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Abstract. Threshold secret sharing allows a dealer to split a secret s
into n shares, such that any t shares allow for reconstructing s, but
no t − 1 shares reveal any information about s. Leakage-resilient secret
sharing requires that the secret remains hidden, even when an adver-
sary additionally obtains a limited amount of leakage from every share.
Benhamouda et al. (CRYPTO’18) proved that Shamir’s secret sharing
scheme is one bit leakage-resilient for reconstruction threshold t ≥ 0.85n
and conjectured that the same holds for t = c · n for any constant
0 ≤ c ≤ 1. Nielsen and Simkin (EUROCRYPT’20) showed that this
is the best one can hope for by proving that Shamir’s scheme is not
secure against one-bit leakage when t = c · n/ log(n).

In this work, we strengthen the lower bound of Nielsen and Simkin.
We consider noisy leakage-resilience, where a random subset of leak-
ages is replaced by uniformly random noise. We prove a lower bound
for Shamir’s secret sharing, similar to that of Nielsen and Simkin, which
holds even when a constant fraction of leakages is replaced by random
noise. To this end, we first prove a lower bound on the share size of any
noisy-leakage-resilient sharing scheme. We then use this lower bound to
show that there exist universal constants c1, c2, such that for sufficiently
large n it holds that Shamir’s secret sharing scheme is not noisy-leakage-
resilient for t ≤ c1 · n/ log(n), even when a c2 fraction of leakages are
replaced by random noise.

Keywords: Threshold secret sharing · Noisy leakage-resilience · Lower
bounds · Shamir’s secret sharing scheme

1 Introduction

Threshold secret sharing was introduced by Shamir [Sha79] and Blakley [Bla79]
and allows a dealer to split a secret s into shares sh1, . . . , shn, such that any t
shares allow for reconstructing s, but no t − 1 shares reveal anything about s
at all in the information-theoretic sense. Since its introduction, this primitive
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in general, and Shamir’s secret sharing scheme in particular, has found count-
less applications in various fields of cryptography. Naturally, it is important to
understand the precise security it provides.

The security definitions for regular threshold secret sharing schemes and
variants like robust [RB89] or verifiable secret sharing [CGMA85] all assume
that some shares are fully known and some shares are fully hidden from the
adversary. As it turns out, these all-or-nothing type of security models do not
always precisely reflect the security we want in practice. Real-world implementa-
tions of cryptographic primitives are susceptible to different types of side-channel
attacks, which may give the adversary limited access to secrets that should ide-
ally be fully hidden from her. Cryptographic primitives have, for example, been
successfully attacked through leakages obtained via timing [Koc96] and power
consumption [KJJ99] side-channels.

Motivated by the emergence of such side-channel attacks, the security defi-
nitions of secret sharing have been strengthened to account for additional leak-
ages from the shares that were previously assumed to be fully hidden. Such
schemes require that the secret that is shared remains hidden, when the adver-
sary not only receives t−1 shares, but additionally obtains some limited amount
of leakage from all other shares. Leakage-resilient secret sharing schemes have
received significant interest and many constructions have been proposed over the
past few years [DP07,BGK14,GK18b,GK18a,ADN+19,KMS19,SV19,CKOS21,
CKOS22]. Realistically, however, it seems unlikely that Shamir’s secret sharing
scheme will be replaced by a leakage-resilient alternative any time soon. Shamir’s
scheme is a cornerstone of many cryptographic constructions and has been imple-
mented and deployed as part of many different projects. Replacing a scheme
that is so deeply embedded into so many different projects, seems like a insur-
mountable challenge. For this reason, it is crucially important to understand the
leakage-resilience of Shamir’s secret sharing scheme itself.

Benhamouda et al. [BDIR18] studied this question in a setting, where the
adversary submits arbitrary leakage functions Leak1, . . . ,Leakn and obtains
leakages Leaki(shi) for i ∈ [n]. The only restriction imposed on the leakage
functions is that they are having a bounded output length. The authors show
that Shamir’s scheme provides some leakage-resilience, when t ≥ 0.85n and
they conjecture that Shamir’s scheme is leakage-resilient against one bit leakages
for any t = c · n, where 0 ≤ c ≤ 1 is a constant. Subsequently, Nielsen and
Simkin [NS20] showed that Shamir’s scheme is not secure against one bit leakages
when t = c · n/ log(n), thereby showing that their conjecture is the best one can
hope for.

1.1 Our Contribution

The works of Benhamouda et al. [BDIR18] and Nielsen and Simkin [NS20]
assume that the adversary is able to obtain the precise outputs of its leak-
age functions. In practice, however, side-channel attacks are inherently noisy
and there are practical techniques that can amplify this noise [CCD00,CK09,
MOP07,CJRR99] to counter potential side-channel attacks. One might hope
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that it is possible to circumvent the lower bound of Nielsen and Simkin by con-
sidering a weaker, but more realistic noisy leakage model, where some random
subset of the leakages is replaced by uniformly random noise.

In this work we show that this is not the case. We prove a lower bound similar
to that of Nielsen and Simkin for Shamir’s secret sharing scheme, which holds
even when a constant fraction of leakages is replaced by random noise. To this
end, we first prove a lower bound on the share size of any noisy-leakage-resilient
secret sharing scheme. We then use this lower bound to obtain the following
theorem:

Theorem 1 (Informal). There exist universal constants1 c1, c2, such that for
sufficiently large n, it holds that (c1 · n/ log(n))-out-of-n Shamir secret sharing
is not leakage-resilient against one bit leakage, even when a c2 fraction of the
leakage function outputs are replaced by random noise.

We note that the constants c1 and c2 in our lower bound are not too relevant.
The main takeaway of our result is that the reconstruction threshold t must be
as large as a function of the number of shares n, i.e. it must hold that t ∈
Ω(n/ log(n)), even if we relax the notion of leakage-resilience that we aim for
considerably.

To prove this lower bound, we construct a generic adversary A that can use
the noisy leakage to recover the secret shared value, whenever the shares are
too small in size. The main idea of this attack is similar to the one in the proof
of [NS20, Theorem 2]. We apply a separate uniformly random leakage function
to each share. Given the noisy leakage vector, our adversary A iterates over all
possible secret values and all possible secret sharings thereof.2 Whenever there
is a vector of shares that would produce a leakage vector that is consistent
enough with the obtained noisy leakage vector, the adversary remembers the
corresponding secret value in an initially empty set S. Finally, the adversary
hopes that S contains exactly one element in which case she returns that element
as her guess for what was the actual secret shared value.

In contrast to the previous lower bound of Nielsen and Simkin, our adversary
needs to account for the noise in the leakage vector and thus it needs to add
values s to S, even if there was no secret sharing of s that produced a fully
consistent vector of leakages. Relaxing the conditions under which values s are
added to S needs to be done carefully, since we would like to ensure that we do
not add too many elements to the S. In a nutshell, our lower bound shows that
the noisy leakage vector and any other leakage vector belonging to the incorrect
secret, will differ in many positions. Making this intuition formal and arguing
that our adversary is successful with a sufficiently high probability requires a
careful analysis, which is the main contribution of this work.

1 Concretely, we show the statement for c1 < 1/3 and c2 = 1/64, but a more careful
analysis can allow for better constants, if desired.

2 We are only concerned with information-theoretic security in which case the adver-
sary is unbounded.



218 C. Hoffmann and M. Simkin

1.2 Other Related Works

The work by Guruswami and Wootters [GW16] demonstrated that some linear
secret sharing schemes, such as Shamir’s scheme over certain fields, allow for
very communication efficient reconstruction of the secret. More precisely, they
show that Shamir’s scheme over fields of characteristic two, allows for recovering
a multi-bit secret from only one bit of leakage from each share.

Inspired by these results, Benhamouda et al. [BDIR18] investigate to what
extend natural secret sharing schemes offer leakage-resilience. They prove that
Shamir’s secret sharing scheme is leakage-resilient against one bit leakages, when
the reconstruction thresholds is at least 0.92 times the number of parties. This
constant was then improved to 0.8675 [MPSW21], then to 0.85 [BDIR21] and
later to 0.78 [MNPCW22].

The currently best known constant is 0.69, which was recently proven by
Klein and Komargodski [KK23]. The authors additionally show that whenever
the leakage functions are guaranteed to be balanced, i.e. approximately half of
the domain gives output 1 and the other half gives output −1, then the constant
can be reduced to 0.58. Similarly, whenever the leakage functions are guaranteed
to be sufficiently unbalanced, then Shamir’s scheme is leakage resilient as long as
the reconstruction threshold is at least 0.01 times the number of parties. This
result is the first one that breaks the barrier of 0.5, which was known to be
inherent in the proof techniques used in the previous works.

Maji et al. [MNP+21] consider much weaker physical-bit leakages, which only
allows for a fixed number of bits to be leaked from the binary representation of
each secret share. They prove that Shamir’s secret sharing scheme with random
evaluation points is physical-bit leakage resilient if the order of the field is suffi-
ciently large. Adams et al. [AMN+21] consider noisy physical-bit leakage, where
each physical-bit leakage is replaced by noise with some fixed probability. They
prove a lower bound for the reconstruction threshold of log(λ)/ log log(λ) for
Shamir’s secret sharing scheme, when the size of the field is 2λ and the evalua-
tion points can be chosen adversarially. In [MNPC+22] Maji et al. improve their
lower bound to log(λ). This bound is interesting in the setting where the size of
the field is much larger than the number of parties. In the setting we consider, we
have λ ≈ log(n), in which case their lower says that the reconstruction threshold
needs to be larger than log log(n).

In another work, Maji et al. [MNP+22] consider global leakage functions with
bounded output length that can compute arbitrary functions over all shares
simultaneously. Generally, this would allow the leakage functions to just recon-
struct the secret, which is an attack that cannot be prevented. For this reason, the
authors artificially restrict their leakage functions to not depend on some of the
random choices made by the secret sharing scheme. For the case of Shamir secret
sharing with random evaluation points, the authors show that one obtains some
leakage-resilience properties, if the leakage functions are not allowed to depend
on the evaluation points.
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2 Preliminaries

Notation. We write [n] to denote the set {1, . . . , n}. For a set X, we write
x ← X to denote the process of sampling a uniformly random element x from
the set X. For a vector v = (v1, . . . , vn) and a vector w = (w1, . . . , wt) ∈ [n]t,
we define vw := (vw1 , . . . , vwt

). We will sometimes abuse notation and write vw,
where w is a set, rather than a vector. In this case the elements can be ordered
arbitrarily in the vector. We denote by Noise(v, �, p) the algorithm that takes
vector v = (v1, . . . , vn) ∈

(
{0, 1}�

)n, � ∈ N, and 0 ≤ p ≤ 1 as input and returns
a new vector (ṽ1, . . . , ṽn), where for i ∈ [n] each ṽi = vi with probability 1 − p
and ṽi ← {0, 1}� with probability p. That means that Noise(v, �, 1) returns a
uniformly random vector and Noise(v, �, 0) returns v.

2.1 Leakage-Resilient Secret Sharing

We define threshold secret sharing schemes similarly to how it was done by
Nielsen and Simkin [NS20]. The full reconstruction parameter t̂ defines how
many shares are needed to reconstruct all shares of a particular secret sharing.
Intuitively, t̂ corresponds to a crude measure of how much entropy the vector of
shares contains.

Definition 1 (Threshold Secret Sharing Scheme). A t-out-of-n threshold
secret sharing scheme is a pair (Share,Rec) of efficient algorithms. The ran-
domized sharing algorithm Share : {0, 1}k → ({0, 1}p)n takes a k-bit secret as
input and returns a vector of n secret shares, each p-bits long. The determinis-
tic reconstruction algorithm Rec : ({0, 1}p)t → {0, 1}k takes t of the shares as
input and returns a k-bit string. We require a secret sharing scheme to satisfy
the following properties:

Perfect Correctness: For t, n ∈ N with t ≤ n, any T ⊆ [n] with |T | = t and
any x ∈ {0, 1}k, it holds that

Pr[Rec(Share(x)T ) = x] = 1,

where the probability is taken over the random coins of Share.
Full Reconstruction: (Share,Rec) has t̂-full-reconstruction, if for any x, the

vector Share(x) can be computed from any subvector Share(x)T with |T | ≥ t̂.

We assume for simplicity that all shares are of the same size p but the proof
of our lower bound can easily be adapted to schemes with shares of different
sizes.

Definition 2 (LeakageFunctions).Let (Share,Rec) with Share : {0, 1}k →
×n

i=1{0, 1}p be a secret sharing scheme and for i ∈ [n], let Leaki : {0, 1}p →
{0, 1}�. We call Leak = (Leak1, . . . ,Leakn) an �-leakage function for (Share,
Rec). We define Leak(sh1, . . . , shn) := (Leak1(sh1), . . . ,Leakn(shn)).
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We now define the privacy notion, which is a direct extension of the (noise-
less) weak one-way local leakage resilience notion of Nielsen and Simkin [NS20,
Definition 5], for which we will prove our lower bounds. The adversary A obtains
a noisy leakage vector and it knows the probability η with which each leakage
is replaced by noise. She does, however, not know which leakage outputs are
replaced by random noise. Our privacy notion requires that A is not able to
learn the secret with probability greater than 1/2.

Definition 3 (Weak One-Way Noisy Local Leakage-Resilience). We
say a secret sharing scheme (Share,Rec) is (�, η)-weakly one-way noisy local
leakage-resilient ((�, η) − WOW-NLLR), if for any �-leakage function Leak and
any adversary A, it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x ← {0, 1}k

(sh1, . . . , shn) ← Share(x)
(Leak1, . . . ,Leakn) ← A(n)

(b̃1, . . . , b̃n) ← Leak(sh1, . . . , shn)

(b1, . . . , bn) ← Noise((b̃1, . . . , b̃n), �, η)
x′ ← A(b1, . . . , bn)

: x′ = x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1
2
,

where the probability is taken over the random coins of Share, Noise and A.

We note that this is a very weak privacy notion. We only require a form of
one-wayness that prevents the adversary from fully recovering the secret shared
value and we only require the adversary to be successful with a probability less
than 1/2. Notably, this notion is even weaker than a standard indistinguishability
type of notion. Since we are proving a lower bound, working with a weaker privacy
notion only strengthens our lower bounds.

3 Lower Bound

In this section we prove our lower bound on the share size of any threshold secret
sharing scheme that satisfies (�, η) − WOW-NLLR.

Theorem 2. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
t̂-full-reconstruction and shares consisting of p bits each. Let � ≥ 1 and let 0 <
η ≤ (n − t)/4n. If S is (�, η) − WOW-NLLR, then

p ≥ �(n − t)
t̂

− 4nη(� + log(1/η)) + 1
t̂

.

Remark 1. We note that the theorem requires η ≤ (n − t)/4n. In principle, our
lower bound could be tightened to only require, for instance, η ≤ (n− t)/1.1n by
replacing a single Markov inequality in the proofs with a stronger tail bound. We
opted for clarity instead of optimizing the constants in our exposition. Next, we
note that η ≤ (n−t)/n is a sensible restriction. If η > (n−t)/n would hold, then
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with high probability n − t + 1 leakages would be replaced by random noise. In
this case, our adversary could not hope to recover the secret, even if the leakage
functions would leak the full shares.

Remark 2. It can be interesting to compare our lower bound to the one of Nielsen
and Simkin [NS20]. Their work shows that any secret sharing scheme that sat-
isfies (�, 0) − WOW-NLLR, needs to satisfy

p ≥ �(n − t)
t̂

.

As η approaches 0, our work effectively proves the same lower bound.

Proof (of Theorem 2). Towards proving the theorem statement, we provide a
generic attacker that successfully wins the (�, η) − WOW-NLLR game against any
secret sharing scheme that does not satisfy the constraints on the share size p
that are stated in the theorem statement. This adversary works as follows. It picks
Leak = (Leak1, . . . ,Leakn) by picking eachLeaki : {0, 1}p → {0, 1}� for i ∈ [n]
uniformly and independently at random. The challenger picks a uniformly ran-
dom secret s and computes (sh1, . . . , shn) ← Share(s). Adversary A submits the
�-leakage function Leak to the challenger, who responds with (b1, . . . , bn), where
each bi is eitherLeaki(shi) with probability 1−η or a uniformly random value from
{0, 1}� with probability η. Let N be the number of components that were replaced
by uniformly random noise values by the challenger and let S = ∅. The adversary
now iterates over all possible secrets s′ and random coins r′ to compute

(sh′
1, . . . , sh

′
n) ← Share(s′; r′)

and
(b′

1, . . . , b
′
n) ← Leak(sh′

1, . . . , sh
′
n).

If |{i ∈ [n] | b′
i = bi}| ≥ n(1 − 4η) for some r′, then add s′ to S. Finally, once

A iterated over all possible secret sharings, if |S| = 1, then it outputs that one
element in S and in any other case it returns ⊥.

Let us now analyze the success probability of A. We observe that if the
challenger replaced at most 4nη coordinates by uniformly random noise, i.e. if
N ≤ 4nη, then s ∈ S. Since in expectation N is equal to nη, it holds by Markov’s
inequality that

Pr[s ∈ S] = Pr[s ∈ S | N ≤ 4nη] · Pr[N ≤ 4nη]
+ Pr[s ∈ S | N > 4nη] · Pr[N > 4nη]
= Pr[N ≤ 4nη] + Pr[s ∈ S | N > 4nη] · Pr[N > 4nη]
≥ Pr[N ≤ 4nη] ≥ 3/4.
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Our adversary is successful, if and only if s is the only element in S. Let Es′ be
the event that s′ ∈ S. Then

Pr [S = {s}] = Pr

⎡

⎣

⎛

⎝
∧

s′ �=s

¬Es′

⎞

⎠ ∧ Es

⎤

⎦ ≥Pr

⎡

⎣

⎛

⎝
∧

s′ �=s

¬Es′

⎞

⎠ ∧ N ≤ 4nη

⎤

⎦

≥Pr

⎡

⎣

⎛

⎝
∧

s′ �=s

¬Es′

⎞

⎠ | N ≤ 4nη

⎤

⎦ · 3/4

=

⎛

⎝1 − Pr

⎡

⎣
∨

s′ �=s

Es′ | N ≤ 4nη

⎤

⎦

⎞

⎠ · 3/4.

To prove the theorem statement, we need to show that the adversary’s attack
is successful with a sufficiently high probability, i.e. we need to show that
Pr [S = {s}] ≥ 1/2 and thus by the above it suffices to show that

Pr

⎡

⎣
∨

s′ �=s

Es′ | N ≤ 4nη

⎤

⎦ ≤ 1/3.

By the union bound3 we have that

Pr

⎡

⎣
∨

s′ �=s

Es′ | N ≤ 4nη

⎤

⎦ ≤
∑

s′ �=s

Pr [Es′ | N ≤ 4nη] .

Let us now fix an arbitrary s′ �= s, fix random coins r′, and let
(sh′

1, . . . , sh
′
n) ← Share(s′; r′). Let Es′,r′ be the event that the adversary

includes s′ into S based on the leakage from (sh′
1, . . . , sh

′
n), i.e. the event that

|{i ∈ [n] | b′
i = bi}| ≥ n(1 − 4η), where b′

i ← Leaki(sh′
i). Let us bound the prob-

ability of Es′,r′ conditioned on N ≤ 4nη. From the perfect correctness of the
secret sharing scheme and since s �= s′, we know that there exists a set of indices
I ⊆ [n] with |I| ≥ n − t + 1, such that for all i ∈ I, it holds that shi �= sh′

i. For
each i ∈ I, there are two cases. Either the leakage bi is the real leakage or it is
a uniformly random element from {0, 1}�. In either case, it holds that bi = b′

i

with probability 2−�, since the corresponding shares are different and the leakage
function Leaki is chosen uniformly random and independently of its inputs.

Let T be the set of subsets of I of size n−t+1−4nη. Note that n−t+1−4nη >
0, since η ≤ (n − t)/4n by assumption. For T ∈ T , let Es′,r′,T be the event that
the noisy leakage vector (b1, . . . , bn) and the noiseless vector (b′

1, . . . , b
′
n) agree

on all coordinates in T . Note that by the union bound

Pr [Es′,r′ | N ≤ 4nη] ≤
∑

T∈T
Pr [Es′,r′,T | N ≤ 4nη] .

3 The union bound also holds for conditional probabilities, meaning that Pr[A ∨ B |
C] = Pr[(A∨B)∧C]/Pr[C] ≤ (Pr[A∧C]+Pr[B∧C])/Pr[C] = Pr[A | C]+Pr[B | C].
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To see this, observe that even if (sh1, . . . , shn) and (sh′
1, . . . , sh

′
n) agree on t − 1

coordinates, then there must still exist at least n − t + 1 − 4nη distinct indices
i ∈ I for which it holds that bi = b′

i to satisfy the condition |{j ∈ [n] | b′
j = bj}| ≥

n(1 − 4η). It is easy to see that

Pr [Es′,r′,T | N ≤ 4nη] ≤ 2−(n−t+1−4nη)�

and thus, it holds that

Pr [Es′,r′ | N ≤ 4nη] ≤|T | · 2−(n−t+1−4nη)�

=
(

n − t + 1
n − t + 1 − 4nη

)
· 2−(n−t+1−4nη)�

=
(

n − t + 1
4nη

)
· 2−(n−t+1−4nη)�

≤
(

e(n − t + 1)
4nη

)4nη

· 2−(n−t+1−4nη)�

≤
(

n − t + 1
nη

)4nη

· 2−(n−t+1−4nη)�

≤
(

1
η

)4nη

· 2−(n−t+1−4nη)�

At this point, recall that each share is p-bits long and that t̂ is the full
reconstruction threshold, i.e. that any t̂ shares are enough to uniquely determine
all remaining shares of a specific secret sharing. Thus there are at most 2pt̂

different secret sharings in total and therefore

∑

s′ �=s

Pr [Es′ | N ≤ 4nη] ≤
(

1
η

)4nη

· 2pt̂−(n−t+1−4nη)�.

As discussed before, the adversary we constructed is successful, if

(
1
η

)4nη

· 2pt̂−(n−t+1−4nη)� ≤ 1/3

⇐⇒ log(1/η)4nη + pt̂ − (n − t + 1 − 4nη)� ≤ − log 3

⇐⇒ pt̂ ≤ (n − t + 1 − 4nη)� − log(1/η)4nη − log 3

⇐⇒ pt̂ ≤ (n − t + 1)� − log 3 − 4nη(� + log(1/η)).

From here it follows that

p ≥ (n − t)� − 1 − 4nη(� + log(1/η))
t̂

must hold, if the secret sharing scheme wants to prevent the attack described
above. �
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The bound in Theorem 2 can be a little unwieldy and for this reason we
also provide a slightly weaker, but simpler to state lower bound in the following
corollary.

Corollary 3. Let t ≤ n/2. Let S = (Share,Rec) be a t-out-of-n secret sharing
scheme with t̂-full-reconstruction and shares consisting of p bits each. Let � ≥ 1
and let 0 < η ≤ 1/64. If S is (�, η) − WOW-NLLR, then

p ≥ �(n − 2t)
2t̂

− 1.

Proof. For Theorem 2 to be applicable, it must hold that 0 < η ≤ (n − t)/4n,
which is always satisfied, when 0 ≤ η ≤ 1/64, since t ≤ n/2. Furthermore, it
holds that

4nη(� + log(1/η)) + 1
t̂

≤ n�

16t̂
+

4nη log(1/η)
t̂

+ 1

≤ n�

16t̂
+

3n

8t̂
+ 1 ≤ 7n�

16t̂
+ 1 ≤ n�

2t̂
+ 1

From Theorem 2, we know that it must hold that

p ≥ �(n − t)
t̂

− 4nη(� + log(1/η)) + 1
t̂

.

Thus it must at least hold that

p ≥ �(n − t)
t̂

− n�

2t̂
− 1

⇐⇒ p ≥ �(n − 2t)
2t̂

− 1.

�

4 Leakage-Resilience of Shamir’s Secret Sharing

In this section we apply our result to Shamir’s secret sharing scheme.

4.1 Shamir’s Secret Sharing Scheme

In t-out-of-n Shamir secret sharing [Sha79], the secrets are elements of a field
Fq for some prime q, which is chosen as the smallest prime larger than n. To
distribute a secret s, the dealer picks a uniformly random polynomial f of degree
t − 1 from Fq[X] and defines shi = f(i) for i ∈ [n]. Reconstruction of the secret
from a subset of t shares is performed via polynomial interpolation, as any
polynomial of degree t − 1 is uniquely defined by t evaluation points.
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4.2 Noisy Leakage-Resilience

Benhamouda et al. [BDIR18] conjecture that Shamir’s scheme is leakage-resilient
against one-bit leakage for any t = c · n, where 0 ≤ c ≤ 1 is a constant. Nielsen
and Simkin [NS20] showed that this is the best one can hope for by proving
that the scheme is not secure against one-bit leakage when t = cn/ log(n). In
Theorem 4 we show that this lower bound holds even if a constant fraction of
leakages is replaced by noise.

Theorem 4. There exist universal constants c1, c2, such that for sufficiently
large n, it holds that (c1 ·n/ log(n))-out-of-n Shamir secret sharing is not (1, c2)−
WOW-NLLR.

Remark 3. We note again that the precise values of the constants c1 and c2 are
not too important. As we will see below, setting them to c1 < 1/3 and c2 = 1/64
suffices. There are multiple ways in which one could optimize these values. As
already noted in Remark 1, one could use a tighter tail bound in the proof
of Theorem 4. Another way could be to strengthen the notion of WOW-NLLR,
i.e. slightly weaken the lower bound, to require the adversary to win with some
probability smaller than half. These changes would, however, not change the
main takeaway of our result, which is that Shamir secret sharing can not be
leakage-resilient, unless t ∈ Ω(n/ log(n)).

Proof. Let c1 < 1/3 be arbitrary but fixed and let c2 = 1/64. By Corollary 3,
we know that

p ≥ n − 2t

2t̂
− 1

has to hold for the secret sharing scheme to be (1, c2) − WOW-NLLR. We note
that the full reconstruction threshold t̂ = t for Shamir secret sharing, since
any t shares allow interpolating any other share. Now plugging in the concrete
parameters, we get that

p ≥ n − 2c1n/ log(n)
2c1n/ log(n)

− 1

⇐⇒ p ≥ log(n)
2c1

− 2

⇐⇒ p ≥ 3 log(n)
2

− 2

has to hold.
Let q be the first prime larger than n and note that p = log(q). By the

Bertrand-Chebyshev Theorem, we know that n < q ≤ 2n and thus it must hold
that

log(2n) ≥ 3 log(n)
2

− 2

⇐⇒ 4 ≥ 3 log(n) − 2 log(2n)

⇐⇒ 4 ≥ log
(

n3

4n2

)
,

which is clearly not true once n is large enough. �
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Conclusion. In this work, we strengthened the lower bounds on the share size of
leakage-resilient secret sharing schemes of Nielsen and Simkin [NS20] by showing
that similar bounds hold, even if we considerably weaken the security notion we
aim for. We show that Shamir secret sharing is not noisy leakage-resilient, if
t ≤ c1 · n/ log(n), where c1 and c2 are constants, where t is the reconstruction
threshold and n is the number of shares. We leave the reader with an interesting
open question. Our lower bound crucially relies on an adversary running in
exponential time in n. A natural question to consider is whether one can either
improve the running time of the adversary to make the attacks more practical
or whether one can prove a form of computational leakage-resilience for Shamir
secret sharing under an appropriate computational assumption.
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