
Meinolf Sellmann
Kevin Tierney (Eds.)

LN
CS

 1
42

86

17th International Conference, LION 17 
Nice, France, June 4–8, 2023 
Revised Selected Papers

Learning and 
Intelligent Optimization



Lecture Notes in Computer Science 14286
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Meinolf Sellmann · Kevin Tierney
Editors

Learning and
Intelligent Optimization
17th International Conference, LION 17
Nice, France, June 4–8, 2023
Revised Selected Papers



Editors
Meinolf Sellmann
InsideOpt
Dover, DE, USA

Kevin Tierney
Bielefeld University
Bielefeld, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-44504-0 ISBN 978-3-031-44505-7 (eBook)
https://doi.org/10.1007/978-3-031-44505-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-5931-4907
https://doi.org/10.1007/978-3-031-44505-7


Preface

This volume contains the peer-reviewed papers from the 17th Learning and Intelligent
Optimization (LION-17) Conference held in Nice, France, from June 4–8, 2023.

LION-17 continued the successful series of internationally recognized LION events
(LION-1:Andalo, Italy, 2007; LION-2 andLION-3: Trento, Italy, 2008 and 2009; LION-
4: Venice, Italy, 2010; LION-5: Rome, Italy, 2011; LION-6: Paris, France, 2012; LION-
7: Catania, Italy, 2013; LION-8: Gainesville, USA, 2014; LION-9: Lille, France, 2015;
LION-10: Ischia, Italy, 2016; LION-11: Nizhny Novgorod, Russia, 2017, LION-12:
Kalamata, Greece, 2018; LION-13: Chania, Greece, 2019; LION-14 and LION-15:
Online, 2020 and 2021; LION-16: Milos Island, Greece, 2022).

The central theme of LION-17 was ML to OR pipelines, which was addressed with
four invited talks from leading researchers.

Keynote 1:Wil van der Aalst (RWTHAachen; Celonis) “Process Mining for Optimiza-
tion and Optimization for Process Mining”
Keynote 2: Martina Fischetti (European Commission Research Center) “Operations
Research +Machine Learning for the design of future offshore wind farms”
Tutorial 1: Elias Khalil (University of Toronto) “Predict-then-Optimize: a Tour of the
State-of-the-art using PyEPO”
Tutorial 2: Carlos Ansótegui (University of Lleida) “SAT-based Applications with
OptilLog”

There were 83 full papers submitted to LION-17, of which 40 were accepted for
presentation after two rounds of double-blindpeer review.The editors thank the reviewers
for taking the time to evaluate LION-17’s submissions.

In total, over 80 participants came to Nice to enjoy exceptional presentations and
discussions.Despite a packed schedule, therewas still some time left over for participants
to appreciate the beautiful city of Nice and relax and reflect on the conference topics in
the ocean breeze.

LION-17 would not have been possible without the backing of several generous
sponsors. Thank you to InsideOpt, Gurobi Optimization, OPTANO, NextMv, and
DecisionBrain for their support. We also thank a special philanthropist for donating
theMalitsky Registration Assistance Fund, which reduced the registration fee of nine
attendees without sufficient funds to attend.

The editors especially thank our local organizer, Paul Shaw (IBM), for all of his
work finding us a memorable venue. Furthermore, we thank Elias Schede (Bielefeld
University) and the Bielefeld University staff for all of their support in ensuring the
conference was a success.

August 2023 Meinolf Sellmann
Kevin Tierney



Organization

Technical Program Committee

Chairs

Meinolf Sellmann InsideOpt, USA
Kevin Tierney Bielefeld University, Germany

Members

Imene Ait Abderrahim Université Djilali Bounaâma, Algeria
Carlos Ansòtegui University of Lleida, Spain
Francesco Archetti Consorzio Milano Ricerche, Italy
Annabella Astorino ICAR-CNR, Italy
Hendrik Baier Eindhoven University of Technology,

The Netherlands
Roberto Battiti University of Trento, Italy
Laurens Bliek Eindhoven University of Technology,

The Netherlands
Christian Blum Spanish National Research Council, Spain
Mauro Brunato University of Trento, Italy
Zaharah Bukhsh Eindhoven University of Technology,

The Netherlands
Sonia Cafieri École Nationale de l’Aviation Civile, France
Antonio Candelieri University of Milano-Bicocca, Italy
John Chinneck Carleton University, Canada
Konstantinos Chatzilygeroudis University of Patras, Greece
Philippe Codognet JFLI/Sorbonne Universitè, Japan/France
Patrick De Causmaecker Katholieke Universiteit Leuven, Belgium
Renato De Leone University of Camerino, Italy
Clarisse Dhaenens Université Lille 1 & Polytech Lille, Inria, France
Luca Di Gaspero University of Udine, Italy
Bistra Dilkina University of Southern California, USA
Theresa Elbracht Bielefeld University, Germany
Adil Erzin Sobolev Institute of Mathematics, Russia
Paola Festa University of Napoli Federico II, Italy
Adriana Gabor Khalifa University, UAE
Jerome Geyer-Klingeberg Celonis, Germany



viii Organization

Isel Grau Eindhoven University of Technology,
The Netherlands

Vladimir Grishagin Nizhni Novgorod State University, Russia
Mario Guarracino ICAR-CNR, Italy
Ioannis Hatzilygeroudis University of Patras, Greece
Youssef Hamadi Tempero, France
Andre Hottung Bielefeld University, Germany
Laetitia Jourdan Inria/LIFL/CNRS, France
Serdar Kadioglu Fidelity & Brown University, USA
Marie-Eleonore Kessaci Université de Lille, France
Michael Khachay Krasovsky Institute of Mathematics and

Mechanics, Russia
Elias B. Khalil University of Toronto, Canada
Zeynep Kiziltan University of Bologna, Italy
Yury Kochetov Sobolev Institute of Mathematics, Russia
Ilias Kotsireas Wilfrid Laurier University, Waterloo, Canada
Dmitri Kvasov University of Calabria, Italy
Dario Landa-Silva University of Nottingham, UK
Hoai An Le Thi University of Lorraine, France
Daniela Lera University of Cagliari, Italy
Michele Lombardi University of Bologna, Italy
Yuri Malitsky FactSet, USA
Vittorio Maniezzo University of Bologna, Italy
Silvano Martello University of Bologna, Italy
Yannis Marinakis Technical University of Crete, Greece
Nikolaos Matsatsinis Technical University of Crete, Greece
Laurent Moalic University of Haute-Alsace, France
Hossein Moosaei Jan Evangelista Purkyně University,

Czech Republic
Tatsushi Nishi Okayama University, Japan
Panos Pardalos University of Florida, USA
Axel Parmentier École Nationale des Ponts et Chaussées, France
Konstantinos Parsopoulos University of Ioannina, Greece
Vincenzo Piuri Università degli Studi di Milano, Italy
Till Porrmann Bielefeld University, Germany
Oleg Prokopyev University of Pittsburgh, USA
Helena Ramalhinho Universitat Pompeu Fabra, Spain
Michael Römer Bielefeld University, Germany
Massimo Roma Sapienza University of Rome, Italy
Valeria Ruggiero University of Ferrara, Italy
Frédéric Saubion University of Angers, France
Andrea Schaerf University of Udine, Italy



Organization ix

Elias Schede Bielefeld University, Germany
Marc Schoenauer Inria Saclay Île-de-France, France
Marc Sevaux Lab-STICC, Université de Bretagne-Sud, France
Paul Shaw IBM, France
Dimitris Simos SBA Research, Austria
Thomas Stützle Université Libre de Bruxelles, Belgium
Tatiana Tchemisova University of Aveiro, Portugal
Gerardo Toraldo Università della Campania “Luigi Vanvitelli”,

Italy
Paolo Turrini University of Warwick, UK
Michael Vrahatis University of Patras, Greece
Om Prakash Vyas Indian Institute of Information Technology

Allahabad, India
Ranjana Vyas Indian Institute of Information Technology

Allahabad, India
Dimitri Weiß Bielefeld University, Germany
Daniel Wetzel Bielefeld University, Germany
David Winkelmann Bielefeld University, Germany
Dachuan Xu Beijing University of Technology, China
Qingfu Zhang City University of Hong Kong, China
Anatoly Zhigljavsky Cardiff University, UK
Antanas Zilinskas Vilnius University, Lithuania

Local Organization

Paul Shaw IBM, France

Sponsors



Contents

Anomaly Classification to Enable Self-healing in Cyber Physical Systems
Using Process Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Uphar Singh, Deepak Gajjala, Rahamatullah Khondoker,
Harshit Gupta, Ayush Sinha, and O. P. Vyas

Hyper-box Classification Model Using Mathematical Programming . . . . . . . . . . . 16
Georgios I. Liapis and Lazaros G. Papageorgiou

A Leak Localization Algorithm in Water Distribution Networks Using
Probabilistic Leak Representation and Optimal Transport Distance . . . . . . . . . . . 31

Andrea Ponti, Ilaria Giordani, Antonio Candelieri,
and Francesco Archetti

Fast and Robust Constrained Optimization via Evolutionary and Quadratic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Konstantinos I. Chatzilygeroudis and Michael N. Vrahatis

Bayesian Optimization for Function Compositions with Applications
to Dynamic Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Kunal Jain, K. J. Prabuchandran, and Tejas Bodas

A Bayesian Optimization Algorithm for Constrained Simulation
Optimization Problems with Heteroscedastic Noise . . . . . . . . . . . . . . . . . . . . . . . . . 78

Sasan Amini and Inneke Van Nieuwenhuyse

Hierarchical Machine Unlearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
HongBin Zhu, YuXiao Xia, YunZhao Li, Wei Li, Kang Liu,
and Xianzhou Gao

Explaining the Behavior of Reinforcement Learning Agents Using
Association Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Zahra Parham, Vi Tching de Lille, and Quentin Cappart

Deep Randomized Networks for Fast Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Richárd Rádli and László Czúni

Generative Models via Optimal Transport and Gaussian Processes . . . . . . . . . . . . 135
Antonio Candelieri, Andrea Ponti, and Francesco Archetti



xii Contents

Real-World Streaming Process Discovery from Low-Level Event Data . . . . . . . . 150
Franck Lefebure, Cecile Thuault, and Stephane Cholet

Robust Neural Network Approach to System Identification
in the High-Noise Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Elisa Negrini, Giovanna Citti, and Luca Capogna

GPU for Monte Carlo Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Lilian Buzer and Tristan Cazenave

Learning the Bias Weights for Generalized Nested Rollout Policy
Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Julien Sentuc, Farah Ellouze, Jean-Yves Lucas, and Tristan Cazenave

Heuristics Selection with ML in CP Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Hugues Juillé, Renaud Dumeur, and Paul Shaw

Model-Based Feature Selection for Neural Networks: A Mixed-Integer
Programming Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Shudian Zhao, Calvin Tsay, and Jan Kronqvist

An Error-Based Measure for Concept Drift Detection and Characterization . . . . 239
Antoine Bugnicourt, Riad Mokadem, Franck Morvan,
and Nadia Bebeshina

Predict, Tune and Optimize for Data-Driven Shift Scheduling
with Uncertain Demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Michael Römer, Felix Hagemann, and Till Frederik Porrmann

On Learning When to Decompose Graphical Models . . . . . . . . . . . . . . . . . . . . . . . 270
Aleksandra Petrova and Javier Larrosa

Inverse Lighting with Differentiable Physically-Based Model . . . . . . . . . . . . . . . . 286
Kazem Meidani, Igor Borovikov, Amir Barati Farimani,
and Harold Chaput

Repositioning Fleet Vehicles: A Learning Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 301
Augustin Parjadis, Quentin Cappart, Quentin Massoteau,
and Louis-Martin Rousseau

Bayesian Decision Trees Inspired from Evolutionary Algorithms . . . . . . . . . . . . . 318
Efthyvoulos Drousiotis, Alexander M. Phillips, Paul G. Spirakis,
and Simon Maskell



Contents xiii

Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local
Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Hui Wang, Abdallah Saffidine, and Tristan Cazenave

Relational Graph Attention-Based Deep Reinforcement Learning:
AnApplication to Flexible Job Shop Scheduling with Sequence-Dependent
Setup Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Amirreza Farahani, Martijn Van Elzakker, Laura Genga, Pavel Troubil,
and Remco Dijkman

Experimental Digital Twin for Job Shops with Transportation Agents . . . . . . . . . 363
Aymen Gannouni, Luis Felipe Casas Murillo, Marco Kemmerling,
Anas Abdelrazeq, and Robert H. Schmitt

Learning to Prune Electric Vehicle Routing Problems . . . . . . . . . . . . . . . . . . . . . . . 378
James Fitzpatrick, Deepak Ajwani, and Paula Carroll

Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling . . . . . . . 393
Raka Jovanovic, Sertac Bayhan, and Stefan Voß

Class GP: Gaussian Process Modeling for Heterogeneous Functions . . . . . . . . . . 408
Mohit Malu, Giulia Pedrielli, Gautam Dasarathy, and Andreas Spanias

Surrogate Membership for Inferred Metrics in Fairness Evaluation . . . . . . . . . . . . 424
Melinda Thielbar, Serdar Kadıoğlu, Chenhui Zhang, Rick Pack,
and Lukas Dannull

The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks . . . . 443
Ambrogio Maria Bernardelli, Stefano Gualandi, Hoong Chuin Lau,
and Simone Milanesi

Discovering Explicit Scale-Up Criteria in Crisis Response with Decision
Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Britt Lukassen, Laura Genga, and Yingqian Zhang

Job Shop Scheduling via Deep Reinforcement Learning: A Sequence
to Sequence Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Giovanni Bonetta, Davide Zago, Rossella Cancelliere, and Andrea Grosso

Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

George Watkins, Giovanni Montana, and Juergen Branke

Multi-task Predict-then-Optimize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
Bo Tang and Elias B. Khalil



xiv Contents

Integrating Hyperparameter Search into Model-Free AutoML
with Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Hernán Ceferino Vázquez, Jorge Sanchez, and Rafael Carrascosa

Improving Subtour Elimination Constraint Generation in Branch-and-Cut
Algorithms for the TSP with Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Thi Quynh Trang Vo, Mourad Baiou, Viet Hung Nguyen, and Paul Weng

Learn, Compare, Search: One Sawmill’s Search for the Best Cutting
Patterns Across and/or Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Marc-André Ménard, Michael Morin, Mohammed Khachan,
Jonathan Gaudreault, and Claude-Guy Quimper

Dynamic Police Patrol Scheduling with Multi-Agent Reinforcement
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

Songhan Wong, Waldy Joe, and Hoong Chuin Lau

Analysis of Heuristics for Vector Scheduling and Vector Bin Packing . . . . . . . . . 583
Lars Nagel, Nikolay Popov, Tim Süß, and Ze Wang

Unleashing the Potential of Restart by Detecting the Search Stagnation . . . . . . . . 599
Yoichiro Iida, Tomohiro Sonobe, and Mary Inaba

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615



Anomaly Classification to Enable
Self-healing in Cyber Physical Systems

Using Process Mining

Uphar Singh1(B), Deepak Gajjala1, Rahamatullah Khondoker2,
Harshit Gupta1, Ayush Sinha3, and O. P. Vyas1

1 Indian Institute of Information Technology, Allahabad, Prayagraj, India
{pse2017003,iib2019024,rsi2020501,opvyas}@iiita.ac.in

2 THM University of Applied Sciences, Friedberg, Friedberg, Germany
rahamatullah.khondoker@mnd.thm.de

3 Indian Institute of Technology, Kanpur, Kanpur, India
ayush@c3ihub.iitk.ac.in

Abstract. Industrial Cyber Physical Systems (CPS) are large-scale crit-
ical infrastructures that are vulnerable to cyberattacks with wide-ranging
consequences. Being a combination of heterogeneous devices and pro-
tocols, the large-scale CPS anomaly is also exposed to critical vulner-
abilities. These vulnerabilities are treated in terms of anomalies and
cyberattacks, and their detection and corresponding self-healing mech-
anisms on large-scale critical infrastructures can be challenging because
of their massive size and interconnections. With the objective of process
optimization through anomaly detection and conformance-checking app-
roach, the present work addresses different issues, such as event log gen-
eration with tools such as PLG 2.0 for data-driven approach. Self-healing
is enabled through machine learning models based on anomaly clas-
sification ensemble learning-based machine learning models. The work
uses process mining to analyze event log files, and then combinations of
conformance-checking methods with ensemble classification models were
used to best classify anomalies. Finally, the proposed work establishes
that, in comparison to techniques like KNN and C-SVC, the proposed
ensemble models perform better, with an accuracy of 84.7% using trace
alignment as a conformance technique with gradient boosting to classify
anomalies, with the end objectives of process improvement.

Keywords: Cybersecurity · Process Mining · Cyber Physical Sytems ·
Anomaly Detection · Anomaly Classification · Self Healing

1 Introduction

Industrial cyber-physical systems are large-scale infrastructures that manage
critical industries, including electric power generation and transmission, com-
munication, transportation and freight systems. A cyber attack on these indus-
tries can cause widespread disruption to the daily life of a significant chunk of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 1–15, 2023.
https://doi.org/10.1007/978-3-031-44505-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_1


2 U. Singh et al.

the population, for example, recent attacks like Ransomware attack on Colo-
nial Pipeline in May 2021, which is a major U.S. petroleum pipeline operator,
halted the flow of petrol and jet fuel throughout the East Coast of the country.
Significant logistical and financial effects resulted from the attack, which led to
major gasoline shortages and forced the corporation to temporarily cease oper-
ations. [16] And the attack on the SolarWinds supply chain in late 2020, it was
revealed that a sophisticated cyberattack had compromised the SolarWinds soft-
ware, which is extensively used by corporations and government organisations.
Unauthorised access to sensitive data from several organisations, particularly
those in the industrial and labor-intensive industries, was caused by the attack
and lasted for several months. [17] Hence, performing detection and remedial
actions, i.e., enabling self-healing, is essential for a cyber attack on these sys-
tems. These industries have interconnection between many devices, which means
there is a very large surface area for an attack and the device data logs to analyse
processes are huge. To overcome this, process mining techniques have recently
been used to understand the underlying process model for an ideal process and
detect whenever a running process is out of line with the ideal. This detec-
tion can be facilitated through various techniques, including machine learning
and deep learning, of which machine learning is an interesting area of research.
Since there is a lack of a large amount of labelled data, machine learning is
a more suited approach to deep learning, and also not much work has been
done in investigating the usefulness of ensemble approaches using process min-
ing techniques. We explore the effectiveness of ensemble models in detecting and
classifying anomalous event logs. We also further investigate the different confor-
mance checking approaches to compare which conformance checking approach
works best in combination with ensemble classification. Now, in the domain of
process mining, some related terminology will help to understand the work done
on anomaly detection in logs generated by the business processes.

1.1 Process Mining

Process mining is the topic of business process management study that deals with
analysing event data that various information systems produce while processes
are being carried out. Process mining is a methodology that identifies trends,
patterns, and irregularities in a process, enhancing efficiency and effectiveness.
It uses data-driven techniques to detect constraints and improve efficiency in
various domains, including business processes and cyber security. It involves
three separate sets of tasks, such as Process Discovery, Conformance Checking,
and Enhancement. [1]

1. Process Discovery: The concept of process discovery involves the extraction
and visualization of process models, which is obtained from the application of
process discovery algorithms to event logs, as depicted in Fig. 1. The Alpha
algorithm, Heuristic Miner, Fuzzy Miner, Genetic Miner, and Inductive Miner
are widely recognized process discovery algorithms.



Anomaly Classification Using Process Mining 3

Fig. 1. Process Discovery

2. Conformance Checking: Conformance checking, also known as delta anal-
ysis, is a process to check conformance (Fig. 2) with the expected process
model. The inputs are the Process model and Event logs, and we obtain
quantitative results by applying conformance algorithms. We check if event
logs conform to the expected process model based on the results. Popular
Conformance checking algorithms are Token-based replay algorithms, Trace
Alignment Algorithms and Casual Foot-prints.

Fig. 2. Conformance Checking

3. Enhancement: Enhancement helps (Fig. 3) us to improvise the process
model and to align more event logs. The inputs are the Process model and
Event logs, and the new model is obtained after this analysis. A new pro-
cess model can now accommodate more event logs. Enhancing the model can
help us conduct a more sophisticated analysis and improve its performance.
They were focused on improving the model using additional attributes such as
location, costs, timing etc. Popular Enhancement techniques are performance
analysis, resource interaction analysis and root-cause analysis.

Fig. 3. Enhancement



4 U. Singh et al.

1.2 Anomalies in Event Logs

For this work, we will be considering two types of anomalies in event logs, i.e.,
control-flow based anomalies and XOR-based anomalies.

1. There are three types of control-flow anomalies:
(a) Missed activities: when activities are skipped in the trace flow.
(b) Duplicated activities: when activities are multiplied in the trace flow.
(c) Exchanged activities: when activities are interchanged in the trace flow.

2. Based on the conditions at a point in the model, one of two activities is
selected (not both, hence an exclusive OR: XOR element are present in the
petri-net model). Furthermore, there are two types of XOR anomalies:
(a) XOR split anomaly: XOR split elements are changed into XOR join
(b) XOR join anomaly: XOR join elements are changed into XOR split

1.3 Ensemble Machine Learning Approaches

Ensemble Learning helps us improvise the classifier’s performance by combining
multiple algorithms. This gives us improved results because the ensemble model
has advantages over the models used.

Algorithms:

1. Support Vector Machines: Support Vector Machine is one of the popu-
lar algorithms in classification. Support Vector Machine works on the idea of
maximising the distance between the support vectors and separation hyper-
plane. Support Vector Machine is computationally expensive.

2. Decision Trees: These are famous in classification due to their simple-
ness, high detection accuracy, and fast adaptation. Decision Tree is a tree-
structured classifier and classifies based on the features of the data set.

1.4 Models Used

Ensemble learning is a technique for obtaining better results by training mul-
tiple models to solve the same problem. Bagging and Boosting are two major
techniques used in this work. Bagging is achieved by bootstrapping the data set
and using these subsets individually for each model used in ensemble learning.
Later all the individual results are aggregated. Boosting is achieved by combining
models sequentially. In boosting, each model work by giving more prominence
to the errors of the preceding model in the sequence and correcting them.

1. Bagging meta-estimator. The bagging meta-estimator adopted the classic
bagging technique, Fig. 4. Randomized subsets are created, and each subset
is used by each one of the models. All the results are aggregated to get the
best results. We can run these models in parallel and independently.



Anomaly Classification Using Process Mining 5

Fig. 4. Bagging Meta-estimator

2. Random Forest. Random Forest (Fig. 5) is an extension of the Bagging
meta-estimator with its base estimator as a Decision tree. It gives better
results with less training time as compared to other algorithms. This solves
overfitting data sets. Sampling over features can also be done to reduce the
co-relation between the outputs.

Fig. 5. Random Forest

3. AdaBoost. AdaBoost, also known as Adaptive Boost, adopted the classic
boosting technique. The idea of Boosting is to exploit the strength of weak
learnability (Fig. 6). AdaBoost works sequentially and corrects the errors from
the preceding model by assigning weights to the inaccurate predicted data.

4. Gradient Boosting Model. Gradient Boosting Model can handle large and
complex data sets to obtain great prediction speed and accuracy. GBM tries
to minimize the loss function obtained from the preceding model, which is



6 U. Singh et al.

Fig. 6. AdaBoost

iterated until we get the loss function remains the same or till the number of
iterations are done.

5. Extreme Gradient Boosting. Extreme Gradient Boosting is an effi-
cient implementation of the Gradient Boosting technique. The XGBoost is
endorsed because of its fast implementation and great accuracy. It reduces
the over-fitting of data and hence produces great results. Extreme Gradient
Boosting uses the more regularised model, which helps us to reduce overfit-
ting.

6. Light Gradient Boosting Model. Light GBM is a light and faster gradient
Boosting Model. Light Gradient Boosting Model splits the tree leaf-wise while
other gradient boosting algorithms split the tree level-wise. Leaf-wise split can
reduce loss function and hence produces great results.

Comparative analysis of the above models will give us an insight into which
ensemble model works better with process conformance output.

The organization of this paper is as follows: Work done in the detection,
prevention and recovery of components implemented through process mining
techniques are in Sect. 2, Employable problem statement and dataset descrip-
tion is stated in Sect. 3, Steps to be encountered during our experiment and
expected outcomes have been mentioned in Sect. 4, Discussions on implementa-
tion steps and results are described in Sect. 5. Finally, Sect. 6 states conclusions
and mentions the scope for further improvements.

2 Literature Survey

Wil Van der Aalst et al. focused on supporting the ways to inspect audit trails
with the operation of process mining approaches for finding security violations.
The authors also showed the possible usage of the Alpha algorithm at numerous
levels varying from high-level fraud prevention to low-level intrusion recognition.
The researchers further highlighted the importance of implementing regulations
that would encourage the enforcement of security checks through the develop-
ment of tools within the framework of business processes [4]. Another work by



Anomaly Classification Using Process Mining 7

Fábio Bezerra et. al. investigated how ProM tools can support anomaly detec-
tion in logs from Process Aware Information Systems (PAIS) to identify abnor-
mal cyber-attack behavior. It uses data logs from industrial control systems
and applies process mining techniques for anomaly detection and conformance
checking analysis vut it is limited to the control-flow perspective only. The model
relies on selecting an appropriate model, and further automation can be done
by genetic algorithms [3]. Authors Fani Sani et al. proposed a method that uses
sequential relations in the process mining for outlier detection in both the ProM
and the RapidProM frameworks. They performed some experiments that pro-
duced an output that the procedure can identify and eliminate outlier behaviour
from the event data having an abundance of irregular, long-term or parallel-
reliant behaviour. Fani Sani et al. also exhibit that the sequence filter technique
performs better than other modern filtering techniques and the embedded fil-
tering mechanism of the Inductive Miner algorithm for a few actual event logs
[6].
Sylvio Barbon et al. [7] examined six varieties of anomalies on top of thirty-
eight actual and fabricated event logs, differentiating the prognostic performance
of Local Outlier Factor, SVM and One-Class SVM. Proposed the usage of a
conventional natural language processing method, namely word2vec, so that
business process behaviours can be encoded as the factors of activities in an
event log. Besides, this technique examines the usage of One-Class Classification
algorithms, showing their superiority in the context of scarcity of labels. Deep
learning methods were considered out of the scope as these methods need a
considerable quantity of computational resources and actual labels. In addition
to this work, Prasannjeet singh et al. [2] discussed the integration of Process
Mining, log file analytics, and machine learning techniques is employed to facil-
itate the timely identification, prediction, and subsequent autonomous recovery
of Internet of Things (IoT) devices within Cyber-Physical Systems (CPS). Con-
sistent event logs were produced using processes and a second iteration of the
log generator for a sample model, with the smart home serving as a reference.
They also explored various anomalies that can be inserted in process traces as
control flow disruptions or Xor-based anomalies as separate experiments. It was
used to check conformance with the token replay algorithm, which supplied fit-
ness values along with the data of the traces out of the batches when replayed,
producing activities missing their corresponding input tokens. By classifying
anomalies they have, for the K-Nearest Neighbours ML algorithm, utilizing full
feature space on an average produces an accuracy of 99.96%, compared to only
fitness data, which on an average produced 59. 56% and without XOR data
produced 81.34%. In the case of the C-Support Vector Classifier, average accu-
racies with full feature space data, only fitness, and no XOR data are 100%,
62.92% and 82.23% individually. They also mentioned a technique for produc-
tive conformance checking and process discovery methods to support self-healing
of IoT networks. Another domain where the application of process mining was
explored by Motahareh Hosseini et al. where they analyzed an Engineering, Pro-
curement, and Construction (EPC) company’s performance with the supplier’s
selection procedure event logs. The authors explored components affecting pro-



8 U. Singh et al.

cess implementation like duplicate activities, repetitive loops, and upgrading
the company’s upcoming production, and examined connections of individuals
who participated in the project. They have shown that by the construction of
a social network graph using the Degree Centrality metric poses challenges in
the context of purchasing disciplines, primarily due to the presence of loops and
frequent repetition in activity execution. This study places particular emphasis
on the process of preparing technical and engineering documents, such as prod-
uct requests, technical evaluations, and order request purchasing. Additionally, it
addresses the issues of poor communication and the lack of direct communication
between consultants and experts, as well as the absence of effective communica-
tion between procurement and engineering deputies and experts in these respec-
tive fields. These issues have ultimately resulted in a rise in time consumption
and subsequently increased expenses, a decline in company credit, a decrease
in employee morale and motivation, and similar outcomes. Consequently, it has
been suggested that a reevaluation of the procedure and enhancement of effective
and pragmatic communication among stakeholders be undertaken in subsequent
endeavors [5]. In 2014, an intrusion detection system was developed by Silva and
Schukat [12] for the Modbus/TCP protocol, employing a K-Nearest Neighbors
(KNN) classifier. However, it displayed a notable rate of false positives. Later,
in 2016, Pajouh et al. [14] introduced the implementation of a two-tier classifi-
cation module within an intrusion detection model that utilizes the Naive Bayes
algorithm and the Certainty Factor variant of the K-Nearest Neighbors (KNN)
algorithm. It has the capability to detect and identify malicious activities such
as User to Root attacks and Remote to Local intrusions. In 2018, a proposal
was made by Anthi et al. [13] for the implementation of an intrusion detection
system specifically designed for Internet of Things (IoT) devices. This system
utilizes a variety of machine learning classifiers to effectively detect and identify
network scanning activities, as well as straightforward denial of service attacks.
The adaptive intrusion detection system developed by Stewart et al. (2015) was
specifically designed to effectively handle the dynamic topologies of SCADA
systems. The researchers utilized multiple One-Class Support Vector Machine
(OCSVM) models for this purpose in order to select the best one for accurately
identifying different attacks. Nevertheless, the proposed model required a lot of
computational resources despite having a high rate of false alarms for detection.

3 Problem Statement and Dataset Description

We aim to detect and classify anomalous processes in cyber-physical systems
using an ensemble learning approach. To the best of our knowledge, little work
has been done in investigating the usefulness of ensemble approaches using
process mining techniques. We explore the effectiveness of ensemble models
in detecting and classifying anomalous event logs. We also further investigate
the different conformance-checking approaches to compare which conformance-
checking approach works best in combination with ensemble classification. The
dataset taken as a reference for this article is a power grid testbed called Electric



Anomaly Classification Using Process Mining 9

Power, and Intelligent Control (EPIC) consists of 4 stages: transmission, gen-
eration, smart homes, and microgrids [9], Fig. 7. In a fibre optic ring network,
each of EPIC’s 4 stages comprises its own set of power supply unit, protection,
communication systems, switches and PLCs. Three generators and a power sup-
ply from the SUTD grid make up the generation stage. The maximum power
output from the three generators, each with a 10KW rating, is 30KW. During
the transmission stage, an autotransformer increases or decreases the voltage
supplied to the microgrid or smart home. Two 15 and 30-kVA load banks with
programmable changeable resistive and electrical capacity loads make up a smart
house. Photovoltaic cells and batteries make up the Microgrid.

Fig. 7. EPIC Architecture [9]

The five categories of communications in EPIC are generation, transmission,
micro-grid, smart homes, and controls. On the roof, 110 PV cells with inverters
are placed to change solar energy into electrical energy that can be fed into the
setup. The highest power output from the cells is 34 KW in total. During the
blackout or low energy conversion due to cloud cover, the integration of a battery
bank with inverters serves to supplement power supply to the EPIC system. In
order to maintain network communications in the case of a complete blackout,
backup power is implemented and made accessible from a separate battery bank
to the SCADA workstation. EPIC provides power to run the SWaT and WADI
testbeds simultaneously as needed. This relationship is helpful for studies into
how cyberattacks on a power station can affect downstream infrastructure. The
generators and transformers are supported by EPIC’s experimental research into
the cyber security elements of those components.



10 U. Singh et al.

4 Methodology

In this section, our proposed data-driven approach is illustrated by optimizing
the business process with the help of anomaly classification and conformance
checking.

4.1 Event Logs and Process Discovery

We will be using a reference Petri-net model of microgrid event logs in the Elec-
tric Power and Intelligent Control(EPIC) dataset [9] on which process discovery
is conducted by Wei Deng et al. [1]. Using this model in Process and Log Gen-
erator (PLG 2.0) [15], for generating event logs with corresponding control flow
anomalies (namely activity missing, duplicated and alienated) and XOR anoma-
lies (namely XOR split and XOR join anomalies). [10]

4.2 Conformance Checking

These generated logs with anomalies are split into numerous batches with a
certain number of traces with different types of anomalies. Then Conformance
checking [8] is done on these traces using PM4Py [11] library functions by all
three techniques separately to get the fitness values were assessed for traces that
were subjected to anomalies involving missed activity, duplicated activity, and
exchanged activity.
The fitness assessment will be done by token replay algorithm, trace alignment
and footprint algorithms to do a comparative analysis of these algorithms based
on the output generated by the used anomaly classification technique.

4.3 Anomaly Classification

To classify anomalies based on the fitness assessment of traces, we will explore
ensemble learning with an ensemble model based on Decision Trees. Finally, we
will analyze the results with different fitness information and event log anomalies.
The work aims to experiment and test the effectiveness of the ensemble learn-
ing approach in process conformance checking to detect and classify anomalous
traces. These results will include the percentage accuracy and ratio comparison
of nonconformance traces.
Additionally, the second outcome is to compare the difference between the vari-
ous conformance-checking approaches and to find the best combination of con-
formance algorithm with ensemble learning.

5 Results and Discussions

5.1 Model Preparation

Traditional modelling techniques require lots of expertise, and a large-scale sys-
tem, such as a power grid, requires much time. As the dataset description men-
tioned earlier, we have taken the petri-net model generated through process



Anomaly Classification Using Process Mining 11

discovery by [1]. In the article, the authors have generated the petri-net model
of the microgrid part of EPIC dataset through ProM software using an Inductive
miner (Fig. 8). They also analysed the modelling results and finally checked the
consistency of the model through a validation set (which is also average data)
to prove that the generated model can effectively model the grid business.

We converted the selected Petri-net model to the BPMN model by hand to
feed into PLG2.0 to generate process logs. To check the conversion’s fidelity, we
used the Inductive mining technique of process discovery with generated logs to
get the corresponding Petri-net model, which in our case, exactly matched the
original model.

Fig. 8. Petri-net model of microgrid using the EPIC dataset [1]

5.2 Dataset Generation

The objective of our experiment is to evaluate whether traces generated with
consideration of the reference process model (as mentioned in Fig. 8 on Process
and Log Generator 2.0) injected with various control-flow anomalies, giving an
outcome mentioning consequential fitness differences. We also aim to detect with
good accuracy to analyze traces and to classify control-flow anomalies using
ensemble approaches of machine learning. [18]

Control-flow anomalies like exchanged activities, missed activities, and dupli-
cated activities have been used. Figure 9 shows an example of such anomalies;
given our input model, these three represented cases show changes in traces when
injected by these anomalies. We generated 10000 true traces as our initial dataset
using Process and Log Generator 2.0, which were used to do process discovery
using an Inductive miner. We have generated 500 traces of each possibility of
missing, duplicated and exchanged activities in the original model, which got us
2000 traces of each anomaly.



12 U. Singh et al.

Fig. 9. Control-flow anomalies

5.3 Conformance Checking

For each anomalistic trace, we have used Token based log replay algorithm and
a Trace alignment algorithm to get the fitness data along with token positions
and alignments. This process gives an expected output of around 50% logs being
non-conformant.

Table 1. Outcomes of statistical experiments evaluating fitness scores with various
injected anomalies

Anomaly variety 1 Anomaly variety 2
p-value

(Token replay)
p-value

(Trace alignment)
Outcomes of

Null hypothesis

Missing activities Duplicated activities 0.398 0.423 Accepted

Missing activities Exchanged activities 0.449 0.505 Accepted

Duplicated activities Exchanged activities 0.373 0.427 Accepted

A paired t-test could be run for every conceivable observation pair since
every fitness data point is calculated on the identical batches injected with dis-
tinct anomalies. The test findings, establishing the p-value for every test and
determining if the null hypothesis was rejected or not are shown in Table 1. To
prove that our hypothesis is consistent with the data, this test is done to ensure
that a machine-learning model can classify the data. Furthermore, it can be
observed from the table that the null hypothesis was accepted and intercepted
for all pairs of data as the outcomes can distinguish with sensible confidence
that any anomaly can be injected.



Anomaly Classification Using Process Mining 13

5.4 Bagging and Boosting Classification

Outputs of conformance-checking techniques with all anomalistic type traces
are processed in a numerical format and combined to make a full dataset
for the classification of anomalies. Initially, a complete dataset is divided
into random test sets and train sets (70% train, 30% test). For test instance
classification, applied train, test pairs to six ensemble ML algorithms: Bag-
ging meta-estimator, Adaptive boosting(AdaBoost), Random Forest, Gradient
Boosting(GBM), Extreme Gradient Boosting(XGBoost), Light Gradient Boost-
ing(Light GBM), all adjusted with default parameters given by definitions of
these classifiers in Python 3.8 and scikit-learn 1.1 package. Results are men-
tioned in Table 2, having evaluated each classifier’s accuracy, precision and F1
score metric.

Table 2. Results obtained by ensemble approaches for classification

S.No. Model Token Replay Trace Alignment
Accuracy Precision F1 Score Accuracy Precision F1 Score

1 Random Forest 73.78% 73.3% 0.73 82.2% 82.5% 0.825
2 XGBoost 74.4% 83.1% 0.74 82.8% 83.6% 0.827
3 Bagging meta-estimator 74.3% 83.1% 0.74 84.3% 85.5% 0.845
4 AdaBoost 72.9% 80.0% 0.73 76.7% 80.3% 0.77
5 GBM 74.3% 83.1% 0.74 84.7% 86.3% 0.85
6 Light GBM 74.3% 83.1% 0.74 84.7% 86.3% 0.85

6 Conclusion

Resilience is always crucial for a cyber-physical system. Process Mining may
also address the error prediction issue, allowing an end-user to be forewarned in
advance if external events or user actions have a high likelihood of producing
an error which falls under the prognostics, early warning, and scenario evalua-
tion categories. In this work, we have investigated the usage of process mining
by analyzing event log files. We explored combinations of conformance-checking
methods of process mining with ensemble classification models to classify anoma-
lies with ultimate objective of process optimization. We compared the result with
KNN and C-SVC approach by [2], which achieved an accuracy of 59.56% and
62.92% and concluded that ensemble models perform better with the highest
accuracy being 84.7% using trace alignment for as conformance technique with
Gradient Boosting to classify anomalies. However, once a sturdy process model
is built, pre-processing data methods can be refined to generate data with more
information concerning the type of anomaly, and also finer ways to inject anoma-
lies can be devised, resulting in better datasets for anomaly classification. In
addition, generating process models using process mining and classifying anoma-
lies is a step towards self-healing in cyber-physical systems. In summary, it can



14 U. Singh et al.

be claimed that adopting a system to generate consistent Event Logs across all
stakeholder devices in a complex business environment can be very helpful for
diagnosing faults and further opens a way for self-correcting mechanisms.

References

1. Deng, W., Liu, W., Li, Y., Zhao, T.: A petri-net-based framework for microgrid pro-
cess mining. In: 2020 IEEE 4th Conference on Energy Internet and Energy System
Integration (EI2), pp. 3797–3800 (2020). https://doi.org/10.1109/EI250167.2020.
9346586

2. Singh, P., et al.: Using log analytics and process mining to enable self-healing in
the Internet of Things. Environ. Syst. Decis. 42, 234–250 (2022). https://doi.org/
10.1007/s10669-022-09859-x

3. Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly detection using process
mining. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp.
149–161. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01862-
6_13

4. Van der Aalst, W.M., de Medeiros, A.K.A.: Process mining and security: detecting
anomalous process executions and checking process conformance. Electron. Notes
Theor. Comput. Sci. 121, 3–21 (2005). https://doi.org/10.1016/j.entcs.2004.10.013

5. Hosseini, S.M., Aghdasi, M., Teimourpour, B., Albadvi, A.: Implementing process
mining techniques to analyze performance in EPC companies. Int. J. Inf. Commun.
Technol. Res. 14 (2022). https://doi.org/10.52547/itrc.14.2.66

6. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Applying sequence mining for
outlier detection in process mining. In: Panetto, H., Debruyne, C., Proper, H.A.,
Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11230, pp.
98–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02671-4_6

7. Junior, S.B., Ceravolo, P., Damiani, E., Omori, N.J., Tavares, G.M.: Anomaly
detection on event logs with a scarcity of labels (2020)

8. Jagadeesh Chandra Bose, R.P., van der Aalst, W.: Trace alignment in process min-
ing: opportunities for process diagnostics. In: Hull, R., Mendling, J., Tai, S. (eds.)
BPM 2010. LNCS, vol. 6336, pp. 227–242. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15618-2_17

9. https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_epic/
10. Burattin, A.: PLG2: multiperspective processes randomization and simulation for

online and offline settings (2015)
11. https://pm4py.fit.fraunhofer.de/documentation
12. Silva, P., Schukat, M.: On the use of k-nn in intrusion detection for industrial con-

trol systems. In: Proceedings of The IT&T 13th International Conference on Infor-
mation Technology and Telecommunication, Dublin, Ireland, pp. 103–106 (2014)

13. Anthi, E., Williams, L., Burnap, P.: Pulse: an adaptive intrusion detection for the
Internet of Things IoT (2018). https://doi.org/10.1049/cp.2018.0035

14. Pajouh, H.H., Javidan, R., Khayami, R., Dehghantanha, A., Choo, K.K.R.: A
two-layer dimension reduction and two-tier classification model for anomaly-based
intrusion detection in IoT backbone networks. IEEE Trans. Emerg. Top. Comput.
7, 314–323 (2019). https://doi.org/10.1109/TETC.2016.2633228

15. Stewart, B., et al.: A novel intrusion detection mechanism for SCADA systems
which automatically adapts to network topology changes. EAI Endorsed Trans.
Ind. Netw. Intell. Syst. 4 (2017). https://doi.org/10.4108/eai.1-2-2017.152155

https://doi.org/10.1109/EI250167.2020.9346586
https://doi.org/10.1109/EI250167.2020.9346586
https://doi.org/10.1007/s10669-022-09859-x
https://doi.org/10.1007/s10669-022-09859-x
https://doi.org/10.1007/978-3-642-01862-6_13
https://doi.org/10.1007/978-3-642-01862-6_13
https://doi.org/10.1016/j.entcs.2004.10.013
https://doi.org/10.52547/itrc.14.2.66
https://doi.org/10.1007/978-3-030-02671-4_6
https://doi.org/10.1007/978-3-642-15618-2_17
https://doi.org/10.1007/978-3-642-15618-2_17
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_epic/
https://pm4py.fit.fraunhofer.de/documentation
https://doi.org/10.1049/cp.2018.0035
https://doi.org/10.1109/TETC.2016.2633228
https://doi.org/10.4108/eai.1-2-2017.152155


Anomaly Classification Using Process Mining 15

16. Hobbs, A.: The colonial pipeline hack: Exposing vulnerabilities in U.S. cybersecu-
rity. In: Sage Business Cases. SAGE Publications Ltd, (2021). https://doi.org/10.
4135/9781529789768

17. Alkhadra, R., Abuzaid, J., AlShammari, M., Mohammad, N.: Solar winds hack:
in-depth analysis and countermeasures. In: 2021 12th International Conference on
Computing Communication and Networking Technologies (ICCCNT), Kharagpur,
India, pp. 1–7 (2021). https://doi.org/10.1109/ICCCNT51525.2021.9579611

18. Burattin, A.: Plg2: multiperspective process randomization with online and offline
simulations. BPM (Demos) (2016)

https://doi.org/10.4135/9781529789768
https://doi.org/10.4135/9781529789768
https://doi.org/10.1109/ICCCNT51525.2021.9579611


Hyper-box Classification Model Using
Mathematical Programming

Georgios I. Liapis and Lazaros G. Papageorgiou(B)

The Sargent Centre for Process Systems Engineering, Department of Chemical
Engineering, UCL (University College London), Torrington Place,

London WC1E 7JE, UK
{georgios.liapis.20,l.papageorgiou}@ucl.ac.uk

Abstract. Classification constitutes focal topic of study within the
machine learning research community. Interpretable machine learning
algorithms have been gaining ground against black box models because
people want to understand the decision-making process. Mathematical
programming based classifiers have received attention because they can
compete with state-of-the-art algorithms in terms of accuracy and inter-
pretability. This work introduces a single-level hyper-box classification
approach, which is formulated mathematically as Mixed Integer Lin-
ear Programming model. Its objective is to identify the patterns of the
dataset using a hyper-box representation. Hyper-boxes enclose as many
samples of the corresponding class as possible. At the same time, they
are not allowed to overlap with hyper-boxes of different class. The inter-
pretability of the approach stems from the fact that IF-THEN rules can
easily be generated. Towards the evaluation of the performance of the
proposed method, its prediction accuracy is compared to other state-
of-the-art interpretable approaches in a number of real-world datasets.
The results provide evidence that the algorithm can compare favourably
against well-known counterparts.

Keywords: Mathematical programming · Data classification · Mixed
integer optimisation · Hyper-box · Machine learning

1 Introduction

In classification, given a number of samples that are characterised by certain
independent variables and their class membership, the aim is to identify the
patterns and predict the class of a new sample based on its attributes. Scien-
tists have proposed a plethora of classification models. Meanwhile, the incred-
ible improvement in the last thirty years of both algorithms for mixed inte-
ger optimisation and computer hardware has led to an astonishing increase in
the computational power of mixed integer optimisation solvers, as shown in [3].
Subsequently, mathematical programming based approaches became viable in
the definition of a variety of machine learning methods for small and medium

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 16–30, 2023.
https://doi.org/10.1007/978-3-031-44505-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_2&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_2


Hyper-box Classification Model Using Mathematical Programming 17

size datasets. Exploiting this remarkable progress, a growing body of literature
focuses on mathematical programming based classifiers because they are able to
combine accuracy and interpretability.

Motivated by the need to construct accurate multi-class classifiers that their
decisions can be interpreted as IF-THEN rules in healthcare [16,26] and financial
management [17,27], a single-level hyper-box approach is proposed. The extrac-
tion of an IF-THEN rule from every hyper-box demonstrates the interpretability
of the approach. Meanwhile, the accuracy is highlighted by the comparison with
the other approaches. The presented approach, which is inspired by the previ-
ously proposed work of Xu and Papageorgiou [24], finds the arrangement of a
defined number of hyper-boxes in order to include as many samples as possi-
ble. The hyper-boxes are identified by their lower and upper bound at every
attribute.

The rest of the paper is structured as follows: Sect. 2 describes mathematical
programming formulations from literature that tackle classification problems.
In Sect. 3, the proposed approach is presented and an illustrative example is
used to demonstrate the generation of IF-THEN rules. In Sect. 4, a number
of benchmark classification datasets are employed to test the performance of
our proposed method against state-of-the-art interpretable approaches. Finally,
conclusions are drawn in Sect. 5.

2 Related Work

Many mathematical programming formulations have been proposed that address
the classification problem. Firstly, Gerhlein [12] developed a mixed integer lin-
ear programming (MILP) formulation that maximizes the number of correct
classifications using a linear function for every class. Sueyoshi [22] proposed a
two-stage MILP formulation that encorporates data envelopment analysis to
estimate weights of a linear discriminant function by minimizing the total devi-
ation of misclassified observations. Busygin et al. [8] formulated an optimisation
based algorithm that can be used for feature selection and classification with the
possibility of outlier detection.

Mathematical programming has become a useful tool for the definition of
a variety of classification approaches that were solved using heuristic methods.
Concerning classification trees, the widely used heuristics construct sub-optimal
trees, such as CART [7] and C4.5 [20]. These greedy approaches myopically find
a locally optimal split at every branch node one-at-a-time ignoring the splits
at further down nodes. As a result, further down nodes apply splits that might
affect generalisability. This can be tackled by a single-level training of the entire
tree. In this way, the splits at each node are determined with full knowledge of
all future splits.

Bertsimas and Dunn [2] presented Optimal Classification Trees (OCT), a
formulation of the learning process of a classification tree as an MILP prob-
lem. The model makes decisions about the split rule at every branch node, class
assignment to each leaf node, and the routing of each sample from the root



18 G. I. Liapis and L. G. Papageorgiou

node to a leaf node. The objective function is a minimisation function and con-
tains two terms; the number of misclassified samples and the complexity of the
tree. The weight of the second term is determined after tuning. Two versions of
the formulation are presented; the first applies orthogonal (univariate) splits at
every branch node and the second one applies oblique (multivariate) splits at
every branch node. Recently, a plethora of papers relied on global exact opti-
misation approaches to find an optimal classification tree using mathematical
programming tools [1,6,23].

Mathematical programming has, also, been incorporated in support vec-
tor machine (SVM) algorithms. SVM training has been modelled in a convex
quadratic formulation with linear constraints that can be solved to global opti-
mality using non-linear solvers [9]. Blanco et al. [4] proposed an SVM-based
approach for multi-class classification that maximises the separation between
different classes. An MILP and an MINLP version are presented, while a heuris-
tic strategy is provided that contains dimensionality reduction and fixing of some
variables. Generally, SVM is sensitive to noisy data and outliers because of its
reliance on support vectors. As a result, Blanco et al. [5] presented methodologies
to construct optimal support vector machine-based classifiers, which take into
consideration the label noise in the dataset. They offered different alternatives
based on solving MILP and MINLP that incorporate decisions on relabeling
samples in the dataset.

Concerning hyper-box approaches, the first hyper-box based classifier was
proposed by Simpson [21]. The algorithm generates hyperboxes, each one cov-
ering an area determined by its minimum and maximum coordinates in the N-
dimensional sample space. Every hyper-box is associated with a fuzzy member-
ship function calculating the goodness-of-fit of an input sample to a certain class.
An MILP model has been proposed by Xu and Papageorgiou [24] that adopts
a hyper-box representation, which extends previous work on two-dimensional
plant layout [18]. In this way, the extension of the model to N dimensions cre-
ates hyper-boxes, which enclose as many samples of the corresponding class as
possible. The hyper-boxes are identified by their centroid coordinate and the
length on each dimension. Two constraints are included in order to ensure that
there is no overlap between hyper-boxes that belong to different classes. The
objective function of the mathematical model is the minimisation of the number
of misclassified training samples. An iterative solution algorithm is proposed,
which allows the addition of hyper-boxes in order to enclose more samples. Yang
et al. [25] introduced two new proposals to improve the performance. The first
one was a solution procedure that updates the sample weights during every iter-
ation, which enforces the model to prioritise the difficult samples in the next
iteration. Moreover, they introduced a data space partition method to reduce
the computational cost of the proposed sample re-weighting hyper-box classifier.
Finally, Üney and Türkay [28] have proposed a different formulation adopting
a hyper-box representation, where boolean algebra was used to formulate the
mathematical model.



Hyper-box Classification Model Using Mathematical Programming 19

3 Methodology

3.1 Problem Statement

In this work, a single-level approach is developed, in which each hyper-box is
characterised by its lower and upper bound. As far as the mathematical formula-
tion is concerned, it consists of hyper-box enclosing constraints, non-overlapping
constraints and is enhanced with symmetry breaking constraints. The objective
function is the minimisation of the number of misclassified samples. Overall, the
problem studied can be stated as follows:
Given :

– Numerical values of S training samples with M attributes
– Classification of training samples into one of C classes
– Number of allowed hyper-boxes I per class

Determine :

– Optimal dimensions of hyper-boxes for every attribute.

So as to :

– Minimise the number of misclassified training samples

3.2 Mathematical Formulation

The indices, sets, parameters and variables associated with the model are pre-
sented below:

Indices

s Sample (s = s1, s2, ..., S)
m Attribute (m = m1,m2, ...,M)

i, j Hyper-box (i, j = i1, i2, ..., I)
c, k Class (c, k = c1, c2, ..., C)

Sets

Cs Class which sample s belongs to
Ic Set of hyper-boxes that belong to class c
Sc Set of samples that belong to class c

Parameters

Asm Numerical value of sample s on attribute m
U Suitably big number

εm Minimum distance between hyper-boxes that belong to different classes on
attribute m



20 G. I. Liapis and L. G. Papageorgiou

Continuous variables

UPcim Upper bound of hyper-box i of class c on attribute m
LOcim Lower bound of hyper-box i of class c on attribute m

Binary variables

Esci 1, if sample s is correctly classified in hyper-box i of class c; 0 otherwise.
Ycikjm 1, if hyper-box i of class c is on the left of hyper-box j of class k on

attribute m; 0 otherwise.

Hyper-box enclosing constraints
The first constraints are used to model whether a sample s is enclosed in a

hyper-box of its class. Constraints (1) allow a sample s to be included in a hyper-
box i of class c if sample value Asm is higher than the lower bound of the hyper-
box LOcim for every attribute m. Accordingly, constraints (2) allow a sample s
to be included in a hyper-box i of class c if sample value Asm is lower than the
upper bound of the hyper-box UPcim for every attribute m. Those constraints
are illustrated in Fig. 1, in which it can be seen that all samples are correctly
classified in a hyper-box of their corresponding class, since their numerical value
on every attribute is between lower and upper bounds of the respective hyper-
box. Meanwhile, if Esci = 0, the aforementioned constraints become redundant,
since U is big enough to satisfy the constraints. Constraints (3) allow to each
sample to be allocated to at most one hyper-box of its corresponding class, if
correctly classified, thus avoiding possible double-counting.

Fig. 1. Visualisation of non-overlapping constraints.

Asm ≥ LOcim − U · (1 − Esci) ∀s, c ∈ Cs, i ∈ Ic,m (1)

Asm ≤ UPcim + U · (1 − Esci) ∀s, c ∈ Cs, i ∈ Ic,m (2)
∑

i∈Ic

Esci ≤ 1 ∀s, c ∈ Cs (3)



Hyper-box Classification Model Using Mathematical Programming 21

Non-overlapping Constraints
Hyper-boxes of different classes are prohibited from overlapping, since they

express different patterns. Moreover, if there is overlapping between hyper-boxes
of different classes and a sample falls inside this area, then it will be allocated
to both classes. The non-overlapping is ensured by using two sets of constraints.
In constraints (4), if Ycikjm = 1, hyper-box i of class c precedes hyper-box
j of class k on attribute m, because the upper bound of the first one UPcim

is lower than the lower bound of the second one LOkjm. This is depicted in
Fig. 1, in which hyper-box i1 of class c2 has upper bound on attribute m2,
which is lower than the lower bound of hyper-box i1 of class c1 on attribute m2.
Subsequently, Yc2,i1,c1,i1,m2 = 1 and these hyper-boxes do not overlap with each
other on attribute m2. Thus, it is ensured that if Ycikjm = 1 or Ykjcim = 1,
the hyper-boxes do not overlap on attribute m. This is forced by constraints (5)
for every combination of hyper-boxes that belong to different classes for at least
one attribute. Note that εm is the minimum distance between hyper-boxes that
belong to different classes to prevent them from sharing the same border.

UPcim+εm ≤ LOkjm+(U +εm) · (1−Ycikjm) ∀c, k �= c, i ∈ Ic, j ∈ Ik,m (4)
∑

m

(Ycikjm + Ykjcim) = 1 ∀c, k < c, i ∈ Ic, j ∈ Ik (5)

Symmetry-Breaking Constraints
Symmetry breaking constraints are added to avoid redundant equivalent solu-

tions. More specifically, constraints (6) enforce the number of samples included in
the lower indexed hyper-boxes to be higher than the number of samples included
in the higher indexed hyper-boxes. In this way, some identical possible solutions
are removed. ∑

s∈Sc

Es,c,i ≤
∑

s∈Sc

Es,c,i−1 ∀c, i ∈ Ic, i ≥ 2 (6)

Objective Function
The objective function (7) aims to minimise the total number of misclassified
samples.

min
∑

s

(1 −
∑

c∈Cs

∑

i∈Ic

Esci) (7)

The formulation that contains constraints (1) - (7) is named MHB (Monolithic
Hyper-Box model) and its goal is to enclose as many samples as possible within
the hyper-boxes.

3.3 Testing Phase

The creation of the hyper-boxes is completed during the training. During the
testing phase, each testing sample is allocated to one of the hyper-boxes. The
allocation happens based on the distance of the sample from the hyper-boxes [15,
24,25]. The distance of testing sample s from hyper-box i of class c on attribute
m is defined to be:

DISTscim = max(0, Asm − UPcim, LOcim − Asm) ∀s, c, i ∈ Ic,m (8)



22 G. I. Liapis and L. G. Papageorgiou

The total distance of sample s from hyper-box i of class c is given by:

DSIsci =
√∑

m

DIST 2
scim ∀s, c, i ∈ Ic (9)

Hence, the distances of testing samples from all hyper-boxes are calculated.
Afterwards, testings samples are allocated to their nearest derived hyper-box
and assigned the membership of the hyper-box.

3.4 Illustrative Example

A 2-dimensional synthetic dataset, called Moon, is created in order to demon-
strate how the hyper-boxes are formed and how the rules are, afterwards, gen-
erated. Moon dataset, which is depicted in Fig. 2, was constructed with the use
of make_moons utility of the scikit-learn library [19].

It contains 100 samples, 2 attributes and 2 classes. 50 samples belong to class
c1 and are coloured blue and the other 50 samples belong to class c2 and are
coloured red.

Fig. 2. Visualisation of Moon dataset.

Figure 3 illustrates the hyper-boxes generated by solving MHB for 3 hyper-
boxes per class (MHB − 3). It is observed that 3 hyper-boxes per class are
adequate to enclose all samples. As expected, there is no overlapping between
hyper-boxes of different class. Meanwhile, as ensured by constraints (6), hyper-
box i1 of each class includes the highest number of samples, followed by hyper-
box i2 and lastly i3. It is worth noting that the results are post-processed, so
that hyper-box lower and upper bounds for each attribute are equal to smallest
and largest values, respectively, of the enclosed samples.



Hyper-box Classification Model Using Mathematical Programming 23

Fig. 3. Hyper-boxes created to enclose Moon’s samples using MHB − 3.

Table 1. Bounds of each hyper-box.

Hyper-box Class Attribute Lower bound Upper bound

i1 c1
m1 0.04 0.63
m2 0.64 1

i2 c1
m1 0.57 0.66
m2 0.30 0.60

i3 c1
m1 0 0.04
m2 0.33 0.57

i1 c2
m1 0.41 0.89
m2 0 0.27

i2 c2
m1 0.93 1
m2 0.30 0.68

i3 c2
m1 0.31 0.36
m2 0.32 0.57

Table 1 summarises the bounds of the hyper-boxes that are formed. Using
these bounds, the corresponding IF-THEN rules can easily be generated. For
example, hyper-box i1 of class c1 can be interpreted as the following rule:

IF (0.04 ≤ m1 ≤ 0.63) AND (0.64 ≤ m2 ≤ 1) =⇒ Class c1

Therefore, at the testing stage, if a sample satisfies both conditions of a
rule, it will be assigned to the corresponding class. If it does not satisfy both
conditions of any rule, it falls outside of all hyper-boxes and the distances have
to be calculated in order to assign it to the nearest hyper-box, as described in
Sect. 3.3.



24 G. I. Liapis and L. G. Papageorgiou

4 Computational Results

In this section, the applicability of the proposed methodology is demonstrated by
applying it to a number of datasets shown in Table 2, together with comparative
analysis with literature approaches. All datasets can be downloaded from UCI
machine learning repository [10] and are widely used as benchmarks to compare
the performance of different classification methods.

Table 2. Datasets.

Dataset Abbreviation Samples Attributes Classes

Iris I 150 4 3
Wine W 178 13 3
Seeds S 210 7 3
Glass G 214 9 6
Thyroid New TN 215 5 3
Heart disease Cleveland H 297 18 5
E-coli E 336 7 8
Ionosphere ION 351 34 2
Data user modelling DUM 403 5 4
Indian Liver Patient ILP 583 10 2
Balance B 625 4 3
Blood transfusion BT 748 4 2
Banknote Authentication BA 1372 4 2
Wi-fi WF 2000 7 4
Thyroid-ANN TA 3772 21 3

Firstly, the interpretability of MHB is demonstrated by the extraction of
IF-THEN rules in a real world dataset, called Iris. It contains 150 samples with
4 attributes and they are equally distributed in 3 classes. By solving MHB,
IF-THEN rules can be generated using the bounds of every attribute.

Table 3 shows the number of enclosed samples and the bounds of the hyper-
boxes that are formed for Iris dataset by solving MHB − 2. It is observed that
only 2 samples are not correctly classified and they belong to class c2, since 48
out of 50 are correctly classified. Using the bounds, the corresponding IF-THEN
rules are generated. While the procedure described in Sect. 3.3 is employed for
samples that do not satisfy any of those rules. A rule generation example for
hyper-box i1 of class c1 is the following:

IF

⎧
⎪⎪⎨

⎪⎪⎩

(0 ≤ m1 ≤ 0.417) AND

=⇒ Class c1
(0.125 ≤ m2 ≤ 1) AND
(0 ≤ m3 ≤ 0.153) AND
(0 ≤ m4 ≤ 0.208)



Hyper-box Classification Model Using Mathematical Programming 25

Table 3. Number of enclosed samples and bounds of each hyper-box for Iris dataset
solving MHB − 2.

Hyper-box Class Number of enclosed samples Attribute Lower bound Upper bound

i1 c1 50

m1 0 0.417
m2 0.125 1
m3 0 0.153
m4 0 0.208

i1 c2 46

m1 0.167 0.750
m2 0 0.542
m3 0.339 0.661
m4 0.375 0.625

i2 c2 2

m1 0.444 0.472
m2 0.500 0.583
m3 0.593 1
m4 0.625 0.958

i1 c3 33

m1 0.167 0.944
m2 0.208 0.458
m3 0.593 1
m4 0.667 0.958

i2 c3 17

m1 0.472 1
m2 0.083 0.750
m3 0.678 0.966
m4 0.542 1

Next, the single-level hyper-box model MHB is compared with two classi-
fication tree approaches, CART and OCT , which apply univariate splits. Clas-
sification trees produce solutions that can be interpreted as IF-THEN rules.
Figure 4 illustrates the maximum number of rules allowed for CART and OCT
for different depths and for MHB for different number of hyper-boxes per class.
For classification tree approaches, the maximum number of rules is equal to the
number of leaf nodes, which is equal to 2D, where D is the depth of the tree.
Subsequently, a tree, whose depth is equal to D = 2, has 4 leaf nodes and up
to 4 IF-THEN rules can be generated. The same logic applies to the rest of the
depths. As far as MHB is concerned, the maximum number of rules is equal to
the total number of hyper-boxes. Thus, the maximum number of rules is equal
to |I| · |C|, which means that every dataset has a different number of rules based
on the number of classes. Figure 4 shows the average maximum number of rules
across all examined datasets for different number of hyper-boxes per class. It
is shown that classification tree approaches produce similar number of rules for
depth equal to D = 2, 3 with hyper-box model for I = 1, 2 hyper-boxes per class,
respectively. For larger depths D = 4, 5, the maximum number of rules gener-
ated by tree approaches is higher than those of MHB for I = 3, 4 hyper-boxes
per class.



26 G. I. Liapis and L. G. Papageorgiou

Fig. 4. Maximum number of rules allowed.

The implementation of the proposed algorithm was conducted in GAMS
(General Algebraic Modeling System) [11] and the selected solver was GUROBI
[13]. A time limit of 30min was applied to every run. The other approaches,
CART and OCT , were implemented using Scikit-learn library [19] and Inter-
pretableAI library [14], respectively, in order to find the corresponding testing
performance. The default parameters were used, while the maximum depth of
the tree was controlled. The training of CART is completed within 1 s, while the
training of OCT is completed within seconds or minutes for larger datasets. It
is noteworthy that a warm start solution is used during the implementation of
OCT . More specifically, CART is used to provide an integer-feasible solution.

The dataset is divided in training and testing subsets; 70% of the whole
dataset is used for training and the rest 30% of the samples are used for the
testing phase. The allocation of samples to training or testing subset is performed
randomly and is repeated 15 times for every dataset, while mean prediction
accuracy of the 15 iterations is reported. Note that all datasets examined undergo
feature scaling in the range of [0,1]. Furthermore, the datasets that contain
categorical features are converted using one-hot encoding.

Table 4 presents a comparison of average testing accuracy per dataset of
CART and OCT for depth D = 2, 3 and MHB for I = 1, 2 hyper-boxes per
class. As explained earlier, the maximum number of rules of the approaches
is similar. It is shown that MHB − 1 outperforms CART − 2 and OCT − 2
in 10 out of 15 datasets and it is superior on average across all datasets. The
outperformance of MHB − 1 against CART − 2 and OCT − 2 is clear for
W, G, TN and E datasets, while this is not the case for I, B and BA, in which
OCT−2 produces the highest scores. Similarly, MHB−2 shows better prediction
accuracy than CART − 3 and OCT − 3 on average and more specifically in 8
out of 15 examined datasets. This is easily observed in I, W, TN and H, while
both classification tree approaches perform better in BT and TA.

Table 5 displays the average testing accuracy per dataset of CART and OCT
for depth D = 4, 5 and MHB for I = 3, 4 hyper-boxes per class. In these cases,
as illustrated in Fig. 4, CART and OCT produce a higher number of rules in
comparison to MHB. MHB − 3 outperforms the other approaches for depth
D = 4 in 7 out of 15 datasets. In terms of average performance across all datasets,
MHB −3 surpasses CART −4 and OCT −4. MHB −3 prediction performance



Hyper-box Classification Model Using Mathematical Programming 27

Table 4. Testing accuracy (%) of CART , OCT for depth D=2, 3 and MHB for
I = 1, 2 hyper-boxes per class.

Dataset CART-2 CART-3 OCT-2 OCT-3 MHB-1 MHB-2

I 93.61 94.04 94.52 94.37 93.78 96.00
W 85.03 91.02 87.53 92.72 94.72 96.60
S 89.52 88.64 88.15 91.64 89.52 90.69
G 58.04 64.06 58.05 62.97 68.54 67.40
TN 90.17 91.27 89.64 90.36 92.19 94.48
H 52.98 53.17 53.40 53.48 54.08 55.36
E 76.12 80.22 79.67 82.18 84.47 85.27
ION 89.59 89.40 88.93 88.87 89.97 89.97
DUM 83.67 91.05 84.63 92.73 89.83 92.67
ILP 71.12 71.08 69.37 70.06 70.54 70.19
B 64.92 66.53 66.70 69.15 57.65 66.70
BT 76.54 76.91 74.90 76.18 76.70 76.13
BA 90.47 93.42 91.83 96.73 85.29 94.86
WF 90.87 96.51 95.78 96.73 96.48 97.51
TA 97.92 99.29 97.83 99.27 99.15 99.25
Average 80.71 83.11 81.40 83.83 82.86 84.87

exceeds significantly the other methodologies in W, E, G and B. However, it
performs quite worse than OCT − 4 in I, DUM and BA. The last comparison is
between CART − 5, OCT − 5 and MHB − 4, in which MHB − 4 is superior in
10 out of 15 datasets and on average across all datasets. The only datasets that
it is not the best performing approach are S, ILP, BT, BA and TA.

Apart from the previous comparison of average prediction accuracies, a scor-
ing strategy is employed in order to evaluate the relative competitiveness of the
examined approaches. For each dataset, the best performing approach is awarded
12 points, whereas the worst performing approach is awarded 1 point. The points
of each methodology are averaged over the 15 datasets and the final ranking is
depicted in Fig. 5.

As shown in Fig. 5, MHB −4 is shown to be the most accurate classification
algorithm among all, achieving the highest score. Moreover, MHB has 3 out of
the top 4 scores, namely MHB − 2, MHB − 3, MHB − 4, while MHB − 1
achieves to outperform CART − 3, CART − 2 and OCT − 2. The results across
all examined datasets show that the proposed approach MHB achieves higher
testing accuracy than CART and OCT, even when using less rules.



28 G. I. Liapis and L. G. Papageorgiou

Table 5. Testing accuracy (%) of CART , OCT for depth D = 4, 5 and MHB for
I = 3, 4 hyper-boxes per class.

Dataset CART-4 CART-5 OCT-4 OCT-5 MHB-3 MHB-4

I 94.41 94.15 96.15 94.37 95.26 95.11
W 91.11 91.43 93.46 94.32 96.48 96.48
S 89.72 89.53 91.22 92.06 90.48 91.75
G 64.10 64.10 68.10 68.82 71.77 72.08
TN 91.76 92.55 93.23 92.41 94.38 93.96
H 52.93 52.71 54.74 54.74 54.46 55.28
E 80.88 80.78 81.91 81.06 85.13 84.07
ION 88.52 88.33 90.94 89.93 90.48 92.25
DUM 91.25 91.31 93.22 91.90 92.33 93.33
ILP 71.09 70.98 69.94 69.71 70.35 70.61
B 67.29 70.99 69.72 73.90 72.91 76.86
BT 77.25 77.37 77.51 77.07 77.92 77.35
BA 95.42 96.98 98.43 98.12 96.61 98.09
WF 96.95 97.23 97.08 97.39 97.74 97.92
TA 99.47 99.72 99.38 99.70 99.15 99.16
Average 83.48 83.88 85.00 85.03 85.70 86.29

Fig. 5. Visualisation of the overall performance score of each method.

5 Concluding Remarks

This work addresses the problem of multi-class classification. A single-level app-
roach (MHB) has been proposed, which adopts a hyper-box representation and



Hyper-box Classification Model Using Mathematical Programming 29

is formulated mathematically as Mixed Integer Linear Programming (MILP)
model. Key decisions of MHB involve optimal sizing and arrangement of hyper-
boxes of each class in order to identify dataset patterns. The interpretability of
the model is demonstrated by the IF-THEN rules generated from hyper-boxes.
The proposed hyper-box model outperforms other established classification tree
methodologies, namely CART and OCT , in most datasets examined thus high-
lighting its applicability for real world datasets with high prediction accuracy,
while maintaining enhanced interpretability.

Acknowledgements. Authors gratefully acknowledge the financial support from
Engineering and Physical Sciences Research Council (EPSRC) under the project
EP/V051008/1.

References

1. Aghaei, S., Gomez, A., Vayanos, P.: Learning optimal classification trees: strong
max-flow formulations (2020). https://doi.org/10.48550/arXiv.2002.09142

2. Bertsimas, D., Dunn, J.: Optimal classification trees. Mach. Learn. 106, 1039–1082
(2017). https://doi.org/10.1007/s10994-017-5633-9

3. Bixby, R.E.: A brief history of linear and mixed-integer programming computation.
Doc. Math. 1, 107–121 (2012)

4. Blanco, V., Japón, A., Puerto, J.: Optimal arrangements of hyperplanes for
SVM-based multiclass classification. Adv. Data Anal. Classif. 14, 175–199 (2020).
https://doi.org/10.1007/s11634-019-00367-6

5. Blanco, V., Japón, A., Puerto, J.: A mathematical programming approach to
SVM-based classification with label noise. Comput. Ind. Eng. 172, 108611 (2022).
https://doi.org/10.1016/j.cie.2022.108611

6. Blanquero, R., Carrizosa, E., Molero-Río, C., Morales, D.R.: Sparsity in optimal
randomized classification trees. Eur. J. Oper. Res. 284, 255–272 (2020). https://
doi.org/10.1016/j.ejor.2019.12.002

7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Taylor & Francis, Milton Park (1984). https://doi.org/10.1201/
9781315139470

8. Busygin, S., Prokopyev, O.A., Pardalos, P.M.: An optimization-based approach for
data classification. Optim. Meth. Softw. 22, 3–9 (2007). https://doi.org/10.1080/
10556780600881639

9. Carrizosa, E., Morales, D.R.: Supervised classification and mathematical optimiza-
tion. Comput. Oper. Res. 40, 150–165 (2013). https://doi.org/10.1016/j.cor.2012.
05.015

10. Dua, D., Graff, C.: UCI machine learning repository. https://archive.ics.uci.edu/
ml/index.php (2017)

11. GAMS Development Corporation: General Algebraic Model System (GAMS)
(2022). Release 41.5.0, Washington, DC, USA

12. Gehrlein, W.V.: General mathematical programming formulations for the statisti-
cal classification problem. Oper. Res. Lett. 5, 299–304 (1986). https://doi.org/10.
1016/0167-6377(86)90068-4

13. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://
www.gurobi.com

https://doi.org/10.48550/arXiv.2002.09142
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/s11634-019-00367-6
https://doi.org/10.1016/j.cie.2022.108611
https://doi.org/10.1016/j.ejor.2019.12.002
https://doi.org/10.1016/j.ejor.2019.12.002
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1080/10556780600881639
https://doi.org/10.1080/10556780600881639
https://doi.org/10.1016/j.cor.2012.05.015
https://doi.org/10.1016/j.cor.2012.05.015
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://doi.org/10.1016/0167-6377(86)90068-4
https://doi.org/10.1016/0167-6377(86)90068-4
https://www.gurobi.com
https://www.gurobi.com


30 G. I. Liapis and L. G. Papageorgiou

14. Interpretable AI, LLC: Interpretable AI Documentation (2023). https://www.
interpretable.ai

15. Maskooki, A.: Improving the efficiency of a mixed integer linear programming
based approach for multi-class classification problem. Comput. Ind. Eng. 66, 383–
388 (2013). https://doi.org/10.1016/j.cie.2013.07.005

16. Müller, T.T., Lio, P.: Peclides neuro: a personalisable clinical decision support
system for neurological diseases. Front. Artif. Intell. 3, 23 (2020). https://doi.org/
10.3389/frai.2020.00023

17. Nasseri, A.A., Tucker, A., Cesare, S.D.: Quantifying stockTwits semantic terms’
trading behavior in financial markets: an effective application of decision tree algo-
rithms. Expert Syst. Appl. 42, 9192–9210 (2015). https://doi.org/10.1016/j.eswa.
2015.08.008

18. Papageorgiou, L.G., Rotstein, G.E.: Continuous-domain mathematical models for
optimal process plant layout. Ind. Eng. Chem. Res. 37, 3631–3639 (1998). https://
doi.org/10.1021/ie980146v

19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011). https://doi.org/10.48550/arXiv.1201.0490

20. Quinlan, J.R.: Improved use of continuous attributes in c4.5. J. Artif. Intell. Res.
4, 77–90 (1996). https://doi.org/10.1613/jair.279

21. Simpson, P.: Fuzzy min-max neural networks. I. classification. IEEE Transa. Neural
Netw. 3, 776–786 (1992). https://doi.org/10.1109/72.159066. https://ieeexplore.
ieee.org/document/159066/

22. Sueyoshi, T.: Mixed integer programming approach of extended DEA-discriminant
analysis. Eur. J. Oper. Res. 152, 45–55 (2004). https://doi.org/10.1016/S0377-
2217(02)00657-4

23. Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear
program formulation. In: 33rd Conference on Artificial Intelligence (2019). https://
doi.org/10.1609/aaai.v33i01.33011624

24. Xu, G., Papageorgiou, L.G.: A mixed integer optimisation model for data classi-
fication. Comput. Ind. Eng. 56, 1205–1215 (2009). https://doi.org/10.1016/j.cie.
2008.07.012

25. Yang, L., Liu, S., Tsoka, S., Papageorgiou, L.G.: Sample re-weighting hyper box
classifier for multi-class data classification. Comput. Ind. Eng. 85, 44–56 (2015).
https://doi.org/10.1016/j.cie.2015.02.022

26. Yoo, I., et al.: Data mining in healthcare and biomedicine: a survey of the literature.
J. Med. Syst. 36, 2431–2448 (2012). https://doi.org/10.1007/s10916-011-9710-5

27. Zibanezhad, E., Foroghi, D., Monadjemi, A.: Applying decision tree to predict
bankruptcy. In: IEEE International Conference on Computer Science and Automa-
tion Engineering, vol. 4, pp. 165–169 (2011). https://doi.org/10.1109/CSAE.2011.
5952826

28. Üney, F., Türkay, M.: A mixed-integer programming approach to multi-class data
classification problem. Eur. J. Oper. Res. 173, 910–920 (2006). https://doi.org/
10.1016/j.ejor.2005.04.049

https://www.interpretable.ai
https://www.interpretable.ai
https://doi.org/10.1016/j.cie.2013.07.005
https://doi.org/10.3389/frai.2020.00023
https://doi.org/10.3389/frai.2020.00023
https://doi.org/10.1016/j.eswa.2015.08.008
https://doi.org/10.1016/j.eswa.2015.08.008
https://doi.org/10.1021/ie980146v
https://doi.org/10.1021/ie980146v
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1613/jair.279
https://doi.org/10.1109/72.159066
https://ieeexplore.ieee.org/document/159066/
https://ieeexplore.ieee.org/document/159066/
https://doi.org/10.1016/S0377-2217(02)00657-4
https://doi.org/10.1016/S0377-2217(02)00657-4
https://doi.org/10.1609/aaai.v33i01.33011624
https://doi.org/10.1609/aaai.v33i01.33011624
https://doi.org/10.1016/j.cie.2008.07.012
https://doi.org/10.1016/j.cie.2008.07.012
https://doi.org/10.1016/j.cie.2015.02.022
https://doi.org/10.1007/s10916-011-9710-5
https://doi.org/10.1109/CSAE.2011.5952826
https://doi.org/10.1109/CSAE.2011.5952826
https://doi.org/10.1016/j.ejor.2005.04.049
https://doi.org/10.1016/j.ejor.2005.04.049


A Leak Localization Algorithm in Water
Distribution Networks Using Probabilistic

Leak Representation and Optimal
Transport Distance

Andrea Ponti1,3(B), Ilaria Giordani2,3, Antonio Candelieri1,
and Francesco Archetti2,4

1 Department of Economics, Management, and Statistics,
University of Milano-Bicocca, Milan, Italy

andrea.ponti@unimib.it
2 Department of Computer Science, Systems, and Communication,

University of Milano-Bicocca, Milan, Italy
3 OAKS s.r.l., Milan, Italy

4 Consorzio Milano Ricerche, Milan, Italy

Abstract. Leaks in water distribution networks are estimated to account
for up to 30% of the total distributed water: the increasing demand, and
the skyrocketing energy cost have made leak localization and adoption
even more important to water utilities. Each leak scenario is run on a sim-
ulation model to compute the resulting values of pressure and flows over
the whole network. The recorded values are seen as the signature of one
leak scenario. The key distinguishing element in the present paper is the
representation of a leak signature as a discrete probability distribution.
In this representation the similarity between leaks can be captured by
a distance between their associated probability distributions. This maps
the problem of leak detection from the Euclidean physical space into a
space whose elements are histograms, structured by a distance between
histograms, namely the Wasserstein distance. This choice also matches the
physics of the system: indeed, the equations modelling the generation of
flow and pressure data are non-linear. Non-linear data structure is better
represented by the Wasserstein distance than by the Euclidean distance.
The signatures obtained through the simulation of a large set of leak sce-
narios are non-linearly clustered according in the Wasserstein space using
Wasserstein barycenters as centroids. As a new set of sensor measurements
arrives, the related signature is associated to the cluster with the closest
barycenter. The location of the simulated leaks belonging to that cluster
are the possible locations of the observed leak. This new theoretical and
computational framework allows a richer representation of pressure and
flow data embedding both the modelling and the computational modules
in the Wasserstein space whose elements are the histograms endowed with
the Wasserstein distance. The computational experiments on benchmark
and real-world networks confirm the feasibility of the proposed approach.

Keywords: Leak localization · Water distribution networks ·
Wasserstein distance

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 31–45, 2023.
https://doi.org/10.1007/978-3-031-44505-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_3&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_3


32 A. Ponti et al.

1 Introduction

1.1 Motivations

Leaks in water distribution networks are estimated to account for up to 30% of
the total distributed water: this figure alone gives an idea of the positive impacts
of an improvement, even relatively small in percentage, of a leak reduction. The
increasing demand, driven by the growing urban population, and the skyrocket-
ing energy cost have made leak early detection, quick localization and adoption
of remedial actions ever more important to water utilities. Major obstacles are
represented by the scarcity of measurements and the uncertainty in demand
making the leakage localization a very challenging problem. This situation has
influenced significantly not only the operational practice but also spurred the
water research community towards awareness of the potential of artificial intel-
ligence and specifically machine learning and of the importance of the synergy
with machine learning community. These advances has been enabled both by
new computational techniques and the growing availability of sensor of pressure
and flows deployed over the water distribution network (WDN). A key con-
cept in the present paper is the “leak scenario” characterized by the location
and severity of the leak. Each scenario is simulated by the hydraulic simulator
EPANET to compute the values of pressure and flows. When a possible leak is
detected (e.g., with traditional methods such as Minimum Night Flow analysis)
the actual pressure and flow values recorded by the sensors are compared with
those of the faultless network and those obtained through simulation of all differ-
ent leak scenarios. The values recorded by the sensors are seen as the features of
one leak scenario and can be considered as the signature of the leak in a feature
space. The signatures obtained through the simulation of all leak scenarios are
clustered: as a new set of sensor measurements arrives, its feature is compared
with cluster centroids in order to obtain the most similar one. The signature is
then assigned to that cluster. This gives the simulated leaky pipes related to
the scenarios of that cluster as potential leak locations. The overall workflow is
depicted in Fig. 1.

The key distinguishing element in the present paper is the representation of
a leak signature, over the simulation horizon, as a discrete probability distribu-
tion. In this representation, the similarity between leaks and between a faulty
signature and the faultless one can be captured by a distance between their
associated probability distributions. As probability distributions, histogram will
be considered. This maps the problem of leak detection from the Euclidean
physical space into a space whose elements are histograms: this space is struc-
tured by a distance between histograms, namely the Wasserstein distance also
known as the optimal transport distance. The Wasserstein (WST) distance is
a field of mathematics which studies the geometry of probability spaces and
provides a principled framework to compare and align probability distributions.
The Wasserstein distance can be traced back to the works of Gaspard Monge [11]
and Lev Kantorovich [10]. The WST distance has evolved into a very rich math-
ematical structure whose complexity and flexibility are analyzed in a landmark



A Leak Localization Algorithm Using the Optimal Transport Distance 33

Fig. 1. General framework of the proposed approach: Wasserstein versus traditional
clustering of leak-age scenarios.

volume [23] and, in the discrete domain, in the tutorial [21]. The computation
of the WST distance requires the solution of a constrained linear optimization
problem which can have, a very large number of variables and constraints, and
can be shown to be equivalent to a min-flow problem. Recently, several spe-
cialized computational approaches have drastically reduced the computational
hurdles [13]. For univariate discrete distributions, which are considered in this
paper, there is a closed formula which makes the computational cost negligible.
The main advantage of WST for histograms is that it is a cross binning distance,
and it is not affected by different binning schemes. Moreover, the WST distance
matches naturally the perceptual notion of nearness and similarity. This is not
the case of commonly used distances as Kullback-Leibler (KL) and χ-square that
account only for the correspondence between bins of the same index and do not
use information across bins or distributions with different binning schemes, that
is different supports. An important element of the WST theory is the barycenter
which offers a useful synthesis of a set of distributions. The barycenter allows for
a standard clustering method like k-means to be generalized to WST spaces as
will be shown in Sect. 3. Several AI based strategies have been recently proposed
for leak detection and localization, in some cases including the issue of sensor
placement. There are mostly based on Graph Neural Networks and dictionary
learning. An advantage of the Graph Neural Network (GNN) models is that
they are mapped naturally on the physical network and can naturally exploit
its dynamics. Moreover, most of them are purely data driven independent of the
hydraulic simulation. A drawback is that neural networks used in a purely data
driven approach are very expensive to train. This results in a smaller computa-
tional cost for the algorithm proposed in this paper WELL (Wasserstein Enabled
Leak Localization) allowing to handle WDN’s of larger size than GNN. Another
important consideration is that WELL works with a much smaller number of
sensors than GNN methods. The main approaches will be analyzed in Sect. 1.2.



34 A. Ponti et al.

1.2 Related Works

Several strategies based on machine learning have been recently proposed for
leak detection and localization, in some cases including also the related issue of
sensor placement. The present paper has been inspired by the paper [2] which
also encodes the graph in a feature space whose elements are the leak signa-
tures corresponding to different scenarios. A clustering procedure in the space of
signatures enables to indicate, at different confidence levels, the potential leaky
nodes. Other approaches are [24] which consider time-series of pressure data for
classification and imputation as leaks of specific network nodes and [9] which
propose an ensemble Convolutional Neural Network-Support Vector Machine to
provide graph-based localization in water distribution systems.

A different approach is based on the concept of dictionary learning. Irofti and
Stoican [8] propose a dictionary learning strategy both for sensor placement and
leakage isolation. The proposed strategy is to construct a dictionary of atoms
over which to project the measured pressure residuals with a sparsity constraint.
Each of the measured residuals can expressed as a combination of the number
of atoms. The dictionary learning approach is further developed in [7] which
builds on the dictionary representation of the algorithms for sensor placement,
leak detection and localization adding also a layer of graph interpolation as an
input to dictionary classification. Related strategies are proposed in [20] based
on pressure sensors and spatial interpolation. Romero-Ben et al. [17] use graph
interpolation to estimate the hydraulic states of the complete WDN from real
measurements at certain nodes of the network graph. The actual measurements
together with a subset of estimated states are used to feed and train the dic-
tionary learning scheme. Gardharsson et al. [5] aim to estimate the complete
network state from data but instead of graph interpolation adopt a graph neural
network approach, exploiting the topology of the physical network, in order to
estimate pressures where measurements are not available. Pressure prediction
errors are converted into residual signals on the edges. A similar approach has
been proposed in [6] where nodal pressures are also estimated using graph neu-
ral networks. A related approach [16] encodes the data from measured nodes as
images. Subsequently a clustering is performed to split the network into subnet-
works and a deep neural network is used to provide the binary classification.

Morales-González et al. [12] propose simulate annealing with hyperparameter
optimization for Leak Localization. In [18] the authors solve jointly sensor place-
ment and leak localization considering the mutual information and, building on
it, a measure of the relevance of a subset of nodes and a measure of redundance.
To compute these two definitions a dataset of node pressures is built covering
different scenarios that consider leaks of different sizes in all nodes of the net-
work. Soldevila et al. [19] consider jointly the leak detection and localization
problems. Leaks are detected and validated analyzing statistically the inlet flow
and localization is formulated as a classification problem whose computational
complexity is mitigated through a clustering scheme.



A Leak Localization Algorithm Using the Optimal Transport Distance 35

The Wasserstein, a.k.a. optimal transport, distance, which is at the core of the
present paper, is also considered in [1] in order to perform data driven detection
and localization of leaks in industrial fluids (the example is for naphtha). The size
of the network (22 nodes) and its hydraulics are quite different from the WDNs,
and the method proposed is not directly relevant to the leak localization problem
in WDNs. The use of WST in analyzing WDNs has been already proposed for
optimal sensor placement [14] and resilience analysis [15].

1.3 Our Contributions

The main novelty of this paper is to represent the sample of pressure and flow
values related to a leak scenario not through its average value but as a discrete
probability distribution, specifically, a histogram. In this framework the similar-
ity between leak scenarios is given by a distance between distributions. Among
many such distances the Wasserstein distance, also known as optimal transport
distance, has been used in this paper. The WST distance can be regarded as a
natural extension of the Euclidean distance, lifting it into the space of probability
distributions. This new theoretical and computational framework allows a richer
representation of pressure and flow data embedding both the modelling and the
computational modules in a space, the Wasserstein space, whose elements are
the histograms, endowed with the WST distance. Moreover, also the clustering
takes place in the Wasserstein space using barycenters. A result is that with
respect to others AI based methods a smaller number of sensors is required.

1.4 Content Organization

The paper is organized as follows. Section 2 establishes the feature space i.e., the
generation of leak scenarios. It provides the distribution representation of the
leaks in the feature space. Section 3 provides the basic notions of the Wasserstein
distance, its computation for the case of discrete distributions and the com-
putation of the barycenters. Section 4 establishes the clustering algorithms in
Euclidean and Wasserstein spaces. Section 5 displays the workflow of the WELL
algorithm. Section 6 provides the experimental settings and results. Section 7
comments on the comparative advantages of our method and its limitations
along with perspectives for future work.

2 The Wasserstein Distance

2.1 Basic Definitions

Consider the case of a discrete distribution P specified by a set of support points
xi with i = 1, ...,m and their associated probabilities wi, such that

∑m
i=1 wi = 1

with wi ≥ 0 and xi ∈ M for i = 1, ...,m. Usually, M = Rd is the d-dimensional



36 A. Ponti et al.

Euclidean space where xi are the support vectors. Therefore, P can be written
as follows in Eq. (1):

P (x) =
m∑

i=1

wiδ(x − xi) (1)

where δ(·) is the Kronecker delta. The WST distance between two distributions
P (1) = {w

(1)
i , x

(1)
i } with i = 1, ...,m1 and P (2) = {w

(2)
i , x

(2)
i with i = 1, ...,m2 is

obtained by solving the following linear program (Eq. 2):

W (P (1), P (2)) = min
γij∈R+

∑

i∈I1,j∈I2

γijd(x(1)
i , x

(2)
j ) (2)

The cost of transport between x
(1)
i and x

(2)
j , d(x(1)

i , x
(2)
j is defined by the p-th

power of the norm |x(1)
i , x

(2)
j |, which is usually the Euclidean distance. Two index

sets can be defined as I1 = {1, ...,m1} and I2 likewise, such that:
∑

i∈I1

γij = w
(2)
j , ∀j ∈ I2 (3)

∑

j∈I2

γij = w
(1)
i , ∀i ∈ I1 (4)

Equations (3) and (4) represent the in-flow and out-flow constraints, respectively.
The terms γij are called matching weights between support points x

(1)
i and

x
(2)
j or the optimal coupling for P (1) and P (2). The basic computation of OT

between two discrete distributions involves solving a network flow problem whose
computation typically scales cubically in the sizes of the measure. In the case of
a one-dimensional histograms, the computation of the Wasserstein distance can
be performed by a simple sorting algorithm and with the application of Eq. (5).

Wp(P (1), P (2)) =

(
1
n

n∑

i

|x(1)∗
i − x

(2)∗
i |p

) 1
p

(5)

where x
(1)∗
i and x

(2)∗
i are the sorted samples. The discrete version of the WST

distance is usually called the Earth Mover Distance (EMD). For instance, when
measuring the distance between grey scale images, the histogram weights are
given by the pixel values and the coordinates by the pixel positions. The compu-
tational cost of optimal transport can quickly become prohibitive. The method
of entropic regularization enables scalable computations, but large values of the
regularization parameter can induce an undesirable smoothing effect, whereas
low values not only reduce the scalability but might induce several numerical
instabilities.



A Leak Localization Algorithm Using the Optimal Transport Distance 37

2.2 Wasserstein Barycenter

Under the optimal transport metric, it is possible to compute the mean of a
set of empirical probability measures. This mean is known as the Wasserstein
barycenter and is the measure that minimizes the sum of its Wasserstein dis-
tances to each element in that set. Consider a set of N discrete distributions,
P = {P (1), ..., P (N))}, with P (k) = {(w(k)

i , x
(k)
i ) : i = 1, ...,mk} and k = 1, ..., N .

Therefore, the associated barycenter, denoted with P̄ = {(w̄1, x1), ..., (w̄m, xm)},
is computed as follows in Eq. (6):

arg min
P

1
N

N∑

k=1

λkW (P, P (k)) (6)

where the values λk are used to weigh the different contributions of each dis-
tribution in the computation. Without the loss of generality, they can be set to
λk = 1

N ∀k = 1, ..., N .

3 Wasserstein Enabled Leak Localization

3.1 Generation of Leak Scenarios

The simulation runs are performed by placing, in turn, a leak on each pipe
according to EPANET specifications and varying its severity in a given range.
At the end of each leakage simulation EPANET outputs pressure and flows value
at each junction and pipe respectively. Only the values in correspondence of the
position of monitoring devices are taken into account. The pressure and flow
variations due to each simulated leak are compared to the corresponding values
obtained by simulating the faultless network. Each simulated leak is stored in a
dataset and represented by the pressure and flow variations (features) together
with the information related to the affected pipe and the damage severity. Each
monitoring point (sensor) can be represented by a matrix: rows correspond to
time steps of the simulation and columns to different leakage scenarios. Let
assume that there are N sensors of which np pressure sensors and nf flow sensors.
For each sensor (feature) and each scenario the result is a timeseries. Figure 2
displays flows and pressures values registered at sensor f9 and sensor p11 respec-
tively. The color depends on the flow/pressure value with respect to the faultless
network.

The EPANET simulation is performed for the 24 h horizon over 10 min inter-
vals generating 144 observations for each monitoring point. Each entry of the
matrix represents the pressure or flow (depending on the type of sensor) regis-
tered at a specific time in a specific leakage scenario. The distribution of pressures
(or flows) for a leakage scenario registered in a specific monitoring point (i.e., a
column of the matrices shown in Fig. 2) can be represented as a histogram: the
support is given by the pressures (or flows) range (or rather the difference in
pressure range with respect to the faultless network) divided into η bins and the
weights are given by the number of elements falling in that bin. Figure 3 displays



38 A. Ponti et al.

Fig. 2. Example of the matrices associated to flow sensor f9 and pressure sensor p11.

the histograms associated to two leakage scenarios. The upper line is related to
a leak in the pipe 121 with severity 0.1 (�0.1

121), while the bottom line is related
to a leak in the pipe 31 with severity 0.3 (�0.3

31 ). Two monitoring points have
been considered in the example, one for flow (f9) and one for pressure (p11).
The distance between the two leaks is given by the average of the Wasserstein
distance of the histograms over each monitoring point.

The strategy which developed in the present paper is to normalize the sample
in the range and compute a histogram whose bins correspond to the sub-intervals
in the range equi-division and weight given by the elements of the sample falling
in that bin. For a leak scenario, the signature is now a set of N histograms, one
for each sensor. There are several options to deal with these histograms:

1. Consider the representation of a leak as one histogram with a N-dimensional
support (N -dimensional histogram) with each dimension corresponding to a
sensor.

2. Consider the image/heatmap given by the N × N matrix whose entries are
the “distance between two sensors”.

3. Consider N one-dimensional histograms.

Under any of the above options the distance between two leaks upon which we
build the clustering procedure is based on the WST distance. The computational
cost of the three options is very different: from very large, almost prohibitive,
for the first when the number of the dimensions of the support exceeds 5, to
manageable, for the second where the support is 2-dimensional. The third has a
smaller cost because the distributions involved are 1-dimensional. The distance
between two different leaks (different in terms of affected pipe and/or leak sever-
ity) also allows to deal with the problem of grouping similar leakage scenarios as
a graph clustering task. In this paper, the application of k-means in the WST
space have been considered.



A Leak Localization Algorithm Using the Optimal Transport Distance 39

Fig. 3. Distributions of pressure (left) and flow (right) registered by sensor f9 and p11

respectively. The upper line is related to the leakage scenario �0.1121, while the bottom
line is related to the leakage scenario �0.331 .

3.2 Clustering in the Wasserstein Space

The concept of barycenter enables clustering among distributions in a space
whose metric is the Wasserstein distance. More simply, the barycenter in a space
of distributions is the analogous of the centroid in a Euclidean space. The most
common and well-known algorithm for clustering data in the Euclidean space is
k-means. Since it is an iterative distance-based (also known as representative-
based) algorithm, it is easy to propose variants of k-means by simply changing
the distance adopted to create clusters. The crucial point is that only the distance
is changed, and the overall iterative two-step clustering algorithm is maintained.
In the present paper the Wasserstein k-means is used, where the Euclidean dis-
tance is replaced by the Wasserstein distance and where centroids are replaced
by barycenters of the distributions belonging to that cluster. As previously seen,
each leakage scenario can be represented as a set of N histograms that represent
flows and pressures distribution at the monitoring points. This enables the usage
of a Wasserstein enabled k-means, in which the distance between two leakage is
computed as the average Wasserstein distance over the N histograms associated
to different sensors. This approach enables the usage of the entire distributions
of pressures and flows detected during the simulation horizon instead of just
considering the average values as in standard clustering approaches. To locate



40 A. Ponti et al.

a leakage, the detected pressures and flows can be compared to the barycenters
resulting from the clustering procedure. The set of pipes potentially damaged is
the set of pipes belonging to the clusters associated with the closest barycenter.

3.3 Evaluation Metrics

The quality of a clustering can be evaluated by several standard measures (e.g.,
the Silhouette score, the Dunn index) which are problem agnostic. Given the par-
ticular features of the leak localization problem a specific performance measures
have been developed.

The Localization Index of a cluster k, namely LIk, refers to the number of
different pipes contained in a cluster, and it is computed as:

LIk =
|P| − |Pk|
|P| − 1

(7)

where P is the set of pipes of the WDN and Pk is the set of leaky pipes belonging
to cluster k. The values of LIk range between 0, i.e., cluster k contains all the
pipes of the WDN, and 1, i.e., cluster k contains scenarios related to just one
pipe. The overall LI index is obtained as the average of LIk weighted by the
number of distinct pipes in each cluster.

The Quality of Localization index of a cluster k, namely QLk, refers to the
number of scenarios related to the same (leaky) pipe (with different severities)
contained in a cluster, and it is computed as:

QLk =

∑
p∈Pk

nk
p

|S|
|Pk| (8)

where S is the set of different severity values used in the simulations and nk
p

is the number of scenarios in cluster k associated with pipe p. The values of
QLk range between 0 and 1, where 1 means that the cluster k contains all the
scenarios related to the pipes in the Pk set. The overall QL is given by the
average of QLk. Finally, an overall index for the clustering procedure, namely
QLI, can be obtained combining LI and QL as:

QLI = LI × QL (9)

4 Experimental Results

4.1 Data Resources

Three different networks (Fig. 4) have been used to test the proposed algorithm.
Hanoi [22] and Anytown [4] are two benchmarks used in the literature. Hanoi
is composed of 31 junctions, 1 reservoir and 34 pipes, while Any-town has 22
junctions, 1 reservoir, 2 tanks, 43 pipes and 3 pumps. Neptun [3] is the WDN
of Timisoara, Romania, more specifically it is a district metered area of a large



A Leak Localization Algorithm Using the Optimal Transport Distance 41

Fig. 4. The three WDN used: Hanoi (left), Anytown (center) and Neptun (right).

WDN, and it was a pilot area of the European project ICeWater. Neptun is
composed of 332 junctions, 1 reservoir, 312 pipes and 27 valves.

For each of these networks five different leaks have been simulated with dif-
ferent severity values (ranging from 0.1 to 0.3 with a step of 0.05). A total of 170
scenarios have been simulated for Hanoi, 215 scenarios for Anytown and 1560
scenarios for Neptun. In addition, 4 sensors (np = 2, nf = 2) have been consid-
ered for the networks of Hanoi and Anytown and 6 sensors (np = 3, nf = 3) for
the network of Neptun.

4.2 Computational Results

The proposed clustering procedure has been compared with the standard k-
means. Figure 5 shows the quality of the resulting cluster in terms of QLI for
different number of clusters on the three WDN considered. In the case of Hanoi
and Anytown, the Wasserstein enabled clustering shows slightly better perfor-
mance, in particular for smaller number of clusters. In the case of Neptun the
quality of the resulting clusters by the two algorithms is comparable for k < 30,
while k-means has slightly better performance for k ≥ 30.

Fig. 5. QLI index over different number of clusters considering the standard k-means
and the Wasserstein enabled k-means.

The advantage of WELL is particularly marked when flows and pressures
have high variance over the simulation horizon. Indeed, WELL is able to consider
the entire distribution of values instead of just the daily average as k-means.
This is often the case of real word WDN in which WELL can offer significant
improvements over standard clustering procedure.



42 A. Ponti et al.

Fig. 6. On the left, the resulting clusters considering Wasserstein enabled clustering
and k-means with 5 clusters. Different colors represent different cluster. On the right,
barycenters obtained by the clustering procedure in the Wasserstein space on Neptun.

Furthermore, the resulting barycenters of WELL offer a signature of the leak-
age scenarios belonging to each cluster. This should help explain the localization
of a scenario in a specific portion of the network by giving the typical behavior of
different clusters. Figure 6 shows an example of the clustering results while Fig. 7
shows an example of the barycenter in the case of Neptun with 5 clusters. For
example, each histogram on the first row (c0) is obtained as the Fréchet mean
(i.e., barycenter) of the histograms associated to the leak scenarios belonging to
the cluster c0.

Fig. 7. Barycenters obtained by the clustering procedure in the Wasserstein space on
Neptun.

Finally, to analyze the predictive capabilities of WELL, a test set has been
built with the same procedure described in Sect. 3.1 but varying the severity
values. Table 1 shows the resulting accuracy in the test set.



A Leak Localization Algorithm Using the Optimal Transport Distance 43

Table 1. Computational results in terms of prediction accuracy for the two algorithms
and the three WDN.

Network k k-means WELL

n = 5 n = 15 n = 25 n = 35 n = 45 n = 55

Hanoi 5 1.000 0.941 0.971 1.000 0.971 0.971 1.000

15 1.000 0.941 0.941 0.971 0.941 0.971

25 1.000 0.971 1.000 1.000 1.000

35 1.000 0.971 0.971 0.941

45 1.000 0.941 0.941

55 1.000 0.941

Anytown 5 1.000 0.791 0.907 1.000 1.000 1.000 1.000

15 1.000 0.488 0.581 0.837 0.721 0.884

25 1.000 1.000 0.860 1.000 1.000

35 1.000 0.860 0.860 1.000

45 1.000 1.000 1.000

55 1.000 1.000

Neptun 5 0.996 0.877 0.972 0.985 0.991 0.984 0.986

15 0.993 0.954 0.973 0.980 0.976 0.989

25 0.981 0.917 0.929 0.929 0.933

35 0.940 0.950 0.959 0.969

45 0.944 0.946 0.954

55 0.939 0.928

5 Conclusions, Limitations, and Perspectives

The approach based on the distributional representation of the leak in the fea-
ture space is methodologically sound and offers a good computational perfor-
mance. WELL can also work with a relatively smaller number of sensors than
other methods. The WST distance offers a more efficient exploration than other
methods.

A limitation can be related to the computational cost of the WST distance: in
the 1-dimensional approximation used in this paper the cost is negligible. Using a
multivariate representation, the computation can become prohibitive already for
5 sensors. The perspectives are theoretical: indeed, WST theory is extremely rich
and new theoretical tools could further improve the performance. WELL seems
to be a natural candidate when the WDN, as is still the case, has few sensors
working properly. Another advantage of the distributional representation and
the WST distance is that it matches naturally the perceptual notion of nearness
and similarity. Moreover, the barycenter offers a useful synthesis of a set of
distributions as shown in the discussion of Fig. 7.



44 A. Ponti et al.

References

1. Arifin, B., Li, Z., Shah, S.L., Meyer, G.A., Colin, A.: A novel data-driven leak detec-
tion and localization algorithm using the kantorovich distance. Comput. Chem.
Eng. 108, 300–313 (2018)

2. Candelieri, A., Conti, D., Archetti, F.: A graph based analysis of leak localization
in urban water networks. Procedia Eng. 70, 228–237 (2014)

3. Candelieri, A., Soldi, D., Archetti, F.: Cost-effective sensors placement and leak
localization-the neptun pilot of the icewater project. J. Water Supply Res. Technol.
AQUA 64(5), 567–582 (2015)

4. Farmani, R., Walters, G.A., Savic, D.A.: Trade-off between total cost and reliability
for anytown water distribution network. J. Water Resour. Plan. Manag. 131(3),
161–171 (2005)

5. Garðarsson, G.Ö., Boem, F., Toni, L.: Graph-based learning for leak detection
and localisation in water distribution networks. IFAC-PapersOnLine 55(6), 661–
666 (2022)

6. Hajgató, G., Gyires-Tóth, B., Paál, G.: Reconstructing nodal pressures in water
distribution systems with graph neural networks. arXiv preprint arXiv:2104.13619
(2021)

7. Irofti, P., Romero-Ben, L., Stoican, F., Puig, V.: Data-driven leak localization in
water distribution networks via dictionary learning and graph-based interpolation.
In: 2022 IEEE Conference on Control Technology and Applications (CCTA), pp.
1265–1270. IEEE (2022)

8. Irofti, P., Stoican, F.: Dictionary learning strategies for sensor placement and leak-
age isolation in water networks. IFAC-PapersOnLine 50(1), 1553–1558 (2017)

9. Kang, J., Park, Y.J., Lee, J., Wang, S.H., Eom, D.S.: Novel leakage detection by
ensemble CNN-SVM and graph-based localization in water distribution systems.
IEEE Trans. Industr. Electron. 65(5), 4279–4289 (2017)

10. Kantorovich, L.V.: On the translocation of masses. In: Doklady Akademii Nauk
USSR (NS), vol. 37, pp. 199–201 (1942)

11. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys.
Acad. Royale Sci. 666–704 (1781)

12. Morales-González, I., Santos-Ruiz, I., López-Estrada, F.R., Puig, V.: Pressure sen-
sor placement for leak localization using simulated annealing with hyperparameter
optimization. In: 2021 5th International Conference on Control and Fault-Tolerant
Systems (SysTol), pp. 205–210. IEEE (2021)

13. Peyré, G., Cuturi, M., et al.: Computational optimal transport: with applications
to data science. Found. Trends R© Mach. Learn. 11(5–6), 355–607 (2019)

14. Ponti, A., Candelieri, A., Archetti, F.: A wasserstein distance based multiobjective
evolutionary algorithm for the risk aware optimization of sensor placement. Intell.
Syst. Appl. 10, 200047 (2021)

15. Ponti, A., Candelieri, A., Giordani, I., Archetti, F.: Probabilistic measures of edge
criticality in graphs: a study in water distribution networks. Appl. Netw. Sci. 6(1),
1–17 (2021)

16. Romero, L., Blesa, J., Puig, V., Cembrano, G., Trapiello, C.: First results in leak
localization in water distribution networks using graph-based clustering and deep
learning. IFAC-PapersOnLine 53(2), 16691–16696 (2020)

17. Romero-Ben, L., Alves, D., Blesa, J., Cembrano, G., Puig, V., Duviella, E.: Leak
localization in water distribution networks using data-driven and model-based
approaches. J. Water Resour. Plan. Manag. 148(5), 04022016 (2022)

http://arxiv.org/abs/2104.13619


A Leak Localization Algorithm Using the Optimal Transport Distance 45

18. Santos-Ruiz, I., López-Estrada, F.R., Puig, V., Valencia-Palomo, G., Hernández,
H.R.: Pressure sensor placement for leak localization in water distribution networks
using information theory. Sensors 22(2), 443 (2022)

19. Soldevila, A., Boracchi, G., Roveri, M., Tornil-Sin, S., Puig, V.: Leak detection
and localization in water distribution networks by combining expert knowledge
and data-driven models. Neural Comput. Appl. 1–21 (2022)

20. Soldevila, A., Fernandez-Canti, R.M., Blesa, J., Tornil-Sin, S., Puig, V.: Leak local-
ization in water distribution networks using Bayesian classifiers. J. Process Control
55, 1–9 (2017)

21. Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Wasserstein propagation for
semi-supervised learning. In: International Conference on Machine Learning, pp.
306–314. PMLR (2014)

22. Vasan, A., Simonovic, S.P.: Optimization of water distribution network design
using differential evolution. J. Water Resour. Plan. Manag. 136(2), 279–287 (2010)

23. Villani, C., et al.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-540-71050-9

24. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation.
arXiv preprint arXiv:1506.00327 (2015)

https://doi.org/10.1007/978-3-540-71050-9
http://arxiv.org/abs/1506.00327


Fast and Robust Constrained
Optimization via Evolutionary
and Quadratic Programming

Konstantinos I. Chatzilygeroudis(B) and Michael N. Vrahatis

Computational Intelligence Laboratory (CILab), Department of Mathematics,
University of Patras, 26110 Patras, Greece

costashatz@upatras.gr, vrahatis@math.upatras.gr

Abstract. Many efficient and effective approaches have been proposed
in the evolutionary computation literature for solving constrained opti-
mization problems. Most of the approaches assume that both the objec-
tive function and the constraints are black-box functions, while a few of
them can take advantage of the gradient information. On the other hand,
when the gradient information is available, the most versatile approaches
are arguably the ones coming from the numerical optimization literature.
Perhaps the most popular methods in this field are sequential quadratic
programming and interior point. Despite their success, those methods
require accurate gradients and usually require a well-shaped initialization
to work as expected. In the paper at hand, a novel hybrid method, named
UPSO-QP, is presented that is based on particle swarm optimization and
borrows ideas from the numerical optimization literature and sequential
quadratic programming approaches. The proposed method is evaluated
on numerous constrained optimization tasks from simple low dimensional
problems to high dimensional realistic trajectory optimization scenarios,
and showcase that is able to outperform other evolutionary algorithms
both in terms of convergence speed as well as performance, while also
being robust to noisy gradients and bad initialization.

Keywords: Constrained Optimization · Particle Swarm
Optimization · Quadratic Programming

1 Introduction and Related Work

Constraint Optimization Problems (COP) appear in many diverse research fields
and applications, including, among others, structural optimization, engineering
design, VLSI design, economics, allocation and location problems, robotics and
optimal control problems [9,11,17,28]. All these real-world problems are typ-
ically represented by a mathematical model that can contain both binary and

This work was supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “3rd Call for H.F.R.I. Research Projects to support Post-Doctoral
Researchers” (Project Acronym: NOSALRO, Project Number: 7541).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 46–61, 2023.
https://doi.org/10.1007/978-3-031-44505-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_4


Fast and Robust Constrained Optimization via EAs and QP 47

continuous variables, and a set of linear and non-linear constraints, ranging from
simple, low dimensional numerical functions to high-dimensional noisy estimates.

The Numerical Optimization (NumOpt) literature [11,17] has given us a wide
range of powerful tools to tackle those problems. Methods such as Feasible Direc-
tion (FD) [2], Generalized Gradient Descent (GGD) [18], Interior Point (IP)
[27] and Sequential Quadratic Programming (SQP) [17] are able to solve very
effectively COP problems even in high dimensions as well as to tackle problems
for cases where the objective function or any of the constraints are non-convex.
Despite their success, those methods require the availability of the exact gradi-
ent values of both the objective and constraints functions, which can be difficult
to have in several real-world situations where only approximations are available.
Moreover, it is well known that in practice those methods require good initial-
ization to achieve reasonable convergence rates. On the other hand, many Evo-
lutionary Algorithms (EAs) have been proposed for solving COP problems [4–
7,12,21,24] and have been applied with success to many COP problems, even in
cases where the corresponding function values are corrupted by noise. Most of the
methods do not require the knowledge of the gradients [12,21], while some of them
attempt to improve convergence or performance by using the gradient information
[5]. Nevertheless, EAs are known to need many functions evaluations to be able
to find high performing solutions, and can often fail to find the global optimum.

In the paper at hand, we take inspiration both from the numerical optimiza-
tion and the evolutionary computation literature and propose UPSO-QP, a novel
approach for solving COPs that attempts to merge the two fields. In particular,
UPSO-QP is based on Particle Swarm Optimization (PSO) [20,22] and borrows
some ideas from SQP. We extensively evaluate UPSO-QP in many scenarios
ranging from low-dimensional noiseless settings to high-dimensional non-convex
problems, and showcase that UPSO-QP is able to outperform other evolutionary
algorithms both in terms of convergence speed as well as performance, while also
being robust to noisy gradients and bad initialization.

The rest of the paper is organized as follows. In Sect. 2 the problem formula-
tion and a brief presentation of the required background material are presented.
In Sect. 3 a detailed description of the proposed method is provided, while in
Sect. 4 experimental results are presented. The paper ends in Sect. 5 with some
concluding remarks.

2 Problem Formulation and Background Material

We aim at solving the following problem:

argmin
x∈RN

f(x),

s.t. hi(x) = 0,
gj(x) � 0, (1)

where x ∈ R
N is the optimization variable, f : RN → R is the objective function,

hi : RN → R with i = 1, 2, . . . , Neq are the equality constraints, and gj : RN → R

with j = 1, 2, . . . , Nineq are the inequality constraints.



48 K. I. Chatzilygeroudis and M. N. Vrahatis

2.1 Particle Swarm Optimization

Particle Swarm Optimizers (PSO) [20,22] are evolutionary algorithms that are
inspired by the aggregating behaviors of populations. PSO algorithms consist
of a swarm of particles that are randomly positioned in the search space and
communicate with their neighbors. Each particle performs objective function
evaluations and updates its position as a function of previous evaluations of
its neighborhood and the whole swarm. The two main strategies are local PSO
(PSO-LS) and global PSO (PSO-GS). In the local strategy, each particle has
memory of the its best position ever visited, and the single best position ever
visited by its neighbors. In the global strategy, particles maintain memory of their
personal best position and the best position ever found by the whole swarm.

More formally, a predetermined set of M particles are initialized at random
positions in the search space. The position of particle q at initialization (first
iteration, k = 0) is denoted by xq(0) ∈ R

N . Additionally, each particle is pro-
vided with a random velocity vector denoted vq(0) ∈ R

N . At each iteration k+1,
particles update their positions with the following equations:

xq(k + 1) = xq(k) + vq(k + 1). (2)

In the local PSO strategy, the velocity is given by lq(k + 1) = χ
[
vq(k) +

c1r1
(
xb

q(k) − xq(k)
)

+ c2r2
(
xlb

q (k) − xq(k)
)]

, while in the global PSO strategy
gq(k+1) = χ

[
vq(k)+c1r1

(
xb

q(k)−xq(k)
)
+c2r2

(
xb(k)−xq(k)

)]
. xb

q(k) denotes
the best position visited by particle i from initialization and up to time k, and
similarly, xlb

q (k) and xb(k) denote the best position ever found by the neighbors
of i and the whole swarm respectively. Scalars c1, c2 are user defined parameters
and r1, r2 ∈ [0, 1] are randomly generated numbers, while χ is a user defined
parameter similar to what learning rate is in gradient descent. The Unified Par-
ticle Swarm Optimizer (UPSO) [21] is an algorithm that combines the behaviors
of the local and global PSO strategies:

vq(k + 1) = u gq(k + 1) + (1 − u) lq(k + 1), (3)

where u ∈ [0, 1] is a user defined parameter. Notice that if u = 0, UPSO coincides
with the local strategy, PSO-LS, whereas, if u = 1, UPSO coincides with PSO-
GS. In that sense, UPSO gives the “best of both worlds” by allowing the user
to achieve superior performance with the fine-tuning of a single parameter.

2.2 Sequential Linear Quadratic Programming

The main intuition of Sequential Linear Quadratic Programming (SLQP) is to
tackle the problem of Eq. (1) by splitting it into easier subproblems that are
iteratively solved. In particular, the problem at each iteration is split into to two
phases: a) the Linear Programming (LP) phase, and b) the Equality Quadratic
Programming (EQP) phase. Before delving more into the details of SLQP, we
can first see that the Lagrangian of Eq. (1) is as follows:



Fast and Robust Constrained Optimization via EAs and QP 49

L(x,λ,μ) = f(x) −
∑

i

λihi(x) −
∑

j

μjgj(x)

= f(x) − λ�h(x) − μ�g(x), (4)

where h(·) and g(·) are the stacked versions of the constraints.
In the first phase of SLQP, the problem is linearized around the current

estimate xk and an LP is formulated as follows:

argmin
p∈RN

f(xk) + ∇f(xk)�p,

s.t. hi(xk) + ∇hi(xk)�p = 0,

gj(xk) + ∇gj(xk)�p � 0,

‖p‖∞ � ΔLP
k , (5)

where f(xk) can be omitted from the optimization since it is constant, the
solution of the problem is defined as xLP

k = xk + pLP, and ΔLP
k is a trust-region

radius in order to make the problem bounded.
Once the above problem is solved, we define the Active Sets, Aeq

k and Aineq
k ,

and the Violating Sets, Veq
k and V ineq

k to be the sets where the constraints are
equal to zero and where the constraints are violated respectively.

In the second phase of SLQP, we define the following EQP problem:

argmin
p∈RN

f(xk) +
1
2
p�∇2

xxLk p +
(
∇f(xk) + αk

∑

i∈Veq
k

γi∇hi(xk)

+ αk

∑

j∈Vineq
k

γj∇gj(xk)
)�

p,

s.t. hi(xk) + ∇hi(xk)�p = 0, i ∈ Aeq
k ,

gj(xk) + ∇gj(xk)�p = 0, j ∈ Aineq
k ,

‖p‖2 � ΔEQP
k , (6)

where ∇2
xxLk is the Hessian of the Lagrangian over the optimization variables

x evaluated at the current estimate (xk,λk,μk), γi, γj are the algebraic signs of
the i-th or j-th violated constraint, αk is a penalty factor, and ΔEQP

k is a trust-
region radius in order to make the problem bounded. Practical implementations
include line search, techniques for updating the penalty factors, estimating the
Hessian instead of computing it, and trust-region radii as well as introducing
slack variables to make the sub-problems always feasible (linearization can yield
infeasible problems). For more details, we refer the interested reader to [17] and
the references therein.



50 K. I. Chatzilygeroudis and M. N. Vrahatis

3 The Proposed UPSO-QP Approach

In the paper at hand, we combine the Unified PSO (UPSO) with Sequential Lin-
ear Quadratic Programming (SLQP). The intuition lies in the fact that SLQP
is among the “strongest” nonlinear optimizers in the literature and practical
applications, while UPSO is effective in black-box settings including constrained
optimization [19,21]. The goal of our approach is to “fuse” the robustness and
ease of usage of PSO methods with the convergence properties of SLQP meth-
ods. To this end, we propose a new hybrid algorithm, called UPSO-QP, that
is based on UPSO, but also borrows ideas from SLQP. UPSO-QP follows the
general UPSO framework, but we make some alternations to greatly improve its
convergence when gradient (possibly imprecise or noisy) information is available.

3.1 Local QP Problems

First, we add a procedure to take advantage of gradient information of the
objective and constraint functions. In particular, each particle q with probability
rqp ∈ [0, 1] will solve the following QP problem:

argmin
p∈RN

1
2
p�p + ∇f

(
xq(k)

)�
p,

s.t. hi

(
xq(k)

)
+ ∇hi

(
xq(k)

)�
p = 0,

gj

(
xq(k)

)
+ ∇gj

(
xq(k)

)�
p � 0,

‖p‖∞ � vmax, (7)

where vmax is the maximum allowed velocity for each particle. This problem
is inspired by the LP phase of SLQP (and in general by the SQP literature)
with the added quadratic cost. This problem, similar to Eq. (5), can be infea-
sible because of the linearization. Instead of adding slack variables to ensure
the feasibility of the problem (or other similar “tricks” from the numerical opti-
mization literature), we take a practical approach, give the QP solver a fixed
iteration budget and take the solution it has achieved so far even if infeasible.
If the problem is infeasible, most QP solvers will converge to the least squares
solution of the problem. So we expect to get a least squares approximation if the
linearization yields infeasibility. In any case, we assume the solution returned by
the QP problem to be vqp

q (k + 1), while we denote the update from UPSO as
vpso

q (k + 1). The final velocity for each particle q is computed as:

vq(k + 1) = αqp vqp
q (k + 1) +

(
1 − αqp

)
vpso

q (k + 1), (8)

for a user defined parameter αqp ∈ [0, 1]. In this paper, we use the ProxQP
solver [1] to solve the QP problems.



Fast and Robust Constrained Optimization via EAs and QP 51

3.2 UPSO for Constrained Optimization

Apart from moving into the “right” direction, we also need a method for com-
paring particles. This is important since the “best” particle (either in the neigh-
borhood or globally) is crucial for UPSO’s performance. We follow [19] and we
augment the objective function with a penalty function:

f̃(x) = f(x) + H(x), (9)

where

H(x) = h(k)P (x),

P (x) =
∑

i

θ
(
cvi(x)

)
cvi(x)γ(cvi(x)) +

∑

j

θ
(
cvj(x)

)
cvj(x)γ(cvj(x)),

cvi(x) =
∣
∣hi(x)

∣
∣,

cvj(x) =
∣
∣min

{
0, gj(x)

}∣
∣,

h(k) = k
√

k. (10)

We use the same functions θ(·) and γ(·) as in [19].

3.3 Considerations

The main idea is that solving the problem in Eq. (5) will push each particle to
follow the local linearized approximation of the original problem. This approx-
imation is very effective close to the actual solution, while it can be bad in
far away regions. The main intuition behind this merging of UPSO with SLQP
is that this local approximation will generally move the particles closer to the
solution, while UPSO can compensate for inaccuracies of those approximations.
Moreover, this problem is solved individually by each particle and thus solved
in many different locations of the search space simultaneously. In this way, we
increase the probability that one of the initial conditions will be in a good region
to enable convergence to the global solution. Moreoever, we get an implicit aver-
aging [13,25] effect that helps UPSO “see through” the noise and inaccuracies
and converge to a better optimum. Additionally, the constraint ‖p‖∞ � vmax in
Eq. (5) ensures that we stay in regions where the local linearization is expected
to be true, and thus produce well behaved search velocities.

In smooth and well-behaved objective and constraint functions, the solu-
tion of Eq. (5) will provide strong directions towards the optimal solution, and
thus accelerating the convergence of UPSO. In noisy, discontinuous and/or non-
convex problems, the solution of Eq. (5) will at least provide an approximate
direction towards minimizing the constraint violation (least squares solution)
that can help UPSO converge faster.

The parameter rqp is used to handle the trade-off between effectiveness and
wall time performance. The bigger the value more particles will solve the QP



52 K. I. Chatzilygeroudis and M. N. Vrahatis

and thus we get better approximations of the search landscape. At the same
time, this means that we solve more QP problems that can increase the wall
time significantly. On the other hand, the parameter αqp is used to specify how
much we want to trust the solution of the QP problem. In smooth and noiseless
functions, we should set αqp ≈ 1 since the solution of the QP will most likely
provide a good search direction. On the contrary, in noisy or non-convex prob-
lems we should decrease this value, as the QP estimate can be less accurate and
even misleading. Overall, one can change the behavior of the solver by setting
the appropriate values to these parameters.

4 Experiments

We extensively evaluate the effectiveness of UPSO-QP with multiple experiments
and comparing to strong baselines. We aim at answering the following questions:

a) How does UPSO-QP perform in well-defined numerical constrained optimiza-
tion problems? How does it compare to other evolutionary algorithms? How
does it compare to state of the art SQP and IPM methods? We will answer
those questions in Sect. 4.1.

b) How does UPSO-QP handle problems with noisy values and gradients? How
does it compare in this domain to state of the art SQP and IPM methods?
We will answer those questions in Sect. 4.2.

c) How does UPSO-QP operate on realistic high-dimensional constrained opti-
mization problems? How sensitive it is in well-shaped initialization? How does
it compare to state of the art SQP and IPM methods? We will answer those
questions in Sect. 4.3.

In the subsequent sections, we compare the following algorithms:

1) UPSO-QP — custom implementation in C++ of our approach1.
2) UPSO augmented with a penalty function for constrained optimization as

in [19] (UPSO-Pen)—we use our own custom C++ implementation.
3) UPSO augmented with a penalty function and gradient-based repair tech-

nique as in [5] (UPSO-Grad) — we use our own custom C++ implementation.
4) Sequential Least Squares Programming (SLSQP) — this is an SQP approach

as implemented in [14] and it is closely related to SLQP as described above2.
5) A Primal-Dual Interior Point Algorithm as described in [27] (Ipopt) — this

is a state-of-the-art IPM method widely used in practice3.

We have carefully chosen the algorithms to compare UPSO-QP to in order to
be able to highlight the main properties of our proposed method. In particular,
UPSO-Pen does not have access to any gradient information and the penalty
function technique is one of the most widely used in the evolutionary compu-
tation community. UPSO-Grad is an evolutionary method that takes advantage
1 The code is available at https://github.com/NOSALRO/algevo.
2 We use the implementation provided by scipy.
3 We use the C++ implementation provided by the Ipopt library.

https://github.com/NOSALRO/algevo
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
https://github.com/coin-or/Ipopt


Fast and Robust Constrained Optimization via EAs and QP 53

of the gradient information of the constraints in order to improve performance
and has been shown to have superior performance over other evolutionary tech-
niques [3]. Lastly, SLSQP and Ipopt are two of the most versatile and widely
used numerical optimization algorithms.

4.1 Numerical Constrained Optimization Problems

In the first set of experiments, we select two low-dimensional numerical con-
strained optimization problems with known optimal solutions. This will give us
the ability to extensively test and compare UPSO-QP with other methods, both
from the evolutionary computation literature as well as the numerical optimiza-
tion one. For each problem/algorithm pair we run 20 replicates with different
initial conditions. For all the evolutionary algorithms, we used M = 40 particles,
with 10 neighborhoods, χ = 0.729, c1 = c2 = 2.05 and u = 0.5. For UPSO-QP,
we also set rqp = 0.5 and αqp = 1.

Problem 1. For f : R2 → R [11],

f(x) = (x1 − 2)2 + (x2 − 1)2,
h1(x) = x1 − 2x2 + 1 = 0,

g1(x) = −0.25x2
1 − x2

2 + 1 � 0.

The best known optimal feasible solution is f(x∗) = 1.3934651.

Problem 2. For f : R6 → R [15],

f(x) = −10.5x1 − 7.5x2 − 3.5x3 − 2.5x4 − 1.5x5 − 10x6 − 0.5
5∑

i=1

x2
i ,

gi(x) = xi � 0, i = 1, 2, . . . , 5,

gi+5(x) = 1 − xi � 0, i = 1, 2, . . . , 5,

g11(x) = x6 � 0,

g12(x) = 6.5 − 6x1 − 3x2 − 3x3 − 2x4 − x5 � 0,

g13(x) = 20 − 10x1 − 10x3 − x6 � 0.

The best known optimal feasible solution is f(x∗) = −213.

Results. The results showcase that UPSO-QP outperforms all other evolution-
ary baselines and always converges to the optimal solution faster (cf. Fig. 1, 2).
Moreover compared to SLSQP and IPopt, UPSO-QP is able to achieve the same
level of accuracy while also having comparable total wall time measurements.

4.2 Constrained Optimization with Noisy Functions Values

In this section, we will solve the same problems as above but we will add noise
in different ways to showcase the robustness of UPSO-QP.



54 K. I. Chatzilygeroudis and M. N. Vrahatis

Fig. 1. Results for Problem 1. Solid lines are the median over 20 replicates and the
shaded regions are the regions between the 5-th and 95-th percentiles.

Fig. 2. Results for Problem 2. Solid lines are the median over 20 replicates and the
shaded regions are the regions between the 5-th and 95-th percentiles.

Impact of Noise. The impact of imprecise information with respect to the
values of the objective or constraint function can be studied and analyzed by
simulating the imprecise values using, for instance, the following approach [20,
22]. Information about the function values is obtained in the form of fη(x)
which determines an approximation to the true function value of the objective



Fast and Robust Constrained Optimization via EAs and QP 55

function f(x), contaminated by a small amount of noise η. To this end, the
function values are obtained, for the case of the additive noise, as follows [8,
p.40]: fη(x) = f(x) + η. For the case of the multiplicative noise, the function
values are obtained as follows: fη(x) = f(x)(1+η) , where η is a Gaussian noise
term with zero mean and standard deviation σ, η ∼ N

(
0, σ2

)
, that determines

the noise strength.

Experiments. In order to showcase the effectiveness of UPSO-QP, we run each
algorithm/problem pair with different noise settings: 3 noise levels for additive
noise and 3 noise levels for multiplicative noise. For each problem, we select
different levels in order for the noise to have an effect in performance. We also
inject noise in both the objective functions and all the constraint functions. For
each distinct scenario we run 20 replicates with different initial conditions. The
results showcase that UPSO-QP is clearly outperforming all the other evolution-
ary algorithms and SLSQP (cf. Fig. 3, 4, 5, 6). Moreover, UPSO-QP performs
as par with Ipopt in most cases and outperforms it in scenarios with big noise.
We used the same hyper-parameters as in the previous section.

Fig. 3. Problem 1 with additive noise. Solid lines are the median over 20 replicates and
the shaded regions are the regions between the 5-th and 95-th percentiles.

4.3 Evaluation on High Dimensional Problems

In this section, we will highlight the effectiveness of UPSO-QP in high dimen-
sional and realistic examples. In particular, we will use two examples of the
Trajectory Optimization (or Optimal Control) problem (TO) [10,16,26,28]. This
type of problems tend to be quite high dimensional while also having many con-
straints and being sensitive to good initialization. The simplest formulation of
TO problems is defined as:



56 K. I. Chatzilygeroudis and M. N. Vrahatis

Fig. 4. Problem 1 with multiplicative noise. Solid lines are the median over 20 replicates
and the shaded regions are the regions between the 5-th and 95-th percentiles.

Fig. 5. Problem 2 with additive noise. Solid lines are the median over 20 replicates and
the shaded regions are the regions between the 5-th and 95-th percentiles.

argmin
s1,...,sL,u1,...,,uL−1

L−1∑

l

C(sl,ul) + Cfinal(sL),

s.t. Dyn(sl,ul, sl+1) = 0, (11)

where sl is the state at time l, ul is the action taken at time l, C(·, ·), Cfinal(·)
define the cost functions, while Dyn(·) defines the dynamics equations of the
system. We can additionally add more constraints depending on the problem
(e.g. bounds on the variables). In essence, the above formulation assumes that we
discretize the continuous signal at L points and enforcement all the constraints
only at those points. More advanced formulations assume piece-wise polynomials
and enforce the constraints on arbitrary points [28,29]. Overall, the optimization
searches for the states and actions that respect the dynamics equations and
minimize the costs.



Fast and Robust Constrained Optimization via EAs and QP 57

Fig. 6. Problem 2 with multiplicative noise. Solid lines are the median over 20 replicates
and the shaded regions are the regions between the 5-th and 95-th percentiles.

Double Integrator. The first example that we will use is the Double Integrator
(DI) system [23]. The DI’s state is defined as s = {x, ẋ} ∈ R

2, while the actions
are defined as u = {ẍ} ∈ R. The dynamics equations of motion are given by:

sl+1 =

[
1 dt

0 1

]

sl +
[
1
2dt2

dt

]
ul, (12)

Fig. 7. Double Integrator Results.
Solid lines are the median over 20
replicates and the shaded regions
are the regions between the 5-th
and 95-th percentiles.

where dt is the time-step of integration in
seconds. In this particular setup, the system
starts at s1 = {1, 0} and has to reach at
sL = {0, 0} while minimizing the magnitude
of the actions taken. Cfinal(sl) = 1

2s�
l sl, and

C(sl,ul) = Cfinal(sl) + 1
2 0.1u�

l ul. We use
dt = 0.1 and L = 51 steps. The total dimen-
sions of the optimization variables is 151 (i.e.
x ∈ R

151), while the total number of equal-
ity constraints are 102 (i.e. h(·) ∈ R

102). We
will use this example to compare UPSO-QP
to other evolutionary methods. The results
showcase that UPSO-QP is able to solve the
problem and converge rapidly to the optimal
solution, while the other evolutionary base-
lines struggle at finding a good solution (cf.
Fig. 7). This is mainly because of the dimen-
sionality of problem and we would need to
perform an extensive hyper-parameter search
to make them competitive. On the contrary,
UPSO-QP is able to take advantage of the
local linearizations in the search space and converge quickly to the optimal value.
We used the same hyper-parameters as in the previous section.



58 K. I. Chatzilygeroudis and M. N. Vrahatis

Monopod Locomotion. Here we take one example of TO for legged locomo-
tion, where the task is to generate an effective gait for a monopod robot walking
on flat terrain (cf. Fig. 8). We follow the formulation of Winkler et al. [29] and:

a) Model the robot as a single rigid body mass with a leg that its mass is
negligible;

b) Adopt Winkler et al. [29] phase-based formulation for contact switching;
c) Parameterize the body pose, foot positions and foot forces with multiple

Hermite cubic polynomials.

Overall, we have the following optimization problem (omitting the cubic poly-
nomials for clarity):

find r(t), r : R → R
3, (Body positions)

θ(t), θ : R → R
3, (Body Euler angles)

p(t), p : R → R
3, (Foot position)

f(t), f : R → R
3, (Foot force)

s.t. srbd(r,θ,p,f) = {r̈, θ̈}, (Dynamics)
{r(0),θ(0)} = {rinit,θinit}, (Initial State)
{r(T ),θ(T )} = {rgoal,θgoal}, (Goal State)

p(t) ∈ B
(
r(t),θ(t)

)
, (Bounds wrt body)

ṗ(t) = 0, for t ∈ Contact, (No slip)
p(t) ∈ T , for t ∈ Contact, (Contact on terrain)
f(t) ∈ F , for t ∈ Contact, (Pushing force/friction cone)
f(t) = 0, for t /∈ Contact, (No force in air)

(13)

In this particular setup, the monopod starts at pose r(0) = {0, 0, 0.5}, θ(0) = 0,
and has to reach r(T ) = {1, 0, 0.5}, θ(T ) = 0 in T = 2 s, while it is allowed
for 3 swing phases (foot in the air). The total dimensions of the optimization
variables is 339 (i.e. x ∈ R

339). The total number of equality constraints are 291
(i.e. h(·) ∈ R

291), and the total number of inequality constraints are 225 (i.e.
g(·) ∈ R

225). We will use this example to compare against Ipopt and evaluate
whether UPSO-QP can be more robust to the initial solution guess. Here for
UPSO-QP we used M = 400 particles, with 20 neighborhoods, χ = 0.729, c1 =
c2 = 2.05, u = 0.5, rqp = 0.005 and αqp = 1.

The problem we are trying to solve in this section is highly non-linear, non-
convex with many “bad” local optima that the optimization can be trapped
around and not able to get away. For this reason and in order to test the robust-
ness of the algorithms to the initial solution guess, we take a well-shaped ini-
tialization and add to each variable Gaussian noise η ∼ N

(
0, σ2

)
. We vary σ

from 0 to 1. This way we can have a meaningful comparison, while also getting
reasonable convergence. We ran 10 replicates per experiment with different ini-
tialization parameters. The results showcase that both algorithms are able to find



Fast and Robust Constrained Optimization via EAs and QP 59

Fig. 8. Monopod: an example solution using UPSO-QP. The shaded “ghost” robot is
the target. The visualizations (1–7) are snapshots at time intervals. A video of the
optimized behavior is available at https://youtu.be/ZnDs8wc96eM.

the optimal solution (cf. Fig. 8) 100% of the time up to perturbation of σ = 0.7.
For σ = 0.8 and σ = 0.9, UPSO-QP is always able to find the optimal solution,
while Ipopt struggles and does not find the solution even after 5000 iterations.
For σ = 1, UPSO-QP rarely (1/10 runs) finds the optimal solution before 2000
iterations. The results verify that UPSO-QP keeps the effectiveness of numerical
optimization methods, while being more robust to bad initialization.

5 Concluding Remarks

We have proposed UPSO-QP, a novel algorithm that effectively combines the
evolutionary and numerical optimization literature, and solves general COPs.
UPSO-QP is able to keep convergence rates/wall-time similar to the analytical
methods, while being robust to noisy measurements and bad initialization similar
to EAs. Overall, UPSO-QP is getting the “best of both of worlds”. There needs to
be more investigation in which problems/scenarios the effect of the linearization
part of Eq. (8) is dominant, and in which ones the PSO part dominates.

References

1. Bambade, A., et al.: PROX-QP: yet another quadratic programming solver for
robotics and beyond. In: RSS 2022-Robotics: Science and Systems (2022)

2. Beck, A., Hallak, N.: The regularized feasible directions method for nonconvex
optimization. Oper. Res. Lett. 50(5), 517–523 (2022)

3. Cantú, V.H., et al.: Constraint-handling techniques within differential evolution
for solving process engineering problems. Appl. Soft Comput. 108, 107442 (2021)

4. Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity
optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasska-
zova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and
No-Free Lunch Theorems. SOIA, vol. 170, pp. 109–135. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-66515-9 4

5. Chootinan, P., et al.: Constraint handling in genetic algorithms using a gradient-
based repair method. Comput. Oper. Res. 33(8), 2263–2281 (2006)

https://youtu.be/ZnDs8wc96eM
https://doi.org/10.1007/978-3-030-66515-9_4


60 K. I. Chatzilygeroudis and M. N. Vrahatis

6. D’Angelo, G., Palmieri, F.: GGA: a modified genetic algorithm with gradient-based
local search for solving constrained optimization problems. Inf. Sci. 547, 136–162
(2021)

7. Elsayed, S.M., Sarker, R.A., Mezura-Montes, E.: Particle swarm optimizer for con-
strained optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp.
2703–2711. IEEE (2013)

8. Elster, C., Neumaier, A.: A method of trust region type for minimizing noisy
functions. Computing 58, 31–46 (1997)

9. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained
Global Optimization Algorithms, vol. 455. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-53032-0

10. Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear pro-
gramming and collocation. J. Guid. Control. Dyn. 10(4), 338–342 (1987)

11. Himmelblau, D.M., et al.: Applied Nonlinear Programming. McGraw-Hill, New
York (2018)

12. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part ii: handling constraints
and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–
622 (2013)

13. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. Evol. Comput. 9, 303–317 (2005)

14. Kraft, D.: A software package for sequential quadratic programming. German
Research and Testing Institute for Aerospace (1988)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

16. Murray, D., Yakowitz, S.: Differential dynamic programming and newton’s method
for discrete optimal control problems. J. Optim. Theory Appl. 43(3), 395–414
(1984)

17. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn., pp. 497–528. Springer,
New York (2006). https://doi.org/10.1007/978-0-387-40065-5

18. Norkin, V.I.: Generalized gradients in dynamic optimization, optimal control, and
machine learning problems. Cybern. Syst. Anal. 56(2), 243–258 (2020). https://
doi.org/10.1007/s10559-020-00240-x

19. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method for con-
strained optimization problems. In: Intelligent technologies-theory and application:
New trends in intelligent technologies, vol. 76, pp. 214–220. IOS Press (2002)

20. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization prob-
lems through particle swarm optimization. Nat. Comput. 1, 235–306 (2002)

21. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving
constrained engineering optimization problems. In: Wang, L., Chen, K., Ong, Y.S.
(eds.) ICNC 2005. LNCS, vol. 3612, pp. 582–591. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539902 71

22. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization and Intelligence:
Advances and Applications. Information Science Publishing (2010)

23. Rao, V.G., Bernstein, D.S.: Naive control of the double integrator. IEEE Control
Syst. Mag. 21(5), 86–97 (2001)

24. Sun, Y., et al.: A particle swarm optimization algorithm based on an improved
deb criterion for constrained optimization problems. PeerJ Comput. Sci. 8, e1178
(2022)

25. Tsutsui, S., Ghosh, A.: Genetic algorithms with a robust solution searching scheme.
IEEE Trans. Evol. Comput. 1, 201–208 (1997)

https://doi.org/10.1007/3-540-53032-0
https://doi.org/10.1007/3-540-53032-0
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/s10559-020-00240-x
https://doi.org/10.1007/s10559-020-00240-x
https://doi.org/10.1007/11539902_71


Fast and Robust Constrained Optimization via EAs and QP 61

26. Von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimiza-
tion. Ann. Oper. Res. 37(1), 357–373 (1992)

27. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1),
25–57 (2006)

28. Wensing, P.M., et al.: Optimization-based control for dynamic legged robots.
arXiv:2211.11644 (2022)

29. Winkler, A.W., Bellicoso, C.D., Hutter, M., Buchli, J.: Gait and trajectory opti-
mization for legged systems through phase-based end-effector parameterization.
IEEE Robot. Autom. Lett. 3(3), 1560–1567 (2018)

http://arxiv.org/abs/2211.11644


Bayesian Optimization for Function
Compositions with Applications

to Dynamic Pricing

Kunal Jain1(B), K. J. Prabuchandran2, and Tejas Bodas1

1 International Institute of Information Technology, Hyderabad, Hyderabad, India
kunal.jain@research.iiit.ac.in, tejas.bodas@iiit.ac.in

2 Indian Institute of Technology, Dharwad, Dharwad, India
prabukj@iitdh.ac.in

Abstract. Bayesian Optimization (BO) is used to find the global
optima of black box functions. In this work, we propose a practical
BO method of function compositions where the form of the composi-
tion is known but the constituent functions are expensive to evaluate.
By assuming an independent Gaussian process (GP) model for each of
the constituent black-box function, we propose Expected Improvement
(EI) and Upper Confidence Bound (UCB) based BO algorithms and
demonstrate their ability to outperform not just vanilla BO but also the
current state-of-art algorithms. We demonstrate a novel application of
the proposed methods to dynamic pricing in revenue management when
the underlying demand function is expensive to evaluate.

Keywords: Bayesian optimization · revenue maximization · function
composition · dynamic pricing and learning

1 Introduction

Bayesian Optimization (BO) is a popular technique for optimizing expensive-
to-evaluate black-box functions. Such a function might correspond to the case
where evaluating it can take up to hours or days, which for example, is the case
in re-training massive deep learning models with new hyper-parameters [29]. In
some cases, functions can be financially costly to evaluate, such as drug testing
[22] or revenue maximization [21]. In such black-box optimization problems, one
often has a fixed budget on the total number of function evaluations that can
be performed. For example, one typically has a budget on the computational
capacity spent in the hyper-parameter tuning of neural networks [25]. In such
cases, BO proves to be very effective in providing a resource-conserving iterative
procedure to query the objective function and identify the global optima [24].

Prabuchandran K.J. was supported by the Science and Engineering Board (SERB),
Department of Science and Technology, Government of India for the startup research
grant ‘SRG/2021/000048’.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 62–77, 2023.
https://doi.org/10.1007/978-3-031-44505-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_5&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_5


BO for Function Compositions 63

The key idea in BO is to use a surrogate Gaussian Process (GP) model [23]
for the black-box function, which is updated as and when multiple function
evaluations are performed. To identify the location (in the domain) of the fol-
lowing query point, an acquisition function (a function of the surrogate model)
is designed and optimized. The design of the acquisition function depends not
only on the application in mind but also on the trade-off between exploration
and exploitation that comes naturally with such sequential optimization prob-
lems. Some popular acquisition functions used in the literature are the Expected
Improvement (EI), Probability of Improvement (PI), Knowledge Gradient (KG)
and Upper Confidence Bound (UCB) [7,9,16].

In this work, we consider Bayesian optimization of composite functions of the
form g(x) = h(f1(x), f2(x), . . . fM (x)) where functions fi are expensive black-
box functions while h is known and easy to compute. More specifically, we are
interested in maximizing g and identifying its optima. A vanilla BO approach can
be applied to this problem, ignoring the composite structure of the function [9,
16]. In this approach, one would build a GP posterior model over the function
g based on previous evaluations of g(x) and then select the next query point
using a suitable acquisition function computed over the posterior. However, such
a vanilla BO approach ignores the available information about the composite
nature of the functions, which we show can easily be improved upon. In this
work, we model each constituent function fi using an independent GP model
and build acquisition functions that use the known structure of the composition.
Our algorithms outperform the vanilla BO method as well as the state-of-art
method [1] in all test cases and practical applications that we consider. Our
algorithms are also more practical and less computationally intensive than the
methods proposed in [1].

Note that function compositions arise naturally in the real world. One such
example is the revenue maximization problem based on the composition of price
and demand function. Another example could be the optimization of the F1
score in classification problems that can be seen as a composition of precision
and recall metrics [18]. A key novelty of our work lies in the application of our
BO algorithms to dynamic pricing problems in revenue management. To the best
of our knowledge, ours is the first work to perform dynamic pricing for revenue
optimization using Bayesian optimization methods.

1.1 Related Work

Optimization of function compositions has been studied under various con-
straints such as convexity, inexpensive evaluations and derivative information
[4,14,28]. The scope of these work are somewhat restrictive and differ from our
key assumption that the constituent functions in the composition are black-box
functions and are relatively expensive to evaluate. Our work is closely related to
Astudillo and Frazier [1] who optimize black-box function compositions of the
form g(x) = h(f(x)) using Bayesian Optimization. In this work, the constituent
function f(x) is expensive to evaluate and is modelled as a Multi-Ouput GP.



64 K. Jain et al.

This work was further improved by Maddox et al. [20] using Higher Order Gaus-
sian Process (HOGP). These work assume that the member functions in the
composition are correlated and dedicates a significant amount of computational
power to capturing these correlations. They propose an EI-based acquisition
function for estimating the value of g using a MOGP over the functions f . The
calculation of this acquisition function requires them to compute the inverse of
the lower Cholesky factor of the covariance matrix, which is a computationally
expensive task (runtime increases with order O(N3) where N is the size of the
covariance matrix), especially when optimizing high dimensional problems.

Our work differs from them in that we consider a composition of multiple con-
stituent functions with single output and assume an independent GP model for
each such constituent. This results in significantly lesser computational require-
ments and faster iterations. Our work focuses on practical deployments of the
technique, as showcased in Sect. 4. We also propose a UCB-based algorithm
where the problem of matrix inversion does not arise. The UCB-based algo-
rithm allows the user to trade-off between exploration and exploitation during
iterations, making it more practical for our use cases. Finally, our key contribu-
tion lies in applying the proposed methods to dynamic pricing problems, a brief
background of which is discussed in the next subsection.

1.2 Dynamic Pricing and Learning

Dynamic pricing is a phenomenon where the price for any commodity or good
is changed to optimize the revenue collected. Consider the scenario of a retailer
with a finite inventory, finite time horizon and a known probabilistic model for
the demand. On formulating this as a Markov decision problem, it is easy to
see that a revenue optimal pricing policy would be non-stationary, resulting in
different optimal prices for the same inventory level at different time horizons.
In this case, the dynamic nature of pricing is a by-product of finite inventory
and horizon effects. See [21] for more details.

Now consider a second scenario of a retailer with an infinite horizon and
infinite inventory, trying to find the optimal price for his product. Assuming
that the underlying probabilistic demand model is unknown to the retailer, this
becomes a simultaneous demand learning and price optimization problem. To
learn the underlying demand function, the retailer is required to probe or explore
the demand for the product at various prices, and use the information gathered
to converges to an optimal price over time. Clearly, in this setting, uncertainty
in the demand process naturally leads to exploration in the price space, resulting
in the dynamic nature of the pricing policy. See [6] for more details. This second
scenario (black-box demand function) is of particular interest to us, and we apply
our BO algorithms in this setting, something that has not been done before.

Dynamic pricing with learning is a traditional research topic in Oper-
ations Research with a long history (see [13] for a historical perspective).
Lobo and Boyd [15] introduced an exploration-exploitation framework for the
demand pricing problem, which balances the need for demand learning with rev-
enue maximization. The problem has been studied under various conditions,



BO for Function Compositions 65

such as limited [2] and unlimited inventory [17], customer negotiations [19],
monopoly [10,12], limited price queries [11] etc. One recurrent theme in these
work is to assume a parametric form for the demand function in terms of price
and other exogenous variables. Reinforcement learning (RL) methods are then
used to simultaneously learn the unknown parameters of the demand function
and set prices that have low regret. See, for example, Broder and Rusmevichien-
tong [8] where linear, polynomial and logic demand function models have been
assumed. To the best of our understanding, these assumptions on the demand
function are rather over-simplified and are typically made for technical conve-
nience. Further, an RL method suited for a particular demand model (say linear
demand) may not work when the ground truth model for the demand is different
(say, logit model). There have been recent models which try to avoid this issue
by modelling the demand as a parameterized random variable (here price is a
parameter) but end up making similar convenient assumptions on the parametric
form of the mean or variance of the demand, see [5] and references therein.

To keep the demand function free from any specific parametric form, in this
work, we assume that it is a black-box expensive to evaluate function and instead
model it using a Gaussian process. The revenue function can be expressed as
a composition of the price and the demand and this allows us to apply our
proposed methods (of Bayesian optimization for function composition) to the
dynamic pricing and learning problem.

1.3 Contributions and Organization

The following are the key contributions of our work:

1. We propose novel acquisition functions cEI and cUCB for Bayesian Optimiza-
tion for function compositions. These acquisition functions are based on EI
and UCB acquisition functions for vanilla BO and are less compute intensive
and faster to run through each iteration as compared to state-of-art algorithm
for function composition proposed in [1].

2. We assume independent GPs to model the constituent functions and this
allows for possible parallelization of the posterior update step.

3. As a key contribution of this work, we propose to use BO based dynamic
pricing algorithms to optimize the revenue. To the best of our knowledge,
we are the first, to use BO for learning the optimal price when the demand
functions are expensive to evaluate or are black-box in nature.

4. We consider various revenue maximization scenarios, obtain the revenue func-
tion as a composition of price and demand and illustrate the utility of our
algorithms in each of these setting.

The following is the organization of the rest of the paper. Section 2 formally
describes the problem statement and Sect. 3 describes our proposed algorithms;
Sect. 4 details our experimental results; and finally, we conclude in Sect. 5.



66 K. Jain et al.

2 Problem Description

We begin by describing the problem of BO for composite functions in Subsect.
2.1. In Subsect. 2.2 we describe the dynamic pricing problem and model the
revenue function as a function composition to which BO methods for composite
functions can be applied.

2.1 BO for Function Composition

We consider the problem of optimizing g(x) = h(f1(x), f2(x), . . . , fM (x)) where
g : X → R, fi : X → R, h : RM → R and X ⊆ Rd. We assume each fi is a
black-box expensive-to-evaluate continuous function while h is known and cheap
to evaluate given the values of fi. The optimization problem that we consider is

max
x∈X

h(f1(x), f2(x), . . . , fM (x)). (1)

We want to solve Problem 1 in an iterative manner where in the nth iteration,
we can use the previous observations {xi, f1(xi), . . . , fM (xi})}n−1

i=1 to request a
new observation {xn, f1(x1), . . . , fM (xn)}.

A vanilla BO algorithm applied to this problem would first assume a prior
GP model on g, denoted by GP(μ(·),K(·, ·)) where μ and K denote the mean
and covariance function of the prior model. Given some function evaluations,
an updated posterior GP model is obtained. A suitable acquisition function,
such as EI or PI can be used, to identify the next query point. For example,
in the n + 1th update round, one would first use the n available observations
(g(x1), g(x2), . . . , g(xn)) to update the GP model to GP(μ(n)(·),K(n)(·, ·)) where
μ(n)(·) is the posterior mean function and K(n)(·, ·) is the posterior covariance
function, see [23] for more details. The acquisition function then uses this pos-
terior model to identify the next query location xn+1. In doing so, vanilla BO
ignores the values of the member functions in the composition h.

BO for composite function, on the other hand, takes advantage of the avail-
able information about h, and its easy-to-compute nature. Astudillo and Fra-
zier [1] model the constituent functions of the composition by a single multi-
output function f(x) = (f1(x), . . . , fM (x)) and then model the uncertainty in
f(x) using a multi-output Gaussian process to optimize h(f(x)). Since the prior
over f is modelled as a MOGP, the proposed method tries to capture the cor-
relations between different components of the multi-output function f(x). Note
that the proposed EI and PI-based acquisition functions are required to be com-
puted using Monte Carlo sampling. Furthermore, a sample from the posterior
distribution is obtained by first sampling an n variate normal distribution, then
scaling it by the lower Cholesky factor and then centering it with the mean of
the posterior GP. Two problems arise due to this: 1. Such simulation based aver-
aging approach increases the time complexity of the procedure linearly with the
number of samples taken for averaging and 2. calculation of the lower Cholesky
factor increases the function’s time complexity cubically with the number of data



BO for Function Compositions 67

points. These factors render the algorithm unsuitable, particularly for problems
with large number of member functions or for problems with large dimensions.

To alleviate these problems, in this work, we model the constituent functions
using independent GPs. This modelling approach allows us to train GPs for each
output independently and hence the posterior GP update can be parallelized.
We propose two acquisition functions, cEI which is based on the EI algorithm
and cUCB, which is based on the GP-UCB algorithm [26]. Our cEI acquisition
function is similar in spirit to the EI-CF acquisition function of [1] but is less
computationally intensive owing to the independent GP model. Since we have
independent one dimensional GP model for each constituent function, sampling
points from the posterior GP does not require computing the Cholesky factor
(and hence matrix inversion), something that is needed in the case of high-
dimensional GP’s of [1]. This greatly reduces the complexity of the MC sampling
steps of our algorithm (see Sect. 3 for more details). However, the cEI acquisition
function still suffers from the drawback of requiring Monte Carlo averaging. To
alleviate this problem, we propose a UCB based acquisition function that uses the
current mean plus scaled variance of the posterior GP at a point as a surrogate
for the constituent function at that point. As shown by Srinivas et al. [26], while
the mean term in the surrogate guides exploitation, it is the variance of the
posterior GP at a point that allows for suitable exploration. The scaling of the
variance term is controlled in such a way that it balances the trade off between
exploration and exploitation. In Sect. 4, we illustrate the utility of our method,
first for standard test functions and then as an application to dynamic pricing
problem. Our algorithms, especially the cUCB one, outperforms not only vanilla
BO but also those proposed in Astudillo and Frazier [1].

2.2 Bayesian Optimization for Dynamic Pricing

We consider Bayesian Optimization for two types of revenue optimization prob-
lems. The first problem optimizes the revenue per customer where customers are
characterized by their willingness-to-pay distribution (which is unknown). In the
second problem, we assume a parametric demand model (the functional form is
assumed to be unknown) and optimizes the associated revenue.

In the first model, we assume that an arriving customer has an associated
random variable, V , with complimentary cumulative distribution function F̄ ,
indicating its maximum willingness to pay for the item sold. For an item on offer
at a price p, an arriving customer purchases it with the probability

d(p) := F̄ (p) = Pr{V ≥ p}. (2)

In this case, when the product is on offer at a price p, the revenue per customer
r(p) is given by r(p) = pF̄ (p). The revenue function is a composition of the
price and demand or purchase probability and we assume that the distribution
of the purchase probability i.e., F is not known and also expensive to estimate.
One could perform a vanilla BO algorithm by having a GP model on r(p) itself.
However to exploit the known nature of the revenue function, we will apply our



68 K. Jain et al.

function composition method by instead having a GP on F̄ (p) and demonstrate
its superiority over vanilla BO.

In the second model, we assume that the true demand d(p) for a commod-
ity at price p has a functional form. This forms the ground truth model that
governs the demand, but we assume that the functional form for this demand
is not known to the manager optimizing the revenue. In our experiments, we
assume linear, logit, Booth and Matyas functional forms for the demand (see
Sect. 4 for more details.) Along similar lines, one could build more sophisticated
demand models to account for external factors (such as supply chain issues, cus-
tomer demographics or inventory variables), something that we leave for future
explorations.

Note that we make some simplifying assumptions about the retail environ-
ment in these two models and our experiments. We assume a non-competitive
monopolistic market with an unlimited supply of the product and no marginal
cost of production. However, these assumptions can easily be relaxed by changing
the ground truth demand model appropriately, which are used in the experiments
to reflect these aspects. The fact that we use a GP model as a surrogate for the
unknown demand model offers it the ability to model a diverse class of demand
functions under diverse problem settings. We do not discuss these aspects fur-
ther but focus on the following simple yet meaningful experimental examples
that one typically encounters in revenue management problems.

In the following, p denotes the price vector:

1. Independent demand model: A retailer supplies its product to two differ-
ent regions whose customer markets behave independently from each other.
Thus, the same product has independent and different demand functions (and
hence different optimal prices) in different geographical regions and under
such black-box demand models for the two regions (d1, d2). The retailer is
interested in finding the optimal prices, leading to the optimization of the
following function: g(p) = p1d1(p1) + p2d2(p2).

2. Correlated demand model: Assume that a retailer supplies two products
at prices p1 and p2 and the demand for the two products is correlated and
influenced by the price for the other product. Such a scenario can be modelled
by a revenue function of the form g(p) = p1d1(p) + p2d2(p). Consider the
example where the prices of business and economy class tickets can influence
the demand in each segment. Similarly, the demand for a particular dish in
a fast food chain might be influenced by the prices for other dishes.

3. Identical price model: In this case, the retailer is compliant with having a
uniform price across locations. However, the demand function across different
locations could be independent at each of these locations, leading to the
following objective function: g(p) = pd1(p) + pd2(p). This scenario can be
used to model different demand functions for different population segments
in their age, gender, socio-economic background, etc.



BO for Function Compositions 69

3 Proposed Method

As discussed in Sect. 2, we propose that instead of having a single GP model over
g, we have M different GP models over each constituent function in the com-
position. Each prior GP model will be updated using GP regression whenever
the observations of the constituent functions are available. A suitably designed
acquisition function would then try to find the optimal point when the con-
stituent functions should all be evaluated at, in the next iteration. For ease of
notation, we use the shorthand h({fi(x)}) to denote h(f1(x), . . . , fM (x)) in the
subsequent sections.

3.1 Statistical Model and GP Regression

Let f1:n
i , i ∈ {1, 2, . . . ,M} denote the function evaluations of the member func-

tions at locations {x1,x2, . . . ,xn} denotes as x1:n. In the input space X ⊂ R
d,

let GP(μ(n)
i , k

(n)
i ) be the posterior GP over the function fi where μ

(n)
i : X → R

is the posterior mean function, k
(n)
i : X × X → R is the positive semi-definite

covariance function and the variance of the function is denoted by σ
(n)
i (x). The

superscript n is used to denote the fact that the posterior update accounts for
n function evaluations made till now. For each such GP, the underlying prior is
a combination of a constant mean function μi ∈ R and the squared exponential
function ki

ki(x,x′) = σ2 exp
(

− (x − x′)T (x − x′)
2l2i

)

The kernel matrix Ki is then defined as

Ki :=

⎡
⎢⎣

ki(x1,x1) ki(x1,x2) . . . ki(x1,xn)
...

...
...

...
ki(xn,x1) ki(xn,x2) . . . ki(xn,xn)

⎤
⎥⎦

and with abuse of notation define K = K + λ2I (to account for noise in the
function evaluations). The posterior distribution on the function fi(x) at any
input x ∈ X [23] is given by

P (fi(x)|x1:n, f1:n
i ) = N (μ(n)

i (x), σ(n)
i (x) + λ2), i ∈ {1, 2, . . . ,M} where

μ
(n)
i (x) = μ(0) + kT

i K
−1
i (f1:n

i − μi(x1:n)) and σ
(n)
i (x) = ki(x,x) − kT

i K
−1
i ki

ki = [ki(x,x1) . . . ki(x,xn)]

3.2 cEI and cUCB Acquisition Functions

For any fixed point x ∈ X , we use the information about the composition func-
tion h to estimate g by first estimating the value of each member function at x.
However, this is not a straightforward task and needs to be performed in a way



70 K. Jain et al.

Algorithm 1. cEI: Composite BO using EI based acquisition function
Require: T ←− Budget of iterations
Require: h(·), f1(·), . . . , fM (·) ←− composition and member functions
Require: X = {x1, . . . ,xs} ←− s starting points
Require: F = {(f1(x), . . . , fM (x))}x∈X ←− function evaluations at starting points
1: for n = s + 1, . . . , s + T do
2: for i = 1, . . . , M do
3: Fit model GP(μ

(n)
i (·), K(n)

i (·, ·)) using evaluations of fi at points in X
4: end for
5: Find new point xn by optimizing cEI(x, L) (defined below)
6: Get (f1(xn), . . . , fM (xn))
7: Augment the data (f1(xn), . . . , fM (xn)) into F and update X with xn

8: end for
9: function cEI(x, L)

10: for l = 1, . . . , L do
11: Draw M samples Z(l) ∼ NM (0M , IM )

12: Compute α(l) := {h({μ
(n)
i (x) + σ

(n)
i (x)Z

(l)
i }) − g∗

n}+

13: end for
14: return En(x) = 1

L
ΣL

l=1α
(l)

15: end function

similar to the vanilla EI acquisition using Monte Carlo sampling. We propose to
use the following acquisition function, that we call as cEI.

En(x) = En

[
h({μ

(n)
i (x) + σ

(n)
i (x)Zi}) − g∗

n

]+
(3)

where Z is drawn from an M -variate normal distribution and g∗
n is the best value

observed so far. This acquisition function is similar to EI as we subtract the
best observation, g∗, so far and only consider negative terms to be 0. Assuming
independent GPs over the functions allows constant time computation of the
variance at x. However, since each function fi is being considered an independent
variable with mean μ

(n)
i (·) and variance σ

(n)
i (·), the calculation of En(x) does not

have a closed form and thus, the expectation needs to be evaluated empirically
with sampling. Algorithm 1 provides the complete procedure for doing BO with
this acquisition function.

To alleviate this complexity in estimating the acquisition function, we pro-
pose a novel UCB-style acquisition function. This function estimates the value
of each member function using the GP priors over them and controls the explo-
ration and exploitation factor with the help of the hyperparameter λn:

Un(x) = h({μ
(n)
i (x) + βnσ

(n)
i (x)}) (4)

Algorithm 2 gives the complete details for using this acquisition function. The
user typically starts with a high value for β to promote exploration and reduces
iteratively to exploit the low reget regions it found. For our experiments, we
start with β = 1 and exponentially decay it in each iteration by a factor of 0.99.



BO for Function Compositions 71

Algorithm 2. cUCB: Composite BO using UCB based acquisition function
Require: T ←− Budget of iterations
Require: h(·), f1(·), . . . , fM (·) ←− composition and member functions
Require: X = {x1, . . . ,xs} ←− s starting points
Require: F = {(f1(x), . . . , fM (x))}x∈X ←− function evaluations at starting points
Require: β ←− Exploration factor
1: for n = s + 1, . . . , s + T do
2: for i = 1, . . . , M do
3: Fit model GP(μ

(n)
i (·), K(n)

i (·, ·)) using evaluations of fi at points in X
4: end for
5: Find new point xn suggested by the composition function using Eq. 4
6: Get (f1(xn), . . . , fM (xn))
7: Augment the data (f1(xn), . . . , fM (xn)) into F and update X with xn

8: Update β
9: end for

4 Experiments and Results

In this section, we compare the results of our cUCB and cEI algorithms with
Vanilla EI, Vanilla UCB and the state-of-the-art BO for composite functions
(BO-CF) [1] using HOGP [20] in terms of loss in regret and runtime of the
algorithms. We first compare our methods on 3 test functions and then move
on to show their applications to three different pricing scenarios. Our code is
available here.

Our algorithms are implemented with the help of the BoTorch framework [3]
and use the APIs provided by them to declare and fit the GP models. We assume
noiseless observations for our results in this section, and the same results can
be obtained when we add Gaussian noise to the problem with a fixed mean
and variance. We start with the same 10 initial random points and run our BO
algorithms for 70 iterations. We use a system with 96 Intel Xeon Gold 6226R
CPU @2.90 GHz and 96 GB of memory shared between the CPUs.

We compare the performance of different algorithms based on the log of mean
minimum regret till each iteration, averaged over 100 runs. In a single BO run,
the regret at iteration i in the kth run is defined as lki = g∗ − g(xi) where g∗ is
the global maximum of the objective function. The minimum regret at iteration
i in the kth run is defined as mk

i = min1≤j≤i lkj and the final metric at iteration

i averaged across 100 runs is calculated as ri = log10
(

1
100

∑100
k=1 mk

i

)
.

4.1 Results on Test Functions

Langermann Function: To express this function as a function composi-
tion, we consider each outer iteration of the Langermann function to be

a separate constituent function, that is, fi(x) = exp

(
− 1

π

d∑
j=1

(xj − Aij)2
)

https://github.com/kjain1810/Bayesian-Optimization-for-Function-Compositions-with-Applications-to-Dynamic-Pricing


72 K. Jain et al.

cos

(
π

d∑
j=1

(xj − Aij)

)
. The composition for this will be h({fi(x)}) =

∑m
i=1 cifi(x) with d = 2, c = (1, 2, 5, 2, 3), m = 5, A =

((3, 5), (5, 2), (2, 1), (1, 4), (7, 9)) and domain X = [0, 10]2. Note that the terms
differ only in the columns of hyperparameter A for different member functions
and thus, should have a high covariance.

Dixon-Price Function: In this function, we take the term associated with
each dimension of the input to be a separate constituent, that is, f1(x) =
(x1 − 1)2 and fi(x) = i(2x2

i − xi−1)2. The composition for this function will
be h({fi(x)}) =

∑d
i=1 fi(x) with d = 5 and domain X = [−10, 10]d. Since only

consecutive terms in this function share one variable, the member functions do
have a non-zero covariance that will be much lower than the above function.

Ackley Function: Here, we build a more complex composition function by
considering the terms in the exponents as the member functions, resulting in

f1(x) =

√√√√1
d

d∑
i=1

x2
i and f2(x) =

1
d

d∑
i=1

cos(cxi)

and h(x) = −a exp(−bf1(x)) − exp(f2(x)) + a + exp(1) with d = 5, a = 20,
b − 0.2, c = 2π and domain X = [−32.768, 32.768]d.

Results: Figure 1a, 1b and 2a compares the results of different algorithms.
Vanilla EI and UCB algorithms do not consider the composite nature of the
function while BO-CF and our methods use the composition defined above. Even
with the high covariance between the members in Langermann function, cUCB
outperforms BO-CF while the cEI algorithm has a similar performance level.
However, when that covariance reduces in the Dixon-Price function, the cEI

Fig. 1. Log regret for test functions with a composite nature



BO for Function Compositions 73

algorithm performs better than BO-CF while the cUCB algorithm significantly
outperforms it. Figure 2a shows that our algorithms work well with complicated
composition functions as well and both, cUCB and cEI, outperform BO-CF.

Fig. 2. Log of expected regret for pricing tasks

4.2 Results for Demand Pricing Experiments

We now test our approach on the demand models discussed in Sect. 2.2.

Independent Demand Model: Recall that in this model, we allow the price
at each location to be different and model the demand in a region to depend only
on the price therein. We consider 4 regions where each region has a parametric
demand functions and randomly chosen parameters. Particularly, we assume
that two regions have a logit demand function (d(p) = e−z1−z2p

1+e−z1−z2p ) with z1 ∈
[1.0, 2.0], z2 ∈ [−1.0.1.0] and the other two regions have a linear demand function
(d(p) = z1 − z2p) with z1 ∈ [0.75, 1] and z2 ∈ [2/3, 0.75]. The domain for this
model is X = [0, 1]4 and the composition is The composition function looks
h(d1(p), d2(p), d3(p), d4(p)) =

∑4
i=1 pidi(pi).

Correlated Demand Model: In this example, we assume that different prod-
ucts are for sale at different prices, and there is a certain correlation between
demand for different products via their prices. We consider the case of 2 prod-
ucts where one of the product has a demand function governed by the Matyas
function [27]. We assume that the demand for the second product is gov-
erned by the Booth function [27]. More specifically, the constituent functions
d1 and d2 are d1(p) = 8(100 − Matyas(p)), d2(p) = 1154 − Booth(p) where
Matyas function is defined as Matyas(x) = 0.26(x2

1 + x2
2) − 0.48x1x2 and Booth

function is defined as Booth(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2. The
domain of the problem is X = [0, 10]2 and finally composition for this will be
h(d1(p), d2(p)) = p1d1(p) + p2d2(p).



74 K. Jain et al.

Identical Price Model: In this example, we assume that a commodity is sold
for same price at two different regions but the willingness to pay variable for
customers in the two regions is different. We assume that the willingness to pay
distribution in one region follows exponential distribution with λ = 5.0. n the
other region, this is assumed to be a gamma distribution with α = 10.0, β = 10.0
The resulting function composition is given by : h(d1(p), d2(p)) = pd1(p)+pd2(p).

Results: Figures 2b, 3a and 3b compare the results of these dynamic pricing
models for the different BO algorithms. Our algorithms perform well even in
higher dimensions of input and member functions with cUCB marginally out-
performing BO-CF in the first model. cUCB matches the minimum regret in the
second model and converges to it much faster than BO-CF. In the case of the
third model, having independent GP’s performs better than BO-CF with cEI.

Fig. 3. Log of expected regret for pricing tasks

Table 1. Run-time for 70 iterations across algorithms in seconds

Task EI UCB cEI cUCB HOGP

Langermann function 1.74 1.73 9.71 9.34 36.30

Dixon-Price function 1.70 1.69 14.47 12.71 41.72

Ackley function 1.63 1.55 11.56 11.37 47.91

Independent demand model 2.05 2.03 7.85 7.12 19.12

Correlated demand model 3.91 3.29 9.63 9.19 53.01

Identical price model 2.55 2.38 7.27 7.81 24.37



BO for Function Compositions 75

4.3 Runtime Comparisons with State of the Art

Along with the performance of our algorithms being superior in terms of regret,
the methodology of training independent GPs is significantly faster in terms of
run time. As shown in Table 1, both of our algorithms are between 3 to 4 times
faster than BO-CF using HOGP on average and their run time increases linearly
with the number of member functions in the composition when compared to
vanilla EI and UCB. By not having to compute the inverse matrix for estimating
the lower Cholesky factor of the covariance matrix, we gain large improvements
in run time. The elimination of inverse matrix computation while estimating
with the help of lower Cholesky factor of the covariance matrix results in the
large improvement in run time over BO-CF. Also note that our UCB variant
is marginally faster than the EI variant as well due to the elimination of MC
sampling in the process.

5 Conclusion

In this work, we have proposed EI and UCB based BO algorithms, namely cEI
and cUCB for optimizing functions with a composite nature. We further apply
our algorithms to the revenue maximization problem and test our methods on
different market scenarios. We show that our algorithms, particularly cUCB,
outperforms vanilla BO as well as the current state of the art BO-CF algo-
rithm. Our algorithms are computationally superior because they do not require
multiple Cholesky decompositions as required in the BO-CF algorithm.

As part of future work, we would like to provide theoretical bounds on cumu-
lative regret for the proposed algorithms. We would also like to see the applica-
bility of the proposed algorithms in hyper-parameter tuning for optimizing F1
score. It would also be interesting to propose BO algorithms for an extended
model wherein the member functions can be probed independently from each
other at different costs.

References

1. Astudillo, R., Frazier, P.: Bayesian optimization of composite functions. In: Chaud-
huri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 354–
363. PMLR (2019)

2. Babaioff, M., Dughmi, S., Kleinberg, R., Slivkins, A.: Dynamic pricing with limited
supply. ACM Trans. Econ. Comput. 3(1), 1–26 (2015)

3. Balandat, M., et al.: BoTorch: a framework for efficient Monte-Carlo Bayesian opti-
mization. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

4. Barber, R.F., Sidky, E.Y.: MOCCA: mirrored convex/concave optimization for
nonconvex composite functions. J. Mach. Learn. Res. 17(144), 1–51 (2016)

5. den Boer, A.V., Zwart, B.: Simultaneously learning and optimizing using controlled
variance pricing. Manage. Sci. 60(3), 770–783 (2014)



76 K. Jain et al.

6. den Boer, A.V., Zwart, B.: Dynamic pricing and learning with finite inventories.
Oper. Res. 63(4), 965–978 (2015)

7. Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning (2010)

8. Broder, J., Rusmevichientong, P.: Dynamic pricing under a general parametric
choice model. Oper. Res. 60(4), 965–980 (2012)

9. Candelieri, A.: A gentle introduction to Bayesian optimization. In: 2021 Winter
Simulation Conference (WSC), pp. 1–16 (2021)

10. Chen, Y.M., Jain, D.C.: Dynamic monopoly pricing under a Poisson-type uncertain
demand. J. Bus. 65(4), 593–614 (1992)

11. Cheung, W.C., Simchi-Levi, D., Wang, H.: Technical note—dynamic pricing and
demand learning with limited price experimentation. Oper. Res. 65(6), 1722–1731
(2017)

12. Crapis, D., Ifrach, B., Maglaras, C., Scarsini, M.: Monopoly pricing in the presence
of social learning. Manage. Sci. 63(11), 3586–3608 (2017)

13. den Boer, A.V.: Dynamic pricing and learning: historical origins, current research,
and new directions. Surv. Oper. Res. Manage. Sci. 20(1), 1–18 (2015)

14. Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex
functions and smooth maps. Math. Program. 178(1–2), 503–558 (2018)

15. Elreedy, D.F., Atiya, A.I., Shaheen, S.: A novel active learning regression frame-
work for balancing the exploration-exploitation trade-off. Entropy 21(7), 651
(2019)

16. Frazier, P.I.: A tutorial on Bayesian optimization (2018)
17. Harrison, J.M., Keskin, N.B., Zeevi, A.: Bayesian dynamic pricing policies: learning

and earning under a binary prior distribution. Manage. Sci. 58(3), 570–586 (2012)
18. Injadat, M., Salo, F., Nassif, A.B., Essex, A., Shami, A.: Bayesian optimiza-

tion with machine learning algorithms towards anomaly detection. In: 2018 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6 (2018)

19. Kuo, C.W., Ahn, H.S., Aydin, G.: Dynamic pricing of limited inventories when
customers negotiate. Oper. Res. 59(4), 882–897 (2011)

20. Maddox, W., Balandat, M., Wilson, A.G., Bakshy, E.: Bayesian optimization with
high-dimensional outputs. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan,
J.W. (eds.) Advances in Neural Information Processing Systems (2021)

21. Phillips, R.L.: Pricing and Revenue Optimization. Stanford University Press (2021)
22. Pyzer-Knapp, E.O.: Bayesian optimization for accelerated drug discovery. IBM J.

Res. Dev. 62(6), 2:1–2:7 (2018)
23. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The

MIT Press (2005)
24. Scotto Di Perrotolo, A.: A theoretical framework for bayesian optimization con-

vergence. Master’s thesis, KTH, Optimization and Systems Theory (2018)
25. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine

learning algorithms. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.)
Advances in Neural Information Processing Systems, vol. 25. Curran Associates,
Inc. (2012)

26. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Trans. Inf.
Theory 58(5), 3250–3265 (2012)

27. Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test func-
tions and datasets. https://www.sfu.ca/∼ssurjano. Accessed 7 Feb 2023

https://www.sfu.ca/~ssurjano


BO for Function Compositions 77

28. Woodworth, B.E., Srebro, N.: Tight complexity bounds for optimizing composite
objectives. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 29. Curran Associates,
Inc. (2016)

29. Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyperparame-
ter optimization for machine learning models based on Bayesian optimization. J.
Electron. Sci. Technol. 17(1), 26–40 (2019)



A Bayesian Optimization Algorithm
for Constrained Simulation Optimization
Problems with Heteroscedastic Noise

Sasan Amini(B) and Inneke Van Nieuwenhuyse

Flanders Make@UHasselt, Data Science Institute, Hasselt University,
Hasselt, Belgium

sasan.amini@uhasselt.be

Abstract. In this research, we develop a Bayesian optimization algo-
rithm to solve expensive, constrained problems. We consider the pres-
ence of heteroscedastic noise in the evaluations and thus propose a new
acquisition function to account for this noise in the search for the optimal
point. We use stochastic kriging to fit the metamodels, and we provide
computational results to highlight the importance of accounting for the
heteroscedastic noise in the search for the optimal solution. Finally, we
propose some promising directions for further research.

Keywords: Bayesian optimization · Constrained problems ·
Heteroscedastic noise · Stochastic Kriging · Barrier function

1 Introduction

In optimization problems, the decision maker may not only be concerned about
optimizing the primary performance measure of interest (the objective function)
but also about secondary performance measures that need to satisfy pre-specified
thresholds (i.e., constraints). These thresholds can be externally imposed (e.g., in
the case of governmental regulations) or be internally linked to the optimization
(e.g., output quality indicators). Examples of constrained problems are abun-
dant in the literature,; see for example, [16,19], and [11]. Often, the objective
and constraints (hereafter referred to as the outputs) in such problems cannot
be expressed as closed-form expressions of the decision variables (the inputs);
instead, they can only be evaluated numerically, using physical or computer
experiments. Problems of this type are referred to as black box optimization prob-
lems and simulation optimization is often used for optimizing such problems [1].
Unfortunately, many approaches in this field rely on population-based heuristics;
consequently, they may require many function evaluations before converging to
the optimal solution. This causes a problem in settings where the experiments

This study is supported by the Special Research Fund (BOF) of Hasselt University
(grant number: BOF19OWB01), and the Flanders Artificial Intelligence Research Pro-
gram (FLAIR).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 78–91, 2023.
https://doi.org/10.1007/978-3-031-44505-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_6&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_6


A Bayesian Optimization Algorithm 79

are expensive (because of long computation times, high monetary costs, or haz-
ardous experiments), as the total experimental budget is then usually too limited
to obtain high-quality results.

In recent years, Bayesian optimization (BO) [4] has become relatively popular
in the literature for solving expensive black-box optimization problems. In BO, a
computationally inexpensive metamodel, usually a Gaussian Process Regression
(GPR) model [21], is estimated based on a small set of input-output observa-
tions; the metamodel information is then used to sequentially select new inputs
to simulate using an acquisition function, in view of converging to the optimal
solution within a small number of iterations (i.e., a small number of additional
experiments). GPR and BO are terms that are commonly used in the Computer
Science and Engineering fields; in the OM/OR field, GPR is commonly referred
to as Kriging, and Bayesian Optimization as (Efficient) Global Optimization
[13,21]. Ordinary Kriging models tend to be most popular here; these models
assume, though, that the outputs are observed without noise. Yet, in many real-
life simulation optimization problems, the output observations are noisy. While
re-sampling is a common strategy to reduce the noise on the observed outputs
(both in the evolutionary approaches [3] and in some BO papers, such as [16]),
it can only be implemented to a limited extent in settings with a small bud-
get and an expensive simulator: indeed, more replications at already observed
inputs will decrease the available budget for observing new points, which poten-
tially affects the performance of the algorithm [22]. Additionally, real-life sim-
ulation optimization problems are often constrained. The current BO literature
on stochastic constrained settings is relatively scarce (see, e.g., [6,9,11,16], and
[24]), and assumes that the noise is homogenous, i.e., that it is independent of
the input location. Yet, in many real-life settings, the noise is heterogenous: see,
e.g., [12] and [7].

In this research, we focus on constrained problems of the following type:

min
x

E[f(x, ξx)]

s.t.

K∏

k=1

Pr

(
ck(x, ξx) ≤ 0

)
≥ p0,

k = 1, 2, ...,K

(1)

where f : D → R denotes a scalar-valued objective function, and ck : D → R

denotes a scalar-valued constraint function. The objective and the constraint
functions are expensive black-box functions, and their evaluations are perturbed
by heterogeneous random noise (denoted by ξx). The user-defined parameter p0
denotes the minimum required joint probability of feasibility for all constraints
(as is common in the literature [6,24], we assume that the constraints are inde-
pendent, hence the multiplication operator). We propose a Bayesian optimization
algorithm that accounts for the heterogenous noise in the metamodel (Stochastic
Kriging, [2]), and that leverages the model information in the acquisition func-
tion. We show that these aspects enable the algorithm to converge to solutions
that are closer to the true optimum, without the need for (intense) re-sampling.



80 S. Amini and I. Van Nieuwenhuyse

The actual acquisition function is inspired by the barrier function approach of
[19], as further detailed in Sect. 3.

To the best of our knowledge, this research proposes the first algorithm specif-
ically designed for constrained problems with heteroscedastic noise. We use an
instructive example from the literature to show that both the use of Stochastic
Kriging and the actual form of the acquisition function matter for the perfor-
mance of the algorithm. Our results also highlight the need for further research
on the identification of the final optimal solution in noisy settings.

The remainder of the paper is organized as follows. Section 2 provides
an introduction to Bayesian optimization and Stochastic Kriging. Section 3
describes the proposed algorithm in more detail. Section 4 explains the numerical
experiments designed to test the performance of the proposed algorithm. The
results are discussed in Sect. 5, while Sect. 6 presents the conclusions, along with
some promising directions for further research.

2 Bayesian Optimization (BO) and Stochastic Kriging
(SK): Notation and Terminology

In what follows, we first outline the basics of a general BO algorithm (Subsect.
2.1); next, we provide some basic theory and notation related to Stochastic
Kriging (Subsect. 2.2).

2.1 Bayesian Optimization (BO)

The general steps of a BO algorithm are summarized in Fig. 1. The optimiza-
tion procedure starts with the evaluation of an initial set of points with good
space-filling properties (e.g., obtained by latin hypercube sampling, LHS). The
size of this initial set is commonly set equal to 10d [17], or to 11d − 1 [13]), or
(d+1)(d+2)

2 [25], where d denotes the number of input dimensions of the prob-
lem. The metamodel is then trained with this initial set to model the expensive
function(s).

Gaussian Processes Regression (GPR) is the most common type of meta-
model in the Bayesian optimization literature. A GPR model is not only able to
predict the outcomes at unobserved solutions, but also yields an estimate of the
uncertainty on these predictions. The algorithm leverages this information in an
infill criterion or acquisition function to decide which input vector to sample
next. Different acquisition functions have been put forward, such as Expected
Improvement [18], Knowledge Gradient [5], and Entropy Search [10]. After eval-
uating (i.e., simulating) this new infill point, the new input/output information
is used to update the metamodel. The algorithm continues to sequentially add
extra infill points, each time updating the metamodels, until the stopping crite-
rion (e.g., a maximum available computational budget) has been reached, after
which the algorithm identifies the optimal solution.



A Bayesian Optimization Algorithm 81

Fig. 1. General steps in a Bayesian Optimization algorithm

2.2 Stochastic Kriging (SK)

A Kriging model essentially models a distribution over functions, such that the
joint distribution at any finite set of points is a multivariate Gaussian distri-
bution. Such a model is fully defined by its mean function and its covariance
function (also referred to as kernel). The parameters of these are estimated
from the input/output observations in the dataset, e.g. by means of maximum
likelihood estimation. Once the model has been fit to the data, it provides a
cheap/fast way to generate predictions of the function at non-observed input
locations; importantly, it also provides an estimate of the uncertainty (i.e., the
mean squared error or MSE) of these predictions. Details about Ordinary Krig-
ing can be found in [14]. Ordinary Kriging assumes that the output observations
are deterministic. Consequently, it interpolates between the available output
observations: at observed input/output locations, the predictor coincides with
the observed output, and the MSE of the predictor is zero.

This is no longer the case in Stochastic Kriging [2]. For a given output func-
tion and an arbitrary design point xi, Stochastic Kriging represents the observed
objective value f̂r(xi) in the rth replication as Eq. 2.

f̂r(xi) = β0 + M(xi) + εr(xi) (2)

The first two terms of Eq. 2 are equivalent to Ordinary Kriging. The term εr(xi) is
referred to as intrinsic uncertainty, as it is the uncertainty inherent in stochastic
simulation. The intrinsic uncertainty is (naturally) independent and identically
distributed across replications, having mean 0 and variance τ2(xi) at any arbi-
trary point xi. Note that the model allows for heterogeneous noise, implying
τ2(xi) need not be constant throughout the design space.

The Stochastic Kriging prediction at an arbitrary location x (whether
observed or not) is given by:



82 S. Amini and I. Van Nieuwenhuyse

μsk(x) = β0 + ΣM (x, .)T [ΣM + Σε]−1(f − β01p) (3)

where f is the p × 1 vector containing all the sample means obtained at the
p design points that have already been observed, and 1p is a p × 1 vector of
ones. Σε is a diagonal matrix of size p × p, showing the variance of the sample
means (for the p points that have already been sampled) on the main diagonal.
Σε thus reflects the so-called intrinsic uncertainty of the system, as it is caused
by the (heterogenous) noise in the output observations. ΣM , by contrast, is the
p×p matrix with the estimated covariance between the outputs of each couple of
already sampled points; this covariance is modeled using a covariance function
that assumes spatial correlation, i.e., it assumes that the correlation between the
outputs at two distinct input locations increases as the two input locations are
closer to each other in the design space. We refer to the original publication by
[2] for more details on the usual assumptions of this covariance function, and
the different types of spatial correlation models (or kernels) that can be used.
Analogously, the notation ΣM (x, .) is the p×1 vector containing the covariances
between the point under study, and the p already sampled points. The mean
squared error (MSE) of this predictor is given by:

σsk2
(x) = ΣM (x,x) − ΣM (x, .)T [ΣM + Σε]−1ΣM (x, .) +

ΓT Γ

1p
T [ΣM + Σε]−11p

(4)

where Γ = 1 − 1p
T [ΣM + Σε]−1ΣM (x, .). The essential difference between

Stochastic Kriging and Ordinary Kriging is the presence of Σε in the expres-
sions for the predictor and the MSE. In the absence of noise, Σε disappears
from the equations, and the predictor and MSE expressions boil down to the
expressions of an Ordinary Kriging model.

3 Proposed Algorithm

Our algorithm uses a barrier function approach. In such approach, the con-
straints in the original problem are replaced by a penalty term in the objective
function: this term penalizes the objective when its value approaches the bound-
aries of the feasible region and should thus ensure that solutions outside this
feasible area are avoided. To develop our algorithm, we build on a recent study
by [19], which compares different BO approaches for deterministic constrained
problems using barrier functions. To avoid harsh discontinuities in the penalty
function, the authors propose a log barrier function. For a derivation of the
function and the subsequent alternative infill criteria proposed, we refer to the
original publication; from the results, we select the following infill criterion as
the basis for our (stochastic) alternatives:

α(x) = EIok(x) + σok2

f (x)
K∑

k=1

(
log

(
− μok

ck
(x)

)
+

σok
ck

2(x)

2μok
ck

2(x)

)
(5)



A Bayesian Optimization Algorithm 83

EIok(x) =
[
fmin − μok(x)

]
Φ

(
fmin − μok(x)

σok(x)

)
+ σok(x)φ

(
fmin − μok(x)

σok(x)

)

(6)
The notation EIok(x) [13] refers to the Expected Improvement at input location
x, calculated by Ordinary Kriging information. In Eq. 6, fmin represents the best
mean objective function value evaluated so far, Φ denotes the normal cumulative
distribution and φ denotes the normal probability density function.

A straightforward adaptation of this function to the stochastic setting can
then be obtained by replacing the Ordinary Kriging estimates with Stochastic
Kriging estimates:

α′(x) = EIsk(x) + σsk2

f

K∑

k=1

(
log

(
− μsk

ck
(x)

)
+

σsk
ck

2(x)

2μsk
ck

2(x)

)
(7)

EIsk(x) =
[
fmin − μsk(x)

]
Φ

(
fmin − μsk(x)

σsk(x)

)
+ σsk(x)φ

(
fmin − μsk(x)

σsk(x)

)

(8)
where EIsk stands for expected improvement calculated using Stochastic Kriging
information. Yet, as previous research in [20], and [7] has shown that modified
expected improvement (MEI) improves the search (compared to the traditional
EI acquisition function) in stochastic settings, we opt to use the following crite-
rion in our proposed algorithm:

α′′(x) = MEI(x) + σsk2

f

K∑

k=1

(
log

(
− μsk

ck
(x)

)
+

σsk
ck

2(x)

2μsk
ck

2(x)

)
(9)

MEI(x) =
[
μsk(xmin) − μsk(x)

]
Φ

(
μsk(xmin) − μsk(x)

σok(x)

)

+σok(x)φ
(

μsk(xmin) − μsk(x)
σok(x)

) (10)

Algorithm 1 outlines the proposed algorithm. We start with an initial LHS
design consisting of 11d−1 design points. We then run a fixed number of replica-
tions per design point, yielding a sample mean for the outcome of each function
(objective and constraints), and an estimate of the variance on these sample
means. The SK model is fit to the observations, and this model information
is used in step 4 to select the next design point to sample (i.e., the point that
maximizes the infill criterion in Eq. 9). After simulating the infill point, the meta-
models are updated, and the algorithm continues to add extra infill points until
the computational budget is depleted. It then proceeds to identify the optimal
solution. We follow the most common approach (proposed in, e.g., [6,11,16]),
which suggests identifying the optimal solution as the one that attains the best
predicted value for the objective function across the search space (subject to all
the constraints being satisfied with joint estimated probability larger than p0).



84 S. Amini and I. Van Nieuwenhuyse

Algorithm 1. SK/MEI
1: Construct the initial design set using a latin hypercube sample,
2: Replicate at each initial design point and update the set of sampled points,
3: Fit a Stochastic Kriging metamodel to the observed values,
4: Search and select the infill point with the highest α′′,
5: Replicate at the selected point and update the set of sampled points,
6: If the computational budget is depleted, go to step 7; otherwise, return to step 4.
7: Return the solution that attains the best predicted value for the objective function

while satisfying the minimum required probability of feasibility (p0).

4 Numerical Experiments

In this section, we design experiments to assess the performance of the proposed
algorithm. As, to the best of the authors’ knowledge, there is no competing
algorithm in the literature for constrained problems with heteroscedastic noise
on all outputs, we benchmark our SK/MEI algorithm against two variants (see
Table 1): (1) OK/EI: uses Ordinary Kriging to build surrogates and Expected
Improvement as the first term in the acquisition function (i.e., the original algo-
rithm proposed in [19]), (2) SK/EI: uses Stochastic Kriging to build surrogates
and EI as the first term in the acquisition function. We assess the performance
of the algorithms on the test problem proposed in [8]; this test problem has been
widely used in the subsequent constrained BO literature (see e.g., [19], and [15]).
It is formulated as follows:

min f(x1, x2) = x1 + x2 (11)

s.t. c1(x1.x2) =
3
2

− x1 − 2x2 − 1
2

sin [2π(x2
1 − 2x2)]

c2(x1.x2) = −3
2

+ x2
1 + x2

2

Table 1. Algorithms’ specifications

Algorithm Surrogate Acquistion function

OK/EI Ordinary Kriging α(x) (see Eq. 5)

SK/EI Stochastic Kriging α′(x) (see Eq. 7)

SK/MEI Stochastic Kriging α′′(x) (see Eq. 9)

All functions (objective and two constraints) are perturbed by additive, het-
erogeneous Gaussian noise

(
εj(x) ∼ N (0, τj(x))

)
using the approach proposed

in [12], where j = 1, 2, 3. Each algorithm starts with an initial LHS design con-
sisting of 21 points; it then sequentially selects 120 additional infill points to



A Bayesian Optimization Algorithm 85

evaluate (simulating n = 5 replications at each point). To facilitate the opti-
mization of the acquisition function in each iteration, we discretize the search
space into a large but finite set of points (the so-called candidate set) (as com-
mon in the literature; see, e.g., [7] and [12]). We set the size of this candidate
set equal to 1000 times the number of input dimensions (hence, 2000 for the
problem considered). The algorithm can then simply evaluate the acquisition
function value in all unvisited alternatives, and choose the alternative with the
highest acquisition function value as the next infill point. At the end of each
algorithm, we require a joint probability of feasibility of at least 0.9 (p0 = 0.9)
for the identification of the estimated optimum.

We repeat this experiment 25 times for each algorithm, yielding 25
macroreplications. Each macroreplication starts from a different initial design;
this initial design is the same across all algorithms, to allow for a fair compar-
ison. The candidate set remains the same across all algorithms, and across all
macroreplications. Figure 2 shows the details of this candidate set, where solu-
tions that are truly feasible (i.e., in the deterministic problem shown in Eq. (11))
are shown in green, while infeasible solutions are shown in red. In total, among
2000 solutions, we have 933 feasible and 1067 infeasible solutions. The black star
represents the global optimum within this discretized set of solutions. Evidently,
since we treat the problem as a black box, and the output functions are dis-
turbed by noise, the three algorithms have no insight into this “true” problem.
Instead, they sequentially “learn” about the different output functions, during
the iterations of the algorithm, by using the different acquisition functions.

Fig. 2. Candidate solution set for the test problem proposed in [8], showing feasible
solutions in green, and infeasible solutions in red).



86 S. Amini and I. Van Nieuwenhuyse

5 Results

In this section, we discuss the results of the experiments. The three plots in the
left column of Fig. 3 represent the 25 final optima, identified by the three algo-
rithms respectively, in the 25 macro-replications. The OK/EI algorithm clearly
fails to handle the problem; the resulting solutions are scattered across the solu-
tion space, and potentially far from the true optimal solution (shown as the
green point in the plots.) SK/EI provides much more consistent results already,
most of which are located in the immediate neighborhood of the true optimal
solution. This remarkable improvement is solely due to the use of Stochastic
Kriging instead of Ordinary Kriging, highlighting the importance of account-
ing for the intrinsic uncertainty in the metamodel. Finally, SK/MEI returns the
most consistent and close solutions to the true global optimum.

This is shown even more clearly in the three plots in the right column of Fig. 3,
where the horizontal axis shows, for the same 25 final optima, the Euclidean
distance (Δd, in the solution space) to the true global optimum, whereas the
vertical axis shows the difference in the true objective value (Δf ; note that
positive Δf values indicate final optima that have a true objective that is bet-
ter than the global optimum, which indicates that these optima are, in reality,
infeasible). The further from the origin, the worse the solution quality. Clearly,
SK/MEI provides the best solutions for this problem.

Part of the difference in performance is due to the fact that the OK/EI and
SK/EI algorithms do not succeed in recognizing the feasible versus infeasible
areas of the search space to a sufficient extent. As an illustration, Fig. 4 shows
the areas identified as feasible and infeasible (based on the calculated values
for the joint probability of feasibility) at the end of the algorithm, for an arbi-
trary macroreplication. Clearly, OK/EI fails to correctly identify the borders
of the feasible region. SK/EI performs significantly better (thanks to the use
of SK), but is still outperformed by SK/MEI. Table 2 shows the mean values of
some main performance metrics at the end of 25 macro-replications. The first col-
umn shows the number of feasible solutions wrongly identified as infeasible(False
Negative), while the second column represents the number of infeasible solutions
wrongly identified as feasible (False Positive). We also calculate precision, recall,
and F1-Score. These measures are used in the information retrieval domain to
measure how well a model retrieves the data, and are defined as follows. More
details on these performance metrics can be found in [23]. As evident from the
results, SK/MEI outperforms the two other algorithms w.r.t. all metrics. Both
the use of SK, and the use of MEI in the acquisition function, contribute to the
improvement.

precision =
true positives

true positives + false positives
(12)



A Bayesian Optimization Algorithm 87

Fig. 3. Final optimal solutions obtained from 25 macro-replications (Left column) and
Deviation from the optimal solution in the solution space and objective space (Right
column): OK/EI(top row), SK/EI(center row), and SK/MEI(bottom row)



88 S. Amini and I. Van Nieuwenhuyse

recall =
true positives

true positives + false negatives
(13)

F1 = 2 × precision × recall

precision + recall
(14)

Table 2. Performance metrics

FN FP precision recall F1

OK/EI 675 53 0.86 0.27 0.41

SK/EI 102 42 0.94 0.89 0.91

SK/MEI 50 8 0.98 0.94 0.96

Fig. 4. Identified feasible region; OK/EI(left), SK/EI(center), and SK/MEI(right)

The three algorithms also show very different sampling behavior. Figure 5
shows which points are actually sampled as infill points, across the 120 itera-
tions of each algorithm, for an arbitrary macroreplication. OK/EI does not show
any systematic sampling pattern; it is, in fact, constantly misled by the noise
(as this algorithm treats the noisy estimates of the output functions as perfect
information). The other two algorithms efficiently manage to sample closer to
the feasible region borders, which is desirable in this problem. Indeed, it shows
that the barrier acquisition functions are successful in balancing the search for
better goal function values (i.e., the first term in the acquisition functions, which
tends to “push” the algorithm into the infeasible zone), and the desire to remain
feasible (the second term in the acquisition functions). Note that also SK/EI and
SK/MEI sample points that are, in reality, infeasible; yet, this behavior is not a
problem. It is even desirable in view of (sequentially) learning the boundaries of
the feasible region.



A Bayesian Optimization Algorithm 89

Fig. 5. Order of 120 sampled points by OK/EI(top), SK/EI(middle), and
SK/MEI(bottom)



90 S. Amini and I. Van Nieuwenhuyse

6 Conclusion

This research proposes a Bayesian optimization algorithm for constrained prob-
lems with heteroscedastic noise. The results show that using Stochastic Kriging
significantly improves the optimization of systems with heteroscedastic noise: it
significantly enhances the recognition of feasible versus infeasible areas of the
search space, and leads to final optima that are closer to the true global opti-
mum. Replacing EI with MEI further helps to improve the results; however, its
impact is not as significant as the impact of using SK.

Last but not least, we want to highlight that, in spite of the encouraging
results obtained by SK/MEI, a significant problem remains: in the identification
step, the true global optimum was never identified as the final optimum, even
though the algorithm has actually sampled this true global optimum during the
search in 21 of the 25 macroreplications. This happens because of two main
reasons: (1) sometimes the algorithm wrongly classifies the true optimum as an
infeasible point, or (2) the algorithm classifies the true optimum as feasible, but
some other point has (incorrectly) estimated to be better in terms of predicted
goal value. These results show that, in a noisy setting, the current approach for
identifying the final optimum is too simplistic: potential errors in the estimation
of the probability of feasibility, and in the estimation of the goal value, are
ignored. Further research is required on incorporating the uncertainty on these
outcomes in the identification step, to further improve the algorithms for use in
noisy problems.

References

1. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a
review of algorithms and applications. Ann. Oper. Res. 240(1), 351–380 (2016)

2. Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for simulation meta-
modeling. Oper. Res. 58(2), 371–382 (2010). https://doi.org/10.1287/opre.1090.
0754

3. Fieldsend, J.E., Everson, R.M.: The rolling tide evolutionary algorithm: a multi-
objective optimizer for noisy optimization problems. IEEE Trans. Evol. Comput.
19(1), 103–117 (2014)

4. Frazier, P.I.: Bayesian optimization. In: Recent advances in optimization and mod-
eling of contemporary problems, pp. 255–278. Informs (2018)

5. Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential
information collection. SIAM J. Control. Optim. 47(5), 2410–2439 (2008)

6. Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian optimization with unknown con-
straints. arXiv preprint arXiv:1403.5607 (2014)

7. Gonzalez, S.R., Jalali, H., Van Nieuwenhuyse, I.: A multiobjective stochastic sim-
ulation optimization algorithm. Eur. J. Oper. Res. 284(1), 212–226 (2020)

8. Gramacy, R.B., et al.: Modeling an augmented Lagrangian for blackbox constrained
optimization. Technometrics 58(1), 1–11 (2016)

9. Gramacy, R.B., Lee, H.K.: Optimization under unknown constraints. In: Proceed-
ing of the ninth Bayesian Statistics International Meeting, pp. 229–256. Oxford
University Press (2011)

https://doi.org/10.1287/opre.1090.0754
https://doi.org/10.1287/opre.1090.0754
http://arxiv.org/abs/1403.5607


A Bayesian Optimization Algorithm 91

10. Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimiza-
tion. J. Mach. Learn. Res. 13(6), 1809–1837 (2012)

11. Hernández-Lobato, J.M., Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahra-
mani, Z.: A general framework for constrained Bayesian optimization using
information-based search. J. Mach. Learn. Res. 17(1), 1–53 (2016)

12. Jalali, H., Van Nieuwenhuyse, I., Picheny, V.: Comparison of kriging-based algo-
rithms for simulation optimization with heterogeneous noise. Eur. J. Oper. Res.
261(1), 279–301 (2017)

13. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

14. Kleijnen, J.P.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res.
192(3), 707–716 (2009)

15. Kleijnen, J.P., Van Nieuwenhuyse, I., van Beers, W.: Constrained optimization in
simulation: efficient global optimization and karush-kuhn-tucker conditions (2021)

16. Letham, B., Karrer, B., Ottoni, G., Bakshy, E.: Constrained Bayesian optimization
with noisy experiments. Bayesian Anal. 14(2), 495–519 (2019)

17. Loeppky, J., Sacks, J., Welch, W.: Choosing the sample size of a computer exper-
iment: a practical guide. Technometrics 51(4), 366–376 (2009)

18. Močkus, J.: On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.)
Optimization Techniques 1974. LNCS, vol. 27, pp. 400–404. Springer, Heidelberg
(1975). https://doi.org/10.1007/3-540-07165-2 55

19. Pourmohamad, T., Lee, H.K.: Bayesian optimization via barrier functions. J. Com-
put. Graph. Stat. 31(1), 74–83 (2022)

20. Quan, N., Yin, J., Ng, S.H., Lee, L.H.: Simulation optimization via kriging: a
sequential search using expected improvement with computing budget constraints.
IIE Trans. 45(7), 763–780 (2013)

21. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT
press, Cambridge (2006)

22. Rojas-Gonzalez, S., Van Nieuwenhuyse, I.: A survey on kriging-based infill algo-
rithms for multiobjective simulation optimization. Comput. Oper. Res. 116,
104869 (2020)

23. Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning. Springer, New York
(2011)

24. Ungredda, J., Branke, J.: Bayesian optimisation for constrained problems. arXiv
preprint arXiv:2105.13245 (2021)

25. Zeng, Y., Cheng, Y., Liu, J.: An efficient global optimization algorithm for expen-
sive constrained black-box problems by reducing candidate infilling region. Inf. Sci.
609, 1641–1669 (2022)

https://doi.org/10.1007/3-540-07165-2_55
http://arxiv.org/abs/2105.13245


Hierarchical Machine Unlearning

HongBin Zhu1, YuXiao Xia1, YunZhao Li1, Wei Li2, Kang Liu3(B),
and Xianzhou Gao2

1 Big Data Center, State Grid of China, Beijing 100012, China
2 State Grid Smart Grid Research Institute, Shanghai 200016, China

3 State Key Laboratory for Novel Software Technology, Department of Computer
Science and Technology, Nanjing University, Nanjing 200016, China

mg20330035@smail.nju.edu.cn

Abstract. In recent years, deep neural networks have enjoyed tremen-
dous success in industry and academia, especially for their applications
in visual recognition and natural language processing. While large-scale
deep models bring incredible performance, their massive data require-
ments pose a huge threat to data privacy protection. With the growing
emphasis on data security, the study of data privacy leakage in machine
learning, such as machine unlearning, has become increasingly important.
There have been many works on machine unlearning, and other research
has proposed training several submodels to speed up the retraining pro-
cess, by dividing the training data into several disjoint fragments. When
the impact of a particular data point in the model is to be removed, the
model owner simply retrains the sub-model containing this data point.
Nevertheless, current learning methods for machine unlearning are still
not widely used due to model applicability, usage overhead, etc. Based
on this situation, we propose a novel hierarchical learning method, Hier-
archical Machine Unlearning (HMU), with the known distribution of
unlearning requests. Compared with previous methods, ours has bet-
ter efficiency. Using the known distribution, the data can be partitioned
and sorted, thus reducing the overhead in the data deletion process. We
propose to train the model using the hierarchical data set after partition-
ing, which further reduces the loss of prediction accuracy of the existing
methods. It is also combined with incremental learning methods to speed
up the training process. Finally, the effectiveness and efficiency of the
method proposed in this paper are verified by multiple experiments.

Keywords: Data privacy · Machine unlearning · Data deletion

1 Introduction

Currently, a large amount of data is used in machine learning. For example, the
dataset for training medical diagnosis models contains a large amount of personal

Supported by science and technology project of Big Data Center of State Grid Cor-
poration of China, “Research on Trusted Data Destruction Technology for Intelligent
Analysis” (No. SGSJ0000AZJS2100107) and the National Key Research and Develop-
ment Program of China under Grants 2020YFB1005900.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 92–106, 2023.
https://doi.org/10.1007/978-3-031-44505-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_7&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_7


Hierarchical Machine Unlearning 93

patient information; the dataset for recommendation systems has users’ usage
history on the Internet. The use of large amounts of data raises many questions
about data security and privacy.

Data poison attack is a very common type of attack that compromises the
security of a model [1]. Specifically, an attacker carefully designs the input data
model for the training process to disrupt the true distribution of the data and
cause the model to obtain the wrong output. Once the model receives a poisoning
attack, the accuracy of the model will be reduced, and the output will be biased
towards the direction chosen by the attacker. For a system trained on user data,
an attacker can inject malicious data simply by creating a user account. Such
data poisoning attacks force us to rethink the meaning of system security [2].

On the other hand, there is numerous research on data privacy leakage in
machine learning models, among which the Membership Inference Attack refers
to the attacker who reverses the training set of a model by analyzing the pub-
lished machine learning model [3]. For example, an attacker can obtain the pri-
vacy information of a target by determining whether the target is in the dataset
of a certain type of disease diagnosis model. Since the Membership Inference
Attack does not require a specific model structure, but only calls the machine
learning model interfaces provided by large Internet companies on the Web, it
poses a great danger to privacy, and many users want the model trainer to remove
their own data in the dataset and erase the influence of their personal data in
the trained model. In response to data poisoning attacks, previous research has
proposed to improve the robustness of the model to prevent training data poi-
soning. However, the various mechanisms previously used, including Differential
Privacy, are not perfectly implemented for user requests to remove data and
its influence. Therefore, researchers have started to use Machine Unlearning to
satisfy the user’s right to be forgotten [4].

The most straightforward way to forget learning data is to remove the sam-
ples requested to be forgotten from the original training data set and retrain
the model from scratch. However, when the dataset size is large and frequent
forgotten requests occur, retraining from scratch incurs a very high computa-
tional overhead. To reduce the overhead in the data forgetting process, the SISA
(or Shared, Isolated, Sliced, Aggregated) training method has been proposed.
In this method, how to completely forget the requested data is the key to the
design of the forgettable training method. For the data unlearning request from
the user, the data influence in the existing model has to be removed, and a
new model with the same output distribution is obtained as the model obtained
by retraining from scratch; on the other hand, the computational overhead of
the unlearning process is an important metric in the design of machine untrain-
ing mechanism. Compared to retraining, unlearning must reduce computational
overhead, achieve system redeployment more quickly, and obtain higher avail-
ability.

Based on the above analysis, the existing machine learning forgettable train-
ing methods broadly have the following problems:



94 H. Zhu et al.

– Most existing machine unlearning methods, which are not very applicable,
need to be adapted by security professionals for specific models. For example,
the machine learning model transformed into a statistical query approach
proposed by Cao et al. is difficult to apply to more complex learning models,
such as neural network models. Such untraining methods are difficult to be
used on a large scale.

– Converting a regular model to a forgettable model can affect the usability
of the model. In the SISA model, there is a 3%–15% loss in the accuracy
of the original model depending on the data set, the number of slices, the
complexity of the model, and other settings.

– The existing machine unlearning methods take a lot of time. Although
machine unlearning can save some time compared to retraining from scratch,
it still adds a large time overhead that limits the application of machine
unlearning in various types of systems.

Fig. 1. Hierarchical Machine Unlearning

To address the above problems, this paper proposes a hierarchical machine
unlearning training method(see Fig. 1). On the one hand, through the analysis
of known data unlearning request probability, the original dataset is divided into
low-unlearning-probability data and high-unlearning-probability data to reduce
the computational overhead of the unlearning process; on the other hand, this



Hierarchical Machine Unlearning 95

paper achieves a compromise between model availability and unlearning time by
fixing the parameters between model layers. In general, the contributions of this
paper include the following aspects:

1. To address the problem of low applicability of the existing forgettable training
methods, we reduce the cost of the unlearning process. To achieve this aim,
we design a novel dataset partitioning method and model isolation learning
strategy without introducing a complex transformation process.

2. Optimize data grouping. For data grouping with differentiated distribution,
the original data set is divided into low-forgetting-probability data and high-
forgetting-probability data, followed by optimization based on data sensitiv-
ity, hierarchical design of the model, and optimization of the access pattern
of the data, thus reducing the additional overhead.

3. Based on the proposed method, the optimization effects of array grouping,
and data access patterns are verified through theoretical analysis and relevant
experiments. The results show that the method proposed in this paper can
reduce the overhead of the data-forgetting process while improving the model
prediction effect.

Section 2 of this paper provides a review of related work; Sect. 3 presents
the background knowledge and relevant theoretical foundations applied; Sect. 4
presents the proposed hierarchical machine learning forgettable training method;
Sect. 5 gives the time overhead analysis of the proposed method; Sect. 6 presents
the experimental design and results analysis; Sect. 7 concludes and perspectives
the work of this paper.

2 Related Work

Machine unlearning aims at eliminating the impact of data in the model with
low computational overhead and without completely retraining the model from
scratch. The concept of machine unlearning was first introduced by Cao and
Yang in 2015. It is an application of the right to be forgotten proposed by the
European Union in machine learning.

Cao and Yang [4] proposed to transform the learning algorithm into a summa-
tion form after statistical query learning to decompose the dependencies between
the training data. To remove a data point, the model owner simply removes the
transformation of this data point from the summation that depends on this
instance. However, Cao and Yang’s algorithm is not applicable to learning algo-
rithms that cannot be transformed into summation forms, such as neural net-
works.

Ginart et al. [5] studied the machine unlearning method for the K-Means clus-
tering algorithm, which focuses on proposing an efficient learning algorithm for
data deletion. Specifically, their algorithm constructs data deletion as an online
problem and gives a time-efficient analysis of the optimal deletion efficiency. A
data deletion operation can be defined as the random variables A(D−i) and
RA(D,A(D), i), which are distributionally equivalent for all D and i. But this



96 H. Zhu et al.

technique cannot be generalized to other machine learning models. Ginart et al.
pointed out that data unlearning in machine learning should be related to the
model training intermediate process, inspiring that we can reduce the time of
data forgetting by recording the intermediate process of model training.

Therefore, Bourtoule et al. [6] proposed a more general training method SISA
(Shared, Isolated, Sliced, and Aggregated) for deep learning. The main idea
of SISA is to divide the training data into several disjoint fragments, each of
which trains a sub-model [6]. To remove a particular data point, the model
owner simply retrains the submodel containing this instance. To further speed
up the unlearning process, they propose to split each shard into several slices and
store intermediate model parameters as each shard updates the model. However,
the SISA method cannot make good use of unlearning probability information
when applied to scenarios where the data unlearning probability is known. The
special slicing approach proposed by Bourtoule et al. for scenarios where the
data forgetting probability is known reduces the accuracy of model prediction
as well as the usability of the model.

Another machine unlearning research aims to verify that model owners com-
ply with data deletion requests. Sommer et al. proposed a backdoor-based app-
roach. The main idea is to allow data owners in a Machine Learning as a Service
(MLaaS) scenario to plant backdoors in their data and then train the model.
When the data owner later requests the deletion of their data, they can verify
that their data has been deleted by checking the success rate of the backdoor.

There are also many related works on privacy preservation for machine learn-
ing models, such as federation learning and differential privacy [8]. However, most
of these approaches use cryptographic tools to protect data privacy or make data
indistinguishable rather than perform efficient data deletion.

In response to the research of related work, there are no efficient machine
unlearning methods in scenarios where the probability of data unlearning
requests is known.

3 Preliminary

3.1 Machine Unlearning

Consistent with the SISA, in our work, the participants in machine unlearning
consist of an honest service provider S and a set of users U . The service provider
may be a large organization that collects information about its users; and each
user u ∈ U provides its data du to the service provider, forming the service
provider’s dataset D. The users have the right to request that the impact of
their own data be removed from the dataset and the model from which the data
is generated, and the service provider needs to provide the users with credible
evidence proving that the data has been removed.

In machine learning, given a data set D, a target model M that better fits
the data will be obtained by training in the hypothesis space. If we add new data
du to the original data set D to obtain a new data set D′, we can train on the
new data set D′ to obtain a new model M ′. Since there is no effective method to



Hierarchical Machine Unlearning 97

evaluate the impact of the new data du on the model parameters, it is difficult
to eliminate it in M ′ without setting up save points in advance. To assure the
data provider that the effect of the data has been removed, the most convincing
way to obtain the model is to retrain the model after removing specific data
points from the dataset. The retraining results in a model that provides a strong
privacy guarantee to the data provider. The goal of machine unlearning is to
provide training as well as data unlearning methods equivalent to retraining.

Theorem 1. Machine Unlearning. Let D = di : i ∈ U denote the data set col-
lected from the set of users U , and D′ = D∪du denote the data set that contains
forgotten data du. Let DM denote the distribution of the model with training on
D′ and unlearning du using the mechanism M ; and let Dreal denote the dis-
tribution of the model obtained by the training mechanism M on D. If the two
distributions DM and Dreal are equivalent, then M satisfies unlearning.

Although the goal of machine unlearning is very clear, i.e., to remove the
influence of certain data from the dataset in the existing model, the unlearn-
ing task is easy to implement due to the stochastic nature of machine learning
algorithms, among other reasons. Existing unlearning methods all suffer from
various problems, and the ideal unlearning method should satisfy the following
requirements.

1. Understandability. Since the underlying retraining approach is well under-
stood and implemented, arbitrary forgetting learning algorithms need to be
easy to understand and simple to apply and correct for nonexperts.

2. Usability. If a large amount of data needs to be removed or if more typical
data points must be removed, it is understandable that the accuracy of the
model decreases. Even retraining the model from scratch can cause a drop in
accuracy when data is destroyed. A better forgetting learning method should
be able to control this degradation to a level similar to retraining the model.

3. Provability. Just like retraining, unlearning should be able to prove that the
unlearning data points no longer have an impact on the model parameters.
In addition, this proof should be concise and not require help from experts.

4. Applicability. For a good unlearning method, any machine learning model
should be usable, and independent of the complexity or other properties of
the model.

5. Limited unlearning time. Unlearning methods should be faster than
retraining in all cases.

6. No additional overhead. Any usable unlearning method should not intro-
duce additional computational overhead into the training process of the orig-
inal complex computational model.

3.2 PAC Learning

The goal of a machine learning algorithm is to learn a mapping from a sample
space X to a labeled space Y . According to PAC (Probably Approximately
Correct) learning, a mapping c is said to be a target concept if for a mapping c



98 H. Zhu et al.

such that for any sample (x, y),c(x) = y holds. The learning algorithm L knows
nothing about the target concept but can describe the distribution of the data
by accessing a known data set D. The set of all possible concepts considered by
the learning algorithm L is called the “hypothesis space”, denoted by H. Any
possible value h ∈ H in the hypothesis space is called a hypothesis. For a given
dataset D, the learning algorithm L obtains a hypothesis h that is as close as
possible to the target concept c by solving the objective function.

In the solving process of the machine learning algorithm, the randomness of
the results comes from two main sources: the randomness in the training process
and the randomness in the learning algorithm.

Randomness in the Training Process: Given a dataset D, it is usually
necessary to first draw small batches of data randomly from the dataset, and
the order in which the data are drawn varies from one training to another. In
addition, training is usually parallel without explicit synchronization, meaning
that the random data acquisition order of the parallel training process can make
the training uncertain.

Randomness in the Learning Algorithms: Intuitively, the purpose of a
learning algorithm is to find the optimal hypothesis h in a vast hypothesis space
H. Usually, this hypothesis is defined by setting a fixed weight of parameters
to the learning model. PAC learning considers the hypothesis h, which is as
close as possible to the target concept c, as one of the many hypotheses that
minimize the empirical risk. However, commonly used optimization functions,
such as stochastic gradient descent, can only converge to one of several local
minima for any convex loss function. Coupled with the randomness involved in
training, it is very challenging to obtain the same final hypothesis h using the
same learning algorithm for the same dataset D.

Due to the randomness of machine learning, it is difficult to quantify the
impact of certain data points on the model, and it is difficult to remove them
from the final model.

4 Hierarchical Machine Unlearning

In this paper, we propose a novel machine unlearning method, Hierarchical
Machine Unlearning (HMU), to improve the efficiency of the SISA and achieve
a trade-off between unlearning speed and prediction accuracy in the unlearning
process. By analyzing the known unlearning probability of data, the original
dataset is divided into S pieces of low-unlearning-probability data and S pieces
of high-unlearning-probability data. After data partitioning, isolated learning
models are first built using the low-unlearning-probability data, and then the
high- unlearning-probability data are introduced into the corresponding models
using incremental learning. Finally, the output model is obtained by an aggre-
gation method. The structure of data processing and model training process in
our model is shown in Fig. 2.



Hierarchical Machine Unlearning 99

Fig. 2. The structure of Hierarchical Machine Unlearning, including data partitioning,
isolation training and model aggregation

As with the SISA, we do not make assumptions about the specific algo-
rithm of the machine learning models used, and whether these isolated models
are homogeneous or heterogeneous. This is because partitioning the dataset for
models of arbitrary structure makes no difference other than making the dataset
accessible to the model smaller. And incremental learning can be applied to any
machine learning algorithm that has iterative learning, which includes gradient
descent class algorithms such as logistic regression and neural networks.

We still maintain the isolated training property of the SISA: no data are
exchanged between the different isolated models during the iterative training
process. Since the individual isolated models are trained on a smaller dataset
only, this may reduce the model fitting ability, which we will perform in the
experimental section in Chapter VI.

Assuming that the server in the scenario is honest, our unlearning algorithm
can also provide data deletion guarantees when the server performs according
to the designed algorithm.

4.1 Data Partitioning

Assuming that the data unlearning probability is known, all the data are sorted
by the unlearning probability. Then, the original dataset D is divided into low
unlearning probability dataset DL and high unlearning probability dataset DH ,
and DL ∩ DH = while DL ∪ DH = D. The percentage of low unlearning proba-
bility data is PL = |DL|

|D| , and the percentage of high unlearning probability data

is PH = |DH |
|D| .



100 H. Zhu et al.

To limit the impact generated by the unlearning data, the partitioned data
needs to be shared. For the ordered data with low unlearning probability and high
unlearning probability, they are divided into S equal-sized shards respectively.

The low unlearning probability dataset DL should be partitioned into S
shards, and for any different shards DL,i and DL,j , they have |DL,i| = |DL,j |
and DL,i ∩DL,j = ∅. Similarly, the similar partitioning is also performed for the
high unlearning probability dataset DH .

By partitioning the dataset, combined with subsequent isolated training, we
can limit the influence of data points, and reduce the time overhead when the
server receives an unlearning request.

4.2 Isolation Training

In our work, the training of each pair of low and high unlearning probabil-
ity shards is performed in isolation. In contrast, in a typical distributed train-
ing algorithm, parameter updates from each component are shared with each
other, and the training iterations of the model are based on these joint param-
eter updates. Although isolated training affects the generalization ability of the
whole model, this problem can be effectively avoided when the number of shards
is appropriate [6]. Isolation is a subtle but powerful structure that provides con-
crete, provable, and intuitive guarantees for data deletion.

Since we train the model separately on each pair of low and high-unlearning-
probability data shards, this limits the influence of unlearning data points on the
overall model. The low-unlearning-probability data can affect at most the data
in the same shard and the data in the corresponding high-unlearning-probability
data shard, while the high-unlearning-probability data can only affect the data
in the same shard. Finally, when the request for data unlearning arrives, we only
need to retrain the affected part of the model. Since the shards are much smaller
than the entire training dataset, this reduces the retraining time to achieve data
deletion.

By further slicing the shared data and fixing the model parameter in incre-
mental training, we can make the time overhead even lower.

In each shard, the data is further divided into smaller slices. Also, incremental
training is performed on the slices and the model parameters are saved before
introducing a new slice to reduce the retraining time.

For a shard d, the specific incremental training procedure on d can be per-
formed by uniformly dividing it into R disjoint data slices di for i ∈ {1, ..., R}
such that ∩i∈[R]di = ∅ and ∪i∈[R]di = d as follows:

1. Import the target model, randomly initialize the parameters, or initialize the
parameters using the saved model, and train the model using the data slice
d1 to obtain model M1 and save the model parameters.

2. On the basis of M1, train model using d1 ∪ d2 to obtain M2 and save the
model parameters.

3. Similarly, in step R, use ∪i∈[R]di to train model MR−1 and obtain model MR

and save model MR as the output model M in this stage.



Hierarchical Machine Unlearning 101

For any low unlearning probability data shard dl,k, the corresponding model
Mk can be obtained by incremental training and the parameters of the model
are saved for the next training step.

For a model Mk trained with low unlearning probability data shard DL,k, it
can be further trained with the corresponding high unlearning probability data
shard DH,k. After the incremental training, we get the modified model M ′

k.
In some scenarios, the number of high unlearning probability data may be

much smaller than the number of low unlearning probability data, and we can
improve the model prediction accuracy and speed up the model training by
freezing some parameters of Mk model.

4.3 Model Aggregation

By fine-tuning the models using high unlearning probability data shard, S mutu-
ally isolated models can be obtained. Since the datasets for training S models
are of the same size, these models have similar performance, it can avoid the
decrease of prediction accuracy, when multiple learners are aggregated.

Common aggregation strategies are averaging, voting, and stacking methods.
In machine unlearning, the aggregation strategy needs to have the following
properties: the aggregation strategy should not involve training data, otherwise
the aggregation process itself will have to be unlearning in some cases. Therefore,
we can use the majority voting aggregation, where the overall prediction is the
majority vote of all constituent models. It is not difficult to find that changing the
aggregation strategy can improve or reduce the accuracy of the overall model.
In practical application scenarios, we can choose properly from the candidate
aggregation strategies according to the scenario-specific requirements.

5 Time Overhead

Experimentally, the number of data points affected by the unlearning process
and the unlearning time are proportional, so we can analyze the impact of each
parameter on the retraining time by analyzing the number of samples affected
by the unlearning process.

Since we divide the dataset into two parts, low unlearning probability dataset
DL and high unlearning probability dataset DH , so the retraining time over-
head can be computed differently when the unlearning data appearing in DL or
appearing in DH .

Suppose there are a total of K unlearning requests, the probability that the
i-th unlearning request occurs in DL is denoted as pL, and the probability that
it occurs in DH is denoted as pH , according to the dataset partitioning rule,
pL << pH .

If the i-th unlearning request occurs in DH , the expected number of data
points to be affected is



102 H. Zhu et al.

i−1∑

j=0

(
i − 1
j

)
(
pH
S

)j(1 − pH
S

)i−j−1(
DH

S
− 1 − j).

If the i-th unlearning request occurs in DL, the expected upper bound on
the number of data points to be affected is

i−1∑

j=0

(
i − 1
j

)
(
pL
S

)j(1 − p

S
)i−j−1(

DL

S
− 1 − j) +

DH

S
.

Combining above two equations, the expected upper bound on the number
of all data points in each unlearning request is

pH
DH

S
+ pL(

DH

S
+

DL

S
).

The SISA model has an upper bound on the number of samples expected in
each forgetting request of |D|

S , and since |D| = |DH | + |DL| and [8] has been
shown that |DH | << |D|, the hierarchical machine unlearning algorithm has a
large improvement in unlearning time compared to the SISA model.

6 Experiment

Our experiment is designed to test the performance of our HMU training method
in the scenario where the service provider has the information about the nature
of the distribution of the unlearning request. We perform some studies to answer
the following questions:

1. What is the impact of data partitioning on accuracy and retraining time?
2. Does HMU training have a better prediction accuracy than SISA training?
3. Does HMU training improve the retraining time?

The information of the datasets we used is shown in Table 1. The datasets we
selected are diverse in terms of the total number of samples, data dimensionality,
and samples per category. This allows us to explore tasks of different complexity,
where the MNIST dataset and the Purchase dataset are simple, while the SVHN
[10] dataset and CIFAR-10 [11] are relatively complex.

As in previous work related to machine unlearning, in the Purchase dataset,
we select the 600 most purchased items as category attributes. SVHN is a real-
world image dataset for machine learning and object recognition algorithms with
minimal requirements for data pre-processing and formatting. The CIFAR-10
dataset consists of 60000 32 × 32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images. All these
datasets are commonly used in machine learning.



Hierarchical Machine Unlearning 103

Table 1. Dataset Information

Dataset Dimensionality Size #Class

Purchase 600 250000 2

SVHN 32 × 32 × 3 604833 10

CIFAR-10 32 × 32 × 3 60000 10

Table 2. DNN Model Features

Dataset Model Architecture

Purchase 2 FC layers

SVHN Wide ResNet-1-1

CIFAR-10 ResNet-18

We choose three different model structures in our experiments, and the spe-
cific model information is shown in Table 2, which includes various deep neural
networks with different numbers of hidden layers and different layer sizes.

For each of the three different datasets, we assume that the data unlearning
probability distribution is exponential.

First, we test the impact of data partitioning on accuracy and retraining
time. In our experiment, we choose a different ratio of the size of low-unlearning-
probability data to that of high-unlearning-probability data.

In Fig. 3, the prediction accuracy and retraining time of the output model are
shown as the ratio of PL and PH values. We can find that by adjusting the data
partitioning, we can speed up the retraining of the model without significantly
reducing the prediction accuracy.

Then, we test the prediction accuracy of the trained models using the SISA
method and our method with the same number of shards.

Figures 4 and 5 show the comparison of the prediction accuracy of the pro-
posed hierarchical machine unlearning training method with the SISA training
method for purchase data and SVHN data under different shards counting sce-
narios, respectively.

Fig. 3. Retraining Time and Accuracy Variation Depending on Different Data Parti-
tioning when the number of shards is 6.



104 H. Zhu et al.

Fig. 4. Purchase Dataset Model Prediction Accuracy with Different Numbers of Shards
when PL : PH = 4 : 1.

The prediction accuracy comparison shows that the prediction accuracy of
the SISA method is higher when the number of shards is 1, i.e., when no data
shard is used, because in the hierarchical machine forgetting learning method,
even if the number of shards is 1, the data are partitioned according to the
unlearning probability, which reduces the fitting ability of the model; when the
number of shards is greater than 1, in both sets of experiments mentioned above,
SISA shows a more significant decrease in prediction accuracy.

This is because the SISA training method uses a smaller amount of data
with high forgetting probability to train a partially isolated model, and obtains a
partially weak learner, which affects the prediction accuracy of the overall model
through model aggregation, and this decrease becomes more obvious with the
increase in the number of shards.

In contrast, in our method, since each isolated model dataset is of the same
size and has similar learning ability, there is no drop in accuracy due to the
imbalance in learning ability.

According to the analysis in Sect. 5, the hierarchical machine unlearning
method proposed in this paper affects fewer data points in the data dele-
tion phase compared to the SISA training method under the condition of
|DH | << |DL|, since the experiments simulate the realistic situation with a small
amount of high-unlearning-probability data. By fixing the parameter before fine-
tuning the models using high-unlearning-probability data shares, we can achieve
a trade-off of retraining time and prediction accuracy.

In Fig. 6, we show that our proposed HMU model can significantly reduce
the retraining time by increasing the number of layers of frozen parameters with
a small loss in model accuracy.



Hierarchical Machine Unlearning 105

Fig. 5. SVHN Dataset Model Prediction Accuracy with Different Numbers of Shards
when PL : PH = 4 : 1.

Fig. 6. Performance of HMU and SISA models on the CIFAR-10 dataset with varying
numbers of frozen layers when the number of shards is 4 and PL : PH = 4 : 1.

7 Conclusion

In this paper, we propose an improvement of the SISA machine unlearning
training method. When data unlearning requests with different distributions
are known, the original dataset is first divided into low-unlearning-probability
data and high-unlearning-probability data. Based on the divided data, multiple
isolation models are trained, and the two types of data are put into the train-
ing of the models in an incremental learning manner. Through experiments, we
demonstrate that our scheme improves the prediction accuracy and reduces the
time of data deletion compared to the SISA method.



106 H. Zhu et al.

References

1. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. In: Proceedings of the 29th International Conference on International
Conference on Machine Learning, Edinburgh, Scotland (2012)

2. Steinhardt, J., Koh, P.W.W., Liang, P.S.: Certified defenses for data poisoning
attacks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

3. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models (2017)

4. Cao, Y., Yang, J.: Towards making systems forget with machine unlearning. In:
2015 IEEE Symposium on Security and Privacy, 01 May 2015. IEEE (2015).
https://doi.org/10.1109/sp.2015.35

5. Ginart, A., Guan, M., Valiant, G., Zou, J.Y.: Making AI forget you: data deletion in
machine learning. In: Proceedings of the 33rd International Conference on Neural
Information Processing Systems, p. Article 316 (2019)

6. Bourtoule, L., et al.: Machine unlearning. In: 2021 IEEE Symposium on Security
and Privacy (SP), 01 May 2021. IEEE (2021). https://doi.org/10.1109/sp40001.
2021.00019

7. Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi, S., Waites, C.: Adap-
tive machine unlearning. arXiv:2106.04378. https://ui.adsabs.harvard.edu/abs/
2021arXiv210604378G

8. Wei, K., et al.: Federated learning with differential privacy: algorithms and perfor-
mance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469 (2020). https://
doi.org/10.1109/TIFS.2020.2988575

9. Bertram, T., et al.: Five years of the right to be forgotten. In; Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, 06
Nov 2019. ACM (2019). https://doi.org/10.1145/3319535.3354208

10. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.: Reading digits in
natural images with unsupervised feature learning. In: NIPS (2011)

11. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

https://doi.org/10.1109/sp.2015.35
https://doi.org/10.1109/sp40001.2021.00019
https://doi.org/10.1109/sp40001.2021.00019
http://arxiv.org/abs/2106.04378
https://ui.adsabs.harvard.edu/abs/2021arXiv210604378G
https://ui.adsabs.harvard.edu/abs/2021arXiv210604378G
https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.1145/3319535.3354208


Explaining the Behavior of Reinforcement
Learning Agents Using Association Rules

Zahra Parham1(B), Vi Tching de Lille2, and Quentin Cappart1

1 Ecole Polytechnique de Montréal, Montreal, Canada
{zahra.parham,quentin.cappart}@polymtl.ca

2 StockholmSyndrome.ai, Montreal, Canada
vitching@stockholmsyndrome.ai

Abstract. Deep reinforcement learning algorithms are increasingly used
to drive decision-making systems. However, there exists a known tension
between the efficiency of a machine learning algorithm and its level of
explainability. Generally speaking, increased efficiency comes with the
cost of decisions that are harder to explain. This concern is related to
explainable artificial intelligence, which is a hot topic in the research
community. In this paper, we propose to explain the behaviour of a black-
box sequential decision process, built with a deep reinforcement learning
algorithm, thanks to standard data mining tools, i.e. association rules.
We apply this idea to the design of playing bots, which is ubiquitous in
the video game industry. To do so, we designed three agents trained with
a deep Q-learning algorithm for the game Street FighterTurbo II . Each
agent has a specific playing style and the data mining algorithm aims
to find rules maximizing the lift, while ensuring a minimum threshold
for the confidence and the support. Experiments show that association
rules can provide insights on the behavior of each agent, and reflect their
specific playing style. We believe that this work is a next step towards
the explanation of complex models in deep reinforcement learning.

Keywords: Association Rules · Explainable Reinforcement Learning

1 Introduction

Multiplayer video games refer to video games that involve more than one person
playing together at the same time, either as a team (cooperative game) or as
opponents (competitive game). In such games, the interactions between players
are of the utmost importance and must be carefully designed in order to make
the game enjoyable. However, ensuring and maintaining proper interactions all
throughout the playing session is a hard goal to achieve in practice. First, enough
people must be available to play the game, and second, people must remain
active until the end of the game. Besides, the more people are involved in the
game, the more difficult it is to ensure these goals. For instance, each session
of the massively-played game Leagues of Legends is roughly about 30 min and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 107–120, 2023.
https://doi.org/10.1007/978-3-031-44505-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_8&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_8


108 Z. Parham et al.

involves 10 players, split into 2 teams. Having only one player leaving the game
deteriorates general satisfaction, especially for the impacted team.

A natural solution to this issue is to integrate artificial agents, dedicated to
mimic the behaviour of human players. Such agents are commonly referred to
as bots. When a person is missing or leaves the game before the end, the bot
will replace the player. Despite the simplicity of this idea, building believable
and fun-to-play bots is a non-trivial task: they must be developed specifically
for each game and their behaviour in the game must remain realistic for the
other players. An additional asset is to be able to replace the player with a bot
having a similar playing style as the replaced player in order to smooth the tran-
sition. Albeit possible and already used by big video game companies, building
efficient and human-like bots are generally beyond the range of independent stu-
dios with limited resources. It is why an innovative way to program bots should
be designed. The requirements are as follows: the approach should be (1) generic,
meaning that it must be possible to use the approach for different games, (2)
credible as it should mimic a human behaviour, and (3) transparent, in the sense
that a developer must be able to understand the rationale behind the actions of
the bot and to re-calibrate it if required.

In another context, reinforcement learning [26] has been successfully applied
to various kinds of video games in combination with deep learning [15], imitation
learning [20], and league-style training, such as for Dota 2 [4], Minecraft [9], or
Doom [13]. The idea is to let the bot play the game, reward it when appropriate
actions are performed, and use this reward as feedback to train the agent. Once
trained, the agent can then be used for new sessions of the game. Provided that
the learning was successful, good performances from the bot are expected. There
exist in the literature a plethora of learning algorithms that can be used in this
context. Notable examples are DQN [19], PPO [25], DDPG [17], or SAC [10].
From an industrial point of view, the main benefit of this approach is that the
training algorithm is generic, only the definition of the environment changes
from one game to another. This directly ensures the first requirement about the
genericity of the approach. However, the requirements on the credibility and
transparency remain unaddressed. Broadly speaking, these concerns are related
to explainable artificial intelligence [6]. It must be possible to understand and
to trace why specific predictions are performed by a model. By doing so, the
confidence that we can have in the model is increased. This aspect is critical
for many real applications, such as in healthcare [21]. Although widely studied
for supervising learning approaches [5], there are fewer methods dedicated to
explainability in reinforcement learning [23], and even less that are applied on
the video game industry [18].

Based on this context, we propose to use data mining tools, such as associa-
tion rules [2,22], in order to provide meaningful information that can be used to
infer explanations about decisions carried out by reinforcement learning agents.
The reason behind this choice is that the explanations provided by association
rules are tightly related to expert knowledge injected in traditional bots. It is
done as follows: when the agent is deployed on a game, it generates samples con-
sisting of a set of observations and of the decision that it has carried out. The



Explaining the Behavior of Reinforcement Learning Agents 109

Fig. 1. Illustrations of Street Fighter Turbo II game.

proposed idea is to use association rule mining tools in order to detect which
components of the observations often involve specific decisions. Using this tool,
we propose to find rules maximizing the lift, while ensuring a minimum threshold
for the confidence and the support. Such metrics, common in data mining, are
defined subsequently. Briefly, this turns in finding rules that are the most signif-
icant while ensuring constraints on their occurrences in the set of observations.
Then, we can deduce that these observations are features that often trigger the
decision. We evaluate this idea on the 2-players competitive game Street Fighter
Turbo II. We trained three agents for this game. Each of them is characterized
by a specific playing style (aggressive, defensive, and balanced) and has been
trained accordingly. The mined rules that we computed from millions of sam-
ples obtained from each agent show that we can discriminate each agent by its
playing style and thus explain their specific behavior.

The paper is organized as follows. The next section presents the nature of
the game and the preprocessing steps that have been done. Then, Sect. 3 for-
mally describes the reinforcement learning environment. The subsequent section
introduces the reinforcement learning agent interacting with the environment.
The rule extraction methodology is then explained in Sect. 5. Finally, Section 6
presents the rules that we obtained for each agent.

2 Case Study: Street Fighter Turbo II

Street Fighter II Turbo is a competitive fighting game released by Capcom for
arcades in 1992. Briefly, the game features two opponents. The goal of each
player is to deplete the health of the opponent before the timer expires. The
winner is the surviving player or, in case of timeout, the player having the most
remaining health. To do so, each player can perform a variety of actions, such as
moving forward, moving backward, jumping, crouching, kicking the enemy, etc.
Illustrations of the game interface with two actions are proposed in Fig. 1.

From the point of view of a human player, actions are performed thanks to
a predefined combination of keys on a keyboard. By limiting the combination



110 Z. Parham et al.

to at most 2 keys as proposed in [7], we consider 21 different actions. They are
summarized in Table 1. The raw environment of any video game is the visual
frames displayed to the player, i.e., a grid of pixels. Although such an input can
be successfully leveraged by deep learning architectures, i.e., thanks to a convo-
lutional neural network [16], it does not give an input that is understandable by
humans. For such a reason, the first step is to pre-process the visual frames and
to translate them into a set of high-level features. To do so, we used BizHawk
emulator1 to obtain low-level information located in the RAM and related to a
specific state of the game. Among the many features available in the RAM, we
have extracted few of them, with the possible values they can take. A summary
of them is proposed in Table 2. As we can see, we have 15 different features, 12
of them are related to a specific player, 2 of them relates to both players, and
the last one (remainingTime) is a general status of the game.

Table 1. List of available actions.

Action name Description

movingForward The agent walks in the forward direction

movingBackward The agent walks in the backward direction

jumping The agent jumps straight up

jumpingForward The agent jumps in the forward direction

jumpingBackward The agent jumps in the backward direction

jumpingWithKicking The agent jumps in the forward while kicking the opponent

neutralJumpingStrong The agent punches medium while jumping

farStandingRoundhouse The agent kicks hard while standing far

farStandingFierce The agent punches hard while standing far

farStandingJab The agent punches light while standing far

farStandingShort The agent kicks light while standing far

farStandingForward The agent kicks high side while standing

crouchingShort The agent kicks low while crouching

crouchingForward The agent kicks with good reach while crouching

crouchingStrong The agent punches medium crouching

crouchingJab The agent punches light while crouching

crouchingFierce The agent punches hard while crouching

crouchingRoundhouse The agent kicks hard while crouching

sitDown The agent sits down in place

sitBackward The agent walks in the backward direction while siting down

idling The agent stays in place without doing any action

3 Definition of the Environment

The first step in reinforcement learning is to define an environment as a Markov
Decision Process (MDP). Briefly, let 〈S,A, T,R〉 be a tuple representing a deter-
1 https://github.com/TASEmulators/BizHawk.

https://github.com/TASEmulators/BizHawk


Explaining the Behavior of Reinforcement Learning Agents 111

Table 2. Summary of the observations used to create the environment.

Observation name Domain Description

isMoving(p1) {0, 1} Indicate if the player p1 is currently moving

isMoving(p2) {0, 1} Indicate if the player p2 is currently moving

isCrouching(p1) {0, 1} Indicate if the player p1 is currently crouching

isCrouching(p2) {0, 1} Indicate if the player p2 is currently crouching

isJumping(p1) {0, 1} Indicate if the player p1 is currently jumping

isJumping(p2) {0, 1} Indicate if the player p2 is currently jumping

horizontalCoord(p1) [0, 498] The horizontal coordinate of player p1

horizontalCoord(p2) [0, 498] The horizontal coordinate of player p2

verticalCoord(p1) [0, 204] The vertical coordinate of player p1

verticalCoord(p2) [0, 204] The vertical coordinate of player p2

health(p1) [0, 176] The remaining health of player p1

health(p2) [0, 176] The remaining health of player p2

horizontalDelta(p1, p2) [0, 189] The horizontal distance between player p1 and p2

verticalDelta(p1, p2) [0, 158] The vertical distance between player p1 and p2

remainingTime [0, 99] The time until the end of the game (99 s in total)

ministic and fully observable environment, where S is the set of states, A is the
set of actions that an agent can perform inside the environment, T : S × A → S
is the transition function leading the agent to another state, and R : S ×A → R

is a function rewarding (or penalizing) the realization of an action a ∈ A from
a state s ∈ S. The behaviour of an agent is defined by a policy π : S → A,
indicating the action to be performed on a specific state. The goal of an agent is
to learn a policy maximizing the accumulated reward during its lifetime, defined
as a sequence of states st ∈ S with t ∈ {1, . . . , θ}. This is commonly referred
to as an episode. The final state sθ is referred to as the terminal state and is
commonly reached when a halting condition is reached. This formalization is
common in any task related to reinforcement learning [26]. The model we have
designed for Street Fighter II Turbo is as follows:

State A state s ∈ S is defined as a vector 〈x1, . . . , x15〉 of 15 features. It cor-
responds to the 15 observations summarized in Table 2. A state is terminal
when one of these three conditions is fulfilled: (1) the health of the first player
is depleted, i.e., health(p1) = 0, (2) the health of the second player is depleted,
i.e., health(p2) = 0, or (3) when the timer is exceeded, i.e., remainingTime = 0.

Action An action a ∈ A simply corresponds to an available action proposed in
Table 1. There are then 21 possible actions that the agent can perform inside
the environment.

Transition The transition function updates the current state st according to
the action performed at the time t. The definition of the transition directly
relies on the game mechanisms as executed by the emulator. For instance,
assuming that farStandingJab is an action performed by the first player and
that deals 40 damages to the opponent, the state information st+1 related to



112 Z. Parham et al.

health(p2) gets the value health(p2) − 40. Internally, the transition between
two states corresponds to 7 visual frames.

Reward The goal of the reward is to encourage the agent to perform actions
that will lead it to win the game. A simple way to define the reward is to
only give a positive value when the agent wins the game, and a negative value
when it loses it. This reward signal is defined in Eq. (1). It indicates that an
action a performed at a state s is positively rewarded if the next state is a
terminal state corresponding to a victory for the first player. On the other
hand, it is negatively rewarded (i.e. punished) in case of a defeat.

Rfinal(st, a) =

⎧
⎪⎨

⎪⎩

1 if health(p1) > health(p2) ∧ isTerminal(st+1)
−3 else if health(p1) < health(p2) ∧ isTerminal(st+1)
0 otherwise

(1)

The values of 1 and −3 have been calibrated manually. The drawback is that
non-zero rewards are collected only at the end of an episode. This yields
the sparse reward issue, which is known to complicate the training process
[24]. We tackle this issue by introducing an intermediate reward, that can
be collected in the middle of an episode. This is also known as a reward
shaping method. The idea is to evaluate the impact of an action on the
remaining health of both players. Intuitively, each health point depleted from
the opponent will be rewarded, and each health point that is inflicted will be
punished. Let δhealtht (p) = healtht+1(p) − healtht(p) be the difference in the
health for the player p between state st+1 and st, the intermediate reward is
defined in Eq. (2).

Rintermediate(st, a) = αwinδhealtht (p2) − αloseδhealtht (p1) (2)

On this equation, αwin is a positive coefficient giving incentive to the agent
to deplete the health of the opponent, and αlose a second coefficient giving it
incentive to not lose health. Based on both equations, the reward function
used in our model is as follows.

R(st, a) = Rintermediate(st, a) + Rfinal(st, a) (3)

4 Learning Algorithm

The learning algorithm relies on a deep Q-learning approach [19]. Briefly, the idea
is to estimate the quality of taking an action a from a state s. This estimation is
referred to as a Q-value and is obtained thanks to a trained deep neural network.
In our case, we used a fully-connected neural network of two hidden layers of
64 neurons each together with a ReLU activation [8]. The output is a real value
for each action, corresponding to the Q-value. Once trained, the agent policy
consists in always selecting the action that has the best Q-value.



Explaining the Behavior of Reinforcement Learning Agents 113

Three agents have been designed in this work. Each of them has been trained
between 2,000,000 and 3,000,000 time steps. This corresponds to around 10,000
game sessions and 15 h of training time on a Intel(R) Xeon(R) CPU @ 2.30 GHz
CPU and a Tesla P100-PCIE-16 GB GPU using Adam optimizer [14]. Addition-
ally, the game consists of three episodes (i.e. three rounds), but we only consider
the first one in each game session. The playing style of the opponent is the
one implemented by the game developers and natively integrated in the game.
Finally, we would like to point out that building the most efficient agent is not
the motivation of this paper. In contrast, our goal was to build only a decent
agent and to show that its behaviour can be successfully explained thanks to
association rules.

5 Explanation with Association Rules

This section describes the methodology we used to extract information explain-
ing the behaviour of the trained agents. We do it by means of association rules [1].
Briefly, the idea is to extract relevant implications from a large database T of
transactions. In our context, each transaction is defined as a set {I1, . . . , In} of n
items together with a specific item Y . An association rule is defined as an impli-
cation of the form I → Y , where I = {Ij , . . . , Ik} is a subset of existing items.
The goal is to find association rules that are the most frequent in T . Provided
with this information, we can then infer that the item Y is often obtained when
the items I are also present. Three metrics are commonly used for determining
how relevant a rule is. There are as follows:

1. The support indicates how frequent a rule is. It is computed as the ratio
between the transactions containing both I and Y with the total number of
transactions in T . It is formalized in Eq. (4).

Support(I → Y ) =
#

{
t ∈ T

∣
∣
∣ I ∈ t ∧ Y ∈ t

}

#
{

t ∈ T
} (4)

2. The confidence is the ratio between the transactions containing both I and
Y , with the transactions containing only I. It is formalized in Eq. (5).

Confidence(I → Y ) =
#

{
t ∈ T

∣
∣
∣ I ∈ t ∧ Y ∈ t

}

#
{

t ∈ T
∣
∣
∣ I ∈ t

} (5)

3. The lift measures the performance at predicting the presence of both Y and
I in a transaction against a random prediction. A lift of 1 indicates that the
probabilities of occurrence of both I and Y are independent. In such a case, no
relevant rule can be drawn involving those items. This measure is formalized
in Eq. (6), where Support(I) is the support of I in the database. Intuitively,



114 Z. Parham et al.

a lift of 2 shows that the Y of the corresponding rule is twice more likely to
be present compared to the average.

Lift(I → Y ) =
Support(I ∪ Y )

Support(I) × Support(Y )
(6)

In our case, we opted to find rules maximizing the lift, while ensuring a
minimum support threshold of 0.01 and a minimum confidence threshold of 0.01
as well. The choice of maximizing the lift has been done arbitrarily and depending
on the application, another metric could be considered. An additional analysis
where we maximize the confidence instead is also proposed. There exist many
algorithms in the literature for finding association rules, such as Apriori [2] or
its variants [27,28].

To obtain a database of transactions, we mapped the state of the reinforce-
ment learning environment (i.e., observations from Table 2) with the {I1, . . . , In}
items, and the actions that are taken (i.e., actions from Table 1) with the Y item.
We collected such information by letting the trained agents play the game 1,000
times. It roughly gives a database T between 100,000 and 200,000 transactions
for each agent. It means that the agent performs between 100 and 200 actions
per game. One difficulty that arose is that standard association rule mining
algorithms assume that the items have categorical values. It is not the case of
some observations of the environment, such as the remaining health of a player
(health(p)). Although alternative algorithms exist in the literature for such a
situation [11], we selected the option to discretize each numerical observation
into a set of meaningful categories. The main reason is that categorical data are
easier to interpret. A summary of this discretization is proposed in Table 3. For
instance, the first discretization shows that we have a category rightOf if the
horizontal coordinate of player p1 is higher than the horizontal coordinate of
player p2. The rule extraction has been carried out in R using arules package2

and was executed in less than 30 s for each agent.

Table 3. Summary of the discretization performed on the observations.

Modified observation Domain Categorical domain

horizontalCoord(p1) [0, 498] rightOfP2 : hCoord(p1) > hCoord(p2)

horizontalCoord(p2) leftOfP2 : hCoord(p1) < hCoord(p2)

horizontalDelta(p1, p2) [0, 189] close : [0, 63], middle : [64, 126], far : [127, 189]

verticalCoord(p) [0, 204] jumping : [0, 191], standing : [192, 204]

health(p) [0, 176] low : [0, 58], medium : [59, 117], high : [118, 176]

verticalDelta(p1, p2) [0, 158] Not used (redundant with verticalCoord)

remainingTime [0, 99] Not used (not player-dependant)

2 https://github.com/mhahsler/arules/.

https://github.com/mhahsler/arules/


Explaining the Behavior of Reinforcement Learning Agents 115

6 Analysis of the Rules Obtained

This section presents the best rules that we have been able to extract from the
agents we trained. Three agents are presented: a balanced, a defensive, and an
aggressive one. Their differences relates to the reward function that has been
used to define the environment. Detailed information is proposed subsequently.

Rules for a Balanced Agent

The first agent we trained uses the reward function defined in Eq. (3) with αwin =
αlose = 1. Intuitively, this agent has an equal incentive to protect its health and
to deplete the health of the opponent, hence its qualification of being balanced.
The progression of the reward during the training phase is illustrated in Fig. 2.
Then, Table 4 shows the top-5 rules obtained, sorted by their lift, while enforcing
a minimum threshold of 0.01 for the support and the confidence. Interestingly, we
can see that the agents perform both aggressive (jumpingWithKicking) and defen-
sive (jumpingForward) actions with a relatively similar lift value. For instance,
an interpretation of the first rule is that the agent is likely to jump toward the
enemy when it is not too far (horizontalDelta(p1, p2) = middle) and on the left side
of the opponent (horizontalCoord(p1) = leftOfP2). The result is to land behind
the opponent, which is a common tactical move for this game. Table 5 proposes
a similar analysis when maximizing the confidence instead, while enforcing the
support to be more than 0.01 and the lift more than 2. As we can observe, similar
rules are obtained.

Fig. 2. Evolution of the reward during the training for the balanced agent.



116 Z. Parham et al.

Table 4. Top-5 rules obtained for the balanced agent (lift measure).

Rule antecedent (I) Rule consequent (Y ) Support Confidence Lift

health(p1) = high, isJumping(p1) = 1,

verticalCoord(p2) = standing, health(p2) = high

crouchingStrong 0.01 0.36 15.61

horizontalDelta(p1, p2) = middle,

isMoving(p2) = 1,isCrouching(p2) = 0,

horizontalCoord(p1) = leftOfP2

jumpingForward 0.01 0.20 12.19

isCrouching(p2) = 1, health(p1) = high,

health(p2) = high, horizontalCoord(p1) =

rightOfP2,

horizontalDelta(p1, p2) = middle

movingBackward 0.01 0.97 5.89

verticalCoord(p2) = standing,

isMoving(p2) = 1

jumpingBackward 0.01 0.02 1.35

health(p2) = high,

isMoving(p2) = 1, health(p1) = high

jumpingWithKicking 0.02 0.98 9.76

Table 5. Top-5 rules obtained for the balanced agent (confidence measure).

Rule antecedent (I) Rule consequent (Y ) Support Confidence Lift

verticalCoord(p1) = jumping,

health(p1) = high, health(p2) = high

jumpingWithKicking 0.02 0.98 9.76

isCrouching(p1) = 0, verticalCoord(p1) =

standing

health(p1) = high, health(p2) = medium,

horizontalDelta(p1, p2) = middle,

horizontalCoord(p1) = rightOfP2

movingBackward 0.01 0.97 5.89

isJumping(p2) = 1, isJumping(p1) = 1,

health(p2) = high,

isMoving(p2) = 1,

horizontalCoord(p1) = leftOfP2

farStandingFierce 0.01 0.78 4.27

isMoving(p1) = 1, isStanding(p1) = 1

isJumping(p2) = 1, health(p1) = high,

health(p2) = high,

horizontalDelta(p1, p2) = close,

horizontalCoord(p1) = leftOfP2

idling 0.02 0.69 4.62

isCrouching(p1) = 1, isJumping(p2) = 1,

health(p2) = low,

horizontalDelta(p1, p2) = close,

sitDown 0.01 0.59 9.27

Rules for a Defensive Agent

As our goal is to assess whether association rules can find relevant rules explain-
ing the behaviour of a reinforcement learning agent, we trained another agent,
which has incentive to protect its health. This is done by setting αwin = 0 and
αlose = 1. Intuitively, the agent does not receive reward anymore if it hits the
opponent, but it still gets punished if it loses health. Provided that our hypoth-
esis is correct, the top rules should be related to more defensive actions. They
are summarized in Table 6. A first observation is that the rules obtained are



Explaining the Behavior of Reinforcement Learning Agents 117

highly different than the ones related to the balanced agent. The first top-rule
(crouchingFierce) is an in-between aggressive/defensive action and is obtained
with a high lift value. The second top-rule (movingBackward) is a purely defen-
sive action. This shows a playing style more defensive than the balanced agent.

Rules for an Aggressive Agent

Following the same idea, we performed the same analysis on an aggressive agent.
It has been implemented by setting αwin = 1 and αlose = 0. Intuitively, it still
receives rewards when it hits the opponent, but it is not punished anymore when
it loses health. Provided that our hypothesis is correct, the top rules should be
related to more aggressive actions. They are summarized in Table 7. Compared to
the defensive agent, roughly the same rules are obtained but within a different
importance order. For instance, the second top-rule is now an attack instead
of a defensive move. Another offensive move (jumpingWithKicking) also gains
importance (lift of 12.3 instead of 5.73), showing that the agent is, as intended,
more aggressive than the defensive one.

Table 6. Top-5 rules obtained for the defensive agent (lift measure).

Rule antecedent (I) Rule consequent (Y ) Support Confidence Lift

isMoving(p1) = 1, health(p2) = medium,

isCrouching(p2) = 0, horizontalDelta(p1, p2) =

close,

isJumping(p1) = 1,

verticalCoord(p2) = standing

crouchingFierce 0.01 0.60 31.10

isCrouching(p1) = 0, isMoving(p1) = 0,

health(p2) = high,

isJumping(p1) = 0, health(p1) = high,

horizontalDelta(p1, p2) =

middle,horizontalCoord(p1) = rightOfP2

movingBackward 0.01 0.97 19.27

isMoving(p1) = 1, isJumping(p1) = 1,

horizontalDelta(p1, p2) = close, health(p1) =

high

verticalCoord(p2) = jumping

crouchingJab 0.01 0.40 16.00

isCrouching(p1) = 1, isMoving(p1) = 0,

health(p2) = low, isCrouching(p2) = 0,

isMoving(p2) = 1

sitDown 0.01 0.20 7.03

isCrouching(p1) = 0, health(p2) = medium,

horizontalDelta(p1, p2) = close, health(p1) =

high,

verticalCoord(p2) = jumping, isMoving(p2) = 1

jumpingWithKicking 0.01 0.10 5.73



118 Z. Parham et al.

Table 7. Top-5 rules obtained for the aggressive agent (lift measure).

Rule antecedent (I) Rule consequent (Y ) Support Confidence Lift

isMoving(p1) = 1, health(p2) = medium,

isJumping(p1) = 1, isCrouching(p2) = 0,

health(p1) = high,

verticalCoord(p2) = standing,

horizontalDelta(p1, p2) = close

crouchingFierce 0.01 0.76 39.67

isMoving(p1) = 1, isJumping(p1) = 1,

health(p1) = high, horizontalDelta(p1, p2) =

close,

verticalCoord(p2) = jumping, health(p2) =

medium,

horizontalCoord(p1) = leftOfP2

crouchingJab 0.01 0.50 20.29

isCrouching(p1) = 0, isMoving(p1) = 0,

health(p2) = high, isJumping(p1) = 0,

health(p1) = high, horizontalDelta(p1, p2) =

middle,

horizontalCoord(p) = rightOf

movingBackward 0.01 0.97 19.28

isCrouching(p1) = 0, health(p2) = medium,

health(p1) = high, horizontalDelta(p1, p2) =

close,

verticalCoord(p2) = jumping, isMoving(p2) = 1,

isJumping(p1) = 0, horizontalCoord(p) = leftOf

jumpingWithKicking 0.01 0.94 12.3

isCrouching(p1) = 1, isMoving(p1) = 0,

isCrouching(p2) = 0, isMoving(p2) = 1

sitDown 0.01 0.10 3.96

7 Conclusion and Future Work

Deep reinforcement learning is increasingly considered for driving decision mak-
ing systems. However, the trade-off between the efficiency of a model and its
explainability level is a challenge, which is critical for numerous applications. In
this paper, we proposed to use association rules to explain the decisions per-
formed by an agent trained by a deep reinforcement learning algorithm. We pro-
posed an application, on StreetFighter Turbo II video game, and trained three
agents, each with a specific playing style. The results obtained show that the
playing style of an agent has an impact on the rules obtained and on their rank.
This directly corroborates the hypothesis that association rules can be a rele-
vant tool to explain the behaviour of a black-box decision process, such as one
obtained by a deep reinforcement learning algorithms. Although our application
is for the video game industry, the approach proposed is generic and could be
considered for other applications of reinforcement learning. However, an impor-
tant limitation is that the input observations must be intrinsically explainable.
It is not always the case, especially when the inputs are a grid of pixels. Tar-
geting this limitation is an interesting line of future work. We also point out
that other data mining algorithms, such as classification rule learners [12] or
subgroup discovery [3], could be also considered for this task.



Explaining the Behavior of Reinforcement Learning Agents 119

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2), 207–216 (1993). https://doi.org/
10.1145/170036.170072

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proceedings of 20th International Conference on Very Large Data Bases, VLDB,
vol. 1215, pp. 487–499. Citeseer (1994)

3. Atzmueller, M.: Subgroup discovery. Wiley Interdisc. Rev. Data Min. Knowl. Dis-
covery 5(1), 35–49 (2015)

4. Berner, C., et al.: Dota 2 with large scale deep reinforcement learning. CoRR
abs/1912.06680 (2019). http://arxiv.org/abs/1912.06680

5. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine
learning. J. Artif. Intell. Res. 70, 245–317 (2021)

6. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey.
In: 2018 41st International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)

7. Fletcher, A.: How we built an AI to play Street Fighter II - can
you beat it? https://medium.com/gyroscopesoftware/how-we-built-an-ai-to-play-
street-fighter-ii-can-you-beat-it-9542ba43f02b. Accessed 18 Nov 2022

8. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

9. Guss, W.H., et al.: The minerl competition on sample efficient reinforcement learn-
ing using human priors. CoRR abs/1904.10079 (2019). http://arxiv.org/abs/1904.
10079

10. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: International
Conference on Machine Learning, pp. 1861–1870. PMLR (2018)

11. Hong, T.P., Kuo, C.S., Chi, S.C.: Mining association rules from quantitative data.
Intell. Data Anal. 3(5), 363–376 (1999)

12. Jovanoski, V., Lavrač, N.: Classification rule learning with APRIORI-C. In:
Brazdil, P., Jorge, A. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 44–51.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45329-6 8

13. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaskowski, W.: Vizdoom:
a doom-based AI research platform for visual reinforcement learning. CoRR
abs/1605.02097 (2016). http://arxiv.org/abs/1605.02097

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

16. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

17. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

18. Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: Explainable reinforcement
learning through a causal lens. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 34, pp. 2493–2500 (2020)

19. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/170036.170072
http://arxiv.org/abs/1912.06680
https://medium.com/gyroscopesoftware/how-we-built-an-ai-to-play-street-fighter-ii-can-you-beat-it-9542ba43f02b
https://medium.com/gyroscopesoftware/how-we-built-an-ai-to-play-street-fighter-ii-can-you-beat-it-9542ba43f02b
http://arxiv.org/abs/1904.10079
http://arxiv.org/abs/1904.10079
https://doi.org/10.1007/3-540-45329-6_8
http://arxiv.org/abs/1605.02097
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602


120 Z. Parham et al.

20. Osa, T., et al.: An algorithmic perspective on imitation learning. Found. Trends R©
Rob. 7(1–2), 1–179 (2018)

21. Pawar, U., O’Shea, D., Rea, S., O’Reilly, R.: Explainable AI in healthcare. In:
2020 International Conference on Cyber Situational Awareness, Data Analytics
and Assessment (CyberSA), pp. 1–2. IEEE (2020)

22. Peake, G., Wang, J.: Explanation mining: post hoc interpretability of latent factor
models for recommendation systems. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2060–2069
(2018)

23. Puiutta, E., Veith, E.M.: Explainable reinforcement learning: a survey (2020)
24. Riedmiller, M., et al.: Learning by playing solving sparse reward tasks from scratch.

In: International Conference on Machine Learning, pp. 4344–4353. PMLR (2018)
25. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,

Cambridge (2018)
27. Wu, H., Lu, Z., Pan, L., Xu, R., Jiang, W.: An improved apriori-based algorithm

for association rules mining. In: 2009 Sixth International Conference on Fuzzy
Systems and Knowledge Discovery, vol. 2, pp. 51–55. IEEE (2009)

28. Yuan, X.: An improved apriori algorithm for mining association rules. In: AIP
Conference Proceedings, vol. 1820, p. 080005. AIP Publishing LLC (2017)

http://arxiv.org/abs/1707.06347


Deep Randomized Networks for Fast
Learning

Richárd Rádli(B) and László Czúni

University of Pannonia, Veszprém, Hungary
{radli.richard,czuni.laszlo}@mik.uni-pannon.hu

Abstract. Deep learning neural networks show a significant improve-
ment over shallow ones in complex problems. Their main disadvantage
is their memory requirements, the vanishing gradient problem, and the
time consuming solutions to find the best achievable weights and other
parameters. Since many applications (such as continuous learning) would
need fast training, one possible solution is the application of sub-networks
which can be trained very fast. Randomized single layer networks became
very popular due to their fast optimization while their extensions, for
more complex structures, could increase their prediction accuracy. In
our paper we show a new approach to build deep neural models for clas-
sification tasks with an iterative, pseudo-inverse optimization technique.
We compare the performance with a state-of-the-art backpropagation
method and the best known randomized approach called hierarchical
extreme learning machine. Computation time and prediction accuracy
are evaluated on 12 benchmark datasets, showing that our approach is
competitive in many cases.

Keywords: extreme learning machines · classification · optimization

1 Introduction

While deep neural networks (DNNs) are very successful in machine learning
tasks their training is time demanding and thus often requires special hardware
and software solutions such as parallelization on CPUs, GPUs, TPUs, or on
a cluster of computers [1,9,14]. Since their task-solving performance increases
with their depth and width the required memory and computing power can reach
implementation limits not talking about the problems of vanishing gradients and
sub-optimal solutions. Circuit complexity theory deals with the size and depth
of networks to compute a function, for example wide residual networks [26] could
reach better results by balancing between depth and width but there are also
many technical aspects to be considered. Wider networks allow many multiplica-
tions to be computed in parallel, whilst deeper networks require more sequential
computations (since they depend on each other from layer to layer). For more
efficient design, Google created the family of networks called EfficientNet [23]
where a compound scaling method is used to scale the depth (number of layers),
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 121–134, 2023.
https://doi.org/10.1007/978-3-031-44505-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_9&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_9


122 R. Rádli and L. Czúni

the width (number of kernels in a layer), and resolution (size of input image) of
the network.

In our paper we introduce a different approach relying on the early obser-
vation that random weights can solve some problems very efficiently [11,19,20].
The drawback of these initial approaches was their shallowness, the limitation
to a single hidden layer, what was later resolved by multilayer representational
learning [6,25] or by ensemble of networks [3,7].

Contrary to these methods, we propose a multiple phase dense network build-
ing strategy (we call it multiple phase dense randomized neural network, MP-
DRNN), which shows good accuracy for classification tasks at fast training speed.
Our purpose is to be able to build up and train dense deep networks more
efficiently than with random initialization and backpropagation training. The
extension of our approach to other types of networks (f.e. convolutional) is for
future work. The main contributions of our article are:

– We show how to build deep randomized structures in consecutive phases,
where it is guaranteed that the classification performance will not decrease
as the depth of the network grows. (There is no vanishing gradient problem,
and the best solution, already found, is always kept after each phase.)

– While our classification accuracy outperformed the popular Adam optimizer,
with almost identical deep structures, in the majority of test sets, our com-
putation time is typically a fraction of it.

– The generated structure’s weights are determined in separate phases without
applying back propagation. The determination of weights can also be sped
up by GPUs but in our tests we used only CPUs.

– We compare our approach also to two of the most popular hierarchical random
networks H-ELM [24] and H-LR21-ELM [15] by accuracy and training time
on 12 benchmark datasets.

Our paper does not aim to reach the highest possible accuracy for some spe-
cific datasets. We used simple dense connections, no convolutional layers and no
residual connections were applied between the layers, necessary to reach the best
accuracy in most cases. While our method can be directly used for the building
of top-level classification layers over well-proven (f.e. convolutional) backbone
networks [18], there is more work to generalize our idea to reach the best opti-
mal results utilizing special connection structures. The relevance of our results
can also be supported by the facts that convolutional networks can be considered
as special cases of fully connected ones and moreover, in many tasks, there is no
spatially limited relation between input features (calling for convolution). It is
encouraging to notice that the proposed optimization outperformed the popular
Adam optimizer [12] in many test cases, running on the same dense networks,
typically at the fraction of time. In future much effort should be taken to apply
similar ideas for other types of networks (e.g. convolutional).

In the next section we overview the most closely related neural network mod-
els which show somehow similar structure and apply similar training approaches.
In Sect. 3 first we introduce the main steps of our approach then the datasets are
described followed by empirical evaluations on them. The different alternatives,



Deep Randomized Networks for Fast Learning 123

to design connections and weights, are analysed in Sect. 5.2 while conclusions
and further work are described in Sect. 6.

2 Related Articles

While in the previous section we mentioned different approaches to tackle the
problems coming from the size and complexity of DNNs, now we are going into
the details of how random neural networks (RNNs) can be utilized to attack
some of these problems.

It is well known that randomizing weights in neural networks can result in
improved accuracy. Published three decades ago in [20], the input data of a single
(hidden)-layer feed-forward neural network (SLFN) were weighted with random
numbers. Then, in the output layer, a fully connected network with bias was
applied, where its weights could be calculated by solving a linear set of equa-
tions by numerical methods. Later, in [19], the random vector functional links
network (RVFL) was proposed, where beside the input patterns, their random-
ized version is also generated and fed to the output using the standard weighted
connections. Both architectures showed good prediction performance in several
experiments. While the so called extreme learning machines (ELM) [11] have
subtle variations to these randomized networks (no direct connection between
inputs and outputs like RVFL, other usage of bias than in [20]) they became
more popular recently, in spite of reports that RVFL showed better performance
than ELM in some cases [22]. For a wider review on neural networks with ran-
dom weights, we propose to read [5].
All those solutions had good results for some problems and their training time
was very short (thanks to the non-iterative weight-setting mechanism), however,
they had shallow structures without hierarchy, needed for more complex tasks.
To increase the depth of ELMs, multilayer ELMs (ML-ELM) were introduced
in [6] using a sequence of basis transformations where the new basis vectors
were generated by autoencoders (AE) called ELM-AE. The encoder network
E : Rh → R

d, the latent space R
d, and the decoder network D : Rd → R

h form
a computation mechanism for the compact representation of input information
by z:

x̂ = D(E(x)) = D(z), (1)

where x is the input data, z is the latent information, and x̂ is the output of
the ELM-AE network (approximated input). Randomness is playing role as the
weights and the bias of the encoder is randomly generated. These random weights
were chosen to be orthogonal in [6] but in later variations [24] this condition was
omitted. The weights of the decoder were computed as in [11], and then the
inverted weights of the decoder were used as basis vectors for the hidden layer
representation of input data. After a few such steps (2 in the published article)
the obtained representation is fed to a normal ELM.

While the ML-ELM approach was tested only in one dataset (MNIST) with
good results, a slightly modified version, called hierarchical ELM (H-ELM) [24],



124 R. Rádli and L. Czúni

was evaluated on several different datasets and could outperform previous vari-
ants. Beside leaving the orthogonality condition for the random weights of the
ELM-AE, the l2 norm was replaced by l1, and the FISTA algorithm [2] was used
to compute the output weights instead of the matrix inversion technique. Details
of experiments are given in Sect. 5. While H-ELM and its variant (introduced
later as H-LR21-ELM) has generally the best accuracy so far (in the discussed
context) there are several questions not answered yet: how many ELM-AE blocks
are necessary to achieve the best results, how regularization constant C (see later
Eq. 8) is determined.

The multilayer randomized solution for representational learning introduced
in [25] was also named ML-ELM, but it applies a different idea than [6]. One of
the purposes of this approach (and target of the tests) was efficient dimension
reduction. Here, instead of using single hidden neurons as in the basic ELM fea-
ture mapping, this method employs sub-network nodes that consist of multiple
general hidden neurons. It is worth noting that a node in the basic ELM fea-
ture mapping can be considered as a special case of the sub-network node. The
number of general nodes and output dimension is independent, but the number
of hidden neurons in each general node should equal the dimension of outputs.

In [16] a multi-modal extreme learning machine was introduced with local
receptive fields on RGB and depth images (Multi-Modal Local Receptive Field
Extreme Learning Machine: MM-LRF-ELM) for object recognition. While it
maintains ELMs’ advantages of training efficiency, the MM-LRF-ELM is rela-
tively shallow. Since it is adopted for images, feature extraction is randomized
by the convolutional kernels themselves while the final classification weights are
computed by matrix inversion as in [11].

As for many kinds of classifiers, ensemble learning is also effective for ELMs.
Examples for this are in [4] (voting-based ELM, V-ELM), in [7] (hierarchical
ensemble of ensembles, H-ELM-E), or in [13], where a trained combiner is used
to integrate components for hyperspectral image classification. In [3] a hierarchi-
cal ensemble of ELMs (HE-ELM) is proposed where to encourage the diversity of
component ELMs with two strategies followed: the sparse connection to compo-
nent ELMs and feature bagging. To achieve representation learning, in contrast
to the previous shallow ensembles, it applies multiple layer feature representa-
tion. Unfortunately, as the number of ELMs is increasing the time complexity is
getting worse (but unfortunately not discussed in [3]).
Finally, we are making a note about the hierarchical approach called H-LR21-
ELM [15], where a specific combination of L21 norm based loss function and reg-
ularization is used to improve the robustness and the sparsity of H-ELMs. While
in most optimizations the L2 norm is used, we have already seen [24] that the L1

norm can improve results. The proposed L21 norm in [15] is claimed to make the
H-ELM model less sensitive to outliers and impulsive noises that are pervasive
in real-world data, moreover, the L21 regularization can learn the most-relevant
sparse representations to reduce the intrinsic complexity of models.

We can summarize that while (shallow) random networks has the advantage
of high speed training and good accuracy for some datasets, deeper structures



Deep Randomized Networks for Fast Learning 125

should be implemented for high accuracy on more complex problems. H-ELMs
and H-LR21-ELMs have good results but their parameter settings is not clear
and the sequence of AEs, used in them, might loose important information as
focusing mainly on data compression (reconstructability). Other solutions are
still shallow ([16]) or require set of networks ([4,7,13]). For the better under-
standing of the ELM, H-ELM, and our proposal, we explain their mechanisms
in details, evaluate test results, and propose future developments in the following
parts of our article.

3 The Proposed MP-DRNN Method

Our proposed method can be considered as a global optimization approach where
both randomly generated and optimally computed weights are applied in dense
layers built one after the other in consecutive phases as in differential evolution
techniques (DE).

Differential evolution, first introduced by [21], is an evolutionary computa-
tion method to optimize a problem iteratively trying to improve a candidate
solution considering a cost function. DE methods are commonly known as meta-
heuristics as they make few or no assumptions about the problem and can scan
very large spaces of candidate solutions. In general, DE optimizes a problem
by maintaining a population of candidate solutions and creating new candidate
solutions by combining existing ones and also keeping best one(s) without the
need for gradients.

Unfortunately, maintaining whole networks as members of a population
would be very memory and time demanding (similarly to ensemble approaches
we would like to avoid). Instead, we propose to add new neurons to the struc-
ture, hoping that useful new features can be extracted with the help of them.
The number of these new neurons and their weights are discussed in Sect. 3.2
and Sect. 5. The overview of our approach can be drawn by two kinds of phases
in four main steps:

1. Create a single ELM network and compute its output weights as the first
iteration. This is the first approximation for the solution. See Fig. 1 for illus-
tration.

2. Add new neurons to extend the output layer (which now becomes a hidden
layer) of the previous phase and add new output neurons at the top level
becoming the new output layer. See Fig. 2 for illustration.

3. Compute the weights for the new output layer with the matrix inversion
technique (see Eq. 7).

4. Repeat Steps 2–3 as further phases.

More detailed description of these steps is given in Algorithm 1. The advan-
tages of this mechanism is:

– In Phase 1 any type of ELM can be utilized. In our experiments we imple-
mented the plain old ELM [11].



126 R. Rádli and L. Czúni

– As in new extension phases we always keep the previous cells and connections,
the extended network should have identical or improved accuracy. Since the
added extra weights are computed by the evaluation of all training data (as in
previous phases) in worst case scenario zero weights are given to new hidden
neurons and ones for the previous output neurons (i.e. the output is simply
copied).

– The distribution of numbers of neurons can be set arbitrarily, and even prun-
ing can be applied to get a sparser network (not implemented in our article).

Algorithm 1. Building and training of MP-DRNN
Input: Training set (xi,yi) Output: MP-DRNN structure with weights

1: Randomly generate hidden node weights
2: Calculate the hidden layer output H
3: Calculate the Moore-Penrose generalized inverse H†

4: Calculate the weight matrix W := H†T
5: Calculate values of target vectors t1O
6: for (i=1; i≤ n; i=i+1) do
7: Copy the outputs neurons tiO from the previous phase, and add Gaussian

noise N (μ, σ2) to their weights
8: Add more neurons Hi+1

L rnd with random weights
9: Concatenate tiO, tiOδ and Hi+1

L rnd
10: Calculate the i + 1th hidden layer output
11: Calculate the Moore-Penrose generalized inverse H†

12: Calculate the weight matrix W := H†T
13: end for

3.1 The Initial Phase of MP-DRNN

First, we formalize the basic idea behind basic SLFN random networks according
to [11]. Consider a set of N distinct training samples (xi,yi), i = 1, ..., N . Then,
a SLFN with L hidden neurons has the following output equation:

t(xi) =
L∑

j=1

wjφ(rjxi + bj), (2)

where φ is an activation function, rj are the random and fixed-input weight
vectors, bj are the biases, wj are the output weight vectors to be tuned, and t
is the target vector (the outputs for the different classes). r1i and w1

i in Fig. 1
correspond to the weights here since the upper index will denote the first phase
of the algorithm. In practice, closed-form solutions can be used to find wj in a
matrix form. Thus, we can shorten the equation using matrices as:

T = HW, (3)



Deep Randomized Networks for Fast Learning 127

as the outputs of all hidden neurons are gathered into the matrix H:

H =

⎡

⎢⎣
φ(r1x1 + b1) · · · φ(rLx1 + bL)

...
. . .

...
φ(r1xN + b1) · · · φ(rLxN + bL)

⎤

⎥⎦, (4)

given W =
(
wT

1 · · ·wT
L

)T, and T =
(
tT1 · · · tTC

)T.

A unique solution for this system can be given by using the Moore–Penrose
generalized inverse (pseudoinverse) [17] of the matrix H, denoted as H†. From
Eq. 3:

W = H−1T. (5)

To find the “best fit” (least squares) solution to the system of linear equations
the pseudoinverse is computed [17]:

H† = (HTH)−1HT . (6)

Finally, we get the weights:

W := H†T. (7)

Alternatively, to apply regularization on W:

H† =

{
(C−11+HTH)−1HT if N>L
HT (C−11+HHT )−1 if N<L

(8)

where C is a scalar regularization constant for the control of magnitude of weights
[10] and 1 is the identity matrix.

At this point we’ve arrived to the first phase of the MP-DRNN. In further
steps we will extend this network at its end layer as specified in the following.

3.2 Extension Phases

Following the general ideas of differential evolution, we have chosen three strate-
gies to add new hidden neurons (denoted as Hidden layer 2 in Fig. 2):

1. t1Oδ: clones of output neurons of phase one by perturbating their weights
with Gaussian noise with 0 mean. The purpose of these neurons is to test the
parameter space around the optimal weights computed in the previous phase
by Eq. 7.

2. H2
Lrnd: random neurons for random scanning of parameter space.

3. output neurons (with t2O output values) to represent class labels.

In our baseline approach the sum of new neurons, of consecutive phases, is equally
distributed. In another variant (Exp. ort. - also evaluated in Sect. 5) the num-
ber of neurons were exponentially decreasing through the phases (following the



128 R. Rádli and L. Czúni

Fig. 1. First phase of MP-DRNN
is equivalent to a basic ELM.

Fig. 2. Second phase of MP-DRNN. Lime coloured
nodes denote first phase neurons, while light blue
nodes denote the second phase neurons. Dotted lines
indicate the new weights as incremental structures
added to phase one. (Color figure online)

general pattern of fully connected DNNs). Since we apply random numbers for
weights in each phase we are still following ELM universal approximation theory
[11] while building deep hierarchical networks.

4 Datasets

All of the utilized benchmark datasets are the same as those used in [15].
Most of them are from the UCI Machine Learning Repository. We included
six image datasets and six classic real-world datasets as classification problems.
The datasets were divided into train and test sets the same way as in [15]. Before
feeding the data to the network, we normalized the datasets to the [0, 1] scale.
Detailed description of the datasets can be seen in Table 1. This table presents
a summary of the benchmark datasets used in our study, including the number
of instances, the number of features, and the data type. The data type column
indicates whether the dataset is image-based or feature-based.



Deep Randomized Networks for Fast Learning 129

Table 1. Main numerical characteristics of the datasets.

Dataset #Features #Train #Test #Classes #Data type

Connect4 42 50,000 17,577 3 Feature
Isolet 617 6,238 1,559 26 Feature
Letter 16 10,500 9,500 26 Image
MNIST 784 60,000 10,000 10 Image
Fashion-MNIST 784 60,000 10,000 10 Image
Musk2 166 3,000 3,598 2 Feature
Optdigits 64 3,822 1,797 10 Feature
Page-blocks 10 4,385 1,100 5 Feature
Segmentation 19 1,733 577 7 Image
Shuttle 9 29,834 26,936 7 Feature
USPS 256 7,291 2,007 10 Image
YaleB 1024 1,680 734 38 Image

5 Evaluations and Further Studies

For the qualitative evaluation of our proposed method we used three competitive
networks as references:

1. H-ELM networks with main parameters specified in [15]. The implementa-
tion available at [8] was used for the running time evaluations. We left the
implementation intact, only set the number of neurons in each layer and tuned
C (which is the L2 penalty of the last layer ELM) and s (the scaling factor)
in order to obtain the accuracy published in the original article, since these
parameters were not published. By tuning these parameters we could not
reproduce all testing accuracy values as published in [15] thus for accuracy
we use their published numbers.

2. Our main rival is the H-LR21-ELM network [15]. Again, the above param-
eters were not specified for each of the dataset, therefore we relied on the
claimed results of [15].

3. Fully-connected neural network (FCNN) with 3 layers and the same number
of neurons as the other networks. The hyper-parameters were the following:
the network was trained until convergence, we used the ADAM optimizer
with learning rate set to 10−3. Batch size was selected to 128 in all cases.
The main purpose with this network is to get impressions how successfully
the iterative backpropagation (BP) could be substituted with the randomized
approach.

The evaluation covered testing accuracy, as well as training times; H-ELM
was implemented in MATLAB, while the other two methods were written in
Python. The authors of [15] used three layers for both H-ELM and H-LR21-
ELM, while we have implemented our network with various number of layers
for each dataset (for details see Table 2). With the MP-DRNN, the activation



130 R. Rádli and L. Czúni

Table 2. Number and distribution of neurons at different layers for the tested models.

H-ELM/H-LR21-ELM MP-DRNN Base method

Dataset N1 N2 N3 Sum N1 N2 N3 N4 N5 Sum
Connect4 400 200 2000 2600 866 866 866 – – 2598
Isolet 800 400 3000 4200 1050 1050 1050 1050 – 4200
Letter 100 50 500 650 130 130 130 130 130 650
MNIST 1000 5000 10000 16000 5333 5333 5333 – – 15999
Fashion-MNIST 1000 5000 10000 16000 5333 5333 5333 – – 15999
Musk2 400 200 2000 2600 520 520 520 520 520 2600
Optdigits 100 50 500 650 162 162 162 162 – 648
Page-blocks 100 50 500 650 130 130 130 130 130 650
Segmentation 100 50 500 650 216 216 216 – – 648
Shuttle 10 50 500 650 216 216 216 – – 648
USPS 400 200 2000 2600 1300 1300 – – – 2600
YaleB 800 400 3000 4200 840 840 840 840 840 4200

functions were Leaky ReLU (slope was set to 0.2), except for the last layer, where
it was sigmoid. (For H-ELM and H-LR21-ELM, the authors applied the sigmoid
activation function.) Our initial MP-DRNN model (referred to as MP-DRR Base
Model) did not use regularization nor scaling, had the same number of neurons
in each layer. The only hyper-parameter is the number of layers.

The leaky ReLU was chosen for our method because empirical tests showed
that it produced better results than using only sigmoid activation functions in
all layers. Furthermore, it is worth noting that computation time of Leaky ReLU
is less expensive. Specification of the software and hardware environment: AMD
Ryzen 5 5600X CPU, 32 GB DDR4 RAM, Windows 11, MATLAB R2022a,
Python 3.8.0 and NumPy 1.22.1.

5.1 Evaluation of Reference Methods and Our Base Model

The testing accuracy and training times of the different methods are shown
in Fig. 3 and in Table 3 with best values in bold. For MP-DRNN we repeated
the experiments for 5 times, and the averaging results were computed for com-
parison. FCNN was trained until convergence, while the results of H-ELM and
H-LR21-ELM (also average values) originate from [15]. Considering accuracy,
as summarized in the bottom line of Table 3, H-LR21-ELM won in most cases,
while our base model (MP-DRNN BM) was second with 4 wins.

5.2 Improvements for Building MP-DRNN Models

As further investigations we made experiments with the following alternative
configurations modifying the MP-DRNN base network:



Deep Randomized Networks for Fast Learning 131

Table 3. Classification accuracy and training times of our base and reference methods.
Bold values are for the best testing accuracy. Training time of H-LR21-ELM is not given
since we used the data from [15] and the different computer platforms doesn’t allow
fair comparisons.

H-ELM H-LR21-ELM FCNN MP-DRNN BM

Dataset Testing
accuracy

Training
time [s]

Testing
accuracy

Training
time [s]

Testing
accuracy

Training
time [s]

Testing
accuracy

Training
time [s]

Connect4 68.01 2.968 69.41 N.A 79.21 43.477 74.38 12.822

Isolet 95.41 1.625 95.89 N.A 94.55 15.684 95.29 6.2847

Letter 87.83 0.115 88.07 N.A 81.08 4.343 83.76 0.899

MNIST 98.87 93.837 98.76 N.A 97.94 855.580 97.78 404.060

Fashion-MNIST 89.78 42.523 89.96 N.A 87.49 852.654 88.64 407.072

Musk2 98.21 0.317 99.29 N.A 99.97 2.669 100 2,0236

Optdigits 97.48 0.052 97.78 N.A 97.16 2.207 97.79 0,3693

Page-blocks 96.71 0.051 97.06 N.A 96.18 3.299 97.43 0.384

Segment 94.75 0.025 95.38 N.A 96.01 6.088 96.24 0.292

Shuttle 99.02 0.294 99.02 N.A 99.54 9.544 99.44 1,277

USPS 97.68 0.659 98.09 N.A 95.71 15.666 94.56 4.663

YaleB 98.34 1.339 99.17 N.A 89.78 32.353 95.53 0.751

Numberof wins 1 5 2 4

Table 4. Classification results of the different methods on the 12 datasets. Bold values
are for the best accuracy.

H-LR21-ELM Exp-Ort Exp-Ort-C Large Exp-Ort-C

Dataset Test.
acc.

Trn.
time [s]

Test.
acc.

Trn.
time [s]

Test.
acc.

Trn.
time [s]

Test.
acc.

Trn.
time [s]

Increase

Connect4 69.41 N.A 75.37 15.33 76.24 7.589 – – –
Isolet 95.89 N.A 95.93 8.967 96.01 7.027 – – –
Letter 88.07 N.A 83.92 0.783 84.20 0.559 91.3 2.1 ×3
MNIST 98.76 N.A 97.89 500.131 97.91 400.176 97.94 869.786 ×1.5
Fashion-MNIST 89.96 N.A 88.75 505.423 88.82 404.152 88.9 870.41 ×1.5
Musk2 99.29 N.A 99.9 2.765 100 1.409 – – –
Optdigits 97.48 N.A 98.3 0.371 98.45 0.281 – – –
Page-blocks 97.06 N.A 96.58 0.433 97.66 0.377 – – –
Segment 95.38 N.A 96.43 0.423 96.80 0.206 – – –
Shuttle 99.02 N.A 99.49 1.14 99.57 0.752 – – –
USPS 98.09 N.A 94.61 5.287 94.70 2.237 – – –
YaleB 99.17 N.A 94.67 0.965 95.67 0.613 – – –

Numberof wins 3 0 6 1

1. Exp-Ort: To follow the general pattern of deep networks, instead of equally
distributed number of neurons, their number was decreasing exponentially
from layer to layer (the sum of neurons did not change). Besides, to increase
the uniformity of random weights, only half of the originally determined ran-
dom weights (H2

Lrnd) were generated, while the other half was generated as
their orthogonal vectors.

2. Exp-Ort-C: In another case we modified the Exp. Ort. model by adding the
C regularization factor and tried to find its optimal value (similarly as com-
petitor techniques H-ELM and H-LR32-ELM do).



132 R. Rádli and L. Czúni

Fig. 3. Classification accuracy of our base and reference methods.

Fig. 4. Classification results of the different methods on the 12 datasets

3. Large Exp-Ort-C: Finally, for some datasets, we increased the number of
neurons in the hidden layers, in order to test whether we can achieve higher
testing accuracy.

Results can be seen in Fig. 4 and in Table 4. The performance of these alter-
natives showed little variations, but in general, each modification resulted in
improved accuracy, over-performing competitors in many cases. While we think
that the comparisons of H-LR21-ELM and Exp-Ort-C is fair (since both used
hand tuned parameter C) the Large Exp-Ort-C variant is just to show the limi-



Deep Randomized Networks for Fast Learning 133

tations of the current state of our approach. The training time of the MP-DRNN
technique is between the FCNN and the H-ELM implementations while our clas-
sification accuracy is almost always higher than the FCNN. It looks obvious, that
H-ELM and H-LR21-ELM have advantages in case of datasets with large dimen-
sions (such as the images of MNIST, Fashion-MNIST, USPS, and YaleB - see
Table 1), reasoned by the good feature compression abilities of autoencoders on
highly correlated data. This implicates to use H-ELM or H-LR21-ELM (at least)
in the first phase of our future implementations of MP-DRNN.

6 Conclusions and Future Work

In our article a new building approach for dense hierarchical randomized DNNs
was introduced. Its training is significantly (circa 5 times in average) faster than
backpropagation while its classification is more accurate in most test cases (at
the same number of neurons). In more than half of the test cases our solution
called Exp-Ort-C MP-DRNN could outperform H-ELM and H-LR21-ELM while
the version without the need of fine tuning the regularization parameter (Exp-
Ort MP-DRNN) could win for datasets with low dimensions (in 5 cases).

We think that our approach can already be used as the final classification
layers of larger backbone networks (similarly to the approach in [18]) but after
using AEs for the settings of some of the random weights (similarly to H-ELM)
we can improve the accuracy for high-dimensional (correlated) data such as
images. As more future work we are to increase the sparsity of the network
by pruning, extend the approach to convolutional layers, and investigate the
usability of the L21 norm.

Acknowledgements. We acknowledge the financial support of the Hungarian Scien-
tific Research Fund grant OTKA K-135729. We are grateful to the NVIDIA corporation
for supporting our research with GPUs obtained by the NVIDIA Hardware Grant Pro-
gram.

References

1. Awan, A.A., Jain, A., Anthony, Q., Subramoni, H., Panda, D.K.: HyPar-Flow:
exploiting MPI and Keras for scalable hybrid-parallel DNN training with tensor-
flow. In: Sadayappan, P., Chamberlain, B., Juckeland, G., Ltaief, H. (eds.) ISC
High Performance 2020. LNCS, vol. 12151, pp. 83–103. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-50743-5_5

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

3. Cai, Y., Liu, X., Zhang, Y., Cai, Z.: Hierarchical ensemble of extreme learning
machine. Pattern Recogn. Lett. 116, 101–106 (2018)

4. Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf.
Sci. 185(1), 66–77 (2012)

5. Cao, W., Wang, X., Ming, Z., Gao, J.: A review on neural networks with random
weights. Neurocomputing 275, 278–287 (2018)

https://doi.org/10.1007/978-3-030-50743-5_5


134 R. Rádli and L. Czúni

6. Chamara, L., Zhou, H., Huang, G.B., Vong, C.M.: Representational learning with
extreme learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)

7. Cvetković, S., Stojanović, M.B., Nikolić, S.V.: Hierarchical ELM ensembles for
visual descriptor fusion. Inf. Fusion 41, 16–24 (2018)

8. Hierarchical ELM MATLAB source codes. https://www.extreme-learning-
machines.org

9. Han, J., Xu, L., Rafique, M., Butt, A.R., Lim, S.H.: A quantitative study of
deep learning training on heterogeneous supercomputers. Oak Ridge National Lab.
(ORNL), Oak Ridge, TN (United States) (2019)

10. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for
regression and multiclass classification. IEEE Trans. Syst. Man. Cybern. Part B
(Cybern.) 42(2), 513–529 (2011)

11. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and appli-
cations. Neurocomputing 70(1–3), 489–501 (2006)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv
preprint arXiv:1412.6980

13. Ksieniewicz, P., Krawczyk, B., Woźniak, M.: Ensemble of extreme learning
machines with trained classifier combination and statistical features for hyper-
spectral data. Neurocomputing 271, 28–37 (2018)

14. Lee, S., Nirjon, S.: SubFlow: a dynamic induced-subgraph strategy toward real-
time DNN inference and training. In: 2020 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pp. 15–29. IEEE (2020)

15. Li, R., Wang, X., Song, Y., Lei, L.: Hierarchical extreme learning machine with
L21-norm loss and regularization. Int. J. Mach. Learn. Cybern. 12(5), 1297–1310
(2021)

16. Liu, H., Li, F., Xu, X., Sun, F.: Multi-modal local receptive field extreme learning
machine for object recognition. Neurocomputing 277, 4–11 (2018)

17. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math.
Soc. 26, 394–395 (1920)

18. Nagy, A.M., Czúni, L.: Classification and fast few-shot learning of steel surface
defects with randomized network. Appl. Sci. 12(8), 3967 (2022)

19. Pao, Y.H., Park, G.H., Sobajic, D.J.: Learning and generalization characteristics
of the random vector functional-link net. Neurocomputing 6(2), 163–180 (1994)

20. Schmidt, W.F., Kraaijveld, M.A., Duin, R.P.: Feed forward neural networks with
random weights. In: International Conference on Pattern Recognition, pp. 1. IEEE
Computer Society Press (1992)

21. Storn, R.: On the usage of differential evolution for function optimization. In:
Proceedings of North American Fuzzy Information Processing, pp. 519–523. IEEE
(1996)

22. Suganthan, P.N., Katuwal, R.: On the origins of randomization-based feedforward
neural networks. Appl. Soft Comput. 105, 107239 (2021)

23. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

24. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer percep-
tron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2015)

25. Yang, Y., Wu, Q.J.: Multilayer extreme learning machine with subnetwork nodes
for representation learning. IEEE Trans. Cybern. 46(11), 2570–2583 (2015)

26. Zagoruyko, S., Komodakis, N.: Wide residual networks (2016). arXiv preprint
arXiv:1605.07146

https://www.extreme-learning-machines.org
https://www.extreme-learning-machines.org
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1605.07146


Generative Models via Optimal Transport
and Gaussian Processes

Antonio Candelieri1(B) , Andrea Ponti1,2 , and Francesco Archetti1

1 University of Milano-Bicocca, Milan 20126, Italy
{antonio.candelieri,andrea.ponti,francesco.archetti}@unimib.it

2 OAKS srl, Milan 20126, Italy

Abstract. Generative models have recently gained a renewed interest
due to their success in the development of new real-life applications, such
as artificial intelligence generated images, texts, audios. The most recent
and successful approaches combine neural network learning and Opti-
mal Transport theory, exploiting the so-called transportation map/plan
to generate a new element of a domain starting from an element of a dif-
ferent one, while preserving statistical properties of the data generation
processes of the two domains. Although effective, the Neural Optimal
Transport (NOT) approach is largely computationally expensive – due
to the training of two nested deep neural networks – and requires inject-
ing additional noise to improve generative properties. In this paper we
present an alternative method, based on Gaussian Process (GP) regres-
sion, which overcomes these limitations. Contrary to a neural model, a
GP is probabilistic, meaning that, for a given input, it provides both a pre-
diction and the associated uncertainty. Thus, the generative properties
are, by design, guaranteed by sampling the generated element around the
prediction and depending on the uncertainty. Results on both toy exam-
ples and a dataset of images are provided to empirically demonstrate the
benefits of the proposed approach.

Keywords: Generative models · Optimal Transport · Gaussian
Process

1 Introduction

A generative model learns and provides a probabilistic representation of the
underlying data generation process, given an available set of data. In the
Machine Learning (ML) community, generative models have been used for many
decades [22], along with the discriminative ones. The main difference is that dis-
criminative methods only model the decision boundary between different classes.
Formally, given a training set X with the associated labels Y, a discriminative
model just learns a possible representation of the conditional probability p(Y|X),
while a generative model captures the joint probability p(X,Y), or just p(X) if
no labels are provided (i.e., unsupervised learning).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 135–149, 2023.
https://doi.org/10.1007/978-3-031-44505-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_10&domain=pdf
http://orcid.org/0000-0003-1431-576X
http://orcid.org/0000-0003-4187-4209
http://orcid.org/0000-0003-1131-3830
https://doi.org/10.1007/978-3-031-44505-7_10


136 A. Candelieri et al.

Both generative and discriminative models can solve the same tasks, but
only generative models can generate new data coherent with the approximated
underlying data generation process. Generating new data consists in sampling
from the learned joint probability, whichever is the type of data. This is the main
motivation of the increasing adoption of generative models for the development of
new real-life applications, such as artificial intelligence generated images, texts,
audios [17,21,24,29,34,39,45,46].

Generative Adversarial Networks (GANs), first proposed in [14], are the most
widely adopted generative models, nowadays [1]. Motivations of their success are
(i) a highly accurate data generation and (ii) a more efficient training than their
precursors, specifically Variational Auto-Encoders and Boltzmann machines.

However, it is well-known that GAN training could be unstable [4]. This has
recently led to the so-called Wasserstein GANs (WGANs) [5,9,20,36], where
the Wasserstein distance between the distributions of the training data and the
labels is taken as loss function of the WGAN training process.

Almost all the proposed WGANs use just the value of the Wasserstein dis-
tance (aka Optimal Transport cost) while ignoring the associated Optimal Trans-
port (OT) map/plan, that is the function translating elements from the source
to the target domain (i.e., translating X into Y). Only recently, it has been
demonstrated that OT plan itself can be used as a generative model [15,35].
Following this idea, Neural Optimal Transport (NOT) [6,28] has been recently
proposed to compute OT plans via Deep Neural Networks (DNNs).

Although NOT overcomes some limitations of other methods computing OT
plans/maps – such as, poor scalability of Input Convex Neural Networks to large-
scale problems [2] and difficulties in sampling from the plan in the case of entropy
regularized OT methods [15,38] – it could result computationally expensive (due
to the training of two nested DNNs) and it could also lead to fake plans which
are not optimal, an issue explained and addressed in [27]. Although it has been
proposed as a method for solving the OT problem, the actual value of NOT is its
capability to model the OT plan and exploit it to generate new data, coherent
with Y, starting from new data coherent with X.

Contributions. The main contributions of this paper can be summarized as
follows:

– Our focus is on learning a model of the OT plan, instead of computing it (as
in NOT). We propose a generative model strategy, based on Gaussian Process
regression, which is an effective and efficient alternative to neural networks.

– Indeed, the proposed approach can generalize over few data, drastically
reducing the computational burden for model training (i.e., DNNs requires a
lot of data to be trained).

– As a probabilistic model, the proposed approach naturally deals with noise
and uncertainty, and does not require noise outsourcing – basically noise
injection – which is, instead, at the core of NOT.

– Empirical results on both toy examples and an image generation task provides
evidence of the benefits of the approach.



Generative Models via Optimal Transport and Gaussian Processes 137

Related Works. Most of the relevant works have been already quoted; here the
most relevant are recalled. The basic idea of learning an OT plan and exploiting
it for generating new data has been presented in [15,35]. All the works related
to WGANs are out of scope: they use OT theory for training WGAN, but do
not compute neither learn/use the OT plan. On the contrary, NOT [6,27,28]
is the only method – at our knowledge – learning OT plan and exploit it as a
generative model itself. Finally, an overview on generative models – not only
neural – can be found in [1].

Although many research works can be found, linking OT and GP, their aims
are significantly different from this paper. For instance, in [7,13] GP regres-
sion over distributional inputs is considered, using the reguralized OT distance
between inputs instead of the Euclidean distance. In [31,32], the computation
of the distance between two GP models – considered as two distributions of
functions – is addressed, with proposed methods based on OT.

Organization of the Paper. The rest of the paper is organized as follows:
Sect. 2 summarizes the methodological background about the Optimal Transport
theory (i.e., the Wasserstein distance) and the Gaussian Process (GP) regres-
sion, that is the alternative modelling strategy proposed in this paper to learn
and generalize OT plans (readers with knowledge about these two topics can
skip the section). Sect. 3 presents the proposed algorithm and remarks the dif-
ferences with other approaches, especially NOT. Section 4 and Sect. 5 report
the experimental settings and the results, respectively. Finally, conclusions are
given in Sect. 6, remarking achievements, limitations, and perspectives.

2 Background

2.1 Optimal Transport

In this section we summarize the key notions of Optimal Transport (OT) theory
used in the paper. For a more detailed review, we refer to [33,42].

Consider two continuous probability distributions, namely P and Q, repre-
senting the data generation processes into two spaces, respectively X ∈ R

d and
Y ∈ R

d. Moreover, assume there exists a function, c : X ×Y → R, giving the cost
for moving (probability) mass from a source location, x ∈ X , towards a target
location, y ∈ Y, with the aim to match P with Q. Computing the Wasserstein
distance between P and Q, under the cost function c, means searching for an
OT map minimizing the overall transportation cost:

Wc(P,Q) = inf
T#P=Q

∫
X

c (x, T (x)) dP(x) (1)

where T# is called push-forward operator associated to the map T : X → Y.
The solution of (1) is named OT map and denoted with T ∗. This formulation of
the OT problem is known as Monge’s primal, it is not symmetric and does not
allow for mass splitting, thus there might no exists a map satisfying T#P = Q.



138 A. Candelieri et al.

Successively, the so-called Kantorovitch formulation, was proposed, allowing
for mass splitting:

Wc(P,Q) = inf
π∈Π(P,Q)

∫
X×Y

c (x,y) dπ(x,y) (2)

In this formulation an OT plan is searched for, denoted with π∗ ∈ Π(P,Q),
where Π(P,Q) is the set of all the possible joint-probability distributions hav-
ing P and Q as marginals. If π∗ is of the form [IdX , T ∗]#P, for some T ∗, then
T ∗ minimizes (1) and π∗ is called deterministic, otherwise it is called stochastic
(IdX denotes the identity function on the space X ).

Duality. The Kantorovich formulation is a constrained convex minimization
problem and it can be naturally transformed into the associated dual formula-
tion, which is a constrained concave maximization problem:

Wc(P,Q) =sup
(f,g)

∫
X

f(x)dP(x) +
∫

Y
g(y)dQ(y)

s.t.

f(x) + g(y) ≤ c(x, y).

(3)

The two continuous function f(x) and g(x) are also called Kantorovich poten-
tials. In this paper we will specifically consider the case c(x, y) = ‖x−y‖2, usually
denoted with W2 and named Wasserstein-2, which allow us to exploit the Bre-
nier Theorem (i.e., Theorem 2.1 in [33]).

Brenier Theorem. In the case X = Y = R
d and c(x, y) = ‖x − y‖2, and with

at least one of the two probability distributions – let say P – having a density
with respect to the Lebesgue measure, then the OT plan π∗ is unique and is of
the form [IdX , T ∗]#P. Furthermore, the optimal Monge’s map T ∗ is uniquely
defined as the gradient of a convex function ϕ(x), such that T ∗(x) = ∇ϕ(x),
where ϕ(x) is the unique (up to an additive constant) convex function such that
[∇ϕ(x)]#P = Q. This convex function is related to the Kantorovich potential as
ϕ(x) = ‖x‖2

2 − f(x).
Thus, the theorem guarantees, under its assumptions, the existence and the

uniqueness of both the OT plan π∗ and the OT map T ∗: it is also known as
Monge-Kantorovich equivalence. It is important to remark that, otherwise, the
OT plan π∗ is generally not unique (Remark 2.3 in [33]).

2.2 Gaussian Process Regression

This section briefly summarizes the GP regression method [19,43]. A GP can be
though as a collection of random variables, any finite number of which have a
joint Gaussian distribution. Two functions completely define a GP, they are the



Generative Models via Optimal Transport and Gaussian Processes 139

mean and the covariance function, respectively denoted with μ : X → R and
k : X × X → R.

From a ML point of view, GP regression is a kernel method [37], with the
covariance function defined by any valid kernel function (e.g., Squared Expo-
nential, Matérn, Exponential, etc.), providing structural assumptions about the
shape of the function to be learned. The GP model is trained by tuning the
kernel’s hyperparameters depending on the training data, via Maximum Log-
likelihood Estimation (MLE) or Maximum A Posteriori (MAP). Consequently,
the two GP functions becomes conditioned on the training data, according to
the following two equations:

μ(x) = k
(
x,X

) [
K + λ2I

]−1
y (4)

σ2(x) = k(x,x) − k
(
x,X

) [
K + λ2I

]−1
k
(
X,x

)
(5)

where X =
{
x(i)

}
i=1:N

and y =
{
y(i)

}
i=1:N

denote, respectively, the train-
ing data (i.e., x(i) ∈ X ) and the associated labels (i.e., y(i) ∈ R); k(x, x) is
the kernel function whose hyperparameters are tuned depending on (X,y); K
is an N × N matrix (i.e., kernel matrix) with entries Kij = k

(
x(i),x(j)

)
and

x(i),x(j) ∈ X ; λ2 ∈ R is a term used to avoid ill-conditioning in the matrix
inversion as well as dealing with noisy data (i.e., different labels for the same
input); k(x,X) is a row vector with elements ki = k

(
x,x(i)

)
. Finally, just for

completeness, k(X,x) is the transposed of k(x,X).

While μ(x) provides the prediction for any input x ∈ X , σ2(x) provides the
associated uncertainty. This property makes a GP a probabilistic model, contrary
to other deterministic kernel methods, such as Support Vector Regression [37] (at
least its original formulation). As a probabilistic model, a GP offers generative
properties by-design, allowing to sample multiple predictions for a certain point
x ∈ X according to a Gaussian distribution with mean μ(x) and covariance
σ2(x), that is ŷ ∼ N (

μ
(
x
)
, σ2

(
x
))

.
With respect to the interplay between ML and optimization, one of the most

successful application of GP regression is Bayesian Optimization [3,10–12,18],
but also optimal control and Reinforcement Learning [8,16,25,40].

Multi-output GP. Although it was born as a single-output kernel-based regres-
sion method, GP modelling has been extended to the multi-output case, that
is Y =

{
y(i)

}
i=1:N

with y(i) = f
(
x(i)

)
and f : X → R

b, b > 1, a vector-valued
function [30]. This is the specific setting considered in our experiments: all the
case studies are characterized by X = Y = R

d, with d > 1. It is important to
remark that adopting separate GP models – one for each scalar-valued compo-
nent fl(x) of f(x) =

[
f1(x), . . . , fl(x), . . . fd(x)

]
– is usually more convenient

than using a single multi-output model [12,41,44].
Preliminary experiments (not reported due to limitations on the length of

the paper) confirmed that a pool of single-output GP models is more effective



140 A. Candelieri et al.

and computationally efficient than a single multi-output GP, also in the setting
addressed in this paper. Therefore, we have used a pool of separate GP models
such that the resulting vector-valued predictive mean and variance are given
by μ(x) =

[
μ1(x), . . . , μd(x)

]
and σ2(x) =

[
σ2
1(x), . . . , σ2

d(x)
]
, with every μl(x)

and σ2
l (x) conditioned to X and Yl =

{
y
(i)
l

}
i=1:N

.
More simply, the l-th GP model in the pool is aimed at predicting the value

of the l-th coordinate of the data point generated from x, that is μl(x), along
with the associated predictive uncertainty σ2

l (x). From a computational point of
view, separation of the GPs allows to exploit the embarrassingly parallel nature
of the entire pool learning. In any case, we simply refer to the pool of GPs as
multi-output GP in the rest of the paper.

3 Learning and Generalizing Optimal Transport Maps

Assume two sets of data are given, namely X =
{
x(i)

}
i=1:N

and Y ={
y(i)

}
i=1:N

, with x(i) ∈ X and y(i) ∈ Y. Denote with P and Q the associ-
ated data generation processes, such that X ∼ P and Y ∼ Q.

We consider the setting X = Y = R
d and c(x, y) = ‖x − y‖2 for which the

Brenier Theorem (Sect. 2.1) holds. Thus, we know that an OT plan π∗ exists
and is unique, and it is of the form π∗ = [IdX , T ∗]#P, with T ∗ a unique OT
map.

It is important to remark that our approach – differently from NOT – is
not aimed at computing the OT plan, but just to efficiently learn a generative
model representing it. To achieve this goal, any suitable solver (preferably one
implementing a primal-dual method [26]) can be used to obtain the OT map,
T ∗, between X and Y. This OT plan is the ground truth for learning the multi-
output GP providing μ(x) ≈ T ∗(x).

The main advantage of our approach is that the OT plan T ∗ is computed just
once, for every X, Y pair. On the other hand, NOT aims, itself, at computing
the OT plan, but it requires to compute, several times, a so-called empirical esti-
mator of the W2 distance, used as loss function for training two nested DNNs.

In the following, a sketch of the proposed algorithm is reported.

Algorithm.

– INPUT: a source dataset X ∼ P and a target dataset Y ∼ Q, such that
|X| = |Y| = N .

– STEP 1: Obtain the OT map T ∗ associated to the available source and
target datasets, respectively X and Y. Specifically, we use a primal-dual OT
solver to obtain T ∗.

– STEP 2: Denote with J the index set J =
{
j : T ∗(x(i)

)
= y(j)

}
. Thus, J

represents the optimal matching of each source data to a target one.



Generative Models via Optimal Transport and Gaussian Processes 141

– STEP 3: Order Y according to J and obtain Ỹ =
{
ỹ(i)

}
, with ỹ(i) = y(Ji).

This means, more simply, that ỹ(i) = T ∗(x(i)
)
.

– STEP 4: Train a multi-output GP depending on X and Ỹ. As previously
mentioned (Sect. 2.2), as a multi-output GP model we will use a pool of d inde-
pendent GPs, whose predictive mean and variance are respectively denoted
with μl(x) and σ2

l (x), with l = 1, . . . , d.

– OUTPUT: a multi-output GP (as a pool of separate single-output GPs)
generalizing the OT as follows μ(x) ≈ T ∗(x).

4 Experimental Setting

Our experimental setting is taken from NOT papers [6,28]. More specifically, we
consider two different 2-dimensional examples, showing the generative properties
of our approach on simple and easy-to-understand problems (Sect.4.1). Then, we
consider an image generation task on a well-known dataset of handwritten single
digits (Sect. 4.2). All the experiments refer to the so-called one-to-one trans-
lation task, that is the generation of an element of the target domain starting
from an element of the source one.

GP’s Kernel. For all the experiments and for all the GP models, we have used
the exponential kernel:

k(x,x′) = σ2
f e− |x−x′|

� (6)

where σ2
f ∈ R and � ∈ R

d (i.e., anisotropic kernel) are the kernel’s hyperpa-
rameters tuned via MLE. The resulting predictive mean function will be con-
tinuous but not continuously differentiable. Preliminary analysis has empirically
demonstrated that smoother kernels (i.e., Matérn 3/2, Matérn 5/2, and Squared
Exponential) lead to worse results.

Computational Setting. The approach has been developed in R and the code
is accessible for free on github1. All the experiments have been performed on
an Intel(R) Core(TM) i7-7700HQ CPU at 2.80 GHz (4 physical cores, 8 virtual
cores), 16 GB of RAM, Microsoft Windows 10. GP models in the pools have
been trained in parallel by using 7 out of the 8 (virtual) cores available.

4.1 Toy 2D Examples

As preliminary experiments, we have considered the following two 2-dimensional
toy examples:

– the source distribution, P, is a Gaussian while the target distribution, Q, is a
Gaussian-mixture with 8 components. We considered |X| = |Y| = 1000 and

1 https://github.com/acandelieri/GenOTGP LION17.git.

https://github.com/acandelieri/GenOTGP_LION17.git


142 A. Candelieri et al.

then generated 100 new target points as the translation of as many source
points sampled from P.

– the source distribution, P, is a Gaussian while the target distribution, Q, is
a Swiss Roll. We considered |X| = |Y| = 1000 and then generated 200 new
target points as the translation of as many source points sampled from P.

4.2 Image Generation

The second experiment uses the handwritten single digit dataset named USPS2.
Every image is codified with 16×16 grey-scale pixels (i.e., with numerical preci-
sion 10−6). The aim is to create a generative model for one-to-one translation of
each digit into a different one. This means that 10×9 = 90 one-to-one translation
tasks have been performed.

Pre-processing. Each pixel has a value ranging from −1 (black) to 1 (white);
we have scaled all the values into the range [0, 1] and inverted the color scale (i.e.,
0 for white and 1 for black), just to have black digits on a white background (for
a more clear visualization). Every image is then represented as a 256-dimensional
vector with components in [0, 1].

Training-Generation Splitting. A different number of images is available for
each handwritten digit: we have decided to limit the number to 500 images each.
Every one-to-one translation task uses a training set X (i.e., images of the source
digit i) and a label set Y (i.e., images of the target digit j 	= i) of 300 images
each, that is |X| = |Y| = 300. The remaining 200 images of the source digit,
denoted with XGEN , are used to generate as many images of the target digit.

5 Results

5.1 Results on Toy 2D Examples

This section summarizes the results on the toy 2-dimensional examples.

Gaussian to Gaussian-Mixture. Figure 1 shows the sets of data sampled
from the source (on the left) and the target (in the middle) distributions, that is
X ∼ P and Y ∼ Q, with P and Q as defined in Sect. 4.1. Finally, the OT map,
as computed by the primal-dual OT solver, is shown (on the right). The multi-
output GP trained on the OT map had RMSE = 0 (perfect interpolation).

The data generation accuracy of the multi-output GP can be qualitatively
appreciated in Fig. 2, showing: the source data sampled from P (on the left), its
translation towards Q (in the middle), and the overlap between the generated
(aka transported, translated) data and the expected distribution (on the right).

To quantify the quality of the approximated map (i.e., μ(x) ≈ T ∗(x)), we
have considered the generated points, namely YGEN = μ(XGEN ), as a sample

2 https://paperswithcode.com/dataset/usps (last access: 2023–02–06).

https://paperswithcode.com/dataset/usps


Generative Models via Optimal Transport and Gaussian Processes 143

Fig. 1. Learning one-to-one translation from Gaussian distribution to Gaussian mix-
ture: (left) source data X ∼ P, (middle) target data Y ∼ Q (with |X| = |Y| = 1000),
and (right) Optimal Transport map, T ∗, from X to Y.

Fig. 2. Generating one-to-one translation from Gaussian to Gaussian mixture: (left)
a sample of source data, XGEN ∼ P, with |XGEN | = 100, (middle) generated (aka
transported, translated) data, and (right) qualitative matching between generated data
(in green) and target distribution Q represented through a sample of 10000 data (blue
shaded areas). (Color figure online)

from the target distribution Q and computed the actual OT map between XGEN

and YGEN – denoted with T ∗
GEN (x) – through the primal-dual OT solver. Then,

the costs associated to the approximated and the actual (i.e., optimal) map,
respectively denoted with Wμ

2 and WT ∗
2 are computed, and their percentage

difference, specifically ΔW2 = 100
(WT ∗

2 −Wμ
2

)
/WT ∗

2 , is finally used as a quality
measure. It is important to notice that this measure is related to the Frechét
Inception Distance (FID) usually adopted to assess the quality of images created
by generative models like GANs and WGANs [23,26]. Specifically, FID is the
W2

2 between two Gaussian distributions associated to generated and real images,
respectively. On the other hand, our ΔW2 is more focused on evaluating if the
optimality of μ(x) still holds with data generation. Thus, a value of ΔW2 close to
0% means that the matching between each new source point and its translation
is approximately the same of that provided by T ∗ as computed from scratch.

For the Gaussian to Gaussian mixture example we obtained ΔW2 = 0.04%.



144 A. Candelieri et al.

Gaussian to Swiss Roll. Figure 3 shows the sets of data sampled from the
source (on the left) and the target (in the middle) distributions, that is X ∼ P
and Y ∼ Q, with P and Q as defined in Sect. 4.2. Finally, the OT map, as
computed by the primal-dual OT solver, is shown (on the right). Also in this
case, the multi-output GP trained on the OT map had RMSE = 0 (perfect
interpolation).

Fig. 3. Learning one-to-one translation from Gaussian to Swiss Roll: (left) source data
X ∼ P, (center) target data Y ∼ Q (with |X| = |Y| = 1000), and (right) Optimal
Transport map from X to Y.

The data generation accuracy of the multi-output GP can be qualitatively
appreciated in Fig. 4, showing: the source data sampled from P (on the left), its
translation towards Q (in the middle), and the overlap between the generated
(aka transported, translated) data and the expected distribution (on the right).

For the Gaussian to Swiss Roll example we obtained ΔW2 = 0.03%.
In both the cases, the very small values of ΔW2 remark that the proposed

approach is less prone – or almost free – to learn fake OT plans, an issue arising
in NOT and recently addressed in [27].

5.2 Results on Image Generation

In this section we summarize the most relevant results for the image generation
task. Figure 5 shows an example of one-to-one translation with digit 1 chosen
as source and translated into the remaining nine digits, separately. This means
that the algorithm described in Sect. 3 has been performed nine times, leading
to as many multi-output GPs, each one used to provide a specific one-to-one
translation towards a certain digit. It is important to remark that this is just
an example: all the generated data, that is translations from 200 images of each
digit to as many images of each other digit, can be viewed for free on github3,
under the folder “generated digits”.

3 https://github.com/acandelieri/GenOTGP LION17.git.

https://github.com/acandelieri/GenOTGP_LION17.git


Generative Models via Optimal Transport and Gaussian Processes 145

Fig. 4. Generating one-to-one translation from Gaussian to Swiss Roll: (left) a sam-
ple of source data, XGEN ∼ P, with |XGEN | = 200, (middle) generated (aka trans-
ported,translated) data, and (right) qualitative matching between generated data (in
green) and target distribution Q represented through a sample of 10000 data (blue
shaded area). (Color figure online)

Fig. 5. One-to-one translation of a 1 digit’s image (from XGEN ) into any other
digit. Every target digit is generated by a separate multi-output GP model.

We have empirically noticed that all the images of the digit 1, into the dataset,
are very similar. This “lack of variability” can represent an issue when the target
digit to generate has, instead, a high variability. In the following, we show the
generation of 200 images of the digit 4 (high variability) starting from as many
images of the digit 1 (low variability), in Fig. 6, and as many images of the digit
2 (high variability), in Fig. 7.

Although the images of the digit 4 are quite good in the two cases, taking
the digit 1 as the source digit leads to generate 4 digits very similar one to each
other, and also more blurred than those generated starting form the images of
the digit 2. This empirically confirms our suspect that a low variability of the
source could affect the quality of the translation.

From a computational point of view, training the multi-output GP model, on
300 pairs of handwritten digit images, and then using it for generating 200 new
images, requires 5 min, on average. Thus, the computational cost is negligible
if compared against training times reported in papers using neural networks,
especially if time needed for searching for the most effective neural architecture
and network’s hyperparameters is also taken into account.



146 A. Candelieri et al.

Fig. 6. One-to-one translation of 200 images of digit 1 into as many target digits 4
(source digit on the left and generated target digit on the right).

Fig. 7. One-to-one translation of 200 images of digit 2 into as many target digits 4
(source digit on the left and generated target digit on the right).



Generative Models via Optimal Transport and Gaussian Processes 147

6 Conclusions

The proposed GP regression based generative model can effectively and effi-
ciently learn and represent OT plans, and is a valid and convenient alterna-
tive to neural networks, especially in the small-data setting. Indeed, DNNs
require large datasets to be trained, while GP can generalize over few exam-
ples (while it scales poorly on large datasets). Moreover, a pool of separate GPs
can be (embarassingly) trained in parallel, with a significant lower computa-
tional time with respect to DNN learning. Although an image generation task
has been considered, our opinion is that the proposed approach cannot replace
– and it is not the aim – the current GANs and WGANs: we are more inter-
ested into exploiting statistically sound generative properties of our method in
learning-and-optimization settings such as multi-task and transfer/meta learn-
ing. Another ongoing research is aimed at extending the approach to also solve
the OT problem – as in NOT – further than generalizing an OT plan provided
by an OT solver.

References

1. Aggarwal, A., Mittal, M., Battineni, G.: Generative adversarial network: an
overview of theory and applications. Int. J. Inf. Manage. Data Insights 1(1), 100004
(2021)

2. Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: International
Conference on Machine Learning, pp. 146–155. PMLR (2017)

3. Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24494-1

4. Arjovsky, M., Bottou, L.: Towards principled methods for training generative
adversarial networks. In: International Conference on Learning Representations

5. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

6. Asadulaev, A., Korotin, A., Egiazarian, V., Burnaev, E.: Neural optimal transport
with general cost functionals. arXiv preprint arXiv:2205.15403 (2022)

7. Bachoc, F., Béthune, L., Gonzalez-Sanz, A., Loubes, J.M.: Gaussian processes on
distributions based on regularized optimal transport. In: International Conference
on Artificial Intelligence and Statistics, pp. 4986–5010. PMLR (2023)

8. Berkenkamp, F., Schoellig, A.P., Krause, A.: Safe controller optimization for
quadrotors with Gaussian processes. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 491–496. IEEE (2016)

9. Biau, G., Sangnier, M., Tanielian, U.: Some theoretical insights into Wasserstein
GANs. J. Mach. Learn. Res. 22(1), 5287–5331 (2021)

10. Candelieri, A.: A gentle introduction to Bayesian optimization. In: 2021 Winter
Simulation Conference (WSC), pp. 1–16. IEEE (2021)

11. Candelieri, A., Perego, R., Archetti, F.: Green machine learning via augmented
gaussian processes and multi-information source optimization. Soft Comput., 1–13

12. Candelieri, A., Ponti, A., Archetti, F.: Fair and green hyperparameter optimization
via multi-objective and multiple information source Bayesian optimization. arXiv
preprint arXiv:2205.08835 (2022)

https://doi.org/10.1007/978-3-030-24494-1
http://arxiv.org/abs/2205.15403
http://arxiv.org/abs/2205.08835


148 A. Candelieri et al.

13. Candelieri, A., Ponti, A., Archetti, F.: Gaussian process regression over discrete
probability measures: on the non-stationarity relation between Euclidean and
Wasserstein squared exponential kernels. arXiv preprint arXiv:2212.01310 (2022)

14. Courville, A., Bengio, Y.: Generative adversarial nets. In: Advance in Neural (2014)
15. Daniels, M., Maunu, T., Hand, P.: Score-based generative neural networks for

large-scale optimal transport. Adv. Neural. Inf. Process. Syst. 34, 12955–12965
(2021)

16. Deisenroth, M.P., Fox, D., Rasmussen, C.E.: Gaussian processes for data-efficient
learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37(2),
408–423 (2013)

17. Dong, C., et al.: A survey of natural language generation. ACM Comput. Surv.
55(8), 1–38 (2022)

18. Frazier, P.I.: Bayesian optimization. In: Recent Advances in Optimization and
Modeling of Contemporary Problems, pp. 255–278. Informs (2018)

19. Gramacy, R.B.: Surrogates: Gaussian Process Modeling, Design, and Optimization
for the Applied Sciences. Chapman and Hall/CRC, London (2020)

20. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, vol. 30 (2017)

21. Haidar, M.A., Rezagholizadeh, M.: TextKD-GAN: text generation using knowl-
edge distillation and generative adversarial networks. In: Meurs, M.-J., Rudzicz,
F. (eds.) Canadian AI 2019. LNCS (LNAI), vol. 11489, pp. 107–118. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-18305-9 9

22. Harshvardhan, G., Gourisaria, M.K., Pandey, M., Rautaray, S.S.: A comprehensive
survey and analysis of generative models in machine learning. Comput. Sci. Rev.
38, 100285 (2020)

23. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

24. Huang, F., Guan, J., Ke, P., Guo, Q., Zhu, X., Huang, M.: A text GAN for language
generation with non-autoregressive generator (2021)

25. Jaquier, N., Rozo, L., Calinon, S., Bürger, M.: Bayesian optimization meets Rie-
mannian manifolds in robot learning. In: Conference on Robot Learning, pp. 233–
246. PMLR (2020)

26. Korotin, A., Li, L., Genevay, A., Solomon, J.M., Filippov, A., Burnaev, E.: Do
neural optimal transport solvers work? a continuous Wasserstein-2 benchmark.
Adv. Neural. Inf. Process. Syst. 34, 14593–14605 (2021)

27. Korotin, A., Selikhanovych, D., Burnaev, E.: Kernel neural optimal transport.
arXiv preprint arXiv:2205.15269 (2022)

28. Korotin, A., Selikhanovych, D., Burnaev, E.: Neural optimal transport. arXiv
preprint arXiv:2201.12220 (2022)

29. Li, B., Qi, X., Lukasiewicz, T., Torr, P.: Controllable text-to-image generation. In:
Advances in Neural Information Processing Systems, vol. 32 (2019)

30. Liu, H., Cai, J., Ong, Y.S.: Remarks on multi-output Gaussian process regression.
Knowl.-Based Syst. 144, 102–121 (2018)

31. Mallasto, A., Feragen, A.: Learning from uncertain curves: the 2-Wasserstein metric
for Gaussian processes. In: Advances in Neural Information Processing Systems,
vol. 30 (2017)

32. Masarotto, V., Panaretos, V.M., Zemel, Y.: Procrustes metrics on covariance oper-
ators and optimal transportation of Gaussian processes. Sankhya A 81, 172–213
(2019)

http://arxiv.org/abs/2212.01310
https://doi.org/10.1007/978-3-030-18305-9_9
http://arxiv.org/abs/2205.15269
http://arxiv.org/abs/2201.12220


Generative Models via Optimal Transport and Gaussian Processes 149

33. Peyré, G., Cuturi, M., et al.: Computational optimal transport: with applications
to data science. Found. Trends R© Mach. Learn. 11(5–6), 355–607 (2019)

34. Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference
on Machine Learning, pp. 8821–8831. PMLR (2021)

35. Rout, L., Korotin, A., Burnaev, E.: Generative modeling with optimal transport
maps. arXiv preprint arXiv:2110.02999 (2021)

36. Salimans, T., Zhang, H., Radford, A., Metaxas, D.: Improving GANs using optimal
transport. arXiv preprint arXiv:1803.05573 (2018)

37. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT press, Cambridge (2018)

38. Seguy, V., Damodaran, B.B., Flamary, R., Courty, N., Rolet, A., Blondel,
M.: Large-scale optimal transport and mapping estimation. arXiv preprint
arXiv:1711.02283 (2017)

39. Singh, N.K., Raza, K.: Medical image generation using generative adversarial net-
works: a review. Health Inf.: Comput. Perspect. Healthc., 77–96 (2021)

40. Sui, Y., Gotovos, A., Burdick, J., Krause, A.: Safe exploration for optimization
with gaussian processes. In: International Conference on Machine Learning, pp.
997–1005. PMLR (2015)

41. Svenson, J., Santner, T.: Multiobjective optimization of expensive-to-evaluate
deterministic computer simulator models. Comput. Stat. Data Anal. 94, 250–264
(2016)

42. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical
Soc. (2021)

43. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol.
2. MIT press Cambridge, MA (2006)

44. Zhan, D., Cheng, Y., Liu, J.: Expected improvement matrix-based infill criteria for
expensive multiobjective optimization. IEEE Trans. Evol. Comput. 21(6), 956–975
(2017)

45. Zhang, H., Xie, L., Qi, K.: Implement music generation with GAN: a systematic
review. In: 2021 International Conference on Computer Engineering and Applica-
tion (ICCEA), pp. 352–355. IEEE (2021)

46. Zhu, Y., et al.: Quantized GAN for complex music generation from dance videos.
In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV
2022. LNCS, vol. 13697, pp. 182–199. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-19836-6 11

http://arxiv.org/abs/2110.02999
http://arxiv.org/abs/1803.05573
http://arxiv.org/abs/1711.02283
https://doi.org/10.1007/978-3-031-19836-6_11
https://doi.org/10.1007/978-3-031-19836-6_11


Real-World Streaming Process Discovery
from Low-Level Event Data

Franck Lefebure, Cecile Thuault, and Stephane Cholet(B)

Softbridge Technology, 97122 Baie-Mahaut, GP, France

stephane.cholet@softbridge.fr

Abstract. New perspectives on monitoring and optimising business
processes have emerged from advances in process mining research, as
well as techniques for their discovery, conformance checking and enhance-
ment. Many identify process discovery as the most challenging task, as it
is the first in line, and as the methods deployed could impact the effective-
ness of subsequent analysis. More and more companies are ready to use
process mining products, but not at any cost. They require them to be
highly reliable, fast and to introduce a limited overload on their resources
(including human). In a real-word setting, specific business constraints
add to common issues, such as high data frequency and asynchrony. This
also adds to the complexity of real-world processes and of process min-
ing itself. Mainstream studies propose to use a finite set of high-level
and business-oriented event logs, where key attributes (i.e., case, activ-
ity and timestamp) are known, and apply unscaled discovery techniques
to produce control-flow process models. In this research, we propose an
original approach we have designed and deployed to mine processes of
businesses. It features fully streamed and real-time techniques to mine
low-level technical event data, where key attributes do not exist and
have to be forged. We will focus on the scope of process discovery, and
expose our adoption of an organizational perspective, driven by (semi-)
unsupervised discovery, streaming and scaling features.

Keywords: Streaming process mining · Unsupervised process
discovery · Real time · Scaling process mining · Organizational
perspective

1 Introduction

Process mining is an emerging field of research that lies at the intersection of
data science and process science [3]. Recent developments have brought to light
the importance of process supervision in companies, and techniques have been
developed for process discovery, conformance checking, and enhancement.

Process discovery is a challenging task, as it is the first step towards pro-
cess mining, and because the effectiveness of subsequent analysis depends on the
methods used. The raw material of process discovery comes from event logs, typ-
ically stored in data sources (e.g., files or databases). These logs are generated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 150–164, 2023.
https://doi.org/10.1007/978-3-031-44505-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_11&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_11


Real-World Streaming Process Discovery from Low-Level Event Data 151

by various software systems during process operations. Each event in the log
contains information about a case, an activity and a timestamp, plus some con-
textual attributes such as an involved resource. Thus, a case can be represented
as an ordered sequence of events, which we will later refer to as a trace. There
are several algorithms available in the literature for discovering processes from
traces, some of which are discussed in Sect. 3. However, common issues such as
missing data or model reliability must be addressed in any situation.

Companies are increasingly interested in using process mining products, but
not at any cost [11]. To be successful, a process mining solution must demonstrate
its ability to quickly and effectively improve processes with minimal effort. In a
real-world setting, there is a need for both streaming and real-time processing.
While streaming aims to mine events as they arrive – likely unordered, rather
than using a finite set of data, real-time aims to minimize the delay between the
process operation and its discovery in the product. Besides, very large amounts of
traces can be produced, and companies also expect deployed solutions to mine as
much of their new gold as possible, still in a reduced time; hence introducing the
need for scaling. Furthermore, processes in a company are not static: a process
could have variants at a given time period but it could as well evolve over time.
These changes may or may not be known by all process actors, but will always be
visible from the produced logs. Unsupervised discovery techniques can address
this aspect, but they are infrequently used in both literature and industry [3,14].

Explainability is an important consideration when discovering processes.
Most techniques rely on traces produced by high-level components, where events
already have necessary attributes, context and structure. Such techniques allow
discovery of processes and their issues but do not explain them at a lower level.
For example, if a bottleneck is discovered, it would be possible to understand its
origin at the same level by applying dedicated analysis, such as decision trees.
But it would be difficult to explain the root cause of the bottleneck, which is
located at a lower level, likely in the back-end side of the information system.

In this paper, we aim to provide a comprehensive overview of our process dis-
covery techniques, which have been designed and deployed in real-world settings
to meet industrial requirements for streaming, real-time, and scaling. In Sect. 2,
we provide context regarding the use of process mining in the real world, with
the example of a company. In Sect. 3, we propose an overview of the literature on
process mining, including perspectives and streaming process mining. In Sect. 4,
we present the techniques we have developed and deployed to mine processes in
companies and meet industrial requirements regarding streaming, real-time and
scaling. In Sect. 5, we describe a setup where our solution is currently deployed
and being used. Eventually, we conclude and suggest future directions for our
work in Sect. 6.



152 F. Lefebure et al.

2 Context

2.1 Naming Conventions

The concept of a digital enterprise is often compared to that of a complex system
[5], where various elements interact with each other and with their environment
to produce an optimal result. In particular, a company can be modeled at three
levels of organization, as proposed in [13]: the information system, the business
processes, and the customer journeys, as shown in Fig. 1. The information system
represents the hardware and software infrastructure of the company, while busi-
ness processes represent a set of interconnected tasks aimed at achieving orga-
nizational goals. Customer journeys represent the interactions that customers
may have with the company.

Fig. 1. Company modeling with three layers, according to [13]. The symbol � repre-
sents traces, activities and customer interactions related to a given process.

In this paragraph, we introduce several important naming conventions. In
the context of business processes, A company can serve its customers through
different channels, each of which features several touchpoints or front-end appli-
cations. Roles are often used to group functional aspects [1], and a touchpoint
can initiate one or more business processes. These processes are triggered in the
front-end and drive an application chain over an application domain (see Fig. 2),
with each application proposing a set of services that can exchange information
through service interfaces. The back-end of the application chain is generally
unknown to customers and front-end actors, who may assume that initiating
a process from a touchpoint is sufficient to complete it. Mostly, any service or
application that is not a touchpoint will be considered to belong to the back-end
of the application chain. Also, it is worth noting that when a service from a
back-end application performs a tasks, it will likely not let an exploitable service
event log for common process discovery algorithms, because it will not feature a
case and an activity.



Real-World Streaming Process Discovery from Low-Level Event Data 153

2.2 A Company’s Expectations and Related Challenges

Although process mining is not yet widely adopted in companies, it appears from
a recent survey [11] that they have high expectations for this technology. The
survey found that 77% of companies expect process mining products to optimize
their processes, and 57% expect to gain more transparency in their execution.
Cost reduction ranked third, while several other hot topics such as automatiza-
tion, monitoring, standardization, and conformance checking also made the top
ten. These business-oriented expectations imply scientific challenges for the field
of process mining. In this subsection, we attempt to make a soft bridge between
identified business expectations and the scientific challenges they unveil.

Fig. 2. Processes are triggered from a touchpoint and describe an application chain
along its operation (highlighted in grey). Services store execution logs in various data
sources, which can be used to further create activities. Ultimately, activities are gath-
ered and can be organized (e.g., hierarchically) to form of a case. Activities � and �
belong to two distinct processes. On the figure, only the process with � activities is
illustrated.

Companies are complex due to their numerous interconnected components,
making it difficult for an individual to have a complete understanding of the
entire organization. One expectation of process mining is to model processes in
accordance with the existing enterprise architecture to facilitate better compre-
hension and enhance operations. This challenge requires adopting an appropriate
mining perspective, such as the organizational perspective.

Business processes are rather evolving entities than static and seamless work-
flows that never change. Although most algorithms have the capability to dis-
cover new variants of processes that have already been observed, processes must
first be explicitly monitored to be observed. For instance, the addition or dele-
tion of services to an application may go unnoticed. Also, if a process is modified
after services have been added, related activities may remain unobserved. The
expectation is that services and processes can be discovered without the need



154 F. Lefebure et al.

for supervision, and with minimal configuration. This challenge can be referred
to as the unsupervised discovery challenge.

A company’s complexity is further compounded by the fact that it involves
actors with varying profiles and backgrounds, such as marketing-oriented, back-
office, or executive. While these different profiles may be interested in the same
set of processes, they often have different expectations regarding the level of
analysis (typically, technical or business) or the ergonomics of the process mining
solution (typically, dashboard or expert mode). The usability of the process min-
ing solution is thus a crucial expectation that needs to be addressed. Although
event data is often too much refined to offer technical insights, it can be used
to build high-level process models. Therefore, a challenge in process mining is
to build multi-level processes from technical data that can accommodate the
diverse needs of different actors.

While it is true that expectations for industrial process mining can vary based
on factors such as a company’s goals, industry, or size, we posit that the subset
of expectations outlined previously can be considered fundamental. Nonetheless,
to delve further into the challenges faced by industrial process mining, we offer
additional insights.

The complexity of information systems can present both a challenge and an
opportunity for process mining. These systems are often distributed and involve
numerous distinct and unrelated components that may operate independently
of each other, although they do work together. As a result, log data is produced
from multiple sources, in different formats, and with no set chronology. Given
the fast-paced, competitive nature of modern business, it is crucial that data is
collected and analyzed in real time from streaming sources rather than static
files. Achieving this requires advanced tools and technologies that can handle
the distributed and dynamic nature of information systems.

A crucial aspect of process mining is the ability to analyze information sys-
tems in real-time, facilitating both proactive and corrective strategies through
the use of alerts and automated decision layers. However, it is not enough to
identify where a problem is located in a process: it’s better to know why. For
this reason, the ability to explain at the lower level, e.g., technical, why did a pro-
cess instance failed can also be considered as an expectation. The answer might
come from a traditional root-cause analysis or from the research of a process (or
cross-process) pattern that explains the issue.

It makes almost no doubt that process mining will become a “new normal”
in the next couple years. Although most techniques remain focused on so-called
lab data, researchers are aware of the challenges brought by industrial process
mining [7]. In this section we have discussed some of these challenges, and in the
next one we will give necessary background about the state of the art in process
mining.

3 Related Work

Several running challenges for process mining to overcome have been identified in
the literature [1,14]. In addition, extensive reviews have been published [1,3,7],



Real-World Streaming Process Discovery from Low-Level Event Data 155

addressing several aspects of the field. In this section, we cover selected aspects
of process mining that relate to our contribution.

3.1 A Brief Overview of Process Mining

In the last decade, process mining has been structured and formalized, allow-
ing researchers to uncover many challenges related to the discipline. The raw
material of process mining are event logs produced by the components of an
information system. Let L denote a multi-set of traces [σ1, . . . , σm] where a sin-
gle trace is a sequence of events such as σ = 〈a1, a2, . . . , an〉. In most approaches,
three core attributes are necessary to each event: case (process instance), activ-
ity (task) and timestamp. A log featuring the core attributes is an event log
and is suitable for process mining tasks. Other contextual attributes can provide
information about a process execution, and can also be used to analyze or model
processes from different perspectives. Logs that do not have the core attributes,
for instance technical logs, cannot be directly used to build activities and cases.
Table 1 shows example logs from both categories.

Table 1. Examples of two (unrelated) log files. On the left, an event log featuring the
three core attributes. On the right, a real-world technical log with a timestamp and
various information for each entry.

Case Activity t Log line contents

pizza-17 create base 18:10 pubsub; prj-api-pubsub; PROCESSED; 2023-04-13T
13:46:04Z; 2023-04-13T13:46:04Z; 077dd8d4-ac8e- 96bf-
f19804a62ab; 74636743906476; STATUS=EXECUTED;
HTTP CODE=204; PENDING ORDER ID=20230329-
24475001; CID=4560897; NB MODIFIED=4

pizza-17 add tomato 18:17

pizza-18 add tomato 18:18

pizza-17 add cheese 18:18

Process discovery involves the task of learning a process model from a multi-
set of traces L, where each trace is a sequence of events with core attributes
such as case, activity, and timestamp. The Alpha algorithm [2] is one of the
widely used and extended process discovery algorithms, but several advanced
algorithms such as region-based [8], Split Miner and Log Skeleton have also
been proposed. Each algorithm has its own strengths and weaknesses, and their
choice depends on various factors such as process complexity, available data, and
process mining goals. While region-based miners are suitable for situations with
duplicate activities, Split Miner is known for its ability to balance the fitness and
precision of models. From the literature, it is clear that there is no one-size-fits-
all approach to process mining, and the selection of a suitable method should
consider the aforementioned factors.

One commonly used approach in process mining is to view the events in a
trace σ as forming a partial order ≺ with respect to their occurrence time, which
is known as the control-flow perspective [1]. This perspective enables the iden-
tification of the main process backbone by ordering the activities according to



156 F. Lefebure et al.

the partial order. In the context of a business environment, the control-flow per-
spective is well suited as it allows for the examination of dependencies between
well-defined entities. However, other perspectives such as the case, information,
and application perspectives are also useful for analyzing processes from different
angles.

3.2 The Organizational Perspective

An organizational perspective can be adopted in order to derive the organi-
zational structure of an information system [15]. While control-flow analysis
focuses on the sequencing of activities, the organizational perspective empha-
sizes the discovery of relationships between the components of an entity. These
components can be individuals, and in this case, a social network can be inferred
and analyzed to understand how people work together, identify who is respon-
sible for most problems, and detect bottlenecks in the workflow. Alternatively,
components can be distinct business services, which can be used to study the
effectiveness of their collaboration. These approaches have been investigated in
an industrial context [14].

An alternative approach is to map the components of an information system
to its applications, interfaces, and processes. This perspective offers a compre-
hensive view of the system, which would be nearly impossible to obtain by a
single person. By applying suitable techniques, the entire system can be recon-
structed, providing insights into the behavior and dependencies of its different
components. This approach is particularly relevant in complex and dynamic sys-
tems, where interactions between components are often intricate and difficult to
unravel.

3.3 Streaming Process Discovery

Streaming process mining refers to techniques applied to the analysis of data
streams, rather than static and finite log files [3]. A typical use case that moti-
vates the use of streaming techniques is the need to understand active processes,
as opposed to those that have already completed. This perspective also qualifies
for further proactive or corrective strategies that may be activated to optimize
processes.

Streaming process mining comes with a set of interesting challenges which
have been underlined in the literature [3]. First of all, data can be handled either
in real-time, incrementally or online. Real time systems can be hard, soft or firm,
based on the emphasis put on the delay between the availability of the input and
the production of the output. Also, by definition an event stream is not bound,
and it is not possible to store the entire stream. As a consequence, produced
models and analysis might be considered as incomplete most of time. Thus, the
question of data approximation for a given process has to be raised. Backtracking
over stream is prohibited (each data point is processed only once), and stream
rate can fluctuate over time. These peculiarities are thoroughly discussed in [6].



Real-World Streaming Process Discovery from Low-Level Event Data 157

Another major challenge relates to so-called data unorderness. In a real-
world setting, with a distributed environment, logs are produced at independent
frequencies by applications. As a result, the order in which events arrive is often
different than the order in which they occur. In [4], the authors propose to gather
events in a windowed fashion to periodically reorder them. In background, a
directly follows graph is maintained to feature a control-flow process model.

A well know algorithm for streaming process discovery is the Heuristic Miner
with Lossy Counting (HM-LC) [6]. It employs a dependency measure to evaluate
the causal dependency between two activities. Based on a threshold, a depen-
dency graph is maintained for activities that qualify, while other activities are
treated as noise.

Eventually, it is worth noting that only a few studies address the issue of
deleting or updating activities from a stream (see [9] for an example), which
brings to light the complexity of the task. Also, contributions on scaling such
techniques remain scarce.

The literature of process mining is rich. Concepts are getting structured and
use cases in various fields show the importance of mining processes, and not just
data. In the next section, we propose our contribution to process mining and
expose some details about a set of production-grade techniques that are actively
deployed and used.

4 Contribution

4.1 Supervision of a Whole Application Domain

Most approaches require to explicitly configure the process mining tool to moni-
tor specific processes. Produced event logs are then used for further process dis-
covery, conformance checking or other mining tasks. Although it seems obvious,
it’s worth noting that processes that are not monitored will not be discovered.
The same applies at the service and application levels. For instance, interfaces
between services that are out of the scope of the supervised processes will remain
uncontrolled.

To avoid having a fragmented view of the information system, we have
designed a method that only requires to configure an application domain (as
defined in Sect. 2.1), rather than specific processes. It implies that all services
and served processes are monitored by default. An interesting example of the
need of such an implementation is the addition of a service, which is quite com-
mon. Whenever a service is added, it will be monitored and discovered with no
prior configuration. The same also applies for processes and variants.

4.2 Unsupervised and Streaming Process Discovery

The proposed framework (later referred to as the streamer) is designed with
prominent streaming capabilities implemented all along the process discovery.
This design is particularly well-suited for the distributed nature of contemporary



158 F. Lefebure et al.

information systems, where logs and applications may be spread across multiple
locations and media, such as databases and files. The core concept behind the
streaming approach is the continuous construction of entities as data becomes
available, in contrast to processing a finite dataset that is entirely available
at once. This characteristic also enables real-time monitoring and analysis, as
process models are constructed iteratively.

The streamer is designed with four steps, namely from logs to rawdata1, from
rawdata to activities, from activities to case and from cases to processes. As data
flows through the successive steps, it is analyzed and aggregated to create an
always up-to-date process model.

From Logs to Rawdata. The first step collects log entries from various sources
to build rawdata, a data structure that represents a fragment of activity. A
rawdata contains as much information as possible about an execution, mainly
contextual attributes, a timestamp and various identifiers. These identifiers are
technical identifiers which can be found in multiple log entries from distinct
services.

Log information can either be used to update or create rawdata. This step
achieves an important compression work by only pushing relevant information
from the logs to the rawdata. It is important to note that at some point during
the step, a rawdata may not yet contain core attributes. The main reason, besides
infrastructure reasons, is that necessary information is not contained in a unique
location. Several log files have to be processed, at distinct moments, to build a
rawdata that could move ahead through the pipeline. It is part of the step to
gather into a single data structure several information fragments.

From Rawdata to Activities. As stated earlier, the framework monitors a
full application domain instead of explicitly configured processes. Thus, processes
are automatically discovered and built, by correlating rawdata and activities to
unveil their organizational setup.

When a rawdata features enough information, it is pushed to a pool where it
will be used either to update or create an activity. As a consequence of the large
number of monitored services, a very high volume of technical log transactions
has to be analyzed. The second step of the streamer can be seen as a correlation
step, where two or more rawdata can be correlated and joined into a single event.
Correlation is made possible thanks to a set of rules that are checked against
data. For confidentiality reasons, we cannot provide a detailed explanation about
how the rules are built, maintained and checked. However, as a result of their
application, a rawdata is either turned into an activity or used to populate an
existing activity.

1 By convention, the plural form of the word is unchanging.



Real-World Streaming Process Discovery from Low-Level Event Data 159

From Activities to Cases. The framework mines processes with an organiza-
tional perspective. Thus, timestamps are barely used to compute the activities’
hierarchy. The second step can be understood as a correlation and linking step.

We use a correlation function on the activities, previously populated from
rawdata. Prior to mapping an activity to a parent, a data-driven learning phase
has to be conducted by using the attributes found in the activities to determine
their hierarchy. It is then possible to organize two activities into an execution
tree. In such a situation, the activities are attached together to form a case
fragment, which is pushed to the following step. A notable benefit from this step
is the capacity of building a documented map of the information system without
any prior configuration. This contributes to the organizational perspective and
allows for multiple level root-cause analysis.

More details about this step are given in Subsects. 4.3 and 4.5.

From Cases to Processes. The streamer intends to provide real-time process
mining to users, by producing accurate metrics and process models at any time
for any discovered process.

A process model can be seen as a structure that holds for all of the variants
of a process. Computation of metrics over a process model requires to traverse
each case (through each activity). This computation would be overly complex to
handle if it was realized continuously, i.e., each time a case is updated. To allevi-
ate this complexity, we have developed an approach that consists in computing
the models per contiguous temporal slices over time.

As explained early in the paper, all necessary information to build a case
becomes arbitrarily available over time, e.g., the last activity can become avail-
able before the first one, which excludes building the case in a handy or deter-
ministic order. As a corollary, we postulate that newer cases are updated more
frequently than older ones - this is also true for rawdata and activities. Thus, we
compute process model chunks containing variants over slices of time. The most
recent chunk models last seen variants of the process from now backwards to a
point in the past, called chunkt. As time moves ahead, variants aged older than
a given period fall into another chunk, chunkt−1. Chunks are built for all hours
of the present day, then daily, weekly and monthly. As a consequence, when a
case is updated with new data, only the corresponding process chunk is fully
recomputed. The whole process model, comprising all of the process chunks, can
always be up to date.

An interesting challenge existing in all steps is that sufficient information to
achieve the step’s goal becomes arbitrarily available on the time line. For exam-
ple, in the second step, an activity may remain isolated until the previous step
provides enough information to associate the activity with a case. To alleviate
this issue, we have implemented an exponential backoff.

4.3 Control

The order in which data arrives is not predictable. Given the distributed aspect
of information systems, events may become visible in a order that is different



160 F. Lefebure et al.

than the order in which they have happened. To illustrate the issue, we consider
the second step (from activities to cases), although the control strategy applies
to all steps.

To build a hierarchical tree of activities, we basically need to know which
service called another service. Let s1 and s2 be two services where s1 → s2
denotes s1 making a call to s2. During a process instance, si(·) = ai denotes an
activity of a case. Let � be a partial order over activities such that si → sj =⇒
ai � aj . If we note tobs(a) the moment on the timeline where a was observed,
then si → sj �=⇒ tobs(ai) � tobs(aj). Thus, it is not possible to rely on
the observation moment to build the hierarchical tree of activities over the call
order. When an activity is observed for the first time, it is queued and the
algorithm tries to find and update its case hierarchy, as explained in Sect. 4.2.
If no suitable case fragment is found, the activity is used to build a new case
fragment. Else, if the activity was itself updated during the search, it is re-queued
(see Subsect. 4.5).

We have implemented an exponential backoff re-queuing strategy over each
step, so that any rawdata, activity, case or process that cannot be handled imme-
diately for some reason is re-queued to be handled later. Let Q be a queue stack
with Q = 〈q0, q1, . . . , qn〉. Each queue q has a backoff parameter b controlling its
delivery rate, such as qi has a backoff parameter of bi = 2i. In this configuration,
elements in q0 are handled immediately. More generally, an element c in a stack
with n queues is handled after an expected time E(c) in seconds:

E(c) =
1

n + 1

n∑

i=0

2i =
2n − 1
n + 1

Exponential backoff is a widely used technique in computer science, and is appre-
ciated for providing an efficient way to manage collisions. In our running exam-
ple, a collision occurs when an activity cannot be inserted into a case because.
The expectation of the strategy is that delaying a treatment that has failed
will lead to success in a future attempt, probably because sufficient information
would have become available in the meantime – allowing the correlation func-
tion to produce an acceptable output. With ten queues in the stack (n = 9), an
element would wait an average of 46.45 s. In practice, this delay is much shorter.

4.4 Scaling

In the process mining literature, the term scaling process mining is often used
to describe the expansion of process mining to cover larger scopes [3]. One such
example is the transition from analyzing a few processes to monitoring an entire
information system. This type of scaling can be viewed as functional scaling.
Another type of scaling which is more rarely discussed is technical scaling. This
aspect becomes critical in the context of streaming process mining, where data
ingestion and process monitoring are performed in real time.

The presented framework, the streamer, is scaling-capable on both functional
and technical aspects. As discussed earlier, a whole application domain is put



Real-World Streaming Process Discovery from Low-Level Event Data 161

under control, and processes that operate under the defined domain are dis-
covered automatically. The user can then navigate in a process population and
chose to explore a specific process. This approach seems essential to scale func-
tionally, as it would be tedious to configure processes individually. From a more
technical point of view, the scaling capability of a solution depends on both the
algorithms and the infrastructure that supports them. Each step described in
Subsect. 4.2 can be multi-threaded in order to scale with the rate and volume
of data. To alleviate issues regarding deadlocks and optimize performance, we
have developed a custom optimistic locking mechanism over the steps.

4.5 Optimistic Locking Mechanism

In this subsection, we keep the running example of step two (from activities
to cases, paragraph Sect. 4.2). Linking an activity to a case from a stream of
data may fail, e.g., if the structure of the case was updated in the mean time.
To optimize the linking success, we have implemented an optimistic locking
mechanism over the steps.

When the case is read and found to be eligible to have a new activity bounded,
a version number is stored. At writing time, if the version number has changed,
the activity is re-queued and the step will attempt to bound it to a case later,
with respect to the control strategy exposed in Sect. 4.3. Optimistic locking
avoids hard locking records (a.k.a pessimistic locking) and deadlocks related
issues, while preserving coherence of data.

The production-grade techniques explained in this section have proved effec-
tive in real life situations, where data streams at high rates and volumes. In the
next section, we provide a use case where the techniques have been deployed.

5 Deployment

So far, we have given details about a set of techniques developed in the so-
called streamer, a framework for streaming and scaling process mining. This
framework is a core back-end component of a larger software, Data Explorer,
commercialized by Softbridge Technology [12], a process mining company. In
this section, we provide details about a deployment of Data Explorer (including
the streamer) in a client company.

Data Explorer has been used for five years on a daily basis by several users
from various profiles. The client company is in the telecommunications industry
and has an online store, as well as over a hundred physical stores. They also
manage both internal and external call centers. Its customers are both profes-
sionals and individuals who buy terminals, sign up for fiber or 4G subscriptions,
buy paid options, receive free credits, complaint, terminate contracts, etc. These
elements are a few examples of real business processes for the company.

An overview of the supervised application domain is provided in Table 2.
A total of 456 processes have been discovered in an unsupervised manner. It
would have been highly tedious and time-consuming to configure each process



162 F. Lefebure et al.

individually. Instead, after a minimal configuration step (see Subsect. 4.1), the
streamer allows unsupervised discovery of processes supported by the defined
application domain.

Table 2. Details regarding the application domain supervised by the deployed solution.
The streamer mines 456 processes and their variants, providing both data ingestion and
analysis in real time.

Item Description

Application domain 84 applications among 7 channels

Log locations 33 distinct data sources (files, databases, etc.)

Business processes 456 business processes (not including variants)

Data volume Monthly average over 10Tio

Given its high complexity, the cost of this project was established to
e 300.000, plus an undisclosed annual fee. In Table 3, we provide some exam-
ples of cost cuts that have been observed and used by the client company to
evaluate its ROI (Return On Interest). From its adoption in 2018 to today, the
ROI of Data Explorer has been evaluated to e 1.243.680 on a three-year period,
starting with as high as e 214.560 in the first year (annual fee included). Cus-
tomer satisfaction has also been significantly improved, as shown by the huge
reduction factor on its related cost (x17).

Table 3. Examples of cost cuts realized after the adoption of Softbridge Technology’s
process mining product. After the adoption of the product in 2018, more than e 730.000
were saved in annual complaint costs, and a seven-figure amount was saved overall.
Proposed metrics are annual averages, computed from 2015 to 2018 for the column
Before, and from 2019 to 2023 for the column After.

Before After Reduction factor

Annual customer interactions 4 800 000 4 800 000

Failed interactions 240.000 (5%) 48.000 (0.5%) x5

Average diagnosis time 2 h 30 min x4

Diagnosis costs (e 38/h) e 729.600 e 36.480 x20

Annual complaints cost e 777.600 e 46.080 x17

The streamer introduces a very limited overload on the information sys-
tem, as its operations are read-only. In the presented use case, the solution was
deployed on premises. In nominal situation, a process becomes visible in the
framework less than ten minutes after its creation in real life. This delay also
applies to updates in a process, for instance when a new event occurs. Both



Real-World Streaming Process Discovery from Low-Level Event Data 163

technical and business teams can take appropriate action in a reduced time after
a problem has occurred. It helps minimize or eliminate negative impacts on
business value and customer experience.

The deployment phase of the system at the client company required mini-
mal human resources and initially focused on monitoring a limited set of sale
processes on a single touchpoint. This decision was driven by billing issues that
couldn’t be resolved using traditional manual methods. Initially, there was skep-
ticism among stakeholders that activities could be linked without prior knowl-
edge of their originating process and context. The logs that were collected by the
client company before the definitive adoption of Data Explorer were convenient
to mine processes, but with minimal information. The client company then made
a strategic decision to augment the logs, in order to obtain highly documented
processes, and to expand the scope of process mining by broadening the range
of applications and business processes to be monitored.

6 Conclusion

Process mining is a research area located at the intersection of data science and
process science. Lately, a huge number of studies and use cases have proved that
it could help improve operations (see Sects. 2 and 4). While mainstream studies
focus on offline process mining, attempts have been made regarding streaming
process mining, and have contributed to provide a better understanding of its
necessity (see Subsect. 3.3). In this study, we have proposed our contribution to
the field by presenting our framework, the streamer, a process mining product.

The streamer meets some important criteria expected in the industry to pro-
vide business value, as presented in Sect. 2. Both data ingestion and analysis
are performed from a stream rather than static data, thus achieving real-time
monitoring of processes. In distributed information systems, log entries are asyn-
chronously written to data sources. The streamer continuously ingests data from
these sources after a lightweight configuration phase, enabling unsupervised dis-
covery of all processes operating under the defined domain without the need for
per-process configuration.

Real-time process discovery and monitoring is achieved with updates becom-
ing visible in the product in less than ten minutes after the operation was per-
formed in reality. By utilizing low-level technical log transactions, processes can
be explored at multiple levels, including technical and business levels, enabling
precise mapping of the information system. This approach facilitates root-cause
analysis, which can capture cross-process patterns instead of single activities.
These real-time and streaming operations provide tangible improvements of busi-
ness value while being grounded in strong scientific and technical principles.

We have adopted an organizational perspective to fit our multilevel process
discovery. Indeed, instead of presenting flow of events, we organize processes just
like they exist in their context. In addition to providing an always up-to-date
vision, this perspective contributes to faster problem auditing and resolution.



164 F. Lefebure et al.

There are still many challenges left for process mining. As a future work direc-
tion, we have started to develop a conformance checking feature that would as
well work in a streaming context.

In 2020, a study quoted that real-time monitoring of processes is an important
process intelligence capability not yet commercially available [10]. Recently in
2022, the authors of [3] stated that real-time data ingestion is rarely observed in
the industry, and real-time analysis is still to be achieved. Although discreet, the
framework of which we have exposed some of the functionalities is commercially
available since 2017 and effectively proposes both real-time data ingestion and
real-time analysis [12].

References

1. van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda.
Comput. Ind. 53, 231–244 (2004). https://doi.org/10.1016/j.compind.2003.10.001

2. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004). https://doi.org/10.1109/TKDE.2004.47

3. van der Aalst, W.M.P., Carmona, J.: Process Mining Handbook, vol. 448. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-08848-3

4. Awad, A., Weidlich, M., Sakr, S.: Process mining over unordered event streams. In:
2020 2nd International Conference on Process Mining (ICPM), pp. 81–88 (2020).
https://doi.org/10.1109/ICPM49681.2020.00022

5. von Bertalanffy, L., Hofkirchner, W., Rousseau, D.: General System Theory: Foun-
dations, Development, Applications. George Braziller, Incorporated (2015)

6. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from
event streams. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation, CEC 2014, Beijing, China, 6–11 July 2014, pp. 2420–2427. IEEE (2014).
https://doi.org/10.1109/CEC.2014.6900341

7. Burratin, A.: Process Mining Techniques in Business Environments, vol. 207.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17482-2

8. Darondeau, P.: Deriving unbounded Petri nets from formal languages. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055646

9. Gama, J., Aguilar-Ruiz, J.S., Klinkenberg, R.: Knowledge discovery from data
streams. In: Intelligent Data Analysis (2009)

10. Modi, A., Shahdeo, U.: Process mining state of the market. Technical report. EGR-
2020-38-R-3808, Everest Group (2020)

11. Muller, X., Lhoste, P.: Adoption du process mining et facteurs de réussite. Tech-
nical report, Deloite (2022)

12. Softbridge Technology, a Process Mining Company (2015). https://softbridge-
technology.com. Accessed 07 Feb 2023

13. Thuault, C., Cholet, S.: Understanding and mastering complex systems. Technical
report. SB-WP-2022-9, Softbridge Technology, Baie-Mahault, GP, France (2022)

14. van der Aalst, W., et al.: Business process mining: an industrial application. Inf.
Syst. 32(5), 713–732 (2007). https://doi.org/10.1016/j.is.2006.05.003

15. Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Wen,
Z., Li, T. (eds.) Foundations of Intelligent Systems. AISC, vol. 277, pp. 701–708.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54924-3 66

https://doi.org/10.1016/j.compind.2003.10.001
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1007/978-3-031-08848-3
https://doi.org/10.1109/ICPM49681.2020.00022
https://doi.org/10.1109/CEC.2014.6900341
https://doi.org/10.1007/978-3-319-17482-2
https://doi.org/10.1007/BFb0055646
https://softbridge-technology.com
https://softbridge-technology.com
https://doi.org/10.1016/j.is.2006.05.003
https://doi.org/10.1007/978-3-642-54924-3_66


Robust Neural Network Approach
to System Identification
in the High-Noise Regime

Elisa Negrini1(B) , Giovanna Citti2, and Luca Capogna3

1 Department of Mathematics, University of California Los Angeles,
Los Angeles, USA
enegrini@ucla.edu

2 Department of Mathematics, University of Bologna, Bologna, Italy
giovanna.citti@unibo.it

3 Department of Mathematical Sciences, Smith College, Northampton, USA

lcapogna@smith.edu

Abstract. We present a new algorithm for learning unknown gov-
erning equations from trajectory data, using a family of neural net-
works. Given samples of solutions x(t) to an unknown dynamical system
ẋ(t) = f(t, x(t)), we approximate the function f using a family of neural
networks. We express the equation in integral form and use Euler method
to predict the solution at every successive time step using at each iter-
ation a different neural network as a prior for f . This procedure yields
M-1 time-independent networks, where M is the number of time steps at
which x(t) is observed. Finally, we obtain a single function f(t, x(t)) by
neural network interpolation. Unlike our earlier work, where we numer-
ically computed the derivatives of data, and used them as target in a
Lipschitz regularized neural network to approximate f , our new method
avoids numerical differentiations, which are unstable in presence of noise.
We test the new algorithm on multiple examples in a high-noise setting.
We empirically show that generalization and recovery of the governing
equation improve by adding a Lipschitz regularization term in our loss
function and that this method improves our previous one especially in
the high-noise regime, when numerical differentiation provides low qual-
ity target data. Finally, we compare our results with other state of the
art methods for system identification.

Keywords: Deep Learning · System Identification · Network
Regularization

1 Introduction

System identification refers to the problem of building mathematical models
and approximating governing equations using only observed data from the sys-
tem. Governing laws and equations have traditionally been derived from expert
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 165–178, 2023.
https://doi.org/10.1007/978-3-031-44505-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_12&domain=pdf
http://orcid.org/0000-0001-6647-0046
https://doi.org/10.1007/978-3-031-44505-7_12


166 E. Negrini et al.

knowledge and first principles, however in recent years the large amount of data
available resulted in a growing interest in data-driven models and approaches
for automated dynamical systems discovery. The applications of system identifi-
cation include any system where the inputs and outputs can be measured, such
as industrial processes, control systems, economic data and financial systems,
biology and the life sciences, medicine, social systems, and many more (see [3]
for more examples of applications).

In this work we train a family of neural networks to learn from noisy data a
nonlinear and potentially multi-variate mapping f , right-hand-side of the differ-
ential equation:

ẋ(t) = f(t, x) (1)

The trained network can then be used to predict the future system states.
In general, two main approaches can be used to approximate the function f

with a neural network. The first approach aims at approximating the function
f directly, like we did in our previous paper [11], which we refer to as splines
method. In this work, inspired by the work of Oberman and Calder in [12], we
use a Lipschitz regularized neural network to approximate the RHS of the ODE
(1), directly from observations of the state vector x(t). The target data for the
network is made of discrete approximations of the velocity vector ẋ(t), which
act as a prior for f . One limitation of this approach is that, in order to obtain
accurate approximations of the function f , one needs to obtain reliable target
data, approximations of the velocity vector, from the observations of x(t). This
proved to be hard when a large amount of noise was present in the data. The
second approach aims at approximating the function f implicitly by expressing
the differential equation (1) in integral form and enforcing that the network
that approximates f satisfies an appropriate update rule. This is the approach
used in [18], which we refer to as multistep method, where the authors train the
approximating network to satisfy a linear multistep method. An advantage of
this approach over the previous one is that the target data used to train the
multistep network is composed only of observations of the state vector x(t).
However, noise in the observations of x(t) can still have a strong impact on the
quality of the network approximation of f .

In this work we build on the second approach and introduce a new idea
to overcome the limitations of the methods mentioned above. Similarly to the
multistep method, we express the differential equation in integral form and train
the network that approximates f to satisfy Euler update rule (with minimal
modifications one can use multistep methods as well). This implicit approach
overcomes the limitations of the splines method, whose results were strongly
dependent on the quality of the velocity vector approximations used as target
data. Differently than the multistep method, our proposed approach is based on
a Lipschitz regularized family of neural networks and it is able to overcome the
sensitivity to noise. Later on we compare these methods and other methods for
system identification with our proposed approach and show that in the high-
noise setting our method produces more accurate results thanks to the use of
Lipschitz regularization and multiple networks.



Robust Neural Network for Noisy System Identification 167

The rest of the paper is organized as follows: Sect. 2 outlines relevant efforts
in the field of system identification. In Sect. 3 we describe in detail our proposed
method. Section 4 describes and discusses the experimental results. Finally con-
clusion and future research directions are outlined in Sect. 5

2 Related Works

In recent years many methods have been proposed for data-driven discovery of
nonlinear differential equations. Commonly used approaches are sparse regres-
sion, Gaussian processes, applied Koopmanism and dictionary based approaches,
among which neural networks. Sparse regression approaches are based on a user-
determined library of candidate terms from which the most important ones are
selected using sparse regression [4,20–22]. These methods provide interpretable
results, but they are sensitive to noise and require the user to choose an “appro-
priate” sets of basis functions a priori. In contrast, since neural networks are
universal approximators our method allows to accurately recover very general
and complex RHS functions even when no information on the target function
is available. Identification using Gaussian processes places a Gaussian prior on
the unknown coefficients of the differential equation and infers them via maxi-
mum likelihood estimation [16,17,19]. The Koopman approach is based on the
idea that non linear system identification in the state space is equivalent to lin-
ear identification of the Koopman operator in the infinite-dimensional space of
observables. Since the Koopman operator is infinite-dimensional, in practice one
computes a projection of the Koopman operator onto a finite-dimensional sub-
space of the observables. This approximation may result inaccurate in presence
of noise and has proven challenging in practical applications [5,9,10]. In con-
trast our proposed method is able to overcome the sensitivity to noise thanks
to the use of Lipschitz regularization and multiple networks. Since neural net-
works are universal approximators, they are a natural choice for nonlinear system
identification: depending on the architecture and on the properties of the loss
function, they can be used as sparse regression models, they can act as priors on
unknown coefficients or completely determine an unknown differential operator
[2,6,7,11,13–15,18]. Our method is part of this category, but adds to the existing
literature thanks to the use of multiple networks and Lipschitz Regularization.
Moreover, since our proposed method is based on weak notion of solution using
integration it can be used to reconstruct both smooth and non-smooth RHS
functions. This is especially an advantage over models that rely on the notion of
classical solution like the splines method [11] and make it an extremely valuable
approach when working with real-world data.

3 Proposed Method

In this section we describe the architecture used in the experiments.
Our goal is to approximate a vector-valued RHS f(t, x) of a system of differ-

ential equations ẋ(t) = f(t, x), directly from discrete noisy observations of the



168 E. Negrini et al.

state vector x(t) ∈ R
d. We propose to do so using a neural network architecture

composed of two blocks: the target data generator and the interpolation network.
See Algorithm 1 for the full architecture algorithm.

The Target Data Generator: The target data generator is a family of neural
networks whose goal is to produce reliable velocity vector approximations which
will be used as target data for the interpolation network. The data is selected
as follows: given time instants t1, . . . , tM and K trajectories, define

xi(tj) ∈ R
d, i = 1, . . . , K, j = 1, . . . ,M

to be an observation of the state vector x(t) at time tj for trajectory i. For
each time instant tj , j = 1, . . . ,M − 1 we train a feed forward neural network
Nj(x(tj)) to approximate the velocity vector ẋ(t) at time instant tj . Indicating
by θj the network parameters, the loss function Lj used for training forces each
Nj to satisfy Euler update rule and it is defined as:

Lj(θj) =
1
K

K∑

i=1

‖Δt Nj(xi(tj), θj) + xi(tj) − xi(tj+1)‖22 j = 1 . . . ,M − 1

Once the networks Nj are trained, they collectively provide a discrete approx-
imation of the velocity vector on the full time domain, which we indicate by
˜̇x(t).

The Interpolation Network: The interpolation network Nint is a Lipschitz
regularized neural network (as defined in [11]) which takes as input a time t and
an observation of the state vector x(t) and uses as target data the approxima-
tion of the velocity vector ˜̇x(t) given by the target data generator (this acts as
a prior for the unknown function f(t, x)). Once trained the interpolation net-
work Nint provides an approximation of the RHS function f on its domain, that
is Nint(t, x) ≈ f(t, x). The loss function L(θint) minimized to train the inter-
polation network contains two terms. The first one is the Mean Squared Error
(MSE) between the network output and the target data: this forces the network
predictions to be close to the observed data. The second term is a a Lipschitz
regularization term which forces the Lipschitz constant of the network Nint to be
small (the Lipschitz constant is a proxy for the size of the network’s gradient):

L(θint) = MSE
(

˜̇x(t), Nint(t, x(t); θint)
)

+ αLip(Nint).

Here α > 0 is a regularization parameter and Lip(Nint) is the Lipschitz constant
of the network Nint. Inspired by the work of Jin et al. in [8] the Lipschitz constant
of network is computed as:

Lip(Nint) ≤ ‖W 1
int‖2‖W 2

int‖2 . . . ‖WL
int‖2. (2)

Since this is an explicit constraint on the network weights, the computational
cost for this approximation is low. This is in contrast with the approximation we
used in our previous paper [11], (Section 3.1) based on Rademacher’s theorem,
which requires to compute the gradient of the network at each iteration.



Robust Neural Network for Noisy System Identification 169

Algorithm 1. Full Architecture Algorithm
Require: t = (tj), x(t) = (xi(tj)) , i = 1, . . . , K, j = 1, . . . , M

Train Target data generator

for j = 1 : M − 1 do
Θj ← argminΘj

MSE(Δt Nj(x(tj); θ
j) + x(tj), x(tj+1))

end for

Obtain ˜ẋ(t) := (Nj(x(tj)) , j = 1, . . . , M − 1

Train Interpolation Network

Θint ← argminΘint

(

MSE
(

˜ẋ(t), Nint(t, x(t); θint)
)

+ αLip(Nint)
)

Obtain Nint(t, x(t); θint) ≈ f(t, x(t))

4 Experimental Results and Discussion

In this section we propose numerical examples of our method and comparisons
with other methods for system identification. In the examples we use synthetic
data with noise amount up to 10%. In this paper we only show one dimensional
examples, but we explicitly notice that, since our method is applied component-
wise, it can be used for data of any dimension. Three different metrics are used
to evaluate the performance of the our method:

1. Mean Squared Error (MSE) on test data which measures the distance of
the model prediction from the test data. We also report the generalization
gap (difference between test and training error) obtained with and without
Lipschitz regularization in the interpolation network. The smaller the gener-
alization gap the better the network generalizes to unseen data (for a more
precise description see [1]).

2. Since we use synthetic data, we have access to the true RHS function f(t, x).
This allows to compute the relative MSE between the true f(t, x) and the
approximation given by our architecture on arbitrary couples (t, x) in the
domain of f . We call this error recovery error.

3. Since our method produces a function Nint(t, x), it can be used as RHS of a
differential equation ẋ = Nint(t, x). We then solve this differential equation in
Python and compute the relative MSE between the solution obtained when
using as RHS the network approximation Nint(t, x) and when using the true
function f(t, x). We call this error in the solution.

4.1 Smooth Right-Hand Side

The first example we propose is the recovery of the ODE

ẋ = xet + sin(x)2 − x (3)



170 E. Negrini et al.

We generate solutions in Python for time steps t in the interval [0,0.8] with
Δt = 0.04 and for 500 initial conditions uniformly sampled in the interval [-
3,3]. The hyperparameters for our model are selected in each example by cross
validation: the interpolation network Nint has L = 8 layers, each layer has
20 neurons, while each network Nj of the target data generator has Lj = 3
layers with 10 neurons each. The target data generator is made of 20 networks.
In Table 1, we report the training MSE, testing MSE, Generalization Gap and
estimated Lipschitz constant when 5% and 10% of noise is present in the data.
Since our goal here is to compare the performance on test data of the networks
with and without regularization, we select the number of epochs during training
so as to achieve the same training MSE across all the regularization parameters
choices and compare the corresponding Testing errors and Generalization Gaps.
We report here only the results obtained for the non-regularized case and for the
best regularized one when 5% and 10% of noise is present in the data. We can
see from the tables that Lipschitz regularization improves the generalization gap
by one order of magnitude for all amounts of noise, that a larger regularization
parameter is needed when more noise is present in the data and that, as expected,
adding Lipschitz regularization results in a smaller estimated Lipschitz constant.
This confirms the findings from our previous paper that Lipschitz regularization
improves generalization and avoids overfitting, especially in presence of noise.

Table 1. Test error and Generalization Gap comparison for 5% and 10% noise.

ẋ = xet + sin(x)2 − x, 5% Noise

Regularization
Parameter

Training
MSE

Testing
MSE

Generalization
Gap

Estimated Lipschitz
Constant

0 0.618% 0.652% 0.034% 7.09

0.004 0.618% 0.619% 0.001% 6.33

ẋ = xet + sin(x)2 − x, 10% Noise

Regularization
Parameter

Training
MSE

Testing
MSE

Generalization
Gap

Estimated Lipschitz
Constant

0 2.01% 2.32% 0.310% 7.72

0.015 2.01% 2.03% 0.030% 6.38

In Table 2 we report the error in the recovery for the RHS function f(t, x) =
xet + sin(x)2 − x and the error in the solution of the ODE when using the inter-
polation network as RHS. We can see that for all amounts of noise in the data,
both the reconstruction error and the error in the solution are small, respectively
they are less than 0.7% and 0.04%. For larger amounts of noise, the method still
works, but provides less accurate approximations. For example with 20% noise
the recovery error is approximately 3%. Making the method more robust in
higher noise regimes will be object of a future work.



Robust Neural Network for Noisy System Identification 171

Table 2. Left: Relative MSE in the recovery of the RHS for up to 10% of noise. Right:
Relative MSE in the solution of the ODE for up to 10% of noise

Relative MSE in the recovery of the RHS of

ẋ = xet + sin(x)2 − x

0% Noise 0.100%

5% Noise 0.144%

10% Noise 0.663%

Relative MSE in the solution of

ẋ = xet + sin(x)2 − x

0% Noise 0.016%

5% Noise 0.025%

10% Noise 0.038%

The left panel of Fig. 1 shows the true and reconstructed RHS and recovery
error on the domain on which the original data was sampled for 5% of noise
in the data. In the error plot a darker color represents a smaller error. We can
see that the largest error is attained at the right boundary of the domain: by
design of our architecture the target data generator only generates target data
up to the second-last time step. As a consequence the interpolation network has
only access to observations up to the second-last time step and so it is forced to
predict the value of the RHS function at the last time step by extrapolation. It is
then reasonable that the largest recovery error is attained at the right boundary
of the domain. In the right panel of Fig. 1 we report the true solution (red line)
and the solution predicted when using the interpolation network as RHS (dashed
black line) for multiple initial condition and for 5% noise in the data. We notice
that the prediction is accurate for all the initial conditions selected, but that
it gets worse towards the end of the time interval because of the inaccurate
approximation of the RHS at the right boundary of the time interval.

Fig. 1. Left: True RHS, Predicted RHS and recovery error for 5% noise in the data.
Right: True and Predicted solution for 5% noise in the data

Finally, since the test error, the error in the recovery and the error in the
solution are all measured using MSE, it makes sense to compare such homoge-
neous measurements. The first thing to notice is that the testing errors are larger
than the recovery errors. This shows the ability of our network to avoid over-
fitting and produce reliable approximations of the true RHS even when large



172 E. Negrini et al.

amounts of noise are present in the data. In fact, the Test MSE is computed
by comparing the value predicted by the network with the value of the corre-
sponding noisy observation, while the recovery error is computed by comparing
the value predicted by the network with the value of the true function f . The
disparity between the test error and the recovery error then shows that the inter-
polation network provides results that successfully avoid fitting the noise in the
data. The second thing to notice is the disparity between the recovery error and
the error in the solution: the error in the solution is on average smaller than
the recovery error. This is due to the data sampling: when recovering the RHS
we reconstruct the function on the full domain, while the original data was only
sampled on discrete trajectories; for this reason large errors are attained in the
parts of the domain where no training data was available. On the other hand
the error in the solution is computed on trajectories which were originally part
of the training set, so it is reasonable to expect a smaller error in this case.

4.2 Non-smooth Right-Hand Side

We propose is the recovery of

ẋ = sign(t − 0.1) (4)

and compare the results given by our proposed method and the splines method.
Both methods aim at learning a Lipschitz approximation of the right-hand side
function. The spline method is based on the notion of classical solution and it is
doomed to fail in such a non-smooth setting. In contrast, our proposed method
is based on weak notion of solution using integration and is able to accurately
reconstruct even non-smooth functions. We generate data for time steps t in the
interval [0,0.2] with Δt = 0.02 and for 500 initial conditions uniformly sampled
in the interval [−0.1, 0.1] for noise amounts up to 2%. We only use up to 2% of
noise since, the splines model can only provide reliable target data for small noise
amounts. The hyperparameters for the models in this example are as follows:
each network Nj has Lj = 3 layers with 10 neurons each, the interpolation
network and the network used in the splines method both have L = 4 layers, each
layer has 30 neurons. The target data generator is made of 10 networks. As seen
in Table 3, because of the low quality target data (approximation of the velocity
vector from noisy observations of the positions) obtained by the splines method,
this approach fails at reconstructing the non-smooth RHS, while our proposed
method is able to produce an accurate reconstruction even in this case. The
superior performance of our method over the spline method for this example can
also be seen from Fig. 2. From left to right we represent the true, reconstructed
RHS and the error in the reconstruction for the spline based method (top row)
and for our method (bottom row) when 1% of noise is present in the data. We
can see from the figure that the spline method in this case is not even able to
find the general form of the RHS function correctly because of the bad quality
of the target data. On the contrary, our proposed method, being completely
data driven and based on a weak notion of solution, is able to reconstruct RHS
functions like sign(t − 0.1) that are non-smooth in t.



Robust Neural Network for Noisy System Identification 173

Table 3. Relative MSE in the recovery of the RHS for up to 2% of noise for our method
and the splines method.

Relative MSE in the recovery of the RHS of ẋ = sign(t − 0.1)

Ours Splines

1% Noise 0.002% 12.5%

2% Noise 0.004% 12.9%

Fig. 2. Top row: Spline method. Bottom row: Our proposed method. From left to
right: True RHS, Reconstructed RHS and Error in the reconstruction when 1% of noise
is present in the data.

4.3 Comparison with Other Methods

We compare our method with the methods proposed in [18] and in [4]. For com-
pleteness we also provide a comparison with the splines method [11]. The method
proposed in [18], (multistep method), is similar to ours: the authors place a neural
network prior on the RHS function f , express the differential equation in integral
form and use a multistep method to predict the solution at each successive time
steps. In contrast with our method they do not use a family of networks and
Lispchitz Regularization. The method proposed in [4], (SINDy), is based on a
sparsity-promoting technique: sparse regression is used to determine, from a dic-
tionary of basis functions, the terms in the dynamic governing equations which
most accurately represent the data. Finally, we compare with the splines method
described in Sect. 1. We report here the relative error obtained by the different
methods in the approximation of the true f as well as the computational time
for each method.

We generated the data by computing approximated solutions of

ẋ = cos(3x) + x3 − x (5)



174 E. Negrini et al.

for time steps t in the interval [0,1] with Δt = 0.04 and for 500 initial conditions
uniformly sampled in the interval [−0.7, 0.9]. The interpolation network has L =
8 layers, each layer has 30 neurons, while each network Nj has Lj = 3 layers
with 20 neurons each. The target data generator is made of 25 networks. We
compare the results obtained by our proposed method and the spline, multistep
methods, a polynomial regression with degree 20 and SINDy. The dictionary
of functions used for SINDy constraints polynomials up to degree 10 as well
as other elementary functions: cos(x), sin(x), sin(3x), cos(3x), ex, ln(x), tan(x).
In Table 4 we report the relative MSE in the recovery of the RHS function
f = cos(3x) + x3 − x for up to 10% of noise. We notice that when no noise
is present in the data, so that overfitting is not a concern, SINDy outperforms
all the other methods. However, when noise is present in the data our method
gives the best results. For example, when 5% noise is present in the data our
method obtains an error of 0.096% which is smaller than the errors obtained
by all the other methods by one order of magnitude or more. This shows that
our proposed method is able to overcome the sensitivity to noise. In terms of
computational time we can see that polynomial regression and SINDy are the
fastest at performing the reconstruction with computational time lower than
1 s. This is expected since they have approximately 100 times less parameters
than the neural network methods. The neural network methods have higher
computational cost and our proposed method, while giving the most accurate
results for noisy data, is the slowest. This is because it requires training of
multiple networks, while the splines and multistep methods only require training
one network. Note, however, that our method, while being slower than the other
methods we compare with, provides the most accurate result in under 2 min.

Table 4. Relative MSE and computational time comparison in the recovery of the RHS
for up to 10% of noise for our method, the splines and multistep methods, polynomial
regression with degree 20, SINDy with custom library.

Relative MSE and computational time comparison for ẋ = cos(3x) + x3 − x

Ours Splines Multistep Polynomial Regression degree 20 SINDy custom library

0% Noise 0.0505% 0.214% 0.116% 6.3e-05% 5.7e-05%

5% Noise 0.0957% 0.585% 1.20% 3.33% 0.619%

10% Noise 0.520% 1.90% 3.51% 17.0% 3.36%

Time (s) 119.5 34.6 26.1 0.60 0.54

In Fig. 3 we report the true (red line) and recovered RHS function (blue line)
when 5% of noise is present in the data. This figure confirms the findings shown
in the previous table: our method is able to reconstruct the true RHS most
accurately showing that our method is robust to noise. From the table above
we notice that, for noisy data, the worst accuracy was always attained by the
polynomial regression. In this case, even if a 20◦ polynomial has 100 times less
parameters than our neural network, increasing the degree of the polynomial



Robust Neural Network for Noisy System Identification 175

increased the error in the recovery. From this figure we can clearly see why that
happens: the polynomial regression with degree 20 is already overfitting the noisy
data and the largest errors are attained at the boundaries of the domain where
the polynomial is highly oscillatory. The other three methods are able to provide
approximations that capture the general form of the true RHS function, but only
our method is able to provide an accurate approximation even at the boundary
of the domain.

Fig. 3. From left to right, true and recovered RHS for 5% noise in the data obtained
by our method, splines method, Multistep Method, Polynomial Regression with degree
20, SINDy with custom library.

4.4 Improving Interpretability Using SINDy

In this section we show how we can improve the interpretability of our method
by combining it with SINDy. The strategy is as follows:

1. Given noisy x(t) we use our neural network architecture to find a network
Nint which approximates the unknown function f .

2. We solve the differential equation ẋ(t) = Nint(t, x) for multiple initial condi-
tions and obtain new solutions x̄(t). These solutions are a denoised version
of the original observations since they were produced using the regularizing
neural network architecture.

3. The denoised data x̄(t) is then given to SINDy to produce an interpretable
and sparse representation of Nint.

We show the results of this strategy for the example proposed in Sect. 4.3. Recall
that our goal is to approximate the equation

ẋ = cos(3x) + x3 − x (6)

In Sect. 4.3 we showed that our neural network architecture is able to reconstruct
correctly the RHS and that, when noise it’s present in the data, the recovered
RHS function is more accurate than the one obtained by SINDy. In this section,
we use the network Nint found in Sect. 4.3 when 5% of noise is present in the
data and use it to produce denoised solutions x̄(t) as explained above. We then
use SINDy with the same custom library of functions as in Sect. 4.3 to produce
an interpretable and sparse approximation of the original f . When using this
technique we obtain the following RHS approximation:

ẋ(t) ≈ 0.898x3 − 1.055 sin(x) + 0.996 cos(3x) (7)



176 E. Negrini et al.

while applying SINDy directly to noisy data gave:

ẋ(t) ≈ −9.431x3 + 28.141x5 + 2.730x6 + −18.665x7 − 4.902x9 − 7.477x10 + 0.945 cos(3x) (8)

We see that Eq. (7) is very close to the true Eq. (6). The main difference is
that instead of the term “−x” SINDy found “−1.055 sin(x)”. This is reasonable
since for small values of x, like in this example, x ≈ sin(x). On the contrary,
Eq. (8) obtained by applying SINDy directly to the noisy data results in an
approximated f containing high order terms: this is caused by the noise in the
data. As a consequence the MSE in the reconstruction improves from 0.619% to
0.0096%. This can also be seen in the figure below (Fig. 4):

Fig. 4. Left: SINDy reconstruction from 5% noisy data. Right: SINDy reconstruction
from denoised network data.

5 Conclusion

In this paper we use a Lipschitz regularized family of neural networks to learn
governing equations from data. There are two main differences between our
method and other neural network system identification methods in the litera-
ture. First, we add a Lipschitz regularization term to our loss function to force
the Lipschitz constant of the network to be small. This regularization results in
a smoother approximating function and better generalization properties when
compared with non-regularized models, especially in presence of noise. Second,
we use a family of neural networks instead of a single neural network for the
reconstruction. We show that this makes out model robust to noise and able
to provide better reconstruction than other state of the art methods for system
identification. To our knowledge this is the first time that Lipschitz regulariza-
tion is added to a family of networks to overcome the sensitivity to noise in a
system identification problem. More in detail, our numerical examples, which are
representative of a larger testing activity with several different types of right-
hand sides f(x, t), show multiple strengths of our method: when noise is present
in the data, the Lipschitz regularization improves the generalization gap by one
order of magnitude or more. Our architecture is robust to noise and is able to
avoid overfitting even when large amounts of noise are present in the data (up



Robust Neural Network for Noisy System Identification 177

to 10%). This robustness to noise is especially an advantage over methods that
do not use a family of networks such as [18]. The method is completely data-
driven and it is based on weak notion of solution using integration. For this
reason, it can be used to reconstruct even non-smooth RHS functions. This is
especially an advantage over models that rely on the notion of classical solution
like the Splines Method [11]. Since neural networks are universal approxima-
tors, we do not need any prior knowledge on the ODE system, in contrast with
sparse regression approaches in which a library of candidate functions has to
be defined. As shown in Sect. 4.3, direct comparison with polynomial regression
and SINDy shows that our model is a better fit when learning from noisy data,
even if it comes at the cost of increased computational time. Since our method
is applied component-wise, it can be used to identify systems of any dimension,
which makes it a valuable approach for high-dimensional real-world problems.
As shown in Sect. 4.4, combining our method with SINDy produces a more accu-
rate, intepretable and sparse reconstruction than using SINDy on the original
noisy data, thanks to the denoising properties of our architecture.

Future research directions include applying our methods to real world data
and extending our methods to the reconstruction of Partial Differential Equa-
tions (PDEs). More in detail, first we would like to use our method to reconstruct
an equation that approximately describes the evolution in time of COVID-19
infected people. Another interesting application would be to reconstruct the
Hodgkin-Huxley model from data. This is a ODE system that describes how
action potentials in neurons are initiated and propagated. Second, we would like
to generalize our models to the recovery of partial differential equations. Specifi-
cally, consider the parabolic PDE ut = f(t, x, u,∇u,D2u); given a finite number
of observations of u(t, x) the goal is to reconstruct the function f .

Acknowledgements. E. N. is supported by Simons Postdoctoral program at IPAM
and DMS 1925919. L. C. is partially supported by NSF DMS 1955992 and Simons
Collaboration Grant for Mathematicians 585688.

G. C. is partially supported by the EU Horizon 2020 project GHAIA, MCSA RISE
project GA No 777822.

Results in this paper were obtained in part using a high-performance computing
system acquired through NSF MRI grant DMS-1337943 to WPI.

References

1. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.T.: Learning from Data, vol. 4.
AMLBook, New York (2012)

2. Berg, J., Nyström, K.: Data-driven discovery of PDEs in complex datasets. J.
Comput. Phys. 384, 239–252 (2019)

3. Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time,
Frequency, and Spatio-Temporal Domains. Wiley, Hoboken (2013)

4. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad.
Sci. 113(15), 3932–3937 (2016)



178 E. Negrini et al.

5. Budǐsić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos: Interdisc. J. Non-
linear Sci. 22(4), 047510 (2012)

6. Champion, K., Lusch, B., Kutz, J.N., Brunton, S.L.: Data-driven discovery of coor-
dinates and governing equations. Proc. Natl. Acad. Sci. 116(45), 22445–22451
(2019)

7. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary dif-
ferential equations. In: Advances in Neural Information Processing Systems, vol.
31 (2018)

8. Jin, P., Lu, L., Tang, Y., Karniadakis, G.E.: Quantifying the generalization error in
deep learning in terms of data distribution and neural network smoothness. Neural
Netw. 130, 85–99 (2020)

9. Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings
of nonlinear dynamics. Nat. Commun. 9(1), 1–10 (2018)

10. Nathan Kutz, J., Proctor, J.L., Brunton, S.L.: Applied Koopman theory for par-
tial differential equations and data-driven modeling of spatio-temporal systems.
Complexity 2018 (2018)

11. Negrini, E., Citti, G., Capogna, L.: System identification through Lipschitz regu-
larized deep neural networks. J. Comput. Phys. 444, 110549 (2021). https://doi.
org/10.1016/j.jcp.2021.110549. https://www.sciencedirect.com/science/article/
pii/S0021999121004447

12. Oberman, A.M., Calder, J.: Lipschitz regularized deep neural networks converge
and generalize. arXiv preprint arXiv:1808.09540 (2018)

13. Ogunmolu, O., Gu, X., Jiang, S., Gans, N.: Nonlinear systems identification using
deep dynamic neural networks. arXiv preprint arXiv:1610.01439 (2016)

14. Qin, T., Wu, K., Xiu, D.: Data driven governing equations approximation using
deep neural networks. J. Comput. Phys. 395, 620–635 (2019)

15. Raissi, M.: Deep hidden physics models: deep learning of nonlinear partial differ-
ential equations. J. Mach. Learn. Res. 19(1), 932–955 (2018)

16. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlin-
ear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

17. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Machine learning of linear differential
equations using Gaussian processes. J. Comput. Phys. 348, 683–693 (2017)

18. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Multistep neural networks for data-
driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236
(2018)

19. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical Gaussian processes for
time-dependent and nonlinear partial differential equations. SIAM J. Sci. Comput.
40(1), A172–A198 (2018)

20. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of
partial differential equations. Sci. Adv. 3(4), e1602614 (2017)

21. Schaeffer, H.: Learning partial differential equations via data discovery and sparse
optimization. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2197), 20160446 (2017)

22. Schaeffer, H., Caflisch, R., Hauck, C.D., Osher, S.: Sparse dynamics for partial
differential equations. Proc. Natl. Acad. Sci. 110(17), 6634–6639 (2013)

https://doi.org/10.1016/j.jcp.2021.110549
https://doi.org/10.1016/j.jcp.2021.110549
https://www.sciencedirect.com/science/article/pii/S0021999121004447
https://www.sciencedirect.com/science/article/pii/S0021999121004447
http://arxiv.org/abs/1808.09540
http://arxiv.org/abs/1610.01439
http://arxiv.org/abs/1801.01236


GPU for Monte Carlo Search

Lilian Buzer1(B) and Tristan Cazenave2

1 LIGM, Universite Gustave Eiffel, CNRS, 77454 Marne-la-Vallee, France
lilian.buzer@esiee.fr

2 LAMSADE, Universite Paris Dauphine - PSL, CNRS, Paris, France

Abstract. Monte Carlo Search algorithms can give excellent results for
some combinatorial optimization problems and for some games. They
can be parallelized efficiently on high-end CPU servers. Nested Monte
Carlo Search is an algorithm that parallelizes well. We take advantage of
this property to obtain large speedups running it on low cost GPUs. The
combinatorial optimization problem we use for the experiments is the
Snake-in-the-Box. It is a graph theory problem for which Nested Monte
Carlo Search previously improved lower bounds. It has applications in
electrical engineering, coding theory, and computer network topologies.
Using a low cost GPU, we obtain speedups as high as 420 compared to
a single CPU.

Keywords: Monte Carlo Search · GPU · Playouts

1 Introduction

1.1 History of Monte Carlo Search Algorithms

Monte Carlo Tree Search (MCTS) has been successfully applied to many games
and problems [4]. It was used to build superhuman game playing programs such
as AlphaGo [32], AlphaZero [33] and Katago [35]. It has been recently used to
discover new fast matrix multiplication algorithms [21].

Nested Monte Carlo Search (NMCS) [6] is a Monte Carlo Search algorithm
that works well for puzzles. It biases its playouts using lower-level playouts.
Kinny broke world records at the Snake-in-the-Box applying Nested Monte Carlo
Search [22]. He used a heuristic to order moves in the playouts. The heuristic
is to favor moves that lead to a state where there is only one possible move.
Other applications of NMCS include Single Player General Game Playing [24],
Cooperative Pathfinding [1], Software testing [28], Model-Checking [29], the Pan-
cake problem [2], Games [11], Cryptography [14] and the RNA inverse folding
problem [27].

Online learning of playout strategies combined with NMCS has given good
results on optimization problems [30]. It has been further developed for puz-
zles and optimization with Nested Rollout Policy Adaptation (NRPA) [31].
NRPA has found new world records at Morpion Solitaire and crossword puz-
zles. Edelkamp, Cazenave and co-workers have applied the NRPA algorithm to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 179–193, 2023.
https://doi.org/10.1007/978-3-031-44505-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_13&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_13


180 L. Buzer and T. Cazenave

multiple problems. They have adapted the algorithm for the Traveling Salesman
with Time Windows (TSPTW) problem [12,16]. Other applications deal with
3D Packing with Object Orientation [18], the physical traveling salesman prob-
lem [19], the Multiple Sequence Alignment problem [20], Logistics [9,17], the
Snake-in-the-Box [15], Graph Coloring [10], Molecule Design [8] and Network
Traffic Engineering [13]. The principle of NRPA is to adapt the playout policy
to learn the best sequence of moves found so far at each level. GNRPA [7] has
much improved the result of NRPA for RNA Design [8].

1.2 Generating Playouts

Monte Carlo based algorithms for game AI generate a large number of simulated
games called playouts. The generation of a playout is presented in Algorithm1.
The main loop of this algorithm is used to play the different moves until the end
of the game. At the beginning of each iteration, the game data is analyzed to
detect all possible moves. Then, a given policy or a random strategy selects a
move among the different possibilities. After that, the chosen move is played and
we iterate. When the game ends, the list of played moves is returned with the
score. The game AI will then analyze the results of many playouts to generate
a new bunch of playouts with better scores.

Algorithm 1: Generation of a playout
Data: Game: game object embedding rules and data
Data: Policy: function that selects a move

1 Function CreatePlayout(Game, Policy):
2 Playout = [ ] // History of played moves

3 while Game.IsNotTerminated() do
4 L = Game.GetPossibleMoves()
5 ChosenMove = Policy.ChoseMove(L)
6 Playout.append(ChosenMove)
7 Game.P lay(ChosenMove)

8 return Playout, Game.Score()

1.3 Why GPUs Have Not Been Considered?

Monte Carlo based approaches for game AI are generally performed on high-
end CPUs. Even if these algorithms have demonstrated their performance and
quality, the possibility of creating a version on GPU has not been studied. There
are many reasons for this:

– The capabilities of a CPU core, in terms of computing power or clock speed,
greatly exceed the capabilities of a GPU core.



GPU for Monte Carlo Search 181

– Most Monte Carlo based algorithms are written using an iterative approach.
GPU processing is based on parallelism and switching from one programming
style to the other is difficult.

– On average, a GPU core has only 1 KB of memory cache. It seems diffi-
cult to store all the game data inside. Moreover, GPU global memory has a
notoriously slow latency.

– Parallel GPU threads must access contiguous data to achieve efficiency. How-
ever, depending on the game, it is not always easy to meet this requirement.

These accumulated difficulties do not bode well for the performance. Never-
theless, this paper aims to show that implementing playout simulations on GPU
is possible with little difficulty and with performance gain.

1.4 Our Contribution

In this paper, we carefully present the first, to our knowledge, proof of concept
showing that it is possible to obtain significant performance for playouts gener-
ation on a GPU. We study with precision the performance losses induced by the
GPU architecture relative to parallel simulations in Sect. 2, to computing power
in Sect. 3 and to memory access in Sect. 4. We finally choose the game ‘Snake
in the box’ to perform a series of benchmarks in Sect. 5. Most of the tests we
use are classical tests, however, we use them in the very particular context of
parallel simulations doing random memory accesses. The objective of this article
is to determine precisely how a GPU behaves in such a specific situation.

2 Parallel Execution

2.1 Warp

We briefly summarize NVIDIA GPUs architecture, the reader can find a more
detailed description in [3,26]. A NVIDIA GPU contains thousands of CUDA
cores gathered in groups of 32 cores called warps. In a warp, all the cores process
the same statement at the same time. Thus, the cores belonging to the same warp
run the same source code in parallel, only their register values may differ.

When looking at Algorithm1 used for playouts generation, three steps are
required: list the possibles moves, choose one of them and play it. Thus, if a
particular game performs the same sequence of instructions to carry out these
steps, we can efficiently simulate 32 playouts in parallel in the same warp. But
these 32 simulations will obviously differ in their number of rounds. So, when a
playout ends before the others, one of the cores becomes idle. The inactive cores
are accumulating until the longest playout ends. At this point, all cores wake up
and start a new batch of 32 simulations. As opposed to a sequential processing
where a new simulation starts as soon as the previous one has finished, some
computing resource is wasted by the idle cores waiting for the last simulation
to complete. In the following, we theoretically estimate the performance loss
inherent to any playouts simulation performed in a warp to verify that this loss
is acceptable.



182 L. Buzer and T. Cazenave

2.2 Theoretical Model

Let us assume that for a given policy, the time spent to simulate a playout can
be modeled by a Gaussian distribution. So, the 32 simulations running in a warp
can be modeled as different Gaussian random variables denoted Xi = N (μ, σ)
with i = 1, . . . , 32. Now, we want to model the time spent by a warp to complete
the generation of a group of 32 simulations. For this, we define a new variable:

Z = [max
i

Xi]

To simplify the calculation, we use X ′
i = Xi − μ and Z ′ = [maxi X ′

i]. By
Jensen’s inequality, we obtain:

etE[Z′] ≤ E[etZ′
] = E[max

i
etX′

i ] =
n∑

i=1

E[etX′
i ] = net2σ2/2

Thus, we can write:

E[Z ′] ≤ log(n)
t

+
tσ2

2

With t =
√

2 log n/σ and with n = 32, we finally obtain:

E[Z] ≤ μ + σ
√

7

In comparison, the average time spent by the 32 simulations follows a Gaus-
sian distribution equal to Y = (

∑
i Xi)/32 = N (μ, σ/32). Using the empirical

rule, we know that 99.7% of the time, the variable Y will satisfy: Y ≥ μ−3σ/32.
Thus, we can conclude that 99.7% of the time, the ratio Z/Y satisfies :

Z

Y
=

max(Xi)
mean(Xi)

≤ μ + σ
√

7
μ − 3σ/32

=
μ + 2.64σ

μ − 0.09σ

The ratio Z/Y bounds the α factor describing the time increase when simu-
lations run on a warp in parallel. As an example, when the mean of the playouts
length is equal to 100 moves with a standard deviation of 15, this bound is equal
to 1.41. This bound is not tight and may be somewhat overestimated. Thus, we
numerically estimate the α factor in the following Section.

2.3 Numerical Estimation

We now try to numerically estimate the α factor corresponding to the ratio
between the time spent by a warp to generate 32 playouts and the average time
used by the same 32 playouts without considering the idle time. For this, let us
assume that the length of each simulation can be modeled as Gaussian variable
Xi = N (μ, σ). In this manner, the α factor is equal to E[max(Xi)/mean(Xi)].
Note that the α factor is invariant by scaling the Xi variables. Thus, we present
some estimations of the α factor for different Gaussian random variables Xi =



GPU for Monte Carlo Search 183

N (1, σ/μ) in Table 1. When the ratio σ/μ increases, the α factor also increases.
The known bound from the previous Section for the case σ/μ = 0.15 is equal to
1.41, but the numerical estimation is more favorable with an α factor equal to
1.31. This ratio can be considered as an acceptable overhead of 31%.

Table 1. Estimations of the α factor for Gaussian random variables Xi = N (μ, σ)

σ/μ 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40

α 1.1 1.2 1.31 1.41 1.51 1.62 1.72 1.82

3 Expected Performance

We compare the performance of a NVIDA GTX 3080 GPU and an AMD Ryzen
9 3900X CPU. Comparisons between CPU and GPU performance can be found
in the literature, but usually in a specific context such as linear algebra [23]
or neural networks [5]. To our knowledge, no study has been published relative
to our specific context of random memory access. Thus, we first benchmark
the computing power of these two devices and then, we evaluate their memory
latency. All this information allows us to determine what performance gain we
may expect, for what problem size and in what way.

3.1 Computing Power

We want to compare the computing power of a GPU core against a CPU core.
For this purpose, we set up a function that computes the sums of all possible
subsets of {k ∈ N : k ≤ n} without performing any memory access. In this way,
we test the performance of two common operations in puzzle games: additions
and logical tests. Our two test platforms are a NVIDIA GTX 3080 GPU and
an AMD Ryzen 9 3900X CPU. In our test scenario, each CPU or GPU thread
performs the same calculations. We perform different tests with 1 or 2 threads
per core and with integer or float values. We present the time spent to complete
all the threads in Table 2. We choose as reference time the scenario with 1 thread
per CPU core and with integer numbers. We notice that using 2 threads per core
instead of one seems to be more efficient for both GPUs and CPUs. Finally, we
can conclude that GPU execution is about 4 to 5 times longer compared to CPU.

3.2 CPU and GPU Memory Cache Size

A memory cache is used to reduce the average time to access data in memory.
The logic behind memory cache is simple: when a core requests data in RAM,
it first checks whether a copy exists in the L1 cache and in case of success, this
process saves memory access time. For the AMD Ryzen 9, the AMD EPYC and



184 L. Buzer and T. Cazenave

Table 2. Relative duration of the performance benchmark.

1 Thread/Core 2 Threads/Core

Integer Float Integer Float

CPU vs GPU 1 vs 3.9 1.3 vs 5.6 1.3 vs 6.3 2.0 vs 10.1

the Intel Xeon Platinum family, the L1 cache size is 64 KB per core. For the
NVIDIA GTX family, the L1 data cache size is 128 KB but it is shared among
128 CUDA cores. Thus, on average each CUDA core has 1 KB of L1 data cache
which is far less than a CPU L1 cache of 64 KB. So if we want a GPU to be able
to compete with a CPU, we should process problems with small data size.

3.3 Estimating Memory Latency

After having compared CPU and GPU cache size, we now focus on their response
time also called latency. For this, we use the P-Chase method presented in [25,34]
which continuously performs the read statement i = A[i] as shown in Algo-
rithm2. To simulate random memory accesses, we initialize the values in A to
perform a random walk of this array as in the example A[ ] = {6, 5, 7, 2, 0, 4, 3, 1}.
We set up a second test scenario to analyze the latency of Read+Write opera-
tions. For this, we still conduct a random walk, but this time each memory read
is followed by a memory write at the same location. This behavior simulates a
game which is updating the data of its gameboard.

Algorithm 2: Random memory read latency estimation
Data: A: array of Integer, m: number of reads to perform, p: random start

1 Function P-ChaseReadOnly (A, m, p):
2 for m/3 do
3 p = A[p]; p = A[p]; p = A[p]; // 3 reads

4 Function P-ChaseReadWrite (A, m, p):
5 for m/3 do
6 p2 = A[p]; p3 = A[p2]; p4 = A[p3]; // 3 reads

7 A[p] = p3; A[p2] = p4; A[p3] = p2; // +3 writes

8 p = p4

3.4 Random Access and CPU L1 Cache Latency

The L1 memory cache on modern CPUs is very efficient. Thus, playout gener-
ation can take full advantage of the acceleration provided by the L1 cache. We
present the average latency estimated using the P-Chase method in Table 3. We



GPU for Monte Carlo Search 185

consider different scenarios with 1 or 2 threads per core and with read only or
read and write. The estimation we obtain are very stable as long as data resides
entirely in the L1 cache. We notice that with 1 or 2 threads per core, perform-
ing 1 read or 1 read + 1 write access, the memory latency is very similar. This
confirms that Ryzen 9 CPU family is able to handle read and write in parallel,
with 2 threads per core and with random access without loss of performance.

Table 3. L1 cache CPU latency for random access.

Threads per core 1 2

Latency in ns - Read Only 1.46 1.53

Latency in ns - Read+Write 1.54 1.60

3.5 Random Access and GPU Latency

The NVIDIA GTX 3080, has 68 Streaming Multiprocessors (SM). Each of these
SMs has an internal memory of 128 KB that can be partitioned into L1 cache
and shared memory. The SM L1 cache behaves like a CPU L1 cache. Shared
memory can be seen as a user-managed memory space that all threads of the
same SM have access to. Its size is limited to 100 KB on the 3080 GPU. We
know that our parallel playouts simulations will generate mainly random access
in memory. In our benchmark, each thread performs its own P-Chase using its
own array. In this manner, each thread behaves as if it was performing its own
game simulation in a private memory space. So we use the P-Chase algorithm
to precisely estimate the memory latency in such a scenario, this information
being not documented by NVIDIA. Thus, we have two test scenarios: one where
data mainly resides in the L1 cache and another one where data are allocated in
shared memory. In the first scenario, we can exceed the size of the L1 cache and
use global memory. So, we test arrays up to a size of 2K which requires 16-bit
indexing. In the second scenario, data must totally reside in the shared memory
space, so we limit arrays to 256 bytes in order to use only 8-bits indexing. We
also test the two variants of the P-Chase algorithm: read only or read+write.
We present all estimated latency in Table 4.

What are our observations ? When using the L1 cache, latency of read only
access is stable until the L1 occupancy remains below 100%. When occupancy
is beyond 100%, latency increases rapidly to over 1000ns. When running many
threads on the same core, a mechanism called latency hiding is triggered by the
GPUs to improve performance. This way, when the active thread is put on hold
due to a memory access, a waiting thread can rapidly take its place avoiding a
core being idle. Thus with 2 threads per core, we see that the latency reduces
by half. Nevertheless, using 2 threads per core divides the memory available for
each thread by a factor 2 which increases the strain on the available memory
space for each thread. When we perform the Read+Write test, we notice that



186 L. Buzer and T. Cazenave

the performance becomes very bad with a latency nearly 10 times longer. It is
not easy to explain this behavior but in any case it seriously harms playouts
simulation. When data relies in shared memory, the latency in the read only
scenario is better and stable with about 18 ns. But most importantly, the latency
during Read + Write tests remained very good with 25ns.

Table 4. GPU latency in nanoseconds for random memory access.

L1 cache + RAM - 16 bits value - X means > 1000

Buffer size 8 16 32 64 128 256 512 1K 2K

Occupancy 2% 4% 8% 16% 33% 66% 131% 262% 524%

1T/Core Read 26 27 28 30 31 32 524 895 X

1T/Core R+W 79 144 258 296 287 294 X X X

Occupancy 4% 8% 16% 33% 66% 131% 262% 524% 1048%

2T/Core Read 13 13 14 17 21 310 868 X X

2T/Core R+W 46 144 248 297 309 X X X X

SHARED - 8 bits value - X means > 1000

Buffer size 8 16 32 64 128 256

Occupancy 1% 2% 4% 8% 16% 33%

1T/Core Read 17 18 18 19 19 19

1T/Core R+W 23 24 24 25 25 25

3.6 Synthesis

We can conclude that the use of shared memory is a wise choice because it
provides an optimal latency for random memory accesses, even when reads and
writes are performed at the same time. Using shared memory, we must respect
the constraint of 100 KB maximum for 128 cores. This will force us to greatly
reduce the storage of game data in memory. When looking for performance, we
should focus on problems with less than 1 KB of data per simulation.

In terms of computing power, we can conclude that a CPU core is five times
faster than a GPU core. When data resides in shared memory, GPU latency
(25ns) is 16 times slower compared to CPU latency (1.5ns). Thus memory
latency, even when using shared memory, remains the main bottleneck when
we speak about performance. We recall that the NVIDIA GTX 3080 has 8704
CUDA cores, thus, when a game performs mainly memory accesses, its com-
puting power will be equivalent to 8704/16/1.3 = 420 times a single CPU core,
the ratio 1.3 being the Warp performance loss factor we present in Sect. 2. This
estimation is an approximation, but it gives the level of performance we can
expect.



GPU for Monte Carlo Search 187

4 Snake in the Box

4.1 Performance Benchmark

We have chosen the game ‘Snake in the box’ game for several reasons:

– The game rules are intuitive and quickly understandable.
– The source code is easily readable and can be used as a pedagogical example.
– This game generates mainly memory access and finally very few computations

in comparison. So, this game allows us to test our scenario where memory
latency is the main performance bottleneck.

4.2 Game Rules

A d dimensional hypercube is an analogue of a cube in dimension d with 2d

nodes, each node having d neighbors. The Snake in the box problem consists in
searching a longer path among the edges of a hypercube. There are two additional
constraints: we cannot turn back and we can not select a new node which is
adjacent to a previously visited node (connectivity constraint). The score of a
playout corresponds to its number of edges in the path.

4.3 Data Structure

We can code each node of a d-dimensional hypercube by an integer value of d
bits. The code of two connected corners only differ by one bit. This way, the
neighbors of the node 0010b are 1010b, 0110b, 0000b, and 0011b. We associate
with each node a 1 bit value named Usable[i] indicating whether that node
can be visited. As GPU programming requires optimization of data in the L1
cache/shared memory, we use a bitfield of 2d bits to store the array Usable.
In the same way, as there are at most d possible moves at each turn, we can
store the sequence of moves using only 4 bits per move when d < 16. As the
NVIDIA GTX 3080 has a maximum of 100 KB of shared memory, we can test
our approach for a value of d ranging from 8 to 11 as shown in Table 5.

Table 5. L1 cache occupancy relative to the dimension.

Dimension of the Snake in the box 8 9 10 11 12

Number of nodes 256 512 1024 2048 4096

Longuest known path 98 190 370 707 1302

Bitfield size in bytes 32 64 128 256 512

Sequence size in bytes 49 95 175 354 651

Data size in KB - 128 playouts 10 20 39 76 145

Shared memory occupancy - 100 KB 10% 20% 40% 78% 149%



188 L. Buzer and T. Cazenave

5 Nested Monte-Carlo Search

NRPA algorithm uses a lot of memory and it does not suit our constraints. Thus
we focus on the NMCS algorithm which is memory efficient and provides very
good results for the Snake In the Box problem.

5.1 Algorithm

A Nested Monte-Carlo Search, NMCS, returns a sequence of moves used to
finish a game. The NMCS algorithm takes two arguments: an integer indicating
its recursion level and a game G where n moves have already been played. To
complete the game, the NMCS algorithm iteratively plays moves. To choose the
next move, the algorithm analyzes all the possible moves. For each move, it
creates a copy G′ of the current game G, plays the candidate move and performs
a recursive call to NMCS(level−1, G′). If the sequence returned by the recursive
call is associated with a better score, the best known sequence is replaced. After
all possible moves have been tested, the algorithm plays the n+1 -th moves of
the current best known sequence and iterates. We point out that at level 0, the
NMCS performs only a random playout to build a sequence of moves.

Algorithm 3: NMCS algorithm
1 Function NMCS(level, Game G):
2 Input: G game in progress (partially started or nearly finished)
3 Output: B game completed
4 B = G.copy() // Current best game

5 if level == 0 then
6 B.playout() // At level 0, NMCS performs a playout

7 else
8 n = G.Sequence.size // n turns have been performed

9 while not G.Terminated() do
10 for move in G.GetPossiblesMoves() do
11 G’ = G.copy() // Create a subgame

12 G’.play(move) // Test this move

13 NMCS(level-1,G’) // Evaluation from level-1

14 if G′.score() > B.score() then
15 B = G’

16 G.play(B.sequence[n]) // n-th move of best known sequence

17 n += 1

18 return B



GPU for Monte Carlo Search 189

5.2 NMCS with Parallel Leaf

To run multiple NMCS algorithms in parallel, we are faced with several difficul-
ties. First, a level-4 NMCS algorithm requires storing 5 games in memory which
means the L1 memory will quickly saturate. Second, the NMCS algorithm has
been designed as an incremental and also recursive algorithm which makes it
almost impossible to migrate to a parallel version. However, we can set up a
parallel leaf version. For this, instead of building only one playout at level 0,
we generate 32 playouts in parallel and select the best one. Other levels of the
NMCS algorithm remains in single thread mode. The NMCS with Parallel Leaf
remains effective because most of the computation time is spent at level 0.

We recall that the NVIDA GTX 3080 contains 68 Streaming Multiprocessors
containing 4 warps of 32 cores. We can run one parallel leaf NMCS per warp to
obtain 68 × 4 = 272 NMCS running in parallel on this GPU. Each thread in a
warp generates a playout. Then when the 32 playouts are over, a single thread,
named the the master thread, analyzes their results and select the best sequence
to be returned to the upper level. As specified in the NVIDIA specification,
threads within a warp that wish to communicate via memory must execute the
dedicated CUDA function syncwarp (). In our case, this function has to be
called by the master thread to correctly analyze the playouts.

5.3 NMCS on GPU

While it may seem easy to set up 32 threads running in parallel, there remains
a little challenge to address when programming the NMCS algorithm on GPU.
In fact, inside a warp, a GPU can easily reduces the number of running threads
due to an if statement. But, for the NMCS algorithm, we operate in reverse.
Indeed, the higher levels of the NMCS algorithm use only one master thread,
and after some recursive calls, playouts generation requests the use of 32 threads
in parallel. It is not the usual way a GPU works.

For this, we use a specific trick: when a processing must be performed by the
master thread of the algorithm, we precede it with a filter test that verifies that
the current thread corresponds to the master thread. But, we must keep the 32
threads active until the level 0 of the NMCS algorithm. For this, all threads in
the warp must execute recursive calls and their enclosing loops. Threads outside
the master thread should do nothing. As the filter test prevents them from
performing any processing, they remain active and follow the master thread
without performing any processing until level 0.

5.4 Performance Comparison

We compare the performance of a NVDIA GTX 3080 GPU relative to one core of
a Ryzen 9 3900X CPU. We validate our GPU implementation by comparing the
mean score obtained by the CPU and the GPU versions. Any important devi-
ation is associated to an implementation problem. We set up our GPU version
using shared memory in order to obtain better performance.



190 L. Buzer and T. Cazenave

We show performance gains in Table 6 for the Snake In The Box problem in
dimension 8, 9 and 10 using level 1 and 2 of the NMCS algorithm. For level 1,
the GPU was able to achieve performance gains by a factor ×390 which is of the
same magnitude as the ratio ×420 we estimate in Sect. 3. In a surprising way,
we notice that in level 2 of the NMCS algorithm, performance increases reaching
×480. This behavior remains unexplained because the time spent by the higher
level is normally negligible. We need to conduct more sophisticated experiments
to analyze this phenomenon.

Table 6. Performance gain for the 3080 GPU relative to one CPU core.

Dimension 8 9 10

ÑMCS Level 1 ×380 ×387 ×382

ÑMCS Level 2 ×471 ×498 ×521

5.5 Implementation

To set up our GPU implementation, on the first try, we choose not to optimize
data structures for GPU architecture. We thought this task not very useful
because the performance bottleneck mainly comes from random memory access.
So we import our CPU/C++ source code into our CUDA program. We embed
game data and game functions into a C++ class called SnakeInTheBox to improve
the structure of the code and its readability. We also use a C++ structure called
Info to gather input and output information of each thread. This first version
reaches interesting performance but half the efficiency we show in Table 6.

In a second version, we update our code to use shared memory. We also create
an implementation of the list of possible moves specific to GPU. This implemen-
tation uses memory coalescing, a technique where parallel threads accessing con-
secutive memory locations combine their requests into only one memory request.
Considering all these improvements, we were able to achieve performance ratios
shown in Table 6.

The data structures, P-Chase and NMCS algorithms, CUDA source codes
and project files for Visual Studio 2022 are available for download at the URL
http://anonymousdl.online/LION17/.

6 Conclusion

We have proven that running 32 simulations in parallel on a GPU warp loses an
acceptable percentage of performance. Although random memory accesses are
known to be extremely costly for a GPU, we were able to show that using shared
memory could achieve a memory latencies 16 times slower than CPU memory
latency, but with its 8704 cores, the NVIDIA GTX 3080 may achieve a speed of

http://anonymousdl.online/LION17/


GPU for Monte Carlo Search 191

×420 compared to one Ryzen 9 3900X CPU core. All these observations allowed
us to set up the first implementation of the NMCS algorithm on GPU. We test
performance gain for the Snake In The Box problem in dimension 8,9 and 10.
The performance we obtain corresponds to the order of magnitude that we had
previously estimated, which in itself is a great success.

Using shared memory, we must respect the constraint of 100 KB maximum
for 128 cores which represents a very important constraint. This forces to greatly
reduce game data in memory and to focus on problems with less than 1 KB of
data per simulation. But on the other hand, the NVIDIA GTX-4090 card already
offers twice as many CUDA cores compared to the 3080 and the next generation
with the NVIDIA GTX-5090 will also double performance. We are probably at
a technological tipping point where, for some games, it will be more efficient
to generate playouts on a GPU than on a CPU. Indeed, the frantic race for
performance that GPU founders are waging makes the power/price ratio more
and more interesting compared to high-end CPUs.

References

1. Bouzy, B.: Monte-Carlo fork search for cooperative path-finding. In: Computer
Games Workshop at IJCAI, pp. 1–15 (2013)

2. Bouzy, B.: Burnt pancake problem: new lower bounds on the diameter and new
experimental optimality ratios. In: SOCS, pp. 119–120 (2016)

3. Brodtkorb, A., Hagen, T., Schulz, C., Hasle, G.: GPU computing in discrete opti-
mization. Part I: Introduction to the GPU. EURO J. Transp. Logist. 2 (2013).
https://doi.org/10.1007/s13676-013-0025-1

4. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012). https://doi.org/10.1109/TCIAIG.
2012.2186810

5. Buber, E., Banu, D.: Performance analysis and CPU vs GPU comparison for deep
learning. In: 2018 6th International Conference on Control Engineering & Infor-
mation Technology (CEIT), pp. 1–6. IEEE (2018)

6. Cazenave, T.: Nested Monte-Carlo search. In: Boutilier, C. (ed.) IJCAI, pp. 456–
461 (2009)

7. Cazenave, T.: Generalized nested rollout policy adaptation. In: Monte Search at
IJCAI (2020)

8. Cazenave, T., Fournier, T.: Monte Carlo inverse folding. In: Monte Search at IJCAI
(2020)

9. Cazenave, T., Lucas, J.Y., Kim, H., Triboulet, T.: Monte Carlo vehicle routing.
In: ATT at ECAI 2020, Saint Jacques de Compostelle, Spain (2020). https://hal.
archives-ouvertes.fr/hal-03117515

10. Cazenave, T., Negrevergne, B., Sikora, F.: Monte Carlo graph coloring. In: Monte
Search at IJCAI (2020)

11. Cazenave, T., Saffidine, A., Schofield, M.J., Thielscher, M.: Nested Monte Carlo
search for two-player games. In: AAAI, pp. 687–693 (2016)

12. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation
algorithm to the traveling salesman problem with time windows. In: Learning and
Intelligent Optimization - 6th International Conference, LION, vol. 6, pp. 42–54
(2012)

https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://hal.archives-ouvertes.fr/hal-03117515
https://hal.archives-ouvertes.fr/hal-03117515


192 L. Buzer and T. Cazenave

13. Dang, C., Bazgan, C., Cazenave, T., Chopin, M., Wuillemin, P.-H.: Monte Carlo
search algorithms for network traffic engineering. In: Dong, Y., Kourtellis, N., Ham-
mer, B., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12978, pp.
486–501. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86514-6 30

14. Dwivedi, A.D., Morawiecki, P., Wójtowicz, S.: Finding differential paths in ARX
ciphers through nested Monte-Carlo search. Int. J. Electron. Telecommun. 64(2),
147–150 (2018)

15. Edelkamp, S., Cazenave, T.: Improved diversity in nested rollout policy adaptation.
In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904,
pp. 43–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46073-4 4

16. Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge
engineering for the TSPTW problem. In: 2013 IEEE Symposium on Computational
Intelligence in Scheduling (SCIS), pp. 44–51. IEEE (2013)

17. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-
Carlo tree search for logistics. In: Clausen, U., Friedrich, H., Thaller, C., Geiger, C.
(eds.) Commercial Transport. LNL, pp. 427–440. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-21266-1 28

18. Edelkamp, S., Gath, M., Rohde, M.: Monte-Carlo tree search for 3D packing with
object orientation. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI),
vol. 8736, pp. 285–296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11206-0 28

19. Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with
policy adaptation. In: 2014 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 1–8. IEEE (2014)

20. Edelkamp, S., Tang, Z.: Monte-Carlo tree search for the multiple sequence align-
ment problem. In: Proceedings of the Eighth Annual Symposium on Combinatorial
Search, SOCS 2015, pp. 9–17. AAAI Press (2015)

21. Fawzi, A., et al.: Discovering faster matrix multiplication algorithms with rein-
forcement learning. Nature 610(7930), 47–53 (2022)

22. Kinny, D.: A new approach to the snake-in-the-box problem. In: ECAI 2012. Fron-
tiers in Artificial Intelligence and Applications, vol. 242, pp. 462–467. IOS Press
(2012)

23. Li, F., Ye, Y., Tian, Z., Zhang, X.: CPU versus GPU: which can perform matrix
computation faster-performance comparison for basic linear algebra subprograms.
Neural Comput. Appl. 31(8), 4353–4365 (2019)

24. Méhat, J., Cazenave, T.: Combining UCT and Nested Monte Carlo Search for
single-player general game playing. IEEE Trans. Comput. Intell. AI Games 2(4),
271–277 (2010)

25. Mei, X., Zhao, K., Liu, C., Chu, X.: Benchmarking the memory hierarchy of modern
GPUs. In: Hsu, C.-H., Shi, X., Salapura, V. (eds.) NPC 2014. LNCS, vol. 8707, pp.
144–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44917-
2 13

26. NVIDIA: Cuda C++ programming guide (2022). https://docs.NVIDIA.com/cuda/
cuda-c-programming-guide, section: arithmetic-instructions

27. Portela, F.: An unexpectedly effective Monte Carlo technique for the RNA inverse
folding problem. BioRxiv, p. 345587 (2018)

28. Poulding, S.M., Feldt, R.: Generating structured test data with specific properties
using nested Monte-Carlo search. In: GECCO, pp. 1279–1286 (2014)

29. Poulding, S.M., Feldt, R.: Heuristic model checking using a Monte-Carlo tree search
algorithm. In: GECCO, pp. 1359–1366 (2015)

https://doi.org/10.1007/978-3-030-86514-6_30
https://doi.org/10.1007/978-3-319-46073-4_4
https://doi.org/10.1007/978-3-319-21266-1_28
https://doi.org/10.1007/978-3-319-21266-1_28
https://doi.org/10.1007/978-3-319-11206-0_28
https://doi.org/10.1007/978-3-319-11206-0_28
https://doi.org/10.1007/978-3-662-44917-2_13
https://doi.org/10.1007/978-3-662-44917-2_13
https://docs.NVIDIA.com/cuda/cuda-c-programming-guide
https://docs.NVIDIA.com/cuda/cuda-c-programming-guide


GPU for Monte Carlo Search 193

30. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the nested Monte-Carlo
algorithm on the traveling salesman problem with time windows. In: Di Chio,
C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 501–510. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0 51

31. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree Search. In:
IJCAI, pp. 649–654 (2011)

32. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

33. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

34. Wong, H., Papadopoulou, M., Sadooghi-Alvandi, M., Moshovos, A.: Demystifying
GPU microarchitecture through microbenchmarking. In: 2010 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 235–
246. IEEE (2010)

35. Wu, D.J.: Accelerating self-play learning in go. arXiv preprint arXiv:1902.10565
(2019)

https://doi.org/10.1007/978-3-642-20520-0_51
http://arxiv.org/abs/1902.10565


Learning the Bias Weights for Generalized
Nested Rollout Policy Adaptation

Julien Sentuc1, Farah Ellouze1, Jean-Yves Lucas2, and Tristan Cazenave1(B)

1 LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France
tristan.cazenave@lamsade.dauphine.fr

2 OSIRIS Department, EDF Lab Paris-Saclay, Electricité de France, Palaiseau, France

Abstract. Generalized Nested Rollout Policy Adaptation (GNRPA) is a Monte
Carlo search algorithm for single player games and optimization problems. In
this paper we propose to modify GNRPA in order to automatically learn the
bias weights. The goal is both to obtain better results on sets of dissimilar
instances, and also to avoid some hyperparameters settings. Experiments show
that it improves the algorithm for two different optimization problems: the Vehi-
cle Routing Problem and 3D Bin Packing.

1 Introduction

Monte Carlo Tree Search (MCTS) [12,20] has been successfully applied to many games
and problems [3]. It originates from the computer game of Go [2] with a method based
on simulated annealing [4]. The principle underlying MCTS is learning the best move
using statistics on random games.

Nested Monte Carlo Search (NMCS) [5] is a recursive algorithm which uses lower
level playouts to bias its playouts, memorizing the best sequence at each level. At each
stage of the search, the move with the highest score at the lower level is played by the
current level. At each step, a lower-level search is launched for all possible moves and
the move with the best score is memorized. At level 0, a Monte Carlo simulation is
performed, random decisions are made until a terminal state is reached. At the end, the
score for the position is returned. NMCS has given good results on many problems like
puzzle solving, single player games [22], cooperative path finding or the inverse folding
problem [23].

Based on the latter, the Nested Rollout Policy Adaptation (NRPA) algorithm was
introduced [26]. NRPA combines nested search, memorizing the best sequence of
moves found, and the online learning of a playout policy using this sequence. NRPA
achieved world records in Morpion Solitaire and crossword puzzles and has been
applied to many problems such as object wrapping [17], traveling salesman with time
window [10,15], vehicle routing problems [8,16] or network traffic engineering [13].

GNRPA (Generalized Nested Rollout Policy Adaptation) [6] generalizes the way
the probability is calculated using a temperature and a bias. It has been applied to some
problems like Inverse Folding [7] and Vehicle Routing Problem (VRP) [27].

This work presents an extension of GNRPA using bias learning. The idea is to learn
the parameters of the bias along with the policy. We demonstrate that learning the bias
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 194–207, 2023.
https://doi.org/10.1007/978-3-031-44505-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_14&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_14


Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation 195

parameters improves the results of GNRPA for Solomon instances of the VRP and for
3D Bin Packing.

This paper is organized as follows. Section 2 describes the NRPA and GNRPA algo-
rithms, as well as its extension. Section 3 presents the experimental results for the two
problems studied: VRP and 3D Bin Packing. Finally, the last section concludes.

2 Monte Carlo Search

This section presents the NRPA algorithm as well as its generalization GNRPA. The
formula for learning the bias weights is introduced. A new optimization for GNPRA,
based on conventional ones, is then presented.

2.1 NRPA and GNRPA

The Nested Rollout Policy Adaptation (NRPA) [26] algorithm is an effective combina-
tion of NMCS and the online learning of a playout policy. NRPA holds world records
for Morpion Solitaire and crosswords puzzles.

In NRPA/GNRPA each move is associated to a weight stored in an array called the
policy. The goal of these two algorithms is to learn these weights thanks to the solutions
found during the search, thus producing a playout policy that generates good sequences
of moves.

NRPA/GNRPA use nested search. In NRPA/GNRPA, each level takes a policy as
input and returns a sequence and its associated score. At any level > 0, the algorithm
makes numerous recursive calls to lower levels, adapting the policy each time with the
best solution to date. It should be noted that the changes made to the policy do not affect
the policy in higher levels (line 7–8 of Algorithm 1). At level 0, NRPA/GNRPA return
the sequence obtained by playout function as well as its associated score.

The playout function sequentially constructs a random solution biased by the weight
of the moves until it reaches a terminal state. At each step, the function performs Gibbs
sampling, choosing the actions with a probability given by the softmax function.

Let wic be the weight associated with move c in step i of the sequence. In NRPA,
the probability of choosing move c at the index i is defined by:

pic =
ewic

∑
k ewik

GNRPA [6] generalizes the way the probability is calculated using a temperature tau
and a bias betaic. The temperature makes it possible to vary the exploration/exploita-
tion trade-off. The probability of choosing the move c at the index i then becomes:

pic =
e

wic
τ +βic

∑
k e

wik
τ +βik

By taking τ = 1 and βik = 0, we find the formula for NRPA.
In NRPA, policy weights can be initialized in order to accelerate convergence

towards good solutions. The original weights in the policy array are then not uniformly



196 J. Sentuc et al.

set to 0, but to an appropriate value according to a heuristic relevant to the problem
to solve. In GNRPA, the policy initialization is replaced by the bias. Furthermore, it is
sometimes more practical to use βij biases than to initialize the weights as we will see
later on.

When a new solution is found (line 8 of Algorithm 1), the policy is then adapted to
the best solution found at the current level (line 13 of Algorithm 1). The policy is passed
by reference to the Adapt function.

The current policy is first saved into a temporary policy array named polp before
modifying it. The policy copied into polp is then modified in the Adapt function, while
the current policy will be used to calculate the probabilities of possible moves. After
modification of the policy, the current policy is replaced by polp. The principle of the
Adapt function is to increase the weight of the chosen moves and to decrease the weight
of the other possible moves by an amount proportional to their probabilities of being
played.

The NRPA algorithm therefore strikes a balance between exploration and exploita-
tion. It exploits by shifting the policy weights to the best current solution and explores
by picking moves using Gibbs sampling at the lower level. NRPA is a general algo-
rithm that has been shown to be effective for many optimization problems. The idea of
adapting a simulation policy has been applied successfully for many games such as Go
[18].

It should be noted that in the case of optimization problems such as the VRP, we
aim at minimizing the score (consisting of a set of penalties). bestScore is therefore
initialized to +∞ (line 5 of Algorithm 1) and we update it each time we find a new
result such that result ≤ bestScore (line 9 of Algorithm 1).

Algorithm 1. The GNRPA algorithm.
1: GNRPA (level, policy)
2: if level == 0 then
3: return playout (root, policy)
4: else
5: bestScore ← −∞
6: for N iterations do
7: polp ← policy
8: (result,new_seq) ← GNRPA(level − 1, polp)
9: if result ≥ bestScore then
10: bestScore ← result
11: best_seq ← new_seq
12: end if
13: Adapt (policy, best_seq)
14: end for
15: return (bestScore, seq)
16: end if



Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation 197

2.2 Learning the Bias

The advantage of the bias over weights initialization relies on its dynamic aspect. It can
therefore take into account factors related to the current state. The goal of the extension
proposed in this paper is to learn the parameters of the bias. For example, if we consider
a bias formula made up of several criteria, such as in [27], we obtain in the case of 2
criteria β1 and β2: βic = w1 ∗ β1 + w2 ∗ β2, where β1 and β2 describe two different
characteristics of a move. For VRP, it can be the time wasted while waiting to service a
customer, the distance traveled, etc.

For some instances, a criterion is a sufficient feature, while others emphasize on
another. It is therefore difficult or even impossible to find a single formula that would
be appropriate for all instances. To tackle this problem, we propose a simple, yet effec-
tive modification of the GNRPA Algorithm, which we name Bias Learning GNRPA
(BLGNRPA). We aim at learning the parameters of the bias in order to improve the
results on different instances. The idea of learning the bias parameters w1 and w2 lies
in adapting the importance of the different criteria along with the policy to the specific
instance that we are trying to solve.

The probability of choosing the move c at the index i with this bias is:

pic =
e

wic
τ +(w1×β1ic+w2×β2ic)

∑
k e

wik
τ +(w1×β1ik+w2×β2ik)

Let Aik = e
wik

τ +(w1×β1ik+w2×β2ik).
The formula for the derivative of f(x) = g(x)

h(x) is :

f ′(x) =
g′(x) × h(x) − g(x) × h′(x)

h(x)2

So the derivative of pic relative to w1 is:

δpic

δw1
=

β1icAic × ∑
k Aik − Aic × ∑

k β1ikAik

(
∑

k Aik)2

δpic

δw1
=

Aic∑
k Aik

× (β1ic −
∑

k β1ikAik∑
k Aik

)

δpic

δw1
= pic × (β1ic −

∑
k β1ikAik∑

k Aik
)

The cross-entropy loss for learning to play a move is Ci = −log(pic). In order to
apply the gradient, we calculate the partial derivative of the loss: δCi

δpic
= − 1

pic
. We then

calculate the partial derivative of the softmax with respect to the weight:

∇w1 =
δCi

δpic

δpic

δw1
= − 1

pic
× pic(β1ic −

∑
k β1ikAik∑

k Aik
) =

∑
k β1ikAik∑

k Aik
− β1ic



198 J. Sentuc et al.

If we use α1 and α2 as learning rates, we update the weight with (line 16 of Algo-
rithm 2):

w1 ← w1 + α1(β1ic −
∑

k β1ikAik∑
k Aik

)

Similarly, the formula for w2 is (line 17 of Algorithm 2):

w2 ← w2 + α2(β2ic −
∑

k β2ikAik∑
k Aik

)

Optimizations for GNRPA exist and are presented in [6]. A new optimization
inspired by the previous ones is presented below.

Avoid Recomputing the Biases. In some cases, the computation of the bias for all
possible moves can be costly. In the same way we avoid recomputing all the possible
moves, we store the values of the bias in a β matrix.

Algorithm 2. The new generalized adapt algorithm
1: Adapt (policy, sequence)
2: polp ← policy
3: w1temp ← w1

4: w2temp ← w2

5: state ← root
6: for move ∈ sequence do
7: polp[code(move)] ← polp[code(move)] + α

τ

8: w1temp ← w1temp + β1(move)
9: w2temp ← w2temp + β2(move)
10: z ← 0
11: for m ∈ possible moves for state do

12: z ← z + e
policy[code(m)]

τ
+w1β1(m)+w2β2(m)

13: end for
14: for m ∈ possible moves for state do

15: polp[code(m)] ← polp[code(m)] − α
τ

× e
policy[code(m)]

τ
+w1β1(m)+w2β2(m)

z

16: w1temp ← w1temp − α1β1(m) e
policy[code(m)]

τ
+w1β1(m)+w2β2(m)

z

17: w2temp ← w2temp − α2β2(m) e
policy[code(m)]

τ
+w1β1(m)+w2β2(m)

z

18: end for
19: state ← play(state, b)
20: end for
21: policy ← polp

3 Experimental Results

We now present experiments with bias weights learning for 3D Bin Packing and Vehicle
Routing.



Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation 199

Table 1. Results of LSAH, HM, NRPA,GNRPA and BLGNRPA on the 3D bin packing problem

Method/Set w1 w2 Set1 Set2 Set3 Set4 Set5 Set6

Uti N Uti N Uti N Uti N Uti N Uti N

LSAH 0.502 39 0.527 15 0.623 27 0.675 24 0.431 15 0.641 30

Heightmap 0.502 39 0.463 14 0.623 27 0.738 27 0.836 31 0.565 27

NRPA 0.743 46 0.836 27 0.843 38 0.852 31 0.868 33 0.807 37

GNRPA 1.00 1.00 0.796 48 0.836 27 0.887 41 0.852 31 0.868 33 0.807 37

BLGNRPA 1.00 1.00 0.808 50 0.916 28 0.887 41 0.913 33 0.868 33 0.807 37

GNRPA 2.68 10.84 0.808 50 0.836 27 0.887 41 0.852 31 0.868 33 0.807 37

BLGNRPA 2.68 10.84 0.808 50 0.916 28 0.887 41 0.913 33 0.868 33 0.892 39

3.1 3D Bin Packing

The 3D bin Packing Problem is a combinatorial optimization problem in which we have
to store a set of boxes into one or several containers. The goal is to minimize the unused
space in the containers and put the greatest possible number of items into each of them,
or, alternatively, to minimize the number of container used to store all the boxes.

We based our experiments on the problem modeled in the paper [30].
We kept the same capacity for the unique container and the same intervals for the items
dimensions. However, as opposed to the paper, we worked on the offline variation of
3D Bin Packing, where the set of boxes are known a priori and taken into account in a
given order. Also, the boxes dimensions are considered to be integers.

Heuristics. We used two heuristics proposed in the paper cited above. The first heuris-
tic is the Least Surface Area Heuristic (LSAH) that aims to minimize the surface area
of the bin that could hold all the items that we need to pack. The candidates are selected
in the structured coordinates (Empty Maximal Space-EMS). It is described by a linear
program detailed in the following article [19].

The second one is the Heightmap Minimization (HM) heuristic which is described
in the following article [29]. It aims at minimizing the volume increase of the object
pile as observed from the loading direction.

The Bias. The BLGNRPA uses these two heuristics to compute the bias using the
following formula: 1/Score − of − the − heuristic and updating the weights of each
move.

Its purpose is to adapt itself to the current situation of the problem and make it easier
to choose the next legal move through learning with the bias. It enables having a prior
on moves given the current state.

Modeling the Problem. To represent each possible move, we use the coordinates (x,
y) where the bottom-left corner of the lower side of the object will be placed. To encode



200 J. Sentuc et al.

the rotation, we use the dimensions of the object along the three axes (x, y and z) for
every possible rotation.

Results. The results are shown in the Table 1. The first column of each set refers to the
utilization ratio of the container and the second one to the number of boxes that were
put in it. NRPA, GNRPA and BLGNRPA outperform LSAH and Heightmap heuristics
across all instances. GNRPA obtained better scores than NRPA on 2 instances (Set 1
and 3) and the same score on the other 4 when using w1 = 1 and w2 = 1. With
this initialization of the bias weights, BLGNRPA improves the results of GNRPA on 3
instances (Set 1,2 and 4) and obtains the same score on the 3 others. The final average
bias weights found by BLGNRPA over all instances (w1 = 2.68 and w2 = 10.84)
were then used to initialize GNRPA and BLGNRPA (line 6 and 7 in Table 1). First, we
can see that the use of the average of the weights found by BLGNRPA improved the
GNRPA score on one of the sets (Set 1). As for the initialization of the weights of the
bias to 1, BLGNRPA (with w1 = 2.68 and w2 = 10.84) performs better than GNRPA
(with w1 = 2.68 and w2 = 10.84) on 3 sets (Set 2,4 and 6) and obtains the same score
on the 3 others. Finally, using the average bias weights for BLGNRPA improves the
results for the last set (Set 6). This suggests that using better starting weights improves
the results of the algorithm.

3.2 The Vehicle Routing Problem

The Vehicle Routing Problem is one of the most studied optimization problems. It was
first introduced in 1959 by G.B. Dantzig and J.H. Ramser in “The Truck Dispatch-
ing Problem” [14]. The goal is to find a set of optimal paths given a certain number
of delivery vehicles, a list of customers or places of intervention as well as a set of
constraints. We can therefore see this problem as an extension of the traveling salesman
problem. In its simplest version, all vehicles leave from the same depot. The goal is then
to minimize an objective function, generally defined by these 3 criteria given in order
of importance: the number of customers that were not serviced, the number of vehicles
used, and finally the total distance traveled by the whole set of vehicles. These 3 criteria
may be assigned specific weights in the objective function, or a lexicographic order can
be taken into account. The vehicle routing problem is NP-hard, so there is no known
algorithm able to solve any instance of this problem in polynomial time. Although exact
methods such as Branch and Price exist, approximate methods like Monte-Carlo Search
are nonetheless useful for solving difficult instances. Many companies with a fleet of
vehicles find themselves faced with the vehicle routing problem [9]. Many variations
of the vehicle routing problem have therefore appeared through the years. This paper
focuses on the CVRPTW which adds a demand to each customer (e.g., the number of
parcels they have purchased) and a limited carrying capacity for all vehicles. Each cus-
tomer also have a time window in which he must be served. The depot also has a time
window, thus limiting the duration of the tour.

Solomon Instances. This work uses the 1987 Solomon instances [28] for the
CVRPTW problem. Solomon instances are the main benchmark for CVRPTW to eval-
uate the different algorithms. The benchmark is composed of 56 instances, each of



Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation 201

them consisting of a depot and 100 customers with coordinates included in the inter-
val [0,100]. Vehicles start their tours with the same capacity defined in the instance. A
time window is defined for each client as well as for the depot. The distances and the
durations correspond to the Euclidean distances between the geometric points.

The Solomon problems are divided into six classes, each having between 8 and 12
instances. For classes C1 and C2 the coordinates are cluster based while classes R1 and
R2 coordinates are generated randomly. A mixture of cluster and random structures is
used for the problems of classes RC1 and RC2. The R1, C1, and RC1 problem sets
have a short time horizon and only allow a few clients per tour (typically up to 10).
On the other hand, the sets R2, C2 and RC2 have a long time horizon, allowing many
customers (more than 30) to be serviced by the same vehicle.

Use of the Bias. In this paper, we used the dynamic bias introduced in [27]. It is made
up of 3 parts. First, the distance, like previous works [1]. Second, the waiting time on
arrival. Third, the “lateness”. This consists in penalizing an arrival too early in a time
window. The formula used for the bias is thus:

βic = w1 ∗ βdistance + w2 ∗ βwaiting + w3 ∗ βlateness,

with w1, w2, w3 > 0.

βdistance =
−dij

maxkl(dkl)

βlateness =
−(ddj − max(dij + vt, btj))

biggest time window

βwaiting = 0 if vt + dij > btj

βwaiting =
−(btj − (dij + vt))

biggest time window
if i �= depot

βwaiting =
−(btj − max(ftw, dij + vt))

biggest time window
if i = depot

where dij is the distance between customer i and j, btj is the beginning of customer
j time window, ddj the end of customer j time window, vt is the departure instant
and ftw is the beginning of the earliest time window. In the previous formulas, using
−value instead of 1

value enables zero values for the waiting time or the lateness. To
avoid too much influence from βwaiting at the start of the tour, where the waiting time
can be big, we used max(ftw, dij + vt). The idea is to only take into account the
“useful time” lost. The underlying principle behind learning the bias weights for VRP
is to increase the importance of the different criteria depending on the instance. For
some instances, distance is the major factor (if for example the time windows are very
large). For others, the emphasis will be put on wasted time in order to reduce the number
of cars needed. The idea is therefore to adapt the bias formula to make it more relevant
for the corresponding instance.

It should be noted that since the bias is dynamic, it is necessary to calculate it many
times. As a result, the bias must be updated quickly to reduce the impact on the running
time.



202 J. Sentuc et al.

Results. In this section, the parameters used for testing NRPA, GNRPA and BLGN-
RPA are 3 levels, α = 1 and 100 iterations per level. For BLGNRPA, α1, α2 and α3

(for βdistance, βwaiting and βlateness) are all initially set to 1 and the bias weights are
learned at all level. We compare BLGNRPA with all the bias weights initially set to 0
(that we denote BLGNRPA(0)) with NRPA (GNRPA with all the weights set to 0). We
also compare BLGNRPA with weights initialized to the vector of weights W (that we
denote BLGNRPA(w)) and GNRPA. For both algorithm, the weights are either initial-
ized or set to the values used in [27]. The weights used are therefore w1 = 15, w2 = 75
and w3 = 10. The results given in Table 1 are the best runs out of 10 with different
seeds. The running times for NRPA, GNRPA, BLGNRPA are close to each other and
smaller than 1800 s.

We also compare our results with the OR-Tools library. OR-Tools is a Google
library for solving optimization problems. It can solve many types of VRP problems,
including CVRPTW. OR-Tools offers different choices to build the first solution. In
our experiments, we used “PATH_CHEAPEST_ARC” parameter. Starting from a start
node, the algorithm connects it to the node which produces the cheapest route segment,
and iterates the same process from the last node added. Then, OR-Tools uses local
search in order to improve the solution. Several options are also possible here. We used
the “GUIDED_LOCAL_SEARCH”, which guides local search to escape local minima.
OR-Tools is run for 1800 s on each problem.

The results are compared with the lexicographical approach, first taking into account
the number of vehicles used NV and then the total distance traveled Km. The best
score among the different algorithms is put in bold and when the best known score is
obtained an asterisk is added at the end of the vehicle number.

BLGNRPA(0) performed better than NRPA on all instances. NRPA only obtained
the same result for the easiest instance c101, for which NRPA and BLGNRPA(0) got
the best known solution. NRPA obtained the best known solution only on instance c101
while BLGNRPA(0) got the best known solution for 10 instances and the best results
among all algorithms for 17 of the 56 instances. BLGNRPA(0) obtained similar or
even better results than GNRPA and BLGNRPA(W) on some instances such as C-type
instances, r101, r111, etc. However, it also gets much worse results for other instances
(r107, rc201,...). For some instances, the initialization of the bias weights withw1 = 15,
w2 = 75 and w3 = 10, that we found manually thanks to many tries, is clearly not the
most suitable. For example, on instance r101, previous experiments showed that a good
set of weights for the instance is w1 = 20, w2 = 20 and w3 = 0. Interestingly, for
BLGNRPA(0) the weights at the end of the best run are w1 = 21.07, w2 = 19.44
and w3 = 1.42. However, we could not guarantee the same favorable behavior on all
instances, due to the random aspect of the algorithm, and also due to the amount of time
required by the learning process in order to reach appropriate weights values.

We observe that BLGNRPA has a better score than GNRPA on 36 instances, the
same score on 12 instances and a worse one on 8 instances. Therefore, learning the
weights of the bias seems to improve the results of GNRPA. OR-Tools obtains a better
result on the majority of the instances. However, GNRPA got a better score than OR-
Tools for 12 instances and an equivalent score for 9 of them, BLGNRPA(W) got a better
score than OR-Tools for 18 instances and also an equivalent score for 9 of them.



Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation 203

We can see that for both GNRPA and BLGNRPA the results are better on instances
of class R1 and RC1 than on instances of class R2 and RC2. Instances of classes R2 and
RC2 have their time window constraints weakened (larger time windows). Whenever
dealing with weak constraints, local search performs better than Monte Carlo search
with or without the learning of the bias weights. This observation was also made in [11]
[27] (Table 2).

Table 2. The different algorithms tested on the 56 standard instances

NRPA BLGNRPA(0) GNRPA BLGNRPA(w) OR-Tools Best Known

Instances NV Km NV Km NV Km NV Km NV Km NV Km

c101 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94

c102 10 1,011.40 10 843.57 10 843.57 10 843.57 10* 828.94 10 828.94

c103 10 1,105.10 10 844.86 10 843.02 10 828.94 10* 828.06 10 828.06

c104 10 1,112.66 10 831.88 10 839.96 10 828.94 10 846.83 10 824.78

c105 10 896.93 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94

c106 10 853.76 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94

c107 10 891.22 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94

c108 10 1006.69 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94

c109 10 962.35 10 834.85 10 834.85 10 836.60 10 857.34 10 828.94

c201 4 709.75 3* 591.56 3* 591.56 3* 591.56 3* 591.56 3 591.56

c202 4 929.93 3 609.23 3 611.08 3 611.08 3* 591.56 3 591.56

c203 4 976.00 3 599.33 3 611.79 3 605.58 3 594.23 3 591.17

c204 4 995.19 3 595.65 3 614.50 3 597.74 3 593.82 3 590.60

c205 3 702.05 3* 588.88 3* 588.88 3* 588.88 3* 588.88 3 588.88

c206 4 773.28 3* 588.49 3* 588.49 3* 588.49 3* 588.49 3 588.49

c207 4 762.73 3 592.50 3 592.50 3 592.50 3* 588.29 3 588.29

c208 3 741.98 3* 588.32 3* 588.32 3* 588.32 3* 588.32 3 588.32

r101 19 1,660.01 19* 1,650.80 19* 1,650.80 19 1,654.67 19 1,653.15 19 1,650.80

r102 17 1,593.73 17 1,499.20 17 1,508.83 17 1,501.11 17 1489.51 17 1,486.12

r103 14 1,281.89 14 1,235.31 13 1,336.86 13 1,321.17 13 1,317.87 13 1,292.68

r104 11 1,098.30 10 1,000.52 10 1,013.62 10 996.61 10 1,013.23 9 1,007.31

r105 15 1,436.75 14 1,386.07 14 1,378.36 14 1385.76 14 1,393.14 14 1,377.11

r106 12 1,364.09 12 1,269.82 12 1,274.47 12 1,265.97 13 1,243.0 12 1,252.03

r107 11 1,241.15 11 1,079.96 10 1,131.19 10 1,132.95 10 1,130.97 10 1,104.66

r108 11 1,106.14 10 953.15 10 990.18 10 941.74 10 963.4 9 960.88

r109 12 1,271.13 12 1,173.57 12 1,180.09 12 1,171.70 12 1,175.48 11 1,194.73

r110 12 1,232.03 11 1,116.64 11 1,140.22 11 1,094.84 11 1,125.13 10 1,118.84

r111 12 1,200.37 11 1,071.84 11 1,104.42 11 1,073.74 11 1,088.01 10 1,096.72

r112 10 1,162.47 10 965.43 10 1,013.50 10 974.56 10 974.65 9 982.14

r201 5 1,449.95 5 1,250.16 4 1,316.27 4 1,293.38 4 1,260.67 4 1,252.37

r202 4 1,335.96 4 1,124.91 4 1,129.89 4 1,122.80 4 1,091.66 3 1,191.70

r203 4 1,255.78 4 930.58 3 1,004.49 3 970.45 3 953.85 3 939.50

r204 3 1,074.37 3 765.47 3 787.69 3 772.22 3 755.01 2 852.52

r205 4 1,299.84 3 1,047.53 3 1,043.81 3 1,052.15 3 1,028.6 3 994.43
(continued)



204 J. Sentuc et al.

Table 2. (continued)

NRPA BLGNRPA(0) GNRPA BLGNRPA(w) OR-Tools Best Known

Instances NV Km NV Km NV Km NV Km NV Km NV Km

r206 3 1,270.89 3 982.50 3 990.88 3 959.89 3 923.1 3 906.14

r207 3 1,215.47 3 871.66 3 900.17 3 878.91 3 832.82 2 890.61

r208 3 1,027.12 3 726.34 2 779.25 2 737.50 2 734.08 2 726.82

r209 4 1,226.67 3 954.02 3 981.82 3 960.40 3 924.07 3 909.16

r210 4 1,278.61 3 970.30 3 995.50 3 991.87 3 963.4 3 939.37

r211 3 1,068.35 3 821.79 3 850.33 3 798.84 3 786.28 2 885.71

rc101 15 1,745.99 15 1,636.50 14 1,702.68 15 1,636.50 15 1,639.54 14 1,696.95

rc102 14 1,571.50 13 1,497.11 13 1,509.86 13 1,496.16 13 1,522.89 12 1,554.75

rc103 12 1,400.54 11 1,265.80 11 1,287.33 11 1,273.28 12 1,322.84 11 1,261.67

rc104 11 1,264.53 10 1,147.69 10 1,160.55 10 1,146.36 10 1,155.33 10 1,135.48

rc105 15 1,620.43 14 1,553.43 14 1,587.41 14 1,563.18 14 1,614.98 13 1,629.44

rc106 13 1,486.81 12 1,385.21 12 1,397.55 12 1,388.80 13 1,401.73 11 1,424.73

rc107 12 1,338.18 11 1,238.04 11 1,247.80 11 1,233.76 11 1,255.62 11 1,230.48

rc108 11 1,286.88 10 1,150.68 10 1,213.00 10 1152.61 11 1,148.16 10 1,139.82

rc201 5 1,638.08 5 1,354.84 4 1,469.50 4 1,469.16 4 1,424.01 4 1,406.94

rc202 4 1,593.54 4 1,260.11 4 1,262.91 4 1,203.10 4 1,161.82 3 1,365.65

rc203 4 1,431.32 4 1,010.99 3 1,123.45 3 1,141.27 3 1,095.56 3 1,049.62

rc204 3 1,260.05 3 841.48 3 864.24 3 822.39 3 803.06 3 789.46

rc205 5 1,578.73 4 1,359.74 4 1,347.86 4 1,333.95 4 1,315.72 4 1,297.65

rc206 4 1,412.26 3 1,294.77 3 1,208.52 3 1,246.48 3 1,157.2 3 1,146.32

rc207 4 1,395.02 4 1,066.06 3 1,164.99 3 1,124.15 3 1,098.61 3 1,061.14

rc208 3 1,182.55 3 911.34 3 948.82 3 906.01 3 843.02 3 828.14

4 Discussion

The use of a bias in the softmax has some similarities with the formula used in Ant
Colony Optimization (ACO) [21,24,25,31] since a priori knowledge of a fixed prior
bias associated to actions are also used in ACO with a kind of softmax. The originality
of our approach is that we learn the parameter that multiplies the prior bias associated
to actions, dynamically and on each instance. We also provide a theoretical and mathe-
matical derivation of the way the parameters of the bias are updated.

Different kind of algorithms are used for different variations on the VRP. For exam-
ple in the recent DIMACS challenge on VRP, the number of vehicles was not taken into
account to evaluate solutions which makes fair comparison with our algorithm difficult
(the total distance of the tours might be reduced with one more vehicle).

5 Conclusion

In this paper, we introduced a new method to learn the bias weights for the GNRPA
algorithm with BLGNRPA. This new method partially removes the need to choose
hand-picked weights for GNRPA. However, GNRPA and BLGNRPA have several lim-
itations. First they are less efficient on weakly constrained problems as we presented



Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation 205

in the results section. In addition, GNRPA/BLGNRPA are designed for complete infor-
mation problems. Finally, the bias must be simple to compute. Indeed, for a GNR-
PA/BLGNRPA search, the bias must be calculated 100level × c̄ times, where c̄ is the
average number of moves considered in the playout function. In order to have a fast and
efficient search, the computation of the bias must therefore be fast.

The results we obtained show that the learning of the bias improves the solutions for
GNRPA. For 3D Bin Packing, BLGNRPA got a better score on 3 out of the 6 sets and the
same score on the 3 others. For VRP, BLGNRPA provided better solutions than GNRPA
on 36 out of the 56 instances, the same score on 12 instances and a worse one on 8
instances. For both problems, it seems that having the bias parameters already initialized
with good values for BLGNRPA improves the results compared to initializing the values
to 0 or 1.

These preliminary results look promising, so in future work we plan to test some
enhancements of the GNRPA on BLGNRPA such as the Stabilized GNRPA (SGNRPA).
Similarly to the Stabilized NRPA, in SGNRPA the Adapt function is not systematically
run after each level 1 playout, but with an appropriate periodicity. Finally, we plan to
work on finding better values for the bias weights initialization, possibly by running a
preliminary phase consisting of solely learning the bias weights but not the BLGNRPA
policy.

Acknowledgment. Thanks to Clément Royer for advising us to use a gradient when possible.
This work was supported in part by the French government under the management of Agence
Nationale de la Recherche as part of the “Investissements d’avenir” program, reference ANR19-
P3IA-0001 (PRAIRIE 3IA Institute).

References

1. Abdo, A., Edelkamp, S., Lawo, M.: Nested rollout policy adaptation for optimizing vehicle
selection in complex VRPs, pp. 213–221 (2016)

2. Bouzy, B., Cazenave, T.: Computer go: an AI oriented survey. Artif. Intell. 132(1), 39–103
(2001)

3. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell.
AI Games 4(1), 1–43 (2012)

4. Brügmann, B.: Monte Carlo Go. Max-Planke-Inst. Phys., Munich, Technical report (1993)
5. Cazenave, T.: Nested Monte-Carlo search. In: Boutilier, C. (ed.) IJCAI, pp. 456–461 (2009)
6. Cazenave, T.: Generalized nested rollout policy adaptation. In: Monte Carlo Search at IJCAI

(2020)
7. Cazenave, T., Fournier, T.: Monte Carlo inverse folding. In: Monte Carlo Search at IJCAI

(2020)
8. Cazenave, T., Lucas, J.Y., Kim, H., Triboulet, T.: Monte Carlo vehicle routing. In: ATT at

ECAI (2020)
9. Cazenave, T., Lucas, J.Y., Triboulet, T., Kim, H.: Policy adaptation for vehicle routing. AI

Commun. 34, 21–35 (2021)
10. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation algorithm to

the traveling salesman problem with time windows. In: Hamadi, Y., Schoenauer, M. (eds.)
LION 2012. LNCS, pp. 42–54. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34413-8_4

https://doi.org/10.1007/978-3-642-34413-8_4
https://doi.org/10.1007/978-3-642-34413-8_4


206 J. Sentuc et al.

11. Cornu, M.L: Local search, data structures and Monte Carlo search for multi-objective combi-
natorial optimization problems. (recherche locale, structures de données et recherche Monte-
carlo pour les problèmes d’optimisation combinatoire multi-objectif) (2017)

12. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van
den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp.
72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7

13. Dang, C., Bazgan, C., Cazenave, T., Chopin, M., Wuillemin, P.-H.: Monte Carlo search algo-
rithms for network traffic engineering. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A.
(eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12978, pp. 486–501. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-86514-6_30

14. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91
(1959)

15. Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge engineering
for the TSPTW problem. In: Computational Intelligence in Scheduling (SCIS), 2013 IEEE
Symposium on, pp. 44–51. IEEE (2013)

16. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-Carlo tree
search for logistics. In: Clausen, U., Friedrich, H., Thaller, C., Geiger, C. (eds.) Commercial
Transport. LNL, pp. 427–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
21266-1_28

17. Edelkamp, S., Gath, M., Rohde, M.: Monte-Carlo tree search for 3D packing with object
orientation. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI), vol. 8736, pp. 285–
296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11206-0_28

18. Graf, T., Platzner, M.: Adaptive playouts in Monte-Carlo tree search with policy-gradient
reinforcement learning. In: Plaat, A., van den Herik, J., Kosters, W. (eds.) ACG 2015. LNCS,
vol. 9525, pp. 1–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27992-3_1

19. Hu, H., Zhang, X., Yan, X., Wang, L., Xu, Y.: Solving a new 3D bin packing problem with
deep reinforcement learning method. arXiv:1708.05930 (2017)

20. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006). https://doi.org/10.1007/11871842_29

21. Maniezzo, V., Gambardella, L.M., de Luigi, F.: Ant colony optimization. In: New Optimiza-
tion Techniques in Engineering. Studies in Fuzziness and Soft Computing, vol. 141, pp.
101–121. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39930-8_5

22. Méhat, J., Cazenave, T.: Combining UCT and nested Monte Carlo Search for single-player
general game playing. IEEE Trans. Comput. Intell. AI Games 2(4), 271–277 (2010)

23. Portela, F.: An unexpectedly effective Monte Carlo technique for the RNA inverse folding
problem. BioRxiv, p. 345587 (2018)

24. Qi, C., Sun, Y.: An improved ant colony algorithm for VRPTW. In: 2008 International Con-
ference on Computer Science and Software Engineering, vol. 1, pp. 455–458. IEEE (2008)

25. Rizzoli, A.E., Montemanni, R., Lucibello, E., Gambardella, L.M.. Ant colony optimization
for real-world vehicle routing problems. Swarm Intell. 1(2), 135–151 (2007)

26. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree Search. In: IJCAI 2011,
Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 649–
654 (2011)

27. Sentuc, J., Cazenave, T., Lucas, J.Y.: Generalized nested rollout policy adaptation with
dynamic bias for vehicle routing. In: AI for Transportation at AAAI (2022)

28. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time win-
dow constraints. In: Operations Research (1985)

29. Wang, F., Hauser, K.: Stable bin packing of non-convex 3D objects with a robot manipulator.
arXiv:1812.04093v1 (2018)

https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-030-86514-6_30
https://doi.org/10.1007/978-3-319-21266-1_28
https://doi.org/10.1007/978-3-319-21266-1_28
https://doi.org/10.1007/978-3-319-11206-0_28
https://doi.org/10.1007/978-3-319-27992-3_1
http://arxiv.org/abs/1708.05930
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-540-39930-8_5
http://arxiv.org/abs/1812.04093v1


Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation 207

30. Zhao, H., Yu, Y., Xu, K.: Learning efficient online 3D bin packing on packing configuration
trees. In: International Conference on Learning Representations (2022)

31. Zhen, T., Zhang, Q., Zhang, W., Ma, Z.: Hybrid ant colony algorithm for the vehicle routing
with time windows. In: 2008 ISECS International Colloquium on Computing, Communica-
tion, Control, and Management, vol. 1, pp. 8–12. IEEE (2008)



Heuristics Selection with ML in CP
Optimizer

Hugues Juillé(B), Renaud Dumeur, and Paul Shaw

IBM France Lab, Orsay, France
{hugues.juille,renaud.dumeur,paul.shaw}@fr.ibm.com

Abstract. IBMR© ILOGR© CP Optimizer (CPO) is a constraints solver
that integrates multiple heuristics with the goal of handling a large
diversity of combinatorial and scheduling problems while exposing a
simple interface to users. CPO’s intent is to enable users to focus on
problem modelling while automating the configuration of its optimiza-
tion engine to solve the problem. For that purpose, CPO proposes an
Auto search mode which implements a hard-coded logic to configure
its search engine based on the runtime environment and some metrics
computed on the input problem. This logic is the outcome of a mix of
carefully designed rules and fine-tuning using experimental benchmarks.
This paper explores the use of Machine Learning (ML) for the off-line
configuration of CPO solver based on an analysis of problem instances.
This data-driven effort has been motivated by the availability of a pro-
prietary database of diverse benchmark problems that is used to eval-
uate and document CPO performance before each release. This work
also addresses two methodological challenges: the ability of the trained
predictive models to robustly generalize to the diverse set of problems
that may be encountered in practice, and the integration of this new ML
stage in the development workflow of the CPO product. Overall, this
work resulted in a speedup improvement of about 14% (resp. 31%) on
Combinatorial problems and about 5% (resp. 6%) on Scheduling prob-
lems when solving with 4 workers (resp. 8 workers), compared to the
regular CPO solver.

Keywords: Combinatorial Optimization · Machine Learning ·
Lifecycle management

1 Introduction

The search landscape of any combinatorial optimization problem exhibits specific
structures. Hence, algorithms that can exploit these structures more efficiently
are likely to outperform those that don’t. Over the past decades, there has been
significant research to determine how to select or adapt search algorithms to
improve performance on a specific problem class or problem instance [13]. The
algorithm selection problem entails many sub-questions and sub-problems that
have been heavily studied. For instance, should a single or a pool of algorithms be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 208–222, 2023.
https://doi.org/10.1007/978-3-031-44505-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_15&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_15


Heuristics Selection with ML in CP Optimizer 209

selected, how to distribute compute-time among the selected algorithms, should
the algorithm selection be performed before-hand (off-line) or adjusted during
search space exploration. Similar questions are raised for computing the features
that will characterize a problem class or a problem instance.

While approaches based on hand-crafted heuristics have shown promising
results, the design of such heuristics assumes that some internal structures
reflecting the intrinsic complexity of problems have been identified and an algo-
rithm can efficiently exploit them. However, because of the ill-defined nature of
the search space for hard problems, many of these heuristics are based on rules
of thumb rather than computable rigorous mathematical formulations. There-
fore, data-driven machine learning methods are natural candidates to address
this heuristic design difficulty. The underlying motivation is that ML methods
may capture properties of a problem class or a problem instance in a decision
model.

Here again, many approaches have been explored for introducing ML for solv-
ing combinatorial optimization problems [2,8]. In the more extreme approaches,
ML handles problem solving end-to-end by designing new algorithms that inte-
grate trainable models to drive the exploration of the search space. These
approaches are usually specific to some problem classes and a frequent goal is to
analyze the generalization capability of the trained algorithm to larger problem
instances [3,7]. On the other hand, one may choose to capitalize on the large
effort that has been put in the design of competitive combinatorial optimization
algorithms. In that domain, the two main approaches consist either in using
ML before invoking solvers (for instance, by learning how to configure algo-
rithms [9] or by learning some portfolio-based algorithm selection strategy [15]),
or in integrating ML in the inner logic of the algorithms to learn rules control-
ling decision making at runtime [6]. Our approach is the former and, using the
taxonomy proposed by [4], can be defined as ML-in-MH used to improve the
Algorithm selection stage.

Objectives and Motivations

The goal of the work presented in this paper is to use Machine Learning to
improve the performance of the CPO solver over a large range of application
domains and real-world problems (that is, not specific to a problem class). Mul-
tiple challenges must be addressed to achieve this goal:

1. Algorithm selection: this problem consists in determining how to allocate
search heuristics to the available workers (CPU threads) involved in a CPO
solve. Predictive models are trained to make this decision, based on an off-line
computation of metrics on the input problem.

2. Training methodology robustness: Predictive models must not specialize
on benchmarks used for training so that CPO solver extended with ML will
improve performance over a large class of unseen application domains. There-
fore, the training methodology will be designed carefully to limit overfitting
issues.



210 H. Juillé et al.

3. Trained models lifecycle management: CPO solver is continuously evolv-
ing. Existing heuristics efficiency is improved and new heuristics are designed.
Therefore, our ML approach must take into account these changes and be
integrated in the product development workflow. This means that the train-
ing process must be automated as much as possible (e.g., to be ultimately
executed from a continuous delivery environment) and reproducible.

The following items summarize the main tasks involved in the implementation
of our ML approach:

1. define features to be computed on input problems
2. train a predictive model from these features to drive algorithm selection
3. embed the trained model in CPO executable
4. benchmark this CPO with ML version against regular CPO version

Section 2 introduces how features are computed based on the formulation of input
problems in CPO modelling language. Then, our repository of benchmark prob-
lems and our performance assessment process are presented. Section 3 details our
formulation of algorithm selection as a ML problem along with the steps involved
in training a predictive model and embedding this model in CPO. Robustness
and lifecycle management challenges are also addressed in that section. Finally,
experimental results for training and benchmarking are presented in Sect. 4.

2 CPO Modelling Language and Features Definition

2.1 CPO Modelling Language

CPO [10] proposes a rich set of constructs to model combinatorial optimization
problems. The core of combinatorial problems consists in assigning values to a
number of integer decision variables, subject to a number of constraints which
enforce conditions on valid domains of these variables. Exploring the problem
search space consists in finding valid assignments to its decision variables. A
solution to the problem corresponds to a situation where all decision variables
are assigned a value while satisfying all constraints. In addition, a measure of
quality for solutions (an objective) may be formulated, and the goal is to find a
solution that maximize (or minimize) this objective.

CPO supports all regular constraints on integer decision variables: equality,
difference, ordering... (low level constraints) along with: alldiff, count, element,
distribute, pack... (global constraints)
In addition, CPO introduces the concept of interval variables for the formula-
tion of scheduling problems. An interval is characterized by a start value, an end
value, a size and an intensity. Also, interval variables can be optional; that is, one
can decide not to consider them in the solution schedule. A number of constructs
exploits interval variables to enforce constraints like spanning, precedence, pres-
ence, alternative..., etc. Interval variables are also used to define higher level
abstractions like sequences of intervals, over which specific constraints may also
be enforced.



Heuristics Selection with ML in CP Optimizer 211

2.2 Features Definition

A combinatorial problem model can be represented as a directed graph. There
is one vertex for each decision variable, one for each constant, one for each con-
straint and one for each expression. For each constraint (resp. expression), edges
connect the associated node with all nodes corresponding to the parameters of
the constraint (resp. expression) definition. As a result, vertices with only out-
going edges correspond to decision variables and constants, while vertices with
at least one incoming edge correspond to constraints, expressions, or objective
definition.

Before actually solving a model, CPO performs a pre-solve stage which con-
sists in a reformulation of the input model. The purpose of this stage is to
improve solve performance by removing useless entities or rewriting expressions
for faster computation and search space reduction. As a result, this “pre-solved”
model can be quite different from the input model and metrics computed on this
second model may also vary significantly from those computed on the original
model. One will explore whether training the predictive model on one of these
constraints models or the other impacts performance.

Our approach to an off-line analysis of input problems consists in engineering
a collection of features that captures information about structural properties of
the problem. In order to compute features on the graph representing the input
problem, the following attributes are defined for each node:

– Type: an identifier of the detailed nature of the node (e.g., integer variable,
alldiff constraint...),

– Flavor: an identifier that defines a coarser grouping based on the nature of
nodes (e.g., constraint, integer expression...),

– Constraint: a flag indicating if the node corresponds to a constraint,
– Leaf : a flag indicating if the node has no child (e.g., decision variables, con-

stants...),
– Root: a flag indicating if the node has no parent (e.g., objective function,

constraints that are not argument of another constraint or expression...),

Using this terminology, Table 1 describes the features that have been explored
in this work. This table identifies a group of mandatory features that will always
be used, while different combinations of features related to search space size will
be investigated. In this table, search space size refers to the cartesian product
of all variables domain. CPO propagation engine reduces the domain of decision
variables. As will be seen in the experimental section, considering search space
size before or after this initial propagation (hence resulting in twice as many
features) impacts the performance of predictive models.

2.3 Benchmark Problems and Performance Assessment

CPO involves non-deterministic algorithms that are continually tuned to enhance
their performances. This tuning needs input from performance tests to be accu-
rate. To enable such testing, the CPO Product Improvement Platform (CPOPIP)



212 H. Juillé et al.

Table 1. Features definition

Features

“M
an

d
at

or
y”

fe
at

u
re

s

Density-based features
• For each Type, density of all nodes of this Type with respect to
all other nodes with same value of Constraint attribute 158
• For each Flavor, density of all nodes of this Flavor with respect
to all other nodes with same value of Constraint attribute 41

Misc ratios based on number of vars, constraints, types
Ratio of leaf nodes or constraint nodes over all nodes in graph,
ratio of Integer and Interval variables among leaf nodes... 11

Distribution-based statistics features
log1p() of mean, standard deviation and skewness for distributions:
• Number of children for Constraint nodes
• Number of parents for Leaf nodes
• Number of parents for non-Leaf and non-Constraint nodes
• Number of non-Leaf and non-Constraint child nodes

12

L
og

S
ea

rc
h

S
p
ac

e
si
ze

fe
at

u
re

s

Search Space size-based features
First, compute BEFORE and AFTER initial propagation:
• For all Integer variables: log of size of domain
• For all Interval variables: log of size of interval start domain
Then, compute following features:
• Sum of logs for Integer variables, Interval variables and overall 3 × 2
• For all “density-based” and “misc ratios” features, product
of original feature by:
- total log search space size over all Integer variables only 210 × 2
- total log search space size over all variables 210 × 2

has been developed and deployed on a dedicated cluster. CPOPIP has been per-
forming benchmarks to monitor enhancements of the CPO product over time.
These benchmark problems are based on a repository of a few thousands tests
that have been collected from miscellaneous public benchmarks or from real
world projects. It is continuously enriched with new tests. All these tests are
tagged with attributes to organize them by problem type (integer optimization,
scheduling, feasibility) and by family. Problems in a family share some common
structure (usually, a family is built from multiple instances of a same problem
with varying sizes for decision variables along with customized constraints). At
the time of writing of this paper, our repository of tests is composed of 6142 CPO
models (2140 combinatorial optimization problems, 483 combinatorial feasibility
problems, and 3519 scheduling problems), that are grouped in 327 families. The
families size varies from a single instance to 440 for the largest family. CPOPIP
embeds multiple tools to support performance analysis at different granularity
levels.



Heuristics Selection with ML in CP Optimizer 213

A common setup for a benchmarking campaign is to execute 10 runs (CPO
solve) for each test, with a time limit of 1000 s per run. Latest CPO released
version can solve to optimality about 45% of the test for all runs, before the time
limit. For less than 2% of these tests, no run can found a first solution. These
corresponds to the hardest problems of the repository of tests. For the remaining
tests (about 53%), some runs didn’t prove optimality but at least one run found
a first solution. This corresponds to difficult optimization problems which focus
our effort for improving CPO heuristics.

Improvements between CPO versions are assessed by comparing their corre-
sponding benchmarking campaigns. One of the metrics that is computed when
comparing two campaigns is the average test speedup. For each model, this indi-
cator evaluates the average ratio of runtimes for the two campaigns to achieve
a same performance with respect to the objective value. The speedup value is
above 1.0 for tests where the first campaign is faster on average than the second
campaign to achieve a same value of the objective (or to find a solution for sat-
isfiability problems), over the 10 runs. The range of values for the test speedup
is limited to the interval [0.01, 100.0].

3 General Approach

3.1 Algorithm Selection Problem Formulation

The CP Optimizer search is based on constructive search, which is a search
technique that attempts to build a solution by fixing decision variables to values.
While the built-in CP Optimizer search is based on this technique, the optimizer
also uses other heuristics to improve search. These heuristics (or SearchType in
CPO terminology) are named: Restart, MultiPoint, DepthFirst and IterativeDiv-
ing.

– DepthFirst search is a tree search algorithm such that each fixing, or instan-
tiation, of a decision variable can be thought of as a branch in a search tree.
The optimizer works on the subtree of one branch until it has found a solution
or has proven that there is no solution in that subtree.

– Restart is a depth-first search that is restarted after a certain number of
failures that increases after each restart.

– IterativeDiving is a search method that attempts to quickly build feasible
solutions and improve them using consecutive iterations of backtrack-free
search. This heuristics is specialized for Scheduling problems.

– MultiPoint search creates a set of solutions and combines the solutions in the
set in order to produce better solutions. Multi-point search is more diversified
than depth-first or restart search, but it does not necessarily prove optimality
or the inexistence of a solution.

Each heuristic can also be manually fine-tuned with specific parameters.
DepthFirst and IterativeDiving are restricted variations of Restart heuristics.
On the other hand, Restart and MultiPoint heuristics implement very different



214 H. Juillé et al.

approaches to search. Our experience has shown that, depending on the prob-
lem instance, one heuristic can be much faster than the other to solve it. For
this reason, we decided to focus on the problem of predicting a score that corre-
lates with the probability that the MultiPoint heuristic outperforms the Restart
heuristic, given a problem instance.

Moreover, when the CPO’s Workers parameter exceeds 1, multiple worker
threads are started when search begins. When the SearchType parameter is set to
Auto, these threads will employ a variety of search heuristics, such as MultiPoint
and Restart. Through the exchange of information, such as intermediate solutions
and nogoods, these worker threads can collaborate and cooperate in the search
process. Hence, identifying the right mix of heuristics to assign to workers has
a strong impact on search performance. In our approach, the predicted score
determines the allocation of each heuristic to the different workers, by using a
proportionality rule.

This section has formulated the algorithm selection problem as a binary
classification problem. Before detailing the ML workflow that will be used to
solve this problem in Sect. 3.4, the next two sections introduce how the robustness
and life-cycle management challenges have been addressed.

3.2 Training Methodology Robustness

From a Machine Learning methodological point of view, a number of challenges
must be overcome. First, even if a significant number of benchmark problems
compose the dataset available for training, a few thousand data points very
quickly expose us to overfitting and variance issues. Second, the dataset is struc-
tured into families that group similar problems together. This raises the issue
of diversity in the training data, along with the risk of overfitting to the actual
data used for benchmarking and generalizing poorly on unseen problems.

These issues have been mitigated as follows. First, an aggressive splitting
strategy has been implemented, using: 30% of problems for training, 30% for
validation and 40% for testing. Second, splitting has been performed using strat-
ification based on pairs (family id, target). By using a small fraction of data for
training the predictive model and about the same amount of data for valida-
tion, overfitting is limited. Indeed, a large validation set enables a more reliable
evaluation of generalization so that training is stopped before overfitting occurs.
Keeping a large chunk (40%) of all problems for the final evaluation of the pre-
dictive model also makes this final measure more reliable. Moreover, stratified
splitting introduces more diversity in the training data and improves generaliza-
tion capability for the trained predictive model.

The LightGBM algorithm [5,11] has been selected for training predictive
models. Several reasons motivated our choice of this Gradient Boosted Trees
(GBT) framework. First, training models with LightGBM is very fast, which
makes heavy Hyper Parameters Optimization (HPO) more manageable to inves-
tigate configuration options. Second, this framework exhibits interesting proper-
ties for a smooth integration in CPO: serializing decision trees and implementing
their evaluation logic is simple (a decision tree is a list of tuples (subtree id, split



Heuristics Selection with ML in CP Optimizer 215

feature, threshold value, left and right subtrees id) for internal nodes, and tuples
(subtree id, value) for leaf nodes), also the memory footprint of serialized trained
models is small.

Also, the logic implemented by decision trees is easy to interpret. Being able
to get insights about the main features used to compute class probabilities helps
to build confidence in the model and to engineer additional features. Finally,
training a LightGBM model is reproducible (given a seed value), which is desir-
able for our ML workflow.

3.3 Trained Models Lifecycle Management

Heuristics embedded in CPO are continuously improving over time. Therefore,
a predictive model trained for a specific version has to be adjusted to reflect
the new relative performance of the different heuristics in following versions.
The two main challenges to address this particular issue concern: the end-to-end
automation of the workflow, and reproducibility.

CPO development and release follow the Continuous Delivery (CD) approach
which aims at automating the build, test and release steps of a software. In order
to embed a trained predictive model in CPO, all the steps needed to produce
this model must be automated in a reliable pipeline. This pipeline covers all the
regular ML steps (data preparation, model training, HPO, feature selection...)
along with the generation of the actual resources to be packaged in the delivered
product. Details about this pipeline are discussed in Sect. 3.4. This pipeline can
be executed without any human interaction and can be added to the Continuous
Delivery workflow.

Reproducibility is important because the workflow may be executed multiple
times for a same version. Therefore, it is important that the outcome of the
workflow be identical at each execution. In particular, this means that CPO
performance evaluation does not depend on non-deterministic behaviors in the
ML workflow. This has been achieved by controlling random seeds of all algo-
rithms involved in the workflow that make non-deterministic decisions: Light-
GBM, stratified K-fold algorithm, BayesianOptimization [12], features impor-
tance assessment algorithm.

3.4 Machine Learning Workflow

This section introduces the different steps involved in the Machine Learning
workflow:

– Training dataset preparation:
• Target definition: For each test problem, compute the speedup between

the MultiPoint and Restart heuristics to assess their relative performance.
These speedups result from the comparison of two campaigns performed
on our CPOPIP platform. Each campaign executes a single worker that is
configured either with MultiPoint or Restart as the search heuristic. The
target for the classification problem corresponds to the winning heuristics



216 H. Juillé et al.

Fig. 1. Number of problems for which each heuristic (Restart or MultiPoint) outper-
forms the other, detailed by problem type.

(0 for Restart, 1 for MultiPoint). The distribution of target values plot-
ted in Fig. 1 illustrates that the two classes are imbalanced. The actual
speedup value will be used for weighting training samples.

• Compute all features listed in Table 1 for all problems in our dataset.
• Perform the stratified split, using 60% as training/validation dataset and

keeping the other 40% aside for testing (as described in Sect. 3.2).
– Model training using LightGBM algorithm:

• As detailed in Sect. 3.1, algorithm selection has been formulated as a
binary classification problem. In that case, cross-entropy is the usual loss
function for training.

• Two-folds cross-validation is used for training. Each fold takes 50% of the
input dataset for training (that is 30% of all problems) and the other half
for validation. LightGBM training is stopped when no progress is observed
for the cross-entropy loss computed on validation data for 50 iterations.
The final score of trained models is this out-of-fold (OOF) cross-entropy
score.

– Hyper-parameter optimization (HPO): HPO aims at exploring the space of
values for the training algorithm parameters in order to identify a config-
uration for these parameters that optimizes a selected performance met-
ric. At each HPO iteration, 10 runs (changing seed at each run) are exe-
cuted to account for the randomness incurred by the feature_fraction
and bagging_fraction LightGBM parameters (which control sampling of
features and data points). Each run performs a complete two-fold cross-
validation training. The OOF cross-entropy loss averaged over all these runs
is the actual performance metric that is optimized by HPO. The final output
is an assignment of values for selected parameters. In our experiments, HPO
is using the BayesianOptimization library [12] and is invoked twice in the
Machine Learning workflow:
1. To identify a good initial configuration for the following list

of LightGBM parameters: max_depth, max_bin, feature_fraction,
bagging_fraction, bagging_freq, min_data_in_leaf, lambda_l1 and
lambda_l2. A detailed documentation of these parameters can be found



Heuristics Selection with ML in CP Optimizer 217

in the on-line LightGBM documentation [11]. Features importance will
be evaluated based on the configuration of parameters identified after this
first HPO round.

2. To select the number of features to keep for training, along with an
updated configuration for the above list of LightGBM parameters. Select-
ing a good subset of features reduces the risk of overfitting and helps
generalization.

– Features importance assessment: The purpose of evaluating features impor-
tance is to rank features based on their relevance for the training task. We
used the permutation importance method [1] for ranking features. In the sec-
ond round of HPO, the number of features to keep in this sorted list is one
of the hyper parameter to optimize.

– Selection and serialization of the model to embed in CPO: The LightGBM
model with the best OOF score is selected as the final predictive model to
be embedded in CPO. This model is serialized as C++ data structures in a
header source file that is added to CPO source code.

Fig. 2. Training workflow

The output of this Machine Learning workflow is the serialized LightGBM
trained model. Figure 2 illustrates how these different steps are sequenced.

3.5 Integration in CPO and Final Performance Evaluation

The CPO solver integrates the features computation code along with the trained
model. At runtime, features are computed for the current input problem so that
the predictive model can return a score. This score is used as a ratio and drives
the strategy to assign heuristics (or SearchType) to the different workers involved
in search (the number of workers depends on the runtime environment and can
be set by the user).



218 H. Juillé et al.

When evaluating the performance of CPO using the predictive model, the
overhead introduced by computing features and evaluating prediction for heuris-
tics selection is accounted for in the overall solve time.

The final performance of this problem-specific heuristics selection strategy
is assessed by executing two benchmarking campaigns configured with 4 and 8
workers respectively. It is then compared to the benchmarks performed for the
regular CPO that performs heuristics selection based on a hard-coded strategy.

4 Experimental Results

4.1 Experimental Setup and Features Sets

In order to explore the relevance of the different categories of features, the con-
figurations detailed in Table 2 will be used in our experiments. All these con-
figurations have a common subset of mandatory features that group all features
except those related to search space size. As discussed in Sect. 2.2, these features
may be computed either on the original model, or on the “pre-solved” model.

Table 2. Configurations for features set

Configuration Id Description Features

CMandatory,Orig Mandatory features on original model 222
CMandatory,Presol Mandatory features on “pre-solved” model 222
CBeforeProp,Orig Mandatory features + search-space size BEFORE

initial propagation on original model
645

CBeforeProp,Presol Mandatory features + search-space size BEFORE
initial propagation on “pre-solved” model

645

CAfterProp,Orig Mandatory features + search-space size AFTER
initial propagation on original model

645

CAfterProp,Presol Mandatory features + search-space size AFTER
initial propagation on “pre-solved” model

645

CBef&AftProp,Orig Mandatory features + search-space size BEFORE
and AFTER initial prop. on original model

1068

CBef&AftProp,Presol Mandatory features + search-space size BEFORE
and AFTER initial prop. on “pre-solved” model

1068

The next two sections present the experimental results for the training work-
flow (to identify features and parameters value that result in best performance),
and for benchmarking CPO extended with ML.

We will also look at the details of feature importance assessment to identify
some of the most relevant features.



Heuristics Selection with ML in CP Optimizer 219

4.2 Training Workflow Results

Table 3 summarizes the outcome of the LightGBM training experiments. For
each configuration of features set, the number of features optimized by the sec-
ond round of HPO along with the corresponding averaged cross-entropy loss
is reported (at each iteration, HPO performs 10 training runs). Then, using
parameters values returned by HPO, 50 additional runs are performed to moni-
tor the evolution of selected metrics during training. In addition to cross-entropy
loss, ROC AUC (the area under the receiver operating characteristics curve) is
reported for all configurations of features sets. ROC AUC is a metric that pro-
vides insights about the sensitivity of binary classifiers to threshold selection
for separating positive and negative examples. This information is useful for
imbalanced datasets, like in our case.

Table 3. Number of selected features and Out-Of-Fold metrics associated with best
parameters value found by HPO, for each configuration of features set.

Configuration Id Total
number of
features

Number of
selected
features

HPO best OOF
cross-entropy
loss (10 runs)

OOF
cross-entropy
loss (50 runs)

OOF ROC
AUC ROC
AUC

CMandatory,Orig 222 20 0.05641 [8] 0.05641 0.86491

CMandatory,Presol 222 55 0.05464 [5] 0.05464 0.87390

CBeforeProp,Orig 645 120 0.05387 [2] 0.05387 0.87398

CBeforeProp,Presol 645 296 0.05369 [1] 0.05381 0.87847
CAfterProp,Orig 645 118 0.05415 [3] 0.05415 0.86594

CAfterProp,Presol 645 344 0.05495 [7] 0.05511 0.8803

CBef&AftProp,Orig 1068 314 0.05420 [4] 0.05420 0.87384

CBef&AftProp,Presol 1068 536 0.05467 [6] 0.05468 0.8754

Table 3 indicates that the best performance is achieved by selecting the top
296 features from the CBeforeProp,Presol configuration (after sorting by impor-
tance). The corresponding trained predictive model is then serialized and embed-
ded in CPO to select heuristics to be used by each worker. Experimental results
for this extended CPO version are presented in the next section.

4.3 Benchmarking Results for CPO with ML

A CPO executable embedding the trained predictive model is built and evaluated
on our CPOPIP test platform. The baseline for all experiments in this section
corresponds to a regular CPO runtime. These regular and extended with ML
CPO versions differ only in the ML specific logic. All figures reported in this
section correspond to solve speedup compared to the baseline.

In order to evaluate performance, a Virtual Best Solver has also been designed
by evaluating CPO performance for all possible configurations for assigning



220 H. Juillé et al.

Table 4. Performance of CPO with ML vs Virtual Best Solver over all problems in
benchmark, by problem type, for 4 and 8 workers

4 Workers 8 Workers
Family
geometric av.

All tests
geometric av.

Family
geometric av.

All tests
geometric av.

Combinatorial
problems

Virtual Best 1.20 1.23 1.45 1.44
CPO with ML 1.08 1.11 1.28 1.29

Scheduling
problems

Virtual Best 1.34 1.27 1.47 1.40
CPO with ML 1.09 1.06 1.12 1.07

Overall Virtual Best 1.27 1.26 1.46 1.41
CPO with ML 1.09 1.08 1.19 1.13

Restart and MultiPoint heuristics to the pool of workers (of size 4 or 8). Then,
for each problem, the best speedup among all configurations is kept. The per-
formance of this Oracle is then compared to the baseline, providing an upper
bound on the best performance that our ML approach can achieve.

Table 5. Performance of CPO with ML vs Virtual Best Solver for TEST problems
only, by problem type, for 4 and 8 workers

4 Workers 8 Workers
Family
geometric av.

All tests
geometric av.

Family
geometric av.

All tests
geometric av.

Combinatorial
problems

Virtual Best 1.19 1.24 1.42 1.40
CPO with ML 1.13 1.14 1.30 1.31

Scheduling
problems

Virtual Best 1.37 1.27 1.50 1.40
CPO with ML 1.08 1.05 1.09 1.06

Overall Virtual Best 1.28 1.26 1.46 1.40
CPO with ML 1.10 1.07 1.18 1.12

Tables 4 and 5 present the results, separating Combinatorial and Scheduling
problems. The first table presents performance results on the full set of bench-
mark problems, while only problems from the Test dataset (that have not been
involved in the training process at all) are considered in the second table. One
can notice that the drop in performance between the two setups is minor, which
makes us confident in the robustness of the approach (in particular since some
families in the test data are not seen at all during training because of their small
size).

4.4 Features Importance Analysis

A side question of this work is related to the analysis of the most relevant features
that are exploited by trained models. Investigating which metrics computed on



Heuristics Selection with ML in CP Optimizer 221

an input problem correlate better with the learning target can help engineering
new features and provide some insights to design new heuristics.

Fig. 3. Top 20 features ranked by permutation importance.

Figure 3 plots the top 20 features ranked by permutation importance for
the best predictive model. Interestingly, 5 of the top 6 features in this chart
correspond to global structural properties of the directed graph associated with
the problem that are independent of constraints types. For instance, the top
feature is the proportion of nodes in the graph that are variables nodes, the
second one is the mean number of children for constraint nodes...

5 Concluding Remarks

The aim of the work presented in this paper is to extend the CP Optimizer prod-
uct with some automated heuristics selection capabilities driven by a few hun-
dreds of metrics computed on input problems. A predictive model trained from
an extensive repository of benchmark problems supports the heuristics selec-
tion strategy. Beyond the challenge of improving the performance of the solver
using a Machine Learning approach, embedding a predictive model in a prod-
uct entails several technical constraints. In particular, the lifecycle of embedded
models must be managed so that they are updated when needed. This implies
that all decisions involved in the workflow for creating the final predictive model
are clearly identified and automated. This involves in particular preparing the
training data by benchmarking individual heuristics, assessing and selecting the
best configuration of features by performing multiple HPO sessions, or including
the serialized final model in the product code.

This work confirms the benefit and the feasibility of using ML methods for
improving a productized solver. Our next step is to extend this effort to automat-
ically configure more parameters controlling CPO internal heuristics. Our goal



222 H. Juillé et al.

was a real challenge because of the difficulty to assemble a vast dataset of diverse
problems and not limit the domain of application to a few classes of problem.
For this reason, adversarial strategies like in [14] are promising approaches that
we also intend to investigate in our work.

References

1. Altmann, A., Tolosi, L., Sander, O., Lengauer, T.: Permutation importance: a
corrected feature importance measure. Bioinformatics (Oxford, England) 26, 1340–
1347 (2010). https://doi.org/10.1093/bioinformatics/btq134

2. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290, 405–421 (2021)

3. Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated
vehicle routing problem. arXiv abs/1911.09539 (2020)

4. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.G.: Machine learning at the service of meta-heuristics for solving com-
binatorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296(2),
393–422 (2022)

5. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Advances in Neural Information Processing Systems, vol. 30, pp. 3146–3154 (2017)

6. Khalil, E.B., Morris, C., Lodi, A.: MIP-GNN: a data-driven framework for guid-
ing combinatorial solvers. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 9, pp. 10219–10227 (2022). https://doi.org/10.1609/aaai.
v36i9.21262. https://ojs.aaai.org/index.php/AAAI/article/view/21262

7. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: ICLR (2019)

8. Kotary, J., Fioretto, F., Hentenryck, P.V., Wilder, B.: End-to-end constrained opti-
mization learning: a survey. arXiv abs/2103.16378 (2021)

9. Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decomposi-
tion. In: CPAIOR (2017)

10. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for schedul-
ing. Constraints 23(2), 210–250 (2018). https://doi.org/10.1007/s10601-018-9281-
x

11. Microsoft: LightGBM documentation. https://lightgbm.readthedocs.io (2021)
12. Nogueira, F.: Bayesian Optimization: open source constrained global optimization

tool for Python (2014). https://github.com/fmfn/BayesianOptimization
13. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-

mization problems. Comput. Oper. Res. 39, 875–889 (2012)
14. Tang, K., Liu, S., Yang, P., Yao, X.: Few-shots parallel algorithm portfolio con-

struction via co-evolution. IEEE Trans. Evol. Comput. 25(3), 595–607 (2021)
15. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-

rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1609/aaai.v36i9.21262
https://doi.org/10.1609/aaai.v36i9.21262
https://ojs.aaai.org/index.php/AAAI/article/view/21262
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s10601-018-9281-x
https://lightgbm.readthedocs.io
https://github.com/fmfn/BayesianOptimization


Model-Based Feature Selection for Neural
Networks: A Mixed-Integer Programming

Approach

Shudian Zhao1 , Calvin Tsay2 , and Jan Kronqvist1(B)

1 Optimization and Systems Theory, Department of Mathematics,
KTH Royal Institute of Technology, Stockholm, Sweden

jankr@kth.se
2 Department of Computing, Imperial College London, London, UK

Abstract. In this work, we develop a novel input feature selection
framework for ReLU-based deep neural networks (DNNs), which builds
upon a mixed-integer optimization approach. While the method is gen-
erally applicable to various classification tasks, we focus on finding input
features for image classification for clarity of presentation. The idea is
to use a trained DNN, or an ensemble of trained DNNs, to identify the
salient input features. The input feature selection is formulated as a
sequence of mixed-integer linear programming (MILP) problems that
find sets of sparse inputs that maximize the classification confidence of
each category. These “inverse” problems are regularized by the number of
inputs selected for each category and by distribution constraints. Numer-
ical results on the well-known MNIST and FashionMNIST datasets show
that the proposed input feature selection allows us to drastically reduce
the size of the input to ∼15% while maintaining a good classification
accuracy. This allows us to design DNNs with significantly fewer connec-
tions, reducing computational effort and producing DNNs that are more
robust towards adversarial attacks.

Keywords: Mixed-integer programming · Deep neural networks ·
Feature selection · Sparse DNNs · Model reduction

1 Introduction

Over the years, there has been an active interest in algorithms for training sparse
deep neural networks (DNNs) or sparsifying trained DNNs. By sparsifying a
DNN we mean removing some connections (parameters) in the network, which
can be done by setting the corresponding weights to zero. Examples of algorithms
for sparsifying or training sparse networks include, dropout methods [13,15,31],
optimal/combinatorial brain surgeon [12,36], optimal brain damage [19], and
regularization based methods [21,23,33]. Carefully sparsifying the network, i.e.,
reducing the number of parameters wisely, has shown to reduce over-fitting and
improve overall generalizability [13,18]. This paper focuses on feature selection
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 223–238, 2023.
https://doi.org/10.1007/978-3-031-44505-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_16&domain=pdf
http://orcid.org/0000-0001-6352-0968
http://orcid.org/0000-0003-2848-2809
http://orcid.org/0000-0003-0299-5745
https://doi.org/10.1007/978-3-031-44505-7_16


224 S. Zhao et al.

for DNNs, which can also be interpreted as “sparsifying” the first/input layer,
and we show that we can significantly reduce the number of parameters, i.e.,
non-zero weights, while keeping a good accuracy. Throughout the paper we focus
on image classification, but the framework is general.

This work focuses on finding the salient input features for classification using
a DNN. We hypothesize that the number of inputs to DNNs for classification
can often be greatly reduced by a “smart” choice of input features while keep-
ing a good accuracy (i.e., feature selection). We build the hypothesis on the
assumption that not all inputs, or pixels, will be equally important. Reducing the
number of inputs/parameters has the potential to: i) reduce over-fitting, ii) give
more robust DNNs that are less sensitive for adversarial attacks (fewer degrees
of freedom for the attacker), and iii) reduce computational complexity both in
training and evaluating the resulting classifier (fewer weights to determine and
fewer computational operations to evaluate the outputs). The first two are classi-
cal focus areas within artificial intelligence (AI), and the third is becoming more
important with an increasing interest in so-called green AI [26]. Most strategies
for feature selection can be grouped as either filter methods, which examine
the data, e.g., for correlation, and wrapper methods, which amount to a guided
search over candidate models [4,20]. Feature selection can also be incorporated
directly into model training using embedded methods, e.g., regularization. This
paper and the numerical results are intended as a proof of concept to demon-
strate mixed-integer linear programming (MILP) as an alternative technology
for extracting the importance of input features from DNNs.

Input feature selection is an active research area, e.g., see the review papers
[8,37], and a detailed comparison to state-of-the-art methods is not within the
scope of this paper.

Our proposed method leverages trained models that achieve desirable per-
formance, and attempts to select a feature set that replicates the performance
using mixed-integer programming. We build on the idea that, given a relatively
well-trained DNN, we can analyze the DNN in an inverse fashion to derive infor-
mation about the inputs. Specifically, to determine the most important inputs,
or pixels in the case of image classification, for a given label, we solve an opti-
mization problem that maximizes the classification confidence of the label with
a cardinality constraint on the number of non-zero inputs to the DNN. We con-
sider this as an “inverse problem”, as the goal is to determine the DNN inputs
from the output. We additionally propose some input distribution constraints
to make the input feature selection less sensitive to errors in the input-output
mapping of the DNN. We only consider DNNs with the rectified linear unit
(ReLU) activation function, as it enables the input feature selection problem
to be formulated as a MILP problem [7,22]. However, the framework can be
easily generalized to CNN architectures and other MIP representable activation
functions, e.g., max pooling and leaky ReLU.

Optimizing over trained ReLU-based DNNs has been an active research topic
in recent years [14], and has a wide variety of applications including verification
[2,22,28], lossless compression [27], and surrogate model optimization [10,35].
There even exists software, such as OMLT [3], for directly incorporating ReLU



Model-Based Feature Selection for Neural Networks: A MIP Approach 225

DNNs into general optimization models. Optimizing over a trained ReLU-based
DNN through the MILP encoding is not a trivial task, but significant progress
has been made in terms of strong formulations [1,16,29], solution methods [5,25],
and techniques for deriving strong valid inequalities [1,2]. In combination with
the remarkable performance of state-of-the-art MILP solvers, optimization over
DNNs appears computationally tractable (at least for moderate size DNNs).
This work builds upon recent optimization advancements, as reliably optimizing
over ReLU-based DNNs is a key component in the proposed method.

The paper is structured as follows. Section 2 first describes the MILP problem
to determine which inputs maximize the classification confidence. Some enhance-
ments for the input selection are presented, and the complete input selection
algorithm is presented in Sect. 2.4. Numerical results are presented in Sect. 3,
where we show that we can obtain a good accuracy when downsizing the input
to 15% by the proposed algorithm, and that the resulting DNNs are more robust
towards adversarial attacks in the �∞ sense. Section 4 provides some conclusions.

2 Input Feature Selection Algorithm

Our feature selection strategy is based on the idea of determining a small optimal
subset of inputs, or pixels for the case of image classification, that are allowed to
take non-zero values to maximize the classification confidence for each label using
a pre-trained DNN. By combining the optimal subsets for each label, we can
determine a set of salient input features. These input features can be considered
as the most important for the given DNN, but we note that the DNN might not
offer a perfect input-output mapping. To mitigate the impact of model errors,
we propose a technique of using input distribution constraints to ensure that the
selected input features are to some extent distributed over the input space. This
framework could easily be extended to use optimization over an ensemble DNN
model [32] for input selection, where the inputs would be selected such that the
ensemble classification confidence is maximized. While using DNN ensembles
can further mitigate the effect of errors in individual DNNs, our initial tests did
not indicate clear advantages of using DNN ensembles for this purpose.

Here we focus on fully connected DNNs that classify grayscale images into
10 categories. While this setting is limited, the proposed method is applicable to
classification of RGB images, and other classification problems in general. The
input features are scaled between 0 and 1, with 255 (white) corresponding to 1
and 0 remaining black. We start by briefly reviewing MILP encoding of DNNs
in the next subsection, and continue with more details on the input feature
selection in the following subsections.

2.1 Encoding DNNs as MILPs

In a fully connected ReLU-based neural network, the l-th layer with input xl

and output xl+1 is described as

xl+1 = max{0,W lxl + bl},

where W l ∈ R
nl+1×nl is the weight matrix and bl ∈ R

nl+1 is the bias vector.



226 S. Zhao et al.

The input-output mapping of the ReLU activation function is given by a
piece-wise linear function, and is mixed-integer representable [30]. There are
different formulations for encoding the ReLU activation function using MILP,
where the big-M formulation [7,22] was the first presented MILP encoding and
remains a common approach. For the i-th ReLU node at a fully connected layer
with input xl, the big-M formulation for input-output relation is given by

(wl
i)

�xl + bli ≤ xl+1
i ,

(wl
i)

�xl + bli − (1 − σ)LBl+1
i ≥ xl+1

i ,

xl+1
i ≤ σUBl+1

i ,

σ ∈ {0, 1}, xl+1
i ≥ 0,

(1)

where wl
i is the i-th row vector of W l, bli is the i-th entry of bl, LBl+1

i and UBl+1
i

are upper and lower bounds on the pre-activation function over xl+1
i , such that

LBl+1
i ≤ (wl

i)
�xl + bli ≤ UBl+1

i .
The big-M formulation is elegant in its simplicity, but it is known to have a

weak continuous relaxation which may require the exploration of a huge number
of branch-and-bound nodes in order to solve the problem [1]. Anderson et al. [1]
presented a so-called extended convex hull formulation, which gives the strongest
valid convex relaxation of each individual node, and a non-extended convex hull
formulation. Even though the convex hull is the strongest formulation for each
individual node, it does not in general give the convex hull of the full input-
output mapping of the DNN. Furthermore, the convex hull formulation results
in a large problem formulation that can be computationally difficult to work
with. The class of partition-based, or P -split, formulations, was proposed as an
alternative formulation with a stronger continuous relaxation than big-M and
computationally cheaper than the convex hull [16,29]. Computational results in
[17,29] show that the partition-based formulation often gives significant speed-
ups compared to the big-M or convex hull formulations. Here, we do not focus on
the computational efficiency of optimizing over ReLU-based DNNs, and, for the
sake of clarity, we use the simpler big-M formulation (1). In fact, for the problems
considered in this work, the computational time to solve the MILP problems did
not represent a limiting factor (big-M tends to actually perform relatively well
for simple optimization problems). But, alternative/stronger formulations could
directly be used within our framework.

2.2 The Optimal Sparse Input Features (OSIF) Problem

With the MILP encoding of the DNN, we can rigorously analyze the DNN and
find extreme points in the input-output mapping. Recently Kronqvist et al.
[17] illustrated a similar optimal sparse input features (OSIF) problem. This
problem aims to maximize the probability of at most ℵ non-zero input features
being classified with a certain label i for a given trained DNN. The problem
is formed by encoding the ReLU activation function for each hidden node by



Model-Based Feature Selection for Neural Networks: A MIP Approach 227

MILP. Instead of the softmax function, the objective function is xL
i , where xL

is the output vector, thus maximizing the classification confidence of label i.
Using the big-M formulation, the OSIF problem can be stated as

max xL
i (2a)

s.t. W lxl + bl ≤ xl+1, ∀l ∈ [L − 1], (2b)

W lxl + bl − diag(LBl+1)(1 − σl+1) ≥ xl+1, ∀ l ∈ [L − 1], (2c)

xl ≤ diag(UBl)σl, σl ∈ {0, 1}nl ,∀ l ∈ {2, . . . , L}, (2d)

xL = WL−1xL−1 + bL−1, xL ∈ R
10 (2e)

xl ∈ R
nl
+ ,∀ l ∈ [L − 1], (2f)

y ≥ x1, y ∈ {0, 1}n1 , (2g)

1�y ≤ ℵ0, (2h)

where n1 is the size of the input data, xL ∈ R
10 is the output, L is the number of

layers, LBl and UBl are the bounds on xl, 1 denotes the all-ones vector, diag(·)
denote the matrix with · on the diagonal and 0 on other entries. Equation (2g)
and (2h) describe the cardinality constraint ‖x1‖0 ≤ ℵ0, which limits the number
of selected inputs. Figure 1 shows some example results of solving problem (2)
with ℵ ∈ {10, 20} and class i ∈ {0, 1}. Given a larger cardinality number ℵ, the
latter is more visually recognizable from the selected pixels.

2.3 Input Distribution Constraints

To extract information across the whole input image, we propose to add con-
straints to force the selected pixels to be distributed evenly across some pre-
defined partitioning of the input space. Forcing the selected pixels to be more
spread-out may also mitigate the effect of inaccuracy of the DNN used in the
OSIF problem, e.g., by preventing a small area to be given overly high priority.
There are various ways to partition the input variables. In this paper, we focus
on image classification problems with square images as input. Furthermore, we
assume that the images are roughly centered. Therefore, we denote each input
variable as matrix X ∈ R

n×n and define the partition as k2 submatrices of equal
size, i.e., Xij ∈ R

n
k ×n

k for i, j ∈ [k]. For instance, given n is even and k = 2, a
natural partition of the matrix is

X =
(

X11 X12

X21 X22

)
.

In this way, we denote x1 := vec(X) the input data and n1 := n2 the size of the
input data, then Iij is the index set for entries mapped from Xij

Iij = {(i1 − 1)n + i2 | i1 ∈ {(i − 1)
n

k
+ 1, . . . , i

n

k
− 1}, i2 ∈ {(j − 1)

n

k
+ 1, . . . , j

n

k
− 1}}.



228 S. Zhao et al.

Fig. 1. The results of OSIF for class 0 and 1 on MNIST (ℵ0 ∈ {10, 20}). Note that the
selected pixels are white.

We denote the collection of index sets for the partition as I := {Ii,j}∀i,j∈[k]. To
limit the number of pixels selected from each box for each category we add the
following constraints

�ℵ0

k2
	 ≤

∑
i∈It

yi ≤ 
ℵ0

k2
�,∀It ∈ I, (3)

The constraint (3) forces the pixels to spread evenly between all partitions, while
allowing some to contain one more selected pixel for each category.

To illustrate on the impact on the distribution constraints, Fig. 2 compares
the selected pixels for MNIST with k ∈ {1, 2}. Compared to the result without
distribution constraints (equivalent to k = 1), pixels selected with k = 2 are
more scattered over the whole image and are more likely to identify generalizable
distinguishing features of the full input data, assuming the dataset has been pre-
processed for unused areas of the images matrices.

2.4 Controlling the Number of Selected Features

Repeatedly solving the OSIF problem (2) for each label, i.e., i ∈ {0, . . . , 9}, and
taking the union of all selected pixels does not give us full control of the total
number of selected pixels. Specifically, some of the pixels can be selected by the
OSIF problem for multiple classes, resulting in fewer combined pixels (the union
of selected subsets) than an initial target.



Model-Based Feature Selection for Neural Networks: A MIP Approach 229

Fig. 2. Optimal input features for MNIST (ℵ = 50)

Therefore, we present an approach to control the number of selected inputs,
which we use in the proposed MILP-based feature selection algorithm. The main
idea is to allow freedom over features already selected by previous classes in the
current OSIF problem and adjust the cardinality constraint (2h) to

∑
i∈[n1]\J

yi ≤ ℵ0, (4)

where J is the index set for input features selected by previous models.
Similarly, constraints (3) are adjusted as

�ℵ0

k2
	 ≤

∑
i∈It\J

yi ≤ 
ℵ0

k2
�,∀It ∈ I. (5)

Finally, we formulate the OSIF problem with input distribution and total number
control as

OSIF (M, i,ℵ0, I, J) = argmax {xL
i | (2b)–(2g), (4), (5)}. (6)

Based on the described techniques, we introduce the input feature selection
algorithm, which is presented as pseudo code in Algorithm 1.

3 Computational Results

In this paper, we focus on image classification problems for the MNIST [6] and
FashionMNIST [34] datasets. Both datasets consist of a training set of 60,000
examples and a test set of 10,000 examples. Each sample image in both datasets
is a 28 × 28 grayscale image associated with labels from 10 classes. MNIST is
the dataset of handwritten single digits between 0 and 9. FashionMNIST is a
dataset of Zalando’s article images with 10 categories of clothing. There is one
fundamental difference between the two data sets, besides FashionMNIST being
a somewhat more challenging data set for classification. In MNIST there are
significantly more pixels that do not change in any of the training images, or



230 S. Zhao et al.

Algorithm 1: MILP-based feature selection (MILP-based selection)
Data: the number of features ℵ, a trained DNN M, a matrix partition set I,

class set C;
Input: J ← ∅;
Output: Index set J ;
ℵ0 ← ℵ/10;
for i ∈ C do

x ← OSIF (M, i, ℵ0, I, J) ; # Eq. (6)
J ← J ∪ {s | x1

s �= 0, s ∈ [n1]};

end

only change in a few images, compared to FashionMNIST. The presence of such
“dead” pixels is an important consideration for input feature selection.

Image preprocessing and training DNNs are implemented in PyTorch [24],
and the MILP problems are modeled and solved by Gurobi through the Python
API [11]. We trained each DNN with 2 hidden layers of the same size.

3.1 Accuracy of DNNs with Sparse Input Features

The goal is to illustrate that Algorithm 1 can successfully identify low-
dimensional salient input features. We chose to focus on small DNNs, as DNN
2×20 can already achieve an accuracy of 95.7% (resp. 86.3%) for MNIST (resp.
FashionMNIST) and larger DNNs did not give clear improvements for the input
selection. For such models, the computational cost of solving the MILPs is low1.

Table 1 present the accuracies of DNNs with sparse input features on MNIST
and FashionMNIST. It is possible to obtain a much higher accuracy by consid-
ering a more moderate input reduction (about 0.5% accuracy drop with 200–300
inputs), but this defeats the idea of finding low dimensional salient features.
For grayscale input image of 28 × 28, we select at most 15% input features and
present the results with ℵ ∈ {50, 100}.

MILP-Based Feature Selection. Table 1 compares the accuracy of classifi-
cation models with different architectures, i.e., with 2 × 20 vs. with 2 × 40. We
select sparse input features by Algorithm 1 with OSIF models 2×10 and 2×20.
Since the distribution constraints are supposed to force at least one pixel selected
in each submatrix, we select partition number k ∈ {1, 2} and k ∈ {1, 2, 3} for
instances with ℵ = 50 and ℵ = 100 respectively.

First, we investigate the effect of the distribution constraints. Table 1 show
that the accuracy increases when adding the distribution constraints (i.e., from
k = 1 to k = 2) for ℵ ∈ {50, 100}. However, the distribution constraints become

1 On a laptop with a 10-core CPU, Gurobi can solve instances with ℵ = 100 and a DNN
of 2 × 20 under 15 s. However, previous research [1,29] has shown that significant
speed-ups can be obtained by using a more advanced MILP approach.



Model-Based Feature Selection for Neural Networks: A MIP Approach 231

Table 1. Accuracy of DNNs of different architectures with sparse input features
selected by Algorithm 1 on MNIST and FashionMNIST

DNNs of 2 × 20 hidden layers for MNIST dataset

ℵ OSIF Model k Acc. OSIF Model k Acc.

50
2 × 10 1 80.6% 2 × 20 1 80.5%

2 × 10 2 85.3% 2 × 20 2 86.6%

100

2 × 10 1 88.8% 2 × 20 1 89.0%

2 × 10 2 91.2% 2 × 20 2 90.6%

2 × 10 3 89.3% 2 × 20 3 89.3%

DNNs of 2 × 40 hidden layers for MNIST dataset

ℵ OSIF Model k Acc. OSIF Model k Acc.

50
2 × 10 1 83.1% 2 × 20 1 82.7%

2 × 10 2 87.6% 2 × 20 2 89.2%

100

2 × 10 1 91.4% 2 × 20 1 91.4%

2 × 10 2 93.4% 2 × 20 2 92.9%

2 × 10 3 92.3% 2 × 20 3 91.8%

DNNs of 2 × 20 hidden layers for FashionMNIST dataset

ℵ OSIF Model k Acc. OSIF Model k Acc.

50
2 × 10 1 76.6% 2 × 20 1 77.2%

2 × 10 2 77.0% 2 × 20 2 77.9%

100

2 × 10 1 81.1% 2 × 20 1 81.3%

2 × 10 2 82.3% 2 × 20 2 81.8%

2 × 10 3 82.2% 2 × 20 3 82.1%

DNNs of 2 × 40 hidden layers for FashionMNIST dataset

ℵ OSIF Model k Acc. OSIF Model k Acc.

50
2 × 10 1 78.3% 2 × 20 1 78.6%

2 × 10 2 79.4% 2 × 20 2 79.6%

100

2 × 10 1 82.4% 2 × 20 1 82.6%

2 × 10 2 83.1% 2 × 20 2 83.2%

2 × 10 3 83.7% 2 × 20 3 84.0%

less important as the number of selected features ℵ increases; the best k for
MNIST and FashionMNIST varies for ℵ = 100 (noting that the choice of k also
affects accuracy less). For MNIST with ℵ = 100, the accuracy of instances drops
slightly as the k increases from 2 to 3, while using input features selected with k =
3 leads to slightly higher accuracy for FashionMNIST with ℵ = 100. One reason
behind this difference could be that input pixels of MNIST and FashionMNIST



232 S. Zhao et al.

are activated in different patterns. In MNIST, there are more active pixels in the
center, and the peripheral pixels stay inactive over the training data. Given the
distribution constraints with k = 2 (see Fig. 3b), the selected pixels stay away
from the peripheral area. However, when k = 3 (see Fig. 3c), more pixels are
forced to be chosen from the upper right-hand and bottom left-hand corners.
In contrast, the active pixels are more evenly spread across the full input in
FashionMNIST. Hence, as k increases (see Fig. 3e and Fig. 3f), the active pixels
remain well-covered by the evenly scattered selected pixels.

Fig. 3. MNIST and FashionMNIST input features selected by Algorithm 1 with ℵ =
100 and k ∈ {1, 2, 3}

Table 1 also compares OSIF using different DNN architectures, i.e., 2 × 10
and 2×20. The accuracy is 94% (resp. 84%) for the former and 96% (resp. 86%)
for the latter for MNIST (resp. FashionMNIST). The results show that even
using a simple DNN for feature selection using OSIF can produce feature sets
that achieve good accuracy, when appropriately large classification models are
trained on the selected features. For MNIST, the former model has accuracy at
most 2 points worse than the latter model when ℵ = 50. When ℵ = 100, both
models achieve similar levels of performance. As for Fashion, the difference is
at most 1 point for ℵ ∈ {50, 100}. Hence, we cannot observe a clear difference
between the two OSIF DNN models in terms of feature selection quality.

Finally, we would like to make a brief remark on the improvement in accuracy
by increasing the size of the DNNs for classification, i.e., from 2 × 20 to 2 × 40,
for both MNIST and FashionMNIST. Unsurprisingly, using larger DNNs results
in overall higher accuracy. More importantly, the performance of the proposed
input feature selection seems to be robust toward the final architecture. For both
architectures, we observe a similarly slight reduction in classification accuracy
related to the reduction in number of input features (pixels).



Model-Based Feature Selection for Neural Networks: A MIP Approach 233

Comparisons Between Feature Selection Approaches. In this section,
we compare the performance of the MILP-based features-selection approach
(i.e., Algorithm 1) to some other simple feature-selection approaches. The other
feature selection techniques considered in the comparison are random feature
selection, data-based feature selection, and DNN weights-based. In the following
paragraphs, we briefly describe the feature selection algorithms that are used as
reference points for the comparison.

The random feature selection uniformly samples a subset of ℵ input features,
and we present the average accuracy with the standard deviation over 5 DNNs
trained with input features independently selected by this approach. This app-
roach is included, as it is the simplest approach to down-sample the full input.

The data-based feature selection is conducted in the following way: i) we
first calculate the mean value of each input feature over the whole train dataset;
ii) the features with the largest ℵ mean are selected. The motivation behind
this simple heuristic is that it selects the pixels that are most strongly colored
over the training data, i.e., the strongest signals. For example, selecting a pixel
uncolored in all images of the training data does not make sense as that input
does not contain any information for the training data.

In the DNN weights-based approach, we use the same DNN models as we
use in the MILP-based selection, but the inputs are now selected based on the
weights of the inputs. For each input, we sum up the absolute values of all the
weights from the input to the nodes in the consecutive layer and select the ones
with the largest sum. This can be seen as a form of pruning of inputs, and
the motivation is that inputs with small, or almost zero, weights should be less
important as these inputs have less impact in the DNN.

In Table 2, we compare MILP-based feature selection (i.e., Algorithm 1) with
random selection, data-based selection, and weights-based selection. From the
table, it can be observed Algorithm 1 achieves the best result with the accuracy
of DNNs with sparse input features only 5 points (with ℵ = 100) less than
the accuracy with full input features. It can be observed that our method has
the best overall performance. For MNIST, the random selection has the worst
performance, but the data-based selection and weights-based selection achieve a
slightly worse performance than our method.

Table 4 compares the performance of features selections on FashionMNIST.
The results show a different pattern to MNIST. Our methods still have the best
overall performance over different settings by maintaining the accuracy to 84%
(resp. 88%) with ℵ = 100 for DNNs 2 × 20 (resp. 2 × 40), while the accuracy of
DNNs with full input features are 86% (resp. 88%). While delivering the worst
performance on MNIST, random selection has a very close performance to our
method on FashionMNIST. The weights-based selection still lies in third overall,
while the data-based selection is much worse than the other three methods (e.g.,
58% for the DNN 2×20 with ℵ = 100 and 62% for the DNN 2×40 with ℵ = 100).
Moreover, we run experiments on MNIST with a random 2 pixel wide frame, see
Table 3, forming a dataset with redundant inputs. The data-based method can



234 S. Zhao et al.

achieve a maximum accuracy of 57% while the other methods can obtain similar
performance as on the original dataset. In Table 5, we can observer very similar
results on experiments with a random frame on FashionMNIST.

Table 2. Accuracy of DNNs with sparse input features selected by different methods
on MNIST

DNN Feature Selection Approaches ℵ = 784

ℵ MILP-based Random Data-based Weights-based

2 × 20 50 86.6% 77.4 ± 2.2% 81.3% 80.7% 95.7%

100 91.2% 86.0 ± 2.5% 89.2% 89.0%

2 × 40 50 89.2% 76.0 ± 3.9% 85.1% 83.3% 97.1%

100 93.4% 90.6 ± 1.1% 92.4% 91.2%

Table 3. Accuracy of DNNs with sparse input features selected by different methods
on MNIST with a two pixel wide random frame

DNN Feature Selection Approaches ℵ = 1024

ℵ MILP-based Random Data-based Weights-based

2 × 20 50 83.5% 72.7 ± 3.4% 53.7% 80.8% 95.5%

100 90.1% 81.5 ± 1.5% 53.5% 89.8%

2 × 40 50 86.3% 76.0 ± 6.1% 56.7% 82.6% 96.8%

100 93.2% 88.1 ± 1.6% 56.4% 91.6%

Table 4. Accuracy of DNNs with sparse input features selected by different methods
on FashionMNIST

DNN Feature Selection Approaches ℵ = 784

ℵ MILP-based Random Data-based Weights-based

2 × 20 50 77.9% 77.2 ± 0.8% 49.6% 73.8% 86.3%

100 82.3% 80.6 ± 1.1% 58.4% 80.3%

2 × 40 50 79.6% 78.8 ± 0.4% 51.6% 74.6% 87.5%

100 84.0% 82.8 ± 0.4% 62.3% 81.7%

Table 5. Accuracy of DNNs with sparse input features selected by different methods
on FashionMNIST with a two pixel wide frame

DNN Feature Selection Approaches ℵ = 1024

ℵ MILP-based Random Data-based Weights-based

2 × 20 50 79.2% 75.5 ± 1.8% 49.4% 73.3% 85.9%

100 82.2% 79.9 ± 0.5% 59.8% 80.2%

2 × 40 50 80.6% 77.0 ± 1.8% 52.3% 75.2% 87.2%

100 83.9% 80.7 ± 0.9% 62.2% 81.9%



Model-Based Feature Selection for Neural Networks: A MIP Approach 235

The weights-based selection performs decently on both data sets compared to
random and data-based selection. However, based on the results it is clear that
MILP-based selection (i.e., Algorithm 1) can extract more knowledge from the
DNN model regarding the importance of inputs compared to simply analyzing
the weights. The overall performance of MILP-based selection is more stable
than other feature selection methods on both datasets.

3.2 Robustness to Adversarial Inputs

The robustness of a trained DNN classifier can also be analyzed using MILP,
e.g., in verification or finding adversarial input. We use the minimal distorted
adversary as a measure of model robustness x under l∞ norm [9]. For a given
image ximage, the minimal adversary problem [29] can be formulated as

min ε

s.t. (2b)–(2f),

xL
i ≤ xL

j , ‖x1 − ximage‖∞ ≤ ε,

(7)

where i is the true label of image ximage and j is an adversarial label. Simply put,
problem (7) finds the smallest perturbation, defined by the �∞ norm, such that
the trained DNN erroneously classifies image ximage as the adversarial label j.
We hypothesize that DNNs trained with fewer (well-selected) features are more
robust to such attacks, as there are fewer inputs as degrees of freedom. Fur-
thermore, we note that the robustness of smaller DNNs can be analyzed with
significantly less computational effort. Table 6 shows the minimal adversarial
distance (mean and standard deviation over 100 instances), defined by (7) for
DNNs trained on MNIST and FashionMNIST with MILP-based feature selec-
tion. The adversaries are generated for the first 100 instances of the respective
test datasets, with adversarial labels selected randomly. Furthermore, we report
the mean percentage increase, Δ, in minimal adversarial distance over the 100
instances for the reduced input DNNs compared to the full input. In all cases,
reducing the the number of inputs ℵ results in a more robust classifier. For the
2× 40 DNN trained on FashionMNIST, reducing the number of inputs from 784
to 50 increases the mean minimal adversarial distance by almost 90%, with a
loss in accuracy of <10%.

Table 6. Minimal adversarial distance ε for trained DNNs.

DNN MNIST FashionMNIST

ℵ ε (×10−2) Average Δ ℵ ε (×10−2) Average Δ

2 × 20 50 16.1±7.9 69.9% 50 12.1±7.2 65.4%

100 14.0±6.1 33.6% 100 11.7±5.8 44.3%

784 10.1±4.7 – 784 8.9±3.7 –

2 × 40 50 15.2±7.2 57.2% 50 12.9±7.6 89.1%

100 12.4±4.6 42.6% 100 11.5±5.5 52.7%

784 10.4±5.1 – 784 8.4±3.4 –



236 S. Zhao et al.

4 Conclusion

In the paper, we have presented an MILP-based framework using trained DNNs
to extract information about salient input features. The proposed algorithm is
able to drastically reduce the size of the input by using the input features that are
most important for each category according to the DNN, given a regularization
on the input size and spread of selected features. The numerical results show
that the proposed algorithm is able to efficiently select a small set of features
for which a good prediction accuracy can be obtained. The results also show
that the proposed input feature selection can improve the robustness toward
adversarial attacks.

Acknowledgment. This research is supported by C3.ai Digital Transformation Insti-
tute, and Digital Futures.

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1), 3–39 (2020)

2. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of Relu-based neural networks via dependency analysis. In: Proceedings
of the Conference on AAAI Artificial Intelligent, vol. 34, pp. 3291–3299 (2020)

3. Ceccon, F.: OMLT: optimization & machine learning toolkit. J. Mach. Learn. Res.
23(349), 1–8 (2022)

4. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput.
Electr. Eng. 40(1), 16–28 (2014)

5. De Palma, A., Behl, H.S., Bunel, R., Torr, P.H., Kumar, M.P.: Scaling the convex
barrier with sparse dual algorithms (2021). arXiv:2101.05844

6. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

7. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018)

8. Ghojogh, B., et al.: Feature selection and feature extraction in pattern analysis: a
literature review (2019). arXiv preprint

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). arXiv:1412.6572

10. Grimstad, B., Andersson, H.: Relu networks as surrogate models in mixed-integer
linear programs. Comput. Chem. Eng. 131, 106580 (2019)

11. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://
www.gurobi.com

12. Hassibi, B., Stork, D.: Second order derivatives for network pruning: optimal brain
surgeon. In: Hanson, S., Cowan, J., Giles, C. (eds.) Proceedings of NIPS 1992, vol.
5 (1992)

13. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors (2012).
arXiv preprint

http://arxiv.org/abs/2101.05844
http://arxiv.org/abs/1412.6572
https://www.gurobi.com
https://www.gurobi.com


Model-Based Feature Selection for Neural Networks: A MIP Approach 237

14. Huchette, J., Muñoz, G., Serra, T., Tsay, C.: When deep learning meets polyhedral
theory: A survey (2023). arXiv:2305.00241

15. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local repa-
rameterization trick, vol. 28 (2015)

16. Kronqvist, J., Misener, R., Tsay, C.: Between steps: intermediate relaxations
between big-M and convex hull formulations. In: Stuckey, P.J. (ed.) CPAIOR 2021.
LNCS, vol. 12735, pp. 299–314. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78230-6 19

17. Kronqvist, J., Misener, R., Tsay, C.: P-split formulations: A class of intermediate
formulations between big-M and convex hull for disjunctive constraints (2022).
arXiv:2202.05198

18. Labach, A., Salehinejad, H., Valaee, S.: Survey of dropout methods for deep neural
networks (2019). arXiv:1904.13310

19. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: Touretzky, D. (ed.)
Proceedings of NIPS 1989, vol. 2 (1989)

20. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. 50(6),
1–45 (2017)

21. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 806–814 (2015)

22. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks (2017). arXiv:1706.07351

23. Manng̊ard, M., Kronqvist, J., Böling, J.M.: Structural learning in artificial neural
networks using sparse optimization. Neurocomputing 272, 660–667 (2018)

24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Proceedings of NeurIPS 2019, pp. 8024–8035. Curran Associates, Inc.
(2019)

25. Perakis, G., Tsiourvas, A.: Optimizing objective functions from trained ReLU neu-
ral networks via sampling (2022). arXiv:2205.14189

26. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. Commun. ACM
63(12), 54–63 (2020)

27. Serra, T., Kumar, A., Ramalingam, S.: Lossless compression of deep neural net-
works. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp.
417–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4 27

28. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2017). arXiv:1711.07356

29. Tsay, C., Kronqvist, J., Thebelt, A., Misener, R.: Partition-based formulations
for mixed-integer optimization of trained ReLU neural networks. In: Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Proceedings of
NeurIPS 2021, vol. 34, pp. 3068–3080. Curran Associates, Inc. (2021)

30. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM
Rev. 57(1), 3–57 (2015)

31. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural
networks using DropConnect. In: Proceedings of the 30th ICML, pp. 1058–1066.
PMLR (2013)

32. Wang, K., Lozano, L., Cardonha, C., Bergman, D.: Acceleration techniques for
optimization over trained neural network ensembles (2021). arXiv:2112.07007

33. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R.
(eds.) Proceedings of NeurIPS 2016, vol. 29 (2016)

http://arxiv.org/abs/2305.00241
https://doi.org/10.1007/978-3-030-78230-6_19
https://doi.org/10.1007/978-3-030-78230-6_19
http://arxiv.org/abs/2202.05198
http://arxiv.org/abs/1904.13310
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/2205.14189
https://doi.org/10.1007/978-3-030-58942-4_27
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/2112.07007


238 S. Zhao et al.

34. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms (2017). arXiv:1708.07747

35. Yang, D., Balaprakash, P., Leyffer, S.: Modeling design and control problems
involving neural network surrogates. Comput. Optim. Appl. 1–42 (2022)

36. Yu, X., Serra, T., Ramalingam, S., Zhe, S.: The combinatorial brain surgeon: prun-
ing weights that cancel one another in neural networks. In: Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th
ICML, vol. 162, pp. 25668–25683. PMLR (2022)

37. Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., Saeed, J.: A comprehensive
review of dimensionality reduction techniques for feature selection and feature
extraction. J. Appl. Sci. Technol. Trends. 1(2), 56–70 (2020)

http://arxiv.org/abs/1708.07747


An Error-Based Measure for Concept
Drift Detection and Characterization

Antoine Bugnicourt1,2(B), Riad Mokadem1, Franck Morvan1,
and Nadia Bebeshina2

1 IRIT Laboratory, Université Paul Sabatier - Toulouse III, Toulouse, France
antoine.bugnicourt@irit.fr

2 MeetDeal, Rivesaltes, France
https://meetdeal.fr/

Abstract. Continual learning is an increasingly studied field, aiming at
regulating catastrophic forgetting for online machine learning tasks. In
this article, we propose a prediction error measure for continual learning,
to detect concept drift induced from learned data input before the learn-
ing step. In addition, we check this measure’s ability for characterization
of the drift. For these purposes, we propose an algorithm to compute the
proposed measure on a data stream while also estimating concept drift.
Then, we calculate the correlation coefficients between this estimate and
our measurement, using time series analysis. To validate our proposal,
we base our experiments on simulated streams of metadata collected
from an industrial dataset corresponding to real conversation data. The
results show that the proposed measure constitutes a reliable criterion
for concept drift detection. They also show that a characterization of
the drift relative to components of the stream is possible thanks to the
proposed measure.

Keywords: Online learning · Continual learning · Concept drift ·
Change detection

1 Introduction

In the last years, successive advancements in machine learning allowed its use
in multiple fields. The most common approach is batch learning, with multiple
learning steps over a fixed dataset. Some tasks may require to learn from a con-
tinuous stream of data. Among those, there are applications requiring plasticity,
i.e. the learning model being able to take into account concept drift: changes in
the distribution of data [1,11]. For batch learning, this creates an over-cost on
both storage (the dataset must be updated with every new input) and compu-
tation time (the model must be re-trained regularly on the dataset) [17].

In this context, online learning comes as an alternative to batch learning; the
model learns iteratively on a data stream, without the need to store data. This
new approach allows for change detection and integration in real time. However,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 239–253, 2023.
https://doi.org/10.1007/978-3-031-44505-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_17&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_17


240 A. Bugnicourt et al.

the learning model will tend to favoritize newly learned knowledge, and to forget
past knowledge. In the literature, this phenomenon is named catastrophic for-
getting [20,24]. Catastrophic forgetting infringes on model stability, the model’s
ability to retain knowledge.

To counter catastrophic forgetting, a wide array of works consider a kind of
online learning named continual learning [26]. It aims to improve online learning
models to be more resistant to outliers, and to provide them with a better
stability of acquired knowledge.

As an example, let’s suppose we want to analyze user interactions on a busi-
ness website, to build a question answering (QA) system. This site undergoes
regular changes to catalogue items, their availability, prices, etc. Changes can
also occur in users’ interactions on the website. Every one of these changes must
be integrated into the QA process as quickly as possible, in order to always pro-
duce relevant answers for the users. A continual learning approach trained on
a stream of interactions on the website would allow the model to acquire new
information while staying accurate for regular questions. Let’s then consider that
one key product undergoes a sale, preparing for the release of a new version of
the same product. The sale needs to be taken into account in the QA system, but
we also wish to notice when the sale ends, in order to “forget” its effect on the
system, i.e. to come back to the state of the model prior to the sale integration.

In the literature, few works have considered solutions where a model could
need to come back to a previous state of knowledge. Continual learning as a
field consists of various methods to counter catastrophic forgetting, which can be
classified in two main categories derived from Biesialska et al. [6]: model-based
methods, that use dynamic adaptations over learning parameters [12,15,30]
or the model structure [16,19] to consolidate knowledge and avoid forgetting;
and memory-based methods [2,14,25,27] that use an external memory and a
rehearsal or replay mechanism to have the model remember previously learned
knowledge.

Model-based methods are mostly used in multi-task systems. In those sys-
tems, returning back to a previous state doesn’t make sense, as the goal is to
manage an ever-increasing set of skills. On the other hand, memory-based meth-
ods, used in this work, have a distinct advantage: using the rehearsal mechanism
specific to these methods and the notion of catastrophic forgetting, it is indeed
possible to have the model come back to a previous state.

Considering we induce forgetting through the aforementioned rehearsal, one
remaining issue is determining when to trigger that rehearsal mechanism; we
need to preserve the balance between stability and plasticity. For this reason, we
wish to be able to detect concept drift and to decide on a sequence of actions
based on some characteristic traits of that drift. To do so, a characterization of
the current context (i.e. the set of all concepts and the associated probabilities
of occurrence) available at all times is required. The decision process itself is
two-fold:

1. Detecting concept drift: determining whether the new input integrated to the
model creates a drift.



An Error-Based Measure for Concept Drift Detection and Characterization 241

2. Determining the direction of the trend shift: a model under concept drift
could be either evolving towards a new model (leading to an update of the
sampled replay memory to memorize the older state of knowledge) or devolv-
ing towards an older state (leading to the use of the sampled replay memory
for induced forgetting over the previous registered changes).

In this paper, we propose a new measure of the concept drift, which is used
to determine the significance of the change in the data, and as such, to per-
form concept drift detection. Furthermore, this measure pave the way towards
characterization of the drift. The measure is based on the predictive errors by
the model. To measure this detection process, we use statistical measures (e.g.
distance between labels) that allow to notice a significant correlation between
forecast error and model shift. In order to validate the detection of concept drift,
an algorithm is proposed to compute this correlation.

The next step would be to explore the characterization potential. This would
then allow us to decide which approach to follow: classical continual learning if
the model is evolving or returning back if the model is devolving. We defer this
last step to a future work.

To validate our proposal, we use a proprietary dataset based on metadata
from online chats provided by a corporation. Our experiments show that using
the proposed algorithm, we compute correlation values that allow us to consider
a characterization of concept drift. In summary, the main contribution of this
paper is a correlation-based measure allowing both concept drift detection and
characterization decision.

The paper follows as described: in Sect. 2, we establish a state of the art for
continual learning approaches, specifically on memory-based methods, and for
concept drift detection. In Sect. 3, we propose an approach allowing concept drift
detection and the criteria to consider for concept drift characterization using this
approach. In Sect. 4, we present our experimental results. Finally, we conclude
this paper with a summary of our work and some future considerations.

2 Related Work

The core idea of catastrophic forgetting is a loss of knowledge stability in a
machine learning model due to integrating a degree of plasticity towards new
inputs. This phenomenon has long been an issue of concern [15,20], and a sig-
nificant goal for both incremental and continual learning is to counter it [21].

Continual learning encompasses a broad range of approaches [6], all aiming
to control catastrophic forgetting and to preserve the balance between stability
and plasticity. We have compiled a classification of these approaches.

Model-Based Methods

Various approaches deal with adaptation to concept drift by enacting structural
change of the machine learning model. Those model-based methods can be split
into two main categories:



242 A. Bugnicourt et al.

Regularization methods use weight manipulation and forgetting factors to
influence the learning process and preserve stability. As examples: Kirkpatrick
et al. [15] propose an algorithm called Elastic Weight Consolidation (EWC)
operating on neural networks, singling out essential neurons for memorization
of specific knowledge and slowing the learning on those neurons. Gupta et al.,
on their STAFF tool [12] propose a generally weaker forgetting thanks to a
stabilization coefficient. Finally, Yu and Webb [30] link their forgetting factor’s
value to the analysis of concept drift on the data stream over a period of time.

Architectural methods consist of a set of dynamic adaptation processes
on the neuronal architecture (i.e. addition of layers or parameters) in order to
integrate new behaviors. Examples include the work of Li et al. [16], in which a
model learns to adapt weight values or to create new neurons in parallel with the
learning process; or Masana et al. [19], who store in an external structure various
masks and normalization parameters related to specific tasks. These methods are
particularly suitable for multitask applications, but are otherwise sub-optimal for
repetitive tasks over long periods of time. They also don’t include any flexibility
over the plasticity mechanics: the applied transformations to the model are not
revertible by default.

Memory-Based Methods

Memory-based methods use incremental learning plasticity itself to prevent
catastrophic forgetting. These methods set up a replay or rehearsal of various
informations (learning data) in the model input, mixed with the input stream,
to create stability. There are multiple ways to proceed:

Rehearsal or replay methods rely on maintaining a separate dataset of
examples parallel to the learning process, that is re-integrated to the learn-
ing process on a regular basis. Works to mention include iCarl from Rebuffi et
al. [25]. Their method, used for multi-class classification, relies on task-specific
examples dataset, updated with each new class. Aljundi et al. [2] define a “Maxi-
mal Interference” criterion, applied post-learning over model predictions, in order
to identify data entries most susceptible to suffer from catastrophic forgetting,
and to use them as a replay dataset.

Pseudo-rehearsal methods don’t use an entry dataset, but store general-
izations built from rehearsal data entries. Biesialska et al. mention two examples:
DCR [27] and FearNet [14], using generative adversarial networks (GAN) and
autoencoders respectively, to make this generalization.

For all of these methods, knowledge stability is consolidated by a memory
module distinct from the model. This kind of approach is more suited to the
notion of bringing back a previous context, since rehearsal allows the recreate a
previous state of the model. The idea of reusing past concepts already exists in
other works related to multi-task learning, such as Wang et al.’s SDR architecture
[29]. SDR relies on checking for similarities in new data entries compared to
previously learned tasks, in order to determine if a new entry is an instance of
one of these tasks, or instead illustrates a new task to be integrated to the model.



An Error-Based Measure for Concept Drift Detection and Characterization 243

Some works on concept drift [1,11] define two categories of drift, depending
on the considered source of change: virtual concept drift, a measurable change
on distribution of the values of specific data fields; and real concept drift, a
change in the relation between features and labels. Sometimes a third kind of
drift is considered: label or prior-probability shift, related to a change in the
distribution of the prediction labels.

There are various existing tests to detect concept drift based on model perfor-
mance. A number of them are mentioned in the Bayram et al. review of concept
drift methods [5]:

– A first set of detectors called “Statistical Process Control” detectors, watch
the evolution of the error rate of the learner as an indicator of concept drift.
Drift Detection Method (DDM) [10] tracks the rate of prediction errors over
the data stream, compared to specific thresholds for warning (announcing
a potential drift) and drift itself, following the hypothesis that a rising rate
means a drift is either coming or happening. Early Drift Detection Method
(EDDM) EDDM [4] uses the same principle, but looks at the distance between
consecutive errors rather than their rate, which improves detection in gradual
drift.

– Another set of detectors compare statistical measures over sliding windows
to detect change. Those include ADWIN (short for Adaptive Windows) [7],
that tracks the change in the distribution of a variable in two sliding windows
of varying sizes, dynamically adapting the size to optimize the detection.
Raab et al. propose another detector called KSWIN [23] (KS being short
for Kolmogorov-Smirnov), using the Kolmogorov-Smirnov test [18] over two
sliding windows to check for concept drift.

The base measure we propose in this article has elements from both cate-
gories. It is error-based, as it relies on prediction error for new data inputs—
although we’re not specifically interested in the rate of those errors, but rather on
their amplitude. Furthermore, the drift detection decision is based on aggregates
of those errors in sliding windows.

Our general approach differs from previously mentioned works by the atten-
tion given to the chronology of consecutive concepts, which requires an accurate
characterization of those concepts and even more so, of the concept drift. We
not only want to detect concept drift, but also to be able measure its amplitude
and direction—in the sense of whether the drift is towards a new concept, or a
previously occurring one. This measure must come before the learning step (like
in Wang et al.’s SDR), in order to use it in further work for decision over the
kind of rehearsal to enact.

In summary, we propose a new measure for concept drift detection and char-
acterization in new learning data inputs, based on prediction error, and available
before the learning step.



244 A. Bugnicourt et al.

3 Proposal

Our process involves analyzing data from a single data stream: we first aim to
detect a variation in this stream regarding the relation between a vector their
corresponding labels, and for a second step, we will consider if characterization
of this relation is possible. The variation of the relation between vector and label
is measurable through the variation of the predictions performed by a learning
model over a test dataset of labeled vectors.

In this paper, let’s consider that a continual learning model M is set up over
two distinct data streams: Spredict, made of data vectors X for which we want
to make a forecast; and Slearn, made of labeled vectors (X, y) to be integrated
to the model through learning.

In the example from Sect. 1, the prediction stream Spredict is made on ques-
tions asked by the users while browsing on the website. The learning stream
Slearn contains questions with relevant answers given by an outside source—
for example a human expert. The model then learns on the questions/answers
couples from Spredict so that it may improve answers given for the questions in
Slearn.

Our goal here is to confirm the existence of a correlation between the changes
induced on the model by the learning of data entries from Slearn, and the pre-
diction error measured on those same data entries before learning them. When
this is confirmed, a significant change in the model—i.e. a concept drift—might
be anticipated using the prediction made by the model itself. We describe in the
following segments some tools and a method aiming to measure this correlation
between predictions and model change.

3.1 General Notations

To represent the learning stream over which our proposal operates, we consider
a discrete time period T ⊆ N. The labeled vectors of data (Xt, yt) of this stream
are indexed by time periods t ∈ T . It is then necessary to explicitly define the
essential operations of our continual learning model M :

The operation of learning a labeled vector (X, y) to update a model M into
a new model M ′ has the following notation:

M ′ = learn(M,X, y) (1)

The operation of predicting a label ŷ for a vector X, with a trust value p ∈ [0, 1]
associated to the prediction, has the following notation:

(ŷ, p) = predict(M,X) (2)

To give a formal notation for the prediction error on a measure, we need a
comparison criterion—a distance measure between predicted and actual labels.
The distance between two labels y, y′ is noted as follows:

d = dist(y, y′) = ‖y − y′‖ ∈ R (3)



An Error-Based Measure for Concept Drift Detection and Characterization 245

The meaning of the calculation for a norm ‖y − y′‖ varies depending of the use
case, since it represents a relation between each pair of labels. If those labels are
already represented by numerical values in R, we can simply use |y − y′|. In our
example, the distance between two answers may simply be a binary value (good
or bad answer), with the following:

dist(y, y′) =
{
0 if y = y′

1 otherwise (4)

If more than a pair of categories of answers are considered, the notion of gap
can become more complex, and as such, may justify to use label values from R,
or even vectors with values in R.

The formalism for time series is required to invoke the measures computed
in our algorithm. Time series are sequences of values with a time index. They
are useful to study the interdependency of these values through time. Cross
correlation is a measure of this dependency; it compares two series shifted by
a lag τ [9,22]. The cross correlation between variables A and B on a discrete
period of time T (with values in C) is a function of τ defined as:

(B � A)(τ) =
∑
t∈T

A(t + τ)B(t) (5)

where B(t) is the complex conjugate of B(t): ∀z ∈ C, z = a+ ib =⇒ z = a− ib.
We finally define a specific notation for the cross correlation measured at

τ = 0 (a significant value for our proposal, considering the relation we want to
measure would happen without lag): corr (A,B) = (B � A)(0).

3.2 Algorithm

The proposed algorithm aims to determine the relation between the model pre-
diction over a given data vector, and the evolution of the model induced by the
integrated labeled vector. This Algorithm 1 applied to a model M , operates on
a stream of labeled vectors (Xt, yt)t∈T .

For each time period t of T , we retrieve the corresponding labeled vector
(Xt, yt), and first measure the prediction error over this vector (lines 3 and 4
of the algorithm). This error is defined as the distance between the prediction
2 and the true label. This error is weighted by the trust value given to the
prediction, also obtained through the prediction operation. The error function
for predictions from current model Mt is:

err(X, y, t) = p · dist(y, ŷ) where (ŷ, p) = predict(Mt,X) (6)

This error value is then used in a computation over error values from previ-
ous data entries (in a sliding window). We call Err(S,W ) the linear combi-
nation of the error values in the sliding window S = (et)t∈[0;n], weighted by
W = (wt)t∈[0;n] such that:

Err(S,W ) =
∑

w∈W,e∈S

w · e (7)



246 A. Bugnicourt et al.

The linear combination value is saved in an array D̂. Next step (line 6) is Mt

learning the labeled vector, and following Eq. 1, returning a new model Mt+1 =
learn(Mt,Xt, yt). Both models Mt and Mt+1 are compared to measure the model
shift induced by learning the new entry.

To compare the models, we can use Eq. 6 to make a variation function, defined
for a pair of models M = Mt and M ′ = Mt+k, and for a test dataset 〈X , Y 〉 =
(X ′

i, y
′
i)i∈[1,N ], as:

ΔM ′
M (X , Y ) =

N∑
i=1

(
err(Xi, yi, t + k) − err(Xi, yi, t)

)
(8)

The variation value ΔM ′
M (X , Y ) is stored in an array D.

When the last value of T is reached (end of the stream), cross correlation
values are computed for any value of lag τ ∈ [−N . . . N ]. The remaining lines of
the algorithm (from line 9 to the end) correspond to the correlation checking.
We consider the value corr(D̂,D), i.e. the cross correlation value for lag 0 (cf
Eq. 5) for values in arrays D̂ and D (line 9).

If the value of corr(D̂,D) measured through the algorithm is not 0, values
stored in D̂ can be used—to a certain extent—to predict shift in value of D.
This would account for the measure’s ability to detect change, but would not
immediately solve the characterization issue, which will require further work.

Algorithm 1: Concept drift estimation and computation of correlation
coefficients
Inputs : time period T ⊆ N, classification model M , test dataset 〈X , Y 〉
Data : labeled vectors (Xt, yt)t∈T

Output : correlation coefficient C

1 initialization of D̂[ ] and D[ ]

2 For all t ∈ T do
3 X, y ← Xt, yt
4 S ← S.update

(
err(X, y, t)

)
/* measure of prediction error */

5 D̂[t] ← Err(t, S,W ) /* computation with values from S */
6 M ′ ← learn(M,X, y)
7 D[t] ← ΔM ′

M (X , Y ) /* measure of model shift over (X, y) */
8 M ← M ′

9 C ← corr
(
D̂,D

)
/* cross correlation with lag τ = 0 */

10 If C 
= 0 then
11 return C /* correlation is identified */

/* (possible characterization) */

12 else
13 return ⊥ /* no correlation revealed */



An Error-Based Measure for Concept Drift Detection and Characterization 247

4 Evaluation

4.1 Protocol

To evaluate our proposal, we use a dataset from a proprietary source. The dataset
is made of various metadata collected over a volume of real online conversations
provided by a corporation, each associated through the result of the conversation,
to a positive or negative label. Five categories of metadata are considered for
just over 10,000 conversations, with all or a subset of these categories being used
at once. Online learning classification is implemented using the River library1;
the model used is Hoeffding tree classifiers [8,13], as implemented in the same
library. The classification model is used with default parameters.

Through our experiments, we first want to check if the prediction error mea-
sure can be used for model shift detection. To show this, we apply our Algorithm
1 on a simulated stream of data, for the full set of features available, and mea-
sure the cross correlation around lag 0. Streaming simulation is also performed
through the River library.

In order to qualify the relevancy of our prediction measure errM as a concept
drift detection tool, we apply our Algorithm 1 over the KSWIN test [23] in paral-
lel to the measure, with the same window size for both. KSWIN can only detect
concept drift over a single feature stream at once. To compensate for that fact,
we use an aggregate (specifically a logical disjunction or OR operation) of detec-
tion values from all possible streams: one for each feature, and one for the label.
Cross correlation is also measured between this aggregate and the model shift.

We first perform the experiment on a window of size 100, which is the default
size for KSWIN. We then perform multiple runs with various window sizes to
find an optimal size for cross correlation for our dataset.

We then consider the issue of characterization of the measured model shift.
In order to use an already established detection measure as a characterization
criterion, one way could be to look for a function mapping from the measure
to the actual model shift. To evaluate this possibility, we compute the ratio
between both values of the prediction measure and the model shift and look for
an identifiable trend between the two quantities.

4.2 Results

Concept Drift Detection. During the first experiment, we measured values
for the measure, identified the vectors for which KSWIN was detecting a model
shift, and generated two figures: Fig. 1 shows compared values of concept drift
computed on the model, and of the normalized measure, over time; Fig. 2 shows
cross correlation curves for the measure and KSWIN, both in relation to concept
drift.

1 https://riverml.xyz/0.14.0/.

https://riverml.xyz/0.14.0/


248 A. Bugnicourt et al.

Fig. 1. Computed real concept drift (in red) against detected shift using the error-based
measure, with a window size of 100 (in blue) (Color figure online)

Fig. 2. Cross-correlation with computed model concept drift from the error-based mea-
sure errM (in blue) and the KSWIN aggregate (in orange) (Color figure online)

Even though Fig. 1 presents a very noisy curve for the measure, Fig. 2 reveals
that cross correlation for our method offers a similar curve shape to KSWIN’s.
Furthermore, when looking at the cross correlation values at lag 0 and under
(i.e. when past values of the criteria align with future values of concept drift,
giving a forecast of sorts), our method outperforms KSWIN.



An Error-Based Measure for Concept Drift Detection and Characterization 249

Fig. 3. Cross-correlation values (Y-axis) at lag 0, depending on the window size (X-axis
and indices of points): (a) in low grain on a logarithmic scale; (b) in finer grain, from
1 to 10.

By comparing the measure and KSWIN, we can say that the former seems
efficient as a concept drift detection mechanism, or even as a concept drift pre-
dictor. However, the aggregate of KSWIN detection values we compared the
measure to isn’t a real concept drift detector, but merely an improved virtual
drift detector, and the performance seen here is relative to various experiment
criteria, among which the aggregation method itself.

Setting the Measure Parameters. We started with a low grain setting, in
order to select a range of window sizes optimizing correlation at lag 0, shown in
Fig. 3a. This first setting shows that lower window sizes give better cross correla-
tion values. We then restrict our setting to a finer grain, low sizes range (Fig. 3b).
Again, the lower sizes, specifically between 1 and 4 (2 being an outlier, probably
due to the weight computation method) perform better on cross correlation.

Comparing various window sizes allows us to conclude that a window of
size 1 is the optimal choice for both this data source and this weighting of the
window. This conclusion is not an absolute, and both the data and the weighting
approach influence the optimal outcome.

Characterization. A detection criterion can be used as a characterization of
concept drift criterion if there is a function mapping criterion values to the ampli-
tude of the concept drift. In order to check for that potential characterization,
we measured various ratios between the measure values and computed drift.
The following measures are made with a window of size 1, following the conclu-
sion from Subsect. 4.2. We consider various subsets of features {A,B,C,D} to
generate Figs. 4 (A, B, C), 5a (A, B) and 5b (B, C, D).



250 A. Bugnicourt et al.

Fig. 4. Ratio of error-based measure over concept drift for a subset of features
{A,B,C}

In the resulting figures, we can see that multiple trends appear in various
intervals of the data stream, since in those intervals, the ratio follows linear
trajectories. This can be seen in Figs. 5a (with one such interval visible between
time indices 0 and 3000, and another, sparser one with a steeper slope, between
3000 and 9000) and 5b (two noticeable intervals respectively between 0 and
5000, and between before 5000 and after 7000). Looking back at model shift
values on Fig. 1, we notice that those trends happen over intervals of low model
shift, or between high model shift periods. We also note that those trends don’t
necessarily happen in succession to each other, but can overlap (e.g. between
3000 and 5000 on Fig. 4).

Even though none of these trends can describe a single, constant relation
between the measure and real concept drift, they each take part in a set of
relations between both of them. The aforementioned overlap between trends
suggest that this variety of relations is not only due to model shift, but also
(and most importantly) to specific values taken by some of the features in those
intervals.

Mutiple remarks can be made about characterization. The experiments we
performed here show that the measure highlights a number of trends during the
learning process, seemingly related to the values taken by specific features. This
allows us to hypothesize that a more particular analysis of these feature values,
further developed in the conclusion of this article, would allow an even more
thorough characterization than expected, even for other works.



An Error-Based Measure for Concept Drift Detection and Characterization 251

Fig. 5. Ratio of error-based measure over concept drift for subsets of features: (a)
{A,B} and (b) {B,C,D}

5 Conclusion

In this paper, we proposed a concept drift detection and characterization measure
related to a continual learning model. Our measure uses model prediction to
determine if and to what degree a new data entry creates a concept drift. Our
experiments show that real concept drift detection is possible using the measure,
and that various parameters allow an adaptation to multiple kinds of data or
models.

The experiments also show a set of distinct trends that can be observed in the
relation between the measure and real drift, thus opening new perspectives for
characterization. No simple aggregate of those trends can be used as a general
characterization of concept drift; however, those trends and their overlapping
suggest that this behavior is related directly to distinct trends in the learning
features themselves.

As a future work, explainability approaches, as studied in the Explainable AI
(XAI) field of research [3,28], could be combined to our measure to produce a
more accurate characterization. Furthermore, if we were to store the parameters
related to each trend as representations of the state of the model, this would be
a step towards building a continual learning system sensitive to concept tem-
porality and recurrence. We could also take into account real use conditions of
continual learning in terms of memory resource capacity and computation time.
Finally, although the experiments were already lead on a real dataset, we project
to experiment over a real datastream instead of a simulation.



252 A. Bugnicourt et al.

References

1. Agrahari, S., Singh, A.K.: Concept drift detection in data stream mining: a lit-
erature review. J. King Saud Univ. Comput. Inf. Sci. (2021). https://doi.org/10.
1016/j.jksuci.2021.11.006

2. Aljundi, R., et al.: Online Continual Learning with Maximally Interfered Retrieval.
arXiv:1908.04742 (2019)

3. Arrieta, A.B., et al.: Explainable Artificial Intelligence (XAI): Concepts, Tax-
onomies, Opportunities and Challenges toward Responsible AI (2019)

4. Baena-Garcıa, M., Gavalda, R., Morales-Bueno, R.: Early drift detection method.
In: Fourth International Workshop on Knowledge Discovery from Data Streams,
vol. 6, pp. 77–86 (2006)

5. Bayram, F., Ahmed, B.S., Kassler, A.: From Concept Drift to Model Degradation:
An Overview on Performance-Aware Drift Detectors (2022). https://doi.org/10.
48550/arXiv.2203.11070

6. Biesialska, M., Biesialska, K., Costa-jussà, M.R.: Continual lifelong learning in
natural language processing: a survey. In: Proceedings of the 28th International
Conference on Computational Linguistics, pp. 6523–6541 (2020). https://doi.org/
10.18653/v1/2020.coling-main.574

7. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM),
pp. 443–448. Society for Industrial and Applied Mathematics (2007). https://doi.
org/10.1137/1.9781611972771.42

8. Bifet, A., et al.: MOA: massive online analysis, a framework for stream classification
and clustering. In: Proceedings of the First Workshop on Applications of Pattern
Analysis, pp. 44–50 (2010)

9. Bracewell, R.: Pentagram notation for cross correlation. In: The Fourier Transform
and Its Applications, vol. 46, p. 243. McGraw-Hill, New York (1965)

10. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

11. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014). https://
doi.org/10.1145/2523813

12. Gupta, U., Babu, M., Ayoub, R., Kishinevsky, M., Paterna, F., Ogras, U.Y.:
STAFF: online learning with stabilized adaptive forgetting factor and feature selec-
tion algorithm. In: Proceedings of the 55th Annual Design Automation Conference,
San Francisco, California, pp. 1–6. ACM (2018). https://doi.org/10.1145/3195970.
3196122

13. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, California, pp. 97–106. ACM (2001).
https://doi.org/10.1145/502512.502529

14. Kemker, R., Kanan, C.: FearNet: brain-inspired model for incremental learning.
In: International Conference on Learning Representations (2022)

15. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks.
Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.
1611835114

16. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual struc-
ture learning framework for overcoming catastrophic forgetting. In: International
Conference in Machine Learning, p. 10 (2019)

https://doi.org/10.1016/j.jksuci.2021.11.006
https://doi.org/10.1016/j.jksuci.2021.11.006
http://arxiv.org/abs/1908.04742
https://doi.org/10.48550/arXiv.2203.11070
https://doi.org/10.48550/arXiv.2203.11070
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3195970.3196122
https://doi.org/10.1145/3195970.3196122
https://doi.org/10.1145/502512.502529
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114


An Error-Based Measure for Concept Drift Detection and Characterization 253

17. Lin, J.: The lambda and the kappa. IEEE Internet Comput. 21(5), 60–66 (2017)
18. Lopes, R.H.C.: Kolmogorov-Smirnov test. In: Lovric, M. (ed.) International Ency-

clopedia of Statistical Science, pp. 718–720. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-04898-2_326

19. Masana, M., Tuytelaars, T., van de Weijer, J.: Ternary Feature Masks: Zero-
forgetting for task-incremental learning. arXiv:2001.08714 (2021)

20. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
the sequential learning problem. In: Psychology of Learning and Motivation, vol.
24, pp. 109–165. Elsevier (1989). https://doi.org/10.1016/S0079-7421(08)60536-8

21. Nguyen, C.V., Achille, A., Lam, M., Hassner, T., Mahadevan, V., Soatto,
S.: Toward Understanding Catastrophic Forgetting in Continual Learning.
arXiv:1908.01091 (2019)

22. Papoulis, A.: The fourier integral and its applications. Polytechnic Institute of
Brooklyn, McCraw-Hill Book Company Inc., USA (1962). ISBN 67-048447-3

23. Raab, C., Heusinger, M., Schleif, F.M.: Reactive soft prototype computing for
concept drift streams. Neurocomputing 416, 340–351 (2020). https://doi.org/10.
1016/j.neucom.2019.11.111

24. Ramasesh, V.V., Dyer, E., Raghu, M.: Anatomy of Catastrophic Forgetting: Hid-
den Representations and Task Semantics. arXiv:2007.07400 (2020)

25. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental clas-
sifier and representation learning. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, pp. 5533–5542. IEEE (2017).
https://doi.org/10.1109/CVPR.2017.587

26. Ring, M.B.: Continual Learning in Reinforcement Environments. GMD-Bericht
(1994)

27. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual Learning with Deep Generative
Replay. arXiv:1705.08690 (2017)

28. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward
medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2021).
https://doi.org/10.1109/TNNLS.2020.3027314

29. Wang, S., Choi, Y., Chen, J., El-Khamy, M., Henao, R.: Toward Sustainable Con-
tinual Learning: Detection and Knowledge Repurposing of Similar Tasks (2022)

30. Yu, H., Webb, G.I.: Adaptive online extreme learning machine by regulating forget-
ting factor by concept drift map. Neurocomputing 343, 141–153 (2019). https://
doi.org/10.1016/j.neucom.2018.11.098

https://doi.org/10.1007/978-3-642-04898-2_326
https://doi.org/10.1007/978-3-642-04898-2_326
http://arxiv.org/abs/2001.08714
https://doi.org/10.1016/S0079-7421(08)60536-8
http://arxiv.org/abs/1908.01091
https://doi.org/10.1016/j.neucom.2019.11.111
https://doi.org/10.1016/j.neucom.2019.11.111
http://arxiv.org/abs/2007.07400
https://doi.org/10.1109/CVPR.2017.587
http://arxiv.org/abs/1705.08690
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1016/j.neucom.2018.11.098
https://doi.org/10.1016/j.neucom.2018.11.098


Predict, Tune and Optimize
for Data-Driven Shift Scheduling

with Uncertain Demands

Michael Römer(B) , Felix Hagemann, and Till Frederik Porrmann

Department of Management Science and Business Analytics, Bielefeld University,
Bielefeld, Germany

{michael.roemer,felix.hagemann,till.porrmann}@bielefeld.de

Abstract. When it comes to data-driven optimization under uncer-
tainty, it is well known that a naïve predict-then-optimize pipeline in
which point forecasts are plugged into a deterministic optimization model
typically leads to a poor expected decision quality. In stochastic program-
ming, one aims at obtaining better decisions by explicitly representing
the joint probability distribution in the optimization model, e.g. in form
of a sample approximation. A downside of that approach is that it gives
rise to large-scale model instances that are hard to solve. An alternative
approach that recently attracted considerable interest aims to train pre-
diction models in a way that the expected decision quality obtained with
the (prediction-informed) deterministic model is maximized, this app-
roach is referred to as decision-focused learning or predict and optimize
in the literature. In this paper, we propose to generalize this idea by opti-
mizing not only parameters affecting the prediction but also additional
parameters influencing other (non-stochastic) parts of the optimization
model. Specifically, we propose to simultaneously optimize both types of
parameters with the goal of maximizing expected decision quality and
refer to this approach as predict, tune and optimize. We demonstrate the
usefulness of the approach for a multi-activity shift scheduling problem
under demand uncertainty. Specifically, we show that while decision-
oriented tuning of point forecasts usually yields better results than a
simple predict-then-optimize approach, adding the possibility to modify
additional parameters considerably improves the expected performance
which becomes competitive with a stochastic programming approach.

Keywords: Optimization under uncertainty · Decision-focused
learning · Parameter tuning

1 Introduction

Combinatorial optimization problems (COPs) under uncertainty are notoriously
hard to solve. While it is well-known that naively predicting uncertain prob-
lem parameters and solving a deterministic COP using these predictions (a
so-called predict-then-optimize approach) typically yields solutions with poor
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 254–269, 2023.
https://doi.org/10.1007/978-3-031-44505-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_18&domain=pdf
http://orcid.org/0000-0001-8369-7939
https://doi.org/10.1007/978-3-031-44505-7_18


Predict, Tune and Optimize 255

expected performance, more appropriate approaches such as stochastic program-
ming tend to be very challenging from computational perspective. Recently, an
emerging stream of research referred to as decision-focused learning or predict-
and-optimize, see [8] for a survey, aims at aligning the prediction with the down-
stream optimization problem. This is typically performed by adapting the loss
function of the prediction model in a way that it optimizes the expected perfor-
mance of the downstream decisions instead of focusing on prediction accuracy.

In this paper, we propose to generalize the idea of decision-focused learn-
ing by optimizing not only “prediction parameters” affecting the prediction of
the stochastic parameters of a COP but also other “tuning parameters” affect-
ing other (deterministic) parameters of the optimization model. We propose to
simultaneously optimize both sets of parameters with the goal of maximizing
the expected performance of the resulting decisions and refer to this approach
as predict, tune and optimize.

We demonstrate the usefulness of the approach for a multi-activity shift
scheduling problem under uncertainty in which almost 1000 demand parame-
ters are affected by uncertainty. In a set of experiments, we show that while
decision-oriented tuning of point forecasts usually yields better results than a
simple predict-then-optimize approach, adding the possibility to optimize addi-
tional tuning parameters considerably improves the expected performance which
becomes competitive with a sample-average-approximation-based stochastic pro-
gramming approach, albeit at a much smaller online computational cost.

The remainder of this paper is structured as follows: In the next section,
we describe the problem setting addressed in this paper as well as the key idea
of predict, tune and optimize (PTO). In Sect. 3 we describe the multi-activity
shift scheduling problem under demand uncertainty that we use for evaluating
the PTO approach along with the MILP formulation used in the experiments.
Section 4 presents and discusses the computational results, and Sect. 5 discusses
related work.

2 Predict, Tune and Optimize

In this section, we provide a description of the type of two-stage optimization
problem considered in this paper as well as a description of the PTO and related
approaches that can be used to solve this type of problem.

Deterministic Two-Stage Optimization Problem. We start by considering
a two-stage combinatorial optimization problem P of the form

P = min f(x) + Q(x) s.t. x ∈ X (1)

where x is a vector of (continuous or discrete) first-stage decision variables, f(x)
is an objective function and X forms the feasible set of the variables x. As
an example, if P is a mixed-integer linear programming (MILP) problem, X is



256 M. Römer et al.

characterized by a set of linear inequalities and a set of integrality constraints,
and f(x) is a linear function. The first-stage decisions affect the second-stage
problem Q(x) given by:

Q(x) = min g(x, y) s.t. y ∈ Y(x) (2)

Here, y is a vector set of (continuous or discrete) second-stage decision vari-
ables, g(x, y) is the second-stage objective function and Y is the feasible set of
y; both depend on the first-stage decisions x. Examples for problems that can
be expressed using this two-stage framework are problems in logistics where first
stage may involve location decisions and the second stage deals with distribution
decisions. In this paper, we consider another example: A personnel scheduling
problem in which the start and end time of daily shifts are decided a priori
(e.g. on a monthly basis) and the concrete assignment of work activities and the
timing of breaks is decided in the second stage (e.g. on the day of operation).

If both the first and the second-stage problems are deterministic, that is, if all
parameters affecting the objective functions and feasible sets are known at the
time the optimization problem is solved, P can be solved as a single deterministic
optimization problem, here referred to as the nominal problem PN :

PN = min f(x) + g(x, y) s.t. x ∈ X , y ∈ Y(x) (3)

Two-Stage Optimization Problem Under Uncertainty. In many practical
settings, the first-stage decisions have to be taken way ahead of the second-stage
decisions. As a result, it is unrealistic to assume that all information affecting the
second-stage optimization problem Q is known at the time when the first-stage
decisions have to be taken. As an example, the exact demand to be satisfied
in a personnel scheduling problem may only become available at the day of
operation which means that the second-stage decisions are affected by demand
information not yet available in the first stage. In such a setting, the second-stage
problem Q is affected by uncertainty, and this is the setting we focus on in this
paper. Specifically, we assume that some of the parameters of Q are uncertain
at the time when we have to take the first-stage decisions, and that they become
known before we have to take the second-stage decisions. We write the stochastic
parameters as ξ, and we note that ξ may affect both the feasible set Y and the
objective function g of the second-stage problem. For a realization ξ̂ of ξ, we can
write the second-stage problem as:

Q(x, ξ̂) = min g(x, y, ξ̂) s.t. y ∈ Y(x, ξ̂) (4)

In the full two-stage problem under uncertainty (referred to as PU ) we aim
at finding a solution that minimizes the sum of the first-stage objective and the
expected value of the second-stage problem Q(x, ξ):



Predict, Tune and Optimize 257

PU = min f(x) + EξQ(x, ξ) s.t. x ∈ X (5)

PU forms a two-stage stochastic optimization problem, and the variables y
are also referred to as recourse decision variables, see e.g. [2]. In the context of
this paper, we assume complete recourse, that is, we assume that Q is feasible for
any choice of x ∈ X (and for any realization of ξ). Furthermore, note that this
setting also covers the case of a single-stage optimization problem in which only
the objective function is affected by uncertainty. In that case, the set of second-
stage variables is empty, and the stochastic objective function g only involves
the first-stage variables x.

Predict, Then Optimize (P). A naive approach to solve PU is to replace
the uncertain parameters ξ by their expected values E(ξ) and to solve the cor-
responding deterministic problem PP :

PP = min f(x) + Q(x,E(ξ)) s.t. x ∈ X (6)

This approach is sometimes referred to as predict, then optimize, in partic-
ular if E(ξ) is obtained by a prediction model taking into account contextual
information. The problem with this approach is that while it yields a relatively
easy-to-solve optimization problem, the expected performance of the first-stage
decisions resulting from this problem is typically not very good.

Formally, for a given set of first-stage decisions x′, the expected performance
under uncertainty is f(x′) +Eξ(Q(x′, ξ)). One can approximate Eξ(Q(x′, ξ)) by
a so-called sample average approximation (SAA). Denoting a set of samples from
ξ with S, and the sample realization in sample s with ξ̂s, we can approximate
EξQ(x, ξ) by:

QSAA(x, S) =
1

|S|
∑

s∈S

Q(x, ξ̂s) (7)

Sample Average Approximation. While the SAA can be used for evaluating
a given set of first-stage decisions, it can also be used to form a so-called two-
stage stochastic optimization model that simultaneously optimizes x and the
(sample-dependent) recourse decisions maximizing the (approximate) expected
performance. The resulting optimization problem can be written as follows:

PSAA(S) = min
x

f(x) + QSAA(x, S) s.t. x ∈ X (8)

If the nominal problem PN forms a MILP, then PSAA(S) can either be solved
directly using standard software, or using specialized decomposition approaches



258 M. Römer et al.

such as the so-called (integer) L-shaped method, see e.g. the monograph [2] for
an in-depth overview of stochastic programming models and techniques.

In any case, depending on the complexity of the nominal problem PN and on
the number of samples/scenarios, solving PSAA(S) (or more general stochastic
programming formulations) is typically very challenging and requires much more
effort than solving a deterministic nominal problem PN (as is happening in the
predict-then-optimize approach).

Predict and Optimize (PO). An alternative idea to improve upon a naive
predict-then-optimize approach relies on the observation that in such an app-
roach, the prediction is completely decoupled from the decision. Specifically,
when fitting parametric prediction models to data, one aims at maximizing pre-
dictive accuracy. This estimation does not account for the effect of the predic-
tions on the downstream optimization problem. As described in the introduction,
these shortcomings gave rise to a the stream of research called decision-focused
learning (DFL) or predict and optimize. In DFL, one aims at choosing parame-
ters that yield the best decisions when plugged into the subsequent optimization
model. In this paper, we consider a somewhat simplified setting compared to
most approaches dealing with DFL: While in DFL, one considers predictions
based on features representing contextual information, we assume a stationary
setting for which a set of sample data is available (or can be generated) that
forms an approximation of the true joint distribution of the stochastic parame-
ters ξ.

For our purposes, we formalize such a (simplified) predict-and-optimize app-
roach PO to solve PU as follows. We assume that we have a parametric prediction
model m which, given a vector of parameters θp and a set of samples S, returns
predictions ξ̂ = m(S, θp) for the stochastic model parameters ξ. These predic-
tions can then be used to solve the following variant of the nominal problem PN

in which all uncertain parameters are replaced by their predictions:

PPO(θp, S) = argmin
x

f(x) + Q(x,m(θp, S)) s.t. x ∈ X (9)

Now, in the spirit of decision-focused learning, we aim at determining the
prediction parameters θp that, when being fed into the problem PPO yield the
first-stage decisions with best expected performance with respect to the opti-
mization problem PU . The resulting tuning problem (which can be solved offline)
can be stated as follows:

argmin
θp

QSAA
(
PPO(θp, S), Seval)

)
(10)

Note that in (10), we account for the fact that the set of samples S used for the
prediction may be different from the set Seval used in the SAA-based evaluation
using QSAA.



Predict, Tune and Optimize 259

Predict, Tune and Optimize (PTO). One of the arguments for the often-
observed superior performance of a predict-and-optimize approach over a naive
predict-then-optimize approach is that a decision-focused prediction manages
to provide accurate predictions in those parts of the distribution ξ where it
matters for the decision-making. Another argument, however, is that different
predictions may modify the optimization model in a way that the decisions
obtained with the nominal model are “pushed” into a direction that result in a
better expected performance. If we consider the latter argument, it is a natural
idea to also modify other (deterministic) model parameters in order to achieve
similar effects. Actually, this observation is a main motivation for introducing a
set of tuning parameters θt that are used to modify the nominal deterministic
optimization problem in a way that the resulting first-stage solution yields a
better expected performance under uncertainty. Please note that in general, the
tuning parameters θt are not identical to the parameters of the optimization
model, indeed, ideally, a tuning parameter affects multiple model parameters
(e.g. multiple objective function coefficients, or multiple right hand side values)
at once. In general, as can be seen below, the tuning parameters may affect every
part of the nominal model:

PPTO(θp, θt, S) = argmin
x

f(x, θt) + Q(x, θp, θt, S) s.t. x ∈ X (θt) (11)

Analogously to the PO case, the tuning problem for the PTO approach can
be stated as follows:

argmin
θp,θt

QSAA
(
PPTO(θp, θt, S), Seval)

)
(12)

Training/Parameter Tuning. The approaches PO and PTO involve tuning
a set of parameters affecting a nominal (deterministic) model to be solved for
obtaining the first-stage decisions. We propose to carry out this tuning using
a standard black box optimization solver that does not make any structural
assumptions regarding the prediction model or with respect to the response of
the optimization model to a set of parameter values. A straightforward approach
to choose the initial values for the prediction parameters is to use the expected
values of the uncertain parameters, the tuning parameters can be chosen in a
way that the parameters of the nominal model are not adjusted.

During the tuning, the black box optimizer proposes new parameter values
based on the feedback (response) of previous iterations. In each iteration (trial),
two steps are performed: First, given the parameters θp (in case of PO) or θp, θt

(in case of PTO), the parameterized nominal model PPO(θp) or PPTO(θp, θt) is
solved to obtain a set of first-stage decisions x′. In the second step, these decisions
are used in an out-of-sample evaluation by solving QSAA(x′, S) for a set S of
samples of the uncertain parameters ξ to approximate the expected performance
f(x′)+QSAA(x′, S). Observe that in this evaluation, the original (non-adjusted)



260 M. Römer et al.

cost parameters are used. The expected performance is then provided as feedback
to the black box optimizer. Observe that, for a fixed x′, QSAA(x′, S) is separable
by sample (scenario) s ∈ S, and typically, it is faster to solve Q(x′, ξ̂s) for each
sample s and compute the mean afterwards than directly solving QSAA(x′, S).
After a fixed number of iterations, the tuning process is stopped and the set of
best-performing parameters is returned.

Speeding Up the Training. In case of combinatorial optimization problems,
it can often be observed that small parameter changes do not change the optimal
solution. This effect is amplified in our case where we are not interested in the
full solution of each parameterized optimization model but only in the values
of the first-stage decision variables x. During training, we exploit the behavior
by storing all first-stage solutions and their performance values in a hash table,
allowing to skip the evaluation of previously seen solutions. We can further
speed up the solution of the parameterized nominal problems by passing all
existing first-stage solutions to the solver as (partial) warm starts. In particular
when used with a MILP solver, these warm start solutions often fall within the
optimality tolerance of the solver, which means that the optimization ends in
the root node of the branch-and-bound search of the MILP solver.

Offline Tuning and Online Solution Time. While the parameter tuning
described above can be time-consuming, it can be carried out offline, that is,
before the actual decisions have to be taken. Once a good set of parameters
was found, these parameters can be used whenever an (online) problem has to
be solved. In fact, one of the key motivations for our approach is to shift some
effort to an offline phase, and get high-quality solutions quickly in the online
phase when the actual first-stage decisions have to be taken.

3 Multi-activity Shift Scheduling Under Uncertainty

To illustrate the predict, tune and optimize approach and to compare it to a
sample average approximation approach, we use a Multi-Activity Shift Schedul-
ing Problem (MASSP) with demand uncertainty. Our study is based on the
instances for the deterministic MASSP introduced in [5], and we augment these
instances by introducing demand uncertainty.

The MASSP Considered Here. The MASSP variant introduced in [5] con-
sists in designing a set of work shifts covering demands da,t given per 15-min-
period t ∈ T (T is full day with 96 periods) and per activity a ∈ A; in the largest
instances, the set of activities A contains 10 activities. The number n of (anony-
mous) employees (and thus shifts to be scheduled) is given, and it is assumed
that all employees can perform each activity and are subject to the same set
of shift legality rules (that is, they have the same working contract). There are
two types of feasible shifts: Short shifts consist of two blocks of consecutive work



Predict, Tune and Optimize 261

periods (work blocks) separated by a one-period break; the minimal (maximal)
number of work periods in a short shift is 12 (23) periods. Long shifts consist of
four work blocks separated by two one-period breaks and one 4-period breaks;
the minimal (maximal) number of work periods in a long shift is 24 (32) periods.
Irrespective of the type of work shift, each work block needs to comprise at least
4 periods (1 h) and within such a work block, no activity changes are permitted.
The objective of the MASSP is to minimize the sum of the costs for the total
work time and the costs incurred by under- and overcovering demand.

The deterministic version of the MASSP has been considered in various
papers and has for example been tackled using grammar-based MIP formula-
tions [3], implicit MIP formulations [4] and matheuristics [7]. In this paper, we
employ the MILP formulation proposed in [11] that will be sketched next.

Deterministic MILP Formulation. A key idea of the formulation proposed
in [11] is to encode all rules governing shift feasibility in so-called block-based
state-expanded networks in which edges correspond to assignments of work
blocks and break blocks and nodes are associated with state attributes con-
taining rule-related information such as the number of periods worked so far or
the number and types of breaks taken so far in a shift. In addition to those state
nodes, the state-expanded network G = (N,E) also contains a source and a sink
node as well as a circulation edge from the sink to the source for “counting” the
number of shifts to be created. By construction, every source-sink path in the
network forms a feasible shift. As an example, a short shift comprises 5 edges:
One edge from the source to a node representing the start of a shift followed
by a work block edge, a break edge, another work block edge and then an edge
pointing to the sink node.

In the mathematical model, the state-expanded network is embedded as a
network flow component. In particular, each edge e ∈ E is associated with an
(integer) flow variable xe, allowing for a flow comprising multiple units (anony-
mous employees) through a single network. Observe that in the model, the work
block edges are “activity”-agnostic, that is, they only represent a possible work
block b ∈ B where B is the set of all possible (and feasible) work blocks in
a given instance. The assignment of concrete activities for a given work block
is delegated to the integer variables zb,a representing the number of employees
whose shifts comprise work block b that are assigned to perform activity a in that
block b. Finally, the variables yo

a,t and yu
a,t represent over- and undercovering the

demand for activity a in period t. Using those variables, the full mathematical
model reads as follows:

min
∑

e∈E

cexe +
∑

a∈A

∑

t∈T

(
coyo

a,t + cuyu
a,t

)
(13)



262 M. Römer et al.

∑

e∈vin

xe =
∑

e∈vout

xe ∀v ∈ N (14)

xecirc = n (15)
∑

e∈Eblock
b

xe =
∑

a∈Ab

zb,a ∀b ∈ B (16)

∑

b∈Bcov
a,t

zb,a + yu
a,t = da,t + yo

a,t ∀a ∈ A, t ∈ T (17)

xe ∈ Z
+
0 ∀e ∈ E (18)

zb,a ∈ Z
+
0 ∀a ∈ A, b ∈ Ba (19)

yo
a,t ≥ 0, yu

a,t ≥ 0 ∀a ∈ A, p ∈ P (20)

The objective function minimizes the sum of the costs incurred by work block
assignments (ce is the cost coefficient of arc e) and the costs associated with over-
and undercovering (the respective cost coefficients are co and cu). Constraints
(14) are the flow balance constraints, and constraint (15) fixes the total flow in
the network to the number of employees available. The constraints (16) links the
activity-agnostic blocks b resulting from the flow in the network on edges Eblock

b

representing these blocks to the assignment variables zb,a, and the constraints
(17) compute the amount of under- and overcovering for each activity and each
period. The remaining constraints determine the domains of the decision vari-
ables. For a more detailed exposition of this model, we refer to [11]. Observe
that in the context of the formalization introduced in the previous section, the
model presented here forms a formulation for the nominal problem PN .

Two-Stage Problem with Demand Uncertainty. In this paper, we consider
a stochastic variant of the MASSP problem described above. Specifically, we
assume that the demand parameters da,t are subject to uncertainty, that is
ξ = (d)a∈A,t∈T . Furthermore, we assume that the first-stage decisions consist
in determining the start and end times for the shifts. We assume that demand
information becomes available before we have to decide about the detailed work
and break assignments within each shift (which form the decisions in the second-
stage problem Q(x)). The described extension gives rise to a two-stage problem
under uncertainty of the form PU as described in the previous section. With
regard to the mathematical model for the MASSP presented above, this means
that all flow variables associated with edges starting and ending at the source and
the sink node constitute first-stage decision variables. And all other flow variables
as well as the y- and z-variables are second-stage variables. Correspondingly, all
constraints only involving first-stage variables (in this case, the flow balance
constraints associated with the source and with the sink node) are first-stage
constraints, while all other constraints are second-stage constraints (and thus
part of the problem Q). If we model this problem as a two-stage-stochastic
program (e.g. using an SAA approach to form a problem of type PSAA), all
second-stage variables and constraints occur once per sample (scenario).



Predict, Tune and Optimize 263

This paper is not the first one in which the MASSP instances were extended
to include demand uncertainty: In [10], the authors use these instance in a so-
called tour scheduling problem under uncertainty. In particular, we use a similar
approach as [10] to generate randomized demand samples based on the demand
data of the original MASSP instances from [5].

Prediction and Tuning Parameters. Given a set of random samples from
the joint distribution of the uncertain demands, the prediction task consist in
determining point estimates d̂a,t to be used in the parameterized nominal model
PPO. In a predict-then-optimize setting, one would simply use expected values
of the respective parameters, but in a predict-and-optimize setting, we would like
to be able to control the prediction in a way that we achieve a good expected
performance of the first-stage decisions obtained by solving model PPO. We thus
decided to use quantiles of the sample values of each uncertain parameter da,t.
More precisely, we introduce a single prediction parameter θp. Then, for a given
value 0 ≤ θp ≤ 1, we consider each demand parameter da,t separately, and we
use the empirical θp-quantile based on the sample values ds

a,t, s ∈ S as the point
prediction to be used in the model PPO for each uncertain demand parameter.

In addition, we introduce three tuning parameters:

θt
1 aims at penalizing shifts that start late. For each edge e representing the

first work block of a shift, the cost coefficient ce is multiplied by a factor of
1+ θt

1t
rel, where trel is the relative start time of work block (that is, the start

time normalized in an interval between 0 and 1).
θt
2 aims at penalizing shifts with very high workload. If an edge e represents a

work block that ends with a workload which is greater than the average work-
load of an employee given the demand data considered in the parameterized
nominal instance, the a factor of 1 + θt

2w
rel, where wrel is the normalized

difference between the periods worked after the work block and the average
per-employee workload.

θt
3 is used as a factor the over-covering penalty costs co, that is, co in the original

model is replaced by θt
3c

o.

As can be seen from the description, the tuning parameters θt affect certain
objective function coefficients, namely the coefficients of the edge flow variables
and the coefficients representing the penalty for overcovering demand. To clarify
this, we can write the parameterized objective function as follows:

min
∑

e∈E

ce(θt)Xe +
∑

a∈A

∑

p∈P

(
co(θt)Y o

a,p + cuY u
a,p

)
(21)

Note that the tuning parameters were mainly chosen based on intuition
gained from examining different solutions and their performance under uncer-
tainty. Probably, better parameters can be found, but investigating these is
beyond the scope of this paper. In general, it can be assumed that domain
knowledge, experience and intuition is helpful for determining a small but useful
set of tuning parameters.



264 M. Römer et al.

4 Computational Experiments

The evaluation was performed with a subset of the MASSP instances from [5].
The original instance set contains 10 groups of 10 instances each. Each group is
characterized by its number of activities (1 to 10 activities). From these instances,
we picked the the instance groups with an even number of activities, and for each
group, we took the first five instances, yielding 25 instances in total. Note that
within each group, the instances vary considerably with respect to the number
of available employees and with respect to the workload per employee.

In our experiments, we compare the following approaches:

P a naive predict-then-optimize approach using the expected values as predic-
tion for the uncertain parameters

PO predict and optimize. For this variant, we consider two parameter tuning
variants: instance-specific tuning where parameters are tuned for a specific
instance and global tuning where parameters are tuned to exhibit the best
average performance on all considered instances

PTO predict, tune and optimize. Again, we consider both instance-specific and
global parameter tuning

SAA a classical two-stage stochastic program in which the scenarios correspond
to equally weighted random samples

Observe that only the approaches PO and PT involve an (offline) training
phase in which parameters are tuned; the other approaches (the naive P app-
roach as well as the more sophisticated SAA approach) involve no training but
rely on directly solving a model using online available information. Observe, how-
ever, that, as we will see later, the SAA approach requires substantially more
computational effort during the online phase than the P and PO approaches.

All experiments were implemented in Python, and all MILP models solved
with Gurobi 9.5.1 with standard parameters, except that we set the mipgap toler-
ance to 0.005. The training/parameter tuning for the PO and PTO approaches
was carried out with the hyperparameter tuning framework Optuna [1]. The
computer used for the experiments was a standard laptop with an Intel Core i7
10750H processor clocked at 2.66GHz with 6 cores and 32 GB RAM.

Training/Parameter Tuning. The approaches P and PO require tuning the
parameters θp and (in case of PTO) θt. The start values of the parameters
to tune are the 50 %-quantiles for the demand parameters and the “nominal”
values, that is, the original non-adjusted values in case of the tuning parame-
ters. As briefly mentioned above, we perform two different types of training for
both approaches: An instance-specific training in which we determine a specific
parameter vector for each of the 25 instances, and a global training in which
we tune a single parameter vector that is optimized for a good average perfor-
mance on all instances. Irrespective of the type of training, we use 1000 samples
per instance for approximating the θp quantile values of the uncertain demands
per activity and period, and 100 samples for the sample-average approximation



Predict, Tune and Optimize 265

QSAA used to evaluate the training performance of a given parameter vector.
Both sets of samples are used in each trial when dealing with a certain instance,
but they are different from the samples that are used later for the out-of-sample
evaluation when comparing the different approaches.

For the training, we performed 100 tuning iterations per instance and per
approach (PO and PTO). Some statistics regarding the (instance-specific) train-
ing times for both approaches are reported in Table 1. Specifically, for both
approaches, it shows the training time when using a “plain” training approach
and compares them to the reduced training times that result from applying the
speedup techniques explained in Sect. 2. For the PO (PTO) approach, the train-
ing time was reduced by more than 50% (40%) on average. The reason for the
reduction is that for the PO (PTO) training, in on average 70% (56%) of all trials,
the parameter settings yielded first stage solutions that had already been found
before – this means that the solution of the parameterized model PPTO was
faster to solve since the warm-starting solutions were most likely already within
the desired optimality range, and that no performance evaluation using QSAA

was needed. Also, it can be observed that even for the most complex instances,
using the speedup techniques, the training time for the PTO approach never
exceeded 3.5 h.

Table 1. Average training times (in s) with and without the speedup techniques
explained in Sect. 2 (instance-specific tuning)

inst. group PO PTO
(# act) time(plain) skip(%) time(speedup) time(plain) skip(%) time(speedup)

2 3403 83 977 2782 75 1003
4 6936 77 2526 5449 64 2575
6 12072 68 5627 8521 52 4955
8 20607 58 11651 11426 41 7745
10 33681 65 16282 19159 48 11764

total avg 15340 70 7413 9467 56 5608

Observe that Table 1 only reports the times required for the instance-specific
training. We do not report the times of the generic training here because the
average training time spent per instance is almost identical to the instance-
specific training, and thus, the total training time is very similar to the total
time spent for the instance-specific training.

Testing/Out-of-Sample Evaluation. To evaluate the performance of the
PTO approach and to compare it to alternative approaches for making first-
stage decisions, we use a so-called out-of-sample evaluation. We draw two new
sets of samples (which are different to those used for training) for each of the 25



266 M. Römer et al.

instances: One sample set comprising 1000 samples is used to compute the pre-
diction parameter θp, and the other set comprising 200 samples is used for com-
puting the approximate performance of the first-stage decisions obtained with
each approach. Table 2 reports the out-of-sample performance of the approaches
and their variants explained above. Specifically, the results are expressed in rela-
tive expected cost (in %) compared to the naive predict-then-optimize approach
P. Each cell represents the average of these percentages across the five instances
in each group, and the last row displays the total average across all considered
instances. It turns out that all evaluated approaches yield significantly better
costs than the approach P . Overall, the PTO approach performs significantly
better than the PO approach. Interestingly, even if using a single “globally tuned”
parameter vector for all instances, PTO consistently performs better than the
PO approach with parameters tuned specifically for each instance. When com-
paring the PTO approach to the SAA approach, it turns out that on average, the
instance-specific PTO approach performs better than the SAA approach with
3 samples (scenarios), while the SAA with 5 scenarios performs slightly better
than the PTO approach.

Table 2. Average expected cost in % of expected cost from predict-then-optimize
approach P (out-of-sample evaluation)

inst. group P PO PTO SAA
(# act) mean specific global specific global |S| = 3 |S| = 5

2 100.0 91.8 94.2 90.5 94.1 94.3 92.0
4 100.0 92.1 92.2 91.3 91.7 90.4 89.8
6 100.0 91.2 91.8 88.4 90.0 88.4 87.6
8 100.0 92.3 93.0 89.0 89.8 90.6 88.2
10 100.0 95.3 95.1 92.4 93.7 93.2 91.2

total avg 100.0 92.5 93.3 90.3 91.9 91.4 89.7

Let us now consider the solution time needed for to solve the models for
determining first-stage decisions for each of the approaches. Table 3 reports the
average solution times needed for each instance group (5 instances per group)
and for all 25 instances. As can be expected, it turns out that the approaches
relying on solving a parameterized deterministic model can be solved faster than
the SAA-approaches in which the model size is in the order of the number of
samples times of the size of the deterministic model. As an example, while for
the 10-activity instances, the deterministic model exhibits about 80,000 (integer)
decision variables, the SAA model with a sample size |S| = 5 has almost 390,000
decision variables. This is reflected in the solution times of the approaches. As an
example, while the average solution time for the models from the PTO approach
is under one minute, the SAA model with |S| = 5 takes almost 20min to solve
on average. Even the SAA model with |S| = 3 requires an order of magnitude



Predict, Tune and Optimize 267

more time on average to solve than the parameterized deterministic models in
the PTO approach. Interestingly, while the models to be solved in the P, PO
and PTO approaches have exactly the same size, the PTO models are solved
significantly faster on average than the models from the other two approaches.
We suspect that the parameterization of many objective function coefficients in
PTO has a positive effect on the solution time since it basically forms a sort of
objective function perturbation.

Table 3. Average solution time in seconds per instance to obtain first-stage decisions

inst. group P PO PTO SAA
(# act) mean specific global specific global |S| = 3 |S| = 5

2 15 25 24 23 27 144 461
4 50 67 80 67 66 247 753
6 65 76 85 50 48 322 1287
8 90 115 121 61 43 426 1650
10 136 174 175 73 92 524 1429

total avg 71 91 97 55 55 333 1116

5 Related Work

As mentioned in the introduction, our work combines ideas from the emerging
field of decision-focused learning with tuning deterministic model parameters
for decision-making under uncertainty. Compared to decision-focused learning
(see [8] for a recent survey), where the training of a prediction model is aligned
with the downstream optimization problem, we consider a simplified setting
since we do not use contextual feature information for prediction, but assume
the availability of a sample of (or a sampling mechanism for) the uncertain
problem parameters. Note, however, that our approach can be combined with a
probabilistic prediction model that can provide a way to sample from a distri-
bution that is conditional on contextual information. Also note that while most
approaches for decision-focused learning are restricted to single-stage problems
and to uncertain parameters in the objective function, our approach is capable
of handling two-stage problems with recourse decisions and uncertainty in the
constraints.

Modifying parameters of deterministic optimization models for better perfor-
mance under uncertainty is not a new idea. In fact, it is often used in practice,
e.g. by adding artificial slack in scheduling problems to increase robustness of
schedules against small disruptions or delays. In multi-stage stochastic optimiza-
tion settings, the idea of tuning parameters of deterministic optimization models
that are used in a type of lookahead policy has been recently considered in differ-
ent works. In [9], this idea is termed parametric cost function approximation, and



268 M. Römer et al.

in [12], tuning so-called “virtual parameters” affecting a deterministic optimiza-
tion model is part of the generic UNIFY framework for multi-stage optimization
under uncertainty. Moreover, following [6], such a parameter tuning can be an
offline component of an integrated offline/online approach to solving multi-stage
optimization problems under uncertainty. Note, however, that we are not aware
of any approach applying this idea to an inherently two-stage stochastic opti-
mization problem.

6 Conclusions

In this paper, we propose the approach predict, tune and optimize for solving
two-stage optimization problems under uncertainty. The approach combines the
idea of making decision-focused predictions affecting stochastic model parame-
ters with tuning non-stochastic model parameters. We illustrate the approach
using a multi-activity shift scheduling problem with demand uncertainty, show-
ing that the new approach performs better than a pure (simplified) predict and
optimize approach. In future work, we aim at extending our work to settings in
which the prediction part involves contextual data, that is, in a setting that can
be framed as contextual stochastic optimization.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference, KDD 2019, pp. 2623–2631. Association
for Computing Machinery, New York (2019)

2. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer,
Berline (2011)

3. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming
models for multiactivity shift scheduling. Manag. Sci. 57(1), 151–163 (2010)

4. Dahmen, S., Rekik, M., Soumis, F.: An implicit model for multi-activity shift
scheduling problems. J. Sched. 21(3), 285–304 (2018)

5. Demassey, S., Pesant, G., Rousseau, L.-M.: Constraint programming based column
generation for employee timetabling. In: Barták, R., Milano, M. (eds.) CPAIOR
2005. LNCS, vol. 3524, pp. 140–154. Springer, Heidelberg (2005). https://doi.org/
10.1007/11493853_12

6. Filippo, A.D., Lombardi, M., Milano, M.: The blind men and the elephant: inte-
grated offline/online optimization under uncertainty. In: Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, vol. 5, pp. 4840–4846 (2020)

7. Hernández-Leandro, N.A., Boyer, V., Salazar-Aguilar, M.A., Rousseau, L.M.: A
matheuristic based on Lagrangian relaxation for the multi-activity shift scheduling
problem. Eur. J. Oper. Res. 272(3), 859–867 (2019)

8. Kotary, J., Fioretto, F., Van Hentenryck, P., Wilder, B.: End-to-End Constrained
Optimization Learning: A Survey (2021)

9. Powell, W.B., Ghadimi, S.: The Parametric Cost Function Approximation: a new
approach for multistage stochastic programming (2022)

https://doi.org/10.1007/11493853_12
https://doi.org/10.1007/11493853_12


Predict, Tune and Optimize 269

10. Restrepo, M.I., Gendron, B., Rousseau, L.M.: A two-stage stochastic programming
approach for multi-activity tour scheduling. Eur. J. Oper. Res. 262(2), 620–635
(2017)

11. Roemer, M.: Block-Based State-Expanded Network Models for Multi-Activity Shift
Scheduling (2022)

12. Silvestri, M., De Filippo, A., Lombardi, M., Milano, M.: UNIFY: A Unified Pol-
icy Designing Framework for Solving Constrained Optimization Problems with
Machine Learning (2022)



On Learning When to Decompose Graphical
Models

Aleksandra Petrova(B) and Javier Larrosa

UPC Barcelona Tech, Barcelona, Spain
{apetrova,larrosa}@cs.upc.edu

Abstract. Decomposition is a well-known algorithmic technique for Graphi-
cal Models. It is commonly believed that such a technique is cost-effective for
instances with low width. In this paper, we show on a large data set of real-life
inspired instances that this is not the case. To better understand this result, we
narrow our study and consider k-tree instances where the width is well controlled
and get similar results. Finally, we show that by adding a few simple features
and using simple Machine Learning models we can predict the convenience to
decompose with an accuracy of more than 85%, which produces time reductions
in standard benchmarks of nearly 90%.

Keywords: Machine Learning · Graphical Models · Tree Decomposition ·
Discrete Optimization

1 Introduction

Graphical Models [15] is an umbrella term that covers a broad number of modeling lan-
guages for combinatorial problems such as Bayesian Networks,Markov Networks [12],
(Weighted) CSPs, etc., that have attracted intense research for roughly four decades
[10,15]. What they all have in common is that problems are modeled as a set of vari-
ables and a set of functions, the scope of which is a small subset of the variables. There-
fore, the problem is given in a factorized form, as a set of local pieces of information1

Most state-of-the-art algorithms are based on search. The simplest search space is
the so-called OR tree. Each path from the root to a leaf corresponds to a complete
assignment of the variables where each step of the path is the assignment of one more
variable. In order to make the search efficient many sophisticated techniques have been
developed over the years. For instance, algorithms for CSPs andWeighted CSPs enforce
local consistencies at each node. Enforcing a local consistency propagates the effect
of the node’s associated partial assignment and simplifies the node’s associated sub-
problem [33].

1 A line of work under the name of soft global constraints extends this definition by allowing
large scope cost functions as long as the functions are tractable.

Supported by grant PID2021-122830OB-C43, funded by MCIN/AEI/10.13039/501100011033
and by “ERDF: A way of making Europe”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 270–285, 2023.
https://doi.org/10.1007/978-3-031-44505-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_19&domain=pdf
http://orcid.org/0000-0001-7485-5309
http://orcid.org/0000-0002-8322-0505
https://doi.org/10.1007/978-3-031-44505-7_19


On Learning When to Decompose Graphical Models 271

The structure of a graphical model is captured by its interaction graph where ver-
tices correspond to variables and edges correspond to explicit interactions between them
(from the functions). One of the many uses of the interaction graph is to identify condi-
tional independencies, which means that during the search, algorithms can decompose
the current sub-problem into independent components that can be solved separately.
The incorporation of this idea corresponds to transforming the OR tree into a more
compact search space called AND/OR tree. If each time a sub-problem is solved its
solution is cached in order to avoid redundant solving, then the search space becomes
the AND/OR graph [16]. The size of the OR tree is exponential on the number of vari-
ables, while the size of the AND/OR graph is exponential on a structural parameter
called width, always smaller than the number of variables.

Since the AND/OR graph is always smaller than the OR tree one could assume
that decomposing is always a good idea. However, decomposition-based algorithms
(i.e. those traversing AND/OR search spaces) have some disadvantages. For instance,
they require more sophisticated data structures, which cause a non-negligible overhead.
Over more, they limit, make more complicated, or less effective the use of some tech-
niques (e.g. dynamic variable ordering, pruning, ...). Because of that, for some problem
instances, it is more convenient to decompose and for others, it is better not to decom-
pose. This is the problem that we address in this paper: given a problem instance and a
search strategy, predict whether we should use this search strategy on OR or AND/OR
spaces.

Considering the size of the search spaces, the answer seems straightforward: one
should use a decomposition-based algorithm for problems whose width is small and a
non-decomposition-based algorithm when the width is large. The only thing that would
remain is to investigate where the transition occurs, and what happens in the where-
abouts. Surprisingly enough, there is a huge bibliography about decomposition-based
algorithms but, to the best of our knowledge, nobody has systematically analyzed how
well the width predicts the choice of the best algorithm.

The first contribution of the paper is an unexpected observation that contradicts
conventional wisdom. On a very large data set of real-life inspired WCSPs and using
depth-first search, low width is completely uncorrelated with the instances for which
decomposition is best. To better understand such findings, we repeat the experiment
with k-trees which are synthesized instances where we can control the width while
other features are kept fixed or made random. We see that, again, the width does not tell
when to decompose. We then approach the problem as a Machine Learning problem
and augment the set of features. A simple SVM model provides reasonable results with
an accuracy between 80% and 90% on different scenarios.

For the sake of simplicity and lack of space, in this paper we restrict ourselves
to WCSPs (i.e. minimizing an additive objective function made of local tabular cost
functions) solved with the toulbar2 solver. WCSPs have many practical applications
in many different domains. Because of that, there are many benchmarks for testing
purposes and several available solvers. Toulbar2 is an award winning solver that offers
three different algorithms (DFS, RDS, HBFS) with their decomposition-based version.
In the three cases decompositions are implemented following BTD [26].



272 A. Petrova and J. Larrosa

2 Preliminaries

2.1 Graphical Models

A Graphical Model is a tuple P = (X ,D,F) where X = {x1, . . . ,xn} is the set of vari-
ables, D = {d1, . . . ,dn} is the (finite) set of domains (di is the domain of xi), F is a set
of functions. Each function fS ∈ F has associated a subset of variables S ⊆ X , called
scope, and the function assigns a value to each possible assignment of these variables.

A Graphical Model implicitly specifies a global function F(X) =⊕ fS∈F fS(S)where
⊕ is a well-defined operator for the corresponding values. Depending on the domain
there may be different queries of interest associated with the objective function F(X).
In general, answering a query corresponds to computing ⊗XF(X) =⊕ fi∈F fS(S) where,
again, ⊗ is a well-defined operator for the outcomes of the global function.

In this paper, we consider the arguably most common and best-studied case where
functions return natural numbers, ⊕ = ∑ and ⊗ = min. In probabilistic problems (i.e.
the objective function has a probabilistic interpretation) this task is calledmost probable
explanation. In non-probabilistic problems it is usually referred to as Weighted CSP.

Fig. 1. Interaction graph of a graphical model with 7 variables (one per node) and arity-2 cost
functions (one per edge) (left) and one of its possible tree-decompositions (right).

Fig. 2. Minimal AND/OR search graph for the problem in Fig. 1. All variables have domain size
2, except X having domain size 3. Circle and square nodes correspond to OR and AND nodes,
respectively. Children of AND nodes represent sub-problem decompositions.



On Learning When to Decompose Graphical Models 273

The term Graphical Model comes from the existence of an underlying graph that
captures important structural properties. Given a Graphical Model P = (X ,D,F), its
Interaction graph GP =(V,E) is an undirected graph with verticesV and edges E. There
is one vertex i∈V associated with each variable xi ∈ X , and there is an edge (i, j)∈ E if
and only if there some cost function fS ∈ F with {i, j} ⊆ S. Thus, the interaction graph
tells pairs of variables that are linked (or connected) via cost functions.

Figure 1 (left) shows the interaction graph of a graphical model that has 7 variables
(one associated with each graph vertex). The graph having edge (X ,Y ) indicates that
there is one cost function having variables X and Y in their scope.

A tree-decomposition of a graphical model P= (X ,D,F) is a tree T = (V,A). For
every vertex e ∈ V there is a cluster Ce ⊆ X . The set of clusters must cover all the
variables (i.e., ∪e∈VCe = X) and all the cost functions (for every fS ∈ F there is some
clusterCe such that S ⊆Ce). Furthermore, if a variable xi appears in two clustersCe and
Ck, it must also appear in all the clusters on the unique path from e to k (this is called
the running intersection property).

The tree-width (or just width) of a tree decomposition, noted w, is maxe∈V{|Ce|}−
1. The width of G is the minimum tree width of all tree decompositions of G. Figure 1
(right) shows one tree decomposition associated with the interaction graph on the left.
Its width is 1, which corresponds to the extreme case of the interaction graph being
acyclic.

2.2 Decomposition-Based Backtracking Algorithms

The simplest way to systematically generate all possible assignments in a graphical
model is by extending partial assignments to one more variable at a time. From a partial
assignment, select one unassigned variable and make one child for each value in its
domain. Starting from the empty assignment, the rule is applied recursively until nodes
correspond to complete assignments. This is OR search tree and it is easy to see that its
size is exponential on the number of variables O(exp(n)).

Consider the WCSP-producing graphs in Fig. 1. The assignment of variables X
produces a sub-problem made of two independent components whose variables are
{Y,T,R} and {Z,L,M}. The search space associated with solving independent com-
ponents separately is called AND/OR tree. Note that each tree node corresponds to a
sub-problem and different nodes may represent the same sub-problem. When it hap-
pens, traversing the AND/OR tree means solving the same problem more than once.
To overcome such inefficiency the algorithm may record each sub-problem it solves.
Then the search space becomes the so-called AND/OR graph [16]2. Tree decomposi-
tions can be used to direct the generation of an AND/OR graph. For instance, the tree
decomposition in Fig. 1 (right) using cluster (X ,Y ) as root determines the AND/OR
graph of Fig. 2. It is known that the size of the AND/OR graph determined by a tree
decomposition of width w is O(exp(w)).

Decomposing graphical models is an important technique, but the efficiency of cur-
rent state-of-the-art solvers mostly depends on other complementary ideas. One line

2 Note that this corresponds to solving the problem with dynamic programming implemented
with memoization.



274 A. Petrova and J. Larrosa

of work studies the use of different search strategies. While the most common one
is depth-first search (DFS), some authors have identified benefits for best-first search
(BFS) [34], hybrids (i.e., HBFS [2]) or nested (i.e., RDS [40]), to name a few. In our
description of search spaces we did not mention in which order variables are found
along paths and values are found among children. Such orderings may have a dramatic
effect on performance. Another very relevant line of work is on finding cheap yet useful
simplifications to be applied dynamically during the search. Arguably, the most com-
mon approach to this is through local consistencieswhich apply equivalence-preserving
transformation (EPTs) at each sub-problem that identify unfeasible values and antici-
pate backtracking. The conjunction of all these techniques and some other constitutes
state-of-the-art solvers such as toulbar2. However, the combination of all these tech-
niques with decomposition-based algorithms is possible, but very often limited or prob-
lematic [2,35,38].

3 A Preliminary Experiment

Conventional wisdom supported by theoretical results about the size of search spaces
says that if we have a problem for which we know a tree decomposition with a small
width, we should use a decomposition-based algorithm (i.e. an algorithm that traverses
the AND/OR search space). Similarly, if we do not have a tree decomposition with a
small width, we should use a non-decomposition version of the algorithm because it
may cause overhead or may compromise other algorithmic techniques.

In this section, we want to test this hypothesis in practice. For the sake of simplicity,
we focus on weighted CSPs (WCSPs) because there is a rich collection of instances that
have been used for testing over the years, and because there are many solvers available.
In particular, we will be using toulbar2 because of its proven efficiency across a variety
of domains [25] and because it provides implementations of several algorithms with
and without decomposition. Besides, the decomposition version of toulbar2 implemen-
tations always follows the principles of BTD [39].

For the experiment, we collected a large sample of real-world inspired instances
from the 2 largest WCSP repositories: EvalGM3 and Cost Function Library4. Instances
come from many different applications such as Gene sequencing, Satellite allocation,
Warehouse allocation, Protein design, Object detection, etc. Each instance without
global constraints (which are out of the scope of this work) was VAC-preprocessed and
subsequently solved with toulbar25 with depth-first-search with and without decompo-
sition. We will refer to these algorithms as DFS-BTD and DFS, respectively.

From the original set of 8109 instances, we removed those that were too difficult
(neither DFS-BTD nor DFS could solve them with less than 108 backtracks) or too easy
(both algorithms required less than 10 s). This reduced the dataset to a total number
of 2550 instances. Note that we use the number of backtrackings as a proxy of CPU
time as it is known that both measures are highly correlated and backtrackings have

3 http://genoweb.toulouse.inra.fr/∼degivry/evalgm/.
4 https://forgemia.inra.fr/thomas.schiex/cost-function-library.
5 https://toulbar2.github.io/toulbar2/index.html.

http://genoweb.toulouse.inra.fr/~degivry/evalgm/
https://forgemia.inra.fr/thomas.schiex/cost-function-library
https://toulbar2.github.io/toulbar2/index.html


On Learning When to Decompose Graphical Models 275

the advantage of being machine independent, which makes experiments much easier to
conduct.

Let bdi and bi denote the number of backtrackings for instance i with and with-
out decomposition, respectively. Figure 3 exhibits bdi versus bi. It clearly shows that
there are many instances for which one algorithm is orders of magnitude faster than
the other. In this dataset DFS-BTD outperforms DFS 57.5% of the time. The aggre-
gated running of DFS and DFS-BTD is ∑i bi = 3.4× 1010 number of backtrackings
and ∑i b

d
i = 3.2×1010 number of backtrackings, respectively. Therefore, in aggregated

form both algorithms are roughly equally efficient. However, if we could predict and
solve with the best option the total number of backtrackings would be ∑imin{bi,bdi } =
1.3×109 which is more than a 95% reduction. On average choosing the best algorithm
with respect to the worst produces a backtracks reduction of 98% from the worst (80%
reduction in CPU time).

Fig. 3. Performance of DFS vs DFS-BTD on EvalGM and Cost Function Library instances. Note
the logarithmic scale.

To analyze the relation between width and algorithmic advantage we model a linear
regression of {(wi,yi)} where yi is the order of magnitude of one algorithm being better
than the other (negative for DF-BTD) defined as,

yi =

⎧
⎨

⎩

log
bdi
bi

if bi ≤ bdi
− log bi

bdi
otherwise

(1)

This data set is plotted in Fig. 4 on the left, which shows that the advantage of one
algorithm over the other is unrelated to the width. The Pearson correlation is 0.07.
Next, we study the potential of the width as a predictor (i.e. a classification problem).
For this purpose we consider dataset {(wi,ci)} where ci represents the algorithm of
choice, defined as,

ci =

{
0 if bi ≤ bdi
1 otherwise

(2)

This dataset is plotted in Fig. 4 on the right. It also shows that predicting the winning
algorithm cannot be done with a logistic regression based on the width in isolation. The
R2 value of a Logistic Regression is 0.018.



276 A. Petrova and J. Larrosa

Fig. 4. Comparison of DFS vs DFS-BTD with respect to width on EvalGM and Cost Function
Library instances. On the left orders of magnitude of advantage (advantage of DFS-BTD is neg-
ative). On the right percentage of instances where DFS-BTD outperforms DFS

There are two relevant observations to be made from this experiment: i) being able
to predict when to decompose may produce significant gains and therefore has practi-
cal implications, and ii) width (at least in isolation) is not a good feature to make the
prediction (at least for general instances). Beyond the interest of the surprising results,
the first observation justifies the relevance of the topic of our research, and the sec-
ond observation motivates further analysis. One possible explanation of our empirical
finding is that the space of WCSPs is too large and/or our data is not general enough.
Another explanation is that other features may need to be added to increase the accuracy
in the prediction. The following section tries to confirm or discard the explanations.

4 Machine Learning for Decomposition

4.1 Random k-Trees

Since the space of WCSPs is huge and the dataset from the WCSP libraries is not
too diverse, in the following we will generate synthetic data that allows us a much more
controlled experiment. In particular, we want to generate instances where we can control
the width. For that purpose, we implemented a generator of random k-trees [37] of n
nodes as follows: starting with a k+ 1-clique, add nodes one by one. Each time a new
node is added, it is connected to all the nodes of a randomly selected k-clique embedded
in the current graph. It is well-known that given a k-tree there is a tree decomposition
of width k (it can be easily obtained using the min-fill order). Additionally, there is no
tree decomposition with a width less than k.

Recall that the width of a tree decomposition is the maximum size of its clusters.
It often happens that such maximal size is rare among the many clusters. Then, a high
width may be a misleading measure of bad decomposability, since it will also be excep-
tional during the execution of decomposition-based algorithms. One advantage of k-
trees is that they are more robust in terms of width because all clusters in the tree
decomposition have size k. Therefore, their width is a much more precise measure of
the amount of decomposability that can be achieved.



On Learning When to Decompose Graphical Models 277

4.2 Instances with Random Cost Functions

In our first experiment, we generated random k-tree structured WCSPs of domain size
m with random cost functions of density d. A random cost function of density d is
generated by associating cost 1 to d out of the m2 cost function entries. Thus, ran-
dom instances are generated subject to four parameters (k,m,d,n), where k = w is the
instance width.

We generated an independent and identical distributed (IID) data set of this type of
problem with parameters bounded by 3≤w≤ 20, 2≤m≤ 10, m2×0.1≤ d ≤m2×0.5
and 21 ≤ n ≤ (1000/w+ (20 − n)/17 × 250) × (−0.5 × d + 2). The upper bound
for n which depends on the other parameters was decided based on previous experi-
ments to obtain instances of reasonable difficulty. We generated 26000 instances that
were solved with both DFS and DFS-BTD (after VAC pre-processing) with a time
out of 108 backtrackings. 6822 instances were discarded because neither algorithm
could finish within the timeout leaving a total of 19178 instances. In this dataset,
DFS outperforms DFS-BTD 67.1% of the time. The aggregated number of backtrack-
ings for DFS and DFS-BTD is ∑i bi = 6× 1010 and ∑i b

d
i = 3.8× 1010, respectively,

which means that also in this much more specific benchmark, both algorithms are
roughly equally efficient in the long run. If we could predict and execute each instance
with the best-performing algorithm, the aggregated number of backtrackings would be
∑imin{bi,bdi } = 6×109, which is more than 80% reduction. The average reduction of
choosing the best-performing algorithm with respect to the worst-performing is 93.46%
percent. The plot of bi vs bdi (Fig. 5 left) shows a much stronger correlation between the
difficulty of instances for both algorithms (bi vs bdi ). Also, it shows that DFS is better
for easy instances (low number of backtrackings) and DFS-BTD is better for the hardest
instances.

Fig. 5. Performance of DFS vs DFS-BTD on random k-tree instances. Note the logarithmic scale
(left). Percentage of instances where DFS-BTD outperforms DFS vs width on random k-tree
instances (right).

We again consider the classification problem of predicting ci. Figure 5 shows, for
each width, the percentage of times that DFS-BTD is better than DFS. In the preliminary
experiment reported in Sect. 3 we observed that width could not explain the class (Fig. 3
right). Now the result is even more surprising: the width is related to the class, but
not as expected. The higher the width, the most likely DFS-BTD will be the winning
algorithm.



278 A. Petrova and J. Larrosa

Because plot 5 shows an unexpected but clear trend, we conducted a simple Logis-
tic Regression of {(wi,ci)}. We split the data into training, testing and validation.
Upon training the model with just the width as a feature, we then tested the model
and obtained a 71% accuracy. However, the confusion matrix (Fig. 6 (left)) shows that
although the accuracy is high it is quite unbalanced. In particular class DFS is predicted
quite accurately, but predictions for class DFS-BTD are very inaccurate.

Fig. 6. Confusion matrix of the Logistic Regression with only width as a feature (left), and con-
fusion matrix of the Logistic Regression with features (w,n,m,d,d′) (right).

The lesson learned from the previous experiment is that width in isolation cannot
be used to advise on whether to decompose or not, even in nicely structured k-trees.
Thus, we need to incorporate other features and other ML models. Accordingly, we
incorporate as features the other parameters that characterize the creation of instances:
the number of variables (n), domain size (m), and density (d). Since instances were
pre-processed using VAC, which can alter the density of cost functions, we included
the average density after pre-processing (d′) as a feature as well. Four simple Machine
Learning models (Logistic Regression, k Nearest Neighbors, Support Vector Machine
and Decision Trees) and two Ensemble Method models (Random Forest and XGBoost)
were trained and tested for classification.

For each one of the models, we followed the standard ML pipeline. Figure 6 (right)
shows the confusion matrix of the Logistic Regression. The accuracy increases to 78%
and, most importantly, the results are slightly more balanced between the two classes.
Comparing the four different methods, they produce similar results with SVM being
slightly better. Its accuracy is 82%, precision and recall for DFS is 0.82 and 0.93,
respectively and for DFS-BTD it is 0.80 and 0.60. Ensemble models produce additional
gains in balancing the quality of results between both classes, with XGBoost being the
best. Its accuracy is 82%. The precision and recall of the DFS are 0.83 and 0.92 respec-
tively. The precision and recall for DFS-BTD are up to 0.79 and 0.62. The aggregated
running time of DFS-BTD and DFS on the test set is 1010 and 1.6× 1010. The aggre-
gated running time of executing the SVM predicted best algorithm is 5.5× 109 which
means that using this model we can reduce the time more than 50%. Table 1 reports the
results of selected ML models.

Next, we want to evaluate if these results can be transferred to other algorithms.
So we repeated the experiment with Hybrid Best First Search (HBFS) [2]. HBFS is a



On Learning When to Decompose Graphical Models 279

hybrid of Depth and Best First Search. It maintains a set of open nodes à la BFS, but
each time a node is selected for expansion, it is done according to the DFS strategy
for a fixed amount of time. The advantage of HBFS over DFS is two-fold: it makes a
more flexible traversal of the search space not being committed to early decisions and,
it produces both any-time lower and upper bounds during the solving process. Toulbar2
implements HBFS with and without tree decomposition.

We took the same set of instances and solved them with HBFS and HBFS-BTD at
the same time out of 108 backtrackings. We removed unsolved and trivial instances (as
we did with DFS) which left us with 19209. With this data set we performed Transfer
Learning with the SVM model, because it is robust and as a simple model had similar
performance with more complex models. To be able to do the transfer learning we kept
the same hyperparameters of the model and trained the model with 70% of the data.
No tuning of the model was performed. The model was then tested and achieved the
following results. Accuracy of 77%, precision and recall for HBFS of 0.83 and 0.84,
and precision and recall for HBFS-BTD of 0.60 and 0.58. Although the results are not
as high as in the DFS case we can say that we can successfully use the same model with
the same hyperparameters on another algorithm.

Table 1. Summary of the results on random k-trees with random cost functions for different
Machine Learning models

Dataset Random Random Random Random

Features w w,n,m,d,d′ w,n,m,d,d′ w,n,m,d,d′

Model Log. Reg. Log. Reg. SVM XGBoost

Accuracy 72% 78% 82% 82%

Precision decomp. 0.72 0.71 0.80 0.79

Recall decomp. 0.42 0.55 0.60 0.62

Precision n-decomp. 0.75 0.80 0.82 0.83

Recall n-decomp. 0.87 0.89 0.93 0.92

4.3 Instances with Deterministic Cost Functions

In the previous subsection instances had random cost functions. So we had two sources
of randomness: the k-tree structure and cost functions. In this subsection we want to
see if more accuracy of ML models can be obtained by restricting the randomness
of the instances. With this goal, we repeated the experiment with random k-trees but
deterministic cost functions. We decided to use cost functions reminiscent of Frequency
Assignment Problems (FAP) [7] where cost functions give higher costs to closer values,

f (xi,x j) = m−1−|xi − x j|
We generated IID random instances within the following intervals: 3≤w≤ 21, 2≤m≤
10 and 21 ≤ n ≤ 1000/w×2. Note that instances with m= 2 correspond to a weighted
version of the 2 Graph Coloring problem.



280 A. Petrova and J. Larrosa

We generated 15000 instances that were VAC pre-processed. All instances were
solved with DFS and DFS-BTD with the usual time out of 108 backtracks. Unsolved
and trivial instances were removed leaving 11513 instances. In this dataset, DFS-BTD
outperforms DFS 65.5% of the time. The aggregated number of backtrackings for DFS
is 2.5×1011, whereas for DFS-BTD it is 2×1010. This time we can see a more signif-
icant difference between the efficiency of both algorithms in the long run. Taking the
best-performing algorithm for each instance would result in an aggregation of 3.3×109.
Which is a 83.5% time reduction. The average advantage of the best-performing algo-
rithm compared to the worst gives a reduction of 98.77%. In plot 7 we can see the
relationship between DFS and DFS-BTD. Here the scatter is much more uniform, with
DFS performing better for instances that require less number of backtrackings, and
DFS-BTD taking a small lead in the opposite scenario.

Fig. 7. Scatter plot of the Frequency Assignment dataset with backtracking time, on a logarithmic
scale (left) and Winning DFS-BTD percentage per width (right).

Figure 7 on the right shows the percentage of times DFS-BTD is better than DFS
for each width. Compared to the previous section, here we see that the majority of times
DFS-BTD outperforms DFS. Interestingly, this also happens in the small widths, which
wasn’t the trend with random cost functions. We see the special case of the Frequency
Assignment problems once again as a classification problem. Here we use the same
features except for the density because all of the instances keep before preprocessing
the maximal amount of tuples per function given the formula.

We turn directly to SVM as our selected model given the success in the previous
section. The accuracy is 78%. Precision and recall for DFS are 0.70 and 0.65, whereas
for DFS-BTD are 0.82 and 0.85. The aggregated running time of DFS-BTD and DFS on
the test set is 5.6×109 and 7.6×1010. As seen the model doesn’t perform very differ-
ently from the previous section above. To ensure consistency we also train and test the
other Machine Learning models we previously used. All of them report similar results.
From here we hypothesize that cost function information is not a factor that affects the
decision of whether the version of the algorithm should be with be decomposition based
on non-decomposition based.

Since the results are similar we also test the idea that we can use the same SVM
model set up to predict any specific subtype of problem that exists. We use transfer
learning, where we keep the same hyperparameters of the model and train the model on
70% of the dataset and later test it on a never before seen testing dataset, which is 30%



On Learning When to Decompose Graphical Models 281

of the data. The result achieved is an accuracy of 77%. As it can be seen, the results
are quite similar, and transfer learning can happen from a wide range of problems to a
specific subtype of problem.

The same procedure of transfer learning is applied also to HBFS. An accuracy of
78% is achieved, with precision and recall for HBFS being 0.72 and 0.83, compared to
HBFS-BTD which are 0.85 and 0.75. All these results are summarized in Table 2.

4.4 Benchmark Instances

Finally, we repeated the procedure of SVM transfer learning to the benchmark instances
considered in Sect. 3. An accuracy of 87% is achieved, with precision and recall for DFS
being 0.80 and 0.94, compared to DFS-BTD which are 0.95 and 0.81.

The aggregated running time of DFS-BTD and DFS on the test set is 1010 and
8.8×109. The aggregated running time of executing the SVM predicted best algorithm
is 109 which means that using this model we can reduce the time by nearly 89%.

Table 2. The results of the Machine Learning models on the testing data for the Frequency
Assignment problem (FAP) and results from the Transfer Learning. The results from the orig-
inal SVMmodel that was used for Transfer learning, are given in the last column for comparison.

Data FAP DFS FAP DFS FAP DFS FAP HBFS Bench. DFS Random DFS

Features w,n,m,d′ w,n,m,d′ w,n,m,d′ w,n,m,d′ w,n,m,d,d′ w,n,m,d,d′

Model Log. Reg SVM SVM SVM SVM SVM

Set-up Traditional Traditional Transfer Transfer Transfer Traditional

Accuracy 66% 78% 77% 78% 87% 81%

Precision decomp 0.66 0.82 0.82 0.85 0.95 0.78

Recall decomp 1.00 0.85 0.84 0.75 0.81 0.60

Precision n-decomp 0.97 0.70 0.68 0.72 0.80 0.82

Recall n-decomp 0.02 0.65 0.64 0.83 0.94 0.91

5 Related Work

5.1 Decomposition-Based Algorithms

The exploitation of conditional independencies in graphical models has been a long
and well-established line of research with a consistent presence in the literature. For a
detailed review the reader is urged to check Chapters 8 and 9 in [12] and Chapters 9 and
10 in [14]. There are two works from 1973, when the term Graphical Model was not
even established, that deserve to be mentioned. On the one hand, Bertele and Briochi
[5] studied the use of dynamic programming to optimization problems given as sets of
cost functions and called it non-serial dynamic programming. Although not explicitly
said, their algorithms identify and exploit conditional independencies and record solved



282 A. Petrova and J. Larrosa

subproblems. In parallel, and addressing systems of linear equations, the work in [21]
also proposed to decompose independent sub-problems.

In the field of Bayesian Networks a line of work has looked to exploit a very specific
type of decomposition obtained by conditioning on the so-called loop-cutset which is a
set of variables that, when instantiated, decompose the problem into acyclic independent
sub-problems. The idea of decomposing recursively during the search was proposed in
[9] and refined in [1,11].

In the related field of Constraint Processing the first proposal to recursively decom-
pose conditionally independent sub-problems is [18] using the concept of pseudo-
tree search. In [30] it was shown that the time complexity of the algorithm is
bounded by O(wlogw). Recording solved sub-problems to avoid redundancies and
therefore decreasing the time complexity to O(w), was also proposed and engineered
in [26,28,29]. The notion of loop-cutset was taken to this field in [13]. Since in Con-
straint Satisfaction Problems, cost functions are boolean, better decompositions can be
achieved [22].

Weighted Constraint Satisfaction Problems (WCSPs) generalize classical CSPs
from boolean to cost functions. In this context, search algorithms use sophisticated
propagation techniques (called soft local consistencies) and the difficulty of introducing
decomposition techniques was to make them work in practice. Pseudo-tree search was
first tested in [32] and sub-problem recording was incorporated in [27]. Some practical
improvements appeared in [31] and popular algorithms such as Russian Doll Search
and Hybrid Best First Search had the decomposition-based version in [2,38]

5.2 Machine Learning in Graphical Models

The use of Machine Learning in the context of Graphical Models has been a recent
intense topic of research [24,36]. One approach has been model elicitation, where the
goal is to alleviate the user from modeling instances by relying on examples and ML
techniques. For example, decision Trees based models are used in [6,20,23]

Another approach, closer to our work, is the use of ML to improve the performance
of algorithms. In [19] a Deep Learning network is created to guide the search process,
and in [4] the use of Reinforcement Learning is seen for the same purpose but aiming at
the Traveling Salesman Problem. Some authors focus on learning efficient variable and
value ordering heuristics [3,8,17,41]. The closest work to us, to the best of our knowl-
edge is the work of Guerri et al. [23] that applies decision trees to decide if the instance
should be solved using IP or CP (the model is applied to Bid Evaluation problems).

6 Conclusions and Future Work

In this paper we address the problem of predicting when it is convenient to use decom-
position while solving Graphical Models. We consider Weighted CSPs and classical
search strategies. We challenge the usual hypothesis that instance width is the main fea-
ture driving such prediction. The first contribution of the paper is the observation that,
on a large data set of realistic problems, such a hypothesis does not hold. Furthermore,



On Learning When to Decompose Graphical Models 283

in a much more width-controlled experiment on k-trees where the space of possible
interaction graphs is smaller, the hypothesis does not hold either.

Motivated by this surprising result, the second contribution of the paper is to analyze
the potential of Machine Learning models to automatize this classification problem.
We restrict ourselves to simple ML models and simple features and observed that all
models produced similar results with a simple ensemble model XGBoost being the best.
Overmore, models seem to be successfully transferable to different search strategies
(such as HBFS) and to both more specific and more general problems.

Our work leaves many interesting open lines of future work. One of them is to
corroborate the irrelevance of width in other computational tasks for Graphical Models
(i.e. counting or summation problems). Another one is to augment the set of features. In
our work, we only used static features that can be obtained by inspecting the instance,
but that says nothing about how different cost functions with common variables in their
domain interact or how local consistencies may propagate costs. We conjecture that
these, more sophisticated features, are the key to further increasing the accuracy of the
ML models.

References

1. Allen, D., Darwiche, A.: New advances in inference by recursive conditioning. In: Meek,
C., Kjærulff, U. (eds.) UAI 2003, Acapulco, Mexico, 7–10 August 2003, pp. 2–10. Morgan
Kaufmann (2003)

2. Allouche, D., de Givry, S., Katsirelos, G., Schiex, T., Zytnicki, M.: Anytime hybrid best-first
search with tree decomposition for weighted CSP. In: Pesant, G. (ed.) CP 2015. LNCS, vol.
9255, pp. 12–29. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 2

3. Arbelaez, A., Hamadi, Y., Sebag, M.: Continuous search in constraint programming. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 219–243. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9 9

4. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization
with reinforcement learning. In: ICLR 2017, Toulon, France, 24–26 April 2017, Workshop
Track Proceedings (2017)

5. Bertelè, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory Ser. A 14(2),
137–148 (1973)

6. Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees and random forests in
constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 74–90.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 6

7. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assign-
ment. Constraints Int. J. 4(1), 79–89 (1999). https://doi.org/10.1023/A:1009812409930

8. Cappart, Q., Moisan, T., Rousseau, L.M., Prémont-Schwarz, I., Cire, A.A.: Combining rein-
forcement learning and constraint programming for combinatorial optimization. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3677–3687 (2021)

9. Cooper, G.F.: Bayesian belief-network inference using recursive decomposition. Technical
report, Knowledge Systems Laboratory, Stanford, CA (1990)

10. Cooper, M.C., de Givry, S., Sánchez-Fibla, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc
consistency revisited. Artif. Intell. 174(7–8), 449–478 (2010)

11. Darwiche, A.: Recursive conditioning. Artif. Intell. 126(1–2), 5–41 (2001)
12. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University

Press, Cambridge (2009)

https://doi.org/10.1007/978-3-319-23219-5_2
https://doi.org/10.1007/978-3-642-21434-9_9
https://doi.org/10.1007/978-3-319-18008-3_6
https://doi.org/10.1023/A:1009812409930


284 A. Petrova and J. Larrosa

13. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell. 113(1–2),
41–85 (1999)

14. Dechter, R.: Constraint Processing. Elsevier/Morgan Kaufmann (2003)
15. Dechter, R.: Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algo-

rithms. Synthesis Lectures on Artificial Intelligence andMachine Learning, 2nd edn. Morgan
& Claypool Publishers (2019)

16. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artif. Intell. 171(2–
3), 73–106 (2007)

17. Erdeniz, S.P., Felfernig, A.: Cluster and learn: cluster-specific heuristics for graph coloring.
In: PATAT 2018, pp. 401–404 (2018)

18. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint sat-
isfaction problems. In: IJCAI 1985, Los Angeles, CA, USA, August 1985, pp. 1076–1078
(1985)

19. Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs via deep
learning: a preliminary study. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848,
pp. 254–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 18

20. Gent, I.P., et al.: Learning when to use lazy learning in constraint solving. In: ECAI 2010,
Lisbon, Portugal, 16–20 August 2010, Proceedings, vol. 215, pp. 873–878. IOS Press (2010)

21. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2),
345–363 (1973)

22. Gottlob, G., Greco, G., Leone, N., Scarcello, F.: Hypertree decompositions: questions and
answers. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI, PODS 2016, San
Francisco, CA, USA, 26 June–01 July 2016, pp. 57–74. ACM (2016)

23. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio selection. In:
ECAI 2004, Valencia, Spain, 22–27 August 2004, pp. 475–479. IOS Press (2004)

24. Huang, L., et al.: Branch and bound in mixed integer linear programming problems: a survey
of techniques and trends. CoRR abs/2111.06257 (2021). https://arxiv.org/abs/2111.06257

25. Hurley, B., et al.: Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints Int. J. 21(3), 413–434 (2016). https://doi.org/10.1007/s10601-016-
9245-y

26. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artif. Intell. 146(1), 43–75 (2003)

27. Jégou, P., Terrioux, C.: Decomposition and good recording for solving Max-CSPs. In: ECAI
2004, Spain, 22–27 August 2004, pp. 196–200 (2004)

28. Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions for solving CSPs.
In: ECAI 2014, Czech Republic, 18–22 August 2014, vol. 263, pp. 465–470 (2014)

29. Jégou, P., Terrioux, C.: Combining restarts, nogoods and bag-connected decompositions for
solving CSPs. Constraints Int. J. 22(2), 191–229 (2017). https://doi.org/10.1007/s10601-
016-9248-8

30. Bayardo Jr., R.J., Miranker, D.P.: On the space-time trade-off in solving constraint satisfac-
tion problems. In: IJCAI 1995, Québec, Canada, 20–25 August 1995, vol. 2, pp. 558–562
(1995)

31. Kitching, M., Bacchus, F.: Exploiting decomposition in constraint optimization problems.
In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 478–492. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85958-1 32

32. Larrosa, J., Meseguer, P., Sánchez-Fibla, M.: Pseudo-tree search with soft constraints. In:
ECAI 2002, Lyon, France, July 2002, pp. 131–135. IOS Press (2002)

33. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell.
159(1–2), 1–26 (2004)

34. Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In: IJCAI-
2005, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 224–229 (2005)

https://doi.org/10.1007/978-3-319-93031-2_18
https://arxiv.org/abs/2111.06257
https://doi.org/10.1007/s10601-016-9245-y
https://doi.org/10.1007/s10601-016-9245-y
https://doi.org/10.1007/s10601-016-9248-8
https://doi.org/10.1007/s10601-016-9248-8
https://doi.org/10.1007/978-3-540-85958-1_32


On Learning When to Decompose Graphical Models 285

35. Otten, L., Dechter, R.: Anytime AND/OR depth-first search for combinatorial optimization.
AI Commun. 25(3), 211–227 (2012)

36. Popescu, A., et al.: An overview of machine learning techniques in constraint solving. J.
Intell. Inf. Syst. 58(1), 91–118 (2022). https://doi.org/10.1007/s10844-021-00666-5

37. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory Ser. B
36(1), 49–64 (1984)

38. Sánchez-Fibla, M., Allouche, D., de Givry, S., Schiex, T.: Russian doll search with tree
decomposition. In: IJCAI 2009, California, USA, 11–17 July 2009, pp. 603–608 (2009)

39. Terrioux, C., Jégou, P.: Bounded backtracking for the valued constraint satisfaction problems.
In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 709–723. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45193-8 48

40. Verfaillie, G., Lemaı̂tre, M., Schiex, T.: Russian doll search for solving constraint optimiza-
tion problems. In: IAAI 1996, Portland, Oregon, USA, 4–8 August 1996, pp. 181–187 (1996)

41. Xu, H., Koenig, S., Kumar, T.K.S.: Towards effective deep learning for constraint satisfaction
problems. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 588–597. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98334-9 38

https://doi.org/10.1007/s10844-021-00666-5
https://doi.org/10.1007/978-3-540-45193-8_48
https://doi.org/10.1007/978-3-319-98334-9_38


Inverse Lighting with Differentiable
Physically-Based Model

Kazem Meidani1,2(B), Igor Borovikov1, Amir Barati Farimani2,3,
and Harold Chaput1

1 Electronic Arts, Redwood City, CA, USA
2 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,

PA, USA
mmeidani@andrew.cmu.edu

3 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. The design of scene lighting in video games and computer
graphics can be a challenging and time-consuming task for lighting artists.
Automating the lighting in problems such as stadium lighting design in
sports games would help the artists by making this tedious process more
efficient. In this work, we explore several practical solutions to this prob-
lem via optimization and data-driven models. First, we evaluate evolu-
tionary and swarm intelligence gradient-free algorithms with black-box
Physically-Based Rendering (PBR) models. Next, by implementing a dif-
ferentiable PBR model, we leverage gradients to apply gradient-descent
optimization to find an optimal solution. We exploit this differentiable
model to develop a data-driven framework to learn the mapping from
the illumination field to the lighting parameters via minimizing the loss
between the illumination and its reconstructed field using a differentiable
PBR decoder. Having the learned model, we directly predict the lighting
configuration given a user-defined target illumination. In general, we show
that all the mentioned methods can reach acceptable solutions, however,
based on the conditions, one method can be preferred among others.

Keywords: Inverse Lighting · Deep Learning · Physically-Based
Rendering · Optimization

1 Introduction

Lighting design including placing lights and tuning their parameters plays a
prominent role in Computer Graphics (CG) and video games. This process, how-
ever, can be quite challenging. The challenges might come from the necessity to
meet certain criteria (e.g., to have uniform lighting with predefined illuminance
levels in certain areas) and/or constraints (e.g., to use less than a predefined
number of lights of a particular type and to place them in the vicinity of the
models of the light fixtures). Therefore, manual placement and tuning of lights
can be tedious and time-consuming. Also, it is rarely a creative task for the
lighters working on such problems. Such challenges make the lighting of the CG

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 286–300, 2023.
https://doi.org/10.1007/978-3-031-44505-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_20&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_20


Inverse Lighting with Differentiable Physically-Based Model 287

or game scenes more expensive in terms of labor and time than it has to be. This
process becomes more difficult as the scenes get more complex, with more fea-
tures to consider, and it becomes more inefficient when there are several similar
scenes that each have to be manually addressed (e.g., a wide variety of stadiums
in sports games).

Automating the lighting design can help the lighting artists by making this
process fast, reliable, and less error-prone. There are several studies to develop
such streamlined frameworks by introducing lighting estimation models [2] and
applying optimization methods [5,14] to various types of scenes [8,26]. Depend-
ing on the scene type and the application, the design goals can be energy effi-
ciency, illuminance uniformity, or detail highlighting [6,15]. In this work, we
focus on user-defined illumination goals for the scene. Hence, we target to find
a set of lighting parameters to achieve a known ideal illumination result as well
as possible.

To find the luminary parameters of light sources from a given image or illumi-
nation field, inverse rendering [22] and lighting estimation methods [4] have been
studied in recent years. Learning-based inverse models utilize neural networks
to estimate the illumination from 2D images. These models are mainly used for
applications such as virtual object insertion and multi-view scene re-rendering
[13]. To optimize for the best lighting design solution, gradient-free methods pro-
pose a relatively simple approach that fits the complex nature of lighting models
[14]. It has been shown that techniques like hierarchical coverage optimization
[5] or intensity distance fields [30] can be used to find a suitable number of light
sources and intensities for isotropic point light sources in simple scenes, but these
methods might not be easily generalizable to other applications.

In this work, we explore practical and general ways to solve the problem
of lighting design. First, we try gradient-free and gradient-based optimization
algorithms to iteratively converge to a feasible and acceptable solution for our
experiments on stadium lighting. We compare these two methods and discuss
their advantages over each other. Next, we introduce a data-driven framework
to predict the lighting parameters from the target illumination field. To train
this model, we have implemented a vectorized differentiable model of the PBR
module to exploit its gradients in an end-to-end pipeline. We show that this
Deep Inverse Lighting (DIL) model can directly estimate acceptable solutions
for a given target illumination field. In this paper, we formulate a particular task
of lighting stadiums for a video game. This task remains our focus though-out
the manuscript; however, the problem formulation and the proposed methods
can naturally generalize to other types of lighting problems.

2 Related Works

Inverse Rendering and Lighting Estimation. Inverse rendering is a well-
known task in computer graphics with the aim of recovering scene physical prop-
erties including geometries, reflectance, and lighting from image(s) [22]. Recently,
learning-based models are introduced to jointly predict these scene properties



288 K. Meidani et al.

from a single image even in complex indoor scenes [13,22,28]. Lighting estima-
tion can be viewed as a sub-task of inverse rendering where the focus is to predict
the illumination from a single image [26,29]. Estimating an environment map
from a single low dynamic range image that captures illumination incidents at
different locations in the image can be used for applications such as relighting
for virtual object insertion [3,23–25]. However, a single environment map might
not represent the illumination, especially in cases like indoor scenes where light
sources are close to the objects. This has led to the use of spatially-varying
lighting estimation [4,26] and parametric models [2].

Parametric models aim to globally estimate the 3D scene illumination via
estimating the parameters of a discrete number of light sources. These models
have been used for both indoor and outdoor scenes. Learning-based parametric
models can predict the geometric and photometric properties of light sources
from a single 2D image by leveraging the power of neural networks. Hold-Geoffroy
et al. [9] implement a 2D CNN model to directly learn the mapping from pixels
of an outdoor image to its corresponding lighting parameters. Similarly, Gardner
et al. [2] train a CNN model with various output sizes to predict parameters from
indoor images. The use of reconstruction loss in auto-encoder like architectures
have shown to be effective in parametric models [8,31]. As a part of our work
(DIL), we follow a similar approach to optimize the parameters of light sources
to achieve the desired illumination.

Lighting Design Optimization. While lighting estimation aims to find the
parameters for a given illumination field, design problems seek optimal lighting
configuration to achieve a goal. The goals include reaching a desired illumina-
tion level [5,6] or energy considerations [15]. The majority of these techniques
assume point light sources and aim to estimate or optimize the parameters of
these point sources. Zhang et al. [30] make use of intensity distance fields to local-
ize the isotropic light sources and find their parameters including the number
of lights and their intensity levels in a 2D domain. To optimize for the lighting
parameters, most of the previous works leverage gradient-free algorithms due to
the nonlinear and complex nature of the lighting. For instance, Genetic Algo-
rithm (GA) has been used in different applications, e.g., stadium lighting, to
design the lighting configuration [14,15,20,27]. Optimizing the light parameters
altogether is shown to be a challenging task due to the large search space and
nonlinearity of its nature. Therefore, many of the previous works solve a simpli-
fied or limited version of the general problem. In a close work, Gkaravelis and
Papaioannou [5] construct a hierarchical tree of light sources and perform light
clustering steps along with nonlinear optimization to find the optimal number
of lights and their positions for interior lighting design. In their later work [6], a
voting mechanism is used to select light sources for the task of highlighting the
details of complex objects.

Differentiable Rendering. Rendering techniques such as PBR are complex
and thus not readily differentiable. Differentiable rendering methods aim to pro-



Inverse Lighting with Differentiable Physically-Based Model 289

vide and make use of the gradients in this process to enable end-to-end opti-
mization and inverse rendering [10,32]. Physics-based and performance-oriented
differentiable renderers have been used to predict lighting and other scene prop-
erties by taking advantage of the rendering gradients combined with the power
of neural networks [1]. For the purpose of lighting estimation, the approximation
methods are more suitable to provide gradients for optimization using gradient
descent [18]. Differentiable PBR plays a key role in our proposed gradient-based
optimization and deep inverse lighting model.

3 Problem Formulation

A concrete example we use for illustrating the main ideas of the paper is the
lighting of stadiums in sports games. This problem is easier to formalize than
more general lighting problems in CG and video games. Figure 1 depicts the
idea by showing an example of manually authored stadium lighting where the
illuminance levels are shown across the stadium. In the example that we con-
sider, the target is for the pitch to be uniformly lit, the sidelines to receive less
light, and the stands to be gradually darker away from the pitch. The pitch has
to have a consistent look from multiple angles during gameplay or cinematics.
Uniform lighting of the surface of the pitch is not the only criterion. The level
of illuminance received by it has to be PBR compliant. Also, the players on the
pitch have to look “good”, meaning, they receive light from multiple directions,
shadows are not too dark, and the players do not look flat. To summarize: we
need uniform lighting across the pitch at a predetermined level, controlled spill,
and lights must support the realistic appearance of the players. The combination
of lights including their location, direction, intensity, cone and falloff angles, as
well as some other parameters describe the light rig.

Manual authoring of a light rig to meet the described requirements is chal-
lenging. A lighter has to go over a long and tedious iterative process. It starts
with constructing a light rig or using an existing template. Then there is a
lengthy loop of adjusting the rig, lighting parameters, visualization of the sta-
dium, and tuning. It takes experience and patience to make this process converge
into the desired result. Also, when constructing a rig, there is a trade-off on the
number of lights to maintain acceptable computational performance. Therefore,
we cannot simply fix imperfections by adding more lights to the rig.

Problem and Objective Function. To capture the outlined setup more
formally, we denote the entire set of parameters of a light rig as a vector
W = {w1, . . . , wN}, where wi denotes a vector slice of the parameters describing
the i-th light and N is the number of lights. All lights in this discussion are of the
same type, and all wi, i = 1, . . . , N, have the same dimensionality d. However,
the assumption of having the same types of lights in the rig is not critical. We
explain components of w later where we explain the PBR light model. In our
application, N usually takes values under 20, with fewer lights being beneficial
for real-time performance. Next, we define pitch as P , sidelines as A, and stands



290 K. Meidani et al.

Fig. 1. An example of a manually lit simplified stadium with acceptable lighting design
with the visualization of illuminance levels inside the stadium. The illumination is close
to uniform across the pitch.

as B. The union S = P ∪ A ∪ B covers the entire area S of the stadium. Points
s ∈ S receive light according to the PBR lighting model which we denote as a
function I(s,W).

Now, we introduce the objective function T term by term. Uniform illumina-
tion is desired on the pitch. Considering a fixed target lux (illuminance) level ˜I
on the pitch, the most straightforward way is to define a loss function between
the resulting illumination I(s,W) and ˜I as

TP,q(W) =
∫

P

|I(s,W) − ˜I|q ds.

Here, q is the norm, where q = 1 (absolute loss) and q = 2 (quadratic loss)
are the first choices to explore. Similar to the pitch, we define the loss terms
for the sidelines and stands as Lq norms between the resulting illumination and
the target illumination. For these areas, we have more freedom in defining the
objective function and its choice can include aesthetic preferences as well as
computational efficiency considerations. However, we stick to the usual loss in
the scope of this study. Consequently, the main loss function consists of the
following terms:

Tq(W) = TP,q(W) + TA,q(W) + TB,q(W).

The placement of lights in the scene should loosely correspond to the loca-
tion of the visible geometry of the light fixtures. This places a constraint on



Inverse Lighting with Differentiable Physically-Based Model 291

the possible values of the light positions. Including these constraints into the
optimization problem can happen explicitly or via a penalty term that we add
to the objective function. One way to define the penalty is to make it depend
on the distance of a particular light from the corresponding bounding box for
its possible locations. We denote that penalty as Θ(W) in such a way that it is
additive across lights and the corresponding term is zero when the lights reside
inside the desired volumes. All in all, our target function gets the form:

min
W

L = Tq(W) + Θ(W) (1)

Physically-Based Lighting Model. We use the model of PBR light as defined
in [12] where we only consider rigs including punctual lights. However, our tech-
niques are not sensitive to the particular structure of the PBR light model and
can work as long as the illuminance function I(s,W) does not deviate from the
physics in any significant manner (i.e., it is differentiable and monotonous in dis-
tances and angles). In our model, each light source comprises several parameters
where some of them represent its geometrical features and the others determine
its photometric properties. The first parameters include the light position in 3D
space and its direction. In this work, the latter is defined by the coordinates
of a point in the pitch surface where the light is directed toward. The other
parameters are the light intensity, its inner (radius) and outer (falloff) angles,
and its attenuation radius and offset. The original PBR model computes the
illuminance function I(s,W) for each output grid s ∈ S by summing the effect
of every light on the rig.

Considering that stadiums in many sports games are mainly symmetrical, we
enforce some symmetrical conditions for the light sources to reduce the number
of unknown parameters in W. In this work, we only define the position of light
sources in a set quarter of the pitch in x − z surface such that x ≥ 0, z ≥ 0
where the origin is defined at the center of the pitch surface. Subsequently, we
replicate the light source in other quarter regions symmetrically. Hence, we will
have only one slice of vector wi for four lights on the rig. Another important
remark is on defining plausible ranges for the parameters. First, some parameters
have to be bounded by their definition or scene constraints. The examples are
the angles, the position of point sources, and their direction point on the pitch
surface. Second, properties like intensity can take continuous values in different
scales of magnitude. Defining a reasonable bound based on the common values of
such parameters for our application is significantly effective to reduce the size of
search space and facilitate the optimization process. Without such constraints,
the optimization space might get so large that the model cannot find a feasible
solution.

4 Methods

Gradient-Free Optimization. As our first method to explore, we have con-
sidered the use of gradient-free, black-box, optimization algorithms to find a



292 K. Meidani et al.

sufficiently good optimal solution for our problem. These groups of methods
have been broadly used due to their simplicity, flexibility, and their ability to
avoid local optima. To this end, we can consider various metaheuristic algorithms
such as evolutionary methods or swarm intelligence (SI) algorithms to approach
our problem defined by Eq. (1). Evolution Strategies (ES) and its variants have
shown successful applications in different fields such as reinforcement learning
[7,21]. In this algorithm, we try to estimate the gradient by sampling neighbors
of the search agent in the search space. Then, we can move toward the oppo-
site direction of the estimated gradient to approach the optimal solution in a
minimization problem. On the other hand, swarm intelligence algorithms are
mostly sample-based, and try to sample the search space using a population of
agents, and to converge to a solution with simple rules following the elite sam-
ples. To showcase, we have used one of the recent SI algorithms named Grey
Wolf Optimizer (GWO) [17] which has shown outstanding performances in the
literature [16].

Fig. 2. (a) Framework for stadium lighting design with gradient free optimization algo-
rithms. Lighting parameters are sampled from a bounded search space. The PBR and
the objective function are viewed as black-box functions to evaluate the parameters.
The evaluation is then used to update the search agents of the optimizer. (b) Frame-
work for stadium lighting design with gradient-based optimization. The whole process
is and end-to-end pipeline. The forward pass evaluates a set of parameters with the
objective function. The gradients of this process are used in backpropagation to update
the parameters in the search space via gradient descent.

Figure 2(a) shows the general scheme of using gradient-free optimization algo-
rithms for inverse lighting problem. Since the number of light sources should not
exceed some limited number in practical situations, we try optimizing parame-
ters for different scenarios of light numbers and their relevant positioning. We



Inverse Lighting with Differentiable Physically-Based Model 293

enforce the symmetrical positioning of light in both axes of the surface, resulting
in four light sources defined by a single set of parameters.

Differentiable Gradient-Based Optimization. The original PBR computa-
tions calculate the illumination in each grid of the space and then sum them up
from different sources of lights. We first vectorize these calculations to compute
the illumination in the whole field instead of specific output grids. In the case
of 2D stadium illumination, we observe up to more than 200 times speed up in
the PBR computations. This accelerated computation enables us to make use
of differentiable models for the PBR. To this end, we utilize PyTorch [19] to
implement all steps of the simplified PBR in a differentiable fashion so we can
compute the gradients via backpropagation. Starting from an initial parameter
set, we can leverage built-in PyTorch optimizers such as Adam optimizer [11]. An
important remark here is that similar to gradient-free optimization algorithms,
there is no guarantee of reaching the global optima for gradient-based methods.
However, it is expected that they perform better for problems with large search
spaces. We show the results and discuss this in more details in the experiments
section.

Similar to the gradient-free case, we can enforce symmetrical conditions
where suitable. Also, we normalize the parameters into the range of [−1, 1] in
order for the gradients to be in a comparable range with each other to facilitate
the gradient descent steps [33]. The end-to-end differentiable pipeline is illus-
trated in Fig. 2(b). We would like to emphasize that the essential requirement
for using gradient-based optimization is that every step of the model, including
the loss and the constraints, be differentiable. Therefore, for this model, we use a
quadratic loss (q = 2 in (1)). To incorporate constraints on the location of light
sources in the loss function, we use soft conditions implemented with differen-
tiable torch operations. In this study, we penalize the placement of light sources
outside the bounding box in each direction linearly using the ReLU function.

Deep Inverse Lighting Model. In this section, we aim to develop a data-
driven framework to predict the lighting configuration including locations and
other parameters to achieve target illumination. By training a model that can
map the illumination field to its corresponding lighting parameters, we will
bypass the iterative optimization process, and directly estimate the pseudo-
optimal parameters. Therefore, lighting parameters can be predicted with a
forward pass of network for any target illumination. The assumption here is
that the model is trained on samples that have the same statistical distribution
as the target illumination distribution.

The illumination field I(S), defined on the region S, is mapped to the vector
of lighting parameters W via function Φ(θ) : I(S) → W where θ are the param-
eters of the model. On the other hand, we have the PBR model as a function
mapping the lighting parameters to the illumination field, i.e., PBR : W → I(S).
Hence, Φ(θ) can be viewed as the inverse of PBR model: Φ(θ) = PBR−1. Autoen-
coders are thus conceivable candidates where we learn these two inverse functions



294 K. Meidani et al.

as encoder and decoder. To this end, the differentiable PBR model is imple-
mented as explained in the previous section to be used as the decoder. Figure 3
depicts a scheme of the framework. By using the differentiable PBR decoder,
we can reconstruct the illumination field I(S) from the predicted parameters W
and exploit the reconstruction loss to learn the parameters of encoder Φ.

Fig. 3. A scheme of deep inverse model for stadium lighting design. CNN encoder maps
illumination fields to normalized vector of parameters. After scaling, these parameters
pass through a differentiable PBR model to reconstruct the illumination field. The
model can be trained by this reconstruction loss, and used to predict lighting parame-
ters from the target illumination in the test stage.

An important remark here is on the limitations of this framework. While this
model is advantageous in terms of fast and direct prediction and flexibility to var-
ious targets, we should note that to get acceptable results from the network, the
target illumination should be from the same statistical distribution as the train-
ing data. Also, in the current form of the model, we have a fixed bottleneck vector
size which requires the model to be trained on a fixed number of light sources.

5 Experiments

Experimental Setup. To fairly evaluate the performance of different methods
that we presented in the methods section, we have to first define the metrics for
evaluation. We assume that there is no ground truth parameter set to compare
our optimal solution with. Therefore, we pass the solution through a PBR model
and evaluate its resulting illumination field upon the user-defined target illumi-
nation. The metric used to report the final result is the normalized root mean
squared error (NRMSE) defined as:

L =

√

∑
s∈S(I(W,s)−Ĩ(s))2

|S|

maxs
˜I(s)

,



Inverse Lighting with Differentiable Physically-Based Model 295

where |S| is the total number of grids in a 64 × 64 output size of S, ˜I(s) is
the target illumination at grid s, and I(W, s) is the computed illumination from
the optimal solution.

Gradient-Free and Gradient-Based Optimization. We initialize the light-
ing parameter by randomly sampling a population of points in the normalized
bounded search space. After updating the parameters at each iteration, we clip
them inside the bounds to avoid wasting computation time. The final results
and the total optimization time of using ES and GWO for this experiment are
reported in Table 1. Since these methods are stochastic, numbers are reported
after 10 independent trials. The results indicate that sampling-based algorithms
like GWO are more effective in the lighting design task than gradient estima-
tion. The reason could be that plausible solutions are sparse in the large search
space. Hence, without a very good initialization, gradient estimation has a lower
chance to fall into a very good optimum.

Table 1. Comparison of two gradient-free optimizers applied on the stadium light-
ing problem. The computation time heavily depends on the number of lights, num-
ber of iterations, and the population size. We generally observe a better performance
(reported as average and median) from Grey Wolf Optimizer compared to Evolutionary
Search. N denotes population size.

Optimizer ES GWO

(N, Iterations) (50, 300) (100, 500) (50, 300) (100, 500)

4 lights Ave. Loss 0.13246 0.10351 0.09572 0.09448

Med. Loss 0.12001 0.10442 0.09581 0.09429

Ave. Time (s) 53 162 50 158

16 lights Ave. Loss 0.10449 0.11107 0.09013 0.08573

Med Loss 0.10029 0.10490 0.09157 0.08497

Ave. Time (s) 164 484 155 491

The objective function for gradient-free optimizers is defined as Eq. (1) and
includes the penalty for the constraints of the light positions. Also, to strictly
enforce the constraints for these optimizers, we clip the parameters inside their
bounds at every iteration. For the gradient-based differentiable optimization,
we implement a differentiable PyTorch-based model of these constraints to be
included in the differentiable loss function. However, the final solution might
violate some of the constraints depending on the extent to which we enforce
the penalties. Table 2 shows the results of using Adam optimizer in two cases
whether constraint penalties are applied or not. The results indicate that apply-
ing this penalty can lower the constraints violation but it may slightly sacrifice
the NMSE loss between the result and the target illumination. Another impor-
tant observation from Table 2 is that gradient-based algorithms show their supe-
rior performance only for more lights (16 and 64) which means larger search
spaces. The reason lies behind the fact that in larger dimensions, the solutions



296 K. Meidani et al.

are too sparse to be found by sampling methods while gradient can be a trusted
guide toward the optimal solution.

Deep Inverse Lighting Model. To train the model, we generate 100K/10K
train/test samples of PBR-compliant illumination fields where the samples are
randomly selected from the bounded parameter space. Similar to previous exper-
iments, we train models for the cases of 4 and 16 lights (with symmetrical posi-
tioning).

Table 2. Performance of differentiable optimization with gradient descent (Adam)
optimizer for different number of lights and compared with gradient-free optimizer
(GWO) when applied on the stadium lighting problem. Target result indicates the nor-
malized loss between the optimal solution and the target illumination. Const. denotes
the loss corresponding to the violation of positional constraints, and Total is their
summation.

Optimizer Gradient-free
Differentiable Gradient-based

w/o const. w const.

Loss Total Target Const. Total Target Const. Total

4 lights

Ave. 0.09572 0.10354 0.00096 0.10451 0.11243 0.00068 0.11311

Med. 0.09581 0.09814 0.00108 0.09923 0.09837 0.00058 0.09865

Time (s) 50 53 (15000 iterations)

16 lights

Ave. 0.09013 0.08817 0.01475 0.10292 0.09756 0.00066 0.09822

Med. 0.09157 0.08390 0.01424 0.09813 0.09778 0.00040 0.09818

Time (s) 155 74 (5000 iterations)

64 lights

Ave. 0.09306 0.07841 0.01522 0.09363 0.08876 0.00079 0.08797

Med. 0.09335 0.07761 0.01590 0.09351 0.08423 0.00090 0.08377

Time (s) 536 343 (5000 iterations)

Table 3. Performance of deep inverse lighting model for two types of learning. Using
differentiable decoder and reconstruction loss significantly improves the final solution.

Model Reconstruction Parameters

# of Lights 4 Lights 16 Lights 4 Lights 16 Lights

Loss 0.11012 0.10670 0.13609 0.16220

To show the importance of the differentiable PBR module, we compare the
results with a CNN model that maps the illumination fields to the parameter
space (trained by parameter-space loss). The results reported in Table 3 show
that using reconstruction loss on the illumination image-space (I(S)) is far more
effective than using the loss in the parameter-space (W). The final target loss
achieved by DIL model is not as good as optimization-based models in Table 2,



Inverse Lighting with Differentiable Physically-Based Model 297

Fig. 4. Illumination predictions of the trained deep inverse lighting model with 16
lights for different test targets.

Fig. 5. Sample results of illumination field achieved by different inverse models studied
in this work compared to the target illumination. We observe that almost all of the
models can achieve acceptable results. Gradient-free models are better for less number
of lights while gradient-based models can cover more details with 16 lights. DIL model
achieves a reasonable result with a one-time prediction.

however, it enables us to predict for different targets quickly without an iterative
process. Figure 4 shows the model’s predictions at test time for different choices
of target.

6 Discussion and Future Work

In this work, we explored several approaches to the inverse lighting problem and
showcased the results for stadium lighting design in sports games. All in all, we
can state that all the methods that we explored in this paper can provide accept-
able solutions to some extent. This is also shown qualitatively in Fig. 5 where
final solutions of different methods are compared with the target illumination.



298 K. Meidani et al.

However, we can still select the best method in different conditions. Gradient-
free methods are suitable choices when the problem is low-dimensional and we
can afford the computation time for a single target. This is while differentiable
gradient-based methods work very well in unconstrained and high dimensional
problems. Deep Inverse Lighting (DIL) model is a data-driven framework that
can directly estimate the optimal lighting design for each target by learning with
an auto-encoder-like model where the decoder is a differentiable PBR model.
While this model has some limitations such as a fixed number of lights, con-
straint definition problem, and sub-optimal solution, it opens several opportuni-
ties for future work. For instance, the model can be used for providing an initial
solution that can be further fine-tuned using optimization algorithms. Also, the
other limitations such as fixed bottleneck size can be addressed by using more
flexible models such as transformers.

References

1. Chen, W., et al.: DIB-R++: learning to predict lighting and material with a hybrid
differentiable renderer. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan,
J.W. (eds.) Advances in Neural Information Processing Systems (2021). https://
openreview.net/forum?id=gRqHB07GGz3

2. Gardner, M.A., Hold-Geoffroy, Y., Sunkavalli, K., Gagne, C., Lalonde, J.F.: Deep
parametric indoor lighting estimation. In: The IEEE International Conference on
Computer Vision (ICCV) (2019)

3. Gardner, M.A., et al.: Learning to predict indoor illumination from a single image.
ACM Trans. Graph. 36(6), 1–14 (2017). https://doi.org/10.1145/3130800.3130891

4. Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying
indoor lighting estimation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2019)

5. Gkaravelis, A., Papaioannou, G.: Inverse lighting design using a coverage optimiza-
tion strategy. Vis. Comput. 32, 771–780 (2016). https://doi.org/10.1007/s00371-
016-1237-9

6. Gkaravelis, A., Papaioannou, G.: Light optimization for detail highlighting. In:
Computer Graphics Forum, vol. 37 (2018)

7. Hansen, N.: The CMA evolution strategy: a tutorial (2016). https://doi.org/10.
48550/ARXIV.1604.00772. https://arxiv.org/abs/1604.00772

8. Hold-Geoffroy, Y., Athawale, A., Lalonde, J.F.: Deep sky modeling for single image
outdoor lighting estimation. In: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6920–6928 (2019)

9. Hold-Geoffroy, Y., Sunkavalli, K., Hadap, S., Gambaretto, E., Lalonde, J.F.: Deep
outdoor illumination estimation. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2373–2382 (2017). https://doi.org/10.1109/
CVPR.2017.255

10. Kato, H., et al.: Differentiable rendering: a survey (2020). https://doi.org/10.
48550/ARXIV.2006.12057. https://arxiv.org/abs/2006.12057

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2015)

12. Lagarde, S.: SIGGRAPH 2014: moving frostbite to physically based rendering
V3 (2014). https://seblagarde.wordpress.com/2015/07/14/siggraph-2014-moving-
frostbite-to-physically-based-rendering/. Accessed 09 Mar 2022

https://openreview.net/forum?id=gRqHB07GGz3
https://openreview.net/forum?id=gRqHB07GGz3
https://doi.org/10.1145/3130800.3130891
https://doi.org/10.1007/s00371-016-1237-9
https://doi.org/10.1007/s00371-016-1237-9
https://doi.org/10.48550/ARXIV.1604.00772
https://doi.org/10.48550/ARXIV.1604.00772
https://arxiv.org/abs/1604.00772
https://doi.org/10.1109/CVPR.2017.255
https://doi.org/10.1109/CVPR.2017.255
https://doi.org/10.48550/ARXIV.2006.12057
https://doi.org/10.48550/ARXIV.2006.12057
https://arxiv.org/abs/2006.12057
https://seblagarde.wordpress.com/2015/07/14/siggraph-2014-moving-frostbite-to-physically-based-rendering/
https://seblagarde.wordpress.com/2015/07/14/siggraph-2014-moving-frostbite-to-physically-based-rendering/


Inverse Lighting with Differentiable Physically-Based Model 299

13. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse ren-
dering for complex indoor scenes: shape, spatially-varying lighting and SVBRDF
from a single image. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2475–2484 (2020)

14. Lima, G.F.M., Tavares, J., Peretta, I.S., Yamanaka, K., Cardoso, A., Lam-
ounier, E.: Optimization of lighting design usign genetic algorithms. In: 2010 9th
IEEE/IAS International Conference on Industry Applications - INDUSCON 2010,
pp. 1–6 (2010). https://doi.org/10.1109/INDUSCON.2010.5740021

15. Madias, E.N.D., Kontaxis, P.A., Topalis, F.V.: Application of multi-objective
genetic algorithms to interior lighting optimization. Energy Build. 125, 66–74
(2016). https://doi.org/10.1016/j.enbuild.2016.04.078. https://www.sciencedirect.
com/science/article/pii/S0378778816303553

16. Meidani, K., Hemmasian, A., Mirjalili, S., Barati Farimani, A.: Adaptive grey wolf
optimizer. Neural Comput. Appl. 34(10), 7711–7731 (2022). https://doi.org/10.
1007/s00521-021-06885-9

17. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw.
69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007. https://www.
sciencedirect.com/science/article/pii/S0965997813001853

18. Nieto, G., Jiddi, S., Robert, P.: Robust point light source estimation using differ-
entiable rendering (2018). https://doi.org/10.48550/ARXIV.1812.04857. https://
arxiv.org/abs/1812.04857

19. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

20. Petranović, D.: Stadium reflector aiming using genetic algorithms. In: 2012 Pro-
ceedings of the 35th International Convention MIPRO, pp. 1070–1075 (2012)

21. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable
alternative to reinforcement learning. ArXiv ArXiv:1703.03864 (2017)

22. Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D., Kautz, J.: Neural inverse ren-
dering of an indoor scene from a single image. In: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 8597–8606 (2019). https://doi.org/
10.1109/ICCV.2019.00869

23. Song, S., Funkhouser, T.: Neural illumination: lighting prediction for indoor envi-
ronments. In: Proceedings of 33th IEEE Conference on Computer Vision and Pat-
tern Recognition (2019)

24. Srinivasan, P.P., Mildenhall, B., Tancik, M., Barron, J.T., Tucker, R., Snavely,
N.: Lighthouse: predicting lighting volumes for spatially-coherent illumination. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2020)

25. Wang, L.-W., Siu, W.-C., Liu, Z.-S., Li, C.-T., Lun, D.P.K.: Deep relighting net-
works for image light source manipulation. In: Bartoli, A., Fusiello, A. (eds.) ECCV
2020, Part III. LNCS, vol. 12537, pp. 550–567. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-67070-2 33

26. Wang, Z., Philion, J., Fidler, S., Kautz, J.: Learning indoor inverse rendering with
3D spatially-varying lighting. In: Proceedings of International Conference on Com-
puter Vision (ICCV) (2021)

27. Xiao, H., Fang, J., Zhu, P., Yin, W., Kang, Q.: Energy-saving optimization of
football field lighting via genetic algorithm. Sens. Lett. 12, 264–269 (2014). https://
doi.org/10.1166/sl.2014.3265

https://doi.org/10.1109/INDUSCON.2010.5740021
https://doi.org/10.1016/j.enbuild.2016.04.078
https://www.sciencedirect.com/science/article/pii/S0378778816303553
https://www.sciencedirect.com/science/article/pii/S0378778816303553
https://doi.org/10.1007/s00521-021-06885-9
https://doi.org/10.1007/s00521-021-06885-9
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://www.sciencedirect.com/science/article/pii/S0965997813001853
https://www.sciencedirect.com/science/article/pii/S0965997813001853
https://doi.org/10.48550/ARXIV.1812.04857
https://arxiv.org/abs/1812.04857
https://arxiv.org/abs/1812.04857
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1703.03864
https://doi.org/10.1109/ICCV.2019.00869
https://doi.org/10.1109/ICCV.2019.00869
https://doi.org/10.1007/978-3-030-67070-2_33
https://doi.org/10.1007/978-3-030-67070-2_33
https://doi.org/10.1166/sl.2014.3265
https://doi.org/10.1166/sl.2014.3265


300 K. Meidani et al.

28. Yu, Y., Smith, W.: InverseRenderNet: learning single image inverse rendering.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3150–3159 (2019)

29. Zhan, F., et al.: GMLight: lighting estimation via geometric distribution approx-
imation. IEEE Trans. Image Process. 31, 2268–2278 (2022). https://doi.org/10.
1109/TIP.2022.3151997

30. Zhang, E., Cohen, M.F., Curless, B.: Discovering point lights with intensity dis-
tance fields. In: The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2018)

31. Zhang, J., Sunkavalli, K., Hold-Geoffroy, Y., Hadap, S., Eisenmann, J., Lalonde,
J.F.: All-weather deep outdoor lighting estimation. In: IEEE International Confer-
ence on Computer Vision and Pattern Recognition (2019)

32. Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: PhySG: inverse rendering
with spherical gaussians for physics-based material editing and relighting. In: The
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2021)

33. Zhao, S.Y., Xie, Y.P., Li, W.J.: On the convergence and improvement of stochastic
normalized gradient descent. Sci. China Inf. Sci. 64(3), 132103 (2021). https://doi.
org/10.1007/s11432-020-3023-7

https://doi.org/10.1109/TIP.2022.3151997
https://doi.org/10.1109/TIP.2022.3151997
https://doi.org/10.1007/s11432-020-3023-7
https://doi.org/10.1007/s11432-020-3023-7


Repositioning Fleet Vehicles: A Learning
Pipeline

Augustin Parjadis1(B), Quentin Cappart1, Quentin Massoteau2,
and Louis-Martin Rousseau1

1 Polytechnique Montréal, Montreal, Canada
{augustin.parjadis-de-lariviere,quentin.cappart,

louis-martin.rousseau}@polymtl.ca
2 Fastercom, Montreal, Canada

quentin.massoteau@fastercom.ca

Abstract. Managing a fleet of vehicles under uncertainty requires care-
ful planning and adaptability. We consider a ride-hailing problem where
the operator manages vehicle repositioning to maximize responsiveness.
This paper introduces a supervised learning pipeline that uses past trip
data to reposition vehicles while adapting to fleet activity, a geographical
zone, and seasonal or daily request variation. The pipeline incorporates
trip features, such as medical motives of transportation for ambulances
and the time and location of the trips. This provides a better estimate
of the probability that a given vehicle will be required in a particular
sector and provides insights into which events and trip features should
be incorporated into the decision-making process for better fleet man-
agement and improved reactivity. This tool has been developed for, and
used by, operators of an ambulance company in Belgium. Using predic-
tors for ambulance repositioning reduces at least 10% of the overall fleet
reaction distance.

Keywords: Dynamic ride-hailing · Supervised learning · Fleet
management

1 Introduction

Fleet management in a ride-hailing context is a challenging problem due to the
stochastic nature of the demand and the dynamic decisions that must be made.
Medical transportation for unplanned requests faces the same challenges and
aims at providing a wide-spread and fast coverage to ensure medical services
availability; they have been a regular focus of routing problems in general, as
cities need efficient and cost-effective medical transportation [12,14].

This work focuses on learning from limited historical data for ride-hailing in
a medical transportation setting and providing easy tools to set up, interpret and
apply to small fleets of ambulances. The contribution of this paper is an effective
learning pipeline that can provide an adaptable repositioning agent capable of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 301–317, 2023.
https://doi.org/10.1007/978-3-031-44505-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_21&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_21


302 A. Parjadis et al.

recognizing daily and hourly patterns and adapting to evolving demand distribu-
tion. The current strategy used by the company taking care of the repositioning
yields a low total distance driven by the ambulance fleet but provides poor
reactivity to requests; our learning pipeline improves this without a significant
increase in the total distance driven on real-world data. The paper is organized
as follows. Section 2 reviews the relevant literature. Then, Sect. 3 introduces and
formalizes the ride-hailing problem. Section 4 presents the pipeline structure.
Section 5 presents a case study where we apply our repositioning agent to a fleet
of ambulances in Belgium for unplanned medical trips.

2 Literature Review

Vehicle routing problems (VRPs), focusing on finding optimal routes for vehicles
between multiple locations and under various constraints, are ubiquitous in the
flow of people and goods in our increasingly interconnected cities, networks, etc.
As a traveling salesman problem at its core, these problems are hard [15,39].
They are often subject to additional constraints when modeling real problems,
often linked to time windows, traffic rules, environmental considerations, or many
other potential obstacles [9,23,26].

Ride-hailing problems are vehicle routing problems, more precisely dial-a-ride
problems where multiple users request trips with given time windows and are
transforming logistics and sustainability in the context of rising awareness towards
efficiency and environmental issues. This transformation of urban mobility can
stimulate the adoption of new technologies and positively impact energy consump-
tion and quality of life [4,19]. Nevertheless, the success of these systems depends
on their effective efficiency and ease of use, which is a challenge given the com-
plex nature of vehicle routing problems in dynamic environments. Extensive liter-
ature can be found for dynamic VRPs and dial-a-ride problems in recent surveys
[16,32]. The dynamic nature of ride-hailing problems, with new requests arriving
at unknown times and locations, creates different challenges and requires novel
solution approaches than do not simply assume perfect information.

The first challenge of ride-hailing problems is to assign vehicles to incoming
requests. This has been tackled by traffic flow study [25], oversupply analysis
[6], and negotiation techniques between vehicles [36]. Several studies approach
fleet management from the opposite direction, focusing on vehicle repositioning
to anticipate future requests. Miao et al. [29] use a receding horizon for distri-
bution estimation, Zhang and Pavone [42] focus on a queuing-theoretical model
for supply rebalancing, while Braverman et al. [7] introduce fluid-based opti-
mization methods to control car flow and maximize the expected value of served
requests. Other works study assignment and repositioning for a more complete
approach to the ride-hailing problem with either heuristic strategies at global
scales for autonomous vehicles [11] or large-scale optimization-based methods
[1,5,10]. Furthermore, increasing interconnectivity and data availability allow
enriched models and more precise control of the vehicles. For example, real-time
information such as traffic congestion or driving times opens up the possibility
of adapting programmed tasks and trip trajectories [13,35].



Repositioning Fleet Vehicles: A Learning Pipeline 303

Recent machine learning developments allow the creation of new tools to
tackle complex problems and integrate historical data. From the plethora of
regressors and classifiers, [31], multi-layer perceptrons and deep learning emerged
as powerful tools to learn from unstructured data [24]; deep reinforcement learn-
ing (DRL) [2,38] allowed the training of agents to interact with their environ-
ment. These approaches are incredibly prolific in image classification [37], natu-
ral language processing [33], super-human performance in games [20], and have
also been considered by the operations research community for mathematical
optimization [3]. Optimization coefficients can, for example, be learned inside a
more traditional learning algorithm [40], multi-agent DRL allows the training of
a fleet of agents to maximize shared profit [17,30], and can integrate tradition-
ally complex variants like electric vehicle charging [22]. The ride-hailing problem
can thus be tackled with a hybrid approach of learning, and optimization [34],
or learning from optimization models [41]. Handling a whole fleet in a dynamic
environment is a complex task, often solved by reinforcement learning in which
fleets are represented by an agent [18], or multiple agents [27,28], that explore
and refine fleet management policies. These learning approaches are efficient
but require a large amount of data and are not easy to use and interpret for
dispatchers of a small fleet. Based on this context, our contribution focuses on
a smaller granularity, both time-wise and vehicle-wise, aiming at developing a
pipeline that works with a limited amount of data and is easy to interpret for
the operators.

3 The Ride-Hailing Problem

This section presents the ride-hailing problem and the relevant notation used
throughout this work.

3.1 Problem Definition

Let V be a fleet of vehicles and R the set of unplanned requests arriving through-
out the day. A vehicle v ∈ V is characterized by its geographical position and its
status. The possible status are as follows: (1) driving to a client, (2) serving a
client, (3) repositioning, (4) idling at a location, and (5) waiting for repositioning
instructions. A request r ∈ R is emitted at a time rt and is characterized by its
origin and destination coordinates.

Each time a request arises, it is assigned to the closest vehicle. Vehicles idling
or repositioning immediately go serving the request they have been assigned.
However, vehicles currently serving a request might also be chosen to serve the
new request after their current ones have been fulfilled, as there is no maximum
waiting time. The requests can arise and lead anywhere, usually hospitals and
patient houses; they will all get served by the fleet.

A repositioning decision is made when a vehicle finishes serving a request
and does not have another to serve next. Let L be the set of locations containing
predefined geographical points where vehicles are sent to idle between requests.



304 A. Parjadis et al.

The requests can arise anywhere, whereas vehicles must wait at the predefined
locations L. The goal is to reposition vehicles to the idling locations to minimize
the average reaction distance, defined as the distance driven by an ambulance
from where it is when assigned to a request to the pick-up point of the request.
The reaction distance includes the distance driven by ambulances that have to
finish current trips before answering the request.

Visual Example. An illustration of possible decisions is proposed in Fig. 1: (1)
A request for a patient is first received and assigned to a nearby vehicle chosen
during the assignment process. (2) After the ride, the vehicle is repositioned to
a location chosen during the repositioning process. (3) Let us point out that the
location does not have to be the closest one, nor does it have to be its original
idling location. (4) Finally, another vehicle can be repositioned to balance the
supply.

Fig. 1. Ride-hailing situation - example.

3.2 Modelling the Repositioning Task

A decision must be carried out each time a new request is received and each
time a vehicle finishes serving a trip request. An episode refers to a full day of
operations or the fleet and contains as many decisions as requests received and
trips finished. When a decision must be made, the system is given a state. The
formal definitions of a state and a decision are proposed below.

States. A state s = (sR, sr, st, sV ) is composed of a prior requests vector
(sR), a request vector (sr), a time vector (st) and a vehicle vector (sV ). The
prior requests vector is composed of tuples indicating the location of origin,
arrival, and the medical motive of the past requests within a given horizon H:
(rO

i , rA
i , rm

i )i∈H . The request vector sr provides the geographical coordinates of
the origin and destination of the request received at the start of the decision



Repositioning Fleet Vehicles: A Learning Pipeline 305

epoch. It is empty if the epoch was triggered by a vehicle becoming idle. The
time vector st = (d, t) indicates the day of the week d and hour of the day t as
one-hot encoded vectors. The vehicle vector sV indicates the status and positions
of the fleet’s vehicles.

Decisions. A repositioning decision a = (a1, a2, . . . , aV ) is composed of vehicle
repositioning instructions. For all vehicles, v ∈ V , the instruction av ∈ L ∪ {∅}
indicates the location l ∈ L at which a vehicle must reposition or an absence of
instruction. Idle vehicles that finished serving a trip request must be repositioned
to idle at a valid location.

4 Learning Pipeline for Vehicle Repositioning

This section presents a learning pipeline used in the specific context of ambulance
management, which is general enough to be adapted to other situations. The
pipeline consists of a learning algorithm and a prediction agent. It is illustrated
in Fig. 2 and is divided into 4 steps: (1) Past data is collected, used to build
context vectors, and split to build the training and test sets, (2) an agent is
trained on this dataset and is used operationally to predict the next location
most likely to receive a request, and (3) this information is fed to a repositioning
algorithm adapted to the fleet. Each step is detailed in the next paragraphs.

Fig. 2. Pipeline structure.

Step 1: Data Preparation. The data comprises the set of feature vectors
X, encoding the state and context in which a trip request arrived, and the
associated set of target values vector Y , containing the locations of the origin
of the requests. Several features are used to make a prediction, such as time,
location, and motives of previous requests. Geographical distributions will, for



306 A. Parjadis et al.

example, be affected by the population moving during work days or days off,
resulting in hourly and weekly variations in requests. Previous requests’ origin,
destination, and motives are also likely to provide relevant information about
whether a patient will be emitting another request and when; we encode their
frequency and recency with discounted factors in a context vector that aggregates
the information from H requests as follows.

Prior requests origins (PRO), prior requests arrivals (PRA), and medi-
cal motives are features computed from the components of the prior requests
vector. For each location l, we define the prior requests origins feature
sO

l = 1
H

∑
i∈[1,H] δ(l, ri)βi, where β ∈]0, 1] is a constant, and

δ(l, ri) =

{
1 if l = rO

i

0 otherwise
(1)

indicates which location a prior request emerged next to, with rO
i being the

closest location from ri’s origin. Here, r1 is the latest request at time t, r2 the
one before it, etc., with rH being the oldest request considered on our horizon.
For the requests arrivals, (sA

l )l∈L is computed similarly with arrival locations.
For each medical motive m ∈ M , we define sm = 1

H

∑
i∈[1,H] μ(m, ri)βi, with

μ(m, ri) =

{
1 if m = rm

i

0 otherwise
(2)

where rm
i is the motive of request i, indicating the number of requests with

motive m ∈ M and their recency. (sO
l )l∈L, (sA

l )l∈L, and (sm)m∈M thus indicates
which hospitals requests emerged from and arrived at, and which medical motives
were observed. The set of medical motives M can include simple consultations,
transfers, specialized interventions, etc. Table 1 provides a summary of the state
features for our case study related to healthcare. All feature values are in [0, 1].
The relevance of such features is analyzed in Appendix 1.

The training set is built by taking whole days of data and extracting the
arising requests as well as the state in which they arrived to build the feature
vector set X = {(sO, sA, sm, st)} and the targets Y = {rO

i }. A request ri arises
at time rit with rO

i the closest location from its origin. We then train a classifier
to try and infer the next request location, given the current state.

Table 1. State features

Feature Number of values

Time st 24+7

PRO sO
l |L|

PRA sA
l |L|

Motives sm |M |



Repositioning Fleet Vehicles: A Learning Pipeline 307

Step 2: Location Classifier Training. A learning model F is defined and
trained to predict which locations Y will most likely receive the following request
based on the features X describing the problem’s state and the fleet’s previous
activity during the day. We consider random forests, gradient boosting methods,
and multilayer perceptrons for our classifiers. Details about the training are pro-
vided for the case study in Sect. 5.2. Once trained, the models give as an output
a vector quantifying the probability of each location being the next receiving a
request, F (x) = ŷ. It is then used to issue a repositioning decision to vehicles
finishing a trip and idle for too long at an inactive location.

Step 3: Algorithm for Vehicle Repositioning. The repositioning procedure
is illustrated in Algorithm 1. It is called each time a decision must be made, i.e.
when a request is issued or when an ambulance has finished its trip. The algo-
rithm generates a prediction for the different locations with the trained model
(line 9) and chooses locations to reposition the vehicles that have been idle for
too long and the vehicle that finished its trip, if applicable (lines 11 to 13). The
repositioning location is obtained by chooseLocation(ŷ, v,L) procedure (line 12),
which is formalized in Algorithm 2. It is done for a vehicle v ∈ V , based on the
score obtained for each position (ŷ) and on the current idling location of each
vehicle (L). The repositioning instructions are stored in L (line 12). The idling
time for each vehicle is also updated (lines 13 and 15).

Algorithm 1: Fleet Repositioning
1 � Pre: x is the current state, as defined in Step 1 (data preparation).
2 F is the learned model (gives a score for each location from L).
3 V is the set of all vehicles.
4 ρ is the vehicle that has finished its trip and is to be repositioned.
5 L[v] is the idling location of vehicle v.
6 I[v] is the number of iterations during which v has been idle.
7 Θ is a threshold triggering a repositioning, if exceeded.
8

9 ŷ := F (x) � Calling the trained model
10 for each v ∈ V do
11 if v = ρ ∨ I[v] > Θ then
12 L[v] := chooseLocation(ŷ, v, L) � Procedure defined in Algorithm 2
13 I[v] := 0

14 else
15 I[v] := I[v] + 1

The goal of Algorithm 2 is to find the closest empty location likely to receive
a request. First, the number of vehicles present at each location is computed (line
11). Let ŷ = 〈ŷl〉l∈L be the score vector returned by the classifier for each loca-
tion. The higher ŷl, the more confident the classifier is in having the subsequent



308 A. Parjadis et al.

request arising next to location l. Candidate locations Λ for repositioning are
selected by taking all probable unfilled locations with a tolerance factor defined
by γ ∈ ]0, 1[ (line 15). A location is unfilled if it contains fewer vehicles than a
given parameter τ ∈ N

+. For example, setting this parameter to 1 only allows
picking an empty location until all locations have one idling vehicle. From those
candidates, the vehicle is sent to the closest one (line 17). If all candidate loca-
tions are filled, we consider decreasingly probable locations until an unfilled one
is found, which is done by ignoring the most probable location and setting their
score to 0 for the next iterations (line 19) as it did not yield a valid repositioning
location. If all the locations are filled, the closest location is selected regardless
of the number of vehicles idling there (line 21). This algorithm allows spread-
ing the vehicles from the highest to lowest-valued locations, with the shortest
distance being the decisive criterion for equally probable locations. We evaluate
the practical use of the pipeline in a case study in the next section.

Algorithm 2: Selecting a Location for a Vehicle
1 � Pre: ŷ = 〈ŷ1, . . . , ŷL〉 is the predictor output for each location.
2 v is the vehicle to reposition.
3 L is the set of all locations.
4 L[v] is the idling location of vehicle v.
5 d[v, l] is the distance function from v to the location l.
6 γ ∈ ]0, 1[ is a prediction tolerance parameter.
7 τ ∈ N

+ is a filled location parameter.
8

9 chooseLocation(ŷ, v, L) :
10 for each l ∈ L do

11 C[l] :=
∣
∣
∣

{

v ∈ V
∣
∣ L[v] = l

}
∣
∣
∣ � Number of vehicles at each location

12 l� := ⊥ � Store the best location to reposition
13 while l� = ⊥ ∧ max(ŷ) > 0 do
14 k� := arg max(ŷ) � Taking the index of location with highest score
15 Λ :=

{

l ∈ L
∣
∣ ŷl ≥ (1 − γ)ŷk� ∧ C[l] < τ

}

� Filtering the locations
16 if Λ 	= ∅ then
17 l� := arg minl∈Λ

(

d[v, l]
)

18 else
19 yk� := 0

20 if l� = ⊥ then
21 l� := arg minl∈L

(

d[v, l]
)

22 return l�

5 Case Study: Ambulance Fleet in Belgium

This project is conducted in collaboration with a company to develop auto-
mated assistance for managing a fleet of ambulances. We consider a central-



Repositioning Fleet Vehicles: A Learning Pipeline 309

ized dispatcher for the fleet that assigns identical ambulances to requests for
medical transport and repositions idle ambulances to nearby hospitals. Even
though requests arise randomly, patterns can be exploited as the requests tend
to emerge more frequently in specific zones at certain times. Furthermore, trans-
port between hospitals might depend on why patients are being brought to the
hospitals. Some interventions are short and patients will quickly be sent back
home, some are long and require patients to spend the night at the hospital,
and others might require an inter-hospital transfer. We use past trip data with
geographical coordinates, time, and medical motives in our pipeline to study
what impact a trained predictor has on overall fleet efficiency during real-world
operating days. The pipeline is used to obtain a more reactive ambulance fleet
by idling closer to oncoming requests; in particular, the company is interested in
reducing the average reaction time, or the average reaction distance as a proxy.
A study of the retraining of the predictor to improve over time and adapt to
new data is presented in Appendix 2.

5.1 Use of the Pipeline

We use collected data from 500 operating days to train our predictor. The data
from past requests are transformed and rescaled for anonymity and better learn-
ing. The geographical coordinates of a request are mapped to the closest loca-
tion (there are seven predefined hospitals used as waiting locations for ambu-
lances), and the transport motive is encoded as a one-hot vector with predefined
categories M = {consultation, radiotherapy, . . . }. As presented in Sect. 4, these
encoded requests are used to build a state representation x(t) = (sO, sA, sm, st)
at time t. The training set is composed of all previous requests, the state they
arrived in, and the closest location to that request {x(rit), rO

i }.

5.2 Training Phase

Roughly 8000 real trips are available for training. We split this dataset into a
training set and a validation set (85%-15%). We also keep 248 real trips (10
days of operations) for the test set. Three models have been implemented for
the predictor: a neural network, random forest, and gradient boosting. The neu-
ral network is implemented with PyTorch and consists of a self-attention layer
coupled to a two hidden-layer feed-forward neural networks with 250 and 150
neurons in each hidden layer, respectively. Training is carried out with the Adam
optimizer [21], and we use an early stopping method to avoid overfitting. A binary
cross-entropy loss is used for the cost function (Fθ(x) = ŷ trained to minimize
C(θ) = − 1

N

∑N
i=1 yi log(Fθ(xi)) + (1 − yi) log(1 − Fθ(xi)) on batches of size N).

Random forest and gradient boosting are implemented with scikit-learn. Each
model is trained on a personal computer (i7-8750H 2.20GHz CPU) in less than
1 min. The best values for the context vector parameters β and H are obtained
by grid-search (β = 0.75 and H = 10). The evolution of the loss during train-
ing is reported in Fig. 3(b) for the neural network. As comparison baselines we



310 A. Parjadis et al.

also integrate a random selection, and a constant heuristic Most Frequent always
assigning the location closest on average to the requests most frequently observed
in the historical data. The accuracy (percentage of correctly predicted location)
of the neural network is reported in Fig. 3(a) and includes comparisons with
gradient boosting, random, and the best constant heuristic Most Frequent.

Fig. 3. Statistics for the training phase.

5.3 Results: Location Prediction

Table 2 summarizes the main results of the different predictors, obtained with a
5-fold cross-validation method for predicting the next request, without any inte-
gration with the repositioning algorithm. The accuracy and the average distance
between the predicted locations and the requested positions are reported. We
can observe that the three predictors outperform the heuristic, both in terms of
accuracy and in terms of average distance, which is the result intended. Among
the three predictors, GradBoost provides the best performance. We evaluate the
impact of the improvement of the location prediction on the fleet performance
in the next section.

Table 2. Results of the different predictors for the next request. The percentage of
improvement compared to the most frequent heuristic is also proposed.

Predictor Accuracy Average distance to request (km)

Random 14% 13.1 ± 5.1

Most frequent 25% 8.58 ± 4.1

Random Forest 30% 8.53 ± 4.3 (−0%)

NN 35% 8.05 ± 4.3 (−6%)

GradBoost 36% 6.71 ± 4.1 (−21%)



Repositioning Fleet Vehicles: A Learning Pipeline 311

5.4 Results: Ambulances Repositioning

Thanks to an application programming interface (API) provided by the partner
company, we were able to obtain the travel time between each pair of ambulance
depots and request position. With this information, we replayed a posteriori the
requests of 10 historical days and re-positioned the ambulances with different
policies: (1) positioning ambulances to the closest hospital after a trip (Closest),
(2) sending ambulances to an empty hospital that was historically closest to the
most requests (Most frequent, which is the previously seen heuristic restricted to
empty locations), (3) the relocation procedure proposed in Algorithm 2 (γ = 0.05
and τ = 1) with the three predictors (NN, Random Forest, and GradBoost).
Results are illustrated in Fig. 4, and Table 3 presents the numerical results. The
reaction distance corresponds to the accumulated travel times of all the ambu-
lances between their current position to the location of accepted requests, and
the total distance travelled is the accumulated travel times of all the ambulances,
including the repositioning operation.

Fig. 4. Distance to drive to requests in 10 simulated days (data in Table 3)

The results show that the learned predictors help ensure more precise place-
ment of vehicles for better reactivity, improving the Most frequent strategy by
10% and the closest strategy by 35%. By design, Most frequent ensures reac-
tivity but results in greater overall distance travelled by the fleet. This can
be corrected by using the learned predictors, especially the gradient boosting
method that brings the total distance travelled back to Closest levels. Closest
yields a low total distance because most ambulance movements are reactive. The
ambulances reposition to the closest hospital after fulfilling a trip and then go
directly to the next arising request. This ensures that few detours are made,
but the reaction distance might be large because of a lack of anticipation. As
we replayed historical days, it is possible to compute the optimal repositioning
decisions with perfect information, minimizing either the reaction distance or
the total distance. Although not feasible in practice, it provides lower bounds



312 A. Parjadis et al.

Table 3. Distance (km) to drive to requests in 10 simulated days.

Predictor Reaction distance
(locations to requests)

Total distance traveled

Random 1073 1930.8

Closest 812.5 1412.1

Most frequent 587.6 1617.6

Random Forest 544.2 1593.4

NN 525.9 1552.6

GradBoost 526.3 1470.1

Reaction distance LB 453.8 1721.3

Total distance LB 669.2 1052.1

on the distance that can be achieved. The results show that the learned predic-
tors approach these theoretical lower bounds while keeping the total distance
travelled relatively low.

We deployed our repositioning strategy on the partner company server and
ran a live experiment on 20 new days. The prediction pipeline is used as described
in the previous section, and we evaluate the impact it would have had compared
to the real-life instructions given by the operators (partly Closest and partly
Most Frequent strategies most of the time) by fetching data in the database and
providing real-time predictions for repositioning. The results are summarized in
Table 4 for 20 operational days and show that the reaction distance could have
been diminished, by between 15% to 21%, while the total distance would have
increased, by around 10%. Thus, the predictors succeed in improving fleet reac-
tivity with minimal deterioration of the total distance; an intermediate strategy
can be used if the fleet is averse to small increases in total distance.

Table 4. Distance (km) to drive to requests, averaged over 20 days.

Predictor Reaction distance
(locations to requests)

Total distance traveled

Dispatcher instructions 1002.7 1712.3

NN 787.6 (−21%) 1898.5 (+11%)

GradBoost 846.8 (−15%) 1882.0 (+10%)

6 Conclusion

We developed an adaptive learning pipeline to reposition fleet vehicles in a ride-
hailing problem with centralized control. Prior data on trips and requests allowed
us to train classifiers to determine the zone most likely to receive requests, and
vehicles that need to be repositioned are dispatched according to the prediction
and state of the fleet. Our simulated application to a real ambulance fleet in



Repositioning Fleet Vehicles: A Learning Pipeline 313

Belgium shows a theoretical improvement of more than 10% in reactivity for
arising requests, and this result was confirmed by the implementation of our
predictor in an industrial vehicle routing and fleet management program for
ambulances.

Appendix 1. Analysis: Features Importance

In addition to the learning-based repositioning strategy, the company is also
interested to know which features (time, location, motives, etc.) are the most
important to explain a specific decision. To do so, we use permutation feature
importance which measures the drop in performance when the dataset is cor-
rupted by randomly shuffling a feature [8]. Figure 5 shows the relative importance
of different features for the neural network and the gradient boosting method.
The higher the number the more important; the features are grouped by time,
PRO, PRA, and prior requests motives. We observe that arrivals (PRA) provide
the most information for predictors, as they provide information about the loca-
tions of users that might require an additional trip in the future. We confirm
these results by training with only parts of the features as shown in Table 5.
As suggested by the previous analysis, motives have a small impact on perfor-
mance, raising the accuracy only by one percent or two, whereas prior requests
information is essential to training accurate predictors.

Fig. 5. Features importance.

Table 5. Accuracy of the different predictors for the next request.

State features NN accuracy GradBoost accuracy

Time 28% 31%

Prior requests 32% 34%

Motives 29% 27%

Time, prior requests 33% 35%

Time, motives 30% 32%

Prior requests, motives 34% 35%

Time, prior requests, motives 35% 36%



314 A. Parjadis et al.

Appendix 2. Analysis: Online Learning

The environment in which our predictor works might vary through changes in
request distribution or the way hospitals operates, so it is desirable to be able
to adapt the predictor and retrain it on newer and more relevant data. This
is commonly referred to as online learning. This can be carried out in several
ways, for example, by expanding the training set with new data and retraining
the model, or by freezing layers of the model and fitting on the new data. We
test the efficiency of retraining approaches.

Our procedure is as follows. The dataset is split into quintiles (groups of 20%
of the dataset), and at iteration i ∈ {1, . . . , 5}, the i first quintiles are used to
train and the quintile i+1 serves as the test set. This simulates new days of oper-
ation as tests, then used to retrain the predictors. This is important for further
refining the accuracy of the model, and allows it to adapt to progressive environ-
ment changes; Fig. 6 shows how accuracy evolves in time by retraining on all the
data available and testing on the subsequent days of operation, averaged over
100 iterations. The quintiles are generated either by shuffling the dataset, or by
keeping the data sorted time-wise to replicate retraining in practice. The tempo-
ral coherence in small data samples allows the model to capture recent temporal
variations in requests but hinders access to a wider selection of examples. Over-
all, this appears to have a small beneficial impact on the neural network but a
negative one for gradient boosting. It is clear that retraining is important for this
application when there is relatively little trip data available for initial training.

Fig. 6. Retraining accuracy

References

1. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad.
Sci. 114(3), 462–467 (2017). https://doi.org/10.1073/pnas.1611675114

2. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: A brief survey
of deep reinforcement learning (2017). http://arxiv.org/abs/1708.05866

https://doi.org/10.1073/pnas.1611675114
http://arxiv.org/abs/1708.05866


Repositioning Fleet Vehicles: A Learning Pipeline 315

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

4. Bertsimas, D., Jaillet, P., Martin, S.: Flexbus: improving public transit with ride-
hailing technology. Dow Sustainability Fellowship (2017). http://sustainability.
umich.edu/media/files/dow/Dow-Masters-Report-FlexBus.pdf

5. Bertsimas, D., Jaillet, P., Martin, S.: Online vehicle routing: the edge of optimiza-
tion in large-scale applications. Oper. Res. 67(1), 143–162 (2019). https://doi.org/
10.1287/opre.2018.1763

6. Bischoff, J., Maciejewski, M.: Simulation of city-wide replacement of private cars
with autonomous taxis in berlin. In: The 7th International Conference on Ambient
Systems, Networks and Technologies, vol. 83, pp. 237–244 (2016)

7. Braverman, A., Dai, J.G., Liu, X., Ying, L.: Empty-car routing in ridesharing
systems. Oper. Res. 67(5), 1437–1452 (2019). https://doi.org/10.1287/opre.2018.
1822

8. Breiman, L.: Random forests. Mach. Learn. 45 (2001)
9. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle

routing problem: survey. ACM Comput. Surv. 47(2) (2014). https://doi.org/10.
1145/2666003

10. Dandl, F., Hyland, M., Bogenberger, K., Mahmassani, H.S.: Evaluating the impact
of spatio-temporal demand forecast aggregation on the operational performance
of shared autonomous mobility fleets. Transportation 46(6), 1975–1996 (2019).
https://doi.org/10.1007/s11116-019-10007-9

11. Fagnant, D.J., Kockelman, K.M.: The travel and environmental implications of
shared autonomous vehicles, using agent-based model scenarios. Transp. Res. Part
C Emerg. Technol. 40, 1–13 (2014). https://doi.org/10.1016/j.trc.2013.12.001

12. Gendreau, M., Laporte, G., Semet, F.: Solving an ambulance location model
by tabu search. Locat. Sci. 5(2), 75–88 (1997). https://doi.org/10.1016/S0966-
8349(97)00015-6

13. Gmira, M., Gendreau, M., Lodi, A., Potvin, J.Y.: Managing in real-time a vehicle
routing plan with time-dependent travel times on a road network. Transp. Res.
Part C Emerg. Technol. 132, 103379 (2021)

14. Goldberg, J.B.: Operations research models for the deployment of emergency ser-
vices vehicles. EMS Manag. J. 1(1), 20–39 (2004)

15. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962). https://doi.org/10.1137/0110015

16. Ho, S.C., Szeto, W., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W.: A survey
of dial-a-ride problems: literature review and recent developments. Transp. Res.
Part B Methodol. 111, 395–421 (2018)

17. Holler, J., et al.: Deep reinforcement learning for multi-driver vehicle dispatching
and repositioning problem. In: 2019 IEEE International Conference on Data Mining
(ICDM), pp. 1090–1095. IEEE Computer Society (2019). https://doi.org/10.1109/
ICDM.2019.00129

18. Jiao, Y., et al.: Real-world ride-hailing vehicle repositioning using deep reinforce-
ment learning. Transp. Res. Part C Emerg. Technol. 130, 103289 (2021). https://
doi.org/10.1016/j.trc.2021.103289

19. Jones, E.C., Leibowicz, B.D.: Contributions of shared autonomous vehicles to cli-
mate change mitigation. Transp. Res. Part D Transp. Environ. 72, 279–298 (2019).
https://doi.org/10.1016/j.trd.2019.05.005

20. Kaiser, L., et al.: Model-based reinforcement learning for atari. In: International
Conference on Learning Representations, ICLR (2020)

http://sustainability.umich.edu/media/files/dow/Dow-Masters-Report-FlexBus.pdf
http://sustainability.umich.edu/media/files/dow/Dow-Masters-Report-FlexBus.pdf
https://doi.org/10.1287/opre.2018.1763
https://doi.org/10.1287/opre.2018.1763
https://doi.org/10.1287/opre.2018.1822
https://doi.org/10.1287/opre.2018.1822
https://doi.org/10.1145/2666003
https://doi.org/10.1145/2666003
https://doi.org/10.1007/s11116-019-10007-9
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1016/S0966-8349(97)00015-6
https://doi.org/10.1016/S0966-8349(97)00015-6
https://doi.org/10.1137/0110015
https://doi.org/10.1109/ICDM.2019.00129
https://doi.org/10.1109/ICDM.2019.00129
https://doi.org/10.1016/j.trc.2021.103289
https://doi.org/10.1016/j.trc.2021.103289
https://doi.org/10.1016/j.trd.2019.05.005


316 A. Parjadis et al.

21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Kullman, N.D., Cousineau, M., Goodson, J.C., Mendoza, J.E.: Dynamic ride-
hailing with electric vehicles. Transp. Sci. 56(3), 775–794 (2022)

23. Kumar, S., Panneerselvam, R.: A survey on the vehicle routing problem and its
variants. Intell. Inf. Manag. 4(3), 66–74 (2012)

24. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–44 (2015).
https://doi.org/10.1038/nature14539

25. Lee, D.H., Wang, H., Cheu, R., Teo, S.H.: Taxi dispatch system based on current
demands and real-time traffic conditions. Transp. Res. Rec. 1882, 193–200 (2004).
https://doi.org/10.3141/1882-23

26. Lin, C., Choy, K., Ho, G., Chung, S., Lam, H.: Survey of green vehicle routing
problem: past and future trends. Expert Syst. Appl. 41(4, Part 1), 1118–1138
(2014)

27. Liu, K., Li, X., Zou, C.C., Huang, H., Fu, Y.: Ambulance dispatch via deep rein-
forcement learning. In: SIGSPATIAL 2020, pp. 123–126. Association for Comput-
ing Machinery (2020). https://doi.org/10.1145/3397536.3422204

28. Luo, Q., Huang, X.: Multi-agent reinforcement learning for empty container repo-
sitioning. In: 2018 IEEE 9th International Conference on Software Engineering and
Service Science (ICSESS), pp. 337–341 (2018)

29. Miao, F., et al.: Taxi dispatch with real-time sensing data in metropolitan areas: a
receding horizon control approach. IEEE Trans. Autom. Sci. Eng. 13(2), 463–478
(2016). https://doi.org/10.1109/TASE.2016.2529580

30. Oda, T., Joe-Wong, C.: Movi: a model-free approach to dynamic fleet management.
In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pp.
2708–2716. IEEE Press (2018). https://doi.org/10.1109/INFOCOM.2018.8485988

31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

32. Psaraftis, H.N., Wen, M., Kontovas, C.A.: Dynamic vehicle routing problems: three
decades and counting. Networks 67(1), 3–31 (2016)

33. Qiu, X.P., Sun, T.X., Xu, Y.G., Shao, Y.F., Dai, N., Huang, X.J.: Pre-trained mod-
els for natural language processing: a survey. Science China Technol. Sci. 63(10),
1872–1897 (2020). https://doi.org/10.1007/s11431-020-1647-3

34. Riley, C., van Hentenryck, P., Yuan, E.: Real-time dispatching of large-scale ride-
sharing systems: integrating optimization, machine learning, and model predictive
control. In: IJCAI-20. International Joint Conferences on Artificial Intelligence
Organization, pp. 4417–4423 (2020). https://doi.org/10.24963/ijcai.2020/609. Spe-
cial track on AI for CompSust and Human well-being

35. Rossi, F., Zhang, R., Hindy, Y., Pavone, M.: Routing autonomous vehicles in
congested transportation networks: structural properties and coordination algo-
rithms. Auton. Robot. 42(7), 1427–1442 (2018). https://doi.org/10.1007/s10514-
018-9750-5

36. Seow, K.T., Dang, N.H., Lee, D.H.: A collaborative multiagent taxi-dispatch sys-
tem. IEEE Trans. Autom. Sci. Eng. 7(3), 607–616 (2010). https://doi.org/10.1109/
TASE.2009.2028577

37. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Over-
feat: integrated recognition, localization and detection using convolutional net-
works (2014)

38. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nature14539
https://doi.org/10.3141/1882-23
https://doi.org/10.1145/3397536.3422204
https://doi.org/10.1109/TASE.2016.2529580
https://doi.org/10.1109/INFOCOM.2018.8485988
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.24963/ijcai.2020/609
https://doi.org/10.1007/s10514-018-9750-5
https://doi.org/10.1007/s10514-018-9750-5
https://doi.org/10.1109/TASE.2009.2028577
https://doi.org/10.1109/TASE.2009.2028577


Repositioning Fleet Vehicles: A Learning Pipeline 317

39. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You
Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36478-1 17

40. Xu, Z., et al.: Large-scale order dispatch in on-demand ride-hailing platforms:
a learning and planning approach. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 905–913
(2018)

41. Yuan, E., Chen, W., Van Hentenryck, P.: Reinforcement learning from optimization
proxy for ride-hailing vehicle relocation. J. Artif. Intell. Res. (JAIR) 75, 985–1002
(2022). https://doi.org/10.1613/jair.1.13794

42. Zhang, R., Pavone, M.: Control of robotic mobility-on-demand systems: a
queueing-theoretical perspective. Int. J. Robot. Res. 35(1–3), 186–203 (2016)

https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1613/jair.1.13794


Bayesian Decision Trees Inspired
from Evolutionary Algorithms

Efthyvoulos Drousiotis1(B), Alexander M. Phillips1, Paul G. Spirakis2,
and Simon Maskell1

1 Department of Electrical Engineering and Electronics, University of Liverpool,
Liverpool L69 3GJ, UK

{E.Drousiotis,A.M.Philips,S.Maskell}@liverpool.ac.uk
2 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK

P.Spirakis@liverpool.ac.uk

Abstract. Bayesian Decision Trees (DTs) are generally considered a
more advanced and accurate model than a regular Decision Tree (DT) as
they can handle complex and uncertain data. Existing work on Bayesian
DTs uses Markov Chain Monte Carlo (MCMC) with an accept-reject
mechanism and sample using naive proposals to proceed to the next
iteration. This method can be slow because of the burn-in time needed.
We can reduce the burn-in period by proposing a more sophisticated way
of sampling or by designing a different numerical Bayesian approach. In
this paper, we propose a replacement of the MCMC with an inherently
parallel algorithm, the Sequential Monte Carlo (SMC), and a more effec-
tive sampling strategy inspired by the Evolutionary Algorithms (EA).
Experiments show that SMC combined with the EA can produce more
accurate results compared to MCMC in 100 times fewer iterations.

Keywords: Swarm Particle Optimisation · Bayesian Decision Trees ·
Machine Learning

1 Introduction and Relevant Work

Obtaining and calculating random samples from a probability distribution is
challenging in Bayesian statistics. Markov Chain Monte Carlo (MCMC) is a
widely used method to tackle this issue. MCMC can characterise a distribution
without knowing its analytic form by using a series of samples and it has been
used to solve problems in various domains, including psychology [9], forensics
[24], education [10,11], and chemistry [15], among other areas. Monte Carlo
applications are generally considered embarrassingly parallel since each chain can
run independently on two or more independent machines or cores. However, this
method is not very effective. Even though you increase the number of chains and
decrease the number of samples produced from each chain, the burn-in process
for each chain would remain unchanged. Nevertheless, the principal problem
is that processing within each chain is not embarrassingly parallel. When the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 318–331, 2023.
https://doi.org/10.1007/978-3-031-44505-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_22&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_22


Bayesian Decision Trees Inspired from Evolutionary Algorithms 319

feature space and the proposal are computationally expensive, we can only do a
little to improve the running time.

Much research has been done to improve the efficiency of MCMC methods.
The improvements can be grouped into several categories [20]. One of these
categories is based on understanding the geometry of the target density function.
An example of this is Hamiltonian Monte Carlo [14] (HMC), which uses an
auxiliary variable called momentum and updates it using the gradient of the
density function. Different methods, such as symplectic integrators of various
precision levels, have been developed to approximate the Hamiltonian equation
[3]. HMC tends to generate less correlated samples than the Metropolis-Hastings
algorithm, but it requires the gradient of the density function to be available and
computationally feasible.

Another approach involves dividing complex problems into smaller and more
manageable components. For example, as discussed earlier, using multiple paral-
lel MCMC chains to explore the parameter space and then combining the sam-
ples obtained from these chains [19]. However, this approach does not achieve
faster convergence of the chains to the stationary distribution. This is because
all chains have to converge independently of each other in MCMC. It is also pos-
sible to partition the data space, which is already implemented in the context of
Bayesian DTs [13], or partition the parameter space [1] into simpler pieces that
can process independently, which are proven not to be much effective.

MCMC DTs simulations can take a long to converge on a good model when
the state space is large and complex. This is due to both the number of iterations
needed and the complexity of the calculations performed in each iteration, such
as finding the best features and structure of a DT. MCMC, in general, and as will
be explained detailed in Sect. 2, generates samples from a specific distribution
by proposing new samples and deciding whether to accept them based on the
evaluation of the posterior distribution. Because the current sample determines
the next step of the MCMC, it cannot be easy to process a single MCMC chain
simultaneously using multiple processing elements. A method [12] is proposed to
parallelise a single chain on MCMC Decision trees but the speedup is not always
guaranteed.

Another method of speeding up MCMC focuses on enhancing the proposal
function, which is the approach we pursue in this paper. This can be achieved
through techniques such as simulated tempering [18], adaptive MCMC [8], or
multi-proposal MCMC [17]. Having a good proposal function in Markov Chain
Monte Carlo (MCMC) and, in general, Monte Carlo methods is crucial for the
efficiency and accuracy of the algorithm. Poor proposals can lead to slow conver-
gence, poor mixing, and biased estimates. Good proposal functions can efficiently
explore the target distribution and reduce the correlation between successive
samples.

Several papers describe novelties specifically on Bayesian DTs, focusing on
different improvements. For example, [12,13,23], contributed towards the run-
time enhancement, [27] explored a new novel proposal move called “radical
restructure”, which changes the structure of the tree (T ), without changing



320 E. Drousiotis et al.

the number of leaves or the partition of observations into leaves. Moreover, [4]
proposed different criteria for accepting or rejecting the T on MCMC, such as
posterior probability, marginal likelihood, residual sum of squares, and misclas-
sification rates. The general approach to improving the proposal function in
Monte Carlo methods has been introduced previously. However, in the context
of Bayesian DTs, there is still enough space for exploration.

Our contribution is then:

– We describe for the first time a novel algorithm inspired by the Evolutionary
Algorithms to improve the proposal function of the Bayesian DTs that uses
an inherently parallel algorithm, a Sequential Monte Carlo (SMC) sampler,
to generate samples.

2 Bayesian Decision Trees

A DT operates by descending a tree T . The process of outputting a classification
probability for a given datum starts at a root node (see Fig. 1). At each non-
leaf node, a decision as to which child node to progress to is made based on the
datum and the parameters of the node. This process continues until a leaf node is
reached. At the leaf node, a node-specific and datum-independent classification
output is generated.

Fig. 1. Decision Tree

Our model describes the conditional distribution of a value for Y given the
corresponding values for x, where x is a vector of predictors and Y the cor-
responding values that we predict. We define the tree to be T such that the
function of the non-leaf nodes is to (implicitly) identify a region, A, of values for
x for which p (Y |x ∈ A) can be approximated as independent of the specific value
of x ∈ A, i.e. as p(Y |x) ≈ p(Y |φj , x ∈ A). This model is called a probabilistic
classification tree, according to the quantitative response Y .

For a given tree, T , we define its depth to be d(T ), the set of leaf nodes to
be L(T ) and the set of non-leaf nodes to be L̄(T ). The T is then parameterised



Bayesian Decision Trees Inspired from Evolutionary Algorithms 321

by: the set of features for all non-leaf nodes, kL̄(T ); the vector of correspond-
ing thresholds, cL̄(T ); the parameters, φL(T ), of the conditional probabilities
associated with the leaf nodes. This is such that the parameters of the T are
θ(T ) = [kL̄(T ), cL̄(T ), φL(T )] and θ(T )j are the parameters associated with the
jth node of the T , where:

θ(T )j =
{
[kj , cj ] j ∈ L̄(T )
φj j ∈ L(T ). (1)

Given a dataset comprising N data, Y1:N and corresponding features, x1:N ,
and since DTs are specified by T and θ(T ), a Bayesian analysis of the problem
proceeds by specifying a prior probability distribution, p(θ(T ), T ) and associated
likelihood, p(Y1:N |T, θ(T ), x1:N ). Because θ(T ) defines the parametric model for
T , it will usually be convenient to adopt the following structure for the joint
probability distribution of N data, Y1:N , and the N corresponding vectors of
predictors, x1:N :

p(Y1:N , T, θ(T )|x1:N ) =p(Y1:N |T, θ(T ), x1:N )p(θ(T ), T ) (2)
=p(Y1:N |T, θ(T ), x1:N )p(θ(T )|T )p(T ) (3)

which we note is proportional to the posterior, p(T, θ(T )|Y1:N , x1:N ), and where
we assume

p(Y1:N |T, θ(T ), x1:N ) =
N∏

i=1

p(Yi|xi, T, θ(T )) (4)

p(θ(T )|T ) =
∏
j∈T

p(θ(T )j |T ) (5)

=
∏
j∈T

p(kj |T )p(cj |kj , T ) (6)

p(T ) =
a

(1 + d(T ))β
(7)

Equation 4 describes the product of the probabilities of every data point,
Yi, being classified correctly given the datum’s features, xi, the T structure,
and the features/thresholds, θ(T ), associated with each node of the T . At the
jth node, Eq. 6 describes the product of possibilities of picking the kjth feature
and corresponding threshold, cj , given the T structure. Equation 7 is used as
the prior for the T . This prior is recommended by [5] and three parameters
specify this prior: the depth of the T , d(T ); the parameter, a, which acts as
a normalisation constant; the parameter, β > 0, which specifies how many leaf
nodes are probable, with larger values of β reducing the expected number of
leaf nodes. β is crucial as this is the penalizing feature of our probabilistic T
which prevents an algorithm that uses this prior from over-fitting and allows
convergence to occur [21]. Changing β allows us to change the prior probability
associated with “bushy” trees, those whose leaf nodes do not vary too much in
depth.



322 E. Drousiotis et al.

An exhaustive evaluation of Eq. 2 over all trees will not be feasible, except
in trivially small problems, because of the sheer number of possible trees.

Despite these limitations, Bayesian algorithms can still be used to explore
the posterior. Such algorithms simulate a chain sequence of trees, such as:

T0, T1, T2, ...., Tn (8)

which converge in distribution to the posterior, which is itself proportional to
the joint distribution, p(Y1:N |T, θ(T ), x1:N )p(θ(T )|T )p(T ), specified in Eq. 2. We
choose to have a simulated sequence that gravitates toward regions of the higher
posterior probability. Such a simulation can be used to search for high-posterior
probability trees stochastically. We now describe the details of algorithms that
achieve this and how they can be implemented.

2.1 Stochastic Processes on Trees

To design algorithms that can search the space of trees stochastically, we first
need to define a stochastic process for moving between trees. More specifically,
we consider the following four kinds of move from one T to another:

– Grow (G): we sample one of the leaf nodes, j ∈ L(T ), and replace it with
a new node with parameters, kj and a cj , which we sample uniformly from
their parameter ranges.

– Prune (P): we sample the jth node (uniformly) and make it a leaf.
– Change (C): we sample the jth node (uniformly) from the non-leaf nodes,

L̄(T ), and sample kj and a cj uniformly from their parameter ranges.
– Swap (S): we sample the j1th and j2th nodes uniformly, where j1 �= j2, and

swap kj1 with kj2 and cj1 with cj2 .

We note that there will be situations (e.g. pruning from a T with a single
node) when some moves cannot occur. We assume each ‘valid’ move is equally
likely, which makes it possible to compute the probability of transition from one
T , to another, T ′, which we denote q (T ′, θ(T ′)|T, θ(T )).

3 Our Approach on Evolutionary Algorithms

Evolutionary Algorithms (EA) mimic living organisms’ behavior, using natural
mechanisms to solve problems [2]. In our approach, the optimisation problem
is represented as a multi-dimensional space on which the population lives (in
our case, the population is the total number of trees). Each location on the
solution space corresponds to a feasible solution to the optimisation problem.
The optimal solution is found by identifying the optimal location in the solution
space.

Pheromones play a crucial role in evolutionary algorithms as they are used for
communication among the population [7,16]. When a member of the population
moves, it receives pheromones from the other member of the population and uses



Bayesian Decision Trees Inspired from Evolutionary Algorithms 323

them to determine its next move. Once all members of the population reach new
locations, they release pheromones; the concentration and type of pheromones
released depend on the objective function or fitness value at that location. The
solution space is the medium for transmitting pheromones, allowing individuals
to receive and be affected by the pheromones released by other individuals,
creating a global information-sharing model.

The population will gradually gain a rough understanding of global informa-
tion through their movements, which can significantly benefit the optimisation
process. In our approach, the EA can use the solution space as a memory to
record the best and worst solutions produced in each iteration. Once the position-
ing stage is finished, all pheromones on the solution space are cleared. To guide
the optimisation process, the most representative extreme solutions are selected
from the recorded solutions, and the corresponding locations are updated with
permanent pheromones. Unlike permanent pheromones, temporary pheromones
only affect the movements of trees in the next iteration.

4 Methods

4.1 Conventional MCMC

One approach is to use a conventional application of Markov Chain Monte Carlo
to DTs, as found in [12].

More specifically, we begin with a tree, T0 and then at the ith iteration, we
propose a new T ′ by sampling T ′ ∼ q (T ′, θ(T ′)|Ti, θ(Ti)). We then accept the
proposed T ′ by drawing u ∼ U([0, 1]) such that:

Ti+1 =
{

T ′ u ≤ α(T ′|T )
Ti u > α(T ′|T ) (9)

where we define the acceptance ratio, α(T ′, T ) as:

α(T ′|T ) =
p(Y1:N |T, θ(T ), x1:N )
p(Y1:N |T ′, θ(T ′), x1:N )

q (T, θ(T )|T ′, θ(T ′))
q (T ′, θ(T ′)|T, θ(T ))

(10)

.
This process proceeds for n iterations. We take the opportunity to highlight

that this process is inherently sequential in its nature.

4.2 Evolutionary Algorithm in Bayesian Decision Trees

Initializing Population. The initial population plays a crucial role in the
solutions’ quality. An initial population with a good mix of diversity and a
substantial number of trees can help improve the optimisation performance of
the algorithm. To create a diverse initial population, a random method is often
employed. This approach helps to ensure that the algorithm can perform a global
search efficiently, is easy to use, and has a diverse set of individuals in the initial
population.



324 E. Drousiotis et al.

The population size of trees is invariable, denoted as n. The location
of every Ti in the D - dimensional space can be described as : T =
(T 1

1 , T 2
2 , . . . , T d

n , . . . , TD
N ). According to the value of our objective function p(Y 1 :

N,T, θ(T )|x1 : N), the fitness value of location d and Ti can be measured. By
comparing the current location of each Ti in the initial population, the optimal
location and the worst location in the initial population were obtained, and the
value of the objective function of the optimal location in the initial population
was recorded.

Positioning Stage. In the positioning stage, in our use case, trees release
permanent and temporary pheromones. The solution space records the locations
of the terrible solution and the excellent solution produced by each iteration.
While all trees move to the new location, the pheromones are updated differently,
which will be discussed in Sect. 4.2. The process in the positioning stage is shown
in Fig. 2. In our case, the possible movements of the Ti are those described in
Sect. 2.1. When the proposed move is the Grow, we search for possible solutions
in a higher dimensional space; when the proposed move is the Prune, we explore
for possible solutions in lower dimensional space; and when the proposed moves
are Change and Swap, we search for solutions on the current dimensional space.

Fig. 2. Positioning Stage

Permanent Pheromones. Permanent pheromones have persistent effects.
On each iteration, we evaluate each Ti to compute the value αn (see Eq. 10). If
αn is greater than a uniform number between [0, 1], we store the Ti and the
stochastic move associated with positive exploration and effective moves,
respectively. If αn is less than a uniform number between [0, 1] we store
the Ti and the stochastic move associated, on negative explartion and
innefective moves respectively (negative explartion and innefective moves



Bayesian Decision Trees Inspired from Evolutionary Algorithms 325

will be used on temporary pheromones). We repeat the procedure above for all
trees. We then calculate the permanent pheromones given the effective moves.
Permanent pheromones is a single list with 4 real numbers, representing the
possibilities of each one of the 4 stochastic moves to be selected on the next
iteration. We update the permanent pheromones by adding to each possibil-
ity on the permanent pheromones, the number of times each move is in the
effective moves list, and we then divide each element of the list by the sum of
the effective moves (we normalise to add up to 1). We have also designed a
mechanism to avoid having a biased permanent pheromones list. For example,
in the first stages of the algorithm, it is common the Grow move to be a more
useful proposal compared to the Prune. In such cases, if a specific move has
more than 80% possibilities to be chosen, we re-weight the list by setting the
dominant move having 40% possibilities to be selected and the rest having 20%
possibilities to be chosen on the next iteration.

Temporary Pheromones. Temporary pheromones can only affect the move-
ments of trees in the next iteration. We discussed above how we end up with
a list called effective moves and a list called ineffective moves. When the
iteration ends, temporary pheromones clear, and each Ti will release new
temporary pheromones, which will be recorded. Algorithm 1 shows how we
produce and store pheromones.

4.3 Sequential Monte Carlo with EA

We are considering a Sequential Monte Carlo (SMC) sampler [6] to handle the
problem of sampling the trees from the posterior. After we have collected all
the useful information from the movement of the trees, we now need to sample
using the pheromones produced. As the Algorithm 2 shows, there are three pos-
sible sampling techniques where one has a subcategory. We choose the sampling
technique by drawing a uniform number between [0, 1]. At this point, we need
to specify that on each iteration, we draw a new uniform number, so each Ti has
the possibility to sample with a different strategy.

The first sampling technique uses the temporary pheromones, and it has a
possibility of 45% to be chosen. As mentioned earlier, temporary pheromones
are produced during the previous iteration. This sampling technique has a sub-
category, where the samples classified in positive exploration use a different
sampling technique from those listed on negative exploration. If the Ti is listed
in positive exploration, we pick a stochastic move m from the list with the
ineffective moves uniformly. We then remove all the identical m from the
ineffective moves and sample uniformly with equal probabilities from the
remaining ineffective moves. If the Ti is in negative exploration, we pick
uniformly a stochastic move m from the effective moves list to sample the
particular Ti.



326 E. Drousiotis et al.

The second sampling technique uses the permanent pheromones, and it has
a possibility of 45% to be chosen. As mentioned earlier, permanent pheromones
are updated dynamically on every iteration, considering all the previous itera-
tions. We sample the Ti using the possibilities in the list we describe in subsection
permanent pheromones in Sect. 4.2.

The last sampling technique is straightforward. We use a list with stochastic
moves, where each move has a uniform probability of being chosen. This sampling
technique is unaffected by the pheromones. The main reason for including this
technique is to ensure our algorithm is not biased, as this is the most common
way of sampling in Bayesian DTs.

Algorithm 1. Pheromones Production Stage
Initialise n trees(T )
Sample trees [T0, T1, ..., Tn]
Initialise initial possibilities = [p(G), p(P ), p(C), p(S)] = [0.25, 0.25, 0.25, 0.25]
Initialise permanent pheromones = [p(G), p(P ), p(C), p(S)] � permanent
pheromones
Initialise positive exploration list
Initialise effective moves list � Temporary Pheromones
Initialise negative exploration list
Initialise ineffective moves list � Permanent Pheromones
iterations = 10
for (i ≤ iterations, i ++) do

Evaluate trees [T0, T1, ..., Tn]
Store their acceptance probability [α0, α1, ..., αn]
for (s ≤ n, s ++) do

Draw a uniform number u1 ∼ u[0, 1]
if αs > u1 then

append Ts to list positive exploration
append Tsmove to list effective moves

else
append Ts to list negative expolation
append Tsmove to list ineffective moves

end if
end for
update permanent pheromones list given the effective moves list

end for



Bayesian Decision Trees Inspired from Evolutionary Algorithms 327

Algorithm 2. SMC with EA
for i ≤ n, i ++ do

Draw a uniform number u2 ∼ u[0, 1]
if u2 ≤ 0.45 then

if Ti in positive exploration then
pick uniformly a move m from ineffective moves
Remove every identical m from the ineffective moves
Sample Ti uniformly given the updated ineffective moves

end if
if Ti in negative exploration then

Pick uniformly a move m from effective moves
Sample Ti by applying the selected move m

end if
else if u2 > 0.45 and u2 ≤ 0.9 then

Sample Ti using permanent pheromones
else

Sample Ti using initial possibilities
end if

end for
Empty positive exploration
Empty effective moves � Temporary Pheromones
Empty negative exploration
Empty ineffective moves � Permanent Pheromones

5 Experimental Setup and Results

To demonstrate the accuracy and the run time efficiency improvements we
achieved through our proposed methods, we experiment on three publicly avail-
able datasets1 listed in Table 1. We acknowledge that the size of the datasets
we conduct the experiments is small. The main reason is to have a fair com-
parison between the MCMC algorithm and SMC, as experiments show [13] that
the former struggles to converge on an adequate time on big datasets, compared
to the latter. We also aim to show that SMC, an inherently parallel algorithm
combined with EA, can be a great fit within the context of big data. For each
dataset, we have multiple testing hypotheses. Firstly, we compare the SMC-EA
with MCMC on 1000 iterations and 10 chains for MCMC and 10 T for the SMC-
EA, 100 iterations and 100 chains for MCMC and 100 T for the SMC-EA, and
10 iterations with 1000 chains for MCMC and 1000 T for the SMC-EA.

This section presents the experimental results obtained using the proposed
methods with a focus on accuracy improvement and the ability of the SMC-
EA to evolve smoothly in a very short period of iterations. We obtained the
following results using a local HPC platform comprising twin SP 6138 processors
(20 cores, each running at 2GHz) with 384GB memory RAM. We use the same
hyper-parameters α and β for every contesting algorithm for testing purposes
and a fair comparison and evaluation.
1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php


328 E. Drousiotis et al.

Table 1. Datasets description

Dataset Attributes Instances

Heart Disease 75 303
Lung Cancer 56 32
SCADI 206 70

We tested both MCMC and SMC-EA with a 5-Fold Cross-Validation. Results
indicate what is discussed in Sect. 4.2. When we initialise more trees, we intro-
duce a more diverse set, which helps improve the algorithm’s optimization per-
formance. More specifically, SMC-EA with 1000 T and 10 iterations running
SCADI dataset has an accuracy improvement of ∼2% and ∼ 6% compared to
having 100 T with 100 iterations, and 10 T with 1000 iterations respectively.
On the Heart Disease dataset SMC-EA with 1000 T and 10 iterations has an
accuracy improvement of ∼3% and ∼4% compared to having 100 T with 100 iter-
ations and 10 T with 1000 iterations respectively. On the Lung Cancer dataset
SMC-EA with 1000 T and 10 iterations, has an accuracy improvement of ∼8%
and ∼14% compared to having 100 T with 100 iterations, and 10 T with 1000
iterations respectively.

On the other hand, MCMC performs poorly when we have fewer iterations
and more chains compared to SMC-EA. This is expected as MCMC needs ade-
quate time to converge. When MCMC ran for more iterations, the algorithm
made better predictions, and the accuracy achieved cannot be accepted as an
acceptable threshold. SMC-EA has a ∼12% better predictive accuracy on the
SCADI dataset compared to MCMC, ∼7% on Heart Disease, and ∼17% on Lung
Cancer(see Tables 2, 3 and 4).

On the SMC-EA algorithm, trees do not have a leading Ti, and their move-
ments are guided by interactions between them rather than one individual T
dominating the group of trees. This helps to prevent individualism and stagna-
tion in the population’s evolution. Furthermore, a diverse population of trees is
more effectively handled by the approach we suggest, as we avoid falling into local
optimisation. The stochastic nature of the SMC-EA algorithm helps in escaping
local optimisation and achieving global optimisation. Combining positive and
negative feedback from the different pheromones can incorporate the benefits
of successful solutions while mitigating the negative effects of poor solutions.
SMC-EA algorithm fully uses all the information on the solution space, avoiding
unnecessary waste or duplication of information. The EA algorithm updates the
positions of all trees by using a combination of their current and past positions
within the population. This allows the algorithm to maintain a history of infor-
mation, preventing rapid jumps and leading to a smooth algorithm evolution.

Due to the small size of the datasets we are using to conduct this study, we
can only show the effectiveness of our method in exploring the solutions space
faster. However, previous studies [13] have shown that the SMC DT algorithm
can improve the runtime compared to MCMC DT by up to a factor of 343. We are



Bayesian Decision Trees Inspired from Evolutionary Algorithms 329

Table 2. SCADI dataset

Chains_Trees Iterations MCMC SMC-EA

10 1000 85 90.2
100 100 63 94.2
1000 10 57 96.6

Table 3. Heart Disease dataset

Chains_Trees Iterations MCMC SMC-EA

10 1000 75.7 78.9
100 100 73.5 79.2
1000 10 67.7 82.7

Table 4. Lung Cancer dataset

Chains_Trees Iterations MCMC SMC-EA

10 1000 70.1 73.9
100 100 69.7 79.1
1000 10 69.1 87.2

optimistic that we can achieve the same results, as SMC and EA are inherently
parallel algorithms. The main bottleneck of the SMC-EA algorithm is when we
evaluate a big number of trees; for example, see the test case of 10 iterations and
1000 T . We can overcome this problem by the distributed implementation, as
we can distribute the trees on many nodes and evaluate the trees concurrently.

6 Conclusion

Our study has shown that by combining two novel algorithms, the SMC and EA
can tackle major problems on Bayesian Decision Tress and open the space for
more research. According to our experimental results, our novel approach based
on Sequential Monte Carlo and Evolutionary Algorithms explores the solution
space with at least 100 times fewer iterations than a standard probabilistic algo-
rithm, for example, Markov Chain Monte Carlo. As discussed in Sect. 5, we
managed to tackle the problem of the naive proposals, and we suggest a method
that takes advantage of the communication between the trees. We proposed a
sophisticated method to propose new samples based on EA and minimised the
burn-in period through SMC.

As we already mentioned, both SMC and EA are inherently parallel algo-
rithms with existing parallel implementations [22,25,26]. We plan to extend this
study by parallelising the SMC-EA, adding more testing scenarios with larger
datasets, and showing improvement in run time.



330 E. Drousiotis et al.

References

1. Basse, G., Smith, A., Pillai, N.: Parallel Markov chain Monte Carlo via spectral
clustering. In: Gretton, A., Robert, C.C. (eds.) Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics. Proceedings of Machine
Learning Research, Cadiz, Spain, 09–11 May 2016, vol. 51, pp. 1318–1327. PMLR
(2016)

2. Binitha, S., Sathya, S.S., et al.: A survey of bio inspired optimization algorithms.
Int. J. Soft Comput. Eng. 2(2), 137–151 (2012)

3. Blanes, S., Casas, F., Sanz-Serna, J.M.: Numerical integrators for the hybrid Monte
Carlo method. SIAM J. Sci. Comput. 36(4), A1556–A1580 (2014)

4. Chipman, H.A., George, E.I., McCulloch, R.E.: Bayesian cart model search. J. Am.
Stat. Assoc. 93(443), 935–948 (1998)

5. Chipman, H.A., George, E.I., McCulloch, R.E.: BART: Bayesian additive regres-
sion trees. Ann. Appl. Stat. (2010)

6. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. Roy.
Stat. Soc.: Ser. B (Stat. Methodol.) 68(3), 411–436 (2006)

7. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In:
Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series
in Operations Research & Management Science, vol. 272, pp. 311–351. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_10

8. Douc, R., Guillin, A., Marin, J.-M., Robert, C.P.: Convergence of adaptive mixtures
of importance sampling schemes. Ann. Stat. 35(1), 420–448 (2007)

9. Drousiotis, E., et al.: Probabilistic decision trees for predicting 12-month university
students likely to experience suicidal ideation. In: Maglogiannis, I., Iliadis, L.,
MacIntyre, J., Dominguez, M. (eds.) AIAI 2023. IFIP Advances in Information
and Communication Technology, vol. 675, pp. 475–487. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-34111-3_40

10. Drousiotis, E., Pentaliotis, P., Shi, L., Cristea, A.I.: Capturing fairness and uncer-
tainty in student dropout prediction – a comparison study. In: Roll, I., McNamara,
D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds.) AIED 2021, Part II. LNCS
(LNAI), vol. 12749, pp. 139–144. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78270-2_25

11. Drousiotis, E., Shi, L., Maskell, S.: Early predictor for student success based on
behavioural and demographical indicators. In: Cristea, A.I., Troussas, C. (eds.) ITS
2021. LNCS, vol. 12677, pp. 161–172. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-80421-3_19

12. Drousiotis, E., Spirakis, P.G.: Single MCMC chain parallelisation on decision trees.
In: Simos, D.E., Rasskazova, V.A., Archetti, F., Kotsireas, I.S., Pardalos, P.M.
(eds.) LION 2022. LNCS, vol. 13621, pp. 191–204. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-24866-5_15

13. Drousiotis, E., Spirakis, P.G., Maskell, S.: Parallel approaches to accelerate
Bayesian decision trees. arXiv preprint arXiv:2301.09090 (2023)

14. Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys.
Lett. B 195(2), 216–222 (1987)

15. Le Brazidec, J.D., Bocquet, M., Saunier, O., Roustan, Y.: Quantification of uncer-
tainties in the assessment of an atmospheric release source applied to the autumn
2017. Atmos. Chem. Phys. 21, 13247–13267 (2021)

16. Kalivarapu, V., Foo, J.-L., Winer, E.: Improving solution characteristics of particle
swarm optimization using digital pheromones. Struct. Multidiscip. Optim. 37(4),
415–427 (2009)

https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1007/978-3-031-34111-3_40
https://doi.org/10.1007/978-3-030-78270-2_25
https://doi.org/10.1007/978-3-030-78270-2_25
https://doi.org/10.1007/978-3-030-80421-3_19
https://doi.org/10.1007/978-3-030-80421-3_19
https://doi.org/10.1007/978-3-031-24866-5_15
https://doi.org/10.1007/978-3-031-24866-5_15
http://arxiv.org/abs/2301.09090


Bayesian Decision Trees Inspired from Evolutionary Algorithms 331

17. Liu, J.S., Liang, F., Wong, W.H.: The multiple-try method and local optimization
in metropolis sampling. J. Ame. Stat. Assoc. 95(449), 121–134 (2000)

18. Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo scheme. EPL
(Europhys. Lett. ) 19(6), 451 (1992)

19. Mykland, P., Tierney, L., Bin, Yu.: Regeneration in Markov chain samplers. J. Am.
Stat. Assoc. 90(429), 233–241 (1995)

20. Robert, C.P., Elvira, V., Tawn, N., Wu, C.: Accelerating MCMC algorithms. Wiley
Interdisc. Rev.: Comput. Stat. 10(5), e1435 (2018)

21. Ročková, V., Saha, E.: On theory for BART. In: The 22nd International Conference
on Artificial Intelligence and Statistics. PMLR (2019)

22. Shukla, U.P., Nanda, S.J.: Parallel social spider clustering algorithm for high
dimensional datasets. Eng. Appl. Artif. Intell. 56, 75–90 (2016)

23. Taddy, M.A., Gramacy, R.B., Polson, N.G.: Dynamic trees for learning and design.
J. Am. Stat. Assoc. 106(493), 109–123 (2011)

24. Taylor, D., Bright, J.-A., Buckleton, J.: Interpreting forensic DNA profiling evi-
dence without specifying the number of contributors. Forensic Sci. Int. Genet. 13,
269–280 (2014)

25. Varsi, A., Maskell, S., Spirakis, P.G.: An o (logn) fully-balanced resampling algo-
rithm for particle filters on distributed memory architectures. Algorithms 14(12),
342 (2021)

26. Varsi, A., Taylor, J., Kekempanos, L., Knapp, E.P., Maskell, S.: A fast parallel
particle filter for shared memory systems. IEEE Signal Process. Lett. 27, 1570–
1574 (2020)

27. Yuhong, W., Tjelmeland, H., West, M.: Bayesian cart: prior specification and pos-
terior simulation. J. Comput. Graph. Stat. 16(1), 44–66 (2007)



Towards Tackling MaxSAT by Combining
Nested Monte Carlo with Local Search

Hui Wang1, Abdallah Saffidine2, and Tristan Cazenave1(B)

1 LAMSADE, University Paris Dauphine - PSL, Paris, France
tristan.cazenave@lamsade.dauphine.fr

2 The University of New South Wales, Sydney, Australia

Abstract. Recent work proposed the UCTMAXSAT algorithm to
address Maximum Satisfiability Problems (MaxSAT) and shown
improved performance over pure Stochastic Local Search algorithms
(SLS). UCTMAXSAT is based on Monte Carlo Tree Search but it uses
SLS instead of purely random playouts. In this work, we introduce two
algorithmic variations over UCTMAXSAT. We carry an empirical analy-
sis on MaxSAT benchmarks from recent competitions and establish that
both ideas lead to performance improvements. First, a nesting of the tree
search inspired by the Nested Monte Carlo Search algorithm is effective
on most instance types in the benchmark. Second, we observe that using
a static flip limit in SLS, the ideal budget depends heavily on the instance
size and we propose to set it dynamically. We show that it is a robust
way to achieve comparable performance on a variety of instances without
requiring additional tuning.

1 Introduction

Maximum Satisfiability (MaxSAT) problem is an extension of Boolean Satisfia-
bility (SAT) problem. For MaxSAT, the task is to find a truth value assignment
for each literal which satisfies the maximum number of clauses [12]. Stochas-
tic Local Search (SLS) algorithms like WalkSat [15] and Novelty [19] are well
studied to solve MaxSAT problems. These methods can not find a provable opti-
mal solution but are usually used to search for an approximate optimal solution
especially for larger problem instances. However, SLS algorithms are easy to get
stuck in a local optimal solution and it’s hard for them to escape. Thus, it’s
important to find an effective way to get rid of the local optimal solution. As a
well-known successful method to address this exploration-exploitation dilemma,
Monte Carlo Tree Search (MCTS) with UCT formula [4] is an ideal algorithm
to deal with MaxSAT problems.

MCTS has shown impressive performance on game playing (including per-
fect information games and imperfect information games) [8,11,25], probabilis-
tic single-agent planning [23], as well as most of problems which can be formed
as a sequential decision making process, also know as Markov Decision Pro-
cess (MDP) [3]. Based on the UCT formula, MCTS can address the exploration

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 332–346, 2023.
https://doi.org/10.1007/978-3-031-44505-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_23&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_23


MaxSAT with Nested Monte Carlo and Local Search 333

and exploitation dilemma in a theoretically sound way because UCT provides
a state-of-the-art way to build the search tree based on the previous search
records (including the node visited count and the node estimate values of the
visit). Typically, the estimate method of the leaf node in the search tree is a
random rollout policy. However, in a lot of applications, many other rollout poli-
cies are created to improve the accuracy of the leaf node value estimation. For
MaxSAT problem, UCTMAXSAT (simply written as UCTMAX in the following
parts) employs SLS algorithms to estimate the node value [12].

However, UCTMAX only runs MCTS for the root node to build a search
tree until the time out, which may not sufficiently use the advantage of UCT
reported by the Nested Monte Carlo Tree Search (NMCTS) [2]. NMCTS runs
MCTS from root to the end or the time out. For each step, after performing
the MCTS, it chooses the best assignment value for the current step and then
enters into the next step and performs the MCTS again. In addition, UCTMAX
employs a fixed flip limit for SLS algorithms. But in a UCT-style SLS, the
number of the unassigned variables (literals below the search tree frontier are
unassigned) will decreases along with the search tree deepens. Therefore, we
design a novel computation called Dynamic SLS, see Eq. 2, for Monte Carlo
methods used in this paper. The experimental results show that for most of the
MaxSAT instances1, the Dynamic SLS way is more robust than the fixed way
used for UCTMAX to achieve comparable performance on a variety of instances
without extra tuning. Besides, the results show that the NMCTS is better than
the UCTMAX on most instances with moderate improvement.

Moreover, Nested Monte Carlo Search (NMCS) method [5] and its vari-
ants [6,7] have been successfully applied to master many NP-hard combinatorial
optimization problems, like Morpion Solitaire [9], and achieve impressive perfor-
mance [5,27]. However, NMCS has not been investigated to deal with MaxSAT
problems. Therefore, this paper further studies the effectiveness of NMCS (also
using Dynamic SLS as the state estimate) for MaxSAT.

Overall, the main contribution of this paper can be summarized as follows:

1. We examine various Monte Carlo Search techniques for the domain of
MaxSAT, especially rollout policies and high-level searches. Through an
extensive empirical analysis, we establish that (a) Purely random or heuristic-
based rollouts are weaker than a Stochastic Local Search policy. (b) An
MCTS-based search is weaker than Nested MCTS, especially in larger
instances. NMCTS with WalkSat is weaker than NMCS, but is stronger with
Novelty.

2. We introduce Dynamic SLS, a new rollout policy that dynamically computes
the flip budget available for a stochastic local search. We demonstrate that
Monte Carlo algorithms building on Dynamic SLS achieve comparable per-
formance on standard MaxSAT benchmarks with previously existing Monte
Carlo approaches without extra tuning.

1 The instances are from ms random benchmark: http://www.maxsat.udl.cat/15/
benchmarks/index.html.

http://www.maxsat.udl.cat/15/benchmarks/index.html
http://www.maxsat.udl.cat/15/benchmarks/index.html


334 H. Wang et al.

The rest of the paper is structured as follows. Before introducing preliminaries
of this work in Sect. 3, we present an overview of the most relevant literature in
Sect. 2. Then we present Dynamic SLS based Monte Carlo methods in Sect. 4.
Thereafter, we illustrate the orientation experiments on a group of MaxSAT
instances to finalize the structure of our proposed methods in Sect. 5. Then the
full length experiments are presented in Sect. 6. Finally, we conclude our paper
and discuss future work.

2 Related Work

There are a lot of solvers created to master MaxSAT problems [1,13,14,18].
Generally, these solvers can be categorized into two different types, i.e. complete
solvers and incomplete solvers. Complete solvers can provide provable the best
solution for the problem. Incomplete solvers start from a random assignment and
continue to search for a better solution according to some strategies. Typically4
Stochastic Local Search algorithms like WalkSat [15] and Novelty [19] are well
studied on MaxSAT [16,21]. These incomplete solvers suffer from an exploration-
exploitation dilemma. And MCTS has shown successful performance of dealing
with this dilemma [4]. Therefore, Tompkins et al. implemented an experimenta-
tion environment for mastering SAT and MaxSAT, called UCBMAX [24]. Fur-
thermore, Goffinet et al. proposed UCTMAX algorithm to enhance the perfor-
mance of SLS [12]. However, UCTMAX only performs UCT search once from
the root, which may not sufficiently use the power of MCTS comparing to run
UCT search for each step until to the terminal node or time out, which is known
as Nested Monte Carlo Tree Search [2]. In addition to MCTS and NMCTS,
NMCS [5] and its variations [6,7,22] also perform well especially for single agent
NP-hard combinatorial problems, like Morpion Solitaire [9], where they achieve
the best record which has not yet been improved even employing deep learn-
ing techniques [10,27]. Therefore, in this paper, we firstly employ NMCTS and
NMCS to master MaxSAT problems with SLS methods.

3 Preliminaries

3.1 MaxSAT

In MaxSAT, like SAT, the problem is specified by a propositional formula
described in conjunctive normal form (CNF) [20]. But unlike SAT which the
aim is to find a truth assignment to satisfy all clauses, MaxSAT is just to
find a truth assignment to satisfy the maximum number of clauses. For a set
of Boolean variables V = {v1, v2, v3, ..., vi}, a literal lj is either a variable
vj or its negation ¬vj , 1 ≤ j ≤ i. A clause is a disjunction of literals (i.e.,
ci = l1∨ l2∨, ...,∨lj ). A CNF formula F is a set of clauses as conjunctive normal
form (i.e., F = c1∧c2∧, ...,∧ci). MaxSAT instances written as CNF can be easily
found in our tested benchmark.



MaxSAT with Nested Monte Carlo and Local Search 335

3.2 Heuristics

In order to test the different rollout policies for Monte Carlo Methods, here we
present 3 simple heuristics that commonly used for MaxSAT.

1. H1 is the heuristic which assigns the value from the first variable to the last
variable and H1 sets 0 for a variable that its positive value occurs more times
than its negative value in all clauses.

2. H2 is the heuristic which, for each step, assigns the variable first which occurs
the most times and H2 sets 0 for a variable that its positive value occurs more
times than its negative value in all clauses.

3. H3 is the heuristic which, for each step, assigns the literal first which occurs
the most times and H3 sets 0 for a variable that its positive value occurs more
times than its negative value in all clauses.

3.3 Stochastic Local Search

Based on [12], in this paper, we also investigate two well-studied Stochastic Local
Search (SLS) algorithms to deal with MaxSAT problem, namely WalkSat and
Novelty.

Algorithm 1. Walksat
1: function WalkSat(s)
2: assignment←InitAssignment()
3: while fliptimes < f do
4: if random() < ε1 then
5: v ← random variable
6: else
7: v ← best unassigned variable

8: assignment←flip(v)
return assignment

WalkSat. As it can be seen in Algorithm 1, the idea of WalkSat is to initialize
a random assignment (basic version) or according to the current found best solu-
tion (enhanced version) for each variable. Then an unsatisfied clause is selected.
Further step is to select a variable to flip which has the highest bonus after flip-
ping in the selected unsatisfied clause. The bonus is the change of the number
of satisfied clauses after flipping the variable.

Novelty. Novelty is similar to WalkSat. The first step is also to initialize
a random assignment (basic version) or according to the current found best
solution (enhanced version). But differently, for each variable in all unsatisfied
clauses, its bonus is computed. Then in order to avoid flipping in a dead loop, a
variable which has the highest bonus but not selected in the most recent flipping
is selected to flip. Simply, after line 7 in Algorithm 1, we add If v = vf and
random() < 1 − ε2 then v ← vs. vf is the most recent flipped variable and vs
is the second best unassigned variable.



336 H. Wang et al.

3.4 Monte Carlo Tree Search

Algorithm 2. Monte Carlo Tree Search
1: function MCTS(s)
2: Search(s)
3: πs ←normalize(Q(s, ·))
4: return πs

5: function Search(s)
6: if s is a terminal state then
7: v ← vend

8: return v
9: if s is not in the Tree then

10: Add s to the Tree, initialize Q(s, ·) and N(s, ·) to 0
11: Run rollout policy and get the solution score vrollout
12: v ← vrollout
13: return v
14: else
15: Select an action a with highest UCT value
16: s′ ←getNextState(s, a)
17: v ←Search(s′)
18: Q(s, a) ← N(s,a)∗Q(s,a)+v

N(s,a)+1

19: N(s, a) ← N(s, a) + 1

20: return v

According to [26,28,29], a recursive MCTS pseudo code is given in Algorithm 2.
For each search, the rollout value is returned (or the game termination score).
For each visit of a non-leaf node, the action with the highest UCT value is
selected to investigate next [4]. After each search, the average win rate value
Q(s, a) and visit count N(s, a) for each node in the visited trajectory is updated
correspondingly. The UCT formula is as follows:

U(s, a) = Q(s, a) + c

√
ln(N(s, ·))
N(s, a) + 1

(1)

The Nested Monte Carlo Tree Search (Due to the high computation, we only
investigate level 1 for NMCTS in this paper) calls MCTS for each step of the
assignment process.

3.5 Nested Monte Carlo Search

According to [5], the Nested Monte Carlo Search algorithm employs nested calls
with rollouts and the record of the best sequence of moves with different levels.
The basic level only performs random moves. Since a nested search may obtain
worse results than a previous lower level search, recording the currently found



MaxSAT with Nested Monte Carlo and Local Search 337

Algorithm 3. Nested Monte Carlo Search
1: function NMC(s, level)
2: chosenSeq←[], bestScore← −∞, bestSeq←[]
3: while s is not terminal do
4: for each m in legalMoves(s) do
5: s′ ← PerformMove(s, m)
6: if level = 1 then
7: (score, seq) ← run rollout policy
8: else
9: (score, seq) ← NMC(s′, level-1)

10: highScore ← highest score of the moves from s
11: if highScore > bestScore then
12: bestScore ← highScore
13: chosenMove ← m associated with highScore
14: bestSeq ← seq associated with highScore
15: else
16: chosenMove ← first move in bestSeq
17: bestSeq ← remove first move from bestSeq

18: s ← perform chosenMove to s
19: chosenSeq ← append chosenMove to chosenSeq

20: return (bestScore, chosenSeq);

best sequence and following it when the searches result in worse results than the
best sequence is important. Therefore, we present the pseudo code for the basic
Monte Carlo Search algorithm as Algorithm 3. In order to estimate the leaf nodes
from themselves instead of their children, we further test a variant of NMCS,
named ZNMCS (Zero Nested Monte Carlo Search), where in Algorithm 3, line 4
is changed to for i = 0, i < t, i + + do, in our experiments, t = 10. In addition,
line 5 has been removed. And line 9 is changed to (score, seq)← ZNMCS(s,
level-1).

4 Dynamic SLS Based Monte Carlo Methods

This section proposes the Dynamic SLS method with MCTS and NMCS. Since
the number of the unassigned variables decreases as the search tree deepens,
we propose a Dynamic SLS to avoid redundant flips and enlarge search tree to
improve the performance within a fixed time budget. The flip limit (written as
f) is simply computed according to the following Equation:

f = w × u (2)

w is a weight number, u is the number of the unassigned variables which can
be flipped. Considering MCTS, in the search tree, the variables, upon the leaf
nodes, have already been assigned to a value, so they can not be flipped anymore.
We also tested several exponent values powered by u and finally found exponent
equals 1 is the best.



338 H. Wang et al.

In this work, we insert Dynamic SLS to replace rollout policy for MCTS
(line 11 in Algorithm 2) and NMCS (line 7 in Algorithm 3, same to ZNMCS).
In addition, according to [12], it is reported that using square number of the
score is the best for UCTMAX, so in this work, for MCTS, we also replace the
value calculation in line 7 and line 12 in Algorithm 2 to v = pow(vend, 2) and
v = pow(vdsls, 2).

5 Orientation Experiments

5.1 Trial with Different Rollout

There are several ways to estimate the state value for Monte Carlo methods. One
typical way is to simply run random simulations to get approximate values. In
addition, for MaxSAT, there are many well designed heuristics to assign the truth
values, based on the assignment, a proper value can be obtained. Besides, there
are also several well studied SLS algorithms which can be applied to estimate
the state value. Therefore, in order to determine which way is the best for the
state estimate function, we use different ways to work together with NMCTS
and NMCS to process our test setting (50 different instances, 70 variables each).
The NMCTS simulation is set as 100. Time cost for each run is 50 s. each setting
runs 10 repetitions. The results are shown in Table 1. We see that the heuristics
all outperform random rollout, H3 is better than H2 and H2 is better than H1.
Importantly, SLS methods perform significantly the best. So we adopt WalkSat
and Novelty as the rollout policies for the further experiments. In addition,
WalkSat for NMCS is better than NMCTS, but NMCTS with Novelty is the
best.

Table 1. Results for Max3Sat Instances (70 variables) Using Different Rollout Policies
for MCTS, NMCS. Results are average number of unsatisfied clauses on tested group
instances, same to the following results.

Method NMCTS NMCS

Level – playout level 1 level 2

Random 81.4 125.2 80.8 80.5

H1 56.1 70.0 54.4 53.7

H2 55.1 69.5 54.6 53.8

H3 53.2 64.4 52.2 52.2

WalkSat 47.9 52.0 47.4 47.7

Novelty 47.7 51.9 48.8 49.0

5.2 UCTMAX vs NMCTS

Since [12] only investigated the UCTMAX with one time MCTS from the root
until the time out. However, it does not perform an action to enter next state and



MaxSAT with Nested Monte Carlo and Local Search 339

run UCT again like game playing. To this end, the NMCTS [2] method should
be further investigated. We let the MCTS simulation as a fixed value (set as 100)
so that each step will stop and get a search tree. Based on this search tree, a best
action can be found and performed to enter to next state. Then it runs another
UCT process until the time out or the termination. The results show that the
NMCTS performs clearly better than the UCTMAX way. In order to enlarge
the result difference for different settings, we use larger instances (50 instances,
each has 140 variables. [12] also used 140 as the test instance size, but they
only tested on one instance, we test on 50 different instances with this size to
reduce the noise.) for this experiment and the following orientation experiments
(Fig. 1).

Fig. 1. Comparison of UCTMAX with NMCTS. NMCTS outperforms UCTMAX on
50 instances which has 140 variables each. For both UCTMAX and NMCTS, the f is
set as 2000 which is reported as the best.

5.3 Current Global Best Solution

Based on [12] and [5], we know that it is the key to keep the global best solu-
tion (the best of the local solutions from all steps) found so far and initialize the
SLS algorithms with this global best solution. We still do not know whether it
is also important in our Nested Monte Carlo Methods with SLS. Therefore, we
design different combinations to show the importance.

The results are shown in Table 2, we see that with a small time budget (100 s),
for NMCTS, keeping the global best records has shown the advantage, and ini-
tializing based on the global best records is also better than not but with small
improvements. For NMCS, with 100 s, although we still find that keeping the



340 H. Wang et al.

Table 2. Impact of Random variable initialization and of keeping the global best
solution on the performance of NMCTS and NMCS. Fixed number of flips (2000), 50
instances, 140 variables each.

Keep Global
Initialization

No Yes

Rand Best Rand Local Best

Time Budget 100 s

NMCTS 221.2 220.8 204.8 205.1 204.6

NMCS 198.8 199.1 199.3 198.8 198.7

Time Budget 300 s

NMCTS 219.9 219.8 202.9 202.9 202.6

NMCS 195.3 195.6 195.3 195.6 193.1

global best records and initializing with them is the best, but it’s not very sig-
nificant. However, we see a clear improvement with larger time budget (300 s).
The reason that different initialization does not differ too much might be that
the flip limit is set too big so even if it is initialized from random, it can also
reach a global record level after flipping. From this experiment, we can conclude
that keeping the global best records and initializing based on them for SLS (in
this case, it is WalkSat) are both important to the nested search. NMCS works
better than NMCTS with WalkSat on 140 variables instances.

5.4 Probabilistic SLS Initialization

In order to further investigate the contribution of initializing WalkSat based
on the global best solution found so far, we adopt the simplest but commonly
used way to balance the exploration and exploitation, ε-greedy, to initialize the
assignment.

From Fig. 2, we see that ε = 0.1 performs best, which further shows the best
initialization way is to set literal assignment based on the best solution found
so far but with a small randomness to initialize randomly. Thus, our following
experiments are done with the ε as 0.1.

5.5 Fixed Flip Limits vs Dynamic Flip Limits

Goffinet et al. [12] used the fixed flip limits, which we found can be implemented
in a dynamical way. Therefore, in this section, we test different w values (from
0.5 to 25, but finally we only present results of w ∈ {1, 2, 4} as they are better)
for dynamic flip limits calculation equation (see Eq. 2). And we found generally
for both NMCTS and NMCS with different budget, w = 2 is the best (only the
result of 300 s is weaker for NMCTS). In addition, we test fixed flip limit with
2000 (which is reported the best for UCTMAX tuned on a single instance) and
140 (same as the average flip limit for each step with w = 2). We found that with
a fixed flip limit as 2000 is the worst and smaller limits increase the performance



MaxSAT with Nested Monte Carlo and Local Search 341

Fig. 2. Initializing Walksat Based on ε-greedy for NMCTS on 50 instances with 140
variables each, ε = 0 means initializing WalkSat totally based on the global best solu-
tion. ε = 0.1 means there is 10% probability to take a random initialization for the
literal, and so on. The ε equals 0.1 is the best.

which shows that for Nested Monte Carlo methods, allocating time cost for
relatively more steps contributes more.

Intuitively, even if a fine tuned fixed flip limit is found for a type of instances,
it is not really applicable to set as the best for other instances. However, it is obvi-
ously that along with the increasing of sizes, the flip limit should also be larger.
In order to test this assumption, we proposed the dynamic SLS and showed it
works well for the category 140. Therefore, in order to show the adaptation of
our Dynamic SLS method, after tuning the w for Dynamic SLS, we further test
the best value we get for other larger instances which have 180 and 200 vari-
ables respectively, and compare the results with the fixed flip limit way (the best
value is 140 for instances which have 140 variables). The results are presented
in Fig. 4. We see that 2u achieves better performance for both 180 and 200
variables categories, showing that our Dynamic SLS is more adaptive to other
instances. Therefore, no redundant extra tuning cost is needed.

6 Experiments on Benchmark

In this section, we will show the experimental results on tested benchmark
instances with aforementioned SLS based different Monte Carlo methods. The
benchmark consists of 383 instances categorized by different numbers of vari-
ables. And for each category, there are a bunch of instances with different num-
bers of clauses (Fig. 3).



342 H. Wang et al.

Fig. 3. Comparison of Fixed SLS with Dynamic SLS for NMCTS and NMCS. In order
to keep the w consistent for all runs, considering the overall results, we decide setting
the weight w for Dynamic SLS flip limits as 2 is the best.

Fig. 4. Examples: Comparison of 2u and 140 flips for instances which have 180 and
200 variables respectively. NMCTS with Dynamic SLS is better than fixed flip limit on
both 180 and 200 variables type, showing that our Dynamic SLS is more adaptive to
other instances with different variable numbers.



MaxSAT with Nested Monte Carlo and Local Search 343

Table 3. Results of MaxSat Instances Using WalkSat based UCTMAX, NMCTS,
ZNMCS and NMCS respectively, with 300 s budget each run, 10 repetitions each.

Benchmark Max Walksat Known
Optimal
SolutionVars Instances UCTMAX NMCTS ZNMCS NMCS

m = 100 round= 5,
level 1

round= 1,
level 2

round= 5,
level 1

round= 1,
level 2

70 50 47.7 47.8 47.1 47.2 47.1 47.7 46.8

80 50 27.3 27.4 27.1 27.1 27.1 27.5 26.9

120 50 223.3 219.1 219.2 218.7 219.0 221.0 196.1

140 50 201.8 199.2 194.0 193.1 195.3 195.9 184.8

160 42 257.7 256.4 246.1 243.1 243.1 246.6 227.6

180 44 248.2 247.4 237.7 235.9 235.4 238.5 220.6

200 49 195.7 195.2 186.2 184.5 184.9 187.6 171.0

250 24 7.7 7.7 8.2 8.6 8.5 8.7 5.5

300 24 9.3 9.1 9.8 10.2 10.1 10.5 6.3

Table 4. Results of MaxSat Instances Using Novelty based UCTMAX, NMCTS,
ZNMCS and NMCS respectively, with 300 s budget each run, 10 repetitions each.

Benchmark Max Novelty Known
Optimal
SolutionVars Instances UCTMAX NMCTS ZNMCS NMCS

m = 100 round= 5,
level 1

round= 1,
level 2

round= 5,
level 1

round= 1,
level 2

70 50 47.1 47.4 48.6 48.0 47.9 47.9 46.8

80 50 27.4 27.8 28.9 28.4 28.2 28.2 26.9

120 50 212.7 212.8 213.6 213.2 213.1 213.2 196.1

140 50 185.7 185.7 186.6 186.0 186.1 186.1 184.8

160 45 228.9 228.8 229.8 229.2 229.1 229.3 227.6

180 44 222.4 222.2 223.2 222.4 222.5 222.6 220.6

200 49 173.2 173.2 173.8 173.1 173.1 173.3 171.0

250 24 11.6 11.2 12.3 13.0 12.7 13.1 5.5

300 24 14.4 14.0 14.7 15.3 15.0 15.4 6.3

From Table 3, we can see that with WalkSAT, Nested Monte Carlo methods
perform better than UCTMAX. For smaller instances like 70 and 80 variables
categories, ZNMCS and NMCS level 1 perform the best, and ZNMCS level 2
achieves similar scores. Interestingly, for categories from 120 to 200, the best
performance is achieved by ZNMCS level 2. And for largest instances, NMCTS
is the best. These results confirm that the high level nesting of Monte Carlo
methods may lead to worse performance.

From Table 4, we still see that for Novelty, NMCTS performs the best for
larger instances. But differently, for the small instances, UCTMAX achieves
best scores. Only for type 200, ZNMCS achieves the best and the scores do not
vary too much. Importantly, it is clear that for most instances, Comparing with



344 H. Wang et al.

WalkSat, Novelty achieves better scores which are much more close to the known
optimal solutions, which also shows that a better SLS estimate method achieves
better performance together with Nested Monte Carlo. This also leads to that
the improvements of NMCTS for Novelty are smaller than that for WalkSat, but
we still see a possibility of increasing improvements along with the increasing of
the instances sizes, which we should further investigate in future work.

In addition, the type 250 and 300 variables instances are different from others
since their clauses are much more easy to be satisfied. In these cases, we find
that the NMCTS performs much stably the best.

Therefore, for both WalkSat and Novelty, we can conclude that the nesting
search improves the performance of Monte Carlo methods, especially for nesting
the MCTS while dealing with larger instances and employing the better SLS
method.

7 Conclusion and Future Work

In this paper, we first investigated different rollout policies (random, heuristics,
SLS) for different Nested Monte Carlo methods, including NMCTS and NMCS to
deal with MaxSAT problem. We found that heuristics are better than random,
but SLS is the best rollout policy to work with Monte Carlo methods in the
domain of MaxSAT. In addition, we confirmed that also for Nested Monte Carlo
methods, SLS methods should also record the global best records and initialize
assignment based on the found current best record. In order to further balance
the exploration and exploitation, we employed ε-greedy and found a proper ε
value as 0.1 to randomly initialize the assignment for SLS, which improves the
way that [12] initialized assignment fully based on the best record. The full
benchmark experimental results show that for both WalkSat and Novelty based
Monte Carlo methods, the nested tree search outperforms UCTMAX (Novelty
in particularly performs better on larger instances), and NMCS with WalkSat
also outperforms UCTMAX and even NMCTS. Therefore, we can conclude that
nested search is important to deal with MaxSAT problems, especially for tree
search on larger instances.

In the future, one way is to apply more powerful SLS algorithms together with
Nested Monte Carlo methods like CCLS [17]. Besides, further investigation to
find a light computation way for employing high level nested search is promising,
especially for larger MaxSAT instances.

References

1. Ansótegui, C., Gabas, J.: WPM3: an (in) complete algorithm for weighted partial
MaxSAT. Artif. Intell. 250, 37–57 (2017)

2. Baier, H., Winands, M.H.: Nested Monte Carlo Tree Search for online planning in
large MDPs. In: ECAI, vol. 242, pp. 109–114 (2012)

3. Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic MDP-behavior planning for
cars. In: 2011 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pp. 1537–1542. IEEE (2011)



MaxSAT with Nested Monte Carlo and Local Search 345

4. Browne, C.B., et al.: A survey of Monte Carlo Tree Search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

5. Cazenave, T.: Nested Monte-Carlo search. In: Twenty-First International Joint
Conference on Artificial Intelligence (2009)

6. Cazenave, T.: Generalized nested rollout policy adaptation. In: Cazenave, T., Tey-
taud, O., Winands, M.H.M. (eds.) MCS 2020. CCIS, vol. 1379, pp. 71–83. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-89453-5 6

7. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation
algorithm to the traveling salesman problem with time windows. In: Hamadi, Y.,
Schoenauer, M. (eds.) LION 2012. LNCS, pp. 42–54. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34413-8 4

8. Cowling, P.I., Ward, C.D., Powley, E.J.: Ensemble determinization in Monte Carlo
Tree Search for the imperfect information card game magic: the gathering. IEEE
Trans. Comput. Intell. AI Games 4(4), 241–257 (2012)

9. Demaine, E.D., Demaine, M.L., Langerman, A., Langerman, S.: Morpion Solitaire.
Theory Comput. Syst. 39(3), 439–453 (2006)

10. Doux, B., Negrevergne, B., Cazenave, T.: Deep reinforcement learning for Morpion
Solitaire. In: Browne, C., Kishimoto, A., Schaeffer, J. (eds.) ACG 2021. LNCS,
vol. 13262, pp. 14–26. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
11488-5 2

11. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Pro-
ceedings of the 24th International Conference on Machine Learning, pp. 273–280
(2007)

12. Goffinet, J., Ramanujan, R.: Monte-Carlo tree search for the maximum satisfiabil-
ity problem. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 251–267. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 17

13. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: an efficient weighted MaxSAT
solver. J. Artif. Intell. Res. 31, 1–32 (2008)

14. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.
Satisfiability Boolean Model. Comput. 11(1), 53–64 (2019)

15. Kautz, H., Selman, B., McAllester, D.: Walksat in the 2004 SAT competition.
In: Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing (2004)

16. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local
search paradigms: a new strategy for MaxSAT. In: Twenty-First International Joint
Conference on Artificial Intelligence (2009)

17. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algo-
rithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843
(2014)

18. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT Solver’.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

19. Menai, M.E., Batouche, M.: Efficient initial solution to extremal optimization algo-
rithm for weighted MAXSAT problem. In: Chung, P.W.H., Hinde, C., Ali, M. (eds.)
IEA/AIE 2003. LNCS (LNAI), vol. 2718, pp. 592–603. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45034-3 60

20. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

https://doi.org/10.1007/978-3-030-89453-5_6
https://doi.org/10.1007/978-3-642-34413-8_4
https://doi.org/10.1007/978-3-031-11488-5_2
https://doi.org/10.1007/978-3-031-11488-5_2
https://doi.org/10.1007/978-3-319-44953-1_17
https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1007/3-540-45034-3_60


346 H. Wang et al.

21. Pelikan, M., Goldberg, D.E.: Hierarchical BOA solves Ising spin glasses and
MAXSAT. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp.
1271–1282. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-2 3

22. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree Search. In:
Twenty-Second International Joint Conference on Artificial Intelligence (2011)

23. Seify, A., Buro, M.: Single-agent optimization through policy iteration using Monte
Carlo Tree Search. arXiv preprint arXiv:2005.11335 (2020)

24. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell,
D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005).
https://doi.org/10.1007/11527695 24

25. Wang, H., Emmerich, M., Plaat, A.: Assessing the potential of classical Q-learning
in general game playing. In: Atzmueller, M., Duivesteijn, W. (eds.) BNAIC 2018.
CCIS, vol. 1021, pp. 138–150. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31978-6 11

26. Wang, H., Emmerich, M., Preuss, M., Plaat, A.: Analysis of hyper-parameters for
small games: iterations or epochs in self-play? arXiv preprint arXiv:2003.05988
(2020)

27. Wang, H., Preuss, M., Emmerich, M., Plaat, A.: Tackling Morpion Solitaire
with AlphaZero-like ranked reward reinforcement learning. In: 2020 22nd Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), pp. 149–152. IEEE (2020)

28. Wang, H., Preuss, M., Plaat, A.: Warm-Start AlphaZero self-play search enhance-
ments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 528–542.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2 37

29. Wang, H., Preuss, M., Plaat, A.: Adaptive warm-start MCTS in AlphaZero-like
deep reinforcement learning. In: Pham, D.N., Theeramunkong, T., Governatori,
G., Liu, F. (eds.) PRICAI 2021. LNCS (LNAI), vol. 13033, pp. 60–71. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-89370-5 5

https://doi.org/10.1007/3-540-45110-2_3
http://arxiv.org/abs/2005.11335
https://doi.org/10.1007/11527695_24
https://doi.org/10.1007/978-3-030-31978-6_11
https://doi.org/10.1007/978-3-030-31978-6_11
http://arxiv.org/abs/2003.05988
https://doi.org/10.1007/978-3-030-58115-2_37
https://doi.org/10.1007/978-3-030-89370-5_5


Relational Graph Attention-Based Deep
Reinforcement Learning: An Application

to Flexible Job Shop Scheduling
with Sequence-Dependent Setup Times

Amirreza Farahani1(B) , Martijn Van Elzakker2 , Laura Genga1 ,
Pavel Troubil2 , and Remco Dijkman1

1 School of Industrial Engineering, Eindhoven University of Technology, Eindhoven,
The Netherlands

{A.Farahani,L.Genga,R.M.Dijkman}@tue.nl
2 Delmia R&D, Dassault Systèmes, ’s-Hertogenbosch, The Netherlands

{Martijn.Vanelzakker,Pavel.Troubil}@3ds.com

Abstract. This paper tackles a manufacturing scheduling problem
using an Edge Guided Relational Graph Attention-based Deep Rein-
forcement Learning approach. Unlike state-of-the-art approaches, the
proposed method can deal with machine flexibility and sequence depen-
dency of the setup times in the Job Shop Scheduling Problem. Further-
more, the proposed approach is size-agnostic. We evaluated our method
against standard priority dispatching rules based on data that reflect a
realistic scenario, designed on the basis of a practical case study at the
Dassault Systèmes company. We used an industry-strength large neigh-
borhood search based algorithm as benchmark. The results show that the
proposed method outperforms the priority dispatching rules in terms of
makespan, obtaining an average makespan difference with the best tested
priority dispatching rules of 4.45% and 12.52%.

Keywords: Flexible Job Shop Scheduling · Optimization · Deep
Reinforcement Learning

1 Introduction

In this paper, we propose an Edge Features Guided Relational Graph Attention-
based Deep Reinforcement Learning (ERGAT-DRL) method to address a prac-
tical Flexible Job Shop Scheduling Problem with Sequence-dependent Setup
Times (FJSP-SDST). FJSP-SDST is a more complex version of the well-known
Job Shop Scheduling Problem (JSP), generalized with flexible machines and
sequence-dependent setup times.

The Job shop Scheduling Problem (JSP) is one of the most-studied combina-
torial optimization problems (COP), with many industrial applications [14,27].
In the JSP, a set of jobs have to be processed on a set of given machines. Each
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 347–362, 2023.
https://doi.org/10.1007/978-3-031-44505-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_24&domain=pdf
http://orcid.org/0000-0003-2375-5396
http://orcid.org/0000-0002-5985-1956
http://orcid.org/0000-0001-8746-8826
http://orcid.org/0000-0002-0739-1177
http://orcid.org/0000-0003-4083-0036
https://doi.org/10.1007/978-3-031-44505-7_24


348 A. Farahani et al.

job is composed of a set of operations, which are assigned to eligible machines
with the aim of optimizing, e.g., the makespan or the tardiness [8]. When mul-
tiple alternative machines are available for an operation, the JSP is extended to
the Flexible Job shop Scheduling Problem (FJSP) [25,27].

Another important aspect of many real-world scheduling problems are the
setup times. In many real-world domains, such as e.g., pharmaceutical, or auto-
mobile manufacturing, setup operations (e.g, cleaning up or changing tools) are
not only required between jobs but also heavily influenced by the immediately
preceding operation on the same machine [21]. ‘Sequence dependency’ indicates
that the magnitude of setup times is determined by the current operation as well
as the direct previous operation processed on the same machine. The incorpo-
ration of setup times significantly impacts the applicability, dependability, and
performance of scheduling methods. However, most studies in this area focus on
operation time, with setup times assumed to be zero or constant [27]. The com-
bination of these characteristics defines the FJSP-SDST addressed in this paper.
This problem is considered a strongly NP-hard problem, and finding exact solu-
tions to FJSP-SDST in practice is often impossible [9,15,19].

In addition to finding a high quality (i.e., approximately optimal) solution,
there are other crucial factors in a practical scheduling problem: (1) computa-
tional efficiency, i.e, the computational time needed to find the solution, (2)
dynamicity and unexpected events, i.e, the capability of of dealing with stochas-
tic demands or events that make the practical scheduling environment non-
deterministic, and (3) size agnosticism, i.e., the ability to deal with schedul-
ing problems of varying numbers of jobs, operations, and machines without the
need to update parameters for new instances. Exact solution methods, such as
mathematical and constraint programming, are often impractical as they suffer
from prohibitively long computational times, and they cannot deal with dynamic
and unexpected events [7]. Meta-heuristics and approximate algorithms, such as
evolutionary algorithms, are able to find reasonable solutions with less computa-
tional effort than exact solution methods. However, they are still expensive and
do not guarantee that the found solution is globally optimal [3,13]. Moreover,
solutions found via this group of methods often depend on a set of parameters,
which may change for different problem instances or configurations [2]. Also,
the design and set up of these methods often require expert knowledge. Prior-
ity dispatching rules (PDRs) are another solution approach for the FJSP-SDST
problem. They assign sequentially dispatched individual operations to machines
based on greedy rules. Compared with meta-heuristics and exact solution meth-
ods, they are sometimes considered more efficient and practical because of low
computational time, capability to deal with dynamicity and unexpected events,
and consistent approach for any problem size. Hence, they are often employed
for real-life scheduling problems. However, PDRs sacrifice solution quality for
efficiency. Also, they require substantial domain knowledge. Hence, usually, they
have no guarantee of optimality and lack adaptability to specific situations [20].

To overcome these limitations, data-driven approaches have received a lot of
attention in the last decade. Particularly, Deep Reinforcement Learning (DRL)



Relational Graph Attention-Based Deep Reinforcement Learning 349

approaches have been applied to different scheduling problems in several domains
and industries [10,18,23]. Thanks to their capability to exploit data (i.e., simu-
lated or historical solved problems) and deep neural networks’ ability to capture
the global patterns [17], DRL methods can provide high-quality schedules with
promising computational efficiency, and they are considered in literature a good
choice for non-deterministic environments [10,18,23]. The main challenge for
DRL methods is that neural network dimensions have to be updated for new
instances. Previous work suggested to overcome this issue by using Graph Neu-
ral Networks (GNN), which can process graphs of varying sizes. GNN-based
methods are currently one of the best approaches for practical optimization
problems [31]. Also, there are a few papers that used GNN transformers incorpo-
rated with DRL. They have proven that GNN-based approaches can satisfy size
agnosticism requirements and make the DRL model more generic for scheduling
problems [22,24,28,32].

Despite the capability and advantages of GNN transformers incorporated
with DRL approaches, the presence of sequence-dependent setup times, in addi-
tion to machine flexibility, raises some challenges in different aspects of designing
a DRL-based method. None of the previous Markov Decision Processes (MDPs)
and proposed GNN transformers can simultaneously support machine flexibility
and sequence-dependent setup time. Also, to the best of our knowledge, none of
the existing related research tackled FJSP-SDST via DRL methods.

To fill this gap, this paper proposes a novel representation of FJSP-SDST as
an MDP, based on a customized disjunctive graph where a weighted relational
graph encodes the states. Furthermore, we propose an Edge Guided Relational
Graph Attention-based Deep Neural Network (ERGAT) scheme that takes as
input the state graph (i.e., all nodes, edges, and their features) and generates
feature embeddings of the nodes and edges in the weighted relational graph
that can support machine flexibility and sequence-dependent setup time simul-
taneously. Based on this scheme, we employ an Advantage Actor-Critic (A2C)
to train our size-agnostic model to learn the policy of dispatching operations
FJSP-SDST.

We evaluated our method against 1) an industry-strength large neighbor-
hood search based algorithm used as a ‘benchmark’ and 2) standard priority
dispatching rules. Data for our evaluation reflect a realistic scenario designed on
the basis of a case study at the Dassault Systèmes company. The experiments
show that while maintaining high computational efficiency, DRL methods can
learn a high-quality policy for the FJSP-SDST problem under analysis.

Besides the methodological novelty, the proposed method also has good prac-
tical value. Its neural architecture is size agnostic and trained policy can be
applied to solve instances of varying sizes, not only the sizes used in training.
More importantly, the trained policy can rapidly solve large-scale FJSP-SDST
instances and outperform the best tested PDRs in terms of makespan obtaining
an average makespan difference from the benchmark within 4.45% and 12.52%.
In particular, in instances with 400 operations (i.e., the largest size), our pro-
posed method improved makespan by 36.37% compared to best tested PDRs,



350 A. Farahani et al.

which is a promising improvement in practical scheduling. While our approach
compares favorably with the PDR, there is still a significant quality gap with
the benchmark solutions.

The rest of this paper is organized as follows. The next section intro-
duces related works. The Preliminaries section provides formal definitions used
throughout the paper. Our approach is then introduced in the Method section,
and we describe its computational evaluation in the Experiments and Results
section. Finally, the last section draws conclusions and delineates future work.

Table 1. GNN-based DRL methods for scheduling problems

Reference COP Graph GNN

[24,32] JSP disjunctive graphs GNN
[22] HFSP multi-graph GCN - Attention-based
[28] FJSP disjunctive graphs Heterogeneous GNN
Our Method FJSP - SDST disjunctive graphs ERGAT

2 Related Work

In this section, we review previous work which also uses DRL and GNN trans-
formers. We classify it based on: (1) the Scheduling Combinatorial Optimization
problem (COP) it solves, (2) the type of graph it uses, and (3) the type of GNN it
uses. Table 1 shows the comparison. Previous work dealing with scheduling prob-
lems usually relies on a disjunctive or multi-graph representation to encode the
state graphs. This graph integrates the operations information via node features
and relations between operations as edges [22,24,32]. However, none of these rep-
resentations support the machine flexibility and sequence-dependent setup times
aspects of scheduling. Their suggested GNN transformers do not support graphs
with edge features and are limited to node features. To the best of our knowledge,
there is only one exception, but that considers only machine flexibility aspect
of problem. [28] proposed an integrated approach, which combines operation
selection and machine assignment as one decision based on a multi-node types
disjunctive graph (i.e., operations and machines as two different node types) and
considers processing times as edge features for FJSP and applying a Heteroge-
neous GNN transformer to support multiple node types and single-dimensional
edge features. In general, sequence-dependent setup times and machine flexibility
make the problems much more complex in graph representation and decision-
making. Hence, the main weak point of these approaches is that their proposed
MDPs or GNNs cannot be applied to FJSP-SDST and are mainly compatible
with more straightforward problems (e.g., JSP, FJSP). The attention-based GNN
transformer used in [22,28] still cannot support sequence-dependent setup times
in addition to machine flexibility. In contrast, our method is able to incorporate



Relational Graph Attention-Based Deep Reinforcement Learning 351

sequence dependency of setup times as edge features in addition to machine flexi-
bility via a customized disjunctive multi-relational graph with only one node type
which decreases complexity of multi node types graph. Furthermore, it employs
a novel Edge features-guided Relational Graph Attention-based transformer that
can support multi-dimensional edge features, allowing more information to be
incorporated into the disjunctive graph and different aspects of the scheduling
problem to be addressed.

3 Preliminaries

In this section, we first provide a formal definition of the Flexible Job Shop
Scheduling Problem with Sequence-dependent Setup Times (FJSP-SDST).
Then, we define our proposed graph structural properties of the FJSP-SDST
problem.

3.1 Flexible Job Shop Scheduling with Dynamic Setup Times

Let us consider a set J of n jobs and a set M of m machines. Each job i ∈ J
consists of a sequence of ni consecutive operations, where the jth operation of
job i, denoted by oij , can be processed on any machine among a subset mij ⊆ M
of eligible (allowed) machines. Each machine can only process one operation at a
time. For each operation oij , let pij be its processing time on each machine, which
is the multiplication of quantity of oij and processing speed of this operation on
a machine respectively denoted as qij and vij . Note that we assume that the
allowed machines for each operation activity type (e.g., sorting, or matching)
are homogeneous and processing times (duration) are machine independent. We
define setup times dependent on the operation sequence and machine. A setup
time dij,i′j′ is incurred when operation j of job i (i.e., oij) and operation j′ of
job i′ (i.e., oi′j′) are processed subsequently on a machine. Note that dij,i′j′ is
only defined if there exist operations oij and oi′j′ such that exist in mij ∩ mi′j′ .
Also, the setup time of sequence oij to oi′j′ on a machine might be different from
the setup time of sequence oi′j′ to oij on the same machine. The starting time
sij of an operation oij on a machine depends on: 1) completion time cij−1 of
the previous operation of the same job, 2) completion time ci′j′ of the previous
operation scheduled on the same machine, 3) setup time di′j′,ij . In other words,
an operation cannot start earlier than the previous operation of the same job
terminates. Also, an operation cannot start before the previous operation on
the same machine terminates and the machine is setup again. The following
expressions represent the discussed constraints:

pij = qij ∗ vij (1)
sij = max(cij−1,ci′j′ + di′j′,ij); cij = sij + pij (2)

Our goal consists in determining a sequence of assignments of operations
to eligible machines which minimize the makespan Cmax = maxij{cij} while
satisfying the constraints on the starting times.



352 A. Farahani et al.

3.2 Graph Structural Properties

To study the structural properties of the FJSP-SDST, we design a weighted
relational graph based on the concept of the disjunctive graph to cover machine
flexibility and sequence-dependent setup times aspects simultaneously. The main
graph components and notation are illustrated in Fig. 1. This graph is inspired
by a standard disjunctive model for JSP, proposed schemes for FJSP [11]
and sequence-dependent setup times [4]. This graph is formally denoted as
G = (V,E1, E2, E3,WV ,WE). The set V = {oij | ∀i ∈ J, 1 ≤ j ≤ ni}∪{0, ∗} con-
tains all operations as well as dummy start and completion operations, which
are respectively denoted as 0 and ∗. The set can be decomposed into subsets
containing operations of a single job. Each subset represents all the operations
of one particular job, i.e, job i indexed consecutively by the set of operations
{oi1, oi2, ..., oini

}. We have three different edge types or relations. E1 is a set
of conjunction arcs, i.e., directed edges representing the precedence (job rout-
ing) constraints between every pair of consecutive operations of the same job
(i.e., oij → oij+1 | ∀i ∈ J, 1 ≤ j < ni). They are illustrated via black arrows in
Fig. 1. Set E2 contains disjunctive arcs, i.e., weighted directed edges between
pairs of operations with the same activity type that have to be executed on
the same set of allowed machines. They are illustrated with dashed arrows in
Fig. 1. These edges are weighted by sequence-dependent setup times between
the origin and the source of the edge to represent the sequence-dependent setup
times aspect of FJSP-SDST. E3 contains the edges between operations that are
planned directly after each other on the same machine and edges between the
last operation scheduled on each machine in the current status of scheduling
and all unplanned operations that could be scheduled next on that machine. E3

is similar to E2, with the difference that edges in this set are weighted by a
binary edge indicator, which represents the existence of an edge between each
pair of operations planned right after each other on the same set of machines.
These edges are illustrated with solid blue arrows in Fig. 1. WV is the weight on
the nodes which is represented as a feature vector, that includes characteristics
(e.g., size, color), activity type, quantity, process speed, earliest starting time,
completion time, and status (i.e., a binary variable to identify whether an oper-
ation has been scheduled already or not) of the operation oij . WE is the weight
on the edges which is represented as an edge vector WE(oij , oi′j′ , Er), where
Er represents the relation type. It means WE maps a single-dimensional feature
as a weight to a directed edge with relation type Er. In particular, edges with
relation type E2 map to sequence-dependent setup times dij,i′j′ and E1, E3 map
to binary values that represent the existence of the edge.

4 Method

In this paper, we propose an Edge Features Guided Relational Graph Attention-
based Deep Reinforcement Learning (ERGAT-DRL) algorithm for solving the
FJSP-SDST problem. This algorithm solves the FJSP-SDST problem as a
sequential decision-making problem, which iteratively takes a dispatching action.



Relational Graph Attention-Based Deep Reinforcement Learning 353

Fig. 1. FJSP-SDST problem - disjunctive graph

In this action, an operation is selected and then assigned to one of the eligible
alternative machines, based on the first available machine heuristic. Figure 2
summarizes our proposed method. We discuss the various components in detail
in the following subsections.

Fig. 2. Overview of proposed method for FJSP-SDST

4.1 Markov Decision Process Formulation

We formulate the FJSP-SDST as a MDP, defined by the following elements.
The State S is a weighted relation graph G (see Sect. 3) representing the cur-

rent status of the scheduling environment and the partial solution of the problem.
It consists of all operations with their attributes (i.e., characteristics, quantity,
process speed, earliest starting time and completion time, and their status) and
the relationships operations, eligibility of the machines, and sequence-dependent
setup times. In particular, the state describes which operations have been sched-
uled already and which ones not yet.

The set of Actions A, consists of all operations (i.e., {oij |
∀i ∈ J, 1 ≤ j ≤ ni}). By selecting an action, we dispatch an operation oij and



354 A. Farahani et al.

assign it to the first available machine from the set mij . The dispatching is
encoded in a node feature for this operation as a starting time that is the earli-
est time to start execution.

Note that not all actions are allowed in each state because of the problem
constraints. First, operations have to be selected respecting their order within
respective jobs, i.e., oij+1 cannot be selected before oij . Second, an operation
cannot be selected twice, i.e., it cannot be re-scheduled.

The Transition in this MDP is a multi-step process. First, based on the
selected action, we assign the selected operation to the first available eligible
machine. Then the state graph G is updated according to the following steps:

– Update the status of the selected operation based on selected action oij to
‘planned operation’ (i.e., already assigned to a machine) via the ‘status’ node
feature.

– Update the starting time sij based on the availability of the assigned machine
(i.e., completion time ci′j of the previous operation of the machine, plus
sequence-dependent setup time di′j′,ij) and the completion of the previous
operation cij−1 of the same job, and update the completion time cij based
on quantity qij and process speed vij , by updating the corresponding node
features (see Eq. 2).

– Update the earliest starting time and completion time node features of all
other operations that have not been planned yet (i.e., not selected yet) and
whose starting time is affected by the selected operation oij . This includes
following operations of the same job (i.e., oik where j ≤ k < ni) and all oper-
ations allowed on the selected machine and their neighbors (i.e., operations of
the same job of these operations). Note that these values may be different in
the next iteration and only at the end of dispatching are the actual scheduled
values determined.

– Update edges with type E3. First, add a dispatching sequence edge from the
selected operation oij to all unplanned operations that could be scheduled
next on that machine. Second, remove dispatching sequence edges of the pre-
vious operation at the same machine (i.e. oi′j′) that connected oi′j′ to the
other unplanned operations, except oij .

This transition process happens iteratively until all operations have been
planned. Figure 3 presents a simplified example of an MDP transition. Starting

Fig. 3. A simplified example of an MDP transition



Relational Graph Attention-Based Deep Reinforcement Learning 355

with the initial state graph, Step 1 selects o31 and assigns it to the first available
machine in the set of eligible machines (i.e., dashed red edges). This updates the
node features corresponding to the status, earliest starting time, and completion
time of o31, as well as the earliest starting and completion times of all nodes
affected by o31 assignment. Additionally, a sequence dispatching edge (i.e., solid
blue edges) is added from o31 to all unplanned operations that could be scheduled
next on that machine (i.e., o21, o11). Step 2 similarly transitions by selecting o21
and additionally removing the sequence dispatching edge (i.e., solid blue edges)
from previous selected operation o31 to the other unplanned operation (i.e. o11).

In this paper, the training process is guided by cumulative immediate rewards
to minimize makespan. These immediate Rewards are defined as makespan (i.e.,
Cmax = maxij{cij}) differences between two states that are processed after each
other. Note that the approach can be used also in combination with different
performance indicators to define the rewards.

4.2 Edge Features Guided Relational Graph Attention Network

To encode our weighted relational graph into a GNN, we follow the construc-
tion of the Relational Graph Attention Network (RGAT) [6], and Edge Features
Guided Graph Attention Networks (EGAT) [16] to design an Edge Features
Guided Relational Graph Attention Network (ERGAT) that supports multi-
relational graphs with multidimensional real-valued features. RGAT and EGAT
are extensions of the graph attention layer (GAT) proposed in [30]. RGAT
extended GAT to the relational setting to encode graphs with different edge
types (relations). EGAT incorporates edge features to indicate the relationship
among nodes that can handle multidimensional real-valued edge features.

Network architecture overview, The input of the ERGAT layer is a
weighted relational graph G with |V | nodes and |R| different relations. In this
paper we consider R = E1, E2, E3 (i.e., |R| = 3). We feed it to the network as
two main components:

– Tensor of node features X, which is X = [x1x2...xN ] ∈ R
|V |×F , where xi ∈

R
F ,∀i ∈ V is a F dimensional feature vector with real-valued features (in

this paper F = 7) of the ith node.
– Tensor of edge features E, Which is E ∈ R

|V |×|V |×P×E , where e
(r)
ij ∈

E
(r)
P ,∀i, j ∈ V,∀r ∈ |E| is a P dimensional feature vector of the edge con-

necting the ith to jth nodes with relation type r (in this paper P = 1).

The output of the proposed layer is X ′ = [x′
1x

′
2...x

′
N ],X ′ ∈ R|V |×F ′

which
is a transformed node features matrix of X, where x′

i ∈ R
F ′

,∀i ∈ V is a F ′

dimensional transformed feature vector of the ith node.

Network Operators. In ERGAT, we primarily use the operators which are
employed in RGAT [6] with some advancements to make it compatible with
edge guided approach and support real-valued edge features. The attention log-
its a

(r)
ij of this suggested layer are additive attention logits for real-valued edge



356 A. Farahani et al.

features which are calculated for each relation type and constructed query, key
kernels and edge features to specify how the values, i.e. the intermediate repre-
sentations W

(r)
1 xi will combine to produce the updated node representations x′

i.
A separate query kernel Q(r) ∈ R

F ′×D and key kernel K(r) ∈ R
F ′×D project the

intermediate representations (i.e., W
(r)
1 xi) into query and key representations of

dimensionality D, where W
(r)
1 ,W

(r)
2 are the learnable parameters of each relation

r, (W is an F ′ × F matrix) of a shared linear transformation.
The following expressions determine additive attention logits for real-valued

edge features:

q
(r)
i = W

(r)
1 xi.Q

(r); k
(r)
i = W

(r)
1 xi.K

(r) (3)

a
(r)
ij = LeakReLU(q(r)i .k

(r)
j + W

(r)
2 .e

(r)
ij ) (4)

The attention coefficients for each relation type r are then obtained using an
across-relation attention mechanism, which calculates across node neighborhoods
regardless of relation r [6].

α
(r)
ij = softmax

j,r
(a(r)

ij )
exp(a(r)

ij )
∑

r′∈E

∑

k∈η
(r′)
i

exp(a(r′)
ik )

(5)

By implementing a single probability distribution over the different represen-
tations W

(r)
1 xj for nodes j in the neighborhood of node i, this mechanism encodes

the prior that relation importance is a local property of the graph. Explicitly for
any node i and all r, r′ ∈ E, all j ∈ η

(r)
i , k ∈ η

(r′)
i yield competing attention α

(r)
ij

and α
(r′)
ik with sizes depending on their corresponding representations W

(r)
1 xj

and W
(r′)
1 xk [6].

Figure 4 shown an illustration of the ERGAT layer in four steps. Step 1:
the intermediate representations for node i are combined with the intermediate
representations for nodes in its neighborhood under each relation r type using
edge features e

(r)
ij , to form each logit a

(r)
ij . Step 2: a softmax is taken across all

logits independent of relation type to form the attention coefficients α
(r)
ij . Step

3: these attention coefficients construct a weighted sum over the nodes in the
neighborhood for each relation. Step 4: these are then aggregated and passed
through a nonlinearity to produce the updated representation for node i.

4.3 Deep Reinforcement Learning

In this paper, we use an Advantage Actor Critic (A2C) algorithm to train our
agent. The actor refers to the stochastic policy network π(oij |s) to decide which
operation (or node) to chose. The critic estimates the value function. This
could be the action-value or state-value V (s) to tell the actor how good its
operation was and how it should adjust. In this paper we use an state-value



Relational Graph Attention-Based Deep Reinforcement Learning 357

Fig. 4. Illustration of the ERGAT layer

approach. The stochastic policy π(oij |s) is parameterized as a GNN with train-
able parameter θ. Hence, it enables learning strong dispatching rules and size-
agnostic generalization.

5 Experiments and Results

This section discusses the experiments we carried out to test our method. We
first introduce the experimental settings and the tested competitors. Then, we
discuss the obtained results.

5.1 Experimental Settings

Dataset. This experiment is designed on the basis of a practical case study
at the Dassault Systèmes company. We used data with properties of an indus-
trial manufacturing scheduling with the Job shop scheduling problem setting in
the presence of machine flexibility and sequence-dependent setup times. These
data include the following features: the number of jobs (ranging between 16
and 160), operations (with 2 to 3 operations per job and 40 to 400 opera-
tions in total), and machines (with 1 to 3 machines per operation and up to
6 machines in total), temporal properties, quantity, characteristics (e.g., size,
length, type) of the operations, plus the sets of allowed machines per operation,
and set of sequence-dependent setup times. We assume that the processing time
of machines allowed for one specific type of activity are the same and depend
on the operation’s characteristics, quantity, and process speed of operation (see
Eq. 1).

Training Parameters. We did hyperparameter tuning on the number of episodes
(with options 500, 1000, 2000, 3000), and number of nodes per hidden layer (128,
256, 512). Also, we used some constant hyperparameters for training learning
rate (1e-4), number of hidden layers (2), and discount factor 0.99. The learning
method converged after 2000 episodes of one scheduling instance per episode.
Note that the starting state of each episode is different from other episodes.



358 A. Farahani et al.

In each episode, all operations must be scheduled. For the validation of the
model, we tested 125 unseen instances with 2 different size settings: 1) smaller
instances, i.e., almost similar size configuration to training instances (i.e., less
than 40 operations), 2) Larger instances, i.e., the number of operations is up
to 10 times more than trained instances (i.e., more than 40 up to 400). The
goal of using these different size settings is to investigate the effect of the size
on the schedulers’ performance and evaluate the size-agnosticism aspect of the
model. We initialize an Edge Guided Relational Graph Attention Neural network
as a graph transformer with 2 hidden layers of 512 hidden dimensions, ReLU
activator, and Adam optimizer. For A2C algorithm, we used individual Fully-
connected Feedforward Neural Networks with Backpropagation and a hidden
layer as Policy Network (Actor) and Value Network (Critic). The remaining
parameters are initialized according to PyTorch’s default parameters. The agent
and the simulation model are executed on a machine with an Intel(R) Core(TM)
i7 Processor CPU @ 2.80GHz and 16GB of RAM, no graphics module is used
for training the neural network.

Tested Competitors. We used an industry-strength algorithm based on a large
neighborhood search as a ‘benchmark’, which has been provided by the Das-
sault Systèmes Delmia R&D team. Dassault Systèmes - DELMIA Quintiq pro-
vides companies with solutions to plan and optimize complex production value
networks, optimize intricate logistics operations, and plan and schedule large,
geographically diverse workforces. The Delmia Quintiq software was used as an
industry-strength method for various planning and scheduling studies [1,12,29].

Furthermore, we reviewed existing literature [26] and had extensive discus-
sions with experts from Dassault on how their scheduler currently works to
select suitable PDRs to compare against our method. The selected rules were
First Come, First Served (FCFS), (2) Shortest Processing Time (SPT), and (3)
Shortest Setup Time (SIMSET). We also tested a random assignment.

5.2 Results

Methods Comparison. We tested the above-discussed methods in multiple experi-
ments with different problem-size settings: smaller instances (i.e., up to 40 oper-
ations) and larger instances (i.e., up to 400 operations) that are respectively
reported in Table 2. We evaluate their performance based on the average of the
makespans and the average computational times. These evaluation measures are
computed over 125 different test (unseen) instances.

The ERGAT-DRL method outperforms the tested PDRs in all the tested
settings, obtaining an average makespan difference with the SPT (i.e., the best
PDR) of 4.45% and 12.52% for smaller instances and larger instances, respec-
tively. In particular, in instances with 400 operations (i.e., largest size), our
proposed method improved the makespan by 36.37% compared to SPT, which is
a promising improvement in practical scheduling. Even though our model never
trains on instances with more than 40 operations and 50 problem instances, none
of the tested instances have a similar number of operations to training instances.



Relational Graph Attention-Based Deep Reinforcement Learning 359

While our approach compares favorably with the PDR, there is still a significant
quality gap with the benchmark solutions. We believe this gap can be reduced by
incorporating the DRL agent into a Monte Carlo tree search (MCTS) approach
and improving the machine assignment heuristic (i.e., instead of using the first
available machine heuristic, employing other heuristics or an additional DRL
agent) used in our approach.

Table 2 also shows that, as expected, the PDRs rules are overall much faster
than the competitors. However, as the number of operations increases from 40 to
400, the average computational time of PDRs increases by about 270 times. For
the ERGAT-DRL method and benchmark these differences are around 68 and 30
times, respectively. It is worth noting that the performance of the ERGAT-DRL
algorithm are comparable to the ones of the benchmark method, which is already
a promising result. The company algorithm is a mature, optimized, and well-
tested algorithm that actively provides services to customers, while our ERGAT-
DRL algorithm still has a lot of potential to improve performance. For instance,
our proposed DRL method was tested on regular CPU-based laptops (details
of processors discussed above). Based on experimental results reported in the
literature, employing GPUs can decrease the computational time 4 to 5 times [5].
Taking this into account, by optimizing the code, there is a potential to be 2–
3 times more computationally efficient than the benchmark while performing
substantially better in terms of results than existing PDRs.

Table 2. Average results over different size instances

Method Smaller instances (up to 40) Larger instances (up to 400)
Makespan (hrs) time (s) Makespan (hrs) time (s)

Random 55.42 0.0818 283.79 22.54
SIMSET 55.37 0.083 303.76 22.15
FCFS 52.00 0.0817 250.45 22.29
SPT 51.74 0.0824 254.51 22.17
ERGAT-DRL 49.95 6.615 234.43 453.34
Benchmark 40.23 ≈10 160.22 ≈300

6 Conclusions and Future Work

This paper investigated the application of Graph Neural Network transform-
ers incorporated in DRL in a practical Flexible Job Shop Scheduling Problem
with Sequence-dependent Setup Times. The experimental results showed that
the proposed approach consistently outperformed the tested PDRs in terms of
makespan, obtaining an average makespan difference with the best tested PDR
solution within 4.45% and 12.52%. These differences were more evident in larger



360 A. Farahani et al.

instances; in the largest case, we achieved 36.37% of makespan improvement. The
proposed architecture also effectively generalized to larger-sized problems and
benchmarks unseen in training. Overall, these results show how the use of Edge
Guided Relational Graph Attention Neural Network transformers incorporated
in DRL can significantly decrease makespan in complex scheduling problem, thus
suggesting that the use of these techniques can indeed bring significant practical
advantages in the manufacturing domain with dynamic and non-deterministic
environments that deal with large problem instances.

Nevertheless, our method presents some limitations that we plan to address
in future work. The current version of the method was designed and tested
to support single-objective optimization problems (e.g., makespan) rather than
multi-objective optimization. Furthermore, we only considered machine flexi-
bility and sequence-dependent setup times in this paper. In future work, we
intend to extend our model to Flexible Assembly (i.e., incorporating relation-
ships between different jobs) to increase the method’s generality and applicabil-
ity in real-world problems. In addition, we plan to incorporate dynamicity and
uncertainty into the scheduling problem. Finally, we plan to investigate the per-
formance improvement in terms of solution quality by incorporating the DRL
agent into the Monte Carlo tree search (MCTS) approach and improving the
machine assignment heuristic in our proposed method via other methods (e.g.,
heuristics or another DRL agent) rather than using the first available machine
heuristic. Also we aim to improve the efficiency of the code to improve compu-
tational time.

References

1. Behnke, D., Geiger, M.J.: Test instances for the flexible job shop schedul-
ing problem with work centers. Arbeitspapier/Research Paper/Helmut-Schmidt-
Universität, Lehrstuhl für Betriebswirtschaftslehre, insbes. Logistik-Management
(2012)

2. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput. 8, 239–287
(2009)

3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)

4. Brucker, P., Thiele, O.: A branch & bound method for the general-shop problem
with sequence dependent setup-times. Operations-Research-Spektrum 18(3), 145–
161 (1996)

5. Buber, E., Banu, D.: Performance analysis and CPU vs GPU comparison for deep
learning. In: 2018 6th International Conference on Control Engineering & Infor-
mation Technology (CEIT), pp. 1–6. IEEE (2018)

6. Busbridge, D., Sherburn, D., Cavallo, P., Hammerla, N.Y.: Relational graph atten-
tion networks. arXiv preprint arXiv:1904.05811 (2019)

7. Chen, B., Matis, T.I.: A flexible dispatching rule for minimizing tardiness in job
shop scheduling. Int. J. Prod. Econ. 141(1), 360–365 (2013)

8. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling prob-
lems using genetic algorithms-I. representation. Comput. Ind. Eng. 30(4), 983–997
(1996)

http://arxiv.org/abs/1904.05811


Relational Graph Attention-Based Deep Reinforcement Learning 361

9. Cheng, T.E., Gupta, J.N., Wang, G.: A review of flowshop scheduling research
with setup times. Prod. Oper. Manag. 9(3), 262–282 (2000)

10. Cunha, B., Madureira, A.M., Fonseca, B., Coelho, D.: Deep reinforcement learning
as a job shop scheduling solver: a literature review. In: Madureira, A.M., Abraham,
A., Gandhi, N., Varela, M.L. (eds.) HIS 2018. AISC, vol. 923, pp. 350–359. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-14347-3_34

11. Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the
general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper.
Res. 70, 281–306 (1997)

12. Dupláková, D., Telišková, M., Török, J., Paulišin, D., Birčák, J.: Application of
simulation software in the production process of milled parts. SAR J. 1(2), 42–46
(2018)

13. Gao, K., Cao, Z., Zhang, L., Chen, Z., Han, Y., Pan, Q.: A review on swarm
intelligence and evolutionary algorithms for solving flexible job shop scheduling
problems. IEEE/CAA J. Autom. Sinica 6(4), 904–916 (2019)

14. Gao, L., Zhang, G., Zhang, L., Li, X.: An efficient memetic algorithm for solving
the job shop scheduling problem. Comput. Ind. Eng. 60(4), 699–705 (2011)

15. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

16. Gong, L., Cheng, Q.: Adaptive edge features guided graph attention networks.
arXiv preprint arXiv:1809.02709, vol. 2, pp. 811–820 (2018)

17. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989)

18. Kayhan, B.M., Yildiz, G.: Reinforcement learning applications to machine schedul-
ing problems: a comprehensive literature review. J. Intell. Manufact. 1–25 (2021).
https://doi.org/10.1007/s10845-021-01847-3

19. Laguna, M.: A heuristic for production scheduling and inventory control in the
presence of sequence-dependent setup times. IIE Trans. 31(2), 125–134 (1999)

20. Mönch, L., Fowler, J.W., Mason, S.J.: Production Planning and Control for Semi-
conductor Wafer Fabrication Facilities: Modeling, Analysis, and Systems, vol. 52.
Springer, New York (2012). https://doi.org/10.1007/978-1-4614-4472-5

21. Naderi, B., Zandieh, M., Balagh, A.K.G., Roshanaei, V.: An improved simulated
annealing for hybrid flowshops with sequence-dependent setup and transportation
times to minimize total completion time and total tardiness. Expert Syst. Appl.
36(6), 9625–9633 (2009)

22. Ni, F., et al.: A multi-graph attributed reinforcement learning based optimization
algorithm for large-scale hybrid flow shop scheduling problem. In: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
3441–3451 (2021)

23. Panzer, M., Bender, B.: Deep reinforcement learning in production systems: a
systematic literature review. Int. J. Prod. Res. 60(13), 4316–4341 (2022)

24. Park, J., Chun, J., Kim, S.H., Kim, Y., Park, J.: Learning to schedule job-shop
problems: representation and policy learning using graph neural network and rein-
forcement learning. Int. J. Prod. Res. 59(11), 3360–3377 (2021)

25. Rossi, A.: Flexible job shop scheduling with sequence-dependent setup and trans-
portation times by ant colony with reinforced pheromone relationships. Int. J.
Prod. Econ. 153, 253–267 (2014)

26. Sharma, P., Jain, A.: Performance analysis of dispatching rules in a stochastic
dynamic job shop manufacturing system with sequence-dependent setup times:
Simulation approach. CIRP J. Manuf. Sci. Technol. 10, 110–119 (2015)

https://doi.org/10.1007/978-3-030-14347-3_34
http://arxiv.org/abs/1809.02709
https://doi.org/10.1007/s10845-021-01847-3
https://doi.org/10.1007/978-1-4614-4472-5


362 A. Farahani et al.

27. Shen, L., Dauzère-Pérès, S., Neufeld, J.S.: Solving the flexible job shop scheduling
problem with sequence-dependent setup times. Eur. J. Oper. Res. 265(2), 503–516
(2018)

28. Song, W., Chen, X., Li, Q., Cao, Z.: Flexible job-shop scheduling via graph neural
network and deep reinforcement learning. IEEE Trans. Industr. Inf. 19(2), 1600–
1610 (2022)

29. van der Hoek, T. Optimization of crude oil operations scheduling and product
blending and distribution scheduling within oil refineries (2014)

30. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.:
Graph attention networks. Stat 1050(20), 10–48550 (2017)

31. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

32. Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X.: Learning to dispatch
for job shop scheduling via deep reinforcement learning. Adv. Neural. Inf. Process.
Syst. 33, 1621–1632 (2020)



Experimental Digital Twin for Job Shops
with Transportation Agents

Aymen Gannouni(B) , Luis Felipe Casas Murillo , Marco Kemmerling ,
Anas Abdelrazeq , and Robert H. Schmitt

Information Management in Mechanical Engineering WZL-MQ/IMA, RWTH Aachen
University, Aachen, Germany

aymen.gannouni@ima.rwth-aachen.de

https://cybernetics-lab.de/

Abstract. Production scheduling in multi-stage manufacturing envi-
ronments is subject to combinatorial optimization problems, such as the
Job Shop Problem (JSP). The transportation of materials when assigned
to mobile agents, such as Automated Guided Vehicles (AGVs), results in
a Job Shop Problem with Transportation Agents (JSPTA). The trans-
portation tasks require routing the AGVs within the physical space of the
production environment. Efficient scheduling of production and material
flow is thus crucial to enable flexible manufacturing systems.

Neural combinatorial optimization has evolved to solve combinatorial
optimization problems using deep Reinforcement Learning (RL). The key
aim is to learn robust heuristics that tackle the trade-off of optimality
versus time complexity and scale better to dynamic changes in the prob-
lem. The present simulation environments used to train RL agents for
solving the JSPTA lack accessibility (e.g. use of proprietary software),
configurability (e.g. changing shop floor layout), and extendability (e.g.
implementing other RL methods).

This research aims to address this gap by designing an Experimental
Digital Twin (EDT) for the JSPTA. It represents an RL environment
that considers the physical space for the execution of production jobs
with transportation agents. We created our EDT using a simulation tool
selected based on requirement analysis and tested it with a customized
state-of-the-art neural combinatorial approach against two common Pri-
ority Dispatching Rules (PDRs).

With a focus on the makespan, our findings reveal that the neural
combinatorial approach outperformed the other PDRs, even when tested
on unseen shop floor layouts. Furthermore, our results call for further
investigation of multi-agent collaboration and layout optimization. Our
EDT is a first step towards creating self-adaptive manufacturing systems
and testing potential optimization scenarios before transferring them to
real-world applications.

Keywords: Job Shop Scheduling with Transportation · Neural
Combinatorial Optimization · Experimental Digital Twins ·
Reinforcement Learning · Flexible Manufacturing Systems

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 363–377, 2023.
https://doi.org/10.1007/978-3-031-44505-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_25&domain=pdf
http://orcid.org/0000-0002-7102-5307
http://orcid.org/0000-0002-4064-2230
http://orcid.org/0000-0003-0141-2050
http://orcid.org/0000-0002-8450-2889
http://orcid.org/0000-0002-0011-5962
https://doi.org/10.1007/978-3-031-44505-7_25


364 A. Gannouni et al.

1 Introduction

Many multi-stage production processes are complex by nature and require a
high degree of planning and monitoring. One example is assembly lines, where
raw and semi-finished products are processed, transported, and assembled over
multiple stations. Today’s assembly products are highly customizable and can
be individually shaped to customer needs. To build such products, so-called “lot-
size one manufacturing” is crucial to produce a wide range of unique products
at scale. The goal is to make manufacturing systems so flexible that even newly
defined products can be ad-hoc integrated into production lines.

As good as the vision of “lot-size one manufacturing” is, the practical imple-
mentation poses various challenges, especially in production planning and con-
trol. For instance, assembly environments involve tackling Combinatorial Opti-
mization Problems (COPs), such as the Job Shop Problem (JSP). This prob-
lem is known to be NP-hard, which is exponentially expensive given its time
complexity when solved with brute-force approaches. Exact methods and meta-
heuristics constitute a widely-used option for solving COPs. However, these are
often impractical in reality, especially under dynamic conditions. The dynamics
in production are present at many levels: from the mobility of production actors
(both human and machine) to unexpected events (e.g. machine breakdown) or
global disruptions (e.g. COVID-19). Therefore, the need for resilient approaches
to solving COPs is continuously increasing.

Neural Combinatorial Optimization (NCO) has evolved in recent years as a
potential approach to satisfy the need for robust heuristics. NCO uses deep Rein-
forcement Learning (RL) for solving COPs, including the JSP. Some RL environ-
ments have been developed for NCO approaches to the JSP with Transportation
Agents (JSPTA). Still, many of these environments lack accessibility (e.g. use
of proprietary software), configurability (e.g. change of shop floor layout), and
extendability (e.g. out-of-the-box implementation of other RL methods). Mean-
while, Digital Twins (DT) are defined in the context of manufacturing as virtual
representations of production systems that can run on different simulations for
various purposes with synchronization between the virtual and real system [14].
By omitting the synchronization between the virtual and real system with the
sole purpose of experimenting with optimization scenarios in the virtual repre-
sentation of the system, digital twins are experimentable and therefore called
Experimental Digital Twins (EDTs) [17].

To address the current lack of accessible, configurable, and extendable envi-
ronments for studying NCO approaches to the JSPTA, we designed an EDT
that enables the training and testing of RL-based approaches considering the
physical space of the JSP and its material flow with transportation agents. We
created our EDT using a simulation tool selected based on requirement analysis
and tested it with a state-of-the-art neural combinatorial approach against two
priority dispatching rules using an elaborated design of experiment.

This paper will cover in Sect. 2 the related works of current environments
available for NCO approaches to solve the JSPTA. Section 3 describes the
requirement analysis, development tool selection, and the design of the simu-



Experimental Digital Twin for Job Shops with Transportation Agents 365

lation environment. Moreover, it illustrates the experimental setup for training
the RL agents and testing the overall EDT. Section 4 shows the results of our
EDT evaluation, where the implications and limitations are discussed. Finally,
this paper concludes with our contribution and future work in Sect. 5.

2 Related Work

This section presents the related work to our EDT for the JSPTA in the fol-
lowing. First, Feldkamp et al. [4] implemented a Double Deep Q-learning Net-
work (DDQN) within a discrete event simulation model of a modular production
system. The simulator used was created in Siemens Plant Simulation [19] and
consisted of a grid of workstations spread throughout the shop floor and a vari-
able number of AGVs. The jobs contained priority charts with partially ordered
tasks. The DDQN model was evaluated against two PDRs based on lead times.
The results showed that the DDQN model outperformed the PDRs [4].

Hu et al. [8] proposed also a DDQN model for AGV real-time scheduling
within a flexible shop floor. The simulation was built within the Tecnomatix [20]
platform where no AGV collisions were simulated, which simplifies the AGV
navigation and impacts the JSPTA solutions in layouts with limited traversable
areas. Furthermore, the AGVs possessed different speeds, and the jobs were
directly split into sub-tasks providing no explicit job descriptions for the agents.
The tasks were generated randomly and the task arrival interval was based on
a normal distribution. The DDQN model was compared with two alternative
RL methods, Q-learning and SARSA, and five different PDRs. The testing was
performed within 4 different layout configurations and focused on delay ratios
and makespan. The proposed DDQN model outperformed all other methods,
including Q-learning and SARSA [8].

Malus et al. [12] implemented a multi-agent RL approach based on the TD3
policy gradient algorithm [5] for order dispatching with a fleet of AGVs. The
RL model was trained using a fast, physically inaccurate representation of the
real-world environment and then validated with a more accurate environment
developed using Gazebo. The RL agents were compared against two PDRs. With
a focus on completion times, the RL agents outperformed the PDRs [12].

Other relevant works that use DTs as tools for improving JSPTA solutions
include Torterelli et al. [21] where a deep RL-based algorithm was implemented
for an assembly line with resource constraints. Huang et al. [9] demonstrated
how the DT concept can be implemented to improve flexible systems’ design.
Zhang et al. [24] proposed a pipeline for solving the simultaneous scheduling and
layout problems innate to flexible manufacturing systems through simulation. To
validate their pipeline they implemented it for a production system simulation
with 12 workstations, 6 industrial robots, and 1 AGV.

The current related simulations and digital twins show a lack of accessibility
(use of proprietary software, such as Siemens Plant Simulation), configurability
(changing number of e.g. jobs, stations, agents), and extendability (implemen-
tation of new RL methods) for the applications of JSPTA. The experimenta-
tion with RL-based approaches for solving the JSPTA is currently bound to the



366 A. Gannouni et al.

adaptability of previous works. We aim to fill this gap with a highly-configurable
EDT that enables the investigation of neural combinatorial approaches with dif-
ferent scenarios for the JSPTA. In the subsequent section, we describe the design
of our EDT and the requirement analysis done for selecting a suitable simulation
tool.

3 EDT Design

3.1 Tool Selection

To select the proper tool, we analyzed functional and non-functional require-
ments for building our EDT. On the one hand, functional requirements primar-
ily serve the core functionalities, such as the components of the JSPTA: jobs,
workstations, and transportation agents. The EDT has to simulate the relevant
physics within the job shop, such as the routing of the transportation agents.
Moreover, the environment should allow the training and testing of RL agents.
Trained agents should be testable also in different shop floor configurations. On
the other hand, non-functional requirements represent features that increase the
usability of the EDT, especially its accessibility, configurability, and extendabil-
ity. Accessibility focuses on making our EDT available to a larger audience and
limiting possible entry barriers for the usage (e.g. need for a commercial license).
While configurability enables the experimentation with different JSPTA compo-
nents (e.g. number of agents or workstations, shop floor layout), and extendabil-
ity targets the addition of new features to the EDT.

After studying reviews of simulation environments (particularly [3], [10],
[11]), we identified MuJoCo [13], Gazebo [6] and Unity [22] as suitable candi-
dates for building the EDT. Table 1 presents the major requirements for selecting
the simulation tool used to build the EDT. Additionally, Table 1 shows our qual-
itative assessment of how each tool fulfills the defined requirements over three
degrees: not fulfilling, partially fulfilling, and fulfilling.

Considering the core functional requirements in Table 1, Gazebo and MuJoCo
show stronger capabilities in physics simulation when compared to Unity (see
FR.1.). Among other factors, this is due to the usage of Gazebo and MuJoCo
for robotic applications and hence their superiority in modeling contact forces
and their behaviors. All of the assessed tools allow the training and testing of
RL agents (see FR.2.). When it comes to the visualization capabilities, Unity
has a superior range of features, especially regarding the graphical theme cus-
tomization of simulation environments (see FR.3.).

Given the non-functional requirements in Table 1, we identified various
strengths and shortcomings between the tools. Gazebo and MuJoCo are very
accessible thanks to their open-source character. Moreover, MuJoCo fully sup-
ports the wrapping to OpenAI Gyms [1], which eases the manipulation of the
environments and the application of already implemented RL methods such as
Stable-Baselines3 [16]. Meanwhile, Unity is stronger than Gazebo and MuJoCo
in terms of configurability and extendability, especially when combined with
Unity ML agents [10]. Thanks to its powerful visualization capabilities, Unity



Experimental Digital Twin for Job Shops with Transportation Agents 367

Table 1. Requirement Analysis and Simulation Tools Comparison

Category Requirement Gazebo MuJoCo Unity

Functional Requirements (FRs)

Core

FR.1. Physics simulation

FR.2. RL agent training & testing

FR.3. Visualization capabilities

Non-functional Requirements (NFRs)

Accessibility
NFR.1. OpenAI Gym wrapper

NFR.2. Open-source platform

Configurability
NFR.3. Configure JSPTA

NFR.4. Customize shop floor layout

Extendability
NFR.5. User-controlled Agents

NFR.6. Mixed player types

Legend: not fulfilling; partially fulfilling; fulfilling

allows the customization of shop floors, which enables the impact investigation
of changing shop floor layouts in the JSPTA. Additionally, by providing high
flexibility in the graphical design of the JSPTA components, Unity can simulate
real-world scenarios (e.g. specific domain of production, plant size, and layout).
Furthermore, Unity makes it possible to study mixed agents where humans can
control agents with their input and thus interact with other RL agents.

To select an overall favorable tool for building the EDT for the JSPTA,
we compromised over the trade-off between accessibility (favoring Gazebo and
especially MuJoCo) on the one hand, and both configurability and extendability
(favoring Unity) on the other hand. The accessibility aspect is crucial for the
adoption of our EDT. Unity is a tool that can be used at no cost and is an enabler
for experimenting with many relevant questions around the adaptability of RL-
based approaches to the JSPTA. The combination of Unity and its ML agents’
library opens the door to investigating multiple RL methods, hence its large
potential for extendability. Therefore, we chose Unity to build the simulation
environment of the JSPTA and Unity ML agents for implementing a neural
combinatorial optimization approach.

3.2 JSPTA Environment Components

Figure 1 illustrates the created environment to model the JSPTA and all its
components: products (jobs), workstations (machines), transportation agents
(AGVs), geofences (restricted areas for AGVs), and a delivery station. The
products and workstations are represented respectively by spheres and rectan-
gular volumes with an input feed and an output feed each. Both products and
workstations are color-coded to their current operation and workstation type



368 A. Gannouni et al.

respectively. Products can be grabbed by AGVs, which are represented by black
cylinders. Once a product is loaded, it appears above the AGV and moves with it
towards its next processing workstation. Once an AGV brings the semi-finished
product to its target workstation’s input, the semi-finished product is loaded
onto the workstation, where the corresponding operation is performed. When
the specified operation processing time ends, the processed product is placed
at the workstation’s output feed. This process continues until the product is
finished and can be delivered. All finished products are delivered at a delivery
station represented in light blue at the bottom right corner. The shop floor is rep-
resented as a customizable rectangular platform with surrounding boundaries.
Moreover, geofences are implemented as rectangular boundaries represented in
red. The AGVs are not allowed to enter the geofences, which aims at modeling
safety areas in factories, where human workers can be endangered by possible
collisions.

Fig. 1. Components of the JSPTA

3.3 Neural Combinatorial Optimization Approach

To test the capabilities of our simulation environment, we adapted a state-of-
the-art RL approach and compared it with other PDRs. The work of Zhang et
al. [23] showed how their RL approach outperformed different PDRs in solving
the JSP. The approach uses a disjunctive graph representation of the JSP and a
Graph Neural Network (GNN)-based scheme in order to solve multiple sizes of
the JSP. This state-of-the-art NCO approach was selected thanks to its acces-
sibility and outperformance of a wide range of PDRs. However, it could not be
directly used in the context of the JSPTA. Therefore, some customizations of
the original approach were necessary. First, the original approach deals with the
JSP, meaning that the physical space of the job shop affecting the transporta-
tion times was not taken into account. Second, the actions described within the
approach were for a single job scheduler. However, in case of the JPSTA, the



Experimental Digital Twin for Job Shops with Transportation Agents 369

scheduling involves the AGVs transporting and thus executing the jobs in their
scheduled order. Consequently, the Markov Decision Process (MDP) formulation
of the original approach is modified as in the following:

– State S: The states of the environment were described by two values per
job operation oij , which stands for operation i of job j. The first value
I(oij , st) is a binary indicator that is equal to one if the operation is com-
pleted at st, otherwise, it is equal to zero. The second value CLB(oij , st) is
the lower bound of the estimated completion time of operation oij at state
st. Therefore, the lower bound of operation oij is computed as CLB(oij , st) =
CLB(oij−1, st) + pij + mij , which is equivalent to the addition of the lower
bound for the precedence constraint CLB(oij−1, st), its processing time pij ,
and the estimated movement time of the product to the required workstation
mij . If the job has been completed, then the lower bound is equal to the com-
pletion time. Finally, two states were added per job describing the relative
position of the AGV to the underlying product. In case of multiple AGVs,
the environment state includes the last actions of the other AGVs within the
system.

– Action Ak: The agents within our environment are the AGVs. Therefore,
the MDP formulation is of multiple agents where akt is the action of agent
k at time step t. The actions represent the allocation of operations for each
AGV. Given that every job has at most one operation that can be worked on
at a time step t, the action space of each AGV consists of the number of jobs
to be executed and an additional action to return to start position.

– State Transition P ak

ss′ : When an agent performs an action akt , the AGV
is allocated to the corresponding job and moves using Unity’s navigation
system NavMesh. First, the AGV moves towards the corresponding product
within the shop floor. Then, it picks up the product and places it onto the
corresponding workstation, which triggers the next step of the AGV agent.
If a job is allocated when the corresponding product is being processed by a
workstation, the AGV will go to the workstation output location and wait for
the processing to complete to take the product to the next workstation. If the
operation is already allocated to a different AGV, the agent will transition
directly to the next step.

– Reward R: the original reward was designed to minimize the total makespan
of the JSP. The reward function is the quality difference between the partial
solutions corresponding to subsequent states st and st+1. R(at, st) = H(st)−
H(st+1), where H(st) is the quality measure of the JSP solution at state st.
The quality measure was defined as the lower bound of the makespan Cmax

at time step st, computed as H(st) = maxi,j{CLB(oij , st)}.
We used Proximal Policy Optimization [18] as in Zhang et al. [23], which

is available as an RL method within the Unity ML-Agents Toolkit. However,
modifications to the underlying neural architecture of Zhang et al. [23] were
essential to speed up the training process and consequently the experimentation
process. For the problem representation, Zhang et al. [23] used a GNN that is
size-invariant but computationally expensive. Therefore, we skipped the GNN



370 A. Gannouni et al.

for the problem representation by adjusting the input and output layers of the
action selection and value prediction Multi Layer Perceptron (MLP) networks
resulting in individual configurations for each problem size.

3.4 Experimental Setup

For experimenting with different JSPTA configurations, we developed a Design
of Experiment (DoE) that spans over the following representation n × m × k:
with n the number of jobs, m the number of workstations, and k the number of
agents (AGVs). For speedy experimentation, we focused on a small set of values
for the number of jobs, machines, and agents. Our DoE space consists of the
combinations over 3, 6, 9 for the number of both jobs and machines and 1, 2, 3
for the number of agents (AGVs). This resulted in the combinations in Table 2.
Our experimentation of NCO for the JSPTA was based on a set of particular
configurations (colored in blue in Table 2) to target interesting aspects as in the
following:

– Performance with agent scalability (6×3×1, 6×3×2, 6×3×3)
– Performance with job scalability (3×3×2, 6×3×2, 9×3×2)
– Performance with JSP scalability (3×3×2, 6×6×2, 9×9×2)
– Performance with different layouts (6×3×2* with 3 layouts: L1, L2, and L3)

Table 2. Design of Experiment for the JSPTA

n (jobs) × m (workstations) × k (agents)

3 6 9

3 3×3×1 3×6×1 3×9×1

16 6×3×1 6×6×1 6×9×1

9 9×3×1 9×6×1 9×9×1

3 3×3×2 3×6×2 3×9×2

26 6×3×2* 6×6×2 6×9×2

9 9×3×2 9×6×2 9×9×2

3 3×3×3 3×6×3 3×9×3

36 6×3×3 6×6×3 6×9×3

9 9×3×3 9×6×3 9×9×3

Legend: used in EDT evaluation. * with different layouts

Each of the JSPTA configurations was tested within 5 different instances,
which were similarly created as in Taillard benchmarks [2]. The same set of
hyperparameters was used to train every RL agent. The MLP networks of the



Experimental Digital Twin for Job Shops with Transportation Agents 371

action selector had two hidden layers with 512 neurons, whereas the MLP net-
works of the value predictor had two hidden layers with 256 neurons. Given a
configuration n×m×k, 2n+2m(n+1)+k−1 and n+1 neurons were needed for
the input and output layers respectively for the MLPs. For scalable training, our
shop floor was duplicated 25 times within the training environment and 4 copies
of the environment were run in parallel for a total of 100 shop floor copies. For
every JSPTA configuration, the RL agents were trained using the 5 different JSP
instances. To measure the performance of the different approaches (RL-based vs.
PDRs), we defined the optimality gap as a metric calculated using the following
Eq. 1.

Optimality Gap =
JSPTA Makespan − JSP-Optimum

JSP-Optimum
(1)

To our best knowledge, no solver could be used to calculate the optimum of a
JSPTA instance, therefore we used the optimum of the JSP part of our instances,
as if the agents would instantly transport the products. The optima of the derived
JSP instances were calculated using Google OR Tools [7]. For training the RL
agents, we used a computational unit that consisted of an Nvidia Titan X (Pas-
cal) with 12 GB of memory GPU and an Intel Core i7-6850K CPU with 12 cores.
The code of our EDT is publicly available under https://github.com/aymengan/
EDT JSPTA.

4 EDT Evaluation

4.1 Testing Results

The trained agents were tested and evaluated against two PDRs: namely Short-
est Processing Time (SPT) and Longest Processing Time (LPT). The optimality
gap was computed for each method and each instance based on Eq. 1. The JSP
optimum was computed with Google OR-Tools outside the simulation environ-
ment and therefore did not include the AGV traveling times. In contrast, the RL
agents and PDRs were implemented within the simulation environment, where
the makespans include transportation and processing times. Every JSPTA con-
figuration was tested with 5 different JSP instances, which were solved 10 times,
resulting in 50 data points per evaluation method (RL vs. SPT vs. LPT).

Performance with Agent Scalability. Figure 2 shows the results of the per-
formance with agent scalability involving the following JSPTA configurations:
6×3×1, 6×3×2, 6×3×3, and their corresponding layouts respectively in Fig. 2c,
Fig. 2d, Fig2e. Considering the resulted makespans in Fig. 2a the RL agents out-
performed both the SPT and LPT in every configuration. While the trend of
the makespan is decreasing with more agents for the PDRs, Fig. 2a shows that
using two AGVs was better than three AGVs for the RL agents. Furthermore,
Fig. 2b shows that the distribution of optimality gaps was more stable for SPT
than LPT and RL agents, where it increased, especially from 2 AGVs (6×3×2)
to 3 AGVs (6×3×3). This increase might be due to the fact that the excess of
agents resulted in more competitiveness and less occupancy per agent.

https://github.com/aymengan/EDT_JSPTA
https://github.com/aymengan/EDT_JSPTA


372 A. Gannouni et al.

Fig. 2. Testing results with increasing number of agents

Performance with Job Scalability. Figure 3 shows the results of the perfor-
mance with job scalability involving the following JSPTA configurations: 3×3×2,
6×3×2, 9×3×2, and their corresponding layout in 3c. Considering the resulted
makespans in Fig. 3a the RL agents outperformed both the SPT and LPT in
every configuration. While the makespans are increasing with more jobs for
all methods, Fig. 3b shows that the distribution of optimality gaps was stably
decreasing for the RL agents in comparison with SPT and LPT. This stability in
decrease for the RL agents might be explained by the increase of their learning
efficiency with more jobs.

Performance with JSP Scalability. Figure 4 shows the results of the per-
formance with JSP scalability (both job and machine) involving the following
JSPTA configurations: 3×3×2, 6×6×2, 9×9×2, and their corresponding layouts
respectively in Fig. 4c, Fig. 4d, Fig. 4e. Considering the resulted makespans in
Fig. 4a the RL agents outperformed both the SPT and LPT in every configura-
tion. While the makespans are increasing for all methods at a higher rate with
larger JSP sizes, Fig. 4b shows that the increase of optimality gaps was at a
lower pace for the RL agents in comparison with the PDRs. The higher increase
in makespans with the scalability of the JSP is due to the combinatorial nature
of the problem and its higher complexity, particularly for larger sizes.

Performance with Different Layouts. Figure 5 shows the results of the per-
formance on 6×3×2 with three different layouts with increasing geofence areas as



Experimental Digital Twin for Job Shops with Transportation Agents 373

Fig. 3. Testing results with increasing number of jobs

Fig. 4. Testing Results with increasing JSP size



374 A. Gannouni et al.

represented in Fig. 5c, Fig. 5d, and Fig. 5e. Considering the resulted makespans
in Fig. 5a the RL agents outperformed both the SPT and LPT in every layout
configuration. While the makespans are increasing with the geofence areas for
all methods, Fig. 5b shows that the increase of optimality gaps and their distri-
bution was more stable and at a lower rate for the RL agents in comparison with
the PDRs. The higher increase in makespans with larger geofence areas might
be due to the fact that the mobility of agents is increasingly restricted with more
geofences. Thus, more efforts are needed to avoid geofences and collisions, which
adds overhead time to the makespan. In order to study the generalization of our
RL approach in other unseen settings, we tested trained RL agents in unseen
layouts resulting in so-called non-native agents represented in orange on Fig. 5a
and Fig. 5b. Both figures show that although non-native RL agents could not
match the performance of their native counterparts, they still outperformed the
PDRs.

Fig. 5. Testing results with increasing geofence area

4.2 Discussion

This section will discuss the previously presented results. Overall, the RL agents
outperformed the PDRs in all 12 configurations that investigated the perfor-
mance with JSPTA scalability focusing on agents, jobs, JSP sizes, and shop
floor layouts.



Experimental Digital Twin for Job Shops with Transportation Agents 375

First, the results in Fig. 2 showed that having more agents increases efficiency
in general, but not necessarily for the RL agents. This requires more investiga-
tion of whether RL approaches have more overhead dealing with the coordi-
nation of multiple agents than PDRs, which urges the study of collaborative
multi-agent RL approaches. Second, the results in Fig. 3 and Fig. 4 showed how
the makespans increased for all methods at higher rates for the JSP scalability in
comparison to the job scalability. This calls for the analysis of machine scalabil-
ity (e.g. testing the JSPTA configurations 9×3×2, 9×6×2, 9×9×2) to study the
impact of job vs. machine scalability on the overall JSP scalability. In terms of
solution quality, the RL agents outperformed PDRs in Fig. 3b thanks to decreas-
ing distributions of optimality gaps, which suggests that the RL agents learned
a more efficient heuristic with more jobs. Moreover, the increase of makespan
with JSP scalability in 4a is at a lower pace for the RL agents in comparison to
the PDRs all while achieving better solution quality with denser distributions
of optimality gaps as represented in Fig. 4b. Third, the results in Fig. 5 showed
that the layout of the shop floor affects the makespan. The bigger the area of
geofences in the layout the higher the makespan for all methods with the RL
agents outperforming the PDRs, especially in solution quality (see distributions
of optimality gaps in Fig. 5b). One of the interesting insights was not only the
ability of RL agents of generalizing to unseen layouts but also their outper-
formance of PDRs. Limiting the mobility space for AGVs seems to add more
overhead due to the avoidance of collisions and geofences reinforcing the urge to
study collaborative multi-agent RL approaches.

In summary, our EDT fulfilled all core requirements that could be fulfilled
by Unity (see Table 1), especially the ability to train and test RL agents and
visualize their behaviors within the environment. Moreover, the configurability
of our EDT was showcased through the testing of various JSPTA configurations.
The extendability requirements focused on mixed agent settings that were out
of the scope of this work, but these are not bound to implementation thanks to
the ability of Unity to have user-controlled agents and enable their interaction
with RL agents using Unity ML Agents.

In our work, we made choices that compromised over different trade-offs (e.g.
accessibility vs. usability during tool selection). To speed up the experimenta-
tion and training process, we skipped for the problem representation the usage
of GNNs, which were implemented in the original approach of Zhang et al. [23].
It is important to note that the GNNs are not bound to implementation. Fur-
thermore, to our best knowledge, no solver could be used for calculating the
optimal solutions for our JSPTA configurations. Thus, we used the JSP optima
solved by Google OR Tools [7] when calculating the optimality gaps. The lack
of such solvers represents an important subject of research that needs to be
tackled. Finally, we relied on Unity’s internal NavMesh for the routing of the
agents, which calls for the integration and investigation of agent routing strate-
gies. Against the backdrop of more high-fidelity production virtualization, other
underlying simulation tools can be tested (e.g. Nvidia Omniverse [15]) to further
narrow the gap between simulation and real-world scenarios.



376 A. Gannouni et al.

5 Conclusion

Current simulation environments and digital twins for the job shop with trans-
portation agents lack configurability and limit the investigation of neural com-
binatorial approaches to planning optimization in production and its physical
space. To fill this gap, we designed an extendable Experimental Digital Twin
allowing for the study of RL-based approaches for solving the JSPTA. We devel-
oped our EDT using Unity as a tool that we selected based on a requirement
analysis. We customized the approach of Zhang et al. [23] to the JSPTA using the
Unity ML-agents Toolkit, which allowed the implementation of RL agents based
on proximal policy optimization as an RL method. Using a design of experiment,
we evaluated our EDT by analyzing the performance of RL agents in compar-
ison with two priority dispatching rules: shortest processing time and longest
processing time. Our evaluation measured the makespan focusing on scalabil-
ity with agents, jobs, JSP size, and shop floor layouts. The results showed that
our RL-based approach outperformed the other PDRs. Moreover, we showed
the ability of neural combinatorial approaches to generalize to unseen layouts,
which implies its adaptability to dynamic changes in the problem. Furthermore,
our EDT allowed the visualization of trained agents’ behavior during testing.
The future work consists of testing other RL methods, investigating multi-agent
collaboration, and incorporating agent routing strategies.

Acknowledgement. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy - EXC-2023 Internet
of Production - 390621612

References

1. Brockman, G., et al.: Openai gym. https://arxiv.org/pdf/1606.01540v1
2. Taillard, E.: Benchmarks for basic scheduling problems 64, 278–285 (1993)
3. Erez, T., Tassa, Y., Todorov, E.: Simulation tools for model-based robotics: com-

parison of bullet, havok, mujoco, ode and physx, pp. 4397–4404 (2015). https://
doi.org/10.1109/ICRA.2015.7139807

4. Feldkamp, N., Bergmann, S., Strassburger, S.: Simulation-based deep reinforce-
ment learning for modular production systems. In: 2020 Winter Simulation Con-
ference (WSC). IEEE (2020). https://doi.org/10.1109/WSC48552.2020.9384089

5. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. https://arxiv.org/pdf/1802.09477v3

6. Gazebo: simulation tool (2023). https://gazebosim.org/home
7. Google: or tools (2022). https://developers.google.com/optimization
8. Hu, H., Jia, X., He, Q., Fu, S., Liu, K.: Deep reinforcement learning based AGVs

real-time scheduling with mixed rule for flexible shop floor in industry 4.0. Comput.
Ind. Eng. 149(2), 106749 (2020). https://doi.org/10.1016/j.cie.2020.106749

9. Huang, S., Mao, Y., Peng, Z., Hu, X.: Mixed reality-based digital twin implemen-
tation approach for flexible manufacturing system design (2022). https://doi.org/
10.21203/rs.3.rs-1265753/v1

10. Juliani, A., et al.: Unity: a general platform for intelligent agents (2020). https://
arxiv.org/pdf/1809.02627v2.pdf

https://arxiv.org/pdf/1606.01540v1
https://doi.org/10.1109/ICRA.2015.7139807
https://doi.org/10.1109/ICRA.2015.7139807
https://doi.org/10.1109/WSC48552.2020.9384089
https://arxiv.org/pdf/1802.09477v3
https://gazebosim.org/home
https://developers.google.com/optimization
https://doi.org/10.1016/j.cie.2020.106749
https://doi.org/10.21203/rs.3.rs-1265753/v1
https://doi.org/10.21203/rs.3.rs-1265753/v1
https://arxiv.org/pdf/1809.02627v2.pdf
https://arxiv.org/pdf/1809.02627v2.pdf


Experimental Digital Twin for Job Shops with Transportation Agents 377

11. Körber, M., Lange, J., Rediske, S., Steinmann, S., Glück, R.: Comparing popular
simulation environments in the scope of robotics and reinforcement learning (2021).
https://arxiv.org/pdf/2103.04616v1.pdf

12. Malus, A., Kozjek, D., Vrabič, R.: Real-time order dispatching for a fleet of
autonomous mobile robots using multi-agent reinforcement learning. CIRP Ann.
69(1), 397–400 (2020). https://doi.org/10.1016/j.cirp.2020.04.001

13. MuJoCo: simulation tool (2022). https://mujoco.org/
14. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in cps-

based production systems. Procedia Manuf. 11, 939–948 (2017). https://doi.org/
10.1016/j.promfg.2017.07.198

15. Nvidia: Omniverse (2023). https://www.nvidia.com/en-us/omniverse/
16. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-

baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res.
22(268), 1–8 (2021). https://jmlr.org/papers/v22/20-1364.html

17. Schluse, M., Priggemeyer, M., Atorf, L., Rossmann, J.: Experimentable digital
twins-streamlining simulation-based systems engineering for industry 4.0. IEEE
Trans. Ind. Inform. 14(4), 1722–1731 (2018). https://doi.org/10.1109/TII.2018.
2804917

18. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal pol-
icy optimization algorithms (2017). https://doi.org/10.48550/ARXIV.1707.06347,
https://arxiv.org/abs/1707.06347

19. Simulation, S.P.: Simulation tool (2023). https://plant-simulation.de/
20. Tecnomatix: Simulation tool (2023). https://www.plm.automation.siemens.com/

global/en/products/tecnomatix/
21. Tortorelli, A., Imran, M., Delli Priscoli, F., Liberati, F.: A parallel deep rein-

forcement learning framework for controlling industrial assembly lines. Electronics
11(4), 539 (2022). https://doi.org/10.3390/electronics11040539

22. Unity: simulation tool (2023). https://unity.com
23. Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X.: Learn-

ing to dispatch for job shop scheduling via deep reinforcement learning.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.)
Advances in Neural Information Processing Systems, vol. 33, pp. 1621–1632.
Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/
11958dfee29b6709f48a9ba0387a2431-Paper.pdf

24. Zhang, Z., Wang, X., Wang, X., Cui, F., Cheng, H.: A simulation-based approach
for plant layout design and production planning. J. Ambient. Intell. Humaniz.
Comput. 10(3), 1217–1230 (2018). https://doi.org/10.1007/s12652-018-0687-5

https://arxiv.org/pdf/2103.04616v1.pdf
https://doi.org/10.1016/j.cirp.2020.04.001
https://mujoco.org/
https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/10.1016/j.promfg.2017.07.198
https://www.nvidia.com/en-us/omniverse/
https://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1109/TII.2018.2804917
https://doi.org/10.1109/TII.2018.2804917
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://plant-simulation.de/
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/
https://doi.org/10.3390/electronics11040539
https://unity.com
https://proceedings.neurips.cc/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf
https://doi.org/10.1007/s12652-018-0687-5


Learning to Prune Electric Vehicle
Routing Problems

James Fitzpatrick1(B) , Deepak Ajwani2 , and Paula Carroll1

1 School of Business, University College Dublin, Dublin, Ireland
james.fitzpatrick1@ucdconnect.ie, paula.carroll@ucd.ie

2 School of Computer Science, University College Dublin, Dublin, Ireland
deepak.ajwani@ucd.ie

Abstract. Electric vehicle variants of vehicle routing problems are sig-
nificantly more difficult and time-consuming to solve than traditional
variants. Many solution techniques fall short of the performance that
has been achieved for traditional problem variants. Machine learning
approaches have been proposed as a general end-to-end heuristic solu-
tion technique for routing problems. These techniques have so far proven
flexible but don’t compete with traditional approaches on well-studied
problem variants. However, developing traditional techniques to solve
electric vehicle routing problems is time-consuming. In this work we
extend the learning-to-prune framework to the case where exact solution
techniques cannot be used to gather labelled training data. We propose a
highly-adaptable deep learning heuristic to create high-quality solutions
in reasonable computational time. We demonstrate the approach to solve
electric vehicle routing with nonlinear charging functions. We incorpo-
rate the machine learning heuristics as elements of an exact branch-and-
bound matheuristic, and evaluate performance on a benchmark dataset.
The results of computational experiments demonstrate the usefulness of
our approach from the point of view of variable sparsification.

Keywords: Vehicle Routing Problem · Electric Vehicle · Machine
Learning

1 Introduction

Road transport constitutes the highest proportion of overall transport green
house gas (GHG) emissions, with carbon dioxide as the main green house gas.
Passenger cars and light commercial vehicles account for 12% and 25% of carbon
dioxide emissions in the European Union (EU). To meet obligations set forth by
the Paris Agreement, the EU aims to promote the use of clean vehicles and
develop public transport and electric vehicle (EV) charging infrastructure [17].

There is a rapidly-expanding family of EV-related vehicle routing problems
some of which may yet have no effective solution techniques or problem-specific
knowledge to be leveraged. Such problems are in general more difficult to solve

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 378–392, 2023.
https://doi.org/10.1007/978-3-031-44505-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_26&domain=pdf
http://orcid.org/0000-0002-9419-7005
http://orcid.org/0000-0001-7269-4150
http://orcid.org/0000-0003-1029-1668
https://doi.org/10.1007/978-3-031-44505-7_26


Learning to Prune Electric Vehicle Routing Problems 379

than their traditional counterparts. This makes it difficult to formulate and to
solve emerging EV routing problems variants at the scale and speed necessary
for practical applications.

Running times of solution techniques for Combinatorial Optimisation Prob-
lems (COPs) are generally a function of the number of variables. Variable fixing
techniques aim to identify a subset of the decision variables of a problem formu-
lation that can be fixed a-priori, reducing the effective size of the instance to be
solved. Unfortunately most existing approaches for variable fixing either require
lengthy development times or rely on the ability to collect optimal solutions. In
recent years the learning-to-prune framework has emerged as a general variable-
fixing tool for COPs. The essence of this framework is a machine learning (ML)
classifier that is trained to predict decision variable values. The advantage of
this is that the trained classifier can quickly perform inference to fix a large
number of the decision variables of a problem instance at test time. Classifiers
used in this way are called sparsifiers and may allow many solution methods to
be used to solve the resultant problem with a reduced number of variables in a
reasonable computational time, which may not be possible otherwise.

In this work we propose an alternative learning-to-prune framework that
relaxes the requirement for an exact solution labelling technique. Instead we
require only that any (relatively) quick heuristic exists to solve a given problem
variant, and that it can be leveraged to produce many different feasible solutions
for any individual problem instance. We use this to develop a more general
learning-to-prune framework and use it to obtain solutions for some electric
vehicle routing problems (E-VRPs). Based on observations of the effectiveness,
we draw conclusions about how this approach should be extended for other
difficult optimisation problems.

In particular, the contributions of our work are as follows:

– We extend the learning-to-prune framework to problems for which obtaining
optimal solutions for labels is impractical, but where we can collect partial
information about edges that appear in good solutions (pseudo-labels).

– We extend machine learning heuristics to solve the electric vehicle routing
problem with non-linear charging function.

– We present analysis of a set of computational experiments to demonstrate
the effectiveness of this sparsifier approach.

The paper format is as follows: first, in Sect. 2 we give an introduction to
the problem we attempt to solve, the related literature, issues associated with
the current approaches and a high-level overview of how we attempt to address
these and the contributions we make. Then, in Sect. 3 we explain in detail the
approach that we take to solve these problems, explaining the results in Sect. 4.
Finally, we discuss these results in Sect. 5, draw conclusions and briefly mention
proposed future works.

2 Related Literature

In the following sections we present an overview of the relevant literature.



380 J. Fitzpatrick et al.

2.1 The Electric Vehicle Routing Problem

In the traditional capacitated VRP (CVRP), a graph G = (V,E) underlies a
particular problem instance. The goal is for a fleet of vehicles to depart from a
depot node, visiting and servicing customer nodes, before returning to a depot
node. The capacity of a vehicle limits the number of customers that may be
serviced in a route. The goal is usually to minimise the cumulative distance
travelled by all vehicles. E-VRPs are a broad class of vehicle routing problems
for which some or all of the vehicles under consideration are EVs. Vehicles may
not run out of battery charge (become stranded) along a route and may detour
to recharge at a charging station (CS). The time to charge is non-negligible
and depends on many factors such as the CS technology type, and the EV
battery state of charge (SoC) upon arrival. The set of nodes V is heterogeneous,
containing depot node(s) D, customer nodes I, and recharging stations F .

In many variants the duration of the routes is minimised, with each route
constrained to a maximum duration. Such constraints typically make routing
problems very difficult to solve. To better model the battery constraints, increas-
ingly intricate variants of the problem consider more accurate approximations to
the charging time. Initial approaches considered charge times to be static, or lin-
ear [5,6,20], while more recent works model the charge time as a piecewise linear
function of the SoC upon arrival, yielding the Electric Vehicle Routing Problem
with Nonlinear Charging (E-VRP-NL). [9,11,16] This renders the problem yet
more challenging.

2.2 End-to-End Machine Learning Heuristics

The success of ML in recent years has prompted research on whether ML can be
used to derive a principled approach to solving COPs for which we have limited
success with other techniques, but for which we have a wealth of data. Several
of these works directly tackle routing problems [3,12,22], acting as a construc-
tion heuristic by taking a problem instance as input and returning a solution as
output. Such approaches have become known as end-to-end learning approaches
in the literature. All of these approaches fall victim to poor generalisation for
different problem sizes than those encountered at training-time. However, they
are highly-adaptable to new problem variants. This adaptability is achieved via a
masking scheme, preventing infeasible solutions, which is usually easy to modify.
Some attempts have been made to extend the generalisability and size of prob-
lems for which end-to-end methods are effective, but little effort has been made
to adapt them to more intricate, highly constrained problem types. The work
of [15] is the only work that considers electric vehicles, to the knowledge of the
authors, but here charging times are considered as linear functions of the state
of charge. Such simplifications are problematic and can yield infeasible solutions
in practice [16].



Learning to Prune Electric Vehicle Routing Problems 381

2.3 Learning to Prune

The learning-to-prune framework has been applied successfully to a range of
COPs enabling the identification of best known solutions for some problem
instances [4,7,14,21]. So far, the learning-to-prune approach has relied on the
availability of optimal solutions to provide labels for training problem instances.
In particular, the observed values of the decision variables in the optimal solu-
tions are used as targets for the ML classifier. The values predicted by the clas-
sifier are the values that the decision variables are fixed to, if the confidence in
the prediction is sufficiently high. In the traditional setting, we assume that we
can solve a set of small problem instances in reasonable computational time, and
that information from these optimal solutions will allow us to make inferences
about solutions of unseen, possibly large, problem instances. Unfortunately, in
some cases, lengthy exact solve times prevent us from solving a sufficient number
of smaller problem instances to optimality within a reasonable time frame. In
the case of the E-VRP-NL, even solving problems with ten customers to opti-
mality is prohibitive. This makes it difficult to gather optimal solutions for a
large enough number of instances for ML purposes.

We trade optimality for expediency, producing a large number of sub-optimal,
relatively-high quality solutions in a reasonable computation time. We sample a
set of unique solutions, combining the information from each solution to estimate
the importance of different edges. This allows us to create a set of labels for the
variable-pruning classifier in a manner similar to weak supervision methods. We
show that with this approach we can extend the learning-to-prune framework to
the E-VRP-NL.

3 Methodology

In Sect. 3.1 we present a branch-and-bound matheuristic solver composed of
a learned construction heuristic, a hand-crafted construction heuristic and a
learned sparsifying heuristic. We discuss the details of the construction heuristics
in Sect. 3.2 and the details of the sparsifying heuristic in Sect. 3.4. To train the
sparsifying heuristic we collect a set of target “pseudolabels”, which is explained
in Sect. 3.3.

3.1 Pruning Matheuristic Methodology

We formulate the E-VRP-NL problem as a MILP using the improved arc-based
formulation of [9], an extension of the Miller-Tucker-Zemlin formulation of the
capacitated VRP. It has a stronger linear relaxation than the originally proposed
formulation of [16] while remaining relatively straightforward to implement and
understand. In this formulation a binary variable is associated with each edge
along with time and battery energy tracking variables. Fixing the value of one
edge variable permits fixing all three such variables associated with an edge.



382 J. Fitzpatrick et al.

We present the pseudocode of our approach in Algorithm 1. In the first two
lines we use the deep learning heuristic described in Sect. 3.2 and the initial con-
struction heuristic montoyaConstructionHeuristic of [16] to compute heuristic
solutions. The solution with the smaller objective function value z(Ŝ) is stored
as the best current solution in lines four through seven. In lines eight to ten we
sparsify the problem by using the sparsifying heuristic to fix a large fraction of
the decision variables associated with the edges. The classifier h(·; theta) takes
an edge embedding qe for the edge e and produces a probability that the associ-
ated variables should be fixed. In lines eleven to twelve we ensure feasibility by
releasing any of the decision variables associated with the edges of the two iden-
tified solutions. Next, an exact solver is invoked to solve the resulting reduced
problem until a global time limit (3600 s) is reached. The total time allowed for
optimisation includes the solving time of both heuristics, the pruning time and
the solving time of the branch-and-bound solver.

Algorithm 1. Pruning Matheuristic
1: Input: Problem P , Threshold η, Time limit T .
2: S1 = montoyaConstructionHeuristic(P )
3: S2 = deepLearningHeuristic(P )
4: if z(S1) ≤ z(S2) then
5: Ŝ ← S1

6: else
7: Ŝ ← S2

8: for each edge e ∈ E do:
9: if h(qe; θ) < η then

10: Fix decision variables associated with e.
11: for each edge e in S1 and S2 do
12: Release decision variables associated with e.
13: Warm-start branch-and-bound solver with solution Ŝ.
14: Solve until time limit T is reached, output solution S3.
15: if z(S3) ≤ z(Ŝ) then
16: Ŝ ← S3

17: Output: Best found solution Ŝ.

3.2 Deep Learning Heuristic

A solution to a routing problem can be viewed as a sequence of nodes. Taking
this view, many construction heuristics follow a two-step process: first select
one (feasible) node then insert the selected node somewhere into the sequence
(partial solution) of S until S forms a complete solution. This process relies on
an effective heuristic for selecting the next node for insertion. In this work we
follow [12] and subsequent approaches by adopting a transformer-based neural
network. This approach uses the neural network as a scoring mechanism to
determine which node should be selected and appends it to a solution. Nodes



Learning to Prune Electric Vehicle Routing Problems 383

that are estimated to be more likely to produce a good solution if selected next
will have higher scores. Once a node is selected, it is appended to the end of the
partial solution. When trained, neural network models of this kind can be used to
rapidly sampling of many high-quality solutions. For the E-VRP-NL, however,
a secondary decision must be made at CS nodes: how much time should be
spent charging? This requires architectural changes that are outlined in the next
section. Our neural network heuristic becomes a three-step process: first select
a feasible node, then if it is a CS node select a charging duration, then append
that node to the partial solution.

Network Architecture. The neural network consists of an encoder network
and a decoder network. The encoder embeds some low-dimensional feature repre-
sentation of the nodes into a static high-dimensional latent space representation
containing information about each node and how they relate to the other nodes
in the graph. The training process encourages this transformation to produce
an embedding for each node that will help the decoder network to decide which
node should be selected next. The initial features for the set of depot nodes, the
set of customer nodes and the set of station nodes are as follows:

xi =

{
[r1i , r2i ] if i ∈ D or i ∈ I,

[r1i , r2i , wi] if i ∈ F.
(1)

where r1i and r2i are the standardised coordinates of node i on the Cartesian
plane and wi is a weight associated with the charging station technology:

wi =

⎧⎪⎨
⎪⎩

0.0 if i is a slow charging station,
0.5 if i is a normal charging station,
1.0 if i is a fast charging station.

(2)

The first step is to transform each xi to a space with of dimensionality m.
We use linear transformations to ensure the encoding of each node is of the
same dimension. For each of the disjoint subsets D, I, F of V there is a unique
transformation (weights are node shared). The embedded representations are
then transformed by three attention layers in sequence, exactly as in [12]. We
then compute a graph embedding q as the mean of each of the node embeddings.
This produces an m-dimensional embedding qi for each node and one, q, that
characterises the entire graph. The context embedding consists of the embedding
of the previously visited node, the normalised SoC and the normalised time
remaining in the given route.

We must make both categorical decisions (the node we select), and continuous
decisions (how much time we spend at it). We spend exactly gi units of time
at each customer, the service time for customer i. There is no utility to waiting
at any node, since time windows are absent. Spending too much or too little
time at a CS can negatively affect the solution, possibly rendering it infeasible.
We therefore modify the decoder to produce two outputs for each node: the



384 J. Fitzpatrick et al.

probability estimate that node i is the best node to insert next and the amount
of time that should be spent there.

We parameterise a probability density over the range of possible values that
the continuous variable may assume. The possible charge times lie in the range
[li, ui] ∈ R+ ∪ {0}. However, the partial solution restricts the choice of feasi-
ble charge times to the range [αt

i, β
t
i ], where αt

i ≥ li and βt
i ≤ ui. We must

ensure that the probability that any values outside the effective range is zero,
so we model the probability density as a normal distribution and clip the out-
puts. The clipping acts as the masking does for the node selection. We modify
the neural network to have an additional linear transformation that maps each
dynamic node embedding and the context embedding to a two-dimensional vec-
tor, representing the mean μi and variance σi of the distribution p̂(·;μi(θ), σi(θ))
for node i. This results in a neural network with two outputs: the probability pt

that we choose a node i next and the time ti that should be spent at each node.

Training the Deep Learning Heuristic. Inference is carried out with
repeated decoding steps until the selected nodes and charge times form a feasible
solution. For a given parameter set θ of the neural network, greedy, determin-
istic inference can be performed by selecting at each time step t the node and
charge time with the highest probability and probability density, respectively,
max

i
{pt

i}. To perform stochastic inference, we sample nodes according to their

approximated probabilities and times from their parameterised distributions.
We compute the cost ẑ(S) of a complete solution S as a quantity measured in

hours. It comprises of three terms, the traditional driving times plus the service
times, routeDuration(S), plus two penalties. The penalties include the number
of times a station was visited countStationV isits(S) and the number of times
the depot was visited. countDepotV isits(S) in a solution. These discourage the
neural network from visiting charging stations unnecessarily or from visiting the
depot many times and visiting too few charging stations.

ẑ(S) = routeDuration(S)+countStationV isits(S)+countDepotV isits(S) (3)

Similar to [12], we train the neural network using the REINFORCE algo-
rithm. Since the objective function value includes the time spent charging, it is
a function of the parameters of the neural network, so the loss must be modified
as:

∇L(S|θ) = Epθ
[∇θ(ẑ(S) − b(S)) log pθ(S)], (4)

where b(S) is the objective of the solution produced by the baseline model (see
[12] for full details).

Once improvements in solution quality have not been observed for Γ epochs,
training is stopped. Training first takes place on generated problem instances
with 10 customers and 2 charging stations. Problem instances are generated by
throwing points onto the unit square. Charging station nodes are generated to



Learning to Prune Electric Vehicle Routing Problems 385

ensure the feasibility of the problem instances. After the exponential baseline is
traded out, a variety of randomly generated problem instances are produced at
each batch, with |I| = {9, 10, 11, 12} customers and |F | = {0, 1, 2, 3} charging
stations. Each batch contains problems with the same number of customers and
charging stations. The Adam optimiser is used for performing gradient compu-
tations, with a learning rate of 1 × 10−4. Each batch contained 400 problem
instances and each epoch consisted of 50 batches. Training terminates after 150
epochs, even if improvements were still occurring. The baseline model is replaced
after a paired t-Test check at the end of each epoch, just as with [12]. If a base-
line replacement occurred, then the test set was replaced with a newly-generated
test set.

3.3 Constructing Pseudo-labels

The traditional learning to prune approach involves computing optimal solu-
tions and using the decision variable values in those solutions as targets in a
classification problem. This is not possible for many difficult routing problems.
We assume there exists a solution technique M that can be used to sample, for
each problem instance Pi ∈ P , a set of m unique solutions Si = {S1

i , ..., Sm
i }.

Each problem contains si continuous decision variables and pi integer deci-
sion variables, which can be arranged (in no particular order) into a tuple
xi = (x1

i , ..., x
si
i , xsi+1

i , ..., xsi+pi

i ). Each solution Sj
i ∈ Si is represented by some

value xl,j
i , l ∈ {1, ..., si + pi} to each of the decision variables in xi and is associ-

ated with some objective function value zj
i .

In minimisation problems, lower values of zj
i are representative of better

solutions. When we sample the m solutions for each problem, When we construct
the pseudo-labels for a given problem instance Pi, the higher-quality solutions
should contribute more. A weighting ρj

i is computed for each solution using a
softmax function:

ρj
i = 1 − eẑj

i

m∑
j=1

eẑj
i

, (5)

where ẑj
i = zj

i / min
k∈{1,...,m}

zk
i . Using these weightings, we compute the pseudo-

labels as:

γl
i =

m∑
j=1

ρj
ix

l,j
i . (6)

This provides the label for each variable for each problem instance. This can
then be thought of as weak supervision. Next, a feature vector ql

i ∈ R
r must

be computed for each variable so that we may construct the labelled dataset

D =
{

si+pi⋃
l=1

{(ql
i, γ

l
i)}

}n

i=1

. The values of γl
i are not, in general, integral. We



386 J. Fitzpatrick et al.

may pose the variable fixing problem as a regression task and train a classifier
h(·; θ) to approximate the mapping between the feature space and the space of
the pseudo-labels. In practice we find it more effective to interpret the problem
as a classification problem, to fix some variables and to leave others free for
optimisation.

3.4 Pruning as Classification

For each problem size in the benchmark dataset (I = {10, 20, 40, 80, 160, 320})
three hundred new problem instances were generated as training data for the
sparsification task. For each of these problem instances, one hundred unique
heuristic solutions were identified and used to construct pseudo-labels. The aim
of the sparsifying classifier is then to separate the edges that we think are unlikely
to be in a good solution from those that we think are likely to belong to a
good solution. These threshold values are presented in Table 1. Three classifica-
tion models were chosen for evaluation, inspired by previous works invoking the
learning-to-prune framework: a linear support vector machine, a random forest
classifier and a logistic regression model [7,21]. These models were chosen for
their relative explainability and quick inference times. This is important because
the larger problems may require hundreds of thousands of variables. Each clas-
sifier was trained with two hundred of the generated training instances of each
size, with fifty instances retained for testing and validation. The positive class
samples are far fewer than the negative samples in these datasets. To balance
the positive and negative classes and avoid class imbalance, samples from the
negative class in the selected training instances were randomly under-sampled.

Table 1. Thresholds determined for each classifier for the pruning/classification task.

model |I| = 10 |I| = 20 |I| = 40 |I| = 80 |I| = 160 |I| = 320

lSV M 0.05 0.05 0.01 0.01 0.01 0.01

RFC 0.05 0.05 0.05 0.01 0.01 0.01

LR 0.05 0.05 0.01 0.01 0.01 0.01

3.5 Computational Setup

Experiments were performed using Python. For training the deep learning heuris-
tic, PyTorch was used [18]. Training for the pruning classifier was carried out
using SciKit-Learn [19]. All graph operations were performed using the Net-
workX package [10]. The Xpress optimisation suite [2] with default settings was
used for MILP solving, using the Python wrapper to interact with its function-
alities. Concorde [1] was used to solve TSP problem instances and the frvcpy
[13] package was used to solve Fixed Route Vehicle Charging Problems. Training



Learning to Prune Electric Vehicle Routing Problems 387

and solving were performed on a machine with an AMD EPYC 7281 16-Core
Processor with 32 threads. The machine runs Ubuntu 20.04 with a total memory
of 96GB and a total L3 cache of 32MB. Training of the classifier was carried out
with the Scikit-Learn package [19].

4 Results

First we discuss the training regime for the deep learning heuristic, then how it
performs as a stand-alone heuristic. We then compare the solutions we obtain
to those we get from the standard initial construction heuristic of [16]. We then
discuss these in the context of the sparsification task. Finally with finish with a
discussion of the results of the final solve using the reduced problem instances.
All results presented are obtained by evaluating the techniques presented against
the benchmark dataset introduced in [16], where Best Known Solution objective
values are obtained from [8].

4.1 Training the Deep Learning Heuristic

The running time of the deep learning heuristic depends on the length of the
solution that it produces. More visits to stations and depots result in more passes
of the decoder, which requires a new masking procedure each time. In the early
stages one of the major obstacles that slows down training is repeated spurious
visits to charging stations and one-customer tours. Using the depot-visit and
station-visit penalties in the cost function, observations of solutions throughout
the training process indicates that visits of these kinds are discouraged first.
Once this has occurred, it generally seems that a second training regime begins,
where the task is focused on making cleverer choices about the routes to make the
solution duration shorter. For this reason, bootstrapping during training makes
it easier to train the network: starting with problem instances with a small
number of customers and a small number of charging stations allows the model
to learn to be parsimonious with station and depot visits earlier on. Training
can then be tuned by introducing batches of larger problems into the process
and phasing out the batches of smaller instances (Table 2).

It is desirable that the heuristic produces not only produces solutions with
as small an objective value as possible, but that it also can be used to sample a
variety of good solutions. Many of the solutions are significantly worse than the
greedy solution, while some are better. T In general, we observe that solutions
with fewer visits to station nodes and depot nodes produce better objective
function values. This is not particularly surprising, but it does identify some of
the traps that are encountered at training time. To discourage spurious visits to
charging stations and early returns to the depot, penalty terms were added to
the cost function. Often, early in training, we observe that the gradient descent
method pushes the learning in one of these directions, either forcing many visits
to the stations and few to the depot, or vice versa. Care must be taken with the
penalty weights to prevent this. This is illustrated in Fig. 1.



388 J. Fitzpatrick et al.

Table 2. Mean objective function ratio of of best sampled solution and greedy solution
obtained from deep learning heuristic to the best known solution, as well as the mean
time required to produce a greedy solution for each fixed |I| of the benchmark set.

|I| 〈z100/zBKS〉 〈zgreedy/zBKS〉 t(s)

10 1.0016 1.0104 0.05

20 1.0057 1.0167 0.11

40 1.0105 1.0301 0.29

80 1.0562 1.0856 0.64

160 1.0590 1.1017 0.98

320 1.0934 1.2201 2.01

Fig. 1. Scatter plot of mean behaviour for sampled solutions with the corresponding
number of depots and charging stations included. The intensity of the marker on the
plot indicates the solution quality: blue is better. (Color figure online)



Learning to Prune Electric Vehicle Routing Problems 389

The deep learning heuristic models do not generalise well to larger problem
sizes. This means that for any given problem size, there must exist a trained
heuristic that has been tailored to problems of around that size. This is because
solution quality degrades sharply as the size of the problem diverges from that
encountered during training, greatly affecting the solution quality. This has
severe negative impacts both on the quality of the warm-start solutions and
the quality of the pseudo-labels that can be produced for the sparsification task.
In general, it also leads to longer running times, since depots and stations will
be visited too often.

4.2 The Pruning Classification Model

The three models that were investigated for pruning where the linear support
vector machine (lSVM), the random forest classifier (RFC) and the logistic
regression model (LR). Each of these models can be evaluated relatively quickly,
since inference is quick, though it is clear that the random forest classifier, even
when forced to remain small, is the slowest. As observed with [7], the lSVM
model affords the best performance for similar computational cost to that of the
LR model, so it is chosen as the classifier for pruning in the following sections.
We first evaluate the performance of the classifiers in terms of the pruning rate p
and the false-negative rate φ achieved. We present results, for brevity, as means
over sets of benchmark instances for which the number of customers remains
constant. That is 〈p〉10 is the mean pruning rate observed over all instances with
ten customers. Similarly 〈φ〉40 is the mean false negative rate observed over the
set of all problem instances with forty customers.

Table 3. Pruning rate achieved by each model for each subset of the benchmark
problem instances, where |I| is fixed.

model 〈p〉10 〈p〉20 〈p〉40 〈p〉80 〈p〉160 〈p〉320
lSV M 0.76 0.81 0.85 0.90 0.94 0.97

RFC 0.76 0.79 0.82 0.86 0.92 0.94

LR 0.69 0.73 0.79 0.85 0.91 0.94

It is particularly necessary in the case of the E-VRP-NL that a high pruning
rate is achieved, especially for particularly large problem instances, which may
have hundreds of thousands of variables and constraints. The number of edges
pruned must not only grow with the size of the problem, but so too must the
fraction of edges pruned. For small problems, we prune a relatively small fraction
of the edges, as can be seen in Table 3. We can see that the mean pruning rate
for all of the benchmark instances with |I| = 10 is 0.76 with the lSVM. On the
other hand, for the case where |I| = 320, we see that this grows to 0.97.

[7] observe that the false negative rate φ acts as a proxy measure for the
success of the pruner. The authors note that there is a strong correlation between



390 J. Fitzpatrick et al.

Table 4. False negative rate achieved by each model for each subset of the benchmark
problem instances, where |I| is fixed.

model 〈φ〉10 〈φ〉20 〈φ〉40 〈φ〉80 〈φ〉160 〈φ〉320
lSV M 0.06 0.03 0.02 0.02 0.02 0.02

RFC 0.08 0.05 0.04 0.04 0.03 0.03

LR 0.09 0.08 0.07 0.06 0.05 0.05

the false negative rate of the TSP pruner and the degradation in the solution
quality following problem reduction. We consider false negatives to be any edges
that were selected for pruning, but carried a pseudo-label value greater than
0.01. Table 4 further indicates that the lSV M achieves the lowest false negative
rate across all of the benchmark instances, indicating that it prunes the most
variables in general at the least detriment to the quality of the solution that can
be obtained from the reduced problem.

4.3 Pruning Then Optimising

Initial objective function values, especially for the smaller problem instances are
relatively close to the best known values for the benchmark problem instances, as
seen in Table 5. For the larger problem instances, a significant gap exists between
these values. Smaller reduced problems can generally be solved to optimality
within one minute, whereas solve times for larger problems grows quite quickly
with the number of customers. For problems with up to forty customers, we
can solve the reduced problems to optimality. Large problems are not always
solveable within the time limit of one hour, though in most cases the problems
with eighty customers are solveable. The gaps for the problem instances with
160 and 320 customers are relatively large; most problems could not be solved
within the given time limit. For the largest class of problems, not a single reduced
problem could be solved to optimality, despite the high degree of pruning.

Table 5. Mean performance statistics across fixed problem sizes for reduced problems
solved with a branch-and-bound solver.

|I| 〈zinitial/zBKS〉 〈zfinal/zBKS〉 t(s) Gap(%)

10 1.0104 1.0002 46 0.00

20 1.0163 1.0024 322 0.00

40 1.0289 1.0142 561 0.00

80 1.0832 1.0305 756 1.03

160 1.0999 1.0568 1203 2.38

320 1.1705 1.0930 3600 6.12



Learning to Prune Electric Vehicle Routing Problems 391

5 Conclusions and Discussion

Although deep learning techniques cannot yet guarantee optimality nor any mea-
sure of quality of their solutions, they remain a promising research direction.

First, as we have demonstrated, the ML techniques are highly flexible and
adaptable to new problem variants, especially to cases where no other approaches
have yet been developed, a property especially important in practical settings
where constraints and requirements may change regularly.

Furthermore, the deep learning approaches can take advantage of dedicated
hardware for neural networks, increasing the speed at which inference can be
made. Swapping computationally expensive search procedures for lengthy train-
ing phases, these heuristics take advantage of learned information from training
problem instances to perform relatively well later on for unseen test instances.

The RL approach allows us to apply the learning-to-prune framework to
problems where collecting optimal labels is not practical, even offline. Our com-
putational experiments show that learning to prune achieves high levels of spar-
sification for the highly-constrained and challenging E-VRP-NL problem. This
demonstrates that our ML framework can generate sufficient training data to
train pruning classifiers.

Similar to the observations of [15] we note that charging decisions made by
the deep learning heuristic can be sub-optimal. This is a result of two related
issues. In some cases the neural network does not select charging station nodes
optimally. This leads to over-charging or under-charging, or visiting a slow charg-
ing station even if a faster one is nearby.

It is clear that the use of pruning approaches to reduce the number of vari-
ables in a linear programming formulation of routing-type problems of this com-
plexity is insufficient. Even with an extremely high pruning rate, solve times can
be unacceptably long. This suggests that more work is needed to aid branch-
and-bound solvers if these techniques are to be extended for problems that have
formulations with weak relaxations. Although there has been research in that
direction, learning-to-cut approaches have shown limited success to date.

Acknowledgement. This publication has emanated from research supported in part
by a grant from Science Foundation Ireland under Grant number 18/CRT/6183. For
the purpose of Open Access, the author has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this submission.

References

1. Applegate, D.L., Bixby, R.E., Chvatál, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

2. Ashford, R.: Mixed integer programming: a historical perspective with Xpress-MP.
Ann. Oper. Res. 149(1), 5 (2007)

3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

http://arxiv.org/abs/1611.09940


392 J. Fitzpatrick et al.

4. Tayebi, S.R.D., Ajwani, D.: Learning to prune instances of k-median and related
problems. In: Algorithm Engineering and Experiments (ALENEX). ACM-SIAM
(2022)

5. Desaulniers, G., Errico, F., Irnich, S., Schneider, M.: Exact algorithms for electric
vehicle-routing problems with time windows. Oper. Res. 64(6), 1388–1405 (2016)

6. Felipe, Á., Ortuño, M.T., Righini, G., Tirado, G.: A heuristic approach for the
green vehicle routing problem with multiple technologies and partial recharges.
Transp. Res. Part E: Logist. Transp. Rev. 71, 111–128 (2014)

7. Fitzpatrick, J., Ajwani, D., Carroll, P.: Learning to sparsify travelling salesman
problem instances. In: Stuckey, P.J. (ed.) CPAIOR 2021. LNCS, vol. 12735, pp.
410–426. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78230-6 26

8. Froger, A., Jabali, O., Mendoza, J.E., Laporte, G.: The electric vehicle routing
problem with capacitated charging stations. Transp. Sci. 56(2), 460–482 (2022)

9. Froger, A., Mendoza, J.E., Jabali, O., Laporte, G.: Improved formulations and
algorithmic components for the electric vehicle routing problem with nonlinear
charging functions. Comput. Oper. Res. 104, 256–294 (2019)

10. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab. (LANL),
Los Alamos, NM (United States) (2008)

11. Kancharla, S.R., Ramadurai, G.: Electric vehicle routing problem with non-linear
charging and load-dependent discharging. Expert Syst. Appl. 160, 113714 (2020)

12. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475 (2018)

13. Kullman, N.D., Froger, A., Mendoza, J.E., Goodson, J.C.: frvcpy: an open-source
solver for the fixed route vehicle charging problem. INFORMS J. Comput. 33(4),
1277–1283 (2021)

14. Lauri, J., Dutta, S.: Fine-grained search space classification for hard enumeration
variants of subset problems. In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI, pp. 2314–2321. AAAI Press (2019)

15. Lin, B., Ghaddar, B., Nathwani, J.: Deep reinforcement learning for the electric
vehicle routing problem with time windows. IEEE Trans. Intell.Transp. Syst. 23,
11528–11538 (2021)

16. Montoya, A., Guéret, C., Mendoza, J.E., Villegas, J.G.: The electric vehicle routing
problem with nonlinear charging function. Transp. Res. Part B: Methodol. 103,
87–110 (2017)

17. Parliament, E.: Directive (EU) 2019/1161 of the European parliament and of the
council of 20 June 2019 amending directive 2009/33/EC on the promotion of clean
and energy-efficient road transport vehicles. Off. J. Eur. Union 62, 116–130 (2019)

18. Paszke, A., et al. PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

19. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

20. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with
time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)

21. Sun, Y., Ernst, A., Li, X., Weiner, J.: Generalization of machine learning for prob-
lem reduction: a case study on travelling salesman problems. OR Spect. 43(3),
607–633 (2021)

22. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, vol. 28 (2015)

https://doi.org/10.1007/978-3-030-78230-6_26
http://arxiv.org/abs/1803.08475


Matheuristic Fixed Set Search Applied
to Electric Bus Fleet Scheduling

Raka Jovanovic1(B) , Sertac Bayhan1, and Stefan Voß2

1 Qatar Environment and Energy Research Institute (QEERI),
Hamad bin Khalifa University, PO Box 5825, Doha, Qatar

rjovanovic@hbku.edu.qa
2 Institute of Information Systems, University of Hamburg,

Von-Melle-Park 5, 20146 Hamburg, Germany

Abstract. In recent years, there has been an increasing growth in the
number of electric vehicles on the road. An important part of this process
is the electrification of public transport with the use of electric buses.
There are several differences between scheduling an electric or diesel bus
fleet to cover a public transport timetable. The main reason for this is
that electric buses have a shorter range and need to be charged during
operating hours. The related optimization problems are often modeled
using mixed-integer programming (MIP). An issue is that standard MIP
solvers usually cannot solve problem instances corresponding to real-
world applications of the model within a reasonable time limit. In this
paper, this is addressed by extending the fixed set search to a matheuris-
tic setting. The conducted computational experiments show that the new
approach can be applied to much larger problems than the basic MIP. In
addition, the proposed approach significantly outperforms other heuris-
tic and metaheuristic methods on the problem of interest for problem
instances up to a specific size.

Keywords: Matheuristic · electric buses · fleet scheduling

1 Introduction

Recent years have seen a massive rise in the worldwide adoption of electric vehi-
cles (EVs). Governments have offered substantial incentives for EV adoption to
reach their net-zero emission targets. Researchers are exploring ways to optimize
the use of EVs by constructing better charging infrastructure and leveraging the
charging flexibility of EVs to address challenges posed by the increased reliance
on renewable energy sources [10,21]. The use of electric buses (EBs) in pub-
lic transport has surpassed that of personal EVs. In China, for instance, there
are over 400,000 EBs in use, representing more than 14% of all public trans-
port buses. A study of the growth of EBs in Beijing, China can be found in
[25]. The use of EBs offers numerous benefits such as reduced air and noise
pollution in urban areas. They are also crucial for reaching net-zero goals and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 393–407, 2023.
https://doi.org/10.1007/978-3-031-44505-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_27&domain=pdf
https://orcid.org/0000-0001-8167-1516
https://orcid.org/0000-0003-1296-4221
https://doi.org/10.1007/978-3-031-44505-7_27


394 R. Jovanovic et al.

offer a cost-effective public transportation alternative compared to diesel buses
(DBs) [4,23,27]. This is partly due to the high daily mileage of EBs, leading to
a significant decrease in operational costs as electricity is used instead of diesel,
which quickly covers the initial investment. A high adoption rate of EVs can
also be seen in car-hailing and taxi services for the same reason. There is also
an increasing research interest in efficiently planning charging infrastructure for
large fleets and optimizing smart charging schedules [3,6,28].

The adoption of EBs brings new operational difficulties, such as limited driv-
ing range and prolonged charging times, compared to DBs. The scheduling of
DBs in urban public transportation is well studied through the vehicle schedul-
ing problem (VSP) [2,5]. In the VSP, the objective is to optimize the allocation
of trips to vehicles based on a cost function, often related to the number of
buses used. However, incorporating the constraints of EBs’ range and charg-
ing schedule makes this problem more challenging and is typically addressed
through the electric vehicle scheduling problem (E-VSP) [22] and its variations.
These variations incorporate elements similar to the traditional VSP for DBs,
such as single [9,18,26,30] and multiple [19,29] depot scenarios. Studies have
analyzed the scheduling of pure EB fleets [9,18,26] and mixed fleets of EBs and
DBs [29,30]. A noteworthy investigation, found in [26], assesses the robustness
of scheduling under varying traffic conditions. Most of these models are solved
through mixed-integer programming (MIP) [9,18,26,30], while limited research
has explored the use of heuristic methods, such as a combination of a greedy
algorithm and simulated annealing [30], the greedy randomized adaptive search
procedure (GRASP) [11] or genetic algorithms [29].

In the general case, mathematical models for problems of this type often
need a high level of detail to well represent the related real-world problems.
Because of this, to a large extent, the implementation of metaheuristics becomes
highly complex. On the other hand, problem instances corresponding to real-
world systems are usually of large size, and generally cannot be solved using MIP
within a reasonable amount of time. In this paper, an approach that combines
MIP and a heuristic approach is proposed. Methods of this type are frequently
called matheuristics, for which a recent review can be found in [1]. The proposed
method avoids the complexity of a versatile metaheuristic implementation and
manages to solve larger problems than the corresponding MIP. The proposed
method combines MIP and the fixed set search (FSS) metaheuristic. The FSS
is a novel population-based metaheuristic that has previously been successfully
applied to solve the traveling salesman problem [14], the power dominating set
problem [17], machine scheduling [15], the minimum weighted vertex cover prob-
lem [13,16], covering location with interconnected facilities problem [20] and the
clique partitioning problem [12]. The inspiration for the FSS is the fact that
generally high-quality solutions, for a specific problem instance, have many of
the same elements in them. The idea is to generate new solutions that con-
tain such elements. In essence, these elements, the fixed set, are included in
the solutions that will be generated and the computational effort is dedicated
to complete the partial solution or, in other words, “filling in the gaps”. The



Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling 395

proposed matheuristic FSS (MFSS) is applied to a variation of the single-depot
E-VSP where charging time depends on the battery state proposed in [11]. The
conducted computational experiments compare the performance of the MFSS to
the use of the MIP and the GRASP metaheuristic.

The paper is organized as follows. Section 2 provides the outline of the prob-
lem being solved and how it is modeled. This is followed by a section dedicated
to the graph formulation of bus scheduling problems. The next section presents
the MFSS for the problem of interest. Section 6 is dedicated to the presentation
of the conducted computational experiments. The paper is finalized with some
concluding remarks.

2 Model Outline

In this section, an outline of the model proposed in [11] is presented. The purpose
of the model is to determine the minimum number of EBs required to serve all bus
routes in a timetable. This is achieved by assigning a collection of trips (from the
timetable) to a group of EBs. Each trip is defined by its starting point, endpoint,
duration, and start time. Note that the trips do not consider intermediate stops.
The model operates under the following assumptions: scheduling of EBs to trips
takes place within a predetermined time frame, for a set of stations, and a single
depot. Additionally, it is assumed that the distances between each station and
the depot are known, and that EBs can only be recharged at the depot. The
assumption is that all buses start and finish their day at the depot. An EB has
a defined driving range and must have its battery fully recharged before it can
be scheduled. This means that an EB can only be used if it has enough battery
power. It is also assumed that all EBs travel at a constant speed, which allows for
the calculation of battery usage, proportional to trip duration, to be simplified
by converting distance to duration.

For an EB to undertake a trip from a particular origin, it must arrive prior
to the trip’s starting time. The objective of the proposed model is to evaluate
the number of EBs with varying ranges required to fulfill a public transportation
timetable. The following points describe the model’s specifications:

– There are N locations, represented by the set L = {1, ..., N}.
– There is one single depot D ∈ L.
– The distance between any two locations i, j ∈ L is known and equal to dij .
– The scheduling takes place over P time periods, represented by the set P =

{1, . . . , P}.
– A timetable trip is a 4-tuple (o, d, s, l) where o, d ∈ L and s, l ∈ P represent

the origin-destination pairs and start time with duration, respectively. The
set T represents the timetable comprising of such trips. e = s + l denotes the
completion time of each trip.

– An EB has a fixed battery range R, and all EBs are assumed to have the
same range.

– The objective is to determine the minimum number of EBs needed to perform
all trips in the timetable.



396 R. Jovanovic et al.

– An EB can only be recharged at the depot.
– An EB is fully charged at the start of the first time period.
– There is a charging rate γ representing how much the battery is charged in

one time period.
– The battery of an EB is always charged to full capacity.

3 Graph Formulation

The following text provides a graph representation for scheduling buses. This
concept is used in several papers, e.g. [11,26]. It focuses solely on assigning
buses to trips in the schedule. Subsequent sections will delve into the extension
of this model to incorporate battery capacity and charging, providing a more
comprehensive understanding.

Let us describe the problem using a directed graph G = (V,E). Every trip
t ∈ T is represented by a node t ∈ V . Additionally, the set of nodes V includes
two special nodes, Ds and De, which correspond to the start (departure from
the depot) and end (arrival at the depot) of all buses. The notation Vt will be
used to denote the set of all nodes that correspond to trips in the timetable.
The distance between two nodes, or trips, i and j, is calculated as the distance
between the destination id of trip i and the origin jo of trip j as follows.

dij = d̂idjs (1)

An edge (i, j) belongs to the edge set E if it is feasible to carry out trip j
immediately after trip i. The set of edges E can be formally defined as follows.

En = {(i, j) | i, j ∈ L ∧ (sj − ei − dij ≥ 0)} (2)
Es = {(Ds, i) | i ∈ L} (3)
Ee = {(i,De) | i ∈ L} (4)
E = En ∪ Es ∪ Ee (5)

The set En consists of all the trip pairs (i, j) where the start time of trip j (sj)
is equal to or greater than the sum of the completion time ei of trip i and the
travel time between the destination of trip i (dij) and the origin of trip j. The
start trip node Ds is connected to all other nodes via the edge set Es. All trip
nodes are also connected to the end node De using the edge set Ee. E represents
the complete set of edges in the graph. It is important to note that, as defined,
the directed graph G does not contain any cycles. Each edge (i, j) ∈ E has an
associated length property.

The schedule for all the buses is represented as a directed subgraph S =
(V, Ẽ) of G. An edge (i, j) signifies that a bus performs trip j immediately after
trip i. Let us examine the implications of this solution for the problem at hand.
The vertex set of graph S is the same as that of G, meaning that all trips are
performed by some EB. Each trip node i ∈ Vt will have exactly one incoming
and one outgoing edge with respect to some node x ∈ V , because a trip can



Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling 397

only be directly performed before or after one other trip. The number of edges
in the form (Ds, i) is equal to the number of buses required to complete the
timetable. As a result, a single bus’s schedule will be a directed path of the
form (Ds, . . . , De). An illustration of how a trip timetable with known distances
between locations and a bus schedule is converted to the graph formulation can
be seen in Fig. 1.

Fig. 1. Illustration of the conversion of a timetable with known distances between
origins and destinations between trips. The directed graph has a node for each trip
and edges only connect trips that can be sequentially done. The set of gray dotted
edges corresponds to precedence relations that do not appear in the bus schedule. The
set of red edges (bottom) is a schedule of EBs. It contains the two buses with schedules
(Depot, a, c, Depot) and (Depot, b, d, Depot). (Color figure online)

4 Mathematical Model

In this section, the MIP for the problem of interest proposed in [11] based on the
presented formulations is given. The model uses the following input parameters:

– The distance between trip i and trip j is designated by dij and is calculated
as outlined above.

– Each trip i has a starting time si and a duration of di. For ease of notation,
the completion time of trip i is defined as ei = si + di.



398 R. Jovanovic et al.

– The rate of battery charging per time period is denoted by γ.
– The battery usage per time period is represented by α.
– The battery capacity of all EBs is the same and is equal to GB .

The scheduling of EBs and the battery-related restrictions are established in the
model through the following decision variables:

– For each trip pair (i, j) in the edge set E, there is a binary variable xij which
indicates whether an EB performs trip j immediately after trip i.

– For each trip i in the node set V , the variable bi denotes the battery level of
the EB when it reaches the starting point of trip i before embarking on it.

– For each trip node i in V , a binary variable ci is defined, indicating whether
the EB that carries out trip i will recharge its battery after completing it.

The goal of the model is to minimize the number of electric buses required to
complete all trips in the timetable. This objective can be represented mathemat-
ically as the number of edges originating from the start node Ds as follows.

Minimize
∑

i∈Vt

xDsi. (6)

The final step in constructing the model is to specify its constraints, which are
outlined in (9)–(20). These constraints can be separated into three categories.
The first set of constraints, in equations (9)–(11), ensures that all trips in the
timetable are completed by some EB. These constraints do not take into account
the range of the EBs. The next set of constraints, (12)–(18), deals with the state
of the EB battery and thus the range of the EBs. Finally, the constraints in
(19)–(20) regulate the charging of the EBs.

The battery-related constraints in the model have conditional parts. To clar-
ify the constraints, two types of auxiliary variables are defined based on the
values of xji and cj . Although not strictly necessary, these variables improve the
readability of the constraints. They are specified in the following equations:

vji = 1 − xji + cj (7)
wji = 2 − xji − cj (8)

This variable, vji, given in Eq. (7), identifies the situation where an EB performs
trip j before trip i and the EB is not charged after trip j. In this scenario, the
value of vji would be equal to 0. The variable wji, given in Eq. (8), recognizes
the state when an EB performs trip j before trip i and is charged after trip j.
In this case, the value of wji is equal to 0. With these auxiliary variables, the
constraints of the proposed model can be defined as follows:

∑

(i,j)∈E

xij = 1 i ∈ Vt, (9)

∑

(i,j)∈E

xij = 1 j ∈ Vt, (10)



Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling 399

∑

i∈Vt

xDsi =
∑

i∈Vt

xiDe
(11)

bi − αdi ≥ αdiDe
i ∈ Vt (12)

bi ≤ Mvji + bj − α(dj + dji) i ∈ Vt, j ∈ V, (13)
bi ≥ −Mvji + bj − α(dj + dji) i ∈ Vt, j ∈ V, (14)

bi ≤ Mwji + GB − αdDsi i ∈ Vt, j ∈ V, (15)
bi ≥ −Mwji + GB − αdDsi i ∈ Vt, j ∈ V, (16)

bDs
= GB , (17)

bi ≤ GB i ∈ Vt, (18)
si ≥ −Mwji + ej + djDe

+ dDsi

+
1
γ

(GB − (bj − dj − djDe
)) i, j ∈ Vt, (19)

0 ≤ cj ≤ 1 j ∈ Vt. (20)

Equations (9) and (10) ensure that a single EB performs one trip after and
before a given timetable trip i, respectively. It is important to note that both
starting the day at the depot and ending it at the depot are considered trips as
well (pull-out and pull-in). Equation (11) ensures that the same number of EBs
depart from the starting depot as those that arrive at the ending depot.

The following set of constraints focuses on the state of charge of the bat-
tery. Constraints (12) set the minimum value of battery load before a trip i
in the timetable can be performed. The battery level must be greater than or
equal to the amount of charge required to complete the trip and reach the depot
afterwards. Constraints (13) and (14) are conditional constraints that are imple-
mented with the use of a large value M . They only take effect if vji = 0, meaning
that an EB performs trip i after trip j and does not charge inbetween. In this
scenario, the state of the battery will be equal to the state of the battery after
trip j (bj) minus the charge used to complete trip j and travel to the start-
ing point of trip i. Similarly, the constraints in (15) and (16) are conditional
constraints for when an EB charges between trips j and i, as specified by the
variable wji. In this case, the battery state before performing trip i is equal to
the full battery charge (GB) minus the charge required to move from the depot
to the starting point of trip i. It should be noted that a high enough value of M
for (13)–(16) is 2GB (twice the capacity of the EB battery). The constraint in
(17) ensures that an EB leaves the starting depot with a fully charged battery.
Finally, the constraints in (18) are used to enforce the battery capacity limits
before the start of any trip in the timetable.

The conditional constraints outlined in (19) determine when it is possible
to charge the battery between trips j and i. These constraints are tied to time
intervals, meaning that charging can only occur if there is enough time between
the completion of trip j at period ej and the start of trip i (si) to travel from
the endpoint of trip j to the depot, then from the depot to the starting point
of trip i, and to fully charge the battery. It is important to note that a suitable
value for the large parameter M in this constraint is 2P .



400 R. Jovanovic et al.

5 Matheuristic Fixed Set Search

In this section the proposed MFSS is presented. Its main idea is to use the
MIP presented in the previous section as a component of an algorithm that can
solve problem instances of a certain size on which the MIP cannot be effectively
applied. Occasionally this size refers to a corridor such as in [24]. The main
assumption is that the MIP is highly efficient to solve problems up to a spe-
cific size. The FSS method utilizes the fact that many high quality solutions to
a given combinatorial optimization problem share common elements. By inte-
grating some of these elements into newly created solutions, the FSS focuses its
computational efforts on finding optimal or nearly optimal solutions within the
corresponding subset of the solution space. The set of such common elements
is referred to as the “fixed set” in the further text. The FSS achieves this by
incorporating a learning mechanism into the GRASP. This section introduces
the MFSS, which extends this idea to a matheuristic setting. The MFSS com-
prises multiple components, such as representing the solution as a subset of a
ground set of elements, defining techniques for generating fixed sets, generating
initial feasible solutions, implementing the learning mechanism, and defining a
method for completing a solution from a fixed set.

5.1 Fixed Set

In this subsection, we describe the approach for generating fixed sets for the
problem of interest. In order to apply the FSS algorithm, it is necessary to
represent a solution as a subset of the ground set of elements. As described in
Sect. 3, a solution of an EB scheduling problem is equal to a subset of the set of
edges E of the graph G which is the ground set of elements.

The subsequent step involves establishing a procedure for generating multiple
fixed sets F with a controllable size (cardinality) |F |, which can be used to
produce feasible solutions of equal or better quality than the previously generated
ones. The following definitions are introduced: Sn = {S1, .., Sn} denotes the set
of n best solutions produced in the preceding steps of the algorithm. A base
solution B ∈ Sn is a solution chosen randomly from the top n solutions. If a
fixed set satisfies F ⊂ B, it can be utilized to generate a feasible solution of at
least the same quality as B, with F having the freedom to include any number of
elements of B. The main objective is to create F such that it includes frequently
occurring elements in a group of high-quality solutions. We define Skn as the
set of k randomly chosen solutions out of the n best solutions, Sn. The function
C((i, j), S), where S is a solution and (i, j) is an element (edge), is defined as 1
if (i, j) ∈ S and 0 otherwise. Using C((i, j), S), the number of times an element
(i, j) occurs in Skn can be counted with the function:

O((i, j),Skn) =
∑

S∈Skn

C((i, j), S) (21)

We can define F ⊂ B as the set of elements (i, j) that have the highest value
of O((i, j),Skn). In the generation of the fixed set the edges corresponding to



Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling 401

the movements of EBs from/to the depot, having the form (Ds, i)/(i,De), are
never used since they highly constrain the quality of the generated solution.
Additionally, we can define the function F = Fix(B,Skn, Size) as the fixed set
produced for a base solution B and a set of solutions Skn with a size of Size
elements.

The original FSS uses a randomized greedy algorithm with a pre-selected
set of elements to diversify the generation of solutions. However, in the MFSS,
diversification is partly achieved in the method for generating the fixed set.
Specifically, we utilize the way ties are resolved. Suppose the last element (i, j)
to be added to the fixed set F has the value of O((i, j),Skn) = f . In the general
case, there may be multiple elements with the same value of this function. Let us
assume that there are l > Size elements (i, j) ∈ B that have a value greater than
or equal to f for the function O((i, j),Skn). We use the notation F̂ to represent
the set of such elements. In this approach, when there are multiple elements with
the same function value, the function Fix(B,Skn, Size) returns F̂ with l −Size
randomly selected elements removed. It is important to note that a removed
element (i, j) may not necessarily have the lowest value of O((i, j),Skn).

5.2 Integer Program Use

The proposed matheuristic approach aims to take advantage of the fact that
for many problems, using an IP solver can be highly efficient up to a specific
instance size. However, in the general case, standard IP solvers spend most of
their time searching for the optimal solution and proving its optimality, while
being able to find high-quality solutions for that instance size at a relatively low
computational cost.

The proposed approach aims to reduce the computational cost of solving an
integer programming (IP) problem by utilizing fixed sets. Fixing the values of
some decision variables can be an effective way to achieve this, and fixed sets can
naturally facilitate the process. To achieve this, the following set of constraints
can be added to the IP model presented in (9)–(20):

xij = 1 (i, j) ∈ F (22)

Equation (22) guarantees that any element (i, j) of the fixed set F is a part of
the newly generated solution.

The use of the objective function given in (6) has a disadvantage that a
wide range of solutions have an equivalent objective value. In real-world EBs
scheduling problems, generally, the most relevant factor is the number of used
EBs but their total travel length is of high importance. In addition, we have
observed that schedules with a lower total travel length have a higher potential
of being improved to ones using a lower number of EBs. Because of this, the
MFSS uses an objective that extends the one given in (6) by considering the
total travel length of all EBs as follows.

Minimize Λ
∑

i∈Vt

xDsi +
∑

(i,j)∈E

dijxi,j . (23)



402 R. Jovanovic et al.

In (23), the constant Λ >
∑

(i,j)∈E dij is used to give a higher importance to the
number of used EBs in the solution. The value of the objective function is equal
to the sum of the number of used EBs scaled by Λ and the total distance the
EB need to travel between two consecutive trips.

Let us define IPS(F, t) as a function that solves the IP using the objective
function given in (23) and the constraints defined by (9)–(20) and (22) with a
maximal computational time of t. In the practical utilization of IP solvers, it is
often advantageous to supply an initial, high-quality incumbent solution S for a
“warm start”, as this can eliminate portions of the search space in the branch-
and-cut algorithm, potentially resulting in smaller branch-and-cut trees. The
proposed method exploits this approach to enhance the performance of the IP
solver. We define the function IPS(F, t, S) as an extension of the IPS function
that includes an initial incumbent solution S.

5.3 Learning Mechanism

Let us start with an overview of the MFSS approach. We begin with a pop-
ulation P = {S1, . . . , S|P |} that consists of randomly generated solutions. The
population is then iteratively improved using the following procedure: First, a
random base solution B is selected from the set of n best solutions, denoted by
Sn. Additionally, a set Skn is created by selecting k solutions from the set of
n best solutions Sn. Note that the solution quality is measured based on the
objective given in (23). A fixed set F is constructed using B and Skn, and a
new solution S′ is generated using the IP algorithm with additional constraints
related to the fixed set F . The resulting solution S′ is then added to the pop-
ulation of solutions P. It is worth noting that P is a set of unique solutions,
so duplicates are not included. This process is repeated for the new population
of solutions, and further details about the implementation of this method are
provided in the subsequent text.

A simple method is used for generating initial feasible solutions. To be exact,
schedules for individual EBs are generated without consideration of battery
recharging using the following procedure. An EB starts from the depot and
trips are iteratively added to its schedule. At each iteration, a random trip that
has not yet been assigned to any EB and it is reachable from the current trip
i and after completing it there is sufficient charge to reach the depot is added
to the schedule of the EB. If there is no such trip, the EB returns to the depot
and scheduling for a new EB is started. This procedure is repeated until all the
trips in the timetable are assigned to some EB. During the iterative procedure,
which implements the learning mechanism, several factors must be taken into
account. Initially, let us focus on the computational cost since the computational
expense of the IPS may be high. One issue to consider is that for a low-quality
fixed set, even if the IPS is given an extended execution time, it is unlikely to
acquire high-quality solutions. In contrast, for a high-quality fixed set, it is rea-
sonable to allow the IPS an extended execution time since it explores a portion
of the solution space that contains high-quality solutions. As more solutions are



Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling 403

generated, the quality of solutions in the population increases, and the qual-
ity of the fixed sets improves accordingly. Therefore, it is reasonable to allow
only short computational times for the IPS during the early iterations of the
algorithm and longer times during the later ones. To implement this strategy,
the proposed method starts with an initial allowed computational time tinit for
the IPS and increases it as the algorithm begins to stagnate. Specifically, when
no new solution is generated among the best n solutions in the last StagMax
iterations, the algorithm is deemed stagnant.

Algorithm 1. Pseudocode for MFSS
1: Parameters: Initial population size Npop, n best solutions to be used, subproblem

size Freemax, initial computational time for IP tinit

2:
3: Generate initial population P
4: Stag ← 0, t ← tinit

5: while Not Time Limit Reached do
6: Select random k ∈ [kmin, kmax]
7: Select random B ∈ Sn

8: Generate random Skn

9: Size = InnerEdges(B) − MaxFree

10: F ← Fix(B, Skn, Size)
11: S ← IPS(F, t, B)
12: Check if S is a new best solution
13: P = P ∪ {S}
14: if Sn has changed then
15: Stag = 0
16: else
17: Stag = Stag + 1
18: end if
19: if Stag ≥ MaxStag then
20: Stag = 0
21: t ← 2t
22: end if
23: end while

This procedure is better understood by observing the pseudocode given in
Algorithm 1. The first step is generating the initial population of Npop solutions
using the previously described method for generating feasible solutions. In the
main loop, firstly a random value of the size of the set Skn is selected from the
interval [kmin, kmax]. The value of k changes in subsequent iterations to increase
the diversity of generated fixed sets. Next, the random base solution B and set
Skn are selected from the set of the best n solutions. The size of the fixed set
Size is set to the total number of inner edges, i.e., the ones not going to or
from the depot, of B minus the maximal allowed number of free edges Freemax.
Next, a fixed set F is generated using the function Fix(B,Skn, Size). A new
solution S is acquired using the function IPS(F, t, B), for the fixed set F , with



404 R. Jovanovic et al.

a time limit t and an initially incumbent solution B. The solution S is added
to the population of solutions P and it is checked if S is the new best solution.
In case that the set Sn has not changed, the stagnation counter is increased by
1, otherwise it is set to 0. After this, it is checked if stagnation has occurred,
and if so, the allowed computational time for IPS is doubled. This procedure is
repeated until a time limit is reached.

6 Results

In this section, the results of the conducted computational experiments are pre-
sented. Their objective is to evaluate the effectiveness of the MFSS. This is done
in comparison to the MIP model and the GRASP algorithm proposed in [11].
The MIP and MFSS approaches have been implemented in ILOG CPLEX for
C#.NET through Concert Technology. The same code has been used for the
GRASP algorithm as in [11], which has been implemented in C#. The com-
putational experiments have been performed on a personal computer running
Windows 10 having Intel(R)Xeon(R) Gold 6244 CPU @3.60 GHz with 128 GB
memory.

The methods are evaluated on randomly generated test instances using the
same method as in [11] for which a short outline is given as follows. A set of N
random locations is selected from a rectangle and one of them is selected as the
depot. The distance measure is Euclidean. The scheduling takes place within a
24-hour time frame, with each period being equal to one minute, resulting in a
total of 1440 periods. A bus route is described by its starting point (designated
as lo), its destination (designated as ld), the start time (ts), the end time (te),
the trip duration (d), and the frequency of departures (f). The two points, start
and destination, are randomly selected from the set of locations. The values of
the other parameters related to routes are randomly selected from predefined
intervals. A problem instance has been generated for a minimal number of trips
N . To be specific, bus routes are generated based on randomly selected param-
eters, one by one until the total number of trips in them is at least N . In the
conducted computational experiments the minimal number of trips ranged from
30 to 200. For each problem size 10 different instances are used.

The GRASP algorithm uses the same set of parameters as in [11]. In the
case of the MFSS, the following parameter values are used Npop = 20, n = 20,
tinit = 0.5s, and Freemax = 20. These values have been selected empirically for
the used computer. In the case of the MIP method for all instances a time limit
of 1200 s is used. The number of seconds allowed for the execution of the GRASP
and the MFSS is four times the minimal number of trips used for generating the
instance. For the GRASP in the case of the largest instance this results in more
than 50,000 iterations, so it is not likely that it could produce better results.

In the conducted computational experiments problem instances with two EB
settings are evaluated. In the first one the battery capacity GB of an EB is 250
and the charging rate γ is 1. In the second one the battery capacity is 300 and
the charging rate is 1.5. Each of the methods performed a single run on each



Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling 405

of the instances. In Table 1 average solution quality and average time needed to
find the best solution can be seen for each of the problem sizes.

Table 1. Comparison of the proposed MFSS, GRASP and MIP for synthetic problem
instances of different sizes and EB properties.

Minimal number of trips Average solution Average time [s]

MFSS GRASP MIP MFSS GRASP MIP

GB = 250, γ = 1 and α = 1

30 6.40 6.50 6.60 21.76 1.26 926.62

40 7.80 8.10 8.50 34.19 1.97 1205.58

50 9.30 9.80 10.80 51.96 11.58 1204.01

75 13.00 13.60 16.80 151.87 42.85 1209.93

100 17.30 18.50 25.90 214.05 12.12 1219.23

150 25.90 26.90 31.90 442.57 80.54 1218.41

200 35.30 35.40 43.60 661.98 171.51 1207.67

GB = 300, γ = 1.5 and α = 1

30 5.40 5.60 5.90 17.59 1.54 1022.36

40 6.30 6.90 7.30 33.37 2.68 1207.76

50 7.80 8.10 9.30 60.10 15.16 1207.81

75 11.30 11.60 14.60 87.43 0.69 1213.98

100 15.00 15.30 20.40 166.90 6.56 1217.17

150 22.00 22.60 25.90 379.05 46.37 1226.91

200 30.90 29.30 35.70 730.62 122.97 1217.01

The first thing that can be observed from these results is that both GRASP
and MFSS significantly outperform MIP when solution quality is considered. In
addition, the MIP needed significantly more time to find such solutions than the
other two methods. Overall the MFSS had a significantly better performance
than the GRASP for instances of less than 200 trips. It had a better average
solution than GRASP in all 12 such test groups. The MFSS has a higher advan-
tage in solution quality in case of EBs with lower range and slower charging
rate, where a higher number of buses is needed to perform all the trips. From
our observations, the performance of the MFSS drops for instances of 200 trips
and higher, due to the fact that solving the IPS becomes inefficient. To be exact,
the IPS manages to find only low quality solutions within the available time
period for the subproblem. In all the instances, the GRASP has a significantly
lower execution time. In most cases the GRASP finds the best solution within
the first few iterations. On the other hand, the MFSS had a significantly lower
convergence speed but managed to frequently find better solutions. It is impor-
tant to point out that from the results presented in [11], the GRASP algorithm
can be applied to much larger instances.



406 R. Jovanovic et al.

7 Conclusion

In this paper, the problem of scheduling a fleet of EBs to satisfy a public trans-
port timetable has been addressed. A matheuristic approach based on the FSS
has been proposed and applied to an existing model for the problem of interest.
The conducted computational experiments show that the new approach signifi-
cantly outperforms the direct application of the MIP with standard solvers. In
addition, it is highly competitive to existing metaheuristic approaches, specifi-
cally to the GRASP for problem instances up to a specific size. The main advan-
tage of the method is that it can, potentially, be applied to other mathematical
models for EB fleet scheduling problems like the ones presented in [9,18,26,30].
Another direction of future research is the adaptation of the method to solve very
large-scale problem instances and adapting it to a multi-objective setting. This
would also allow to look into more general integrated vehicle and crew scheduling
problems such as from [7,8] and adding additional uncertainty. Finally, due to
the varying usability of EBs under practical circumstances, an uncertain number
of available buses needs to be considered.

References

1. Boschetti, M.A., Maniezzo, V.: Matheuristics: using mathematics for heuristic
design. 4OR 20(2), 173–208 (2022)

2. Desaulniers, G., Hickman, M.D.: Public transit. In: Handbooks in Operations
Research and Management Science, vol. 14, pp. 69–127 (2007)

3. Dreier, D., Rudin, B., Howells, M.: Comparison of management strategies for
the charging schedule and all-electric operation of a plug-in hybrid-electric bi-
articulated bus fleet. Public Transp. 12, 363–404 (2020)

4. Feng, W., Figliozzi, M.: Vehicle technologies and bus fleet replacement optimiza-
tion: problem properties and sensitivity analysis utilizing real-world data. Public
Transp. 6(1–2), 137–157 (2014)

5. Foster, B.A., Ryan, D.M.: An integer programming approach to the vehicle schedul-
ing problem. J. Oper. Res. Soc. 27(2), 367–384 (1976)

6. Gallo, J.B., Bloch-Rubin, T., Tomić, J.: Peak demand charges and electric transit
buses. US Department of Transportation, Technical report (2014)

7. Ge, L., Kliewer, N., Nourmohammadzadeh, A., Voß, S., Xie, L.: Revisiting the
richness of integrated vehicle and crew scheduling. Public Transp. 1–27 (2022)

8. Ge, L., Nourmohammadzadeh, A., Voß, S., Xie, L.: Robust optimization for inte-
grated vehicle and crew scheduling based on uncertainty in the main inputs. In:
The Fifth Data Science Meets Optimisation Workshop at IJCAI-22 (2022). https://
sites.google.com/view/ijcai2022dso/?pli=1

9. Janovec, M., Koháni, M.: Exact approach to the electric bus fleet scheduling.
Transp. Res. Proc. 40, 1380–1387 (2019)

10. Jovanovic, R., Bayhan, S., Bayram, I.S.: A multiobjective analysis of the potential
of scheduling electrical vehicle charging for flattening the duck curve. J. Comput.
Sci. 48, 101262 (2021)

11. Jovanovic, R., Bayram, I.S., Bayhan, S., Voß, S.: A GRASP approach for solving
large-scale electric bus scheduling problems. Energies 14(20), 6610 (2021)

https://sites.google.com/view/ijcai2022dso/?pli=1
https://sites.google.com/view/ijcai2022dso/?pli=1


Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling 407

12. Jovanovic, R., Sanfilippo, A.P., Voß, S.: Fixed set search applied to the clique
partitioning problem. Eur. J. Oper. Res. 309(1), 65–81 (2023)

13. Jovanovic, R., Sanfilippo, A.P., Voß, S.: Fixed set search applied to the multi-
objective minimum weighted vertex cover problem. J. Heuristics 28, 481–508
(2022)

14. Jovanovic, R., Tuba, M., Voß, S.: Fixed set search applied to the traveling sales-
man problem. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-
Davidson, P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 63–77.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05983-5 5

15. Jovanovic, R., Voß, S.: Fixed set search application for minimizing the makespan
on unrelated parallel machines with sequence-dependent setup times. Appl. Soft
Comput. 110, 107521 (2021)

16. Jovanovic, R., Voß, S.: Fixed set search applied to the minimum weighted ver-
tex cover problem. In: Kotsireas, I., Pardalos, P., Parsopoulos, K.E., Souravlias,
D., Tsokas, A. (eds.) SEA 2019. LNCS, vol. 11544, pp. 490–504. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34029-2 31

17. Jovanovic, R., Voss, S.: The fixed set search applied to the power dominating set
problem. Expert. Syst. 37(6), e12559 (2020)

18. van Kooten Niekerk, M.E., van den Akker, J., Hoogeveen, J.: Scheduling electric
vehicles. Public Transp. 9(1–2), 155–176 (2017)

19. Li, L., Lo, H.K., Xiao, F.: Mixed bus fleet scheduling under range and refueling
constraints. Transp. Res. Part C Emerg. Technol. 104, 443–462 (2019)

20. Lozano-Osorio, I., Sánchez-Oro, J., Mart́ınez-Gavara, A., López-Sánchez, A.D.,
Duarte, A.: An efficient fixed set search for the covering location with intercon-
nected facilities problem. In: Di Gaspero, L., Festa, P., Nakib, A., Pavone, M. (eds.)
Metaheuristics, pp. 485–490. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-26504-4 37

21. Meyer, D., Wang, J.: Integrating ultra-fast charging stations within the power grids
of smart cities: a review. IET Smart Grid 1(1), 3–10 (2018)

22. Perumal, S.S., Lusby, R.M., Larsen, J.: Electric bus planning & scheduling: a review
of related problems and methodologies. Eur. J. Oper. Res. 301(2), 395–413 (2022)

23. Quarles, N., Kockelman, K.M., Mohamed, M.: Costs and benefits of electrifying
and automating bus transit fleets. Sustainability 12(10), 3977 (2020)

24. Sniedovich, M., Voß, S.: The corridor method: a dynamic programming inspired
metaheuristic. Control. Cybern. 35(3), 551–578 (2006)

25. Song, Z., Liu, Y., Gao, H., Li, S.: The underlying reasons behind the development
of public electric buses in China: the Beijing case. Sustainability 12(2), 688 (2020)

26. Tang, X., Lin, X., He, F.: Robust scheduling strategies of electric buses under
stochastic traffic conditions. Transp. Res. Part C Emerg. Technol. 105, 163–182
(2019)

27. Topal, O., Nakir, İ: Total cost of ownership based economic analysis of diesel, CNG
and electric bus concepts for the public transport in Istanbul city. Energies 11(9),
2369 (2018)

28. Vuelvas, J., Ruiz, F., Gruosso, G.: Energy price forecasting for optimal managing
of electric vehicle fleet. IET Electr. Syst. Transp. 10, 401–408 (2020)

29. Yao, E., Liu, T., Lu, T., Yang, Y.: Optimization of electric vehicle scheduling with
multiple vehicle types in public transport. Sustain. Cities Soc. 52, 101862 (2020)

30. Zhou, G., Xie, D., Zhao, X., Lu, C.: Collaborative optimization of vehicle and
charging scheduling for a bus fleet mixed with electric and traditional buses. IEEE
Access 8, 8056–8072 (2020)

https://doi.org/10.1007/978-3-030-05983-5_5
https://doi.org/10.1007/978-3-030-34029-2_31
https://doi.org/10.1007/978-3-031-26504-4_37
https://doi.org/10.1007/978-3-031-26504-4_37


Class GP: Gaussian Process Modeling
for Heterogeneous Functions

Mohit Malu1,3(B), Giulia Pedrielli2, Gautam Dasarathy1,
and Andreas Spanias1,3

1 School of ECEE, Arizona State University, Tempe, AZ 85281, USA
{mmalu,giulia.pedrielli,gautamd,spanias}@asu.edu

2 SCAI, Arizona State University, Tempe, AZ 85281, USA
3 SenSIP Center, Tempe, USA

Abstract. Gaussian Processes (GP) are a powerful framework for mod-
eling expensive black-box functions and have thus been adopted for vari-
ous challenging modeling and optimization problems. In GP-based mod-
eling, we typically default to a stationary covariance kernel to model the
underlying function over the input domain, but many real-world appli-
cations, such as controls and cyber-physical system safety, often require
modeling and optimization of functions that are locally stationary and
globally non-stationary across the domain; using standard GPs with a
stationary kernel often yields poor modeling performance in such scenar-
ios. In this paper, we propose a novel modeling technique called Class-GP
(Class Gaussian Process) to model a class of heterogeneous functions,
i.e., non-stationary functions which can be divided into locally station-
ary functions over the partitions of input space with one active station-
ary function in each partition. We provide theoretical insights into the
modeling power of Class-GP and demonstrate its benefits over standard
modeling techniques via extensive empirical evaluations.

Keywords: Gaussian process · Black-box modeling · Heterogeneous
function · Non-stationary function modeling · Optimization

1 Introduction

Many modern day science and engineering applications, such as machine learn-
ing, hyperparameter optimization of neural networks, robotics, cyber-physical
systems, etc., call for modeling techniques to model black-box functions. Gaus-
sian Process (GP) modeling is a popular Bayesian non-parametric framework
heavily employed to model expensive black-box functions for analysis such as
prediction or optimization [20]. Traditionally, GP models assume stationarity of
the underlying, unknown, function. As a result a unique covariance kernel (with
constant hyperparameters) can be used over the entire domain. However, many
real-world systems such as cyber-physical, natural, recommendation can only be
characterized by locally stationary but globally non stationary functions. Break-
ing the assumption underlying the stationary kernel can deteriorate the quality
of predictions generated by the GP.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 408–423, 2023.
https://doi.org/10.1007/978-3-031-44505-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_28&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_28


Class GP 409

Many studies in the literature tackle this problem. We can classify these
studies in to three categories:

1. Locally stationary and partition based approaches: The work by Gramacy et
al., [6] is one of the first ones to tackle the modeling of heterogeneous functions
by partitioning the input space with tree-based algorithms and using indepen-
dent stationary GPs to model the underlying function. Kim et al., [10] and Pope
et al., [19] propose Voronoi tessellations based partitioning of the input space.
Candelieri et al., [2] extends the work [6] by overcoming the modeling limita-
tion of axis aligned partitions by using a support vector machine (SVM) based
classifiers at each node of the tree. Fuentes et al., [4] uses an alternative kernel
which is modeled as a convolution of fixed kernel with independent stationary
kernel whose parameters vary over the sub regions of the space.

2. GP’s with non-stationary kernels: The studies [5,17,18] use non-stationary
kernels to model the heterogeneous function, [8] uses non stationary kernels with
a input dependent kernel parameters and further models the parameter functions
with a smooth stationary Gaussian process. However, the use of non stationary
kernel makes these methods complex and computationally intractable.

3. Warping or spatial deformation based methods: Methods in [15,21] map the
original input space to a new space where the process is assumed to be stationary,
[3] uses composite GP to warp the input space.

For many engineering systems, the structure of the non-stationariety is
known or can be evaluated. As an example, vehicle automatic transmission
will exhibit switching behaviors, with a discrete and finite number of switches
(gears changes). When a specific behavior (gear) is exercised, the system exhibits
smooth state dynamics and the metrics associated to the system that we are
interested in monitoring/predicting maintain such smoothness. The work [16],
has considered the case of identifying unsafe system-level behaviors for Cyber-
Physical Systems without exploiting any information about, for example, switch-
ing dynamics.

In this paper, we make a first step in the direction of improving analysis of
systems that are characterized by a discrete and finite number of “classes” of
behaviors. Notice that a single class may be represented by disconnected sets of
the input space. In particular, given an input, we assume the class and the closest
class that the system can switch to, can be both evaluated. Under this scenario,
we extend the existing partition based methods to a family of heterogeneous
functions adding the class information. We model the homogeneous behavior
classes by imposing that the GPs learnt within the subregions of the input space
that belong to the same class have same kernel hyperparameters. These functions
are often encountered in many real world applications, where we can access
the class information by learning a classifier using the features. To the best of
our knowledge, we present a first tree-based algorithm with information sharing
across non-contiguous partitions that belong to same homogeneous behaviour
class to better learn the GP models. Our contributions include:

– A novel Class GP framework to model heterogeneous function with class
information.



410 M. Malu et al.

– Theoretical analysis - we compute uniform error bounds for our framework
and compare it with the error bounds achieved by standard GP.

– Empirical analysis - we provide extensive empirical evaluations of the model
and compare it with other modeling techniques.

The rest of the paper is organized as follows: Sect. 2 gives a formal introduc-
tion to the problem and notations used in the paper followed by a brief overview
of Gaussian process modeling and classification tree algorithm in Sect. 3 and
introducing the Class GP framework in Sect. 4. Section 5 provides theoretical
insights for Class-GP algorithm followed by details of experimental setup and
corresponding results in Sect. 6. Section 7 gives conclusion over the performance
of Class-GP as compared to other methods and insights on future work. Finally,
paper ends with an appendix in Sect.A.

Fig. 1. Class-partition space with axis aligned partitions (Pj) and classes (Ci)

2 Problem Setup and Notation

Let X ⊆ Rd be a compact space with p axis aligned partitions {Xj}p
j=1 and each

partition j ∈ [p] is assigned a class label i ∈ [m] i.e., C(j) = i, we call this
space as class-partition space. This paper, models a family of non-stationary
functions f defined over class-partition space, f : X → R, such that f boils
down to a stationary functions gj ’s over each partition j ∈ [p] where each gj ’s
are sampled from a Gaussian process with a continuous stationary kernel κj i.e.,
gj ∼ GP(μj(.), κj(., .)). For notational convenience, and w.l.o.g, we assume the
prior mean μj = 0. Further, partitions j1, j2 that belong to same class i have
same covariance kernel i.e., κj1 = κj2 = κi. Let Ci denote all the partitions with
class label i, i.e., Ci = ∪{j:C(j)=i}Xj , this can be visualized with the help of an
example as shown in Fig. 1. The function f is formally given as follows:

f(x) =
p∑

j=1

1{x ∈ Xj}gj(x) (1)

Note: For consistency we denote partitions with a subscript j and classes with
subscript i, owing to this notation any variable with subscript i or j would refer
to class or partition variable respectively.



Class GP 411

2.1 Observation Model

Evaluating the function at any point x in the input space reveals the following
information: function evaluation y, the class label z of the partition to which
the point belongs and the tuple distance w = (distance from closest boundary,
feature index). We denote that training data set D = {xn, yn, zn, wn}N

n=1 where
N is number of training data points. Also, X = [x1, . . . ,xn]T ,y, z are the vector
of corresponding evaluations, classes respectively and W is a list of tuples of
distance and feature index along which the distance is measured.

3 Background

This section gives a brief overview of Gaussian Process modeling and the classi-
fication tree algorithm used in the Class-GP framework.

3.1 Gaussian Process Modeling

Gaussian process (GP) modeling is a popular statistical framework to model non-
linear black box functions f due to its analytical tractability of posteriors. With
in this framework the function, f : X ⊆ Rd → R, being modeled is assumed the
to be a distributed as per a Gaussian process prior, formally written as follows:

f ∼ GP(μ(.), κ(., .)),

GP is completely given by its mean μ(.) and covariance kernel κ(., .), where
for convenience, and without loss of generality, the mean function μ(.) is set
to 0. The choice of the covariance kernel depends on the degree of smoothness
warranted by the function being modeled and is defaulted to stationary kernels
such as squared exponential (SE) kernel or Matérn kernel. Functions modeled
within this framework are typically assumed to be stationary i.e., function can
be modeled using a same stationary covariance function over the entire input
space.

Learning a GP model involves computing the posterior conditioned
on the observed data and learning kernel hyperparameters. Let Dn :
{(x1, y1) . . . (xn, yn)} be the sampled training data of the objective function f .
The posterior of the function f conditioned on the training data Dn is given by
a Gaussian distribution i.e., f(x)|Dn ∼ N (μn(x), σ2

n(x)), where the mean μn(x)
and covariance σ2

n(x) are given as follows:

μn(x) = kT K−1y and σ2
n(x) = κ(x,x) − kT K−1k (2)

Here, y is the vector of noise free observations, k is a vector with kp = κ(x,xp).
The matrix K is such that Kp,q = κ(xp,xq) p, q ∈ {1, . . . , n}.

The hyperparameters of the model are learnt by maximising the log marginal
likelihood which is given as follows:

log p(y|X, θ) = −1
2
yT K−1y − 1

2
log |K| − n

2
log 2π (3)



412 M. Malu et al.

and θ∗ = arg maxθ log p(y|X, θ), this optimization problem is solved using off the
shelf non convex optimization packages such as Dividing Rectangles (DIRECT)
[9], LBGFS [12], CMA-ES [7]. For a detailed treatment of Gaussian process
modeling we refer readers to [20] and [22].

3.2 Classification Tree Algorithm

A classification tree/decision tree classifier is a binary tree algorithm which yield
axis aligned partitions of the input space by recursively partitioning the input
space on one dimension (feature) at a time. The tree is learnt from the training
data and the predictions for any input x is given by traversing the learnt tree from
root node to a leaf node. Notice that each leaf node corresponds to a partition
of the input space. We use CART algorithm to grow/learn the tree. During
training at each the goal is to select the best feature and splitting threshold that
minimizes the weighted impurity metric of the children nodes. Most of the tree
based algorithms typically use Gini index as the impurity metric to grow the
tree, which is given as follows:

Gini index = 1 −
n∑

i=1

(pi)2 (4)

where pi is the probability of a given class at a given node. The recursion is
continued until one of the stopping criterion’s is met or no further improvement
in the impurity index is achievable. Typical choice of stopping criterion’s include
maximum depth of the tree, minimum number of samples in a leaf, maximum
number of leaf/partitions. For more detailed overview on classification tree please
refer the work by [1] and [13].

4 Class-GP Framework

In this section, we introduce a framework to model the family of heterogeneous
functions as defined in Sect. 2. Within this framework we solve two sub-problems:
1. Learning partitions of the input space using closest boundary information W
along with class information z and, 2. Training a Gaussian Process within each
partition such that GP’s of the partitions that share same class label learn the
same set of hyperparameters. Current framework considers both noise less and
noisy function evaluations. Further, this framework can also be extended to other
partitioning methods that can use closest boundary information.

4.1 Learning Partitions

To learn the partitions of the input space we use decision tree algorithm tailored
for the current framework. The algorithm learns the tree is 2 steps: While in
both the steps we use recursive binary splitting to grow the tree, in the first step
we use closest boundary information to find the best feature index and splitting



Class GP 413

threshold that maximize reduction of Gini index (or any other impurity metric)
until all the closest boundary information W is exhausted, in the second step the
best feature index and splitting threshold that maximize reduction of Impurity
metric (Gini index) are selected from available training data at each node as in
the CART algorithm Sect. 3.2. The nodes are recursively split until a stopping
criterion is satisfied. In our proposed framework we default to Gini index as
impurity metric and, minimum number of samples at the leaf node and max
depth are used as stopping criterion’s.

4.2 Gaussian Process in Each Partition

The partitions of the input space learnt from the decision tree algorithm Sect. 4.1
is used to divide the training data set D into partition based subsets Dj with nj

data points for all j ∈ [p]. For each partition Xj underlying stationary function gj

is modeled using a zero mean Gaussian Process prior with continuous stationary
kernel κj(., .) and subset of training data Dj is used to learn/train the model.
The function modeling and training in each partition is similar to that of a
standard Gaussian process regression problem with one exception of learning the
hyperparameters of the partition GPs. The posterior of partition GP conditioned
on the partition training data is given by y(x)|x, j,Dj ∼ N (μj,nj

(x), σ2
j,nj

(x))
where mean μj,nj

= E(y|x, j,Dj) and variance σ2
j,nj

are given as follows:

μj,nj
(x) = kT

j K−1
j yj and σ2

j,nj
(x) = κj(x,x) − kT

j K−1
j kj

where yj is the vector of observations in given partition j,kj is the vector with
k
(s)
j = κj(x,xs). The matrix Kj is such that K

(s,t)
j = κj(xs,xt) where s, t ∈

{1, . . . , nj}. Note the superscripts here represent the components of the vector
and matrix.

Learning hyperparameters in a standard GP typically involves finding the
set of hyperparameters that maximize the log marginal likelihood of the obser-
vations 3, where as in the current framework we are required to find the set of
hyperparameters that maximizes the log marginal likelihood across all the parti-
tion within a class. We propose a novel method to learn of the hyperparameters.
A new class likelihood is formed by summing the log marginal likelihoods of
all partition GPs for a given class and class kernel hyperparameters are learnt
by maximizing new likelihood. The formulation of the class-likelihood function
assumes that the data from different partitions are independent of each other
and this reduces the computational complexity of learning the hyperparameters
significantly while still taking data from all the partitions in the class.

The extensive empirical results show that this new class likelihood reduces the
modelling error and provides with the better estimates of the hyperparameters,
intuitively this makes sense as we have more data points to estimate hyperpa-
rameters even though all the data points do not belong to the same partition.
The new class likelihood function for a given class i is given as follows:

Li(yi|Xi, θi) =
∑

{j:C(j)=i}
log p(yj |Xj , θi) = −1

2
yT

i K−1
i yi − 1

2
log |Ki|− ni

2
log 2π



414 M. Malu et al.

where θ∗
i = arg maxθi

Li(yi|Xi, θi),Ki is the block diagonal matrix with blocks
of Kj ’s for all {j : C(j) = i}, ni =

∑
{j:C(j)=i} nj , and yi’s is the vector formed

by yj for all {j : C(j) = i}.

5 Class-GP Analysis

In this section, we provide formal statement for probabilistic uniform error
bounds for Class GP framework, the results are the extension of the results
from [11]. To state our theorem we first introduce the required assumptions
on the unknown function f =

∑p
j=1 1{x ∈ Xj}gj over the input space with p

partitions.

A0: gj’s in each partition are continuous with Lipschitz constant Lgj
.

A1: gj’s in each partition are sampled from a zero mean Gaussian process with
known continuous kernel function κj on the compact set Xj .

A2: Kernels κj’s are Lipschitz continuous with Lipschitz constant Lκj

Theorem 1. Consider an unknown function f : X → R which induces p par-
titions on the input space, and is given as f =

∑p
j=1 1{x ∈ Xj}gj obeying

A0:,A1: and A2:. Given nj ∈ N noisy observations yj with i.i.d zero mean
Gaussian noise in a given partition j ∈ [p] the posterior mean (μnj

) and stan-
dard deviation (σnj

) of the Gaussian Process conditioned on Dj = {Xj ,yj} of
the partition are continuous with Lipschitz constant Lμnj

and modulus of conti-
nuity ωσnj

on Xj such that

Lμnj
≤ Lκj

√
nj‖K̂−1

j yj‖ (5)

ωσnj
(r) ≤

√

2rLκj

(
1 + nj‖K̂−1

j ‖ max
x,x′∈Xj

κj(x,x′)
)

(6)

where K̂j = (Kj + η2Inj
).

Moreover, pick δj ∈ (0, 1), r ∈ R+ and set

βj(r) = 2 log
(

M(r,Xj)
δj

)
(7)

γj(r) = (Lμnj
+ Lgj

)r +
√

β(r)ωσnj
(8)

then the following bound on each partition holds with probability 1 − δj

∣∣gj(x) − μnj
(x)

∣∣ ≤
√

βj(r)σnj
(x) + γj(r),∀ x ∈ Xj (9)

and the following bound on the entire input space holds with probability 1 − δ
where δ =

∑p
j=1 1{x ∈ Xj}δj i.e.,

|f(x) − μn(x)| ≤
√

β(r)σn(x) + γ(r),∀ x ∈ X (10)



Class GP 415

Corollary 1. Given problem setup defined in the Theorem 1 the following bound
on L1 norm holds with probability 1 − δ

‖f − μn‖1 ≤ ζrd

p∑

j=1

M(r,Xj)
(√

βj(r)σnj
(x) + γj(r)

)
(11)

where ζ is a non negative constant, δ =
∑1

j=1 δj and δj = 1−M(r,Xj)e−βj(r)/2.

6 Numerical Results

In this section, we compare the performance of Class-GP framework with other
baselines Partition-GP and Standard-GP over the extensive empirical evalua-
tions on both noisy and noiseless simulated dataset. Performance of the models
is evaluated using the mean square error (MSE) metric. Brief overview of the
baseline models is given below:

Standard GP: In this framework, we use a single GP with continuous stationary
kernel across the entire space to model the underlying function.

Partition GP: This framework is similar to that of Treed Gaussian process
framework [6] with additional class information. We learn the partitions of the
input space using the class information followed by modeling the function in
each partition individually, i.e., the hyperparameters in each partition are learnt
independently of other partition data of the same class.

6.1 Synthetic Data and Experimental Setup

Synthetic data for all the experiments is uniformly sampled from input space
X = [−10, 10]d where, d is the dimension of the input space. Partitions p are
generated by equally dividing the input space and each partition j ∈ [p] is
assigned a class label i ∈ [m] to forms a checkered pattern. We use Gini index
as the node splitting criterion to learn the tree and, squared exponential (SE)
covariance kernel for all GPs to model the underlying function in each learnt
partition. Each model is evaluated and compared across different functions as
given below:

1. Harmonic function:

f(x) =
p∑

j=1

1{x ∈ Xj}(cosxT ωC(j) + bj)

2. Modified Levy function (only for d = 2):

f(x) =
p∑

j=1

1{x ∈ Xj}
(

sin2(πv1) +
d−1∑

k=1

(vk − 1)2
(
1 + 10 sin2(πvk + 1)

)

+(vd − 1)2(1 + sin2(2πvd)) + bj

)
, where vk =

(
1 +

xk − 1
4

)
ωC(j),k



416 M. Malu et al.

3. Modified Qing function (only for d = 2):

f(x) =
p∑

j=1

1{x ∈ Xj}
(

d∑

k=1

(
(xkωC(j),k)2 − i

)2
+ bj

)

4. Modified Rosenbrock function (only for d = 2):

f(x) =
p∑

j=1

1{x ∈ Xj}
(

d−1∑

k=1

[100
(
vk+1 − v2

k

)2
+ (1 − vk)2] + bj

)

here vk = xkωC(j),k.

where the frequency vector ωi = i ∗ ω depends on the class i, ωC(j),k is the kth

component. Further, vector ω is sampled from a normal distribution, constant
bj (intercepts) depends on the partition j and each bj is sampled from a normal
distribution.

Following parameters are initialized for each simulation: dimension d, training
budget N , number of partitions p, number of classes m, frequency vector ω,
Constant (intercept) vector b, maximum depth of the tree, minimum samples per
node, initial kernel hyperparameters θ. For a fixed set of initialized parameters,
50 independent simulation runs for each baseline are performed to compute a
confidence interval over the model performance, training data is re-sampled for
each run.

To analyze the effects and compare the model performance with baselines
each parameter i.e., number of partitions (p), number of classes (m), training

Table 1. Parameter initialization across simulations

Parameters Values

Number of Classes (c) 2, 4, 6, 8

Number of Partitions (p) 4, 16, 36, 64

Training Budget (N) 50, 500, 1000

Dimension (d) 2, 3

Fig. 2. Effect of the number of partitions.



Class GP 417

Fig. 3. Effect of number of classes

budget (N) and, dimension (d), is varied while keeping the others constant.
Various initialization of the parameters for the simulations are shown in the
Table 1. The performance measure metric (MSE) for each model across all the
simulations is evaluated on uniformly sampled test data set of fixed size i.e.,
5000 data points.

Effects of each parameter on the model performance is analyzed below:

1. Effect of number of partitions (p): For a fixed set of initial parameters as
the number of partitions (p) is increased the performance of all the models
deteriorates as seen in Fig. 2(a) and 2(b). Notice that, the performance of
Class-GP is superior or at least as good as Partition-GP owing to the fact
that, while keeping the training budget constant and increasing the number
of partitions leads to decrease in number of points per partition available
to learn the hyperparameters of each GP independently in each partition
for Partition-GP, whereas, since the number of classes (m) remain constant,
number of points available to learn hyperparameters of GPs remain same for
Class-GP because of the new likelihood function. The only information we
lose on is the correlation information which leads to the small deterioration in
the model performance. Also, when the training budget (N) is small or close
to number of partitions (p), Standard-GP outperforms both class-GP and
Partition-GP. This due to the insufficient data to learn all the partitions of
the input space leading to sharp rise in MSE of Class-GP and Partition-GP.

2. Effect of number of classes (m): Increasing the number of classes (m) while
keeping other parameters fixed does not effect the performance of the models
when the training budget (N) is significantly high because of the large training
data available to learn the underlying model, whereas when the training bud-
get is moderate the reduction in the performance of all the models is observed,
as seen in the Fig. 3(a) and 3(b), with the increasing classes, while keeping
to the trend of performance between modeling methods. This is observed
due to following reasons: For Class-GP with the increasing classes number
of data points to learn the hyperparameters decreases resulting in reduction
in the performance, where as for Partition-BO even though the number of



418 M. Malu et al.

Fig. 4. Effect of training budget

Fig. 5. Effect of dimension

data points per partition remain same we observe reduction in performance
due to the fact that modeling of high frequency functions (which increase as
the number of classes increase) require larger data points and, whereas for
the Standard-GP the reduction in performance is because more functions are
being modeled with a single GP.



Class GP 419

3. Effect of Training Budget (N): Increasing the training budget N has an obvi-
ous effect of improvement in the performance of models as seen in Fig. 4(a)
and 4(b) owing to the fact that GP’s learns the model better with more
training data points, but the drawback of increasing the data points is the
computational complexity of the model increases. Also, Notice that the gain
in performance of Standard-GP is not as significant as Class-GP or Partition-
GP because single GP is used to model the heterogeneous function.

4. Effect of Dimension (d): An increase in the problem’s dimensionality increases
the number of data points required to model the underlying function. This
is also observed in the performance of the models as shown in Fig. 5(a), and
5(b) i.e., with the increase in the number of dimensions, model performance
decreases, while the other parameters are fixed.

We also evaluate the model’s performance over noisy data sets for various
parameter initialization, but due to the constraint of space, we only display a
subset of the results in the tabular format. Table 2 shows each model’s average
MSE (not normalized) over 50 independent runs. It can be observed that when
the number of partitions is low, the performance of Class GP is as good as
Partition GP, whereas when the partitions increase, Class GP outperforms other
methods. The full code used to perform simulations can be found at following
Github repository.

Table 2. Model performance comparison in presence of noise

Parameters Average MSE over 50 runs

Functions Training

Budget

Classes Partitions Class GP Partition GP Standard GP

Harmonic 500 6 4 1.35 1.37 1.51

64 1.68 1.9 1.85

8 4 1.35 1.37 1.53

64 1.7 1.95 1.95

Levy 500 6 4 2.97 e2 2.97 e2 5.72 e2

64 1.15 e3 1.44 e3 1.56 e3

8 4 2.97 e2 2.97 e2 5.83 e2

64 3.36 e3 3.38 e3 4.02 e3

Qing 500 6 4 1.58 e3 1.58 e3 8.45 e7

64 1.79 e9 2.74 e9 9.45 e10

8 4 1.58 e3 1.58 e3 8.45 e7

64 3.25 e10 5.24 e10 8.87 e11

Rosenbrock 500 6 4 1.51 e5 1.52 e5 1.85 e10

64 9.28 e11 9.42 e11 2.24 e13

8 4 1.51 e5 1.52 e5 1.85 e10

64 6.13 e12 1.45 e13 1.97 e14

https://github.com/mohitmalu/Class-GP


420 M. Malu et al.

7 Conclusion and Future Work

This paper presents a novel tree based Class GP framework which extends the
existing partition based methods to a family of heterogeneous functions with
access to class information. We introduced a new likelihood function to exploit
the homogeneous behaviour of the partitions that belong to same class, leading to
enhanced the performance of GP models allowing to learn the hyperparameters
across the entire class instead of individual partitions. Furthermore, we establish
a tailored tree algorithm suitable for current framework that uses the closest
boundary information to learn the initial tree. We also provide some theoretical
results in terms of the probabilistic uniform error bounds and bounds on L1

norm. Finally, we conclude with extensive empirical analysis and clearly show the
superior performance of Class GP as compared other baselines. Extension of the
Class GP modeling framework to optimization, scaling to higher dimensions [14]
and extensive theoretical analysis of the algorithm with practical error bounds
are some promising venue to be explored in the future work.

Acknowledgements. This work is supported in part by National Science Founda-
tion (NSF) under the awards 2200161, 2048223, 2003111, 2046588, 2134256, 1815361,
2031799, 2205080, 1901243, 1540040, 2003111, 2048223, by DARPA ARCOS program
under contract FA8750-20-C-0507, Lockheed Martin funded contract FA8750-22-9-
0001, and the SenSIP Center.

A Appendix

Proof sketch for the Theorem 1 follows along the lines of the proof of Theorem
3.1 in [11]. We get probabilistic uniform error bounds for GPs in each partitions
j ∈ [p] from [11] and we use per partition based bounds to bound the over
all function and to derive bound on L1 norm. The proof for the theorem and
corollary given as follows:

Proof. 1 Following bounds on each partition holds with probability 1 − δj

∣∣gj(x) − μnj
(x)

∣∣ ≤
√

βj(r)σnj
(x) + γj(r),∀ x ∈ Xj (12)

where βj(r) and γj(r) are given as follows

βj(r) = 2 log
(

M(r,Xj)
δj

)
(13)

γj(r) = (Lμnj
+ Lgj

)r +
√

β(r)ωσnj
(14)



Class GP 421

Now to bound the entire function lets look at the difference |f(x) − μn(x)|.

|f(x) − μn(x)| =

∣∣∣∣∣∣

p∑

j=1

1{x ∈ Xj}(gj(x) − μnj
(x))

∣∣∣∣∣∣
(15)

=
p∑

j=1

1{x ∈ Xj}
∣∣gj(x) − μnj

(x))
∣∣ (16)

≤
p∑

j=1

1{x ∈ Xj}
(√

βj(r)σnj
(x) + γj(r)

)
,∀ x ∈ Xj (17)

The last inequality (17) follows from (12) and holds with probability 1−δ, where
δ =

∑p
j=1 1{x ∈ Xj}δj .

Now, redefining
∑p

j=1 1{x ∈ Xj}
(√

βj(r)σnj
(x)

)
=

√
β(r)σn(x) and

∑p
j=1 1{x ∈ Xj}γj(r) = γ(r), we have the result. �
The proof for the Corollary 1 uses the high confidence bound 10 and is given

as follows:

Proof. We know that L1 norm is given by

‖f(x) − μn(x)‖1 = E[|f(x) − μn(x)|] (18)

=
∫

|f(x) − μn(x)| dμ (19)

=
∫ ∣∣∣∣∣∣

p∑

j=1

1{x ∈ Xj}(gj(x) − μnj
(x))

∣∣∣∣∣∣
dμ (20)

=
p∑

j=1

∫
1{x ∈ Xj}

∣∣(gj(x) − μnj
(x))

∣∣ dμ (21)

=
p∑

j=1

∫

Xj

∣∣(gj(x) − μnj
(x))

∣∣ dμ (22)

≤ ζrd

p∑

j=1

M(r,Xj)
(√

βj(r)σnj
(x) + γj(r)

)
holds w.p 1 − δ

(23)

where δ =
∑p

j=1 δj and δj = 1 − M(r,Xj) exp(−βj(r)/2). �

References

1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Routledge, Milton Park (2017)



422 M. Malu et al.

2. Candelieri, A., Pedrielli, G.: Treed-gaussian processes with support vector machines
as nodes for nonstationary Bayesian optimization. In: 2021 Winter Simulation Con-
ference (WSC), pp. 1–12. IEEE (2021)

3. Davis, C.B., Hans, C.M., Santner, T.J.: Prediction of non-stationary response func-
tions using a Bayesian composite gaussian process. Comput. Stat. Data Anal. 154,
107083 (2021)

4. Fuentes, M., Smith, R.L.: A new class of nonstationary spatial models. Technical
report, North Carolina State University, Department of Statistics (2001)

5. Gibbs, M.N.: Bayesian Gaussian processes for regression and classification. Ph.D.
thesis, Citeseer (1998)

6. Gramacy, R.B., Lee, H.K.H.: Bayesian treed gaussian process models with an appli-
cation to computer modeling. J. Am. Stat. Assoc. 103(483), 1119–1130 (2008)

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

8. Heinonen, M., Mannerström, H., Rousu, J., Kaski, S., Lähdesmäki, H.: Non-
stationary gaussian process regression with hamiltonian monte carlo. In: Gretton,
A., Robert, C.C. (eds.) Proceedings of the 19th International Conference on Artifi-
cial Intelligence and Statistics. Proceedings of Machine Learning Research, Cadiz,
Spain, vol. 51, pp. 732–740. PMLR (2016)

9. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

10. Kim, H.M., Mallick, B.K., Holmes, C.C.: Analyzing nonstationary spatial data
using piecewise gaussian processes. J. Am. Stat. Assoc. 100(470), 653–668 (2005)

11. Lederer, A., Umlauft, J., Hirche, S.: Uniform error bounds for gaussian process
regression with application to safe control. In: Advances in Neural Information
Processing Systems, vol. 32 (2019)

12. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Math. Program. 45(1), 503–528 (1989)

13. Loh, W.Y.: Classification and regression trees. Wiley Interdiscip. Rev. Data Mining
Knowl. Discov. 1(1), 14–23 (2011)

14. Malu, M., Dasarathy, G., Spanias, A.: Bayesian optimization in high-dimensional
spaces: a brief survey. In: 2021 12th International Conference on Information, Intel-
ligence, Systems & Applications (IISA), pp. 1–8. IEEE (2021)

15. Marmin, S., Ginsbourger, D., Baccou, J., Liandrat, J.: Warped gaussian processes
and derivative-based sequential designs for functions with heterogeneous variations.
SIAM/ASA J. Uncertain. Quantif. 6(3), 991–1018 (2018)

16. Mathesen, L., Yaghoubi, S., Pedrielli, G., Fainekos, G.: Falsification of cyber-
physical systems with robustness uncertainty quantification through stochastic
optimization with adaptive restart. In: 2019 IEEE 15th International Conference
on Automation Science and Engineering (CASE), pp. 991–997. IEEE (2019)

17. Paciorek, C.J., Schervish, M.J.: Spatial modelling using a new class of nonsta-
tionary covariance functions. Environmetrics Official J. Int. Environ. Soc. 17(5),
483–506 (2006)

18. Paciorek, C.J.: Nonstationary Gaussian processes for regression and spatial mod-
elling. Ph.D. thesis, Carnegie Mellon University (2003)

19. Pope, C.A., et al.: Gaussian process modeling of heterogeneity and discontinuities
using voronoi tessellations. Technometrics 63(1), 53–63 (2021)

20. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von
Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9 4

https://doi.org/10.1007/978-3-540-28650-9_4


Class GP 423

21. Schmidt, A.M., O’Hagan, A.: Bayesian inference for non-stationary spatial covari-
ance structure via spatial deformations. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.)
65(3), 743–758 (2003)

22. Schulz, E., Speekenbrink, M., Krause, A.: A tutorial on gaussian process regression:
modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018)



Surrogate Membership for Inferred
Metrics in Fairness Evaluation

Melinda Thielbar1, Serdar Kadıoğlu1,2(B) , Chenhui Zhang1, Rick Pack1,
and Lukas Dannull1

1 AI Center, Fidelity Investments, Boston, USA
{melinda.thielbar,serdar.kadioglu,chenhui.zhang,rick.pack,

lukas.dannull}@fmr.com
2 Department of Computer Science, Brown, Providence, USA

Abstract. As artificial intelligence becomes more embedded into daily
activities, it is imperative to ensure models perform well for all sub-
groups. This is particularly important when models include underprivi-
leged populations. Binary fairness metrics, which compare model perfor-
mance for protected groups to the rest of the model population, are an
important way to guard against unwanted bias. However, a significant
drawback of these binary fairness metrics is that they require protected
group membership attributes. In many practical scenarios, protected sta-
tus for individuals is sparse, unavailable, or even illegal to collect. This
paper extends binary fairness metrics from deterministic membership
attributes to their surrogate counterpart under the probabilistic setting.
We show that it is possible to conduct binary fairness evaluation when
exact protected attributes are not immediately available but their sur-
rogate as likelihoods is accessible. Our inferred metrics calculated from
surrogates are proved to be valid under standard statistical assumptions.
Moreover, we do not require the surrogate variable to be strongly related
to protected class membership; inferred metrics remain valid even when
membership in the protected and unprotected groups is equally likely for
many levels of the surrogate variable. Finally, we demonstrate the effec-
tiveness of our approach using publicly available data from the Home
Mortgage Disclosure Act and simulated benchmarks that mimic real-
world conditions under different levels of model disparity.

Keywords: Fairness Metrics · Surrogate Modelling · Responsible AI

1 Introduction

Algorithmic decision-making has become ubiquitous, turning fairness evalua-
tion into a crucial cornerstone of Responsible AI. Evaluating whether models
are fair (equally performant) for different groups is the least that responsible
science shall offer. For that purpose, various metrics that measure fairness in
different ways have been proposed [5]. However, all of the standard fairness met-
rics require that group membership is known. Unfortunately, in many practical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 424–442, 2023.
https://doi.org/10.1007/978-3-031-44505-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_29&domain=pdf
http://orcid.org/0000-0002-4672-6830
https://doi.org/10.1007/978-3-031-44505-7_29


Surrogate Membership for Inferred Metrics in Fairness Evaluation 425

scenarios this is not feasible. Fairness concerns are often about discrimination
based on information many people consider private, e.g., race, religion, gender,
and that are legally protected in domains including housing [23], credit sys-
tems [8], and human resources [24]. In practice, this information is often hard
to obtain, limited, and possibly illegal to collect. This renders the most common
fairness metrics invalid for many practical applications [2]. We argue that the
lack of membership data should not exempt models from fairness evaluation.
While immediate information may not be available, there is often some associ-
ated data to be gathered. Other researchers have proposed using this type of
side information to predict class membership [6,12] and showed how to estimate
boundaries for fairness based on this incomplete information [12,22]. All of the
existing methods require a predictive model for protected class membership.

In this paper, we show how to utilize surrogate membership information for
fairness evaluation without attempting to predict class membership for individuals
thus, extending the scope of fairness metrics to scenarios where fairness testing
was impossible before. More broadly, our approach offers a generalization of the
existing work from the deterministic information to its probabilistic counterpart.

This paper also extends our previous work on surrogate ground truth gener-
ation [20] for the analogous scenario where ground truth labels are unavailable,
yet another dependency of existing fairness metrics. In combination, our joint
work addresses the two severe limitations of the existing binary fairness litera-
ture. We first alleviate the requirement for ground truth labels, as shown in [20],
and in this paper, we address the need for the protected membership attribute.

2 Problem Definition

Let us start with a description of our setting that consists of the Probabilistic
Membership Problem and then illustrate it with an example:

Definition 1 (Probabilistic Membership Problem (PMP)). Consider a
population, X, with individuals, x ∈ X, that is divided into two cohorts by a
class membership attribute A ∈ {�,⊥} such that � and ⊥ represent protected
and unprotected membership, respectively. Let X = X� ∪ X⊥.

For practical reasons, e.g., privacy concerns, the protected information of

each individual remains unknown, i.e., x
?∈ {X�,X⊥}, but there exists a sur-

rogate grouping so that membership in the surrogate group reveals the proba-
bility of being protected, i.e. Pz(x ∈ X�) ∀x ∈ z. Note that Pz(x ∈ X�) =
1 − Pz(x ∈ X⊥) and every individual belongs to exactly one surrogate group,
∃! z ∈ Z ∧ x ∈ z,∀x.

Consider a binary classification model trained on historical data to make pre-
dictions about individuals, ML(x). We would like to evaluate this model against
unwanted bias between X� and X⊥. Let m be a metric about this model, e.g.,
statistical parity, true positive rate, false positive rate, etc.

The goal of the Probabilistic Membership Problem (PMP) is to estimate the
disparity in the model metric m between the protected and unprotected cohorts,



426 M. Thielbar et al.

i.e., m(X�) − m(X⊥). Contrary to its deterministic counterpart, in PMP, the
protected attribute of individuals remains unknown. Instead, a probability Pz(x ∈
X�) at the group level, ∀x ∈ z and ∀z ∈ Z, is known.

Fig. 1. Illustrative PMP example on Credit Loan Default prediction across a pop-
ulation X with protected, X�, and unprotected, X⊥, cohorts. Further, there are 3
surrogate groups Z = {z1, z2, z3}, e.g., zip codes. The probability of being in the pro-
tected cohort is known within each surrogate group. However, the protected attribute
of each individual remains unknown. The goal of PMP is to find the model disparity
between the protected and unprotected cohorts, m(X�) − m(X⊥), for a given model
metric, m.

Figure 1 illustrates PMP using the Credit Loan Default prediction as an
example. Let us demonstrate how PMP 〈X,Z, Pz(x ∈ X�),m〉 captures practi-
cal fairness scenarios in various domains.

This example considers the classical setting for predicting successful credit
applications. For that purpose, a binary classification model is trained on the
historical loan behavior of customers to predict who is credit-worthy in the
future. There are two cohorts in the population X; protected, X�, and unpro-
tected, X⊥. The protected membership can be based on any attribute A such
as gender, race, age, or marital status that are legally protected against discrim-
ination. The model metric, m, measures the disparity of the machine learning
model between these two cohorts.

Imagine A ∈ {�,⊥} denotes race as in white and non-white. As defined in
PMP, we do not have access to such personal information of individuals, e.g.,
due to privacy constraints. The absence of confidential protected attributes is
often the case in reality, and unfortunately, all existing binary fairness evaluation
metrics that require protected membership information becomes invalid in these
cases [2]. This is the gap we address in our paper.



Surrogate Membership for Inferred Metrics in Fairness Evaluation 427

The primary motivation behind PMP, and our paper, is that the absence of
protected attributes should not jeopardize the evaluation of machine learning
models against fairness metrics, here m, to surface potential unwanted bias.

As a remedy, we assume access to a surrogate variable, Z, e.g., the zip
code of the population that provides the likelihood of protected membership,
Pz(x ∈ X�), at the group level for individuals in the same zip code area, x ∈ z.
Here we have three zip codes where the probability of white and non-white
cohorts is known, e.g., gathered from the publicly available Census data. The
goal of PMP is to leverage this surrogate zip code information to find the model
disparity m(X�) − m(X⊥) between white and non-white cohorts to conduct
fairness evaluation.

To address PMP, in the next section (Sect. 3), we show that, if Z is available
and the calculation for m can be expressed as an arithmetic mean, then we
can infer the model metric disparity, i.e., m(X�) - m(X⊥), under standard
statistical conditions. We call these estimates inferred metrics obtained from
surrogate membership. Then, in (Sect. 4), we utilize inferred metrics for fairness
evaluation. Without our proposed approach to infer these metrics, binary fairness
evaluation would not be possible when protected membership is absent. This is
the primary contribution of our paper as detailed next.

3 Solving PMP with Surrogate Membership

In the following, we describe our approach for calculating the inferred metrics
for the PMP leveraging surrogate membership.

Let m be a model measure that can be expressed as an arithmetic mean,
and let m(X�)−m(X⊥) be the model fairness disparity metric we would like to
estimate. Then, by the linearity property of expectation [21], the model measure
for each level of Z, denoted by mz, can be approximated by a linear combina-
tion of the model measures for groups X� and X⊥ weighted by the population
proportions of each group within z:

mz = Pz(x ∈ X�)m(X�) + Pz(x ∈ X⊥)m(X⊥) (1)

In our toy example in Fig. 1, we assumed to know Pz(x ∈ X�), Pz(x ∈ X⊥),
and mz without error, i.e., we measured the entire population. This would allow
us to solve group-level metrics arithmetically using a system of equations.

In practice, we do not have access to the entire population; hence our model
metrics cannot be exact. As a result, there will be some error within each mz.
Accordingly, we express mz with an error term as:

mz = Pz(x ∈ X�)m(X�) + Pz(x ∈ X⊥)m(X⊥) + ez (2)

where each ez remains unknown.
The addition of ez means we can no longer solve Eq. 2 as a system of linear

equations as in Eq. 1. Therefore, we need an optimization solution that will allow



428 M. Thielbar et al.

us to estimate m(X�) and m(X⊥) with the minimum error. To achieve that, let
us re-write the Eq. 2 into a form that lends itself to this kind of estimation.

Remember that we have two groups: protected, �, and unprotected, ⊥, and
each individual is classified into exactly one group. Then Pz(x ∈ X�) = 1 −
Pz(x ∈ X⊥), and we can re-write Eq. 2 as:

mz = Pz(x ∈ X�)m(X�) + (1 − Pz(x ∈ X�))m(X⊥) + ez (3)

mz = m(X⊥) + (m(X�) − m(X⊥))Pz(x ∈ X�) + ez (4)

The critical insight behind our approach is to replace the unknown m(X�)
and m(X⊥) with parameters from Linear Regression:

mz = β0 + β1Pz(x ∈ X�) + ez (5)

where β0 = m(X⊥), and β1 = m(X�) − m(X⊥).
With this transformation, notice how β1 neatly captures the disparity of the

model metric between the two cohorts.
For linear relationships as described in Eq. 5, the method of Ordinary Least

Squares (OLS) is the standard estimation technique for β0 and β1 [4]. Under
the following assumptions, the Gauss-Markov theorem states that ordinary least
squares estimators for β0 and β1 are unbiased and have minimum variance:

1. The error terms ez must have an expected value of zero given the value
Pz(x ∈ X�), i.e. E[ez|Pz(x ∈ X�)] = 0. In our case, this condition is met
by assuming m can be expressed as an arithmetic mean. This allows us to
write mz as a linear function of the population values of m(X�), m(X⊥),
and Pz(x ∈ X�).

2. The error terms ez must be iid. In our case, this assumption is met if we
assume that P (mz, Z) and P (A,Z) are independent draws from their respec-
tive marginal distribution, where A ∈ {�,⊥} is the unknown class member-
ship. This assumption is a relaxed version of the independence assumption
described in [18].

3. Ordinary least squares requires that the variance of ez be constant for all z.
In our case, this assumption is violated because the error of a mean varies
with the number of observations unless we observe exactly the same number
of individuals in each category z. Therefore, we relax the equal variances
assumption by using an alternative estimator called Weighted Ordinary Least
Squares (WOLS) [17]. The weight for each z is the number of observations
for that level of Z. We denote this value as nz. This method of WOLS and
its properties were first proposed by [1], and we refer to [17] for a detailed
description of WOLS for regression on means and the justification for using
nz as the weight.

To summarize, in this section, we made the connection between our metric m
in PMP and the β parameters in WOLS. This connection allows us to leverage
the WOLS estimator to infer the metrics we are interested in; precisely, m(X�)
and m(X⊥). Overall, this allows us capture the disparity in the model metric,



Surrogate Membership for Inferred Metrics in Fairness Evaluation 429

m(X�) − m(X⊥), between the protected and unprotected group for fairness
evaluation. In the next section, we show how well-known fairness metrics can be
neatly calculated given the inferred disparity metric.

4 From PMP to Fairness Evaluation

Many fairness metrics have been developed in the literature, see, e.g., [5] for an
overview. In this paper, we consider the following standard metrics:

Statistical Parity = P (ML(x) = 1|x ∈ X�) − P (ML(x) = 1|x ∈ X⊥)
Equal Opportunity = TPR� − TPR⊥

Predictive Equality = FPR� − FPR⊥
Average Odds = (Predictive Equality + Equal Opportunity) / 2

where TPR is the true positive rate, FPR is the False Positive Rate, and ML(x)
is the predicted class.

These are well-known fairness metrics that are commonly available in fair-
ness packages such as IBM AI Fairness 360 [3] and Fidelity Jurity [20],
among others. Considering statistics based on the TPR and FPR allows us to
examine whether the inferred metrics are equally performant for fairness metrics
calculated on different parts of the confusion matrix. Considering Average Odds
shows that inferred metrics that are sums or differences of other inferred metrics
and/or inferred metrics multiplied by constants are unbiased.

4.1 Fairness Metrics as Functions of Arithmetic Means

Our approach for solving PMP from (Sect. 3) requires inferred metrics be
expressed as arithmetic means. Here we show that this holds for standard fairness
metrics.

We first study Statistical Parity and make the observation that probabilities
are estimated by summing the number of individuals who are classified into the
positive case for each group, e.g.;

P (ML(x) = 1 | x ∈ X�) =
1

|X�|
∑

x∈X�
I
(
ML(x) = 1

)
(6)

This is the arithmetic mean of the indicator function ML(x) = 1 The prob-
ability of being predicted positive is, therefore, a suitable metric m that can be
expressed as an arithmetic mean. Consequently, we can use surrogate member-
ship for PMP to infer m(X�) and m(X⊥). The observation in equation (6) that
probabilities can be expressed as arithmetic means allows us to calculate the
other fairness statistics in our list.



430 M. Thielbar et al.

Next, we consider Equal Opportunity, which is the difference between the
true positive rates for the protected and unprotected groups. The true positive
rate is calculated as follows:

TPR =
True Positives

True Positives + False Negatives
=

∑
I
(
ML(x) = 1 ∧ Y = 1

)
∑

I
(
Y = 1)

where Y is the binary label for the model Y ∈ {0, 1} and I is the indicator
function.

If we divide the numerator and denominator of this equation by N , the
total number of individuals, the calculation is unchanged, but TPR becomes an
expression based on probabilities:

TPR =
1
N

∑
I
(
ML(x) = 1 ∧ Y = 1

)

1
N

∑
I
(
(Y = 1

) =
P (ML(x) = 1 ∧ Y = 1)

P (Y = 1)

As with statistical parity, each of these probabilities can be expressed as an
arithmetic mean of an indicator function. That means we can calculate them as
inferred metrics. This idea allows us to infer a host of fairness metrics that are
based on the confusion matrix for a binary classifier.

4.2 Bootstrap Estimation

Even when fairness metrics can be expressed as arithmetic mean, one caveat still
remains. As also pointed out in [16], while the expected values of the estimated
probabilities are equal to their true population values, values that are functions
of these probabilities are not guaranteed to have their true expectation. We
solve this issue by using a resampling technique known as the bootstrap, where
we draw multiple samples from our data with repetition and calculate a value
for our statistic of interest for each sample. We then report the mean estimate
from these samples as our bootstrapped estimate. The advantage of this method
is two-fold. First, it allows us to produce a more robust estimate for our inferred
statistics. Second, the variation within bootstrapped samples can be used to
estimate the error incurred from inferred metrics instead of actual class values.
We refer to [11] for a detailed treatment of the bootstrap methodology and the
proof for its guarantee to yield true expected value.

5 Related Work

This section presents an overview of the previous research on solving PMP and
how our method contributes to the literature. First, the lack of class mem-
bership data and the problems it poses for fairness calculations have been well-
documented [2]. The idea of using data related to the unknown class to infer class
fairness metrics is also present in the literature and researchers have approached
this problem from various angles. In [12], the authors use Census data to build



Surrogate Membership for Inferred Metrics in Fairness Evaluation 431

a predictive model for race and use the prediction as if it were the true value
for protected class membership. Using a prediction from a model leads to some
error in fairness metric calculation, and in [22], the authors develop a method
to estimate bounds on fairness metrics that are estimated with imputed race,
building on [15], which presents a general method for estimating uncertainty for
machine learning models. In general, these models rely on strong predictors for
class membership. When class membership is not well-predicted by the model,
there is more uncertainty in the fairness metrics [22].

Our method differs from the existing work in that we do not attempt to
assign a predicted class membership to individuals. Therefore our approach does
not rely on having “good” predictors or suffer from its lack thereof. Instead, we
require that a discrete surrogate variable exists, which may have many levels
where protected and unprotected class membership are equally likely. The nov-
elty of our approach is to bypass predicting protected attributes for individuals
via inferred metrics calculated at the surrogate group level. As demonstrated in
our experiments, our solution yields good results in practice, producing fairness
metrics close to oracle values.

The method developed in [6] is the closest to our approach, where the authors
calculate fairness statistics as a weighted average of the probabilities of pro-
tected class membership. The probabilities are assumed to come from a predic-
tive model. The resulting fairness statistic can be expressed in a form close to the
estimator we develop here. Our estimator exhibits better properties than [6] as
it is guaranteed to be unbiased under the regularity conditions described earlier.
We present a detailed proof of our unbiased guarantee in Appendix A.

6 Experiments

To demonstrate the effectiveness of our approach when solving PMP in practice,
we consider two specific questions:

Q1: How do our inferred metrics from surrogate membership compare to an
oracle that produces exact fairness evaluation using deterministic member-
ship? When the inferred disparity metric is used, how does fairness evaluation
change, and are binary fairness metrics still within the same range as in the
exact results?

Q2: How robust are our inferred metrics from surrogate membership under dif-
ferent scenarios with varying disparity conditions?

To answer each question, we start with an overview of the dataset and the
modelling setup. We then present numerical results with discussions.

6.1 [Q1] Performance Against Oracle

Home Mortgage Disclosure Act Dataset: To evaluate our method against
an oracle with known membership attributes, we need a dataset that reveals



432 M. Thielbar et al.

protected information about individuals. The Home Mortgage Disclosure Act
(HMDA) dataset [14] fits our experimental purposes neatly. First, this publicly
available dataset provides information on the self-reported race of 1.3 million
mortgage applicants. Second, it also contains zip code data, which we use as
our surrogate variable. We use the US Census’s American Community Survey
(ACS) to acquire the probability of protected status based on race. Zip code
estimates for race percentages were assigned based on the state and census tract
with the highest ratio of residential addresses according to the 2018 Q4 HUD-
USPS Crosswalk file [9]. We drop 300K individuals who do not have valid zip
codes and drop 9,460 zip codes that have less than 30 individuals.

Table 1. Comparison of fairness metrics on HMDA dataset obtained by the Oracle,
using deterministic protected attribute, and our Inferred Metrics, using probabilistic
protected attribute based on the surrogate variable.

Fairness Metric Oracle
Value

Inferred
Value

Difference
|Oracle - Inferred|

Oracle in
range

Inferred in
range

Statistical Parity −0.166 −0.190 0.024

Equal Opportunity −0.085 −0.110 0.025

Predictive Equality −0.102 −0.094 0.008

Average Odds −0.093 −0.102 0.007

HMDA Model: To test our method on the HMDA data, we need a binary
classifier to evaluate fairness metrics. To that end, we use the R package glmnet
to fit a predictive model for whether a loan originated (1=Yes and 0=No) on
approximately 1 million home purchase mortgage applications, excluding refi-
nance and reverse mortgages. Let us stress that our goal is to calculate fairness
metrics and not to design the best predictor on this data. That said, generalized
linear models are desirable in loan applications thanks to their interpretability.
Our focus is on fairness statistics to capture the model disparity between the
protected (non-white) and the non-protected (white) group. The Oracle uses the
exact labels from the loan applicant’s self-reported race. Using zip code as the
surrogate variable, our inferred metrics are calculated, as discussed in (Sect. 3).
Both approaches utilize the same generalized linear model as their model pre-
dictions.

Numerical Results on HMDA Dataset: Table 1 compares the fairness statis-
tics on the HMDA data by the Oracle, using self-reported race, and the Inferred
metrics, calculated with zip code as the surrogate. It presents the actual and
the inferred value, their difference, and whether the resulting fairness evaluation
remains in ideal ranges according to the 80/20 rule [19].

As shown in Table 1, for Predictive Equality and Average Odds, the differ-
ence between the oracle fairness statistics calculated with actual race and the
inferred values is negligible, the equivalent of a rounding error. However, for
Statistical Parity and Equal Opportunity, the inferred metrics are somewhat



Surrogate Membership for Inferred Metrics in Fairness Evaluation 433

different from the oracle values. Nevertheless, when checking for ideal ranges for
fairness evaluation, inferred metrics lead us to the same conclusion as the oracle.

We conjecture that the cases where the inferred and actual fairness metrics
are slightly different are most likely due to omitted variable bias that are associ-
ated with model fairness, such as location and race. This bias affects other meth-
ods also for calculating fairness when the true protected status is unknown [6,22].
Later on, in Practical Considerations section (Sect. 7), we discuss these issues
together with their potential fixes.

Table 2. Simulation rates for 〈FPR, FNR, P (ML(X) = 1)〉 in the synthetic bench-
marks between protected, �, and unprotected, ⊥, groups.

Scenario False Positive Rate False Negative Rate Positive Rate

Protected Unprotected Protected Unprotected Protected Unprotected

Fair 0.20 0.20 0.10 0.10 0.20 0.20

Slightly Unfair 0.10 0.20 0.35 0.10 0.10 0.20

Moderately Unfair 0.10 0.30 0.45 0.10 0.10 0.30

Very Unfair 0.10 0.30 0.65 0.10 0.10 0.40

Extremely Unfair 0.05 0.20 0.65 0.10 0.10 0.50

6.2 [Q2] Robustness Under Different Fairness Scenarios

While the results from HMDA are promising, it is possible that the HMDA data
and the glmnet model produce fairness statistics that are inherently close to the
inferred metrics. Therefore, to run a controlled experiment, we need synthetic
data to study how inferred metrics perform under a variety of scenarios.

Synthetic Data: For synthetic benchmarks, we consider a surrogate variable
Z with 3,800 levels and 20 to 50 individuals per level. The probability of pro-
tected class membership is set between 0.01 and 0.999, with a distribution skewed
toward small probabilities of being in the protected group. The resulting hypo-
thetical population hosts 126,000 individuals. These values were chosen so the
synthetic samples would have less favorable characteristics for inferred metrics
than the HMDA data. Later on, in Practical Considerations section (Sect. 7),
we discuss how the characteristics of Z affect the estimations and share best
practices.

The Simulation Process: In HDMA experiments, we used the features of
individuals to train a glmnet model for binary prediction. Here, we do not have
access to features for model building; instead, based on the population charac-
teristics, we simulate the results of a binary classifier with controlled unfairness.
Then, given the simulation results, which are precisely the confusion matrices,
we calculate the Oracle and the Inferred fairness metrics.

This simulation process enables us to study how inferred metrics perform
under different scenarios ranging from a fair model where the classifier produces
the same results for both cohorts to an extremely unfair model where the classifier
highly favors the unprotected cohort. A classifier can be unfair by:



434 M. Thielbar et al.

Algorithm 1. The Simulation Procedure
Input: False Positive & Negative Rates FPR�, FNR�, FPR⊥, FNR⊥
Input: Positive Rates P(Y = 1 | x ∈ X�), P(Y = 1 | x ∈ X⊥)
Output: The disparity of the model metric m

Step 1. Calculate the confusion matrix, CMA, probabilities for A ∈ {�, ⊥}:
P(FN | A) ← (1 − P(Y = 1 | A)) × FNRA
P(FP | A) ← P(Y = 1 |A) × FPRA
P(T N | A) ← (1 − P(Y = 1 | A)) × (1 − FPRA)
P(T P | A) ← P(Y = 1 | A) × (1 − FNRA)
P(CMA) ← P(FP|A), P(FN |A), P(T N|A), PT P|A)

Step 2. Assign each individual into a quadrant in the confusion matrix
for ∀x ∈ X | Z = z ∧ x ∈ z do

xis protected ← assign with probability Pz(x ∈ X�)
CM ← CM� if xis protected else CM⊥

assign x to a quadrant in CM with probability choice(P(CM))
end for

Step 3. Calculate the model metric based on simulated confusion matrices
Oracle: m(XA) ← apply m to CMA for A ∈ {�, ⊥}
Inferred: WOLS estimator for mz = β0 + β1Pz(x ∈ X �) + ez ∀z ∈ Z to find β1

Step 4. Return the model disparity
return m(X �) − m(X ⊥)

1. FPR: incorrectly classifies unprotected group members into the positive case
more often, i.e., the difference in false positive rate.

2. FNR: incorrectly classifies protected individuals into the negative case more
often, i.e., the difference in the false negative rate.

3. P(Y=1): The other degree of freedom stems from the bias in the target
variable, where positive outcomes for the protected group are observed more
rarely than the unprotected group, i.e., the rate at which target is positive.

Table 2 presents the values of 〈FPR,FNR,P (Y = 1)〉 that jointly determine
the probability of an individual being classified into one of the four quadrants
in the confusion matrix within each fairness scenario. Notice that the protected
and unprotected groups are subject to different rates depending on the unfairness
level we want to simulate. The settings depict unfairness ranges that practitioners
are likely to encounter, ranging from 0.1 to 0.55. The statistics are set to favor the
unprotected group since, by symmetry, the reverse case is the same calculation
but of the opposite sign. We also simulate a fair model as a baseline, where the
confusion matrices are the same for the protected and unprotected groups.

Algorithm 1 presents the details of our simulations for Oracle and Inferred
values. Conceptually, in a fair model, individuals from the protected and unpro-
tected groups are classified into four quadrants of the confusion matrix at the



Surrogate Membership for Inferred Metrics in Fairness Evaluation 435

same rate. Contrarily, in an unfair model, individuals are classified into the four
quadrants at different rates, resulting in two different confusion matrices.

Numerical Results on Synthetic Dataset: Table 3 presents the simulation
results for five scenarios using the settings from Table 2 and the procedure in
Algorithm 1 across all fairness metrics. As before, we compare the Oracle, which
calculates the actual disparity from the confusion matrix, with our inferred met-
rics that leverage the surrogate information. The results are averaged over 30
runs for robustness, and we also report the standard deviation (σ). The main
takeaways from these numerical results are as follows.

Table 3. Simulation Results from the Oracle and Inferred metrics, averaged over 30
runs, on various unfairness settings.

Fairness Metrics Fair Slightly Unfair Moderately Unfair Very Unfair Extremely Unfair

Oracle Inferred (σ) Oracle Inferred (σ) Setting Inferred (σ) Oracle Inferred (σ) Oracle Inferred (σ)

Statistical Parity 0.0 −0.002 (.005) −0.19 −0.184 (.005) −0.34 −0.335 (.004) −0.415 −0.414 (.005) −0.47 −0.470 (.005)

Equal Opportunity 0.0 −0.001 (.009) −0.25 −0.250 (.013) −0.35 −0.348 (.023) −0.55 −0.544 (.027) −0.54 −0.544 (.029)

Predictive Equality 0.0 −0.001 (.006) −0.10 −0.098 (.005) −0.20 −0.200 (.004) −0.20 −0.200 (.005) −0.15 −0.150 (.004)

Average Odds 0.0 0.000 (.006) −0.18 −0.174 (.006) −0.28 −0.274 (.011) −0.38 −0.376 (.013) −0.35 −0.347 (.015)

First, in accordance with our simulation design, we observe that the metric
disparity gets worse (larger values) from fair to unfair scenarios. Second, in
scenarios in Table 2, we deliberately set low positive rates for the protected group.
Rates with small denominators are inherently less stable than rates with larger
denominators [10]. When comparing standard deviations, this is why the Equal
Opportunity, where the denominator is the number of positive cases, has a higher
standard deviation than the other statistics. Finally, and most importantly, our
inferred metrics closely follow the oracle values. This holds across all metrics in
all scenarios, demonstrating the effectiveness of our approach.

7 Practical Considerations

Finally, we discuss practical issues such as confounding factors and the charac-
teristics of the surrogate variable, Z, with their potential fixes.

7.1 Omitted Variable Bias

Our approach for inferred metrics might suffer in scenarios where variables that
are correlated with both the surrogate and the model metric can cause bias in the
estimated disparity. The same issue also occurs in [6,18], which utilize surrogate
class variables (referred to as proxies). This aspect has been well-studied in
other applications of WOLS, and is known as omitted variable bias, confounding
effects, and spurious correlation [25].

Suppose there is a variable C that is correlated with both the surrogate
variable Z and our model metric m. Then our inferred metric is misspecified,
and the true model is:

mz = β0 + β1Pz(x ∈ X�) + β2Cz + ez (7)



436 M. Thielbar et al.

If this is the true model, but we use the inferred estimator shown in equation
(5), the expected value of β1 is no longer m(X�) − m(X⊥), but is instead:

m(X�) − m(X⊥) + ρCp
σCm

σp
, where

– ρCp is the correlation between the population percentages for the z levels and
the omitted variable.

– σCm is the covariance between mz and the omitted variable.
– σp is the variance of the population percentages.

The amount and direction of the bias depends on the magnitude and direction
of the correlations with the omitted variable. For bias to occur in our inferred
metric, the omitted variable must be correlated with the population percent-
ages Pz(x ∈ X�) and Pz(x ∈ X⊥) within groups of Z. Potential omitted vari-
ables must also be correlated with mz to cause bias in our disparity estimates.
For example, the home mortgage data has many variables related to household
wealth. Previous studies indicate that those variables correlate with location and
race [7]. Therefore, we expect those variables to cause omitted variable bias in
our estimates for the disparity that use Prediction Rate (the probability of the
model classifying a person as someone who should get a loan) but less bias for
metrics that measure model accuracy for different groups, e.g., Predictive Equal-
ity. We observe this in the HMDA experiments in Table 1. The most significant
difference between the actual value calculated using race and the inferred metrics
are Statistical Parity and Equal Opportunity.

Addressing Confounding Effects: The best solution for omitted variable
bias is to add the omitted variable to the model. In our experiments, variables
that affect mz are also the features that are used in the model. As such, we
can calculate their mean for each level of Z just as easily as model metrics.
We can then add them to the inferred metric model to estimate an unbiased
difference solely because of class membership. However, adding additional vari-
ables to the model can introduce other problems, most likely multicollinearity.
Multicollinearity occurs when model estimates become unstable because of linear
dependencies between the predictors [13]. Let us also call out that for some appli-
cations, adding omitted variables to the models might not be possible because
effects are unavailable or unmeasurable.

7.2 Characteristics of Z and Pz(x ∈ X�)

An essential characteristic of Z is how many levels it exhibits and whether Pz(x ∈
X�) and Pz(x ∈ X⊥) are nearly equal. According to the properties of WOLS [1],
the uncertainty in the inferred metrics m(X�)−m(X⊥) is inversely proportional
to the number of levels in Z and the variation in Pz(x ∈ X�). Ideally, our
surrogate variable shall have many levels while Pz(x ∈ X�) covers the range
(0, 1). The HMDA dataset and the synthetic benchmarks exhibit these properties
in our experiments. For cases where there is less coverage, i.e., where most or all



Surrogate Membership for Inferred Metrics in Fairness Evaluation 437

of the levels of Z have the same value for Pz(x ∈ X�), estimates for m(X�) −
m(X⊥) will be more uncertain.

Addressing Z Characterization: For surrogate variables that have few levels
or relatively low variation in Pz(x ∈ X�), the bootstrap method that we use to
achieve robust and unbiased estimates will also allow us to estimate the uncer-
tainty in m(X�) − m(X⊥). Because the bootstrap method requires repeated
samples and repeated estimates of m(X�) − m(X⊥), the standard deviation in
the inferred metrics across samples estimates the uncertainty in the estimate [11].
Estimating uncertainty in calculated fairness metrics and using those estimates
to make fairness decisions are also discussed in [22].

8 Conclusions

In this paper we introduced the Probabilistic Membership Problem (PMP), for
practitioners to estimate a model’s fairness with only access to the probability of
protected class membership, and we showed how to use inferred metrics to solve
it. We described the assumptions required for inferred metrics to be unbiased.
We demonstrated the effectiveness of inferred metrics on publicly available data
and on benchmark data that was simulated to have known amounts of model
unfairness. We discussed practical implications for calculating these metrics and
methods to handle situations when the assumptions for unbiased estimates are
not met. We also discuss the need for additional research to assist in practical
applications of inferred metrics, including the amount of omitted variable bias
one can expect in practice and how to estimate uncertainty.

Overall, our inferred metrics are novel and practical contributions to the
existing methodology for estimating model fairness. It alleviates the requirement
for exact deterministic protected attributes for every individual to its relaxation
to a surrogate variable that only reveals group-level protected attribute proba-
bilities. This allows us to test models where fairness evaluation would have been
impossible before. We hope our work motivates other researchers and practition-
ers not to overlook fairness evaluation that might influence the trustworthiness
of algorithmic decisions.

A Appendix - Comparison to Weighted Fairness Statistic

Our inferred metrics are similar in approach to an estimator described in [6]. In
this section, we re-write our inferred metrics and the weighted estimator so they
can be compared directly and present a mathematical argument for why the
weighted estimator is biased toward 0 under the regularity conditions described.

First, our estimator m(X�) − m(X⊥) is derived from the WOLS estimator
of the value β1 from Eq. 5.

mwols(X�) − mwols(X⊥) =
∑

z nz(mz − m̄)(Pz(x ∈ X�) − P̄ (x ∈ X�))
∑

z nz(Pz(x ∈ X�) − P̄ (x ∈ X�)
)2 (8)



438 M. Thielbar et al.

where m̄ is the overall mean for the model metric and P̄ (x ∈ X�) is the overall
mean for the probability of being in the protected group.

The weighted estimator described in [6] is:

mw(X�) − mw(X⊥) =
∑

x Pz(x ∈ X�)m(x)∑
x Pz(x ∈ X�)

−
∑

x Pz(x ∈ X⊥)m(x)∑
x Pz(x ∈ X⊥)

(9)

where

– m(x) is the value of the model metric for each individual (e.g. if the m is
statistical parity, m(x) = I(ML(x) = 1))

–
∑

x indicates a sum over all N individuals for which we are calculating fairness
metrics

– Pz(x ∈ X�) is the probability that each individual is in the protected group
given their surrogate class membership z ∈ Z.

In the proof below, we re-write these equations to show that they are the same
except for one term in the denominator. Specifically, we re-write our inferred
metric as:

mwols(X�)−mwols(X⊥) =
N

∑
x m(x)Pz(x ∈ X�) − ∑

x m(x)
∑

x Pz(x ∈ X�)

N
∑

x Pz(x ∈ X�)2 −
( ∑

x Pz(x ∈ X�)
)2

(10)
We re-write the weighted estimator from [6] as:

mw(X�) − mw(X⊥) =
N

∑
x m(x)Pz(x ∈ X�) − ∑

x m(x)
∑

x Pz(x ∈ X�)

N
∑

x Pz(x ∈ X�) −
(∑

x Pz(x ∈ X�)
)2

(11)
where N =

∑
z nz (N is the total number of individuals for which we are calcu-

lating fairness metrics).
Equation 10 and Eq. 11 are the same except for the first term in the denom-

inator. We argue here that this difference implies that the weighted estimator
is biased toward 0 under the conditions described in (Sect. 3). This means that
the weighted estimator will show smaller differences between groups than are
actually present in the data.

First, note that Pz(x ∈ X�) is a probability, and therefore bounded between
(0,1)

Pz(x ∈ X�) < 1 =⇒ N >
∑

x

Pz(x ∈ X�) =⇒ N
∑

x

Pz(x ∈ X�) >
( ∑

x

Pz(x ∈ X�)
)2

This means that the sign of the weighted estimator (whether it is negative
or positive) is determined by the numerator of the equation.

Now, because Pz(x ∈ X�) is a probability,

Pz(x ∈ X�)2 < Pz(x ∈ X�)∀x =⇒
∑

x

Pz(x ∈ X�) <
∑

x

Pz(x ∈ X�)2



Surrogate Membership for Inferred Metrics in Fairness Evaluation 439

This shows that the first term in the denominator is smaller for our inferred
estimator, and therefore:

∣∣∣
N

∑
x m(x)Pz(x ∈ X�) − ∑

x m(x)
∑

x Pz(x ∈ X�)

N
∑

x Pz(x ∈ X�)2 − ( ∑
x Pz(x ∈ X�)

)2

∣∣∣

>
∣∣∣
N

∑
x m(x)Pz(x ∈ X�) − ∑

x m(x)
∑

x Pz(x ∈ X�)

N
∑

x Pz(x ∈ X�) − ( ∑
x Pz(x ∈ X�)

)2

∣∣∣

which means:

|mwols(X�) − mwols(X⊥)| > |mw(X�) − mw(X⊥)|
In (Sect. 3) we refer to a set of conditions where WOLS is unbiased that fol-

lows from [1] and the Gauss-Markov theorem. The weighted estimator is always
smaller in absolute value and must therefore be biased toward 0 under the same
conditions.

A.1 Re-Writing the Weighted Estimator

In order to compare the weighted estimator with our inferred estimator, we re-
write the weighted estimator for the case where there are two groups, and one
surrogate variable Z that acts as a predictor. Now, Pz(x ∈ X⊥) = 1 − Pz(x ∈
X�), so that:

mw(X�) − mw(X⊥) =
∑

x m(x)Pz(x ∈ X�)∑
x Pz(x ∈ X�)

−
∑

x m(x)(1 − Pz(x ∈ X�))∑
(1 − Pz(x ∈ X�))

Multiply each of these fractions to get a common denominator.

mw(X�) − mw(X⊥) =

∑
m(x)Pz(x ∈ X�)

∑
(1 − Pz(x ∈ X�)) − ∑

m(x)(1 − Pz(x ∈ X�))
∑

Pz(x ∈ X�)
∑

Pz(x ∈ X�)
∑

(1 − Pz(x ∈ X�))

Then, starting with the numerator, we expand the parentheses and distribute
the sums, which gives the following:

N
∑

m(x)Pz(x ∈ X�) −
∑

m(x)Pz(x ∈ X�)
∑

Pz(x ∈ X�)

−
∑

m(x)
∑

Pz(x ∈ X�) +
∑

m(x)Pz(x ∈ X�)
∑

Pz(x ∈ X�)

(12)

The second and fourth terms cancel, so that:

mw(X�) − mw(X⊥) =
N

∑
x m(x)Pz(x ∈ X�) − ∑

x m(x)
∑

x Pz(x ∈ X�)∑
x(1 − Pz(x ∈ X�))

∑
x Pz(x ∈ X�)

Following the same process for the denominator gives us the following form for
the weighted estimator:

mw(X�) − mw(X⊥) =
N

∑
x m(x)Pz(x ∈ X�) − ∑

x m(x)
∑

x Pz(x ∈ X�)

N
∑

x Pz(x ∈ X�) − ( ∑
x Pz(x ∈ X�)

)2



440 M. Thielbar et al.

A.2 Re-Writing the Inferred Estimator

We can follow the same process to re-write the estimator for the difference
between mwols(X�) − mwols(X⊥), and express our inferred fairness metric in
terms of the individual values m(x).

As before, start with the numerator, expand the terms in parentheses and
distribute the sums, which gives us the following expression.
∑

z

nz(mz − m̄)(Pz(x ∈ X�) − P̄ (x ∈ X�)) =
∑

z

nzmzP̄ (x ∈ X�)

− m̄
∑

z

nzPz(x ∈ X�)

− P̄ (x ∈ X�)
∑

z

nzmz + m̄P̄ (x ∈ X�)
∑

z

nz

(13)

Observe the following:

– We require m to be an arithmetic mean, therefore, mz = 1
nz

∑
z m(x), and

nzmz =
∑

z mx

– m̄ = 1
N

∑
x m(x)

– P̄ (x ∈ X�) = 1
N

∑
x P (x ∈ X�) = 1

N

∑
z nzPz(x ∈ X�)

Taking each term in the numerator separately, we re-write them as:

–
∑

z nzmzP̄ (x ∈ X�) =
∑

z nz(mzPz(x ∈ X�)) =
∑

x m(x)Pz(x ∈ X�)
– m̄

∑
z nzPz(x ∈ X�) = 1

N

∑
x m(x)

∑
x P (x ∈ X�) = Nm̄P̄ (x ∈ X�)

– P̄
∑

z nzmz = 1
N

∑
x P (x ∈ X�)

∑
x m(x) = Nm̄P̄ (x ∈ X�)

– m̄P̄ (x ∈ X�)
∑

z nz = Nm̄P̄ (x ∈ X�)

This lets us collect three of the four terms in the numerator and leaves us with:

m(X�) − m(X⊥) =
∑

x m(x)Pz(x ∈ X�) − Nm̄P̄ (x ∈ X�)∑
z nz(Pz(x ∈ X�) − P̄ (x ∈ X�))2

(14)

For the denominator, we again expand the parentheses and collect the sums
to give the following:
∑

z

nz(Pz(x ∈ X�) − P̄ (x ∈ X�))2 =
∑

z

nzPz(x ∈ X�)2

− 2
∑

z

nzPz(x ∈ X�)P̄ (x ∈ X�) +
∑

z

nzP̄ (x ∈ X�)2

(15)

Again, taking each term separately, we simplify as follows:

–
∑

z nzPz(x ∈ X�)2 =
∑

z

∑
x∈z Pz(x ∈ X�)2 =

∑
x Pz(x ∈ X�)2

– −2
∑

z nzPz(x ∈ X�)P̄ (x ∈ X�) = −2NP̄ (x ∈ X�)2

–
∑

z nzP̄ (x ∈ X�)2 = P̄(x ∈ X�)2
∑

z nz = NP̄ (x ∈ X�)2



Surrogate Membership for Inferred Metrics in Fairness Evaluation 441

This gives us the expression:

mwols(x ∈ X�) − mwols(X⊥) =
∑

x m(x)p(x ∈ X�) − Nm̄P̄∑
x Pz(x ∈ X�)2 − NP̄ (x ∈ X�)2

Multiplying the above fraction by N
N , gives us the form of the equation as

written in (10).

mwols(x ∈ X�) − mwols(X
⊥) =

N
∑

x m(x)p(x ∈ X�) − ∑
x m(x)

∑
x Pz(x ∈ X�)

N
∑

x Pz(x ∈ X�)2 − ( ∑
x Pz(x ∈ X�)

)2

References

1. Aitken, A.C.: On least squares and linear combination of observations. Proc. R.
Soc. Edinb. 55, 42–48 (1936)

2. Andrus, M., Spitzer, E., Brown, J., Xiang, A.: What we can’t measure, we can’t
understand: challenges to demographic data procurement in the pursuit of fairness.
In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, pp. 249–260 (2021)

3. Bellamy, R.K.E., et al.: AI Fairness 360: an extensible toolkit for detecting, under-
standing, and mitigating unwanted algorithmic bias (2018). https://arxiv.org/abs/
1810.01943

4. Box, G.E.: Use and abuse of regression. Technometrics 8(4), 625–629 (1966)
5. Caton, S., Haas, C.: Fairness in machine learning: a survey. arXiv preprint

arXiv:2010.04053 (2020)
6. Chen, J., Kallus, N., Mao, X., Svacha, G., Udell, M.: Fairness under unaware-

ness: assessing disparity when protected class is unobserved. In: Proceedings of the
Conference on Fairness, Accountability, and Transparency, pp. 339–348 (2019)

7. Chenevert, R., Gottschalck, A., Klee, M., Zhang, X.: Where the wealth is: the
geographic distribution of wealth in the united states. US Census Bureau (2017)

8. Department, U.F.R.: Federal fair lending regulations and statutes (2020). https://
www.federalreserve.gov/boarddocs/supmanual/cch/fair lend over.pdf. Accessed
04 Sept 2020

9. Din, A., Wilson, R.: Crosswalking zip codes to census geographies. Cityscape 22(1),
293–314 (2020)

10. Duris, F., et al.: Mean and variance of ratios of proportions from categories of a
multinomial distribution. J. Stat. Distrib. Appl. 5(1), 1–20 (2018)

11. Efron, B., Tibshirani, R.: Bootstrap methods for standard errors, confidence inter-
vals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986)

12. Elliott, M.N., Morrison, P.A., Fremont, A., McCaffrey, D.F., Pantoja, P., Lurie, N.:
Using the census bureau’s surname list to improve estimates of race/ethnicity and
associated disparities. Health Serv. Outcomes Res. Method. 9(2), 69–83 (2009)

13. Farrar, D.E., Glauber, R.R.: Multicollinearity in regression analysis: the problem
revisited. In: The Review of Economic and Statistics, pp. 92–107 (1967)

14. Federal Financial Institutions Examination Council: Home mortgage disclo-
sure act snapshot national loan level dataset. Technical report, U.S. Gov-
ernment (2018). https://ffiec.cfpb.gov/data-publication/snapshot-national-loan-
level-dataset/2018

https://arxiv.org/abs/1810.01943
https://arxiv.org/abs/1810.01943
http://arxiv.org/abs/2010.04053
https://www.federalreserve.gov/boarddocs/supmanual/cch/fair_lend_over.pdf
https://www.federalreserve.gov/boarddocs/supmanual/cch/fair_lend_over.pdf
https://ffiec.cfpb.gov/data-publication/snapshot-national-loan-level-dataset/2018
https://ffiec.cfpb.gov/data-publication/snapshot-national-loan-level-dataset/2018


442 M. Thielbar et al.

15. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: International Conference on Machine Learn-
ing, pp. 1050–1059. PMLR (2016)

16. Hays, W.: The algebra of expectations. In: Statistics, p. 630. CBS College Publish-
ing, Holt Rhinehart Winston New York (1981)

17. Heitjan, D.F.: Inference from grouped continuous data: a review. Stat. Sci. 4(2),
164–179 (1989)

18. Kallus, N., Mao, X., Zhou, A.: Assessing algorithmic fairness with unobserved
protected class using data combination. Manage. Sci. 68(3), 1959–1981 (2022)

19. of Labor, D.: Uniform guidelines on employee selection procedures (1978). https://
uniformguidelines.com/questionandanswers.html. Accessed 05 Sept 2020

20. Michalský, F., Kadioglu, S.: Surrogate ground truth generation to enhance binary
fairness evaluation in uplift modeling. In: 20th IEEE International Conference on
ML and Applications, ICMLA 2021, USA, 2021, pp. 1654–1659. IEEE (2021)

21. Papoulis, A.: Expected value; dispersion; moments (1984)
22. Racicot, T., Khoury, R., Pere, C.: Estimation of uncertainty bounds on disparate

treatment when using proxies for the protected attribute. In: Canadian Conference
on AI (2021)

23. U.S. Department of Housing and Urban Development: Fair housing rights and
obligations (2020). https://www.hud.gov/program offices/fair housing equal opp/
fair housing rights and obligations. Accessed 04 Sept 2020

24. U.S. Equal Employment Opportunity Commission: Prohibited employment
policies/practices (2020). https://www.eeoc.gov/prohibited-employment-
policiespractices. Accessed 04 Sept 2020

25. VanderWeele, T.J., Shpitser, I.: On the definition of a confounder. Ann. Stat. 41(1),
196 (2013)

https://uniformguidelines.com/questionandanswers.html
https://uniformguidelines.com/questionandanswers.html
https://www.hud.gov/program_offices/fair_housing_equal_opp/fair_housing_rights_and_obligations
https://www.hud.gov/program_offices/fair_housing_equal_opp/fair_housing_rights_and_obligations
https://www.eeoc.gov/prohibited-employment-policiespractices
https://www.eeoc.gov/prohibited-employment-policiespractices


The BeMi Stardust: A Structured
Ensemble of Binarized Neural Networks

Ambrogio Maria Bernardelli1(B) , Stefano Gualandi1 , Hoong Chuin Lau2 ,
and Simone Milanesi1

1 Department of Mathematics, University of Pavia, Pavia, Italy
{ambrogiomaria.bernardelli01,simone.milanesi01}@universitadipavia.it,

stefano.gualandi@unipv.it
2 School of Information Systems, Singapore Management University,

Singapore, Singapore
hclau@smu.edu.sg

Abstract. Binarized Neural Networks (BNNs) are receiving increas-
ing attention due to their lightweight architecture and ability to run
on low-power devices, given the fact that they can be implemented using
Boolean operations. The state-of-the-art for training classification BNNs
restricted to few-shot learning is based on a Mixed Integer Programming
(MIP) approach. This paper proposes the BeMi ensemble, a structured
architecture of classification-designed BNNs based on training a single
BNN for each possible pair of classes and applying a majority voting
scheme to predict the final output. The training of a single BNN discrim-
inating between two classes is achieved by a MIP model that optimizes a
lexicographic multi-objective function according to robustness and sim-
plicity principles. This approach results in training networks whose out-
put is not affected by small perturbations on the input and whose number
of active weights is as small as possible, while good accuracy is preserved.
We computationally validate our model using the MNIST and Fashion-
MNIST datasets using up to 40 training images per class. Our struc-
tured ensemble outperforms both BNNs trained by stochastic gradient
descent and state-of-the-art MIP-based approaches. While the previous
approaches achieve an average accuracy of 51.1% on the MNIST dataset,
the BeMi ensemble achieves an average accuracy of 61.7% when trained
with 10 images per class and 76.4% when trained with 40 images per
class.

Keywords: Binarized neural networks · Mixed-integer linear
programming · Structured ensemble of neural networks · Few-shot
learning

1 Introduction

State-of-the-art Neural Networks (NNs) contain a huge number of neurons orga-
nized in several layers, and they require an immense amount of data for training
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 443–458, 2023.
https://doi.org/10.1007/978-3-031-44505-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_30&domain=pdf
http://orcid.org/0000-0002-2328-7062
http://orcid.org/0000-0002-2111-3528
http://orcid.org/0000-0002-5326-411X
http://orcid.org/0000-0002-6314-1965
https://doi.org/10.1007/978-3-031-44505-7_30


444 A. M. Bernardelli et al.

[11]. The training process is computationally demanding and is typically per-
formed by stochastic gradient descent algorithms running on large GPU-based
clusters. Whenever the trained (deep) neural network contains many neurons,
also the network deployment is computationally demanding. However, in real-life
industrial applications, GPU-based clusters are often unavailable or too expen-
sive, and training data is scarce and contains only a few data points per class.

Binarized Neural Networks (BNNs) were introduced in [6] as a response to
the challenge of running NNs on low-power devices. BNNs contain only binary
weights and binary activation functions, and hence they can be implemented using
only bit-wise operations, which are very power-efficient: such neural networks can
be implemented using Boolean operations, eliminating the need for CPU usage.
However, the training of BNNs raises interesting challenges for gradient-based
approaches due to their combinatorial structure. In [22], the authors show that
the training of a BNN performed by a hybrid constraint programming (CP) and
mixed integer programming (MIP) approach outperforms the stochastic gradient
approach proposed in [6] by a large margin, if restricted to a few-shot-learning
context [23]. Indeed, the main challenge in training a NN by an exact MIP-based
approach is the limited amount of training data that can be used since, otherwise,
the size of the optimization model explodes. However, in [21], the hybrid CP and
MIP method was further extended to integer-valued neural networks: exploiting
the flexibility of MIP solvers, the authors were able to (i) minimize the number of
neurons during training and (ii) increase the number of data points used during
training by introducing a MIP batch training method.

We remark that training a NN with a MIP-based approach is more chal-
lenging than solving a verification problem, as in [1,4], even if the structure of
the nonlinear constraints modeling the activation functions is similar. In NNs
verification [10], the weights are given as input, while in MIP-based training, the
weights are the decision variables that must be computed. Furthermore, recent
works aim at producing compact and lightweight NNs that maintain acceptable
accuracy, e.g., in terms of parameter pruning [19,26], loss function improvement
[20], gradient approximation [17], and network topology structure [13].

Contributions. In this paper, we propose the BeMi1 ensemble, a structured
ensemble of classification-designed BNNs, where each single BNN is trained by
solving a lexicographic multi-objective MIP model. Given a classification task
over k classes, the main idea is to train k(k−1)

2 BNNs, where every single network
learns to discriminate only between a given pair of classes. When a new data
point (e.g., a new image) must be classified, it is first fed into the k(k−1)

2 trained
BNNs, and later, using a Condorcet-inspired majority voting scheme [25], the
most frequent class is predicted as output. Also, this method is similar to and
generalizes the SVM-OVO approach [2], and it has not yet been applied within
the context of neural networks, to the best of our knowledge. For training every
single BNN, our approach extends the methods introduced in [22] and [21]. Our
computational results using the MNIST and the Fashion-MNIST dataset show

1 Acronym from the last names of the two young authors who had this intuition.



The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks 445

that the BeMi ensemble permits to use for training up to 40 data points per class,
and permits reaching an accuracy of 78.8% for MNIST and 72.9% for Fashion-
MNIST. In addition, thanks to the multi-objective function that minimizes the
number of neurons, up to 75% of weights are set to zero for MNIST, and up to
50% for Fashion-MNIST.

Outline. The outline of this paper is as follows. Section 2 introduces the notation
and defines the problem of training a single BNN with the existing MIP-based
methods. Section 3 presents the BeMi ensemble, the majority voting scheme,
and the improved MIP model to train a single BNN. Section 4 presents the com-
putational results of the MNIST and Fashion-MNIST. Finally, Sect. 5 concludes
the paper with a perspective on future works.

2 Binarized Neural Networks

In this section, we formally define a single BNN using the same notation as in [22],
while, in the next section, we show how to define a structured ensemble of BNNs.
The architecture of a BNN is defined by a set of layers N = {N0, N1, . . . , NL},
where Nl = {1, . . . , nl}, and nl is the number of neurons in the l-th layer.
Let the training set be X := {(x1, y1), . . . , (xt, yt)}, such that xi ∈ R

n0 and
yi ∈ {−1,+1}nL for every i ∈ T = {1, 2, . . . , t}. The first layer N0 corresponds
to the size of the input data points xk.

The link between neuron i in layer Nl−1 and neuron j in layer Nl is modeled
by weight wilj ∈ {−1, 0,+1}. Note that whenever a weight is set to zero, the
corresponding link is removed from the network. Hence, during training, we
are also optimizing the architecture of the BNN. The activation function is the
binary function

ρ(x) := 2 · 1(x ≥ 0) − 1, (1)

that is, a sign function reshaped such that it takes ±1 values. The indicator
function 1(p) outputs +1 if proposition p is verified, and 0 otherwise.

To model the activation function (1) of the j-th neuron of layer Nl for data
point xk, we introduce a binary variable uk

lj ∈ {0, 1} for the indicator function
1(p). To rescale the value of uk

lj in {−1,+1} and model the activation function
value, we introduce the auxiliary variable zklj = (2uk

lj − 1). For the first input
layer, we set zk0j = xk

j ; for the last layer, we account in the loss function whether
zkLh is different from yk

h. The definition of the activation function becomes

zklj = ρ

⎛
⎝ ∑

i∈Nl−1

zk(l−1)iwilj

⎞
⎠ = 2 · 1

⎛
⎝ ∑

i∈Nl−1

zk(l−1)iwilj ≥ 0

⎞
⎠ − 1 = 2uk

lj − 1.

Notice that the activation function at layer Nl gives a nonlinear combination
of the output of the neurons in the previous layer Nl−1 and the weights wilj

between the two layers. Section 3.3 shows how to formulate this activation func-
tion in terms of mixed integer linear constraints. The choice of a family of



446 A. M. Bernardelli et al.

parameters W := {wilj}l∈{1,...,L},i∈Nl−1,j∈Nl
determines the classification func-

tion fW : Rn0 → {±1}nL . The training of a neural network is the process of
computing the family W such that fW classifies correctly both the given train-
ing data, that is, fW (xi) = yi for i = 1, . . . , t, and new unlabelled testing data.

The training of a BNN should target two objectives: (i) the resulting func-
tion fW should generalize from the input data and be robust to noise in the
input data; (ii) the resulting network should be simple, that is, with the smallest
number of non-zero weights that permit to achieve the best accuracy. Deep neu-
ral networks are believed to be inherently robust because mini-batch stochastic
gradient-based methods implicitly guide toward robust solutions [8,9,16]. How-
ever, as shown in [22], this is false for BNNs in a few-shot learning regime. On
the contrary, MIP-based training with an appropriate objective function can
generalize very well [21,22], but it does not apply to large training datasets,
because the size of the MIP training model is proportional to the size of the
training dataset. To generalize from a few data samples, the training algorithm
should maximize the margins of the neurons. Intuitively, neurons with larger
margins require larger changes to their inputs and weights before changing their
activation values. This choice is also motivated by recent works showing that
margins are good predictors for the generalization of deep convolutional NNs
[7]. Regarding the simplicity objective, a significant parameter is the number
of connections [15]. The training algorithm should look for a BNN fitting the
training data while minimizing the number of non-zero weights. This approach
can be interpreted as a simultaneous compression during training. Although this
objective is challenged in [3], it remains the basis of most forms of regularization
used in modern deep learning [18].

MIP-Based BNN Training. In [22], two different MIP models are introduced:
the Max-Margin, which aims to train robust BNNs, and the Min-Weight, which
aims to train simple BNNs. These two models are combined with a CP model
into two hybrid methods HW and HA in order to obtain a feasible solution within
a fixed time limit because otherwise, the MIP models fail shortly when the
number of training data increases. We remark that two objectives, robustness
and simplicity, are never optimized simultaneously. In [21], three MIP models are
proposed that generalize the BNN approach to consider integer values for weights
and biases. The first model, Max-Correct, is based on the idea of maximizing the
number of corrected predicted images; the second model, Min-Hinge, is inspired
by the squared hinge loss; the last model, Sat-Margin, combines aspects of both
the first two models. These three models always produce a feasible solution but
use the margins only on the neurons of the last level, obtaining, hence, less robust
BNNs.

Gradient-Based BNN Training. In [6], a gradient descent-based method is pro-
posed, consisting of a local search that changes the weights to minimize a square
hinge loss function. Note that a BNN trained with this approach only learns −1
and +1 weights. An extension of this method to admit zero-value weights, called
(GDt), is proposed in [22], to facilitate the comparison with their approach.



The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks 447

3 The BeMi Ensemble

In this section, we present our structured ensemble of neural networks.

3.1 The BeMi Structure

If we define P(S)m as the set of all the subsets of the set S that have cardinal-
ity m, and we name I the set of the classes of the classification problem, our
structured ensemble is constructed in the following way.

• We set a parameter 1 < p ≤ n = |I|.
• We train a BNN denoted by NJ for every J ∈ P(I)p.
• When testing a data point, we feed it to our list of trained BNNs, namely

(NJ )J ∈P(I)p , obtaining a list of predicted labels (eJ )J ∈P(I)p .
• We then apply a majority voting system.

Note that we set p > 1, otherwise our structured ensemble would have been
meaningless. Whenever p = n, our ensemble is made of one single BNN. When
p = 2, we are using a one-versus-one scheme.

The idea behind this structured ensemble is that, given an input xk labelled
l (= yk), the input is fed into

(
n
p

)
networks where

(
n−1
p−1

)
of them are trained to

recognize an input with label l. If all of the networks correctly classify the input
xk, then at most

(
n−1
p−1

) − (
n−2
p−2

)
other networks can classify the input with a

different label. With this approach, if we plan to use r ∈ N inputs for each label,
we are feeding our BNNs a total of p×r inputs instead of feeding n×r inputs to
a single large BNN. When p = 2 � n, it is much easier to train our structured
ensemble of BNNs rather than training one large BNN.

3.2 Majority Voting System

After the training, we feed one input xk to our list of BNNs, and we need to
elaborate on the set of outputs.

Definition 1 (Dominant label). For every b ∈ I, we define

Cb = {J ∈ P(I)p | eJ = b},

and we say that a label b is a dominant label if |Cb| ≥ |Cl| for every l ∈ I.
We then define the set of dominant labels

D := {b ∈ I | b is a dominant label}.

Using this definition, we can have three possible outcomes.

(a) There exists a label b ∈ I such that D = {b} =⇒ our input is labelled as b.
(b) There exist b1, . . . , bp ∈ I, bi �= bj for all i �= j such that D = {b1, . . . , bp},

so D ∈ P(I)p =⇒ our input is labelled as e{b1,...,bp} = eD.
(c) |D| �= 1 ∧ |D| �= p =⇒ our input is labelled as z /∈ I.



448 A. M. Bernardelli et al.

While case (a) is straightforward, we can label our input even when we do not
have a clear winner, that is, when we have trained a BNN on the set of labels
that are the most frequent (i.e., case (b)). Note that the proposed structured
ensemble alongside its voting scheme can also be exploited for regular NNs.

Definition 2 (Label statuses). In our labeling system, when testing an input
seven different cases, herein called label statuses, can show up. Note that every
input test will fall into one and only one label status.

(s-0) There exists exactly one dominant label and it is correct.
(s-1) There exist exactly p dominant labels b1, . . . , bp and e{b1,...,bp} is correct.
(s-2) There exist exactly p dominant labels b1, . . . , bp and the correct one belongs

to the set {b1, . . . , bp} − e{b1,...,bp}.
(s-3) There exist exactly p̂ dominant labels, p̂ �= 1 ∧ p̂ �= p, and one of them is

correct.
(s-4) There exist exactly p̂ dominant labels, p̂ �= 1 ∧ p̂ �= p, none of which are

correct.
(s-5) There exist exactly p dominant labels b1, . . . , bp, none of which are correct.
(s-6) There exists exactly one dominant label, but it is not the correct one.

Example 1. Let us take I = {bird, cat, dog, frog} and p = 2. Note that, in this
case, we have to train

(
4
2

)
= 6 networks:

N{bird, cat}, N{bird, dog}, N{bird, frog}, N{cat, dog}, N{cat, frog}, N{dog, frog},

the first one distinguishes between bird and cat, the second one between bird
and dog, and so on. A first input could have the following predicted labels:

e{bird, cat} = bird, e{bird, dog} = bird, e{bird, frog} = frog,

e{cat, dog} = cat, e{cat, frog} = cat, e{dog, frog} = dog.

We would then have

Cbird = {{bird, cat}, {bird, dog}}, Ccat = {{cat, dog}, {cat, frog}},
Cdog = {{dog, frog}}, Cfrog = {{bird, frog}}.

In this case D = {bird, cat} because |Cbird| = |Ccat| = 2 > 1 = |Cdog| = |Cfrog|
and we do not have a clear winner, but since |D| = 2 = p, we have trained a
network that distinguishes between the two most voted labels, and so we use its
output as our final predicted label, labelling our input as e{bird, cat} = bird. If
bird is the right label we are in label status (s-1), if the correct label is cat, since
cat ∈ {cat} = {bird, cat} − {bird} = {bird, cat} − e{bird, cat}, we are in label
status (s-2). Else we are in label status (s-5).

Example 2. Let us take I = {0, 1, . . . , 9} and p = 2. Note that, in this case, we
have to train

(
10
2

)
= 45 networks and that |Cb| ≤ 9 for all b ∈ I. Hence, an input

could be labelled as follows:



The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks 449

C0 = ({0, i})i=1,2,3,5,7,8, C1 = ({1, i})i=5,6, C2 = ({2, i})i=1,5,8,

C3 = ({3, i})i=1,2,4,5, C4 = ({4, i})i=0,1,2,5,6,7,9, C5 = ({5, i})i=6,7,

C6 = ({6, i})i=0,2,3,7, C7 = ({7, i})i=1,2,3,

C8 = ({8, i})i=1,3,4,5,6,7, C9 = ({9, i})i=0,1,2,3,5,6,7,8.

Visually, we can represent this labelling with the following scheme:

input

N{0,1}

N{0,2}

...

N{8,9}

e{0,1}

e{0,2}

...

e{8,9} C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

where we have omitted the name of each element of the set Ci for simplicity: for
example, the dots above C1 represent the sets {1, 5}, {1, 6}. Since D = {9}, our
input is labelled as 9. If 9 is the right label, we are in label status (s-0), if it is
the wrong one, we are in label status (s-6). If instead Ĉj = Cj , j = 0, . . . , 7, and

Ĉ8 = ({8, i})i=1,3,4,5,6,7,9, Ĉ9 = ({9, i})i=0,1,2,3,5,6,7,

then |D̂| = |{4, 8, 9}| = 3, so that our input were labelled as −1. If the correct
label is 4, 8 or 9, we are in label status (s-3), else we are in label status (s-4).
Lastly, if C̄j = Cj , j ∈ {0, 1, 2, 4, 5, 6, 7, 8}, and

C̄3 = ({3, i})i=1,2,4,5,9, C̄9 = ({9, i})i=0,1,2,5,6,7,8

then |D̄| = |{4, 9}| = 2 = p and since {4, 9} ∈ C̄4 our input is labelled as
4. If 4 is the correct label, we are in label status (s-1), if 9 is the correct
label, we are in label status (s-2), else we are in label status (s-5). Note that
in this example we used the notation ({j, i})i=i1,...,in = {{j, i1}, . . . , {j, in}},
j, i1, . . . , in ∈ {0, . . . , 9} for brevity.

3.3 A Multi-objective MIP Model for Training BNNs

In this subsection, we present how each of single small BNN is trained with a
multi-objective MIP model. For ease of notation, we denote with L := {1, . . . , L}
the set of layers and with L2 := {2, . . . , L}, LL−1 := {1, . . . , L − 1} two of its
subsets. We also denote with b := maxk∈T,j∈N0{|xk

j |} a bound on the values of
the training data.



450 A. M. Bernardelli et al.

Training a BNN with a Multi-objective MIP Model. A few MIP models are
proposed in the literature to train BNNs efficiently. In this work, to train a
single BNN, we use a lexicographic multi-objective function that results in the
sequential solution of three different MIP models: the Sat-Margin (S-M) described
in [21], the Max-Margin (M-M), and the Min-Weight (M-W), both described in [22].
The first model S-M maximizes the number of confidently correctly predicted
data. The other two models, M-M and M-W, aim to train a BNN following two
principles: robustness and simplicity. Our model is based on a lexicographic
multi-objective function: first, we train a BNN with the model S-M, which is fast
to solve and always gives a feasible solution. Second, we use this solution as a
warm start for the M-M model, training the BNN only with the images that S-M
correctly classified. Third, we fix the margins found with M-M, and minimize the
number of active weights with M-W, finding the lightest BNN with the robustness
found by M-M.

Problem Variables. The critical part of our model is the formulation of the
nonlinear activation function (1). We use an integer variable wilj ∈ {−1, 0,+1}
to represent the weight of the connection between neuron i ∈ Nl−1 and neuron
j ∈ Nl. Variable uk

lj models the result of the indicator function 1(p) that appears
in the activation function ρ(·) for the training instance xk. The neuron activation
is actually defined as 2uk

lj − 1. We introduce auxiliary variables ckilj to represent
the products ckilj = (2uk

lj − 1)wilj . Note that, while in the first layer, these
variables share the same domain of the inputs, from the second layer on, they
take values in {−1, 0, 1}. Finally, the auxiliary variables ŷk represent a predicted
label for the input xk, and variable qkj are used to take into account the data
points correctly classified. The procedure is designed such that the parameter
configuration obtained in the first step is used as a warm start for the (M-M).
Similarly, the solution of the second step is used as a warm start for the solver to
solve (M-W). In this case, the margins lose their nature as decision variables and
become deterministic constants derived from the solution of the previous step.

Sat-Margin (S-M) Model. We first train our BNN using the following S-M model.

max
∑
k∈T

∑
j∈NL

qkj (2a)

s.t. qkj = 1 =⇒ ŷk
j · yk

j ≥ 1
2

∀j ∈ NL, k ∈ T, (2b)

qkj = 0 =⇒ ŷk
j · yk

j ≤ 1
2

− ε ∀j ∈ NL, k ∈ T, (2c)

ŷk
j =

2
nL−1 + 1

∑
i∈NL−1

ckiLj ∀j ∈ NL, k ∈ T, (2d)

uk
lj = 1 =⇒

∑
i∈Nl−1

ckilj ≥ 0 ∀l ∈ LL−1, j ∈ Nl, k ∈ T, (2e)



The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks 451

uk
lj = 0 =⇒

∑
i∈Nl−1

ckilj ≤ −ε ∀l ∈ LL−1, j ∈ Nl, k ∈ T, (2f)

cki1j = xk
i · wi1j ∀i ∈ N0, j ∈ N1, k ∈ T, (2g)

ckilj = (2uk
(l−1)j − 1)wilj ∀l ∈ L2, i ∈ Nl−1, j ∈ Nl, k ∈ T, (2h)

qkj ∈ {0, 1} ∀j ∈ NL, k ∈ T, (2i)

wilj ∈ {−1, 0, 1} ∀l ∈ L, i ∈ Nl−1, j ∈ Nl, (2j)

uk
lj ∈ {0, 1} ∀l ∈ LL−1, j ∈ Nl, k ∈ T, (2k)

cki1j ∈ [−b, b] ∀i ∈ N0, j ∈ N1, k ∈ T, (2l)

ckilj ∈ {−1, 0, 1} ∀l ∈ L2, i ∈ Nl−1, j ∈ Nl, k ∈ T. (2m)

The objective function (2a) maximizes the number of data points that are cor-
rectly classified. Note that ε is a small quantity standardly used to model strict
inequalities. The implication constraints (2b) and (2c) and constraints (2d) are
used to link the output ŷk

j with the corresponding variable qkj appearing in
the objective function. The implication constraints (2e) and (2f) model the
result of the indicator function for the k-th input data. The constraints (2g)
and the bilinear constraints (2h) propagate the results of the activation func-
tions within the neural network. We linearize all these constraints with standard
big-M techniques.

The solution of model (2a)–(2m) gives us the solution vectors cS-M, uS-M, wS-M,
ŷS-M, qS-M. We then define the set

T̂ = {k ∈ T | qkj S-M
= 1, ∀j ∈ NL}, (3)

of confidently correctly predicted images. We use these images as input for the
next Max-Margin M-M, and we use the vector of variables cS-M,uS-M,wS-M to warm
start the solution of M-M.

Max-Margin (M-M) Model. The second level of our lexicographic multi-objective
model maximizes the overall margins of every single neuron activation, with
the ultimate goal of training a robust BNN. Starting from the model S-M, we
introduce the margin variables mlj , and we introduce the following Max-Margin
model.

max
∑
l∈L

∑
j∈Nl

mlj (4a)

s.t. (2g)–(2m) ∀k ∈ T̂ ,∑
i∈NL−1

yk
j ckiLj ≥ mLj ∀j ∈ NL, k ∈ T̂ , (4b)



452 A. M. Bernardelli et al.

uk
lj = 1 =⇒

∑
i∈Nl−1

ckilj ≥ mlj ∀l ∈ LL−1, j ∈ Nl, k ∈ T̂ , (4c)

uk
lj = 0 =⇒

∑
i∈Nl−1

ckilj ≤ −mlj ∀l ∈ LL−1, j ∈ Nl, k ∈ T̂ , (4d)

mlj ≥ ε ∀l ∈ L, j ∈ Nl. (4e)

Again, we can linearize constraints (4c) and (4d) with standard big-M con-
straints. This model gives us the solution vectors cM-M,uM-M,wM-M,mM-M. We then
evaluate vM-M as

viljM-M = |wiljM-M| ∀l ∈ L, i ∈ Nl−1, j ∈ Nl. (5)

Min-Weight (M-W) Model. The third level of our multi-objective function min-
imizes the overall number of non-zero weights, that is, the connection of the
trained BNN. We introduce the new auxiliary binary variable vilj to model the
absolute value of the weight wilj . Starting from the solution of model M-M, we
fix m̂ = mM-M, and we pass the solution cM-M,uM-M,wM-M,vM-M as a warm start to
the following M-W model:

min
∑
l∈L

∑
i∈Nl−1

∑
j∈Nl

vilj (6a)

s.t. (2g)–(2m) ∀k ∈ T̂ ,∑
i∈NL−1

yk
j ckiLj ≥ m̂Lj ∀j ∈ NL, k ∈ T̂ , (6b)

uk
lj = 1 =⇒

∑
i∈Nl−1

ckilj ≥ m̂lj ∀l ∈ LL−1, j ∈ Nl, k ∈ T̂ , (6c)

uk
lj = 0 =⇒

∑
i∈Nl−1

ckilj ≤ −m̂lj ∀l ∈ LL−1, j ∈ Nl, k ∈ T̂ , (6d)

− vilj ≤ wilj ≤ vilj ∀l ∈ L, i ∈ Nl−1, j ∈ Nl, (6e)
vilj ∈ {0, 1} ∀l ∈ L, i ∈ Nl−1, j ∈ Nl. (6f)

Note that whenever vilj is equal to zero, the corresponding weight wilj is set to
zero due to constraint (6e), and, hence, the corresponding link can be removed
from the network.

Lexicographic multi-objective. By solving the three models S-M, M-M, and M-W,
sequentially, we first maximize the number of input data that is correctly classi-
fied, then we maximize the margin of every activation function, and finally, we
minimize the number of non-zero weights. The solution of the decision variables
wilj of the last model M-W defines our classification function fW : Rn0 → {±1}nL .

4 Computational Results

We run three types of experiments to address the following questions.



The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks 453

– Experiment 1: How does our approach compare with the previous state-of-
the-art MIP models for training BNNs in the context of few-shot learning?

– Experiment 2: How does the BeMi ensemble scale with the number of
training images, considering two different types of BNNs?

– Experiment 3: How does the proposed approach perform on a different
dataset, comparing the running time, the average gap to the optimal training
MIP model, and the percentage of links removed?

Datasets. The experiments are performed on the MNIST dataset [12] for a fair
comparison with the literature, and Fashion-MNIST [24] dataset. We test our
results on 500 images for each class. For each experiment, we report the average
over three different samples of images. The images are sampled uniformly at
random in order to avoid overlapping between different experiments.

Fig. 1. Comparison of published approaches vs BeMi, in terms of accuracy over the
MNIST dataset using few-shot learning with 2, 6, and 10 images per digit.

Implementation Details. We use Gurobi version 9.5.1 [5] to solve our MIP and
ILP models. The parameters of Gurobi are left to the default values. All the MIP
experiments were run on an HPC cluster running CentOS but using a single node
per experiment. Each node has an Intel CPU with 8 physical cores working at
2.1 GHz and 16 GB of RAM. In all of our experiments, we fix the value ε = 0.1.
The source code will be available on GitHub in case of acceptance of this paper.

4.1 Experiment 1

The first set of experiments aims to compare the BeMi ensemble with the fol-
lowing state-of-the-art methods: the hybrid CP and MIP model based on Max-
Margin optimization (HA) [22]; the gradient-based method GDt introduced in [6]
and adapted in [22] to deal with link removal; and the Min-hinge (M-H) model
proposed in [21]. For the comparison, we fix the setting of [22], which takes from
the MNIST up to 10 images for each class, for a total of 100 training data points,



454 A. M. Bernardelli et al.

and which uses a time limit of 7 200 s to solve their MIP training models. In
our experiments, we train the BeMi ensemble with 2, 6, and 10 samples for
each digit. Since our ensemble has 45 BNNs, we leave for the training of each
single BNN a maximum of 160 s (since 160 × 45 = 7 200). In particular, we give
a 75 s time limit to the solution of S-M, 75 s to M-M, and 10 s to M-W. In all of
our experiments, whenever the optimum is reached within the time limit, the
remaining time is added to the time limit of the subsequent model. We remark
that our networks could be trained in parallel, which would highly reduce the
wall-clock runtime. For the sake the completeness, we note that we are using
45 × (784 × 4 + 4 × 4 + 4 × 1) = 142 020 parameters (all the weights of all the 45
BNNs) instead of the 784×16+16×16+16×10 = 12 960 parameters used in [22]
for a single large BNN. Note that, in this case, the dimension of the parameter
space is 312 960(∼= 106 183), while, in our case, it is 45 × 33 156(∼= 101507).

Table 1. Percentages of MNIST images classified as correct, wrong, or unclassified
(n.l.), and of label statuses from (s-0) to (s-6), for the architecture Na = [784, 4, 4, 1].

Images Classification Label status

per class correct wrong n.l. s-0 s-1 s-2 s-3 s-4 s-5 s-6

10 61.80 36.22 1.98 58.30 3.50 1.84 1.30 0.68 4.74 29.64

20 69.96 27.60 2.44 66.68 3.28 2.12 2.18 0.26 3.04 22.44

30 73.18 24.56 2.26 70.14 3.04 1.88 1.88 0.38 2.68 20.00

40 78.82 19.30 1.88 75.56 3.26 1.90 1.72 0.16 1.70 15.70

Figure 1 compares the results of our BeMi ensemble with four other methods:
the hybrid CP-MIP approach HA [22]; the pure MIP model in [22], which can
handle a single image per class; the gradient-based method GDt, which is the
version of [6] modified by [22]; the minimum hinge model M-H presented in [21],
which report results only for 10 digits per class. We report the best results
reported in the original papers for these four methods. The BeMi ensemble
obtains an average accuracy of 61%, outperforms all other approaches when 6
or 10 digits per class are used, and it is comparable with the hybrid CP-MIP
method when only 2 digits per class are used.

4.2 Experiment 2

This second set of experiments studies how our approach scales with the number
of data points (i.e., images) per class, and how it is affected by the architecture
of the small BNNs within the BeMi ensemble. For the number of data points
per class we use 10, 20, 30, 40 training images per digit. We use the layers Na =
[784, 4, 4, 1] and Nb = [784, 10, 3, 1] for the two architectures, Herein, we refer
to Experiments 2a and 2b as the two subsets of experiments related to the
architectures Na and Nb. In both cases, we train each of our 45 BNNs with a



The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks 455

time limit of 290 s for model S-M, 290 s for M-M, and 20 s for M-W, for a total of
600 s (i.e., 10 min for each BNN).

Figure 2a shows the results for Experiments 2a and 2b: the dotted and dashed
lines refer to the two average accuracies of the two architectures, while the colored
areas include all the accuracy values obtained as the training instances vary.
While the two architectures behave similarly, the best average accuracy exceeds
75% and it is obtained with the first architecture Na.

Table 1 reports the results for the BeMi ensemble where we distinguish
among images classified as correct, wrong, or unclassified. These three condi-
tions refer to different label statuses specified in Definition 2: the correct labels
are the sum of the statuses (s-0) and (s-1); the wrong labels of statuses (s-2),
(s-5), and (s-6); the unclassified labels (n.l.) of (s-3) and (s-4).

4.3 Experiment 3

In the third experiment, we replicate Experiments 2a and 2b with the two archi-
tectures Na and Nb, using the Fashion-MNIST dataset.

Fig. 2. Average accuracy for the BeMi ensemble tested on two architectures, namely
Na = [784, 4, 4, 1] and Nb = [784, 10, 3, 1], using 10, 20, 30, 40 images per class.

Figure 2b shows the results of Experiments 3a and 3b. As in Fig. 1, the dotted
and dashed lines represent the average percentages of correctly classified images,
while the colored areas include all accuracy values obtained as the instances vary.
The first architecture is comparable with the second, with up to 30 training
images per digit, while it is significantly better with 40 images. For the Fashion-
MNIST, the best average accuracy exceeds 70%.



456 A. M. Bernardelli et al.

Table 2. Aggregate results for Experiments 2 and 3: the 4-th column reports the run-
time to solve the first model S-M; Gap (%) refers to the mean and maximum percentage
gap at the second MIP model M-M; Links (%) is the percentage of non-zero weights after
the solution of models M-M and M-W.

Images Model S-M Gap (%) Links (%)
Dataset Layers

per class time (s) mean max (M-M) (M-W)

784,4,4,1 10 2.99 17.37 28.25 49.25 27.14

20 5.90 19.74 24.06 52.95 30.84

30 10.65 20.07 26.42 56.90 30.88

40 15.92 18.50 23.89 58.70 29.42
MNIST

784,10,3,1 10 6.88 6.28 9.67 49.46 23.96

20 17.02 7.05 8.42 53.25 26.65

30 25.84 7.38 15.88 57.21 25.02

40 44.20 9.90 74.16 59.08 24.22

784,4,4,1 10 7.66 17.21 25.92 86.38 56.54

20 14.60 22.35 28.00 93.18 57.54

30 26.10 19.78 29.53 92.56 58.78

40 39.90 22.71 75.03 93.13 64.61
F-MNIST

784,10,3,1 10 13.83 6.14 8.98 86.65 53.72

20 26.80 7.84 9.59 93.57 51.03

30 38.48 7.18 16.09 92.90 52.50

40 64.52 12.10 55.19 93.57 55.67

Table 2 reports detailed results for all Experiments 2 and 3. The first two
columns give the dataset and the architecture, and the third column specifies
the number of images per digit used during training. The 4-th column reports
the runtime for solving model S-M. Note that the time limit is 290 s; hence, we
solve exactly the first model, consistently achieving a training accuracy of 100%.
The remaining four columns give: Gap (%) refers to the mean and maximum
percentage gap at the second MIP model (M-M) of our lexicographic multi-
objective model, as reported by the Gurobi MIPgap attribute; Links (%) is the
percentage of non-zero weights after the solution of the second model M-M, and
after the solution of the last model M-W. The results show that the runtime and
the gap increase with the size of the input set. However, for the percentage
of removed links, there is a significant difference between the two datasets: for
MNIST, our third model M-W removes around 70% of the links, while for the
Fashion-MNIST, it removes around 50% of the links. Note that in both cases,
these significant reductions show how our model is also optimizing the BNN
architecture.

5 Conclusions

In this work, we have introduced the BeMi ensemble, a structured architec-
ture of BNNs for classification tasks. Each network specializes in distinguishing



The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks 457

between pairs of classes and combines different approaches already existing in
the literature to preserve feasibility while being robust and lightweight. These
features and the nature of the parameters are critical to enabling neural networks
to run on low-power devices. In particular, such networks can be implemented
using Boolean operations and do not need CPUs to run. The output of the
BeMi ensemble is chosen by a majority voting system that generalizes the one-
versus-one scheme. Notice that the BeMi ensemble is a general architecture that
could be employed using other types of neural networks, for example, Integer-
valued NNs [21]. A current limitation of our approach is the strong dependence
on the randomly sampled images used for training. In future work, we plan to
improve the training data selection by using a k-medoids approach, dividing
all images of the same class into disjoint non-empty subsets and consider their
centroids as training data. This approach should mitigate the dependency on
the sampled training data points. We also plan to better investigate the scala-
bility of our method with respect to the number of classes of the classification
problem, varying the parameter p and training fewer BNNs, namely, one for
every J ∈ Q ⊂ P(I)p, with |Q| << |P(I)p|. In conclusion, we used the MNIST
dataset to provide a fair comparison with existing literature. In future, we intend
to investigate datasets more appropriate for the task of few-shot learning [14].

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1), 3–39 (2020)

2. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning. vol.
4, no. 4 (2006)

3. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

4. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018)

5. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2022). https://
www.gurobi.com

6. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: Advances in Neural Information Processing Systems (NeurIPS), vol.
29, pp. 4107–4115 (2016)

7. Jiang, Y., Krishnan, D., Mobahi, H., Bengio, S.: Predicting the generalization
gap in deep networks with margin distributions. In: International Conference on
Learning Representations (ICLR) (2019)

8. Kawaguchi, K., Kaelbling, L.P., Bengio, Y.: Generalization in deep learning.
arXiv:1710.05468 (2017)

9. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: generalization gap and sharp minima. In: Inter-
national Conference on Learning Representations (ICLR), vol. 5 (2017)

10. Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural
networks. In: International Conference on Learning Representations (ICLR) (2019)

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/1710.05468


458 A. M. Bernardelli et al.

12. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits
(1998). https://yann.lecun.com/exdb/mnist

13. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network.
In: Advances in Neural Information Processing Systems (NeurIPS), vol. 30 (2017)

14. Lorenzo, B., Bjorn, B., Luca, I., Joachim, D.: Image classification with small
datasets: overview and benchmark. IEEE Access 10, 49233–49250 (2022)

15. Moody, J.: The effective number of parameters: an analysis of generalization and
regularization in nonlinear learning systems. In: Advances in Neural Information
Processing Systems (NeurIPS), vol. 4, pp. 847–854 (1991)

16. Neyshabur, B., Bhojanapalli, S., McAllester, D., Srebro, N.: Exploring general-
ization in deep learning. In: Advances in Neural Information Processing Systems
(NeurIPS), vol. 30, pp. 5947–5956 (2017)

17. Sakr, C., Choi, J., Wang, Z., Gopalakrishnan, K., Shanbhag, N.: True gradient-
based training of deep binary activated neural networks via continuous binariza-
tion. In: 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2346–2350. IEEE (2018)

18. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

19. Serra, T., Kumar, A., Ramalingam, S.: Lossless compression of deep neural net-
works. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp.
417–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4 27

20. Tang, W., Hua, G., Wang, L.: How to train a compact binary neural network with
high accuracy? In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

21. Thorbjarnarson, T., Yorke-Smith, N.: Optimal training of integer-valued neural
networks with mixed integer programming. PLoS ONE 18(2), 1–17 (2023)

22. Toro Icarte, R., Illanes, L., Castro, M.P., Cire, A.A., McIlraith, S.A., Beck, J.C.:
Training binarized neural networks using MIP and CP. In: Schiex, T., de Givry, S.
(eds.) CP 2019. LNCS, vol. 11802, pp. 401–417. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30048-7 24

23. Vanschoren, J.: Meta-learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.)
Automated Machine Learning. The Springer Series on Challenges in Machine
Learning, pp. 35–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05318-5 2

24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv:1708.07747 (2017)

25. Young, H.P.: Condorcet’s theory of voting. Am. Polit. Sci. Rev. 82(4), 1231–1244
(1988)

26. Yu, X., Serra, T., Ramalingam, S., Zhe, S.: The combinatorial brain surgeon: prun-
ing weights that cancel one another in neural networks. In: International Confer-
ence on Machine Learning (ICML), pp. 25668–25683 (2022)

https://yann.lecun.com/exdb/mnist
https://doi.org/10.1007/978-3-030-58942-4_27
https://doi.org/10.1007/978-3-030-30048-7_24
https://doi.org/10.1007/978-3-030-30048-7_24
https://doi.org/10.1007/978-3-030-05318-5_2
https://doi.org/10.1007/978-3-030-05318-5_2
http://arxiv.org/abs/1708.07747


Discovering Explicit Scale-Up Criteria
in Crisis Response with Decision Mining

Britt Lukassen, Laura Genga , and Yingqian Zhang(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
{L.Genga,yqzhang}@tue.nl

Abstract. In modern society, incidents such as road incidents or fires,
occur daily, requiring institutions to develop appropriate management
protocols to react quickly. When an incident requires coordination among
different emergency services or it is estimated to have a significant impact
on the population, crisis management processes are used. The overall
aim of crisis management is to provide the right resources to manage the
incident and return to a normal situation as soon as possible. However,
the decision to scale up an incident to a crisis level is often left to the
experience of operational commanders without explicit criteria or guide-
lines. In this research, we propose a framework combining data-driven
decision-mining approaches with implicit knowledge formalization tech-
niques to discover explicit criteria to support decision-makers in crisis
response. We tested our approach in a case study at VRU, the safety
region for the region Utrecht, in The Netherlands. The obtained results
show that the approach has been able to extract criteria acknowledged
by the decision-makers, which is the first step to developing appropriate
guidelines to steer the decisional process of the incident scaling up.

Keywords: Crisis management · Process mining · Machine learning

1 Introduction

Daily, incidents such as road accidents or kitchen fires are reported at the emer-
gency dispatch centres. Based on the nature and gravity of the incident on hand,
emergency services (i.e., disciplines) are dispatched to manage the incident. Dis-
patch centres alert and direct, for instance, the fire brigade, the police, ambu-
lance services, and the municipality, as well as a command and control structure
for incident management. Larger scale command and control structures are dis-
patched when a routine incident evolves into a crisis, i.e., when an incident
potentially leads to a significant impact on the population or when the inci-
dent management needs larger scale co-ordination in a process called Scale-up.
Government institutions are in charge of developing and implementing appro-
priate crisis management processes to guarantee a quick response. The overall
aim of crisis management is to provide the right resources to control the crisis
and return to a normal situation as soon as possible. Crisis response processes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 459–474, 2023.
https://doi.org/10.1007/978-3-031-44505-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_31&domain=pdf
http://orcid.org/0000-0001-8746-8826
http://orcid.org/0000-0002-5073-0787
https://doi.org/10.1007/978-3-031-44505-7_31


460 B. Lukassen et al.

are characterized by being dynamic, highly knowledgeable, and unstructured [8].
Furthermore, there are critical factors such as time and information availability
that must be considered when making decisions in crisis situations [9]. Usually,
the decision to scale up an incident to a crisis level is often left to the experience
of operational commanders without explicit criteria or guidelines. The subjec-
tive and unstructured nature of these decisions poses significant challenges in
the management and the improvement of crisis management processes, which is
a topic of utmost interest from institutions involved in incident management.

This research aims to answer the following question: how to define explicit
criteria to support decision-makers in determining the most appropriate multi-
disciplinary scale-up in crisis management? To address this challenge, we inves-
tigate the feasibility of Decision mining approaches. The goal of this discipline
consists in analyzing data recording past decisions taken by human actors both
to create business rules and to check compliance to business rules and regula-
tions [11]. Previous work has already proved the capabilities of these techniques
to identify data patterns of interest in reaching a certain decision by applying
machine-learning techniques. In order to incorporate implicit knowledge in deci-
sion criteria, not always available in historic data, we also leverage methods for
knowledge acquisition from qualitative research, and we propose a framework
able to keep into account both sources of information in a structured way.

To validate our approach, we carried out a case study at the Veiligheidsregio
Utrecht (VRU), the safety region for the region Utrecht, in The Netherlands.
VRU are responsible for developing and implementing policy plans to deal with
incidents in the region, for collecting relevant information needed to control a
crisis, and for incident response by the fire service. The VRU is interested in
evaluating the decision process leading to a scale-up to different GRIP levels,
where GRIP is the abbreviation for Coordinated Regional Incident Management
Procedure. GRIP links the recommended level of scale-up to characteristics of the
incident. However, decisions for scale-up in each specific case are made by humans
and can therefore also be based on subjective criteria and human judgment.
Results obtained by applying the proposed framework at VRU show that the
proposed method was able to obtain decision models with good accuracy and
highlighting criteria recognized and validated by the decision-makers at VRU.
Furthermore, different decision points in the process have been identified, each of
them with its specific set of criteria, to provide tailored support to the decision-
makers.

The rest of the manuscript is organized as follows. Section 2 illustrates the
proposed approach; Sect. 3 describes the case study; Sect. 4 discusses the data
gathering; Sect. 5 illustrates the analysis of the VRU scale-up process; Sect. 6 dis-
cusses the application of machine learning techniques to analyze decision points;
Sect. 7 provides an overview of related work; finally, Sect. 8 draws some conclu-
sions and delineates future work.



Discovering Explicit Scale-Up Criteria in Crisis Response 461

2 Methodology

The proposed approach involves three main phases. The first one is the business
and data understanding, which requires an exploration of all the steps involved
in multidisciplinary incident managemnt scale-up and the gathering and prepro-
cessing of the incident data. Note that determining criteria relevant to decision-
makers requires not only knowledge of past decisions but also an insight into
why these decisions were made; namely, we are interested in which criteria are
important to different decision-makers, for which we need to collect appropriate
implicit knowledge. In our approach, we have chosen to use a questionnaire to
gather this knowledge, to consider the opinion of multiple decision-makers and
to grasp a general view of their considerations from different perspectives. The
output of the first phase corresponds to the results of the questionnaire and to
a so-called event log storing all the information related to past instances of the
incident management process. This log is used as input in the second phase of
the methodology, i.e., the decision mining phase. Here we refer to the method-
ology proposed by Rozinat et al. [15], which in turn, involves two steps. The
first one is the process discovery step, whose goal is to discover the actual mul-
tidisciplinary scale-up process. Understanding the process is a starting point for
understanding the decision that has to be made. In our experiments, we com-
pared the results obtained by different state-of-the-art algorithms to select the
process model that best describes the process under analysis. For the selected
process model, the decision points are identified, which are then further analyzed
with Machine-Learning (ML) algorithms to identify data patterns for different
decisions. The input features are designed based on the criteria highlighted by
decision-makers, with the help of the available data gathered in previous steps.
Finally, in the evaluation phase, explainability techniques are used to determine
the most important features for the tested predictive models, which are then
compared to the implicit knowledge insights of decision-makers. The results of
this analysis represent the first step to drawing tailored, efficient guidelines to
guide the decisional process of the human actors in the process.

3 Crisis Management Process at VRU

The crisis management process always starts with an incident notification at the
emergency dispatch centre. The call is directed to a corresponding dispatcher,
which assigns vehicles accordingly. While some incidents can be handled by the
disciplines at the location, others require further coordination, for which several
scale-up options are available, hereafter referred to as GRIP levels.

For each GRIP level, there is a designated operational team. The first two
levels involve mostly stakeholders working at the operational level, while levels
3 and 4 involve actors from the organizational level, such as the municipality.
Currently, each GRIP level includes a standard operational team that is alarmed.
However, each incident has specific characteristics that determine who could be
meaningful to include in the procedure.



462 B. Lukassen et al.

As a result, decision-makers have several decision options to evaluate prop-
erly. They have to judge every situation with specific characteristics correctly
and assign the most appropriate people, that have value to resolve the incident.
For scale-up to the operational level (GRIP 1 and GRIP 2) the decision-makers
are mostly operational commanders, which are often experts in their discipline
but may not adequately considering the needs of other disciplines when making a
decision. In addition, operators tend to lose themselves in the heat of the incident,
losing the ability to zoom out. For scale-up to the organizational level (GRIP 3
and GRIP 4) the decision-makers are not directly involved at the incident loca-
tion, but they are accountable for the operational execution and decisions. For
scale-up to GRIP 3, this is the mayor of the municipality corresponding to the
incident, and for scale-up to GRIP 4 this is the chairman of the VRU. These scale-
ups only occurr when an incident has long-term effects. Therefore, decisions for
organizational scale-up are made differently than decisions to operational scale-
up, considering the impact on the specific municipality or region. Challenging is
that they are not directly involved in the incident but are informed when needed.

4 Data Gathering

4.1 Historic Data

We extracted historic data sets which stored diverse information about the inci-
dents and the deployed vehicles. In order to apply process discovery, an event log
has to be generated by integrating the different data sets and creating activities
based on the timestamps in the data. In an event log, each row represents a new
activity with a timestamp. In our case, Case ID is the Incident number. One
incident (aka, one case) can have multiple activities. From the available data
sets, activities have been labeled by exploiting domain knowledge and combin-
ing it with the timestamps of an incident number. Besides, as many attributes
as possible are added to represent the incident context in the event log.

According to the research scope, the aim is to analyze the decisions in mul-
tidisciplinary incidents. Therefore a selection is made of which incidents include
the assistance of the fire brigade, police, and medical team. An excerpt of the
created event log is shown in Table 1. The following attributes are considered
in the event log: Classification criteria, Priority, Municipality, City, Object inci-
dent, Object report, Type location, Intervention type. The integration results in
an event log with 18,349 activities and 6,866 unique multidisciplinary incidents.

4.2 Implicit Knowledge

Questionnaire Setup. The aim of this questionnaire is to gain insight into the
criteria that are important to decision-makers. The group of decision-makers
contacted for the questionnaire involves all people in position to scale-up to
GRIP 1 and/or GRIP 2. In total approximately 150 people have been contacted
to complete the questionnaire. We chose to use three real past crisis situations,
asking the decision makers to make a decision on scaling up. One situation



Discovering Explicit Scale-Up Criteria in Crisis Response 463

Table 1. Example event log

Incident Number Timestamp Activity textbfAttributes

201513899 2015–01–15 17:10:00 Start Incident ...

201513899 2015–01–15 17:10:00 Partner organization ...

201513899 2015–01–15 17:23:00 OvD Fire Brigade ...

201513899 2015–01–15 17:37:00 GRIP 1 ...

201513951 2015–01–15 17:40:00 Start Incident ...

201513899 2015–01–15 17:55:00 IM ...

201513951 2015–01–15 18:54:00 OvD Fire Brigade

requires extensive coordination but no GRIP. Another situation clearly needs
scale-up to GRIP. The last situation is doubtful since it is not a regular GRIP
but still requires some of the aspects of GRIP. All of these crisis situations have
been retrieved from “Lessen uit crises en mini crises” [4,5,24] and discussed with
the experts from the crisis management department.

In the questionnaire, each situation consists of two parts representing differ-
ent moments in time. The first part consists of incident notification information
followed by a set of questions. The first question asked to the decision-maker if a
multidisciplinary scale-up is appropriate with the current information. Further-
more, an explanatory statement for this decision and possible game changers, are
asked. Since more information is gathered during the incident that might change
the decision, we included a second part as well. The second part starts by provid-
ing complementary information about the incident, gathered by the disciplines
arrived at the incident location. The first question of the first part is repeated,
to see if the judgement of the decision-makers changes with the additional inci-
dent information. In addition, the follow-up question asks the decision-maker
to select points of attention from the situation description. In this question,
the decision-maker has the possibility to summarize which criteria they think
they consider. In the next question, criteria are provided based on themes in
National Control Room System (LCMS), including Incident, Risks and Safety,
Meteo, Victims/population, Environmental analysis, Communication, Services
involved, and Missing information. These themes are covered and divided into
several criteria each. The decision-makers have the possibility to check as many
of the criteria they consider for this specific incident situation.

Questionnaire Results. The questionnaire was sent by email to approximately
150 people of which 71 responded. Figure 1 shows the count of the mentioned cri-
teria extracted by the answers. The figure suggests that all criteria are considered
and that their use heavily depends on the situation. The criteria found impor-
tant by decision-makers in all three situations are: ‘Incident location’, ‘Incident
size’, ‘Incident type’, ‘(number of) injured and injury classification’, ‘Sensitivity
incident on social media’ and ‘Own disciplines involved’. These all have more
than half of the votes in all three situations. Some other criteria that have an



464 B. Lukassen et al.

higher than average score are: ‘Expected duration incident’, ‘Possible effects on
people/material’, ‘Safe/unsafe area’, ‘Involved partners’ and ‘Duration of inci-
dent unknown’. These criteria are discussed with the VRU. They recognize these
insights from practice. It is worth noting that these criteria are quite general and
can be applied also to different crises.

Fig. 1. Considered criteria by decision-makers

Analyzing the answers related to the criteria proposed by the decision-
makers, we found that most of the answers were in line with the listed criteria,
except for some answers related to specific incidents. We decided not to discard
these criteria because of the narrow range of situations they apply to.



Discovering Explicit Scale-Up Criteria in Crisis Response 465

5 Process Discovery

In this section, we discuss the results obtained by process discovery techniques,
from which we select the model that best fits the event log created at the previous
step. This model will then be used to identify the decision points.

Before extracting the process model, we applied some pre-processing tech-
niques to remove irrelevant data and outliers commonly used in process mining
literature [7]. First we applied selection filters to remove traces showing outlier
or noisy behaviours. For instance, we removed all traces where the first event was
not ‘Start incident’. Analyzing the event log with the domain experts, we found
out that this was mostly due to recording errors. We also applied aggregation
filters to rename specialized events and group them to higher-level groups. In
particular, the events “OVD B”,“OVD P”, and “OVD G” are renamed as one
general event “OVD” (note that “OVD” stands for “Duty officer”). The reason
is that all OVDs are there for the same purpose, to coordinate their units and
ensure collaboration with other disciplines.

Once the event log has been cleaned, we need to select the process discovery
algorithm to use. We investigated the results obtained by two miners frequently
used in literature, i.e., the heuristic miner [23] and the inductive miner [10].

Both the miners have been fitted on our event log using the package PM4Py1.
The discovered models are evaluated for their performance based on four well-
known metrics within process mining; fitness, precision, simplicity, and general-
ization. Fitness quantifies how much of the observed behavior in the event log
is captured by the process model [22]. Precision quantifies how much behavior
exists in the process model that was not observed in the event log [22]. Simplicity
quantifies the complexity of the model [22]. Generalization quantifies how well
the model explains unobserved system behaviour [22].

Several approaches have been proposed to quantify these dimensions. In this
research, we used fitness, and precision metrics based on alignments [1], while
we used token-based reply [16] for generalization. These are metrics commonly
used in literature and available in the python implementation PM4Py.

Table 2 shows the results obtained by applying the different miners on the
event log. Overall, the inductive miner seems the best in balancing all four
metrics. Therefore, the process model found with the inductive miner is chosen
as the best-performing model to continue with machine learning. Note that the
process model has also been validated with experts from VRU. Figure 2 shows
the model obtained by the inductive miner, where we highlighted the decision
points and named them with numbers. The flow visualized in this process model
starts always with ‘Start incident’. Next, the first decision point is identified with
1. At this point, a decision is made between assigning a partner organization
(event: ‘Instantie assigned’) or not (invisible activity). Whether or not a partner
is assigned, after these activities the flow merges again in a new decision point,
identified with 2. Two choices are possible, with both an invisible activity as
the first event. The lower edge goes directly to the event ‘End incident’; in other

1 https://pm4py.fit.fraunhofer.de/.

https://pm4py.fit.fraunhofer.de/


466 B. Lukassen et al.

words, no scale-up is necessary. The other choice directly results in a new decision
point, namely decision point 3. At this point, there are four outgoing arcs, all
defining different choices in multidisciplinary scale-up. These four possible events
are ‘IM’, ‘CAC’, ‘GRIP 1’ and ‘OVD’. Respectively the second, third and fourth
choices lead to the next decision point, number 4. While the event IM leads
directly to decision point 5. From decision point 4, the choice for scale-up to
GRIP 2 can be made. After which, this flow also enters decision point 5. Decision
point 5 is the final decision point in this process model, which includes a loop
back to decision point 3. The other option from decision point 5 is to enter the
event ‘End incident’, after which the process is completed.

Fig. 2. Process model with inductive miner

The five identified decision points have been discussed with the VRU, accord-
ing to which decision point 2 and decision point 5 are the most interesting. For
the second decision point, the initial choice has two options, entering multidis-
ciplinary scale up or ‘routine’ incident handling. Notice that decision point 3
follows immediately after the invisible activity of decision point 2. For VRU,
this point is of interest because they are interested in what the difference is
between incidents that require scale-up and those incidents that do not need
scale-up. In decision point 5, there are two outgoing arcs with invisible activi-
ties, representing no further scale-up required and a loop back to decision point
3. The presence of a loop makes this decision point of special interest for experts
at VRU. In particular, they would like to determine if there are differences in
decisions made for process instances which executed the loop one time versus
those executing the loop multiple times.

6 Decision Criteria Extraction

In Sect. 5, decision points 2 and decision point 5 are identified as interesting. Both
decision points have two outgoing arcs followed by invisible activities. Therefore,
we decided to model the decision mining problem for these decision points as
binary classification problems. We labelled the invisible activities using domain
knowledge. The lower arrow of Fig. 2 leaving decision point 2 does not include
any activities until the ‘End incident’. Therefore, this invisible activity can be
labeled as a ‘routine incident’. The upper arrow in Fig. 2 towards decision point
3, is the connection with all events that are defined as multidisciplinary scale-up.
Therefore, this activity could be named ‘Multi scale up required’. These labels
are used for the classification of decision point 2.



Discovering Explicit Scale-Up Criteria in Crisis Response 467

Table 2. Model performance

Fitness Precision Simplicity Generalization

Heuristic Miner 0.91 0.99 0.51 0.80

Inductive Miner 1 0.83 0.65 0.94

For decision point 5, the upper arrow is a loop back to decision point 3,
which identifies a request for additional multidisciplinary scale-up. Therefore,
this invisible activity could be named ‘Additional multi-scale up’. The lower arc
leaving decision point 5 leaves towards ‘End incident’. Therefore, the invisible
activity can be named ‘No additional multi scale up’. These labels are used for
the classification of decision point 5.

To leverage information related to the activities executed before the decision
point, we need to generate a set of prefixes for each decision point, as com-
monly done in predictive process monitoring literature [20]. A prefix is a sub-
trace involving all activities prior to a given position in the process execution.
In our case, this corresponds to each decision point. In particular, we created
three buckets, each involving prefixes corresponding to activities executed before
the corresponding decision point. Note that we created two buckets for deci-
sion point 5, one involving prefixes with a single loop execution and the other
one involving prefixes with multiple loop executions. For each bucket, a sepa-
rate model is trained. Before the modelling start, the data need to be prepared.
First, the target has to be defined. The first bucket is based on decision point 2;
therefore, the labels ‘Multi scale up required’ and ‘Routine incident’ are possible
targets. Bucket 2 and bucket 3 are based on decision point 5, with the labels
‘Additional multi scale up’ and ‘No additional multi scale up’. From now on
these buckets are referred to as decision moments, respectively decision moment
1, decision moment 2 and decision moment 3. Notice that for decision moment
1 the label ‘Multi scale up required’ occurs approximately for 33 % of the data
in this data set. This distribution is similar for decision moment 3. While for
decision moment 2 the imbalance is even larger. Here the label ‘Additional multi
scale up’ occurs by approximately 15 % of the data in this bucket. Table 3 shows
the distribution of the labels for different decision moments.

Table 3. Distribution of target labels in the three decision moments

Multi scale
up required //
Additional multi
scale up

Routine incident //
No additional multi
scale up

Decision moment 1 2334 4381

Decision moment 2 277 1671

Decision moment 3 222 463



468 B. Lukassen et al.

Secondly, new features are created based on the criteria found in the ques-
tionnaire. The attributes already in the data set are explored to find attributes
describing these criteria, if possible. For example, for the criterion ‘Incident type’
the classification criteria are used. When no immediate matching is possible, new
features are created. For example, for the criterion ‘Own disciplines involved’, a
feature is created that counts the number of deployed vehicles at that moment.

Table 4. Summary of performance metrics for decision moment 1.

Precision Recall F1 macro F1 weighted

Decision tree 0.977 0.978 0.968 0.980

Random forest 0.975 0.969 0.972 0.975

Finally, the selected features are encoded to be given as input to the classifi-
cation model. We use one-hot encoding for categorical features, while we need an
ad-hoc encoding to represent the prefix. Since the prefixes in the different deci-
sion moments are not all the same length, we chose to use aggregation encoding
to transform the Prefix. Aggregation encoding means that for each process activ-
ity, a feature is created, which represents the number of times this activity has
appeared in the prefix. After the encoding step, there are 161 features in the
train data of decision moment 1, 119 features in the second decision moment,
and 92 features for the third decision moment.

As classifiers, we used the decision tree and the random forest, commonly
used in decision-mining approaches. For the performance evaluation, we used
the well-known metrics such as accuracy and F1 score.

6.1 Results

We used 70% of the samples for training and 30% for testing. Because the data is
imbalanced it is chosen to use a stratified split. Besides, the samples are randomly
distributed over the train and test set. Each decision moment is a separate data
set. For each of these data sets, a decision tree model and random forest model
are trained on the training data. The parameters of these models are optimized
with a grid search, using 5-fold stratified cross-validation. With the grid search,
all possible combinations of the provided parameter settings are fitted. For both
models the class weight parameter ‘balanced’ is used to compensate for the class
imbalance. The parameter ‘balanced’ adjusts the weights inversely proportional
to the class frequencies. The other parameters optimized for both models are the
maximum depth of the tree(s) and the minimal samples for each leaf. For the
decision tree, the max depth is between 2 and 10, to ensure that it is possible to
interpret the tree. The scoring used in the grid search is the weighted F1 score.

For each decision moment, we compared the performance of the classifiers
and we assessed the importance of each feature to determine differences and sim-
ilarities with the criteria defined by the human users. For the sake of space, below



Discovering Explicit Scale-Up Criteria in Crisis Response 469

we only report the results obtained for the first decision moment. An overview
of all performance metrics on the test set calculated for decision moment 1 is
shown in Table 4. Both models achieved a good performance, with a weighted f1
score of 0.980 for the decision tree model and 0.975 for the random forest model.

The model explainability of the decision tree model and random forest model
are examined next. The SHAP explainer is applied to both models. The summary
plot shown in 3 shows the most important features for both models with their
impact on multi scale up required. The upper two features are the same for both
models. Overall, the decision tree seems to consider around seven features, while
the random forest model considers many more. This is due to the bagging of the
models in the random forest where other features are selected to build a tree each
time. For all binary features, 1 is red and 0 is blue. So if there are only red values
on the right side, the value 1 has a positive impact on multi classification and
the other way around. For the continuous values dependency plots are shown.

Fig. 3. SHAP summary plots for Decision moment 1

In Fig. 4 and 5, the dependency plots for the features Current duration and
Deployed vehicles can be found. In these plots the feature value is shown on
the x-axis and the impact on the y-axis. For the Current duration both models
have a similar plot, with positive SHAP values for short current duration and
negative SHAP values for longer durations. For the Deployed vehicles, for the
random forest model it can be seen that for more than zero vehicles the impact
on the prediction for the multi-scale up required is negative or very low. For the
decision tree model, this is true only between one and four deployed vehicles.

We analyzed in the same way the models extracted with the other buckets,
and we compared the most important features in the different decision points
with the questionnaire results and evaluated the results together with experts
from VRU. For each feature, their meaning in multidisciplinary scale-up is of
interest. In the following, for the sake of space, we only report few examples.



470 B. Lukassen et al.

Fig. 4. SHAP dependency plots for Current duration of decision moment 1

Fig. 5. SHAP dependency plots for number of deployed vehicles of decision moment 1

The first feature discussed is the Current duration of an incident. This can be
linked to the criteria ‘Expected duration’ and ‘Duration of incident unknown’
in the questionnaire. According to the model, a short current duration has a
positive impact on scale-up in all decision points. From the perspective of the
VRU, the suggestion is made, that these incidents have underlying reasons for
scale-up soon. Determining these reasons requires further investigation.

The second feature is Deployed vehicles at the incident. This feature can
be linked with the criteria ‘Own disciplines involved’ from the questionnaire.
If there are more vehicles deployed by the incident, this results in more people
that have to collaborate, which also require adequate coordination. The feature
Deployed vehicles is mentioned as the second most important in all of the models
and decision points. Later in the process model, the relevant number of deployed
vehicles has a positive impact on predicting multidisciplinary scale-up increases.
This is logical since if more vehicles are assigned to the incident over time it is
reasonable that a scale-up is required.



Discovering Explicit Scale-Up Criteria in Crisis Response 471

The third and fourth feature identified are Classification criteria 1 and Clas-
sification criteria 2. Both features relate to the criterion ‘incident type’ men-
tioned in the questionnaire. Since these are categorical features, we look at the
specific categories. For example, we observed that in the case of the category
‘Accident’ an OVD Fire brigade is often alarmed together with a rescue vehi-
cle. However, in general, that is all scale-up required for a normal accident.
Therefore, this classification criterion has a positive impact on predicting mul-
tidisciplinary scale-up in the first decision moment but a negative in the second
decision moment. The category ‘Service’ is often combined with Classification
criteria 2 Police or Fire brigade. This incident type refers to alarming for assis-
tance of that discipline. The category ‘Fire’ is often related to Classification
criteria 2 ‘Building’. This category has a positive impact on ‘Additional multi-
disciplinary scale up’. Possibly because a fire in a building might result in many
different tasks for all disciplines.

Finally, the feature prefix is discussed. This feature describes the previous
executed activities for this incident. As can be expected, the prefix is mainly
relevant in bucket 3 because of the loop in this decision decision moment results
in repetition of incident in this point. These prefixes are found important in the
random forest model more than the decision tree model. This feature is logical in
the context of the incident because the previous taken actions do indicate what
would be a valuable next step to handle the incident.

To conclude, the features Deployed vehicles and Classification criteria 1 and
2 are most recognized by the VRU. The Prefix is intuitive for the VRU. Overall,
the most important features found by the random forest model are easier to
explain in the context of the incidents. Therefore, the random forest model is
selected as best overall performing model in this research.

7 Related Work

Crisis response is a critical phase in crisis management to protect properties and
save lives [17]. The decisions in such situations are however often challenging
for human actors [17]. To address this issue, information systems supporting
crisis response have been extensively explored. However, crisis response pro-
cesses are in general very unpredictable and complex processes and most of the
available systems are not able to deal with this complexity [9] [2] [3]. Previous
research [17,18] identified several open challenges for decision support systems
for crisis management, pointing out that intelligent decision-support in crisis
management has shown some promising results in dealing with these challenges.
The authors of [21] show that machine learning methods are useful in iden-
tifying behaviors in assisting decision making in a highly dynamic ambulance
dispatching problem.

Decision mining systems have been developed to identify decisions in com-
plex processes, which can be grouped in two categories [11]. The first one is
Decision-annotated mining, and it is focused on mining decision points from
business processes [15]. Instead, decision-aware is about taking into account



472 B. Lukassen et al.

implicit data involved in the decision-making process [14]. In the following, we
focus on the first group, which is closer to our work.

The seminal approach for decision mining has been introduced by Rozinat
et al. [15]. First, a process model is extracted from an event log. Then, decision
points are identified in the model and machine learning techniques are applied
to learn patterns leading to one decision or the other. Several extensions of this
approach have been proposed. De Leoni et al. [12] proposed to combine invariant
discovery techniques embodied in the Daikon system with decision tree learning
techniques. Daikon is a dynamic analysis tool for deriving probable value-based
invariants from a collection of execution traces [6]. It yields a set of invariants
with sufficient statistical support. To determine which invariants should be com-
bined into branching conditions, they use the notion of information gain from
decision tree learning. This technique allows to detect a wide spectrum of branch-
ing conditions from business process executions logs with an increased level of
complexity. The paper by [13] addresses how existing decision mining meth-
ods focus on discovering mutually-exclusive rules, assuming fully deterministic
decision-making and knowledge about all influencing factors. However, decision-
makers often have to work with incomplete information. The paper proposes
a technique that discovers overlapping rules, to achieve a balance between the
precision of mutually-exclusive rules and fitness of overlapping ones. These rules
are obtained by applying a second decision tree on rules that are misclassified
after applying standard decision mining approaches. These new rules are used
in disjunction with the original rules yielding overlapping rules.

8 Conclusion and Future Work

In this paper, we introduced a framework to support decisional processes related
to crisis management. In contrast with previous approaches, our framework com-
bines data-driven decision-mining techniques with implicit knowledge gathered
with qualitative analysis, which proved to be a valuable addition to capturing
important criteria not available in historical data or not easy to interpret with-
out domain knowledge. We validated our approach via a case study at the VRU
in Utrecht. The obtained results show the capability of the approach of extract-
ing relevant decision criteria employed in different moment of the process, which
have been validated by the process expert. These criteria are a valuable starting
point to develop standard guidelines that can support future instances of the
incident management process. In future work, we plan to extend our work in
several directions. For instance, we intend to move from a binary classification
problem (i.e., scale-up vs no scale-up) to a multi-classification problem where the
kind of scaling-up is considered. We also intend to explore alternative decision-
mining approaches to compare benefits and limitations when applied to crisis
management process. Furthermore, we intend to explore the use of subprocess
mining approaches [19] to discover decision points in place of traditional dis-
covery techniques, to highlight behaviors that may remain hidden in end-to-end
process models for unstructured processes.



Discovering Explicit Scale-Up Criteria in Crisis Response 473

Acknowledgement. The authors would like to thank the Veiligheidsregio Utrecht
(VRU) for collaborating on this project. A special thanks to Michiel Rhoen and Arian
van Donselaar for their support and providing invaluable insights into the problem.

References

1. Van der Aalst, W.: Process Mining?: Discovery, Conformance and Enhancement
of Business Processes. Springer, Germany (2011). https://doi.org/10.1007/978-3-
642-19345-3

2. Bennet, B.: Effective emergency management: a closer look at the incident com-
mand system. Prof. Saf. 56(11), 28–37 (2011)

3. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29–57 (2015)

4. van Duin, M., Wijkhuijs, V.: Instituut Fysieke Veiligheid, Boom bestuurskunde
(2017)

5. van Duin, M., Wijkhuijs, V., Jong, W.: Instituut Fysieke Veiligheid, Boom bestu-
urskunde (2018)

6. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Eng.
27(2), 99–123 (2001)

7. Fahland, D.: Extracting and pre-processing event logs (2021)
8. Herrera, M.P.R., Dı́az, J.S.: Improving emergency response through business pro-

cess, case management, and decision models. In: ISCRAM (2019)
9. Kushnareva, E., Rychkova, I., Le Grand, B.: Modeling business processes for auto-

mated crisis management support: lessons learned. In: 2015 IEEE 9th International
Conference on Research Challenges in Information Science (RCIS), pp. 388–399.
IEEE (2015)

10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

11. Leewis, S., Smit, K., Zoet, M.: Putting decision mining into context: a literature
study. In: Agrifoglio, R., Lamboglia, R., Mancini, D., Ricciardi, F. (eds.) Digi-
tal Business Transformation. LNISO, vol. 38, pp. 31–46. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-47355-6 3

12. de Leoni, M., Dumas, M., Garćıa-Bañuelos, L.: Discovering branching conditions
from business process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE
2013. LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37057-1 9

13. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision min-
ing revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M.,
Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39696-5 23

14. Petrusel, R., Vanderfeesten, I., Dolean, C.C., Mican, D.: Making decision process
knowledge explicit using the decision data model. In: Abramowicz, W. (ed.) BIS
2011. LNBIP, vol. 87, pp. 172–184. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21863-7 15

15. Rozinat, A., der Aals, W.V.: Decision mining in business processes. BETA publi-
catie : working papers, Technische Universiteit Eindhoven (2006)

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-030-47355-6_3
https://doi.org/10.1007/978-3-642-37057-1_9
https://doi.org/10.1007/978-3-642-37057-1_9
https://doi.org/10.1007/978-3-319-39696-5_23
https://doi.org/10.1007/978-3-642-21863-7_15
https://doi.org/10.1007/978-3-642-21863-7_15


474 B. Lukassen et al.

16. Rozinat, A., Van der Aalst, W.M.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

17. Shahrah, A.Y., Al-Mashari, M.A.: Emergency response systems: research directions
and current challenges. In: Proceedings of the Second International Conference on
Internet of things, Data and Cloud Computing, pp. 1–6 (2017)

18. Slam, N., Wang, W., Xue, G., Wang, P.: A framework with reasoning capabilities
for crisis response decision-support systems. Eng. Appl. Artif. Intell. 46, 346–353
(2015)

19. Tax, N., Genga, L., Zannone, N.: On the use of hierarchical subtrace mining for
efficient local process model mining. In: SIMPDA, pp. 8–22 (2017)

20. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predic-
tive process monitoring: review and benchmark. ACM Trans. Knowl. Disc. Data
(TKDD) 13(2), 1–57 (2019)

21. Theeuwes, N., van Houtum, G., Zhang, Y.: Improving ambulance dispatching with
machine learning and simulation. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano,
J. (eds.) Machine Learning and Knowledge Discovery in Databases. LNCS, pp.
302–318. Springer, Germany (2021)

22. Van Dongen, B., Carmona, J., Chatain, T.: Alignment-based metrics in confor-
mance checking (summary). In: Fachgruppentreffen der GI-Fachgruppe Entwick-
lungsmethoden für Informationssysteme und deren Anwendung, pp. 87–90 (2016)

23. Weijters, A.J.M.M., van der Aalst, W.M., de Medeiros, A.K.A.: Process mining
with the heuristicsminer algorithm (2006)

24. Wijkhuijs, V., van Duin, M.: Instituut Fysieke Veiligheid, Boom bestuurskunde
(2020)



Job Shop Scheduling via Deep
Reinforcement Learning: A Sequence

to Sequence Approach

Giovanni Bonetta(B) , Davide Zago , Rossella Cancelliere ,
and Andrea Grosso

Department of Computer Science, University of Turin, 10149 Turin, Italy
{giovanni.bonetta,rossella.cancelliere,andrea.grosso}@unito.it,

zago@di.unito.it

Abstract. Job scheduling is a well-known Combinatorial Optimization
problem with endless applications. Well planned schedules bring many
benefits in the context of automated systems: among others, they limit
production costs and waste. Nevertheless, the NP-hardness of this prob-
lem makes it essential to use heuristics whose design is difficult, requires
specialized knowledge and often produces methods tailored to the spe-
cific task. This paper presents an original end-to-end Deep Reinforcement
Learning approach to scheduling that automatically learns dispatching
rules. Our technique is inspired by natural language encoder-decoder
models for sequence processing and has never been used, to the best
of our knowledge, for scheduling purposes. We applied and tested our
method in particular to some benchmark instances of Job Shop Problem,
but this technique is general enough to be potentially used to tackle other
different optimal job scheduling tasks with minimal intervention. Results
demonstrate that we outperform many classical approaches exploiting
priority dispatching rules and show competitive results on state-of-the-
art Deep Reinforcement Learning ones.

Keywords: Optimal Job Scheduling · Deep Reinforcement Learning ·
Combinatorial Optimization · Sequence to Sequence

1 Introduction

Job Shop Problem (JSP) is a well-known Combinatorial Optimization problem
fundamental in various automated systems applications such as manufacturing,
logistics, vehicle routing, telecommunication industry, etc. In short, some jobs
with predefined processing constraints have to be assigned to a set of heteroge-
neous machines, to achieve the desired objective (e.g. minimizing the flowtime).
Due to its NP-hardness, finding exact solutions to the JSP is often impractical
(or impossible, in many real-world scenarios), but many tasks can be effectively
addressed through heuristics [7,9] or approximate methods [11], that represent

G. Bonetta and D. Zago—Equal contribution.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 475–490, 2023.
https://doi.org/10.1007/978-3-031-44505-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_32&domain=pdf
http://orcid.org/0000-0003-4498-1026
http://orcid.org/0000-0003-1112-3543
http://orcid.org/0000-0002-9120-3799
http://orcid.org/0000-0002-9926-2443
https://doi.org/10.1007/978-3-031-44505-7_32


476 G. Bonetta et al.

the most suitable choice for large-scale problems, providing near optimal solu-
tions with acceptable computational times.

Heuristic algorithms are classified as constructive or as local search methods.
Constructive heuristics assemble the solution with an incremental process: at
each step, the choice of the next element in the solution is made by examining
some local information of the problem, and once one variable has been fixed it’s
not reconsidered. Priority Dispatching Rules (PDRs) [9] belong to the category of
constructive approximate methods: each operation is allocated in a dispatching
sequence following a monotonic utility measure.

The use of dispatching rules emerged very early in the scheduling area, and it is
well established by now. Most dispatching rules are known to be less than a match
formodern, sophisticatedheuristic optimization techniques (e.g. simulated anneal-
ing, tabu search, etc.); despite this, they are still commonly used in many practical
contexts because they are considered quick, flexible and adaptable to many situa-
tions. Besides, PDRs arewidely used in real-world scheduling systems because they
are intuitive and easy to implement. As a result, optimization literature is rich of
PDR methods for the JSP [16], even if it is well known that designing an effective
PDR is time-consuming and requires a substantial domain knowledge.

A possible solution is the automation of the process of designing dispatch-
ing rules: recent works on learning algorithms for Combinatorial Optimization
(see [3] for a survey) show that Deep Reinforcement Learning (RL) could be an
ideal technique for this purpose, and in particular that it can be considered a
potential breakthrough in the construction of heuristic methods for the JSP [4].
Reinforcement Learning [18] is a subfield of Machine Learning (ML) that expe-
rienced a great development in recent years, mainly thanks to the contribution
of Deep Learning.

The main idea of this paper is to treat the JSP as a sequence to sequence
process: inspired by deep learning natural language models we propose a Deep
Reinforcement Learning approach that, exploiting the encoder-decoder archi-
tecture typical of language, automatically learns robust dispatching rules. This
leads us to consider PDRs as a reasonable match for deep RL-based optimization
techniques that, it should be remembered, despite of the huge amount of works
appearing on the subject, are still in their infancy.

Our method is able to learn dispatching rules with higher performance than
traditional ones, e.g. Shortest Processing Time (SPT), Most Work Remaining
(MWKR). On top of that, our approach shows competitive results against state-
of-the-art Deep RL methods when tested on small and medium sized JSP bench-
mark instances. Besides, it shows a high degree of flexibility: Flow Shop Problem
(FSP) instances can also be solved, and minimal modifications to the model
would allow solving Open Shop Problem (OSP).

Since the model requires sequences as inputs and outputs we design an appro-
priate, yet compact and easily interpretable encoding for JSP instances and
solutions. Besides, thanks to a tailored masking procedure, the model outputs
a permutation of job operations (virtually a priority list) that respects prece-
dence constraints and can be mapped to a schedule, i.e. the association of each
operation to a specific starting time.



Job Shop Scheduling via Deep Reinforcement Learning 477

The rest of this paper is organized as follows: Sect. 2 contains an overview
of related works concerning neural and Deep Reinforcement Learning meth-
ods for Combinatorial Optimization (CO). Section 3 provides the definition
of Markov Decision Process (MDP) and the theoretical foundations of our
model. Section 4 introduces the mathematical notation which formalizes the JSP.
Section 5 describes our technique for sequence encoding, the neural architecture
used and the proposed masking mechanism, the experimentation details and the
results obtained.

2 Related Works

Before Deep RL gained the popularity it has today, many ML-based approaches
have been applied to CO (see [17] for an in-depth overview), such as assignment
problems, cutting stock and bin packing problems, knapsack problems, graph
problems, shortest path problems, scheduling problems, vehicle routing prob-
lems and the Travelling Salesman Problem (TSP). In the last decade, Natural
Language Processing research inspired the formulation of very effective mod-
els such as the Pointer Networks [21], a deep architecture which builds upon
recurrent neural networks. These innovative models have the ability to tackle
problems where the number of output tokens varies with the input, a feature
that characterizes also many CO problems and, exploited for solving the TSP,
showed interesting results and great potential.

One of the first attempts of applying the results of Vinyals et al. [21] is the
work by Bello et al. [2], which successfully addresses the TSP and the Knapsack
Problem (KP) in the context of Markov Decision Processes. It introduces active
search, i.e. an RL-based technique that starting from a random (or pre-trained)
policy iteratively optimizes the parameters on a single test instance. Deudon
et al. [5] and Kool et al. [12] independently proposed a model inspired by the
transformer architecture from Vaswani et al. [20] for solving the TSP. More
specifically, the proposed architecture is made of an attention-based encoder in
combination with a Pointer Network decoder.

The attempt to apply Deep RL to scheduling, and in particular to the JSP, is
a phenomenon of growing research interest in recent years. We remand to Sect. 3
and Sect. 4 for all definitions concerning MDPs and the JSP. Waschneck et al.,
[22] present one of the first relevant works: in the context of MDPs each machine
of the JSP is considered as an agent. The resulting multi-agent system is trained
with Deep Q-Network (DQN) and, despite not showing higher performance with
respect to other heuristics, this model obtains expert-level results. A similar
multi-agent method is proposed by Liu et al. [14], where training is based on Deep
Deterministic Policy Gradient (DDPG) algorithm. Their approach succeeds in
reaching higher performance with respect to some dispatching rules.

The approach from Lin et al. [13] assigns a different dispatching rule to
each machine. After the training, done using a multi-class DQN, their method
performs better that individual dispatching rules, but is far from being optimal.

Another interesting approach focuses on the disjunctive graph representa-
tion of the JSP. Zhang et al. [24] use a Graph Neural Network to map the states



478 G. Bonetta et al.

into an embedding space, followed by a Multi-Layer Perceptron which provides
a probability distribution over the possible actions. This method obtains com-
petitive performance and can be easily scaled to larger instances. We chose to
compare our proposed approach to this work since it is, at the best of our knowl-
edge, the best performing Deep RL approach to the JSP.

Han and Yang’s work [8] presents a technique which, differently from all
other summarised here, utilizes a Convolutional Neural Network on images
for encoding the state of the problem and operates as a state-action function
approximator. The images, which are produced using the disjunctive graph, have
three channels representing the features: processing time, current schedule, and
machine availability. The action space corresponds to different dispatching rules,
whereas the reward function highlights machine utilization.

3 Mathematical Foundations

RL substantially differs from other ML paradigms since it’s concerned with
how an agent learns to act in an environment: agents’ behavior is optimized
through a training phase, requiring the definition of a Markov Decision Pro-
cess [1], focused on the maximization of a cumulative expected reward collected
through a sequence of actions.

An MDP is a mathematical framework used to formalize a general decision
making process involving a single agent acting in an environment. It is defined
by a tuple M = (S,A,R, T, γ,H) where:

– S - state space.
It is the set of all the possible representations s of the environment and of
the agent’s internal state at a given time.

– A - action space.
It is the set of all the possible actions a the agent can perform.

– R - reward function R : S × A × S → R.
It is the reward given to the agent after doing action a in state s and landing
in state s′.

– T - transition function T (s′|s, a).
It is the transition probability from state s to s′ given that action a has been
performed.

– γ - discount factor.
It weights the rewards of future actions. γ ∈ [0, 1].

– H - time horizon.
It is the maximum number of transition that can occur before the decision
process is halted.

The objective of RL is to maximize the expected return of the sequence of
actions performed by the agent. Each action is sampled from a stochastic policy
π(a|s), with a ∈ A and s ∈ S, i.e. a probability distribution over the set of
actions given a particular state.



Job Shop Scheduling via Deep Reinforcement Learning 479

3.1 Policy Gradient Algorithms

Policy gradient (or policy optimization) methods [18] are widely used in Deep RL
research and directly optimize the stochastic policy πθ, which is approximated
by a neural network with parameters θ.

By taking actions in the environment, the agent defines trajectories. A tra-
jectory τ (alternatively episode or rollout) is a sequence of states and actions
(s0, a0, s1, a1, ..., sH−1, aH−1, sH) and it has a return R(τ) associated to it:

R(τ) =
H∑

t=0

R(st, at, st+1) (1)

R(τ) is called finite-horizon undiscounted return since it’s defined with hori-
zon H. Moreover, the probability of a trajectory given the policy is:

Pθ(τ) = ρ(s0)
H∏

t=0

T (st+1|st, at)πθ(at|st) (2)

where ρ(s0) is the a priori probability of state s0.
Given the parameterized stochastic policy πθ, the learning objective is the

maximization of the expected return w.r.t. a set of trajectories:

max
θ

J(πθ), where J(πθ) = E
τ∼πθ

[R(τ)] (3)

Considering a policy optimized with gradient ascent, the quantity ∇θJ(πθ)
is called policy gradient and the following equation holds:

∇θJ(πθ) = E
τ∼πθ

[
H∑

t=0

∇θ log πθ(at|st)R(τ)

]
(4)

This leads to the REINFORCE algorithm (Algorithm 1), also known as
Vanilla policy gradient, for optimizing policies, first proposed by Williams in [23].

Algorithm 1: REINFORCE
Input: MDP M = (S,A, T,R, γ,H)
Output: policy πθk

θ0 ← initial-parameters()
for k ∈ (0, 1, 2, ...) do

D ← collect-trajectories()
gk ← 1

|D|
∑

τ∈D
∑H

t=0 ∇θ log πθ(at|st)R(τ) � *{policy gradient}
θk+1 ← θk + αgk � **{gradient ascent step}

return πθk

Equation ∗ is the estimation of the policy gradient over the set of trajectories
D. Statement ∗∗ – i.e. the gradient ascent update rule—can be substituted with
the update rule of a different optimization algorithm, e.g. Adam.



480 G. Bonetta et al.

Unfortunately the unbiased policy gradient gk suffers from high variance
which hinders performance and learning stability. This can be addressed through
the use of baselines, terms that only depend on the current state and are sub-
tracted from the reward. Equation 5 is the policy gradient updated with a generic
baseline term.

∇θJ(πθ) = E
τ∼πθ

[
H∑

t=0

∇θ log πθ(at|st)

(
H∑

t=0

R(st, at, st+1) − b(st)

)]
(5)

4 The Job Shop Optimization Problem: Notation

Scheduling is a decision-making process consisting in the allocation of resources
to tasks over a given time period, with the additional constraint of optimizing
one (or more) objective functions. The JSP is one of the most studied scheduling
problems, along with the Open Shop and the Flow Shop Problems. A n×m JSP
instance is characterized by:

– n jobs Ji, with i ∈ {0, ..., n − 1}, each one consisting of m operations (or
tasks) Oij , with j ∈ {0, ...,m − 1}.

– m machines Mij , with j ∈ {0, ...,m− 1}. Mij identifies the machine required
to execute the j-th operation of job i.

We denote the execution time of an operation Oij with pij ; an operation
execution cannot be interrupted and each operation of a given job must be
executed on a different machine. A JSP solution is represented by a schedule.

As an example, let us consider the JSP instance represented in Table 1. In
this case there are three jobs Ji, with i ∈ {0, 1, 2}, and four operations Oij for
the i-th job, with j ∈ {0, 1, 2, 3}. Operation Oij must be executed on machine
Mij ∈ {0, 1, 2, 3} and has processing time pij .

Table 1. Example of a 3× 4 JSP instance.

Mij , pij O∗0 O∗1 O∗2 O∗3

J0 (0, 4) (2, 2) (1, 6) (3, 2)
J1 (0, 4) (3, 5) (2, 7) (1, 8)
J2 (2, 6) (0, 4) (1, 3) (3, 1)

A useful tool for visualizing a schedule is Gantt charts [6]. Figure 1 represents
the Gantt chart for a possible schedule of the JSP instance represented in Table 1.



Job Shop Scheduling via Deep Reinforcement Learning 481

Fig. 1. One possible schedule for the JSP instance in Table 1.

The optimal solution of a JSP is the schedule that minimizes the makespan
Cmax, where Cmax = max

i
Ci, and Ci is the completion time of the i-th job.

5 Our Sequence to Sequence Approach to the JSP

The main novelty we present is a sequence-based Deep RL approach applied to
the JSP. Inspired by [2] and [12] we make use of a deep neural network used
for NLG applications and we train it in a RL setting. Such model (see Fig. 2)
combines a self-attention based encoder and a Pointer-Network decoder [21]. In
order to apply it to the JSP, we formulate a sequence-based encoding of input
and output, and design an appropriate masking mechanism to generate feasible
solutions. Our code is available on Github1.

Fig. 2. Our encoder-decoder architecture for scheduling problems.

5.1 Sequence Encoding

The input (i.e. problem instance) and the model’s output (i.e. solution) need to
be encoded as sequences in order for the model to process them correctly.
1 Github repository: https://github.com/dawoz/JSP-DeepRL-Seq2Seq.

https://github.com/dawoz/JSP-DeepRL-Seq2Seq


482 G. Bonetta et al.

We consider both the input and the output as sequences of operations and
we define a 4-dimensional feature vector ok for each operation Oij as follows:

ok = [i j Mij pij ] with k = m · i + j (6)

where i is the index of the i-th job and j the index of its j-th operation. Consider
a JSP instance S with n jobs Ji (i ∈ {0, ..., n− 1}) and m operations Oij for job
Ji (j ∈ {0, ...,m − 1}) with required machine Mij ∈ {0, ...,m − 1} and execution
time pij . S can be expressed with the following sequence encoding Sseq:

Sseq =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

o0

o1

...
om−1

om

...
o(m−1)(n−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

i j Mij pij︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 M00 p00
0 1 M01 p01
...

...
...

...
0 m − 1 M0m−1 p0m−1

1 0 M10 p10
...

...
...

...
n − 1 m − 1 Mn−1m−1 pn−1m−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

The matrix Sseq just defined determines which jobs/operations have to be
handled: establishing an order in which to execute them allows to identify a
schedule.

Besides, a correct encoding of the model’s output sequence implies that if
for job Ji operation Oij must be executed before Oik, then the vectors of the
operations in the output sequence must occur in the same order (not consecutive,
in general).

In order to comply with these requests, the sequence encoding for the output
Lseq of the model has the following form:

Lseq = PSseq =
[
o′
0 . . .o′

(n−1)(m−1)

]T

(8)

where P is a permutation matrix suitable for obtaining a matrix Lseq which
encodes a feasible JSP solution.

The condition under which this occurs is explained in the following definition:

Definition 1 (Feasible sequence encoded JSP Solution).
Let Oij and Oik be the operations of the i-th job with j < k,

and o′
s = [i j Mij pij ], o′

r = [i k Mik pik].
The matrix Lseq is the sequence encoding of a feasible schedule iff the permu-

tation P is such that s < r, for all s and r in {0, ..., (n − 1)(m − 1)} (i.e. the
order of operations for job i defined in Sseq is preserved).



Job Shop Scheduling via Deep Reinforcement Learning 483

Fig. 3. Left: Encoder of our model. Right: Decoder with pointer mechanism.

As an example the sequence encodings of the JSP instance in Table 1 are the
following:

Sseq =

i j Mij pij︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 4
0 1 2 2
0 2 1 6
0 3 3 2
1 0 0 4
1 1 3 5
1 2 2 7
1 3 1 8
2 0 2 6
2 1 0 4
2 2 1 3
2 3 3 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lseq =

i j Mij pij︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 4
0 0 0 4
2 0 2 6
1 1 3 5
0 1 2 2
2 1 0 4
0 2 1 6
2 2 1 3
1 2 2 7
2 3 3 1
0 3 3 2
1 3 1 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The output Lseq can be effectively interpreted as a dispatching list, which
can be directly mapped to a schedule as follows:

1. Considering o′
p = [i l Mil pil] (p-th row of Lseq), schedule operation Oil to

the earliest time such that machine Mil is available and, if l > 0 (i.e. Oil



484 G. Bonetta et al.

isn’t the first operation of i-th job) the previous operation Oil−1 has been
executed.

2. Repeat for all the rows of Lseq.

Mapping Lseq to a JSP solution results in the schedule in Fig. 1.

5.2 Model Architecture

Our model is composed of a self-attention-based encoder and a Pointer Network
used as decoder (shown in Fig. 3).

Encoder. Represented in (Fig. 3). The encoder’s input is a 3-dimensional ten-
sor U ∈ R

N×(nm)×4 that represents a batch of sequence-encoded instances. As
defined in Sect. 4, n and m are respectively the number of jobs and machines,
and N indicates the batch size.

The first portion of the encoder computes two separate embeddings of each
input row, respectively for features (i, j) and (Mij , pij), by batch-normalizing
and projecting to the embedding dimension dh. After that, the sum of the two
vectors is batch-normalized and passed through a linear layer resulting in X ∈
R

N×(nm)×dh . X is then fed into l multi-head attention layers (we consider l = 3).
The output of the encoder is a tensor H ∈ R

N×(nm)×dh of embeddings hk ∈
R

dh , later used as input in the decoder. h, the average of the these embeddings,
is used to initialize the decoder.

Decoder. Represented in (Fig. 3), the decoder is a Pointer Network which gen-
erates the policy πθ, a distribution of probability over the rows of the input
Sseq, via the attention mechanism; during training, the next selected row o′

t is
sampled from it. During evaluation instead, the row with highest probability is
selected in a greedy fashion. πθ is defined as follows:

πθ(o′
t|o′

0, ...,o
′
t−1, S

seq) = softmax
(
mask(ut|o′

0, ...,o
′
t−1)

)
(9)

where ut is the score computed by the Pointer Network’s attention mecha-
nism over Sseq input rows. mask(ut|o′

0, ...,o
′
t−1) is a masking mechanism which

depends on the sequence partially generated and enforces the constraint in Def-
inition 1.

Masking. In order to implement the masking mechanism we use two boolean
matrices M sched and Mmask defined as follows:

Definition 2 (Boolean matrix Msched). Given the k-th instance in the batch
and the j-th operation of the i-th job, the element M sched

kp (which refers to op,
with p = m · i + j) is true iff the j-th operation has already been scheduled.



Job Shop Scheduling via Deep Reinforcement Learning 485

Definition 3 (Boolean matrix Mmask). Given the k-th instance in the batch
and the index l of an operation of the i-th job, the element Mmask

kp (which refers
to op, with p = m·i+l) is true iff l > j, where j is the index of the next operation
of the i-th job (i.e. scheduling the l-th operation would violate Definition 1).

Given k-th instance in the batch and op feature vector of the operation
scheduled at current time-step, we update M sched and Mmask as follows.

M sched
kp ← true, Mmask

kp+1 ← false

At current step t, the resulting masking procedure of the score associated to
input row index p ∈ {0, 1, ..., (m − 1)(n − 1)} is the following:

mask(ut
p|o′

0, ...,o
′
t−1) =

{−∞, if M sched
kp OR Mmask

kp

ut
p, otherwise (10)

Masked scores result in a probability close to zero for operations that are
already scheduled or cannot be scheduled. Figure 4 shows a possible generation
procedure with the masking mechanism just described in order to solve the JSP
instance represented in Table 2.

Table 2. Example of a 2× 3 JSP instance.

Mij , pij O∗0 O∗1 O∗2

J0 (1, 4) (2, 7) (0, 5)
J1 (0, 7) (1, 3) (2, 7)

Fig. 4. Sequence generation with masking mechanism for the JSP. Light blue circles
indicate masked rows and the arrows represent the agent’s choices. (Color figure online)



486 G. Bonetta et al.

Training Algorithm. The network is trained with REINFORCE [23] described
in Subsect. 3.1 using the Adam optimizer. We use the following form of the policy
gradient:

∇θL(πθ) = E [(Cmax(Lseq) − b(Sseq))∇θ logPθ(Lseq|Sseq)] (11)

where Pθ(Lseq|Sseq) =
∏nm−1

t=0 πθ(o′
t|o′

0, ...,o
′
t−1, S

seq) is the probability of the
solution Lseq and b(Sseq) is the greedy rollout baseline. After each epoch, the
algorithm updates the baseline with the optimized policy’s weights if the latter
is statistically better. This is determined by evaluating both policies on a 10000
samples dataset and running a paired t-test with α = 0.05 (see [12] for the
detailed explanation). The periodic update ensures that the policy is always chal-
lenged by the best model, hence the reinforcement of actions is effective. From
a RL perspective, −Cmax(Lseq) is the reward of the solution—lower makespan
implies higher reward. After training, the active search approach [2] is applied.

Solving Related Scheduling Problems. Our method represents a general
approach to scheduling problems and, once trained on JSP instances, it can also
solve the Flow Shop Problem. The Open Shop Problem can also be solved with a
small modification of the masking mechanism. Since the order constraint between
operations is dropped in the OSP, the feasible outputs of the model are all the
permutations of the input sequence. This simplifies the masking mechanism,
which can be done just by keeping track of the scheduled operations with matrix
M sched. In Fig. 5 we show three steps of the modified masking mechanism for
solving the instance in Table 2, interpreted as an OSP.

Fig. 5. Sequence generation with modified masking mechanism for the OSP.

5.3 Experiments and Results

In this section we present our experiments and results. We consider four JSP
settings: 6 × 6, 10 × 10, 15 × 15 and 30 × 20. After hyperparameter tuning, we
set the learning rate to 10−5 and gradient clipping to 0.5 in order to stabilize
training. At each epoch, the model processes a dataset generated with the well-
known Taillard’s method [19]. Table 3 sums up training configurations for every
experiment.

During training we note the average cost every 50 batches and the valida-
tion performance at the end of every epoch. Validation rollouts are done in a



Job Shop Scheduling via Deep Reinforcement Learning 487

greedy fashion, i.e. by choosing actions with maximum likelihood. Training and
validation curves are represented in Fig. 6.

Table 3. Training configurations for all the experiments. ∗ Nvidia GPUs have been
used.

Size Epoch size N◦ epochs Batch size GPU(s)∗ Duration

6× 6 640000 10 512 Titan RTX 30 m
10× 10 640000 10 512 RTX A6000 1 h 30 m
15× 15 160000 10 256 RTX A6000 1 h 30 m
30× 20 16000 10 32 Titan RTX 1 h 45 m

Fig. 6. Training and Validation curves for different JSPs.

Comparison with Concurrent Work. As already said in the Introduction,
we compare our results with the work from Zhang et al. [24], and with a set
of largely used dispatching rules: Shortest Processing Time (SPT), Most Work
Remaining (MWKR), Most Operations Remaining (MOPNR), minimum ratio
of Flow Due Date to most work remaining (FDD).

Table 4 shows the testing results obtained applying our technique on 100
instances generated by Zhang et al. with the Taillard’s method.

We compare each solution with the optimal one obtained with Google OR-
Tools’ [15] solver; in the last column we report the percentage of instances
for which OR-Tools returns optimal solutions in a limited computation time
of 3600 s.

The column JSP settings shows the average makespan over the entire test
dataset and the gap between Cmax (the average makespan of heuristic solutions)
and C

∗
max (the average makespan of the optimal ones), defined as Cmax/C

∗
max−1.

From Table 4 we can see that our model greatly outperforms the traditional
dispatching rules even by a margin of 71% with respect to SPT. When compared

Table 4. Results over different JSP settings.

JSP settings SPT MWKR FDD MOPNR Zhang [24] Ours Opt. Rate (%)

6 × 6 Cmax

Gap
691.95
42.0%

656.95
34.6%

604.64
24.0%

630.19
29.2%

574.09
17.7%

495.92

1.7%

100%

10 × 10 Cmax

Gap
1210.98
50.0%

1151.41
42.6%

1102.95
36.6%

1101.08
36.5%

988.58
22.3%

945.27

16.9%

100%

15 × 15 Cmax

Gap
1890.91
59.2%

1812.13
52.6%

1722.73
45.1%

1693.33
42.6%

1504.79

26.7%

1535.14
29.3%

99%

30 × 20 Cmax

Gap
3208.69
65.3%

3080.11
58.7%

2883.88
48.6%

2809.62
44.7%

2508.27

29.2%

2683.05
38.2%

12%



488 G. Bonetta et al.

to [24] our model is superior in performance in the 6×6 and 10×10 cases, while
having similar results in the 15 × 15 JSPs, and sligthly underperforming in the
30×20. Speculating about the drop in performance of our solution in the biggest
settings (i.e. 30 × 20 JSPs) we think it could be due to the following reasons:

– Larger JSP instances are encoded by longer sequences: like traditional RNNs
and transformers, our model tends to have a suboptimal representation of the
input if the sequence is exceedingly long.

– As mentioned before, for execution time reasons we reduce the number of
instances and examples in each batch: this implies a gradient estimate with
higher variance, hence a potentially unstable and longer learning.

Improving Active Search Through Efficient Active Search. Efficient
Active Search (EAS) is a technique introduced in a recent work by Hottung et
al. [10] that extends and substantially improves active search, achieving state-of-
the-art performance on the TSP, CVRP and JSP. The authors proposed three
different techniques, EAS-Emb, EAS-Lay and EAS-Tab, all based on the idea of
performing active search while adjusting only a small subset of model parame-
ters. EAS-Emb achieves the best performance and works by keeping all model
parameters frozen while optimizing the embeddings. As pointed out in [10], this
technique can be applied in parallel to a batch of instances, greatly reducing the
computing time. Here we present a preliminary attempt to extend our method
applying EAS-Emb and we test it on the 10 × 10 JSP. Table 5 shows that our
model greatly benefits from the use of EAS-Emb, although underperforming
Hottung et al.’s approach.

Table 5. Efficient Active Search: comparison results

JSP settings Hottung et al. [10] Ours+EAS-Emb

10× 10 Cmax

Gap
837.0
3.7%

864.9
7.2%

6 Conclusions

In this work we designed a Sequence to Sequence model to tackle the JSP, a
famous Combinatorial Optimization problem, and we demonstrated that it is
possible to train such architecture with a simple yet effective RL algorithm.
Our system automatically learns dispatching rules and relies on a specific mask-
ing mechanism in order to generate valid schedulings. Furthermore, it is easy
to generalize this mechanism for the Flow Shop Problem and the Open Shop
Problem with none or slight modifications. Our solution beats all the main tra-
ditional dispatching rules by great margins and achieve better or state of the art
performance on small JSP instances.

For future works we plan to improve the performance of our method on larger
JSP instances exploiting EAS-based approaches. Besides, although this work is



Job Shop Scheduling via Deep Reinforcement Learning 489

mostly concerned with evaluating a Deep RL-based paradigm for combinato-
rial optimization, the idea of hybridizing these techniques with more classical
heuristics remain viable. At last, one promising idea would be to improve our
method using Graph Neural Networks as encoders. Graph-based models could
produce more refined embeddings exploiting the disjunctive graph representation
of scheduling problem instances.

Acknowledgements. The activity has been partially carried on in the context of the
Visiting Professor Program of the Gruppo Nazionale per il Calcolo Scientifico (GNCS)
of the Italian Istituto Nazionale di Alta Matematica (INdAM).

References

1. Bellman, R.: A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1957)
2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-

mization with reinforcement learning. In: International Conference on Learning
Representations (2017)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

4. Cunha, B., Madureira, A.M., Fonseca, B., Coelho, D.: Deep reinforcement learning
as a job shop scheduling solver: a literature review. In: Madureira, A.M., Abraham,
A., Gandhi, N., Varela, M.L. (eds.) HIS 2018. AISC, vol. 923, pp. 350–359. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-14347-3_34

5. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning
heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR
2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93031-2_12

6. Gantt, H.: A Graphical Daily Balance in Manufacture. ASME (1903)
7. Glover, F., Laguna, M.: Tabu Search. Springer, New York (1998). https://doi.org/

10.1007/978-1-4615-6089-0
8. Han, B.A., Yang, J.J.: Research on adaptive job shop scheduling problems based

on dueling double DQN. IEEE Access 8, 186474–186495 (2020)
9. Haupt, R.: A survey of priority rule-based scheduling. Oper. Res. Spektrum 11,

3–16 (1989). https://doi.org/10.1007/BF01721162
10. Hottung, A., Kwon, Y.D., Tierney, K.: Efficient active search for combinatorial

optimization problems. In: International Conference on Learning Representations
(2021)

11. Jansen, K., Mastrolilli, M., Solis-Oba, R.: Approximation algorithms for flexible job
shop problems. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776,
pp. 68–77. Springer, Heidelberg (2000). https://doi.org/10.1007/10719839_7

12. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: International Conference on Learning Representations (2019)

13. Lin, C.C., Deng, D.J., Chih, Y.L., Chiu, H.T.: Smart manufacturing scheduling
with edge computing using multiclass deep Q network. IEEE Trans. Ind. Inf. 15(7),
4276–4284 (2019)

14. Liu, C.L., Chang, C.C., Tseng, C.J.: Actor-critic deep reinforcement learning for
solving job shop scheduling problems. IEEE Access 8, 71752–71762 (2020)

https://doi.org/10.1007/978-3-030-14347-3_34
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-1-4615-6089-0
https://doi.org/10.1007/978-1-4615-6089-0
https://doi.org/10.1007/BF01721162
https://doi.org/10.1007/10719839_7


490 G. Bonetta et al.

15. Perron, L.: Operations research and constraint programming at Google. In: Lee,
J. (ed.) CP 2011. LNCS, vol. 6876, pp. 2–2. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23786-7_2

16. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job
shop scheduling problem under different flow time-and tardiness-related objective
functions. Int. J. Prod. Res. 50(15), 4255–4270 (2012)

17. Smith, K.A.: Neural networks for combinatorial optimization: a review of more
than a decade of research. INFORMS J. Comput. 11(1), 15–34 (1999)

18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

19. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

21. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, vol. 28 (2015)

22. Waschneck, B., et al.: Optimization of global production scheduling with deep
reinforcement learning. Proc. CIRP 72, 1264–1269 (2018)

23. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3), 229–256 (1992). https://doi.org/10.
1007/BF00992696

24. Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X.: Learning to dispatch
for job shop scheduling via deep reinforcement learning. In: Advances in Neural
Information Processing Systems, vol. 33, pp. 1621–1632 (2020)

https://doi.org/10.1007/978-3-642-23786-7_2
https://doi.org/10.1007/978-3-642-23786-7_2
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696


Generating a Graph Colouring Heuristic
with Deep Q-Learning and Graph Neural

Networks

George Watkins(B), Giovanni Montana, and Juergen Branke

University of Warwick, Coventry, UK
{george.watkins,g.montana}@warwick.ac.uk, juergen.branke@wbs.ac.uk

Abstract. The graph colouring problem consists of assigning labels, or
colours, to the vertices of a graph such that no two adjacent vertices share
the same colour. In this work we investigate whether deep reinforcement
learning can be used to discover a competitive construction heuristic for
graph colouring. Our proposed approach, ReLCol, uses deep Q-learning
together with a graph neural network for feature extraction, and employs
a novel way of parameterising the graph that results in improved per-
formance. Using standard benchmark graphs with varied topologies, we
empirically evaluate the benefits and limitations of the heuristic learned
by ReLCol relative to existing construction algorithms, and demonstrate
that reinforcement learning is a promising direction for further research
on the graph colouring problem.

Keywords: Graph Colouring · Deep Reinforcement Learning · Graph
Neural Networks

1 Introduction

The Graph Colouring Problem (GCP) is among the most well-known and widely
studied problems in graph theory [12]. Given a graph G, a solution to GCP is
an assignment of colours to vertices such that adjacent vertices have different
colours; the objective is to find an assignment that uses the minimum number of
colours. This value is called the chromatic number of G, and denoted χ(G). GCP
is one of the most important and relevant problems in discrete mathematics,
with wide-ranging applications from trivial tasks like sudoku through to vital
logistical challenges like scheduling and frequency assignment [1]. Given that
GCP has been proven to be NP-Complete for general graphs [15], no method
currently exists that can optimally colour any graph in polynomial time. Indeed
it is hard to find even approximate solutions to GCP efficiently [28] and currently
no algorithm with reasonable performance guarantees exists [22].

Many existing methods for GCP fall into the category of construction heuris-
tics, which build a solution incrementally. Designing an effective construction
heuristic is challenging and time-consuming and thus there has been a lot of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 491–505, 2023.
https://doi.org/10.1007/978-3-031-44505-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_33&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_33


492 G. Watkins et al.

interest in ways to generate heuristics automatically. This has previously been
very successful in, for example, job shop scheduling [8]. Among the simplest
construction methods for GCP are greedy algorithms [25], in which vertices are
selected one by one and assigned the ‘lowest’ permissible colour based on some
pre-defined ordering of colours.

In this work we investigate the use of reinforcement learning (RL) to learn
a greedy construction heuristic for GCP by framing the selection of vertices as
a sequential decision-making problem. Our proposed algorithm, ReLCol, uses
deep Q-learning (DQN) [30] together with a graph neural network (GNN) [5,33]
to learn a policy that selects the vertices for our greedy algorithm. Using exist-
ing benchmark graphs, we compare the performance of the ReLCol heuristic
against several existing greedy algorithms, notably Largest First, Smallest Last
and DSATUR. Our results indicate that the solutions generated by our heuristic
are competitive with, and in some cases better than, these methods. As part of
ReLCol, we also present an alternative way of parameterising the graph within
the GNN, and show that our approach significantly improves performance com-
pared to the standard representation.

2 Related Work

Graph Colouring. Methods for GCP, as with other combinatorial optimisation
(CO) problems, can be separated into exact solvers and heuristic methods. Exact
solvers must process an exponentially large number of solutions to guarantee
optimality; as such, they quickly become computationally intractable as the size
of the problem grows [26]. Indeed exact algorithms are generally not able to solve
GCP in reasonable time when the number of vertices exceeds 100 [31].

When assurances of optimality are not required, heuristic methods offer a
compromise between good-quality solutions and reasonable computation time.
Heuristics may in some cases produce optimal solutions, but offer no guaran-
tees for general graphs. Considering their simplicity, greedy algorithms are very
effective: even ordering the vertices at random can yield a good solution. And
crucially, for every graph there exists a vertex sequence such that greedily colour-
ing the vertices in that order will yield an optimal colouring [25].

Largest-First (LF), Smallest-Last (SL) and DSATUR [9] are the three most
popular such algorithms [20], among which DSATUR has become the de facto
standard for GCP [32]. As such, we have chosen these three heuristics as the
basis for our comparisons. Both LF and SL are static methods, meaning the
vertex order they yield is fixed at the outset. LF chooses the vertices in decreas-
ing order by degree; SL also uses degrees, but selects the vertex v with smallest
degree to go last, and then repeats this process with the vertex v (and all its
incident edges) removed. Conversely, DSATUR is a dynamic algorithm: at a
given moment the choice of vertex depends on the previously coloured vertices.
DSATUR selects the vertex with maximum saturation, where saturation is the
number of distinct colours assigned to its neighbours. Similarly, the Recursive



Generating a Graph Colouring Heuristic with Deep Q-Learning and GNNs 493

Largest First algorithm [23] is dynamic. At each step it finds a maximal indepen-
dent set and assigns the same colour to the constituent vertices. The coloured
vertices are then removed from the graph and the process repeats.

Improvement algorithms take a different approach: given a (possibly invalid)
colour assignment, these methods use local search to make small adjustments in
an effort to improve the colouring, either by reducing the number of colours used
or eliminating conflicts between adjacent vertices. Examples include TabuCol
[17], simulated annealing [2] and evolutionary algorithms [14].

Machine Learning Methods for CO Problems. Given how difficult it is
to solve CO problems exactly, and the reliance on heuristics for computation-
ally tractable methods, machine learning appears to be a natural candidate for
addressing problems like GCP. Indeed there are many examples of methods for
CO problems that use RL [4,19,29] or other machine learning techniques [6,35].

For GCP, supervised learning has been used to predict the chromatic number
of a graph [24] but this is dependent on having a labelled training dataset. Given
the computational challenges inherent in finding exact solutions, this imposes
limitations on the graphs that can be used for training. Conversely, RL does
not require a labelled dataset for training. In [41], RL is used to support the
local search component of a hybrid method for the related k-GCP problem by
learning the probabilities with which each vertex should be assigned to each
colour. While iteratively solving k-GCP for decreasing values of k is a valid (and
reasonably common) method for solving GCP [14,27], it is inefficient.

On the other hand, [18] addresses GCP directly with a method inspired by
the success of AlphaGo Zero [34]. In contrast to greedy algorithms, this approach
uses a pre-determined vertex order and learns the mechanism for deciding the
colours. During training they use a computationally demanding Monte Carlo
Tree Search using 300 GPUs; due to the computational overhead and lack of
available code we were unable to include this algorithm in our study.

Our proposed algorithm is most closely related to [16], in which the authors
present a greedy construction heuristic that uses RL with an attention mech-
anism [37] to select the vertices. There are, however, several key differences
between the two methods. Their approach uses the REINFORCE algorithm [40]
whereas we choose DQN [30] because the action space is discrete; they incor-
porate spatial and temporal locality biases; and finally, we use a novel state
parameterisation, which we show improves the performance of our algorithm.

3 Problem Definition

A k-colouring of a graph G = (V,E) is a partition of the vertices V into k disjoint
subsets such that, for any edge (u, v) ∈ E, the vertices u and v are in different
subsets. The subsets are typically referred to as colours. GCP then consists of
identifying, for a given graph G, the minimum number of colours for which a k-
colouring exists and the corresponding colour assignment. This number is known
as the chromatic number of G, denoted χ(G).



494 G. Watkins et al.

Given any graph, a greedy construction heuristic determines the order in
which vertices are to be coloured, sequentially assigning to them the lowest
permissible colour according to some pre-defined ordering of colours. In this
work we address the problem of automatically deriving a greedy construction
heuristic that colours general graphs using as few colours as possible.

4 Preliminaries

Markov Decision Processes. A Markov Decision Process (MDP) is a discrete-
time stochastic process for modelling the decisions taken by an agent in an
environment. An MDP is specified by the tuple (S,A,P,R, γ), where S and A
represent the state and action spaces; P describes the environment’s transition
dynamics; R is the reward function; and γ is the discount factor. The goal of
reinforcement learning is to learn a decision policy π : S → A that maximises
the expected sum of discounted rewards, E [

∑∞
t=1 γtRt].

Deep Q-Learning. Q-learning [38] is a model-free RL algorithm that learns
Q∗(s, a), the value of taking action a in a state s and subsequently behaving
optimally. Known as the optimal action value function, Q∗(s, a) is defined as

Q∗(s, a) = E

[ ∞∑

i=1

γiRt+i

∣
∣
∣
∣
∣
St = s,At = a

]

(1)

where St, At and Rt are random variables representing respectively the state,
action and reward at timestep t. Deep Q-learning (DQN) [30] employs a Q-
network parameterised by weights θ to approximate Q∗(s, a). Actions are chosen
greedily with respect to their values with probability 1− ε, and a random action
is taken otherwise to facilitate exploration. Transitions (s, a, r, s′) - respectively
the state, action, reward and next state - are added to a buffer and the Q-network
is trained by randomly sampling transitions, backpropagating the loss

L(θ) =
([

r + γ max
a′

Qθ̂(s
′, a′)

]
− Qθ(s, a)

)2

(2)

and updating the weights using stochastic gradient descent. Here Qθ(s, a) and
Qθ̂(s, a) are estimates of the value of state-action pair (s, a) using the Q-network
and a target network respectively. The target network is a copy of the Q-network,
with weights that are updated via periodic soft updates, θ̂ ← τθ+(1−τ)θ̂. Using
the target network in the loss helps to stabilise learning [30].

Graph Neural Networks. Graph neural networks (GNNs) [5,33] support
learning over graph-structured data. GNNs consist of blocks; the most general
GNN block takes a graph G with vertex-, edge- and graph-level features, and
outputs a new graph G′ with the same topology as G but with the features
replaced by vertex-, edge- and graph-level embeddings [5]. The embeddings are



Generating a Graph Colouring Heuristic with Deep Q-Learning and GNNs 495

generated via a message-passing and aggregation mechanism whereby informa-
tion flows between pairs of neighbouring vertices. Stacking multiple GNN blocks
allows for more complex dependencies to be captured. The steps within a single
GNN block are demonstrated in Fig. 1; in our method we do not use graph-level
features so for simplicity these have been omitted.

Fig. 1. Demonstration of how a GNN block generates edge and vertex embeddings.
Blue indicates the element that is updated in that step. i) (Color figure online) The
input graph with edge and vertex features; ii) For each edge e, concatenate the features
of e with the features of the vertices it connects, and pass the resulting vector through
a small neural network to generate the edge embedding embe; iii) For each vertex v,
aggregate the embeddings of the incident edges using an elementwise operation like
sum or max to generate the edge aggregation aggv; iv) For each vertex v, concatenate
the features of v with the associated edge aggregation aggv, and pass the resulting
vector through a small neural network to generate the vertex embedding embv. Blocks
can be stacked by repeating this process with the previous block’s edge and vertex
embeddings used as the features.

5 Methodology

5.1 Graph Colouring as a Markov Decision Process

States. A state s ∈ S for graph G = (V,E) is a vertex partition of V into
subsets Pi, i ∈ {−1, 0, 1, 2, ...}. For i �= −1, the partition Pi contains the vertices
currently assigned colour i, and P−1 represents the set of currently un-coloured
vertices. States in which P−1 = ∅ are terminal. Our method for parameterising
the state, which results in improved performance, is described in Sect. 5.2.

Actions. An action a ∈ A is an un-coloured vertex (i.e. a ∈ P−1) indicating the
next vertex to be coloured. The complete mechanism by which ReLCol chooses
actions is described in Sect. 5.4.



496 G. Watkins et al.

Transition Function. Given an action a, the transition function P : S×A → S
updates the state s of the environment to s′ by assigning the lowest permissible
colour to vertex a. Note that choosing colours in this way does not preclude
finding an optimal colouring [25] as every graph admits a sequence that will
yield an optimal colouring. The transition function P is deterministic: given a
state s and an action a, there is no uncertainty in the next state s′.

Reward Function. For GCP, the reward function should encourage the use of
fewer colours. As such our reward function for the transition (s, s′) is defined as

R(s, s′) = −1(C(s′) − C(s))

where C(s) indicates the number of colours used in state s.

Discount Factor. GCP is an episodic task, with an episode corresponding to
colouring a single graph G. Given that each episode is guaranteed to terminate
after n steps, where n is the number of vertices in G, we set γ = 1. Using γ < 1
would bias the heuristic towards deferring the introduction of new colours, which
may be undesirable.

5.2 Parameterising the State

Recall that for the graph G = (V,E), a state s ∈ S is a partition of V into
subsets Pi, i ∈ {−1, 0, 1, 2, ...}. We represent the state using a state graph
Gs = (V,Es, F

v
s , F e

s ): respectively the vertices and edges of Gs, together with
the associated vertex and edge features.

State Graph Vertices. Note that the vertices in Gs are the same as the
vertices in the original graph G. Then, given a state s, the feature fv

s of vertex v
is a 2-tuple containing: i) A vertex name ∈ {0, 1, 2, ..., n− 1} and ii) The current
vertex colour cv ∈ {−1, 0, 1, 2, ...} (where cv = −1 if and only if v has not yet
been assigned a colour).

State Graph Edges. In the standard GNN implementation, messages are only
passed between vertices that are joined by an edge. In our implementation we
choose to represent the state as a complete graph on V to allow information to
flow between all pairs of vertices. We use a binary edge feature fe

s to indicate
whether the corresponding edge was in the original graph G:

fe
s =

{
−1 if e = (vi, vj) ∈ E

0 otherwise

Our state parameterisation, which is the input to the Q-network, allows messages
to be passed between all pairs of vertices, including those that are not connected;
in Sect. 6.4 we show that this representation results in improved performance.



Generating a Graph Colouring Heuristic with Deep Q-Learning and GNNs 497

5.3 Q-Network Architecture

Our Q-network is composed of several stacked GNN blocks followed by a feed-
forward neural network of fully connected layers with ReLU activations. Within
the aggregation steps in the GNN we employ an adaptation of Principal Neigh-
bourhood Aggregation [10] which has been shown to mitigate information loss.
The GNN takes the state graph Gs as input, and returns a set of vertex embed-
dings. For each vertex v, the corresponding embedding is passed through the
fully connected layers to obtain the value for the action of choosing v next.

5.4 Selecting Actions

In general actions are selected using an ε-greedy policy with respect to the ver-
tices’ values. However using the Q-network is (relatively) computationally expen-
sive. As such, where it has no negative effect - in terms of the ultimate number
of colours used - we employ alternative mechanisms to select vertices.

First Vertex Rule. The first vertex to be coloured is selected at random. By
Proposition 1, this does not prevent an optimal colouring being found.

Proposition 1. An optimal colouring remains possible regardless of the first
vertex to be coloured.

Proof. Let G = (V,E) be a graph with χ(G) = k∗, and P∗ = P ∗
0 , P ∗

1 , ..., P ∗
k∗−1

an optimal colouring of G, where the vertices in P ∗
i are all assigned colour i.

Suppose vertex v is the first to be selected, and j is the colour of v in P∗ (i.e.
v ∈ P ∗

j , where 0 ≤ j ≤ k∗ − 1). Simply swap the labels P ∗
0 and P ∗

j so that the
colour assigned to v is the ‘first’ colour. Now, using this new partition, we can
use the construction described in [25] to generate an optimal colouring. �

Isolated Vertices Rule. We define a vertex to be isolated if all of its neigh-
bours have been coloured. By Proposition 2, we can immediately colour any such
vertices without affecting the number of colours required.

Proposition 2. Immediately colouring isolated vertices has no effect on the
number of colours required to colour the graph.

Proof. Let G = (V,E) be a graph with χ(G) = k∗. Suppose also that P =
P−1, P0, P1, ..., Pk∗−1 is a partial colouring of G (with P−1 the non-empty set
of un-coloured vertices). Let v ∈ P−1 be an un-coloured, isolated vertex (i.e.
it has no neighbours in P−1). No matter when v is selected, its colour will be
the first that is different from all its neighbours. Also, given that v has no un-
coloured neighbours, it has no influence on the colours assigned to subsequent
vertices. Therefore v can be chosen at any moment (including immediately)
without affecting the ultimate number of colours used. �



498 G. Watkins et al.

5.5 The ReLCol Algorithm

Figure 2 demonstrates how the state graph is constructed, and how it evolves as
the graph is coloured. The full ReLCol algorithm is presented in Algorithm 1.

6 Experimental Results

In this section we evaluate the performance of the heuristic learned by ReLCol
against existing algorithms. Because the learning process is inherently stochas-
tic, we generate 12 ReLCol heuristics, each using a different random seed. In
our experiments we apply all 12 to each graph and report the average num-
ber of colours required. We note that although ReLCol refers to the generating
algorithm, for brevity we will also refer to our learned heuristics as ReLCol.

Fig. 2. Example of graph parameterisation and colouring rules, where vt = j indicates
the vertex with name j is selected at step t. i) Initial parameterisation of the original
graph; ii) First vertex v0 = 0 is selected at random and assigned colour 0; iii) Vertex
v1 = 4 can also be assigned colour 0; iv) Vertex v2 = 3 cannot be assigned colour 0
so takes colour 1; v) Vertex v3 = 2 cannot be assigned colour 0 or 1 so takes colour 2,
leaving vertex 1 isolated; vertex 1 cannot be assigned colour 0 so takes colour 1.

Architecture and Hyperparameters. Our Q-network consists of 5 GNN
blocks and 3 fully connected layers with weights initialised at random. Our GNN
blocks use only edge and vertex features; we experimented with including global
features but found no evidence of performance improvement. The vertex and
edge embeddings, as well as the hidden layers in all fully connected neural net-
works, have 64 dimensions. We use the Adam optimiser [21] with learning rate
0.001 and batch size 64, τ = 0.001, and an ε-greedy policy for exploration, where
ε decays exponentially from 0.9 to 0.01 through 25000 episodes of training.

Training Data. We have constructed a dataset of 1000 training graphs of size
n ∈ [15, 50], composed of 7 different graph types: Leighton graphs [23], Queen
graphs [13], Erdos-Renyi graphs [11], Watts-Strogatz graphs [39], Barabasi-
Albert graphs [3], Gaussian Random Partition graphs [7] and graphs generated



Generating a Graph Colouring Heuristic with Deep Q-Learning and GNNs 499

by our own method which constructs graphs with known upper bound on the
chromatic number. Each training graph was constructed by choosing its type
and size uniformly at random. Where the generating process of the chosen graph
type has its own parameters these too were chosen at random to ensure as much
diversity as possible amongst the training graphs. Our datasets, together with
our code, are available on GitHub1.

6.1 Comparison with Existing Algorithms

We first compare ReLCol to existing construction algorithms, including Largest
First, Smallest Last, DSATUR and Random (which selects the vertices in a
random order). We also compare to the similar RL-based method presented in
Gianinazzi et al. [16]. Using their implementation we generate 12 heuristics with
different random seeds and report the average result. Note that in their paper
the authors present both a deterministic and a stochastic heuristic, with the
stochastic version generated by taking a softmax over the action weights. At test
time their stochastic heuristic is run 100 times and the best colouring is returned.
Given that with enough attempts even a random algorithm will eventually find
an optimal solution, we consider heuristics that return a colouring in a single
pass to be more interesting. As such we consider only the deterministic versions
of the Gianinazzi et al. algorithm and ReLCol.

Algorithm 1 ReLCol Algorithm
Initialise Q-network Qθ; target network Qθ̂; replay buffer B; and training dataset D
set ε = 0.9
for episode in 1, . . . , E do

Sample a graph G from D and construct state graph Gs

set nc = 0 � nc = no. of coloured vertices
Colour a random vertex, increment nc and update Gs � First vertex rule
Colour isolated vertices, increment nc and update Gs � Isolated vertices rule
while nc < n do � n = no. of vertices in G

let G ′
s = Gs, n ′

c = nc

Generate embeddings for uncoloured vertices using GNN component of Qθ

Pass each vertex embedding through dense layers of Qθ to get action values
Select vertex a using ε-greedy policy
Colour a, increment n ′

c and update G ′
s

Colour isolated vertices, increment n ′
c and update G ′

s

Calculate reward r = −1(n ′
c − nc)

Add transition (Gs, a, r,G ′
s, d) to B � d = (n ′

c = n) is the ‘done’ flag
if B contains more than N transitions then � Perform learning step

Sample a batch B of N transitions from B.
for (Gs i, ai, ri, G

′
s i, di) in B do

let yi = ri + (1 − di) maxa′∈A Qθ̂(G
′
s i, a

′)

let L = 1
N

∑N
i=1(Qθ(Gs i, ai) − yi)2 � Calculate the loss

Update Qθ using gradient descent on L
Gs G ′

s; nc n ′
c

every U steps
θ̂ τθ + (1 − τ)ˆ �θ Soft update of target network

Decay ε

1 https://github.com/gpdwatkins/graph colouring with RL.

https://github.com/gpdwatkins/graph_colouring_with_RL


500 G. Watkins et al.

Each heuristic is applied to the benchmark graphs used in [24] and [16], which
represent a subset of the graphs specified in the COLOR02: Graph Colouring and
its Generalizations series2. For these graphs the chromatic number is known; as
such we report the excess number of colours used by an algorithm (i.e. 0 would
mean the algorithm has found an optimal colouring for a graph). The results are
summarised in Table 1. On average over all the graphs DSATUR was the best
performing algorithm, using 1.2 excess colours, closely followed by our heuristic
with 1.35 excess colours. The other tested algorithms perform significantly worse
on these graphs, even slightly worse than ordering the vertices at random. The
test set contains a mix of easier graphs - all algorithms manage to find the
chromatic number for huck - as well as harder ones - even the best algorithm
uses four excess colours on queen13 13. DSATUR and ReLCol each outperform
all other methods on 4 of the graphs.

Table 1. Comparison of ReLCol with other construction algorithms on graphs from
the COLOR02 benchmark dataset. Values indicate how many more colours are required
than the chromatic number, χ. For each graph, Random is run 100 times and the aver-
age and standard error are reported. For Gianinazzi et al. and ReLCol, the 12 heuristics
are run and the average and standard error are reported. A bold number indicates that
an algorithm has found the unique best colouring amongst the algorithms.

Graph instance n χ Random LF SL DSATUR Reinforce ReLCol

queen5 5 25 5 2.3±0.1 2 3 0 2.1±0.3 0.2±0.11

queen6 6 36 7 2.4±0.06 2 4 2 3.2±0.16 1±0

myciel5 47 6 0.1±0.03 0 0 0 0.1±0.08 0±0

queen7 7 49 7 4±0.06 5 3 4 3.3±0.32 2.2±0.16

queen8 8 64 9 3.4±0.07 4 5 3 3.3±0.24 2.1±0.14

1-Insertions 4 67 4 1.2±0.04 1 1 1 1±0 1±0

huck 74 11 0±0 0 0 0 0±0 0±0

jean 80 10 0.3±0.05 0 0 0 0±0 0.3±0.12

queen9 9 81 10 3.9±0.07 5 5 3 5±0 2.7±0.25

david 87 11 0.7±0.07 0 0 0 0.4±0.14 1.2±0.33

mug88 1 88 4 0.1±0.02 0 0 0 0±0 0±0

myciel6 95 7 0.3±0.05 0 0 0 0.8±0.17 0±0

queen8 12 96 12 3.3±0.06 3 3 2 4±0 2.6±0.18

games120 120 9 0±0.01 0 0 0 0±0 0±0

queen11 11 121 11 5.9±0.07 6 6 4 6±0 5.4±0.25

anna 138 11 0.2±0.04 0 0 0 0±0 0.4±0.18

2-Insertions 4 149 4 1.5±0.05 1 1 1 1±0 1±0

queen13 13 169 13 6.5±0.07 10 9 4 8±0 6.3±0.24

myciel7 191 8 0.6±0.06 0 0 0 0.3±0.14 0.2±0.11

homer 561 13 1±0.07 0 0 0 0±0 0.6±0.22

Average 1.9±0.01 1.95 2 1.2 1.92±0.05 1.35±0.05

2 https://mat.tepper.cmu.edu/COLOR02/.

https://mat.tepper.cmu.edu/COLOR02/


Generating a Graph Colouring Heuristic with Deep Q-Learning and GNNs 501

6.2 A Class of Graphs on Which ReLCol Outperforms DSATUR

Although the previous results suggest that ReLCol does not outperform
DSATUR on general graphs, there do exist classes of graphs on which DSATUR
is known to perform poorly. One such class is presented in [36]; these graphs,
which we refer to as Spinrad graphs, are constructed as follows:

1. Fix the number of vertices n such that n (mod 7) = 3, and let m = n+4
7 .

2. Partition the vertices into 5 disjoint sets as follows:

A = {a1, a2, · · · , am−2} B = {b1, b2, · · · , bm−1} C = {c2, c3, · · · , cm}
B′ = {b′

1, b
′
2, · · · , b′

2m} C ′ = {c′
1, c

′
2, · · · , c′

2m}

3. Add the following sets of edges:

EB
A = {(ai, bj): i �= j} EC

A = {(ai, cj): i < j} EC
B = {(bi−1, ci): 2 < i < m}

Plus:
– ∀b ∈ B, add edges to vertices in B′ such that the degree of b is 2m.
– ∀c ∈ C, add edges to vertices in C ′ such that the degree of c is 2m.

An example of such a graph with m = 4 is shown in Fig. 3. Note that some of
the vertices in B′ and C ′ may be disconnected; they exist simply to ensure that
the vertices in B and C all have degree 2m.

Fig. 3. Example of a Spinrad graph on 24 vertices, generated with m = 4.

The vertices can be partitioned into 3 disjoint sets A ∪ B′ ∪ C ′, B and C.
Given that there are no edges between pairs of vertices in the same set, the
chromatic number of the graph is 3. However the DSATUR algorithm assigns
the same colour to vertices ai, bi and ci, meaning it uses m colours for the whole
graph. A proof of this is provided in [36].

Figure 4 shows that ReLCol vastly outperforms DSATUR on Spinrad graphs,
in most cases identifying an optimal colouring using the minimum number of
colours. This indicates that despite their similar performance on general graphs,
ReLCol has learned a heuristic that is selecting vertices differently to DSATUR.



502 G. Watkins et al.

Fig. 4. ReLCol outperforms DSATUR on Spinrad graphs. Error bars show the max-
imum and minimum number of colours used by the 12 ReLCol-generated heuristics.

6.3 Scalability of ReLCol

While we have shown that ReLCol is competitive with existing construction
heuristics, and can outperform them on certain graph classes, our results suggest
that the ability of ReLCol to colour general graphs effectively may reduce when
the test graphs are significantly larger than those used for training.

This can be observed in Fig. 5, which compares the performance of DSATUR,
ReLCol, and Random on graphs of particular sizes generated using the same
process as our training dataset. The degradation in performance could be a
result of the nature of the training dataset, whose constituent graphs have no
more than 50 vertices: for graphs of this size DSATUR and ReLCol seem to
achieve comparable results, and much better than Random, but the performance
of ReLCol moves away from DSATUR towards Random as the graphs grow in
size.

Fig. 5. As the graph size increases, the performance of ReLCol moves from being
similar to DSATUR towards Random. This suggests that there are limitations to how
well ReLCol generalises to graphs larger than those seen during training.



Generating a Graph Colouring Heuristic with Deep Q-Learning and GNNs 503

6.4 Representing the State as a Complete Graph

To demonstrate the benefit of the proposed complete graph representation, we
compare ReLCol with a version that preserves the topology of the original graph,
meaning that within the GNN, messages are only passed between pairs of adja-
cent vertices. Figure 6 compares the number of colours used by each version
when applied to a validation dataset periodically during training. The valida-
tion dataset is composed of 100 graphs generated by the same mechanism as
the training dataset. The complete graph representation clearly leads to faster
learning and significantly better final performance.

Fig. 6. Our complete graph representation results in faster learning and better final
performance compared to the standard GNN representation.

7 Conclusions

We have proposed ReLCol, a reinforcement learning algorithm based on graph
neural networks that is able to learn a greedy construction heuristic for GCP.
The ReLCol heuristic is competitive with DSATUR, a leading greedy algorithm
from the literature, and better than several other comparable methods. We have
demonstrated that part of this success is due to a novel (to the best of our
knowledge) complete graph representation of the graph within the GNN. Since
our complete graph representation seems to perform much better than the stan-
dard GNN representation, we intend to investigate its effect in further RL tasks
with graph-structured data. We also plan to incorporate techniques for general-
isability from the machine learning literature to improve the performance of the
ReLCol heuristic on graphs much larger than the training set.

An advantage of automatically generated heuristics is that they can be tuned
to specific classes of problem instances by amending the training data, so explor-
ing the potential of ReLCol to learn an algorithm tailored to specific graph
types would be an interesting direction. Finally, given that the ReLCol heuris-
tic appears to work quite differently from DSATUR, further analysis of how it
selects vertices may yield insights into previously unknown methods for GCP.



504 G. Watkins et al.

Acknowledgements. G. Watkins acknowledges support from EPSRC under grant
EP/L015374/1.
G. Montana acknowledges support from EPSRC under grant EP/V024868/1.
We thank L. Gianinazzi for sharing the code for the method presented in [16].

References

1. Ahmed, S.: Applications of graph coloring in modern computer science. Int. J.
Comput. Inf. Technol. 3(2), 1–7 (2012)

2. Aragon, C.R., Johnson, D., McGeoch, L., Schevon, C.: Optimization by simulated
annealing: an experimental evaluation; part II, graph coloring and number parti-
tioning. Oper. Res. 39(3), 378–406 (1991)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

4. Barrett, T., Clements, W., Foerster, J., Lvovsky, A.: Exploratory combinatorial
optimization with reinforcement learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 3243–3250 (2020)

5. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph net-
works. arXiv:1806.01261 (2018)

6. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’Horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

7. Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algo-
rithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp.
568–579. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-
1 52

8. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124
(2015)

9. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4),
251–256 (1979)

10. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković, P.: Principal neighbourhood
aggregation for graph nets. In: Advances in Neural Information Processing Systems,
vol. 33, pp. 13260–13271 (2020)

11. Erdős, P., Rényi, A.: On random graphs I. Publicationes Math. 6(1), 290–297
(1959)

12. Formanowicz, P., Tanaś, K.: A survey of graph coloring - its types, methods and
applications. Found. Comput. Decis. Sci. 37(3), 223–238 (2012)

13. Fricke, G., et al.: Combinatorial problems on chessboards: a brief survey. In: Qua-
drennial International Conference on the Theory and Applications of Graphs, vol.
1, pp. 507–528 (1995)

14. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J.
Comb. Optim. 3(4), 379–397 (1999)

15. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. Freeman, San
Francisco (1979)

16. Gianinazzi, L., Fries, M., Dryden, N., Ben-Nun, T., Besta, M., Hoefler, T.: Learning
combinatorial node labeling algorithms. arXiv preprint arXiv:2106.03594 (2021)

17. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4), 345–351 (1987)

http://arxiv.org/abs/1806.01261
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1007/978-3-540-39658-1_52
http://arxiv.org/abs/2106.03594


Generating a Graph Colouring Heuristic with Deep Q-Learning and GNNs 505

18. Huang, J., Patwary, M., Diamos, G.: Coloring big graphs with alphagozero. arXiv
preprint arXiv:1902.10162 (2019)

19. Ireland, D., Montana, G.: Lense: Learning to navigate subgraph embeddings for
large-scale combinatorial optimisation. In: International Conference on Machine
Learning (2022)

20. Janczewski, R., Kubale, M., Manuszewski, K., Piwakowski, K.: The smallest hard-
to-color graph for algorithm DSATUR. Discret. Math. 236(1–3), 151–165 (2001)

21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Korte, B., Vygen, J.: Combinatorial Optimization. AC, vol. 21. Springer, Heidel-
berg (2018). https://doi.org/10.1007/978-3-662-56039-6

23. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res.
Natl. Bur. Stand. 84(6), 489–506 (1979)

24. Lemos, H., Prates, M., Avelar, P., Lamb, L.: Graph colouring meets deep learning:
effective graph neural network models for combinatorial problems. In: International
Conference on Tools with Artificial Intelligence, pp. 879–885. IEEE (2019)

25. Lewis, R.M.R.: Guide to Graph Colouring. TCS, Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81054-2

26. de Lima, A.M., Carmo, R.: Exact algorithms for the graph coloring problem.
Revista de Informática Teórica e Aplicada 25(4), 57–73 (2018)

27. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res.
203(1), 241–250 (2010)

28. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM (JACM) 41(5), 960–981 (1994)

29. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for
combinatorial optimization: a survey. Comput. Oper. Res. 134, 105400 (2021)

30. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv:1312.5602
(2013)

31. Moalic, L., Gondran, A.: Variations on memetic algorithms for graph coloring
problems. J. Heuristics 24(1), 1–24 (2018)

32. Sager, T.J., Lin, S.J.: A pruning procedure for exact graph coloring. ORSA J.
Comput. 3(3), 226–230 (1991)

33. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

34. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017)

35. Smith, K.A.: Neural networks for combinatorial optimization: a review of more
than a decade of research. INFORMS J. Comput. 11(1), 15–34 (1999)

36. Spinrad, J.P., Vijayan, G.: Worst case analysis of a graph coloring algorithm. Dis-
cret. Appl. Math. 12(1), 89–92 (1985)

37. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

38. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)
39. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature

393(6684), 440–442 (1998)
40. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)
41. Zhou, Y., Hao, J.K., Duval, B.: Reinforcement learning based local search for

grouping problems: a case study on graph coloring. Expert Syst. Appl. 64, 412–
422 (2016)

http://arxiv.org/abs/1902.10162
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-030-81054-2
https://doi.org/10.1007/978-3-030-81054-2
http://arxiv.org/abs/1312.5602


Multi-task Predict-then-Optimize

Bo Tang and Elias B. Khalil(B)

SCALE AI Research Chair in Data-Driven Algorithms for Modern Supply Chains,
Department of Mechanical and Industrial Engineering, University of Toronto,

Toronto, Canada
{botang,khalil}@mie.utoronto.ca

Abstract. The predict-then-optimize framework arises in a wide vari-
ety of applications where the unknown cost coefficients of an optimiza-
tion problem are first predicted based on contextual features and then
used to solve the problem. In this work, we extend the predict-then-
optimize framework to a multi-task setting: contextual features must be
used to predict cost coefficients of multiple optimization problems, possi-
bly with different feasible regions, simultaneously. For instance, in a vehi-
cle dispatch/routing application, features such as time-of-day, traffic, and
weather must be used to predict travel times on the edges of a road net-
work for multiple traveling salesperson problems that span different target
locations and multiple s− t shortest path problems with different source-
target pairs. We propose a set of methods for this setting, with the most
sophisticated one drawing on advances in multi-task deep learning that
enable information sharing between tasks for improved learning, particu-
larly in the small-data regime. Our experiments demonstrate that multi-
task predict-then-optimize methods provide good tradeoffs in performance
among different tasks, particularly with less training data and more tasks.

Keywords: multi-task learning · predict-then-optimize · data-driven
optimization · machine learning

1 Introduction

The predict-then-optimize framework, in which the unknown coefficients for an
optimization problem are predicted and then used to solve the problem, is emerg-
ing as a useful framework in some applications. For instance, in vehicle routing
and job scheduling, we often require optimization where the model’s cost coeffi-
cients, e.g., travel time and execution time, are unknown but predictable at deci-
sion time. In the conventional two-stage method, a learning model is first trained
to predict cost coefficients, after which a solver separately optimizes accordingly.
However, end-to-end approaches that learn predictive models that minimize the
decision error directly have recently gained interest due to some improvements
in experimental performance [4,10,12,15,22,23]. Although there has been some
recent work in predicting elements of the constraint matrix in a linear program-
ming setting [13,17], our focus here is on the predominant line of research that
has focused on unknown cost coefficients [1,5,8,10,12,14,22,23,30,32].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 506–522, 2023.
https://doi.org/10.1007/978-3-031-44505-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_34&domain=pdf
http://orcid.org/0000-0002-6035-5167
http://orcid.org/0000-0001-5844-9642
https://doi.org/10.1007/978-3-031-44505-7_34


Multi-task Predict-then-Optimize 507

Previous work on predict-then-optimize has focused on learning the cost coef-
ficients for a single optimization task. However, it is natural to consider the
setting where multiple related tasks can share information and representations.
For example, a vehicle routing application requires predicting travel times on
the edges of a road network for multiple traveling salesperson problems (TSPs)
that span different target locations and multiple shortest path problems with
different source-target pairs. These travel time predictions should be based on
the same contextual information, e.g., if the tasks are to be executed at the
same time-of-day, then the travel times that should be predicted for the differ-
ent tasks depend on the same features. Another case is in package delivery, where
distributing packages from one depot to multiple depots results in independent
delivery tasks that nonetheless share travel time predictions since they use the
same road network. To that end, we introduce multi-task end-to-end predict-
then-optimize, which simultaneously solves multiple optimization problems with
a loss function that relates to the decision errors of all such problems.

Multi-task learning has been successfully applied to natural language process-
ing, computer vision, and recommendation systems. However, its applicability to
the predict-then-optimize paradigm is yet to be explored. Predict-then-optimize
with multi-task learning is attractive because of the ability to improve model
performance in the small-data regime. Machine learning, especially with deep
neural networks, is data-intensive and prone to overfitting, which might limit
applicability to the predict-then-optimize paradigm. The need to simultaneously
minimize the losses of different tasks helps reduce overfitting and improve gen-
eralization. Multi-task learning combines the data of all tasks, which increases
the overall training data size and alleviates task-specific noise.

To the best of our knowledge, we introduce multi-task learning for end-to-end
predict-then-optimize for the first time. We motivate and formalize this prob-
lem before proposing a set of methods for combining the different task losses.
Our experiments show that multi-task end-to-end predict-then-optimize pro-
vides performance benefits and good tradeoffs in performance among different
tasks, especially with less training data and more tasks, as compared to apply-
ing standard single-task methods independently for each task. As an additional
contribution, we distinguish end-to-end predict-then-optimize approaches that
learn from observed costs (the usual setting of Elmachtoub and Grigas [12]) and
those that learn directly from (optimal) solutions without the objective function
costs themselves. This extends our framework to applications where there are
no labeled coefficients in the training data, e.g., the Amazon Last Mile Routing
Challenge [33]. The open-source code is available1.

2 Related Work

2.1 Differentiable Optimization

The key component of gradient-based end-to-end predict-then-optimize is dif-
ferentiable optimization, which allows the backpropagation algorithm to update
1 https://github.com/khalil-research/Multi-Task Predict-then-Optimize.

https://github.com/khalil-research/Multi-Task_Predict-then-Optimize


508 B. Tang and E. B. Khalil

model parameters from the decision made by the optimizer. Based on the KKT
conditions, Amos and Kolter [3] introduced OptNet, a differentiable optimizer
to make quadratic optimization problems learnable. With OptNet, Donti et al.
[10] investigated a learning framework for quadratic programming; Wilder et al.
[32] then added a small quadratic regularization to the linear objective function
for linear programming; Ferber et al. [14] extended the method to the discrete
model with the cutting plane; Mandi and Guns [22] adopted log-barrier regular-
ization instead of a quadratic one. Besides OptNet, Agrawal et al. [1] leveraged
KKT conditions to differentiate conic programming.

Except for the above approaches with KKT, an alternative methodology is to
design gradient approximations to avoid ill-defined gradients from predicted costs
to optimal solutions. Elmachtoub and Grigas [12] proposed a convex surrogate
loss. Vlastelica et al. [30] developed a differentiable optimizer through implicit
interpolation. Berthet et al. [5] demonstrated a method with stochastic pertur-
bation to smoothen the loss function and further constructed the Fenchel-Young
loss. Dalle et al. [8] extended the perturbation approach to the multiplicative
perturbation and the Frank-Wolfe regularization. Mulamba et al. [24] studied
a solver-free contrastive loss. Moreover, Shah et al. [26] provided an alternate
paradigm that additionally trains a model to predict decision errors to replace
the solver.

2.2 Multi-task Learning

Multi-task learning, first proposed by Caruana [6], aims to learn multiple tasks
together with joint losses. In short, a model with multiple loss functions is defined
as multi-task learning. Much research has focused on the (neural network) model
architecture: the most basic model is a shared-bottom model ( [6]), including
shared hidden layers at the bottom and task-specific layers at the top. Besides
such hard parameter sharing schemes, there is also soft sharing so that each task
keeps its own parameters. Duong et al. [11] added l2 norm regularization to
encourage similar parameters between tasks. Furthermore, neural networks with
different experts and some gates [21,27,29] were designed to fuse information
adaptively.

Another crucial issue is resolving the unbalanced (in magnitude) and con-
flicting gradients from different tasks. There are weighting approaches, such as
UW [18], GradNorm [7], and DWA [20], that have been proposed to adjust the
weighting of different losses. Other methods, such as PCGrad [34], GradVec [31],
and CAGrad [19], were designed to alter the direction of the overall gradient to
avoid conflicts and accelerate convergence.

3 Building Blocks

3.1 Optimization Problem

For multi-task end-to-end predict-then-optimize, each task t is a separate (inte-
ger) linear optimization problem, defined as follows:



Multi-task Predict-then-Optimize 509

min
w t

ctT
wt

s.t. Atwt ≤ bt

wt ≥ 0

Some wt
i are integer.

The decision variables are wt, the constraint coefficients are At, the right-
hand sides of the constraints are bt, and the unknown cost coefficients are ct.
Given a cost ct, wt∗

ct is the corresponding optimal solution, and zt∗
ct is the optimal

value. Additionally, we define St = {Atwt ≤ bt,wt ≥ 0, ...} as the feasible region
of decision variables wt.

3.2 Gradient-Based Learning

End-to-end predict-then-optimize aims to minimize a decision loss directly. As
a supervised learning problem, it requires a labeled dataset D consisting of fea-
tures x and labels c or w∗

c . We will further discuss the difference between cost
labels c and solution labels w∗

c in Sect. 4.2. As shown in Fig. 1, multi-task end-to-
end predict-then-optimize predicts the unknown costs for multiple optimization
problems and then solves these optimization problems with the predicted costs.
The critical component is a differentiable optimization embedded into a differen-
tiable predictive model. However, the only learnable part is the prediction model
g(x;θ), since there are no parameters to update in the solver and loss function.

Fig. 1. Illustration of end-to-end multi-task end-to-end predict-then-optimize: labeled
datasets D1,D2, ...,Dt are used to fit a machine learning predictor g(x; θ) that predicts
costs ĉt for each task t. The loss function lt(ĉt, ·) to be minimized measures decision
error instead of prediction error.

3.3 Decision Losses

Loss functions for end-to-end predict-then-optimize aim to measure the error
in decision-making. For instance, regret is defined as the difference in objective
values due to an optimal solution that is based on the true costs and another
that is based on the predicted costs:



510 B. Tang and E. B. Khalil

lRegret(ĉ, c) = cT w∗
ĉ − z∗

c

However, with a linear objective function, regret does not provide useful
gradients for learning [12]. Besides regret, decision error can also be defined as
the difference between the true solution and its prediction, such as using the
Hamming distance [30] or the squared error of a solution to an optimal one [5].
Because the function from costs c to optimal solutions w∗

c is piecewise constant,
a solver with any of the aforementioned losses has no nonzero gradients to update
the model parameter θ. Thus, the state-of-art methods, namely Smart Predict-
then-Optimize (SPO+) [12] and Perturbed Fenchel-Young Loss (PFYL), both
design surrogate decision losses which allow for a nonzero approximate gradient
(or subgradient), ∂l(·)

∂ĉ .

Smart Predict-then-Optimize Loss (SPO+). SPO+ loss [12] is a differen-
tiable convex upper bound on the regret:

lSPO+(ĉ, c) = −min
w∈S

{(2ĉ − c)T w} + 2ĉT w∗
c − z∗

c .

One proposed subgradient for this loss writes as follows:

2(w∗
c − w∗

2ĉ−c) ∈ ∂lSPO+(ĉ, c)
∂ĉ

.

In theory, the SPO+ framework can be applied to any problem with a linear
objective. Elmachtoub and Grigas [12] have conducted experiments on shortest
path as a representative linear program and portfolio optimization as a repre-
sentative quadratically-constrained problem.

Perturbed Fenchel-Young Loss (PFYL). PFYL [5] leverages Fenchel dual-
ity, where Berthet et al. [5] discussed only the case of linear programming. The
predicted costs are sampled with Gaussian perturbation ξ, and the expected
function of the perturbed minimizer is defined as F (c) = Eξ [min

w∈S
{(c + σξ)T w}].

With Ω(w∗
c ), the dual of F (c), the Fenchel-Young loss reads:

lFY(ĉ,w∗
c ) = ĉT w∗

c − F (ĉ) − Ω(w∗
c ).

Then, we can estimate the gradients by M samples Monte Carlo:

∂lFY(ĉ,w∗
c )

∂ĉ
≈ w∗

c − 1
M

M∑

m

argmin
w∈S

{(ĉ + σξm)T w}

3.4 Multi-task Loss Weighting Strategies

The general idea of multi-task learning is that multiple tasks are solved simul-
taneously by the same predictive model. It is critical for a multi-task neural



Multi-task Predict-then-Optimize 511

Table 1. Losses of Various Training Strategies

Strategy Losses

Single-Task mse lMSE(c, ĉ)

separated Separate lDecision(ĉ
t, ·) for each task t

separated+mse Separate lDecision(ĉ
t, ·) + lMSE(ct, ĉt) for each task t

Multi-Task comb
∑T

t ltDecision(ĉ
t, ·)

comb+mse
∑T

t ltDecision(ĉ
t, ·) +

∑T
t ltMSE(ct, ĉt)

gradnorm
∑T

t ut
Adal

t
Decision(ĉ

t, ·)
gradnorm+mse

∑T
t ut

Ada1 l
t
Decision(ĉ

t, ·) +
∑T

t ut
Ada2 l

t
MSE(ct, ĉt)

network, one such flexible class of models, to balance losses among tasks with
the loss weights ut for task t. The weighting approaches we evaluated include a
uniform combination (all ut = 1) and GradNorm [7], an adaptive loss weighting
approach. The latter provides adaptive per-task weights ut

Ada that are dynami-
cally adjusted during training in order to keep the scale of the gradients similar.
In this work, we set the GradNorm hyperparameters of “restoring force” to 0.1
and the learning rate of loss weights to 0.005. Further tuning is possible but was
not needed for our experiments.

All the training strategies we have explored in this paper, including baseline
approaches, are summarized in Table 1. Let T be the number of tasks, and cost
coefficient prediction for task t be ĉt. “mse” is the usual two-stage baseline of
training a regression model that minimizes cost coefficients mean-squared error
lMSE = 1

n

∑n
i ‖ĉi − ci‖2 only without regard to the decision. “separated” trains

one model per task, minimizing, for each task, a decision-based loss such as
SPO+ or PFYL from Sect. 3.3. “comb” simply sums up the per-task decision
losses, whereas “gradnorm” does so in a weighted adaptive way. For any of these
methods, whenever “+mse” is appended to the method name, a variant of the
method is obtained that combines additional mean-squared error lMSE in the
cost predictions with the decision loss. Such a regularizer is known to be useful
in practice, even with the primary evaluation metric of a trained model being
its decision regret [12]. Although we refer to “separated+mse” as a single-task
method, it can also be considered as a multi-task learning method in a broad
sense because of the inclusion of two losses.

4 Learning Architectures

4.1 Shared Learnable Layers

The model class we will explore is deep neural networks. Besides their capac-
ity to represent complex functions from labeled data, neural networks have a
compositional structure that makes them particularly well-suited for multi-task
learning. A multi-task neural network shares hidden layers across all tasks and
keeps specific layers for each task. Figure 2 illustrates that the sharing part of



512 B. Tang and E. B. Khalil

multi-task end-to-end predict-then-optimize depends on the consistency of the
predicted coefficients, which we will define next. At a high level, Fig. 2 distin-
guishes two settings. On the left, the different tasks use the exact same predicted
cost vector. On the right, each task could have a different cost vector. In both
settings, the predictions are based on the same input feature vector.

Fig. 2. Illustration of two types of multi-task end-to-end predict-then-optimize: On the
left, all optimization tasks require the same prediction as cost coefficients. On the right,
different tasks share some layers as feature embeddings and make different coefficient
predictions.

Shared Predicted Coefficients (Single-Cost). In this setting (left of Fig. 2),
which we will refer to as single-cost, the same cost coefficients are shared among
all tasks. For example, multiple navigation tasks on a single map are shortest-
path problems with different source-target pairs that share the same distance
matrix (i.e., costs). In this case, the cost coefficients ct for task t are equal to or
a subset of the shared costs c. Thus, the prediction model is defined as

ĉ = g(x;θShared),

which is the same as a single-task model, and the multiple tasks combine their
losses, ∑

t

utltDecision(ĉ, ·),

based on the shared prediction, ĉ. Therefore, as Algorithm 1 shows, all learnable
layers are shared. In addition, the baseline methods we referred to as “sepa-
rated” and “separated+mse” are not practical in this same-costs setting as they,
inconsistently, produce different cost predictions for each task, even when that
is not required. Nonetheless, an experimental assessment of their performance
will be conducted in order to contrast it with using multi-task learning.



Multi-task Predict-then-Optimize 513

Algorithm 1. Single-Cost Multi-Task Gradient Descent
Require: coefficient matrix A1, A2, ...; right-hand side b1, b2, ...; training data D
1: Initialize predictor parameters θShared for predictor g(x; θShared)
2: for epochs do
3: for each batch of training data (x, c) or (x, w1∗

c , w2∗
c , ...) do

4: Forward pass to predict cost ĉ := g(x; θShared)

5: Forward pass to solve optimal solution w t∗
ĉ := argminw t∈St ĉT w t per task

6: Forward pass to sum weighted decision losses l(ĉ, ·) :=
∑

t utlt(ĉ, ·)
7: Backward pass from loss l(ĉ, ·) to update parameters θShared
8: end for
9: end for

Shared Features Embeddings (Multi-cost). In many applications of
predict-then-optimize, the optimization problem requires cost coefficients that
are specific and heterogeneous to each task, but that can be inferred from homo-
geneous contextual features. For instance, in a vehicle routing application, fea-
tures such as time of day and weather predict travel time in different regions.
Compared to the single-cost setting we just introduced, the multi-cost predictor
here has the form

ĉt = g(x;θShared;θt).

Per-task predictions are made by leveraging the same information embedding in
the layers of the neural network that are shared across the tasks (see right of
Fig. 2). Thus, the corresponding loss function is

∑

t

utltDecision(ĉt, ·),

and Algorithm 2 updates the parameters of the predictor.

Algorithm 2. Multi-Cost Multi-Task Gradient Descent
Require: coefficient matrix A1, A2, ...; right-hand side b1, b2, ...; training data D1, D2, ...
1: Initialize predictor parameters θShared, θ1, θ2, ... for predictor g(x; θShared; θt)
2: for epochs do
3: for each batch of training data (x1, x2, ..., c1, c2, ...) or (x1, x2, ..., w1∗

c1
, w2∗

c2
, ...) do

4: Forward pass to predict cost ĉt := g(xt; θShared; θt) per task

5: Forward pass to solve optimal solution w t∗
ĉ t

:= argminw t∈St ĉtT w t per task

6: Forward pass to sum weighted decision losses l(ĉ1, ĉ2, ..., ·) :=
∑

t utlt(ĉt, ·)
7: Backward pass from loss l(ĉ1, ĉ2, ..., ·) to update parameters θShared, θ1, θ2, ...
8: end for
9: end for

4.2 Label Accessibility and Learning Paradigms

We distinguish two learning paradigms that require different kinds of labels (cost
coefficients c or optimal solutions w∗

c ) in the training data: learning from
costs and learning from (optimal) solutions. This distinction is based on
the availability of labeled cost coefficients c. Thus, SPO+ is learning from costs



514 B. Tang and E. B. Khalil

because the calculation of SPO+ loss involves true cost coefficients c, whereas
PFYL is learning from solutions that do not require access to c; see Sect. 3.3.

The need for the true cost coefficients as labels in the training data is a key
distinguishing factor because these cost coefficients provide additional informa-
tion that can be used to train the model, but they may be absent in the data.
Deriving optimal solutions from the cost coefficients is trivial, but the opposite
is intricate as it requires some form of inverse optimization [2]. The ability to
directly learn from solutions extends the applicability of end-to-end predict-then-
optimize beyond what a two-stage approach, which is based on regressing on the
cost coefficients, can do. Indeed, the recent MIT-Amazon Last Mile Routing
Challenge [33] is one such example in which good TSP solutions are observed on
historical package delivery instances, but the corresponding edge costs are unob-
served. Those good solutions are based on experienced drivers’ tacit knowledge.

5 Experiments

In this section, we present experimental results for multi-task end-to-end predict-
then-optimize. In our experiments, we evaluate decision performance using
regret, and we use mean-squared error (MSE) to measure the prediction of cost
coefficients ĉ. We use SPO+ and PFYL as typical methods for learning from
costs and learning from solutions and adopt various multi-task learning strate-
gies discussed in Sect. 3.4, as well as two-stage and single-task baselines. Our
experiments are conducted on two datasets, including graph routing on PyEPO
TSP dataset2 [25], and adjusted Warcraft terrain3 [30] to learn single-cost deci-
sions and multi-cost decisions. We also vary the amount of training data size
and the number of tasks.

All the numerical experiments were conducted in Python v3.7.9 with two
Intel E5-2683 v4 Broadwell CPUs, two NVIDIA P100 Pascal GPUs, and 8GB
memory. Specifically, we used PyTorch [25] v1.10.0 for the prediction model and
Gurobi [16] v9.1.2 for the optimization solver, and PyEPO [28] v0.2.0 for SPO+
and PFYL autograd functions.

5.1 Benchmark Datasets and Neural Network Architecture

Graph Routing with Multiple Tasks. We used the traveling salesperson
problem dataset generated from PyEPO [28], which uses the Euclidean distance
among nodes plus polynomial function f(xi) = ( 1√

p (Bxi)j + 3)4 (where B is a
random matrix) with random noise perturbations f(xi) · ε to map the features x
into a symmetric distance matrix of a complete graph. We discuss both learning
from costs and learning from solutions. In this experiment, the number of features
p is 10, the number of nodes m is 30, the polynomial degree of function f(xi)
is 4, and the noise ε comes from U(0.5, 1.5). We sample 15 − 22 nodes as target

2 https://khalil-research.github.io/PyEPO.
3 https://drive.google.com/file/d/1lYPT7dEHtH0LaIFjigLOOkxUq4yi94fy.

https://khalil-research.github.io/PyEPO
https://drive.google.com/file/d/1lYPT7dEHtH0LaIFjigLOOkxUq4yi94fy


Multi-task Predict-then-Optimize 515

locations for multiple traveling salesperson problems (TSPs) and 54 undirected
edges for multiple shortest paths (SPs) with different source-target pairs. Thus,
all TSP and SP tasks share the same cost coefficients.

Since the multiple routing tasks require consistent cost coefficients, the model
g(x;θ) makes one prediction of the costs that is used for all of the tasks. The
architecture of the regression network is one fully-connected layer with a softplus
activation to prevent negative cost predictions, and all tasks share the learnable
layer. For the hyperparameters, the learning rate is 0.1, the batch size is 32, and
the max training iterations is 30000 with 5 patience early stopping. For PFYL,
the number of samples M is 1, and the perturbation temperature σ is 1.0. We
formulate SP as a network flow problem and use the Dantzig-Fulkerson-Johnson
(DFJ) formulation [9] to solve TSP.

Warcraft Shortest Path with Various Species. The Warcraft map shortest
path dataset [30] allows for the learning of the shortest path from RGB terrain
images, and we use 96 × 96 RGB images for 12 × 12 grid networks and sample
3 small subsets from 10000 original training data points for use in training. As
shown in Fig. 3, we modify the cost coefficients for different species (human,
naga, dwarf) and assume that the cost coefficients are not accessible in the data.
This means there are three separate datasets of feature-solution pairs, which
require learning from solutions using the PFYL method. Similar to SP tasks in
Graph Routing, the shortest path optimization model is a linear program.

Fig. 3. Multiple datasets of Warcraft terrain images for different species, where labeled
cost coefficients are unavailable.



516 B. Tang and E. B. Khalil

Since the multiple Warcraft shortest paths tasks require us to predict cost
coefficients for different species, the prediction model should incorporate task-
specific layers. Following Vlastelica et al. [30], we train a truncated ResNet18
(first five layers) for 50 epochs with batches of size 70, and learning rate 0.0005
decaying at the epochs 30 and 40. The first three layers are the shared-bottom.
The number of samples M is 1, and the perturbation temperature σ is 1.0.

5.2 Performance Advantage of Multi-task Learning

Fig. 4. Performance Radar Plot for Graph Routing: Average performance for different
tasks on the test set, trained with SPO+ (Top) and PFYL (Bottom), and 100 training
data points, including regrets and cost MSE, lower is better. SP i is the regret for
shortest path task i, TSP i is the regret for traveling salesperson task i, MSE is the
mean squared error of cost coefficients.

Experimental results on multiple routing tasks on a graph, as shown in Fig. 4,
demonstrate that multi-task end-to-end predict-then-optimize, especially with
GradNorm, has a performance advantage over single-task approaches. Figure 4
shows the results of learning from costs with SPO+ (top), and the results of
learning from solutions with PFYL (bottom). In these “radar plots”, the per-
task regret on unseen test data is shown along each dimension (lower is better).
It can be seen that the innermost method in these figures (best seen in color) is
the red one, “gradnorm+mse”.



Multi-task Predict-then-Optimize 517

Fig. 5. Learning from Costs for Graph Routing: Average performance for different tasks
on the test set, trained with SPO+ and 100 training data points for more methods,
lower is better. SP i is the regret for shortest path task i, TSP i is the regret for
traveling salesperson task i, MSE is the mean squared error of cost coefficients.

More experiments are shown in Fig. 5. The investigation includes the two-
stage method, single-task, and multi-task with and without cost MSE as regu-
larization; these two plots include a superset of the methods in Fig. 4. Despite
achieving a lower MSE, the two-stage approaches exhibit significantly worse
regret than end-to-end learning. Additionally, adding an MSE regularizer on the
cost coefficients consistently improves end-to-end learning approaches. Thus, we
always include the additional cost of MSE regularizer when learning from costs.
However, since labeled costs are absent when learning directly from solutions,
PFYL cannot add cost MSE (“+mse”) as regularization and cannot be compared
with the two-stage method (which requires cost labels.)

5.3 Efficiency Benefit of Multi-task Learning

Figure 6 shows the training time for SPO+ and PFYL models when using early
stopping when five consecutive epochs exhibit non-improving loss values on held-
out validation data, a standard trick in neural network training. For “sepa-
rated” and “separated+mse”, the training time is the sum of each individual
model. We can see that the use of GradNorm to adjust the weights dynami-
cally allows for efficient model training as faster convergence is achieved. The
“separated+mse” baseline typically requires more time to converge, but also
converges to worse models in terms of regret, as seen in the previous paragraph.
Furthermore, “comb” and “comb+mse” usually require more time to converge,
which highlights the importance of an effective weighting scheme for multi-tasks
approaches.



518 B. Tang and E. B. Khalil

Fig. 6. Training time for Graph Routing: The elapsed time of training to convergence
at different settings.

Fig. 7. More Training Data for Graph Routing: Average performance for different
graph routing tasks on the test set for SPO+ (left) and PFYL (right), trained with
PFYL and 1000 training data points, including regrets and cost MSE, lower is better.
SP i is the regret for shortest path task i, TSP i is the regret for traveling salesperson
task i, MSE is the mean squared error of cost coefficients.

5.4 Learning Under Data Scarcity

In this section, we claim that the multi-task end-to-end predict-then-optimize
framework is particularly effective in the small-data regime. Compared to Figs. 4,
we find that multi-task learning for graph routing loses its advantage with more
training data (Fig. 7). In Warcraft shortest path problem, Fig. 8 shows that the
performance of the separated single-task model gradually improves and may even
surpass multi-task learning as the amount of training data increases. These fig-
ures show that multi-task end-to-end predict-then-optimize can effectively lever-
age information from related datasets when the size of the individual dataset is
limited. Therefore, multi-task learning is a reliable option under data scarcity.



Multi-task Predict-then-Optimize 519

Fig. 8. Performance on Warcraft Shortest Path: Average regrets of different strategies,
trained with PFYL, decreases as the amount of training data increases; lower is better.

Fig. 9. Performance on Graph Routing: Average regrets of a different strategy, trained
with PFYL and 100 training data, decreases as the amount of tasks increases, lower is
better.

5.5 Learning Under Task Redundancy

Figure 9 indicates that increasing the number of related tasks improves the model
performance, especially for complicated tasks such as TSP. This performance
improvement can be attributed to the positive interaction between the losses of
the related tasks. This finding suggests the potential for using auxiliary tasks to
enhance model performance.



520 B. Tang and E. B. Khalil

6 Conclusion

We extend the end-to-end predict-then-optimize framework to multi-task learn-
ing, which jointly minimizes decision error for related optimization tasks. Our
results demonstrate the benefits of this approach, including an improved per-
formance with less training data points and the ability to handle multiple tasks
simultaneously. Future work in this area could include the application of this
method to real-world problems, as well as further exploration of techniques for
multi-task learning, such as current and novel multi-task neural network archi-
tectures and gradient calibration methods.

References

1. Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, J.Z.: Differ-
entiable convex optimization layers. In: Wallach, H., Larochelle, H., Beygelzimer,
A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 32, Curran Associates, Inc. (2019)

2. Ahuja, R.K., Orlin, J.B.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)
3. Amos, B., Kolter, J.Z.: OptNet: differentiable optimization as a layer in neural

networks. In: International Conference on Machine Learning, pp. 136–145, PMLR
(2017)

4. Bengio, Y.: Using a financial training criterion rather than a prediction criterion.
Int. J. Neural Syst. 8(04), 433–443 (1997)

5. Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.P., Bach, F.: Learning
with differentiable perturbed optimizers. arXiv preprint arXiv:2002.08676 (2020)

6. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
7. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: GradNorm: gradient nor-

malization for adaptive loss balancing in deep multitask networks. In: International
Conference on Machine Learning, pp. 794–803, PMLR (2018)

8. Dalle, G., Baty, L., Bouvier, L., Parmentier, A.: Learning with combinatorial opti-
mization layers: a probabilistic approach. arXiv preprint arXiv:2207.13513 (2022)

9. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman
problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)

10. Donti, P.L., Amos, B., Kolter, J.Z.: Task-based end-to-end model learning in
stochastic optimization. In: Advances in Neural Information Processing Systems
(2017)

11. Duong, L., Cohn, T., Bird, S., Cook, P.: Low resource dependency parsing: cross-
lingual parameter sharing in a neural network parser. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (vol. 2: short papers),
pp. 845–850 (2015)

12. Elmachtoub, A.N., Grigas, P.: Smart “predict, then optimize”. Manage. Sci. 68,
9–26 (2021)

13. Estes, A.S., Richard, J.P.P.: Smart predict-then-optimize for two-stage linear pro-
grams with side information. INFORMS Journal on Optimization (2023)

14. Ferber, A., Wilder, B., Dilkina, B., Tambe, M.: MIPaal: mixed integer program as
a layer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 1504–1511 (2020)

http://arxiv.org/abs/2002.08676
http://arxiv.org/abs/2207.13513


Multi-task Predict-then-Optimize 521

15. Ford, B., Nguyen, T., Tambe, M., Sintov, N., Fave, F.D.: Beware the soothsayer:
from attack prediction accuracy to predictive reliability in security games. In:
Khouzani, M.H.R., Panaousis, E., Theodorakopoulos, G. (eds.) GameSec 2015.
LNCS, vol. 9406, pp. 35–56. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-25594-1 3

16. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://
www.gurobi.com/

17. Hu, X., Lee, J.C., Lee, J.H.: Predict+ optimize for packing and covering LPS with
unknown parameters in constraints. In: Proceedings of the AAAI Conference on
Artificial Intelligence (2023)

18. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

19. Liu, B., Liu, X., Jin, X., Stone, P., Liu, Q.: Conflict-averse gradient descent for
multi-task learning. In: Advances in Neural Information Processing Systems, vol.
34, pp. 18878–18890 (2021)

20. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1871–1880 (2019)

21. Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relationships
in multi-task learning with multi-gate mixture-of-experts. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1930–1939 (2018)

22. Mandi, J., Guns, T.: Interior point solving for LP-based prediction+optimisation.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances
in Neural Information Processing Systems, vol. 33, pp. 7272–7282, Curran Asso-
ciates, Inc. (2020)

23. Mandi, J., Stuckey, P.J., Guns, T.: Smart predict-and-optimize for hard combina-
torial optimization problems. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 1603–1610 (2020)

24. Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., Guns, T.:
Contrastive losses and solution caching for predict-and-optimize. arXiv preprint
arXiv:2011.05354 (2020)

25. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

26. Shah, S., Wang, K., Wilder, B., Perrault, A., Tambe, M.: Decision-focused learning
without decision-making: learning locally optimized decision losses. In: Advances
in Neural Information Processing Systems (2022)

27. Shazeer, N., et al.: Outrageously large neural networks: the sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538 (2017)

28. Tang, B., Khalil, E.B.: PyEPO: a PyTorch-based end-to-end predict-then-optimize
library for linear and integer programming. Mathematical Programming Compu-
tation (2022 in submission)

29. Tang, H., Liu, J., Zhao, M., Gong, X.: Progressive layered extraction (PLE): a
novel multi-task learning (MTL) model for personalized recommendations. In:
Fourteenth ACM Conference on Recommender Systems, pp. 269–278 (2020)

30. Vlastelica, M., Paulus, A., Musil, V., Martius, G., Roĺınek, M.: Differentiation of
blackbox combinatorial solvers. arXiv preprint arXiv:1912.02175 (2019)

31. Wang, Z., Tsvetkov, Y., Firat, O., Cao, Y.: Gradient vaccine: investigating and
improving multi-task optimization in massively multilingual models. arXiv preprint
arXiv:2010.05874 (2020)

https://doi.org/10.1007/978-3-319-25594-1_3
https://doi.org/10.1007/978-3-319-25594-1_3
https://www.gurobi.com/
https://www.gurobi.com/
http://arxiv.org/abs/2011.05354
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1912.02175
http://arxiv.org/abs/2010.05874


522 B. Tang and E. B. Khalil

32. Wilder, B., Dilkina, B., Tambe, M.: Melding the data-decisions pipeline: decision-
focused learning for combinatorial optimization. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, pp. 1658–1665 (2019)

33. Winkenbach, M., Parks, S., Noszek, J.: Technical proceedings of the amazon last
mile routing research challenge (2021)

34. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery
for multi-task learning. In: Advances in Neural Information Processing Systems,
vol. 33, pp. 5824–5836 (2020)



Integrating Hyperparameter Search
into Model-Free AutoML

with Context-Free Grammars

Hernán Ceferino Vázquez(B), Jorge Sanchez, and Rafael Carrascosa

MercadoLibre Inc., Buenos Aires, Argentina
{hernan.vazquez,jorge.sanchez,rafael.carrascosa}@mercadolibre.com

Abstract. Automated Machine Learning (AutoML) has become
increasingly popular in recent years due to its ability to reduce the
amount of time and expertise required to design and develop machine
learning systems. This is very important for the practice of machine
learning, as it allows building strong baselines quickly, improving the
efficiency of the data scientists, and reducing the time to production.
However, despite the advantages of AutoML, it faces several challenges,
such as defining the solutions space and exploring it efficiently. Recently,
some approaches have been shown to be able to do it using tree-based
search algorithms and context-free grammars. In particular, GramML
presents a model-free reinforcement learning approach that leverages
pipeline configuration grammars and operates using Monte Carlo tree
search. However, one of the limitations of GramML is that it uses default
hyperparameters, limiting the search problem to finding optimal pipeline
structures for the available data preprocessors and models. In this work,
we propose an extension to GramML that supports larger search spaces
including hyperparameter search. We evaluated the approach using an
OpenML benchmark and found significant improvements compared to
other state-of-the-art techniques.

Keywords: Automated Machine Learning · Hyperparameter
Optimization · Context-free Grammars · Monte Carlo Tree Search ·
Reinforcement Learning · Model-Free

1 Introduction

The practice of Machine Learning (ML) involves making decisions to find the
best solution for a problem among a myriad of candidates. Machine learning
practitioners often find themselves in a process of trial and error in order to
determine optimal processing pipelines (data preprocessing, model architectures,
etc.) and their configurations (hyperparameters) [4]. These decisions go hand in
hand with the many constraints imposed by the actual application domain and
have a great impact on the final system performance. These constraints can
be either intrinsic, such as working with heterogeneous data, extrinsic, such
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 523–536, 2023.
https://doi.org/10.1007/978-3-031-44505-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_35&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_35


524 H. C. Vázquez et al.

as requiring using limited computational resources and/or short development
cycles, or both. Solving real-world problems by means of ML is a time-consuming
and difficult process [5].

In this context, the development of methods and techniques that allow for
the automated generation of machine learning solutions [30] is a topic of great
practical importance, as they help reduce the time and expertise required for the
design and evaluation of a broad range of ML-based products and applications.

Besides the benefits it brings to the practice of machine learning, AutoML
poses several challenges. In our case, these challenges are how to define the solu-
tion space (the set of possible pipeline configurations, i.e. pipeline structure and
its hyperparameters) in a way that is both comprehensive and computationally
feasible, and how to explore it efficiently both in terms of time and resources.

Many techniques have been developed over the years to address these prob-
lems, most of which rely on parametric models to guide the exploration of the
search space. However, such model-based solutions require a characterization of
configuration space and its possible solutions via meta-features, which are not
always easy to define and evolve over time, adding an extra (meta) learning step
as well as an additional layer of hyperparameters (those of the meta-model) [28].
An alternative to this family of models corresponds to the model-free counter-
part. These approaches rely on different strategies to guide the search stage, in
which evolutionary [14,23] and tree-based techniques [21,24] appear as the most
prominent ones.

A particularly interesting approach consists of using context-free grammars
for the search space specification and an efficient search strategy over the produc-
tion tree [32] derived from it [10,21,31]. A specific algorithm that has been used
in this case is Monte Carlo Tree Search (MCTS), which allows for a more effi-
cient exploration of the search space [24]. In particular, [31] proposes GramML,
a simple yet effective model-free reinforcement learning approach based on an
adaptation of the MCTS for trees and context-free grammars that show superior
performance compared to the state-of-the-art. However, one of the limitations of
their model is that it disregards hyperparameters, leaving them to their default
values. This effectively reduces the search space pipeline architectures consisting
of data preprocessors and generic model configurations.

In this work, we propose an extension to GramML that supports larger search
spaces by incorporating hyperparameters into the model. We extend the basic
MCTS algorithm to account for this increase in complexity, by incorporating a
pruning strategy and the use of non-parametric selection policies. In addition,
we run experiments to evaluate the performance of our approach and compare it
with state-of-the-art techniques. The results show that our method significantly
improves performance and demonstrates the effectiveness of incorporating hyper-
parameter search into grammar-based AutoML.

The rest of the paper is structured as follows. Section 2 discusses the related
work. Section 3 explains the main concepts used in this work. Section 4 presents
the core of our approach. Section 5 describes the experiments we conducted and
highlights the main results. Finally, Sect. 6 concludes and outlines our future
work.



Integrating Hyperparameter Search into GramML 525

2 Related Work

This section provides a succinct overview of prior studies related to AutoML. The
main representative for solving this class of problems is AutoSklearn [15], which
is based on the Sequential Model-Based Algorithm Configuration (SMAC) algo-
rithm [18] and incorporates Bayesian optimization (BO) and surrogate models to
determine optimal machine learning pipelines. In AutoSklearn hyperparameters
and pipeline selection problem are tackled as a single, structured, joint optimiza-
tion problem named CASH (Combined Algorithm Selection and Hyperparameter
optimization [27]). Recent research has produced model-based approaches that
exhibit comparable performance to AutoSklearn. For instance, MOSAIC [24]
leverages a surrogate model formulation in conjunction with a Monte Carlo Tree
Search (MCTS) to search the hypothesis space. MOSAIC tackle both pipeline
selection and hyperparameter optimization problems using a coupled hybrid
strategy: MCTS is used for the first and Bayesian optimization for the latter,
where the coupling is enforced by using a surrogate model. AlphaD3M [11] also
builds on MCTS and uses a neural network as surrogate model, considering only
partial pipelines rather than whole configurations. The difference with MOSAIC
is that the pipeline selection is decoupled from the hyperparameter search, it
first looks for the best pipelines and then performs hyperparameter optimiza-
tion of the best pipelines using SMAC. [10] studied the use of AlphaD3M in
combination with a grammar, relying on pre-trained models for guidance during
the search. Another approach, PIPER [21], utilizes a context-free grammar and a
greedy heuristic, demonstrating competitive results relative to other techniques.
In PIPER, the best pipeline structure is found and then its hyperparameters are
searched with a standard CASH optimizer. Other approaches include the use of
genetic programming [23,25] and hierarchical planning [19,22] techniques.

3 Background

A formal grammar is a collection of symbols and grammar rules that describe
how strings are formed in a specific formal language [26]. There are various types
of grammar, including context-free grammars [8]. In context-free grammars, the
grammar rules consist of two components: the left-hand side of a grammar rule is
always a single non-terminal symbol. These symbols never appear in the strings
belonging to the language. The right-hand side contains a combination of termi-
nal and non-terminal symbols that are equivalent to the left-hand side. Therefore,
a non-terminal symbol can be substituted with any of the options specified on
the right-hand side.

Once specified, the grammar provide a set of rules by which non-terminal
symbols can be substituted to form strings. These strings belong to the lan-
guage represented by the grammar. This generation process (production task)
is performed by starting from an initial non-terminal symbol and replacing it
recursively using the grammar rules available. An important property, in this
case, is that the set of rules can be expressed in the form of a tree and the



526 H. C. Vázquez et al.

generation of any given production can be seen as a path from the root to a
particular leaf of this tree. The generation process can be thus seen as a search
problem over the tree induced by the grammar.

In the context of the AutoML problem, the grammar is used to encode
the different components and their combination within a desired pipeline. For
instance, we can set a grammar that accounts for different data preprocessing
strategies, like PREPROCESSING := “NumericalImputation” or SCALING :=
“MinMaxScaler” or “StandardScaler” or the type of weight regularization used
during learning, as PENALTY := “l1” or “l2”. Finding optimal ML pipelines
corresponds to searching for a path from the root (the initial symbol of the
grammar) to a leaf of the tree (the last rule evaluated) that performs best in
the context of a given ML problem. Interestingly, we could also encode hyperpa-
rameter decisions within the same grammar, e.g. by listing the possible values
(or ranges) that a particular parameter can take. By doing so, we grow the tree
size (configuration space of all possible ML pipelines and their configurations)
exponentially.

From the above, a key component of grammar-based approaches to AutoML
is the search algorithm, as it has to be efficient and scale gracefully with the size
of the tree. In the literature, one of the most reliable alternatives is the Monte
Carlo Tree Search (MCTS) algorithm [20]. MCTS is a search algorithm that
seeks to expand the search tree by using random sampling heuristics. It consists
of four steps: selection, expansion, simulation and backpropagation. During the
selection step, the algorithm navigates the search tree to reach a node that
has not yet been explored. Selection always starts from the root node and, at
each level, selects the next node to visit according to a given selection policy.
The expansion, simulation, and backpropagation steps ensure that the tree is
expanded according to the rules available at each node and, once a terminal node
is reached, that the information about the reliability of the results obtained at
this terminal state is propagated back to all the nodes along the path connecting
this node to the root. As a reference, Algorithm 1 illustrates the general form of
the MCTS algorithm.

Algorithm 1. General MCTS approach
1: function Search(s0)
2: create root node a0 with state s0
3: while within budget do
4: ai ← Selection(a0, SelectionPolicy)
5: ai ← Expansion(ai)
6: Δ ← Simulation(s(ai))
7: Backpropagation(ai, Δ)

return BestChild(a0, SelectionPolicy)

In general, MCTS is a powerful method that allows to explore the search
tree in a systematic and efficient way and can be used for AutoML. However,



Integrating Hyperparameter Search into GramML 527

balancing the exploration and exploitation trade-off depends on find best selec-
tion policy to use. Furthermore, when the tree grows up exponentially as in the
case of hyper-parameter search problem, finding good solutions in an acceptable
time can be challenging.

4 Hyperparameter Search in Grammar-Based AutoML

In grammar-based AutoML, the objective is to generate pipeline configurations
using the available production rules that encode the choices for a particular non-
terminal symbol. In our case, we extend the GramML1 formulation of [31] to
account for the hyperparameters associated with the different ML components
that compose an ML pipeline. For continuous numerical hyperparameters, we
use the same sampling intervals as AutoSklearn for a fairer comparison. In the
case of categorical or discrete parameters, we incorporate their values directly
into the grammar.

Using MCTS the grammar is traversed generating productions and looking
for the best pipeline configurations. The algorithm can be stopped at any point,
and the current best pipeline configuration is returned. The longer the algorithm
runs, the more productions will be generated and evaluated, and the more likely
that the recommended pipeline is indeed the optimal one. The process of gen-
erating grammar productions and evaluating pipeline configurations consists of
the traditional four steps of MCTS; however, it has some considerations given
the nature of the problem. In our setting, the only valid configurations are leaf
nodes, as they contain the complete configuration object. Any attempt to exe-
cute a partial configuration would result in an error. Additionally, each iteration
of the algorithm (commonly referred to as an episode in RL) ends in a leaf
node or terminal state. These differences lead to some changes in the original
algorithm.

Algorithm 2 illustrates an adaptation of the MCTS algorithm for AutoML.
The Search function is called by the main program until a budget is exhausted.
The budget can be specified in terms of the number of iterations or running
time. Each call to the Search function returns a pipeline configuration. This
function is executed until either a pipeline configuration is found or the budget
is exhausted.

In each step of the algorithm, if the selected node is not terminal, the search
function performs the expansion and simulation steps. In the expansion step,
the tree is navigated from the selected node to find a node that has not been
expanded. Once found, it is expanded, and the algorithm continues. In the sim-
ulation step, the algorithm randomly selects a path from the selected node to a
leaf. Upon reaching a leaf, a reward function is computed and returned. In the
case of the selected node being terminal, this reward is used for backpropagation.
Finally, the selected leaf is pruned from the tree. If all leaves of a branch are
pruned, then the branch is also pruned.
1 The Extended GramML source code is available at: github.com/mercadolibre/fury

gramml-with-hyperparams-search.

https://github.com/mercadolibre/fury_gramml-with-hyperparams-search
https://github.com/mercadolibre/fury_gramml-with-hyperparams-search


528 H. C. Vázquez et al.

Algorithm 2. MCTS for AutoML
1: function Search(s0)
2: ai ← a0

3: while used budget < budget & ai is not Terminal do
4: ai ← Selection(a0, SelectionPolicy)
5: if ai is not Terminal then
6: ai ← Expansion(ai)
7: Δ ← Simulation(s(ai))
8: else
9: Δ ← GetReward(s(ai))

10: Backpropagation(ai, Δ)

11: p∗
i ← BestLeaf(a0, SelectionPolicy)

12: PruneTree(p∗
i )

13: return p∗
i

Selection and backpropagation steps depend on the actual selection policy.
Selection policies are important as they guide the search, regulating the trade-off
between exploration and exploitation. In what follows, we present three differ-
ent alternatives to this combination that appear as particularly suited to our
problem.

Upper Confidence Bound Applied to Trees (UTC). UTC [20] is a standard algo-
rithm that seeks to establish a balance between exploration and exploitation to
find the best option among a set of candidates. It uses a constant C as the only
parameter that regulates this trade-off. UCT is based on the computation of two
statistics, a cumulative sum of the rewards obtained and the number of visits
for each node. base on these values, we compute a score for each node as:

v(ai) =
reward(ai)
visits(ai)

+ C

√
log (visits(ai))

visits(parent(ai)))
, (1)

The intuition behind this expression is constructing confidence intervals around
the estimated rewards of each node. The UCT formula essentially selects the
node with the highest upper confidence bound (UCB). By selecting nodes based
on this UCB, the algorithm ensures fair exploration of all nodes, avoiding local
optima, and achieving a balance between exploiting known rewards and exploring
potentially better options. The parameter C controls how narrow or wider the
confidence bound will be and with this balance the tradeoff between exploitation
(first term) and exploration (second term).

The selection policy corresponds to choosing the node with the highest score.
Algorithm 3 shows the process by which rewards and visits are backpropagated
from a leaf up to the root.

Bootstrap Thompson Sampling (BTS). In Thompson Sampling (TS) the basic
idea is to select actions stochastically [1]. TS requires being able to compute the



Integrating Hyperparameter Search into GramML 529

Algorithm 3. Backpropagation for UCT
1: function Backpropagation(a, Δ)
2: ai ← a � a is a leaf node
3: while ai is not Null do
4: rewardi ← rewardi + Δ
5: visitsi ← visitsi + 1
6: ai ← parent(ai) � if ai is the root node parent is Null

exact posterior [7]. In cases where this is not possible, the posterior distribu-
tion can be approximated using bootstrapping [13]. This method is known as
Bootstrap Thompson Sampling (BTS) [12]. In BTS the bootstrap distribution
is a collection of bootstrap replicates j ∈ {1, ..., J}, where J is a tunable hyper-
parameter that balances the trade-off between exploration and exploitation. A
smaller J value results in a more greedy approach, while a larger J increases
exploration, but has a higher computational cost [12]. Each replicate j has some
parameters θ, which are used to estimate j’s expected utility given some prior
distribution P (θ). At decision time, the bootstrap distribution for each node is
sampled, and the child with the highest expected utility is selected. During back-
propagation, the distribution parameters are updated by simulating a coin flip
for each replicate j. In our scenario, we use a Normal distribution as prior and
two parameters α y β (by consistency to other works [17]). If the coin flip comes
up heads, the α and β parameters for j are re-weighted by adding the observed
reward to αj and the value 1 to βj . Algorithm 4 illustrates the backpropagation
step for the BTS strategy.

Algorithm 4. Backpropagation for BTS
1: function Backpropagation(a, Δ)
2: ai ← a � a is a leaf node
3: while ai is not Null do
4: for j ∈ J do
5: sample dj from Bernoulli(1/2)
6: if dj = 1 then
7: αai ← αai + Δ
8: βai ← βai + 1

9: ai ← parent(ai) � if ai is the root node parent is Null

Regarding the selection policy, we estimate the value of the nodes as αai
/βai

,
which represents the largest point estimate of our prior (the mean). Afterwards,
we select a child with a probability proportional to that value.

Tree Parzen Estimator (TPE). TPE is a widely used decision algorithm in
hyperparameter optimization [2] that can be easily adapted to work on trees.
TPE defines two densities, l(ai) and g(ai), where l(ai) is computed by using the



530 H. C. Vázquez et al.

observations {ai} such that corresponding reward y = reward(ai) is less than
a threshold y∗, while g(ai) is computed using the remaining observations. The
value of y∗ is chosen as the γ-quantile of the observed y values.

To compute the functions g(ai) and l(ai), it is necessary to keep track of the
rewards obtained from each node instead of accumulating them as in the case of
UCT. Algorithm 5 shows the overall process.

Algorithm 5. Backpropagation for TPE
1: function Backpropagation(a, Δ)
2: ai ← a � a is a leaf node
3: while ai is not Null do
4: [reward(ai)] ← [reward(ai)] + [Δ]
5: ai ← parent(ai) � if ai is the root node parent is Null

The tree-structured induced by the partitions used to compute l and g makes
it easy to evaluate candidates based on the ratio g(ai)/l(ai), similar to the selec-
tion policy used in BTS.

5 Experiments

To evaluate our work, we conducted experiments in two parts. In the first part,
we performed an ablation study of each of the non-parametric selection policies
proposed in the context of the proposed MCTS algorithm. In the second part,
we compare our approach with other from the state-of-the-art.

5.1 Experimental Setup

The complete grammar we use in our experiments is based on the same set
of components as in AutoSklearn. We employ the same hyperparameter ranges
and functions as AutoSklearn when sampling and incorporates them into the
grammar. For our experiments, we sample 3 values of each hyperparameter that,
added to the pipeline options, extend the space to more than 183 billions possible
combinations. This has to be compared with the ∼24K configurations of the
original GramML method [31].

For evaluation, we use the OpenML-CC18 benchmark [29], a collection of 72
binary and multi-class classification datasets carefully curated from the thou-
sands of datasets on OpenML [3]. We use standard train-test splits, as provided
by the benchmark suite. Also, to calculate validation scores (e.g. rewards), we
use AutoSklearn’s default strategy which consists on using 67% of the data for
training and 33% for validation. All experiments were performed on an Amazon
EC2 R5 spot instance (8 vCPU and 64 GB of RAM).



Integrating Hyperparameter Search into GramML 531

5.2 Ablation Study

To conduct the ablation study, four tasks with low computational cost were
selected from the OpenML-CC18 benchmark2. For each task, we run 100 iter-
ations of the algorithm for each policy configuration and report the mean and
standard deviation for the following metrics: time per iteration (Time Iter), num-
ber of actions per iteration (Act/Iter), simulations’ repetition rate (Rep Ratio),
time spent by the first iteration (Time 1st), the number of actions for the first
iteration (1st Act), and the total time (Tot Time) and total number of actions
(Tot Act) at the end of the 100 iterations. Time measurements only consider the
time of the algorithm and do not take into account the fitting time. The simula-
tions’ repetition ratio, i.e. the number of times the algorithm repeats the same
paths during simulation, can be seen as a measure of the exploration efficiency
of the algorithm (the lower this value, the more efficient the exploration of the
search space).

Tables 1, 2 and 3 show results for the UTC, BTS and TPE strategies, respec-
tively. All three methods depend on a single hyperparameter to control the over-
all behavior of the search algorithm, i.e. the exploration-exploitation trade-off.
An immediate effect of varying such parameters can be observed on the time it
takes for the algorithm to complete an iteration. This has to do with the iteration
ending when the algorithm reaches a leaf. If we favor exploration (i.e. increase
C and J for UCT and BTS, or decrease γ for TPE), the algorithm explores the
tree in width, performs more total actions, and takes longer to reach a leaf. On
the other hand, by favoring exploitation, the algorithm performs fewer actions
and reaches the terminal nodes faster. The number of actions per iteration and
the time per iteration are strongly correlated.

Comparing the different strategies, we observe that UCT with C = 0.7 is
the most efficient alternative (in terms of the repetition ratio), while UCT with
C = 0 is the fastest, with the later being also the less efficient in terms of
exploration.

Finally, we consider the best version of each strategy prioritizing exploration
efficiency (low iteration rate) trying to keep the time per iteration limited to
∼0.1. We select UCT with C = 0.7, BTS with J = 1, and TPE with γ = 0.85
and name them GramML++

UCT, GramML++
BTS, and GramML++

TPE, respectively.

5.3 Comparison with Other Techniques

In this section, we compare our methods with others from the literature. For each
task, each method is run for an hour (time budget). We report performance on
the test set proposed in the benchmark suite. We compare the different variations
of our approach to AutoSklearn [15] and MOSAIC [24] as they allow us to rely
on the exact same set of basic ML components. In all cases, we set a maximum
fitting time of 300 s, as the time limit for a single call to the machine learning
model. If the algorithm runs beyond this time, the fitting is terminated. In our

2 These tasks, identified by task IDs 11, 49, 146819, and 10093.



532 H. C. Vázquez et al.

Table 1. Ablation results for the UCT strategy for different values of the parameter C.

C = 0 C = 0.1 C = 0.7 C = 1

Time Iter 0,04 (0,01) 0,05 (0,01) 0,10 (0,02) 0,14 (0,04)

Time 1st 0,76 (0,31) 1,65 (0,49) 7,16 (2,50) 10,64 (3,99)

Tot Time 3,94 (0,64) 4,90 (0,54) 9,71 (2,14) 14,21 (3,84)

Act/Iter 5,8 (0,3) 7,1 (0,9) 19,4 (4,7) 28,1 (7,7)

1st Act 165,5 (52,7) 324,2 (95,9) 1535,0 (545,8) 2201,2 (810,5)

Tot Act 682,5 (35,4) 817,2 (95,7) 2047,0 (475,9) 2914,0 (776,5)

Rep Ratio 0,65 (0,04) 0,58 (0,07) 0,40 (0,08) 0,45 (0,10)

Table 2. Ablation results for the BTS strategy for different values of the parameter J .

J = 1 J = 10 J = 100 J = 1000

Time Iter 0,15 (0,05) 0,15 (0,06) 0,33 (0,23) 0,28 (0,12)

Time 1st 7,13 (2,19) 7,42 (3,86) 18,90 (15,42) 14,56 (7,05)

Tot Time 14,72 (4,51) 14,98 (6,27) 33,21 (23,20) 28,18 (12,40)

Act/Iter 24,6 (7,8) 24,3 (11,5) 46,0 (30,0) 36,6 (15,4)

1st Act 1307,5 (398,8) 1333,2 (713,6) 2744,0 (2075,2) 2027,0 (927,2)

Tot Act 2561,2 (783,8) 2531,5 (1151,3) 4706,7 (3008,7) 3760,2 (1546,0)

Rep Ratio 0,50 (0,13) 0,51 (0,10) 0,54 (0,09) 0,59 (0,04)

Table 3. Ablation results for the TPE strategy for different values of the parameter γ.

γ = 50 γ = 65 γ = 75 γ = 85

Time Iter 0,33 (0,16) 0,19 (0,03) 0,18 (0,06) 0,12 (0,02)

Time 1st 11,16 (7,55) 5,93 (1,47) 4,02 (2,50) 1,71 (0,57)

Tot Time 33,31 (15,82) 18,92 (3,35) 17,86 (6,05) 12,33 (1,76)

Act/Iter 15,0 (5,5) 9,1 (1,3) 7,8 (1,8) 5,9 (0,2)

1st Act 740,2 (382,0) 434,7 (81,8) 286,5 (128,4) 143,0 (25,7)

Tot Act 1605,5 (555,8) 1018,7 (129,8) 882,5 (187,2) 697,0 (23,0)

Rep Ratio 0,47 (0,06) 0,59 (0,06) 0,60 (0,05) 0,68 (0,01)

case, we return a reward of zero for methods exceeding this time limit. For each
task, we ranked the performance of all systems and reported the average ranking
(lower is better) and average performance score (higher is better) calculated as
1 - regret (the difference between maximum testing performance found so far by
each method and the true maximum) at each time step.

Comparative results are shown in Fig. 1. Figure 1a shows the average rank
across time. A marked difference of GramML++

BTS variant can be seen over



Integrating Hyperparameter Search into GramML 533

MOSAIC, AutoSklearn and GramML. In particular, GramML++
BTS have the best

ranking over time, although it is surpassed in the first few minutes by MOSAIC
and GramML. There also seems to be a slight decreasing trend for GramML++

BTS

which would seem to indicate that the results could improve with more time.
In addition, Fig. 1b shows the average score across time. GramML++ variants

have a visible difference from MOSAIC, AutoSKLearn and GramML. The best
average score is also achieved by GramML++

BTS. An interesting observation is that
the previous version of GramML was eventually slightly outperformed in terms
of average score by AutoSKLearn. One reason for this was that GramML did not
utilize hyperparameters. Conversely, the variants of GramML++ demonstrate a
significant improvement over their predecessor and AutoSKLearn. It should be
noted that the average regret measure may not be very representative if the accu-
racy varies greatly between tasks. However, we believe that the graph provides
important information together with the average ranking for the comparison
between techniques in the OpenML-CC18 benchmark.

Fig. 1. Results of the approaches on OpenML-CC18 benchmark.

In order to check the presence of statistically significant differences in the
average rank distributions, Fig. 2 shows the results using critical difference (CD)
diagrams [9] at 15, 30, 45 and 60 min. We use a non-parametric Friedman test
at p < 0.05 and a Nemenyi post-hoc test to find which pairs differ [16]. If the
difference is significant, the vertical lines for the different approaches appear as
well separated. If the difference is not significant, they are joined by a thick
horizontal line.

The diagrams show statistically significant differences at 15 min between
AutoSKLearn and the other variants. At 30 min both GramML++

BTS and GramML
have significant difference with MOSAIC and AutoSKLearn. At minute 45,
the difference between GramML++

BTS and the other techniques remains, but
there is no significant difference between the previous version of GramML and



534 H. C. Vázquez et al.

GramML++
TPE. Finally, at 60 min, GramML++BTS showed a significant differ-

ence compared to MOSAIC and AutoSKLearn, while GramML++TPE showed
a significant difference only compared to MOSAIC. However, GramML++

UCT did
not show a statistically significant difference compared to either MOSAIC or
AutoSKLearn.

Fig. 2. CD plots with Nimenyi post-hoc test

6 Conclusions and Future Work

This article presents a model-free approach for grammar-based AutoML that
integrates hyperparameter search as an extension to GramML [31]. The approach
involves two steps: (1) incorporating hyperparameter values into the grammar
using grammar rules and (2) modifying the Monte Carlo Tree Search (MCTS)
algorithm to improve the collection of the best pipeline configuration, implement
pruning, and support different selection policies and backpropagation functions.
The evaluation involved an ablation study to assess the efficiency of each selec-
tion policy and a comparison with state-of-the-art techniques, which showed
significant improvements, particularly with a variant that uses bootstrapped
Thompson Sampling [12]. Consequently, this work demonstrates the effective-
ness of incorporating hyperparameter search into grammar-based AutoML, and
provides a promising approach for addressing the challenges of larger search
spaces.

Furthermore, this work opens up several avenues for future research. In
model-based AutoML, meta-learning can improve exploration efficiency [28].
However, the application of meta-learning in model-free AutoML based on gram-
mars remains an open question. Additionally, incorporating resource information
into the AutoML objective function is also an important direction to follow [30].
Finally, the speed of the search algorithms is an important factor that can be
improved through horizontal scalability [6]. Therefore, future research should
aim to parallelize the algorithm for more efficient resource utilization.



Integrating Hyperparameter Search into GramML 535

References

1. Bai, A., Wu, F., Chen, X.: Bayesian mixture modelling and inference based Thomp-
son sampling in Monte-Carlo tree search. In: Advances in Neural Information Pro-
cessing Systems, vol. 26 (2013)

2. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python
library for model selection and hyperparameter optimization. Comput. Sci. Discov.
8(1), 014008 (2015)

3. Bischl, B., et al.: OpenML benchmarking suites. arXiv:1708.03731v2 [stat.ML]
(2019)

4. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol.
4. Springer, Heidelberg (2006)

5. Bouneffouf, D., et al.: Survey on automated end-to-end data science? In: Proceed-
ings of the International Joint Conference on Neural Networks (2020). https://
www.scopus.com, Cited By: 2

6. Bourki, A., et al.: Scalability and parallelization of Monte-Carlo tree search. In:
van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp. 48–58.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17928-0 5

7. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Advances
in Neural Information Processing Systems, vol. 24 (2011)

8. Chomsky, N.: Syntactic structures. In: Syntactic Structures. De Gruyter Mouton
(2009)

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

10. Drori, I., et al.: Automatic machine learning by pipeline synthesis using model-
based reinforcement learning and a grammar. arXiv preprint arXiv:1905.10345
(2019)

11. Drori, I., et al.: AlphaD3M: machine learning pipeline synthesis. arXiv preprint
arXiv:2111.02508 (2021)

12. Eckles, D., Kaptein, M.: Thompson sampling with the online bootstrap. arXiv
preprint arXiv:1410.4009 (2014)

13. Efron, B.: Bayesian inference and the parametric bootstrap. Ann. Appl. Stat. 6(4),
1971 (2012)

14. Evans, B., Xue, B., Zhang, M.: An adaptive and near parameter-free evolution-
ary computation approach towards true automation in AutoML. In: 2020 IEEE
Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

15. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems, vol. 28 (2015)

16. Gijsbers, P., et al.: AMLB: an AutoML benchmark. arXiv preprint
arXiv:2207.12560 (2022)

17. Hayes, C.F., Reymond, M., Roijers, D.M., Howley, E., Mannion, P.: Distributional
Monte Carlo tree search for risk-aware and multi-objective reinforcement learning.
In: Proceedings of the 20th International Conference on Autonomous Agents and
Multiagent Systems, pp. 1530–1532 (2021)

18. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

http://arxiv.org/abs/1708.03731v2
https://www.scopus.com
https://www.scopus.com
https://doi.org/10.1007/978-3-642-17928-0_5
http://arxiv.org/abs/1905.10345
http://arxiv.org/abs/2111.02508
http://arxiv.org/abs/1410.4009
http://arxiv.org/abs/2207.12560
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40


536 H. C. Vázquez et al.

19. Katz, M., Ram, P., Sohrabi, S., Udrea, O.: Exploring context-free languages via
planning: the case for automating machine learning. In: Proceedings of the Inter-
national Conference on Automated Planning and Scheduling, vol. 30, pp. 403–411
(2020)

20. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

21. Marinescu, R., et al.: Searching for machine learning pipelines using a context-free
grammar. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 8902–8911 (2021)

22. Mohr, F., Wever, M., Hüllermeier, E.: ML-plan: automated machine learning via
hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018)

23. Olson, R.S., Moore, J.H.: TPOT: a tree-based pipeline optimization tool for
automating machine learning. In: Workshop on Automatic Machine Learning, pp.
66–74. PMLR (2016)

24. Rakotoarison, H., Sebag, M.: AutoML with Monte Carlo tree search. In: Workshop
AutoML 2018@ ICML/IJCAI-ECAI (2018)

25. de Sá, A.G.C., Pinto, W.J.G.S., Oliveira, L.O.V.B., Pappa, G.L.: RECIPE: a
grammar-based framework for automatically evolving classification pipelines. In:
McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.)
EuroGP 2017. LNCS, vol. 10196, pp. 246–261. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55696-3 16

26. Segovia-Aguas, J., Jiménez, S., Jonsson, A.: Generating context-free grammars
using classical planning. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence (IJCAI 2017), Melbourne, Australia, 19–25
August 2017, pp. 4391–7. IJCAI (2017)

27. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 847–855 (2013)

28. Vanschoren, J.: Meta-learning. In: Automated Machine Learning: Methods, Sys-
tems, Challenges, pp. 35–61 (2019)

29. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

30. Vazquez, H.C.: A general recipe for automated machine learning in practice. In:
Bicharra Garcia, A.C., Ferro, M., Rodŕıguez Ribón, J.C. (eds.) IBERAMIA 2022.
LNCS, vol. 13788, pp. 243–254. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-22419-5 21

31. Vazquez, H.C., Sánchez, J., Carrascosa, R.: GramML: exploring context-free
grammars with model-free reinforcement learning. In: Sixth Workshop on Meta-
Learning at the Conference on Neural Information Processing Systems (2022).
https://openreview.net/forum?id=OpdayUqlTG

32. Waddle, V.E.: Production trees: a compact representation of parsed programs.
ACM Trans. Program. Lang. Syst. (TOPLAS) 12(1), 61–83 (1990)

https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-319-55696-3_16
https://doi.org/10.1007/978-3-319-55696-3_16
https://doi.org/10.1007/978-3-031-22419-5_21
https://doi.org/10.1007/978-3-031-22419-5_21
https://openreview.net/forum?id=OpdayUqlTG


Improving Subtour Elimination Constraint
Generation in Branch-and-Cut Algorithms

for the TSP with Machine Learning

Thi Quynh Trang Vo1, Mourad Baiou1, Viet Hung Nguyen1(B),
and Paul Weng2

1 INP Clermont Auvergne, Univ Clermont Auvergne, Mines Saint-Etienne, CNRS,
UMR 6158 LIMOS, 1 Rue de la Chebarde, Aubiere Cedex, France
{thi_quynh_trang.vo,mourad.baiou,viet_hung.nguyen}@uca.fr

2 Shanghai Jiao Tong University, Shanghai, China
paul.weng@sjtu.edu.cn

Abstract. Branch-and-Cut is a widely-used method for solving integer
programming problems exactly. In recent years, researchers have been
exploring ways to use Machine Learning to improve the decision-making
process of Branch-and-Cut algorithms. While much of this research focuses
on selecting nodes, variables, and cuts [10,12,27], less attention has been
paid to designing efficient cut generation strategies in Branch-and-Cut
algorithms, despite its large impact on the algorithm performance. In this
paper, we focus on improving the generation of subtour elimination con-
straints, a core and compulsory class of cuts in Branch-and-Cut algorithms
devoted to solving the Traveling Salesman Problem, which is one of the
most studied combinatorial optimization problems. Our approach takes
advantage of Machine Learning to address two questions before executing
the separation routine to find cuts at a node of the search tree: 1) Do vio-
lated subtour elimination constraints exist? 2) If yes, is it worth generating
them? We consider the former as a binary classification problem and adopt
a Graph Neural Network as a classifier. By formulating subtour elimina-
tion constraint generation as a Markov decision problem, the latter can be
handled through an agent trained by reinforcement learning. Our method
can leverage the underlying graph structure of fractional solutions in the
search tree to enhance its decision-making. Furthermore, once trained, the
proposed Machine Learning model can be applied to any graph of any size
(in terms of the number of vertices and edges). Numerical results show that
our approach can significantly accelerate the performance of subtour elim-
ination constraints in Branch-and-Cut algorithms for the Traveling Sales-
man Problem.

Keywords: Traveling Salesman Problem · Subtour elimination
constraints · Branch-and-Cut · Cut generation · Machine Learning

1 Introduction

Branch-and-Cut (B&C) is a popular method for solving integer programming
(IP) problems exactly. B&C is the combination of two methods: branch-and-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 537–551, 2023.
https://doi.org/10.1007/978-3-031-44505-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_36&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_36


538 T. Q. T. Vo et al.

bound and cutting-plane. While branch-and-bound breaks down the problem
into subproblems by a divide-and-conquer strategy, the cutting-plane method
tightens these subproblems by adding valid inequalities. B&C contains a
sequence of decision problems such as variable selection, node selection, and cut
generation. Consequently, its performance heavily depends on decision-making
strategies.

One of the critical components of B&C is the cutting-plane method that
strengthens linear programming (LP) relaxations (subproblems) of the IP prob-
lem by adding valid inequalities (a.k.a. cuts). More precisely, given a solution
x∗ obtained by solving some LP relaxations of the IP problem, we solve a sepa-
ration problem, which either asserts the feasibility of x∗ or generates a cut vio-
lated by x∗. Adding cuts can remove a large portion of the infeasible region and
improve the performance. In general, cuts are categorized into general-purpose
cuts obtained by the variable’s integrality conditions and combinatorial cuts
arising from the underlying combinatorial structure of the problem.

Generating cuts within B&C is a delicate task [9]. One of the design challenges
of using cuts is balancing the separation routine’s computational cost and the
benefits of generated cuts. Generating cuts in a naive way can reduce the branch-
and-bound tree’s size but potentially increase the overall computing time due to
the time spent executing the separation routine and solving the LP relaxations in
the search tree. Thus, learning a deft policy for cut generation is crucial. In spite
of its importance, cut generation is less studied than other related decision-
making problems in B&C. To the best of our knowledge, only a few simple
heuristics [5,21] have been proposed for cut generation, and concrete work has
yet to be investigated to learn a cut generation policy.

In this paper, we focus on the generation of subtour elimination constraints
(SECs)—a core class of cuts—for the Traveling Salesman Problem (TSP) in
B&C. SECs were proposed by Dantzig, Fulkerson, and Johnson [8] to ensure the
biconnectivity of solutions. They are well-known facet-defining inequalities for
the TSP polytope. Due to their exponential number, SECs are usually served
as cuts in the course of B&C. The separation problem of SECs is solvable in
polynomial time [21] by using the Gomory-Hu procedure [11] to find a minimum
cut in a graph. Although adding SECs is able to decrease the number of branch-
ing nodes, generating all possible SECs can decelerate the B&C performance,
as the separation procedure of SECs is computationally expensive, especially for
large-sized instances.

To improve SEC generation in B&C for the TSP, we propose an approach
based on Machine Learning (ML) to handle two questions before executing the
separation routine at a node of the branch-and-bound tree: 1) Do violated SECs
exist? 2) If yes, is it worth generating them? The first question is to avoid solving
redundant separation problems that do not provide any SEC. We treat this
question as a binary classification problem and train a Graph Neural Network
(GNN) in a supervised fashion. The second one is to predict the benefit of
generating SECs compared to branching. To this end, we formulate the sequential
decision-making process of SEC generation as a Markov decision problem and



Improving SEC Generation in B&C Algorithms for the TSP with ML 539

train a policy by reinforcement learning (RL). Our GNN-RL framework can
leverage the underlying graph structure of fractional solutions to predict the
SEC existence and capture the context of nodes in the search tree to make SEC
generation decisions. Furthermore, it offers flexibility over instance size, namely
that our model can be used for any instance (of arbitrary size) while being only
trained with fixed-size graphs. Experimental results show that our trained policy
for SEC generation significantly accelerates the B&C performance to solve the
TSP, even on instances of different sizes from its training counterparts.

2 Related Work

Most approaches in the literature for cut generation exist in heuristic forms.
Padberg and Rinaldi, in their research on B&C for large-scale TSP [20], empiri-
cally discovered the tailing-off phenomenon of cuts [20, Section 4.3], which shows
the cut generator’s inability to produce cuts that can assist the optimal LP solu-
tion to escape the corner of the polytope where it is “trapped”. To deal with the
tailing-off, the authors proposed to stop generating cuts if the objective value of
the relaxed LP does not improve sufficiently within a given window and switch
to branching. Another approach to control cut generation introduced by Balas
et al. [5] is generating cuts at every k nodes of the search tree. The number k,
named “skip factor” in [5], determines the frequency of generating cuts. It can
be chosen either as a fixed constant or as an adaptive value varying throughout
the search tree. Another commonly used strategy is the so-called cut-and-branch
which only generates cuts at the root node of the search tree. Overall, despite
its importance, the question of the branching versus cutting decision has yet to
receive the attention it deserves.

In contrast, a closely-related problem to cut generation, cut selection, has
been studied extensively in the literature. While cut generation decides whether
to launch separation processes to generate cuts, cut selection requires selecting
cuts from a candidate set obtained by solving separation problems. Cut selec-
tion is usually considered for general-purpose cuts whose separation procedure is
computationally cheap and provides many cuts. Due to its definition, cut selec-
tion can be viewed as a ranking problem where cuts are sorted and chosen based
on some criteria. This point of view opened up many different approaches based
on many measurements of the cut quality. Among the most popular scores are
efficacy [5], objective parallelism [1], and integral support [28], to name a few.
Another research line on cut selection is to use ML to learn the ranking of cuts.
Most works of this approach fall into two categories: supervised learning and
RL. In the former, cuts are scored (or labeled) by an expert, and a cut ranking
function (usually a neural network) is trained to be able to choose the best ones
[14]. For the latter, one can formulate the problem of sequentially selecting cuts
as a Markov decision process. An agent can then be trained to either directly
optimize the objective value (RL) [27] or mimic a look-ahead expert (imitation
learning) [22].

In recent years, using ML to enhance fundamental decisions in branch-and-
bound is an active research domain; we refer to [6] for a summary of this line of



540 T. Q. T. Vo et al.

work and to [4] for a more general discussion focused on routing problems. Spe-
cific examples contain learning to branch [2,10,16], learning to select nodes [12],
and learning to run primal heuristics [7,17]. Similar to cut selection, these prob-
lems can be reformulated as ranking [10,14,16], regression [2], or classification
problems [17], and can then be treated correspondingly. Most of these reformu-
lations are possible due to the existence of an expensive expert (for example,
the strong branching expert for variable selection), which can be used to cal-
culate the score, label the instances, or act as an agent to be mimicked. In the
case of cut generation, such an expert is too expensive to obtain. To the best
of our knowledge, our paper is the first work to build an ML framework for cut
generation.

3 SEC Generation in B&C for the TSP

3.1 IP Formulation

Given an undirected graph G = (V,E) with a cost vector c= (ce)e∈E associated
with E, the TSP seeks a Hamiltonian cycle (a.k.a. tour) that minimizes the
total edge cost. For all edges e ∈ E, we denote by xe a binary variable such that
xe = 1 if edge e occurs in the tour and xe = 0 otherwise. We denote by δ(S) the
set of edges that have exactly one end-vertex in S ⊂ V ; δ({v}) is abbreviated as
δ(v) for v ∈ V . Let x(F ) =

∑
e∈F xe for F ⊆ E, the TSP can be formulated as

an integer program as follows:

min cT x (1a)
s.t. x(δ(v)) = 2 ∀ v ∈ V (1b)

x(δ(S)) ≥ 2 ∀ ∅ �= S ⊂ V (1c)
xe ∈ {0, 1} ∀ e ∈ E (1d)

where x = (xe)e∈E . The objective function (1a) represents the total cost of edges
selected in the tour. Constraints (1b) are degree constraints assuring that each
vertex in the tour is the end-vertex of precisely two edges. Constraints (1c) are
subtour elimination constraints, which guarantee the non-existence of cycles that
visit only a proper subset of V . Finally, (1d) are integrality constraints.

Note that this formulation, introduced by Dantzig, Fulkerson, and Johnson
[8], is widely used in most B&C algorithms for the TSP.

3.2 B&C Framework for the TSP

One of the most successful approaches for exactly solving the TSP is B&C.
Intuitively, B&C starts by solving a relaxation of the TSP where all SECs are
omitted and the integrality constraints are relaxed to xe ∈ [0, 1] ∀e ∈ E. At
each node of the branch-and-bound tree, the LP relaxation is solved, and SECs
violated by the optimal LP solution are generated as cuts through the separation



Improving SEC Generation in B&C Algorithms for the TSP with ML 541

routine. This principle of generating SECs is used in most B&C algorithms for
the TSP, including Concorde—the acknowledged best exact algorithm for the
TSP [3].

We denote (α,β) an inequality αT x ≤ β, C a set of valid inequalities for the
TSP and 〈F0, F1〉 an ordered pair of disjoint edge sets. Let LP (C, F0, F1) be the
following LP problem:

min cT x

s.t x(δ(v)) = 2 ∀v ∈ V

αT x ≤ β ∀(α,β) ∈ C
xe = 0 ∀e ∈ F0

xe = 1 ∀e ∈ F1

xe ∈ [0, 1] ∀e ∈ E.

A basic B&C framework based on SECs is sketched as follows:

1. Initialization. Set S = {〈F0 = ∅, F1 = ∅〉}, C = ∅,x = NULL and UB = +∞.
2. Node selection. If S = ∅, return x and terminate. Otherwise, select and remove

an ordered pair 〈F0, F1〉 from S.
3. Solve LP (C, F0, F1). If the problem is infeasible, go to step 2; otherwise, let

x∗ be its optimal solution. If cT x∗ ≥ UB, go to step 2.
4. SEC verification. If x∗ is integer, verify SECs with x∗. If x∗ satisfies all SECs,

replace x by x∗, UB by cT x∗ and go to step 2. Otherwise, add violated SECs
to C and go to step 3.

5. Branching versus cut generation. Should SECs be generated? If yes, go to
step 6, else go to step 7.

6. Cut generation. Solve the separation problem. If violated SECs are found,
add them to C and go to step 3.

7. Branching. Pick an edge e such that 0 < x∗
e < 1. Add 〈F0 ∪{e}, F1〉, 〈F0, F1 ∪

{e}〉 to S and go to step 2.

When the algorithm terminates, x is an optimal solution of the TSP. Notice
that the basic B&C framework stated above simply contains fundamental steps,
but it could be easily extended with additional techniques, such as the use of
other valid inequality classes for cut generation, branching strategies, and primal
heuristics. Any improvement for this basic B&C framework will also be valid for
the extensions.

Separation Routine for SECs. We now describe an exact separation algo-
rithm to find violated SECs in polynomial time, proposed by Crowder and Pad-
berg [21]. The input of the separation algorithm is the optimal solution x∗ of the
current LP relaxation. We then construct from x∗ the so-called support graph
Gx∗ = (V,Ex∗) where Ex∗ = {e ∈ E | x∗

e > 0}. For each edge e in Ex∗ , we
set x∗

e as its capacity. Due to the construction of Gx∗ , the value x(δ(S)) for
S ⊂ V is precisely the capacity of the cut (S, V \ S) in Gx∗ . Therefore, an SEC



542 T. Q. T. Vo et al.

violated by x∗ is equivalent to a cut with a capacity smaller than 2 in Gx∗ .
Such a cut can be found by using the Gomory-Hu procedure [11] with |V | − 1
maximum flow computations. Thus, it is computationally expensive, especially
for instances with large-sized graphs.

Note that when executing the separation routine for SECs, one can either
build the Gomory-Hu tree completely and get all violated SECs from the tree
or terminate the process as soon as a violated SEC is found. Our experimental
results show that the former is more efficient than the latter in terms of overall
solving time. Hence, in our implementation, we generate all violated SECs from
the Gomory-Hu tree each time the separation routine is called.

3.3 SEC Generation Problem

One of the primary decisions to make in B&C for the TSP is to decide whether
to generate SECs or to branch in Step 5, which has a tremendous impact on
the B&C performance. On the one hand, generating SECs can help tighten the
LP relaxations, reduce the number of nodes in the branch-and-bound tree, and
significantly improve computing time. On the other hand, SEC generation can
also worsen the B&C performance. One reason is the computational cost of the
SEC separation routine, which can be time-consuming when the instance size
is large. Furthermore, not all separation processes can produce violated SECs,
and thus launching the separation routine when the optimal LP solution satisfies
all SECs is wasteful. Another reason is that generating SECs is useless at some
nodes of the search tree where additional SECs may not provide new information
to improve the LP relaxation.

To illustrate the impact of SEC generation on the B&C performance, we
consider the following experimental example. We solve the TSP on the instance
rat195 from TSPLIB [25] by the commercial solver CPLEX 12.10 with three
different SEC generation strategies in Step 5 of the basic B&C framework. In the
first strategy (No cut), we do not generate any SECs; in the second one (Every
node), SECs are generated at every node of the search tree. The last strategy,
Sample cut, solves the separation problem exactly 100 times: at each node of
the search tree, we will perform the separation routine with the probability
1/2 and stop doing so after solving the 100th (separation) problem. The CPU
time limit is set to 3600 s. Table 1 shows the results of the strategies. Sample 1
and Sample 2 are two different runs of the strategy Sample cut. Column “CPU
time” gives the running time in seconds of B&C, in which the time spent by
the separation routine is shown in column “Separation time”. Column “Nodes”
reports the number of nodes in the search tree, and column “Cuts” indicates the
number of generated SECs. Columns “Separations” and “Separations with cuts”
give the number of separation routine executions and the number of executions
that can obtain violated SECs, respectively.

Table 1 shows that the SEC generation strategies may significantly affect the
algorithm performance. Obviously, generating SECs is crucial, as B&C cannot
solve the instance to optimality without it under the given CPU time budget.
In addition, adding SECs substantially reduced the search tree size. However,



Improving SEC Generation in B&C Algorithms for the TSP with ML 543

Table 1. The results of the SEC generation strategies on the instance rat195. The
asterisk in the “CPU time” column indicates strategies that fail to solve the TSP
within the time limit.

Strategy CPU time Separation time Nodes Cuts Separations Separations with cuts

No cut 3601.8∗ 0 1506514 0 0 0

Every node 1365.7 1340.5 4105 1116 2992 134

Sample 1 65.5 48.3 3834 359 100 21

Sample 2 114.5 39.5 10543 727 100 43

solving SEC separation problems might take a major portion of computing time,
and only a few separation executions obtained violated SECs. For example, with
the strategy generating SECs at every tree node, B&C spent 98% of the CPU
time to execute separation routines, but only 134 out of 2992 executions yielded
violated SECs. Table 1 also indicates that the effectiveness of the strategies relies
not only on the number of solved separation problems but also on specific nodes
where violated SECs are generated. Indeed, although the number of times the
separation problem is solved is the same, the difference in nodes generating SECs
makes the strategy Sample 1 outperform Sample 2.

Motivated by this issue, in this paper, we study the SEC generation problem
stated as follows: “Given a fractional solution at a node of the search tree, decide
whether to generate SECs or to branch”.

4 The GNN-RL Framework for SEC Generation

In this section, we describe our GNN-RL framework to learn an SEC generation
strategy in B&C for the TSP. Our GNN-RL contains two separate components:
a cut detector (i.e., a GNN) to predict the existence of violated SECs and a cut
evaluator (i.e., a Q-value function) to decide whether to generate SECs or to
branch when the GNN has predicted the existence of SECs.

Figure 1 provides the flowchart of GNN-RL at a node of the search tree.
After obtaining an optimal solution to the LP relaxation at the node, the cut
detector predicts whether the solution violates SECs. If it predicts that no SEC
is violated, we skip to the branching step. Otherwise, the cut evaluator will assess
the effectiveness of additional SECs to select the next action to perform.

Fig. 1. The flowchart of GNN-RL



544 T. Q. T. Vo et al.

4.1 Cut Detector

Given a fractional solution, the cut detector predicts whether there exists any
violated SEC. Therefore, one can view the cut detector as a binary classifier that
takes a fractional solution x as input and returns:

y =

{
1 if there exists any SEC violated by x,

0 otherwise.

We adopt a GNN [26], a message-passing (MP) neural network, for this classi-
fication task to take into account the underlying graph structure of fractional
solutions, which is critical for the separation problem. Furthermore, GNN pos-
sesses many properties which make it a natural choice for graph-related ML
problems, such as permutation invariance or independence from the instance
size.

We parameterize the cut detector as follows. Given a fractional solution x,
we construct from x its support graph Gx = (V,Ex) where the capacity we of
edge e is xe. For each node i ∈ V , we define the node feature as its degree di in
Gx , and embed di to a h-dimensional vector by a multi-layer perceptron (MLP):

h
(0)
i = W (0)di + b(0)

where W (0) ∈ R
h×1 and b(0) ∈ R

h. To update the node embeddings, we use two
MP layers [19]:

h
(l)
i = ReLU

⎛

⎝W
(l)
1 h

(l−1)
i + W

(l)
2

∑

j∈N(i)

w(i,j) · h
(l−1)
j

⎞

⎠

where h
(l−1)
i is the representation of node i in layer l − 1, N (i) is the set of

i’s neighbors in Gx , W
(l)
1 and W

(l)
2 are weight matrices in the l-th layer, and

w(i,j) is the capacity associated with edge (i, j). To obtain a representation of
the entire graph Gx , we apply a min-cut pooling [29] layer to assign nodes
into two clusters, compute the element-wise addition of all node vectors in each
cluster and concatenate the two cluster vectors. Finally, an MLP with a softmax
activation function is used to predict the probability of the solution’s labels, i.e.,
P (y = 0|x) and P (y = 1|x).

Our training dataset {(xi, yi)}N
i=1 is collected by solving several separation

problems on training instances generated randomly by Johnson and McGeoch’s
generator [15]. We train the cut detector’s parameters ΘG to minimize the cross-
entropy loss:

L(ΘG) = −
N∑

i=1

(
yi · logPΘG

(yi = 1|xi) + (1 − yi) · log(1 − PΘG
(yi = 0|xi))

)
.



Improving SEC Generation in B&C Algorithms for the TSP with ML 545

4.2 Cut Evaluator

We now formulate SEC generation as a Markov decision process (MDP) [23].
Considering the IP solver as the environment and the cut evaluator as the agent,
we define the state space, action space, and transition and reward functions of
the MDP as follows.

State Space. At iteration t, a state st contains the information about the TSP
instance and the current search tree, which comprises branching decisions, the
lower and upper bounds, the LP relaxations at nodes with SECs added so far,
and the considered node. A terminal state is achieved when the instance is solved
to optimality.

Due to the search tree complexity, we represent a state st as a collection of
the following elements:

– An optimal solution xt to the LP relaxation of the considered node. It is
used to provide information about the separation problem for the agent. We
represent this solution as its corresponding support graph Gxt

= (V,Ext
)

with edge capacities xt.
– The TSP instance. Encoding the TSP instance in the state representation

is essential, as SEC generation is naturally instance-dependent. Recall that
the TSP instance is an undirected graph G = (V,E) with edge costs c. We
define the node features as the node degrees in G. The edge features contain
the edge costs and information about the variables representing edges at the
considered node (values in the optimal LP solution, lower and upper bounds),
which is used to encode the context of the considered node in the search tree.

– Features of the search tree. To enrich the information about the search tree in
the state representation, we design 11 tree features based on our experimental
observations and inspired by hand-crafted input features for branching vari-
able selection proposed in [30]. The features are shown in Table 2. The top
four features correspond to the incumbent existence, the IP relative gap (i.e.,
|L − U |/U where L,U are respectively the lower and upper bounds), and the
portions of processed and unprocessed nodes, which help to capture the state
of the search tree. The remaining features are extracted at the considered
node to describe its context through depth, objective value, optimal solution,
and fixed variables. Each feature is normalized to the range [0, 1].

Action Space. Given a non-terminal state st, the RL agent selects an action
at from the action space A = {generate SECs, branch}.

Transition. After selecting an action at, the new state st+1 is determined as
follows. If at is to branch, the solver selects a branching variable to create two
child nodes, picks the next node to explore, and solves the corresponding LP
relaxation to get an optimal solution xt+1. Otherwise, if at is to generate SECs,



546 T. Q. T. Vo et al.

Table 2. The features extracted from the search tree

Feature group Feature Description Ref.

Tree (4) has_incumbent 1 if an integer feasible solution is found
and 0 otherwise

IP_rel_gap (upper bound - lower bound)/upper
bound

[30]

processed_nodes the number of processed nodes/the total
nodes in the current search tree

[30]

unprocessed_nodes the number of unprocessed nodes/the
total nodes in the current search tree

[30]

Node (7) node_depth max(1, the node depth/|V|) [30]
obj_quality objective value/upper bound
vars_1 the number of variables equal to 1 in the

solution/|V|
fixed_vars the number of fixed variables/|E|
unfixed_vars the number of unfixed variables/|E|
vars_fixed_1 the number of variables fixed to 1/|V|
vars_fixed_0 the number of variables fixed to 0/|E|

the solver launches the separation routine to yield SECs violated by xt, adds
them to the formulation, and solves the LP relaxation again with the new cuts
to obtain xt+1. If no cut is found, the next state st+1 is determined in the same
way as when performing the branching action.

Reward Function. Since we want to solve the instance as fast as possible, we
consider the reduction of the IP relative gap to define the reward function. The
faster the IP relative gap drops, the faster the instance is solved. Formally, let
γt be the IP relative gap at iteration t, the reward at iteration t is defined as

rt = r(st, at, st+1) = γt − γt+1. (3)

An issue of this reward function is its sparsity, namely that most rewards are 0;
thus, it rarely gives feedback to guide the agent. To deal with this issue, we add
additional rewards, a.k.a reward shaping, to provide more frequent feedback for
training the agent. In particular, to encourage the solver to terminate as soon as
possible, we set penalties for each additional iteration, and each solved redun-
dant separation problem in the cases where the cut detector predicts incorrectly.
Moreover, we also give a bonus for each SEC found by the separation routine.
Details of the additional rewards are shown in Table 3.

Policy Parametrization. We parameterize the cut evaluator (i.e., a Q-value
function) as a neural network consisting of two parts: one to embed a state
into a vector and one to approximate the Q-value of actions. In the first part,
we use three separate models to encode the state components, i.e., a GNN for
the optimal LP solution, another GNN for the TSP instance, and an MLP for
the tree features. The state embedding is the concatenation of the outputs of



Improving SEC Generation in B&C Algorithms for the TSP with ML 547

Table 3. The additional rewards for SEC generation

Additional reward Value

Penalty for each additional iteration −0.01

Penalty for solving redundant separation problem −0.10

Bonus for an SEC 0.01

these three models. We then pass this embedding to a 3-layer perceptron to
get the Q-value approximation of actions. Figure 2 illustrates the cut evaluator
architecture.

Training. To train the cut evaluator, we use the Deep Q-Network algorithm
[18], i.e., the parameters of the cut evaluator are updated to minimize an L2
loss defined with a target network using data sampled from a replay buffer filled
with transitions generated during online interactions with the environment. For
simplicity, an ε-greedy policy is used for exploration.

Fig. 2. The neural network architecture for the cut evaluator

5 Experiments

In this section, we demonstrate the effectiveness of the GNN-RL framework in
controlling SEC generation for the TSP in B&C algorithms.

5.1 Setup

All experiments are conducted on a computing server with AMD EPYC 7742 64-
core CPU, 504GB of RAM, and an RTX A4000 GPU card with 48GB graphic
memory.



548 T. Q. T. Vo et al.

B&C Solver. We use the commercial solver CPLEX 12.10 as a backend solver,
and CPLEX UserCutCallback to generate SECs in the tree nodes and integrate
our method into the solver. We keep the CPLEX’s default settings which are
expertly tuned. However, to focus on evaluating the benefit of SECs, we switch
off the CPLEX’s cuts. The solver time limit is 3600 s per instance.

Benchmarks. We train and evaluate our method on random TSP instances
generated following Johnson and McGeoch’s generator used for DIMACS TSP
Challenge [15]. These instances are complete graphs. In particular, we train on
200 instances with graphs of 200 vertices and evaluate on three instance groups:
instances with graphs of 200 (small), 300 (medium), and 500 vertices (large) and
100 instances per group. Furthermore, we also assess the proposed method on 29
instances with graphs of 200 to 1000 vertices from TSPLIB [25], a well-known
library of sample instances for the TSP.

Neural Network Architecture. We describe here the model architectures
for encoding the state components. For the optimal LP solution, we use a GNN
with the same architecture as the cut detector without the last MLP layer. For
the TSP instance, since the edge features are 4-dimensional vectors, we use an
MLP layer to embed them into the same space of the node embeddings and the
modified GIN architecture introduced in [13] to integrate the edge features into
updating the node embeddings. Furthermore, since the used TSP instances are
complete graphs, we update the embedding of a node by its 10 nearest neighbors
in terms of edge costs. For the tree features, we use a two-layer perceptron model.
For all architectures, the feature dimension is 64.

Training. We train the cut detector and cut evaluator separately. For the train-
ing phase of the cut detector, we generate 96000 labeled fractional solutions
from 200 random instances. We train the cut detector within 100 epochs, and
the learning rate is 0.0001. For the cut evaluator, we train the Q-learning net-
work on the 200 training instances with one million steps using the package
stable-baselines3 [24].

Baselines. We compare the performance of GNN-RL with the fixed and auto-
matic strategies proposed in [5], which generate cuts for every k nodes. For the
fixed strategies, we use k = 1 (FS-1) as the default strategy and k = 8 (FS-8),
which gave the best results in [5] and is one of the best skip factors in our own
experiments. For the automatic strategy (AS) where the skip factor is chosen
based on the instance to be solved, k is computed as follows:

k = min
{

KMAX,

⌈
f

cd log10 p

⌉}

where f is the number of cuts generated at the root node, d is the average
distance cutoff of these cuts (a distance cutoff of a cut is the Euclidean distance



Improving SEC Generation in B&C Algorithms for the TSP with ML 549

between the optimal solution and the cut [5]), p is the number of variables
in the formulation, and KMAX,c are constants. In our implementation, we set
KMAX = 32 as in [5] and c = 100 since the average distance cutoff of SECs is
small. Moreover, we experimentally observe that SECs are very efficient at the
root node and inefficient at the late stage of the computation. Thus, we always
generate SECs at the root node and stop generating SECs when the IP relative
gap is less than 1%, regardless of the strategies used.

5.2 Results

Table 4 shows the results of GNN-RL and the three baselines on both the ran-
dom and TSPLIB instances. For each instance group, we report the number of
instances that can be solved to optimality within the CPU time limit over the
total instances (column “Solved”), the average CPU time in seconds (including
also the running times of instances that cannot be solved to optimality within the
CPU time limit) (column “Time”), the average number of nodes in the search tree
(column “Nodes”), and the average number of generated SECs (column “Cuts”).
Recall that our goal in this paper is to accelerate the B&C algorithm; thus, the
main criterion for comparison is the CPU running time.

Table 4. The numerical results of the SEC generation strategies

Strategy Solved CPU Time Nodes Cuts

SMALL FS-1 100/100 109.9 2769.0 506.9
FS-8 100/100 56.8 3090.1 493.8
AS 100/100 48.1 3521.1 439.3
GNN-RL 100/100 34.4 3185.7 423.7

MEDIUM FS-1 96/100 511.1 11969.1 956.8
FS-8 98/100 424.6 15983.4 970.2
AS 96/100 441.0 26759.5 861.7
GNN-RL 99/100 288.5 17390.6 726.1

LARGE FS-1 32/100 2998.0 37698.9 2330.7
FS-8 35/100 2916.4 55882.8 2425.0
AS 33/100 2922.4 71455.1 2235.9
GNN-RL 37/100 2889.7 72160.1 1965.9

TSPLIB FS-1 15/29 2062.3 15114.4 2412.9
FS-8 14/29 2056.7 19797.6 2694.7
AS 13/29 2087.7 23202.5 2967.0
GNN-RL 15/29 1890.1 30995.7 2622.4

As shown in Table 4, our method outperforms all the baselines on all instance
groups. Indeed, GNN-RL solves more instances to optimality within a smaller



550 T. Q. T. Vo et al.

average CPU time. Compared to FS-8, GNN-RL is faster by 5% on average over
all random instances, i.e., is 39%, 32%, and 1% faster for small, medium, and
large instances, respectively. For the TSPLIB instances, GNN-RL is faster by
9%, 8%, and 8% compared to AS, FS-8, and FS-1.

As predicted, FS-1 has the smallest tree size on average over all instances, but
its running time is the highest due to the extra time spent on generating SECs.
On the other hand, too few cuts might be detrimental to the B&C performance.
It can be seen in the comparison between FS-8 and AS strategies on large and
medium instances. Indeed, AS requires more computing time than FS-8 despite
generating fewer SECs. The numerical results give evidence that GNN-RL can
balance the separation cost and the benefit of generated SECs.

6 Conclusion

In this paper, we proposed a GNN-RL framework, the first ML-based app-
roach, to improve SEC generation in B&C for the TSP. Experimental results
showed that the policy learned by GNN-RL outperformed the previously pro-
posed heuristics for cut generation. Most importantly, the GNN-RL architec-
ture allows the trained policy to generalize to unseen instances with larger-sized
graphs. Our future work will extend this framework to other valid inequality
classes for the TSP, such as the comb and 2-matching inequalities. We will also
integrate GNN-RL into B&C algorithms for other combinatorial optimization
problems, for example, the max-cut and vehicle routing problems.

Acknowledgements. This work has been supported in part by the program of
National Natural Science Foundation of China (No. 62176154).

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis (2007)
2. Alvarez, A.M., Louveaux, Q., Wehenkel, L.: A machine learning-based approxima-

tion of strong branching. INFORMS J. Comput. 29(1), 185–195 (2017)
3. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)
4. Bai, R., et al.: Analytics and machine learning in vehicle routing research. Int. J.

Prod. Res. 31, 4–30 (2021)
5. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in

a branch-and-cut framework (1996)
6. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-

tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290, 405–421 (2021)
7. Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., Pokutta, S.: Learning to schedule

heuristics in branch and bound. In: NeurIPS, vol. 34, pp. 24235–24246 (2021)
8. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman

problem. J. Oper. Res. Soc. Am. 2, 393–410 (1954)
9. Dey, S.S., Molinaro, M.: Theoretical challenges towards cutting-plane selection.

Math. Program. 170, 237–266 (2018)



Improving SEC Generation in B&C Algorithms for the TSP with ML 551

10. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial
optimization with graph convolutional neural networks. In: Advances in Neural
Information Processing Systems (2019)

11. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind. Appl. Math.
9(4), 551–570 (1961)

12. He, H., Daume, H., III., Eisner, J.M.: Learning to search in branch and bound
algorithms. In: Advances in Neural Information Processing Systems (2014)

13. Hu, W., et al.: Strategies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265 (2019)

14. Huang, Z., et al.: Learning to select cuts for efficient mixed-integer programming.
Pattern Recogn. 123, 108353 (2022)

15. Johnson, D.S., McGeoch, L.A.: Benchmark code and instance generation codes
(2002). https://dimacs.rutgers.edu/archive/Challenges/TSP/download.html

16. Khalil, E., Bodic, P.L., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: AAAI (2016)

17. Khalil, E.B., Dilkina, B., Nemhauser, G.L., Ahmed, S., Shao, Y.: Learning to run
heuristics in tree search. In: IJCAI, pp. 659–666 (2017)

18. Mnih, V.: Human-level control through deep reinforcement learning. Nature 518,
529–533 (2015)

19. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural net-
works. In: AAAI, vol. 33, pp. 4602–4609 (2019)

20. Padberg, M., Rinaldi, G.: Branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)

21. Padberg, M.W., Hong, S.: On the symmetric travelling salesman problem: a com-
putational study. In: Padberg, M.W. (ed.) Combinatorial Optimization Mathemat-
ical Programming Studies, vol. 12. Springer, Heidelberg (1980). https://doi.org/
10.1007/BFb0120888

22. Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L., Maddison, C.: Learning to cut
by looking ahead: cutting plane selection via imitation learning. In: ICML (2022)

23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1994)

24. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res.
22(268), 1–8 (2021)

25. Reinelt, G.: Tspliba traveling salesman problem library. ORSA J. Comput. 3(4),
376–384 (1991)

26. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

27. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming:
learning to cut. In: ICML. PMLR (2020)

28. Wesselmann, F., Stuhl, U.: Implementing cutting plane management and selection
techniques. Technical report. University of Paderborn (2012)

29. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchi-
cal graph representation learning with differentiable pooling. In: NeurIPS, vol. 31
(2018)

30. Zarpellon, G., Jo, J., Lodi, A., Bengio, Y.: Parameterizing branch-and-bound
search trees to learn branching policies. In: AAAI, vol. 35, pp. 3931–3939 (2021)

http://arxiv.org/abs/1905.12265
https://dimacs.rutgers.edu/archive/Challenges/TSP/download.html
https://doi.org/10.1007/BFb0120888
https://doi.org/10.1007/BFb0120888


Learn, Compare, Search: One Sawmill’s
Search for the Best Cutting Patterns

Across and/or Trees

Marc-André Ménard1,2,3(B) , Michael Morin1,2,4 , Mohammed Khachan5 ,
Jonathan Gaudreault1,2,3 , and Claude-Guy Quimper1,2,3

1 FORAC Research Consortium, Université Laval, Québec, QC, Canada
marc-andre.menard.2@ulaval.ca

2 CRISI Research Consortium for Industry 4.0 Systems Engineering,
Université Laval, Québec, QC, Canada

3 Department of Computer Science and Software Engineering, Université Laval,
Québec, QC, Canada

4 Department of Operations and Decision Systems, Université Laval, Québec,
QC, Canada

5 FPInnovations, Québec, QC, Canada

Abstract. A sawmilling process scans a wood log and must establish a
series of cutting and rotating operations to perform in order to obtain the
set of lumbers having the most value. The search space can be expressed
as an and/or tree. Providing an optimal solution, however, may take
too much time. The complete search for all possibilities can take several
minutes per log and there is no guarantee that a high-value cut for a log
will be encountered early in the process. Furthermore, sawmills usually
have several hundred logs to process and the available computing time is
limited. We propose to learn the best branching decisions from previous
wood logs and define a metric to compare two wood logs in order to
branch first on the options that worked well for similar logs. This app-
roach (Learn, Compare, Search, or LCS) can be injected into the search
process, whether we use a basic Depth-First Search (DFS) or the state-
of-the-art Monte Carlo Tree Search (MCTS). Experiments were carried
on by modifying an industrial wood cutting simulator. When computa-
tion time is limited to five seconds, LCS reduced the lost value by 47.42%
when using DFS and by 17.86% when using MCTS.

Keywords: Monte Carlo search · And/or trees · Tree search
algorithms · Sawmilling · Learning

1 Introduction

In North America, softwood lumber is a standardized commodity. Different
dimensions and grades are possible and the hardware in the mill, thanks to
embedded software, optimize cutting decisions for each log in order to maximize
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 552–566, 2023.
https://doi.org/10.1007/978-3-031-44505-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_37&domain=pdf
http://orcid.org/0000-0002-8776-5166
http://orcid.org/0000-0002-1008-4303
http://orcid.org/0000-0001-7402-3991
http://orcid.org/0000-0001-5493-8836
http://orcid.org/0000-0002-5899-0217
https://doi.org/10.1007/978-3-031-44505-7_37


Learn, Compare, Search 553

Fig. 1. A basket of products obtained from the log at the exit of the sawmill represented
in a virtual log.

profit. Each lumber type has a specific value on the market, and the equipment
aims to maximize the total basket value given a log. Processing a log leads to a
basket of these standardized lumber products (and byproducts such as sawdust).
Figure 1 shows an example of cut for a given log leading to a specific basket of
lumber products. Two different combinations of cutting decisions (e.g., differ-
ences in trimming, edging and/or sawing) can lead to two baskets of different
values.

The optimizer of sawmills’ equipment can be used offline to measure the
impacts related to changes in the configuration. This can also be done using
sawing simulators such as Optitek [11], RAYSAW [30], and SAWSIM [14]. Pro-
viding an optimal cutting solution may take too much time, whether it is for
a real-time cutting decision purpose, or to get a suitable forecast for decision-
making.

The cutting decision optimization problem has been addressed in the litera-
ture in several ways (optimization, simulation, prediction by neural networks or
other ML approaches) [16]. In this paper, we are concerned with a specific case
where the problem is solved by an algorithm enumerating all possible cuts.

Obtaining the best cuts for a given log implies that all log cutting possibilities
must be tested according to the possible cutting choices of each machine. This
complete search for all possibilities can take several minutes per log. In practice
we need to use a time limit for the search and therefore the sawmill lose value
as there is no guarantee that a good cut for a log will be encountered early in
the process. In this paper, we address this challenge.

To get the best possible solution according to the computation time limit, we
need to test first the most promising cut choices. Although the past is no guar-
antee of the future in many cases, when sawing similar logs at the same sawmill,
it might as well be. Based on this observation, we suggest an informed search
algorithm which learns from the previous similar logs to guide the search process
for the actual log. The assumption being that for two similar logs the cutting
decisions leading to the best value will be the same or at least similar enough,
it makes sense to guide the search with our knowledge of the best decisions for
these logs.

The rest of the paper is divided as follows. First, we describe the problem
more thoroughly. Second, we present the preliminary concepts. Third, we present
our method for learning from the optimal cutting decision of already cut logs.
Fourth, we present our results and finally we conclude.



554 M.-A. Ménard et al.

2 Problem Description

In many sawing optimization systems, such as Optitek, logs are represented by a
surface scan: a point cloud of the log’s surface structured as a sequence of circular
sections (see Fig. 1 where the points of each section have been interpolated).
A sawmill is defined as a set of machines. Each machine can make different
transformations on the log. A machine that cuts the log into several parts creates
different cutting sub-problems. Each part of the resulting log can go through the
same or a different sequence of machines. At the end of the machine sequence,
the sum of the values of each part of the initial log gives the value of the log.
The value of a product is assessed through a value matrix according to the size
and grade of the product. It is therefore not possible to know the exact value of
the log before different cutting alternatives are explored.

The type of decisions varies from one machine to another. First, there are
different sets of cutting patterns that can be applied by some machines. Second,
for some machines, it is possible to rotate or to do a translation of the log before
it passes through the machine. Each rotation or translation can greatly affect
the basket of products obtained from the log.

The set of all decision sequence for a given log can be represented as a search
tree. The root of the tree corresponds to the log at the entrance of the sawmill
where no transformation has been done yet. Each level of the tree corresponds
to a cutting decision taken on a part of the log by a machine. The decision can
be a rotation, a translation or the choice of a cutting pattern. Each node of a
level corresponds to a value for the decision at this level. A leaf corresponds to a
solution, i.e., a basket of products for which a complete sequence of decisions has
been made. To make sure we find the optimal solution, we have to go through
the whole search tree (an exhaustive search is needed to prove the optimality).

The search tree can be represented by an and/or tree. When a decision cutting
a log in more than one piece is made, we end up with several sub-problems.
Each sub-problem (log part) then goes through different machines and cutting
decisions. The sub-problems correspond to the “and” of an and/or tree. The
subtree corresponding to each sub-problem must be searched to obtain a solution.
Cutting decisions correspond to the “or” of an and/or tree. For an “or” node, we
have a decision to make, whereas for an “and” node we have no choice but to
solve the sub-problem, i.e., explore the subtree.

The width of the tree depends on the values to be tested for each cutting
decision. Its maximum depth is bounded by the machine sequence and the num-
ber of unique types of cutting decisions to be tested. In our experiments and
in practice, there are generally more cutting decisions to test than there are
machines. The search tree is therefore wide and shallow.

Figure 2 shows a small search tree example. The log at the top of the tree
enters the sawmill. Each circular node represents a decision that is possible to
choose. For example, from the incoming log (root), we have the choice between
two decisions. Each decision can then create sub-problems (rectangular nodes)
by cutting the log until it reaches a leaf of the search tree. The sum of the leaves



Learn, Compare, Search 555

Fig. 2. Example of a search tree. The log at the top of the tree enters the sawmill.
Decisions are made (circular nodes, “or”) that can create new sub-problems (rectangular
nodes, “and”) by cutting the log.

corresponding to the best decisions for each sub-problem forms a product basket
and the best product basket is returned.

Figure 3 shows an example of a (virtual) sawmill in the Optitek software. The
rectangles are machines where cutting decisions can be optimized. The flow is
generally from left to right (from the Feed to the Sort and Chip nodes), although
there might be loops such as it is the case for the Slasher in our example. Each
machine—except Feed, Sort and Chip—has inputs (left-hand side) and outputs
(right-hand side). Products are routed from one machine to the other depending
on their characteristics.

Fig. 3. A sawmill configuration. The rectangles are machines where cutting decisions
can be optimized. The branches are the possible routes between a machine’s output
and another machine’s input.

3 Preliminary Concepts

In this section, we present tree search algorithms from the literature. We will
use them as a baseline of comparison for our approach we call Learn, Compare,
Search, or LCS. Each algorithm without LCS will be compared to a version
where we injected LCS into the search process. We also review and/or trees and
related works on learning to guide a search tree traversal and adaptive search.



556 M.-A. Ménard et al.

3.1 Depth-First Search (DFS)

DFS starts at the root node and always branches on the leftmost node of the pos-
sible choices until it reaches a leaf in the tree. Then it backtracks until there is an
unexplored child node and it resumes its exploration on the leftmost unexplored
child. DFS visits the leaves of the tree from left to right.

DFS is the fastest way to test all decisions, but it has the disadvantage of not
finding good solutions quickly if they are on the right-hand side of the search
tree. For example, if we have a rotational optimization on the first machine
and we want to test all degrees between 0 and 180◦, DFS will test the degrees in
ascending order (0, 1, 2, 3, . . .). If the quality of a solution increases with rotation,
DFS will find the optimal solution only at the end of the search and most of the
time will be spent finding bad solutions.

3.2 Limited Discrepancy Search (LDS)

Harvey and Ginsberg [15] introduced the concept of discrepancy. A discrepancy is
when the search heuristic is not followed and another node is visited instead. For
example, in the DFS search algorithm, the heuristic is to branch left whenever
possible. By branching right when we should have branched left in a binary tree,
we deviate from the left-first heuristic of DFS, this is counted as one deviation (or
discrepancy). If a node contains several children, there are two ways to count the
deviations. First, the number of deviations can be the number of nodes skipped
from left to right. For example, taking the first node counts as 0 deviation, taking
the second counts as 1 deviation, taking the third counts as 2, and so on. The
other method, and the one we use in this paper, is to count 1 deviation only
whenever the first node is not taken.

The LDS [15] search algorithm explores the search tree iteratively. Each iter-
ation visits the nodes that have less than k deviations. Starting from k = 0, the
value of k is incremented at each iteration. In this article, we take the improved
version of LDS (ILDS) presented by Korf [21] which avoids visiting a leaf of the
search tree more than once.

3.3 Depth-Bounded Discrepancy Search (DDS)

DDS [31] is a search algorithm also based on deviations. At each iteration, DDS
follows the DFS search algorithm until it reaches a node on level k where k is
the iteration number. It then visits all the nodes on the next level, except the
first node on the left, and continues the exploration by visiting only the nodes on
the left for the remaining levels of the search tree. The idea of DDS is that the
search heuristic is more likely to make a wrong choice at the top of the search
tree than at the bottom.

3.4 Monte Carlo Tree Search (MCTS)

MCTS is a tree search algorithm using a compromise between exploration and
exploitation [6]. MCTS works by iteration. Each iteration contains four phases:



Learn, Compare, Search 557

selection, expansion, simulation and backpropagation. There are several ways to
implement MCTS. Our implementation is inspired by Antuori et al. [2].

Selection. The selection phase starts at the root of the tree and ends when
we reach a node that has not yet been visited in a previous iteration. When
we are at a node, the next node to visit is chosen according to the formula (1)
where A(σ) represents a set of actions that can be done from the current node
σ. Each action is represented by a branch in the search tree. Given node σ, σ|a
represents the child node reached by taking the action a. Ṽ (σ|a) is the expected
value of the node if the action a is chosen and corresponds to the exploitation
term. U(σ|a) corresponds to the exploration term. Finally, c is a parameter to
balance the exploitation and the exploration (i.e., Ṽ (σ|a) and U(σ|a)).

argmax
a∈A(σ)

Ṽ (σ|a) + c · U(σ|a) (1)

There are different ways to compute an expected value Ṽ (σ|a) for a node
σ|a. For example, it is possible to take the average of the solutions found so
far for the node. Instead, we use the best value found so far for this node as
expected value. Keeping the best value is better in our case, because many of
the solutions have a null value, i.e., the cutting decisions lead to a null value
for one of the output products. The values of the different Ṽ (σ|a) must be
normalized to be compared with the exploration term U(σ|a). We normalize
this value between [−1, 1] using the formula (2) where N(σ) is the number of
visits to the node σ, V + = max{V (σ|a)|a ∈ A(σ), N(σ|a) > 0} and V − =
min{V (σ|a)|a ∈ A(σ), N(σ|a) > 0} [2] which corresponds to the maximum and
minimum value for the children nodes of the parent node.

Ṽ (σ|a) =
{
2V +−V (σ|a)

V +−V − − 1 if N(σ|a) > 0
0 otherwise

(2)

The exploration term (U(σ)) is computed with the formula (3) where Pr(σ)
corresponds to the priority probability biases, p(σ) corresponds to the parent
node of the current node σ, and N(σ) corresponds to the number of visits to the
current node.

U(σ) = Pr(σ)

√
N(p(σ))

N(σ) + 1
(3)

Expansion. The expansion phase creates a child node σ|a for each action a ∈
A(σ). For each child node σ|a, we initialize the number of visits N(σ|a) to 0 and
the expected objective value V (σ|a) to 0. We also initialize the prior probability
biases Pr(σ|a) to a value if available and if not, we initialize Pr(σ|a) according
to a uniform distribution 1

|A(σ)| .



558 M.-A. Ménard et al.

Simulation. The simulation phase, also called rollout, aims at finding a possible
expected value for the node. The simulation phase must then visit at least one
leaf of the search tree from the current node. The simulation can be done by
making a random choice of nodes to visit at each level of the tree. It is also
possible to make a weighted random choice with the different probabilities of
each node Pr(σ) if these probabilities are available.

Backpropagation. The backpropagation phase will update the nodes visited
during the selection phase. The number of visits N(σ) is incremented by 1 and
the expected value V (σ) is updated if a better solution is found during the
simulation phase.

3.5 Searching AND/OR Trees

The representation of the problem as an and/or tree allows having a search tree
with less depth. The search algorithms can be adapted to the and/or tree.

For DFS, there is no change. For the LDS search algorithm, the algorithm
must be modified. Larrosa et al. [22] presents the limited discrepancy and/or
search (LDSAO) algorithm. This algorithm uses the LDS search algorithm, but
for and/or trees. The difference between LDS and LDSAO is in the handling of
the “and” nodes. For the “and” nodes, we have to find and solve these subproblems
to get a solution. These nodes do not cause any discrepancy. For the “or” nodes,
we do not cause any discrepancy if we follow the search heuristic. For the same
number of discrepancies, Larrosa et al. [22] have shown that each iteration of
LDSAO includes the search space of LDS on the original tree and more.

The same logic for going from LDS to LDSAO can be applied for DDS where
we do not cause discrepancy when going through an “and” node, but only when
we do not follow the search heuristic to go through an “or” node.

For the MCTS algorithm, in selection mode, we visit all the “and” nodes
(subproblem) for a given level, but we visit only one “or” node (decisions). It is
also the same principle in simulation mode, we visit all the “and” nodes (sub-
problem) for a given level, but we select only one of the decisions (“or” node).

3.6 Learning for Search Tree Traversal and Adaptative Search

Learning to guide a search tree traversal for search efficiency purposes is not a
new concept. There are several adaptive search algorithms for variable choice
heuristics and value choice heuristics such as dom/wdeg [5], solution counting
based search [33], and activity-based search [25]. In this family of algorithms,
we also find Impact-Based Search [27], Adaptive Discrepancy Search (ADS) [12],
and the RBLS algorithm [3]. There is also Solution-guided multipoint construc-
tive search (SGMPCS) [4] that guides the search from multiple solutions found
during the search of the current instance. Our approach has some similarities to
SGMPCS, but it starts with solutions found offline. MCTS [6], we described in
Sect. 3.4, is also an adaptive algorithm. At the difference of the LCS approach,



Learn, Compare, Search 559

these algorithms, in their original form, tend to adapt at runtime. They do not
use prior knowledge of the problem.

The alternative is to guide the search with known solutions. Loth et al. [24]
presented Bandit-Based Search for CP (BASCOP), an adaptation of MCTS
using Reinforcement Learning (RL) to know where to branch next. They use a
reward function based on the failure depth. This approach is interesting to keep
the learning from one problem instance to another. In our problem, however, the
search tree is determined by the order of the machines and the cutting decisions.
There are no failures.

Other approaches are specific to Constraint Programming (CP). Chu and
Stuckey [8], for instance, have presented a value ordering approach to tree search.
When branching, a score is assigned to each value in the domain of the variable
using domain-based features and machine learning.

There is also a whole literature on learning in the context of a branch and
bound for Mixed-Integer Linear Programming which leads to search trees where
branching splits the problem into subproblems instead of assigning a value to a
variable (as it is usually the case in CP branch and bounds). In their literature
review on learning to improve variable and value selection, Lodi and Zarpel-
lon [23] define two categories of approaches: (1) incorporating learning in more
traditional heuristics [10,13,18], and (2) using machine learning [1,19,20].

Finally, LCS is closer to informed search methods with a priori information
than to adaptive search methods that learn at runtime. The idea of informed
search is to add domain-specific knowledge to help the search algorithm [9,29].
Recent examples of informed search includes the work of Silver et al. [28],
Ontanón [26], and Yang et al. [32]. Silver et al. [28] introduced AlphaGo, a
system using MCTS along with a neural network trained by supervised learning
on human expert movements, and improved through self-play RL. Ontanón [26]
presents Informed MCTS for real-time strategy (RTS) games. The approach con-
sists of using several Bayesian models to estimate the probability distribution of
each action played by an expert or search heuristics. It then initializes the prior
probabilities of the possible actions in the MCTS search. Yang et al. [32] present
the Guiding MCTS which uses one or more deterministic scripts based on the
human knowledge of the game to know which node to visit first for a RTS game.
Our approach is similar to these approaches since we rely on past decisions to
initialize the prior probabilities of actions.

4 Learning from Past Decisions in LCS

To find the best solution faster, we propose to first learn from past instances/logs.
This allows us to know which decisions are more promising and should be visited
first. In the context of sawing, a decision is considered more promising than
another if it is more often found in the optimal cutting decisions of previously
cut logs. The assumption is that for similar logs, the same cutting decisions will
be made to find the best log value.

It is possible to get information on the decisions made for previous logs,
because the structure of the search tree is similar from one log to another. Indeed,



560 M.-A. Ménard et al.

the order of the machines and the cutting decisions remain the same. However,
the best choices may differ according to the characteristics of the logs. Even
in the case where two logs (therefore their search trees) differ substantially, a
knowledge transfer might still be possible between the two.

4.1 Adaptation of Search Algorithms to Learning

Each search algorithm presented in Sect. 3 can make use of past optimal cutting
decisions of already cut logs. For DFS, LDS and DDS, we ordered the “or” child
nodes representing a decision of an “and” node in descending order of the number
of times that decision is made to obtain a solution of a previously cut log. We
name this value for a node Q(σ) where σ represent the node. The first node
is therefore the decision that is most often in a solution of the previously cut
logs compared to the other possible decisions, i.e., maxa∈A(Q(σ|a)). For the
algorithms using discrepancy, no discrepancy is caused when we take the node
that is most often in a solution of the previously cut logs.

For the MCTS search algorithm, the prior probability biases Pr(σ|a) are
initialized according to Eq. (4) representing the number of times a decision is
chosen to obtain a solution from a previously cut log versus the number of times
the parent decision is.

Pr(σ|a) = Q(σ|a)
Q(σ)

(4)

It may not be ideal to rely on the decisions made for all log sawed. Two logs
that are very different may have different optimal cutting decisions. Therefore,
it is best to rely only on the X decisions that led to the best cutting decisions
for the logs most similar to the simulated log where X is a hyper-parameter.
The following section presents the method for finding similar logs.

4.2 Finding Similar Logs

We assume each log is represented by a 3D point cloud. The point cloud is
separated into sections and each section represents a part of the log. This is a
standard representation for the logs in the industry.

Finding logs similar to the current log could be done by comparing the point
clouds. For instance, by first using the iterative closest point (ICP) algorithm
to align two point clouds, we could extract the alignment error and use it as
a dissimilarity measure [7]. This, however, would be computationally intensive.
The ICP algorithm is polynomial in the number of points [17], but each new log
would need to be compared to every known log and log point clouds can have
more than 30 thousand points. Our logs, for instance, have an average of 19326
points and the maximum number of points is 32893. To keep runtimes low, we
compare the logs using a set of features that are easily computed. In fact, the
features we use can be computed offline before the search. Table 1 shows the
features used to represent a log.



Learn, Compare, Search 561

Table 1. Features of a log, calculated from a surface scan

Features Description

Length Length of the log
Small-end diameter Diameter of the log at the top end
Large-end diameter Diameter of the log at the stump end
Diameter at 25% Log diameter at 25% of length from the stump end
Diameter at 50% Log diameter at 50% of length from the stump end
Diameter at 75% Log diameter at 75% of length from the stump end
Max sweep Maximum value of the curvature of the log
Location max sweep Percentage of length at which curvature is greatest
Thickness Thickness of the log calculated from the point cloud
Width Log width calculated from the point cloud
Volume Volume of the log
Volume homogeneity Average volume difference from section to section
Taper Difference between the diameters of the two ends

To calculate the similarity between two logs, we first apply a MinMax nor-
malization (Eq. (5)) before comparing features.

bc =
bc − min(bc)

max(bc) − min(bc)
∀c ∈ C (5)

This ensures two features that do not have the same order of magnitude have the
same weight when computing the similarity, for example the length and diameter
of a log. Then, we calculate the distance of the logs by taking the sum of their
squared differences using Eq. (6) where C is the set of features, bc

1 is the value
of the feature c of the first log and bc

2 is the value of the feature c of the second
log.

S(b1, b2) =
∑
c∈C

(bc
1 − bc

2)
2 (6)

5 Experiments

To demonstrate the potential of LCS on our log sawing problem, we implemented
it—along with the DFS, LDS, DDS, and MCTS tree search algorithms—in a
state-of-the-art commercial sawing simulator (Optitek). We have eight differ-
ent sawmill configurations which allows testing the approach on eight different
industrial contexts. For each sawmill we proceed as follows. We virtually cut one
hundred logs, each time exploring the search tree completely thus finding the
max/optimal value.

Then, we randomly separate the hundred logs into two datasets. Fifty logs
will be used as a training dataset to find the best hyper-parameter values for



562 M.-A. Ménard et al.

each algorithm. The other fifty logs constitute the dataset used to compare the
algorithms.

For these two datasets, another separation must be made. Thirty logs among
the fifty are used to know the paths that most often led to the best solution
for the methods that learn on the already simulated logs. The other twenty logs
among the fifty will be used to compare the results obtained by each of the
search algorithms. As the random separation impacts the method to learn on
the already simulated logs, five replications of this separation are made to get
an average of the results.

The hyper-parameters for MCTS are: the c ∈ {1, 2} coefficient, used to bal-
ance exploitation and exploration; the number of simulations performed during
the simulation phase, selected in {1, 2, 3, 4}; and the number of nodes visited for
each level during the simulation, selected in {1, 2, 3}. If at a level, the number of
child nodes is less than the number of child nodes to visit, we visit all of them.

When processing a new log, we tested with 10, 20, and 30 as the number of
similar logs we will use to guide the search.

6 Results

Figure 4 presents the results obtained on the 8 sawmill configurations according
to the search algorithm. Figure 5 presents the averaged for the 8 sawmill config-
urations. For each sawmill configuration and search algorithm, we plotted the
percentage of optimality attained on average on the 20 test logs (y-axis) against
the solving time in seconds (x-axis). Each curve represents an average over five
replications. At a given point in time, a search algorithm at 100% optimality has
found all the optimal solutions for the 20 logs.

MCTS is better than DFS, LDS and DDS except for the sawmill configura-
tions #7 and #8 where DFS is slightly better. By comparing each search algo-
rithm with or without learning (with or without LCS), we see that the results are
always better except for DFS for the sawmill configuration #1 and LDS for the
sawmill configuration #3. However, there is little difference between MCTS and
MCTS with learning. The fact that MCTS learns and adapt during the search,
balancing exploitation and exploration, should reduce the gains obtained with
learning on decisions made on previous logs.

For each search algorithm, Table 2 shows the percentage of improvement
(reduction of the lost value, in percentage) provided by LCS after n seconds (with
n ∈ {1, 2, . . . , 5}) according to the search algorithm. After 1 s, the improvement
is 23.58% for MCTS, the best search algorithm, whereas it is 23.2% for DFS, the
simplest search algorithm. After 5 s, the improvement is 17.86% for MCTS and
47.42% for DFS. In our experiments, completing the search took 1 h and 42min
per log on average. For industrial decisions, the “ideal” time limit depends on
the hardware configuration of the sawmill and the available time to wait for
a solution. With a time limit of one second, a thousand logs will take about
16.67min whereas a time limit of 5 s would lead to a waiting time of 83.3min.



Learn, Compare, Search 563

Fig. 4. Percentage of optimality against solving time (in seconds) for each algorithm
and sawmill configurations; average of 5 replications on 20 logs.



564 M.-A. Ménard et al.

Fig. 5. Percentage of optimality against solving time (in seconds) for each tree search
algorithm; averaged on all sawmill configurations.

Table 2. Reduction of the lost value when using LCS depending on the search algo-
rithm according to the time in seconds.

Search algorithms Elapsed time
1 s 2 s 3 s 4 s 5 s

DFS vs DFS with learning 23.2% 29.47% 42.45% 47.58% 47.42%
LDS vs LDS with learning 31.08% 44.55% 46.05% 46.62% 47.94%
DDS vs DDS with learning 35.22% 47.62% 47.79% 48.56% 48.63%
MCTS vs MCTS with learning 23.58% 23.73% 24.03% 22.44% 17.86%

7 Conclusion

We compared four search algorithms, namely DFS, LDS, DDS, and MCTS with
and without learning (a total of eight variants). We showed how to improve each
of them by learning from the best cutting decisions on previous logs, introducing
a framework called LCS. In the context of our application, LCS, when injected
in the search process, improved the cut quality obtained within the first 5 s of
the search—a requirement for enabling better industrial decisions. Considering
the thousands logs to process in sawmills and the need to forecast the impact of
a decision, our approach has the potential to translate to tangible gains for the
forest-product industry.

Although we applied LCS in the particular context of wood log cutting deci-
sion optimization, the framework is general and could be applied to other prob-
lems where the search space is represented as a tree. Learning from previous
runs using a framework such as LCS, as long as the instances share sufficient
similarities, appear to be a promising avenue for further research on combining
learning and optimization.



Learn, Compare, Search 565

References

1. Alvarez, A.M., Louveaux, Q., Wehenkel, L.: A machine learning-based approxima-
tion of strong branching. INFORMS J. Comput. 29(1), 185–195 (2017)

2. Antuori, V., Hébrard, E., Huguet, M.J., Essodaigui, S., Nguyen, A.: Combining
Monte Carlo tree search and depth first search methods for a car manufactur-
ing workshop scheduling problem. In: International Conference on Principles and
Practice of Constraint Programming (CP) (2021)

3. Bachiri, I., Gaudreault, J., Quimper, C.G., Chaib-draa, B.: RLBS: an adaptive
backtracking strategy based on reinforcement learning for combinatorial optimiza-
tion. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelli-
gence (ICTAI), pp. 936–942. IEEE (2015)

4. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling.
J. Artif. Intell. Res. 29, 49–77 (2007)

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI), vol. 16 (2004)

6. Browne, C.B., et al.: A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

7. Chabanet, S., Thomas, P., El Haouzi, H.B., Morin, M., Gaudreault, J.: A kNN app-
roach based on ICP metrics for 3D scans matching: an application to the sawing
process. In: 17th IFAC Symposium on Information Control Problems in Manufac-
turing (INCOM) (2021)

8. Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In:
Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 108–123. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18008-3_8

9. Drake, P., Uurtamo, S.: Move ordering vs heavy playouts: where should heuristics
be applied in Monte Carlo go. In: Proceedings of the 3rd North American Game-On
Conference, pp. 171–175. Citeseer (2007)

10. Fischetti, M., Monaci, M.: Backdoor branching. In: Günlük, O., Woeginger, G.J.
(eds.) IPCO 2011. LNCS, vol. 6655, pp. 183–191. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20807-2_15

11. FPInnovations: Optitek 10. In: User’s Manual (2014)
12. Gaudreault, J., Pesant, G., Frayret, J.M., DAmours, S.: Supply chain coordination

using an adaptive distributed search strategy. IEEE Trans. Syst. Man Cybern. Part
C (Appl. Rev.) 42(6), 1424–1438 (2012)

13. Glankwamdee, W., Linderoth, J.: Lookahead branching for mixed integer program-
ming. In: Twelfth INFORMS Computing Society Meeting, pp. 130–150 (2006)

14. HALCO: Halco Software Systems Ltd. (2016). https://www.halcosoftware.com
15. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the

Fourteenth International Joint Conference on Artificial Intelligence (IJCAI), vol.
1, pp. 607–615 (1995)

16. Hosseini, S.M., Peer, A.: Wood products manufacturing optimization: a survey.
IEEE Access 10, 121653–121683 (2022)

17. Jost, T., Hügli, H.: Fast ICP algorithms for shape registration. In: Van Gool,
L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 91–99. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45783-6_12

18. Karzan, F.K., Nemhauser, G.L., Savelsbergh, M.W.: Information-based branching
schemes for binary linear mixed integer problems. Math. Program. Comput. 1(4),
249–293 (2009)

https://doi.org/10.1007/978-3-319-18008-3_8
https://doi.org/10.1007/978-3-642-20807-2_15
https://www.halcosoftware.com
https://doi.org/10.1007/3-540-45783-6_12


566 M.-A. Ménard et al.

19. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch in
mixed integer programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30 (2016)

20. Khalil, E.B.: Machine learning for integer programming. In: Proceedings of the
Twenty-fifth International Joint Conference on Artificial Intelligence (IJCAI), pp.
4004–4005 (2016)

21. Korf, R.E.: Improved limited discrepancy search. In: Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI), vol. 1, pp. 286–291 (1996)

22. Larrosa Bondia, F.J., Rollón Rico, E., Dechter, R.: Limited discrepancy and/or
search and its application to optimization tasks in graphical models. In: Proceed-
ings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI), pp. 617–623. AAAI Press (Association for the Advancement of Artificial
Intelligence) (2016)

23. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236
(2017)

24. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for con-
straint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_36

25. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29828-8_15

26. Ontanón, S.: Informed Monte Carlo tree search for real-time strategy games. In:
2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8.
IEEE (2016)

27. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8_41

28. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

29. Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk, J.: Monte Carlo tree
search: a review of recent modifications and applications. Artif. Intell. Rev. 1–66
(2022)

30. Thomas, R.E.: RAYSAW: a log sawing simulator for 3D laser-scanned hardwood
logs. In: Proceedings of the 18th Central Hardwood Forest Conference, vol. 117,
pp. 325–334 (2012)

31. Walsh, T.: Depth-bounded discrepancy search. In: Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI), vol. 1, pp. 1388–
1393 (1997)

32. Yang, Z., Ontanón, S.: Guiding Monte Carlo tree search by scripts in real-time
strategy games. In: Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AAAI), vol. 15, pp. 100–106 (2019)

33. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. Constraints 14(3), 392–413 (2009)

https://doi.org/10.1007/978-3-642-40627-0_36
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-540-30201-8_41


Dynamic Police Patrol Scheduling
with Multi-Agent Reinforcement Learning

Songhan Wong , Waldy Joe , and Hoong Chuin Lau(B)

School of Computing and Information Systems, Singapore Management University,
Singapore, Singapore

songhanwong.2020@mitb.smu.edu.sg, waldy.joe.2018@phdcs.smu.edu.sg,
hclau@smu.edu.sg

Abstract. Effective police patrol scheduling is essential in projecting
police presence and ensuring readiness in responding to unexpected
events in urban environments. However, scheduling patrols can be a
challenging task as it requires balancing between two conflicting objec-
tives namely projecting presence (proactive patrol) and incident response
(reactive patrol). This task is made even more challenging with the fact
that patrol schedules do not remain static as occurrences of dynamic inci-
dents can disrupt the existing schedules. In this paper, we propose a solu-
tion to this problem using Multi-Agent Reinforcement Learning (MARL)
to address the Dynamic Bi-objective Police Patrol Dispatching and
Rescheduling Problem (DPRP). Our solution utilizes an Asynchronous
Proximal Policy Optimization-based (APPO) actor-critic method that
learns a policy to determine a set of prescribed dispatch rules to dynam-
ically reschedule existing patrol plans. The proposed solution not only
reduces computational time required for training, but also improves the
solution quality in comparison to an existing RL-based approach that
relies on heuristic solver.

Keywords: Reinforcement Learning · Multi-Agent · Dynamic
Dispatch and Rescheduling · Proximal Policy Optimization · Police
Patrolling

1 Introduction

Effective scheduling of police patrols is essential to project police presence and
ensure readiness to respond to unexpected events in urban environments. Law
enforcement agencies have the challenging task of balancing two conflicting
objectives of projecting presence (proactive patrol) and incident response (reac-
tive patrol). When an unexpected incident occurs, complex and effective response
decisions must be made quickly while minimizing the disruption to existing
patrol schedule. Such a decision is complex because each decision contains mul-
tiple components, namely which agent needs to be dispatched to respond to the
incident and secondly which existing schedules are disrupted and/or require some

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 567–582, 2023.
https://doi.org/10.1007/978-3-031-44505-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_38&domain=pdf
http://orcid.org/0009-0008-2401-1333
http://orcid.org/0000-0002-7873-2282
http://orcid.org/0000-0002-5326-411X
https://doi.org/10.1007/978-3-031-44505-7_38


568 S. Wong et al.

re-planning. In a real-world environment, the scale of the problem needs to con-
sider multiple patrol areas and teams. Multiple patrol teams need to operate in
cooperative manner to maximize the effectiveness of police patrolling. Hence, it
is challenging to develop an efficient real-time strategy for reallocating resources
when an incident occurs.

In this paper, we present a solution based on Multi-Agent Reinforce-
ment Learning (MARL) that enables rescheduling of patrol timetable when-
ever dynamic events occur. The problem addressed in this paper is based on
the Dynamic Bi-Objective Police Patrol Dispatching and Rescheduling Problem
(DPRP) introduced in [9]. This problem is a variant of Dynamic Vehicle Routing
Problem (DVRP) with the element of university time-tabling scheduling incor-
porated and in the context of cooperative multi-agent environment.

The key contribution of the paper is the successful application of Asyn-
chronous Proximal Policy Optimization (APPO) policy-gradient method with
dispatch-rules based actions for solving a dynamic patrol scheduling prob-
lem based on a real-world police patrolling environment. Our solution method
emphasizes on the use of patrol dispatch rules to significantly reduce the compu-
tational time in making such a complex decision. In addition, RL is used to learn
the policy in choosing the dispatch rule rather than relying on some fixed heuris-
tic rules. We experimentally demonstrate that our proposed solution method is
able to reduce training time by a factor of 40 while improving the quality of the
solution by around 10% against the benchmark approach [9].

2 Background

The police patrol routing problem can generally be seen as an extension of the
stochastic DVRP. In addition to route optimization, this routing problem also
needs to consider scheduling aspect i.e. when and how long an agent remains
in a particular node within a given route. A patrol unit patrolling in existing
allocated area can be dispatched to an emergency call, and a redistribution
of patrol resources is necessary to ensure optimal deployment. Existing works
in the literature such as [2,5] mostly addresses the offline planning aspect of
patrolling problem where the planned schedule is assumed to be static. These
solutions include genetic algorithm, routing policies, and local search based on
the network Voronoi diagram [7,16]. However, significant operational challenges
lie mainly in the dynamic planning aspect, since there may be disruption from
an unforeseen event that requires dispatch and re planing of the existing patrol
schedules.

2.1 Scheduling Problem with Reinforcement Learning

The use of RL to solve dynamic scheduling problem has gained traction in the
community [10,11,17] in recent years. Single-agent reinforcement learning (RL)
algorithm suffers from a curse of dimensionality since the state-action space
grows exponentially as the number of agents increases, particularly in the context



Dynamic Police Patrol Scheduling with MARL 569

of large-scale patrolling environment in modern metropolis. Cooperative multi-
agent reinforcement learning (MARL) algorithms are necessary for solving such
problem. Based on current works on MARL [1,8,12], MARL approach training
schemes can generally be classified into centralized setting, decentralized setting
with networked agents, and fully decentralized with independent learners setting.
Common challenges of MARL include non-unique learning goals among agents,
non-stationary environment, scalability, and partial observability [18].

In a closely related problem of the Job-Shop Scheduling Problem (JSSP),
the use of Proximal Policy Optimization (PPO) [14] with Graph Neural Net-
work algorithm was able to learn the priority dispatch rule for JSSP from first
principles without intermediate handcrafted rules [17]. While such generalized
learning approach is novel, it is important to note that the action-space of JSSP
is reduced as the solution space narrows over time due to precedence constraint.
This, however is not true for DPRP, where the same graph node can be visited
multiple times and the action-space does not reduce over time. Another proposed
method [11] based on actor-critic Deep Deterministic Policy Gradient (DDPG)
algorithm in multi-agent environment only considers a set of simple dispatching
heuristics rules in the agent action space. The constrained action-state space
proved to be efficient for learning and sufficiently effective for solving complex
scheduling problem. However, such a framework requires in-depth prior domain
knowledge, and retraining of the model is needed when input parameters vary.

For our problem DPRP, [9] demonstrated successful application of a deep
RL-based method with a rescheduling heuristic based on input and constraints
from the real-world environment. The proposed method combines the value func-
tion approximation through Temporal-Difference (TD) learning with experience
replay and an ejection chain heuristic solver. The solution is able to compute
dispatch and rescheduling decisions instantaneously as required in real-world
environment. There were also other works that addressed a similar variant of
such problem. Most of these approaches adopted a two-stage decomposition that
learns the dispatching and scheduling policies in separate stages (see [3,4]).

3 Problem Description

The problem being addressed in this paper closely represents the scenario of
police patrolling in a modern and large city in which police needs to respond
to incidents of various types within very short time frames (in less than 10min
within receiving the call for response). At the start of the day, police officers are
assigned to different patrol areas under their jurisdiction. A centralized authority
is tasked to plan the resource to ensure sufficient patrol presence for the entire
city. In addition to patrol duties, the plan must also adapt to incidents arising in
real time, to ensure that police officers are able to respond to incidents as soon
as possible while not compromising the level of patrols within each jurisdiction.

Figure 1 shows an example of multiple patrol officers dispatched to different
patrol areas based on the initial schedule given. We assume that all patrol agents
have homogeneous capability.



570 S. Wong et al.

Fig. 1. Schematic diagram that shows multi-agent patrol environment and the initial
timetable schedule at T = 0.

Fig. 2. An incident happened at T + 5 and patrol agent 1 is deployed to respond to
the incident. Following the disruption, a rescheduling is made to the time table of the
relevant patrol agents (patrol agent 1 and 3) at T ≥ 5.

Figure 2 shows an example of a situation where an incident occurs at location
G during in a given day or shift. In this case, Agent 1 is deployed to respond
to the incident. The original patrol location of C is changed to G at T = 5
and this change may result in the need to reschedule the plans of other agents.
For simplicity, we assume that only one incident can occur one at a time. In
addition, we assume that the condition of partial observability does not exist
with the presence of a central authority akin to a police headquarter.

4 Model Formulation

The objective of the problem is for every agent to make rescheduling and dis-
patching decision at every decision epoch in order to maximize both global patrol
presence and response rate to dynamic incidents.

We model our problem as a fully cooperative multi-agent Markov Decision
Process - (S,A,T,R) where S is a state for the timetable, A is a set of actions
taken by the agents, T is the transition probability vector between state for
different state-action pairs, and R is the immediate reward transitioning from
state s to s′ given action a.



Dynamic Police Patrol Scheduling with MARL 571

The objective of the problem is for every agent to make rescheduling and
dispatching decision at every decision epoch in order to maximize both global
patrol presence and response rate to dynamic incidents (Table 1).

Table 1. Set of notations used in this paper.

Notation Description

I Set of patrol agents, I ∈ {1, 2, 3, · · ·, |I|}
J Set of patrol areas, J ∈ {1, 2, 3, · · ·, |J |}
T Set of time periods in a shift, T ∈ {1, 2, 3, · · ·, |T |}
k Decision epoch

tk Time period in a shift where decision epoch k occurs, tk ∈ T

a(k) Set of dispatch actions taken by all agents at decision epoch k

xi(k) Dispatch action taken by agent i at decision epoch k

δi(k) A schedule of patrol agent i at decision epoch k

δ(k) A joint schedule of all patrol agents at decision epoch k

δ−i(k) A joint schedule of all patrol agents except for agent i at decision epoch k

δa
i (k) A schedule of patrol agent i after executing action a at decision epoch k

δa(k) A joint schedule of all patrol agent after executing action a at decision epoch k

τtarget A response time target

τmax A maximum buffer time for response time for incident

τk Actual response time to incident at epoch k

Dh(δ
′
, δ) Hamming distance between schedules δ

′
and δ

d(j, j′) Travel time from patrol area j to another patrol area j’

Qj Minimum patrol time for patrol area j

σj Patrol presence for area j in terms of ratio of the effective patrol time over Qj

ωk State representation of dynamic incident that occurs at decision epoch k

N(k) State representation of patrol agents availability at decision epoch k

Ωi,k Patrol status of agent (patrolling or travelling) i at decision epoch k

Di,k Patrol or travel destination of agent i at decision epoch k

Mi,k Travel arrival time of agent i at decision epoch k

4.1 State

The state of the MDP, Sk is represented as the following tuple:
〈tk, δ(k), ω(k), N(k)〉. tk is the time period in a shift where decision epoch k
occurs. δ(k) is the joint schedule of all patrol agents, ω(k) is the dynamic inci-
dent, and N(k) is the patrol agents’ availability at decision epoch k.

Joint Schedule. The joint schedule, δ(k) has a dimension of |T | × |I| × |J |,
which represents the time tables for all patrol agents.



572 S. Wong et al.

Incident. A dynamic incident, w(k) occurs at decision epoch k and is described
as the following tuple:

〈
ωj

k, ωt
k, ωs

k

〉
where ωj

k ∈ J refers to the location of the
incident, wt

k ∈ T refers to the time period when the incident occurs, and ws
k

refers to the number of time periods required to resolve the incident.

Agents’ Availability. The agents’ availability, N(k) represents the availability
of patrol agents in the decision epoch k. It comprises the individual agent’s
availability, Ni(k) for every agent i.

4.2 Action

ai(k) is a dispatch action taken by an agent i at decision epoch k. The set of
action space is a set of dispatch rules described in Table 2. The action taken by
the agent determines the state of the agent’s individual time table at the next
time step. The selection of action is made with an ε-greedy strategy.

Table 2. List of dispatch-rule-based actions for patrol agents.

Dispatch Rule Description

a1. Respond to incident Travel to the location of incident if there is an occurrence
of incident. Otherwise, this action is not allowed

a2. Continue Continue to patrol the same area or continue traveling to
the destination patrol location if the agent was in the
midst of traveling to another patrol area. This heuristics
tries to minimizes deviation from initial schedule as the
initial schedule was optimal for patrol presence in a
situation where no unforeseen incident occurs

a3. Patrol an unmanned area Travel to an unmanned patrol area that yields the best
patrol presence utility. If multiple patrol areas have same
the utility, randomly select one. This heuristics is a
greedy approach that aims to maximize patrol presence
utility of the schedule, with the assumption that
unforeseen incidents may occur in unmanned patrol areas

a4. Patrol an existing
manned area by other agents

Patrol an existing area currently being patrolled by other
agents. Choose the area that has the best patrol presence
utility. If multiple patrol areas have the same utility,
randomly select one. This heuristics also aims to
maximize patrol presence utility, but allowing the agent
to take over an existing patrol area of another agent if the
original agent needed to be dispatched elsewhere

a5. Nearest and least
disruptive

Patrol the next nearest location such that it results in
least deviation from the initial schedule. If multiple patrol
areas have same the travel distance, randomly select one.
This heuristics tries select a patrol area in such a way
that it minimizes travel time and deviation from the
initial schedule



Dynamic Police Patrol Scheduling with MARL 573

4.3 Transition

A decision epoch k occurs at every time step. We move to the next decision
epoch k + 1 after all agents have completed their actions, transiting from the
pre-decision state Sk to the post-decision state Sk+1. In our formulation, the
transition between state is deterministic, and we let transition probability T =
1 for every state-action pair. It is deterministic as in if an agent has chosen an
action, there is no possibility that the agent deviates from the chosen action.

4.4 Constraints

We subject our final schedule δ(T ) at the end of the last decision epoch to the
following soft constraint:

Dh(δ(T ), δ(0)) ≤ Dh,max (1)

where Dh(δ(T ), δ(0)) is the Hamming distance of the final schedule with respect
to the initial schedule δ(0).Dh,max is the maximum Hamming distance allowed.
The constraint helps minimize disruption to our existing schedule caused by
rescheduling.

4.5 Patrol Presence

Before discussing the reward function, we define patrol presence as the number
of time periods each patrol area is being patrolled. Every patrol area j must be
patrolled for a minimum of Qj time periods in a given shift. A schedule with good
patrol presence seeks to maximize the time spent patrolling while minimizing the
travel time of patrol agents when moving to different patrol areas. The patrol
presence utility function fp(δ) is defined as the following

fp(δ) =

∑
j∈J Up(j)
|T | × |I| (2)

where Up(j)

Up(j) = min(σj , 1) + 1j × e−β(σj−1)

1j =

{
1, σj > 1
0, σj ≤ 1

(3)

where β is coefficient for patrol presence utility and patrol presence σj is defined
as

σj =
∑|T |

t=1 pj,t

Qj

pj,t =

{
1,patrol is present at area j at time step t

0, otherwise

(4)



574 S. Wong et al.

This utility function measures the utility of each patrol in each patrol area
with respect to the minimum patrol requirement of that area, and additional
patrol time comes with a diminishing return of utility beyond the minimum
requirement.

4.6 Reward Function

The reward function R
(
Sk, ai(k)

)
takes into consideration of three factors; patrol

presence, incident response, and deviation from existing schedule. Note that the
reward at t < T only considers incident response, while the final reward when at
the end of episodes at t = T includes additional factors of patrol presence reward
and schedule deviation penalty. fr

(
ai(k)

)
quantifies the success of an incident

response when action ai(k) is taken by agent i. Similar to the patrol presence
utility, any incident that is responded later than the target time will incur a
reduced utility. The reward function is defined as

R
(
Sk, ai(k)

)
=

{
fr

(
ai(k)

)
+ fp

(
δ(tk)

) − pr

(
δ(tk)

)
, tk = T

fr

(
ai(k)

)
, tk < T

fr(ai(k)) =

{
Ur = exp−α×max(0,τk−τtarget), τk > 0

0, τk = 0 (Incident not responded)
(5)

where α is the coefficient for response utility of a late response, τk is the response
time taken at decision epoch k and τtarget is the target response time.

The penalty function for the deviation of the schedule pr(δ(tk)) based on the
Hamming distance Dh is defined as the following step functions:

pr

(
δ(tk)

)
= C1 · Dh

(
δ(tk), δ(0)

)
+ C2 · 1H

(
δ(tk), δ(0)

)

1H

(
δ(tk), δ(0)

)
=

{
0,Dh

(
δ(tk), δ(0)

) ≤ Dh,max

1,Dh

(
δ(tk), δ(0)

)
> Dh,max

(6)

where C1, C2 are the weights of the Hamming distance penalty coefficients.

5 Solution Approach

The RL algorithm selected for our solution approach is an asynchronous vari-
ant of Proximal Policy Optimization (APPO) [15] algorithm based on IMPALA
[6] actor-critic architecture. IMPALA is an off-policy actor-critic algorithm that
decouples acting and learning, which allows multiple actors to generate expe-
rience in parallel, creating more trajectories over time. The off-policy RL algo-
rithm uses the trajectories created by policy μ (behavior policy) to learn the
value function of target policy π.

At the start of each trajectory, the actor updates its own policy μ in response
to the latest policy from the learner, π, and uses it for n steps in the environment.
After n steps, the actor sends the sequence of states, actions, and rewards along



Dynamic Police Patrol Scheduling with MARL 575

with the policy distributions to the learner through a queue. Batches of experi-
ences collected from multiple actors are used to update the learner’s policy. Such
design allows the actors to be distributed across different machines. However,
there is a delay in updating the policies between actors and the learner, as the
learner policy π may have undergone several updates compared to the actor’s
policy μ at the time of the update. Therefore, an off-policy correction method
called V-trace is used here.

V-Trace Target. For a trajectory state (xt, at, xt+1, rt), the n−steps V-trace
target for V (xs) at time s is given as,

vs
def= V (xs) +

s+n−1∑
t=s

γt−s

(
t−1∏
i=s

ci

)
ρt(rt + γV (xt+1) − V (xt)) (7)

where ρt = min
(
ρ̄, π(at|xt)

μ(at|xt)

)
and ci = min

(
c̄, π(at|xt)

μ(at|xt)

)
are truncated importance

sampling weights. ρ̄ and c̄ are truncation constants with ρ̄ ≥ c̄. In the case of
on-policy learning, then ci = 1 and ρt = 1, and (7) becomes

vs =
s+n−1∑

t=1

γt−srt + γnV (xs+n) (8)

which is the on-policy n−step Bellman target. By varying ρ̄, we change the
target of the value function to which we converge. When ρ̄ = ∞ (untruncated),
the value function of the v trace will converge to the target policy Vπ; When
ρ̂ → 0 (untruncated), the value function converges to behavior policy Vμ. Any
value of ρ̂ < ∞ indicates the value function of the policy somewhere between μ
and π. The truncation constant c̄ changes the speed of convergence.

V-Trace Actor-Critic Algorithm. For every iteration update, Vθ(s) is the
value function of state s parametrized by θ, which is updated by

Δθ = (vs − Vθ(s))∇θVθ(s) (9)

and the policy parameters w is updated through policy gradient

Δw = ρs∇w log πw(as|s)(rs + γvs+1 − Vθ(s)) (10)

Proximal Policy Optimization (PPO). The use of Proximal Policy Opti-
mization (PPO) improve the training stability of our policy by avoiding excessive
large policy update. PPO uses the following clipped surrogate objective function
for policy update:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)] (11)



576 S. Wong et al.

Fig. 3. Multi-agent setup with individual policy for the patrol agents.

Algorithm 1. Dispatch-rule based scheduling RL algorithm
for each episode do

Set initial schedule δ → δ0 from a set of initial schedules, generate a scenario
with a set of incident scenarios {ωk, ωk+1, · · · }

Set entries of δi(t ≥ k) → ∅ ∀i ∈ I
for t = tk to T do

for each patrol agent i (in random order) do
takes a feasible patrol action with ε-greedy strategy that decides the state

of δi(t)
end for

end for
Revised schedule is completed δ → δ′

end for

where θ is the policy parameter, Et is the empirical expectation, rt is the ratio of
the probabilities under the new and old policies, Ât is the estimated advantage
at time t, ε is a hyper parameter, usually 0.1 or 0.2.

As our environment is a multi-agent environment, we assign one policy net-
work to each agent as shown in Fig. 3. Algorithm1 describes the procedure for
rescheduling according to the solution approach. We implemented our solution
method using Ray RLlib library [13].

6 Experimental Setup

6.1 Environment

The patrol environment comprises hexagonal grids of size 2.2 km × 2.2 km
derived from local police patrol sectors, each grid representing a patrol area.
We have chosen a large patrol setup with |I| = 11, |J | = 51 for our environment.
This patrol setup represents an environment with a relatively low agent-to-area
ratio. The duration of a day shift is 12 h and is divided into 72 discrete 10-min
time units. The maximum Hamming distance for the revised schedule Dh,max is
set at 0.4.



Dynamic Police Patrol Scheduling with MARL 577

6.2 Model Parameters

The input state vectors are flattened into a one-dimensional array as a concate-
nated input to a fully-connected neural network encoder. The encoder neural
network has a size of 256 × 256, with tanh activation functions. The training
batch size is 500. Learning rate α = 0.0001, εinitial = 0.6, εfinal = 0.01. We set
the discount factor γ = 1.0 since the reward function for patrol presence and
deviation from initial schedule is only evaluated at the end of the episode when
τk = T when the revised schedule is complete. Agents must therefore take into
consideration this final reward without discount when evaluating action choices
in an earlier decision epoch. We set the maximum number of training episodes
to be 5000 episodes.

6.3 Training and Test

During training, there are 100 samples of initial joint schedules for initialization.
Each sample consists of an initial joint schedule for all patrol agents for the
entire day. The initial schedules are obtained via a mixed linear integer program
prior to training. We run a total of 5000 training episodes. During each training
episode, an initial schedule is randomly sampled from the pool, and a set of
incidents is generated based on Poisson distribution with λ set as 2 i.e. the rate
of occurrences of incident is 2 per hour. A training episode ends when the time
step reaches the end of the shift. The training results generally begin to converge
after 3000 episodes. After training is completed, we evaluated the performance
of our solution approach based on 30 samples of initial joint schedules separate
from the training set.

6.4 Evaluation Metrics

Our evaluation considers the following metrics: patrol presence score (%),
incidence response score (%) and deviation from original schedule
(Hamming distance). A good solution should have both high patrol presence
and incidence response scores (where 100% means all incidents are responded
within the stipulated response time), and a low deviation from original schedule
(where 0 means that the existing schedule remains unchanged). We benchmark
the quality of our solution approach against two approaches:

– Myopic rescheduling heuristic - Baseline algorithm with ejection chain
rescheduling heuristic for comparison with VFA-H and our approach APPO-
RL;

– Value Function Approximation heuristic (VFA-H) [9] - An RL-based
rescheduling heuristic with ejection chain based on a learnt value function.



578 S. Wong et al.

7 Experimental Results

7.1 Solution Quality

The evaluation scores summarized in Table 3 show that our solution approach
APPO-RL outperformed the VFA-H method. The patrol presence and inci-
dence response scores of our method are higher than that of VFA-H by +10.6%
(+12.6% vs +2%) and +6.6% (−9.9% vs −16.5%) respectively. However, since
schedule deviation is set as a soft constraint in our proposed solution, we see
that the maximum Hamming distance Dh,max of 0.403 obtained by our app-
roach exceeded the threshold of 0.4, implying that in some cases the maximum
Hamming distance imposed has been violated, while this constraint is not vio-
lated in the VFA-H’s method. On average, however, it is encouraging to see that
the Hamming distance (Dh,mean) is less than in VFA-H.

The biggest advantage of our solution approach is the improved computa-
tional efficiency in solving the DPRP problem. Compared to VFA-H, the training
time required is about 40x less. This is due to the reduced search space as we
limit the number of action states to a selected few dispatch rules.

Table 3. Evaluation metric scores and mean training time.

Metric VFA-H APPO RL

Δ in mean incidence response score over Myopic +2% +12.6%
Δ in mean patrol presence score over Myopic −16.5% −9.9%

Dh,max 0.399 0.403
Dh,mean 0.387 0.342
Mean training time per episode (s) 436 10.9

Figure 4 presents the performance of the three approaches with respect to
the number of training episodes.

7.2 Constraint Sensitivity Analysis

We conducted a constraint sensitivity analysis to evaluate the trade-off between
solution quality and constraint satisfaction by varying the value of C2, the coef-
ficient of a step function penalty term linked to the Hamming distance con-
straint threshold of Dh,max = 0.4. As shown in Fig. 5, as we decreased the soft-
constraint penalty coefficient C2 on Hamming distance, the response score gener-
ally improved while the patrol presence score remained largely at similar levels.
This is expected as agents have fewer constraints to consider when responding
to incidents.



Dynamic Police Patrol Scheduling with MARL 579

Fig. 4. Comparison of our solution approach (blue) with VFA-H (orange) and myopic
(grey) baseline methods on various evaluation metrics. (Color figure online)



580 S. Wong et al.

Fig. 5. Results of constraint sensitivity analysis based on our solution approach (darker
colour indicates higher weightage of constraint penalty coefficient C2). (Color figure
online)

8 Discussion and Future Work

We discuss two major challenges of our work.

Generality. With a limited and handcrafted set of dispatch rules as actions,
we are able to reduce the search space considerably even as the number of



Dynamic Police Patrol Scheduling with MARL 581

agents increases. Nonetheless, our approach requires some experimentation or
prior domain knowledge in order to select a set of optimal dispatch rules suit-
able for the problem. This makes it challenging when we need to apply to a
slightly different problem set, as the set of prescribed dispatch rules may have
to be modified. It is also unclear if the learned policy is applicable as we vary
the size of the environment. We may therefore have to train different policies as
we change the size of patrol area and number of agents.

Constraint Satisfaction. The biggest drawback of our solution approach is
that constraint satisfaction is not always guaranteed. In the DPRP problem, this
constraint was set mainly to minimize disruption to patrol agents. Although such
a violation of constraint is acceptable to some extent in our problem set, one
can argue that this may not be applicable to other situations.

To conclude, we have demonstrated a successful application of multi-agent
reinforcement learning technique in solving dynamic scheduling problem in the
context of police patrolling. Our proposed method is able to improve solution
quality while reducing training time considerably. We are in discussion with a
local law enforcement agency to develop a prototype tool for real-world experi-
mentation.

From the research standpoint, it would be worthwhile to apply this in a multi-
agent environment where we have non-homogeneous patrol agents that need to
collaborate with one another in order to respond to incidents. It would also be
interesting to research further into the aspect of constrained RL to ensure that
hard constraint satisfaction is met.

References

1. Canese, L., et al.: Multi-agent reinforcement learning: a review of challenges and
applications. Appl. Sci. 11(11), 4948 (2021)

2. Chase, J., Phong, T., Long, K., Le, T., Lau, H.C.: Grand-vision: an intelligent
system for optimized deployment scheduling of law enforcement agents. In: Pro-
ceedings of the International Conference on Automated Planning and Scheduling,
vol. 31, pp. 459–467 (2021)

3. Chen, X., Tian, Y.: Learning to perform local rewriting for combinatorial opti-
mization. In: 33rd Conference on Neural Information Processing Systems (2019)

4. Chen, Y., et al.: Can sophisticated dispatching strategy acquired by reinforcement
learning? - a case study in dynamic courier dispatching system. In: AAMAS 2019:
Proceedings of the 18th International Conference on Autonomous Agents and Mul-
tiAgent Systems (2019)

5. Dewinter, M., Vandeviver, C., Vander Beken, T., Witlox, F.: Analysing the police
patrol routing problem: a review. ISPRS Int. J. Geo Inf. 9(3), 157 (2020)

6. Espeholt, L., et al.: IMPALA: scalable distributed deep-RL with importance
weighted actor-learner architectures. In: Proceedings of the 35th International Con-
ference on Machine Learning, pp. 1407–1416 (2018)

7. Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Real-time vehicle routing:
solution concepts, algorithms and parallel computing strategies. Eur. J. Oper. Res.
151(1), 1–11 (2003)



582 S. Wong et al.

8. Gronauer, S., Diepold, K.: Multi-agent deep reinforcement learning: a survey. Artif.
Intell. Rev. 55(2), 895–943 (2022)

9. Joe, W., Lau, H.C., Pan, J.: Reinforcement learning approach to solve dynamic
bi-objective police patrol dispatching and rescheduling problem. In: Proceedings
of the International Conference on Automated Planning and Scheduling, vol. 32,
pp. 453–461 (2022)

10. Li, W., Ni, S.: Train timetabling with the general learning environment and multi-
agent deep reinforcement learning. Transp. Res. Part B: Methodol. 157, 230–251
(2022)

11. Liu, C.L., Chang, C.C., Tseng, C.J.: Actor-critic deep reinforcement learning for
solving job shop scheduling problems. IEEE Access 8, 71752–71762 (2020)

12. OroojlooyJadid, A., Hajinezhad, D.: A review of cooperative multi-agent deep
reinforcement learning. arXiv preprint arXiv:1908.03963 (2019)

13. Ray: Ray RLlib. https://www.ray.io/rllib
14. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
15. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Determin-

istic policy gradient algorithms. In: Proceedings of the International Conference on
Machine Learning, pp. 387–395. PMLR (2014)

16. Watanabe, T., Takamiya, M.: Police patrol routing on network Voronoi diagram.
In: Proceedings of the 8th International Conference on Ubiquitous Information
Management and Communication, pp. 1–8 (2014)

17. Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X.: Learning to dispatch
for job shop scheduling via deep reinforcement learning. In: Advances in Neural
Information Processing Systems, vol. 33, pp. 1621–1632 (2020)

18. Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: a selective
overview of theories and algorithms. In: Vamvoudakis, K.G., Wan, Y., Lewis, F.L.,
Cansever, D. (eds.) Handbook of Reinforcement Learning and Control. SSDC,
vol. 325, pp. 321–384. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
60990-0_12

http://arxiv.org/abs/1908.03963
https://www.ray.io/rllib
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1007/978-3-030-60990-0_12


Analysis of Heuristics for Vector
Scheduling and Vector Bin Packing

Lars Nagel1(B), Nikolay Popov2, Tim Süß3, and Ze Wang1

1 Loughborough University, Loughborough, UK
l.nagel@lboro.ac.uk

2 iC-Haus GmbH, Bodenheim, Germany
3 Fulda University of Applied Science, Fulda, Germany

Abstract. Fundamental problems in operational research are vector
scheduling and vector bin packing where a set of vectors or items must be
packed into a fixed set of bins or a minimum number of bins such that, in
each bin, the sum of the vectors does not exceed the bin’s vector capac-
ity. They have many applications such as scheduling virtual machines in
compute clouds where the virtual and physical machines can be regarded
as items and bins, respectively. As vector scheduling and vector bin pack-
ing are NP-hard, no efficient exact algorithms are known.

In this paper we introduce new heuristics and provide the first exten-
sive evaluation of heuristics and algorithms for vector scheduling and bin
packing including several heuristics from the literature. The new heuris-
tics are a local search algorithm, a game-theoretic approach and a best-fit
heuristic. Our experiments show a general trade-off between running time
and packing quality. The new local search algorithm outperforms almost
all other heuristics while maintaining a reasonable running time.

Keywords: vector scheduling · vector bin packing · heuristics · local
search

1 Introduction

Many scheduling problems in computer science can be modelled as vector
scheduling or vector bin packing problems. Examples are the scheduling of virtual
machines or batch jobs on computer clusters where the resource requirements
of a job as well as the resources available on machine can be represented as a
vector. Vector scheduling and vector bin packing are defined as the problem of
packing a given set of d-dimensional item vectors into d-dimensional bins. In
vector scheduling the number of bins is predefined, in vector bin packing the
task is to minimize the number of bins required. More formally:

Definition 1 (Vector Scheduling). Let J be a set of items where each item
j ∈ J is a d-dimensional vector (j1, ..., jd) with ji ∈ [0, 1] for i ∈ [d]. Further

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 583–598, 2023.
https://doi.org/10.1007/978-3-031-44505-7_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_39&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_39


584 L. Nagel et al.

let m be the number of d-dimensional bins, each of capacity (1, ..., 1). A valid
packing of items is a partition of J into sets B1, ..., Bm such that

∀k ∈ [m],∀i ∈ [d],
∑

j∈Bk

ji ≤ 1. (1)

The goal is to find such a valid packing.

Definition 2 (Vector Bin Packing). Let J be a set of items where each item
j ∈ J is a d-dimensional vector (j1, ..., jd) with ji ∈ [0, 1] for i ∈ [d]. Further
assume that bins have a d-dimensional capacity (1, ..., 1). The goal is to find a
valid packing while minimising the number of bins m.

Both problems are known to be NP-complete, and every exact algorithm
known requires exponential time in the worst case. For this reason, researchers
devised approximation algorithms [1,5] and heuristics, e.g. [3,12,17]. Some of
these heuristics are in practical use. For example, Sandpiper [22], a resource
management system for virtual machines, uses the FFDProd heuristic of Pani-
grahy et al. [17] for the migration of virtual machines from overloaded hosts.

In this paper we present three new heuristics for vector scheduling and com-
pare them to a wide range of algorithms and heuristics from the literature. We
analyze the scheduling quality of these algorithms as well as their running times
in simulations using randomly generated data and benchmarks from the litera-
ture. The experiments show that our new Local Search algorithms outperform
almost all other heuristics while maintaining a reasonable running time. The
other two types of heuristics, called Hybrid and Stable Pairing, do not pack
the jobs as successfully, but have shorter running times and can compete with
similarly fast heuristics from the literature.

The paper is structured as follows: Existing algorithms are summarized in
Sect. 2. The new algorithms are introduced in Sect. 3. They are evaluated in
Sect. 4. Section 5 concludes the paper.

2 Algorithms and Complexity

In this section we survey the literature on algorithms and heuristics for vector
scheduling and vector bin packing. We omit results for one-dimensional problems
and for other related problems like the packing of orthotopes.

2.1 Theoretical Results and Exact Algorithms

Vector scheduling is well-known to be NP-hard for a constant number of dimen-
sions d [7]. Vector bin packing is APX-hard as Woeginger [21] showed that
already for d = 2 the existence of an asymptotic polynomial-time approxima-
tion scheme (PTAS) would imply P = NP . Sandeep [19] showed there is no
asymptotic o(log d)-approximation for vector bin packing if d is large.

Chekuri and Khanna [5] showed approximation bounds for vector bin packing
and vector scheduling and introduced a PTAS for vector scheduling for constant



Analysis of Heuristics for Vector Scheduling and Vector Bin Packing 585

d. It rounds the coordinates of the vectors and fits them into bins of size 1 + ε
(instead of 1). Bansal et al. [1] improved the scheme. But although its running
time of O(2(1/ε)O(d log log d)

+ nd) is shown to be almost optimal, the algorithm
is not feasible for practical purposes. Recently, Kulik et al. [13] introduced an
asymptotic (43 + ε)-approximation for the 2-dimensional vector bin packing.

Although vector bin packing is NP-hard, there are exact algorithms that
solve small instances in reasonable time. Heßler et al. [9] designed a branch-and-
price algorithm. Brandão and Pedroso [2] used an arc-flow formulation to solve
vector bin packing with integer vectors. In our evaluation in Sect. 4, we use their
algorithm to compute the optimum for small instances.

2.2 First-Fit and Best-Fit Heuristics

Kou and Markowsky [12] introduced first-fit decreasing (FFD) and best-fit
decreasing (BFD) heuristics which are suitable for vector bin packing and vector
scheduling. The algorithms sort the vectors in decreasing order and assign them
to the bins using first-fit or best-fit. In order to be comparable, each vector must
be assigned a size. In the paper, the authors use the infinity norm (L∞), the
sum of all vector components (L1) and lexicographical ordering.

Panigrahy et al. [17] changed the item-centric approach of Kou et al. to a
bin-centric one. Their heuristics only open a new bin if no more item fits into the
current one. Otherwise it assigns the largest fitting item to the current bin. If a
norm (L1, L2, L∞) is used, the largest item is the one that minimizes the distance
between remaining capacity and item vector, possibly weighted by a vector w.
They also apply the dot product where the largest item is the one whose vector
maximises the dot product with the remaining capacity of the bin. The authors
suggest two weight vectors for item-centric and bin-centric heuristics. The first
one consists of the averages ai in every dimension. The second one applies the
exponential function to the average, i.e. bi = eε·ai , where ε is a suitable constant.

Some heuristics by Kou et al. and Panigrahy et al. are included in the eval-
uation in Sect. 4.

2.3 Genetic Algorithms

Wilcox et al. [20] designed the Reordering Grouping Genetic Algorithm (RGGA)
to solve vector bin packing. In this genetic algorithm, the packing results, i.e.
the individuals of the population, are represented as a sequence. The crossover
operator is implemented using an exon shuffling approach. Three operators are
equally used in the mutation phase. The first two methods involve swapping two
items or moving one item to another position in the sequence. The third operator
removes a number of bins and reassigns the removed items into the sequence.

Sadiq and Shahid [18] apply Simulated Evolution (SE) to vector bin packing,
a genetic algorithm. It uses a first-fit heuristic for the initial solution before
performing three steps in a loop: Evaluation assigns a goodness value to every
allocated item, i.e. a probability for being moved into a reallocation pool by



586 L. Nagel et al.

Selection. The last step, Allocation, reallocates the items in the pool using again
a first-fit scheme. The evaluation shows that SE outperforms FFD.

2.4 Local Search and Simulated Annealing

Mannai and Boulehmi [14] presented a tabu search algorithm for two-dimensional
vector bin packing. As the description is not detailed enough, we did not imple-
ment it. Their experiments compare the algorithm only to an optimal algorithm
which uses the CPLEX Optimizer [10].

Masson et al. [15] propose a multi-start iterated local search scheme for vector
bin packing. It uses local search in combination with a shaking procedure of
random reallocations.

Buljubašić and Vasquez [3] proposed a hybrid scheme named consistent
neighborhood search (CNS) which combines a first-fit heuristic, tabu search and
a technique for computing an optimal packing for a limited set of items. Results
in the paper suggest that CNS outperforms the algorithm by Masson et al. [15]
which is why we only evaluate CNS in this paper.

Simulated Annealing was often applied to geometric packing problems, but
there seems to be only one paper applying it to vector bin packing [16]. It is
shown to outperform first-fit without sorting, but since it did not perform well
in our tests, we left it out of the evaluation.

3 New Algorithms

In this section, we propose three new vector scheduling strategies. The first
algorithm is based on local search. The second algorithm is a combination of
bin-centric and item-centric strategies. The last algorithm applies the stable
roommate algorithm and the stable marriage algorithm from game theory.

3.1 Local Search

We propose two local-search algorithms for vector scheduling called Local Search
(LS) and Local Search with Randomization (LSR). The strategy of LS is similar
to the bin-centric approach in that it fills one bin at a time trying to minimize
the bin’s remaining capacity until no further improvement can be found. Before
describing the logic of the algorithm, we describe the two main procedures of
the algorithm: Random Assignment and Swap.

Random Assignment randomly packs items into the current bin. The proce-
dure runs in a loop and in each iteration, it randomly selects an item from the
pool of remaining items and tries to assign it to the bin without exceeding the
bin’s capacity. The number of failed assignments is counted and the procedure
finishes when this count reaches the number of unpacked items. Swap is designed
with the goal to reduce the bin’s capacity further by swapping unpacked items
with items in the current assignment. It takes a randomly chosen item from the
remaining pool and tests it against every item in the bin. If there is at least one



Analysis of Heuristics for Vector Scheduling and Vector Bin Packing 587

permissible swap that would reduce the remaining capacity (based on the L2

norm), the best swap is performed.
LS starts by opening a new bin and placing the unpacked item with the

biggest L2 weight into it. Then Random Assignment is applied to produce an
initial assignment. After the initial assignment is generated, the algorithm runs
Swap n times in a loop to improve the current assignment, where n is the number
of unpacked items. If a swap happens during a Swap run, the algorithm will call
Random Assignment again to try if due to the change the assignment can be
improved. After that the loop is continued. When it is finished, the algorithm
will start a new loop if at least one successful swap was made in the current
loop. Otherwise it will close the current bin and open the next one.

The Swap routine of LS only swaps items if the remaining capacity is reduced
by the swap. For this reason, it can be trapped in a local optimum. To avoid
this, we devised a second scheme, LSR, which also swaps items if the remaining
capacity is not reduced. In such a case, the algorithm chooses the swap with the
smallest capacity increase and performs it with a probability proportional to the
increase. More precisely, the probability is the quotient of the L2 norm of the
previous remaining capacity and the changed remaining capacity. While these
swaps do not pack the bin tighter, they create opportunities for the algorithm
to escape from a local optimum. Since swaps may be performed in every loop
of Swap, we require an additional termination condition and set the maximum
number of loops to ten. During the run, the algorithm always memorises the
assignment with the smallest remaining capacity which is used in the end.

3.2 Hybrid Heuristic

The second new heuristic is named Hybrid Heuristic and can be seen as a hybrid
of bin-centric and item-centric heuristics. In the bin-centric scheme proposed
by Panigrahy et al. [17], exactly one bin is open in every step, and the largest
item the bin can fit is placed into the bin. If it cannot fit any of the remaining
items, the bin is closed, and the next empty bin is opened. The Hybrid Heuristic
differs from this scheme by opening more bins at the same time to generate more
options for items and potentially find a better assignment.

The algorithm sorts the items and opens one empty bin in the beginning.
Then it starts assigning the items. Whenever there is an unassigned item that
is too large for all opened bins, a new bin is opened, and the item is placed in
it. If there is no such item, then each opened bin determines its best-fitting item
according to a cost function. For this we use the same cost functions as Panigrahy
et al., i.e. we either minimize the L1, L2 or L∞ norm of the remainder (i.e.,
remaining capacity of the bin minus item size), or we maximize the dot product
of remaining capacity and item size. After that it remains to choose the bin
that actually gets an item. The aim here is to choose an item that fits well, but
also to favour bins, or at least not to neglect bins, that have not received many
items yet. To achieve this, the heuristic compares all proposals to pick one which
satisfies the following rules. For the norms, the heuristic evaluates the bins by
the percentage by which the remaining capacity is reduced and picks the one



588 L. Nagel et al.

with largest percentage. For the dot product, two cases are distinguished: (1) If
two bins prefer the same item, the bin with the smaller dot product is chosen
because it is a better fit. (2) If two bins prefer different items, the machine with
the larger dot product is preferred to fill up lower-loaded bins more quickly. The
algorithm applies rule (1) first, before applying rule (2) on all the remaining
bins. If, after the assignment, the bin is full in the sense that it cannot fit any
unpacked item, the bin will be closed.

3.3 Game-Theoretic Approach

Our game-theoretic approach is named Stable Pairing Vector Scheduling (SPVS)
and combines algorithms for the stable roommate and the stable marriage prob-
lem [6,11] to place items where they feel most “comfortable”.

The stable roommate problem deals with a set of 2n people looking for room-
mates. Every person has a preference list of all other people. A solution to the
problem is a stable matching of n roommate pairs such that no two persons exist
who prefer each other over their current partner. The stable marriage problem
gets as input two sets of n people each of them having a preference list for all
people from the other set. The task is again to find a stable matching such that
no two persons would prefer to be paired with each other rather than the persons
they are paired with. Gale and Shapley [6] proved that the stable marriage prob-
lem always has a solution. However, there is no guarantee for a stable matching
in the stable roommate problem. Irving [11] designed an algorithm that finds a
stable matching or proves that no such matching exists.

The new SPVS heuristic sorts all items in descending order based on the L1

norm, creates m pairs from the first 2m items using Irving’s stable roommate
algorithm and places the pairs into the m bins. If Irving’s algorithm does not
produce a solution, the first 2m items are assigned using the first-fit heuristic
from [12]. The remaining items are assigned in batches of size m using Gale and
Shapley’s stable marriage algorithm [6]. The algorithm matches the m items of
the batch with the m bin loads. If bins cannot take any more items, they are
removed from the set and correspondingly fewer items are selected in the next
batch. If there are not enough items left to run the stable marriage algorithm,
the remaining items are distributed using again the first-fit heuristic.

Two cost functions are needed to compute the preference lists for the bins and
items involved in stable roommate and stable marriage. For stable roommate,
the cost function is the cosine of the angle θ between the two item vectors. A
smaller cos(θ) value is preferred because then the items are more complementary
to each other and leave more space for additional items. For stable marriage, the
cost function is the cosine of the angle φ between the bin’s remaining capacity
and the item vector. A higher value of cos(φ) is preferred because it indicates
a higher similarity between the vectors, again filling the bin more evenly and
leaving potentially more space for future items.



Analysis of Heuristics for Vector Scheduling and Vector Bin Packing 589

4 Evaluation

This section is dedicated to the evaluation of the algorithms and heuristics for
vector scheduling and vector bin packing. It first describes the general settings
of the experiments before the simulation results are presented and analyzed.

4.1 Simulator and Test Environment

Our simulator implemented in C++ is a micro-kernel capable of loading differ-
ent data generators and algorithms which must be specified in a configuration
file. Other configurable parameters include the number of bins, their capacities,
the number of items and seeds for generating random input. The simulator is
available https://bitbucket.org/vsvbp/vssimulator/src/master/.

Most algorithms that we implemented do not require libraries beyond the
C++ standard. However, some algorithms solve integer / mixed-integer linear
programming problems, for which they use the IBM ILOG CPLEX Optimizer
version 12.10 [10] or the Gurobi Optimizer version 9.1.2 [8].

For the experiments we used random data and a benchmark [4,9]. For each
random experiment, ten sets of data were generated to obtain more precise
results. For each algorithm, we assured that the items were exactly the same by
using the same random number seed.

The tests were performed on a single core of an Intel Core i7-10700 CPU
with a frequency of 2.90GHz. The PC provided 32GiB RAM in total, ran on
Linux Mint 20.2 Uma with a 5.4.0-86 kernel, and the compiler was GCC 10.2.0.

4.2 Data Sets

The random data sets were used for the vector scheduling experiments. They
can be grouped into six classes that define how the vectors of the instances are
generated. Five of them, C1-C5, are classes originally proposed by Caprara and
Toth [4] and also used in [17]. They pick vector coordinates from a class-specific
interval [a; b] uniformly at random. The class C6 was created for the evaluation
of exact and approximation algorithms. It is used for generating small items that
are, however, large enough to reasonably limit the exponential running times.

C1: [0.1; 0.4] C2: [0.001; 1] C3: [0.2; 0.8]
C4: [0.05; 0.2] C5: [0.025; 0.1] C6: [0.1; 0.25]
We used the benchmark of Heßler et al. [4,9] in the vector bin packing exper-

iments. The benchmark consists of 400 instances which can be evenly grouped
into ten classes, where each class can be further divided into four subclasses of
ten instances. Each instance contains many items of the same type, i.e. identical
vectors, and the classes only differ by the item types used. In the subclasses of
the first nine classes, the number of item types is 25, 50, 100 and 200, respec-
tively; in the tenth class, it is 24, 51, 99 and 201. When the benchmark was
generated, the number of items of each type was uniformly chosen from the set
{1, ..., 100}. The item count of the instances ranges from 1193 to 10229.

https://bitbucket.org/vsvbp/vssimulator/src/master/


590 L. Nagel et al.

4.3 Metric

The main metric used in the vector scheduling evaluation counts how often a
certain number of items can be packed into a given number of bins. For every
item set size, 10 sets are generated if not otherwise stated. If at least one of
these sets can be placed completely, we increment the set size and repeat the
experiment. This is also done if at least one experiment for the two previous set
sizes was successful to make sure that we do not terminate prematurely. In the
experiments with 15, 100 and 1,000 bins the increment is 1, 2 and 20, respectively.
The time limit is set to one minute for one run and thus, algorithms taking longer
than a minute are left out. This is because we did not observe significant changes
in the results by allowing a longer runtime.

For a finer analysis of the simple heuristics we also count successful runs and
display them in a table. The exact procedure is described in Sect. 4.5.

In the evaluation of vector bin packing algorithms, the algorithms are com-
pared by the formula introduced in Sect. 4.7 which is based on the number of
bins used for packing all the items.

Fig. 1. Results of exact and approximation algorithms for C-Exa and results of heuris-
tics for C1.

4.4 Exact and Approximation Algorithms

We start our evaluation with exact and approximation algorithms. The exact
algorithm is Arc-Flow, the approximation algorithms are the random and the
deterministic version of the Linear Time Approximation Algorithm (LTAA). Due
to their long runtimes we only use 5 bins and slowly increase the number of items
which are randomly picked from class C6. For the LTAAs, we choose ε = 0.1,
which means that the bins have size 1.1 in every dimension instead of 1.



Analysis of Heuristics for Vector Scheduling and Vector Bin Packing 591

The first plot of Fig. 1 shows that Arc-Flow is capable of scheduling up to 29
items. At first glance it is surprising that LTAA packed one item more than Arc-
Flow, but this effect is explained by the larger capacity. The more interesting
observations are made in the lower left plot of Fig. 1 which shows that all three
algorithms are not suitable for real-time scheduling because of their rapidly
increasing running times. Somewhat surprisingly, the approximation algorithms
take more time than the exact algorithm. The reason is that the LTAAs only
benefit from rounding when the number of items is much larger than the number
of item types, which is not the case in these small examples. Without that benefit,
rounding is a useless overhead. With an increasing number of items, however,
the approximation algorithms would eventually outperform the exact algorithm.

4.5 First-Fit and Best-Fit Heuristics

Next we look at first-fit and best-fit heuristics which are described in Sect. 2.2
and 3.2 and include the new hybrid heuristic. The second plot in the first row
of Fig. 1 shows the result for the item-centric FFD heuristics (Kou) using 10
bins and 3D items from class C1. (We do not show the BFD results because
they closely resemble the FFD results.) We used the original size functions and
added two new ones, L2 and Lexi Reordered. While the performances differ for
the other sorting methods, three methods always performed badly, the one that
does not sort the items at all (FF ) and, even worse, the ones that sort them
in lexicographical order (Lexi and Lexi Reordered), i.e. by the first component,
then, if the first components are equal, by the second component, and so on.
Lexi-Reordered differs from Lexi in that it changes the order of the components
before sorting so that the ith component is the ith largest one on average. The
better strategies sort the vectors by the L1, L2 or L∞ (Linf in the plots) norm.

Table 1. Comparison of item-centric and bin-centric heuristics. Each number is the
percentage of successful runs among all runs in which at least one strategy was suc-
cessful and one failed.

10 Bins 50 Bins
Items Met. 3D 4D 3D 4D

Kou Pani Hyb Kou Pani Hyb Kou Pani Hyb Kou Pani Hyb
C1 Linf 31.22 55.36 60.13 30.64 48.87 51.49 14.37 74.46 77.37 09.70 71.25 72.55

L1 42.62 42.57 44.06 44.72 44.72 45.62 18.12 18.12 22.07 22.16 22.25 24.16
L2 43.67 70.61 70.90 45.26 66.88 68.10 25.07 90.70 91.92 22.34 90.22 91.95
DP - 69.07 67.53 - 70.31 67.73 - 88.26 89.30 - 86.32 87.36

C3 Linf 79.27 35.98 54.88 82.22 33.33 42.22 64.24 31.13 45.03 61.47 36.45 48.29
L1 79.27 79.27 79.27 75.56 75.56 75.56 71.52 71.52 71.52 77.40 77.40 77.56
L2 85.37 72.56 71.34 78.89 66.67 71.11 83.44 58.28 54.97 82.99 64.80 70.73
DP - 78.05 79.88 - 74.44 72.22 - 72.85 73.50 - 78.07 79.23

C5 Linf 23.77 88.11 89.86 18.49 87.23 87.32 09.72 91.01 90.93 7.43 91.31 91.65
L1 23.14 23.14 23.14 22.67 22.68 22.89 13.46 13.45 12.73 10.17 10.10 10.17
L2 23.93 93.50 93.50 21.76 93.49 93.69 12.46 98.95 99.06 9.51 98.57 98.80
DP - 89.70 90.97 - 89.65 89.84 - 94.10 94.19 - 95.18 95.45



592 L. Nagel et al.

The reason for the poor performance of lexicographical ordering seems to be
that it basically sorts all the items by the first component, especially when the
vectors are randomly generated, while the other components are more or less in
random order. So, the first items assigned will fill the first component of the first
few bins while leaving the other components unfilled, and later there are often
not enough items with small first components to fill these gaps.

The third plot in the first row and the second plot in the second row of
Fig. 1 show results for the bin-centric approaches by Panigrahy et al. (Pani) and
the new hybrid heuristics. They also indicate that the ordering of the items has
a high impact on the quality of the scheduling. For both schemes, L2 and dot
product (DP) are usually better than L1 and L∞.

The last plot of Fig. 1 shows the running times. Since the heuristics of each
group show basically the same behaviour, we only display one representative. The
fastest ones are the item-centric heuristics without sorting, followed by the ones
with sorting. The bin-centric and hybrid strategies are slower, but all algorithms
perform well below 0.1 milliseconds in the experiments with 10 bins and items
from C1. However, for an increasing number of bins, the hybrid algorithms run
considerably longer than the other types which can be seen in Fig. 6.

In Table 1 we take a closer look at a selection which includes almost all
heuristics except for the ones mentioned above that generally perform badly. All
heuristics are run on the same set of 3-dimensional (or 4-dimensional) items ran-
domly selected from the item classes C1, C3 and C5, respectively, and schedule
them on 10 (or 50) bins. Each experiment is repeated 100 times. The numbers
in the table give the percentage of successful allocations among all inputs for
which at least one heuristic failed and at least one heuristic succeeded.

The table shows that the results for the hybrid heuristic are close to the ones
of the bin-centric heuristic (Pani), usually outperforming them by a small mar-
gin. Most of them perform significantly better than the item-centric heuristics
(Kou) for the item classes C1 and C5 as well as C4 which is not shown in the
table. Suprisingly, the item-centric heuristics outperform the other ones for class
C3 as well as C2 which is not shown. Since C1, C4 and C5 generate only or
mostly small items and C2 and C3 generate mostly large items, it seems that
the bin-centric and hybrid approaches are more suitable for the former while the
item-centric approaches are more suitable for the latter.

However, the quality of the strategies often depends heavily on the size func-
tion. It can be observed that the dot product performs well in general. (Note that
some table cells are left empty because it cannot be used with the item-centric
heuristic.) For all types of heuristics, the L2 norm appears more reliable than
L1 and L∞. The L∞ typically performs poorly in Kou’s algorithm for all classes
because it cannot effectively capture the size of items with multiple dimensions.
In Pani and Hybrid, the performance of L∞ increases with the size of items,
while the performance of L1 decreases with the size of items.



Analysis of Heuristics for Vector Scheduling and Vector Bin Packing 593

4.6 Comparison of All Heuristics

In this section we include the more complex heuristics which usually have longer
running times. These are the new heuristics LS, LSR and SPVS as well as heuris-
tics from the literature, CNS and SE. From the previous section we only consider
the best-performing heuristics: Kou L2 and Hybrid L2.

Experiments with 15 Bins. In the first experiments shown in Fig. 2 only 15
bins were used. Every experiment was repeated ten times for each of the item
classes C1, C3 and C5. We left out C2 and C4 due to lack of space and because
the results are similar to C3 and C5, respectively. The low number of bins allowed
to also run the exact algorithm Arc-Flow for comparison (except for class C5).
Arc-Flow is clearly better than the heuristics when the vector components of the
items are small (C1), but the heuristics are almost optimal when the items are
larger (C3). The line of Arc-Flow is identical with the one of CNS and covered
by it in the plot. CNS shows a strong performance in all classes, it is only worse
than ArcFlow for dataset C1. Apart from CNS, the best heuristics for C1 and C5
are the new local search algorithms LS and LSR. They outperform the hybrid
heuristic and SE, and they are significantly better than SPVS and Kou L2. The
local search algorithms perform worse for C3 because large vectors are harder to
be swapped in the Swap procedure. The genetic algorithm SE outperforms Kou
L2 and is better than hybrid for dataset C1 but worse for C5.

Fig. 2. Successfully scheduled 3d items for 15 bins.

Fig. 3. Successfully scheduled 3d items for 100 bins.



594 L. Nagel et al.

Fig. 4. Successfully scheduled 3d items for 1000 bins.

Fig. 5. Successfully scheduled 6d items for 1000 bins.

Fig. 6. Runtimes for 15, 100, 1000 bins with 3d items from class C3.

The runtimes of the algorithms are shown in the first plot of Fig. 6 for item
class C3. We chose C3 because of the relatively short running times; for C1
and C5, they diverge more strongly. Kou L2 and SPVS require only about 32
microseconds and are significantly faster than all other heuristics. The price for
the improved packings of the hybrids is a runtime increase by a factor of 4
to 6, the price for LS is a factor between 9 and 12. The considerable runtime
overhead of SE and CNS is not justified for these small instances. Arc-Flow is
several orders of magnitude slower and requires up to 45 ms.



Analysis of Heuristics for Vector Scheduling and Vector Bin Packing 595

Table 2. Improvements by LS on the
vector bin packing benchmark

Instance BKLB BKUB LS

C4_100_8 642 645 644
C4_100_9 642 645 644
C4_200_1 1293 1297 1296
C4_200_4 1247 1253 1250
C4_200_9 1271 1275 1274
C5_100_2 325 327 325*
C5_100_6 314 315 314*
C5_100_8 321 323 322
C5_100_9 316 317 316*
C5_100_10 327 328 327*
C5_200_1 652 656 653
C5_200_2 624 629 624*
C5_200_3 630 635 631
C5_200_4 630 631 630*
C5_200_5 631 640 631*
C5_200_6 626 630 626*
C5_200_7 630 636 631
C5_200_8 635 640 635*
C5_200_10 632 635 632*

Experiments with 100 Bins. When
the algorithms were run on 100 bins, we
had to leave out Arc-Flow and, for C5,
CNS because of their long running times.
Figure 3 shows the success rates for C1, C3
and C5. The results are similar to the ones
for 15 bins. All heuristics perform equally
well when the items are larger (C3), and
the performance can be differentiated in
the other cases (C1 and C5). The two
local search algorithms are only slightly
worse than CNS, followed by the hybrid
algorithm which outperforms the remain-
ing algorithms for C1 and C5 and is nearly
as good as LS and LSR for C5. The fastest
algorithms, SPVS and Kou L2, achieve the
worst packing quality.

The runtimes of the algorithms are
shown in the second plot of Fig. 6 for class
C3. The relative differences in the run-
times are similar for the other classes. The
plot shows the tradeoff between packing
quality and running time: the slower the
algorithm, the better the quality. However,
there are exceptions. Although LSR runs
longer than LS, its additional swaps to
avoid local optima do not seem to improve the quality. And while the running
times of Hybrid are better at the start, they grow faster and eventually exceed
the ones of LS.

Experiments with 1,000 Bins. The measurements for 1,000 bins partially
confirm the observations of the previous tests, but there are also some differences.
We had to leave out LSR and SPVS for C5 because of their long running times.
Figure 4 shows that the best success rates for C1 and C5 are achieved by LS.
The hybrid is again in the middle, while the remaining algorithms form a third
group. In this one SPVS tends to be slightly better than Kou L2 and SE for C1.
The running times for C3 are shown in the third plot of Fig. 6. For 1,000 bins,
Hybrid takes much longer than the local search algorithms and SE. The fastest
algorithms are again SPVS and Kou L2.

Impact of Dimensions. In order to see the influence of the number d of dimen-
sions, we ran the experiments also for d = 6 instead of d = 3. Since the influence
is rather insignificant, we show only the plots for 1,000 bins in Fig. 5. Unsur-
prisingly, 1000 bins did not fit as many 6d items as 3d items. The local search
algorithms are slightly worse for class C3, but still much better than the other
algorithms for C1 and C5.



596 L. Nagel et al.

4.7 Vector Bin Packing Results

In this section, we evaluate the performance of non-exact algorithms using the
vector bin packing benchmark produced by Heßler et al. [4,9]. SPVS is not
included because it is only suitable for vector scheduling. To get the best per-
formance of norm-based algorithms, we apply L1, L2 and DP for Hybrid, Pani
and Kou and use the best result in each case. Because of the long running time
of CNS, we had to limit the running time to one hour; if the algorithm has
not terminated by then, the intermediate result is taken. The results shown in
Table 3 only include the subclasses with the lowest and highest number of item
types due to lack of space.

Table 3. Performance comparison on the vector bin packing benchmark

Class Avg Size CNS LS Hybrid Pani SE Kou

C1_25 1270 0.0092 0.0303 0.0571 0.0564 0.0792 0.1183
C1_200 10203.5 0.0114 0.0110 0.0483 0.0492 0.0776 0.1103
C2_25 1270 0 0.0059 0 0.0003 0.0086 0
C2_200 10229 0.3394 0.0054 0.0035 0.0044 0.0083 0.0013
C3_25 1270 0 0.0031 0 0.0003 0.0079 0
C3_200 10229 0.1980 0.0023 0.0030 0.0042 0.0079 0.0026
C4_25 1270 0.0008 0.0071 0.0437 0.0444 0.0673 0.1233
C4_200 10203.5 0.0008 0.0005 0.0178 0.0178 0.0670 0.1396
C5_25 1270 0.0014 0.0014 0.0261 0.0261 0.0614 0.1237
C5_200 10151.1 0.1837 -0.0053 0.0036 0.0036 0.0777 0.1426
C6_25 1270 0.0178 0.0451 0.0437 0.0431 0.0647 0.0574
C6_200 10167.5 0.3960 0.0331 0.0436 0.0434 0.1000 0.0718
C7_25 1270 0.0116 0.0171 0.0372 0.0345 0.0323 0.0345
C7_200 9881.1 0.2864 0.0155 0.0249 0.0242 0.0292 0.0297
C8_25 1270 0 0 0.0115 0.0446 0.0375 0
C8_200 9503 0.2228 0 0 0.0010 0.0031 0
C9_25 1270 0.0116 0.0388 0.0745 0.0760 0.0817 0.1180
C9_200 10203.5 0.0307 0.0112 0.0440 0.0449 0.0836 0.1180
C10_24 1193 0.0171 0.0490 0.0741 0.0739 0.1192 0.1123
C10_201 9504 0.0291 0.0270 0.0579 0.0582 0.0664 0.0833

In Table 3, the first column identifies a subclass of 10 instances in the form
of class_subclass. The second column shows the average number of items per
instance. The remaining columns display the results for the algorithms, more
precisely the ratio between the number of bins used mi and the best-known upper
bound BKUBi, averaged over all instances i; i.e.

∑10
i=1

mi−BKUBi

10·BKUBi
. Negative



Analysis of Heuristics for Vector Scheduling and Vector Bin Packing 597

numbers imply that the upper bound was improved. In each row, the best result
is highlighted in bold font.

For all subclasses with 24 or 25 item types, CNS achieved the best results.
The performance of CNS drops considerably for subclasses with more item types.
CNS would generate better results if it ran more hours. For all subclasses with
200 or 201 item types (except for C3), LS outperforms all other algorithms. It
also achieved the best results for C5 and C8 in general and was only worse than
the best algorithm in all other cases. In C4 and C5, LS improved the best-known
upper bound for 19 instances; and 10 of the results match the best-known lower
bound (BKLB). For details see Table 2. Kou and Markowsky’s algorithms and
the hybrid algorithms performed very well for C2, C3, and C8.

Overall, the benchmark results resemble the results of the vector scheduling
experiments. They suggest that LS and Hybrid are also competitive for the
vector bin packing problem.

5 Conclusion

In this work we have presented three new algorithms for vector scheduling and
vector bin packing and evaluated them together with a range of algorithms from
the literature. The algorithms developed and chosen are of different types and
include local search, genetic, stable-pairing, first-fit, best-fit, approximation and
exact algorithms. The exact algorithms and the approximation schemes consid-
ered are as expected not suitable for practical purposes because of their long
running times. Among the heuristics, the new local search algorithms outper-
formed all other algorithms except for CNS in terms of success rates for vector
scheduling. They also improved results for 19 instances of a vector bin pack-
ing benchmark. While they are an order of magnitude slower than the fastest
heuristics, they are much faster than CNS and have acceptable running times
for many use cases. Our hybrid schemes combine ideas of bin-centric and item-
centric heuristics from the literature and have slightly better success rates than
those. The last new approach uses ideas from game theory to pack vectors into
bins and is among the fastest algorithms in most cases. It tends to be better
than equally fast first-fit schemes for larger instances.

References

1. Bansal, N., Oosterwijk, T., Vredeveld, T., van der Zwaan, R.: Approximating vector
scheduling: almost matching upper and lower bounds. Algorithmica 76, 1077–1096
(2016)

2. Brandão, F., Pedroso, J.P.: Bin packing and related problems: general arc-flow
formulation with graph compression. Comput. Oper. Res. 69, 56–67 (2016)

3. Buljubašić, M., Vasquez, M.: Consistent neighborhood search for one-dimensional
bin packing and two-dimensional vector packing. Comput. Oper. Res. 76, 12–21
(2016)

4. Caprara, A., Toth, P.: Lower bounds and algorithms for the 2-dimensional vector
packing problem. Discret. Appl. Math. 111(3), 231–262 (2001)



598 L. Nagel et al.

5. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput.
33(4), 837–851 (2004)

6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, W. H (1979)

8. Gurobi Optimization Inc.: Gurobi Optimizer (2022)
9. Heßler, K., Gschwind, T., Irnich, S.: Stabilized branch-and-price algorithms for

vector packing problems. Eur. J. Oper. Res. 271(2), 401–419 (2018)
10. IBM: IBM ILOG CPLEX Optimizer (2022)
11. Irving, R.W.: An efficient algorithm for the stable roommates problem. J. Algo-

rithms 6(4), 577–595 (1985)
12. Kou, L.T., Markowsky, G.: Multidimensional bin packing algorithms. IBM J. Res.

Dev. 21(5), 443–448 (1977)
13. Kulik, A., Mnich, M., Shachnai, H.: An Asymptotic (4/3+ε)-approximation for the

2-dimensional Vector Bin Packing Problem. preprint arXiv:2205.12828 (2022)
14. Mannai, F., Boulehmi, M.: A guided tabu search for the vector bin packing prob-

lem. In: The 2018 International Conference of the African Federation of Opera-
tional Research Societies (AFROS 2018) (2018)

15. Masson, R., et al.: An iterated local search heuristic for multi-capacity bin packing
and machine reassignment problems. Expert Syst. Appl. 40(13), 5266–5275 (2013)

16. Pandit, D., Chattopadhyay, S., Chattopadhyay, M., Chaki, N.: Resource allocation
in cloud using simulated annealing. In: 2014 Applications and Innovations in Mobile
Computing (AIMoC), pp. 21–27. IEEE (2014)

17. Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin packing.
research. microsoft. com (2011)

18. Sadiq, M.S., Shahid, K.S.: Optimal multi-dimensional vector bin packing using
simulated evolution. J. Supercomput. 73(12), 5516–5538 (2017)

19. Sandeep, S.: Almost optimal inapproximability of multidimensional packing prob-
lems. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 245–256. IEEE (2022)

20. Wilcox, D., McNabb, A., Seppi, K.: Solving virtual machine packing with a reorder-
ing grouping genetic algorithm. In: 2011 IEEE Congress of Evolutionary Compu-
tation (CEC), pp. 362–369. IEEE (2011)

21. Woeginger, G.J.: There is no asymptotic PTAS for two-dimensional vector packing.
Inf. Process. Lett. 64(6), 293–297 (1997)

22. Wood, T., Shenoy, P.J., Venkataramani, A., Yousif, M.S.: Black-box and gray-box
strategies for virtual machine migration. In: 4th Symposium on Networked Systems
Design and Implementation (NSDI). USENIX (2007)

http://arxiv.org/abs/2205.12828


Unleashing the Potential of Restart by
Detecting the Search Stagnation

Yoichiro Iida1(B), Tomohiro Sonobe2, and Mary Inaba1

1 Graduate School of Information Science and Technology, The University of Tokyo,
Tokyo, Japan

yoichiro-iida@g.ecc.u-tokyo.ac.jp, mary@is.s.u-tokyo.ac.jp
2 National Institute of Informatics, Tokyo, Japan

tomohiro_sonobe@nii.ac.jp

Abstract. SAT solvers are widely used to solve industrial problems
owing to their exceptional performance. One critical aspect of SAT
solvers is the implementation of restarts, which aims to enhance per-
formance by diversifying the search. However, it is uncertain whether
restarts effectively lead to search diversification. We propose to adapt
search similarity index (SSI), a metric designed to quantify the sim-
ilarity between search processes, to evaluate the impact of restarts.
Our experimental findings, which employ SSI, reveal how the impact
of restarts varies with respect to the number of restarts, instance cat-
egories, and employed restart strategies. In light of these observations,
we present a new restart strategy called Break-out Stagnation Restart
(BroSt Restart), inspired by a financial market trading technique. This
approach identifies stagnant search processes and diversifies the search
by shuffling the decision order to leave the stagnant search. The evalu-
ation results demonstrate that BroSt Restart improves the performance
of a sequential SAT solver, solving 19 more instances (+3%) than state-
of-the-art solvers.

Keywords: SAT problem · SAT solver · restart · search similarity

1 Introduction

SAT solvers, particularly conflict-driven clause learning (CDCL) [3,15,17]
solvers, are widely used in industry and academia to solve SAT problems. The
restart is a critical technique in CDCL SAT solvers. A search of CDCL-solver
consists of decision, propagation, and backtrack steps. Restart is the extreme
backtrack because it deletes the entire decision history and resumes the search
with a different decision assignment. One of the biggest objectives of restart is
to diversify search activity, i.e., to attempt different search assignments. While
deleting the search history sounds unreasonable, the effectiveness of restarts
has been practically proved in multiple researches. Many restart strategies have
been proposed, such as Luby [19], EMA [5], and MLR [13]. The primary focus
of restart research has been on optimizing when to trigger a restart because its

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 599–613, 2023.
https://doi.org/10.1007/978-3-031-44505-7_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44505-7_40&domain=pdf
https://doi.org/10.1007/978-3-031-44505-7_40


600 Y. Iida et al.

operation is quite simple — it cancels all variable assignments. To effectively
coordinate the timing of restarts, high-frequency evaluation of the solver states
is required during search. Therefore, states of search are assessed via lightweight
processing, generally using heuristic methods based on simple features such as
the number of conflicts or learnt clauses. We believe that the effect of search
diversification by restart can be enhanced by a more precise analysis of search
situations than simple features, thereby improving solver performance. Indeed,
some studies [9,16] have attempted this in the context of portfolio-type parallel
solvers. Portfolio solvers require search diversification for efficient paralleliza-
tion. Specifically, search similarity index (SSI) [12] demonstrated the perfor-
mance improvement of a parallel solver through the avoidance of the redundant
parallel searches by checking search similarity.

We posit that the SSI has the potential to (1) quantitatively analyze the
impact of restarts of sequential search and (2) enhance the effectiveness of restart
as well as improve the solver performance. The analyses aim to provide insights
into: the impact of diversification by single and accumulated restarts; the vari-
ations in impact for different SAT instance categories and their satisfiability;
and the differences caused by the chosen restart strategy. Next, considering the
utilization of SSI to improve the solver in-process, computational expensiveness
of SSI is the challenge. We resolve this problem by evaluating the overall trend
of search not at a single restart but across multiple restarts. Our proposal con-
tains a new way to detect the stagnation of search during some restarts, i.e., the
situation of non-diversified search, using SSI. We call our proposal restart strat-
egy as the Break-out Stagnation Restart (“BroSt Restart” or simply “BroSt”),
employing a classical technical analysis method from financial market trading
[18] to identify the trendless situation. Then, when we detect the stagnation,
we initiate to change the order of the decision plan drastically to diversify the
search. As the authors of ManySAT [10] state, “Contrary to the common belief,
restarts are not used to eliminate heavy-tailed phenomena since after restarting
SAT solvers dive in the part of the search space that they just left”. In practice,
a normal restart does not guarantee to diversify. This is why we assume that our
Brost Restart strategy has potential to improve the performance of SAT solver.

In the remainder of this paper, Sect. 2 introduces techniques related to SAT
solvers; Sect. 3 presents our analysis using SSI of the impact of restarts and differ-
ences caused by instance type and restart strategy; Sect. 4 presents BroSt Restart
and experimentally evaluates it; Sect. 5 discusses related work; and Sect. 6 sum-
marizes the paper and discusses future research.

2 Preliminaries

2.1 SAT Problem and SAT Solver

The SAT problem determines whether a given propositional logic formula can
be satisfied by a Boolean value assignment of variables. The formula is typically
given in conjunctive normal form, where variables are combined into clauses
with disjunctions, and the clauses are combined with conjunctions. If there is



Unleashing the Potential of Restart by Detecting the Search Stagnation 601

at least one valid assignment that satisfies all clauses, the formula is considered
satisfiable (SAT), otherwise, it is unsatisfiable (UNSAT). The SAT problem is
a famous NP-complete problem and considered difficult to solve in practical
time when the formula has many variables. SAT solvers are applications to solve
SAT problems and have been improved over decades through annual SAT com-
petitions [22], etc. State-of-the-art solvers can often solve problems with more
than one million variables and clauses. Owing to this efficiency, they are used to
solve real-world problems such as mathematical problems [11] and binary neu-
ral network verification [6] encoded as SAT problems. The study and further
improvement of SAT solvers is hence highly important.

2.2 Techniques of CDCL SAT Solvers

Most applicational SAT solvers are based on the Davis–Putnam–Logemann–
Loveland (DPLL) algorithm [7]. DPLL searches for a SAT assignment or proof
of UNSAT by repeating three steps: decision, propagation, and backtrack. In a
decision, a variable without any assigned Boolean value is selected, and a true or
false Boolean value is assigned to the variable as an assumption. Solvers employ
heuristic methods to complete this step. During propagation, Boolean values are
assigned to some variables whose value is decidable as the logical consequence of
previous decisions and propagations. The solver repeats these steps until it finds
a logical inconsistency (called a conflict) or a result concerning the satisfiability.
When the solver finds a conflict, it proceeds to the backtrack step. Backtrack
cancels the previous incorrect decision and subsequent propagations and returns
to the decision step to attempt another assumption.

The conflict-driven clause learning (CDCL) SAT solver is based on the DPLL
algorithm with some critical additions such as the learnt clause [3,15] and restart
[8,14]. CDCL solver analyzes the root cause of the conflict and derives a new
clause (called the learnt clause) to avoid the same conflict in subsequent searches.
Restart is the extreme type of backtrack. It cancels all previous decisions and
propagations and initiates a search again. The solver maintains efficiency by
retaining information from previous searches, such as the learnt clauses and the
effective polarities of Boolean value assignments.

2.3 Restart Strategies

Although the restart has been practically proven to substantially improve solver
performance, its underlying theoretical explanation remains a subject of ongoing
research. Initially, restart was introduced to infuse randomness into the search
[8] to smooth runtime fluctuations due to variable assumptions such as decision
order and Boolean value polarity. Restarts are also believed to foster learning
efficiency. Longer decision trees often generate longer learnt clauses with more
literals. As restarts erase the decision tree, they help retrieve shorter clauses
which are believed to prune the search space more efficiently than longer ones
and enhance the solver’s performance. Moreover, restarts help obtain a wider



602 Y. Iida et al.

variety of learnt clauses through different assignments. Therefore, the objective
of executing a restart can be paraphrased as “search diversification”.

Various heuristic restart methods have been proposed. The most basic statis-
tical method is the uniform method, a constant interval policy [17]. It initiates
restarts when the solver reaches a certain number of intervals, with conflicts
typically serving as intervals. MiniSAT 1.14 [19] adopts a policy that geomet-
rically increases the intervals as c ∗ ai, where c is the initial interval, a denotes
the increment value, and i denotes the number of executed restarts. Its succes-
sor, MiniSAT 2.0, employs the Luby restart, which is based on the randomized
heuristic Luby algorithm [14]. This algorithm generates the following sequence of
periodic values: 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ... The value of this sequence
multiplied by the base constant value (e.g., 32 conflicts) yields the intervals. EMA
[5] is a state-of-the-art restart strategy. Its interval is determined based on the
concept of exponential moving average, as EMA(n, α) = α

∑
i=0(1−α)i × tn−i,

where n denotes the number of current conflict, α is a smoothing parameter,
and ti donates the LBD score of learnt clause in the i-th conflict.

2.4 Search Similarity Index

This section briefly introduces SSI [12], originally proposed for comparing
searches of parallel nodes. We adapt the idea to sequential solver to quantify
the impact of restart. The basic idea of SSI is to compare two search points
and quantify how different they are. Therefore, it requires the definition of the
search, but generally search contains several kinds of states. We assumed and
simplified that a search can be represented by the value-assignment plan in the
decision because same value-assignment results in the same decision and thus
same search. We named the set of information of the value-assignment plan the
current search direction (CSD) because the information determines the direction
of the future search. CSDi denotes the plan at the ith step while searching (e.g.,
the ith restart or ith conflict). Two similar CSDs indicate that the searches are
similar and vice versa. SSIi,j is calculated by comparing CSDi and CSDj for
arbitrary i and j. The value assignment in the decision can be decomposed into
polarity and priority of each variable. —polarity is the prospective of Boolean
value assignment of variables, and priority is the order of variables used in the
coming decisions. Therefore, CSDi consists of polarityi(v) and priorityi(v) s.t.
v ∈ V (all variables). Moreover, polarityi(v) is defined as {True, False}, and
priorityi(v) is defined as (order of variable v)/|Vi|, where |Vi| is the set of valid
variables at the ith step in the search.

The SSI is defined as the weighted sum of variable similarities. The vari-
able similarity of v between i and j, similarityi,j(v), is defined as the similarity
of polarity(v) and priority(v) between i and j. The similarity of polarityi,j(v)
is 1 if polarityi(v) = polarityj(v); otherwise, it is 0 because we assumed that
a different Boolean assignment results in a totally different search. The sim-
ilarity of priorityi,j(v) is 1 − |priorityi(v) − priorityj(v)|, indicating the dif-
ference of decision order. Importance is a weight factor for similarityi,j(v)
because we assumed that some variables are important to determine the search



Unleashing the Potential of Restart by Detecting the Search Stagnation 603

while some others can be decided easily by others. Here, we provide higher
importance scores to higher priority variables, defining importancei,j(v) as
2−priorityi×c + 2−priorityj×c, where the value of constant c is set to 0.1. To use
SSI as a metric, its value is normalized to a value between 0 and 1 by dividing
it by the sum of importance. 0 represents zero similarity, whereas 1 represents
identical searches. In conclusion, SSIi,j is defined as (1).

In this paper, we define SSI|k| as the average value of SSIa,a+k, where a
denotes all intra-search restarts unless specifically mentioned. As SSI|k| is the
similarity between two searches k restarts apart, it represents the average impact
of diversification of k restarts.

SSIi,j := normalize
∑

v

{similarityi,j(v) × importancei,j(v)} (1)

3 Restart Analysis

We conducted experiments to analyze the impact of search diversification by
restart using SSI. We used CaDiCaL [1] as the base solver. The solver finished
its search when it found a solution or 3600 s of search time elapsed (excluding
SSI computation time for the analysis in this section). As the benchmark, 400
industrial instances from the main track in SAT competition 2021 [22] were used.

3.1 Impact of Restart on Search Similarity

Impact of a Single Restart. First, we experimentally confirmed that restart
diversifies the search. It is generally assumed that the search changes as it pro-
gresses. This change can be captured as the change in search similarity as the
value of SSI. Assume an SSI value SSIconfi,confj for two CSDs at two con-
flicts confi and confj that include j - i conflicts between them. SSIi,j denote
SSIconfi,confj in this experiment. If restart diversifies the search, there should
be a difference in the SSI value of SSIi,j and SSIi′,j′ , where SSIi,j includes
a restart between conflicts i and j and SSIi′,j′ does not. We denote these SSI
values as SSIri,j and SSInri′,j′ , where r means that the SSI contains a restart and
nr means that it does not standing for “no restart”. We set the interval between
i and j to 100 conflicts (i.e., j − i = 100). Figure 1 illustrates the SSIr and
SSInr. We adopted uniform restart policy and fixed the restart interval to 128
conflicts to ensure at most one restart during the 100 conflicts. Consider c, the
index of conflicts that a restart is triggered. We stored every CSD at every con-
flict and every c. We calculated two SSIs for any c, where (i, j) = (c − 1, c+ 99)
and (i′, j′) = (c − 101, c − 1). For readability, we use SSInr and SSIr for the
average values of the SSIri,j and SSInri′,j′ of all c, respectively. A comparison of
SSIr and SSInr quantifies the average impact of restarts over the same interval
(100 conflicts). Assuming restart diversifies the search, SSIr should be less than
SSInr.

Figure 2 presents the results. 67 instances containing fewer than 1000 restarts
were excluded. This is because we assumed that the value of SSI fluctuates; thus,



604 Y. Iida et al.

Fig. 1. Illustration of SSIr and SSInr around a restart at conflict index c

only 1000 restarts were too small to find meaningful insight statistically. The
average SSI values of an instance are plotted against instances sorted by SSIr.
The result indicates that SSIr was less than SSInr in most instances, implying
that restart diversifies the search. The average SSIr and SSInr values of all
instances are 0.78 and 0.80, respectively, and only 12 instances had an SSIr

higher than the SSInr (3.6% of 337 instances).

Fig. 2. Values of SSIr and SSInr across instances

Impact of Accumulated Restarts. Next, we calculated SSI|1|, SSI|10|, and
SSI|100| as defined in Sect. 2.4 and compared them to analyze the impact of
accumulated restarts. Recall that SSI|x| is the average of SSIi,j of an arbitrary i,
where j−i = x, and hence this comparison quantifies the degree of diversification
obtained by accumulated x restarts (i.e., by x = 1, 10, 100 restarts).

Figure 3 presents the results, where the average SSI values of an instance
are plotted against instances sorted by SSI|1|. 35 instances are excluded from
the result since they have no restart observed in their search. Our observa-
tions are as follows. First, as restarts accumulate, the search changes further,
as expected. Second, the impact of restart varies substantially by instance. For
example, instance E02F17.cnf yielded 0.95, 0.83, and 0.77 for SSI|1|, SSI|10|, and



Unleashing the Potential of Restart by Detecting the Search Stagnation 605

SSI|100|, respectively, whereas size_5_5_5_i223_r12.cnf yielded 0.81, 0.51, and
0.41. This supports Oh [20], who stated that the effectiveness of restart differs
for each problem. Lastly, the impact of accumulated restarts decays (i.e., the gap
between SSI|10| and SSI|100| is generally less than that of SSI|1| and SSI|10|).

Fig. 3. Values of SSI|1|, SSI|10|, SSI|100| across instances. These three SSI values for
an instance are plotted on the same vertical axis, and instances are sorted based on
the value of SSI|1|

3.2 Differences Among SAT Instance Categories

We further investigated the difference in the impact of restart and its decay. We
categorized instances based on their families and observed how SSI|x| changes,
where x ∈ N and x ≤ 1000. In this experiment, i was fixed at i = {1000n +
1|n ∈ Z≥0}, and j was an integer ranging from i + 1 to i + 1000. Note that
i and j represent the i-th and j-th restart in a search. We picked i only at
the 1000n + 1-th restart to reduce computation. We depict the dots of x =
{1, 2, .., 9, 10, 20, .., 90, 100, 200, .., 900, 1000} and use a log-scale x-axis in Fig. 4.

Figure 4 presents the results. Note that we selected categories that include
at least 10 instances and plotted the average SSI|x| in each category. The SSI is
plotted against x, revealing that SSI decreases as the number of restarts increases
for all categories. However, the degree and timing of the decrease depends on the
category. For example, category “vlsat2” drops gradually: 0.97, 0.94, 0.90, and
0.87 at x = 1, 10, 100, 1000, respectively. Category “edit_distance” first drops
sharply, then decreases more slowly from x = 100, 0.91, 0.62, 0.52, and 0.50
at x = 1, 10, 100, 1000. The decrease in category “at-least-two” accelerates as x
increases, 0.98, 0.92, 0.87, and 0.79 at x = 1, 10, 100, 1000. This confirms the
necessity of dynamic restart strategies.



606 Y. Iida et al.

Fig. 4. Transition of SSI|x| values according to x by instance category

3.3 Differences Between SAT and UNSAT

We categorized instances based on their satisfiability (SAT or UNSAT). The scat-
ter plot in Fig. 5 shows the variance in the SSI|100| of each instance. The vertical
axis is SSI|100|, and the points are colored according to their satisfiability. The
horizontal axis is search runtime, and dashed lines indicate the linear prediction
of each category. Instances that the solver could not solve were excluded.

The instances solved in less than 1000 s runtime— relatively easy instances—
have widely dispersed SSI values (0.4–.9) both for SAT and UNSAT. How-
ever, as runtime increases— more difficult instances— the SSI values of the
SAT instances remain dispersed, but higher SSI values are observed for UNSAT
instances. This trend is reflected in the prediction lines. This result implies that
a high-similarity search — intensive search — is essential to solving UNSAT
instances, whereas an extensive search is required for SAT. This corroborates
with the result of [20] and explains why gradually reducing the frequency of
restarts as search progresses improves performance; this allows the solver to focus
on the current search space intensively for a longer period as runtime increases.
Furthermore, it suggests new restart strategies: restarts to ensure more extensive
search to solve SAT instances and intensive search for UNSAT ones.

3.4 Differences in Restart Strategies

Lastly, we compared three well-known restart strategies, uniform, Luby, and
EMA. Uniform invokes a restart at constant intervals; in this experiment, we
used 128 conflicts. Luby uses a sequence generated by the Luby algorithm as
intervals, with an initial interval of 32 conflicts. EMA is a state-of-the-art strategy
used in CaDiCaL. We used the default settings of EMA [5].



Unleashing the Potential of Restart by Detecting the Search Stagnation 607

Fig. 5. Variance in SSI|100| of each instance according to satisfiability

Figure 6 shows the variance in SSI|x| of instances as a boxplot, where x =
{1, 10, 100, 1000}, for the three restart strategies. The mean SSI|1| of EMA is
the largest, and its variance is the smallest. However, its mean and variance for
SSI|1000| are largely equivalent to the other results. Importantly, this implies
that EMA changes the search in 1000 restarts faster than the others. Because
EMA performed more frequent restarts than the others (only nine conflicts on
average were observed between consecutive EMA restarts), EMA’s 1000 restarts
required fewer conflicts than the other methods, generally reducing runtime.
This explains at least one reason for the effectiveness of EMA.

4 Proposal and Evaluation – BroSt Restart

We propose a new restart strategy, BroSt Restart strategy, in this section and
experimentally evaluate the effectiveness of it.

4.1 Observations

Figure 7 depicts the typical change in SSI values of randomly sampled instances.
The light-blue line indicates the actual value of SSIi,j , where i is fixed at the
10,001st restart because the initial search can fluctuate substantially. The values
of j are arbitrary integers from 10,002 to 20,001, sequentially. The red dashed
line indicates the moving average of 100 SSI values. This preliminary experiment
was conducted under the same conditions as the previous ones.

These results yield several observations. First, search similarities gradually
decrease as search progresses overall. Here, progress is represented by the number
of restarts. Second, after a sufficient number of restarts, this trend becomes flat or
narrowly changes. Third, but most importantly, the trend is not a steady decline



608 Y. Iida et al.

Fig. 6. Variance in the SSI|x| of instances by strategy

but can plateau in places. We posit that these plateaus indicate that the search
remains stagnant, and avoiding them can reinforce the objective of restarts —
diversifying the search — and ultimately improve solver performance. Note that
these plateaus and declines rely on the instance. Whereas Fig. 7b indicates a
relatively gradual decrease over 2000 restarts, Fig. 7c is overall flat.

4.2 BroSt Restart

To break out the stagnation in search observed in Sect. 4.1, we propose break-out
stagnation restart, BroSt, which consists of two parts: detecting search stagna-
tion and breaking it. For detection, we are inspired by a classical method of
technical analysis from financial market trading to detect stagnant situation in
a chart. Stagnation occurs when there are no clear upward or downward trends
in the market, called trendless in [18]. The method uses the historical maxi-
mum (resistance line or peak) and minimum values (support line or troughs) to
identify if the market is stagnant (i.e., if neither value is updated for a while,
the market is assumed to be stagnant). The previous observation revealed both
up-down and flat trends in the SSI values that are similar to trends in market
charts. Therefore, we assume that a comparison of the current SSI value with
the historical maximum and minimum values can detect the trendless situation
in the SSI value, that is, “search stagnation”. To break out a stagnant situation,
we use the decision order shuffling function that is included in the original CaD-
iCaL. The shuffling function swaps the order of variables in the decision queue.
Changing the decision order directly affects the performance of solver, and we
show that shuffling using the default option reduced performance drastically
in the following experiment. Thus, properly triggering the shuffling function is
essential and is achieved by the detection method described above.



Unleashing the Potential of Restart by Detecting the Search Stagnation 609

Fig. 7. SSI values and their moving average over 10,000 restarts

Algorithm 1 presents the pseudocode of BroSt Restart. During the search,
the SSI of the last saved CSD and current CSD is calculated every 10 restarts.
We set 10 restarts as interval because of the calculation cost for SSI. The SSI
between every restart costs too much, and we assumed that it deteriorates the
performance of the solver. However, every 100 restarts are too long as interval.
The setting of this frequency has much room to improve. The CSD is saved at
the first restart or just after the previous shuffling. The maximum and minimum
SSI values, maxssi and minssi, are stored and updated during the search. If the
calculated SSI value remains between maxssi and minssi for a certain duration,
the solver triggers the shuffling function. In this research, we used c restarts as
the duration, where c is set to 300. We selectively decided to use 300 through
preliminary experiments to determine c by testing 100, 300, 1000 to check the
frequency of Brost detection. After shuffling, the saved CSD is updated to the
current CSD, and the counter, maxssi, and minssi are reset. Because the cal-
culation of SSI is computationally expensive and proportional to the number
of variables, we did not execute BroSt for instances with more than 5 million
variables.



610 Y. Iida et al.

Algorithm 1. BroSt Restart
Require: limit of counter c
1: initialize CSDsaved ← CSD1, maxssi ← 0, minssi ← 1, counter ← 0
2: while search at restarti s.t. i ≥ 1 and number of variables ≤ 5 millions do
3: counter++
4: if i (mod 10) = 0 then
5: obtain CSDi

6: calculate SSIi,saved as ssi
7: if ssi > maxssi then
8: maxssi ← ssi, counter ← 0
9: end if

10: if ssi < minssi then
11: minssi ← ssi, counter ← 0
12: end if
13: if counter > c then
14: trigger shuffle function
15: CSDsaved ← CSDi, maxssi ← 0, minssi ← 1, counter ← 0
16: end if
17: end if
18: end while

4.3 Experimental Setup

We evaluated the performance of a solver using BroSt Restart by comparing
it with a base solver. As the base solver, we selected CaDiCaL, a state-of-the-
art sequential SAT solver that won the 2019 SAT race and has been used as
a base solver in the SAT community since 2020 owing to its high source-code
readability, structural simplicity, and prominent performance. Experiments were
conducted on a computer with an AMD Threadripper Pro 3995WX processor
(64 core) and 512GB (128GB 4 slots, DDR4-3200MHz) RAM. A total of 1200
instances from the main tracks of SAT competitions 2020–2022 (400 instances
per year) were used for the benchmark. The necessary functions for SSI and
BroSt Restart were added on top of the base solver. For other configurations,
the default CaDiCaL configuration was used. The performance was evaluated in
terms of the number of instances solved within a time limit (3600 s on the CPU
clock) and the PAR-2 score, which is defined as the total time required to solve
all instances with a penalty (additional 3600 s) for each unsolved instance.

4.4 Evaluation

Table 1 summarizes the results of the experiments. We ran three solvers: Base
(CaDiCaL 1.4.1 without any options), Shuffle (CaDiCaL 1.4.1 with the“shuffle”
option –shuffle=true), and BroSt (CaDiCaL 1.4.1 plus BroSt Restart). The
number of instances identified as SAT or UNSAT for each year’s benchmark
is reported along with the PAR-2 score.

The results for all benchmarks indicate that the BroSt Restart is superior to
the base solver. Greater improvement is observed for the SAT instances, which is



Unleashing the Potential of Restart by Detecting the Search Stagnation 611

Table 1. Number of instances solved and PAR-2 scores for each solver

Solver sc20 sc21 sc22 Total PAR-2
SAT UNSAT SAT UNSAT SAT UNSAT

Base 110 94 111 124 128 112 679 4,325,684
Shuffle 96 91 104 119 121 108 639 4,625,936
BroSt 116 96 117 124 130 115 698 4,198,437

consistent with the analysis in Sect. 3.3. A SAT instance can have many solutions
distributed throughout the search space, and the proposed method diversifies the
search by breaking out the stagnation. This helps the solver to encounter at least
one solution with a higher probability than the base solver. By contrast, UNSAT
proof is achieved by the resolving of an empty clause, and it is believed to require
good learning. Search diversification using our method does not necessarily con-
tribute to this. The deteriorated performance of the Shuffle solver verified that
the improvement of BroSt comes from its algorithm, not just the shuffle function.

5 Related Work

In addition to the three methods analyzed above, many dynamic restart strate-
gies have been proposed. Ryvchin and Strichman [21] used conflict frequency
within a specific period as the criterion to increase conflict encounters. Biere
[4] focused on the number of Boolean polarity switches, initiating restarts when
it reaches a threshold. Sinz and Iser [23] used many features such as conflict
information, decision levels, and backtrack levels to control to trigger restarts.
Audemard and Simon [2] secured intensive searches by stopping restart triggers
when the search depth exceeds a criterion. Liang et al., [13] integrated machine-
learning techniques into dynamic restarts. While most restart research focuses
on controlling the timing restart triggers, counter implication restart (CIR) [24]
attempts to directly secure sufficient diversification after a restart. To do this,
it analyzes the implication graph and directly changes value assignments.

6 Conclusion

In this study, we used SSI to quantify the level of diversification achieved through
restarts. Our analysis revealed that the effect of restarts varies depending on the
instance, its family, and its satisfiability (SAT or UNSAT). Moreover, differ-
ent types of search activity are required to solve SAT and UNSAT instances,
with SAT instances generally requiring more extensive search, whereas UNSAT
instances require more intensive search. Finally, existing restart methods exhibit
varying degrees of impact on search diversification. Building on these insights,
we confirmed that SSI is applicable to restart, and we hence proposed the BroSt
Restart strategy to maximize the effect of diversification. Experiments demon-
strated that BroSt Restart improves the performance of sequential SAT solvers,



612 Y. Iida et al.

solving 20 more instances (+3%) than state-of-the-art solvers. It implies that the
effect of diversification obtained by existing restart strategies can be insufficient.

There remains scope for further improvements in our proposed method. We
assume that the search shuffling function and configurations such as judgment
constant c could be refined by dynamically tuned parameters. Furthermore, while
our proposal strategy was more effective on SAT instances, our insights could
lead to a new restart strategy for UNSAT instances that considers their higher
need for intensive search.

References

1. Armin, B., Fazekas, K., Fleury, M.: CaDiCaL. https://github.com/arminbiere/
cadical. Accessed 26 Jan 2023

2. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In:
Milano, M. (ed.) CP 2012. LNCS, pp. 118–126. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33558-7_11

3. Bayardo, R.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world
sat instances. In: Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Conference on Innovative Applications of Artificial Intelli-
gence, pp. 203–208. AAAI 1997/IAAI 1997, AAAI Press (1997)

4. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_4

5. Biere, A., Frohlich, A.: Evaluating CDCL restart schemes. In: Proceedings of Prag-
matics of SAT 2015 and 2018. EPiC Series in Computing, vol. 59, pp. 1–17. Easy-
Chair (2019). https://doi.org/10.29007/89dw

6. Bright, C., Kotsireas, I., Heinle, A., Ganesh, V.: Complex golay pairs up to length
28: a search via computer algebra and programmatic SAT. J. Symb. Comput. 102,
153–172 (2021). https://doi.org/10.1016/j.jsc.2019.10.013

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

8. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: 15th National Conference on Artificial Intelligence and 10th Con-
ference on Innovative Applications of Artificial Intelligence, pp. 431–437. AAAI
(1998)

9. Guo, L., Lagniez, J.M.: Dynamic polarity adjustment in a parallel SAT solver. In:
2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp.
67–73 (2011). https://doi.org/10.1109/ICTAI.2011.19

10. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Satisfiability,
Boolean Model. Comput. 6(4), 245–262 (2009). https://doi.org/10.3233/sat190070

11. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2_15

12. Iida, Y., Sonobe, T., Inaba, M.: Diversification of parallel search of portfolio SAT
solver by search similarity index. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds.)
PRICAI 2022. Lecture Notes in Computer Science, vol. 13629, pp. 61–74. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-20862-1_5

https://github.com/arminbiere/cadical
https://github.com/arminbiere/cadical
https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.29007/89dw
https://doi.org/10.1016/j.jsc.2019.10.013
https://doi.org/10.1145/368273.368557
https://doi.org/10.1109/ICTAI.2011.19
https://doi.org/10.3233/sat190070
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-031-20862-1_5


Unleashing the Potential of Restart by Detecting the Search Stagnation 613

13. Liang, J.H., Oh, C., Mathew, M., Thomas, C., Li, C., Ganesh, V.: Machine
learning-based restart policy for CDCL SAT solvers. In: Beyersdorff, O., Win-
tersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 94–110. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_6

14. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las Vegas algo-
rithms. Inf. Process. Lett. 47(4), 173–180 (1993). https://doi.org/10.1016/0020-
0190(93)90029-9

15. Marques-Silva, J., Sakallah, K.: Grasp: a search algorithm for propositional satisfi-
ability. IEEE Trans. Comput. 48(5), 506–521 (1999). https://doi.org/10.1109/12.
769433

16. Moon, S., Inaba, M.: Dynamic strategy to diversify search using a history map
in parallel solving. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016.
LNCS, vol. 10079, pp. 260–266. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50349-3_21

17. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference
(IEEE Cat. No.01CH37232), pp. 530–535 (2001). https://doi.org/10.1145/378239.
379017

18. Murphy, J.J.: Technical Analysis of the Financial Markets: A Comprehensive Guide
to Trading Methods and Applications. Prentice Hall Press, Hoboken (1999)

19. Niklas Eén, N.S.: MiniSat. https://minisat.se/MiniSat.html. Accessed 26 Jan 2023
20. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In:

Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_23

21. Ryvchin, V., Strichman, O.: Local restarts. In: Kleine Büning, H., Zhao, X. (eds.)
SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-79719-7_25

22. SAT-competition: https://www.satcompetition.org/. Accessed 26 Jan 2023
23. Sinz, C., Iser, M.: Problem-sensitive restart heuristics for the DPLL procedure. In:

Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 356–362. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02777-2_33

24. Sonobe, T., Inaba, M.: Counter implication restart for parallel SAT solvers. In:
Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 485–490. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34413-8_49

https://doi.org/10.1007/978-3-319-94144-8_6
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-3-319-50349-3_21
https://doi.org/10.1007/978-3-319-50349-3_21
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://minisat.se/MiniSat.html
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-540-79719-7_25
https://doi.org/10.1007/978-3-540-79719-7_25
https://www.satcompetition.org/
https://doi.org/10.1007/978-3-642-02777-2_33
https://doi.org/10.1007/978-3-642-34413-8_49


Author Index

A
Abdelrazeq, Anas 363
Ajwani, Deepak 378
Amini, Sasan 78
Archetti, Francesco 31, 135

B
Baiou, Mourad 537
Barati Farimani, Amir 286
Bayhan, Sertac 393
Bebeshina, Nadia 239
Bernardelli, Ambrogio Maria 443
Bodas, Tejas 62
Bonetta, Giovanni 475
Borovikov, Igor 286
Branke, Juergen 491
Bugnicourt, Antoine 239
Buzer, Lilian 179

C
Cancelliere, Rossella 475
Candelieri, Antonio 31, 135
Capogna, Luca 165
Cappart, Quentin 107, 301
Carrascosa, Rafael 523
Carroll, Paula 378
Casas Murillo, Luis Felipe 363
Cazenave, Tristan 179, 194, 332
Chaput, Harold 286
Chatzilygeroudis, Konstantinos I. 46
Cholet, Stephane 150
Citti, Giovanna 165
Czúni, László 121

D
Dannull, Lukas 424
Dasarathy, Gautam 408
de Lille, Vi Tching 107
Dijkman, Remco 347
Drousiotis, Efthyvoulos 318
Dumeur, Renaud 208

E
Ellouze, Farah 194

F
Farahani, Amirreza 347
Fitzpatrick, James 378

G
Gajjala, Deepak 1
Gannouni, Aymen 363
Gao, Xianzhou 92
Gaudreault, Jonathan 552
Genga, Laura 347, 459
Giordani, Ilaria 31
Grosso, Andrea 475
Gualandi, Stefano 443
Gupta, Harshit 1

H
Hagemann, Felix 254

I
Iida, Yoichiro 599
Inaba, Mary 599

J
Jain, Kunal 62
Joe, Waldy 567
Jovanovic, Raka 393
Juillé, Hugues 208

K
Kadıoğlu, Serdar 424
Kemmerling, Marco 363
Khachan, Mohammed 552
Khalil, Elias B. 506
Khondoker, Rahamatullah 1
Kronqvist, Jan 223

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
M. Sellmann and K. Tierney (Eds.): LION 2023, LNCS 14286, pp. 615–616, 2023.
https://doi.org/10.1007/978-3-031-44505-7

https://doi.org/10.1007/978-3-031-44505-7


616 Author Index

L
Larrosa, Javier 270
Lau, Hoong Chuin 443, 567
Lefebure, Franck 150
Li, Wei 92
Li, YunZhao 92
Liapis, Georgios I. 16
Liu, Kang 92
Lucas, Jean-Yves 194
Lukassen, Britt 459

M
Malu, Mohit 408
Maskell, Simon 318
Massoteau, Quentin 301
Meidani, Kazem 286
Ménard, Marc-André 552
Milanesi, Simone 443
Mokadem, Riad 239
Montana, Giovanni 491
Morin, Michael 552
Morvan, Franck 239

N
Nagel, Lars 583
Negrini, Elisa 165
Nguyen, Viet Hung 537

P
Pack, Rick 424
Papageorgiou, Lazaros G. 16
Parham, Zahra 107
Parjadis, Augustin 301
Pedrielli, Giulia 408
Petrova, Aleksandra 270
Phillips, Alexander M. 318
Ponti, Andrea 31, 135
Popov, Nikolay 583
Porrmann, Till Frederik 254
Prabuchandran, K. J. 62

Q
Quimper, Claude-Guy 552

R
Rádli, Richárd 121
Römer, Michael 254
Rousseau, Louis-Martin 301

S
Saffidine, Abdallah 332
Sanchez, Jorge 523
Schmitt, Robert H. 363
Sentuc, Julien 194
Shaw, Paul 208
Singh, Uphar 1
Sinha, Ayush 1
Sonobe, Tomohiro 599
Spanias, Andreas 408
Spirakis, Paul G. 318
Süß, Tim 583

T
Tang, Bo 506
Thielbar, Melinda 424
Thuault, Cecile 150
Troubil, Pavel 347
Tsay, Calvin 223

V
Van Elzakker, Martijn 347
Van Nieuwenhuyse, Inneke 78
Vázquez, Hernán Ceferino 523
Vo, Thi Quynh Trang 537
Voß, Stefan 393
Vrahatis, Michael N. 46
Vyas, O. P. 1

W
Wang, Hui 332
Wang, Ze 583
Watkins, George 491
Weng, Paul 537
Wong, Songhan 567

X
Xia, YuXiao 92

Z
Zago, Davide 475
Zhang, Chenhui 424
Zhang, Yingqian 459
Zhao, Shudian 223
Zhu, HongBin 92


	 Preface
	 Organization
	 Contents
	Anomaly Classification to Enable Self-healing in Cyber Physical Systems Using Process Mining
	1 Introduction
	1.1 Process Mining
	1.2 Anomalies in Event Logs
	1.3 Ensemble Machine Learning Approaches
	1.4 Models Used

	2 Literature Survey
	3 Problem Statement and Dataset Description
	4 Methodology
	4.1 Event Logs and Process Discovery
	4.2 Conformance Checking
	4.3 Anomaly Classification

	5 Results and Discussions
	5.1 Model Preparation
	5.2 Dataset Generation
	5.3 Conformance Checking
	5.4 Bagging and Boosting Classification

	6 Conclusion
	References

	Hyper-box Classification Model Using Mathematical Programming
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Statement
	3.2 Mathematical Formulation
	3.3 Testing Phase
	3.4 Illustrative Example

	4 Computational Results
	5 Concluding Remarks
	References

	A Leak Localization Algorithm in Water Distribution Networks Using Probabilistic Leak Representation and Optimal Transport Distance
	1 Introduction
	1.1 Motivations
	1.2 Related Works
	1.3 Our Contributions
	1.4 Content Organization

	2 The Wasserstein Distance
	2.1 Basic Definitions
	2.2 Wasserstein Barycenter

	3 Wasserstein Enabled Leak Localization
	3.1 Generation of Leak Scenarios
	3.2 Clustering in the Wasserstein Space
	3.3 Evaluation Metrics

	4 Experimental Results
	4.1 Data Resources
	4.2 Computational Results

	5 Conclusions, Limitations, and Perspectives
	References

	Fast and Robust Constrained Optimization via Evolutionary and Quadratic Programming
	1 Introduction and Related Work
	2 Problem Formulation and Background Material
	2.1 Particle Swarm Optimization
	2.2 Sequential Linear Quadratic Programming

	3 The Proposed UPSO-QP Approach
	3.1 Local QP Problems
	3.2 UPSO for Constrained Optimization
	3.3 Considerations

	4 Experiments
	4.1 Numerical Constrained Optimization Problems
	4.2 Constrained Optimization with Noisy Functions Values
	4.3 Evaluation on High Dimensional Problems

	5 Concluding Remarks
	References

	Bayesian Optimization for Function Compositions with Applications to Dynamic Pricing
	1 Introduction
	1.1 Related Work
	1.2 Dynamic Pricing and Learning
	1.3 Contributions and Organization

	2 Problem Description
	2.1 BO for Function Composition
	2.2 Bayesian Optimization for Dynamic Pricing

	3 Proposed Method
	3.1 Statistical Model and GP Regression
	3.2 cEI and cUCB Acquisition Functions

	4 Experiments and Results
	4.1 Results on Test Functions
	4.2 Results for Demand Pricing Experiments
	4.3 Runtime Comparisons with State of the Art

	5 Conclusion
	References

	A Bayesian Optimization Algorithm for Constrained Simulation Optimization Problems with Heteroscedastic Noise
	1 Introduction
	2 Bayesian Optimization (BO) and Stochastic Kriging (SK): Notation and Terminology
	2.1 Bayesian Optimization (BO)
	2.2 Stochastic Kriging (SK)

	3 Proposed Algorithm
	4 Numerical Experiments
	5 Results
	6 Conclusion
	References

	Hierarchical Machine Unlearning
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Machine Unlearning
	3.2 PAC Learning

	4 Hierarchical Machine Unlearning
	4.1 Data Partitioning
	4.2 Isolation Training
	4.3 Model Aggregation

	5 Time Overhead
	6 Experiment
	7 Conclusion
	References

	Explaining the Behavior of Reinforcement Learning Agents Using Association Rules
	1 Introduction
	2 Case Study: Street Fighter Turbo II
	3 Definition of the Environment
	4 Learning Algorithm
	5 Explanation with Association Rules
	6 Analysis of the Rules Obtained
	7 Conclusion and Future Work
	References

	Deep Randomized Networks for Fast Learning
	1 Introduction
	2 Related Articles
	3 The Proposed MP-DRNN Method
	3.1 The Initial Phase of MP-DRNN
	3.2 Extension Phases

	4 Datasets
	5 Evaluations and Further Studies
	5.1 Evaluation of Reference Methods and Our Base Model
	5.2 Improvements for Building MP-DRNN Models

	6 Conclusions and Future Work
	References

	Generative Models via Optimal Transport and Gaussian Processes
	1 Introduction
	2 Background
	2.1 Optimal Transport
	2.2 Gaussian Process Regression

	3 Learning and Generalizing Optimal Transport Maps
	4 Experimental Setting
	4.1 Toy 2D Examples
	4.2 Image Generation

	5 Results
	5.1 Results on Toy 2D Examples
	5.2 Results on Image Generation

	6 Conclusions
	References

	Real-World Streaming Process Discovery from Low-Level Event Data
	1 Introduction
	2 Context
	2.1 Naming Conventions
	2.2 A Company's Expectations and Related Challenges

	3 Related Work
	3.1 A Brief Overview of Process Mining
	3.2 The Organizational Perspective
	3.3 Streaming Process Discovery

	4 Contribution
	4.1 Supervision of a Whole Application Domain
	4.2 Unsupervised and Streaming Process Discovery
	4.3 Control
	4.4 Scaling
	4.5 Optimistic Locking Mechanism

	5 Deployment
	6 Conclusion
	References

	Robust Neural Network Approach to System Identification in the High-Noise Regime
	1 Introduction
	2 Related Works
	3 Proposed Method
	4 Experimental Results and Discussion
	4.1 Smooth Right-Hand Side
	4.2 Non-smooth Right-Hand Side
	4.3 Comparison with Other Methods
	4.4 Improving Interpretability Using SINDy

	5 Conclusion
	References

	GPU for Monte Carlo Search
	1 Introduction
	1.1 History of Monte Carlo Search Algorithms
	1.2 Generating Playouts
	1.3 Why GPUs Have Not Been Considered?
	1.4 Our Contribution

	2 Parallel Execution
	2.1 Warp
	2.2 Theoretical Model
	2.3 Numerical Estimation

	3 Expected Performance
	3.1 Computing Power
	3.2 CPU and GPU Memory Cache Size
	3.3 Estimating Memory Latency
	3.4 Random Access and CPU L1 Cache Latency
	3.5 Random Access and GPU Latency
	3.6 Synthesis

	4 Snake in the Box
	4.1 Performance Benchmark
	4.2 Game Rules
	4.3 Data Structure

	5 Nested Monte-Carlo Search
	5.1 Algorithm
	5.2 NMCS with Parallel Leaf
	5.3 NMCS on GPU
	5.4 Performance Comparison
	5.5 Implementation

	6 Conclusion
	References

	Learning the Bias Weights for Generalized Nested Rollout Policy Adaptation
	1 Introduction
	2 Monte Carlo Search
	2.1 NRPA and GNRPA
	2.2 Learning the Bias

	3 Experimental Results
	3.1 3D Bin Packing
	3.2 The Vehicle Routing Problem

	4 Discussion
	5 Conclusion
	References

	Heuristics Selection with ML in CP Optimizer
	1 Introduction
	2 CPO Modelling Language and Features Definition
	2.1 CPO Modelling Language
	2.2 Features Definition
	2.3 Benchmark Problems and Performance Assessment

	3 General Approach
	3.1 Algorithm Selection Problem Formulation
	3.2 Training Methodology Robustness
	3.3 Trained Models Lifecycle Management
	3.4 Machine Learning Workflow
	3.5 Integration in CPO and Final Performance Evaluation

	4 Experimental Results
	4.1 Experimental Setup and Features Sets
	4.2 Training Workflow Results
	4.3 Benchmarking Results for CPO with ML
	4.4 Features Importance Analysis

	5 Concluding Remarks
	References

	Model-Based Feature Selection for Neural Networks: A Mixed-Integer Programming Approach
	1 Introduction
	2 Input Feature Selection Algorithm
	2.1 Encoding DNNs as MILPs
	2.2 The Optimal Sparse Input Features (OSIF) Problem
	2.3 Input Distribution Constraints
	2.4 Controlling the Number of Selected Features

	3 Computational Results
	3.1 Accuracy of DNNs with Sparse Input Features
	3.2 Robustness to Adversarial Inputs

	4 Conclusion
	References

	An Error-Based Measure for Concept Drift Detection and Characterization
	1 Introduction
	2 Related Work
	3 Proposal
	3.1 General Notations
	3.2 Algorithm

	4 Evaluation
	4.1 Protocol
	4.2 Results

	5 Conclusion
	References

	Predict, Tune and Optimize for Data-Driven Shift Scheduling with Uncertain Demands
	1 Introduction
	2 Predict, Tune and Optimize
	3 Multi-activity Shift Scheduling Under Uncertainty
	4 Computational Experiments
	5 Related Work
	6 Conclusions
	References

	On Learning When to Decompose Graphical Models
	1 Introduction
	2 Preliminaries
	2.1 Graphical Models
	2.2 Decomposition-Based Backtracking Algorithms

	3 A Preliminary Experiment
	4 Machine Learning for Decomposition
	4.1 Random k-Trees
	4.2 Instances with Random Cost Functions
	4.3 Instances with Deterministic Cost Functions
	4.4 Benchmark Instances

	5 Related Work
	5.1 Decomposition-Based Algorithms
	5.2 Machine Learning in Graphical Models

	6 Conclusions and Future Work
	References

	Inverse Lighting with Differentiable Physically-Based Model
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Methods
	5 Experiments
	6 Discussion and Future Work
	References

	Repositioning Fleet Vehicles: A Learning Pipeline
	1 Introduction
	2 Literature Review
	3 The Ride-Hailing Problem
	3.1 Problem Definition
	3.2 Modelling the Repositioning Task

	4 Learning Pipeline for Vehicle Repositioning
	5 Case Study: Ambulance Fleet in Belgium
	5.1 Use of the Pipeline
	5.2 Training Phase
	5.3 Results: Location Prediction
	5.4 Results: Ambulances Repositioning

	6 Conclusion
	Appendix 1.  Analysis: Features Importance
	Appendix 2.  Analysis: Online Learning
	References

	Bayesian Decision Trees Inspired from Evolutionary Algorithms
	1 Introduction and Relevant Work
	2 Bayesian Decision Trees
	2.1 Stochastic Processes on Trees

	3 Our Approach on Evolutionary Algorithms
	4 Methods
	4.1 Conventional MCMC
	4.2 Evolutionary Algorithm in Bayesian Decision Trees
	4.3 Sequential Monte Carlo with EA

	5 Experimental Setup and Results
	6 Conclusion
	References

	Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local Search
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 MaxSAT
	3.2 Heuristics
	3.3 Stochastic Local Search
	3.4 Monte Carlo Tree Search
	3.5 Nested Monte Carlo Search

	4 Dynamic SLS Based Monte Carlo Methods
	5 Orientation Experiments
	5.1 Trial with Different Rollout
	5.2 UCTMAX vs NMCTS
	5.3 Current Global Best Solution
	5.4 Probabilistic SLS Initialization
	5.5 Fixed Flip Limits vs Dynamic Flip Limits

	6 Experiments on Benchmark
	7 Conclusion and Future Work
	References

	Relational Graph Attention-Based Deep Reinforcement Learning: An Application to Flexible Job Shop Scheduling with Sequence-Dependent Setup Times
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Flexible Job Shop Scheduling with Dynamic Setup Times
	3.2 Graph Structural Properties

	4 Method
	4.1 Markov Decision Process Formulation
	4.2 Edge Features Guided Relational Graph Attention Network
	4.3 Deep Reinforcement Learning

	5 Experiments and Results
	5.1 Experimental Settings
	5.2 Results

	6 Conclusions and Future Work
	References

	Experimental Digital Twin for Job Shops with Transportation Agents
	1 Introduction
	2 Related Work
	3 EDT Design
	3.1 Tool Selection
	3.2 JSPTA Environment Components
	3.3 Neural Combinatorial Optimization Approach
	3.4 Experimental Setup

	4 EDT Evaluation
	4.1 Testing Results
	4.2 Discussion

	5 Conclusion
	References

	Learning to Prune Electric Vehicle Routing Problems
	1 Introduction
	2 Related Literature
	2.1 The Electric Vehicle Routing Problem
	2.2 End-to-End Machine Learning Heuristics
	2.3 Learning to Prune

	3 Methodology
	3.1 Pruning Matheuristic Methodology
	3.2 Deep Learning Heuristic
	3.3 Constructing Pseudo-labels
	3.4 Pruning as Classification
	3.5 Computational Setup

	4 Results
	4.1 Training the Deep Learning Heuristic
	4.2 The Pruning Classification Model
	4.3 Pruning Then Optimising

	5 Conclusions and Discussion
	References

	Matheuristic Fixed Set Search Applied to Electric Bus Fleet Scheduling
	1 Introduction
	2 Model Outline
	3 Graph Formulation
	4 Mathematical Model
	5 Matheuristic Fixed Set Search
	5.1 Fixed Set
	5.2 Integer Program Use
	5.3 Learning Mechanism

	6 Results
	7 Conclusion
	References

	Class GP: Gaussian Process Modeling for Heterogeneous Functions
	1 Introduction
	2 Problem Setup and Notation
	2.1 Observation Model

	3 Background
	3.1 Gaussian Process Modeling
	3.2 Classification Tree Algorithm

	4 Class-GP Framework
	4.1 Learning Partitions
	4.2 Gaussian Process in Each Partition

	5 Class-GP Analysis
	6 Numerical Results
	6.1 Synthetic Data and Experimental Setup

	7 Conclusion and Future Work
	A Appendix
	References

	Surrogate Membership for Inferred Metrics in Fairness Evaluation
	1 Introduction
	2 Problem Definition
	3 Solving PMP with Surrogate Membership
	4 From PMP to Fairness Evaluation
	4.1 Fairness Metrics as Functions of Arithmetic Means
	4.2 Bootstrap Estimation

	5 Related Work
	6 Experiments
	6.1 [Q1] Performance Against Oracle
	6.2 [Q2] Robustness Under Different Fairness Scenarios

	7 Practical Considerations
	7.1 Omitted Variable Bias
	7.2 Characteristics of Z and Pz(x X)

	8 Conclusions
	A Appendix - Comparison to Weighted Fairness Statistic
	A.1 Re-Writing the Weighted Estimator
	A.2 Re-Writing the Inferred Estimator

	References

	The BeMi Stardust: A Structured Ensemble of Binarized Neural Networks 
	1 Introduction
	2 Binarized Neural Networks
	3 The BeMi Ensemble
	3.1 The BeMi Structure
	3.2 Majority Voting System
	3.3 A Multi-objective MIP Model for Training BNNs

	4 Computational Results
	4.1 Experiment 1
	4.2 Experiment 2
	4.3 Experiment 3

	5 Conclusions
	References

	Discovering Explicit Scale-Up Criteria in Crisis Response with Decision Mining
	1 Introduction
	2 Methodology
	3 Crisis Management Process at VRU
	4 Data Gathering
	4.1 Historic Data
	4.2 Implicit Knowledge

	5 Process Discovery
	6 Decision Criteria Extraction
	6.1 Results

	7 Related Work
	8 Conclusion and Future Work
	References

	Job Shop Scheduling via Deep Reinforcement Learning: A Sequence to Sequence Approach
	1 Introduction
	2 Related Works
	3 Mathematical Foundations
	3.1 Policy Gradient Algorithms

	4 The Job Shop Optimization Problem: Notation
	5 Our Sequence to Sequence Approach to the JSP
	5.1 Sequence Encoding
	5.2 Model Architecture
	5.3 Experiments and Results

	6 Conclusions
	References

	Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Preliminaries
	5 Methodology
	5.1 Graph Colouring as a Markov Decision Process
	5.2 Parameterising the State
	5.3 Q-Network Architecture
	5.4 Selecting Actions
	5.5 The ReLCol Algorithm

	6 Experimental Results
	6.1 Comparison with Existing Algorithms
	6.2 A Class of Graphs on Which ReLCol Outperforms DSATUR
	6.3 Scalability of ReLCol
	6.4 Representing the State as a Complete Graph

	7 Conclusions
	References

	Multi-task Predict-then-Optimize
	1 Introduction
	2 Related Work
	2.1 Differentiable Optimization
	2.2 Multi-task Learning

	3 Building Blocks
	3.1 Optimization Problem
	3.2 Gradient-Based Learning
	3.3 Decision Losses
	3.4 Multi-task Loss Weighting Strategies

	4 Learning Architectures
	4.1 Shared Learnable Layers
	4.2 Label Accessibility and Learning Paradigms

	5 Experiments
	5.1 Benchmark Datasets and Neural Network Architecture
	5.2 Performance Advantage of Multi-task Learning
	5.3 Efficiency Benefit of Multi-task Learning
	5.4 Learning Under Data Scarcity
	5.5 Learning Under Task Redundancy

	6 Conclusion
	References

	Integrating Hyperparameter Search into Model-Free AutoML with Context-Free Grammars
	1 Introduction
	2 Related Work
	3 Background
	4 Hyperparameter Search in Grammar-Based AutoML
	5 Experiments
	5.1 Experimental Setup
	5.2 Ablation Study
	5.3 Comparison with Other Techniques

	6 Conclusions and Future Work
	References

	Improving Subtour Elimination Constraint Generation in Branch-and-Cut Algorithms for the TSP with Machine Learning
	1 Introduction
	2 Related Work
	3 SEC Generation in B&C for the TSP
	3.1 IP Formulation
	3.2 B&C Framework for the TSP
	3.3 SEC Generation Problem

	4 The GNN-RL Framework for SEC Generation
	4.1 Cut Detector
	4.2 Cut Evaluator

	5 Experiments
	5.1 Setup
	5.2 Results

	6 Conclusion
	References

	Learn, Compare, Search: One Sawmill's Search for the Best Cutting Patterns Across and/or Trees
	1 Introduction
	2 Problem Description
	3 Preliminary Concepts
	3.1 Depth-First Search (DFS)
	3.2 Limited Discrepancy Search (LDS)
	3.3 Depth-Bounded Discrepancy Search (DDS)
	3.4 Monte Carlo Tree Search (MCTS)
	3.5 Searching AND/OR Trees
	3.6 Learning for Search Tree Traversal and Adaptative Search

	4 Learning from Past Decisions in LCS
	4.1 Adaptation of Search Algorithms to Learning
	4.2 Finding Similar Logs

	5 Experiments
	6 Results
	7 Conclusion
	References

	Dynamic Police Patrol Scheduling with Multi-Agent Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Scheduling Problem with Reinforcement Learning

	3 Problem Description
	4 Model Formulation
	4.1 State
	4.2 Action
	4.3 Transition
	4.4 Constraints
	4.5 Patrol Presence
	4.6 Reward Function

	5 Solution Approach
	6 Experimental Setup
	6.1 Environment
	6.2 Model Parameters
	6.3 Training and Test
	6.4 Evaluation Metrics

	7 Experimental Results
	7.1 Solution Quality
	7.2 Constraint Sensitivity Analysis

	8 Discussion and Future Work
	References

	Analysis of Heuristics for Vector Scheduling and Vector Bin Packing
	1 Introduction
	2 Algorithms and Complexity
	2.1 Theoretical Results and Exact Algorithms
	2.2 First-Fit and Best-Fit Heuristics
	2.3 Genetic Algorithms
	2.4 Local Search and Simulated Annealing

	3 New Algorithms
	3.1 Local Search
	3.2 Hybrid Heuristic
	3.3 Game-Theoretic Approach

	4 Evaluation
	4.1 Simulator and Test Environment
	4.2 Data Sets
	4.3 Metric
	4.4 Exact and Approximation Algorithms
	4.5 First-Fit and Best-Fit Heuristics
	4.6 Comparison of All Heuristics
	4.7 Vector Bin Packing Results

	5 Conclusion
	References

	Unleashing the Potential of Restart by Detecting the Search Stagnation
	1 Introduction
	2 Preliminaries
	2.1 SAT Problem and SAT Solver
	2.2 Techniques of CDCL SAT Solvers
	2.3 Restart Strategies
	2.4 Search Similarity Index

	3 Restart Analysis
	3.1 Impact of Restart on Search Similarity
	3.2 Differences Among SAT Instance Categories
	3.3 Differences Between SAT and UNSAT
	3.4 Differences in Restart Strategies

	4 Proposal and Evaluation – BroSt Restart
	4.1 Observations
	4.2 BroSt Restart
	4.3 Experimental Setup
	4.4 Evaluation

	5 Related Work
	6 Conclusion
	References

	Author Index

