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Abstract. The segmentation of the left ventricle in echocardiograms
is crucial for diagnosing cardiovascular diseases. However, current deep
learning methods typically focus on 2D segmentations and overlook the
temporal information in ultrasound sequences. This choice might be
caused by the scarcity of manual annotations, which are typically limited
to end-diastole and end-systole frames. Therefore, we propose a method
that trains temporally consistent segmentation models from sparsely
labeled echocardiograms. We leverage image registration to generate
pseudo-labels for unlabeled frames enabling the training of 3D models.
Using a state-of-the-art convolutional neural network, 3D nnU-Net, we
delineate the left ventricle (LV) cavity, LV myocardium, and left atrium.
Evaluation on the CAMUS dataset demonstrates the quality and robust-
ness of the generated pseudo-labels, serving as effective training data
for subsequent segmentation. Additionally, we evaluate the segmentation
model both intrinsically, measuring accuracy and temporal consistency,
and extrinsically, estimating cardiac function markers like ejection frac-
tion and left ventricular volumes. The results show accurate delineation
of the cardiac structures that evolves smoothly over time, effectively
demonstrating the model’s accuracy and temporal consistency.

Keywords: Left ventricle segmentation · Echocardiography · Image
registration · Pseudo-labels

1 Introduction

The analysis of 2D transthoracic echocardiograms is crucial in clinical cardi-
ology for disease diagnosis and treatment selection [2]. The analysis comprises
the extraction of a number of quantitative markers of cardiac function, such as
the ejection fraction (EF) and the chamber volumes [10]. Extraction of these
quantitative markers requires accurate and precise delineation of the cardiac
anatomy. However, manual expert annotation is a time-consuming task associ-
ated with high inter- and intra-rater variability [1]. Existing commercial solutions
allow semi- or fully-automatic delineation of the cardiac structures, but they are
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typically limited to the segmentation of the end-diastolic (ED) and end-systolic
(ES) frames [14].

The focus on ED and ES frames is also reflected in most published research
utilizing machine learning approaches [12]. As these methods require large and
diverse datasets for training, collecting annotations of full sequences has not
been the prime focus. The most commonly used public datasets for echocardio-
graphy segmentation, CAMUS [8] and EchoNet-Dynamic [11], provide manual
labels1 for the ED and ES frames only. Therefore, most current state-of-the-art
(SoTA) segmentation methods rely solely on expert annotations for these two
frames [12]. Despite achieving performance within the margins of intra-observer
variability [15,18], these methods do not address the smooth evolution of the
cardiac structures over time, leading to temporally inconsistent predictions [12].

Since preserving the temporal consistency of the segmentations is benefi-
cial for precise EF estimation [18], several studies have addressed this issue.
Some approaches combine temporal and multi-view information using 3D CNN
and convolutional LSTM [9]. Others enforce temporal smoothness through post-
processing [12] or leverage optical flow for segmentation accuracy improvement
[3,21]. Wei et al. introduced CLAS, an end-to-end approach that combines co-
learning of appearance and shape features with the generation of left ventricle
(LV) pseudo-labels for the intermediate time points [18]. These LV pseudo-labels
are obtained by warping the ground truth maps to other frames using optical
flow. Chen et al. further added data augmentation (A-CLAS) [4], while Wei et
al. introduced two auxiliary tasks, view classification and EF regression, and
proposed the multi-task version of CLAS (MCLAS) [19].

Although these methods achieve temporally consistent segmentation, their
reliance on co-learning and pseudo-labels makes them computationally com-
plex. Moreover, their constrained end-to-end nature restricts their modularity. In
contrast, we present a method that addresses pseudo-label generation and tem-
porally smooth segmentation as separate components. It leverages an unsuper-
vised image registration model to sequentially estimate the deformations between
frames and generate pseudo-labels through the warping of the available segmen-
tation maps. The generated pseudo-labels allow supervised training of arbitrary
3D (2D+time) segmentation networks. To this end, we train a 3D nnU-Net
[7] to delineate the LV cavity, LV myocardium and left atrium. We evaluate the
proposed approach on the public CAMUS dataset [8], demonstrating that it gen-
erates reliable pseudo-labels that bring significant benefits to the downstream
segmentation task. The segmentation model exhibits remarkable accuracy in
delineating cardiac structures while preserving spatiotemporal smoothness, ulti-
mately yielding accurate EF estimations.

2 Method

To obtain accurate and temporally consistent 3D (2D+time) segmentations from
a sparsely labeled dataset, the method first generates the pseudo-labels for those
1 To aid readability, it may be worth specifying that “segmentations” and “labels” are

used interchangeably throughout the paper.
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Fig. 1. The proposed image registration-based pseudo-labels generation method. The
provided segmentations are propagated from ED to ES (a) and from ES to ED (e). The
masks from the two directions are aggregated as described in Sect. 2.1 and weighted
according to a sinusoidal function (b and d).

frames that lack reference segmentations. This is done through the sequential
application of image registration. Thereafter, the method uses these pseudo-
labels to augment sparse reference annotations and train a segmentation model.

2.1 Pseudo-labels Generation

Echocardiography acquisition consists of a sequence of image frames xt, ∀t ∈
{1, 2, .., N} showing the evolution of the heart over the cardiac cycle. Given
the reference segmentation for the ED and ES frames, unsupervised deformable
image registration (DIR) is exploited to segment the frames lacking segmentation
masks. The registration’s dense displacement vector field (DVF) is employed to
warp the segmentation of frame xt (yt) to frame xt+1, resulting in a pseudo-
segmentation −→y t+1 of frame xt+1. Specifically, the available ED segmentation
is iteratively forward-propagated through the sequence to produce −→y t, ∀t ∈
{1, 2, .., N}. Akin, backward-propagating the ES segmentation mask returns a
set of ←−y t, ∀t ∈ {1, 2, .., N}.

To mitigate error accumulation caused by sequential registrations, the two
sets of pseudo-labels −→y and ←−y are combined using a weighted average of their
class-wise signed distance maps. Specifically, for each class and time point, a
binary mask is extracted and the signed distance to its edges is computed. The
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resulting distance maps, d(−→y t,C) and d(←−y t,C), are then weighted-averaged to
return an image with negative values outside the object, positive values inside
and zero crossings at the object boundaries. Thresholding this image at zero
produces the final mask. The final bidirectional method is illustrated in Fig. 1
and defined mathematically in Eq. 1:

ỹt,C =
(
d(−→y t,C) · cos2

π

2N
t + d(←−y t,C) · sin2 π

2N
t
)

> 0 (1)

where ←→y t,C is the binary mask corresponding to class C at time point t, d(·) is
the distance transform operation and N is the ED-to-ES sequence length. The
weights are determined according to the temporal proximity of d(−→y t,C) and
d(←−y t,C) to the ED and ES reference segmentations, respectively. More specifi-
cally, they are designed to decrease from 1 to 0 in the direction of the propaga-
tion, thereby exerting more influence on the forward direction at the beginning
of the sequence and on the backward direction at the end. This further mitigates
error accumulation and improves the accuracy of the object representation.

In this work, an unsupervised deep learning registration framework is uti-
lized to perform image alignment through CNNs [6]. The method exploits image
similarity between fixed and moving image pairs, B-splines as the transforma-
tion model, and supports coarse-to-fine alignment. Additionally, the loss func-
tion combines the negative normalized cross correlation LNCC with the bending
energy penalty P : L = LNCC + αP [13]. The regularization term P minimizes
the second order derivative of local transformations, thereby enforcing global
smoothness and preventing anatomically implausible image folding.

2.2 Segmentation

The reference segmentations of the echocardiograms are augmented with the
pseudo-labels to provide densely labeled reference sequences. This enables the
training of 3D (2D+time) segmentation models, which are designed to be trained
on densely annotated data. By encoding the time dimension as the third dimen-
sion in convolutional space, a 3D model can learn spatiotemporal features that
encourage temporally smooth predictions. To this end, a 3D nnU-Net is trained
on the augmented dataset (3D Dense nnU-Net) [7].

2.3 Evaluation

Both the generated pseudo-labels and the predicted segmentations are intrinsi-
cally evaluated by overlap and boundary metrics: the DICE coefficient (DC), the
mean absolute surface distance (MAD) and the 2D Hausdorff Distance (HD).
The metrics are calculated per frame and subsequently averaged over an entire
video. Additionally, the segmentation models are evaluated extrinsically through
quantification of EF and LV volumes at end-diastole and end-systole, EDV and
ESV. To aggregate dataset-level statistics for these indices, the correlation coeffi-
cient, bias and mean absolute error (MAE) are calculated between the reference
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and automatically obtained values. Finally, the temporal consistency of the auto-
matic segmentation is assessed by tracking the area of a given class over time.
The smoothness of a sequence is computed as the integral of the second deriva-
tive of the resulting curve (area curve). To account for changes in the slope of the
area curve and to prevent the loss of information due to opposite bending, the
second derivative is squared prior to integration. The final smoothness metric is
defined in Eq. 2, with N being the ED-to-ES sequence length and aC(t) the area
of class C at time point t.

Smoothness =
∫ N

1

(a′′
C(t))2 dt, (2)

3 Experiments

Two main experiments were conducted2. First, the pseudo-labels were generated
and evaluated against reference segmentations. Second, the pseudo-labels were
utilized to complement the original dataset and train the segmentation network.

All the models were implemented in PyTorch 1.12.1 and trained using 2 Intel
Xeon Gold 6128 CPUs (6 cores, 3.40GHz) and a GeForce RTX 2080 Ti.

3.1 Data and Preprocessing

This study uses two public datasets: CAMUS [8] and TED [12]. CAMUS contains
2D echocardiograms with 2-chambers (2CH) and 4-chambers (4CH) views of
half-cycle sequences (from ED to ES) of 500 patients (450 training, 50 test).
Manual annotations of the LV cavity, LV myocardium and LA are provided for
the ED and ES frames only. TED is a subset of CAMUS that comprises 98 full
cycle 4CH sequences, with manual segmentations of the LV cavity and the LV
myocardium for the whole cardiac cycle. 94 sequences are part of the CAMUS
training set and 4 of the test set.

Prior to analysis, all images are resized to 512 × 512 px, and the pixel spacing
is scaled proportionally to preserve the anisotropic nature of the data.

3.2 Pseudo-label Generation

The DIR model was trained on the CAMUS training set after leaving out the
overlapping 94 TED echocardiograms, resulting in a set of 806 echo sequences.
Successively, the frame-wise alignment quality was evaluated against these 94
left-out TED sequences. The DIR network was trained on every intra-patient
combination of two frames from the registration training set. The training was
performed in 10,000 iterations and used a batch size of 32, the AMSGrad variant
of the ADAM optimizer and a learning rate of 10−3. Hyperparameters such as

2 The code is publicly available at https://github.com/matteo-tafuro/temporally-
consistent-echosegmentation.

https://github.com/matteo-tafuro/temporally-consistent-echosegmentation
https://github.com/matteo-tafuro/temporally-consistent-echosegmentation
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Fig. 2. Comparison of the pseudo-labels quality in terms of geometric metrics evaluated
on the densely annotated TED dataset.

the size, the number of kernels and the B-spline grid spacing were determined in
preliminary experiments by testing values between 2 and 128. Optimal results
were obtained with 32 kernels of size 32 × 32, a grid spacing of 32 and a reg-
ularization hyperparameter of 1.0 to prevent folding. Coarse-to-fine registration
did not improve performance, hence simple one-stage alignment was employed.

Figure 2 demonstrates the performance of pseudo-label generation using dif-
ferent approaches. Pseudo-labels were compared with predictions from a SoTA
2D nnU-Net trained on the original sparsely labeled CAMUS dataset (2D Sparse
nnU-Net). Figure 3 highlights the effectiveness of our label propagation method
in generating temporally consistent pseudo-labeled segmentation maps, promot-
ing coherent feature learning during the segmentation step.

3.3 Segmentation

The 3D Dense nnU-Net was trained and tested on the sparsely labeled CAMUS
datasets augmented with pseudo-labels, allowing direct comparison with related
works. In addition, the 3D Dense model was evaluated against two baselines:
a 2D nnU-Net trained on the sparsely labeled CAMUS dataset (2D sparse
nnU-Net) and a 2D nnU-Net trained on the augmented CAMUS dataset (2D
Dense nnU-Net). Each nnU-Net was trained for 1,000 epochs, using 5-fold cross-
validation with an interleaved test setup. After training, the framework automat-
ically selected the best U-Net configuration. Finally, three SoTA CLAS-based
methods [4,18,19] were included for comparison. The models were compared in
terms of (i) accuracy of the LV cavity, LV myocardium and LA segmentation at
ED and ES; (ii) estimation of EF, EDV, and ESV; (iii) temporal smoothness.

The average segmentation performance on the ED and ES frames of the
test set is listed in Table 1; the results of the EDV, ESV and EF estimation
are displayed in Table 2; the observed temporal consistency of frame-by-frame
predictions is shown in Fig. 4; finally, the area curve of a test patient is depicted
in Fig. 5 along with the corresponding ED and ES predictions.
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Table 1. Average segmentation results at ED and ES on the (sparsely annotated)
CAMUS test set. The intra-observer variability results (in blue) are taken from the
official CAMUS website and are not provided for the left atrium. The best value per
column is indicated in bold.

ED ES

LV Cavity LV Myocardium LA LV Cavity LV Myocardium LA

DC HD MAD DC HD MAD DC HD MAD DC HD MAD DC HD MAD DC HD MAD

Intra-observer 0.945 4.6 1.4 0.957 5.0 1.7 – – – 0.930 4.5 1.3 0.951 5.0 1.7 – – –

CLAS [18] 0.947 4.6 1.4 0.961 4.8 1.5 0.902 5.2 1.9 0.929 4.6 1.4 0.955 4.9 1.6 0.927 4.8 1.8

A-CLAS [4] 0.942 – – 0.955 – – 0.887 – – 0.923 – – 0.950 – – 0.916 – –

2D Sparse 0.955 4.1 1.2 0.965 4.4 1.4 0.906 4.9 1.9 0.938 4.0 1.2 0.959 4.3 1.5 0.937 4.3 1.5

2D Dense 0.950 4.2 1.3 0.963 4.3 1.4 0.902 5.0 2.0 0.934 4.2 1.3 0.957 4.5 1.5 0.933 4.5 1.7

3D Dense 0.952 4.2 1.3 0.961 4.6 1.5 0.899 5.2 2.0 0.939 4.0 1.2 0.958 4.8 1.5 0.932 4.7 1.6

Fig. 3. Left atrium area over
time from the pseudolabels of
patient0010 (4CH).

Table 2. LV volume and EF estimation on the
CAMUS test set. The intra-observer variability is indi-
cated in blue, and the best column-wise value is dis-
played in bold.

Methods EDV ESV EF

Corr Bias MAE Corr Bias MAE Corr Bias MAE

Intra-observer 0.978 −2.8 6.5 0.981 −0.1 4.5 0.896 −2.3 4.7

CLAS [18] 0.958 −0.7 7.7 0.979 0.0 4.4 0.926 −0.1 4.0

A-CLAS [4] 0.969 – – 0.983 – – 0.883 – –

MCLAS [19] 0.975 −1.0 – 0.983 −1.2 – 0.946 1.0 –

2D Sparse 0.972 0.0 6.0 0.980 −0.6 4.8 0.827 1.3 5.0

2D Dense 0.972 0.4 5.7 0.986 −0.3 4.2 0.841 1.3 4.6

3D Dense 0.978 −1.4 4.8 0.986 −0.1 4.0 0.859 −0.1 4.6

Fig. 4. Temporal smooth-
ness of the CAMUS test
set predictions in terms of
the metric from Eq. 2 (lower
values, higher smoothness).
Note the logarithmic y-axis.

Fig. 5. Evaluation of the temporal consistency on
patient0002 from the test set. Top row: area curves.
Bottom row: predictions at ED and ES. The green con-
tours refers to the ground truth and the magenta outline
is the prediction of the 3D Dense model.
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4 Discussion and Conclusion

This paper presented a method for temporally consistent segmentation of
echocardiography using sparsely labeled data. The method exploits pseudo-labels
generated by the use of DIR to complement the original set of sparsely annotated
frames and allow the training of a 3D nnU-Net.

The analysis of the generated pseudo-label revealed the benefits of bidirec-
tional over unidirectional label propagation. Results on the subsequent ED and
ES segmentation task demonstrate that exploiting the pseudo-labels retains or
improves the performance of the model trained on the sparsely labeled dataset,
thereby endorsing their quality for downstream applications. The geometric met-
rics show that all three evaluated models perform at least as well as the SoTA
methods, achieving a level of accuracy on par with intra-observer variability.
However, evaluation of the temporal smoothness showed that the 2D Dense
model outperforms the 2D Sparse model and that the 3D Dense, in turn, outper-
forms both. For quantification of LV volumes, the 3D Dense model outperforms
all SoTA methods with EDV and ESV values closely matching intra-observer
variability. EF estimation, however, is less remarkable. Yet, we argue that our
method’s very low bias and MAE akin to intra-rater variability advocate suffi-
ciently good estimations of the measure.

A more notable limitation of our approach is its exclusive focus on the sys-
tolic function. Longer sequences can be analyzed by identifying and extracting
the systolic phase from the entire heart cycle [4], but this would still preclude the
characterization of the diastolic function, which is relevant to various heart dis-
eases [16]. To this end, related studies have investigated the extraction of more
meaningful temporal features [21] and the application of cyclical self-supervision
[5]. As a direct extension of this work, future research could explore the efficacy
of registering unlabeled frames to the same image (specifically, the ED or ES
ground truth) as an alternative to the sequential approach. This could limit error
accumulation and potentially extend our method to encompass full- or multi-
cycle sequences. However, this may be detrimental to the temporal consistency of
the pseudo-labels and thus to the downstream segmentation and quantification.

Figure 5 shows that 3D Dense model results in slightly offset quantitative
indices from ground truth and 2D models, especially at ED and ES. Examina-
tion of other patients indicates that the model does not favor over- or under-
segmentation. Rather, Fig. 5 suggests the presence of uncertain boundaries in
the data. Disagreements between manual and automatic segmentations arise
when the endocardium is occluded, or when the LV myocardium and/or the LA
extend beyond the field of view. In these cases, the ambiguous position of the
structures likely influences the creation of manual annotations. Accordingly, the
ambiguity is reflected in the predictions of the models, resulting in the observed
discrepancy. Future work could model this randomness in order to convey the
reliability of a given estimation. Extensions of this study may also attempt to
limit the aforementioned uncertainty, for instance by selectively choosing high-
quality pseudo-labels for training, or by leveraging distinct loss functions (or
weighting schemes) for ground truth and pseudo-labeled frames [17,20].
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In conclusion, our approach achieves accurate segmentation comparable to
SoTA methods while offering remarkable temporal consistency. Unlike end-to-
end frameworks such as CLAS [4,18,19], our approach separates pseudo-label
generation and segmentation, offering flexibility and modularity.
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