
Heuristics Selection with ML in CP
Optimizer

Hugues Juillé(B), Renaud Dumeur, and Paul Shaw

IBM France Lab, Orsay, France
{hugues.juille,renaud.dumeur,paul.shaw}@fr.ibm.com

Abstract. IBMR© ILOGR© CP Optimizer (CPO) is a constraints solver
that integrates multiple heuristics with the goal of handling a large
diversity of combinatorial and scheduling problems while exposing a
simple interface to users. CPO’s intent is to enable users to focus on
problem modelling while automating the configuration of its optimiza-
tion engine to solve the problem. For that purpose, CPO proposes an
Auto search mode which implements a hard-coded logic to configure
its search engine based on the runtime environment and some metrics
computed on the input problem. This logic is the outcome of a mix of
carefully designed rules and fine-tuning using experimental benchmarks.
This paper explores the use of Machine Learning (ML) for the off-line
configuration of CPO solver based on an analysis of problem instances.
This data-driven effort has been motivated by the availability of a pro-
prietary database of diverse benchmark problems that is used to eval-
uate and document CPO performance before each release. This work
also addresses two methodological challenges: the ability of the trained
predictive models to robustly generalize to the diverse set of problems
that may be encountered in practice, and the integration of this new ML
stage in the development workflow of the CPO product. Overall, this
work resulted in a speedup improvement of about 14% (resp. 31%) on
Combinatorial problems and about 5% (resp. 6%) on Scheduling prob-
lems when solving with 4 workers (resp. 8 workers), compared to the
regular CPO solver.

Keywords: Combinatorial Optimization · Machine Learning ·
Lifecycle management

1 Introduction

The search landscape of any combinatorial optimization problem exhibits specific
structures. Hence, algorithms that can exploit these structures more efficiently
are likely to outperform those that don’t. Over the past decades, there has been
significant research to determine how to select or adapt search algorithms to
improve performance on a specific problem class or problem instance [13]. The
algorithm selection problem entails many sub-questions and sub-problems that
have been heavily studied. For instance, should a single or a pool of algorithms be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 208–222, 2023.
https://doi.org/10.1007/978-3-031-44505-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_15&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_15


Heuristics Selection with ML in CP Optimizer 209

selected, how to distribute compute-time among the selected algorithms, should
the algorithm selection be performed before-hand (off-line) or adjusted during
search space exploration. Similar questions are raised for computing the features
that will characterize a problem class or a problem instance.

While approaches based on hand-crafted heuristics have shown promising
results, the design of such heuristics assumes that some internal structures
reflecting the intrinsic complexity of problems have been identified and an algo-
rithm can efficiently exploit them. However, because of the ill-defined nature of
the search space for hard problems, many of these heuristics are based on rules
of thumb rather than computable rigorous mathematical formulations. There-
fore, data-driven machine learning methods are natural candidates to address
this heuristic design difficulty. The underlying motivation is that ML methods
may capture properties of a problem class or a problem instance in a decision
model.

Here again, many approaches have been explored for introducing ML for solv-
ing combinatorial optimization problems [2,8]. In the more extreme approaches,
ML handles problem solving end-to-end by designing new algorithms that inte-
grate trainable models to drive the exploration of the search space. These
approaches are usually specific to some problem classes and a frequent goal is to
analyze the generalization capability of the trained algorithm to larger problem
instances [3,7]. On the other hand, one may choose to capitalize on the large
effort that has been put in the design of competitive combinatorial optimization
algorithms. In that domain, the two main approaches consist either in using
ML before invoking solvers (for instance, by learning how to configure algo-
rithms [9] or by learning some portfolio-based algorithm selection strategy [15]),
or in integrating ML in the inner logic of the algorithms to learn rules control-
ling decision making at runtime [6]. Our approach is the former and, using the
taxonomy proposed by [4], can be defined as ML-in-MH used to improve the
Algorithm selection stage.

Objectives and Motivations

The goal of the work presented in this paper is to use Machine Learning to
improve the performance of the CPO solver over a large range of application
domains and real-world problems (that is, not specific to a problem class). Mul-
tiple challenges must be addressed to achieve this goal:

1. Algorithm selection: this problem consists in determining how to allocate
search heuristics to the available workers (CPU threads) involved in a CPO
solve. Predictive models are trained to make this decision, based on an off-line
computation of metrics on the input problem.

2. Training methodology robustness: Predictive models must not specialize
on benchmarks used for training so that CPO solver extended with ML will
improve performance over a large class of unseen application domains. There-
fore, the training methodology will be designed carefully to limit overfitting
issues.



210 H. Juillé et al.

3. Trained models lifecycle management: CPO solver is continuously evolv-
ing. Existing heuristics efficiency is improved and new heuristics are designed.
Therefore, our ML approach must take into account these changes and be
integrated in the product development workflow. This means that the train-
ing process must be automated as much as possible (e.g., to be ultimately
executed from a continuous delivery environment) and reproducible.

The following items summarize the main tasks involved in the implementation
of our ML approach:

1. define features to be computed on input problems
2. train a predictive model from these features to drive algorithm selection
3. embed the trained model in CPO executable
4. benchmark this CPO with ML version against regular CPO version

Section 2 introduces how features are computed based on the formulation of input
problems in CPO modelling language. Then, our repository of benchmark prob-
lems and our performance assessment process are presented. Section 3 details our
formulation of algorithm selection as a ML problem along with the steps involved
in training a predictive model and embedding this model in CPO. Robustness
and lifecycle management challenges are also addressed in that section. Finally,
experimental results for training and benchmarking are presented in Sect. 4.

2 CPO Modelling Language and Features Definition

2.1 CPO Modelling Language

CPO [10] proposes a rich set of constructs to model combinatorial optimization
problems. The core of combinatorial problems consists in assigning values to a
number of integer decision variables, subject to a number of constraints which
enforce conditions on valid domains of these variables. Exploring the problem
search space consists in finding valid assignments to its decision variables. A
solution to the problem corresponds to a situation where all decision variables
are assigned a value while satisfying all constraints. In addition, a measure of
quality for solutions (an objective) may be formulated, and the goal is to find a
solution that maximize (or minimize) this objective.

CPO supports all regular constraints on integer decision variables: equality,
difference, ordering... (low level constraints) along with: alldiff, count, element,
distribute, pack... (global constraints)
In addition, CPO introduces the concept of interval variables for the formula-
tion of scheduling problems. An interval is characterized by a start value, an end
value, a size and an intensity. Also, interval variables can be optional; that is, one
can decide not to consider them in the solution schedule. A number of constructs
exploits interval variables to enforce constraints like spanning, precedence, pres-
ence, alternative..., etc. Interval variables are also used to define higher level
abstractions like sequences of intervals, over which specific constraints may also
be enforced.



Heuristics Selection with ML in CP Optimizer 211

2.2 Features Definition

A combinatorial problem model can be represented as a directed graph. There
is one vertex for each decision variable, one for each constant, one for each con-
straint and one for each expression. For each constraint (resp. expression), edges
connect the associated node with all nodes corresponding to the parameters of
the constraint (resp. expression) definition. As a result, vertices with only out-
going edges correspond to decision variables and constants, while vertices with
at least one incoming edge correspond to constraints, expressions, or objective
definition.

Before actually solving a model, CPO performs a pre-solve stage which con-
sists in a reformulation of the input model. The purpose of this stage is to
improve solve performance by removing useless entities or rewriting expressions
for faster computation and search space reduction. As a result, this “pre-solved”
model can be quite different from the input model and metrics computed on this
second model may also vary significantly from those computed on the original
model. One will explore whether training the predictive model on one of these
constraints models or the other impacts performance.

Our approach to an off-line analysis of input problems consists in engineering
a collection of features that captures information about structural properties of
the problem. In order to compute features on the graph representing the input
problem, the following attributes are defined for each node:

– Type: an identifier of the detailed nature of the node (e.g., integer variable,
alldiff constraint...),

– Flavor: an identifier that defines a coarser grouping based on the nature of
nodes (e.g., constraint, integer expression...),

– Constraint: a flag indicating if the node corresponds to a constraint,
– Leaf : a flag indicating if the node has no child (e.g., decision variables, con-

stants...),
– Root: a flag indicating if the node has no parent (e.g., objective function,

constraints that are not argument of another constraint or expression...),

Using this terminology, Table 1 describes the features that have been explored
in this work. This table identifies a group of mandatory features that will always
be used, while different combinations of features related to search space size will
be investigated. In this table, search space size refers to the cartesian product
of all variables domain. CPO propagation engine reduces the domain of decision
variables. As will be seen in the experimental section, considering search space
size before or after this initial propagation (hence resulting in twice as many
features) impacts the performance of predictive models.

2.3 Benchmark Problems and Performance Assessment

CPO involves non-deterministic algorithms that are continually tuned to enhance
their performances. This tuning needs input from performance tests to be accu-
rate. To enable such testing, the CPO Product Improvement Platform (CPOPIP)



212 H. Juillé et al.

Table 1. Features definition

Features

“M
an

d
at

or
y”

fe
at

u
re

s

Density-based features
• For each Type, density of all nodes of this Type with respect to
all other nodes with same value of Constraint attribute 158
• For each Flavor, density of all nodes of this Flavor with respect
to all other nodes with same value of Constraint attribute 41

Misc ratios based on number of vars, constraints, types
Ratio of leaf nodes or constraint nodes over all nodes in graph,
ratio of Integer and Interval variables among leaf nodes... 11

Distribution-based statistics features
log1p() of mean, standard deviation and skewness for distributions:
• Number of children for Constraint nodes
• Number of parents for Leaf nodes
• Number of parents for non-Leaf and non-Constraint nodes
• Number of non-Leaf and non-Constraint child nodes

12

L
og

S
ea

rc
h

S
p
ac

e
si
ze

fe
at

u
re

s

Search Space size-based features
First, compute BEFORE and AFTER initial propagation:
• For all Integer variables: log of size of domain
• For all Interval variables: log of size of interval start domain
Then, compute following features:
• Sum of logs for Integer variables, Interval variables and overall 3 × 2
• For all “density-based” and “misc ratios” features, product
of original feature by:
- total log search space size over all Integer variables only 210 × 2
- total log search space size over all variables 210 × 2

has been developed and deployed on a dedicated cluster. CPOPIP has been per-
forming benchmarks to monitor enhancements of the CPO product over time.
These benchmark problems are based on a repository of a few thousands tests
that have been collected from miscellaneous public benchmarks or from real
world projects. It is continuously enriched with new tests. All these tests are
tagged with attributes to organize them by problem type (integer optimization,
scheduling, feasibility) and by family. Problems in a family share some common
structure (usually, a family is built from multiple instances of a same problem
with varying sizes for decision variables along with customized constraints). At
the time of writing of this paper, our repository of tests is composed of 6142 CPO
models (2140 combinatorial optimization problems, 483 combinatorial feasibility
problems, and 3519 scheduling problems), that are grouped in 327 families. The
families size varies from a single instance to 440 for the largest family. CPOPIP
embeds multiple tools to support performance analysis at different granularity
levels.



Heuristics Selection with ML in CP Optimizer 213

A common setup for a benchmarking campaign is to execute 10 runs (CPO
solve) for each test, with a time limit of 1000 s per run. Latest CPO released
version can solve to optimality about 45% of the test for all runs, before the time
limit. For less than 2% of these tests, no run can found a first solution. These
corresponds to the hardest problems of the repository of tests. For the remaining
tests (about 53%), some runs didn’t prove optimality but at least one run found
a first solution. This corresponds to difficult optimization problems which focus
our effort for improving CPO heuristics.

Improvements between CPO versions are assessed by comparing their corre-
sponding benchmarking campaigns. One of the metrics that is computed when
comparing two campaigns is the average test speedup. For each model, this indi-
cator evaluates the average ratio of runtimes for the two campaigns to achieve
a same performance with respect to the objective value. The speedup value is
above 1.0 for tests where the first campaign is faster on average than the second
campaign to achieve a same value of the objective (or to find a solution for sat-
isfiability problems), over the 10 runs. The range of values for the test speedup
is limited to the interval [0.01, 100.0].

3 General Approach

3.1 Algorithm Selection Problem Formulation

The CP Optimizer search is based on constructive search, which is a search
technique that attempts to build a solution by fixing decision variables to values.
While the built-in CP Optimizer search is based on this technique, the optimizer
also uses other heuristics to improve search. These heuristics (or SearchType in
CPO terminology) are named: Restart, MultiPoint, DepthFirst and IterativeDiv-
ing.

– DepthFirst search is a tree search algorithm such that each fixing, or instan-
tiation, of a decision variable can be thought of as a branch in a search tree.
The optimizer works on the subtree of one branch until it has found a solution
or has proven that there is no solution in that subtree.

– Restart is a depth-first search that is restarted after a certain number of
failures that increases after each restart.

– IterativeDiving is a search method that attempts to quickly build feasible
solutions and improve them using consecutive iterations of backtrack-free
search. This heuristics is specialized for Scheduling problems.

– MultiPoint search creates a set of solutions and combines the solutions in the
set in order to produce better solutions. Multi-point search is more diversified
than depth-first or restart search, but it does not necessarily prove optimality
or the inexistence of a solution.

Each heuristic can also be manually fine-tuned with specific parameters.
DepthFirst and IterativeDiving are restricted variations of Restart heuristics.
On the other hand, Restart and MultiPoint heuristics implement very different



214 H. Juillé et al.

approaches to search. Our experience has shown that, depending on the prob-
lem instance, one heuristic can be much faster than the other to solve it. For
this reason, we decided to focus on the problem of predicting a score that corre-
lates with the probability that the MultiPoint heuristic outperforms the Restart
heuristic, given a problem instance.

Moreover, when the CPO’s Workers parameter exceeds 1, multiple worker
threads are started when search begins. When the SearchType parameter is set to
Auto, these threads will employ a variety of search heuristics, such as MultiPoint
and Restart. Through the exchange of information, such as intermediate solutions
and nogoods, these worker threads can collaborate and cooperate in the search
process. Hence, identifying the right mix of heuristics to assign to workers has
a strong impact on search performance. In our approach, the predicted score
determines the allocation of each heuristic to the different workers, by using a
proportionality rule.

This section has formulated the algorithm selection problem as a binary
classification problem. Before detailing the ML workflow that will be used to
solve this problem in Sect. 3.4, the next two sections introduce how the robustness
and life-cycle management challenges have been addressed.

3.2 Training Methodology Robustness

From a Machine Learning methodological point of view, a number of challenges
must be overcome. First, even if a significant number of benchmark problems
compose the dataset available for training, a few thousand data points very
quickly expose us to overfitting and variance issues. Second, the dataset is struc-
tured into families that group similar problems together. This raises the issue
of diversity in the training data, along with the risk of overfitting to the actual
data used for benchmarking and generalizing poorly on unseen problems.

These issues have been mitigated as follows. First, an aggressive splitting
strategy has been implemented, using: 30% of problems for training, 30% for
validation and 40% for testing. Second, splitting has been performed using strat-
ification based on pairs (family id, target). By using a small fraction of data for
training the predictive model and about the same amount of data for valida-
tion, overfitting is limited. Indeed, a large validation set enables a more reliable
evaluation of generalization so that training is stopped before overfitting occurs.
Keeping a large chunk (40%) of all problems for the final evaluation of the pre-
dictive model also makes this final measure more reliable. Moreover, stratified
splitting introduces more diversity in the training data and improves generaliza-
tion capability for the trained predictive model.

The LightGBM algorithm [5,11] has been selected for training predictive
models. Several reasons motivated our choice of this Gradient Boosted Trees
(GBT) framework. First, training models with LightGBM is very fast, which
makes heavy Hyper Parameters Optimization (HPO) more manageable to inves-
tigate configuration options. Second, this framework exhibits interesting proper-
ties for a smooth integration in CPO: serializing decision trees and implementing
their evaluation logic is simple (a decision tree is a list of tuples (subtree id, split



Heuristics Selection with ML in CP Optimizer 215

feature, threshold value, left and right subtrees id) for internal nodes, and tuples
(subtree id, value) for leaf nodes), also the memory footprint of serialized trained
models is small.

Also, the logic implemented by decision trees is easy to interpret. Being able
to get insights about the main features used to compute class probabilities helps
to build confidence in the model and to engineer additional features. Finally,
training a LightGBM model is reproducible (given a seed value), which is desir-
able for our ML workflow.

3.3 Trained Models Lifecycle Management

Heuristics embedded in CPO are continuously improving over time. Therefore,
a predictive model trained for a specific version has to be adjusted to reflect
the new relative performance of the different heuristics in following versions.
The two main challenges to address this particular issue concern: the end-to-end
automation of the workflow, and reproducibility.

CPO development and release follow the Continuous Delivery (CD) approach
which aims at automating the build, test and release steps of a software. In order
to embed a trained predictive model in CPO, all the steps needed to produce
this model must be automated in a reliable pipeline. This pipeline covers all the
regular ML steps (data preparation, model training, HPO, feature selection...)
along with the generation of the actual resources to be packaged in the delivered
product. Details about this pipeline are discussed in Sect. 3.4. This pipeline can
be executed without any human interaction and can be added to the Continuous
Delivery workflow.

Reproducibility is important because the workflow may be executed multiple
times for a same version. Therefore, it is important that the outcome of the
workflow be identical at each execution. In particular, this means that CPO
performance evaluation does not depend on non-deterministic behaviors in the
ML workflow. This has been achieved by controlling random seeds of all algo-
rithms involved in the workflow that make non-deterministic decisions: Light-
GBM, stratified K-fold algorithm, BayesianOptimization [12], features impor-
tance assessment algorithm.

3.4 Machine Learning Workflow

This section introduces the different steps involved in the Machine Learning
workflow:

– Training dataset preparation:
• Target definition: For each test problem, compute the speedup between

the MultiPoint and Restart heuristics to assess their relative performance.
These speedups result from the comparison of two campaigns performed
on our CPOPIP platform. Each campaign executes a single worker that is
configured either with MultiPoint or Restart as the search heuristic. The
target for the classification problem corresponds to the winning heuristics



216 H. Juillé et al.

Fig. 1. Number of problems for which each heuristic (Restart or MultiPoint) outper-
forms the other, detailed by problem type.

(0 for Restart, 1 for MultiPoint). The distribution of target values plot-
ted in Fig. 1 illustrates that the two classes are imbalanced. The actual
speedup value will be used for weighting training samples.

• Compute all features listed in Table 1 for all problems in our dataset.
• Perform the stratified split, using 60% as training/validation dataset and

keeping the other 40% aside for testing (as described in Sect. 3.2).
– Model training using LightGBM algorithm:

• As detailed in Sect. 3.1, algorithm selection has been formulated as a
binary classification problem. In that case, cross-entropy is the usual loss
function for training.

• Two-folds cross-validation is used for training. Each fold takes 50% of the
input dataset for training (that is 30% of all problems) and the other half
for validation. LightGBM training is stopped when no progress is observed
for the cross-entropy loss computed on validation data for 50 iterations.
The final score of trained models is this out-of-fold (OOF) cross-entropy
score.

– Hyper-parameter optimization (HPO): HPO aims at exploring the space of
values for the training algorithm parameters in order to identify a config-
uration for these parameters that optimizes a selected performance met-
ric. At each HPO iteration, 10 runs (changing seed at each run) are exe-
cuted to account for the randomness incurred by the feature_fraction
and bagging_fraction LightGBM parameters (which control sampling of
features and data points). Each run performs a complete two-fold cross-
validation training. The OOF cross-entropy loss averaged over all these runs
is the actual performance metric that is optimized by HPO. The final output
is an assignment of values for selected parameters. In our experiments, HPO
is using the BayesianOptimization library [12] and is invoked twice in the
Machine Learning workflow:
1. To identify a good initial configuration for the following list

of LightGBM parameters: max_depth, max_bin, feature_fraction,
bagging_fraction, bagging_freq, min_data_in_leaf, lambda_l1 and
lambda_l2. A detailed documentation of these parameters can be found



Heuristics Selection with ML in CP Optimizer 217

in the on-line LightGBM documentation [11]. Features importance will
be evaluated based on the configuration of parameters identified after this
first HPO round.

2. To select the number of features to keep for training, along with an
updated configuration for the above list of LightGBM parameters. Select-
ing a good subset of features reduces the risk of overfitting and helps
generalization.

– Features importance assessment: The purpose of evaluating features impor-
tance is to rank features based on their relevance for the training task. We
used the permutation importance method [1] for ranking features. In the sec-
ond round of HPO, the number of features to keep in this sorted list is one
of the hyper parameter to optimize.

– Selection and serialization of the model to embed in CPO: The LightGBM
model with the best OOF score is selected as the final predictive model to
be embedded in CPO. This model is serialized as C++ data structures in a
header source file that is added to CPO source code.

Fig. 2. Training workflow

The output of this Machine Learning workflow is the serialized LightGBM
trained model. Figure 2 illustrates how these different steps are sequenced.

3.5 Integration in CPO and Final Performance Evaluation

The CPO solver integrates the features computation code along with the trained
model. At runtime, features are computed for the current input problem so that
the predictive model can return a score. This score is used as a ratio and drives
the strategy to assign heuristics (or SearchType) to the different workers involved
in search (the number of workers depends on the runtime environment and can
be set by the user).



218 H. Juillé et al.

When evaluating the performance of CPO using the predictive model, the
overhead introduced by computing features and evaluating prediction for heuris-
tics selection is accounted for in the overall solve time.

The final performance of this problem-specific heuristics selection strategy
is assessed by executing two benchmarking campaigns configured with 4 and 8
workers respectively. It is then compared to the benchmarks performed for the
regular CPO that performs heuristics selection based on a hard-coded strategy.

4 Experimental Results

4.1 Experimental Setup and Features Sets

In order to explore the relevance of the different categories of features, the con-
figurations detailed in Table 2 will be used in our experiments. All these con-
figurations have a common subset of mandatory features that group all features
except those related to search space size. As discussed in Sect. 2.2, these features
may be computed either on the original model, or on the “pre-solved” model.

Table 2. Configurations for features set

Configuration Id Description Features

CMandatory,Orig Mandatory features on original model 222
CMandatory,Presol Mandatory features on “pre-solved” model 222
CBeforeProp,Orig Mandatory features + search-space size BEFORE

initial propagation on original model
645

CBeforeProp,Presol Mandatory features + search-space size BEFORE
initial propagation on “pre-solved” model

645

CAfterProp,Orig Mandatory features + search-space size AFTER
initial propagation on original model

645

CAfterProp,Presol Mandatory features + search-space size AFTER
initial propagation on “pre-solved” model

645

CBef&AftProp,Orig Mandatory features + search-space size BEFORE
and AFTER initial prop. on original model

1068

CBef&AftProp,Presol Mandatory features + search-space size BEFORE
and AFTER initial prop. on “pre-solved” model

1068

The next two sections present the experimental results for the training work-
flow (to identify features and parameters value that result in best performance),
and for benchmarking CPO extended with ML.

We will also look at the details of feature importance assessment to identify
some of the most relevant features.



Heuristics Selection with ML in CP Optimizer 219

4.2 Training Workflow Results

Table 3 summarizes the outcome of the LightGBM training experiments. For
each configuration of features set, the number of features optimized by the sec-
ond round of HPO along with the corresponding averaged cross-entropy loss
is reported (at each iteration, HPO performs 10 training runs). Then, using
parameters values returned by HPO, 50 additional runs are performed to moni-
tor the evolution of selected metrics during training. In addition to cross-entropy
loss, ROC AUC (the area under the receiver operating characteristics curve) is
reported for all configurations of features sets. ROC AUC is a metric that pro-
vides insights about the sensitivity of binary classifiers to threshold selection
for separating positive and negative examples. This information is useful for
imbalanced datasets, like in our case.

Table 3. Number of selected features and Out-Of-Fold metrics associated with best
parameters value found by HPO, for each configuration of features set.

Configuration Id Total
number of
features

Number of
selected
features

HPO best OOF
cross-entropy
loss (10 runs)

OOF
cross-entropy
loss (50 runs)

OOF ROC
AUC ROC
AUC

CMandatory,Orig 222 20 0.05641 [8] 0.05641 0.86491

CMandatory,Presol 222 55 0.05464 [5] 0.05464 0.87390

CBeforeProp,Orig 645 120 0.05387 [2] 0.05387 0.87398

CBeforeProp,Presol 645 296 0.05369 [1] 0.05381 0.87847
CAfterProp,Orig 645 118 0.05415 [3] 0.05415 0.86594

CAfterProp,Presol 645 344 0.05495 [7] 0.05511 0.8803

CBef&AftProp,Orig 1068 314 0.05420 [4] 0.05420 0.87384

CBef&AftProp,Presol 1068 536 0.05467 [6] 0.05468 0.8754

Table 3 indicates that the best performance is achieved by selecting the top
296 features from the CBeforeProp,Presol configuration (after sorting by impor-
tance). The corresponding trained predictive model is then serialized and embed-
ded in CPO to select heuristics to be used by each worker. Experimental results
for this extended CPO version are presented in the next section.

4.3 Benchmarking Results for CPO with ML

A CPO executable embedding the trained predictive model is built and evaluated
on our CPOPIP test platform. The baseline for all experiments in this section
corresponds to a regular CPO runtime. These regular and extended with ML
CPO versions differ only in the ML specific logic. All figures reported in this
section correspond to solve speedup compared to the baseline.

In order to evaluate performance, a Virtual Best Solver has also been designed
by evaluating CPO performance for all possible configurations for assigning



220 H. Juillé et al.

Table 4. Performance of CPO with ML vs Virtual Best Solver over all problems in
benchmark, by problem type, for 4 and 8 workers

4 Workers 8 Workers
Family
geometric av.

All tests
geometric av.

Family
geometric av.

All tests
geometric av.

Combinatorial
problems

Virtual Best 1.20 1.23 1.45 1.44
CPO with ML 1.08 1.11 1.28 1.29

Scheduling
problems

Virtual Best 1.34 1.27 1.47 1.40
CPO with ML 1.09 1.06 1.12 1.07

Overall Virtual Best 1.27 1.26 1.46 1.41
CPO with ML 1.09 1.08 1.19 1.13

Restart and MultiPoint heuristics to the pool of workers (of size 4 or 8). Then,
for each problem, the best speedup among all configurations is kept. The per-
formance of this Oracle is then compared to the baseline, providing an upper
bound on the best performance that our ML approach can achieve.

Table 5. Performance of CPO with ML vs Virtual Best Solver for TEST problems
only, by problem type, for 4 and 8 workers

4 Workers 8 Workers
Family
geometric av.

All tests
geometric av.

Family
geometric av.

All tests
geometric av.

Combinatorial
problems

Virtual Best 1.19 1.24 1.42 1.40
CPO with ML 1.13 1.14 1.30 1.31

Scheduling
problems

Virtual Best 1.37 1.27 1.50 1.40
CPO with ML 1.08 1.05 1.09 1.06

Overall Virtual Best 1.28 1.26 1.46 1.40
CPO with ML 1.10 1.07 1.18 1.12

Tables 4 and 5 present the results, separating Combinatorial and Scheduling
problems. The first table presents performance results on the full set of bench-
mark problems, while only problems from the Test dataset (that have not been
involved in the training process at all) are considered in the second table. One
can notice that the drop in performance between the two setups is minor, which
makes us confident in the robustness of the approach (in particular since some
families in the test data are not seen at all during training because of their small
size).

4.4 Features Importance Analysis

A side question of this work is related to the analysis of the most relevant features
that are exploited by trained models. Investigating which metrics computed on



Heuristics Selection with ML in CP Optimizer 221

an input problem correlate better with the learning target can help engineering
new features and provide some insights to design new heuristics.

Fig. 3. Top 20 features ranked by permutation importance.

Figure 3 plots the top 20 features ranked by permutation importance for
the best predictive model. Interestingly, 5 of the top 6 features in this chart
correspond to global structural properties of the directed graph associated with
the problem that are independent of constraints types. For instance, the top
feature is the proportion of nodes in the graph that are variables nodes, the
second one is the mean number of children for constraint nodes...

5 Concluding Remarks

The aim of the work presented in this paper is to extend the CP Optimizer prod-
uct with some automated heuristics selection capabilities driven by a few hun-
dreds of metrics computed on input problems. A predictive model trained from
an extensive repository of benchmark problems supports the heuristics selec-
tion strategy. Beyond the challenge of improving the performance of the solver
using a Machine Learning approach, embedding a predictive model in a prod-
uct entails several technical constraints. In particular, the lifecycle of embedded
models must be managed so that they are updated when needed. This implies
that all decisions involved in the workflow for creating the final predictive model
are clearly identified and automated. This involves in particular preparing the
training data by benchmarking individual heuristics, assessing and selecting the
best configuration of features by performing multiple HPO sessions, or including
the serialized final model in the product code.

This work confirms the benefit and the feasibility of using ML methods for
improving a productized solver. Our next step is to extend this effort to automat-
ically configure more parameters controlling CPO internal heuristics. Our goal



222 H. Juillé et al.

was a real challenge because of the difficulty to assemble a vast dataset of diverse
problems and not limit the domain of application to a few classes of problem.
For this reason, adversarial strategies like in [14] are promising approaches that
we also intend to investigate in our work.

References

1. Altmann, A., Tolosi, L., Sander, O., Lengauer, T.: Permutation importance: a
corrected feature importance measure. Bioinformatics (Oxford, England) 26, 1340–
1347 (2010). https://doi.org/10.1093/bioinformatics/btq134

2. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290, 405–421 (2021)

3. Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated
vehicle routing problem. arXiv abs/1911.09539 (2020)

4. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.G.: Machine learning at the service of meta-heuristics for solving com-
binatorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296(2),
393–422 (2022)

5. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Advances in Neural Information Processing Systems, vol. 30, pp. 3146–3154 (2017)

6. Khalil, E.B., Morris, C., Lodi, A.: MIP-GNN: a data-driven framework for guid-
ing combinatorial solvers. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 9, pp. 10219–10227 (2022). https://doi.org/10.1609/aaai.
v36i9.21262. https://ojs.aaai.org/index.php/AAAI/article/view/21262

7. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: ICLR (2019)

8. Kotary, J., Fioretto, F., Hentenryck, P.V., Wilder, B.: End-to-end constrained opti-
mization learning: a survey. arXiv abs/2103.16378 (2021)

9. Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decomposi-
tion. In: CPAIOR (2017)

10. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for schedul-
ing. Constraints 23(2), 210–250 (2018). https://doi.org/10.1007/s10601-018-9281-
x

11. Microsoft: LightGBM documentation. https://lightgbm.readthedocs.io (2021)
12. Nogueira, F.: Bayesian Optimization: open source constrained global optimization

tool for Python (2014). https://github.com/fmfn/BayesianOptimization
13. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-

mization problems. Comput. Oper. Res. 39, 875–889 (2012)
14. Tang, K., Liu, S., Yang, P., Yao, X.: Few-shots parallel algorithm portfolio con-

struction via co-evolution. IEEE Trans. Evol. Comput. 25(3), 595–607 (2021)
15. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-

rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1609/aaai.v36i9.21262
https://doi.org/10.1609/aaai.v36i9.21262
https://ojs.aaai.org/index.php/AAAI/article/view/21262
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s10601-018-9281-x
https://lightgbm.readthedocs.io
https://github.com/fmfn/BayesianOptimization

	Heuristics Selection with ML in CP Optimizer
	1 Introduction
	2 CPO Modelling Language and Features Definition
	2.1 CPO Modelling Language
	2.2 Features Definition
	2.3 Benchmark Problems and Performance Assessment

	3 General Approach
	3.1 Algorithm Selection Problem Formulation
	3.2 Training Methodology Robustness
	3.3 Trained Models Lifecycle Management
	3.4 Machine Learning Workflow
	3.5 Integration in CPO and Final Performance Evaluation

	4 Experimental Results
	4.1 Experimental Setup and Features Sets
	4.2 Training Workflow Results
	4.3 Benchmarking Results for CPO with ML
	4.4 Features Importance Analysis

	5 Concluding Remarks
	References


