both maghemite and magnetite, iron present in both octahedral and tetrahedral sites and oxygen cubically close packed. The ϵ -Fe₂O₃ is a transition phase between hematite and maghemite, which attract research attention owing to its unique magnetic properties. Seeing the extensively used of both hematite and maghemite form of Fe₂O₃ than the other polymorphs, this study is focussed on their utilizations in the field of heterogeneous photocatalysis towards the degradation of various persistent organic contaminants from aqueous medium.

Song and co-worker prepare α -Fe₂O₃ nanodisks by the assembly of singlecrystalline nanoplates with layered structures by using a silicate-anion-assisted hydrothermal method. The silicate anions believe to adsorb selectively onto the $\{0001\}$ plane of α -Fe₂O₃ nanoplates and induce the self-assembly of the plates to give the layered nanodisks structure. The α -Fe₂O₃ nanodisks display enhanced visible light absorption with excellent photocatalytic activity for the degradation of methylene blue under visible light irradiation [29]. Heidari and co-worker reported the synthesis of porous network-like α -Fe₂O₃ and α/γ -Fe₂O₃ nanoparticles by a simple solution combustion method and evaluated the photocatalytic activity towards the degradation of methylene blue (MB) dye under. The Fe₂O₃ materials calcined at 700 and 800 °C contains diffraction peaks for only α -Fe₂O₃, where Fe₂O₃ material obtains after a calcination at 450 °C, which contains both the α and γ -Fe₂O₃ for of Fe₂O₃. The higher photocatalytic efficiency of the α/γ -Fe₂O₃ heterophase material may be account for the formation of junction between α -Fe₂O₃ and γ -Fe₂O₃ phases, which reduced the recombination of photogenerated electrons, and holes [30]. Jing and co-workers studied the photocatalytic activity of pure α -Fe₂O₃ as well as phosphatemodified α -Fe₂O₃. They have employed the simple one-pot water-organic two-phase separated hydrolysis-solvothermal (HST) method for the preparation of α -Fe₂O₃ nanoparticles. The phosphate-modified α -Fe₂O₃ exhibits high visible photocatalytic activity for the degradation of liquid-phase phenol and gas-phase acetaldehyde. After surface modification with phosphate, the surface -Fe-OH substituted with -Fe-O-P-OH groups, which significantly promote O₂ adsorption over the catalyst surface. The enhanced photocatalytic activity is due to the enhancement in charge carriers separation ability after the modification with phosphate groups [31]. By using electron beam evaporation through a normal thin film deposition and oblique angle deposition (OAD), Fe₂O₃ thin films and nanorod arrays fabricated by Larsen and co-workers [32]. The growth of the materials aligns towards the (110) direction. Under visible light, the Fe₂O₃ thin film samples shows more photocatalytic efficiency towards the degradation of methylene blue dye. Whereas the Fe₂O₃ nanorod inactivate more efficiently to the Escherichia coli O157:H7 bacteria as compared to

the Fe_2O_3 thin films. Bahnemann and co-workers demonstrated the generation of H₂O₂ species during the photocatalytic oxidations of organic compounds by using α -Fe₂O₃ photocatalyst. In a comparison study, the ZnO and TiO₂ photocatalysts found to be more active in the generation of H_2O_2 and in the degradation of chlorinated hydrocarbon molecules as compared to the α -Fe₂O₃ photocatalyst [33]. Hameed and co-workers successfully fabricated the α -Fe₂O₃ and γ -Fe₂O₃ polymorphs by using a simple surfactant (Triton X) aided hydrogel synthetic route. The photocatalytic properties of both the form of Fe_2O_3 were studied for the mineralization of 2-chlorophenol and 2-nitrophenol pollutants under the visible light as well as under natural sunlight illumination. Both the polymorphs showed a considerably high activity for the degradation of the phenolic compounds under solar light as compared to visible light irradiation. A significant improvement in the photocatalytic activity under visible light was noticed when the polymorphs were preexposed to sunlight preceding to the photocatalytic tests. The higher photocatalytic activity of the exposed polymorphs as compared to the unexposed one is due to the introduction of defects sites which traps the excited electrons during the photocatalysis mechanism [34]. Wang and co-workers fabricated a dodecahedral α -Fe₂O₃ nanoparticle with 6 (012) and (104) exposed facets, respectively. The coexistence of these different facets account for a better photocatalytic ability in comparison with the crystals having single exposed facet. They have also demonstrated that the separation of charge carriers between anisotropic facets also has a significant contribution on photocatalytic degradation of Rhodamine B and methylene blue organic dyes [35]. Ramakrishna and co-workers prepared pure α -Fe₂O₃ with nanobraids and nanoporous like structures using an electrospinning synthesis method followed by annealing at 500 °C for 5 h. Both of the nanobraids and nanoporous display excellent photocatalytic degradation activity for Congo red dye with 91.2% and 90.2% degradation, respectively after 140 min of irradiation under visible light. They have demonstrated the significant role of porous surface and small particle size of the α -Fe₂O₃ towards the excellent photocatalytic activity. The superoxide radicals (O₂⁻⁻), H⁺ ion, hydroperoxyl radicals ([•]HO₂), hydroxyl radicals are generated by the reaction of water and oxygen on the photogenerated hole and electron are responsible for the degradation of Congo red dye over the photocatalyst surface [36]. Zheng and co-workers successfully fabricated dendritic α -Fe₂O₃ nanostructures with controlled dimension and morphology by a facile solvothermal synthesis method in the presence of 1-N-butyl-3-methylimidazolium benzoate ([Bmim][PhCOO]) ionic liquid. A change in the molar ratio of [Bmim][PhCOO] to K₃[Fe(CN)₆] from 0:1 to 2:1, and 5:1 can bring the dendrite structure to hexagonal nanoplates and rods. The ionic liquid plays a crucial role in deciding the formation of α -Fe₂O₃ with different morphologies. The α -Fe₂O₃ with rod morphology exhibit superior photocatalytic activity towards visible light-induced degradation of Rhodamine B (RhB) dye as compared to the dendrites and plates structured α -Fe₂O₃ materials. The degree of crystallinity and exposed crystal facets of α -Fe₂O₃ materials accounts for improving the photocatalytic activity [37].

Song and co-workers recently fabricated a snowflake-like α -Fe₂O₃ materials by using a simple single-step hydrothermal approach and studied there photocatalytic activity towards the degradation of a wide variety of organic pollutants such as crystal violet, Rhodamine 6G, methyl orange, etc. The α -Fe₂O₃ snowflakes exhibit a superior photocatalytic activity towards degrading cationic organic dyes (crystal violet, Rhodamine 6G) than for the anionic dye (methyl orange) degradation [38]. Shim and co-workers synthesized porous natured Fe₂O₃ nanorod by a two-step process. First ferrous oxalate dihydrate (FeC₂O₄·2H₂O) precursor synthesized by a chemical solution processes and second the ferrous oxalate dehydrate on annealing in air at 500 °C for 2 h to get the porous Fe₂O₃ nanorod. The ferrous oxalate dihydrate nanorods precursor has the length $3-9 \,\mu m$ and diameter of between 110 and 150 nm. After thermal annealing, the nanorods structured remain intact in the Fe₂O₃ materials. The Fe₂O₃ nanorod exhibited excellent photocatalytic degradation ability for a wide range of organic pollutants such as RhB, methylene blue (MB), p-nitrophenol (pNP), eosin B and methyl orange (MO), respectively. The porous structures believe to provide more active reaction sites and also facilitates the efficient separation of photogenerated electrons and holes which is accountable for the excellent photocatalytic efficiency of the prepared porous Fe₂O₃ nanorods [39]. Zhou and co-workers has prepared γ -Fe₂O₃ nanoparticles with spherical morphology by using an oxidizing environment via a solution synthesis method by changing the pH and reaction temperature. The spherical nanoparticles has a particle size around 17-55 nm and a BET surface area of 14.357 m^2/g . The pH of the reaction media crucially influence the particle size of the nanomaterials. With increase in the pH value from 6 to 12, the particle size also increases. The as-synthesized y-Fe₂O₃ nanoparticles show potential photocatalytic activity towards the degradation of Orange I dye under UV and visible light illumination. The y-Fe₂O₃ nanoparticles prepared at pH 6 at a reaction temperature 60 °C with smallest particle size show highest photocatalytic efficiency than other synthesized γ -Fe₂O₃ nanoparticles [40]. Fardood and co-workers synthesized hematite (α -Fe₂O₃) nanoparticles by a simple, environment-friendly and less-expensive sol-gel synthesis method in the presence of a bio template (Arabic gum). The average particle size of the prepared materials is 45-50 nm. The α -Fe₂O₃ materials evaluated as a potential photocatalyst with a photocatalytic activity of 90% degradation of Congo red dye after a 90 min of irradiation time [41]. Wang and coworkers fabricated hollow microspherical α-Fe₂O₃ nanostructure material by ionic liquid-assisted solvothermal method followed by calcination at 250 °C for 6 h. The α -Fe₂O₃ have a specific surface area up to 220 m²/g. The α -Fe₂O₃ microspheres show excellent photocatalytic activity towards the degradation of Rhodamine B dye. The as-synthesized α -Fe₂O₃ microspheres exhibit a photocatalytic activity 2–3 times higher than the α -Fe₂O₃ nanoparticles. The higher specific surface area, porous nature and hollow nanostructure play crucial role in the enhanced photocatalytic activity of the α -Fe₂O₃ microspheres [42]. Zhu and co-workers prepared hierarchical α-Fe₂O₃ hollow microspheres using a surfactant-free solvothermal synthesis method and post-thermal treatment at 450 °C for 2 h. The prepared photocatalyst evaluated as a potential catalyst for the degradation of salicylic acid under UV light irradiation [43]. Wang and co-workers fabricated α -Fe₂O₃ nanospheres/microsphere by using

a surfactant and template-free two-step synthesis procedure, hydrothermal treatment followed by a thermal decomposition. The α -Fe₂O₃ nanospheres/microsphere composed of interlinked elongated nanoparticle and nanospheres/microsphere has a diameter around 5 μ m, and the elongated particle size is below 30 nm. The α -Fe₂O₃ nanospheres/microsphere is mesoporous in nature, with a pore size distribution between 2 and 50 nm with specific surface area of 20 m^2/g . The photocatalytic activity of the as-synthesized α -Fe₂O₃ nanospheres/microsphere evaluated for the degradation of Rhodamine 6G dye under visible light illumination. The α -Fe₂O₃ nanospheres/microsphere exhibit a photocatalytic efficiency 2 times that of nanosized α -Fe₂O₃ particles and around 12 times higher than the micron-sized particles. The higher photocatalytic activity of the α -Fe₂O₃ nanospheres/microsphere was due to combined contribution of the high specific surface area and the porous architecture [44]. Wang and co-workers develop a facile solvothermal route to prepare 3D porous flower-like α -Fe₂O₃ nanomaterial with hierarchical architecture without using any structural templates. Two-dimensional α -Fe₂O₃ nanopetals organize themselves in a hierarchical fashion in order to give the 3D porous flower-like structure. The depth morphological analysis reveals that the nanopetals has a thickness between 20 and 50 nm and width of 300-500 nm; moreover, these nanopetals composed of nanobricks with 100 nm in length and 30 nm in diameter. The 3D α -Fe₂O₃ materials has high specific surface area ($\sim 52.51 \text{ m}^2/\text{g}$) with the presence of numerous mesopores and macropores that facilitate the efficient transportation of the substrate during the catalytic reaction. The photocatalytic activity of the 3D α -Fe₂O₃ nanomaterial explored by the mineralization of Rhodamine B dye under UV light irradiation [45]. Geng and co-workers prepared α -Fe₂O₃ with flue-like 3D porous nanoarchitectures by using a Ni²⁺/surfactant-assisted solvothermal method at 200 °C for 24 h. The α -Fe₂O₃ material has a specific surface area of 88.82 m²/g with potential photocatalytic activity towards the degradation of methylene blue dye under visible light. They have closely demonstrated the influence of the Fe³⁺ and Ni²⁺ ion ratio on the morphology of the α -Fe₂O₃ materials. At a molar ratio of Fe³⁺ to Ni²⁺ ion at 1:2 in the solution gives rise to a micro-balls constituted of fine α -Fe₂O₃ nanorods, while at molar ratio of 1:3 gives the 3D flue-like structure and the micro-balls structure again regain on further changing in the molar ratio to 1:4. The 3D flue-like α -Fe₂O₃ shows highest photocatalytic ability for the degradation of methylene blue dye as compared α -Fe₂O₃ nanoparticles and P25 photocatalyst under visible light illumination [46]. The pristine Fe₂O₃ photocatalyst has some limitations such as rapid recombination of photogenerated electron-hole pair and poor response to solar spectrum, which result in poor photocatalytic performances. Within short span of time, a lot of research effort have been devoted to prepare novel hybrid materials such as modification with noble metal, doping and formation of binary and ternary composite/heterojunction material. These strategies believe to suppress the recombination process of charge carriers and enhance the light photocatalytic efficiency as a whole. In the subsequent text, we will discussed the hybrid, doped and noble metal-modified Fe_2O_3 photocatalyst and their photocatalytic applications.

Generally, doping of foreign elements (metal or non-metal) significantly alter the physical parameters, chemical reactivity and redox behaviour of the host material. The doping with non-metal such as nitrogen and sulphur widely studied. The main purpose of non-metal doping in Fe_2O_3 , TiO₂ or with metal oxide photocatalysts is to alter the band gap value by mixing the oxygen 2p orbital with that of non-metal. The doping of non-metals believe to creating a trap state (separate band) in between the valence band and conduction band which controls the electron-hole recombination and delay the recombination process so that the photogenerated electron-hole pair could be available for the redox reaction. Parida and co-workers prepare α -Fe₂O₃ material co-doped with S and N by using co-precipitation method. They have used thiourea both as precipitating agent and as the sulphur and nitrogen source. The S and S-N co-doping induced growth along the (104) plane, whereas the N doping induced along the (110) crystal plane. After S and N doping, the specific surface area increases significantly than the un-doped pristine α -Fe₂O₃; on the other hand, the highest surface area has been noticed for the S–N co-doped sample $(57.85 \text{ m}^2/\text{g})$. This observation indicates the significant contribution of minute amount of sulphate ion in the samples. The doped sample shows improved visible light response than the pure α -Fe₂O₃ sample. The photocatalytic activity of the un-doped and doped sample was evaluated for the degradation of Rhodamine B dye under natural sunlight. A maximum degradation efficiency of 95% was obtained after a reaction time of 4 h [47]. Almazroai and co-workers prepared S-doped α -Fe₂O₃ nanomaterial by microwave irradiation (300 W for 20 min) using thiourea as sulphur precursor. The crystallinity of the α -Fe₂O₃ nanomaterial has found to decrease after S doping on the α -Fe₂O₃ lattice. After the sulphur-doping enhancement in the visible light absorption, intensity was noticed with a small decrease in the band gap value. This enhancement in the absorbance intensity of the doped photocatalyst can be attributed to the charge transition between the p-orbitals of the S atom and the conduction band (CB) of the α-Fe₂O₃ nanomaterial. The S-doped α-Fe₂O₃ nanomaterial display improved photocatalytic degradation efficiency than the pristine α -Fe₂O₃ nanomaterial [48]. Suganthi and co-workers fabricated metal (M = Cu, Ni and Co)-doped iron oxide (α -Fe₂O₃) nanoparticle by chemical precipitation followed by calcination. The specific surface area and mesoporosity of the Fe_2O_3 increases after doping with metal was observed. The metal-doped α -Fe₂O₃ exhibits higher photocatalytic activity than the pristine α -Fe₂O₃ nanomaterial towards the degradation of Acid Red-27 organic dye under visible light illumination. Among the metal-doped α -Fe₂O₃ materials, the Cu-doped α -Fe₂O₃ exhibits highest photocatalytic activity [49]. Gao and co-workers prepared multiple metal-doped Fe₃O₄@Fe₂O₃ nanoparticles from Waelz slag, an iron containing hazardous waste. They have employed acidolysis, sol-gel and calcination in order to prepare the multiple metal (Al, Zn, Cu and Mn)-doped Fe₃O₄@Fe₂O₃ nanoparticles from the waste slog. The photocatalytic activities of the synthesized multiple-metal-doped Fe₃O₄@Fe₂O₃ nanoparticles as well as the pristine Fe₂O₃ nanoparticles were compared for the photocatalytic degradation of methyl orange dye under UV and simulated sun light irradiation. It was observed that all of the doped Fe₃O₄@Fe₂O₃ nanoparticles shows improved photocatalytic activities as compared

to the pristine Fe₂O₃ [50]. So far, TiO₂ and ZnO are widely studied UV-active photocatalyst. However, there UV light response and poor separation of charge carriers limits their practical utility. Hence, a lot of research effort has been made in recent past in order to make heterojunction and composite by combining with different suitable visible light active semiconductor photocatalyst. α -Fe₂O₃ is a narrow band gap visible light active photocatalyst and its suitable band alignment makes α -Fe₂O₃ an ideal candidate to combine with other wide band gap semiconductor with improved light absorption and charge carrier separation ability. In the subsequent text, we will discuss the research progress in the preparation of composite/heterojunction of α -Fe₂O₃ with various semiconducting photocatalytic materials.

Omri and co-workers recently fabricated α-Fe₂O₃/TiO₂ nanocomposite material containing 10 and 50 mol% of TiO₂ by using a simple precipitation method. The α -Fe₂O₃/TiO₂ nanocomposite materials were characterized using various analytical instruments and studied as photocatalyst to degrade methylene blue dye (MB) under visible light. A maximum of 92% of MB dye degradation was recorded after 120 min of irradiation by using α -Fe₂O₃/TiO₂ composite material 50 mol% of TiO₂, whereas the pure α -Fe₂O₃ and TiO₂ exhibited relatively lower photocatalytic efficiency than the composite materials. Under the visible light, the TiO_2 material is unable to generate electron-hole pair, whereas the α -Fe₂O₃ material produce electron-hole pair. After material contact, the excited electron from the conduction band (CB) of α -Fe₂O₃ migrate to the CB of TiO₂, whereas the hole accumulate in the valance band (VB). This process minimize the recombination process of photogenerated electron-hole pair. The improved visible light absorption and charge carrier separation properties are account for the higher photocatalytic activity of the α -Fe₂O₃/TiO₂ nanocomposite material [51]. Qu and co-workers prepared α-Fe₂O₃/TiO₂ dendritic heterostructure nanomaterials in a two-step processes, first TiO₂ nanofiber prepared by electrospinning method and in second step the α -Fe₂O₃ nanomaterial deposited over the TiO₂ nanofiber by hydrothermal method. Four different sets of α -Fe₂O₃/TiO₂ dendritic heterostructure materials were prepared containing different amount of α -Fe₂O₃. From morphology, it is clearly seen that the heterostructure are comprises of TiO₂ nanofiber (diameter 70 nm) and α -Fe₂O₃ nanorods (length 100–200 nm and diameter ~ 30 nm), and the TiO₂ nanofibers are homogeneously covered by the α -Fe₂O₃ nanorods giving a typical branched and dendritic heterostructure configuration. The heterostructure materials exhibit enhanced visible light absorption feature. The photocatalytic activity of the α -Fe₂O₃/TiO₂ dendritic heterostructure nanomaterials demonstrated towards the degradation of a wide range of organic dye pollutants such as Congo red (CR), methylene blue (MB), methyl orange (MO) and eosin red (ER). All the heterostructure materials show enhanced degradation efficiency than the parent TiO₂ and commercial α -Fe₂O₃ materials. The enhanced photocatalytic activity of the heterostructured material is due to improved visible light response, charge carrier separation and efficient generation of hydroxyl radical [52]. Fu and co-workers fabricated magnetic y-Fe₂O₃ nanosheets/mesoporous black TiO₂ hollow spherical heterojunctions material by employing a metal-ion intervened hydrothermal process followed by high-temperature hydrogenation technique. The hybrid γ -Fe₂O₃/b-TiO₂ hollow structure material have high specific surface area of $\sim 63 \text{ m}^2/\text{g}$ and a pore size of 10.5 nm. The resulting hybrid material contains oxygen vacancies which influence the recombination process of electron-hole pairs and extend the lifetime of the charge carriers, by this means improving the photocatalytic performance of the photocatalyst. The photocatalytic activity of the hybrid γ -Fe₂O₃/b-TiO₂ heterojunctions material has been studied by degrading tetracycline pollutant. The hybrid γ -Fe₂O₃/b-TiO₂ display the photocatalytic degradation efficiency about three times greater than that of the pristine photocatalyst. The high photocatalytic property of hybrid γ -Fe₂O₃/ b-TiO₂ heterojunctions is account to the narrow bandgap nature which extending the photo response from visible light to near infrared regions and the efficient separation and trapping of charge carrier due to generation of vacancies [53]. Jeevanandam and co-workers have synthesized TiO₂@a-Fe₂O₃ core-shell nanoheterostructured material by using a simple thermal decomposition technique. Microscopic studies confirm the deposition of the uniform α -Fe₂O₃ shell on the surface of TiO₂ spheres. The photocatalytic application of the $TiO_2@\alpha$ -Fe₂O₃ core-shell nanoheterostructured material was explored towards the degradation of RhB dye under sunlight illumination. The nanoheterostructured material displays enhanced photocatalytic ability than the pristine TiO₂ and α -Fe₂O₃ materials. This enhanced photocatalytic activity of the heterostructured material can be ascribed to the facile transfer of electrons from TiO₂ and α -Fe₂O₃ phase, which reduce the recombination processes of electron-hole pair over the photocatalyst surface [54].

The zinc oxide (ZnO) is an n-type wide band gap semiconductor, low price and non-toxic nature and a very good photocatalyst photocatalysis. Zhang and coworkers fabricate of magnetic 3D y-Fe₂O₃@ZnO core-shell nanomaterial by using hydrothermal sintering followed by atomic layer deposition (ALD) method. ZnO shell layer was uniformly deposited on the γ -Fe₂O₃ core. The band alignment of the y-Fe₂O₃ and ZnO photocatalyst are so aligned in a manner to give the characteristic feature of a type-II heterojunction photocatalyst. The photocatalytic activity of the synthesized core-shell nanomaterial was evaluated for ciprofloxacin degradation under simulated sun light illumination. The hydroxyl radical and the hole contribute significantly on the degradation of ciprofloxacin is noticed. The y-Fe₂O₃@ZnO core-shell nanomaterial displays enhanced photocatalytic efficiency than the pristine y-Fe₂O₃ and ZnO counterpart. The improved photocatalytic activity of the heterostructured material is due to the formation of type-II heterojunction and the core-shell structure, which facilitate the efficient migration and separation of the charge carrier [55]. Carmalt and co-workers fabricate α-Fe₂O₃/ZnO heterojunction films by using aerosol-assisted chemical vapour deposition technique. The band alignment and electron migration gives a characteristic feature of a type-I heterojunction system. The prepared α -Fe₂O₃/ZnO heterojunction films exhibit remarkably improved photocatalytic efficiency towards the degradation of stearic acid under UVA light, which is 16 times higher than that of the α -Fe₂O₃ and 2.5 times than that of the ZnO photocatalysts. Upon irradiation photogenerated electrons migrate from the CB of ZnO layer to the α -Fe₂O₃ layer that increase the life time of the electron which is responsible for the enhanced photocatalytic property of the α -Fe₂O₃/ZnO heterojunction films [56]. Mohapatra and co-workers fabricated a ternary α-Fe₂O₃/ZnFe₂O₄/

63

ZnO nanohybrid material by using a microwave-assisted co-precipitation and coprecipitation and thermal annealing synthesis technique. The co-precipitation method gives raise to nanoparticle where microwave-assisted synthesis gives nanodisks like morphology of the ternary photocatalyst. The ternary α -Fe₂O₃/ZnFe₂O₄/ZnO photocatalyst materials were examined as photocatalyst towards the degradation of methylene blue and malachite green dyes under solar light. The material prepared by using microwave-assisted synthesis shows highest photocatalytic activity than the material obtained by co-precipitation method. A maximum of 93.2% of MB degradation noticed after 32 min of irradiation using the α -Fe₂O₃/ZnFe₂O₄/ZnO nanodisks. The hydroxyl radical plays a crucial role in the degradation of the organic dyes which was confirmed from the radical scavenger experiment. They have proposed a cascade movement of electron across the CB band of the three component of the ternary photocatalyst, which efficiently reduce the recombination rate of the photogenerated charge carriers. This property may accountable for the improved photocatalytic activity of the synthesized ternary photocatalytic material [57]. Hota and co-workers have fabricated Fe₂O₃/ZnFe₂O₄, ZnFe₂O₄/ZnO and Fe₂O₃/ZnFe₂O₄/ZnO binary and ternary composite photocatalyst systems by using a simple hydrothermal method followed by calcination at 500 °C. All the synthesized nanocomposite materials display improved visible response as compared to the Fe_2O_3 material. The $Fe_2O_3/$ $ZnFe_2O_4/ZnO$ ternary composite material has the highest specific surface area of 49.464 m²/g, which is much higher than that of the pure Fe_2O_3 and the binary composite material. The photocatalytic activity of the synthesized composite materials was evaluated for the degradation of malachite green (MG) dye under natural sunlight. A maximum of 96.92% of degradation of MG dye was achieved after 90 min of irradiation using the Fe₂O₃/ZnFe₂O₄/ZnO ternary composite material. They have proposed a cascade migration of electron across the CB of the different component of the ternary photocatalyst, which significantly reduce the recombination process of charge carriers [58].

Graphic carbon nitride (g-C₃N₄) has been emerged as a potential visible light active photocatalyst with a band gap of 2.7 eV due to high chemical stability, suitable band alignment, natural abundance and easy synthesis. However, low specific surface area, moderate band gap value and poor separation of photogenerated charge carriers limits its practical applications. So many research approaches have been made in recent past in order to prepare composite and heterojunction with Fe₂O₃, which has a suitable band alignment to prepare hybrid material with improved visible light response and charge carrier separation properties. Lu and co-workers has recently fabricated a series of α -Fe₂O₃/g-C₃N₄ hybrid materials and studied their photocatalytic activity towards tetracycline degradation under visible light. The α -Fe₂O₃/ g-C₃N₄ hybrid materials were prepared by the calcination of Fe-based metal organic framework (Fe-MOF) and melamine. They have demonstrated the uniform distribution of α -Fe₂O₃ nanoparticles (3–5 nm) over the porous g-C₃N₄ nanosheet. The existence of close microscopic contact between these two phases further confirmed from the TEM analysis. The α -Fe₂O₃/g-C₃N₄ hybrid material displays higher photocatalytic activity than the bulk $g-C_3N_4$ photocatalyst. The band alignment of both the component of the hybrid α -Fe₂O₃/g-C₃N₄ material are aligned in a type-II fashion, and this is responsible for the enhanced charge carrier separation and photocurrent density. The improved visible light absorption, greater specific surface area and efficient charge carrier separation property of the α -Fe₂O₃/g-C₃N₄ hybrid material are responsible for the enhanced photocatalytic activity [59]. Prakasam and co-workers prepared g-C₃N₄/ α -Fe₂O₃ hybrid nanocomposites material by changing the mass ratio of both the components by using a simple one-step hydrothermal method. The photocatalytic activity of the hybrid material evaluated by degrading Congo red (CR) and malachite green (MG) dye under visible light. The FESEM study of g-C₃N₄/ α -Fe₂O₃ composite material clearly indicates the incorporation of α -Fe₂O₃ nanoparticles over the $g-C_3N_4$ nanosheet. The absorption edge of both the pristine $g-C_3N_4$ and α -Fe₂O₃ materials commence around 455 and 460 nm, respectively. A considerable red shift in the absorption edge was observed for the hybrid material indicating the better visible light absorption and decrease in the band gap value of the photocatalyst. The hybrid material exhibits 87 and 95% of CR and MG dyes degradation after 100 min of irradiation time, which is around 2 times higher than that of the pristine $g-C_3N_4$ photocatalyst. The type-II nature of the electron-hole migration in the heterojunction is responsible for the higher photocatalytic activity of the hybrid photocatalyst [60]. Li and co-workers prepared a cocoon-shaped magnetic $Fe_2O_3/$ $g-C_3N_4$ nanocomposite material by two-step hydrothermal synthesis. The cocoonshaped Fe₂O₃ dispersed uniformly over the porous and layered g-C₃N₄ surface. The $Fe_2O_3/g-C_3N_4$ composite photocatalyst exhibits better photocatalytic efficiency for the degradation of Rhodamine B dye than the pristine Fe₂O₃ and g-C₃N₄ counterpart [61]. Li and co-workers prepared a Z-scheme $g-C_3N_4/\alpha$ -Fe₂O₃ heterojunction photocatalytic system with enhanced charge carrier separation and photocatalytic activity. They have demonstrated the establishment of the Fe-O-C bond in the heterojunction system, which believe to induce facile migration of electron across the grain boundary. The improved visible light response and facile migration of electron makes the heterojunction photocatalyst a better one than the pristine counterpart towards visible light-induced degradation of methylene blue dye [62]. Due to narrow band gap nature and suitable band alignment of the Fe₂O₃ semiconducting nanoparticle, it is not only involve in making hybrid photocatalyst with TiO_2 , ZnO and g-C₃N₄ but also a lot of new Fe₂O₃-based hybrid materials with improved photocatalytic activity that has been evolved with time. The Fe₂O₃-based hybrid materials, their synthesis method, photocatalytic application and their photocatalytic efficiency is presented in Table 4.1.

Table 4.1 Photocatalytic applications of different Fe ₂ O ₃ -based photocatalyst	s of different Fe2O3-based photo	ocatalyst		
Materials	Methods	Photocatalytic application	Photocatalytic performance	References
TiO ₂ /Fe ₂ O ₃ /CNTs	Sol-gel and calcination	Tetracycline degradation	89.41% in 90 min	[63]
SiO ₂ /TiO ₂ /Fe ₂ O ₃	Mechanochemical	Methylene blue degradation	97% in 22 h	[64]
$Ag_3PO_4-TiO_2-Fe_2O_3$	Solid state blending	Orange II	86.71% in 30 min	[65]
$Fe_2O_3/g-C_3N_4 @ N-TiO_2$	Electrochemical anodization, calcination	Bisphenol-A degradation	100% in 80 min	[66]
$\mathrm{Fe_2O_3} @\mathrm{SiO_2} @\mathrm{TiO_2} \\$	Solvothermal, layer-by-layer assembly	Phenol degradation	100% in 1 h	[67]
α -Fe ₂ O ₃ @TiO ₂ core-shell	Hydrothermal synthesis	Acid orange 7 degradation	98.6% in 90 min	[68]
$Fe_2O_3-TiO_2$	Template-assisted dipping/ adsorbing-calcining strategy	Methyl blue degradation	95% in 25 min	[69]
$g-C_3N_4/\gamma-Fe_2O_3/TiO_2$	Sol-gel	Cefixime trihydrate degradation	98.09% in 90 min	[70]
α -Fe ₂ O ₃ @TiO ₂ core-shell	Hetero-epitaxial growth	Rhodamine B degradation	60% in 5 h	[71]
Fe ₂ O ₃ @TiO ₂ @nanometal (Au, Ag)	Sol-gel	Methylene blue degradation	92% in 2 h	[72]
TiO ₂ /Au/Fe ₂ O ₃	Metal-organic framework (MOF) route	2,4 dichlorophenol	94% in 90 min	[73]
TiO_2 and γ -Fe ₂ O ₃ @ GO/PANI-NT	Co-precipitation, hydrolysis-calcination	Rhodamine B degradation	94% in 140 min	[74]
Carbon/TiO2/Fe2O3	Hydrolysis and hydrothermal procedures	Methylene blue degradation	97% in 100 min	[75]
α -Fe ₂ O ₃ -TiO ₂ /fly ash	Sol-gel	Rhodamine B degradation	100% in 1 h	[76]
Fe_2O_3/TiO_2	Sol-gel	4-chlorophenol degradation	100% in 180 min	[77]
$Fe_2O_3/ZnO/ZnFe_2O_4$	Hydrothermal and annealing	Rhodamine B degradation	95.7% in 60 min	[78]
CuO/Fe ₂ O ₃ /ZnO	Sol-gel combustion	Bisphenol A degradation	97.5% in 180 min	[79]
Zeolite-supported ZnO/Fe2O3/MnO2	One-step impregnation method Methylene blue degradation	Methylene blue degradation	93% in 120 min	[80]
				(continued)

Table 4.1 (continued)					66
Materials	Methods	Photocatalytic application	Photocatalytic performance	References	
Fe ₂ O ₃ /ZnO	Solution-combustion technique	Rhodamine 6G degradation	100% in 4 h	[81]	
Cu-Fe ₂ O ₃ /Ni-ZnO	Hydrothermal, precipitation and calcination	Tetracycline degradation	94% in 2 h	[82]	
y-Fe ₂ O ₃ /g-C ₃ N ₄	Thermal heating and hydrothermal treatment	Tetracycline degradation	73.8% in 120 min	[83]	
g-C ₃ N ₄ -Fe ₂ O ₃	Calcination	Methyl orange degradation	99% in 120 min	[84]	
BaTiO ₃ /α-Fe ₂ O ₃	Thermal annealing	Rhodamine B degradation	> 95% in 120 min	[85]	
KNbO ₃ / α -Fe ₂ O ₃	Hydrothermal method	Methylene blue degradation	89% in 90 min	[86]	
α -Fe ₂ O ₃ /RGO	Hydrothermal method	Phenol degradation	62% in 150 min	[87]	
α-Fe ₂ O ₃ /CdS	Wet-chemical method	Methylene blue degradation	86.7% in 120 min	[88]	
SnO_2/α -Fe ₂ O ₃	Chemical vapour deposition	Methylene blue degradation	100% in 2.5 h	[89]	
SnO ₂ /\alpha-Fe ₂ O ₃ -PB (Prussian blue) thin films	Electrochemical and annealing	Rhodamine B and Congo red degradation	$\sim 80\%$ CR and $\sim 82\%$ RhB in 120 min	[06]	
α -Fe ₂ O ₃ /Ag/AgX (X = Cl, Br, I)	In-situ oxidation reaction and self-assembly process	Rhodamine B degradation	100% in 60 min	[91]	
α-Fe ₂ O ₃ /rGO	Hydrothermal method	Rhodamine 6G degradation	90.5% in 4 h	[92]	
CaFe ₂ O ₄ /Fe ₂ O ₃	Hydrothermal and co-precipitation method	Methyl orange degradation	99% in 60 min	[93]	
NiO-Fe ₂ O ₃ -CdO	Precipitation and calcination	Methyl orange degradation	84.25% in 60 min	[94]	Ţ
ZnS/Fe ₂ O ₃ /Ag	Hydrothermal method	Eosin blue degradation	93% in 60 min	[95]	Y. P.
Fe_2O_3/Mn_2O_3	Sol-gel method	Parathion degradation	90% in 15 min	[96]	Bh
α -Fe ₂ O ₃ @rGO/PAN	Hydrothermal method	Methylene blue degradation	98.5% in 2 h	[97]	oi ai
Ag/AgBr@Fe2O3	Solvothermal method	Methyl orange degradation	94.4% in 12 min	[88]	nd V
				(continued)	V. Hu

				_
Materials	Methods	Photocatalytic application	Photocatalytic performance	References
SrTiO ₃ /Fe ₂ O ₃	Hydrothermal and electrospinning technique	Tetracycline degradation	82.7% in 140 min	[66]
Ag3PO4/α-Fe2O3	Hydrothermal method	Rhodamine B degradation	95% in 10 min	[100]
Fe ₂ O ₃ /Cu ₂ O	Hydrothermal method	Rhodamine B degradation	91.25% in 120 min	[101]
Fe_2O_3 @WO_3	Hydrothermal method and precipitation	Rhodamine B degradation	98% in 75 min	[102]
α -Fe ₂ O ₃ /Ag ₆ Si ₂ O ₇	Wet chemical method	Methylene blue degradation	98% in 30 min	[103]
Fe ₂ O ₃ /CuBi ₂ O ₄	Hydrothermal method	Tetracycline degradation	80% in 120 min	[104]
Fe_2O_3/Ag_3VO_4	Solvothermal and precipitation method	Rhodamine B degradation	96.1% in 60 min	[105]
CeO ₂ /Fe ₂ O ₃	Co-precipitation method	Eosin yellow degradation	98% in 25 min	[106]
Fe ₂ O ₃ /BiOCl	Hydrothermal method	Methyl orange-Rhodamine B mixed dye degradation	90% in 30 min	[107]
CuO/α -Fe ₂ O ₃ / γ -Al ₂ O ₃	Precipitation method	Methyl orange degradation	98% in 240 min	[108]
SnO ₂ -Fe ₂ O ₃ -rGO	Hydrothermal method	Crystal violet degradation	96.3% in 120 min	[109]
α-Fe ₂ O ₃ /BiVO ₄	Hydrothermal method	Tetracycline degradation	> 80% in 120 min	[110]
Fe_2TiO_5/α - Fe_2O_3/TiO_2	Combustion synthesis	Methylene blue degradation	> 95% in 120 min	[16]
α -Fe ₂ O ₃ /BiFeO ₃	Hydrothermal method	Rhodamine B degradation	60% in 4 h	[111]
FeWO ₄ /Fe ₂ O ₃ di-modified WO ₃	Hydrothermal method	Methylene blue degradation	95% in 10 min	[112]
γ -Fe ₂ O ₃ @ SiO ₂ @ AgBr:Ag	Solvothermal, Stöber method	Acid orange 7 degradation	> 90% in 20 min	[113]
α-Fe ₂ O ₃ -doped Ti ₃ C ₂ MXene	Ultrasonic assisted self-assembly method	Rhodamine B degradation	98% in 120 min	[114]
α-Fe ₂ O ₃ @UiO-66	Wet chemical method and calcination	Methylene blue degradation	> 95% in 60 min	[115]
Fe_2O_3/Bi_2S_3	Hydrothermal method	Methylene blue degradation	$\sim 90\%$ in 5 h	[116]
0-4		0		

4 Photocatalytic Degradation of Aqueous Organic Pollutants Using Iron ...

67

Materials	Methods	Photocatalytic application	Photocatalytic performance	References
			1 A	
γ -Fe ₂ O ₃ /BiOI	Sol-gel, microwave hydrothermal method	Methyl orange degradation	86.3% in 120 min	[117]
Ag_2CO_3/α -Fe $_2O_3$	Precipitation and hydrothermal Malachite green degradation method	Malachite green degradation	$\sim 90\%$ in 120 min	[118]
ZnS/Fe ₂ O ₃	Hydrothermal method	Methylene blue degradation	90.17% in 4 h	[119]
C_3N_4 @ CoFe ₂ O ₄ /Fe ₂ O ₃	Hydrothermal and calcination Tetracycline degradation method	Tetracycline degradation	99.7% in 80 min	[120]
P3HT/a-Fe2O3	Electrophoretic deposition	Tetracycline degradation	97% in 90 min	[121]

4.4 Conclusions

In this chapter, we emphasized the photocatalytic applications of iron oxide and iron oxide-based materials towards the degradation of various persistent aqueous organic pollutants such as dyes, pesticides and phenolic compounds. In terms of synthesis, this chapter provides an overview of morphology control preparation of phase pure iron oxide as well as single-step and multiple-step preparation of iron oxide-based hybrid materials. We believe that this chapter gives an idea in order to prepare iron oxide-based hybrid materials and their applications in the emerging field of research such as electronic, energy and environment.

Acknowledgements The authors are thankful to Prof. Braja Gopal Mishra, Dr. Dibyananda Majhi and Krishnendu Das, Department of Chemistry, National Institute of Technology Rourkela, Odisha, India, for their timely help and valuable discussions.

References

- Zou LY, Li Y, Hung YT (2007) Wet air oxidation for waste treatment. In: Wang LK, Hung YT, Sharma NK (eds) Advanced physicochemical treatment technologies. Handbook of environmental engineering, vol 5. Humana Press. https://doi.org/10.1007/978-1-59745-173-4_ 13
- Saxena R, Saxena M, Lochab A (2020) Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater. ChemistrySelect 5:335–353. https://doi. org/10.1002/slct.201903542
- Jain M, Khan AS, Sharm K, Jadhao PR, Pant KK, Ziora ZM, Blaskovich MAT (2022) Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater. Bioresour Technol 344:126305. https://doi.org/10.1016/j.biortech.2021.126305
- Nakata K, Fujishima A (2012) TiO₂ photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012. 06.001
- Hitam CNC, Jalil AA (2020) A review on exploration of Fe₂O₃ photocatalyst towards degradation of dyes and organic contaminants. J Environ Manage 258:110050. https://doi.org/10. 1016/j.jenvman.2019.110050
- Wu W, Jiang C, Roy VAL (2015) Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7:38–58. https://doi.org/10. 1039/C4NR04244A
- Lai MTL, Lee KM, Yang TCK, Pan GT, Lai CW, Chen CY, Johan MR, Juan JC (2021) The improved photocatalytic activity of highly expanded MoS₂ under visible light emitting diodes. Nanoscale Adv 3:1106. https://doi.org/10.1039/D0NA00936A
- Cheng L, Xiang Q, Liao Y, Zhang H (2018) CdS-based photocatalysts. Energy Environ Sci 11:1362–1391. https://doi.org/10.1039/C7EE03640J
- Mishra M, Chun DM (2015) α-Fe₂O₃ as a photocatalytic material: a review. Appl Catal A 498:126–141. https://doi.org/10.1016/j.apcata.2015.03.023
- Bhoi YP, Rout DP, Mishra BG (2016) Photocatalytic chemoselective aerobic oxidation of thiols to disulfides catalyzed by combustion synthesized bismuth tungstate nanoparticles in aqueous media. J Clust Sci 27:267–284. https://doi.org/10.1007/s10876-015-0928-0

- Bhoi YP, Mishra BG (2018) Synthesis, characterization, and photocatalytic application of type-II CdS/Bi₂W₂O₉ heterojunction nanomaterials towards aerobic oxidation of amines to imines. Eur J Inorg Chem 2648–2658. https://doi.org/10.1002/ejic.201800221
- Bhoi YP, Mishra BG (2018) Photocatalytic degradation of alachlor using type-II CuS/BiFeO₃ heterojunctions as novel photocatalyst under visible light irradiation. Chem Eng J 344:391– 401. https://doi.org/10.1016/j.cej.2018.03.094
- Yang Y, Zhang C, Lai C, Zeng G, Huang D, Cheng M, Wang J, Chen F, Zhou C, Xiong W (2018) BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv Colloid Interface Sci 254:76–93. https://doi.org/10.1016/j. cis.2018.03.004
- Marschall R (2014) Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 24:2421–2440. https://doi.org/10. 1002/adfm.201303214
- Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326– 8339. https://doi.org/10.1039/C3NR01577G
- 16. Bhoi YP, Fang F, Zhou X, Li Y, Sun X, Wang J, Huang W (2020) Single step combustion synthesis of novel Fe₂TiO₅/α-Fe₂O₃/TiO₂ ternary photocatalyst with combined double type-II cascade charge migration processes and efficient photocatalytic activity. Appl Surf Sci 525:146571. https://doi.org/10.1016/j.apsusc.2020.146571
- Majhi D, Samal PK, Das K, Gouda SK, Bhoi YP, Mishra BG (2019) α-NiS/Bi₂O₃ nanocomposites for enhanced photocatalytic degradation of tramadol. ACS Appl Nano Mater 2(1):395–407. https://doi.org/10.1021/acsanm.8b01974
- Majhi D, Bhoi YP, Samal PK, Mishra BG (2018) Morphology controlled synthesis and photocatalytic study of novel CuS-Bi₂O₂CO₃ heterojunction system for chlorpyrifos degradation under visible light illumination. Appl Surf Sci 455:891–902. https://doi.org/10.1016/j.apsusc. 2018.06.051
- Bhoi YP, Majhi D, Das K, Mishra BG (2019) Visible-light-assisted photocatalytic degradation of phenolic compounds using Bi₂S₃/Bi₂W₂O₉ heterostructure materials as photocatalyst. ChemistrySelect 4(12):3423–3431. https://doi.org/10.1002/slct.201900450
- 20. Majhi D, Das K, Bariki R, Padhan S, Mishra A, Dhiman R, Dash P, Nayak B, Mishra BG (2020) A facile reflux method for in situ fabrication of a non-cytotoxic Bi₂S₃/β-Bi₂O₃/ ZnIn₂S₄ ternary photocatalyst: a novel dual Z-scheme system with enhanced multifunctional photocatalytic activity. J Mater Chem A 8:21729–21743. https://doi.org/10.1039/D0TA06 129H
- Das K, Majhi D, Bhoi YP, Mishra BG (2019) Combustion synthesis, characterization and photocatalytic application of CuS/Bi₄Ti₃O₁₂ p–n heterojunction materials towards efficient degradation of 2-methyl-4-chlorophenoxyacetic acid herbicide under visible light. Chem Eng J 362:588–599. https://doi.org/10.1016/j.cej.2019.01.060
- Bhoi YP, Behera C, Majhi D, Equeenuddin SM, Mishra BG (2018) Visible light-assisted photocatalytic mineralization of diuron pesticide using novel type II CuS/Bi₂W₂O₉ heterojunctions with a hierarchical microspherical structure. New J Chem 42:281–292. https://doi. org/10.1039/C7NJ03390G
- 23. Majhi D, Mishra AK, Das K, Bariki R, Mishra BG (2021) Plasmonic Ag nanoparticle decorated Bi₂O₃/CuBi₂O₄ photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr(VI) reduction: insight into electron transfer mechanism and enhanced photocatalytic activity. Chem Eng J 413:127506. https://doi.org/10.1016/j.cej.2020.127506
- Bariki R, Majhi D, Das K, Behera A, Mishra BG (2020) Facile synthesis and photocatalytic efficacy of UiO-66/CdIn₂S₄ nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H₂ evolution. Appl Catal B 270:118882. https://doi.org/10.1016/j.apcatb.2020.118882
- Das K, Majhi D, Bariki R, Mishra BG (2020) SnS₂/Bi₄Ti₃O₁₂ heterostructure material: a UV-visible light active direct Z-scheme photocatalyst for aqueous phase degradation of diazinon. ChemistrySelect 5(4):1567–1577. https://doi.org/10.1002/slct.201904532

- Majhi D, Das K, Mishra A, Dhiman R, Mishra BG (2020) One pot synthesis of CdS/ BiOBr/Bi₂O₂CO₃: a novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine. Appl Catal B 260:118222. https://doi.org/10.1016/j.apcatb. 2019.118222
- Das K, Bariki R, Majhi D, Mishra A, Das KK, Dhiman R, Mishra BG (2022) Facile synthesis and application of CdS/Bi₂₀TiO₃₂/Bi₄Ti₃O₁₂ ternary heterostructure: a synergistic multiheterojunction photocatalyst for enhanced endosulfan degradation and hydrogen evolution reaction. Appl Catal B 303:120902. https://doi.org/10.1016/j.apcatb.2021.120902
- Kharisov BI, Dias HVR, Kharissova OV, Perez VMJ, Pereza BO, Flores BM (2012) Ironcontaining nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2:9325–9358. https://doi.org/10.1039/C2RA20812A
- Qu J, Yu Y, Cao CY, Song WG (2013) α-Fe₂O₃ nanodisks: layered structure, growth mechanism, and enhanced photocatalytic property. Chem Eur J 19:11172–11177. https://doi.org/ 10.1002/chem.201301295
- Ghasemifard M, Heidari G, Ghamari M, Fathi E, Izi M (2019) Synthesis of porous networklike α-Fe₂O₃ and α/γ-Fe₂O₃ nanoparticles and investigation of their photocatalytic properties. Nanotechnol Russ 14:353–361. https://doi.org/10.1134/S1995078019040062
- Sun W, Meng Q, Jing L, Liu D, Cao Y (2013) Facile synthesis of surface-modified nanosized α-Fe₂O₃ as efficient visible photocatalysts and mechanism insight. J Phys Chem C 117:1358– 1365. https://doi.org/10.1021/jp309599d
- 32. Basnet P, Larsen GK, Jadeja RP, Hung YC, Zhao Y (2013) α-Fe₂O₃ nanocolumns and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications. ACS Appl Mater Interfaces 5:2085–2095. https://doi.org/10.1021/am3 03017c
- Kormann C, Bahnemann DW, Hoffmann MR (1989) Environmental photochemistry: is iron oxide (hematite) an active photocatalyst? A comparative study: α-Fe₂O₃, ZnO, TiO₂. J Photochem Photobiol A Chem 48(1):161–169. https://doi.org/10.1016/1010-6030(89)870 99-6
- 34. Aslam M, Qamar MT, Rehman AU, Soomro MT, Ali S, Ismail IMI, Hameed A (2018) The evaluation of the photocatalytic activity of magnetic and nonmagnetic polymorphs of Fe₂O₃ in natural sunlight exposure: a comparison of photocatalytic activity. Appl Surf Sci 451:128–140. https://doi.org/10.1016/j.apsusc.2018.04.219
- Wang C, Zhu C, Ren X, Shi J, Wang L, Lv B (2019) Anisotropic photogenerated charge separations between different facets of a dodecahedral α-Fe₂O₃ photocatalyst. CrystEngComm 21:6390–6395. https://doi.org/10.1039/C9CE01143A
- Sundaramurthy J, Kumar PS, Kalaivani M, Thavasi V, Mhaisalkara SG, Ramakrishna S (2012) Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe₂O₃ structures. RSC Adv 2:8201–8208. https://doi.org/10.1039/c2ra20608k
- 37. Xie S, Jia H, Lu F, Sun N, Yu J, Liu S, Zheng L (2015) Controlled synthesis of α-Fe₂O₃ nanostructures with the assistance of ionic liquid and their distinct photocatalytic performance under visible-light irradiation. CrystEngComm 17:1210–1218. https://doi.org/10.1039/c4c e02033b
- Wang FL, Song X, Teng Y, Xia J, Xu ZY, Wang WP (2019) Synthesis, structure, magnetism and photocatalysis of α-Fe₂O₃ nanosnowflakes. RSC Adv 9:35372–35383. https://doi.org/ 10.1039/c9ra07490b
- Liu X, Chen K, Shim JJ, Huang J (2015) Facile synthesis of porous Fe₂O₃ nanorods and their photocatalytic properties. J Saudi Chem Soc 19(5):479–484. https://doi.org/10.1016/j. jscs.2015.06.009
- Liang C, Liu H, Zhou J, Peng X, Zhang H (2015) One-step synthesis of spherical γ-Fe₂O₃ nanopowders and the evaluation of their photocatalytic activity for Orange I degradation. J Chem 8. Article ID 791829. https://doi.org/10.1155/2015/791829
- Fardood ST, Moradnia F, Moradi S, Forootan R, Zare FY, Heidari M (2019) Eco-friendly synthesis and characterization of α-Fe₂O₃ nanoparticles and study of their photocatalytic activity for degradation of Congo red dye. Nanochem Res 4(2):140–147. https://doi.org/10. 22036/ncr.2019.02.005

- 42. Yin H, Zhao Y, Hua Q, Zhang J, Zhang Y, Xu X, Long Y, Tang J, Wang F (2019) Controlled synthesis of hollow α-Fe₂O₃ microspheres assembled with ionic liquid for enhanced visiblelight photocatalytic activity. Front Chem 7:58. https://doi.org/10.3389/fchem.2019.00058
- Xu JS, Zhu YJ (2011) α-Fe₂O₃ hierarchically hollow microspheres self-assembled with nanosheets: surfactant-free solvothermal synthesis, magnetic and photocatalytic properties. CrystEngComm 13:5162. https://doi.org/10.1039/c1ce05252g
- 44. Liu G, Deng Q, Wang H, Ng DHL, Kong M, Cai W, Wang G (2012) Micro/nanostructured α-Fe₂O₃ spheres: synthesis, characterization, and structurally enhanced visible-light photocatalytic activity. J Mater Chem 22:9704. https://doi.org/10.1039/c2jm31586f
- 45. Zhu LP, Bing NC, Wang LL, Jin HY, Liao GH, Wang LJ (2012) Self-assembled 3D porous flowerlike α-Fe₂O₃ hierarchical nanostructures: synthesis, growth mechanism, and their application in photocatalysis. Dalton Trans 41:2959. https://doi.org/10.1039/c2dt11822j
- 46. Geng B, Tao B, Li X, Wei W (2012) Ni²⁺/surfactant-assisted route to porous α-Fe₂O₃ nanoarchitectures. Nanoscale 4:1671. https://doi.org/10.1039/c2nr12102f
- 47. Pradhan GK, Sahu N, Parida KM (2013) Fabrication of S, N co-doped α-Fe₂O₃ nanostructures: effect of doping, OH radical formation, surface area, [110] plane and particle size on the photocatalytic activity. RSC Adv 3:7912–7920. https://doi.org/10.1039/C3RA23088K
- Almazroai LS, Maliabari LA (2020) Microwave synthesis of sulfur-doped α-Fe₂O₃ and testing in photodegradation of methyl orange. J Chin Chem Soc 67(10). https://doi.org/10.1002/jccs. 202000035
- 49. Satheesh R, Vignesh K, Suganthi A, Rajarajan M (2014) Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped α-Fe₂O₃ nanoparticles. J Environ Chem Eng 2:1956–1968. https://doi.org/10.1016/j.jece.2014.08.016
- Li N, He Y, Yi Z, Gao L, Zhai F, Chattopadhyay K (2020) Multiple-metal-doped Fe₃O₄@Fe₂O₃ nanoparticles with enhanced photocatalytic performance for methyl orange degradation under UV/solar light irradiation. Ceram Int 46:19038–19045. https://doi.org/10. 1016/j.ceramint.2020.04.234
- Mansour H, Omri K, Bargougui R, Ammar S (2020) Novel α-Fe₂O₃/TiO₂ nanocomposites with enhanced photocatalytic activity. Appl Phys A 126:151. https://doi.org/10.1007/s00339-020-3320-3
- 52. Li X, Lin H, Chen X, Niu H, Liu J, Zhang T, Qu F (2016) Dendritic α -Fe₂O₃/TiO₂ nanocomposites with improved visible light photocatalytic activity. Phys Chem Chem Phys 18:9176–9185. https://doi.org/10.1039/c5cp06681f
- 53. Ren L, Zhou W, Sun B, Li H, Qiao P, Xu Y, Wu J, Lin K, Fu H (2019) Defects-engineering of magnetic γ-Fe₂O₃ ultrathin nanosheets/mesoporous black TiO₂ hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation. Appl Catal B 240:319–328. https://doi.org/10.1016/j.apcatb.2018. 08.033
- 54. Mahajan J, Jeevanandam P (2018) Synthesis of TiO₂@α-Fe₂O₃ core–shell heteronanostructures by thermal decomposition approach and their application towards sunlight driven photodegradation of Rhodamine B. New J Chem 42:2616–2626. https://doi.org/10.1039/c7n j04892k
- 55. Li N, Zhang J, Tian Y, Zhao J, Zhang J, Zuo W (2017) Precisely controlled fabrication of magnetic 3D γ-Fe₂O₃@ZnO core-shell photocatalyst with enhanced activity: ciprofloxacin degradation and mechanism insight. Chem Eng J 308:377–385. https://doi.org/10.1016/j.cej. 2016.09.093
- 56. Jiamprasertboon A, Kafizas A, Sachs M, Ling M, Alotaibi AM, Lu Y, Siritanon T, Parkin IP, Carmalt CJ (2019) Heterojunction α-Fe₂O₃/ZnO films with enhanced photocatalytic properties grown by aerosol-assisted chemical vapour deposition. Chem Eur J 25(48):11337–11345. https://doi.org/10.1002/chem.201902175
- 57. Choudhary S, Bisht A, Mohapatra S (2021) Microwave-assisted synthesis of α-Fe₂O₃/ ZnFe₂O₄/ZnO ternary hybrid nanostructures for photocatalytic applications. Ceram Int 47:3833–3841. https://doi.org/10.1016/j.ceramint.2020.09.243

- Dhal JP, Mishra BG, Hota G (2015) Hydrothermal synthesis and enhanced photocatalytic activity of ternary Fe₂O₃/ZnFe₂O₄/ZnO nanocomposite through cascade electron transfer. RSC Adv 5:58072. https://doi.org/10.1039/c5ra05894e
- 59. Wang B, Liu X, Dai S, Lu H (2020) α-Fe₂O₃ nanoparticles/porous g-C₃N₄ hybrids synthesized by calcinations of Fe-based MOF/melamine mixtures for boosting visible-light photocatalytic tetracycline degradation. ChemistrySelect 5:3303–3311. https://doi.org/10.1002/slct. 201904388
- 60. Sumathi M, Prakasam A, Anbarasan PM (2019) A facile microwave stimulated $g-C_3N_4/\alpha$ -Fe₂O₃ hybrid photocatalyst with superior photocatalytic activity and attractive cycling stability. J Mater Sci Mater Electron 30:10985–10993. https://doi.org/10.1007/s10854-019-01439-1
- Yu X, Yang X, Li G (2018) Magnetically separable Fe₂O₃/g-C₃N₄ nanocomposites with cocoon-like shape: magnetic properties and photocatalytic activities. J Electron Mater 47(1):672–676. https://doi.org/10.1007/s11664-017-5835-8
- 62. Yu Q, Yang K, Li H, Li X (2021) Z-scheme α -Fe₂O₃/g-C₃N₄ with the Fe–OC–bond toward enhanced photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 616:126269. https://doi.org/10.1016/j.colsurfa.2021.126269
- Lu C, Guan W, Zhang G, Ye L, Zhou Y, Zhang X (2013) TiO₂/Fe₂O₃/CNTs magnetic photocatalyst: a fast and convenient synthesis and visible-light-driven photocatalytic degradation of tetracycline. Micro Nano Lett 8(10):749–752. https://doi.org/10.1049/mnl.2013.0428
- Kucio K, Charmas B, Pasieczna-Patkowska S, Zięzio M (2020) Mechanochemical synthesis of nanophotocatalysts SiO₂/TiO₂/Fe₂O₃: their structural, thermal and photocatalytic properties. Appl Nanosci 10:4733–4746. https://doi.org/10.1007/s13204-020-01462-3
- 65. Ana L, Meng Y, Wang T, Xiong C, Yan Z, Xu Z (2020) Highly efficient and easily recoverable Ag₃PO₄–TiO₂–Fe₂O₃ magnetic photocatalyst with wide spectral range for water treatment. Russ J Phys Chem A 94(5):1067–1072. https://doi.org/10.1134/S0036024420050027
- 66. Kong X, Lia J, Yang C, Tang Q, Wang D (2020) Fabrication of Fe₂O₃/g-C₃N₄@N-TiO₂ photocatalyst nanotube arrays that promote bisphenol A photodegradation under simulated sunlight irradiation. Sep Purif Technol 248:116924. https://doi.org/10.1016/j.seppur.2020. 116924
- Szeto W, Li J, Huang H, Xu J, Leung DYC (2015) Novel urchin-like Fe₂O₃@SiO₂@TiO₂ microparticles with magnetically separable and photocatalytic properties. RSC Adv 5:55363. https://doi.org/10.1039/c5ra08070c
- Liu J, Yang S, Wu W, Tian Q, Cui S, Dai Z, Ren F, Xiao X, Jiang C (2015) 3D flowerlike α-Fe₂O₃@TiO₂ core-shell nanostructures: general synthesis and enhanced photocatalytic performance. ACS Sustain Chem Eng 3:2975–2984. https://doi.org/10.1021/acssuschemeng. 5b00956
- Luo H, Yu S, He F, Li L, Zhong M, Dong N, Su B (2021) An important phenomenon in Fe₂O₃–TiO₂ photocatalyst: ion-inter-doping. Solid State Sci 113:106538. https://doi.org/10. 1016/j.solidstatesciences.2021.106538
- Jahanshahi R, Sobhani S, Sansano JM (2020) High performance magnetically separable g-C₃N₄/γ-Fe₂O₃/TiO₂ nanocomposite with boosted photocatalytic capability towards the cefixime trihydrate degradation under visible-light. ChemistrySelect 5:10114–10127. https:// doi.org/10.1002/slct.202002682
- Xia Y, Yin L (2013) Core–shell structured α-Fe₂O₃@TiO₂ nanocomposites with improved photocatalytic activity in the visible light region. Phys Chem Chem Phys 15:18627–18634. https://doi.org/10.1039/c3cp53178c
- 72. Kim SE, Woo JY, Kang SY, Min BK, Lee JK, Lee SW (2016) A facile general route for ternary Fe₂O₃@TiO₂@nanometal (Au, Ag) composite as a high-performance and recyclable photocatalyst. J Ind Eng Chem 43:142–149. https://doi.org/10.1016/j.jiec.2016.07.060
- 73. Li Y, Yang B, Liu B (2021) MOF assisted synthesis of TiO₂/Au/Fe₂O₃ hybrids with enhanced photocatalytic hydrogen production and simultaneous removal of toxic phenolic compounds. J Mol Liq 322:114815. https://doi.org/10.1016/j.molliq.2020.114815

- 74. Ghavami M, Kassaee MZ, Mohammadi R, Koohi M, Haerizadeh BN (2014) Polyaniline nanotubes coated with TiO₂&γ-Fe₂O₃@graphene oxide as a novel and effective visible light photocatalyst for removal of Rhodamine B from water. Solid State Sci 38:143–149. https:// doi.org/10.1016/j.solidstatesciences.2014.09.010
- Wang M, Han J, Yuan G, Guo R (2019) Carbon/TiO₂/Fe₂O₃ hybrid shells toward efficient visible light photocatalysts. New J Chem 43:11282–11287. https://doi.org/10.1039/C9NJ01 742A
- 76. Liu S, Zhu J, Guo X, Ge J, Wu H (2015) Preparation of α-Fe₂O₃-TiO₂/fly ash cenospheres photocatalyst and its mechanism of photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 484:434–440. https://doi.org/10.1016/j.colsurfa.2015.08.033
- Palanisamy B, Babu CM, Sundaravel B, Anandan S, Murugesan V (2013) Sol–gel synthesis of mesoporous mixed Fe₂O₃/TiO₂ photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252–253:233–242. https://doi.org/10.1016/j.jhazmat.2013.02.060
- Li X, Jin B, Huang J, Zhang Q, Peng R, Chu S (2018) Fe₂O₃/ZnO/ZnFe₂O₄ composites for the efficient photocatalytic degradation of organic dyes under visible light. Solid State Sci 80:6–14. https://doi.org/10.1016/j.solidstatesciences.2018.03.016
- 79. Shekoohiyan S, Rahmani A, Chamack M, Moussavia G, Rahmanian O, Alipour V, Giannakis S (2020) A novel CuO/Fe₂O₃/ZnO composite for visible-light assisted photocatalytic oxidation of Bisphenol A: kinetics, degradation pathways, and toxicity elimination. Sep Purif Technol 242:116821. https://doi.org/10.1016/j.seppur.2020.116821
- Tedla H, Díaz I, Kebede T, Taddesse AM (2015) Synthesis, characterization and photocatalytic activity of zeolite supported ZnO/Fe₂O₃/MnO₂ nanocomposites. J Environ Chem Eng 3:1586–1591. https://doi.org/10.1016/j.jece.2015.05.012
- Pradhan GK, Martha S, Parida KM (2012) Synthesis of multifunctional nanostructured zinciron mixed oxide photocatalyst by a simple solution-combustion technique. ACS Appl Mater Interfaces 4:707–713. https://doi.org/10.1021/am201326b
- 82. Li Y, Liu K, Zhang J, Yang J, Huang Y, Tong Y (2020) Engineering the band-edge of Fe₂O₃/ZnO nanoplates via separate dual cation incorporation for efficient photocatalytic performance. Ind Eng Chem Res 59:18865–18872. https://doi.org/10.1021/acs.iecr.0c03388
- 83. Li C, Yu S, Che H, Zhang X, Han J, Mao Y, Wang Y, Liu C, Dong H (2018) Fabrication of Z-scheme heterojunction by anchoring mesoporous γ-Fe₂O₃ nanospheres on g-C₃N₄ for degrading tetracycline hydrochloride in water. ACS Sustain Chem Eng 6:16437–16447. https://doi.org/10.1021/acssuschemeng.8b03500
- 84. Babar S, Gavade N, Shinde H, Mahajan P, Lee KH, Mane N, Deshmukh A, Garadkar K, Bhuse V (2018) Evolution of waste iron rust into magnetically separable g-C₃N₄–Fe₂O₃ photocatalyst: an efficient and economical waste management approach. ACS Appl Nano Mater 1:4682–4694. https://doi.org/10.1021/acsanm.8b00936
- Cui Y, Briscoe J, Wang Y, Tarakina NV, Dunn S (2017) Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO₃/α-Fe₂O₃ and the significance of interface morphology control. ACS Appl Mater Interfaces 9:24518–24526. https://doi.org/10.1021/acsami.7b03523
- 86. Farooq U, Chaudhary P, Ingole PP, Kalam A, Ahmad T (2020) Development of uuboidal KNbO₃@α-Fe₂O₃ hybrid nanostructures for improved photocatalytic and photoelectro-catalytic applications. ACS Omega 5:20491–20505. https://doi.org/10.1021/acsomega.0c0 2646
- Pradhan GK, Padhi DK, Parida KM (2013) Fabrication of α-Fe₂O₃ nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl Mater Interfaces 5:9101–9110. https://doi.org/10.1021/am402487h
- Shi Y, Li H, Wang L, Shen W, Chen H (2012) Novel α-Fe₂O₃/CdS cornlike nanorods with enhanced photocatalytic performance. ACS Appl Mater Interfaces 4:4800–4806. https://doi. org/10.1021/am3011516
- Kang J, Kuang Q, Xie ZX, Zheng LS (2011) Fabrication of the SnO₂/α-Fe₂O₃ hierarchical heterostructure and its enhanced photocatalytic property. J Phys Chem C 115:7874–7879. https://doi.org/10.1021/jp111419w

- Jana S, Mondal A (2014) Fabrication of SnO₂/α-Fe₂O₃, SnO₂/α-Fe₂O₃–PB heterostructure thin films: enhanced photodegradation and peroxide sensing. ACS Appl Mater Interfaces 6:15832–15840. https://doi.org/10.1021/am5030879
- 91. Sun L, Wu W, Tian Q, Lei M, Liu J, Xiao X, Zheng X, Ren F, Jiang C (2016) In situ oxidation and self-assembly synthesis of dumbbell-like α-Fe₂O₃/Ag/AgX (X = Cl, Br, I) heterostructures with enhanced photocatalytic properties. ACS Sustain Chem Eng 4:1521–1530. https://doi.org/10.1021/acssuschemeng.5b01473
- 92. Zhang L, Bao Z, Yu X, Dai P, Zhu J, Wu M, Li G, Liu X, Sun Z, Chen C (2016) Rational design of α-Fe₂O₃/reduced graphene oxide composites: rapid detection and effective removal of organic pollutants. ACS Appl Mater Interfaces 8:6431–6438. https://doi.org/10.1021/acs ami.5b11292
- Fu Y, Shan S, Chen F, Hu J (2020) Constructing an efficient p–n heterojunction photocatalyst CaFe₂O₄/Fe₂O₃ nanocomposite for degradation of methyl orange. J Mater Sci Mater Electron 31:17967–17979. https://doi.org/10.1007/s10854-020-04349-9
- Mukhtar F, Munawar T, Nadeem MS, Hasan M, Hussain F, Nawaz MA, Iqbal F (2020) Multi metal oxide NiO–Fe₂O₃–CdO nanocomposite-synthesis, photocatalytic and antibacterial properties. Appl Phys A 126:588. https://doi.org/10.1007/s00339-020-03776-z
- Sunkara JR, Botsa SM (2020) ZnS/Fe₂O₃/Ag ternary nanocomposite photocatalyst for the degradation of dyes under visible light. Russ J Phys Chem A 94(2):392–400. https://doi.org/ 10.1134/S0036024420020144
- 96. Mai NVN, Lim DT, Bac NQ, Chi NTH, Dung DT, Pham NN, Nhiem DN (2019) Fe₂O₃/Mn₂O₃ nanoparticles: preparations and applications in the photocatalytic degradation of phenol and parathion in water. J Chin Chem Soc 1–4. https://doi.org/10.1002/jccs.201900033
- Sun K, Wang L, Wu C, Deng J, Pan K (2017) Fabrication of α-Fe₂O₃@rGO/PAN nanofiber composite membrane for photocatalytic degradation of organic dyes. Adv Mater Interfaces 1700845. https://doi.org/10.1002/admi.201700845
- Huang S, Xu Y, Chen Z, Xie M, Xu H, He M, Li H, Zhang Q (2015) A core-shell structured magnetic Ag/AgBr@Fe₂O₃ composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium. RSC Adv 5:71035. https://doi.org/10.1039/c5ra13 403j
- Liu C, Wu G, Chen J, Huang K, Shi W (2016) Fabrication of a visible-light-driven photocatalyst and degradation of tetracycline based on the photoinduced interfacial charge transfer of SrTiO₃/Fe₂O₃ nanowires. New J Chem 40:5198–5208. https://doi.org/10.1039/c5nj03167b
- 100. Gao Y, Ma H, Han C, Gui C, Deng C (2022) Preparation of Ag₃PO₄/α-Fe₂O₃ hybrid powders and their visible light catalytic performances. RSC Adv 12:6328. https://doi.org/10.1039/d1r a09256a
- 101. Abhilash MR, Akshatha G, Srikantaswamy S (2019) Photocatalytic dye degradation and biological activities of the Fe₂O₃/Cu₂O nanocomposite. RSC Adv 9:8557. https://doi.org/10. 1039/c8ra09929d
- 102. Bai S, Zhang K, Sun J, Luo R, Li D, Chen A (2014) Surface decoration of WO₃ architectures with Fe₂O₃ nanoparticles for visible-light-driven photocatalysis. CrystEngComm 16:3289– 3295. https://doi.org/10.1039/c3ce42410c
- 103. Liu J, Wu W, Tian Q, Dai Z, Wu Z, Xiao X, Jiang C (2016) Anchoring of Ag₆Si₂O₇ nanoparticles on α-Fe₂O₃ short nanotubes as a Z-scheme photocatalyst for improving their photocatalytic performances. Dalton Trans 45:12745–12755. https://doi.org/10.1039/c6dt02 499h
- 104. Li M, Tang Y, Shi W, Chen F, Shia Y, Gu H (2018) Design of visible-light-response coreshell Fe₂O₃/CuBi₂O₄ heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight. Inorg Chem Front 5:3148–3154. https://doi.org/10.1039/c8qi00906f
- 105. Xu Y, Jing L, Chen X, Ji H, Xu H, Li H, Li H, Zhang Q (2016) Novel visible-light-driven Fe₂O₃/Ag₃VO₄ composite with enhanced photocatalytic activity toward organic pollutants degradation. RSC Adv 6:3600. https://doi.org/10.1039/c5ra22912j

- Arul NS, Mangalaraj D, Ramachandran R, Gracec AN, Han JI (2015) Fabrication of CeO₂/Fe₂O₃ composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J Mater Chem A 3:15248–15258. https://doi.org/10.1039/c5ta02 630j
- 107. Li N, Hua X, Wang K, Jin Y, Xu J, Chen M, Teng F (2014) In situ synthesis of uniform Fe₂O₃/ BiOCl p/n heterojunctions and improved photodegradation properties for mixture dyes. Dalton Trans 43:13742–13750. https://doi.org/10.1039/c4dt01999g
- 108. Kanwal A, Sajjad S, Leghari SAK, Yousaf Z (2021) Cascade electron transfer in ternary CuO/ α-Fe₂O₃/γ-Al₂O₃ nanocomposite as an effective visible photocatalyst. J Phys Chem Solids 151:109899. https://doi.org/10.1016/j.jpcs.2020.109899
- Botsa SM, Naidu GP, Ravichandra M, Rani SJ, Anjaneyulu RB, Ramana ChV (2020) Flower like SnO₂–Fe₂O₃–rGO ternary composite as highly efficient visible light induced photocatalyst for the degradation of organic pollutants from contaminated water. J Mater Res Technol 9(6):12461–12472. https://doi.org/10.1016/j.jmrt.2020.08.087
- 110. Ma C, Lee J, Kim Y, Seo WC, Jung H, Yang W (2021) Rational design of α-Fe₂O₃ nanocubes supported BiVO₄ Z-scheme photocatalyst for photocatalytic degradation of antibiotic under visible light. J Colloid Interface Sci 581:514–522. https://doi.org/10.1016/j.jcis.2020.07.127
- 111. Zhang R, Liu S, Kong F, Tong J, Ruan L, Duan Q, Zhou J, Zhang X (2020) α-Fe₂O₃/BiFeO₃ composites as visible-active photocatalysts and their optical response mechanism. J Phys Chem Solids 141:109329. https://doi.org/10.1016/j.jpcs.2019.109329
- 112. Wang H, Wang C, Cui X, Qina L, Ding R, Wang L, Liu Z, Zheng Z, Lv B (2018) Design and facile one-step synthesis of FeWO₄/Fe₂O₃ di-modified WO₃ with super high photocatalytic activity toward degradation of quasiphenothiazine dyes. Appl Catal B 221:169–178. https:// doi.org/10.1016/j.apcatb.2017.09.011
- 113. Tian B, Wang T, Dong R, Bao S, Yang F, Zhang J (2014) Core–shell structured α-Fe₂O₃@SiO₂@AgBr: Ag composite with high magnetic separation efficiency and excellent visible light activity for acid orange 7 degradation. Appl Catal B 147:22–28. https://doi.org/ 10.1016/j.apcatb.2013.08.028
- 114. Zhang H, Li M, Cao J, Tang Q, Kang P, Zhu C, Ma M (2018) 2D α-Fe₂O₃ doped Ti₃C₂ MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceram Int 44:19958–19962. https://doi.org/10.1016/j.ceramint.2018.07.262
- 115. Zhang R, Du B, Li Q, Cao Z, Feng G, Wang X (2019) α-Fe₂O₃ nanoclusters confined into UiO-66 for efficient visible-light photodegradation performance. Appl Surf Sci 466:956–963. https://doi.org/10.1016/j.apsusc.2018.10.048
- Helal A, Harraz FA, Ismail AA, Sami TM, Ibrahim IA (2017) Hydrothermal synthesis of novel heterostructured Fe₂O₃/Bi₂S₃ nanorods with enhanced photocatalytic activity under visible light. Appl Catal B Environ 213:18–27. https://doi.org/10.1016/j.apcatb.2017.05.009
- 117. Niu J, Zhang Z, Dai P, Yao B, Yu X, Zhang Q, Yang R (2018) Facile synthesis of γ-Fe₂O₃/ BiOI microflowers with enhanced visible light photocatalytic activity. Mater Des 150:29–39. https://doi.org/10.1016/j.matdes.2018.04.001
- 118. Guo R, Qi X, Zhang X, Zhang H, Cheng X (2019) Synthesis of Ag₂CO₃/α-Fe₂O₃ heterojunction and it high visible light driven photocatalytic activity for elimination of organic pollutants. Sep Purif Technol 211:504–513. https://doi.org/10.1016/j.seppur.2018.10.011
- 119. Liu Q, Cao J, Jia Y, Li X, Li W, Zhu Y, Liu X, Li J, Yang J, Yang Y (2020) Construction of a direct Z-scheme ZnS quantum dot (QD)-Fe₂O₃ QD heterojunction/reduced graphene oxide nanocomposite with enhanced photocatalytic activity. Appl Surf Sci 506:144922. https://doi.org/10.1016/j.apsusc.2019.144922
- 120. Lv SW, Liu JM, Zhao N, Li CY, Yang FE, Wang ZH, Wang S (2020) MOF-derived CoFe₂O₄/ Fe₂O₃ embedded in g-C₃N₄ as high-efficient Z scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate. Sep Purif Technol 253:117413. https://doi.org/10.1016/j.seppur.2020.117413
- 121. Zhu H, Chen Z, Hu Y, Gong L, Li D, Li Z (2020) A novel immobilized Z-scheme P3HT/ α-Fe₂O₃ photocatalyst array: study on the excellent photocatalytic performance and photocatalytic mechanism. J Hazard Mater 389:122119. https://doi.org/10.1016/j.jhazmat.2020. 122119