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Abstract

In this chapter, the focus lies on a predictive description of the material response
to the thermomechanical loads within different process steps by means of
physical and data-driven models. The modeling approaches are demonstrated in
examples of innovative production technologies for components of a drive chain:
Fine blanking of parts; powder metallurgical (PM) production of gears; open-die
forging and machining of drive shafts. In fine blanking, material, process, and
quality data are acquired to model interactions between process and material
with data-driven methods. Interpretable machine learning is utilized to non-
destructively characterize the initial material state, enabling an optimization
of process parameters for a given material state in the long-term. The PM
process chain of the gear includes sintering, pressing, surface densification, case
hardening, and finishing by grinding. Several modeling and characterization
approaches are applied to quantitatively describe the microstructure evolutions in
terms of porosity during sintering, density profile after cold rolling, hardness and
residual stresses after heat treating and grinding and the tooth root load bearing
capacity. In the example of the open-die forging, a knowledge-based approach
is developed to support the decision-making process regarding the choice of the
proper material and optimized pass schedules. Considering the microstructure of
the forged shaft, the elastoplastic material behavior is described by a dislocation-
based, multiscale modeling approach. On this basis, process simulations could
be carried out to predict the process forces, chip form, residual stresses, and the
tool life among other output data.

9.1 Introduction

In the Cluster of Excellence “Internet of Production” at the RWTH Aachen
University, a research domain is dedicated to materials. The main objective of
this research domain is to provide digital tools to design dynamic production
scenarios and condition-based monitoring of components, based on the knowledge
about the material and components’ properties. To this end, data are integrated
from production and usage into physical and data-driven material models and
digital material shadows are generated. This chapter contains three different process
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Sheet metal insertion BlankingClamping
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Fig. 9.1 Process steps in fine blanking

chains, chosen to demonstrate different approaches for modeling the materials
in manufacturing processes within the context of the integrated computational
materials engineering (ICME) and integrated structural health engineering (ISHE).

9.1.1 Fine Blanking

Fine blanking is a sheet metal shearing process. Compared to conventional blanking,
fine blanking is characterized by a high geometric accuracy and a smooth shearing
surface with only small tear-off (Aravind et al. 2021; Bergs et al. 2020). Fine
blanking is used in mass productions of parts, e.g., for the automotive or aerospace
industry (Pennekamp et al. 2019). Figure 9.1 depicts steps of the fine blanking
process. First, the sheet metal is inserted into the tool. Next, the sheet metal is
clamped between a press plate with a v-ring and a cutting die. Finally, the blanking
takes place, before the blanked workpiece is ejected.

Despite the high precision of fine blanking, practitioners observe fluctuations in
workpiece quality for fixed process parameters. These variations occur on batch
level, but also along single sheet metal coils. For other sheet-metal processing
manufacturing processes, research has already shown that deviations in product
quality occur due to variations in material properties (Unterberg et al. 2021). A fine
blanking line was equipped with sensors to capture material, process, and quality
data to allow for a data-driven modeling of dependencies between material state,
process state, and the resulting product quality in the long term (Niemietz et al.
2020).

9.1.2 High-Strength Sintered Gear

The powder metallurgical (PM) manufacturing of typical sintered gears usually
includes powder preparation, e.g., by mixing a metal powder, pressing, and sintering
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Pressing
Cold Rolling

Sintering Heat Treatment

Grinding

Fig. 9.2 Schematic representation of the PM process chain of high strength sintered gears

(Fig. 9.2). Some advantages of the PM route are the reduction of the material use
and energy consumption in the production chain, flexibility in shape optimization,
and better noise-vibration-harshness behavior of the gear (Kruzhanov and Arnhold
2012; Leupold et al. 2017). However, the strength of sintered gear is significantly
lower than conventional gears, due to the remaining porosity after sintering. Further
mechanical and thermal post-treatments are required, if highly loaded applications
are considered for the sintered gear. Studies have shown that surface-densified and
case-hardened sintered gears can achieve comparable levels of the load-bearing
capacity of conventional gears (Gräser et al. 2014; Kotthoff 2003). Different
modeling and simulation methods are carried out to study the process-material
relation, aiming at an optimized process design for improved performance. The
processes of sintering, case hardening, and grinding are highlighted in the following
sections.

9.1.3 Drive Shaft

A drive shaft is a highly stressed component that is used in drive chains of various
machines to transmit power and mechanical loads. In order to withstand the high,
cyclical loads during their service life, the components must have excellent material
properties. To this end, drive shafts, e.g., in vehicles, are often manufactured using
a multi-stage production chain comprising hot forging, heat treatment, and (finish)
machining (Zhao et al. 2019) (Fig. 9.3).

Despite the high level of standardization in modern manufacturing processes,
hardly explainable fatigue events happen during the service life of highly
loaded parts like axles or drive shafts in different machines like vehicles
(Barbosa et al. 2011) or (bucket wheel) excavators (Savković et al. 2012). The
reasons for these catastrophic failures, besides geometrical features, include defects
regarding the local material properties like grain sizes and the surface integrity
resulting from the individual manufacturing process chain (Zhao et al. 2019). To
enable the tracking of the production process of individual components, a digital
model of the production chain is created. Different methods including ICME-based
material and process simulation approaches and knowledge-based systems are used
to build a basis for developing a digital shadow that enables component-related
assessments, e.g., on the unique service life (ISHE) in the long run.
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Open-Die Forging Heat Treatment Machining Service Life

Fig. 9.3 Schematic representation of the process chain of a drive shaft

9.2 Fine Blanking – Artificial Intelligence (AI) for Sheet Metal
Hardness Classification

As stated earlier, the quality of fine blanked parts varies, even without changing the
process settings. Moreover, research has already shown that fluctuations in material
properties lead to quality deviations in other sheet-metal processing manufacturing
processes. If a digital shadow representing the actual properties of the material
was available, it would provide a basis to develop an integrated model connecting
material properties, process parameters, and quality parameters with the aim to
adaptively control the fine blanking process based on a given material state.

One potential approach contributing to a digital material shadow is the so-
called magnetic Barkhausen effect. Inside ferromagnetic materials are magnetic
domains. These domains, which are separated by so-called domain walls, are
regions in which the magnetic moments are aligned in one direction. When a
time-dependent external magnetic field is applied to a ferromagnetic material, the
domain walls move. However, the domain wall movement is hindered for example
by dislocations, voids, or second-phase particles. Once the external magnetic field
exceeds the restraining force of these obstacles, the domain walls break free
causing jumps in the rate of magnetization of the ferromagnetic material (Jiles
2000). These Barkhausen jumps are measurable, e.g., with an inductive sensor. The
resulting time series signal is called magnetic Barkhausen Noise (MBN). Due to
its dependency on microstructural properties, the MBN is used for non-destructive
material classification. The measurement of MBN is even fast enough to be applied
in production lines (Franco et al. 2013).

Unterberg et al. (2021) conducted experiments on deep learning to classify the
hardness of specimen from a 16MnCr5 (AISI: 5115) sheet-metal coil used for fine
blanking based on MBN signals. They demonstrate that deep learning models,
more precisely InceptionTime (Ismail Fawaz et al. 2020), allow to distinguish
different classes of hardness. While deep learning is capable of learning complex
relationships from raw data without manual feature engineering (Goodfellow
et al. 2016), the inner complexity of artificial neural networks also renders their
decision logic opaque to humans (Došilović et al. 2018). If models are only
evaluated based on their prediction accuracy, it is unclear whether a model learned



192 A. Rajaei et al.

plausible relationships or just exploits misleading spurious correlations (Chattopad-
hyay et al. 2019). Moreover, potentially unknown (and correct) relationships learned
by a model remain hidden from humans, preventing humans to learn from AI. Con-
sequently, methods to interpret or explain machine-learning models (explainable AI)
are required. Establishing explainable AI in manufacturing contributes to the vision
of an Internet of Production, where every production step is seen as a potentially
valuable experiment from which knowledge is gained.

Several explainable AI approaches, such as Grad-CAM (Selvaraju et al. 2020),
explain model predictions by highlighting parts of the input data, which are
most relevant to the prediction. However, such explanations leave much room for
interpretation. For instance, if a region in an MBN signal is highlighted as being
important, it is still ambiguous what properties (e.g., amplitudes, frequencies, peak
values, peak positions, etc.) of that region are decisive for the model prediction.
Li et al. (2018) propose an alternative approach. They present a neural network
architecture and an objective function enabling to learn representative examples of
the classes that are to be predicted by the model. The model derives its predictions
based on similarity to these representative prototypes.

Experiments with an adapted version of Li et al.’s model architecture were
conducted with the aim to classify the hardness of specimen from a 16MnCr15 fine
blanking steel based on MBN measurements. Figure 9.4 depicts boxplots visualizing
the hardness values of the used specimen, the final accuracies of the model for
training data and validation data as well as learned prototypes. The hardness and
the MBN were measured at eight different spots for each specimen. MBN signals
were measured over a duration of 1 s at each spot, which were divided into sub-
signals with a length of approx. 3.3 ms as input for the neural network. For detailed
information on the data acquisition refer to Unterberg et al. (2021).
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The reached validation accuracies are considerably lower than those of Unterberg
et al. (2021). However, it becomes possible to compare the neural network’s
decision logic to existing domain knowledge, by checking whether the prototypes
are consistent with findings reported in the literature on MBN. The learned
prototypes appear to contradict relationships found in the literature. For instance,
Franco et al. (2013) report that the peak height of the MBN decreases with
increasing hardness. The prototypes suggest the opposite. Considered together with
the validation accuracy, this indicates that the neural network probably did not learn
the underlying relationships correctly in this case.

Balancing the optimization of the prediction accuracies and the representative-
ness of the learned prototypes turned out to be challenging for the given application
of hardness prediction. For the approach to become valuable in practice, future
work must enable higher prediction accuracies (on validation data), e.g., through
an optimized architecture .

9.3 Sintered Gear – Simulation of Sintering

The compaction of water-atomized powder and its subsequent consolidation during
the sintering process are decisive for the mechanical properties of a PM component.
This is due to the fact that these processes can largely determine the porosity and
the shape of the pores. The pore fraction and morphology have a decisive impact
on the materials’ fatigue strength as well as the surface densification, hardenability,
grindability, and performance of the gear. Hence, a multiscale modeling approach
is developed to predict the porosity and pore morphology, representing a digital
material shadow in the powder compaction and sintering.

The filling of a die with Astaloy 85Mo (FE + 0.85% Mo + C) powder and
its compaction can be described by a discrete element approach that aims for the
modeling of the interaction between powder particles based on Newton’s laws of
motion. The particles are defined as agglomerates of spheres that can only undergo
elastic deformation. The motion and deformation of each sphere are related to the
sum of the forces F sum

ij that act between two elements i and j:

F sum
ij = FCon

ij + FCoh
ij + FGrav

i (9.1)

The contact force FCon
ij is calculated by the Hertz-Mindlin model, while the

cohesive force FCoh
ij represents an additional normal force based on the simplified

model of Johnson-Kendall-Roberts. FGrav
i includes gravitational forces as well as

the contribution of the applied pressure during compaction. Using this approach, the
density distribution that is attributed to the friction between the powder and the die
as well as between adjacent powder particles can be assessed (Luding 2008).
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Static properties, such as the tensile strength, are mainly related to the density
distribution, whereas the estimation of the fatigue behavior requires a more detailed
assessment of the microstructure. This can be achieved by the application of
machine learning. In the field of image generation, generative adversarial networks
(GAN) have been applied to a vast variety of problems. A GAN consists of
two neural networks, which are referred to as Generator and Discriminator. The
former converts an input vector of random values into an image, while the latter
is trained to distinguish between generated images and the training dataset. The
response of the Discriminator is used to optimize both neural networks. If the
training process is evenly balanced, the Generator is empowered to create images
that are sufficiently accurate. To account for the influence of relevant variables
such as process parameters, an underlying taxonomy is required. Numerical labels
are assigned to the images that translate the related process or data conditions,
including information such as powder particle size and the magnification of the
used microscope. These labels are then embedded in the training process. Linear
interpolation techniques, applied to a trained model, enable the prediction of images
for new process conditions (Azuri and Weinshall 2020; Goodfellow et al. 2016).

The sintering process is driven by the local gradient of the chemical potential that
is directly related to the local curvature. Depending on the temperature, different
diffusion mechanisms contribute to the formation of sintering necks and the
rounding of pores. Higher sintering temperatures induce a significant contribution
of grain boundary and volume diffusion, provoking commonly undesired shrinkage
(German 1996). Hence, sintering of conventional PM steel is normally carried out at
1120 ◦C to mainly activate surface diffusivity, which ensures dimensional stability.
Therefore, a mesoscale model primarily requires a physical description of surface
diffusion only. The local velocity of the surface of a pore can be described by the
surface mobility M and the divergence of the local curvature κ:

v = M·�Sκ (9.2)

The mobility includes the contributions of the surface diffusion coefficient DS,
the surface layer thickness δ, the atomic volume Ω , and the surface energy γ :

M = DSδγ�

kT
(9.3)

with T as the temperature and k as the Boltzmann constant.
Instead of modeling the geometry of the powder particles, a level-set-function

φ is used to continuously describe the interface of the powder and the pore as a
signed distance function. The divergence of this function provides the curvature at
the surface of the particles. The evolution of the curvature as a function of the time t
can be simulated by explicitly solving the advection equation (Bruchon et al. 2012):

∂φ

∂t
+ v∇φ = 0 (9.4)
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Fig. 9.5 Simulation result of powder die compaction (a), predicted microstructure after com-
paction (b), simulated evolution of the microstructure during sintering (c), and the corresponding
microstructure observed in experiments (d)

The methods were merged to predict the microstructure after sintering based
on process parameters of compaction and sintering. The GAN was trained for 500
epochs with binary images taken from green samples with variable particle sizes,
which were included as image labels. For image recording in the scanning electron
microscope, the samples were first embedded and infiltrated with cold resin, then
ground and polished following the standard metallographic procedure. After the
training, spherical linear interpolation was applied to generate images for a particle
size range between 32 and 128 μm.

The feasibility of the proposed method is demonstrated by comparing the
results of the model with microstructural images from experiments. Figure 9.5a
depicts the simulation results of the compaction process on the macroscale, while
Fig. 9.5b shows an image with a size of 100 × 100 μm2 that represents the
predicted microstructure with a mean particle size of 83 μm. The subsequent
sintering process was assumed to be isothermal at a temperature of 1120 ◦C with
a holding time of 48 min. The simulation result is presented in Fig. 9.5c. The
corresponding experimental result, conducted in a quenching dilatometer under
vacuum, is displayed in Fig. 9.5d. The predicted pore morphology conveys a good
agreement with the experiment.

9.4 Sintered Gear – Surface Hardening and Load-Bearing
Capacity

The local surface densification of sintered gears is a promising technique to increase
the load bearing capacity drastically. Common methods to densify the functional
surfaces of sintered gears are shot peening and cold rolling (Frech et al. 2017).
To further increase the material’s strength and thus the load-bearing capacity of
the gear, a case hardening treatment is conducted after the surface densification.
Basically, same processes can be applied to heat-treat sintered parts as in the case
of wrought steel parts. However, the effect of the porosity on the material response
and the final result of the heat treatment should be considered to choose the optimal
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treatment strategy and process parameters (Danninger and Dlapka 2018). To study
the potential in optimizing the bearing capacity by surface densification and case
hardening, an ICME approach is developed, which links simulation blocks that
consecutively represent the process steps of carburizing, quenching, tempering and
loading of the gear.

Prior to the actual modeling, the density profile in the cross section of the
tooth is determined by image analysis of the microstructure and then mapped
to the model geometry. The micrographs are transformed into binary images, in
which material is represented by white and pores by black pixels. The density of
a given area is obtained from the ratio of black and white pixels (Fig. 9.6a). The
macro-scale heat treatment model applied in the present work is a finite element
modeling approach that comprises the calculation of diffusion, heat transfer, phase
transformations, transformation strains, and the elastoplastic material response.
Carbon diffusion during carburizing is calculated by the Fick’s laws, enabled by
defining the temperature-dependent diffusion coefficient and setting corresponding
boundary conditions. To model the quenching and tempering stages, a coupled ther-
momechanical analysis is carried out. The main constitutive law in the mechanical
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Fig. 9.6 Graphical overview of the modeling approach to predict the load-bearing capacity of a
surface-hardened sintered gear, with a module of 3.175 mm and a case hardening depth of 0.3 mm.
(a) Determination of the density profile, (b) simulation of the case hardening, (c) simulation of the
tooth root bending, and (d) calculated load bearing capacity of the tooth root
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analysis describes the evolution of the strain tensor and assumes that the total strain
rate equals the sum of independent elastic, plastic, thermal, and transformation
induced strain rates. The microstructure is described as a continuum, containing cal-
culated volume fractions of different microstructural phases. To describe the overall
kinetics of the phase transformations, modified formulations and extensions of
the Koistinen-Marburger equation (Koistinen 1959) and the Johnson-Mehl-Avrami-
Kolmogorov (JMAK) equation (Avrami 1941) are applied for the martensitic and
the diffusion-controlled transformations, respectively. Thermophysical properties of
the material are defined depending on the temperature, density, phase fractions, and
carbon content. The simulated residual stress state is transferred as the initial stress
tensor to the simulation of the loading. Hence, the residual stress is automatically
superimposed to the stress tensor resulting from the external loading. More details
about the modeling approach are found in Rajaei et al. (2021). Figure 9.6b, c show
the simulated hardness and residual stress profiles after case hardening as well as
the stress state under loading with a F = 5.25 kN force.

The calculation of the load-bearing capacity is carried out in a post-processing
analysis. For each integration point of the FE-model, the local stress and strength
values are compared in terms of the local degree of utilization A(x, y, z), i.e., the
ratio of the applied equivalent stress amplitude to the fatigue strength under uniaxial
loading. The equivalent stress amplitude is determined for a given time-dependent
stress tensor according to a proper fatigue criterion, which considers the mean stress
effect and multiaxiality. For the example of the tooth root bending, the simple
normal stress criterion is still valid, due to the nearly proportional loading case,
i.e., constant principal stress directions (Brömsen 2005). The local fatigue strength
is calculated for the sintered steel Astaloy Mo85 according to the model suggested
in Hajeck et al. (2018), which is developed based on bending fatigue experiments on
laboratory samples. The model defines the fatigue strength depending on the density,
highly loaded volume, and carbon content, which can be reformulated in terms of
hardness. Having the local degree of the utilization, the probability of survival Ps
can be obtained as follows:

Ps = 2
− 1

V0

∫
A(x,y,z)k(x,y,z)dV = 2

− 1
V0

∑(
Ai

ki
)·Vi (9.5)

where V0 is a reference volume equal to 1 mm3, ki is the Weibull module of
the integration point i in the FE-model, which accounts for the statistical size
effect, and Vi is the volume of the integration point i. The load-bearing capacity
is the external force for a survival probability of 50%. Figure 9.6d summarizes the
calculation of the tooth root load-bearing capacity. The predicted residual stress and
hardness profiles agree very well with experimental results from Scholzen et al.
(2022). In Fig. 9.6d the expected bearing capacity of the gear without porosity is
given, 6.93 kN. According to the simulation, porosity reduces the bearing tooth root
capacity by approximately 25%, compared to a gear with full density.

The prediction of the tooth flank bearing capacity requires a more sophisticated
fatigue criterion that is valid for a non-proportional loading and is an ongoing work.
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9.5 Sintered Gear – Grinding and Surface Integrity

Grinding is a widely used hard finishing process in gear manufacturing due to
high dimension accuracy and improvement of the surface integrity. Currently, the
definition of suitable process parameters is performed by elaborate trials or based on
the operator’s experience. Alternatively, several models for description of grinding
loads have been developed for the process of gear grinding in order to regulate the
process and to define suitable parameters. However, these models are in general time
consuming, which limits their application in production line. In addition, process
monitoring for the regulation of the process can also be a challenging task in gear
grinding processes due to complex process characteristics. The main objective of
this project section is the optimization of the procedure for generating gear grinding
with a focus on surface integrity by means of a networked adaptive production
concept. In order to achieve this objective, the project is divided into different
steps. In the first step, a new process modeling based on the digital twin concept
will predict the energy generation according to the material removal rate, given
by process parameters and kinematics. In the second step, solutions for real-time
measurement methods will be investigated, as well as a connection between real-
time measurements and the energy model outputs. Finally, in order to support a
wider application of the optimized grinding procedure, a data lake will be built to
store relevant data regarding the process under different conditions.

In the following, an explanation of the current status of the first step of the
project, regarding the new process modeling is explained. During grinding, a major
percentage of the generated energy is converted into heat. Most fraction of this heat
is transferred into the gear, and may cause thermal damages. In order to better
understand and control the part of the generated heat that flows into the gear, it
is first necessary to specify the according energy partition. In the work of Hahn
(1966), it was established that the material is removed by each grain of the grinding
tool along three different mechanisms: friction, plowing, and shearing. Each of
these mechanisms contributes in a singular way to the partition of energy that
goes into the gear (Linke et al. 2017). The energy generated in each of the three
mechanisms depends on grain-gear micro-interaction characteristics (Malkin and
Guo 2007). These micro-interaction characteristics are influenced by the grinding
tool topography. The interaction between the grains and the gear is characterized
based on both process kinematics and parameters. In order to develop a suitable
grinding energy calculation for the generating gear grinding, it is necessary to
first consider the single-grain interaction in the contact zone, based on the process
parameters.

For the process model developed in this project section, an existing simulation
model of the generating gear grinding process based on penetration calculation
approach is used. An extension of this simulation model considering a realistic
modeling of the topography and the rotational movement of the grinding worm
during the process is performed. As a result of the simulation, micro-interaction
characteristics for each of the engaging grains are obtained and used for the
calculation of the energy in generating gear grinding.
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Analysis of process energy EwExample 
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Fig. 9.7 Analysis of the energy calculation for generating gear grinding process

The results of the process energy Ew calculated with the extended simulation
model are shown in the upper right of Fig. 9.7. The gear, grinding worm, and process
parameters used for the calculation are shown in the left side of Fig. 9.7. For better
visualization, the calculated process energy Ew was plotted onto the flank of the
gear. In the visualization, the process energy Ew corresponds to the energy generated
by grinding in one specific axial position. Therefore, only one area of the gear flank
was ground in the simulation, and not the entire flank.

In the four points highlighted in Fig. 9.7, a further analysis of the energy was
performed, which is shown in the diagram in the lower right side of Fig. 9.7. For
the points one and two, similar process energies and contributions are obtained. In
the points three and four, the process energies Ew are also similar to each other, but
the contributions of each individual energy of each chip formation mechanism are
different. The importance of an analysis of the process energy Ew considering the
chip formation mechanisms is due to the fact that each of these mechanisms has a
different partition of energy that goes into the gear. According to Malkin (Linke et al.
2017), almost all the friction energy Efr is conducted as heat to the gear, while for
plowing Epl and shearing Esh energies, this fraction is smaller. The fraction of energy
conducted as heat to the gear for the shearing mechanism is the lowest of the three
mechanisms (Linke et al. 2017). Therefore, if a significant part of the process energy
Ew corresponds to shearing energy Esh, most of this energy is used for chip removal
and not to heat to the gear. If most of the process energy is not converted to heat, the
possibility of grinding burn during the process decreases. Due to this, even though
the points three and four presented similar process energies Ew, the contribution of
each individual energy of each chip formation mechanism is different for each of
these points, leading to different amounts of heat transferred into the gear. Based on
these results, the method for the calculation of the process energy Ew for generating
gear grinding was able to show sensible outcome. Ultimately, this method can
be used in the future for the prediction of grinding burn for the generating gear
grinding. For this, the critical values of the individual energy of each chip formation
mechanism and their influence on the grinding burn presence need to be defined.
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9.6 Drive Shaft – Open-Die Forging

Open-die forging is a bulk metal forming process that can be used to produce mostly
longitudinally oriented components such as drive shafts or axles with excellent
material properties. In open-die forging, the ingot is incrementally formed into
the desired shape using two simple dies that perform so-called strokes. Forging
processes are summarized in pass schedules that contain the important process
parameters like height reductions or press velocities for each individual pass. A
forging pass consists of a discrete number of consecutive strokes that are oriented
in the same ingot direction and hence, deform a defined region of the ingot.

Since commonly hundreds of individual strokes can be involved in an open-
die forging process, there are a large number of process routes that lead to
the same final geometry. However, these different processes are not equivalent
from a production point of view, as they have different process times, energy
consumption and, most importantly, can produce different material properties in the
final part. Therefore, both the targeted process design and the detailed monitoring
and tracking (digital shadow) of individual open-die forging processes as well as
their corresponding down- and upstream processes are very useful for the reliable
and efficient production of forgings with excellent material properties.

Since important material and workpiece properties often cannot be measured
directly during the open-die forging process, an assistance system for open-die
forging was developed that is able to monitor the current state of the forging
ingot live, throughout the process (Rudolph et al. 2021). Besides information on
temperature and geometry, the equivalent strain introduced along the core fiber is
determined using a fast calculation model. Afterward, the combined time-dependent
information on temperature and equivalent strain enables the calculation of the
grain size present insight of the ingot during and after forging, using a fast
material model based on JMAK-equations (Karhausen and Kopp 1992) (ICME)
and hence, laying the foundation for a digital shadow of the forged component.
The process data insight of the digital shadow can be used to subsequently set up
an FE-model and hence, to enrich, e.g., locally restricted information from the fast
process models. Here, for example, three-dimensionally resolved temperature and
equivalent strain trajectories can be generated and incorporated back into the fast
microstructure model to calculate a three-dimensional distribution of the grain size
in the component over the course of the forging.

Although the process route has a decisive influence on the component quality,
the process design in open-die forging is still often based on experience or simple
models, resulting in a need for new approaches on the targeted process design.
Since compared to, e.g., die casting, which is used for producing high-volume
batches, the batch sizes in open-die forging are rather small. Hence, data from
real forgings is not widely available, limiting the usability of modern data-driven
algorithms that require large amounts of data for their application. Therefore, a case-
based reasoning (CBR) (Richter and Weber 2016) agent for the targeted design of
pass schedules for the open-die forging process is developed. Similar to the human
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experience-based behavior, CBR is a methodology to learn based on experience by
remembering past problems (cases) and the way they were solved (solutions). By
recording data of past forging processes (digital shadows) and complementing those
with data of simulations and fast process models, the CBR-agent shall make suitable
recommendations for a new case that requires a pass schedule. However, it is not
sufficient to consider individual steps in a production chain of products. Decisions
to be made range from the material selection, heat treatment specifications, press
and tool allocation, and pass schedule layout to the final machining steps. Typically,
the required knowledge to make informed decisions is spread across different
stakeholders (cf. Fig. 9.8). For example, the material choice for a drive shaft,
considering a set of requirements, may depend not only on the prices and availability
of the different steel alloys at the retailer (“steel retailer”), but also on the available
material characteristics required to simulate and design the forging process (“IBF-
agent”) as well as the heat treatment strategy (“IWM-agent”) or the machining
process (“WZL-agent”).

While the internet is heavily used in the everyday lives to accumulate informa-
tion, there is typically no unified network between different industrial stakeholder,
which could be used for planning complex manufacturing processes. A decen-
tralized World-Wide-Lab (WWL) infrastructure, where companies and research
labs can offer their services, is required in order to solve such complex tasks
efficiently, supported by autonomous agents. A service agent may range from
simple data vendors, e.g., a retailer (cf. Fig. 9.8, “steel retailer”) informing about
prices and availability, to complex process control nodes that automatically interact
with other’s agents in the WWL, in order to accumulate data to plan out the
manufacturing process for a whole product. The WWL ensures semantic inter-
operability between the different agents through the use of ontologies. Interfaces
are specified using the Thing Description ontology (Kaebisch et al. 2020) and
agents need to agree on a core ontology that structures the information about
production processes. Individual agents may extend this core ontology, if needed.

User Interface:
Question: Which material is best suited for my drive shaft?
Requirements: Load profile, operating temperature, …

Forming-Agent

• Flow curves
• Forming limits
• … 

Heat Treatment-
Agent
• Heat treatable?
• Ac1/Ac3 
• … 

Machining-
Agent
• Machinable?
• Hardness
• … 

„Steel-Retailer“

• Composition
• Price / kg
• … 

…

Communication

Fig. 9.8 Schematic representation of communicating WWL-agents of different process steps for
solving an exemplary production-related problem
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Data provenance information plays an integral role in the vison of a WWL, hence
several requirements specified in the FactDAG model (Gleim et al. 2020) for data
provenance information are covered by WWL agents. Agents need to be able to find
other participants of the WWL, so that they are aware of possible collaboration
opportunities. To keep the structure decentralized, each agent maintains a local
service cache that can be expanded by scanning the network via User Datagram
Protocol (UDP) multicasts.

Combining the digital shadow, e.g., of each forged drive shaft with the new
possibilities of the WWL it shall be possible to adapt subsequent manufacturing
steps such as heat treatment or mechanical processing based on the previous
individual manufacturing process. Moreover, assumed the digital shadow of a forged
drive shaft is complemented by component-specific information on the downstream
production processes, an individual long-term estimate of, e.g., the service life of
the component (ISHE) might be possible in the long run.

9.7 Drive Shaft – Machinability

The machinability of a material is one of the most important input parameters for an
optimized process design. It determines, apart from the tool wear and the achievable
chip removal rates, the surface integrity as well as the functionality of the finished
component. The machinability of a material is dependent on the microstructure,
controlled by the chemical composition and the heat treatment state, and thus
offers a very wide field in the area of basic research and industrial application
(Abouridouane et al. 2019).

In order to determine the influence of the microstructure on the machinability of
drive shaft, a new experimental setup with automatic multi-sensor data acquisition
has been developed for in-process measurement of thermo-mechanical load and tool
wear during turning operations (see Fig. 9.9). In order to check the performance of
the proposed experimental setup and to derive correlations between the operating
thermo-mechanical load and the machined surface characteristics, longitudinal
finish turning tests on drive shafts made of steel 42CrMo4 with two different
microstructures are carried out using carbide indexable inserts.

A summary of the main results obtained in the present research work can be
given as follows:

• The proposed experimental setup is suitable for in-process measurement and
analysis of the thermo-mechanical load and tool wear by turning operations.

• The thermo-mechanical load, which depends to a large extent on the hardness of
work material, controls the tool wear and the resulting surface finish as well as
the induced residual stresses.

• The measured roughness Rz shows obviously the bad influence of the tool wear
on the achieved surface quality when finish turning drive shaft.

• The achieved surface integrity results can be incorporated in digital twins for
process monitoring to optimize cutting process performance.
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Target quantity (mean values) Shaft 1 Shaft 2

Hardness / HRC 26 24.8

Cutting force / N 120 110

Surface temperature / °C 85 70

Tool flank wear VB / μm 115 98

Surface roughness Rz / μm 6.6 4.6

Residual stress / MPa 390 210

Workmaterial: 42CrMo4 Cutting speed: 150  m/min
Tool: CNMG 120408-PM 4315 Feed: 0.15 mm
Cooling: Dry cut Depth of cut: 0.5   mm

Residual 
stress

Surface 
roughness

Tool wear, 
tool life
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mechanical
load Micro-

structure

Machina-
bility

Workpiece

Acceleration
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DynamometerMagnetic
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Fig. 9.9 Multi-sensor experimental setup for machinability characterization

A multiscale approach was developed to predict the mechanical yielding behav-
ior of the work material and thus its machinability. The modeling of the constitutive
behavior of the considered materials poses several challenges at different levels.
All following assumptions and models follow closely the choices of Laschet et al.
(2022).

First, the elastic and plastic behavior of pearlite and ferrite must be modeled.
For ferrite, a cubic elastic behavior is considered and its plastic behavior is
assumed to be governed by a dislocation-based approach, which then determines
the corresponding yield stress. Here, the dislocation density ρ is assumed to be
governed in terms of the plastic strain εp by the following approach (modified
Kocks-Mecking-Estring model) (see Laschet et al. 2022 for details).

dρ

dεp

= M

(
k1

b

(
1 − exp

(−ψ
√

ρ
)) − k2ρ + k3

b D
exp

(

−Mλ∗

b
εp

))

(9.6)
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The evolution of the dislocation density of ferrite is influenced by the parameters
pF = (ψ , k1, k2), while all other quantities are kept constant. For cementite, its
elastic behavior is assumed as orthotropic. The evolution of the dislocation density
of cementite is assumed to be governed by the following approach (hardening law
of Gutierrez-Altuna type):

ρ = 1 − exp
(−k2Mεp

)

bk2L
+ ρ0 exp

(−k2Mεp

)
(9.7)

The dislocation density of cementite and its corresponding yield behavior are
assumed constant (see Laschet et al. 2022 for details).

Then, a representative volume element (RVE) is generated at the “nano” and
“micro” levels. At the nano level, a bilamellar RVE representing the ferrite-
cementite-structure of pearlite is generated with ABAQUS. The nano RVE considers
the statistics measured in experiments, i.e., the volume fractions of ferrite and
cementite and the lamellar lengths. At the micro level, a polycrystalline RVE is
generated with DREAM3D, considering the microstructure statistics, e.g., average
grain size, volume fractions of ferrite and pearlite.

The final yield stress curve (computed then with the nano/micro RVEs and the
software HOMAT) depends then on the specific choice of the parameters for ferrite.
It is further assumed that the plastic behavior of ferrite in pearlite at the nano
level and in the polycrystalline arrangement at the micro level differ, such that
corresponding parameters pF,nano and pF,micro (in total six parameters) are optimized
separately. An optimization loop is setup in Python with the LIPO package for
derivate and parameter-free global optimization built upon the C++ dlib package.
In this loop, for every new set of values for the optimization variables pF,nano and
pF,micro, the effective elastoplastic behavior of the nano RVE is computed and passed
on as the pearlite phase to the micro RVE. Then, the effective plastic behavior
of the micro RVE is computed and the resulting yield behavior is compared to
experimental data. The loop continues improving the parameters until a maximum
number of iterations is reached. The final optimized yielding behavior at the micro
level can then be passed on for macroscopic simulations.

9.8 Summary

This chapter illustrated several approaches to model materials’ response along
a wide range of manufacturing processes. In general, the common objective is
a predictive and quantitative description of the process-microstructure-property
interactions on different time and length scales. However, the concrete questions,
target values, boundary conditions, and approaches must be defined specifically
for the considered application. The presented ICME-approaches provide valuable
predictions of the microstructure and accordingly the component properties by
means of sophisticated physical and empirical models, i.e., digital twins, as in
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the simulations of the sintering, heat treatment, and grinding. Data-driven and
fast approaches, i.e., digital shadows, as in fine blanking, open-die forging and
machining can be integrated into the process control and act as in-situ digital
sensors that provide essential information about hard to acquire parameters. Finally,
knowledge-based approaches, e.g., case-based reasoning, can link different sectors
of expertise together and provide the infrastructure to integrate the material-experts’
knowledge along the entire development, production, and operation cycles.

The vision of the future work is to provide robust digital tool boxes to be
integrated already in the early phases of the planning and designing toward an
agile product development and production. To facilitate the use of the future tool
box, standard data formats should be defined for all input and output data of
the models. Furthermore, codes and models should be parametrized and proper
simulation platforms, e.g., AixVipMap, should be adopted to automatically run
multi-step simulations and produce large data. With the help of capable database
and ontology solutions, the simulation data and the knowledge gained would be
collected to form a data lake. On this basis, AI methods become applicable to deepen
the understanding of complex physical interactions between process, material, and
components performance and give suggestions for holistic optimization of the
production.
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